
PhD Dissertation

International Doctorate School in Information and

Communication Technologies

DISI - University of Trento

Automated Approaches to Community Question

Answering

Antonio Uva

Advisor:

Prof. Alessandro Moschitti

Università degli Studi di Trento

April 2019

Abstract

Social Media applications, e.g., forums, social networks, allow users to pose questions

about a given topic to a community of expert users. Although successful, these applications

suffer from a major drawback: it is rather complex to find similar questions with traditional

keyword-based search. Thus, Community Question Answering (cQA), a branch of QA, has

been developed with the aim of automatically answering new user questions. Generally,

cQA systems answer new user questions by (i) first looking at the questions most similar

to the input question and (ii) selecting the best answer for the related question. Such sys-

tems require powerful machine learning algorithms that go beyond traditional approaches

based on features. In recent years, tree kernels and neural networks have established as

the state-of-the-art machine learning algorithms for solving such kinds of problems. Tree

kernels are used to compute the similarity between two sentences encoded in form of trees

that incorporate syntactic and semantic information. Neural networks map words into

informative vectors called embeddings used to learn non-linear transformations of user in-

puts. In this work, we used these models for solving classification and ranking tasks needed

to build automatic cQA systems. As a first step, we conceived structured input models

able to automatically extract discriminative syntactic patterns for classifying relatedness

between two questions. Then, we extended the previous work by presenting a new model for

question similarity that combines semantic information of neural networks with structured

information of tree kernels. We assess the performance of the new model on two tasks, i.e.

question duplicate detection and question reranking, showing the advantages of injecting

syntactic information in neural models. After that, we focus on more challenging tasks

such as building a neural network architecture for ranking comments on a forum according

to their relevance with respect to a new question. We show that neural models can benefit

from being trained in multi-task learning setting, together with auxiliary tasks. This make

possible to train cQA systems in an end-to-end fashion, which is convenient for industrial

applications that needs to be easily deployed. Furthermore, we developed a novel intent

detection model that combines state-of-the-art methods in relational text matching with

the latest techniques in supervised clustering to make inference over a set of questions and

automatically discover intent clusters. The latter can be used to quickly bootstrap Natural

Language Understanding pipelines for dialog systems. To conclude, we study advantages

and disadvantages of neural networks and tree kernel models when applied to cQA tasks.

We show that neural networks perform effectively when data is abundant. Conversely,

tree kernels are more suitable in presence of data scarcity.

Keywords Community Question Answering, Tree Kernels, Neural Networks

4

Contents

1 Introduction 1

1.1 Motivations . 1

1.2 Contributions and Structure of the Thesis 2

2 Machine Learning Methods 5

2.1 Support Vector Machines and Kernel Methods for relation text inference . 5

2.1.1 Supervised Learning . 5

2.1.2 Empirical risk minimization . 6

2.1.3 Loss function . 6

2.1.4 Training discriminative models . 7

2.1.5 Maximum Margin Classifiers . 7

2.1.6 Hard margin SVM . 8

2.1.7 Dual problem . 9

2.1.8 Kernel trick (Kernel substitution) 10

2.2 Structural Kernels . 11

2.2.1 String Kernel . 11

2.2.2 Convolution Tree Kernels . 12

2.3 Neural Networks for Sentence Modeling . 15

2.3.1 Rise of Deep Learning in NLP . 15

2.3.2 Types of Neural Networks . 16

2.3.3 Standard feed-forward Neural Network (NN) 16

2.3.4 Activation function . 17

2.3.5 Training the network: Forward and Backward propagation 18

2.3.6 Loss Functions . 18

2.3.7 Backpropagation . 19

2.4 Convolutional Neural Network (CNN) for Sentence Modeling 20

2.4.1 CNNs for Natural Language Processing 20

2.5 Recurrent Neural Networks (RNNs) for Sentence Modeling 22

i

2.5.1 Vanilla RNNs . 22

2.5.2 Gated Recurrent Units (GRUs) . 22

2.5.3 Summary . 24

3 Community QA with Structural Kernels 25

3.1 Task A: Question-Comment Similarity . 26

3.1.1 Structural Representations for question-answer similarity 26

3.1.2 Convolutional network features . 28

3.1.3 Text similarity features . 28

3.1.4 Context features . 28

3.1.5 Our model for question-answer similarity 29

3.1.6 Experiments and Results . 30

3.1.7 Task B: Question-Question Similarity 30

3.1.8 Structural Representations for question-question similarity 31

3.1.9 Rank Feature . 34

3.1.10 Our Model for question-question similarity 34

3.1.11 Experiments and Results . 35

3.2 Task C: New Question-Comment Similarity 36

3.2.1 Structural Representations for new question-answer similarity . . . 37

3.2.2 Our Model for new question-answer similarity 38

3.2.3 Experiments and Results . 38

3.2.4 Conclusions . 39

4 Neural models for Community Question Answering 41

4.0.1 Related Work . 42

4.0.2 Related Work of NNs for question-answer relevancy. 43

4.1 Task A, Task B, Task C . 43

4.1.1 Preliminaries . 43

4.1.2 The S&M neural model for relational text inference 44

4.1.3 Results of individual models and Discussions 46

4.2 Joint model . 47

4.2.1 Related Work on Multi-Task learning (MTL) for NNs 48

4.2.2 Our MTL model for cQA . 49

4.3 Experiments . 50

4.3.1 Experiments of individual models 50

4.3.2 Results of MTL models . 52

4.3.3 Results on the overall Task C . 53

4.3.4 Conclusions . 55

ii

4.4 Combining Neural and Kernel models for Task B 55

4.4.1 Related Work . 56

4.4.2 Overview/Introduction . 56

4.4.3 Injecting Structure in NNs . 57

4.4.4 Experiments . 59

4.4.5 Conclusion . 62

5 Supervised Clustering of questions for fast bootstrapping of Intent On-

tologies 63

5.1 Overview . 64

5.2 Our solution . 64

5.2.1 Question clustering algorithms . 65

5.2.2 Structured Output Clustering . 66

5.2.3 SVM Models . 66

5.2.4 Pairwise question similarity classifier 66

5.2.5 Models . 67

5.2.6 Baselines . 67

5.3 Datasets: Building Intent clusters . 68

5.3.1 Quora Intent corpus . 68

5.3.2 FAQ: Hype Intent corpus . 71

5.4 Experiments . 71

5.4.1 Setup . 72

5.4.2 Evaluation measures . 72

5.4.3 Experiments on Quora . 73

5.4.4 Evaluation on the FAQ dataset . 74

5.4.5 Error Analysis and Discussion . 75

5.5 Conclusions . 77

6 NLP Pipelines and demos 79

6.1 Multilingual UIMA-based NLP Platform 79

6.2 Overview . 80

6.2.1 LiMoSINe pipeline: overall structure 80

6.2.2 Integrated modules . 82

6.2.3 Conclusion and Future Work . 86

6.3 Tree Kernels-based Discriminative Reranker for Italian Constituency Parsers 88

6.3.1 Bllip parser . 89

6.3.2 Tree Kernel-based Reranker . 90

6.3.3 Experiments . 90

iii

6.3.4 Conclusions . 93

6.4 cQA . 94

6.4.1 Overview . 94

6.4.2 Related Work . 95

6.4.3 Our QA System . 96

6.4.4 Experiments . 97

6.4.5 Conclusions . 98

6.5 Italian QA pipeline . 99

6.5.1 Introduction . 99

6.5.2 Learning to rank relevant documents 99

6.5.3 Conclusions . 102

7 Conclusion and Future Works 103

Bibliography 105

iv

List of Tables

2.1 Common neuron activation functions . 18

3.1 An example of Task A, i.e. question-answer similarity task: The question

Q is reported on the top of the table, while user answers are reported below

in temporal order. For each answer, the position (R) and the gold standard

(GS) are reported. 26

3.2 Performance of our official primary submissions to SemEval Task A. Best-

performing and baseline systems included for comparison. The super-index

in the primary submission stands for the position in the challenge ranking.

The baseline is based on the chronological order of the comments submitted

by users in response to a form question. 31

3.3 Performance of TK and CNN combined with thread-level features VCQA.

The symbol VQE refer to the question embedding, while VCE indicates the

answer embedding. The names in the second columns, i.e. P, PTK and

STK refer the type of kernel used; they stand for polynomial, Partial Tree

and Subset Tree kernel, respectively. The top section shows the perfor-

mance of our primary submission, i.e. ConvKN-primary, while the bottom

part of the table shows the performances of individual models when trained

separately (section 2) and combined (section 3). 32

3.4 A question-question similarity reranking example, for each candidate the

Google rank (G), the gold standard (GS) relevance and our rank (R) are

reported. 33

3.5 Ranking-based features combined with linear and RBF kernels. In the top

section we report the performance of our primary submission, i.e. ConvKN-

primary, to SemEval-2016 Task 3 for Task B. Best-performing and baseline

systems included for comparison. The super-index in the primary sub-

mission stands for the position in the challenging ranking. The baselines

are provided by task organizers; they are based on Google search engine

rankings. 36

v

3.6 A new question-comment reranking example, for each candidate the chrono-

logical rank (R) and the gold standard (GS) relevance are reported. 37

3.7 Performance of our official primary submissions to SemEval-2016 Task 3

for tasks C. Best-performing and baseline systems included for comparison.

The super-index in the primary submission stands for the position in the

challenge ranking. The baselines are as provided by the task organizers;

they are based on Google search engine ranking. 39

4.1 Results on the validation and test set for the proposed models 47

4.2 Impact of CNN vs. LSTM sentence models on the baseline network for

Task C. 50

4.3 Results on the validation and test set for the proposed models. 52

4.4 Percentage of positive examples in the training datasets for each task. . . . 53

4.5 Results on the validation and test set for the proposed models 54

4.6 Accuracy on the Quora dataset. 60

4.7 Accuracy on QL using all available GS data. 62

5.1 Manually annotated intent clusters for Quora 71

5.2 Statistics about the Quora intent corpus. 71

5.3 Statistics about the FAQ-HYPE dataset 72

5.4 Supervised vs. unsupervised clustering models and pairwise classification

baselines on the test set, where the gold labels are from the original Quora

annotation. Note that pairwise classification does not provide a good esti-

mation of clustering accuracy. 74

5.5 Supervised vs. unsupervised clustering models and pairwise classification

baselines on the test set, where the gold labels are provided by the intent-

based manual annotation on a portion of the test set. 75

6.1 Supported modules for different languages 82

6.2 Comparative results on the test set. LR/LP/LF = labeled recall/precision/F1.

EMR = percentage of sentences where recall and precision are 100%.

STK- and STKb-based rerankers use 20-best hypotheses, while PTK-

based reranker use 30-best hypotheses. 91

6.3 Reranker performances: In the top are reported the number k of best

parse trees used during training. Then, in the second row we report the

group of features used: Tree or Tree + feat, while the third row shows the

parse results for two sentence groups: sentences with ≤ 40 words and all

sentences. 92

vi

6.4 An example of two similar tickets: the one used as query on the left and

one retrieved by a search engine (only using question words) on the right. . 95

6.5 Results of the reranker obtained by combining Sim features with TKs. . . . 96

6.6 The accuracy of the different ranking models 101

vii

List of Figures

2.1 A Multilayer Perceptron (MLP) composed of 1 hidden layer, 2 hidden layers

and 1 output layer . 16

3.1 Shallow Tree representation for q/a pairs. The question and answer trees

are depicted on the left and right side, respectively. The subtrees sharing

the same lemma, i.e psychiatrist, are marked with the relational tag REL

to encode information about their relatedness. 27

3.2 Our representation based on syntactic trees for the Q/Q pairs enriched

with REL links. 34

4.1 The CNN model from Severyn and Moschitti [2015b] 45

4.2 Our MTL architecture for cQA. Given the input sentences qnew, qrel and

crel (at the bottom), the NN passes them to the sentence encoders. Their

output is concatenated into a new vector, hj, and fed to a hidden layer, hs,

whose output is passed to three independent multi-layer perceptrons. The

latter produce the scores for the individual tasks. 48

4.3 Learning curves for all tasks on the dev. set; dotted and solid lines represent

the individual and multi-task models, respectively. 53

4.4 Impact of the pre-training data. 61

5.1 LSSVM and baseline clustering models; the latter vary with the cluster

number k, on the FAQ HYPE test set. 76

6.1 LiMoSINe pipeline architecture . 81

ix

Chapter 1

Introduction

In this section, we present the motivations behind this work, and describe our contribu-

tions, chapter by chapter, including references to the corresponding publications.

1.1 Motivations

In recent years, there has been an exponential increase in social media applications such

as social networks, photo-sharing and instant-messaging apps. These applications have

quickly encountered the favor of the people, as they allow users to share media such

as photos, videos and text with other people based on their common interests. One

particular type of social media applications is represented by web forums and online

community QA services, which allow users to pose questions about a given topic to a

community of experts and users. Some very famous examples of such applications are

Quora, Yahoo! Answers, Stack Overflow and Ask Ubuntu. Interestingly, questions and

answers generated by users are not longer bound exclusively to cQA websites; nowadays

we can find question threads even on places not originally conceived as QA websites. For

example, modern e-commerce websites host questions (and answers) asked by users about

products sold on their platform. It is no wonder that at certain point the NLP community

started to probe the use of user-generated content to train systems able to automatically

provide answers for questions asked by users on cQA websites. For many years, research

on automatic QA has mainly focused on factoid questions, i.e. questions whose answers

is a name. Unfortunately, the largest part of questions asked by users on social media

are not factoid. They range from (i) polar yes/no questions to procedural how-questions

to explanation why-questions. In order to be answered, this kind of questions require

methodologies that should reflect the specificity of their intended domain of application.

To make this more complicated, automatic cQA suffers from the problem that the text

input by users is not phrased correctly and generally too complex to be characterized by

2 Introduction

a finite set of rules that specify how to match two pieces of text, such a question and a

relevant answer comment on a forum. The number and complexity of rules needed in order

to make accurate decisions tend to be very high and this may lead to the development of

systems that are difficult to develop and maintain. So, while previous research on factoid

QA show that systems based on heuristics can be very effective, such approaches are not

feasible for cQA. Moreover, recent years have seen a growing interest in voice-controlled

devices, such as Amazon Alexa, Microsoft Cortana, Apple Siri and Google Home. The

success of such systems in the near future will very likely depend or their ability to quickly

bootstrap Natural Language Understanding (NLU) components for answering new types

of questions. Unfortunately, the need to quickly prototype NLU systems clashes with the

high cost involved in engineering them. In order to extensively find a solution to this

problem, many evaluation campaigns have been organized recently both from academia,

e.g. SemEval [Nakov et al., 2016a], and companies, e.g. Quora1 and Alibaba2, with

the goal of building automatic systems for cQA. Although manual approaches to this

problems are doomed to fail, a viable solution is offered by the use of modern NLP

methods, which we present and discuss in this work. Such approaches are aimed at

reducing the engineering cost required for building automatic cQA systems, which can

also potentially benefit Conversational Agents. In particular, we experimented with two

state-of-the-art techniques for automatically engineering features: deep neural networks

and structural kernels. The first approach encode pieces of text by generating informative

embeddings starting from words. The latter approach represents text elements according

to the text inner syntactic structure. Furthermore, we explore novel ways for combining

deep neural networks (DNNs) with kernel technology in order to improve algorithms for

relational text inference. In the final chapter, we show how we used these models that take

advantage of automatic feature engineering capabilities to build a prototype of a system

for automatically managing an Help Desk service. The systems was trained exclusively

on data that have been generated by users.

1.2 Contributions and Structure of the Thesis

In Chapter 2 we introduce the reader to the different machine learning algorithms used

in this thesis. First, we describe Support Vector Machines and kernel methods useful

for training discriminative large-margin classifiers. Secondly, we provide a brief overview

of different types of Neural Network architectures used for modeling the information in

a sentence. Both methods are the basis of many of our contributions described in the

1https://www.kaggle.com/c/quora-question-pairs
2https://102.alibaba.com/detail/?id=115&mtime=1528166091000

https://www.kaggle.com/c/quora-question-pairs
https://102.alibaba.com/detail/?id=115&mtime=1528166091000

Contributions and Structure of the Thesis 3

following chapters.

Contribution 1 (Chapter 3): Structural Models for automatic community QA.

We first formalize the tasks related to the problem of building automatic systems for

community QA (cQA). Then, we describe an SVM model that use structural represen-

tations and syntactic Tree Kernels (TKs) for solving suck tasks [Barrón-Cedeño et al.,

2016]. Experiments carried out in the context of SemEval-2016 challenge show that our

models deliver state-of-the-art performance on automatic cQA. Furthermore, we carry out

extensive experiments to assess the ability of our structural model to improve the result

obtained by advanced systems such as Google in reranking tasks, i.e., question-question

and question-answer similarity [Da San Martino et al., 2016]. We show that our approach

is robust in presence of noisy data and when combined with Google, provides new state-

of-the-art results.

Contribution 2 (Chapter 4): Combining Neural Networks and Kernel models for com-

puting question-question similarity.

We study the problem of building Neural Networks that model also syntactic information

when measuring question-question similarity. To do so, we studied interaction between

Tree Kernels and Neural Networks and propose a new approach to inject structural in-

formation in NNs Uva et al. [2018]. Briefly, the approach works by training a Neural

Networks on a large corpus of unlabeled data, whose annotations have been provided by

an SVM classifier operating on structural representations, and then fine-tuning on gold

annotated data. We show that our approach consistently improves results on two datasets

for question-question similarity: Quora and Qatar Living (QL).

Contribution 3 (Chapter 4): Joint Model for solving the overall cQA task.

We focus on the problem of learning a deep NN for solving the following task: predict if

a comment submitted in response to a previous forum question contains a valid answer

for a new out-of-forum question. Unfortunately, since we had very little training data,

our preliminary results were very low. In order to solve this issue, we train a network

with shared-weights in multi-task learning (MTL) setting on two auxiliary tasks, i.e. (i)

question-to-question similarity and (ii) ranking answers with respect to related forum

question. By doing so, we could exploit connections between inputs of related tasks,

which allowed us to improve the final performance of our model.

4 Introduction

Contribution 4 (Chapter 5): Supervised clustering of questions for quick bootstrapping

of Intent Ontologies.

We study the problem of automatically clustering questions that correspond to the same

user intent, in order to quickly bootstrap NLU pipelines Haponchyk et al. [2018]. Al-

though very challenging, we provided a solution that combined (i) powerful semantic

classifiers with (ii) novel structured output algorithms for supervised clustering. The re-

sults showed that our solution can achieve very good accuracy on intent clustering corpora

and can be used for alleviating dialog manager engineering from the burden of manually

annotating intents for new tasks and domains.

Contribution 5 (Chapter 6): NLP Pipelines and demos.

In this final chapter, we first present the multi-lingual UIMA-based NLP pipeline devel-

oped in the context of the European project Limosine [Uryupina et al., 2016]. Then,

we describe our effort for training a high-performing constituency parser for the Italian

language and reducing the accuracy gap with respect to the English language [Uva and

Moschitti, 2016]. Training such parser allowed us to build the reliable structural rep-

resentation of utterances required for solving higher-level semantic tasks in the Italian

language. Finally, we used this representation to build two QA systems: (i) a more aca-

demic system for factoid QA that use the Italian Wikipedia corpus to search for answers

[Uva and Moschitti, 2015] and (ii) a commercial cQA system that automatically addresses

questions asked by users to operators of some Help Desk service [Uva et al., 2017].

Chapter 2

Machine Learning Methods

2.1 Support Vector Machines and Kernel Methods for relation

text inference

In this section, with first define the concepts of supervised learning. Then, we introduce

Support Vector Machines (SVMs), a class of machine learning algorithms that give state-

of-the-art performances in many discriminative tasks. We provide important insights on

the motivations behind the use of SVMs and the advantages of large-margin classification

hyperplanes. In the end of the section, we describe the dual formulation of SVM and

its most important development: the use of structural kernels in the so called kernel

machines.

2.1.1 Supervised Learning

In Supervised learning, we are interested in learning a function that maps an input vector

to its corresponding target vector. More in detail, given a training set D = {(xi,yi)}ni=1,

we wish to learn a function h ∈ H from the space of possible functions H. The function

h : X → Y maps a input x from the input space X to an output y in the output space

Y . The input can be a vector xi ∈ Rd of dimension d, or a structured object. Te output

y can be anything, but typically is one categorical variable yi from a finite number of

discrete categories {1, . . . , C}. If the output consists of one or more continuous variables,

then this yield to a regression problem. At test time, the function h returns the value y

that gives the highest score, as follows:

h(x) = arg max
y ∈ Y

fw(x,y)

where f : X × Y → R is a discriminant function that takes input a problem instance

x together with a class y and output a numerical score. Typically, the function f is

6 Machine Learning Methods

parameterized by a vector w, learned on the train set, and is linear in the weight vector,

like this:

fw(x) = 〈w,Ψ(x,y)〉 (2.1)

where 〈·, ·〉 is a dot product and the function Ψ : X × Y → Rd maps each input example

and its class into a feature vector in Rd. Typically, we are interested in finding hypothesis

that returned the expected answer in the majority of cases. One way to find a good

hypothesis h∗ among a fixed class of function from the hypothesis spaces H, is to choose

one for which the risk R(h) is minimal.

2.1.2 Empirical risk minimization

Computing the risk requires the definition of a loss or discrepancy L(y, f(xi)) between

the response of f determined by the model parameters w and the actual label yi [Vapnik,

1992]. Once we fixed a task-dependent loss L, we can estimate parameters w of a model

from training data by adopting the Empirical Risk Minimization principle. The latter

states that the learning algorithm should choose a hypothesis h∗ which minimizes the

empirical risk R(f) according to the defined task-dependent loss. However, since the

functional risk cannot be directly optimized, we minimize the empirical risk Remp(f)

evaluated on the training data.

h∗ = arg min
h∈H

Remp(f) = arc min
h∈H

1

n

n∑
i=1

L(h(xi),yi) (2.2)

2.1.3 Loss function

A loss function L : Y ×Y → R maps an event, generally defined over two variables, into a

numerical cost associated with that specific event. The latter is typically the prediction of

a model, and the loss specifies how much it should be penalized for incorrect predictions.

Generally, a common loss used for training “maximum-margin” classifiers, such as SVMs,

is the hinge loss. This loss is used in place of the 0 − 1 loss, which is not convex and is

not derivable at 0. The general formulation of the hinge loss is the following:

Lhinge(y
∗, y) = max

(
0, max

y 6=y∗
(∆(y, y∗) + 〈w,Ψ(x,y)〉)− 〈w,Ψ(x,y∗)〉

)
The term ∆(·, ·) measures the discrepancy between the true label y∗ and the predicted

output y. It enforces the requirement that y∗ should be scored higher than any other

predicted value y by at least ∆(y, y∗).

Support Vector Machines and Kernel Methods for relation text inference 7

2.1.4 Training discriminative models

After having defined the previous concepts, we can summarize the main components

needed for training discriminative models. In particular, we have:

1. Training and test data from the input space Rd, represented as vector of features xd

obtained by applying the feature map Ψ(·, ·) . The design of the feature map Ψ is

very important since the the expressiveness of the feature set critically impacts on

the accuracy of the final model.

2. The output space, which depends on the task. It may be a binary variable, i.e. −1

or +1, for binary classification, or in case of multiclass classification, the confidence

of one class over k classes.

3. A space of hypothesis, among which to select the function mapping an input example

to output target.

4. A loss function L penalizing incorrect predictions. The loss needs to be carefully

chosen depending on the task to solve.

5. An algorithm that estimates the parameters w of the model by minimizing the

empirical risk.

6. An inference process that assigns an output label to an input.

2.1.5 Maximum Margin Classifiers

Support Vector Machines for two-class classification problems learn models of the form:

f(x) = wTx + b (2.3)

where w is a weight vector in Rd and b represents the bias term. Typically, in order

to train a SVM classifier we need training data. A training dataset comprises N input

vectors x1, · · · ,xN , with corresponding target values, y1, · · · , yN , where yn ∈ {−1, 1},
and new data points x are classified according to the sign of f(x). If the training data

are linearly separable in the feature space, than there exists an assignment to the model

parameters w and b such that the function 2.3 satisfies wTxn + b > 0 for points having

yn = +1 and wTxn + b < 0 for points having yn = −1, so that yn(wTxn + b) > 0 for all

training data points.

8 Machine Learning Methods

2.1.6 Hard margin SVM

When training data are linearly separable, we can train a hard margin SVM to select the

hyperplane w that maximizes the separating margin between two classes. The confidence

margin ρ of a classifier is defined as the minimal distance between the classifier hyperplane

and the nearest examples from two classes.

ρ = min(X,y)∈Dyf(X)

However, there are infinite possible solution formulations for the same hyperplane, e.g.:

wTx + b = 0

α(wTx + b) = 0 ∀α 6= 0

Given this, we can choose the decision hyperplane that has confidence margin equal to 1,

i.e. 〈w,x〉 = 1 for the closest points on the positive side (i.e. side of positive examples),

and 〈w,x〉 = −1 for the closest points on the other side. Such hyperplane is called

canonical hyperplane. As a result, the size of the margin band is equal to two times the

canonical hyperplane geometric margin γ. Given that the hyperplane geometric margin γ

is equal to ρ
‖w‖ and the canonical hyperplane has confidence margin ρ = 1, it follows that

γ = 1
‖w‖ . Thus, maximizing the geometric margin γ corresponds to maximizing ‖w‖−1,

which is the same as minimizing ‖w‖2. Finally, selecting the best separating hyperplane

for hard margin SVMs corresponds to solving the following problem:

minimize
w,b

1

2
‖w‖2

subject to: yi(w
Txi + b) ≥ 1

As it can bee seen, this is a quadratic programming problem in which we are trying to

minimize a quadratic function subject to a set of linear inequality constraints. The points

lying on the minimal confidence (canonical) hyperplane are called support vectors. All

the other points that do not contribute to the final decision function could have been

removed from the training set, without affecting the classifier training. The resulting

model is sparse, in the sense that classification of new points, i.e. problem instances,

requires only few computations with respect to the model stored support vectors.

Soft margin SVM

In cases where the training data points are not linearly separable in feature space, e.g.

due to overlapping class distributions or annotation errors, a more relaxed version of SVM

can be used. An intuitive way of modifying SVM to handle such cases is to allow some

Support Vector Machines and Kernel Methods for relation text inference 9

of training points to be misclassified [Cortes and Vapnik, 1995; Bennett and Mangasar-

ian, 1992]. This way, data points will be allowed to be on the wrong side of the margin

boundary. So, we define a more relaxed version of SVM by introducing slack variables,

ξn > 0, where there is one slack variable for each training data point. If ξn = 0, then the

points are correctly classified and either they are on the margin, i.e. yi(w
Txi + b) = 1 or

they are on the correct side of the margin yi(w
Txi + b) ≥ 1. Points for which 0 < ξ ≤ 1

line inside the margin (margin error), but on the correct side of the decision boundary,

while points for which ξn > 1 lie on the wrong side of the decision boundary and are

misclassified. The regularization parameter C > 0 controls the trade-off between slack

variable penalty and margin, or in other words, controls the trade-off between minimiz-

ing the training errors and controlling model complexity. If the C parameters is large,

the optimization will choose smaller-margin hyperplane that classify all training points

correctly. However, this may result in poor generalization. Conversely, a small value of

C causes the optimizer to look for separating hyperplanes with a larger margin. In such

case, there is a reasonable cost to pay for training points falling inside the margin band,

or the wrong side of hyperplane. Typically, this leads to better generalization and more

robustness.

minimize
w,b,ξ

1

2
‖w‖2 + C

∑
i

ξi

subject to: yi(w
Txi + b) ≥ 1− ξi ξi ≥ 0

(2.4)

2.1.7 Dual problem

The primal optimization problem of SVM can be solved with a number of methods for

quadratic optimization problems, e.g. interior point methods, ellipsoids, simplex and

many others. However, solving the primal is not convenient if the dimension d of training

examples is larger than their number N , i.e. d >> N . One more efficient way to find

the model parameters is by solving the Lagrangian dual of the quadratic optimization

problem, enabled by the use of Representer Theorem [Kimeldorf and Wahba, 1970]. The

latter says that a function f minimizing a regularized empirical risk function over a kernel

Hilbert space can be represented as a combination of kernel products evaluated on the

input points in the training dataset, i.e.:

w =
N∑
n=1

αnynxi

10 Machine Learning Methods

If we substitute w in eq 2.3, we obtain:

fα(x) =

(∑
n=1

αnynxn

)T

x =
∑
n=1

αnynx
T
nx

Here, we omit the derivation of the dual formulation with respect to the primal variables,

and directly state the dual optimization problem:

maximize
α∈Rm

N∑
n=1

αn −
1

2

N∑
n=1

N∑
m=1

αnαmynymxTi xj

subject to: 0 ≤ αi ≤ C

(2.5)

The dual formulation in equation 2.5 has several advantages in comparison to the primal

form:

• in cases where N << d, it is more efficient to solve for the dual variables αn than for

the primal variables w. By solving the dual optimization problem, we learn more

compact models with sparser alphas, i.e. αi ≥ 0. This way, the resulting SVM

model will contain a number of support vectors smaller than the number of training

instances.

• the dual formulation contains dot products only between input instances, which can

be replaced with kernels.

2.1.8 Kernel trick (Kernel substitution)

Kernels make it possible to replace inner products between between input vectors x into

inner products computer in an other implicit features spaces. There are two ways to apply

kernels:

• Choosing a feature space mapping function φ : Rd → Rd and then computing the

inner product in the transformed space; or

• Constructing the kernel function directly by ensuring that the function we choose is

a valid kernel, i.e. that the value K(xi,xj) corresponds to scalar product in some

feature space. Interestingly, in this case, a Kernel function between two input objects

can be implicitly calculated, without requiring the computation of the coordinates

of the data in the new implicit space. This is called “kernel trick” and is a result of

the Mercer’s Theorem [Shawe-Taylor et al., 2004]:

K(xi, xj) = 〈φ(xi), φ(xj)〉 (2.6)

Structural Kernels 11

While appealing, the second approach requires checking that a function is a valid kernel,

which can be done, e.g., by explicitly constructing φ(x). Unfortunately, this is a very

tedious process. As a solution, [Shawe-Taylor et al., 2004] show that a sufficient condition

for a function K(x,x′) to be a valid kernel is that the Gram matrix K, whose elements

are given by k(xi,xj) is positive semidefinite for all possible choices of the set xn, i.e.:

n∑
i=1

n∑
j=1

k(xi,xj)cicj ≥ 0, ∀c

At this point, the final SVM classifier can be defined as follows:

fα(x) =
∑
i

αyiK(xi,x)

Selecting the right kernel for a given problem requires some expertise. Some popular

kernels on real-valued fixed-size vectors are:

• The Linear Kernel: K(x,y) = 〈x,y〉

• The Polynomial Kernel of degree d: K(x,y) = (1 + 〈x,y〉)d, for any d > 0

• The Sigmoid Kernel: K(x,y) = tanh(a〈x,y〉)

• The Gaussian RBF: K(x,y) = exp(−||x− y||2/2σ2), for σ > 0

In the next section, we introduce some complex kernels operating on structured objects.

2.2 Structural Kernels

Structural kernels are kernels that operate on structured objects, e.g. strings, trees, graphs

and so on. They have been successfully applied in many domains and problems, since they

allow the user to incorporate knowledge about the structure of the data when computing

kernel similarities. This is important especially for objects whose overall similarity is a

function of the similarity of their subparts. In this section, we introduce general kernels

that operate on structured objects such as strings and trees.

2.2.1 String Kernel

The String Kernel (SK) Lodhi et al. [2002] computes the similarity between two strings

s1 and s2 by counting the number of common substrings that are shared between them.

Some symbols in the strings may be skipped. This allows the skipgrams to contribute to

the final similarity. The SK is defined by the following equation:

12 Machine Learning Methods

KSK(s1, s2) =
∑
u∈Σ∗

φu(s1) · φu(s2) =
∑
u∈Σ∗

∑
~I1:u=s1[~I1]

∑
~I2:u=s2[~I2]

λd(~I1)+d(~I2) (2.7)

Here, Σ∗ = ∪∞n=0Σn is the set of all possible strings, while ~I1 and ~I2 are the two sequences

of indexes ~I = (i1, · · · i|u|), with 1 ≤ i1 < .. < i|u| ≤ |s|, such that u = si1 ..si|u| ,

d(~I) = i|u| − i1 + 1 and λ ∈ [0, 1] is a decay factor. The i indexes range from 1 to the

length of substrings u, and u is shorter than the string length. d(~I) is the distance between

the first and last character of the substring.

2.2.2 Convolution Tree Kernels

Tree kernels compute a similarity between tree structures by counting the number of

common subtrees rooted at different nodes. There are many kinds of tree kernels and

their difference is in richness of tree fragments generated. The main advantage of Tree

Kernels (TKs) is that they compute the number of subtrees between two trees T1 and

T2 without enumerating all the possible tree fragments, which would be very expansive

operation. Let T = {t1, · · · , t|T |} be the set of all possible trees in the space of structures,

and χi(n) and indicator function, which is equal to 1 if the target ti is rooted at node n,

and equal to 0 otherwise. We can defined a general tree kernel, over T1 and T2 as:

KTK(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2) (2.8)

NT1 and NT2 are a set of nodes of the T1 and T2 trees, and

∆(n1, n2) =

|T |∑
i=1

χi(n1)χi(n2) (2.9)

computes the number of common tree fragments rooted at the n1 and n2 nodes. Depending

on how the tree fragments are extracted and counted, Eq. 2.2.2 generates a number of

tree kernels with different level of expressivity.

Syntactic Tree Kernel

The Syntactic Tree Kernel (STK) Collins and Duffy [2002] evaluates the number of com-

mon subtrees as follows:

1. if the productions at n1 and n2 are different then ∆(n1, n2) = 0

2. if the productions at n1 and n2 are the same, and n1 and n2 have only leaf children

(they are pre-terminals), then ∆(n1, n2) = 1

Structural Kernels 13

3. if the productions at n1 and n2 are the same, and n1 and n2 are not preterminals,

then:

∆(n1, n2) =

nc(n1)∏
j=1

(1 + ∆(cjn1
, cjn2

))

where nc(·) is a function that returns the number of children of the argument node,

and cjn is the j-th child of node n. A decay factor can be introduced by modifying

the steps (2) and (3) as follows1:

2. ∆(n1, n2) = λ

3. ∆(n1, n2) = λ
nc(n1)∏
j=1

(1 + ∆(cjn1
, cjn2

))

The running time of STK is O(|NT1×NT2|), but as shown in [Moschitti and Zanzotto,

2007] tends to be linear, i.e. O(|NT1| + |NT2|) if (i) first, we sort subtrees by the

lexicographical order of their production and (ii) secondly, we count kernel similarity

between those trees. The main observation of STK is that the production rules of

the grammar used to generate the tree will not be broken, i.e. children of a node

are not separated.

Partial Tree Kernel

The Partial Tree Kernel (PTK) differs from the STK in the fact that it consider also

partial tree fragments, i.e. subtrees where children can be separated. This means that

production rules of the grammar generating the trees can be broken. PTK produces a

greater number of fragments, and thus the feature spaces is more expressive. The ∆

function of the PTK is the following:

1. if the node labels n1 and n2 are different then ∆(n1, n2) = 0; else

2. ∆(n1, n2) = 1 +
∑

~I1,~I2,l(~I1)=l(~I2)

∏l(~I1)
j=1 ∆σ(cn1(~I1j), cn2(~I2j))

where ~I1 = 〈h1, h2, · · · 〉 and ~I2 = 〈k1, k2, k3, ..〉 are sequences of indices synchronized

with the ordered child sequences cn1 of n1 and cn2 of n2. ~Iik and ~I2j index the j-th

child in the sequence, and l(·) returns the length of the index list, and therefore the

number of children of a node.

We can extend the previous formula by adding two decay factors: u accounting for the

tree depth and λ for the length of the child subsequences with respect to the original

sequence, which accounts also for gaps:

1score can be normalized between 0 and 1 in kernel space: TKnorm(T1, T2) = (T1,T2)
TK(T1,T1)TK(T2,T2)

14 Machine Learning Methods

∆(n1, n2) = µ(λ2 +
∑

~I1,~I2,l(~I1)=l(~I2)

λd(~I1)+d(~I2))

l(~I1)∏
j=1

∆(cn1(~Iij), cn2(~I2j)) (2.10)

where d(~I1) = ~I1l(~I1) − ~I11 + 1 and d(~I2) = ~I2l(~I2) − ~I21 + 1. The decay factor penalizes

larger and deeper trees, and children that are far away from each other.

Neural Networks for Sentence Modeling 15

2.3 Neural Networks for Sentence Modeling

In this section, we present neural networks, a family of powerful machine learning models.

Such models have been applied in many domain and problems, ranging from lucrative

online advertising applications to image classification in computer visions and to machine

translation in natural language processing. In the last years, the application of neural

networks to all these fields allowed them to make huge steps forwards. In the remaining

of the chapter, we provide some background about the use of deep learning methods in

the NLP field, where they are considered the state of the art for many tasks. Then, we

described the main network architectures used in our contributions, from simple feed-

forward networks to convolutional and recurrent neural networks. Whenever possible, we

include the motivation behind the design of different network architectures, highlighting

advantages and limitations for each of them.

2.3.1 Rise of Deep Learning in NLP

Neural networks started to be adopted in NLP only recently. Generally, text has never

been an easy task for computers and they have struggled considerably more with un-

structured data compared to structured data. One reason is that for many years, the

availability of annotated data for common NLP tasks has been very limited. As a result,

discriminative approaches based on simple linear classifiers, such as SVMs, have always

outperformed very complex classification function with millions of parameters. However,

recent developments on neural networks as well as the availability of large datasets, e.g.,

created with crowd-sourcing methods has allowed computers to significantly improve their

capability to fit complex functions, with beneficial effects for speech recognition, computer

vision and NLP. Another driving factor of such improvement is the availability, today, of

fairly large amount of semi-supervised data compared to the last decade, allowed from fast

digitization of society. The time spent by people, for example, on social media and online

apps, accessible from smartphones, made possible for machines to accumulate more and

more data. Unfortunately, traditional learning algorithms were not ready to exploit such

data effectively. Thus, a new generation of machine learning methods, i.e, deep learning,

rose in order to take advantage from this new situation. Finally, the second major factor

behind the success of deep learning is the availability of specialized hardware such as

GPUs. This hardware, which provided the computational power required for fast matrix

operations at the base of many neural network operations, made it possible to train very

large models that can effectively benefit from data abundance.

16 Machine Learning Methods

2.3.2 Types of Neural Networks

Over the last years, many types of neural networks have been conceived for solving dif-

ferent kinds of applications. Generally, standard feed-forward NNs have been used for

online advertising and real estate applications. Convolutional Neural Networks (CNNs)

have been used for image classification, while Recurrent Neural Networks (RNNs) have

been employed for handling sequential data, such as audio or sentences. In the follow-

ing sections we describe the main network architectures that the reader will find in our

contributions, from simple feed-forward to LSTM recurrent neural networks.

2.3.3 Standard feed-forward Neural Network (NN)

Neural networks can be shallow or deep, depending on the number of hidden layers con-

tained by the network. By convention, deep networks, such as Standard feed-forward, are

composed of 1 input layer, 1 output layer and at least one hidden layer. One of the sim-

plest forms of feed-forward networks is the Multi-Layer Perceptron (MLP) (Figure 2.1).

In a MLP every unit in a layer is connected to every unit in the next layer, except for the

output layer, which returns the final network prediction.

Hidden

layer

h1

Hidden

layer

h2

Input

layer

x

Output

layer

y

Figure 2.1: A Multilayer Perceptron (MLP) composed of 1 hidden layer, 2 hidden layers and 1

output layer

The input layer takes in input the x vector. The hidden layer values are obtained by

applying a hidden non-linear transformation of the values from the previous layer. More

in detail, the first hidden layer is computed by multiplying the input vector x with the

weights of matrix corresponding to the h1 layer, and adding the bias to the result. Gener-

Neural Networks for Sentence Modeling 17

ally, a neural network model can be specified by a set of vector-matrix operations. Below,

We report the equations specifying the MLP:

ŷ = f(x) = o(h2(h1(x))

h1(x) = σ1(W1x + b1)

h2(x) = σ2(W2x + b2)

o(x) = σ3(W3x + b3)

x ∈ Rdin , ŷ ∈ Rdout , f : Rdin → Rdout

W1 ∈ Rd1×din ,b1 ∈ Rd1 ,

W2 ∈ Rd2×d1 ,b2 ∈ Rd2 ,

W3 ∈ Rdout×d2 ,b3 ∈ Rout

σi ∈ {tanh, sigmoid, relu, ...}, i ∈ {1, 2, 3}
Here, din and dout represent the input and output dimensions, while σi are non-linear

activation functions applied to each element. In order to compute non-trivial functions

a neural network needs to use non-linear activation functions. The reason is that com-

position of linear functions is still a linear function of the input, making de facto useless

to have multiple hidden layers in a network. Regarding the activations σi, different non-

linearities can be used across the hidden layers. As usual, the specific type of problem

being solved guides the choice of details such as the number of outputs, the final output

activation and the loss to minimize.

2.3.4 Activation function

Choosing the right activation function is very important when designing a neural network

model. In table 2.1 we show some of the functions commonly used. The sigmoid function

model the probability of a binary event output by a single neuron. This is the default

choice when the desired output is between 0 ad 1. An other activation function is the

hyperbolic tangent function (tanh), which returns an output between −1 and 1. The

sigmoid and tanh functions are similar, but the latter is better, as it automatically centers

the activation values to 0. For this reason, it often performs better then sigmoid when

used in the hidden layers. Unfortunately, one problem of the sigmoid and tanh activations

is that their gradient tend to vanish when the activation becomes very large or very

small (gradient saturation). This results in slowing down gradient-based optimization

algorithms at training time. To overcome this problem, the rectified linear (ReLU) units

were proposed by Nair and Hinton [2010]. In ReLU the derivative is 1 as long as the

activation is positive, otherwise is 0. Although the derivative is technically undefined

18 Machine Learning Methods

when activation is equal to 0, this issue is solved by setting the derivative to 0. By using

the ReLU, the network continues to learn even in case the activation values are very large

or small. Nowadays, the ReLU unit is used in the hidden layers of the networks as default

choice in the largest part of cases.

Logistic (or sigmoid) f(x) = 1
1+e−x

Hyperbolic Tangent (tanh) f(x) = 2
1+ε−2x − 1

Rectified Linear Unit (ReLU) f(x) = max(0, x)

Softmax f(x)i = exi∑K
k=1 e

x
k

for i = 1, . . . ,K

Table 2.1: Common neuron activation functions

2.3.5 Training the network: Forward and Backward propagation

At classification time, the output of a neural network depends on the input and the param-

eters of the networks layers, i.e. the weight matrices and bias vector. These parameters,

which are fixed during classification, first, need to be learned. During training, we wish to

set the parameters in order to minimize the empirical risk on the training instances. The

process by which the network learns the optimal parameter values happens in two steps:

forward and backward passes. Typically, during the forward pass the network takes in

input a training instance and produces an output under the current parameters. Then,

the predicted output is compared with the true output, usually specified by the gold labels

associated with the training instances in the training set. At this point, the difference

between the true and the predicted value is computed and produces an error measure

called loss. This measure is used during the backward pass for tuning the parameters

of the network. The goal of the training process is to reduce the loss of the network on

the next forward pass over the data to make the predictions of the network closer to the

desired output.

2.3.6 Loss Functions

A loss function L is used to produce a single scalar value that measure the error made by

the network on the predicted output y compared to the true output y∗. As usual, the loss

has to be selected carefully based on the task to optimize, which depends on the desired

output type. This can be a continuous value, a binary or a categorical variable. In the

first case, where we want to model a continuous output, a suitable loss function can be

Neural Networks for Sentence Modeling 19

the Root Mean Squared Error (RMSE).

LRMSE(y∗, y) =

√∑n
i=1(y∗i − yi)2

n

In the second case, where we model a binary variable, it is better to use the binary cross-

entropy (also called logarithmic loss), which measures the performance of a classification

model whose outputs are probabilities:

Llogloss(y∗, y) = − 1

n

n∑
i=1

[y∗i log yi + (1− y∗i)log(1− yi)]

A more general version of logarithmic loss is categorical cross-entropy. The latter is used

when we need to classify an input into one of m possible classes, and m is greater than

two. The cross-entropy measures how much two distributions diverge, i.e., the network

predicted probability distribution vs. the ground truth probability distribution

Lcross−entropy(y∗, y) = − 1

n

n∑
i=1

m∑
j=1

y∗ijlog(yij)

2.3.7 Backpropagation

After having defined the network architecture and the loss, we need to train a model

and update the network parameters to produce the desired output. To do so, we use the

backpropagation algorithm [Rumelhart et al., 1988]. Backpropagation iteratively adjusts

the parameters of the network in order to reduce the error quantified by the loss function.

It works by computing the gradient of the loss function under the parameters of the

network. Each term in the gradient quantifies the error of a single neuron during the

computation of the network output. Once the gradient is computed, the weights of the

networks are updated accordingly. For example, assuming we have a network composed of

` layers, i.e. W 1,W 2, . . . ,W `, b1, b2, . . . , b`, we update them weights and biases as follows:

W |`| = W |`| − α ∂L
∂W |`|

b|`| = b|`| − α ∂L
∂b|`|

Backpropagation is called like this because it first computes the error starting from the

last network layer, and, then proceeds backwards to estimating the errors of the previous

layers. Popular gradient methods used in network optimization are gradient descent and

its variants, e.g. Stochastic Gradient Descent (SGD) [Bottou, 2010]. Other more advanced

techniques such as adaptive optimization methods [Duchi et al., 2011; Kingma and Ba,

20 Machine Learning Methods

2014] overcome some limitations of SGD by trading additional computational cost for

faster convergence rate.

2.4 Convolutional Neural Network (CNN) for Sentence Model-

ing

Convolutional neural networks became popular after the work of Yann LeCun on optical

character recognition at AT&T Bell Labs.. During his work, he found that that neural

networks with locally-connected layers and shared weights outperformed fully-connected

networks in image recognition tasks. This result, at the base of the LeNet-5 success [LeCun

et al., 1998], is due to the ability of CNNs to extensively handle very large images. Indeed,

previous models, such as fully-connected networks, could manage large images only after

downsampling them. These models were very expensive in term of memory and difficult

to regularize in order to prevent overfitting. The capability of CNNs to handle large

images is the result of two features: (i) parameter sharing and (ii) sparsity of connections.

Parameter sharing allow the use of the same feature maps in order to to detect patterns in

different positions of the image, while sparsity of connections makes it possible to compute

the output of a neuron based only on a subset of input features. Thus, by using these two

mechanisms, a neural network with fewer parameters can be trained on smaller feature

maps and it is less prone to overfitting.

2.4.1 CNNs for Natural Language Processing

As we’ve seen, CNNs have been been extensively used in computer vision problems thanks

to their ability to accurately detect position of different objects appearing in an image.

However, not only they are very popular in computer vision [Krizhevsky et al., 2012;

Lawrence et al., 1997; Karpathy et al., 2014], but they proved to be effective in many

different NLP tasks. Differently from computer vision, CNNs are employed in NLP for

modeling the information in a sentence. Early example of CNNs in NLP were introduced

by Collobert et al. [2011a]; Kalchbrenner et al. [2014] and Kim [2014]. Typically, they use a

convolution operator to compute a vector for every possible phrase appearing in sentence.

Phrases are represented regardless whether they are grammatically or not. Later, they

combine the different phrases representations into a unique vector encoding the meaning

of the entire sentence. Surprisingly, CNNs perform generally well on a number of different

NLP tasks even though the inner process of the model is not very linguistically motivated.

Convolutional Feature Maps

Convolutional Neural Network (CNN) for Sentence Modeling 21

Convolution feature maps are the building blocks of the CNN architectures. Here we

describe how convolution filters are applied to a sentence matrix S. Typically, in NLP

we represent every words in a sentence with k-dimensional vectors xi ∈ Rk and then we

model the entire sentence by concatenating the individual word vectors. Thus, a sentence

is represented as follows:

x1:n = x1 ⊕ x2 ⊕ · · · ⊕ xn

where ⊕ is the concatenation operator. We refer to xi:i+j as the concatenation of words in

range (i, j), or said differently, from time step i to time step i+ j. At this point, we apply

a convolution filter of window size h and word vectors of size k. Convolutional filters are

parameter vectors w ∈ Rhk learned with gradient descent optimization methods. At each

time step, the convolution filters look at h different word vectors of size k and combines

them into a single feature, e.g., ci = f(wTxi:i+h−1 + b). Here, f is a non-linear activation

function. After applying the filter w to all the possible windows, i.e. concatenated vectors,

of length h: {x1:h,x2:h+1, · · · ,xn−h+1:n}, we obtain the following feature map:

c = [c1, c2, · · · , cn−h+1] ∈ Rn−h+1

Pooling operator

Generally, feature maps have different length depending on the window size h and the

number of words appearing in a sentence. To overcome this problem, besides using zero

padding, we typically employ a pooling operator such as max-over-time pooling layer (or

max pooling layer), to capture the most important activation from the map ĉ = max{c}.
This way, we select a feature ĉ that has very large activation and ignore the rest of the

sentence. As a general rule, CNNs employ multiple filters w of different length. These

filters correspond to different feature maps, which extract unigrams, bigrams, trigrams,

etc. It is proved that using multiple feature maps results in more accurate models.

Classification after one CNN layer

After having applied a number of convolution operators followed by max-pooling opera-

tions, we concatenate all the ĉi and obtain a final feature vector z = [ĉ1, · · · ĉm] ∈ Rm.

Each ĉi is the result of one of m max-pooling operations obtained by convolving m dif-

ferent filters over the sentence. Generally, these ĉi values are fed to a softmax function

y = softmax(Wz + b) for training a multiclass classifier whose parameters are optimized

by reducing the standard cross entropy error.

22 Machine Learning Methods

2.5 Recurrent Neural Networks (RNNs) for Sentence Modeling

2.5.1 Vanilla RNNs

CNNs are very effective in modeling sentences, but unfortunately they do not consider

the grammatical structure of elements in a text. In addition, they completely ignore the

inherent sequential nature of language. An alternative way to model sentence information

in NLP tasks is by using recurrent models. These models have been explicitly conceived for

modeling one-dimensional sequence data that span over time. An example of such models

is the Vanilla RNN. When applied for modeling sentences, a Vanilla RNN consumes a

sequence of vectors, each corresponding to the current word, one step at the time. Then,

it updates its the internal state as a function of the new word and the previous previous

state. By doing so, the model can condition what to predict next based on information

in previous words. Below, we report the equations describing a simple Vanilla RNN:

ht = σ
(
W(hh)ht−1 + W(hx)x[t]

)
ŷt = softmax(W (S)ht)

W(hh) ∈ RDh×Dh W(hx) ∈ RDh×d W(S) ∈ R|V |×Dh

Here, ht ∈ RDh is the hidden state at time t, while x[t] corresponds to the embedding of

the t-th word in the sentence. Generally, we start (at time 0) by initializing the hidden

state to a vector of all zeros. In the subsequent steps, we compute the new hidden states

ht by multiplying (i) the linear layer W(hh) with the hidden state at time t − 1 and (ii)

the linear layer W(hx) with the input word vector at time t. Then the resulting vectors

are summed element-wise and a non-linearity is applied. Typically, as last step, the final

hidden state ht is fed to a standard softmax function to classify the input sentence into a

predefined set of categories.

Despite being interesting from the theoretical point of view, Vanilla RNNs are not used in

practice as they suffer from the vanishing and exploding gradient problem [Bengio et al.,

1994]. This problem arises when the signal becomes either too weak or to strong during

the computation of the gradients at different time steps. In order to solve this problem,

many solutions have been proposed, such as gradient clipping [Pascanu et al., 2013] and

the design of new types of recurrent models like LSTMs and GRUs.

2.5.2 Gated Recurrent Units (GRUs)

Gated Recurrent Units (GRUs) were introduced by Cho et al. [2014]. The main idea

behind them is to create processing units that have gates. These gates make possible to

Recurrent Neural Networks (RNNs) for Sentence Modeling 23

build models that learn to capture long distance dependencies from previous words. In

addition, they also allow the error messages to flow at different strengths depending on

the inputs. A GRU can be described by the following equations:

zt = σ(W(z)xt + U(z)ht−1)

rt = σ(W(r)xt + U(r)ht−1)

h̃t = tanh(Wxt + rt ◦Uht−1)

ht = zt ◦ ht−1 + (1− zt) ◦ h̃t

The GRU cell first computes the values of two gates: (i) the update gate zt and (ii) the

reset gate rt. If the reset gate rt is close to 0, the GRU cell ignores previous hidden states.

This, essentially corresponds to discarding the previous memory, i.e. the past, and setting

the hidden state to the transformed current word vector xt. This way, the model drops

information that is irrelevant in the future. After that, the reset gate rt is element-wise

multiplied by Uht−1 and summed to Wxt, returning the intermediate memory content

h̃t. Differently, the update gate zt controls how much of the past state matters for the

future prediction. The final memory at time step combines current and previous time

steps: ht = zt ◦ ht−1 + (1 − zt) ◦ h̃t. Differently, the update gate zt controls how much

the past state matters for future predictions. The way a GRU cell overcomes gradient

problems is by smartly using the update gate: if zt is close to 1, the unit just passes

the previous activation to the next processing unit, without applying a non-linearity. As

result, the final network is less affected by the vanishing/exploding gradient.

Long Short-Term Memories (LSTMs)

LSTMs [Hochreiter and Schmidhuber, 1997] are a more complex type of units used in

recurrent neural models. Networks composed of LSTM units can learn long range con-

nections better than GRUs. Nowadays, LSTMs are the default choice for most NLP tasks.

An LSTM unit can be described by the following equations:

it = σ
(
W(i)xt + U(i)ht−1

)
ft = σ

(
W(f)xt + U(f)ht−1

)
ot = σ

(
W(o)xt + U(o)ht−1

)
c̃t = tanh

(
W(c)xt + U(c)ht−1

)
ct = ft ◦ ct−1 + it ◦ c̃t

ht = ot ◦ tanh(ct)

Briefly, an LSTM is composed of an input gate it, a forget gate ft, an output gate ot,

a memory cell c̃t, a final memory ct and a final hidden state ht. The basic input gate

24 Machine Learning Methods

determines how much important is the current memory cell (or the current word vector).

Instead, the forget gate decides weather to forget or keep the past. Typically, if the value

of the gate is 0, the unit forgets the past. The output gate says how much the cell is

exposed. Basically, it attempts to separate what is important to output at a certain time

step compared what is important to keep for later predictions. The values of all the gates

is used to the final memory memory cell ct. The latter is computed as the sum of (i) the

product of forget gate ft with the previous final memory cell ct−1 and (ii) the product

of input gate it with the new memory cell c̃t. ft specifies how much the network has to

keep or forget from the past, whereas the input gate it says how much the network has

to keep or ignore the current word. The final hidden state ht is obtained by applying

tanh to ct and multiplying it by the output gate ot. LSTMs are very powerful models,

but have few limitations: (i) they require large amount data in order to work properly

and (ii) they can consume input sequence only in one direction (typically, from left to

right). To overcome the latter problem, Schuster and Paliwal [1997] devised Bidirectional

RNNs, which consume input sequences in both directions and use them to compute both

forward and backward hidden states. Also in this case, the last hidden state ht of a

bidirectional network contains the encoding of the entire sequence and can be used for

the final prediction.

2.5.3 Summary

In this chapter, we introduced the background required for understanding the contri-

butions exposed in the following parts of the thesis. We provided an overview of super-

vised learning and introduced the theory behind discriminative classifiers and kernel-based

methods. Then, we introduced SVM, a powerful machine learning algorithm belonging

to the family of maximum margin classifiers. We show the primal and dual formulation

of SVMs, as well as the ”kernel trick”, which make SVMs able to use structured input

objects like trees. In the second part of the chapter, we introduce neural models and

present the most common types of neural architectures: feed-forward, convolution and re-

current models. We discussed the problems of vanilla RNNs, such as vanishing/exploding

gradient, and showed how LSTMs and GRUs were conceived to overcome such problems.

Chapter 3

Community QA with Structural

Kernels

In recent years, community Question Answering websites have gained popularity online.

These systems allow users to freely ask any question to a community of users. One the

positive side anybody can freely ask any question and expect some good, honest answers.

On the negative side, these websites require that users go through all possible answers

and making sense of them before finding one relevant answer. Unfortunately, this task

is very time-consuming for humans. To overcome this problem, researchers propose a

new cQA task at SemEval 1 with the purpose of automatizing the process of finding good

answers to new questions posted in a community-created discussion forum. The main cQA

task is defined as follows: given a large collection of question-comment threads created

by a user community, predict what are the comments most useful for answering a new

question. Trying to directly solving this task is difficult. As an example, let consider

the test question: Can I drive with an Australian driver’s license in Qatar?, which is

supposed to be new with respect to the collection of previous question-answer pairs on

a forum. In order to answer this question, one can (C) try to directly find a comment

representing a valid answer for the new question, or (B) search for one or more forum

related questions that are similar to the new question. Once a related questions is located,

we can answer to a new question by (A) finding a comment providing a valid answer for

a related forum question. Solving problems (A), (B) and (C) requires components able

to effective measuring similarity between two pieces of text. Such approaches need to go

beyond simple ”bag-of-words” representations and ”word matching” techniques in order

to capture the new NLP phenomena connected with the community question answering

scenario, e.g. relation between comments in a thread, relations between different threads

1http://alt.qcri.org/semeval2015/task3/

http://alt.qcri.org/semeval2015/task3/

26 Community QA with Structural Kernels

Q: Could someone advise the best psychiatrist/psycologist in DOHA?

R GS Answer Text

1 -1 c1: i heard a good doctor in doha clinic...

2 -1 c2: ok..shall check that out..thank you :)

3 +1 c3: ”Visit Psychiatrist clinic of Hamad Hospital located opposite ””The

Center””exactly facing KFC.”

4 -1 c4: Lot of Qlers are required to visit the psychiatrist including me so better

to note down the above addresses

5 -1 c5: Princess.I agree to equinox

6 -1 c6: have any of you guys been there urself?

7 +1 c7: I dint know hamad hospital was opp to The Centre :o

8 -1 c8: but the problem with hamad hospital is getting appointment not later

then 2 months time compare to private hospital like al ahly or doha hospital

immediatly can see the doctor

9 -1 c9: I have been. good treatment. .but why do u need. :)

10 +1 c10: I heard dr. Ajju Clinic is also good one in doha with expereience

Table 3.1: An example of Task A, i.e. question-answer similarity task: The question Q is

reported on the top of the table, while user answers are reported below in temporal order. For

each answer, the position (R) and the gold standard (GS) are reported.

an so on. In the remaining of the chapter we first provide a formal definition of the

three subtasks, i.e. (A), (B) and (C), at the base of community QA. Then, we present

our models based on structural representations for solving them, which obtained results

in line with state of the art in the context of the SemEval-2016 challenge [Nakov et al.,

2016b].

3.1 Task A: Question-Comment Similarity

The first task that we are going to discuss is Task A, i.e. question-comment similarity

(or question-comment relevancy). Table 3.4 presents an example of such task: a forum

question is showed on the top, while the list of the comments submitted in response by

some users is reported below. The task can be defined as follows: re-rank the comments

in the thread according to their pertinence with respect to a forum question. Pertinence

is defined according to three classes: (i) good: the comment is definitely relevant; (ii)

potentially useful: the comment is not good, but it still contains related information

worth checking; and (iii) bad: the comment is not relevant (e.g., it is part of a dialogue or

unrelated to the topic). In our case, for evaluation purpose, we considered both potentially

useful and bad comments as irrelevant.

3.1.1 Structural Representations for question-answer similarity

Task A: Question-Comment Similarity 27

Figure 3.1: Shallow Tree representation for q/a pairs. The question and answer trees are depicted

on the left and right side, respectively. The subtrees sharing the same lemma, i.e psychiatrist,

are marked with the relational tag REL to encode information about their relatedness.

In order to build a model for computing question-answer similarity, we need to specify a

way for representing question/answer pairs. Here, we decide to stick to the representation

used in [Severyn and Moschitti, 2012], adjusted for this particular task. More specifically,

we constructed a syntactic tree for each question and answer. Each tree is composed of five

levels, organized as follows: At the bottom level there are the sentence lemmas, preceded

by the their part-of-speech tags at the preterminal level. In the third level we have phrase

chunks, i.e NPs, VPs, and PPs. The latter are in turn grouped into sentences at fourth

level, represented with S tags. Finally, all the sentences are attached to a ROOT node,

located in the top of the tree. Furthermore, in order to adjust the representation to

the cQA setting, we enrich the structure with additional cQA-specific knowledge about

question threads. The original representations of syntactic trees is modified as follows:

1. as forums questions are composed of a subject and a body, we put the question

subject in a separate subtree under the SUBJECT-S root in the question tree.

2. we preserve the punctuation, differently from [Severyn et al., 2013], as some com-

ments ask for additional information and thus contains a question mark. This is a

strong feature that a new question is contained in the comment, and thus, is very

unlikely to answer the original question.

3. we delete phrases that users employ to sign their own posts, e.g. “The tough gets

going...”. Signatures create noise when measuring relevancy of answers with respect

to questions. Here, we considered all the strings with length exceeding 20 characters

that occur at the end of more than one comment by the same user, as signatures.

We selected this heuristic empirically, by looking at training data and and selecting

the number of characters that separate signature text from relevant answer content

in most cases. This heuristic, far from being perfect, proved effective during our

experiments.

As done in [Severyn and Moschitti, 2012], we linked subtrees in question-answer pairs that

contain common phrases. In particular, we connect subtrees rooted at NP, PP and VP

28 Community QA with Structural Kernels

phrase nodes that span over words in a matching relation with lexicals of the other tree.

Such link are marked with the presence of REL tag (see Figure 3.1). This tag indicates

that the answer is relevant with respect to the question in a pair. By adding it, we

encoded information about the relatedness of two subtrees. A more in-depth explanation

of structures used for modeling the Task A can be found in [Tymoshenko et al., 2016a].

3.1.2 Convolutional network features

In addition to structural representation, we looked at novel deep learning models for

automatically engineering features for Task A. To this purpose, we train the Convolu-

tional Neural Network (CNN) by Severyn and Moschitti [2015b] to model information in

question-answer pairs. The network is presented more accurately in Chapter 4, but it

can be described very generally as a simple CNN augmented with relational feature em-

beddings. We use this network to train two sentence encoders returning the distributed

representations of questions and answers in the form of embeddings. Also, we generate

a joint embedding encoding the interactions between question and answers. Finally, we

concatenate the question, comment and joint embeddings provided by the network into a

single feature vector to be fed to our model.

3.1.3 Text similarity features

Text similarity features compute the degree of similarity between a pair of text elements.

In our model, we include three kinds of similarity measures: lexical, syntactic and se-

mantic features [Barrón-Cedeño et al., 2015; Nicosia et al., 2015]. More particularly, we

compute 20 similarity features sim(qi, qj) using word n-grams, after stopwords removal,

greedy string tiling [Wise, 1996], longest common subsequences [Allison and Dix, 1986],

Jaccard coefficient [Jaccard, 1901], word containment [Lyon et al., 2001], and cosine sim-

ilarity.2

3.1.4 Context features

One important aspect to consider when modeling question-answer relatedness is the con-

text in which a comment appears with respect to the other answers in the thread. Typ-

ically, comments in question threads are organized sequentially according to the time

2These features were computed by using the DKPro Code toolkit Eckart de Castilho and Gurevych [2014]

for preprocessing the texts in English. The OpenNLP’s tokenizer, POS-tagger, chunk annotator and Stanford’s

lemmatizer were used, all accessible through DKPro Core.

Task A: Question-Comment Similarity 29

users post answers in response to a new question. Some important factors to take in

consideration when assessing the value of comment is whether:

• the thread includes further comments by the user who originally asked the question

• if the same user is behind various comments in the threads

• the forum category the thread belongs to.

Thus, we’ve considered a set of feature describing a comment in the context of the en-

tire thread. For example, we include boolean features characterizing potential dialogues

that represent irrelevant side comments or the position of the comment in the thread.

Other features considered are the categories of the questions in the forums, as well as the

occurrence of specific strings (e.g. signatures) or the length of a comment. A complete

description of these features can be found in Nicosia et al. [2015]

3.1.5 Our model for question-answer similarity

Here we present our model based on SVMs and structural representations for solving the

Task A.

Datasets: For training and testing our model we used the official data3 of the SemEval-

2016 challenge for Task A. The dataset is composed of 2, 361 forum questions and each

question is paired with first 10 comments submitted by users in chronological order. This

results in 23, 610 question-comments pairs, organized as follows: 17, 900 pairs in the train

set, 2, 440 pairs in dev. set and 3, 270 in test set. Each comment in the dataset was

annotated with a label indicating its relevancy to the question.

Model: We learn a reranking model r : Q× C → R, which given input a question in Q

and a comment in C, returns a similarity score in {0, 1}. The model is learned by training

an SVM operating on two kernels:

• a polynomial kernel of degree 3 applied to concatenation of context features (Sec-

tion 3.1.4), similarity features (Section 3.1.3) and CNN features (Section 3.1.2)

• a the tree kernel applied on the syntactic trees (Section 3.1.1) of question-answer

pairs ((q1, c
i
1), (q2, c

j
2)):

K((q1, c
i
1), (q2, c

j
2)) = PTK(t(q1, c

i
1), t(q2, c

j
2))

+ PTK(t(ci1, q1), t(cj2, q2)))
(3.1)

3http://alt.qcri.org/semeval2016/task3/index.php?id=data-and-tools

http://alt.qcri.org/semeval2016/task3/index.php?id=data-and-tools

30 Community QA with Structural Kernels

In Equation 3.1.5, q1 and q2 are two generic forum questions, while ci1 and cj2 are the

i-th and j-th comment appearing in question thread q1 and q2, respectively. The

function t(x, y) extracts the syntactic tree from text x, enriching it with REL tags

computed with respect to y.

The SVM is trained on both training and development sets.

3.1.6 Experiments and Results

Table 3.2 shows the results obtained for Task A. Despite our model uses mainly automati-

cally engineered features (compared to other participants), it achieved the second position

in the SemEval-2016 challenge. Interestingly, as reported in [Barrón-Cedeño et al., 2016],

while structural representations gave no impressive boost, they were still able to improve

by 0.37 absolute points in MAP over a constrictive model that does not use structural

information. In order to better study the results of the model, Tymoshenko et al. [2016c]

investigated how the different approaches for automatically generating features, i.e. TKs

and NNs, impact on the final performance of the system. Their results are reported in

table 3.3. As can be seen, the CNN slightly outperforms the TK model by around 1 ab-

solute point in MAP. In addition, we observe that the TK model augmented with context

features, i.e. VCQA and trained with PTK obtained the MAPs of 78.78 and 78.80 on dev.

and test set, respectively. As both TK and CNN models achieve state-of-the-art results

on cQA, the authors carried out further experiment to test if CNNs and TKs combined

together could improve the final results. To do so, they added the question embedding

VQE and VCE learned by a CNN with a feature vector encoding context features VCQA.

Then, they added these feature vectors to the TKs. The results are reported in Sec.

3 of Table 3.3. Experiments show that (i) CNN do not improve over TK models, but

(ii) combining TK models with embedding features generated by CNNs improve the fi-

nal performance of the base neural models. Once again, this proved the effectiveness of

including syntactic representations when designing models for QA tasks.

3.1.7 Task B: Question-Question Similarity

Developing components able to automatically assess the similarity between two questions

is critical to locate threads on a forum containing questions similar to new questions input

by a user. Thus, the second task that we deal with in cQA is the Task B, i.e. question-

question similarity. Table 3.4 shows an example of such task: a new out-of-forum question

is reported in the top row of the table, while, a list of ten related forum questions retrieved

by means of Google search engine is reported at the bottom. The goal is to to rerank the

list of forum questions with respect to the new question by assessing if the former are (i)

Task A: Question-Comment Similarity 31

A MAP AvgRec MRR P R F1 Acc

ConvKN-primary (our model)2 77.66 88.05 84.93 75.56 58.84 66.16 75.54

best 79.19 88.82 86.42 76.96 55.30 64.36 75.11

baseline 59.53 72.60 67.83

Table 3.2: Performance of our official primary submissions to SemEval Task A. Best-performing

and baseline systems included for comparison. The super-index in the primary submission stands

for the position in the challenge ranking. The baseline is based on the chronological order of the

comments submitted by users in response to a form question.

perfect match: the new and forum questions request roughly the same information, (ii)

relevant: the new and forum questions ask for similar information, or (iii) irrelevant: the

new and forum questions are completely unrelated. In our case, for evaluation purpose,

we consider both perfect match and relevant forum questions as relevant.

3.1.8 Structural Representations for question-question similarity

Similarly to Task A, we used structural representations for representing pairs of questions

[Da San Martino et al., 2016; Martino et al., 2016]. In particular, we constructed syntactic

trees for each question pair composed of a new question and a forum question. Also

here, the syntactic trees are build by using the same representation in [Severyn and

Moschitti, 2012]. However, differently from the latter, we adjusted the tree representation

to the structure of the questions threads populating online web forums. Typically, a

question contains a subject and body, which in turn are composed of several sentences

including sub-questions, greetings, elaborations and so on. Thus, we connect the parse

trees corresponding to all the sentences in the question Subject and Body with a fake root

node.

In addition, we link the subtrees that contain matching lexical in (qo, qs) by connecting

with a REL tag the NP, PP and VP phrases in the two two macro-trees. For example,

given the original question qo in Table 3.4 with the seventh candidate, qs7 , we build the

graph in Figure 3.2. As can be see from the picture, the top tree corresponds to the

original question qo composed of two sentences nodes: the subject and the body. At the

bottom, there is the tree of the related question qs7 , which in turn contains a subject and

body. The subtrees containing same lemmas, e.g. place, tourist, qatar and visit, have

been linked with the REL tag.

32 Community QA with Structural Kernels

DEV TEST

Model Kernel MAP MRR MAP MRR

ConvKN-primary (Our model) 2 P - - 77.66 84.93

CNN and TK models

VQF P 63.45 70.51 73.50 82.98

CNN n/a 67.41 73.46 77.12 83.85

TK PTK 64.10 71.97 76.67 85.53

TK + VCQA PTK, P 68.45 74.49 78.80 86.16

Combining TK and CNN models

VQE|CE P 65.63 72.63 75.15 82.37

VQE|CE|CQA STK,P 68.17 75.32 77.22 82.98

TK + VQE|CE STK, P 65.63 72.69 75.15 82.37

TK + VQE|CE|CQA STK,P 68.92 76.61 77.25 84.16

Table 3.3: Performance of TK and CNN combined with thread-level features VCQA. The symbol

VQE refer to the question embedding, while VCE indicates the answer embedding. The names in

the second columns, i.e. P, PTK and STK refer the type of kernel used; they stand for polyno-

mial, Partial Tree and Subset Tree kernel, respectively. The top section shows the performance

of our primary submission, i.e. ConvKN-primary, while the bottom part of the table shows the

performances of individual models when trained separately (section 2) and combined (section

3).

Task A: Question-Comment Similarity 33

Q: What are the tourist places in Qatar? I’m likely to travel in the month of June. Just

wanna know some good places to visit.

G GS R Question Text

1 -1 8 qs1 : The Qatar banana island will be transferred by the end of 2013 to 5 stars

resort called Anantara. Has anyone seen this island? Where is it? Is it near

to Corniche?

2 +1 2 qs2 : Is there a good place here where I can spend some quality time with my

friends?

3 -1 7 qs3 : Where is the best beach in Qatar? Maybe a silent and romantic bay?

Where to go for it?

4 -1 9 qs4 : Any suggestions on what are the happenings in Qatar on Holidays?

Something new and exciting suggestions please?

5 -1 3 qs5 : Where in Qatar is the best place for Snorkeling? I’m planning to go out

next friday but don’t know where to go.

6 -1 6 qs6 : Can you give me some nice places to go or fun things to do in Doha for

children 17-18 years old? Where can we do some watersports (just for once,

not as a member), or some quad driving? Let me know please. Thanks.

7 +1 1 qs7 : Which all places are there for tourists to Qatar? My nephew 18 years

on visit.

8 -1 10 qs8 : Could you suggest the best holiday destination in the world?

9 -1 5 qs9 : I really would like to know where the best place to catch fish here in

Qatar is. But of course from the beach. I go every week to Umsaeed but rerly

i catch somthing! So experianced people your reply will be appreciated.

Table 3.4: A question-question similarity reranking example, for each candidate the Google rank

(G), the gold standard (GS) relevance and our rank (R) are reported.

34 Community QA with Structural Kernels

Figure 3.2: Our representation based on syntactic trees for the Q/Q pairs enriched with REL

links.

3.1.9 Rank Feature

One interesting bit of information for modeling question-questions similarity is the rank

of a question in the list of elements to rerank. To exploit such information we use a rank

feature, which encodes meta-information about the position of related question thread

with respect to new questions returned by the Google search engine. The experiments in

Table 3.5 show that encoding the rank feature as the inverse of question position results

in the best performance.

3.1.10 Our Model for question-question similarity

Here we describe our model using SVMs and syntactic structures for solving the Task B.

Data: As training and test material we use the part of SemEval-2016 dataset dedicated

to Task B. The dataset contains 387 new questions, and for each new question, 10 related

questions were retrieved. This results in 3, 8694 pairs of questions, divided as follows:

2, 669 pairs in the train set, 500 pairs in dev. set and 700 pairs in the test set. Each pair

in the dataset was annotated with a label indicating their similarity.

Model: We implemented a ranking function r : Q × Q → R, which given in input two

questions in Q, returns a similarity score in {0, 1}. The function was learned by training

an SVM operating on three kernels:

• an RBF kernel on the similarity features (section 3.1.3),

• an RBF kernel on rank feature (section 3.1.9) and a

4For one new question, we could retrieve only 9 similar questions.

Task A: Question-Comment Similarity 35

• a partial tree kernel (PTK) defined on question pairs:

K((qo, q
i
s), (qo, q

j
s)) = PTK(t(qo, q

i
s), t(qo, q

j
s))

+ PTK(t(qis, qo), t(q
j
s, qo))

(3.2)

Here, qo is a new out-of-forum question, while qis and qjs are the forum questions

ranked by Google at i-th and j-th positions, respectively. t(x, y) extracts the syn-

tactic tree from text x, enriching it with REL tags computed with respect to y. At

training time the C parameter of the SVM was set to 1, while both tree and RBF

kernels used some default values for the parameters. During our experiments, we

tried different kernels, e.g. linear and RBF, and we selected the latter as it resulted

in better results on the dev. set (see Table 3.5). The SVM is trained on union of

the training and development sets. The results are reported in Table 3.7.

3.1.11 Experiments and Results

The Table 3.5 reports the results of our experiments on dev. and test data of SemEval-2016

Task B. In agreement with the challenge experimental setting, we evaluate our rankings

with Mean Average Precision (MAP), average Recall (AvgRec) and Mean Reciprocal

Rank (MRR). The top section shows the results of our model, i.e. ConvKN-primary,

and compare its performance against that of the Google baseline and the best system

in the challenge. As it can be seen, we were able to improve over the Google baseline

(GR) by 1.27 absolute points in MAP, which resulted in our system scoring second at the

SemEval-2016 challenge on question-question similarity. This result is very good if we

consider the fact that Google provides strong baseline, as it is the product of many years

of engineering in the field of Information Retrieval.

Feature Ablation Study

In order to better understand the final results of our system, we conducted some post-

competition experiments to assess the impact of the different feature sets on the final

task. In particular, we experimented with three different features for modeling the ranking

function r :

• tree kernels applied to the syntactic structured of question pairs,

• similarity features computed between qo and qs, and

• rank feature, i.e. kernel over the question position in the rank, produced by the

Google search engine (GR).

The Table 3.5 reports the results of such experiments. In the second section of the

table are reported the experiments of the models using only a combination of similarity

36 Community QA with Structural Kernels

DEV TEST

Model P R F1 MAP AvgRec MRR P R F1 MAP AvgRec MRR

ConvKN-primary (Our model) 2 - - - - - - 68.58 66.52 67.54 76.02 90.70 84.64

best - - - - - - 63.53 69.53 66.39 76.70 90.31 83.02

IR baseline 83.33 11.68 20.49 71.35 86.11 76.67 49.64 59.66 54.19 74.75 88.30 83.79

Sim. 76.32 40.65 53.05 64.80 82.52 73.73 71.52 46.35 56.25 70.70 85.78 80.58

TK 73.10 58.41 64.94 69.97 86.86 77.73 67.44 62.23 64.73 73.98 88.90 82.55

TK + Sim 72.89 56.54 63.68 71.07 87.72 78.14 68.87 62.66 65.62 73.81 89.21 82.86

Linear Kernel

Sim + pos 74.81 45.79 56.81 68.04 85.07 76.00 68.10 47.64 56.06 71.99 87.92 81.19

Sim + pos−1 77.78 45.79 57.65 70.17 85.98 78.17 71.15 47.64 57.07 75.15 89.19 84.29

TK + pos 75.14 60.75 67.18 71.77 88.46 78.12 66.96 66.09 66.52 75.34 90.67 83.19

TK + pos−1 73.99 59.81 66.15 72.64 87.69 75.58 68.66 63.95 66.22 76.18 90.62 84.62

RBF Kernel

Sim. + pos 77.34 46.26 57.89 70.42 86.38 78.50 69.75 48.50 57.22 74.61 89.10 83.81

Sim. + pos−1 77.95 46.26 58.06 69.82 85.91 77.17 70.25 47.64 56.78 74.58 89.09 83.57

TK + pos 75.43 61.68 67.87 72.93 87.95 77.54 67.40 65.67 66.52 75.72 90.80 83.86

TK + pos−1 75.72 61.21 67.70 73.65 88.78 79.58 68.33 64.81 66.52 76.41 91.14 84.62

Table 3.5: Ranking-based features combined with linear and RBF kernels. In the top section we

report the performance of our primary submission, i.e. ConvKN-primary, to SemEval-2016 Task

3 for Task B. Best-performing and baseline systems included for comparison. The super-index

in the primary submission stands for the position in the challenging ranking. The baselines are

provided by task organizers; they are based on Google search engine rankings.

features and TKs. As it can be seen, the results of these models are below the Google

baseline. In contrast, when the rank feature is included, our best model outperforms

the MAP of Google rank by 2.30 and 1.66 absolute percent points on the development

and test sets respectively. At the bottom of the table, we report the results obtained by

applying different kernels on the rank feature. Interestingly, better results are obtained

when we apply an RBF kernel on the Position feature. This can be explained with the

fact that RBF kernel can more effectively express higher similarity values when positions

of questions are close.

3.2 Task C: New Question-Comment Similarity

The last task that we discuss is Task C. This is similar to task A, but in this case

the relevance of one-hundred comments is assessed against a new out-of-forum question.

Table 3.6 shows a ranking example for Task C. The new out-of-forum question is shown

Task C: New Question-Comment Similarity 37

Qnew: how to extend the visit visa after 6 months and how long period?

Qrel: Maximum period of a Visit Visa?

R GS Answer Text

1 +1 c1: MAXIMUM 6 MONTHS BROTHER AFTER THAT YOU HAVE TO

EXIT FROM QATAR.

2 +1 c2: After 6 months you can get an extension also....

3 -1 c3: I am on tourist visa for 1 month.. can i also get extension? for how many

months and how much? tnx a lot.

4 -1 c4: You can’t get an extension; may be i could be wrong; but extension is

valid for family visa holders; after they have cleared their medical.

5 +1 c5: no extension for tourist visa i think...

6 -1 c6: ok. tnx a lot.. do you know any company hiring for office staffs?

7 +1 c7: you can also extend your tourist visa but very costly as compared with

extending a family visit visa. maybe what you can do is exit from qatar then;

after three months; apply again for a family visit visa (if you have a relative

here)

8 +1 c8: you can extend a family visit visa for a maximum six months; but in any

case that you have to extend it again after your 6 months limit; you can do

that; too. i think upto 1 month; more. you just have to submit application

form again to immigration with your flight booking details.

9 -1 c9: hi rtaure..tnx.. what are the requirements in extending tourist visa and

how much? if I exit; I can go back in qatar after 3 months?

10 +1 c10: you guys are mixing Family visit visa and Tourist visit visa. Family visit

visa (when you were sponsored by one of your family member)initially is valid

for 1 month; and can be extended later for another 5 months (total 6 months

stay) after undergoing Medical examination. Tourist visit visa is is valid for

30 days and can be extended for another 30 days ; 60 days stay in total.

Table 3.6: A new question-comment reranking example, for each candidate the chronological

rank (R) and the gold standard (GS) relevance are reported.

in the top row of the table. The second row shows a related question retrieved by the

Google search engine, using the new question as query. Then, a list of comments posted

in response to a related forum question is reported. The goal is to predict relevancy of

comments with respect to the new out-of-forum question. As in task A, three classes

exist in this case: (i) good: the comment is relevant; (ii) potentially useful: the comment

is not good, but it still contains related information worth checking; and (iii) bad: the

comment is irrelevant. For evaluation purposes, both potentially useful and bad comments

are considered irrelevant.

3.2.1 Structural Representations for new question-answer similarity

From a practical perspective, Task C is very similar to Task A, but differently from the

latter, a comment needs to be reranked with respect to a fresh question. Thus, it would

make sense to use the same structural representations for modeling question-answer pairs

employed in Task A. Unfortunately, we did not have time to experiment with structural

38 Community QA with Structural Kernels

representations at SemEval-2016 due to the restricted timing of the challenge. Thus, in

the remaining of the chapter, we describe the results of our experiments using only feature

vectors. We leave the task of integrating s structural representation in our best model as

future work.

3.2.2 Our Model for new question-answer similarity

Here, we present our SVM model for solving the Task C.

Data: For training and testing our model, we use the official data of the SemEval-2016

challenge for Task C. The dataset is composed of 387 new out-of-forum questions and

each question is paired with 100 forum comments. This results in 38, 690 new question-

comment pairs, organized as follows: 26, 600 pairs in the train set, 5, 000 pairs in dev. set

and 7, 000 pairs in the test set. Each comment is labeled with its relevancy with respect

to the new question.

Model: We learned a reranking function r : Q × C → R, which given a question in Q

and an answer comment in C, returns a similarity score in {0, 1}. The model is trained

using an SVM operating on two RBF kernels:

• The first kernel acts on similarity features (see Section 3.1.3)

• The second kernel operates on two features:

– the rank feature describing the position of the forum threads with respect to

the new question (see Section 3.1.9)

– the relevancy scores obtained from the prediction of a question-comment classi-

fier trained on Task A, without tree kernels. The score or classifiers have been

computed in cross-validation.

The SVM is trained on the union of the training part 2 and dev. set.

3.2.3 Experiments and Results

In Table 3.7 we report the results of our model on the SemEval-2016 Task C. In agreement

with the challenge setting, we evaluate our reranking in terms of MAP, AvgRec and

MRR. As it can bee seen from table, our model obtained a MAP of 47.15, ranking 8th

at the SemEval-2016 challenge. This place corresponds to an average performance in the

ranking of the participants to the challenge. It is important to mention that this is the

only model that did not include tree kernels. However, experiments of other participants

Task C: New Question-Comment Similarity 39

C MAP AvgRec MRR P R F1 Acc

ConvKN-primary8 47.15 47.46 51.43 45.97 8.72 14.65 90.51

best 55.41 60.66 61.48 18.03 63.15 28.05 69.73

baseline 40.36 45.97 45.83

Table 3.7: Performance of our official primary submissions to SemEval-2016 Task 3 for tasks C.

Best-performing and baseline systems included for comparison. The super-index in the primary

submission stands for the position in the challenge ranking. The baselines are as provided by

the task organizers; they are based on Google search engine ranking.

[Mihaylova et al., 2016] show that a high-performing model for Task C can be assembled

by opportunely combining the relevancy score returned by the question-comment classifier

for Task A and the similarity score of question-question similarity classifier for Task B.

This finding confirms the importance of building good models that can solve the two

subtasks, i.e. A e B, over which the Task C (the main cQA task) factorizes.

3.2.4 Conclusions

In this chapter, we presented the results obtained by our models based on structural rep-

resentation for community QA in the context of SemEval-2016. Our models achieved the

second position in two out of three tasks, i.e. A and B. Their ranking in the challenge

confirms the high-quality of our solutions, which are competitive with the best system

submitted. This results show that tree kernels can achieve the state of the art when ap-

plied to cQA, even in those cases where questions are mainly non-factoid and the text is

typically informal and noisy. Once more this confirms the importance of modeling syntac-

tic information in relational text inference problems such as question-question similarity

and question-answer relevancy.

40 Community QA with Structural Kernels

Chapter 4

Neural models for Community

Question Answering

As previously discussed, a critical aspect when implementing community Question An-

swering systems is the need to design modules that capture the most salient characteristics

of pairs of text. In Chapter 3 we showed how to use structured models based on kernel

methods to automatically learn relevant syntactic patterns between two pieces of text,

e.g. question-question ad question-answer pairs. Unfortunately, while being effective,

these models require complex pipelines with many components, e.g. part-of-speech tag-

gers, constituency parsers, each of them being difficult to replicate. In addition, models

based on structural kernels do not make it easy the task of building modular systems that

can be trained to solve many different problems. Interestingly, an alternative direction

is provided by deep-learning methods, which demonstrated to be very effective in many

NLP tasks. These methods use a low-dimensional vector representation of words, known

as word embeddings, as input features. Then, these embeddings are combined together

by means of compositional operations into higher-semantic representation useful for solv-

ing a specific task. In this section, we show how to use neural networks for modeling

relationships between pieces of text and solving the tasks A, B and C, introduced in the

previous chapter. First, we train a baseline CNN model [Severyn and Moschitti, 2015b]

for solving each task, individually. Then, we proposes a new multi-task learning (MTL)

architecture, which we train jointly for solving all the tasks at the same time. This choice

is motivated by the fact that the tasks A, B and C are deeply semantically connected,

thus, the knowledge learned by modeling one problem can be useful also for solving the

others. Finally, we report the results of our experiments, which confirm that the shared

representation and jointly learning dramatically increase the performance on the main

cQA task, especially in presence of scarce data.

42 Neural models for Community Question Answering

4.0.1 Related Work

Learning components able to infer relations between two pieces of text is crucial for many

NLP tasks. Typically, previous approaches to relational text inference consisted in feature

vectors encoding a number of similarity features between two pieces of text. However, in

recent years, new neural network models have been proposed for:

1. measuring question-question similarity; and

2. measuring question-answer relatedness.

In the following section, we present the related works on relational text inference, whose

solutions are based on neural models.

Related Work of NNs for question-question similarity.

• Siamese Networks: These networks have been proposed for modeling tasks such

as textual similarity, paraphrase identification and mention normalization problems.

Some examples are:

– The MaLSTM [Mueller and Thyagarajan, 2016] represents two sentences by

using an LSTM encoder and learn a Manhattan distance between them. After

that, the resulting feature representations given by the network are used to

train a SVM classifier for recognizing textual entailment.

– The SCQA convolutional network [Das et al., 2016] pre-train the sentence en-

coders with forum data to map questions and answers on web forums in the

same space. Then, use the sentence encoders to compute the distributed repre-

sentations of the two question. The pre-training steps improve the final results

on the question-question similarity task.

• Attention-based Networks: Attentive networks [Parikh et al., 2016] use the at-

tention mechanism to encode the representation of a sentence in a pair by also

considering the other sentence.

• Compare-Aggregate Networks: These networks [Bian et al., 2017; Wang et al.,

2017] extract multiple views from the same sentences, and then match each view by

using a number of similarity functions. The results are then aggregated and used to

produce a final similarity score.

Task A, Task B, Task C 43

4.0.2 Related Work of NNs for question-answer relevancy.

• CNN + relational features: Severyn and Moschitti [2015a] use a convolutional

neural network for classifying the relevancy of an answer with respect to a question.

The network use word overlap features for encoding relations between the two text

elements.

• CNN + Attention: Yin et al. [2016] propose a convolutional network with atten-

tion for training sentence encoders that represent sentence information by taking in

consideration their counterpart.

• LSTMs and Bi-LSTM: Tan et al. [2016] compare networks based on convolutional

filters and recurrent units for modeling sentence information in QA. They show

that a network having two LSTM sentence encoders and an attention layer on top

consistently outperform other networks on two QA datasets. Similarly, Cohen and

Croft [2016] propose a bidirectional LSTM network, but trained with a rank sensitive

loss function for computing question-answer relevancy.

• Pairwise Rank CNN Rao et al. [2016] use two pointwise neural networks with a

stacked on top a fully-connected layer. Each convolution network encode a ques-

tion/answer pair. Typically, the network is feed with a positive and a negative pair

and use a triple loss such that positive pairs (q, p+) are assigned larger similarity

scores than negative pairs (q, p−).

4.1 Task A, Task B, Task C

In this section, we briefly recap the three tasks at the base of cQA and present our neural

models for individually solving each task.

(A) predict if a comment produced in response to a forum question contains a valid

answer;

(B) re-rank a set of questions according to their relevancy with respect to the original

question; and

(C) predict if a comment produced in response to a previous question posed on the cQA

forum represents a valid answer to a fresh out-of-forum question.

4.1.1 Preliminaries

Before starting to approach cQA with NNs, we looked for models that deliver state-

of-the-art performances and whose results are fully reproducible. After some research,

44 Neural models for Community Question Answering

we selected the S&M model described in [Severyn and Moschitti, 2015b] to train neural

models for the three cQA tasks. The choice of this model is motivated by the fact that this

model is simple and well studied, fast to train, robust to the choice of hyperparameters,

and its performance have been successfully reproduced and studied in several subsequent

works [Rao et al., 2017; Chen et al., 2017; Sequiera et al., 2017]. In the next section,

we describe the S&M network for relational text inference problems and use it to train

individual models for solving the tasks already discussed.

4.1.2 The S&M neural model for relational text inference

We implemented the CNN model proposed by Severyn and Moschitti [2016] (Figure 4.1)

and originally conceived for solving general QA tasks. The S&M model takes in input

a question and a candidate answer passage, and learn a function f : Q × D → {0, 1}.
The output correspond to the probability that the passage contains a right answer. The

network learns f, using two separate sentence encoders fq : Q → Rn and fd : D →
Rn, which map a query or a question and a document into a fixed size dense vector of

dimension n. The resulting vectors are fed to a hidden layer with a non-linearity, and

the final soft-max layer performs the final classification. Each sentence is encoded into

a fixed size vector using an embedding layer, a convolution operation and a global max

pooling function. The embedding layer transforms the input sentence, a sequence of

tokens, X = [x1, · · · , xi, · · · , xn], into a sentence matrix, S ∈ Rm×n, by concatenating the

word embeddings wi corresponding to the tokens xi in the input sentence. One novelty

introduced by Severyn and Moschitti [2016] in their model is the word overlap feature,

which encode matches between two words in two pieced of text. In particular, each word

w in the input sentences is associated with a word overlap index o ∈ {0, 1}, where o = 1

means that w is shared by both sentences, e.g. question and answer, o = 0 otherwise.

This feature is represented with an embedding of 5 dimensions and serve the purpose of

injecting relational information between the representations of two input texts.

The architecture in Figure 4.1 is general, thus it can be used in many different domains,

data and tasks. In order to effectively model the different types of relations between two

text elements in cQA (e.g. similarity, relatedness, etc...), we customized the implementa-

tions of the S&M network as required by each cQA task. In the next section, we discuss

the modification that we applied to the network in our effort to adapt the learned model

to each task.

Task A, Task B, Task C 45

Figure 4.1: The CNN model from Severyn and Moschitti [2015b]

Model for Task A: question-comment similarity

For Task A, we trained two encoders, i.e. fqrel : Q → Rn and fcrel : C → Rn , to encode

both a forum question qnew and a comment crel into two dense vector representations.

Also, we compute word overlap embeddings between qrel and crel, encoding the relational

information between the input sentences and concatenate them to the word embeddings.

Then, we concatenated the representations of the question and the comment into the join

layer, Teh join layer makes possible to inject additional features (see xfeat in Figure 4.1)

in the network that can useful for solving the task. Finally, the output of the join layer is

fed to a hidden layer and then passed to multi-layer perceptron with sigmoid activation.

The latter produces a relevancy score of the answer comment with respect to the question.

We trained the network by minimizing the binary cross entropy loss.

Model for Task B: question-question similarity

To model question-question similarity, we modified the original S&M network such that

instead of using two separate sentence encoders, i.e. fq1 and fq2 , it only uses one fq : Q→
Rn. This way, fq is used for encoding both questions qnew and qrel. The final network

architecture contains two identical sub-networks that returned the same representation

for the same input sentence. Since Task B concerns re-ranking questions initially ranked

by Google, a strong baseline is given by the Google rank. Thus, we decide to encode

the Google rank by discretizing the rank values in different bins of different sizes, i.e.

[1 − 2], [2 − 5], [5 − 10]. Also here, we added word overlaps between qnew and qrel as

46 Neural models for Community Question Answering

an embedding vector xoverlap of size 5. Also here, we added word overlap between the

two questions. Then, we concatenate the representations of qnew and qrel returned by the

sentence encoder fq. The output of the join layer is then fed to a hidden layer, whose

output is passed to a multi-layer perceptron with sigmoid activation. The latter produces

a similarity score between two questions. For training the network, we minimized the

binary cross-entropy loss as objective function.

Model for Task C: new question-comment similarity

In the model for Task C, we trained two separate sentence encoder, i.e. fqnew : Q → Rn

and fcrel : C → Rn for mapping the new out-of-forum question and the answer comment

into two distinct fixed-size dense vectors. Similarly to the original S&M network, the

two encoders are kept separate, in order to model the different nature of question and

answer comments. As for the other tasks, we added word overlaps between qnew and crel
together with a rank embedding. The latter are inherited from the rank of the related

forum question thread in which the comment appears.The intuition behind this is the

following: answer comments for highly-related question in the top of the Google ranking

should be scored higher than answers for questions in the bottom. Finally, these features

are concatenated to the join layer with the distributed representations of the sentences.

The join layer is fed to a multilayer perceptron, which produces a relevancy score between

a new out-of-forum question qnew and a forum comment crel. Also in this case, during

training, we minimized the binary-cross entropy loss.

4.1.3 Results of individual models and Discussions

In Table 4.1 we show the results of individual neural models for all tasks, in comparison

with the Random and Information Retrieval baselines of the challenge (first grouped row)

and the three-top systems of SemEval 2016, KeLP [Filice et al., 2016a], UH-PRHLT

[Franco-Salvador et al., 2016], SUper-team [Mihaylova et al., 2016] (second grouped row).

The third grouped row shows the performance of the individual models when trained

on input pairs 〈qrel, crel〉, 〈qnew, qrel〉 and 〈qnew, crel〉. The model for the three tasks are

the one described in the previous section. (Figure 4.1). These results show that the

individual models can generalize well enough on all the tasks. However, as it can be

seen from the Table, the results lie far behind the state of the art obtained by Tree

Kernel-based systems, i.e. ConvKN and Kelp. More in detail, our model for Task A

scored 5.24 absolute MAP points lower than the top-performing model Kelp. Similarly,

our model for Task B performed 3 MAP points lower than best system UH-PRHLT. In

this case, the network can barely approach the Google rank, which is a strong baseline

Joint model 47

to beat, even for systems top systems (UH-PRHLT) using sophisticated hand-engineered

features. However, the largest gap in the results we obtained is on Task C, where we

got 13.46 points lower than the best model (Super-team). One reason that may help to

understand why our models have worse performances compared to the top systems in the

competition is that neural networks suffer from the data scarcity problem. Although these

models have been successfully applied to many text classification tasks [Goldberg, 2015]

thanks to their capacity of automatically engineering features and achieve start-of-the-art

performances, they still require a fairly large amount of training data compared to other

machine learning approaches. This is even true when they are trained for solving high-

level semantic tasks such as QA [Yu et al., 2014], for which, more traditional methods

achieve comparable or even higher accuracy, e.g., [Tymoshenko et al., 2016b]. That’s

because neural models contain a huge set of parameters required for effectively modeling

the interactions between the vector representations of words in order to solve the final

task. In contrast, the lack of data results in poor generation of the trained model on new

data. To solve this issue, in the next section, we present a new deep learning architecture

that can alleviate the burden of data scarcity problem.

Models

Task A:

question-comment similarity

Task B:

question-question similarity

Task C:

new question-comment similarity

DEV TEST DEV TEST DEV TEST

MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR

Random - - 59.53 67.83 - - 46.98 50.96 - - 15.01 15.19

IR Baseline - - 52.80 58.71 71.35 76.67 74.75 83.79 - - 40.36 45.83

Kelp - - 79.19 86.42 - - - - - - - -

UH-PRHLT - - - - - - 76.70 83.02 - - - -

SUper-team - - - - - - - - - - 55.41 61.48

〈qrel, crel〉 68.93 76.46 74.73 81.18 - - - - - - - -

〈qnew, qrel〉 - - - - 74.19 83.26 73.70 82.13 - - - -

〈qnew, crel〉 - - - - - - - - 44.77 52.07 41.95 47.21

Table 4.1: Results on the validation and test set for the proposed models

4.2 Joint model

In this section, we introduce a new multi-task learning (MTL) architecture for solving

the overall cQA task, i.e. given a new fresh out-of-forum question, predict if a comment

produced in response to a previous forum question represents a valid answer . In order to

overcome the data scarcity problem, our architecture exploit auxiliary tasks that are highly

48 Neural models for Community Question Answering

Figure 4.2: Our MTL architecture for cQA. Given the input sentences qnew, qrel and crel (at

the bottom), the NN passes them to the sentence encoders. Their output is concatenated into

a new vector, hj , and fed to a hidden layer, hs, whose output is passed to three independent

multi-layer perceptrons. The latter produce the scores for the individual tasks.

semantically connected with the main task. More in particular, we exploit the strong

semantic connections between selection of comments relevant to (i) new questions and (ii)

forum questions, which enable our model to learn global representations for comments,

new and previous questions. The experiments of our model on the SemEval-2016 challenge

dataset for cQA show a 20% relative improvement over standard deep neural networks

(DNNs).

4.2.1 Related Work on Multi-Task learning (MTL) for NNs

Finding a general solution to the data scarcity issue is still an an open problem. However,

for some class of applications, the problem can be alleviated by making use of multitask

learning (MTL) [Caruana, 1997]. Recent work has shown that it is possible to jointly train

a general DNN system for solving different tasks simultaneously. For example, Collobert

et al. [2011b] show that MTL can be used to train a single neural network for carrying out

many sequence labeling tasks (e.g., pos-tagging, name entity recognition, etc.), whereas

Liu et al. [2015] trained a DNN with MTL to perform multi-domain query classification

and reranking web search results with respect to user queries. This resulted in improved

prediction accuracy for the task-specific models when compared to the models trained

separately.

Joint model 49

4.2.2 Our MTL model for cQA

MTL aims at learning several related tasks at the same time to improve some (or possi-

bly all) tasks using joint information [Caruana, 1997]. In this section, we show how to

apply MTL to model semantically connected tasks to the purpose of obtaining a larger

improvements on the final cQA task. In our work, we found MTL particularly well-suited

for modeling Task C as it is a composition of tasks A and B. Thus, it can benefit from

having both questions qnew and qrel in input to better model the interaction between the

new question and the comment. More precisely, it can use the triplets, 〈qnew, qrel, crel〉, in

the learning process, where the interaction between triplet members is exploited during

the joint training of the three models for the tasks A, B and C. In fact, a better model

solving the auxiliary tasks, i.e. (i) question-comment similarity and (ii) question-question

similarity, can lead to a more accurate model for new question-comment similarity (Task

C).

Additionally, the SemEval dataset is organized in threads, and each of them is annotated

with the labels for all the three tasks. Therefore, it is possible to apply joint learning

directly (using a global loss), rather than training the network by optimizing the loss of

the three single tasks independently as in previous works [Collobert et al., 2011b; Liu

et al., 2015]. There, each example was annotated for only one task and, thus, training

the model required to alternate examples from the different tasks.

Join Learning Architecture

Our joint learning architecture is depicted in Figure 4.2. It takes three pieces of text as

input, i.e. a new question, qnew, the related question, qrel, and its comments, crel, and

produces three fixed sized representations xqnew , xqrel and xcrel respectively. This process is

performed using the sentence encoders xd = f(d, θd), where d is the input text and σd is the

set of parameters of the sentence encoders. In previous work, different sentence encoders

have been proposed, e.g., CNNs with max-pooling [Kim, 2014; Severyn and Moschitti,

2015b], and Long-short term memory (LSTM) networks [Hochreiter and Schmidhuber,

1997]. Here, we concatenate the three representations hj = [xqnew , xqrel , xcrel] and we

fed them to a hidden layer to create a shared input representation for the three tasks,

hs = σ(Whj + b). Next, we connect the output of hs to three independent Multi-Layer

Perceptrons (MLP), which produce the scores for the three tasks. At training time, we

compute the global loss as the sum of the individual losses for the three tasks for each

example, where each loss is computed as binary cross-entropy.

50 Neural models for Community Question Answering

Model MAP MRR

LSTM 43.91 49.28

CNN 44.43 49.01

CNN Train 44.43 49.01

CNN Train + ED1 44.77 52.07

Table 4.2: Impact of CNN vs. LSTM sentence models on the baseline network for Task C.

Shared Sentence Models

By construction, the SemEval dataset contains ten time less new questions qnew than

related questions qrel. However, the two types of questions have the same nature (i.e.,

generated by forum users), thus we can share the parameters of their sentence models as

depicted in Figure 4.2. Formally, let xd = f(d, θ) be a sentence model for a text, d, with

parameters, θ, i.e., the embeddings weights and the convolutional filters. In a standard

setting, each sentence model uses a different set of parameters θqnew , θqrel and θcrel In

contrast, we proposed sentence models that encode both the questions qnew and qrel that

use the same set of parameters θq.

4.3 Experiments

4.3.1 Experiments of individual models

In this section, we describe the experimental setting used for evaluating the performance

of the joint model on all the three tasks and report the obtained results.

Dataset: We used the same data already introduced in Chapter 3 and provided by the

organizers of the SemEval-2016 challenge on cQA. Each of the three datasets is in turn

divided in training, dev. and test sets. The label distribution of the different datasets is

reported in Table 4.4. As it can be seen, the data for Task C presents a higher number

of negative than positive examples. Usually, when trained on such dataset, a typical

classifier that maximizes accuracy is likely to learn a model that will label all examples

as negative. Hence, will perform poorly in terms of Precision and Recall. Addressing

the problem of class-imbalance data, where the number of negative examples is much

larger than the number of positive examples, is very important. Thus, we automatically

extended the set of positive examples in our join MTL training set using the data from

Task A. More specifically, we take pairs (qrel, crel) from training set of Task A and create

the triples (qrel, qrel, crel), where the label for question-question similarity (Task B) are

1Extended Dataset for Task C computed using questions from Task A.

Experiments 51

obviously positive, whereas the labels for Task C are inherited from those of Task A. We

ensure that the questions in the extended dataset do not overlap with questions from

dev. and test sets. The resulting training data contains 34, 100 triples: its relevance label

distribution is shown in the row, Train + ED, of Table 4.42.

Pre-processing: we tokenized both questions and comments in lowercase. In addition,

we concatenated the question subject and body to create a unique text. For computational

reasons, we limited the document size to 100 words. This did not cause degradation in

accuracy.

Neural Networks: we mapped words to embedding of size 50, pre-initializing them

with standard skipgram embedding of dimensionality 50. The latter embeddings were

trained on the English Wikipedia dump using word2vec toolkit [Mikolov et al., 2013]. We

encoded the input sentence with a fixed-sized vector, whose dimension are 100, using a

convolutional operation of size 5 and a k-max pooling operation with k = 1. Table 4.2

shows the results of our preliminary experiments with the sentence models of CNN and

LSTM, respectively, on the dev. set of Task C. In our further experiments, we opted for

CNN since it produced better MAP and is computationally more efficient. For each MLP,

each one producing the scores for the three tasks, we used a non-linear hidden layer (with

hyperbolic tangent activation, tanh), whose size is equal to the size of the previous layer,

i.e., 100. We included information such as word overlaps [Tymoshenko et al., 2016b] and

rank position as embeddings with additional lookup table with vectors of size dfeat = 5.

The rank feature is provided in the SemEval dataset and described the position of the

question/comments in the search engine output.

Training: We trained our network using SGD with shuffled mini-batches using the rmsrop

update rule [Tieleman and Hinton, 2012]. We set the training to iterate until the validation

loss stops to improve, with patience p = 10, i.e., the number of epochs to wait before early

stopping, if no progress on the validation set is obtained. We added dropout [Srivastava

et al., 2014] between all layers of the network to improve generalization and avoid co-

adaptation of features. We tested different dropout rates (0.2, 0.4) for the input and (0.3,

0.5, 0.7) for the hidden layers obtaining better results with the highest values, i.e., 0.4

and 0.7.

Results of individual models with joint input

Table 4.3 shows the results of our individual and MTL models on all the three tasks. Also

in this case, we report the Random and Information Retrieval baselines of the challenge

(first grouped row), and the three-top systems of SemEval 2016, KeLP Filice et al. [2016a],

UH-PRHLT Franco-Salvador et al. [2016], SUper-team Mihaylova et al. [2016] (second

2MTL data available at http://ikernels-portal.disi.unitn.it/repository/

http://ikernels-portal.disi.unitn.it/repository/

52 Neural models for Community Question Answering

Models

Task A:

question-comment similarity

Task B:

question-question similarity

Task C:

new question-comment similarity

DEV TEST DEV TEST DEV TEST

MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR

Random - - 59.53 67.83 - - 46.98 50.96 - - 15.01 15.19

IR Baseline - - 52.80 58.71 71.35 76.67 74.75 83.79 - - 40.36 45.83

Kelp - - 79.19 86.42 - - - - - - - -

UH-PRHLT - - - - - - 76.70 83.02 - - - -

SUper-team - - - - - - - - - - 55.41 61.48

〈qrel, crel〉 68.93 76.46 74.73 81.18 - - - - - - - -

〈qnew, qrel〉 - - - - 74.19 83.26 73.70 82.13 - - - -

〈qnew, crel〉 - - - - - - - - 44.77 52.07 41.95 47.21

〈qnew, qrel, crel〉 - - - - - - - - 45.59 51.04 46.99 55.64

〈qnew, qrel, crel〉 + ↔ 70.69 77.19 75.52 82.11 72.92 80.20 72.88 80.58 47.82 53.03 46.45 51.72

MTL (BC) - - - - 74.22 80.40 73.68 81.59 47.80 52.31 48.58 55.77

MTL (AC) 70.11 76.50 75.43 82.46 - - - - 46.34 51.54 48.49 54.01

MTL (ABC) 69.93 76.27 74.42 81.68 70.68 75.85 71.07 80.11 49.63 55.47 49.87 55.73

MTL (ABC)* 70.70 77.48 74.89 81.80 74.21 81.93 72.23 80.33 49.63 55.47 49.87 55.73

MTL (weighted score) - - - - - - - - - - 52.67 55.68

Table 4.3: Results on the validation and test set for the proposed models.

grouped row). The fourth grouped row of Table 4.3 illustrates the models exploiting the

joint input, 〈qnew, qrel, crel〉, but no joint learning is carried out, i.e., the networks for the

different tasks are trained individually. The results show that a small degradation of

performance happens in Task B, while Task A slightly improves. These variations may be

due to the fact that tasks A and B can be efficiently solved using the standard pairwise

approach, thus the extra text introduced in the model may just add some noise. However,

using the shared sentence model for qnew and qrel of the tasks B and C (indicated with

↔) improves the overall performance.

4.3.2 Results of MTL models

The shared input representations show good results on all tasks, thus, in the last ex-

periments, we jointly trained (i) tasks B and C, (ii) tasks A and C and finally (iii) the

thee tasks together. The results are reported in the fifth grouped row of Table 4.3. The

MTL architecture improves the performance in terms of MAP by 2 absolute points on

DEV set and by 3 absolute points on the TEST set for Task C, while the performance

on the other tasks tends to degrade. This is due to the fact that in the MTL setting, the

models are not optimized on the outcome of a single task and so the individual objec-

tive functions converge at different epochs. Therefore, when the global loss reaches the

Experiments 53

0 2 4 6 8 10 12 14 16 18 20

0.65

0.66

0.67

0.68

0.69

0.7

0.71

Epochs

M
A

P

MTL Train+ED

MTL Train

No MTL Train + ED

No MTL Train

(a) Task A

0 2 4 6 8 10 12 14 16 18 20

0.5

0.55

0.6

0.65

0.7

0.75

Epochs

M
A

P

MTL Train+ED

MTL Train

No MTL Train + ED

No MTL Train

(b) Task B

0 2 4 6 8 10 12 14 16 18 20

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Epochs

M
A

P

MTL Train+ED

MTL Train

No MTL Train + ED

No MTL Train

(c) Task C

Figure 4.3: Learning curves for all tasks on the dev. set; dotted and solid lines represent the

individual and multi-task models, respectively.

Task A Task B Task C

Train 37.51% 39.41% 9.9%

Train + ED 37.47% 64.38% 21.25%

Dev 33.52% 42.8% 6.9%

Test 40.64% 33.28% 9.3%

Table 4.4: Percentage of positive examples in the training datasets for each task.

minimum, it is possible that individual models are sub-optimal. Indeed, the comparison

between the learning curves (on the development set) for Task B (Figure 4.3b) and Task

C (Figure 4.3c) show that for the former, models achieve earlier convergence rate (epoch

2) while, for the latter, they converge later (epoch 16). Moreover, Figure 4.3a shows that

the results on Task A are not badly affected by jointly training models with the other

two tasks. Finally, the learning curves show that our networks trained in MTL tend to

have faster convergence rate than the individual models: this is a very interesting result.

We also experimented with shallower networks and SVMs using the predictions scores

from the different classifiers in a stacking approach, and obtained results far below the

baselines.

4.3.3 Results on the overall Task C

Although the findings for Task A ad Task B are very interesting, we are mainly interested

on the final results on the overall cQA task. Table 4.5 shows the performances of our

individual and MTL models on Task C, compared with Random and IR baseline of the

challenge (first two rows), and the SemEval 2016 (row 3–12). Rows 13-15 illustrate the

results of our models when trained only on Task C. 〈qnew, crel〉 corresponds to the basic

54 Neural models for Community Question Answering

Model DEV TEST

MAP MRR MAP MRR

Random - - 15.01 15.19

IR Baseline - - 40.36 45.83

SUper-team - - 55.41 61.48

KeLP - - 52.95 59.23

SemanticZ - - 51.68 55.96

MTE-NN - - 49.38 51.56

ICL00 - - 49.19 53.89

SLS - - 49.09 55.98

ITNLP-AiKF - - 48.49 55.21

ConvKN - - 47.15 51.43

ECNU - - 46.47 51.41

UH-PRHLT - - 43.20 47.79

〈qnew, crel〉 44.77 52.07 41.95 47.21

〈qnew, qrel, crel〉 45.59 51.04 46.99 55.64

〈qnew, qrel, crel〉 + ↔ 47.82 53.03 46.45 51.72

MTL (BC) 47.80 52.31 48.58 55.77

MTL (AC) 46.34 51.54 48.49 54.01

MTL (ABC) 49.63 55.47 49.87 55.73

MTL + one feature - - 52.67 55.68

Table 4.5: Results on the validation and test set for the proposed models

model, i.e., the single network, whereas the 〈qnew, qrel, crel model only exploits the joint

input, i.e., the availability of qrel. Rows 16-18 report the MTL models combining Task C

with the other two tasks. The difference with the previous group (rows 13-15) is in the

training phase, which also operated on the instances from tasks A and B. As it can be

noted (i) the single network for Task C cannot compete with the challenge systems, as it

would be ranked at the last position, according to the official MAP score (test set results);

(ii) the joint representation, 〈qnew, qrel, crel〉 highly improves the MAP of the basic network

from 41.95 to 46.99 on the test set. This confirms the importance of using same input

encoders for encoding objects with closely related semantics and solving highly related

tasks. (iii) The shared sentence model for qnew and qrel (indicated with↔) improves MAP

on the dev. set only. (iv) The MTL (ABC) provides the best MAP, improving BC and

AC by 1.29 and 1.38 absolute points, respectively. Most importantly, it also outperforms

〈qnew, qrel, crel〉 by 2.88 points, i.e. it improves the best model using the join representation

Combining Neural and Kernel models for Task B 55

and no training on auxiliary tasks. One important thing to consider is that our full MTL

model would have ranked 4th on Task C of the SemEval 2016 competition. This is an

important result since all the other systems in the challenge made use of many manually

engineered features whereas our model does not (except for the necessary initial rank). If

we add the most powerful feature used by the top systems to our model, i.e. the weighted

sum between the score of the Task A classifier and the Google Rank [Mihaylova et al.,

2016] our system would achieve a MAP 52.67, i.e., very close to the second system.

4.3.4 Conclusions

In this section, we proposed an end-to-end architecture for solving the overall cQA task.

We showed that our architecture can benefit from being trained in MTL setting on aux-

iliary tasks that are semantically connected with our main task. Our experiments on the

dataset of SemEval 2016 Task 3 show that our MTL approach relatively improves the

individual DNNs by almost 20%. Thanks to the shared representation as well as training

on the instances of two auxiliary tasks, our network showed better accuracy a higher con-

vergence rate than the models independently trained. Thanks to this, we could approach

the performance of the models participating at the challenge.

4.4 Combining Neural and Kernel models for Task B

Despite the final performance of the joint model over the Task A and C considerably

increased, the Task B did not benefit much from MTL. In this section, we propose a

new method to fill the accuracy gap in question-question similarity between DNNs and

top-performing SemEval models based on structural representations. Our approach is

aimed at injecting syntactic information into a DNN model, useful in case training data

is scarce. Effectively using syntactic parsing information in neural networks for relational

text inference tasks such as question-question similarity is still an open problem. Previous

research, [Linzen et al., 2016], shows that recurrent sequence models conceived for learning

long dependencies are really effective only when a sufficient amount of supervision is

provided to them, which in turn requires additional data. In this section we propose a

solution aiming at injecting structural representations in NNs by (i) learning an SVM

model using Tree Kernels (TKs) on relatively few pairs of questions (few thousands) as

gold standard (GS) training data is typically scarce, (ii) predicting labels on a very large

corpus of question pairs, and (iii) pre-training NNs on such larger corpus. We test our

approach on Quora and SemEval question-similarity datasets and show that NNs trained

with our approach can learn more accurate models, especially after fine tuning on GS.

56 Neural models for Community Question Answering

4.4.1 Related Work

In recent years, both academia, e.g. SemEval [Nakov et al., 2016a, 2017] or companies,

e.g. Quora3, Alibaba4, have proposed to build automatic systems for detecting duplicate

questions. An interesting outcome of the SemEval challenge discussed in Chapter 3 is

that syntactic information is essential to achieve high accuracy in question reranking

tasks. Indeed, top-systems winning the competition used with structural kernels, which

were applied to syntactic representation of question text [Filice et al., 2016b, 2017]. In

chapter 3, we saw that SVMs are very effective in presence of datasets with few training

examples, as in the case of the SemEval dataset. However, their inherent time complexity

make them not very practical for training systems on large datasets. On the contrary,

neural networks are fast compared to kernels. Thus, researchers start to wonder how

to combine kernels with the neural networks in order to train state-of-the-art systems

even in cases data is scarce. One viable solution seems to provide neural networks with

additional information, such as syntactic information (modeled by structural Kernels),

that can help to solve the task. Exploiting syntactic information in neural networks is

a topic of ongoing debate. In recent years, recursive Neural Networks models such as

Tree-LSTM Socher et al. [2013]; Tai et al. [2015] have been proposed to overcome this

limitation and exploit syntactic information. However, subsequent research showed that

such models can be outperformed by well-trained sequential models Li et al. [2015]. One

interesting piece of work is the one by Hu et al. [2016], who tried to combine symbolic

representations with NNs by transferring structured information of logic rules into the

weights of NNs. However, our aim is rather different as we re interested in injecting

syntactic, and not logic, information in NNs. The work most similar to our is the one

by Croce et al. [2017], who use Nystrom methods to compact the TK representation in

embedding vectors and use the latter to train a feed forward NNs. In contrast, we present

a simpler approach, where NNs learn syntactic properties directly from data.

4.4.2 Overview/Introduction

Here, we describe our approach that aims at injecting syntactic information in NNs, but

trying to keep the network architecture simple. It consists of the following steps: (i)

train a TK-based model on a few thousands training examples; (ii) apply such classifier

to a much larger set of unlabeled training examples to generate automatic annotation

data; (iii) pretrain NNs on automatic data; and (iv) fine-tune on the GS data. We show

that the performance of our model improved only when a very different classifier, i.e.,

3https://www.kaggle.com/c/quora-question-pairs
4https://102.alibaba.com/detail/?id=115&mtime=1528166091000

https://www.kaggle.com/c/quora-question-pairs
https://102.alibaba.com/detail/?id=115&mtime=1528166091000

Combining Neural and Kernel models for Task B 57

TK-based, are used to label additional data. Conversely, when using the same NN in a

self-training fashion to label data, the procedure does not provide any improvement. At

the same time, when SVM use standard similarity lexical features – without kernel on

syntactic trees – no improvements are observed. The use of syntactic information is at

the core of TKs-based models. Although further investigation is need to assess that NNs

specifically learn syntax, the fact that only the transfer from TKs produces improvement

is a significant evidence that injecting syntax information in NNs is a viable research

direction worth to explore.

4.4.3 Injecting Structure in NNs

To inject structured information in a neural network, we employed a weak supervision

technique:

• a classifier, i.e., Support Vector Machine with Tree Kernels, is trained on the original

dataset.

• external data is classified using this classifier, creating weakly supervised data.

• a neural network is trained on such automatically labeled data to mimic the original

classifier.

We experiment with the weak supervision technique using three different classifiers: the

network itself (NN), an SVM over feature vectors (FV) and SVM with Tree Kernel (TK).

The pre-trained network can be further refined on the original data. This fine tuning

phase is usually performed using a smaller learning rate γ. The main reason to reduce

the value of γ in fine tuning is to avoid catastrophic forgetting [Goodfellow et al., 2013]

when training with a high learning rate.

SVM Vector Machines

As first thing, we learn a scoring function r : Q×Q→ {0, 1} telling if two questions

are similar or not. The function were learned on the training sets of Quora and SemEval

containing gold-standard (GS) annotated data. These functions can also be used to rerank

a set of forum question qrel with respect to a new question qnew based on their similarity.

In our experiments, we provide two implementations of the question-similarity function,

e.g.: (i) a linear function on the feature vector representations of two questions; (ii) a

kernel function applied to the syntactic structure of questions in a pair.

Feature Vector model: This model relies on a set of text similarity features that

capture the relationships between two questions. More specifically, we compute a total of

58 Neural models for Community Question Answering

20 similarities sim(〈q1, q2〉) using word n-grams (n = [1,. . . ,4]) after stopwords removal,

using greedy string tiling [Wise, 1996], longest common subsequences [Allison and Dix,

1986], Jaccard coefficient [Jaccard, 1901], word containment [Lyon et al., 2001], and cosine

similarity.

Tree Kernel model: This model uses tree kernel functions to measure the similarity

between the syntactic structures of two questions. We used the same representations

described in Chapter 3 for modeling question pairs. We build two macro-trees, one for each

question in the pair, containing the syntactic trees of the sentences within a question. In

addition, we link two macro-trees by connecting the phrases, e.g. NP, VP, PP, etc., when

there is a lexical match between the phrases of two questions. Then, we apply Subset Tree

Kernel and obtain the following kernel: K(〈q1, q2〉)i, 〈q1, q2〉j = TK(t(qi1, q
j
1), t(qi2, q

j
2)) +

TK(t(qj1, q
i
1), t(qj2, q

i
2)), where t(x, y) extract the syntactic tree from the text x, enriching

it with REL tags.

NNs for question similarity

We inject syntactic knowledge into two well-known state-of-the-art networks for question

similarity, enriching them with relational information. Then, we used our procedure for

injecting TK-knowledge into the NN model. First, we implemented the Convolutional

NN (CNN) model proposed by Severyn and Moschitti [2016] and described in Chapter 3.

The model learns a similarity function between two sentences f : Q × Q → (0, 1), using

two separate sentence encoders fq1 : Q→ Rn and fq2 : Q→ Rn, which map each question

into a fixed size dense vector of dimension n. The resulting vectors are concatenated and

passed to a Multi Layer Perceptron that performs the final classification. Each question

is encoded into a fixed size vector using an embedding layer, a convolution operation and

a global max pooling function. The embedding layer transforms the input question, i.e.,

a sequence of tokens, Xq = [xq1 , · · · , xqi , · · · , xqn], into a sentence matrix, Sq ∈ Rm×n,

by concatenating the word embeddings wi corresponding to the tokens xqi in the input

sentence.

As a second model, we implemented a Bidirectional (BiLSTM) Graves et al. [2013,

2005], using the standard LSTM by Hochreiter and Schmidhuber [1997]. An LSTM

iterates over the sentence one word at the time by creating a new word representation

hi by composing the representation of the previews word and the current word vector

hi = LSTM(wi, hi−1). A BiLSTM iterates over the sentence in both directions and the

final representation is a concatenation of the hidden representations, hN obtained after

processing the whole sentence. We apply two sentence models (with different weights),

one for each question, then we concatenate the two fixed-size representations and fed to

a Multi-Layer Perceptron.

Combining Neural and Kernel models for Task B 59

Relational Information

As in Severyn and Moschitti [2016] we include relational information by means of word

overlap feature embeddings. We show that providing such information can highly improve

accuracy. Thus, for both networks above, we mark each word with a binary feature

indicating if a word from a question appears in the other pair question. This feature is

encoded with a fixed size vector.

Learning NNs with structure

At this point, to inject structured information in the network: (i) we train SVM with TKs

on GS data; (ii) use this model to classify additional unlabeled data, creating automatic

data; and (iii) train a neural network on the latter data. Finally, the pre-trained network

is fine-tuned on the GS data.

4.4.4 Experiments

We experiment with two datasets comparing models trained on gold and automatic data

and their combination, before and after fine tuning.

Data

• Quora dataset: contains 384, 358 pairs in the training set and 10, 000 pairs both

in the dev. and test sets. The latter two are balanced and contain the same number

of positive and negative examples.

• QL dataset: contains 3, 869 question pairs divided in 2, 669, 500 and 700 pairs

in train, dev. and test sets. We created 93k unlabeled pairs from the QL dump5,

retrieving 10 candidates with Lucene for 9, 300 query questions.

NN setup

As input features for our network, we use pre-initialized word embedding of dimension-

ality 50 jointly trained on English Wikipedia dump [Mikolov et al., 2013] and the jacana

corpus6. The input sentences are encoded with fixed-sized vectors using a CNN with the

following parameters: a window of size 5, an output of 100 dimensions, followed by a

global max pooing. We use a single non-linear hidden layer, whose size is equal to the size

5In the context of SemEval-2016 challenge, the organizers released a large unannotated dataset from Qatar

Living with 189,941 questions and 1,894,456 comments.
6Embeddings are available in the repository: https://github.com/aseveryn/deep-qa

https://github.com/aseveryn/deep-qa

60 Neural models for Community Question Answering

Model Automatic data GS data DEV TEST

FV-10k – 10k 0.7046 0.7023

TK-10k – 10k 0.7405 0.7337

CNN-10k – 10k 0.7646 0.7569

LSTM-10k – 10k 0.7521 0.7450

CNN(CNN-10k) 50k – 0.7666 0.7619

CNN(CNN-10k)* 50k 10k 0.7601 0.7598

CNN(FV-10k) 50k – 0.6960 0.6931

CNN(FV-10k)* 50k 10k 0.7681 0.7565

CNN(TK-10k) 50k – 0.7446 0.7370

CNN(TK-10k)* 50k 10k 0.7748 0.7652

LSTM(TK-10k) 50k – 0.7478 0.7371

LSTM(TK-10k)* 50k 10k 0.7706 0.7505

TK-5k – 5k 0.6859 0.6774

CNN-5k – 5k 0.7532 0.7450

CNN(TK-5k) 50k – 0.7239 0.7208

CNN(TK-5k)* 50k 5k 0.7574 0.7493

CNN(TK-10k) 375k – 0.7524 0.7471

CNN(TK-10k)* 375k 10k 0.7796 0.7728

Voting(TK+CNN) – 10k 0.7838 0.7792

Table 4.6: Accuracy on the Quora dataset.

of the sentence embeddings, i.e. 100. The word overlap embedding is set to 5 dimensions.

The activation function for both convolution and hidden layers is ReLU. The model is

trained by optimizing the binary cross-entropy loss. More in particular, we used SGD

with Adam update rule, setting the learning rate γ to 10−4 and 10−5 for the pre-training

and fine-tuning phase.

Results on Quora

Table 4.6 reports the results of our different models, FV, TK, CNN and LSTM described

in the previous section. The suffixes -10k or 5k indicate the amount of GS data used to

train them, and the name in parenthesis indicates the model used for generating data,

e.g. CNN(TK-10k) means that a CNN has been pre-trained with the data labeled by a

TK model trained on 10k GS data. The amount of data for pre-training is reported in

Combining Neural and Kernel models for Task B 61

second column, while the amount of GS data for training or fine tuning (indicated by *)

is in the third column. Finally, the results on the dev. and test sets are in the fourth

and fifth columns. We can observe that: first, NN trained on 10k of GS data obtain

higher accuracy than FV and TKs on both dev. and test sets (see the first four lines);

Second, CNNs pre-trained with the data generated by FV or in a self-training setting, i.e.,

CNN(CNN-19k), and also fine-tuned do not improve7 on the baseline model, i.e., CNN-

10k, (see the second part of the table). Third, when CNNS and LSTMs are trained on

data labeled by TK model, they match the TK model accuracy (third part of the table).

Most importantly, when they are fine-tuned on GS data, they obtain better results than

the original models trained on the same amount of data, e.g., 1% accuracy over CNN-10k.

Next, in the fourth part of the table we can see that our method gives an improvement

when training TK (and fine-tuning the NNs) on less GS data, i.e., only 5k. Additionally,

in the fifth section of the table we show high improvements by training NN on all available

Quora data annotated by TK-10k (Tree kernel-based model trained on just 10k examples).

This seems to suggest that NNs require more data to learn complex relational syntactic

patterns expressed by TKs. However, the plot in Figure 4.4 shows that the improvement

reaches a plateau around 100k examples. Finally, in the last row of the table, we report

the result of a voting approach using a combination of the normalized scores of TK-10k

and CNN-10k. The accuracy is almost the same than CNN(TK-10k)*. This shows that

NNs completely learn the combination of a TK model, mainly exploiting syntax, and a

CNN, only using lexical information. It must be noted that the voting model is heavy to

deploy as it uses syntactic parsing and the kernel algorithm, which has a time complexity

quadratic in the number of support vectors. Thus, our solution provides a considerable

speedup in terms of time over the voting model.

50 100 150 200 250 300 350 400

Pretraining data (x1000)

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

A
cc

u
ra

cy

TK

NN

NN(TK)

NN(TK)*

Figure 4.4: Impact of the pre-training data.

7The improvement of 0.5 is not statistically significant.

62 Neural models for Community Question Answering

Model Automatic Data Dev Dev (MAP) Test Test (MAP)

CNN 0.7000 0.6598 0.7514 0.7208

TK 0.7340 0.6988 0.7686 0.7424

CNN(TK) 50k 0.5580 0.6578 0.5428 0.7370

CNN(TK)* 50k 0.7160 0.6794 0.7814 0.7312

CNN(TK) 93k 0.7000 0.6782 0.6957 0.7430

CNN(TK)* 93k 0.7380 0.6782 0.7614 0.7320

Table 4.7: Accuracy on QL using all available GS data.

Results on Qatar Living

Table 4.7 reports the results when applying our technique to a smaller and differently

dataset such as QL. As can be seen in the first grouped row, CNNs have lower performance

than TK models as 2, 669 pairs are not enough to train their parameters, ant the text is

also rather noisy, i.e. there are a lot of spelling errors. Despite this problem, the results

show that CNNs can approximate the TK models quite well, when using a large set of

automatic data. For example, the CNN trained on 93k automatically annotated examples

and then fine tuned exhibits 0.4% accuracy improvement on the dev. set and almost 3%

on the test set over TK models. On the other hand, using too much automatically labeled

data may hurt the performance on the test set. This may be due to the fact that the

quality of information contained in the gold labeled data deteriorates. In other words, the

right amount of weekly-supervised data to use during training must be carefully chosen.

4.4.5 Conclusion

In this section, we have trained TK-based models, which make use of structural informa-

tion, on relatively small data and applied them to new data to produce a much larger

automatically labeled dataset. Our experiments show that NNs trained on automatic data

improve accuracy. We may speculate that NNs somehow learn relational information as

(i) TK models mainly used syntactic structures to label data and (ii) other advanced

models based on similarity feature vectors, e.g. CNN(FV) and CNN(CNN), do not pro-

duce any improvement. However, even if our conjecture were wrong, the bottom line

would be that thanks to our approach, we can have NN models comparable to TK-based

approaches, by avoiding the use of syntactic parsing and expensive TK processing at

deployment time.

Chapter 5

Supervised Clustering of questions

for fast bootstrapping of Intent

Ontologies

Modern NLP applications such as Conversation Agents and Dialog systems, need to clas-

sify user request into a predefined set of categories or semantic categories. For example,

a dialog system would classify the utterance “Turn on the lights in the kitchen” into the

semantic category turn light on. This task is called intent detection and is typically

solved by using supervised methods to learn a classifier, able to automatically pair a user

request with its corresponding intent. While these methods can deliver state-of-the-art

results, they require a large amount of labeled data annotated by experts. Unfortunately,

these approach become less applicable as the number of data and intents increase, since a

larger amount of human labor is needed. Furthermore, their applicability is very limited,

as they cannot generalize to novel unseen intents. Approaching this problem, sometimes

referred as zero-shot user intent detection or zero-shot user intent learning, is of extreme

importance for fast bootstrapping of Natural Language Understanding (NLU) pipelines

needed by modern Dialog Systems. In this chapter, we present a new supervised approach

for clustering similar questions (or user requests) into semantic clusters. These clusters

represent sets of questions that correspond to the same intent. Our approach, which per-

forms global inference on a graph of questions connected by their textual similarity, is able

to group the elements into new user intents better than other strong baseline approaches.

In our experiments, we trained a supervised clustering function on a smaller annotated

part of the dataset and apply it to the remaining part. This allowed us to let the system

discover the latent structure of intents in the data, freeing us from the burden to manually

go though all the questions and making sense of them.

64 Supervised Clustering of questions for fast bootstrapping of Intent Ontologies

5.1 Overview

Recently, we have seen a renewed interest in dialog systems, ranging fro help desks to

more complex task-based to general purpose conversational agents, e.g., Alexa, Cortana

or Siri. When using these devices, users expect to formulate complex information needs

in natural language, with no limitation to their expressiveness. Due to this, modern au-

tomated dialog systems require complex dialog managers able to understand user intent

triggered by high-level semantic questions and expressed by articulated natural language

text. Unfortunately, current solutions to the intent detection problem consists in manually

analyzing user questions and creating a taxonomy of intents to be attached to the appro-

priate actions. For example, when designing a conversational interface for booking flight,

several semantically similar/identical questions regard BookFlight are expected. Thus,

the designer has to build a category for all these questions. As can be easily imagined,

this is a rather costly, difficult and time consuming task, which make virtually impos-

sible to quickly prototype dialog systems even for small domains. Unfortunately, very

little work has been dedicated to automatizing the process of building intent ontologies

starting from a set of questions. A reason can be the fact that the underlying problem,

i.e. semantic question paraphrasing is very challenging. However, recent initiatives for

automatic question duplicate detection1, question relatedness Nakov et al. [2016b, 2017]

and semantic textual similarity Agirre et al. [2012]; Cer et al. [2017] have shown that

current technology can achieve good accuracy in matching short text expressing similar

semantics.

5.2 Our solution

In this section, we describe our new model for automatically grouping a given set of ques-

tions into clusters representing new intents. By automatically discovering new intents,

this model can provide important insights into the design of dialog systems. It does so

by clustering questions into user intent categories, which can help the design of dialog

systems. The main advantage of our approach is that, given a notion of intent, explic-

itly provided by annotated data, our model can create clustering driven by such intrinsic

definition. Thus, this is one of our major contributions: providing an effective supervised

clustering approach, which can learn definitions from examples. Our approach combined

(i) state-of-the-art methods for question similarity/paraphrasing with (ii) powerful su-

pervised clustering algorithms. The former are obtained by exploiting previous research,

e.g., on Quora, whereas the latter, are obtained by employing the structured output ma-

1Quora: https://www.kaggle.com/c/quora-question-pairs

Our solution 65

chine learning methods use for coreference resolution (CR), e.g. [Yu and Joachims, 2009;

Fernandes et al., 2014]. In order to train our model, we define a clustering corpus by au-

tomatically deriving question clusters from pairs of duplicate questions in Quora. We did

this by exploiting transitive closure of semantic matching property implied by question

pair annotation. In addition, to test the applicability of our approach across languages

and domains, we run evaluation experiments on another intent-based corpus, a collection

of FAQs for an Italian online service.

5.2.1 Question clustering algorithms

The problem of clustering questions into user intents can be defined in many ways. Here,

we provide a formalization of the problem: given a set of questions Q, we want to split

them into subsets (clusters), ci = qij
Ni

j=1
, where qij is the j-th question in the cluster i of

size Ni and tici = Q. Each ci is assumed to contain questions with the same intent,

i.e. to represent a distinct intent. Generally, what algorithm to adopt in a clustering

task depends on the amount of supervision available. Thus, based on on this information,

we can distinguish between two tasks: (i) unsupervised clustering and (ii) supervised

clustering.

• Unsupervised clustering: Approaches for unsupervised clustering attempt to

group elements together based on some identified commonalities. Clustering new

sets of questions Q in an unsupervised way may be generally troublesome due to

the lack of information about the structure of Q and the target number of distinct

intents in it. To overcome this problem, we learn a new clustering function from

data annotated with gold question clusters.

• Supervised clustering: In this work, we pose the task as a supervised clustering

problem, according to the same formulation by [Finley and Joachims, 2005]. Given

a set of training examples of the form (xi, yi)
n
i=1, where each input xi is a set of

elements of some nature and yi - the corresponding gold standard clustering of such

a set, the goal is to learn a predictor h : X → Y from the space of sets X to the

space of clustering Y .

Supervised clustering proved to be particularly effective for coreference resolution Yu and

Joachims [2009]; Fernandes et al. [2014]. It is known that coreference is a a very hard

NLP task. Supervised clustering models learn to infer optimal clustering y of an input

set x in a structured way, i.e. as one output object optimizing a global scoring function

f : X × Y → R. Global models are different from local model. Indeed, while the latter

66 Supervised Clustering of questions for fast bootstrapping of Intent Ontologies

aggregate multiple clustering decision taken with respect to pair of elements, global models

draw predictions by finding:

ŷ = argmax
y∈Y

f(x, y) (5.1)

In the following, we provide the necessary details of the original approach of [Yu and

Joachims, 2009] and then we show its adaptation for clustering questions.

5.2.2 Structured Output Clustering

To make inference of optimal clustering in Equation 5.1, Yu and Joachims [2009] repre-

sent clustering variable y using graph structures. For an input x they construct a fully-

connected undirected graph G, whose nodes are elements xi of the input x and edges

are all the pairwise links between them (xi, xj). Any spanning forest h on G straightfor-

wardly translated into a clustering y. In the representation, the nodes in each connected

components of h are considered to belong to the same cluster. At this point, the authors

incorporate the spanning forest structure h as latent variables and decompose the feature

representation of input-output pair (x, y), which is extended with h, over the edges of h:

Φ(x,y,h) =
∑

(xi,xj)∈h

φ(xi, xj) (5.2)

Then, they employ the Kruskal’s spanning algorithm to infer the optimal h, and, re-

spectively, y. A linear model w is trained using the latent formulation of the struc-

tural SVM learner (LSSVM), to score the output clustering according to the function

f(x,y,h) = w · φ(x,y,h). The linear model w learns to score the edges since the struc-

tural feature vector decomposes over the edges. Imposing a structure onto the output is

supposed to produce a better w, which we test in our experiments described in Section 5.4.

5.2.3 SVM Models

In order to work, our model for intent clustering relies on the pairwise similarity between

questions (edge score). In the following section we describe text similarity features used

for estimating similarities between pairs.

5.2.4 Pairwise question similarity classifier

To accurate estimate question-question similarity, we use state-of-the-art classifiers for

computing semantic similarity for short text. More specifically, we refer to our previous

works [Filice et al., 2016b, 2017], [Da San Martino et al., 2016], [Barrón-Cedeño et al.,

2016] solutions/features shown effective in shared tasks by Nakov et al. [2016b, 2017];

Our solution 67

Agirre et al. [2013, 2014]. In such works, a classifier is trained with SVMs, which learn

a classification function f : Q × Q → {0, 1}, on duplicate vs. non-duplicate pairs of

questions belonging to the question set Q. The score returned by the classifier is used

to decide if two questions qi and qj are duplicate or not. We encode questions pairs as

vectors of similarity features derived between two questions. Feature vectors are built

for question pairs (qi, qj), using a set of text similarity features modeling the relations

between two questions. More specifically, we compute 20 similarity features sim(qi, qj)

using word n-grams (n = [1,· · · ,4]), after stopwords removal, greedy string tiling Wise

[1996], longest common subsequences Allison and Dix [1986], Jaccard coefficient Jaccard

[1901], word containment Lyon et al. [2001], and cosine similarity.

5.2.5 Models

To perform supervised clustering we use: (i) the original implementation of the Latent

SVM struct2 – LSSVM, and (ii) our implementation of the LSP algorithm based on the same

clustering inference on undirected graphs using Kruskal’s spanning algorithm. LSSVM

and LSP require the tuning of a regularization parameter, C, and of a specific loss pa-

rameter, r (penalty for adding an incorrect edge), which we select on the dev. set. We

pick up C from 1.0, 10.0, 100.0, 1000.0, and r values from 01.1, 0.5, 1.9.

5.2.6 Baselines

For comparison purposes, we employed two unsupervised clustering baselines: (i) spec-

tral clustering [Ng et al., 2001], for which we employ the implementation from the smile3

library, and (ii) relational k-means [Szalkai, 2013]. The former implementations takes a

matrix of pairwise similarities between data points as input, whereas the latter approach

is a generalization of k-means to an arbitrary matrix of pairwise distances. Thus, they

can be run on the scores relatives to the question pairs (qi, qj). We provide two vari-

ants of such models based on the (qi, qj) score computations: first, we run both the

methods on the scores obtained from a binary pairwise similarity classifier, described in

Section 5.2.4. Second, we run clustering baselines on the tf-idf scores computed for the

question pairs. Particularly interesting is the latter approach as it use the scores from

a trained pairwise classifier. This introduces some supervision in standard unsupervised

clustering approaches, originating new hybrid methods. As K-means and spectral cluster-

ing algorithms require the indication of the number of clusters k, we use the gold standard

k of each example (clustering) in all our experiments. This corresponds to comparing with

2www.cs.cornell.edu/~cnyu/latentssvm/
3http://haifengl.github.io/smile/

www.cs.cornell.edu/~cnyu/latentssvm/
http://haifengl.github.io/smile/

68 Supervised Clustering of questions for fast bootstrapping of Intent Ontologies

an upper bound of the baselines.

5.3 Datasets: Building Intent clusters

In this section, we described the datasets used in this work, which we had to build ex-

plicitly for this task, as we could not find one suitable for our problem. Indeed, the

datasets already available for benchmarking Natural Language Understanding systems

[Coucke et al., 2017], were composed of a rather small set of relatively generic intents.

Then, we detail our approach for converting resources available for similar tasks, e.g.

question-similarity, into intent corpora, relying on an automatic followed by a manual

post-annotation step. The intent corpora as well as the larger raw question cluster col-

lections are available to the research community4.

5.3.1 Quora Intent corpus

Quora question-similarity task: The Quora Intent corpus was derived from the orig-

inal Quora question-similarity task. The original Quora task required detecting whether

two questions are semantically duplicate or not. The associated dataset contains over

404, 348 pairs of questions, posted by users on the Quora website, labeled as duplicate

pairs or not. For example, How do you start a bakery? and How can one start a bakery

business? are duplicate, while What are natural numbers? and What is a least natural

number? are not. One thing worth noting is the fact that coders label pairs in isolation,

only having access to one pair to be labeled at time on Quora website. The pairs to be

labeled were not selected randomly. In addition, to make the task more challenging, as

well as more useful for practical applications, the organizers only offer pairs of questions

that are somewhat semantically related

(5.3) q1: How does an automobile works?

q2: How does automobile R&D work?

(5.4) q1: Will I lose weight if I fast ?

q2: Why am I losing weight so fast ?

q3: How can I lose my weight fast ?

In example 5.3, the lexical items ave very similar, yet the questions are rather distinct,

as reflected in the Quora annotation. They also express very different user intents: while

q1 is a generic curiosity question about automobiles, q2 is a practical request for informa-

tion on R&D in the automotive industry. Example 5.4 shows why the Quora duplicate

4https://ikernels-portal.disi.unitn.it/repository/intent-qa

https://ikernels-portal.disi.unitn.it/repository/intent-qa

Datasets: Building Intent clusters 69

detection task is very challenging and requires a very good level of NLU Understanding:

while these three questions are very similar on the surface level, they all convey distinct

semantics.

Question clusters from Quora

Differently from the original question-similarity task, in this work, we are interested in

automatically acquiring intents from large question repositories. Given this, we need a

corpus that contains clusters of questions annotated by the underlying intents. To ob-

tain such data, we approximate intent clusters with the clusters of similar questions from

Quora. These can be obtained by exploiting the pairwise annotation and relying on the

transitivity property of the duplicate relation: for each pair q1, q2 annotated as duplicate,

we assign q1 and q2 to the same cluster; negative pairs (non-duplicate question) do not

impact the the clustering in any way. This process has some obvious limitations by design

(i) it will not give us any intent labels, only the clusters and (ii) it will not provide any

hierarchy of intents or any general/large intent categories. Still, this method provides a

large number of user-generated intents that manually labeling initiatives (e.g., Natural

Language Understanding Benchmarks) cannot guarantee.

Manually annotating intent clusters

The procedure employed for deriving intents from the Quora dataset raises several po-

tential issues5: (i) no consistency is enforced across labels, (ii) duplicate or very similar

Quora answers potentially pollute the annotation for their corresponding questions, (iii)

specific decisions may depend on availability and granularity of underlying answers, and

(iv) the annotation of popular questions might be very spurious since the users have no

access to all the other related questions. Moreover, we found numerous cases where the

annotation does not respect the transitivity property:

(5.5) q1: What are, if any, the medical benefits of fasting?

q2: What are the benefits of water fasting?

q3: What are the health benefits of fasting?

Here, the three independent coders have produced inconsistent labeling: although q2 and

q3 are explicitly labeled as non-duplicate, they are both considered duplicates of q1. The

second issue arises when the answer base contains (near-)duplicate entries. For example,

the following two very similar questions are considered non-duplicates since they lead to

two distinct answers:

(5.6) q1: Which is better - DC or Marvel?

q2: DC VS Marvel: which do you like more? [non-duplicate]

5https://www.kaggle.com/c/quora-question-pairs/discussion/30435

70 Supervised Clustering of questions for fast bootstrapping of Intent Ontologies

Note that this typically happens for rather popular questions that are therefore important

to be analyzed correctly, either manually or automatically. The third issue is extremely

important for areas only partially covered by the answer DB. For example, for the set of

questions, Why is Saltwater Taffy candy imported in LOCATION?, most LOCATIONs

are covered by a generic answer, and all the corresponding questions are judged dupli-

cates. However, some specific LOCATIONs, e.g., Fiji, have a dedicated answer and thus

the corresponding questions form singleton clusters. Finally, the annotation coherence

problem arises for very popular areas covering a lot of closely related questions. Thus,

more than 100 questions cover different aspects of Weight Loss. Since the coders do not

have any access to all the questions on the same topic, the individual decisions are not

coordinated, which leads to rather arbitrary partitioning of the area into clusters:

(5.7) Gold Quora Cluster 1:

How can I lose weight ?

What is the easiest way to lose weight faster ?

How can you lose weight quickly ?

How do I lose 7kgs in 2 weeks ?

What a great diet to lose weight fast and not make you hungry or keep on measuring portions

?

.. many more

Gold Quora Cluster 2:

How can I lose 3 kg in one week?

Gold Quora Cluster 3:

What are the good diets for weight loss ?

What is the best diet plan for weight loss?

To overcome these issues, we manually re-annotated a portion of the original Quora

dataset with intent-based clusters. Started from clusters automatically induced accord-

ing to the procedure described above, we first re-assessed the partitioning and, then, we

correct eventual mistakes. Finally, we assigned intent-based labels to our clusters. Our la-

bels are hierarchical, thus allowing for a better flexibility when designing dialog managers:

dialog managers can be defined in terms of generic (e.g., Advice) or more specific (e.g.,

Advice-WeightLoss-diet) intents, depending on different implementation considerations

(query frequency for specific intents, overall importance for the application, difficulty of

processing inter alia). Also, in order to follow recent trends in dialogue research, we an-

notate slots, where applicable. The latter are entities external to the intent, which yet

play an essential role for the correct semantic interpretation of question. In Table 5.1 we

show an example of cluster annotations based on intents.

Experiments 71

Intent Slots Questions

Recommend-TourismCuisine streetfood, Delhi What are the best street food in Delhi ?

Recommend-TourismCuisine streetfood, Delhi What is the best street food in Delhi ?

Recommend-TourismCuisine streetfood, Delhi What are the best street foods in delhi ?

Recommend-TourismRestaurant streetfood, Delhi What are the best street food places of delhi ?

Table 5.1: Manually annotated intent clusters for Quora

Dataset N. questions N. clusters Average cluster size

TRAIN 636 270 2.36

DEV 315 146 2.16

TEST (automatic) 383 211 1.81

TEST (manual) 199 68 2.93

Table 5.2: Statistics about the Quora intent corpus.

5.3.2 FAQ: Hype Intent corpus

The second corpus we used, Hype, allows for a more direct evaluation of intent clustering

algorithms. The data have been collected from a set of questions asked by users to a con-

versational agent. Such questions have been processed for constructing a FAQ section for

Hype – an online service that offers a credit card, a bank account number and an iBanking

app to its customers. Unlike Quora, questions are explicitly assigned to clusters by human

annotators, and these clusters corresponds to intents by construction. However, for these

intents we do not have informative labels and there is therefore no associated hierarchy.

While this corpus provides very valuable data for our study, the main disadvantage is a

very limited number of questions. Some examples are reported below:

(5.8) q0: Cos’é HYPE? (What is HYPE?)

q1: Volevo dei chiarimenti di cos’é la app hype (I’d like to have more information about the

hype app)

q2: mi puó spiegare cose’é la app hype (could you please explain me what the hype app is?)

q3: informazione applicazione hype (information about hype app)

At the current stage of our research, we use the FAQ/Hype corpus directly, with no

automatic or manual adjustments as we did for Quora.

5.4 Experiments

72 Supervised Clustering of questions for fast bootstrapping of Intent Ontologies

Dataset N. questions N. clusters Average cluster size

TRAIN 97 19 5.11

TEST 50 9 5.55

Table 5.3: Statistics about the FAQ-HYPE dataset

In this section, we first provide details about the corpus used and introduce the evaluation

measures employed to assess the accuracy of clusters predicted by our model. Then, we

report the results obtained on (i) the Quora and (ii) FAQ-HYPE dataset.

5.4.1 Setup

We used two different corpora, described in Section 5.3:

The Quora Intent corpus contains 270, 146 and 212 clusters in the training, de-

velopment and test sets. The clusters contain different numbers of questions, ranging

from singleton to groups of 100+ questions. The singletons are the dominant group in

the Quora dataset. This is probably due to the inclusion of non-duplicate questions that

appear in the original Quora dataset. Overall, ther are 1, 334 questions distributed in

628 clusters (an average of 2.12 questions/cluster). More details about the corpus are

reported in Table 5.2.

The FAQ/Hype corpus contains no small-size (< 3) clusters by construction since

smaller clusters are typically not selected as FAQ entries. The largest groups of clusters

are those of size 8 and 9. Overall, the FAQ Intent corpus contains 147 questions spread in

28 intent-based clusters, which correspond to an average of 5.25 questions/cluster. In our

experiments, we used 97 questions for training and 50 questions for testing, distributed

in 19 and 9 clusters, respectively. Table 5.3 reports statistics statistics about the corpus.

5.4.2 Evaluation measures

We compare the output clustering ŷ =
⊔
j ĉj to the ground truth y∗ =

⊔
i ci, where ci, in

our case, are either the clusters obtained with transitive closure from Quora annotation

or the manually annotated categories (see Section 5.3.1). For evaluation purposes, we

assign each cluster ĉj to the most frequent gold class (cluster), i.e., argmaxi|ci ∩ ĉj|, and

compute the average precision over the clustering as:

Precision =
1

N

k̂∑
j=1

maxi|ci ∩ ĉj|, (5.9)

Experiments 73

where N is the number of questions to be clustered, and k̂ is the number of output clusters.

This number is exactly the standard clustering purity by Zhao and Karypis [2002]. Since

the purity is known to favor the clustering outputs with the large number of clusters, we

interchange the roles of output and gold clusters, which gives us the clustering

Recall =
1

N

k∑
j=1

maxi|ĉi ∩ cj|, (5.10)

where k is the number of gold standard clusters. We then compute F1 from the above

measures. The defined majority-class based clustering measure allows assigning more

than one cluster to the same gold cluster. The coreference resolution metric CEAF [Luo,

2005; Cai and Strube, 2010] solves this issue by finding one-to-one alignment between the

clusters in the output and in the ground truth, based on which the final score is computed.

We use CEAFe, the variant with the entity-based similarity, as an alternative evaluation

measure.6 Note that, although we split the data into samples, all the clustering measures

we use, the majority-based, defined by equations 5.9 and 5.10, and CEAF, are computed

over the whole test sets (not by averaging scores separately for each sample). We evaluate

the results as well in terms of the classification scores relative to the correctness of the

models in detecting the pairs of questions with the same/different intent. This enables

the comparison against the pairwise classification approaches and an evaluation of their

impact. We compute the Precision, Recall, and Accuracy of question pairs with the same

intent.

5.4.3 Experiments on Quora

Original question label-based evaluation: As first thing, we test the models on

clustering data from the Quora corpus, derived as described in Section 5.3.1. We train

LSSVM, LSP and the SVM classifier on the training part. The results of all the models

on the test set are depicted in Table 5.4. As can be seen, in terms of clustering accuracy,

the LSSVM approach outperforms all the clustering baselines, improving about 10 points

the highest baseline mode, i.e., SVM + k-means both in terms of F1 and CEAF. LSP,

while outperforming the baselines, shows a slightly worse F1 than LSSVM, producing a

model with high recall. In order to assess the impact of the pairwise classifier, we con-

sider all the pairs of questions predicted by the mustering approaches as belonging to

the same cluster as positive and the rest – as negative. After that, we measure pairwise

classification precision, recall, F1 and accuracy (right side of the table). Interestingly,

only LSSVM, though, among all the clustering models, approaches the classifier in terms

6We used the version 8 of the official coreference scorer conll.cemantix.org/2012/software.html

conll.cemantix.org/2012/software.html

74 Supervised Clustering of questions for fast bootstrapping of Intent Ontologies

Model
Clustering Pairwise Classification

Precision Recall F1 CEAFe Precision Recall F1 Accuracy

LSSVM 80.16 77.81 78.96 63.68 43.74 32.00 36.96 88.41

LSP 66.06 91.64 76.78 51.50 20.36 76.85 32.19 65.62

SVM + spectral clustering 72.06 62.40 66.89 47.04 28.07 3.52 6.26 88.80

SVM + k-means 70.76 66.58 68.60 53.87 31.03 7.92 12.62 88.35

tfidf + spectral clustering 72.06 62.92 67.18 52.96 33.90 4.36 7.72 88.94

tfidf + k-means 69.19 65.01 67.04 50.94 29.95 5.33 9.04 88.62

SVM 26.25 72.23 38.50 75.50

Table 5.4: Supervised vs. unsupervised clustering models and pairwise classification baselines

on the test set, where the gold labels are from the original Quora annotation. Note that

pairwise classification does not provide a good estimation of clustering accuracy.

of classification F1. However, clustering accuracy depends on many factors in addition to

pairwise classification accuracy.

Intent-based evaluation: In Table 5.5 we present the results obtained on the portion of

the test set which we manually annotated with intent clusters. We apply the same LSSVM,

LSP and SVM classifier model trained in the experiments of the previous paragraph.

However, before proceeding we recomputed all the four unsupervised clustering baselines

supplying them with the new k – the number of gold intent-based annotated clusters.

Although these new models have been trained on data with different annotation style,

which is potentially noisy, LSSVM is able to recover new intent categories between than

other baseline approaches in terms of all clustering metrics. However, the difference

from the closest unsupervised clustering approach, which is the same as in the previous

experiments, is now reduced in terms of CEAF. The new information about the number

of clusters in the ground truth impact severally on the accuracy. The LSP model score

the best with respect the new annotation. An interesting thing to note is the fact that the

LSSVM classification accuracy is lower with respect the SVM pairwise classifier. However,

this result is expected as the cluster number changed notably with the new annotation.

5.4.4 Evaluation on the FAQ dataset

Since the FAQ HYPE dataset has limited size, we split it into two parts, each of which

form one sample. We use the one containing 19 out of 28 clusters for training and the other

with remaining 9 clusters for testing. The training sample is composed of 97 questions,

while the test sample is composed of 50. The plots in Figure 5.1 show the performance

Experiments 75

Model
Clustering Pairwise Classification

Precision Recall F1 CEAFe Precision Recall F1 Accuracy

LSSVM 84.92 51.76 64.32 49.72 33.24 7.86 12.71 78.07

LSP 71.36 89.45 79.38 59.99 37.22 83.46 51.48 68.03

SVM + spectral clustering 62.31 43.22 51.04 33.04 35.11 2.95 5.44 79.17

SVM + k-means 68.84 47.24 56.03 48.62 42.71 6.48 11.25 79.23

tfidf + spectral clustering 65.83 45.23 53.62 35.46 38.18 3.62 6.62 79.23

tfidf + k-means 65.83 47.24 55.00 38.49 29.31 9.43 14.26 76.98

SVM 40.35 62.33 48.99 73.62

Table 5.5: Supervised vs. unsupervised clustering models and pairwise classification baselines

on the test set, where the gold labels are provided by the intent-based manual annotation on a

portion of the test set.

of LSSVM and LSP in terms of clustering F1 compared to the clustering baselines. In

addition, we run the k-means and spectral clustering algorithms with k in the range (1,50),

which covers all the possible numbers of clusters for the given test set size. As scan be

seen LSSVM is better than the spectral clustering models with any k. k-means curves

surpass LSSVM only in a narrow interval, showing high instability. This result suggests

that guessing the right k value in a realistic scenario in the absence of supervision does

not seem an easy task. However, it should be noted that we deal with very scarce training

data. This also explains slightly insufficient accuracy of LSP compared to the k-means

baseline.

5.4.5 Error Analysis and Discussion

Quora: As can be seen in tables 5.4 and 5.5, the structural output model consistently

outperforms strong baselines such spectral clustering and k-means. The most prominent

improvement comes from singleton clusters: questions that are not duplicate with any

other entries. Recall that the original dataset is constructed in such a way that singleton

clusters are somewhat similar or related to existing material, but are still considered dis-

tinct by Quora annotators. LSSVM correctly recovers 71% of singleton clusters, whereas

other methods perform much worse (5-30%). In the question-answering setting, single-

ton clusters correspond to novel questions that require setting up of a new entry in the

answer base. Accurate recognition of singletons would allow for a timely allocation of

resources to keep the answer base up-to-date and in line with incoming user requests.

Larger clusters are problematic for all the compared methods. Still, As evidenced by the

76 Supervised Clustering of questions for fast bootstrapping of Intent Ontologies

1 5 10 15 20 25 30 35 40 45 50

40

60

80

k

C
lu

st
er

in
g

F
1

SVM + k-means SVM + spectral clustering LSSVM

tf-idf + k-means tf-idf + spectral clustering LSP

Figure 5.1: LSSVM and baseline clustering models; the latter vary with the cluster number k,

on the FAQ HYPE test set.

CEAF7 score, the structural clustering is doing a better job at recovering non-singleton

clusters. This reflects our observations that even human annotators have difficulties in

correctly and consistently detecting duplicates in complex over-populated semantic ar-

eas (see Example 5.11) in the absence of the global context (e.g., list of all the related

questions). Finally, the clusters created by the LSSVM approach are more semantically

related. Thus, 97% of all suggested clusters contain questions with the same intent, but,

possibly, incorrect slots. For example, in the following question cluster:

(5.11) gold cluster

Advice-Weightloss: fast,deadline

q1: How do I loose 50 lbs by Dec 2016?

q2: How do I loose weight fast for operation ?

q3: How can I lose 20 lbs super fast to audition for a small role in a movie ?

q4: I want to lose weight for an event coming up in 2 weeks and I really don’t care if I gain it

back afterwords. What should I do ?

the user wants advice on losing their weight very fast by a specific deadline. LSSVM

group these questions with some others, more generic queries on weight loss (How do I

loose weight fast?). This means that LSSVM captures intent hierarchy well, providing

meaningful clusters, although occasionally misses some important details. Other meth-

ods, on the contrary, form more poorly-related clusters (25-42% of clusters suggested by

unsupervised approaches contain unrelated intents). Thus, questions from Example 5.11

7The reference scorer adopted by the coreference community discards singleton clusters.

Conclusions 77

get grouped by baselines with unrelated queries such as How is it to be in true love?

(spectral clustering over tf-idf). It’s important to node that neither LSSVM nor unsu-

pervised approaches have any access to the cluster labels in the hierarchy in the training

data, we only specify the clustering itself. Yet, by taking into account the global cluster

structure, LSSVM method can uncover the underling hierarchy.

FAQ HYPE: In the FAQ setting, most clusters are mid size (5-9 questions). All the

methods do a moderate job at recuperating the intent structure in this experiment. How-

ever, LSSVM shows better performance (see Section 5.4.4). Moreover, structural output

is the only method capable to recuperate at least some clusters, e.g.:

(5.12) q1: Non ricordo piú la password per accedere all’App (I don’t remember the password for the

App)

q2: mi sono dimenticato la password (I forgot the password)

q3: reimpostare la password (reset the password)

q4: cambio password (change the password)

Here, LSSVM predicts the correct cluster exactly. In contrast, while k-means based

approaches put q1 – q4 into the same cluster, they also merge them with bloccare gli

acquisti online (block the online purchases). Finally, spectral clustering does a poor job

on this particular example, tearing either q1 (tf-idf based spectral clustering) or q2 (SVM

pairwise-based spectral clustering) apart and introducing a lot of spurious material.

5.5 Conclusions

In this chapter we proposed structured output methods fed with semantic question para-

phrasing models to automatically extract user intents from question repositories. Our

approach provides clustering accuracy of 80% with respect to the original Quora annota-

tion and still valuable accuracy of 65% with respect to one of the many interpretations of

question intent of our dataset, carried out by our expert in dialog modeling. This line of

research looks promising as it can potentially simplify and speed up the work of Dialog

Manager engineers. Although a deeper study is required to assess the benefits of our

approach, preliminary results suggests that automatic clusters, even if were not perfect,

simplify the annotation work. Several future research directions are enabled by our study,

ranging from the use of neural clustering models to the application of our models to fast

and semi-automatic prototyping of Dialog Systems. For this purpose, we made our data

and software available to the research community.

78 Supervised Clustering of questions for fast bootstrapping of Intent Ontologies

Chapter 6

NLP Pipelines and demos

In this chapter, we present a set of pipelines and NLP demos that we developed as side to

this thesis work. First we present a Multi-lingual pipeline developed in the context of the

Limosine European project (Section 6.2.1). The experience accumulated working on this

pipeline allowed us to implement the cQA pipeline using structural models presented in

Chapter 3. In addition, the availability of a multi-lingual NLP pipeline open interesting

research directions such as the design of cross-lingual models for cQA. Then, we describe

our effort aimed at improving the performance of constituency parsers for Italian language,

which were very low compared to the English counterpart. The results of this work

was partly used to build the syntactic representations employed in the automatic Help

Desk system presented in Section 6.4. This system, designed with the help of a company

operating in the IT field, has been successfully implemented to support operators working

in an HD office to answer questions asked by clients in Italian language. As last thing,

we implemented a system for factoid questions in Italian. Although factoid QA is not the

focus of this work, we must consider that a small percentage of questions asked by users

on discussion forums required simple named entities as answers. Thus, in last section, we

proved the effectiveness of using structural representations for improving the performance

of systems also for factoid QA.

6.1 Multilingual UIMA-based NLP Platform

In this section, we present a robust and efficient multilingual UIMA-based platform for

automatically annotating textual inputs with different layers of linguistic description. The

types of annotations returned by the pipeline range for surface level phenomena all the way

down to deep discourse-level information. More particularly, the pipeline extract sentence

tokens, entity mentions, syntactic information; opinionated expressions; relations between

entity mentions co-reference chains ad wikified entities. The system is available in two

80 NLP Pipelines and demos

versions: standalone distributions, expandable with new user-specific submodules and a

server-client distribution allowing for high-performance NLP processing for higher-level

tasks.

6.2 Overview

Nowadays, the growing amount of textual information require Natural Language Process-

ing pipelines more scalable. Due to this, In recent years a lot of effect has been invested

into the development of multi- and cross-lingual resources, which annotate textual inputs

with various linguistic structures. To address this problem, we present the LiMoSINe

pipeline – a platform developed by the FP7 EU project LiMoSINE: Linguistically Moti-

vated Semantic aggregation engines Uryupina et al. [2016]. While many platforms and

toolkits have been already made available to the research community in the past decades,

e.g.. OpenNLP1, FreeLing Padró and Stanilovsky [2012], and GATE Cunningham et al.

[2011], these tools suffer from the following drawbacks:

• most of these tools require considerable effort for installation and configuration

• parallelism might be an issue

• for languages other than English modules are missing, while the existing ones have

only a moderate performance level.

In the LiMoSINE project, we focused on high-performance NLP processing for four Eu-

ropean languages: English, Italian, Spanish and Dutch. We combine state-of-the-art

solutions with specifically designed in-house models to ensure reliable performance. Fur-

thermore, the pipeline is based on the UIMA framework Ferrucci and Lally [2004], which

allow for full parallelism when processing large amounts of data. The pipeline is available

at: http://ikernels-portal.disi.unitn.it/projects/limosine/

6.2.1 LiMoSINe pipeline: overall structure

Our platform support various level of linguistic descriptions of document’s semantics,

obtained by combining the outputs of numerous linguistics preprocessors. The structure

of our pipeline is shown in Figure 6.1. As it can be seen, the pipeline is composed by

many preprocessors – designed by different project partners and stakeholders – whose

input/output format has been unified to ensure interoperability among the components.

This is achieved thanks to the modularity feature at the base of UIMA, which made it

1http://opennlp.apache.org

http://ikernels-portal.disi.unitn.it/projects/limosine/

Overview 81

Figure 6.1: LiMoSINe pipeline architecture

82 NLP Pipelines and demos

Annotator English Italian Spanish Dutch

tokenizer Stanford TextPro IXA xTas/Frog

POS-tagger Stanford TextPro IXA xTas/Frog

NER Stanford TextPro IXA xTas/Frog

Parsing Stanford, LTH FBK-Berkeley IXA xTas/Alpino

Entity Mention Detection BART Bart-Ita - -

Opinion Mining Johansson and Moschitti [2011] - - -

Relation Extraction RE-UNITN RE-UNITN unlex - -

Coreference BART Bart-Ita - -

Entity Linking Semanticizer Semanticizer Semanticizer Semanticizer

Table 6.1: Supported modules for different languages

successfully adopted or a number of NLP projects, e.g. IBM Watson system Ferrucci

et al. [2010]. During the processing, the individual annotators update the representation

of document, which store in a CAS object. If a new annotation is required for an other

task, UIMA allows for straightforward deployment of new components. In addition to

parallelization, our pipeline can be deployed both locally or remotely. This avoid the

user to download the pipeline locally for using it. Instead, the user can reach a client-

server version of the pipeline installed on the LiMoSINe server. The client application

can be download from the pipeline website, thus allowing the user to obtain annotation

from components implements state-of-the-art algorithms for solving NLP tasks. The

annotations are dispatch by the remote pipeline to the local application running on the

client machine. This provide valuable support for projects focusing on higher-level tasks

such as Question Answering, especially for languages other than English.

6.2.2 Integrated modules

Our multi-language pipeline has focused on four European language: English, Italian,

Spanish and Dutch. For all these languages, we provides robust parallelizable NLP pro-

cessing up to the syntactic parsing level. In addition, for some languages, we provide

deeper semantic and discourse level processing, such as relation extraction, coreference,

opinion mining and entity linking. Table 6.1 provides an overview of all currently sup-

ported modules.

Overview 83

English

Here we list the components integrated in our pipeline for processing English language.

Stanford tools. To provide basic preprocessing, required by our high-level components,

we created UIMA wrappers for several Stanford NLP tools Manning et al. [2014]: the

tokenizer, the parser and the named entity analyzer.

Entity Mention Detector. We developed an entity mention detector (EMD) [Uryupina

et al., 2011, 2012] as part of BART (see below). The EMD extract mentions– textual

units that correspond to real-word object–needed by both coreference resolver and relation

extract. The EMD has been developed at the university of Trento and it is a rule-based

system combining the outputs of a parser and an NE-tagger to extract mention boundaries

and assign mention types (name, nominal or pronouns) and semantic classes (inferred from

WordNet for common nouns, from NER label for proper nouns).

Opinion Mining. The opinion expression annotator is a system developed at the Uni-

versity of Trento by Johansson and Moschitti [2011]. It extracts fine-grained opinion

expressions together with their polarity. Opinions are extracted by using a standard se-

quence labels for subjective expression markup, in a way similar to the approach by Breck

et al. [2007]. The system was developed on the MQA corpus that contains news articles.

It uses the syntactic/semantic LTH dependency parser of [Johansson and Nugues, 2008]

and requires pre-tokenized and tagged input data formatted according to the CoNLL-2008

shared task

Relation Extraction. Our relation extractor (RE) is a tree-kernel based system de-

veloped at the University of Trento [Moschitti, 2006; Plank and Moschitti, 2013]. The

Tree-kernel based methods have been shown to outperform feature-based RE approach

[Nguyen et al., 2015]. The system takes in input mentions (together with their entity

types, i.e. PERSON, LOCATION, ORGANIZATION or ENTITY) from the EMD mod-

ule, and provide relations. The Relation Extractor includes two models. The first one

use the relation extracted using the ACE 2004 data and output the following binary rela-

tions: Physical, Personal/Social, Employment/Membership, PER/ORG Affiliations and

GPE Affiliation. The second model is an version of the Relation Extractor and include

additional model trained o the CoNLL 2004 data [Roth and Yih, 2004] following the setup

of [Giuliano et al., 2007]. The model uses composite kernels consisting of path-closed tree

kernel on constituents and a linear vector encoding local and global contexts [Giuliano

et al., 2007] Both models exhibit state-of-the art performance. For the ACE 2004 data,

experiments are reported in Plank and Moschitti [2013]. For the CoNLL 2004 data, our

model achieves results comparable to state of the art or more [Giuliano et al., 2007; Ghosh

and Muresan, 2012].

84 NLP Pipelines and demos

Coreference Resolution. Our coreference resolution Analysis Engine is a wrapper

around BART – a toolkit for Coreference Resolution developed at the University of Trento

[Versley et al., 2008; Uryupina et al., 2012]. It is a modular anaphora resolution system

that support state-of-the-art statistical approaches to the task. BART implements several

models for anaphora resolution and has interface to different machine learners (MaxEnt,

SVM, decision trees). In addition, provides a large set of linguistically motivate feature

(MaxEnt, SVM, decision trees). In addition, provides a large set of linguistically motivated

features.

Entity Linking. The Entity Linking Analysis Engine (“Semanticizer”) makes use of

the Entity Linking Web Service developed by the University of Amsterdam [Meij et al.,

2012]. The web service supports automatic linking of an input text to Wikipedia articles:

the output of the web service API is a list of IDs of recognized articles, together with

confidence scores as well as the part of the input text that was matched. The entity

linking module is cross-lingual, since mentions in documents in different languages are

disambiguate and linked to Wikipedia articles. Each annotation unit corresponds to a

span in the document and it is labeled labeled with the corresponding Wikipedia ID and

the system’s confidence.

Italian

Here we list the components integrated in our pipeline for processing the Italian language.

We integrated language-specific processors for tokenization, sentence splitting, named en-

tity recognition, parsing, mention detection and coreference. For relation extraction, we

adapted the English model to Italian, transferring the unlexicalized learned model trained

on the English data. A detailed description of our annotator for Italian is provided below.

TextPro wrapper. To provide basic levels of linguistic tic processing, we rely on

TextProa suite of Natural Language Processing tools for analysis of Italian (and En-

glish) texts [Pianta et al., 2008]. The suite has been designed to integrate various NLP

components developed by researchers at Fondazione Bruno Kessler (FBK). The TextPro

suite has shown exceptional performance for several NLP tasks at multiple EvalIta compe-

titions. Moreover, the toolkit is being constantly updated and developed further by FBK.

We can therefore be sure that TextPro provides state-of-the-art processing for Italian.

TextPro combines rule-based and statistical methods. It also allows for a straightforward

integration of task-specific user-defined pre- and post-processing techniques. For exam-

ple, one can customize TextPro to provide better segmentation for web data. TextPro

is not a part of the LiMoSINe pipeline, it can be obtained from FBK and installed on

any platform in a straightforward way. No TextPro installation is needed for the client

Overview 85

version of the semantic model.

Parsing. A parsing model has been trained for Italian on the Torino Treebank data2

using the Berkeley parser by the Fondazione Bruno Kessler. Both the Torino TreeBank

itself and the parsing model use specific tagsets that do not correspond to the Peen

TreeBank tags of the English parser. To facilitate cross-lingual processing we have map

the tagset of the Torino Treebank to the Penn TreeBank and vice versa. Entity Mention

Detection. We have adjusted our Entity Mention Detection analysis engine to cover

the Italian data. Similarly to the English module, we use BART to heuristically extract

mention boundaries from parse trees. However, due to the specifics of the Torino Treebank

annotation guidelines, we had to change the extraction rules substantially.

Relation Extraction Since there are no relation extraction datasets available for Italian,

we have opted for a domain adaption solution, learning an unlexicalized model on the

English RE data. This model aims to capture structural patterns characteristic for specific

relations through tree kernel-based SVMs. To do so, we extract tree patterns for CoNLL-

2004 relations from the unlexicalized variant of the English corpus and then run it on

modified Italian parse trees. Although this model cannot provide robust and accurate

annotations, it can be used as benchmark for supervised RE in Italian.

Coreference Resolution A coreference model for BART has been trained on the Italian

portion of the SemEval-2010 Task 1 dataset [Uryupina et al., 2012]. Apart from retraining

the model, we have incorporated some language-specific features to account, for example,

for abbreviation and aliasing patterns in Italian. The Italian version of BART, therefore,

is a high-performance language specific system. It has shown reliable performance for

Italian, in particular, at SemEval-201- Task 1 [Broscheit et al., 2010] and at the EvalIta

2009 [Biggio et al., 2009].

Spanish

We have tested two publicly available toolkits supporting language processing in Spanish:

OpenNLP and IXA [Agerri et al., 2014]. The latter has shown a better performance level

and has therefore been integrated for the final release of the LiMoSINe pipeline. For

tokenization, we rely on the ixa-pipe-tok library (version 1.5.0) from the IXA pipes

project. Since it uses FSA technology for the tokenization and a rule-based segmenter, it

is fast (tokenizing around 250K words/s) and expected to be valid across several dialects

of Spanish [Agerri et al., 2014]. The POS tags are assigned by using the IXA model

for Maximum Entropy POS tagging, and reported to provide 98.88% accuracy [Agerri

et al., 2014]. Lemmatization uses the morphology-stemming toolkit, based on FSA for a

lower memory footprint (up to 10% the size of a full-fledged dictionary). Named entities

2http://www.di.unito.it/tutreeb/

http://www.di.unito.it/tutreeb/

86 NLP Pipelines and demos

(PERSON, LOCATION, ORGANIZATION and MISC) are annotated using the Maxi-

mum Entropy model of IXA trained on the CONLL 2002 dataset and tags. Finally, the

IXA pipeline provides a module for constituency parsing trained on the (Iberian) Spanish

section of the AnCora corpus.

Dutch

For Dutch, we have been able to integrate language-specific processors for tokenization,

sentence splitting, lemmatization, named entity recognition, dependency tree, and part-

of-speech tagging. To provide basic levels of linguistic processing, we rely on xTasa text

analysis suite for English and Dutch [De Rooij et al., 2012]. The suite has been designed to

integrate various NLP components developed by researchers at University of Amsterdam

and is ex extandable to work with components from other parties. xTas is designed

to leverage distributed environments for speeding up computationally demanding NLP

tasks and is available as a REST web service. xTas and instructions on how to install

it and set it up can be found at http://xtas.net. Most of the Dutch processors at

xTas come from Frog, a third-party module. Frog, formerly known as Tadpole, is an

integration of memory-based NLP modules developed for Dutch [Bosch et al., 2007]. All

NLP modules are based on Timbl, the Tilburg memory-based learning software package.

Most modules were created in the 1990s at the ILK Research Group (Tilburg University,

the Netherlands) and the CLiPS Research Centre (University of Antwerp, Belgium). Over

the years they have been integrated into a single text processing tool. More recently, a

dependency parser, a base phrase chunker, and a named entity recognizer module were

added. For dependency parsing, xTas uses Alpino, a third-party module. Annotation

typically starts with parsing a sentence with the Alpino parser, a wide coverage parser of

Dutch text. The number of parses that is generated is reduced through interactive lexical

analysis and constituent marking. The selection of the best parse is done efficiently with

the parse selection tool.

6.2.3 Conclusion and Future Work

In this section, we have presented LiMoSINe, our multi-lingual UIMA-based pipeline, a

platform supporting state-of-the-art NLP technology fro English, Italian, Spanish and

Dutch. Being based on UIMA, it allows for efficient parallel processing of large volumes

of text and can be distributed in two versions: (i) as a client applications oriented to

potential users that need high-performance NLP processors at zero engineering cost; or

(ii) a local version, which require some installation and configuration effort, but offers a

great flexibility in implementing and integrating user-specified modules. The pipeline has

http://xtas.net

Overview 87

been adopted by other parties, most importantly by the joint QCRI and MIT projects

IYAS (Interactive sYstem for Answer Selection). The structural representations extracted

by the pipeline proved to be effective in many tasks, e.g. Opinion mining on YouTube

[Severyn et al., 2014], crossword puzzle resolution [Barlacchi et al., 2014] and Question

Answering [Tymoshenko and Moschitti, 2015; Tymoshenko et al., 2014].

As future work it would be very interesting to implement new state-of-the-art deep-

learning models for: (i) improving the overall performance of the pipeline among the

different supported tasks and (ii) for replacing the components that are more difficult to

configure when installing the local version of the pipeline.

88 NLP Pipelines and demos

6.3 Tree Kernels-based Discriminative Reranker for Italian Con-

stituency Parsers

In this section we present our work Uva and Moschitti [2016] aimed at filling the gap be-

tween the accuracy of Italian and English constituency parsers: firstly, we adapt the Bllip

parser, i.e. the most accuracy constituency parser for English, also known as Charniak

parser, for Italian and trained it on the Turin University Treebank (TUT). Secondly, we

design a parse reranker based on Support Vector Machines (SVMs) using tree kernels,

where the latter can effectively generalize syntactic patterns, requiring little training data

for training the model. We show that our approach outperforms the state of the art

achieved by the Berkeley parser, improving it from 85.54 to 86.81 in labeled F1. Con-

stituency Syntactic parsing is one of the most important research lines in Computational

Linguistics as constituency parsing information is needed in many tasks, i.e. question

similarity, semantic role labeling, question answering, etc... Consequently, a large body

of work has been devoted to the design for the Italian language Bosco et al. [2007, 2009];

Bosco and Mazzei [2011]. However, the accuracy reported for the constituency best parsers

for Italian language is still far behind the state of the art of other languages, e.g. English.

This makes such technology to very useful for being used in more challenging semantic

tasks, e.g. QA. One noticeable attempt to fill this technological gap was carried out in the

Evalita challenge, which proposed a parsing track on both dependency and constituency

parsing for Italian. Among the several participant systems, the Berkeley parser Petrov

and Klein [2007] gave the best result Lavelli and Corazza [2009]; Lavelli [2011]. At the

beginning the performance for constituency parsing computed on TUT Bosco et al. [2009]

was much lower than the one obtained for English on the Penn Treebank Marcus et al.

[1993]. In the last EvalIta edition, new systems were presented and the gap diminished

as the Italian parser labeled F1 increased from 78.73% (EvalIta 2009) to 82.96% (EvalIta

2011). Some years later the parser F1 improved to 83.27% Bosco et al. [2013]. How-

ever, the performance of the best English statistical parser McClosky et al. [2006], i.e.,

92.1% is still far away. The main reason for such gap is the difference in the amount of

training data available for Italian compared to English. The main reason for such gap is

the difference in the amount of training data available fir Italian compared to English. In

fact, while Penn Treebank contains 49, 191 sentences/trees, TUT only contains 3, 542 sen-

tences/trees. In presence of scarcity of training data, a general solution for increasing the

accuracy of machine learning-based system is the use of more general features. This way,

the probability of machine training and testing instance representation is larger, allowing

the learning process to find more accurate optima. In case of syntactic parsing, we need to

generalize either lexical or syntactic features, or possibly both. However, modeling such

Tree Kernels-based Discriminative Reranker for Italian Constituency Parsers 89

generalization in state-of-the-art parser algorithms such as the Bllip3 Charniak [2000];

Charniak and Johnson [2005] is rather challenging. In particular, the space of all possi-

ble syntactic patterns is very large and cannot be explicitly coded in the model. In this

section we present our effort in filling the gap between English and Italian constituency

parsing accuracy: firstly, we adapted the Bllip parser, i.e., the most accurate statistical

constituency parser for English, also known as Charniak parse, to Italian and trained it

on TUT. We designed various configuration files for defining specific labels for TUT by

also defining their type, although we did not encode head-finding rules for Italian, needed

to complete the parser adaptation. Secondly, we apply rerankers based on Support Vector

Machines (SVMs) using TKs by Moschitti [2006] to he k-best parses produced by Bllip,

with the aim of selecting its best hypothesis. TKs allow use to represent data using the

entire space of subtrees, which correspond to syntactic patterns of different level of gener-

ality. This representation enables the training of the ranker with little data. Finally, we

tested our models on TUT, following the EvalIta setting and compare with other parsers.

For example, we observed an improvement of about 2%, over the Berkeley parser, i.e.,

86.81 vs. 84.54.

6.3.1 Bllip parser

In this section we briefly describe the model at he base of the Bllip parser. Bllip is

a lexicalized probabilistic constituency parser. It can be considered a smoothed PCFG,

whose non-terminals encode a wide variety of a manually chosen conditioning information,

such as heads, governors, etc. Such information is used to derive probability distributions,

which, in turn are utilized for computing the likelihood of constituency parse trees being

generated. As described by McClosky et al. [2006], Bllip uses five distributions, i.e.

the probabilities of (i) constituent heads, (ii) constituent part-of-speeches (PoS), (iii)

head-constituents, (iv) left-of-head and (v) right-head-constituents. Each probability

distribution is conditioned by five or more features and backed-off by the probability

of lower-order models in case of rare feature configurations. The variety of information

needed to properly train Bllip makes it much harder to configure than other parsers, e.g.,

The Berkeley’ one. In contrast, Bllip is much faster to train than many other off-the-shelf

parsers.

Adapting Bllip to Italian Language

Adapting Bllip to a new language require creating various configuration files. For exam-

ples, PoS and bracket labels observed in training and development must be defined in a

3https://github.com/BLIIP/blip-parser

90 NLP Pipelines and demos

file named terms.txt. As labels present in the TUT are different from those of the Penn

Treebank., we added them in such a file. Then we specified the types of labels present

in the data, i.e., constituent types, open-class Pos, punctuation, etc. Finally, it should

be noted that, since Bllip is lexicalized, head-finding rules for Italian should be specified.

However, in this work we used the default Bllip rules and leave this task as our short term

future work.

6.3.2 Tree Kernel-based Reranker

We describe three types of TKs and Preference Reranker approach using them. Tree

kernels free us from the burden to explicitly design features for many tasks, e.g. parse

reranking Collins and Duffy [2002], as they implement scalar product between feature

vectors as a similarity between two trees. Such scalar product is computed using efficient

algorithms and it basically equal to the number of common subparts of the two trees.

Syntactic Tree Kernels (STK) count the number of common tree fragments, where

the latter (i) contains more than two nodes and (ii) each node is connected to either all

or none of its children. We also used a variant, called STKb which ads the number of

common leaves of the comparing trees in the final subpart count.

Partial Tree Kernels (PTK) counts a larger class of tree fragments, i.e., any subset

of nodes, where the latter are connected in the original trees: clear PTK is a generalization

of STK.

Preference Reranker

Here we use describe the preference reranking technique useful to train a classifier for

reranking parse trees. In preference reranking we train a binary classifier for ranking tree

hypothesis represented as pairs 〈hi, hj〉 The trained classifier is then used to decide if tree

hi is better than tree hji. Positive training examples are pairs 〈h1, hj〉 has the highest

F1 with respect to the gold standard among the candidate hypothesis. The negative

examples are obtained inverting the hypothesis in the pairs, i.e. 〈hi, h1〉 Hypothesis having

the same score are not included in the training set. At classification time all pairs 〈hi, hj〉
generated from the k-best hypotheses are classified. A positive classification is a vote for

hi, whereas a negative classification is a vote for hj. The hypothesis associated with the

highest number of votes (or highest classifier scores) is selected as the best parse.

6.3.3 Experiments

In these experiments we report the performance of Bllip for Italian and compare it with

the Berkeley parser. Then, we show that our parse reranker can be very effective, even in

Tree Kernels-based Discriminative Reranker for Italian Constituency Parsers 91

Models
sentences ≤ 40 words All sentences

LR LP LF EMR LR LP LF EMR

Berkeley Bosco et al. [2013] 83.45 84.48 83.96 24.91 82.78 83.76 83.27 23.67

Berkeley (our model) 85.31 85.76 85.53 27.76 84.35 84.72 84.54 26.33

Bllip base model 85.90 86.67 86.28 29.54 85.26 85.97 85.61 28.00

STK 86.16 87.02 86.59 30.96 85.73 86.38 86.05 29.33

STKb 86.36 87.21 86.78 31.67 85.89 86.53 86.21 30.00

PTK 86.82 87.95 87.38 30.96 86.33 87.29 86.81 29.67

Table 6.2: Comparative results on the test set. LR/LP/LF = labeled recall/precision/F1. EMR

= percentage of sentences where recall and precision are 100%. STK- and STKb-based rerankers use

20-best hypotheses, while PTK-based reranker use 30-best hypotheses.

case of use of small training data.

Experimental Setup

Parsing data. The data for training and testing the constituency parsers come from

TUT project 4. There have been several release of the dataset: we use the last version

from EvalIta 2011 sentences composed of 3, 542 sentences. The training set is composed

of 3, 542 sentences, while test set contains 300 sentences. The set of PoS-tags include 97

tags: 68 mophological features for pre-terminal symbols (e.g. ADJ, ADVB, NOUN, etc.)

and 29 non-terminal sybols for phrase constituents (e.g. ADJP, ADVP, NP, etc.)

Reranking Data. To generate the reranker training data we apply 10-fold cross valida-

tion to the official TUT training set: we train the base parser on 9 folds and apply the

model to the remaining fold to generate n-best trees for each of its sentences. Then, we

merged all the 10-labeled folds to produce the training set of the reranker. Note that by

following this procedure we avoid the bias a parser would have it applied to the data used

for training it. For generating test data we simply apply the based parser trained on all

the TUT training data to the TUT test set and generate n-hypothesis for each sentence.

SVM Reranker. We train the reranker using SVM-light-TK, which takes both trees

and features vector to lean a classification model. More specifically, we use the following

features for reranking constituency trees: (i) the probability and the (inverse) rank of

the parse tree provided by Bllip and (ii) the entire syntactic trees used with two types of

kernels, STK and PTK, described in Section 6.3.2

Measures. For evaluating the parsers we use the EVALB scoring program, which reports

the Labeled Precision (LP), Labeled Recall (LR), Labeled F1 (LF) and Exact Match Rate

4http://www.di.unito.it/ tutreeb/

92 NLP Pipelines and demos

Models

10-best 20-best 30-best

Tree Tree + feat. Tree Tree + feat. Tree Tree + feat.

len≤40 All ≤40 All len≤40 All len≤40 All len≤40 All len≤40 All

Bllip base model 87.06 86.25 87.06 86.25 87.06 86.25 87.06 86.25 87.06 86.25 87.06 86.25

STK 85.40 85.02 86.85 86.26 85.14 84.64 87.32 86.80 85.36 84.87 87.33 86.80

STKb 85.50 85.02 86.85 86.26 85.37 84.84 87.57 87.02 85.27 84.79 87.41 86.87

PTK 86.20 85.65 87.78 87.06 87.04 86.51 88.44 87.80 87.02 86.52 88.18 87.57

Table 6.3: Reranker performances: In the top are reported the number k of best parse trees

used during training. Then, in the second row we report the group of features used: Tree or

Tree + feat, while the third row shows the parse results for two sentence groups: sentences with

≤ 40 words and all sentences.

(EMR). We use the same evaluation setting adopted by the official EvalIta procedure for

scoring participant system.

Bllip base parser results

We divided the training set in train and validation set, where the latter is composed of

300 sentences. We train the models on the training set and tune on the validation set.

Then, we applied the best model on the tests set. Table 6.2 shows the results obtained

by the Bllip parser compared to the other state-of-the-art Berkeley parser. Our parser

obtained a LF of 86.28% for sentences with less than 40 words and a score of 85.61% for

all sentences.

Comparison with the Berkeley parser

Tab 6.3 compare the results of the Berkeley parser obtained by Bosco et al. [2013] and our

own version of the Berkeley parser trained for comparison purposes. We train the parser

for 5 epochs and use a full PoS-tags scheme, as this configuration gave the best results on

the dev. set. Our version of the Berkeley parser outperforms the version that of Bosco

et al. [2013] by 1.2 absolute percent points (84.54 vs. 83.27). In addition, the Bllip parser

outperforms the best results obtained by the Berkeley parser by 1.07% in LF, i.e. 85.61

vs. 84.54.

Reranking using different TKs

Table 6.3 reports the LF obtained by different reranking models, varying: (i) the type of

TKs, (ii) the group of features used by the reranker (i.e. either trees or trees + features)

and (iii) the number, n, of parse trees used to generate the reranker training data. More in

Tree Kernels-based Discriminative Reranker for Italian Constituency Parsers 93

particular, we experimented with three values for n, i.e., 10-, 20- and 30- best parse trees.

As it can be seen from the table, PTK constantly outperforms STK and STKb for any

number of parse trees generated by PTK. This proved that the subtree feature generates

by PTK are very useful for improving parsing accuracy. One interesting thing is that

the performance of all the models trained on 30-best trees give either word results (e.g.

STKb and STK) or very little improvement (e.g. PTK) than training on 20-best parse

trees. This may suggest that too many little negative examples can be detrimental. At

the bottom of Table 6.3 we can see that the Bllip parser + reranker model shows an 1.2%

absolute improvement in LF (from 85.61% to 86.81%) on all the sentences over the base-

parser model when using the most powerful kernel, TK, and 30-best hypotheses. STK

and STKb shows a lower improvement over the baseline of 0.44% and 0.6% respectively.

Interestingly, while LF, STK and STKb give better performance in terms of EMS, i.e.

percentage of sentence parse completely matching gold trees, then PTK. This can be

intuitively explained by the fact that PTK, generating partial production rules, is better

at capturing partial rules expressed by support vectors. In contrast, the precision in

capturing complete patterns, i.e., regarding a complete tree, is decreased.

6.3.4 Conclusions

This work, was aim is to fill the gap in accuracy between English and Italian constituency

parsing, was inspired by [Collins and Duffy, 2002] and [Collins and Koo, 2005], who

explored discriminative approaches for ranking problems.

However, their studies were limited to WSJ. In this section we adapted the Charniak

parser for Italian, gaining an improvement of 1.07% over the Berkeley model (indicated by

EvalIta as the sate of the art for Italian). Then, our TK-based reranker further improved

it up to 2 absolute percent points. It should also be noted that our best reranking results

is 3.54 absolute points better than the best outcome reported in Bosco et al. [2013], i.e.

82.27.

94 NLP Pipelines and demos

6.4 cQA

In this section we describe our work on using current methods developed for Community

Question Answering (cQA) of a commercial application focused on an Italian help desk

Uva et al. [2017]. The approach we employed is based on a (i) a search engine to retrieve

previously answered question candidates and (ii) kernel methods applied to most promis-

ing candidates. We show that methods developed for cQA work well also when applied to

data generated in customer service scenarios, where the user seeks for explanation about

products and a database of previously answered questions is available. The experiments

demonstrate its suitability for an industrial scenario.

6.4.1 Overview

In recent years, large companies, e.g. IBM, Google, Facebook, Microsoft, ecc. invested a

lot of resources in developing QA technologies for their commercial applications. However,

medium and smaller enterprises cannot invest billions of dollars in achieving the desired

QA accuracy: this limits the use of technology, especially for less supported languages

, e.g. Italian. One alternative for smaller company involves the design of close-domain

systems looking for answers in specific data such as customer documentation, which is

often available in terms of unstructured text. However, even this scenario is complicated

as reaching a satisfactory accuracy may require a lot of resources. An interesting alter-

native is provided by cQA technology, which as we saw in previous chapters, can be used

for answering questions questions in specific forums. In addition, the fact that forums are

divided by topics, which are rather restricted, make the retrieval task is easier. In this

respect, cQA offers an even more interesting property: when a new question is asked in a

forum, instead for directly searching for an answer, smarter technology would first rather

try to look for a similar question. As it can be intuitively observed, the main advantage

of this approach is that searching for similar questions is much easier than searching for

text answering a given question. Due to this, challenges similar to SemEval 2017 Task 3

Nakov et al. [2016a] aimed at testing current cQA technology have been organized also

for Italian language, e.g. QA4FAQ Caputo et al. [2016]. In this section, we show that

companies can adopt cQA models to automatize the answering process. I particular, we

describe a QA system developed for RGI, a software vendor specialized in the insurance

businesses. One important task carried out by their help desk software regards answering

customers’ questions using a ticket system. Already answered tickets are stored in spe-

cialized databases but manually finding and routing them to the users in time consuming.

We show that our approach, using standard search engines and advanced reranker based

on machine learning and NLP technology, can achieve answer recall of almost 85% when

cQA 95

Table 6.4: An example of two similar tickets: the one used as query on the left and one retrieved

by a search engine (only using question words) on the right.

Questionorg Answerorg Questionrel Answerrel

Abbiamo bisogno

delle credenziali di

accesso al sistema.

Grazie

Buongiorno, questo

l’indirizzo mail al quale

scrivere per avere le

credenziali di accesso

al sistema: xxx@xxx.xx

Cordiali saluti

Buongiorno, non

troviamo creden-

ziali per accesso

sistema. Potete

aiutarci? Grazie

Buongiorno, questo

l’indirizzo mail al quale

scrivere per avere le

credenziali di accesso

al sistema: xxx@xxx.xx

Cordiali saluti

considering the top three retrieved tickets. This results is particularly interesting because

the experimented data and models are completely in Italian, demonstrating the maturity

of this technology also for this language.

6.4.2 Related Work

From an industrial viewpoint, NLP is one of the hot topics of recent years, although

it still mostly unexplored. Many platforms are emerging in the wide area of chatbot

development, e.g., Wit.ai and Api.ai (proposed by Facebook and Google, respectively),

which enable intent classification and entity extraction and Maya.ai, which can be used

to developed rule-based chatbot systems. However, most of them are transparent to the

final user and do not integrate QA models.

Task description

The scope of the experiments for this research is the evaluation of state-of-the-art QA

models to automatize the operation of an help desk (HD) service.Typically, users interact

contact the HD provided by a company in case of problems. A HD service is structured as

a hierarchical organization of operators with different skill levels, which provide answers

to the user requests, e.g., HD involves operators of Level 1 and regards basic knowledge;

HD2 (Level 2) is managed by functional analysts with higher domain knowledge and so

on. When a request is sent to an HD operator, a ticket is generated and stored in a

trouble ticket system along with all the relevant information of that request: this includes

a description of the problem and the detected solution. Such ticket is then managed,

passed and eventually scaled by all the operators involved in the solution of the problem.

In order to search and provide the right answer to the customer, each HD operator may

use the following sources of information: tickets opened in the past; Frequently Asked

Questions (FAQ) and their solutions, stored in a shared repository; a forum, where

96 NLP Pipelines and demos

Table 6.5: Results of the reranker obtained by combining Sim features with TKs.

5-folds cv

Model MRR MAP P@1 P@2 P@3

IR baseline 70.85± 4.54 63.18± 3.37 57.67± 6.99 71.79± 3.98 77.86± 4.69

Sim 71.56± 4.16 63.90± 2.19 58.39± 8.04 72.44± 2.45 80.77± 3.31

TK 72.45± 2.19 67.09± 2.33 58.31± 3.42 75.34± 2.32 80.71± 3.36

TK + Sim 75.07 ± 1.67 68.51 ± 1.41 61.54 ± 1.86 77.87 ± 3.27 84.57 ± 2.57

HD operators share their knowledge; user manuals and other domain knowledge and

expertise of the operator itself. Our objective is studying the impact of advanced QA

systems for the automation of HD1, using FAQ and tickets data stored in the related

repositories.

Data description

Data was gathered from the RGI HD support system, where technical issues are tracked

and fixed. Basically, we have tickets organized in Question/Answer (Q/A) pairs, along

with fields related to specific information, such as ticket ID and the domain problem.

The original data size was around 40, 000 tickets but most of them do not provide useful

information. Thus, we designed a preprocessing phase both to clean and prepare a valid

data set: first, we designed a preprocessing phase both to clean and prepare a valid

data set: first, we detected and filtered out spurious Question-Answer airs, concerning

unanswered problems, using basic heuristics. Second, we extracted a subset of general-

knowledge problems by selecting only tickets belonging to HD1 with a resolution time

less than two days. In addition, our data was also reviewed by an expert team to filter

out invalid tickets. As a result, the preprocessing with a dataset of 656 Q/A pairs spread

over 10 question domains. Examples of our data are shown in Table 6.4.

6.4.3 Our QA System

Our system is constituted by (i) a search engine to retrieve questions (along with their

associated tickets) similar to the new input question and (ii) a reranker built with state-

of-the-art NLP and machine learning technology (see Chapter 3)

Question and Ticket Retrieval

We used a standard keyword-based Search Engine (SE) to retrieve a list of questions

from our dataset similar to the input one. The score produced by SE is the standard

cQA 97

cosine similarity between the vectors of the new and the candidate questions. In partic-

ular, we built our SE using Lucene TF-IDF based indexing, available in the open-source

ElasticSearch platform. In order to improve the retrieval quality, we merged user request

description (the question) and solution fields in a single joint text to build the ticket

index. It should be noted that we only used the question text to build the query for SE

as, in a real scenario, the asked question is not associated with an answer yet. For each

question, in the filtered data mentioned above, we created a list of Question original -

Question related pairs, by querying each ticket and collecting the first 10 relevant results.

The obtained clustered data set resulted in a list 〈qoriginal, qrelated〉 of 656 (tickets) ×10

(retrieved questions). These pairs were annotated by a team of experts with relevant vs.

irrelevant labels to create the training and test sets. For example, Table 6.4 shows a ques-

tion pair: a original ticket with question and answer on the left, and a similar retrieved

ticket on the right.

Reranking Pipeline

Given the initial rank provided by Se, we apply an advanced NLP pipeline to rerank the

questions such that those having the highest probability to be similar to the query are

ranked on top.

NLP pipeline. We used various NLP processors of TextPro Pianta et al. [2008] and em-

bedded them in a UIMA pipeline, to analyze each ticket question as well as the questions

of the tickets in the rank. The NLP components include part-of-speech tagging, chunking,

named entity recognition, constituency and dependency parsing, etc. The result of the

processing is used to produce syntactic representations of the ticket questions, which are

then enhanced by relational links, e.g., between matching words of two questions of a

pair.The resulting tree pairs are then sued to train a kernel-based reranker.

Kernel-based reranker. We train a kernel reranker function r : Q × Q → R, where

Q, which tells if questions are similar or not and can be used to sort a set of questions

qr with respect to an original one qo. The function was implemented similarly to model

presented in Chapter 3: we used (i) a kernel function applied to the syntactic structure

of the question pairs, together with (ii) some features capturing text similarity between

questions.

6.4.4 Experiments

To evaluate our approach, we performed experiments on a dataset composed of 6, 650

pairs of ticket questions annotated with similarity judgment, i.e. Relevant and Irrelevant.

We selected only questions having at least one answer in the first 10 retrieved tickets. We

98 NLP Pipelines and demos

performed 5-fold cross-validation and used SVM-Light-TK5 software to train 5 different

reranking models, which combine both feature vectors and Tree Kernels. Then, we apply

the models to all pairs of questions present in each test fold.

Results

We conducted there experiments to assess the effectiveness of the different feature sets,

similarity features (Sim), TK and TK+Sim in the reranking model. The baseline is com-

puted by means of the rank given by Lucene. Following previous work of the SemEval

challenge, we evaluated our ranking with Mean Average Precision (MAP), Mean Recip-

rocal Rank (MRR) and Precision at k (P@k). The results are reported in Tab 6.5. As

it can be seen, the best results are obtained by combining Sim and TK in the reranker,

which improved the MRR and MAP of the IR baseline by 4.33 and 5.33 absolute points,

respectively. In addition, P@1, P@2 and P@3 improved by 3.87, 6.07 and 6.71 absolute

points, respectively. This shows the effectiveness of using syntactic structures in powerful

algorithms such as TKs. We analyzed some selected errors of our system, focusing on the

cases where the search engine performs better than our reranking model. We note that

for each cluster of questionoriginal-questionrelated pairs, when the P@q is high, our model

does not perform better than the search engine, or performs even worse. However, our

reranking model always then to push relevant results on top.

6.4.5 Conclusions

In this section we have described our QA model for an Italian help desk in the field of

insurance policies. Our main findings are: (i) the Italian NLP technology seems enough

accurate to support advanced cQA technology based on syntactic structures; (ii) cQA

model can boost the retrieval systems targeting text in Italian; and (iii) the achieved

accuracy seems appropriate to create business at least in the field of help desk applications,

although it should be consider that our results refer to only questions having an answer

in our database.

5http://disi.unitn.it/moschitti/Tree-Kernel.htm

Italian QA pipeline 99

6.5 Italian QA pipeline

In this section we section we present our work on automatic feature engineering for an

Italian QA system Uva and Moschitti [2015]. Our system use syntactic representations

of questions and the answers pages derived by a syntactic parser. Then, apply Support

Vector Machines using tree kernels to such trees for automatically generating relation

syntactic patterns, which significantly improve on BM25 retrieval models.

6.5.1 Introduction

In section 3, we presented automatic feature engineering approach based on support vec-

tor machine using tree kernels for ranking answer passages. This approach consists of the

following steps; (i) the set of possible candidate answers for all the input questions are

retrieved by means of a search engine; (ii) each question is paired with all its candidate an-

swer passages: positive pairs contain the correct answers and all the others are considered

negative pairs; (iii) the pairs are present with two syntactic trees: one for the question

and the other for the candidate answer; and (iv) an SVM classifier is trained for ranking

the answer passages represented as trees. In this section, we present a similar system that

can rerank answer passages for factoid questions in Italian. This system is built on top of

the Unstructured Information Management Architecture (UIMA6) framework developed

by IBM7. UIMA eases the tasks of assembling NLP pipelines by grouping together many

text annotators to perform different types of analysis over multiple text documents. The

derived analytics are then used to encode questions and answers as linguistic structures

and train the reranking module for our QA pipeline.

6.5.2 Learning to rank relevant documents

QA system

The QA system has a simple architecture: it takes in input a question and retrieves a list

of candidates passages from the indexed dump of the Italian Wikipedia. Such list is then

reranked by its relevancy to the input question. The analysis of the question together

with its candidate answers (e.g. PoS tags, Chunking, Named Entity, and many others)

is performed by using the TextPro suite of NLP components for the Italian language.

TextPro Pianta et al. [2008] has been integrated as a stand-alone annotator in our UIMA

pipeline. The produced annotations are used to build the tree representations of both

questions and answers. The resulting question/answer tree pairs are used to train a

6https://uima.apache.org/
7https://uima.apache.org/

100 NLP Pipelines and demos

classifier able to rank candidate passages according to their relevancy with the input

question. The learned model is then used to improve the ordering of the answer passages

provided by the search engine.

Answer reranking

Our goal is to rank text passages containing the correct answer higher in the list than

irrelevant passages. For this purpose, we use the model we presented in Severyn et al.

[2013], which is based on preference ranking Joachims [2002],. This treats the reranking

problem as a binary classification task, where each problem instance is a pair, (p1 , p2), of

question/answer pairs, i.e., p1 = (q, a1) and p2 = (q, a2). Positive training instances are

pairs such that a1 is a relevant passage and a2 is an irrelevant passage otherwise (p1 , p2)

is considered a negative example. These pairs can be used to train a binary classifier and

build a reranking model. This is later used at classification time for reranking the q/a

pairs representing the test instances by simply using the classifier as a voter: a positive

classification is a vote for a1 whereas negative outcome is a vote for a2. The more an

answer receives votes the higher its rank will be.

Q/A pair representation

In our model, questions and answer passages are encoded as shallow syntactic trees we

introduced in Section 3. In each tree, the word lemmas constitute the terminal nodes

and the Part-of-Speech(PoS) tags associated with each word constitute the pre-terminal

nodes. Also, the words are organized in constituents by adding an additional layer of

chunk nodes. As the chunk of text spans several words, the chunk node is connected to

the PoS nodes of its words. The sentence node is located at the top level and it is linked

to the chunk nodes. A ROOT node is used to connect several sentence nodes. In addition,

we encoded the relationships between the question and answer trees by means of a special

tag REL: if two trees share the same terminal node (word lemma) then we mark both

the node parent and grandparent with the REL tag. Using the REL tag leads to more

accurate results Severyn and Moschitti [2012].

Experiments

For our experiments we used factoid questions from the open-domain corpus TREC. We

collected a subset of the questions from TREC 8, TREC 9, TREC 2000, TREC 2001 and

TREC 2002 for a total of 1228 questions. An expert annotator translated the questions

and answer gold keywords from English to Italian. The answers were searched in the

Italian Wikipedia, thus we train our reranker on such data. Specifically, we split the

Italian QA pipeline 101

Wikipedia corpus in paragraphs and considered each of them as a separate document to

be indexed by an off-the-shelf search engine. After performing some text cleaning, we were

able to collect a total of 10 million documents. We used Lucene with the BM25 scoring

function for indexing and retrieval. We trained our rerankers with the first 10 candidate

answers retrieved by the search engine for each question of the train set. At test time, we

retrieved a list of top 40 candidates for each test question and reranked them.

Metrics

In order to evaluate our systems we used the metrics most frequently used in QA: Precision

at rank 1 (P@1) corresponds to the percentage of relevant documents ranked at position 1,

Mean Reciprocal rank (MRR) and Mean Average Precision (MAP). The reported metrics

are computed by conducting a 3-folds cross validation.

Results

Table 6.6 table reports the performance of the reranking models trained using different

strategies:

1. the baseline model using the BM25 score of the search engine;

2. the reranker model trained only using feature vectors containing text similarity mea-

sures Bär et al. [2012];

Models MAP MRR P@1

BM25 0.18 23.11 15.22

Feature vectors 0.21 26.85 18.23

Tree + Feature vectors 0.25 30.74 22.29

Table 6.6: The accuracy of the different ranking models

As it can be seen from the results reported in Tab 6.6, the reranking model using structural

representations yields an improvement of about 3 absolute points in MAP, MRR and P@1

when compared with the vector model and about 7 absolute points when compared with

the baseline model. It is interesting to note that we did not operate any adjustment of

the tree kernel model, we simply build an Italian pipeline and trained our models.

102 NLP Pipelines and demos

6.5.3 Conclusions

In this section we showed an approach to QA requiring no manual feature engineering.

Its main characteristic is the use of tree kernels for exploiting syntactic representations of

question and answer passage pairs.

Chapter 7

Conclusion and Future Works

The rise of personal assistants and Conversational Agents – both task-based and open-

domain – require the development of NLU components able to correctly interpret the

intent triggered by questions expressed by user in natural language. Powerful algorithms

such as (i) tree kernels and (ii) neural networks are useful for building effective systems for

automatic community QA. The former work on syntactic and structures, while the latter

are able to learn distributional representations currying out contextual word information.

Inspired by these research lines and ideas we develop accurate models for solving the

tasks involved in community QA. In Chapter 2 we introduce the two machine learning

algorithms that at the base of many works referred in this thesis: Kernel-based Support

Vector Machines and Neural Networks.

In Chapter 3 we demonstrate how to use structural kernels for relational text inference

problems involved in building automatic systems for community Question Answering.

Results proved that kernels were able to deliver state-of-the-art performances on Question-

Answer similarity and Question-Question similarity tasks.

Chapter 4 presents our models based on the deep-learning architecture for community

QA. First, we present a new end-to-end Neural Network model that can be jointly trained

to solve all the three tasks together. It does not require task-specific processing pipelines

and, in addition, its parameters are shared among the models used for solving the different

tasks. Secondly, we present a model aimed at injecting syntactic knowledge into neural

networks, while maintaining its architecture very simple. More specifically, we showed that

training a network on data annotated by a Tree Kernel-based SVM classifier improve the

performance on the question-question similarity task. Although this approach deserves

further study, preliminary experiments showed that approaches aiming at transferring

syntactic knowledge to NNs may be very beneficial for solving the final task.

Chapter 5 introduces the most original contribution of our thesis: supervised clustering

of forum questions and FAQs into intents for fast bootstrapping of NLU pipelines. This

104 Conclusion and Future Works

work combines two research lines, i.e. structured output and relational text inference,

in order to build models able to carry out to infer the most likely structure representing

clusters of questions where relations are described by similarity features between pairs.

We showed that the result of this work may help dialog system engineers in their task of

rapidly prototyping intent ontologies.

In Chapter 6 we listed our NLP systems and demos. First, we present our work on

building multi-lingual UIMA-based NLP pipeline for processing text in any language.

Then, we describe our effort for filling the accuracy gap of constituency parsing models

between Italian an English. Finally, we present two QA models that make use of structural

representation for reranking candidate answers to new user questions. The first pipeline

was used for answering factoid questions in Italian language by using Wikipedia as corpus

from which we retrieve candidate answer passages. The the second pipeline has been

employed by a company to automate the work of a help desk service. It uses the cQA

paradigm for answering a user question: (i) search for similar questions among those

already asked by previous users and (ii) return the answers for the related questions.

Answers are searched among tickets stored in the ticketing system used by the Help

Desks services.

Bibliography

Agerri, Rodrigo; Bermudez, Josu, and Rigau, German. Ixa pipeline: Efficient and ready to use multilin-

gual nlp tools. In Proceedings of the Ninth International Conference on Language Resources and Evaluation

(LREC-2014). European Language Resources Association (ELRA), 2014. URL http://www.lrec-conf.org/

proceedings/lrec2014/pdf/775_Paper.pdf.

Agirre, Eneko; Cer, Daniel; Diab, Mona, and Gonzalez-Agirre, Aitor. Semeval-2012 task 6: A pilot on semantic

textual similarity. In *SEM 2012: The First Joint Conference on Lexical and Computational Semantics –

Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth In-

ternational Workshop on Semantic Evaluation (SemEval 2012), pages 385–393. Association for Computational

Linguistics, 2012. URL http://www.aclweb.org/anthology/S12-1051.

Agirre, Eneko; Cer, Daniel; Diab, Mona; Gonzalez-Agirre, Aitor, and Guo, Weiwei. *sem 2013 shared task:

Semantic textual similarity. In Second Joint Conference on Lexical and Computational Semantics (*SEM),

Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic Textual Similarity, pages 32–

43. Association for Computational Linguistics, 2013. URL http://www.aclweb.org/anthology/S13-1004.

Agirre, Eneko; Banea, Carmen; Cardie, Claire; Cer, Daniel; Diab, Mona; Gonzalez-Agirre, Aitor; Guo, Weiwei;

Mihalcea, Rada; Rigau, German, and Wiebe, Janyce. Semeval-2014 task 10: Multilingual semantic textual

similarity. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages

81–91. Association for Computational Linguistics, 2014. doi: 10.3115/v1/S14-2010. URL http://www.aclweb.

org/anthology/S14-2010.

Allison, Lloyd and Dix, Trevor. A bit-string longest-common-subsequence algorithm. Information Processing

Letters, 23(6):305–310, December 1986. ISSN 0020-0190.

Bär, Daniel; Biemann, Chris; Gurevych, Iryna, and Zesch, Torsten. Ukp: Computing semantic textual similarity

by combining multiple content similarity measures. In Proceedings of the First Joint Conference on Lexical

and Computational Semantics-Volume 1: Proceedings of the main conference and the shared task, and Volume

2: Proceedings of the Sixth International Workshop on Semantic Evaluation, pages 435–440. Association for

Computational Linguistics, 2012.

Barlacchi, Gianni; Nicosia, Massimo, and Moschitti, Alessandro. Learning to rank answer candidates for auto-

matic resolution of crossword puzzles. In Proceedings of the Eighteenth Conference on Computational Natural

Language Learning, pages 39–48. Association for Computational Linguistics, 2014. doi: 10.3115/v1/W14-1605.

URL http://aclweb.org/anthology/W14-1605.

Barrón-Cedeño, Alberto; Filice, Simone; Da San Martino, Giovanni; Joty, Shafiq; Màrquez, Llúıs; Nakov,

Preslav, and Moschitti, Alessandro. Thread-level information for comment classification in community ques-

tion answering. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguis-

http://www.lrec-conf.org/proceedings/lrec2014/pdf/775_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/775_Paper.pdf
http://www.aclweb.org/anthology/S12-1051
http://www.aclweb.org/anthology/S13-1004
http://www.aclweb.org/anthology/S14-2010
http://www.aclweb.org/anthology/S14-2010
http://aclweb.org/anthology/W14-1605

106 Bibliography

tics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Pa-

pers), pages 687–693. Association for Computational Linguistics, 2015. doi: 10.3115/v1/P15-2113. URL

http://aclweb.org/anthology/P15-2113.

Barrón-Cedeño, Alberto; Da San Martino, Giovanni; Joty, Shafiq; Moschitti, Alessandro; Al-Obaidli, Fahad;

Romeo, Salvatore; Tymoshenko, Kateryna, and Uva, Antonio. Convkn at semeval-2016 task 3: Answer and

question selection for question answering on arabic and english fora. In Proceedings of the 10th International

Workshop on Semantic Evaluation (SemEval-2016), pages 896–903. Association for Computational Linguistics,

2016. doi: 10.18653/v1/S16-1138. URL http://aclweb.org/anthology/S16-1138.

Bengio, Yoshua; Simard, Patrice, and Frasconi, Paolo. Learning long-term dependencies with gradient descent is

difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

Bennett, Kristin P and Mangasarian, Olvi L. Robust linear programming discrimination of two linearly inseparable

sets. Optimization methods and software, 1(1):23–34, 1992.

Bian, Weijie; Li, Si; Yang, Zhao; Chen, Guang, and Lin, Zhiqing. A compare-aggregate model with dynamic-clip

attention for answer selection. In Proceedings of the 2017 ACM on Conference on Information and Knowledge

Management, CIKM ’17, pages 1987–1990, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4918-5. doi:

10.1145/3132847.3133089. URL http://doi.acm.org/10.1145/3132847.3133089.

Biggio, Silvana Marianela Bernaola; Giuliano, Claudio; Poesio, Massimo; Versley, Yannick; Uryupina, Olga, and

Zanoli, Roberto. Local entity detection and recognition task. Proc. of Evalita, 9, 2009.

Bosch, Antal van den; Busser, Bertjan; Canisius, Sander, and Daelemans, Walter. An efficient memory-based

morphosyntactic tagger and parser for dutch. LOT Occasional Series, 7:191–206, 2007.

Bosco, Cristina and Mazzei, Alessandro. The evalita 2011 parsing task: the constituency track. Working Notes

of EVALITA, 2011.

Bosco, Cristina; Mazzei, Alessandro, and Lombardo, Vincenzo. Evalita parsing task: an analysis of the first

parsing system contest for italian. Intelligenza artificiale, 12:30–33, 2007.

Bosco, Cristina; Mazzei, Alessandro, and Lombardo, Vincenzo. Evalita’09 parsing task: constituency parsers

and the penn format for italian. Proceedings of EVALITA, 9:1794–1801, 2009.

Bosco, Cristina; Mazzei, Alessandro, and Lavelli, Alberto. Looking back to the evalita constituency parsing task:

2007-2011. In Evaluation of Natural Language and Speech Tools for Italian, pages 46–57. Springer, 2013.

Bottou, Léon. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT’2010,

pages 177–186. Springer, 2010.

Breck, Eric; Choi, Yejin, and Cardie, Claire. Identifying expressions of opinion in context. In Proceedings of the

20th International Joint Conference on Artifical Intelligence, IJCAI’07, pages 2683–2688, San Francisco, CA,

USA, 2007. Morgan Kaufmann Publishers Inc. URL http://dl.acm.org/citation.cfm?id=1625275.1625707.

Broscheit, Samuel; Poesio, Massimo; Ponzetto, Simone Paolo; Rodriguez, Kepa Joseba; Romano, Lorenza;

Uryupina, Olga; Versley, Yannick, and Zanoli, Roberto. Bart: A multilingual anaphora resolution system. In

Proceedings of the 5th International Workshop on Semantic Evaluation, SemEval ’10, pages 104–107, Strouds-

burg, PA, USA, 2010. Association for Computational Linguistics. URL http://dl.acm.org/citation.cfm?

id=1859664.1859685.

http://aclweb.org/anthology/P15-2113
http://aclweb.org/anthology/S16-1138
http://doi.acm.org/10.1145/3132847.3133089
http://dl.acm.org/citation.cfm?id=1625275.1625707
http://dl.acm.org/citation.cfm?id=1859664.1859685
http://dl.acm.org/citation.cfm?id=1859664.1859685

Bibliography 107

Cai, Jie and Strube, Michael. Evaluation metrics for end-to-end coreference resolution systems. In Proceedings

of the 11th Annual Meeting of the Special Interest Group on Discourse and Dialogue, SIGDIAL ’10, pages 28–

36, Stroudsburg, PA, USA, 2010. Association for Computational Linguistics. ISBN 978-1-932432-85-5. URL

http://dl.acm.org/citation.cfm?id=1944506.1944511.

Caputo, Annalina; de Gemmis, Marco; Lops, Pasquale; Lovecchio, Francesco; Manzari, Vito, and Spa, Acquedotto

Pugliese AQP. Overview of the evalita 2016 question answering for frequently asked questions (qa4faq) task.

In CLiC-it/EVALITA, 2016.

Caruana, Rich. Multitask learning. Machine learning, 28(1):41–75, 1997.

Cer, Daniel; Diab, Mona; Agirre, Eneko; Lopez-Gazpio, Inigo, and Specia, Lucia. Semeval-2017 task 1: Semantic

textual similarity multilingual and crosslingual focused evaluation. In Proceedings of the 11th International

Workshop on Semantic Evaluation (SemEval-2017), pages 1–14. Association for Computational Linguistics,

2017. doi: 10.18653/v1/S17-2001. URL http://www.aclweb.org/anthology/S17-2001.

Charniak, Eugene. A maximum-entropy-inspired parser. In Proceedings of the 1st North American chapter

of the Association for Computational Linguistics conference, pages 132–139. Association for Computational

Linguistics, 2000.

Charniak, Eugene and Johnson, Mark. Coarse-to-fine n-best parsing and maxent discriminative reranking. In Pro-

ceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pages 173–180. Association

for Computational Linguistics, 2005.

Chen, Ruey-Cheng; Yulianti, Evi; Sanderson, Mark, and Croft, W. Bruce. On the benefit of incorporating

external features in a neural architecture for answer sentence selection. In Proceedings of the 40th International

ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’17, pages 1017–

1020, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5022-8. doi: 10.1145/3077136.3080705. URL

http://doi.acm.org/10.1145/3077136.3080705.

Cho, Kyunghyun; Van Merriënboer, Bart; Gulcehre, Caglar; Bahdanau, Dzmitry; Bougares, Fethi; Schwenk,

Holger, and Bengio, Yoshua. Learning phrase representations using rnn encoder-decoder for statistical machine

translation. arXiv preprint arXiv:1406.1078, 2014.

Cohen, Daniel and Croft, W. Bruce. End to end long short term memory networks for non-factoid question

answering. In Proceedings of the 2016 ACM International Conference on the Theory of Information Retrieval,

ICTIR ’16, pages 143–146, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4497-5. doi: 10.1145/2970398.

2970438. URL http://doi.acm.org/10.1145/2970398.2970438.

Collins, Michael and Duffy, Nigel. New ranking algorithms for parsing and tagging: Kernels over discrete struc-

tures, and the voted perceptron. In Proceedings of the 40th annual meeting on association for computational

linguistics, pages 263–270. Association for Computational Linguistics, 2002.

Collins, Michael and Koo, Terry. Discriminative reranking for natural language parsing. Computational Linguis-

tics, 31(1):25–70, 2005.

Collobert, Ronan; Weston, Jason; Bottou, Léon; Karlen, Michael; Kavukcuoglu, Koray, and Kuksa, Pavel. Natural

language processing (almost) from scratch. J. Mach. Learn. Res., 12:2493–2537, November 2011a. ISSN 1532-

4435. URL http://dl.acm.org/citation.cfm?id=1953048.2078186.

Collobert, Ronan; Weston, Jason; Bottou, Léon; Karlen, Michael; Kavukcuoglu, Koray, and Kuksa, Pavel. Natural

language processing (almost) from scratch. The Journal of Machine Learning Research, 12:2493–2537, 2011b.

http://dl.acm.org/citation.cfm?id=1944506.1944511
http://www.aclweb.org/anthology/S17-2001
http://doi.acm.org/10.1145/3077136.3080705
http://doi.acm.org/10.1145/2970398.2970438
http://dl.acm.org/citation.cfm?id=1953048.2078186

108 Bibliography

Cortes, Corinna and Vapnik, Vladimir. Support-vector networks. Machine learning, 20(3):273–297, 1995.

Coucke, Alice; Ball, Adrien; Delpuech, Clement; Doumouro, Clement; Raybaud, Sylvain; Gissel-

brecht, Thibault, and Dureau, Joseph. Benchmarking natural language understanding systems:

Google, Facebook, Microsoft, Amazon, and Snips, 2017. URL https://medium.com/snips-ai/

benchmarking-natural-language-understanding-systems-google-facebook-microsoft-and-snips-2b8ddcf9fb19.

Croce, Danilo; Filice, Simone; Castellucci, Giuseppe, and Basili, Roberto. Deep learning in semantic kernel spaces.

In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), volume 1, pages 345–354, 2017.

Cunningham, Hamish; Maynard, Diana, and Bontcheva, Kalina. Text processing with gate. Gateway Press CA,

2011.

Da San Martino, Giovanni; Barrón Cedeño, Alberto; Romeo, Salvatore; Uva, Antonio, and Moschitti, Alessandro.

Learning to re-rank questions in community question answering using advanced features. In Proceedings of the

25th ACM International on Conference on Information and Knowledge Management, pages 1997–2000. ACM,

2016.

Das, Arpita; Yenala, Harish; Chinnakotla, Manoj, and Shrivastava, Manish. Together we stand: Siamese networks

for similar question retrieval. In Proceedings of the 54th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 378–387. Association for Computational Linguistics, 2016. doi:

10.18653/v1/P16-1036. URL http://aclweb.org/anthology/P16-1036.

De Rooij, Ork; Vishneuski, Andrei; De Rijke, Maarten, and others, . xtas: Text analysis in a timely manner. In

Dir, volume 2012, page 12th. Citeseer, 2012.

Duchi, John; Hazan, Elad, and Singer, Yoram. Adaptive subgradient methods for online learning and stochastic

optimization. J. Mach. Learn. Res., 12:2121–2159, July 2011. ISSN 1532-4435. URL http://dl.acm.org/

citation.cfm?id=1953048.2021068.

Eckart de Castilho, Richard and Gurevych, Iryna. A broad-coverage collection of portable nlp components for

building shareable analysis pipelines. In Proceedings of the Workshop on Open Infrastructures and Analysis

Frameworks for HLT, pages 1–11, Dublin, Ireland, August 2014. Association for Computational Linguistics

and Dublin City University. URL http://www.aclweb.org/anthology/W14-5201.

Fernandes, Eraldo Rezende; dos Santos, Ćıcero Nogueira, and Milidiú, Ruy Luiz. Latent trees for coreference

resolution. Computational Linguistics, 40(4):801–835, 2014.

Ferrucci, David and Lally, Adam. Uima: an architectural approach to unstructured information processing in the

corporate research environment. Natural Language Engineering, 10(3-4):327–348, 2004.

Ferrucci, David; Brown, Eric; Chu-Carroll, Jennifer; Fan, James; Gondek, David; Kalyanpur, Aditya A; Lally,

Adam; Murdock, J William; Nyberg, Eric; Prager, John, and others, . Building watson: An overview of the

deepqa project. AI magazine, 31(3):59–79, 2010.

Filice, Simone; Croce, Danilo; Moschitti, Alessandro, and Basili, Roberto. Kelp at semeval-2016 task 3: Learning

semantic relations between questions and answers. In Proceedings of the 10th International Workshop on

Semantic Evaluation (SemEval-2016), pages 1116–1123. Association for Computational Linguistics, 2016a.

doi: 10.18653/v1/S16-1172. URL http://aclweb.org/anthology/S16-1172.

https://medium.com/snips-ai/benchmarking-natural-language-understanding-systems-google-facebook-microsoft-and-snips-2b8ddcf9fb19
https://medium.com/snips-ai/benchmarking-natural-language-understanding-systems-google-facebook-microsoft-and-snips-2b8ddcf9fb19
http://aclweb.org/anthology/P16-1036
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://www.aclweb.org/anthology/W14-5201
http://aclweb.org/anthology/S16-1172

Bibliography 109

Filice, Simone; Croce, Danilo; Moschitti, Alessandro, and Basili, Roberto. KeLP at SemEval-2016 Task 3:

Learning semantic relations between questions and answers. In Proc. of the 10th Intl. Workshop on Semantic

Evaluation, SemEval ’16, San Diego, California, USA, 2016b.

Filice, Simone; Martino, Giovanni Da San, and Moschitti, Alessandro. KeLP at SemEval-2017 task 3: Learning

pairwise patterns in community question answering. In Proceedings of the 11th International Workshop on

Semantic Evaluation, SemEval ’17, pages 327–334, Vancouver, Canada, 2017.

Finley, Thomas and Joachims, Thorsten. Supervised clustering with support vector machines. In ICML ’05:

Proceedings of the 22nd international conference on Machine learning, pages 217–224, New York, NY, USA,

2005. ACM. ISBN 1-59593-180-5. doi: 10.1145/1102351.1102379. URL http://portal.acm.org/citation.

cfm?id=1102351.1102379.

Franco-Salvador, Marc; Kar, Sudipta; Solorio, Thamar, and Rosso, Paolo. Uh-prhlt at semeval-2016 task 3:

Combining lexical and semantic-based features for community question answering. In Proceedings of the 10th

International Workshop on Semantic Evaluation (SemEval-2016), pages 814–821. Association for Computa-

tional Linguistics, 2016. doi: 10.18653/v1/S16-1126. URL http://aclweb.org/anthology/S16-1126.

Ghosh, Debanjan and Muresan, Smaranda. Relation classification using entity sequence kernels. In Proceedings

of COLING 2012: Posters, pages 391–400. The COLING 2012 Organizing Committee, 2012. URL http:

//aclweb.org/anthology/C12-2039.

Giuliano, Claudio; Lavelli, Alberto, and Romano, Lorenza. Relation extraction and the influence of automatic

named-entity recognition. ACM Trans. Speech Lang. Process., 5(1):2:1–2:26, December 2007. ISSN 1550-4875.

doi: 10.1145/1322391.1322393. URL http://doi.acm.org/10.1145/1322391.1322393.

Goldberg, Yoav. A primer on neural network models for natural language processing. CoRR, abs/1510.00726,

2015.

Goodfellow, Ian J; Mirza, Mehdi; Xiao, Da; Courville, Aaron, and Bengio, Yoshua. An empirical investigation of

catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211, 2013.

Graves, Alex; Fernández, Santiago, and Schmidhuber, Jürgen. Bidirectional lstm networks for improved phoneme

classification and recognition. In International Conference on Artificial Neural Networks, pages 799–804.

Springer, 2005.

Graves, Alex; Jaitly, Navdeep, and Mohamed, Abdel-rahman. Hybrid speech recognition with deep bidirectional

lstm. In Automatic Speech Recognition and Understanding (ASRU), 2013 IEEE Workshop on, pages 273–278.

IEEE, 2013.

Haponchyk, Iryna; Uva, Antonio; Yu, Seunghak; Uryupina, Olga, and Moschitti, Alessandro. Supervised clustering

of questions into intents for dialog system applications. In Proceedings of the 2018 Conference on Empirical

Methods in Natural Language Processing, pages 2310–2321. Association for Computational Linguistics, 2018.

URL http://aclweb.org/anthology/D18-1254.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long Short-Term Memory. Neural computation, 9(8):1735–1780,

1997. URL https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735.

Hu, Zhiting; Ma, Xuezhe; Liu, Zhengzhong; Hovy, Eduard, and Xing, Eric. Harnessing deep neural networks

with logic rules. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 2410–2420. Association for Computational Linguistics, 2016. doi: 10.18653/

v1/P16-1228. URL http://www.aclweb.org/anthology/P16-1228.

http://portal.acm.org/citation.cfm?id=1102351.1102379
http://portal.acm.org/citation.cfm?id=1102351.1102379
http://aclweb.org/anthology/S16-1126
http://aclweb.org/anthology/C12-2039
http://aclweb.org/anthology/C12-2039
http://doi.acm.org/10.1145/1322391.1322393
http://aclweb.org/anthology/D18-1254
https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735
http://www.aclweb.org/anthology/P16-1228

110 Bibliography

Jaccard, Paul. Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin del

la Société Vaudoise des Sciences Naturelles, 1901.

Joachims, Thorsten. Optimizing search engines using clickthrough data. In Proceedings of the eighth ACM

SIGKDD international conference on Knowledge discovery and data mining, pages 133–142. ACM, 2002.

Johansson, Richard and Moschitti, Alessandro. Extracting opinion expressions and their polarities – exploration

of pipelines and joint models. In Proceedings of the 49th Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies, pages 101–106. Association for Computational Linguistics, 2011.

URL http://aclweb.org/anthology/P11-2018.

Johansson, Richard and Nugues, Pierre. Dependency-based semantic role labeling of propbank. In Proceedings

of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 69–78. Association for

Computational Linguistics, 2008. URL http://aclweb.org/anthology/D08-1008.

Kalchbrenner, Nal; Grefenstette, Edward, and Blunsom, Phil. A convolutional neural network for modelling

sentences. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), pages 655–665. Association for Computational Linguistics, 2014. doi: 10.3115/v1/P14-1062.

URL http://aclweb.org/anthology/P14-1062.

Karpathy, Andrej; Toderici, George; Shetty, Sanketh; Leung, Thomas; Sukthankar, Rahul, and Fei-Fei, Li. Large-

scale video classification with convolutional neural networks. In Proceedings of the IEEE conference on Com-

puter Vision and Pattern Recognition, pages 1725–1732, 2014.

Kim, Yoon. Convolutional neural networks for sentence classification. In Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing (EMNLP), pages 1746–1751. Association for Computational

Linguistics, 2014. doi: 10.3115/v1/D14-1181. URL http://aclweb.org/anthology/D14-1181.

Kimeldorf, George S and Wahba, Grace. A correspondence between bayesian estimation on stochastic processes

and smoothing by splines. The Annals of Mathematical Statistics, 41(2):495–502, 1970.

Kingma, Diederik P and Ba, Jimmy Lei. Adam: Amethod for stochastic optimization. In Proc. 3rd Int. Conf.

Learn. Representations, 2014.

Krizhevsky, Alex; Sutskever, Ilya, and Hinton, Geoffrey E. Imagenet classification with deep convolutional neural

networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems -

Volume 1, NIPS’12, pages 1097–1105, USA, 2012. Curran Associates Inc. URL http://dl.acm.org/citation.

cfm?id=2999134.2999257.

Lavelli, Alberto. The berkeley parser at the evalita 2011 constituency parsing task. In Working Notes of EVALITA,

2011.

Lavelli, Alberto and Corazza, Anna. The berkeley parser at the evalita 2009 constituency parsing task. In

EVALITA 2009 Workshop on Evaluation of NLP Tools for Italian, 2009.

Lawrence, Steve; Giles, C Lee; Tsoi, Ah Chung, and Back, Andrew D. Face recognition: A convolutional neural-

network approach. IEEE transactions on neural networks, 8(1):98–113, 1997.

LeCun, Yann; Bottou, Léon; Bengio, Yoshua, and Haffner, Patrick. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

http://aclweb.org/anthology/P11-2018
http://aclweb.org/anthology/D08-1008
http://aclweb.org/anthology/P14-1062
http://aclweb.org/anthology/D14-1181
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://dl.acm.org/citation.cfm?id=2999134.2999257

Bibliography 111

Li, Jiwei; Luong, Thang; Jurafsky, Dan, and Hovy, Eduard. When are tree structures necessary for deep learning of

representations? In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,

pages 2304–2314. Association for Computational Linguistics, 2015. doi: 10.18653/v1/D15-1278. URL http:

//aclweb.org/anthology/D15-1278.

Linzen, Tal; Dupoux, Emmanuel, and Goldberg, Yoav. Assessing the ability of lstms to learn syntax-sensitive

dependencies. Transactions of the Association for Computational Linguistics, 4:521–535, 2016. URL http:

//aclweb.org/anthology/Q16-1037.

Liu, Xiaodong; Gao, Jianfeng; He, Xiaodong; Deng, Li; Duh, Kevin, and Wang, Ye-Yi. Representation learning

using multi-task deep neural networks for seman tic classification and information retrieval. In Proc. NAACL,

2015.

Lodhi, Huma; Saunders, Craig; Shawe-Taylor, John; Cristianini, Nello, and Watkins, Chris. Text classification

using string kernels. Journal of Machine Learning Research, 2(Feb):419–444, 2002.

Luo, Xiaoqiang. On coreference resolution performance metrics. In Proceedings of the Conference on Hu-

man Language Technology and Empirical Methods in Natural Language Processing, HLT ’05, pages 25–32,

Stroudsburg, PA, USA, 2005. Association for Computational Linguistics. doi: 10.3115/1220575.1220579. URL

http://dx.doi.org/10.3115/1220575.1220579.

Lyon, Caroline; Malcolm, James, and Dickerson, Bob. Detecting short passages of similar text in large document

collections. In Proceedings of the 2001 Conference on Empirical Methods in Natural Language Processing,

EMNLP, pages 118–125, Pittsburgh, PA, USA, 2001.

Manning, Christopher; Surdeanu, Mihai; Bauer, John; Finkel, Jenny; Bethard, Steven, and McClosky, David.

The stanford corenlp natural language processing toolkit. In Proceedings of 52nd Annual Meeting of the As-

sociation for Computational Linguistics: System Demonstrations, pages 55–60. Association for Computational

Linguistics, 2014. doi: 10.3115/v1/P14-5010. URL http://aclweb.org/anthology/P14-5010.

Marcus, Mitchell P; Marcinkiewicz, Mary Ann, and Santorini, Beatrice. Building a large annotated corpus of

english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

Martino, Giovanni Da San; Barrón-Cedeño, Alberto; Romeo, Salvatore; Moschitti, Alessandro; Joty, Shafiq;

Obaidli, Fahad A Al; Tymoshenko, Kateryna, and Uva, Antonio. Addressing community question answering

in english and arabic. arXiv preprint arXiv:1610.05522, 2016.

McClosky, David; Charniak, Eugene, and Johnson, Mark. Effective self-training for parsing. In Proceedings of the

main conference on human language technology conference of the North American Chapter of the Association

of Computational Linguistics, pages 152–159. Association for Computational Linguistics, 2006.

Meij, Edgar; Weerkamp, Wouter, and De Rijke, Maarten. Adding semantics to microblog posts. In Proceedings

of the fifth ACM international conference on Web search and data mining, pages 563–572. ACM, 2012.

Mihaylova, Tsvetomila; Gencheva, Pepa; Boyanov, Martin; Yovcheva, Ivana; Mihaylov, Todor; Hardalov,

Momchil; Kiprov, Yasen; Balchev, Daniel; Koychev, Ivan; Nakov, Preslav; Nikolova, Ivelina, and An-

gelova, Galia. Super team at semeval-2016 task 3: Building a feature-rich system for community ques-

tion answering. In Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-

2016), pages 836–843. Association for Computational Linguistics, 2016. doi: 10.18653/v1/S16-1129. URL

http://aclweb.org/anthology/S16-1129.

http://aclweb.org/anthology/D15-1278
http://aclweb.org/anthology/D15-1278
http://aclweb.org/anthology/Q16-1037
http://aclweb.org/anthology/Q16-1037
http://dx.doi.org/10.3115/1220575.1220579
http://aclweb.org/anthology/P14-5010
http://aclweb.org/anthology/S16-1129

112 Bibliography

Mikolov, Tomas; Yih, Wen-tau, and Zweig, Geoffrey. Linguistic Regularities in Continuous Space Word Rep-

resentations. In Proceedings of the 2013 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, NAACL-HLT ’13, pages 746–751, Atlanta, GA,

USA, 2013.

Moschitti, Alessandro. Efficient convolution kernels for dependency and constituent syntactic trees. In European

Conference on Machine Learning, pages 318–329. Springer, 2006.

Moschitti, Alessandro and Zanzotto, Fabio Massimo. Fast and effective kernels for relational learning from

texts. In Proceedings of the 24th International Conference on Machine Learning, ICML ’07, pages 649–656,

New York, NY, USA, 2007. ACM. ISBN 978-1-59593-793-3. doi: 10.1145/1273496.1273578. URL http:

//doi.acm.org/10.1145/1273496.1273578.

Mueller, Jonas and Thyagarajan, Aditya. Siamese recurrent architectures for learning sentence similarity. In

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, pages 2786–2792. AAAI

Press, 2016. URL http://dl.acm.org/citation.cfm?id=3016100.3016291.

Nair, Vinod and Hinton, Geoffrey E. Rectified linear units improve restricted boltzmann machines. In Proceedings

of the 27th international conference on machine learning (ICML-10), pages 807–814, 2010.

Nakov, Preslav; Màrquez, Llúıs; Moschitti, Alessandro; Magdy, Walid; Mubarak, Hamdy; Freihat, abed Alhakim;

Glass, Jim, and Randeree, Bilal. Semeval-2016 task 3: Community question answering. In Proceedings of the

10th International Workshop on Semantic Evaluation (SemEval-2016), pages 525–545. Association for Com-

putational Linguistics, 2016a. doi: 10.18653/v1/S16-1083. URL http://aclweb.org/anthology/S16-1083.

Nakov, Preslav; Màrquez, Llúıs; Moschitti, Alessandro; Magdy, Walid; Mubarak, Hamdy; Freihat, abed Alhakim;

Glass, Jim, and Randeree, Bilal. Semeval-2016 task 3: Community question answering. In Proceedings of the

10th International Workshop on Semantic Evaluation (SemEval-2016), pages 525–545. Association for Com-

putational Linguistics, 2016b. doi: 10.18653/v1/S16-1083. URL http://aclweb.org/anthology/S16-1083.

Nakov, Preslav; Hoogeveen, Doris; Màrquez, Llúıs; Moschitti, Alessandro; Mubarak, Hamdy; Baldwin, Timothy,

and Verspoor, Karin. Semeval-2017 task 3: Community question answering. In Proceedings of the 11th In-

ternational Workshop on Semantic Evaluation (SemEval-2017), pages 27–48. Association for Computational

Linguistics, 2017. doi: 10.18653/v1/S17-2003. URL http://aclweb.org/anthology/S17-2003.

Ng, Andrew Y.; Jordan, Michael I., and Weiss, Yair. On spectral clustering: Analysis and an algorithm. In

Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Syn-

thetic, NIPS’01, pages 849–856, Cambridge, MA, USA, 2001. MIT Press. URL http://dl.acm.org/citation.

cfm?id=2980539.2980649.

Nguyen, Thien Huu; Plank, Barbara, and Grishman, Ralph. Semantic representations for domain adaptation: A

case study on the tree kernel-based method for relation extraction. In Proceedings of the 53rd Annual Meeting of

the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language

Processing (Volume 1: Long Papers), pages 635–644. Association for Computational Linguistics, 2015. doi:

10.3115/v1/P15-1062. URL http://aclweb.org/anthology/P15-1062.

Nicosia, Massimo; Filice, Simone; Barrón-Cedeño, Alberto; Saleh, Iman; Mubarak, Hamdy; Gao, Wei; Nakov,

Preslav; Da San Martino, Giovanni; Moschitti, Alessandro; Darwish, Kareem; Màrquez, Llúıs; Joty, Shafiq,

and Magdy, Walid. Qcri: Answer selection for community question answering - experiments for arabic and

english. In Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages

203–209. Association for Computational Linguistics, 2015. doi: 10.18653/v1/S15-2036. URL http://aclweb.

org/anthology/S15-2036.

http://doi.acm.org/10.1145/1273496.1273578
http://doi.acm.org/10.1145/1273496.1273578
http://dl.acm.org/citation.cfm?id=3016100.3016291
http://aclweb.org/anthology/S16-1083
http://aclweb.org/anthology/S16-1083
http://aclweb.org/anthology/S17-2003
http://dl.acm.org/citation.cfm?id=2980539.2980649
http://dl.acm.org/citation.cfm?id=2980539.2980649
http://aclweb.org/anthology/P15-1062
http://aclweb.org/anthology/S15-2036
http://aclweb.org/anthology/S15-2036

Bibliography 113

Padró, Llúıs and Stanilovsky, Evgeny. Freeling 3.0: Towards wider multilinguality. In LREC2012, 2012.

Parikh, Ankur; Täckström, Oscar; Das, Dipanjan, and Uszkoreit, Jakob. A decomposable attention model for

natural language inference. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language

Processing, pages 2249–2255. Association for Computational Linguistics, 2016. doi: 10.18653/v1/D16-1244.

URL http://aclweb.org/anthology/D16-1244.

Pascanu, Razvan; Mikolov, Tomas, and Bengio, Yoshua. On the difficulty of training recurrent neural networks.

In International Conference on Machine Learning, pages 1310–1318, 2013.

Petrov, Slav and Klein, Dan. Improved inference for unlexicalized parsing. In HLT-NAACL, volume 7, pages

404–411, 2007.

Pianta, Emanuele; Girardi, Christian, and Zanoli, Roberto. The textpro tool suite. In LREC. Citeseer, 2008.

Plank, Barbara and Moschitti, Alessandro. Embedding semantic similarity in tree kernels for domain adaptation of

relation extraction. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 1498–1507. Association for Computational Linguistics, 2013. URL http:

//aclweb.org/anthology/P13-1147.

Rao, Jinfeng; He, Hua, and Lin, Jimmy. Noise-contrastive estimation for answer selection with deep neural

networks. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Man-

agement, CIKM ’16, pages 1913–1916, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4073-1. doi:

10.1145/2983323.2983872. URL http://doi.acm.org/10.1145/2983323.2983872.

Rao, Jinfeng; He, Hua, and Lin, Jimmy. Experiments with convolutional neural network models for answer

selection. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in

Information Retrieval, SIGIR ’17, pages 1217–1220, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5022-8.

doi: 10.1145/3077136.3080648. URL http://doi.acm.org/10.1145/3077136.3080648.

Roth, Dan and Yih, Wen-tau. A linear programming formulation for global inference in natural language tasks.

In Proceedings of the Eighth Conference on Computational Natural Language Learning (CoNLL-2004) at HLT-

NAACL 2004, 2004. URL http://aclweb.org/anthology/W04-2401.

Rumelhart, David E.; Hinton, Geoffrey E., and Williams, Ronald J. Neurocomputing: Foundations of research.

chapter Learning Representations by Back-propagating Errors, pages 696–699. MIT Press, Cambridge, MA,

USA, 1988. ISBN 0-262-01097-6. URL http://dl.acm.org/citation.cfm?id=65669.104451.

Schuster, Mike and Paliwal, Kuldip K. Bidirectional recurrent neural networks. IEEE Transactions on Signal

Processing, 45(11):2673–2681, 1997.

Sequiera, Royal; Baruah, Gaurav; Tu, Zhucheng; Mohammed, Salman; Rao, Jinfeng; Zhang, Haotian, and Lin,

Jimmy J. Exploring the effectiveness of convolutional neural networks for answer selection in end-to-end

question answering. CoRR, abs/1707.07804, 2017. URL http://arxiv.org/abs/1707.07804.

Severyn, Aliaksei and Moschitti, Alessandro. Structural relationships for large-scale learning of answer re-ranking.

In Proceedings of the 35th international ACM SIGIR conference on Research and development in information

retrieval, pages 741–750. ACM, 2012.

Severyn, Aliaksei and Moschitti, Alessandro. Learning to rank short text pairs with convolutional deep neural

networks. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in

Information Retrieval, SIGIR ’15, pages 373–382, New York, NY, USA, 2015a. ACM. ISBN 978-1-4503-3621-5.

doi: 10.1145/2766462.2767738. URL http://doi.acm.org/10.1145/2766462.2767738.

http://aclweb.org/anthology/D16-1244
http://aclweb.org/anthology/P13-1147
http://aclweb.org/anthology/P13-1147
http://doi.acm.org/10.1145/2983323.2983872
http://doi.acm.org/10.1145/3077136.3080648
http://aclweb.org/anthology/W04-2401
http://dl.acm.org/citation.cfm?id=65669.104451
http://arxiv.org/abs/1707.07804
http://doi.acm.org/10.1145/2766462.2767738

114 Bibliography

Severyn, Aliaksei and Moschitti, Alessandro. Learning to rank short text pairs with convolutional deep neural

networks. In Proceedings of the 38th international ACM SIGIR conference on research and development in

information retrieval, pages 373–382. ACM, 2015b.

Severyn, Aliaksei and Moschitti, Alessandro. Modeling relational information in question-answer pairs with

convolutional neural networks. arXiv preprint arXiv:1604.01178, 2016.

Severyn, Aliaksei; Nicosia, Massimo, and Moschitti, Alessandro. Learning adaptable patterns for passage rerank-

ing. In Proceedings of the Seventeenth Conference on Computational Natural Language Learning, pages 75–83.

Association for Computational Linguistics, 2013. URL http://aclweb.org/anthology/W13-3509.

Severyn, Aliaksei; Moschitti, Alessandro; Uryupina, Olga; Plank, Barbara, and Filippova, Katja. Opinion mining

on youtube. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 1252–1261. Association for Computational Linguistics, 2014. doi: 10.3115/

v1/P14-1118. URL http://aclweb.org/anthology/P14-1118.

Shawe-Taylor, John; Cristianini, Nello, and others, . Kernel methods for pattern analysis. Cambridge university

press, 2004.

Socher, Richard; Perelygin, Alex; Wu, Jean; Chuang, Jason; Manning, Christopher D; Ng, Andrew, and Potts,

Christopher. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings

of the 2013 conference on empirical methods in natural language processing, pages 1631–1642, 2013.

Srivastava, Nitish; Hinton, Geoffrey; Krizhevsky, Alex; Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout: A

simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15:1929–1958,

2014.

Szalkai, Balázs. An implementation of the relational k-means algorithm. CoRR, abs/1304.6899, 2013. URL

http://arxiv.org/abs/1304.6899.

Tai, Kai Sheng; Socher, Richard, and Manning, Christopher D. Improved semantic representations from tree-

structured long short-term memory networks. arXiv preprint arXiv:1503.00075, 2015.

Tan, Ming; dos Santos, Cicero; Xiang, Bing, and Zhou, Bowen. Improved representation learning for question

answer matching. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 464–473. Association for Computational Linguistics, 2016. doi: 10.18653/v1/

P16-1044. URL http://aclweb.org/anthology/P16-1044.

Tieleman, Tijmen and Hinton, Geoffrey. Lecture 6.5-rmsprop: Divide the gradient by a running average of its

recent magnitude. COURSERA: Neural Networks for Machine Learning, 4, 2012.

Tymoshenko, Kateryna and Moschitti, Alessandro. Assessing the impact of syntactic and semantic structures for

answer passages reranking. In Proceedings of the 24th ACM International on Conference on Information and

Knowledge Management, CIKM ’15, pages 1451–1460, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-

3794-6. doi: 10.1145/2806416.2806490. URL http://doi.acm.org/10.1145/2806416.2806490.

Tymoshenko, Kateryna; Moschitti, Alessandro, and Severyn, Aliaksei. Encoding semantic resources in syntactic

structures for passage reranking. In Proceedings of the 14th Conference of the European Chapter of the Asso-

ciation for Computational Linguistics, pages 664–672. Association for Computational Linguistics, 2014. doi:

10.3115/v1/E14-1070. URL http://aclweb.org/anthology/E14-1070.

http://aclweb.org/anthology/W13-3509
http://aclweb.org/anthology/P14-1118
http://arxiv.org/abs/1304.6899
http://aclweb.org/anthology/P16-1044
http://doi.acm.org/10.1145/2806416.2806490
http://aclweb.org/anthology/E14-1070

Bibliography 115

Tymoshenko, Kateryna; Bonadiman, Daniele, and Moschitti, Alessandro. Learning to rank non-factoid answers:

Comment selection in web forums. In Proceedings of the 25th ACM International on Conference on Information

and Knowledge Management, CIKM ’16, pages 2049–2052, New York, NY, USA, 2016a. ACM. ISBN 978-1-

4503-4073-1. doi: 10.1145/2983323.2983906. URL http://doi.acm.org/10.1145/2983323.2983906.

Tymoshenko, Kateryna; Bonadiman, Daniele, and Moschitti, Alessandro. Convolutional neural networks vs.

convolution kernels: Feature engineer ing for answer sentence reranking. In Proceedings of NAACL-HLT, pages

1268–1278, 2016b.

Tymoshenko, Kateryna; Bonadiman, Daniele, and Moschitti, Alessandro. Learning to rank non-factoid answers:

Comment selection in web forums. In Proceedings of the 25th ACM International on Conference on Information

and Knowledge Management, pages 2049–2052. ACM, 2016c.

Uryupina, Olga; Saha, Sriparna; Ekbal, Asif, and Poesio, Massimo. Multi-metric optimization for coreference:

The unitn / iitp / essex submission to the 2011 conll shared task. In Proceedings of the Fifteenth Confer-

ence on Computational Natural Language Learning: Shared Task, pages 61–65. Association for Computational

Linguistics, 2011. URL http://aclweb.org/anthology/W11-1908.

Uryupina, Olga; Moschitti, Alessandro, and Poesio, Massimo. Bart goes multilingual: The unitn / essex submis-

sion to the conll-2012 shared task. In Joint Conference on EMNLP and CoNLL - Shared Task, pages 122–128.

Association for Computational Linguistics, 2012. URL http://aclweb.org/anthology/W12-4515.

Uryupina, Olga; Plank, Barbara; Barlacchi, Gianni; Valverde-Albacete, Francisco J; Tsagkias, Manos; Uva,

Antonio, and Moschitti, Alessandro. Limosine pipeline: Multilingual uima-based nlp platform. In Proceedings

of ACL-2016 System Demonstrations, pages 157–162. Association for Computational Linguistics, 2016. doi:

10.18653/v1/P16-4027. URL http://aclweb.org/anthology/P16-4027.

Uva, Antonio and Moschitti, Alessandro. Tree kernels-based discriminative reranker for italian constituency

parsers. CLiC it, page 303, 2016.

Uva, Antonio; Storch, Valerio; Carrino, Casimiro; Di Iorio, Ugo, and Moschitti, Alessandro. Commercial appli-

cations through community question answering technology. CLiC-it 2017 11-12 December 2017, Rome, page

333, 2017.

Uva, Antonio; Bonadiman, Daniele, and Moschitti, Alessandro. Injecting relational structural representation in

neural networks for question similarity. In Proceedings of the 56th Annual Meeting of the Association for Com-

putational Linguistics (Volume 2: Short Papers), pages 285–291. Association for Computational Linguistics,

2018. URL http://aclweb.org/anthology/P18-2046.

Uva, Antonio E and Moschitti, Alessandro. Automatic feature engineering for italian question answering systems.

In IIR, 2015.

Vapnik, Vladimir. Principles of risk minimization for learning theory. In Advances in neural information processing

systems, pages 831–838, 1992.

Versley, Yannick; Ponzetto, Simone Paolo; Poesio, Massimo; Eidelman, Vladimir; Jern, Alan; Smith, Jason;

Yang, Xiaofeng, and Moschitti, Alessandro. Bart: A modular toolkit for coreference resolution. In Proceedings

of the ACL-08: HLT Demo Session, pages 9–12. Association for Computational Linguistics, 2008. URL

http://aclweb.org/anthology/P08-4003.

http://doi.acm.org/10.1145/2983323.2983906
http://aclweb.org/anthology/W11-1908
http://aclweb.org/anthology/W12-4515
http://aclweb.org/anthology/P16-4027
http://aclweb.org/anthology/P18-2046
http://aclweb.org/anthology/P08-4003

116 BIBLIOGRAPHY

Wang, Zhiguo; Hamza, Wael, and Florian, Radu. Bilateral multi-perspective matching for natural language

sentences. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, IJCAI’17, pages

4144–4150. AAAI Press, 2017. ISBN 978-0-9992411-0-3. URL http://dl.acm.org/citation.cfm?id=3171837.

3171865.

Wise, Michael J. Yap3: Improved detection of similarities in computer program and other texts. In ACM SIGCSE

Bulletin, volume 28, pages 130–134. ACM, 1996.

Yin, Wenpeng; Schütze, Hinrich; Xiang, Bing, and Zhou, Bowen. Abcnn: Attention-based convolutional neural

network for modeling sentence pairs. Transactions of the Association for Computational Linguistics, 4:259–272,

2016. URL http://aclweb.org/anthology/Q16-1019.

Yu, Chun-Nam John and Joachims, Thorsten. Learning structural svms with latent variables. In Proceedings of

the 26th Annual International Conference on Machine Learning, ICML ’09, pages 1169–1176, New York, NY,

USA, June 2009. ACM. ISBN 978-1-60558-516-1. doi: 10.1145/1553374.1553523. URL http://doi.acm.org/

10.1145/1553374.1553523.

Yu, Lei; Hermann, Karl Moritz; Blunsom, Phil, and Pulman, Stephen. Deep learning for answer sentence selection.

CoRR, 2014.

Zhao, Ying and Karypis, George. Criterion functions for document clustering: Experiments and analysis. Technical

report, 2002.

http://dl.acm.org/citation.cfm?id=3171837.3171865
http://dl.acm.org/citation.cfm?id=3171837.3171865
http://aclweb.org/anthology/Q16-1019
http://doi.acm.org/10.1145/1553374.1553523
http://doi.acm.org/10.1145/1553374.1553523

	Introduction
	Motivations
	Contributions and Structure of the Thesis

	Machine Learning Methods
	Support Vector Machines and Kernel Methods for relation text inference
	Supervised Learning
	Empirical risk minimization
	Loss function
	Training discriminative models
	Maximum Margin Classifiers
	Hard margin SVM
	Dual problem
	Kernel trick (Kernel substitution)

	Structural Kernels
	String Kernel
	Convolution Tree Kernels

	Neural Networks for Sentence Modeling
	Rise of Deep Learning in NLP
	Types of Neural Networks
	 Standard feed-forward Neural Network (NN)
	Activation function
	Training the network: Forward and Backward propagation
	Loss Functions
	Backpropagation

	Convolutional Neural Network (CNN) for Sentence Modeling
	CNNs for Natural Language Processing

	Recurrent Neural Networks (RNNs) for Sentence Modeling
	Vanilla RNNs
	Gated Recurrent Units (GRUs)
	Summary

	Community QA with Structural Kernels
	Task A: Question-Comment Similarity
	Structural Representations for question-answer similarity
	Convolutional network features
	Text similarity features
	Context features
	Our model for question-answer similarity
	Experiments and Results
	Task B: Question-Question Similarity
	Structural Representations for question-question similarity
	Rank Feature
	Our Model for question-question similarity
	Experiments and Results

	Task C: New Question-Comment Similarity
	Structural Representations for new question-answer similarity
	Our Model for new question-answer similarity
	Experiments and Results
	Conclusions

	Neural models for Community Question Answering
	Related Work
	Related Work of NNs for question-answer relevancy.

	Task A, Task B, Task C
	Preliminaries
	The S&M neural model for relational text inference
	Results of individual models and Discussions

	Joint model
	Related Work on Multi-Task learning (MTL) for NNs
	Our MTL model for cQA

	Experiments
	Experiments of individual models
	Results of MTL models
	Results on the overall Task C
	Conclusions

	Combining Neural and Kernel models for Task B
	Related Work
	Overview/Introduction
	Injecting Structure in NNs
	Experiments
	Conclusion

	Supervised Clustering of questions for fast bootstrapping of Intent Ontologies
	Overview
	Our solution
	Question clustering algorithms
	Structured Output Clustering
	SVM Models
	Pairwise question similarity classifier
	Models
	Baselines

	Datasets: Building Intent clusters
	Quora Intent corpus
	FAQ: Hype Intent corpus

	Experiments
	Setup
	Evaluation measures
	Experiments on Quora
	Evaluation on the FAQ dataset
	Error Analysis and Discussion

	Conclusions

	NLP Pipelines and demos
	Multilingual UIMA-based NLP Platform
	Overview
	LiMoSINe pipeline: overall structure
	Integrated modules
	Conclusion and Future Work

	Tree Kernels-based Discriminative Reranker for Italian Constituency Parsers
	Bllip parser
	Tree Kernel-based Reranker
	Experiments
	Conclusions

	cQA
	Overview
	Related Work
	Our QA System
	Experiments
	Conclusions

	Italian QA pipeline
	Introduction
	Learning to rank relevant documents
	Conclusions

	Conclusion and Future Works
	Bibliography

