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Abstract

The use of Deep Neural Networks with their increased representational power has

allowed for great progress in core areas of computer vision, and in their applica-

tions to our day-to-day life. Unfortunately the performance of these systems rests

on the "big data" assumption, where large quantities of annotated data are freely

and legally available for use. This assumption may not hold due to a variety of

factors: legal restrictions, difficulty in gathering samples, expense of annotations,

hindering the broad applicability of deep learning methods.

This thesis studies and provides solutions for different types of data scarcity: (i)

the annotation task is prohibitively expensive, (ii) the gathered data is in a long tail

distribution, (iii) data storage is restricted.

For the first case, specifically for use in video understanding tasks, we have de-

veloped a class agnostic, unsupervised spatio-temporal proposal system learned in

a transductive manner, and a more precise pixel-level unsupervised graph based

video segmentation method. At the same time, we have developed a cycled, gen-

erative, unsupervised depth estimation system that can be further used in image

understanding tasks, avoiding the use of expensive depth map annotations.

Further, for use in cases where the gathered data is scarce we have developed

two few-shot image classification systems: a method that makes use of category-

specific 3D models to generate novel samples, and one that increases novel sample

diversity by making use of textual data.

Finally, data collection and annotation can be legally restricted, significantly im-

pacting the function of lifelong learning systems. To overcome catastrophic forget-

ting exacerbated by data storage limitations, we have developed a deep generative

memory network that functions in a strictly class incremental setup.
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1

Introduction

1.1 Motivations and Challenges

Deep Neural Networks have revolutionized machine learning as a whole, both scientifically

and practically. Their increased representational power has allowed for progress in core areas

of computer vision, such as object detection, semantic segmentation, action recognition, etc.

leading to a dissemination and application of these method to our day-to-day lives, from mobile

phones apps and search engines to autonomous driving, video surveillance and smart cities.

Even so, most deep learning systems assume having "big data" readily available, more pre-

cisely that there exists a sufficient amount of freely and legally available, ideally annotated data

fit for consumption for a given deep learning task. As supervised deep learning systems require

a significant amount of data - thousands of annotated images per class for object detection (6),

hundreds to thousands of spatio-temporally annotated videos for video action detection (7), the

assumption that these data are freely available is difficult to justify, both from a practical and

a legal standpoint. While indeed the total volume of information stored electronically is con-

stantly increasing, the vast majority of it is not annotated, unsuited or unaccessible, and as such

will be expensive to make use of. At the same time, the use and storage of personal information

online is becoming more regulated by various governmental bodies (8), and as such many ap-

proaches that leverage weak annotations found online may be slipping out of legality at worst

or are having the quantity of input data heavily restricted, and their performance reduced, at

best.

This thesis explores methods of overcoming limitations in the quantity and quality of avail-

able data in visual image and video understanding tasks. We define the quality of a volume

1



1. INTRODUCTION

of data as the amount of annotations or low-level features associated to it, and the quantity a

measure of the amount of gathered data. A common issue in this case arises from the long-tail

distribution observed in the wild, where some classes are heavily populated by usable samples,

while others have little to no examples available. Beyond accumulating the required number

of samples, the evolving legal framework in which we operate has restricted the gathering and

storage of usable data, leading to both a quality and quantity deficit.

As a first stage, this thesis tackles the quality issue, where expensive annotations often

cannot be economically produced for more complex tasks, specifically for the use of video

understanding systems. Unsupervised methods for the automatic annotation of data have been

developed, leveraging temporal consistency and other cues (1) (2) to provide a spatio-temporal

localization for objects in a video, and stereo image consistency (3) to create depth maps with

a minimum of expended resources.

As a second stage we tackle the long-tail quantitative data deficit by developing few-shot

learning solutions for categorical image classification firstly through the prediction of a cate-

gorical 3D model to further increase generated sample diversity (4), and secondly through the

use of available textual information.

Finally, the tightening legal restrictions have increased the difficulty of life-long learning

techniques, as in a strict interpretation data cannot be freely stored for further learning. This

quantitative deficit exacerbates the catastrophic forgetting of previously learned information, an

issue for which we have developed a strictly class-incremental generative image classification

system (5, 9).

1.1.1 Unsupervised Video Annotation

Training state of the art supervised detection and classification algorithms requires the gather-

ing and annotation of very large datasets, a practice that is not feasible due to time and resource

limitations. While semi-supervised classification and detection methods exist, they often per-

form significantly worse than purely supervised systems, and are often more data sensitive i.e.

difficult to apply on disparate datasets.

Thus, developing robust methods for the automatic extraction of samples from videos is

of great use, if not in direct integration to a higher level method, then in greatly simplifying a

human annotator’s task.

A first method we present as detailed in 2.2 , "Unsupervised Tube Extraction using Trans-

ductive Learning and Dense Trajectories" outputs spatio-temporal object proposals in a given

2



1.1 Motivations and Challenges

video, that may then be used for video detection or classification. In this system we do not

directly deal with category-specific object detection, but focus on extending the objectness

property (the likelihood of a sample representing an object) from still images to videos by

exploiting the motion information inherent in a video. The output of this system is a set of

bounding boxes tracking objects of interest throughout the video, that can then be used by

common object detection methods for their training necessities. Other works which deal with

automatic tube proposals address this extension of objectness to the temporal domain. How-

ever, most similar approaches have the same limitation: they need a large number of tubes

(usually hundreds or thousands per video clip) to reach a sufficiently high recall (10, 11) which

makes these methods reliable to speed up the testing phase but not sufficiently precise to allow

for weakly supervised or unsupervised training. The proposed system requires no manual user

input, and is capable of robustly and precisely localizing multiple moving objects in a video.

While (1) outputs the spatio-temporal localization of moving objects accurately, it has a

series of drawbacks: background objects are not taken into consideration, and more importantly

the algorithm’s temporal segmentation capability is limited. As such "Joint graph learning and

video segmentation via multiple cues and topology calibration" (2) was developed, as detailed

in Section 2.3. This system segments all objects in the video into spatio-temporal voxels by

making use of a series of motion and appearence cues and learning their optimal fusion. At the

same time, the graph-cutting and segmentation stages of the usual graph-based method are done

jointly, greatly simplifying the overall optimization process and increasing overall accuracy.

Both developed methods can be seen as producing spatio-temporal proposals in a class

agnostic and unsupervised manner, and as such can be used to inexpensively provide this infor-

mation to further video understanding systems operating on unfamilliar and weakly annotated

data.

Beyond generating annotations for use in further tasks, there is a need for the computation

of low-level features. In cases such as the computation of depth maps from RGB images,

unsupervised non-deep learning techniques based on stereo-matching exist, but are both slow

and are greatly outperformed by deep learning based methods. At the same time, learning

depth map computation in a supervised manner require specialized equipment beyond a stereo

camera arrangement. Our work detailed in Section 2.4 uses a cyclic generative network to learn

depth maps only from stereo image pairs.

3



1. INTRODUCTION

1.1.2 Few-Shot Learning

Another distinct low data regime can be observed in data collected in the wild, where the

distribution of available samples for a given category is often skewed, with a long ’tail’. This

results in gathering few if any samples for a large number of classes of interest and complicating

the optimization process of any deep network in use. The most extreme subcase is the complete

failure in collecting any samples of a given modality. Zero-Shot Learning methods have been

developed, often making use of a different modality and learning an embedding space between

the data-rich source and the data-scarce task modality (12). A more relaxed subcase, and where

the main research effort of this thesis has been expended, is where the number of available

samples for a number of novel classes is low, Low or Few Shot Learning techniques.

Few-shot learning aims to learn a model on novel classes or tasks, where a class Cnovel

contains a small number of n samples. It assumes a subset of classes Cbase where enough

samples have been gathered for regular learning to be used. The main idea of these methods is

to leverage the information learned using the base classes for learning the sparsely populated

novel classes. Classically, learning both the novel and base classes in the same task, or a

simple fine-tuning on the novel classes over a model learned on the base classes will result in

gross overfitting and a model unsuited to the task. While this task can be seen as related to

transfer learning and domain adaptation techniques, recent advances in methodology has made

low-shot learning research distinct. More specifically, recent methods seek to compensate for

the lack of samples by optimizing the novel class learner to this sparcity, a ’meta-learning’

approach. The learner will thus require a small number of samples for its given task, either

by hallucinating unseen samples (13), leveraging dataset statistics (14), or directly preventing

overfitting by clustering neurons of interest (15).

As few-shot learning techniques primarily tackle a lack of samples in a given modality, it

can be assumed that related information can be found in other modalities. As such we present

a few-shot learning image classification that makes use of freely available textual information

to empower a strong generative model that is further used in training the system for the novel

classes (Section 3.3). At the same time, we have developed a system that makes use of available

visual information to learn a prototypical 3D mesh and texture for the given category, that is

then used to generate a large number of diverse samples for the novel classes (4), a method

detailed in Section 3.2

4



1.1 Motivations and Challenges

1.1.3 Overcoming Catastrophic Forgetting

Due to evolving regulations regarding the use of personal data (8), the gathering and storage

of useful information can be greatly limited. Restrictions in data storage specifically effect

life-long learning systems, as without data associated to already learned knowledge stored, the

system is more likely to "forget" older tasks.

These limitations make the use of strictly incremental methodologies for life-long learning

tasks necessary, where as a new task arrives, all previously seen data is discarded. Unfortu-

nately strictly incremental systems have an exacerbated catastrophic forgetting problem: older

learned knowledge is overwritten by the newly learned information. The system thus forgets

and loses capability with each new learning stage, in a more practical sense overfitting on each

incoming task or class.

The twin factors of tightening data control and broader use of lifelong learning motivated

us to develop a solution for catastrophic forgetting, as detailed in Chapter 4. The proposed

method operates in a strictly class-incremental setup, where only the data required to learn the

specific class is stored, and makes use of an efficient, dynamically expanding generative replay

network. As new tasks are learned, the system masks neurons associated to old knowledge,

and expands the generative capacity so that the number of unused, unmasked neurons is kept

constant. At the same time, the generative network creates samples representative of the stored

knowledge for use in learning the expanded classification task. As a more comprehensive data

representation is learned, the network requires less neurons for each new tasks, leading to a

saturation point after which the network capacity will not be significantly grown.

1.1.4 Thesis Outline and Contributions

To summarize, Chapter 2 contains the following unsupervised proposal systems:

• A class agnostic spatio-temporal tube proposal system (1) (Section 2.2), where the local

objectness proprety is extended with available temporal information. The coarse spatio-

temporal tubes are further refined in a transductive manner, using tube-specific, class

agnostic detectors.

• An unsupervised pixel-level spatio-temporal segmentation system (2) (Section 2.3). The

work uses a novel optimization strategy where the similarity and cutting graphs are

jointly optimized. The multiple superpixel cues used have their weights automatically

5



1. INTRODUCTION

learned and are then organized in different topologies which are further calibrated such

that the weight similarities become comparable.

• An unsupervised depth estimation system (3) (Section 2.4) that makes use of a novel,

cyclic and generative network architecture for stereo depth estimation.

Chapter 3 contains our work on few-shot learning, offering differing diversification strate-

gies for generative systems:

• A few-shot classification system (4) (Section 3.2) that predicts a categorical 3D shape and

predicted 3D meshes and textures for novel samples to diversify sample generation. The

most representative generated samples are then selected through a self-paced learning

module.

• Section 3.2 presents a second few-shot learning system that makes use of abundant tex-

tual information to generate cross-modal features. A strategy to combine real and gener-

ated features is suggested, allowing easy inference using only a simple nearest neighbour

approach, the method outperforming competitors by a large margin.

Chapter 4 tackles issues arising in life-long learning systems when data storage is restricted,

specifically catastrophic forgetting.

• A system to overcome catastrophic forgetting is presented, where we introduce a deep

generative memory network that efficiently learns sparse attention maps, and dynami-

cally expands its network capacity as new tasks arrive.

Finally, Chapter 5 holds the concluding remarks to the thesis, and prospective future works

based on it.

1.1.5 Published Works

• "Unsupervised Tube Extraction Using Transductive Learning and Dense Trajectories"

Mihai Marian Puscas, Enver Sangineto, Dubravko Culibrk, Nicu Sebe; The IEEE Inter-

national Conference on Computer Vision (ICCV), 2015, pp. 1653-1661 (1)

• "Joint Graph Learning and Video Segmentation via Multiple Cues and Topology Calibra-

tion" Jingkuan Song, Lianli Gao, Mihai Marian Puscas, Feiping Nie, Fumin Shen, Nicu

Sebe; MM ’16 Proceedings of the 24th ACM international conference on Multimedia

Pages 831-840 (2)
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• "Unsupervised Adversarial Depth Estimation using Cycled Generative Networks" An-

drea Pilzer*, Dan Xu*, Mihai Puscas*, Elisa Ricci, Nicu Sebe; 2018 International Con-

ference on 3D Vision (3DV)587-595 (3)

• "Low-Shot Learning from Imaginary 3D Model" Frederik Pahde, Mihai Marian Puscas,

Jannik Wolff, Tassilo Klein, Nicu Sebe, Moin Nabi; WACV 2019 (4)

• "Learning to Remember what to Remember: A Synaptic Plasticity Driven Framework.";

Oleksiy Ostapenko, Mihai Puscas, Tassilo Klein, Moin Nabi, NIPS CL Workshop 2018.

(9)

• "Unsupervised Monocular Depth Estimation using Structured Coupled Dual Generative

Adversary Networks"; Mihai Marian Puscas, Dan Xu, Andrea Pilzer, Nicu Sebe, Under

review, IJCAI 2019

• "Adversarially Learned Feature Generating Network for Low-Shot Learning"; Frederik

Pahde, Mihai Marian Puscas, Jannik Wolff, Tassilo Klein, Nicu Sebe, Moin Nabi, Under

review, ICCV 2019

• "Learning to Remember: A Synaptic Plasticity Driven Framework for Continual Learn-

ing"; Oleksiy Ostapenko, Mihai Puscas, Tassilo Klein, Moin Nabi, CVPR 2019 (5)

• "Continuous Fusion for Unsupervised StereoDepth Estimation using Cycled Networks"

Andrea Pilzer, Stephane Lathuiliere, Dan Xu, Mihai Puscas, Elisa Ricci, Nicu Sebe;
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Unsupervised proposal systems

In this chapter we explore solutions developed to tackle an annotation scarcity for video and

image understanding tasks. Section 2.2 presents a spatio-temporal localization system that

extends a locally defined "objectness" proprety to the temporal domain using long term trajec-

tories to create tubes around objects of interest, which are further extended in a transductive

manner. The graph-based method expanded upon in section 2.3 provides an unsupervised pixel-

level spatio-temporal segmentation. The segmentation and cutting graphs are jointly optimized,

and different cues are organized into specific topologies that are automatically calibrated. Fi-

nally, Section 2.4 provides a cycled, generative solution for stereo depth that does not require

expensive LIDAR depth map annotations during the learning process.

2.1 Background

As a first stage in our thesis, we looked towards core video understanding topics, action recog-

nition and detection (16, 17, 18), and what hinders their applicability. It can be observed that

supervised methods can reach high performance on commonly used benchmarks, with datasets

such as UCF-101 (7) even becoming saturated for video classification, with the drawback that

they require large amounts of annotated data to train. In the case of supervised action recogni-

tion, the annotator must label only the videos, a relatively cheap task. For the more complex

temporal action detection, the annotator must in addition label the time-frames where the action

or actions occur. Finally, for spatio-temporal action localization the prospective annotator must

also enclose the actors in bounding boxes, a much slower task than simply labelling a video.

Any increase in the complexity of the task causes an increase of annotation task cost, hindering
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2. UNSUPERVISED PROPOSAL SYSTEMS

the broader application of these methods. In the case of spatio-temporal action detection sys-

tems, or tasks which require this localization, the qualitative data scarcity can be ameliorated

if there exists a system that outputs spatio-temporal proposals in an unsupervised manner, thus

greatly simplifying an annotator’s workload.

In Section 2.2 we detail an unsupervised, class agnostic spatio-temporal tube proposal sys-

tem that outputs tubes covering objects of interest in a given video. This interest is determined

through the use of motion cues, i.e. objects the are moving throughout the video are more

likely to be of interest in further tasks, and annotating them will be beneficial. As all learning

performed in the proposed method is transductive, it is class agnostic and can mine proposals

on a broad range of videos.

The proposals are created by extending the local, image-level, ’objectness’ property to the

temporal domain. ’Objectness’ can be defined as the likelyhood of an image window to contain

an object instead of uninformative background (19, 20, 21, 22). Further, the goal of the work

is to lighten a prospective annotator’s workload, leading to the need for high precision on the

tube proposals in contrast to local, image-level object proposal systems that tend towards a

high recall (19). This precision is achieved through a strict pruning of the intermediate tube

proposals, followed by an appearance detection step that further filters out noise.

A limitation of the proposed system is a lack of temporal resolution, a consequence of

the last stage of tube construction, where intermediate tubes are filtered and expanded using

a transductive learning approach. This leads to a very poor temporal localization and limits

its applicability to temporally constrained videos. A second limitation is a consequence of the

temporal cues used to construct the initial tubes - only objects that are moving are considered

to be of interest, an assumption that may be false when applying it broadly.

Section 2.3 presents an unsupervised video segmentation system that offers solutions to

both temporal localization, and disregarded, inactive objects. Video segmentation can be de-

fined as partitioning a video into several disjoint spatio-temporal regions such that each region

has consistent appearance and motion, a broader definition than used for the previous work.

Segmenting general and unconstrained videos is a challenging research problem due to ex-

istent scene and scale ambiguities of the segments (23) as well as the temporal-consistency

constraints (24). Different types of video segmentation algorithms have been introduced,
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from ones based on clustering (25, 26), to graph-based processing (24, 27, 28, 29) and track-

ing (30, 31, 32).

For the described system, we have chosen to map video elements onto a graph on which su-

perpixels/supervoxels are nodes and edges measure similarity between them. Segmenting such

a structure is generally actived in two steps: learning a similarity between nodes, and cutting

the graph into semantically significant structures. Learning the similarity requires usable and

cues whose weights we automatically learn and which are organized into different topological

structures to keep them comparable (local, across one frame, across two frames, long term).

Finally, to achieve an optimal segmentation, the graph cut and similarity are jointly optimized.

In comparison to the work presented in section 2.2, this system provides a more comprehensive

segmentation of a given video - with the caveat that the user must provide the total number of

segments for the joint optimization to be achievable, and that any annotator will not receive

any cues towards what objects might be of interest or not.

While the systems detailed in sections 2.2 and 2.3 tackle the lack of quality in available data

through providing annotations for common video understanding tasks, there are cases where

low-level features used in more complex learning tasks are expensive or even impossible to

learn. This can be caused by a number of factors, such as the need of specialized sensing

equipment that can be difficult to acquire and operate, require strict operating conditions, or

that is simply too bulky to use in day-to-day activities.

One such case is estimating depth maps, which see broad use in various image and video

understanding tasks, from robotics and autonomous driving, to virtual reality and 3D recon-

struction. Great progress has been seen over the last years, with supervised deep regression

methods significantly improving the accuracy of estimated depth maps (33, 34, 35, 36). The ap-

plication of these systems is restricted by the need for high quality depth maps for the learning

process, usually provided through the use of a LIDAR sensor, and compounding the problem,

the large amount of depth maps needed to learn a deep model.

Section 2.4 describes an unsupervised stereo depth estimation system that learns a model

through image correspondence between stereo image pairs, thus discarding the use of expensive

depth annotations for training. More specifically, we use a novel adversarial network that better

learns this correspondence field through the synthesis of the opposing image in a cyclic manner.

This ensures stronger constraints between the two views, and results in the networks learning

better representations and estimating more accurate depth maps.

11
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2.2 Unsupervised Spatio-Temporal Tube Extraction 1

2.2.1 Introduction

Figure 2.1: Optical Flow between two consecutive frames can be used as a ”voting” mechanism
for matching Bonding Boxes. The blue lines are dense trajectories in common between the two
boxes, while the red lines are trajectory starting from the first box but not included in the second.

In this work we focus on extending the objectness property from still images to videos, to

provide class agnostic spatio-temporal proposals for further video understanding tasks. Other

works which deal with automatic tube proposals address this extension of objectness to the

temporal domain. However, most of the state-of-the-art approaches have the same limitation:

they need a lot of tubes (usually hundreds or thousands per video clip) to achieve a sufficiently

high recall (10, 11) which makes these methods reliable to speed up the testing phase but

not sufficiently precise to allow for weakly supervised or unsupervised training. Using two

common benchmarks (UCF Sports and YouTube Objects) we will show that we are able to

achieve high recall with few tubes. For instance, in UCF Sports we achieve more than 30%

relative improvement with respect to the state-of-the-art when using only one tube (Fig. 2.4b).

These results have been achieved by combining different ideas. First, we use Selective

Search in order to produce an initial set of candidate BBs. Then we propose to use Dense

Trajectories (37, 38) in order to match BBs in different frames and to discard static BBs. This

method allows us to collect initial tubes that we call optical flow tubes as they are based on the

optical flow computed with Dense Trajectories. In order to avoid drifting (a common problem

in all tracking algorithms), optical flow tubes are usually quite short and do not cover the

1"Unsupervised Tube Extraction Using Transductive Learning and Dense Trajectories" Mihai Marian Puscas,
Enver Sangineto, Dubravko Culibrk, Nicu Sebe; The IEEE International Conference on Computer Vision (ICCV),
2015, pp. 1653-1661 (1)
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2.2 Unsupervised Spatio-Temporal Tube Extraction 1

whole video clip. For this reason we propose using the optical flow tubes in order to collect

positive samples of the moving objects and train tube-specific detectors. We highlight that no

class labels or other human-provided information is used for training. Conversely, tube-specific

object detectors are learned in a transductive framework, i.e., we do not need these detectors to

generalize to other videos, except the same video in which they have been trained. In fact, once

trained, we run the detectors on the input videos in order to extract the final tubes (detection

tubes). Using this strategy, we are able to extract BBs even in frames in which the object is

static, while common tube-proposal approaches usually need movement in all the frames. To

summarize, our contributions are:

• We use Dense Trajectories to robustly match BBs pre-selected by means of Selective

Search.

• We use tube-specific, class agnostic detectors, trained in a transductive learning frame-

work, to extract the final tubes.

The code for the proposed approach is available2.

The rest of the chapter is organized as follows. In Sec. 2.2.2 we briefly review the literature

and in Sec. 2.2.3 we introduce some useful notation which will be used in the other sections.

In Sec.s 2.2.4 and 2.2.5 we present our method. Experimental results are shown in Sec. 2.2.6

and we conclude in Sec. 2.2.7.

2.2.2 Related Work

In (39), Prest et al. extract tubes from a video clip exploiting homogeneous clusters of dense

point tracks. The tubes are then used to learn a detector, together with video-level-based labels

and based on the assumption that there is one dominant moving object per video. It is worth

noticing that, in the approach we propose, the detectors are class-agnostic classifiers which

are learned for every optical flow tube and then used to extract the final tubes. Conversely, in

(39) the detectors are class-specific object detectors (fusing the segmentation phase with the

final, unsupervised object classification phase). One drawback of this approach is that tubes

are selected using inter-tube similarity, which is a fragile assumption when more than one

moving object is present in the video clip and/or when a single object has a high variability of

appearance.

2https://github.com/mihaipuscas/unsupervised-tube-extraction.git
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2. UNSUPERVISED PROPOSAL SYSTEMS

Clustering dense tracks, obtained with optical flow, is a strategy adopted by many other

authors. For instance in (40) point tracks are clustered using an affinity matrix based on the

maximum translational difference between two tracks. Even if encouraging results can be

obtained with this technique, articulated motion makes it hard to group tracks belonging to non-

homogeneously moving objects. Optical flow is also used in (41), where objects are segmented

using motion boundaries and then refined using a dynamic appearance model of the RGB

foreground pixels. In (42) and in (43) optical flow and other appearance and saliency cues are

used to extract coherent segments corresponding to moving objects.

In (10) the Selective Search (19) criteria for merging pixels in superpixels are extended into

the time domain to obtain supervoxels. Supervoxels are used also in (11) with a hierarchical

graph-based algorithm and in (44), where, instead of using heuristics, merging is performed

using a classifier. In (45) motion boundaries are used in order to generate an initial set of

moving object proposals, which is then ranked using a Convolutional Neural Network (CNN),

trained using ground truth object BBs. It is worth noticing that both (44) and (45) are supervised

methods, in which there is an important learning phase based on manually provided examples

of ground truth objects and it is not clear what is the cross-dataset generalization capabilities

of these systems (when tested on datasets different from the ones used for training), while our

approach is completely unsupervised. A similar limitation holds in (46, 47), where a CNN is

trained in order to regress multiple boxes likely containing objects. The idea behind (46, 47)

is that static objectness can be learned using ground truth BBs contained in large datasets

(Pascal and ILSVRC 2012). However, a dataset bias does exist (48), since the cross-dataset

experiments presented by the authors show a drastic drop of performance of the net when

trained with Pascal and tested on ILSVRC 2012 and a minor drop vice-versa.

2.2.3 Static Objectness and Notation

Given a video with T frames, we apply Selective Search (19) to each frameFt in order to extract

the set of box candidates Bt = {bt1, ...btn} (we drop the superscript t when not necessary), and

bti = (ymini, xmini, ymaxi, xmaxi).

Note that we rely on Selective Search to model static objectness. In other words, we do

not manage pixel-level information, and we leverage on Selective Search for the pixel merging

task in a single image. In fact this method is widely adopted and it has been proven to have a

high recall: for instance, with n = 2000, the probability of an object to be highly overlapping

with any bti ∈ Bt is around 0.9 (19). All our efforts will be focused on pruning Bt (1 ≤ t ≤ T )
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2.2 Unsupervised Spatio-Temporal Tube Extraction 1

using movement information in order to end up with a much smaller subset of boxes containing

the moving objects of the video.

For simplicity, we also do not explicitly model the dynamics of the tracked boxes (which

is difficult especially with ”random” movements of biological ”objects”). However, we use

Intersection-over-Union (IoU) and Intersection-over-Min (IoM) in order to check spatial co-

herence between boxes of different frames and in the same frame:

IoU(b1, b2) = A(b1 ∩ b2)/A(b1 ∪ b2), (2.1)

IoM(b1, b2) = A(b1 ∩ b2)/min{A(b1), A(b2)}, (2.2)

where A(b) is the area of b. Both IoU and IoM are widely adopted metrics in the object

detection literature (49, 50, 51, 52) to assess spatial coherence (IoU) and/or to merge small

BBs in a larger rectangle (e.g., see the Non-Maxima-Suppression algorithm, NMS, used in

(49, 52) and based on IoM).

Finally, we use Dense Trajectories (38) to extract dense trajectories of moving points. In

(38) the authors use optical flow in order to track points over different frames. They also im-

prove over (37) by estimating the camera motion and deleting those trajectories whose move-

ment is similar to the camera motion. The final trajectories cluster over the actual moving

objects most of the times (but unfortunately camera motion compensation is not able to delete

all the noisy trajectories in the background). Trajectories are continuously created and termi-

nated over the video frames and are usually very short (max 15 frames (37)), thus there are no

trajectories spanning the whole video. Given two consecutive frames Ft and Ft+1, we define

the (camera motion compensated) optical flow between Ft and Ft+1 as:

O(t, t+ 1) = {o1, ..., om}, (2.3)

where oj = (pj , qj) is a local translational offset belonging to one of the active trajectories

between frames Ft and Ft+1, pj is the starting point (pj ∈ Ft) and qj the ending point (qj ∈
Ft+1).

For both Selective Search and Improved Trajectories we have used the publicly available

code.
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2.2.4 Optical Flow Tubes

The first step of our pipeline consists in matching boxes in Ft with boxes in Ft+1 using optical

flow information and spatial coherence. Given Bt and Bt+1, for each bi ∈ Bt and bj ∈ Bt+1

we define:

OV (i, j) := IoU(bi, bj) ≥ 0.5, (2.4)

where the threshold 0.5 is commonly adopted in object detection (e.g., in the Pascal and Ima-

geNet detection tasks) to assess the spatial similarity of two BBs. Even if here the context is

completely different (we use OV to prune BBs too far apart from each other in two different

frames), we adopt the same threshold because it somehow guarantees that bi and bj can be

matched only when the difference in scale and/or aspect ratio is not that large. This constrains

a (possibly articulated) movement of the object between Ft and Ft+1 to produce a small trans-

lational difference and a moderate deformation. If n1 = |Bt| and n2 = |Bt+1|, then OV is an

n1 × n2 Boolean matrix.

For each bi, bj such that OV (i, j) = true, we compute the optical flow-based matching

density between bi and bj , defined as:

D(i, j) :=
mij

A(bi) +A(bj)
, (2.5)

where mij is the number of optical flow offsets in O(t, t+ 1) whose starting point is in bi and

ending point in bj . The intuitive idea behind Eq. (2.5) is straightforward. The nominator repre-

sents the number of "votes" that can be accumulated in matching bi and bj , being each vote an

element in O(t, t+ 1). The denominator normalizes this number by the sum of the areas of the

two BBs. This normalization is necessary because of noisy trajectories (e.g. trajectories laying

on the background, despite camera motion compensation). In fact, maximizing mij without

area normalization leads to matching bi with that bj in Bt+1 which is the largest possible, i.e.,

not a BB tight on the moving object but a BB usually including undesired background (e.g.,

see Fig. 2.1).

Using Eq. 2.5 we match bi with b∗j (and we write Mt(bi) = b∗j ) such that:

b∗j = max
bj∈Bt+1

D(i, j), (2.6)
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2.2 Unsupervised Spatio-Temporal Tube Extraction 1

Figure 2.2: Adaptive threshold in matching density. Two consecutive frames with their initial
set of BBs. Both optical flow and BBs cluster around the moving object (left). In turn, clusters
correspond to plateaus in f , the sorted distribution of D (right-top). The smoothed gradient of f is
used in order to detect peaks and to set the density threshold (right-bottom).

subject to:

D(i, j) ≥ θt. (2.7)

In Eq. (2.7) θt is a threshold which is used to reduce the risk of drifting in tracking a BB.

Instead of using a fixed threshold, which is difficult to set, we adaptively compute θt for every

pair of frames Ft and Ft+1, based on the observation that BBs produced by Selective Search

usually cluster around true objects and dense trajectories tend to cluster around moving objects

due to the camera motion compensation process. Looking at Fig. 2.2 (left), BBs b1 and b2, lying

on the moving object, also belong to two corresponding clusters of BBs, respectively in frame

Ft and Ft+1 (depicted with red and yellow). The density value of those BB pairs belonging

to these two clusters, computed using Eq. 2.5, is roughly constant for all the possible pairs.
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Conversely, matching b1 with a background BB b3, the corresponding density value is usually

drastically different. In Fig. 2.2 (right-top) we plot the value of D, where the x-axis represents

pairs of BBs sorted in ascending order with respect to D. Let f() be the sorted distribution of

D. Plateaus in f() correspond to pairs of BBs belonging to clusters in Ft and Ft+1, and these

clusters usually correspond to moving objects detected by Selective Search. We exploit this

observation selecting θt as one of the steepest slopes in f . In Fig. 2.2 (right-bottom) we show

the (smoothed) gradient of f , where peaks correspond to high variations in f before a plateau.

We set θt to be the value of f corresponding to the median peak. Preliminary experiments with

θt equal to the last peak (higher density) gave slightly lower results.

Using Eq.s (2.4)-(2.7) we can compute single frame matchings Mt() for all the BBs in

Bt, where Mt(bi) is not defined (Mt(bi) = ∅) when there is no bj ∈ Bt+1 such that (bi, bj)

satisfies both constraints in Eq.s (2.4) and (2.7). We can then concatenate BBs in different

frames forming a set of chains CH = {ch1, ch2, ...}, where a chain ch is computed starting

from a given BB b0 in frame t (bo ∈ Bt) and:

ch = (b0, b1, ..., bi, bi+1, ..., bnc), (2.8)

where:

bi+1 = Mt+i(bi), (2.9)

Mt+nc(bnc) = ∅. (2.10)

Chains are, on average, quite short (E(nc) ≈ 6 in our experiments). For this reason we

further merge chains in optical flow tubes. We deal with the elements in CH as nodes in a

graph, where an edge between two chains ch1, ch2 ∈ CH is added when there is at least one

frame in common between ch1 and ch2 such that the corresponding BBs in the two chains,

b1 ∈ ch1 and b2 ∈ ch2, satisfy: IoM(b1, b2) ≥ 0.5. Using IoM for measuring overlapping

(instead of IoU) has the advantage that small BBs lying on subparts of the object of interest are

clustered (e.g., (49, 52)) Hence, connected components of this graph correspond to chains with

a sufficient spatial overlap in at least one frame. We compute an optical flow tube (ot) for each

of these connected components:

ot = (r0, r1, ..., rno), (2.11)
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where each ri ∈ ot is obtained by simply averaging the coordinates of those BBs b1, b2, ...

corresponding to the same frame Ft (i.e., b1, b2, ... ∈ Bt) and respectively belonging to the

merged chains ch1, ch2, ... (i.e., b1 ∈ ch1, b2 ∈ ch2, etc. ...).

The final optical flow tubes are relatively accurate. Still they only rely on two elements:

the initial set of BBs provided by Selective Search and the matching pipeline described in this

section, which is purely based on optical flow information. What is missing is a statistical

model of the appearance of the tracked BBs, which can improve the result. We show in the

next section how this model is computed.

2.2.5 Transductive learning

Let OT = {ot1, ot2, ...} be the set of optical flow tubes computed as described in the previous

section. For every ot ∈ OT we build a specialized classifier. We extract positive samples from

the BBs in ot and negative samples from other BBs in the video frames in which ot is defined

and we train a linear SVM. The classifier obtained is then run on the whole video to obtain a

new tube, that we call a detection tube.

This is a special case of transductive learning, since the training samples are extracted, in

an unsupervised manner, from the same video in which the classifier is tested. In other words,

the aim of each classifier is to model the appearance of a tube and then use this model to refine

the tube. We do not need that the classifier is able to generalize to other videos because it is

only used for our tube extraction task.

The idea we propose is similar to tracking by detection approaches, and it is exploited, for

instance, in (53). The main difference of our approach with respect to (53) and other tracking

by detection approaches is that our method is completely unsupervised, while in (53) a few

positive BBs on the initial video frames need to be provided.

In more detail, given an optical flow tube ot = (r0, r1, ..., rno), we include all of its BBs

in the positive set P . Moreover, if (Ft0 , ..., Ftno
) is the sequence of frames in which ot is

defined, we also include in P all those BBs which sufficiently overlap with one of the rectangles

r ∈ ot in one of these frames, using the IoU criterion in Eq. (2.4). The negative set starts

with an initial set N0 which is built including BBs b randomly extracted in the first frame Ft0
and such that IoU(b, r0) ≤ 0.3. The threshold 0.3 is widely adopted in the object detection

literature for collecting negatives (e.g., see (51)). The negative set is iteratively pruned of

the ”easy negatives” and increased including new ”hard negatives” by iteratively testing the

current detector on the other frames while learning, following the well known hard negative
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mining approach proposed in (50). Specifically, in a given frame Ft ∈ (Ft0 , ..., Ftno
), given P

(which never changes) and Nt, we train a classifier ct = [wt, at] by minimizing:

wt, at = arg min
w,a

∑
r∈P

max(0, 1−wφ(r)− a) + (2.12)∑
r∈Nt

max(0, 1 + wφ(r) + a) + λ||w||22,

where φ(r) is a feature representing the BB r. Different kinds of features can be used. For

instance, HOG features are quite fast to be extracted from a rectangular patch of an image. In

our experiments we used CNN features: φ(r) is the 4096-dimensional feature vector extracted

from the last fully-connected layer (FC7) of the ImageNet trained net described in (54). Note

that we do not perform fine tuning of the net’s parameters. In principle we could use all the

sets of positives P , extracted using all the optical flow tubes, in order to fine-tune the network

before extracting our features. However, since the number of these tubes is small (on average,

about 3 per video) and they are short, fine-tuning a network with millions of parameters (54)

would probably lead to overfitting phenomena. Hence, we just use the net as a feature extractor,

relying on the widely proven high discriminative skills of these features (55). Following (51)

we also add some padding around each r to include context. Finally, the value of λ, which

controls the influence of the regularization term, is chosen according to (51): λ = 10−4 and the

feature values are normalized as suggested in (51). Following a consolidated object detection

pipeline and adopting the parameters suggested in (50, 51) allows us to avoid the necessity of

tuning the parameters of our classifiers. We believe that this is of primary importance for the

success of an unsupervised method because it does not force one to collect data to tune the

parameters when the method is applied to a new domain.

Once trained, ct is tested on the BBs of the subsequent frames in which ot is defined, new

hard negatives are added and training is repeated (Eq. (2.12)). We refer to (50) for details on

the hard negative mining procedure. The final classifier is given by the parameters computed

in the last frame of the tube: c = ctno
.

2.2.5.1 Detection Tubes

Once collected a set of classifiers C = {c1, ..., ck} from a given video, the final part of our

pipeline concerns the extraction of detection tubes using these classifiers. Given a frame Ft
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Figure 2.3: Flow chart of the proposed approach.

and a classifier ci = [wi, ai] ∈ C, the highest scoring detection BB dit of ci in Ft is obtained

maximizing:

dit = arg max
b∈Bt

wiφ(b) + ai. (2.13)

Note that we use all the BBs in Bt when ”testing” the classifier. We then build a detection

tube dti for each classifier ci linking dit over all the T frames of the video:

dti = (di1, ..., d
i
t, ...d

i
T ). (2.14)

In this way we collect a set k detection tubes, one per classifier. Note that the cardinality

of C, k, is not fixed a priori, and it depends on the number of optical flow tubes constructed in

the previous phase (see Sec. 2.2.4). In our experiments, k is usually very small (E(k) ≈ 3).

When many tubes are desired (e.g., to increase recall), we repeat training. More specifi-

cally, we split a detection tube dt in dt1, dt2 using the criteria of the first stage (Sec. 2.2.4).

Given two consecutive detections dt and dt+1 in dt, we split dt in dt1 = (d1, ..., dt) and

dt2 = (dt+1, ..., dT ) when: IoU(dt, dt+1) < 0.5 or D(dt, dt+1) ≥ θt, where, with a slight

abuse of notation, D(dt, dt+1) is the match density defined in Eq. (2.5) and θt the adaptive

threshold pre-computed in the optical flow tube construction phase. After splitting the optical

flow tubes, we use each tube to train a second set of classifiers C ′ repeating the procedure

described in Sec. 2.2.5.

The final set of tubes for a given video is the set of the detection tubes obtained using all

the detectors in C and C ′. For a given video v, let DTv = {dt1, dt2, ...} be the set of all the

detection tubes obtained using all the classifiers in C and C ′. In Fig 2.3 we show the flow chart

of the whole procedure.

2.2.6 Experiments

We evaluate our method using two common benchmarks and evaluation metrics for tube-

proposal algorithms and we compare with the state-of-the-art approaches in this field.
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2.2.6.1 Experimental Setup

Datasets We use for evaluation the UCF Sports dataset (56) and the YouTube Objects dataset

(39). UCF Sports is composed of 150 videos of 10 sports (e.g., diving, running, golf, kicking,

etc.). For evaluation we used the ground truth annotation provided in (44). Moreover, in order

to allow a comparison with the results reported in (44), we adopted the same train/test split

proposed in that article, where 100 videos are used for testing2. Note that in (44) the train split

is used to train the proposed supervised method, while in our unsupervised approach we only

used this ”train” subset of 50 videos in the development stage to do all our design choices. We

also do not have dataset-dependent parameters which need to be set (since all our parameter

values are set using a consolidated object detection pipeline, see Sec.s 2.2.4-2.2.5), thus there

is no training or parameter tuning phase in our approach, which makes the comparison with

other supervised methods such as (44) disadvantageous for us since we do not exploit any

dataset-specific information.

YouTube Objects is a large dataset composed of 1400 short shots obtained from videos col-

lected on YouTube. As in the case of UCF Sports, many videos have large camera movement,

illumination changes and cluttered backgrounds. However, the moving objects in this dataset

usually occupy a larger portion of the frame, thus they are easier to detect. Differently from

UCF Sports, in YouTube Objects there is only one annotated frame per shot but some frames

are annotated with multiple objects. The dataset is split in a ”train’ and a ”test” subset. We used

the ”test” shots to test our system (346 shots). Note that the ”train” shots are usually easier,

thus testing on the whole dataset would probably get higher accuracy results.

Metrics Following (44) we use two metrics: mBAO and CorLoc. Both metrics are based on

the Best Average Overlap (BAO) of a set of tube proposals with ground truth objects. In UCF

Sports dataset there is only one moving object annotated per video (but the dataset contains

some videos with more than one moving object, being only the predominant object provided

of ground truth annotations). Using this assumption, for a given video v and a set DTv of tube

proposals for v, BAO is defined as follows (44):

BAO(v) = max
dt∈DTv

1

|Tv|
∑
t∈Tv

IoU(dt, gt), (2.15)

2The train/test split of the dataset and the annotations are provided at:
http://lear.inrialpes.fr/ËIJoneata/3Dproposals
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2.2 Unsupervised Spatio-Temporal Tube Extraction 1

where |Tv| is the set of frames of video v with ground truth annotation, dt is the BB in tube

proposal dt at frame t, and gt is the ground truth at frame t. Note that in case of multiple

annotated objects per video (YouTube Objects dataset), Eq. (2.15) is applied separately to each

object using the same set of proposals Tv (44). mBAO is the mean BAO across all the videos,

while CorLoc is the fraction of videos for which the BAO is greater or equal to 0.5.

2.2.6.2 Comparison with State of the Art
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Figure 2.4: Quantitative results on UCF Sports and Youtube datasets

UCF Sports. In Fig.s 2.4a-2.4b we show the experimental results obtained on the ”test”

part of UCF Sports dataset (100 videos). The methods we compare to are: (1) the Spatio-

Temporal Object Detection Proposals (STODP) proposed in (44), (2) The Graph-Based Hier-

archical segmentation proposed in (11) and its variant (2) GBH-Flow presented in (44). All the

plotted results, except ours, have been obtained from (44).

Fig. 2.4a shows the mBAO plotted with respect to the number of average tube proposals

per video and, similarly, Fig. 2.4b shows the CorLoc-based evaluation. In case of one tube per

video, we obtain 0.374 mBAO and 0.37 CorLoc versus 0.3 and less than 0.3, respectively, of

the state-of-the-art system on UCF Sports (44), with a relative CorLoc improvement of more

than 30%. Once more we highlight that (44) is a supervised method, trained on the ”train”

split of UCF Sports, hence, most likely positively affected by a dataset bias, while our method

is completely unsupervised. We achieve the highest reported value of CorLoc (0.82) on UCF

Sport with 188 tube proposals (quite close to 0.8, obtained with only 36 tubes). Moreover, our

system achieves 0.7 CorLoc with only 18 tubes: a value of recall which is not achieved by the

other methods even when using 1000 proposals.
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2. UNSUPERVISED PROPOSAL SYSTEMS

YouTube Objects. Fig. 2.4c shows the results obtained with the YouTube Objects dataset.

In this case we compare with two different parameter settings of STODP (we refer the reader

to (44) for details), the unsupervised method proposed by Papazoglou et al. (41), the weakly

supervised method of Prest et al. (39) and the result for the best tube among the proposals of

the unsupervised method proposed by Brox and Malik (40). All the plotted results, except ours,

have been obtained from (44) (mBAO is not provided by the other authors).

As Fig. 2.4c clearly shows, we outperform all the competitors, both the supervised and

the unsupervised methods. The only approach which achieves a CorLoc value better than our

system is (41), which only outputs a single proposal per shot. However, we obtain a CorLoc

higher than (41) with only 4 proposals. Compared with Oneata et al. (44), which obtained

0.461 when using 10 proposals, with the same number of tubes we obtain a CorLoc of 0.596,

a relative improvement of 29%. Our largest value of CorLoc on this dataset is 0.927, obtained

with 258 tubes, a recall much higher than any other published result.

2.2.6.3 Qualitative Results

Figure 2.5: Some examples of detection tubes. In each row we show a tube taken from a different
video. 1-st and 2-nd row: UCF Sports dataset, 3-rd and 4-th row: YouTube Objects dataset. Red
rectangles are BBs of the tube, while blue rectangles are ground truth annotations. Note that in
YouTube Objects, only one frame is provided with ground truth (3-rd column).

In Fig. 2.5 we show some example results of our detection tubes using UCF Sports and
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2.2 Unsupervised Spatio-Temporal Tube Extraction 1

Figure 2.6: Some examples of errors of the proposed method. 1-st and 2-nd row: UCF Sports
dataset, 3-rd row: YouTube Objects dataset.

Youtube Objects images. Most of the times our system is able to accurately detect the moving

object even when it stops for a while (e.g., the dog, which is still with respect to the background,

despite there is camera movement), unlike most of the state-of-the-art methods which require

movement in all the frames.

In Fig. 2.6 we show some incorrectly detected tubes. In the middle row the misalignment

between the ground truth and the detections is probably due to the difference in speed of the

upper part and the lower part of the person, which produced detectors only for the fastest part

(the upper body). In the first row our system is actually able to accurately track most of the

moving persons but, unfortunately, the UCF Sport dataset contains annotation for only one

object (person) per video, penalizing the extraction of multiple-objects.

2.2.7 Conclusions

As a first step, we proposed a method for the extraction of tubes from videos based on a first

pipeline in which optical flow obtained with Dense Trajectories is used for matching BBs

and a second pipeline in which the initial tubes are used to collect positive training samples

for training tube-specific detectors. The final tubes are given by the detections of the trained

classifiers, used in a transductive framework. The method was evaluated on UCF Sports and

YouTube Objects, showing state-of-the-art results.

Our approach is completely unsupervised and all the critical parameters and thresholds

have been set by adopting the values commonly used in a consolidated object detection pipeline
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(49, 50, 51, 52) which makes the final system independent of specific datasets. Other important

characteristics of the proposed technique are the possibility to detect the object in frames in

which there is no movement (thanks to the detection-based approach) and the fact that we do

not need to assume that only one moving object is present in a video clip. The major limitations

of the system presented in this section are a low temporal resolution, restricting the use to more

temporally constrained action videos, and the possibility of ignoring background objects.
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2.3 Unsupervised Video Segmentation 1

2.3 Unsupervised Video Segmentation 2

Video segmentation can be defined as partitioning a video into several disjoint spatio-temporal

regions such that each region has consistent appearance and motion. In contrast to the method

addressed in Section 2.2, the commonly accepted definition and benchmarks for this task as-

sume that the segmentation is performed on a pixel level, with the high spatio-temporal seg-

mentation accuracy that it implies. A high performance pixel-level spatio-temporal system

mitigates the issues presented in the previous section.

2.3.1 Introduction

Among the existing video segmentation techniques, many successful ones benefit from map-

ping the video elements onto a graph which pixels/superpixels are nodes and edge weights

measure the similarity between nodes. Cutting or merging is then applied on this graph to

generate the video segments. Most of the existing graph-based methods focus on (i) what fea-

tures to extract from each node; (ii) how to define a precise similarity graph and (iii) how to

cut/merge the nodes effectively.

Meaningful features are necessary for good video segmentation. Previous work has ex-

tracted a variety of features (23, 26) from superpixels. To get the similarity graph, a graph

topology is firstly designed according to the spatio-temporal neighborhood of the superpixels

and the extracted features are used to weigh their edges. While standard similarity measures

on the extracted features provide the basic way to calculate the similarity graph (25, 26), more

recent work introduces learning a more precise similarity graph in either a supervised (27) or

an unsupervised manner (57). While supervised video segmentation methods (23, 27) can gen-

erally achieve better performance, the human annotation is time-consuming and the inherent

video object hierarchy may be highly subjective. In contrast, a group of methods improve on

cutting techniques (24, 25, 28, 29), which explicitly organize the image elements into math-

ematically sound structures based on the optimization of the predefined cutting loss function.

One representative criterion is the normalized cut (24). By minimizing a cutting cost objective

function, the best segmentation can be obtained. This objective function is further proved to be

equivalent to the generalized eigenvalue decomposition problem and a number of follow-ups

2"Joint Graph Learning and Video Segmentation via Multiple Cues and Topology Calibration" Jingkuan Song,
Lianli Gao, Mihai Marian Puscas, Feiping Nie, Fumin Shen, Nicu Sebe; MM ’16 Proceedings of the 24th ACM
international conference on Multimedia Pages 831-840 (2)
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proposed efficient solutions for this problem (58). To reduce the computational cost, in (28, 29),

fast partitioning methods that identify and remove between-cluster edges to form node clusters

are proposed.

Graph cut methods provide well-defined relationships between the segments, but the prob-

lem of finding a cut in an arbitrary graph may be NP-hard. More importantly, because the graph

similarity learning (59, 60, 61, 62, 63, 64) and the graph cutting are conducted in two separated

steps, the learned graph similarity matrix may not be the optimal one for cutting, leading to

suboptimal results. To tackle this problem, in this paper we propose a novel video segmen-

tation framework: Joint Graph Learning and Video Segmentation (JGLVS), which learns the

similarity graph and segmentations simultaneously. To summarize, the main contributions of

this paper are:

• Our unsupervised video segmentation framework learns the similarity graph and cutting

structure simultaneously to achieve the optimal segmentation results. We derive a novel

and efficient algorithm to solve this challenging problem.

• We utilized multiple cues of the superpixels and the weights of different cues are auto-

matically learned. Furthermore, we calibrate the similarity of different superpixels based

on their topology structures to make them comparable.

• The proposed JGLVS achieves up to 11% improvement over the state-of-the-art baselines

on the largest public dataset VSB100, which validates the effectiveness and efficiency of

our approach.

The remainder of this work is organized as follows. Section 2.3.2 discusses some related

works. The details of JGLVS are introduced in section 2.3.3. Section 2.3.5 illustrates the

experiments results and we draw a conclusion in section 2.3.6.

2.3.2 Related Work

The relevant state-of-the-art methods on video segmentation are reviewed in this section. The

problem definitions for video segmentation have been diverse.

Motion segmentation focuses on separating point trajectories from an image sequence with

respect to their motion (65, 66, 67, 68). In (67, 68), the segmentation is based on pairwise

affinities, while in (69) third order terms are employed to explain not only translational mo-

tion but also in-plane rotation and scaling, and (70) models even more general 3D motions
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using group invariants. The actual grouping in these methods is done using spectral clustering.

Differently, in (66), they formulate the segmentation of a video sequence based on point tra-

jectories as a minimum cost multicut problem. Unlike the commonly used spectral clustering

formulation, the minimum cost multicut formulation gives natural rise to optimize not only

for a cluster assignment but also for the number of clusters while allowing for varying cluster

sizes. Similarly, in (71), they utilize improved point trajectories to segment moving object in

video by a graph-based segmentation method. And in (72), motion trajectory grouping in a

setup similar to (68) is used to perform tracking. Although the grouping in (72) is computed

using spectral clustering, repulsive weights computed from segmentation topology are used in

the affinity matrix. In (65), they introduced minimal supervision, which is shown to be helpful

to improve the performance of motion segmentations. In (73), they propose a framework to

segment the objects in relative video shots, while discarding the irrelative video shots.

On the other hand, (26, 28, 29, 57) seek to construct full pixelwise segmentation, where

every pixel (not only the moving objects) is assigned one of several labels. They can generally

be divided into unsupervised and supervised methods.

A large body of literature exists on unsupervised video segmentation, with methods that

leverage appearance (24, 30, 31, 74), motion (30, 75), or multiple cues (26, 28, 29, 57). Unsu-

pervised supervoxel generation (26, 76) has been widely accepted as a valuable preprocessing

step for various techniques, such as graph-based methods (24, 26, 28, 29), hierarchical meth-

ods (24, 74, 77) and streaming methods (28, 57, 74). Graph-based methods map the video

elements onto a graph in which pixels/superpixels are nodes, and edge weights measure the

similarity between them. Galasso et al. (26) proposed a frame-based superpixel segmentation

approach (VSS) by extending the ultra-metric contour map (78) to combine with motion-cues

and appearance-based affinities for obtaining better video segmentation performance. To deal

with the high computational costs of spectral techniques, Galasso et al. (28) proposed a spectral

graph reduction (SGR) method for video segmentation. They assumed that all pixels within a

superpixel are connected by must-link constraints, and then reduced the original graph to a

relative small graph such that a density-normalized-cut was preserved. Yu et al. (29) proposed

an efficient and robust video segmentation framework based on parametric graph partitioning,

resulting in a fast and almost parameter free method. On the other hand, hierarchical video

segmentation provides a rich multi-scale decomposition of a given video. Grundmann et al.

(24) proposed a hierarchical graph-based (HGB) video segmentation approach by firstly over-

segmenting a volumetric video graph into space-time regions grouped by appearance, and then
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constructing a “region graph” over the obtained segmentation. Iteratively repeating this process

over multiple levels results in a a tree of spatio-temporal segmentations. In order to process

long videos, Xu et al. (74) proposed a streaming hierarchical video segmentation framework

by integrating a graph-based hierarchical segmentation method with a data streaming algo-

rithm (SHGB). This method leveraged ideas from data streams and enforced a Markovian as-

sumption on the video stream to approximate full video segmentation. Li et al. (57) proposed

a Sub-Optimal Low-rank Decomposition (SOLD) method, which defines a low-rank model

based on very generic assumption that the intra-class supervoxels are drawn from one identical

low rank feature subspace, and all supervoxels in a period lie on a union of multiple subspaces,

which can be justified by natural statistic and observations of videos. In addition, this method

adopts the Normalized-Cut (NCut) algorithm with a solved low-rank representation to segment

a video into several spatio-temporal regions. To tackle the lack of a common dataset with suf-

ficient annotation and the lack of an evaluation metric, a united video segmentation benchmark

was provided by Galasso et al. (79) to effectively evaluate the over- and under-segmentation

performance of video segmentation methods.

Supervised video segmentations (27, 80) can achieve better performance, but the human

annotation is time-consuming and the inherent video object hierarchy may be highly subjective.

In (80), they address the problem of integrating object reasoning with supervoxel labeling in

multiclass semantic video segmentation. They first propose an object augmented dense CRF

in spatio-temporal domain, which captures long-range dependency between supervoxels, and

imposes consistency between object and supervoxel labels. Then, they develop an efficient

mean field inference algorithm to jointly infer the supervoxel labels, object activations and

their occlusion relations for a moderate number of object hypotheses. While in (27), they

propose to combine features by means of a classifier, use calibrated classifier outputs as edge

weights and define the graph topology by edge selection. Learning the topology provides

larger performance gains and benefits efficiency due to a sparser structure of the constructed

graph. On the other hand, lots of supervised image segmentations have been proposed (81).

In (82), they propose a novel discriminative deep feature learning framework based on stacked

autoencoders (SAE) to tackle the problem of weakly supervised semantic segmentation. In

(81), they use CNN to train images most only with image-level labels and very few with pixel-

level labels for semantic segmentation.

Unsupervised full pixelwise segmentation is the research focus of this paper. A substantial

difference between our approach and previous unsupervised work is that, instead of separately
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Figure 2.7: The overview of JGLVS. Superpixels are firstly generated from the overlapping sliding
windows, based on which the features and distances are computed. Then, JGLVS is applied to learn
the similarity matrix and video segmentations.

obtaining a graph and finding a cut in it, we propose a joint graph learning and video seg-

mentation method by assigning adaptive neighbors for each superpixel and imposing a rank

constraint on the Laplacian matrix of the similarity graph, such that the learned graph has

exactly K connected components, representing K segmentations.

2.3.3 Our Approach

In this section, we first introduce our JGLVS framework, and then elaborate on the details of

each component.

2.3.3.1 The framework

In our JGLVS framework (see Fig. 2.7), we propose a novel perspective in solving the graph-

based video segmentation problem. Our model makes use of superpixels instead of pixels for

two reasons: a great decrease in the number of graph nodes that need to be processed, and an

initial, accurate frame-level segmentation.

Firstly, in each temporal sliding window of the video, we extract N superpixels from

M successive frames by setting a specific hierarchical level of an image segmentation algo-

rithm (76). Note that a too small value of N leads to large superpixels, and more under-
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Topology type Distances

Within frame lab, sof, cbs, bof

Across 1 frame lab, sof, ssd, sti

Across 2 frames ssd, sti

Across > 2 frames sti

Table 2.1: The corresponding distances for different topological structures

segmentation errors, while a large value of N is computationally expensive. Then, for each

superpixle, a set of features (e.g., appearance, motion and shape features) are extracted. Us-

ing these features and the predefined topology structure, our JGLVS framework can learn a

similarity graph of superpixels which has exactly K connected components.

2.3.3.2 Feature extraction and graph topology construction

For each superpixel, we follow (26, 76) to extract LAB, boundary, motion and shape features,

and use them to calculate the distance between two superpixels. However, not all of the su-

perpixels are connected. By allowing different edge connections between neighbors, different

graph topologies are constructed. Following (24, 27), edges may connect neighbors: within

frame (if two superpixels share a common part of their contour or are close by in the spatial

domain of the frame); across 1 frame (connected by coordinate correspondences over time);

across 2 frames (connected by across-1 correspondences, further propagated over one more

frame) and across > 2 frames (linked if overlapping with common long-term point trajecto-

ries).

We refer to these four types of neighbours as different topological structures (1, 2, 3, 4) and

record the topological structure of each pair of superpixels in a N ×N matrix W. Based on

these features and topological structures, we can have the following pairwise distances between

superpixels: common boundary strength (cbs), LAB (lab), boundary optical flow (bof ), super-

pixel optical flow (sof ), superpixel shape distance (ssd) and superpixel trajectory intersection

(sti) (See Section 2.3.5 for details).

As shown in Table 2.1, different topological types have different distances. We further

define a set of most-likely-linked superpixels M1,M2,M3 and M4 for each topological struc-

ture. More specifically, for the case of within frame, we decrease the number of superpixels by

changing the threshold of superpixel generation algorithm, and some similar superpixels will
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merge into one superpixel. These similar superpixels will be selected as the within frame most-

likely-linked superpixels. For the case of across 1 or 2 frame, if two superpixels’ ssd distance is

less than a threshold, they will be selected as a pair of across 1 or 2 frame most-likely-linked su-

perpixels. Similarly, if two superpixels’ sti distance is less than a threshold in the case of across

> 2 frame, they will be selected as a pair of across > 2 frame most-likely-linked superpixels.

2.3.3.3 Joint graph learning and video segmentation

Let Dt = {Dt
ij}Ni,j=1 denote the t-th distance matrix of a set of N superpixels, where t ∈

{1, ..., T}. Y={y1, y2, ...,yN} is the average location information for the superpixels. The goal

is to learn the similarity matrix S between superpixels by using different distances as well as

existent spatial information, and that all the superpixels have exact K connected components.

An optimal graph S should be smooth on different features as well as on the spatial infor-

mation distribution, which can be formulated as:

min
S,α

g (Y,S) + µ
∑T

t=1
αth

(
Dt,S

)
+ βr (S, α) (2.16)

where g (Y,S) is the penalty function that measures the smoothness of S on the spatial infor-

mation Y and h
(
Dt,S

)
is the loss function that measures the smoothness of S on the feature

Dt. r (S,ff) is a regularizer defined on the target S and α. µ and β are balancing parameters,

and ff t determines the importance of each feature.

The penalty function g (F,S) should be defined in a way such that close superpixels have

high similarity and vice versa. In this paper, we define it as follows:

g (Y,S) =
∑

ij

∥∥yi − yj
∥∥2
2
sij (2.17)

where yi and yj are the locations of the superpixels xi and xj . Similarly, h
(
Dt,S

)
is defined

as:

h
(
Dt,S

)
=
∑

ij
dtijsij (2.18)

The regularizer term r (S, α) is defined as:

r (S, α) = ‖S‖2F + γ ‖α‖22 (2.19)

If there is no regularizer on S (same for α), S has a trivial solution. Only the nearest data

point can be the neighbor of xi with the probability of 1. We further introduce the following
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constraints: S ≥ 0, S1 = 1, α ≥ 0 and αT 1 = 1, where 1 is a column vector with all 1s.

This is because that the similarity and weights should be positive, and the sum of similarity and

weights is set to be 1.

We can then obtain the objective function for learning the optimal graph by replacing

g (Y,S), h
(
Dt,S

)
and r (S, α) in (2.16) using (2.17), (2.18) and (2.19), as follows:

min
S,α

∑
ij

∥∥yi − yj
∥∥2
2
sij + µ

∑
tij

(
αtdtijsij

)
+β ‖S‖2F + βγ ‖α‖22
s.t., S ≥ 0,S1 = 1, α ≥ 0, αT 1 = 1

(2.20)

One limitation for this model is that it assumes that all the superpixels have the same types

of distances, which conflicts with the video segmentation application where different topolo-

gies have different distances. For example, if superpixels (i, k) are across> 2 frames neighbors

and (i, j) are within frame neighbors, the similarity between (i, k) are determined by sti but the

similarity between (i, j) are determined by lab, sof, cbs and bof. Their distances are not compa-

rable to each other, and we need to calibrate them. Based on the topology type wij ∈ [1, 2, 3, 4]

of superpixels i and j, we define a calibration function

cz(x) = (x− τ z)/(maxz − τ z), z ∈ [1, 2, 3, 4], (2.21)

where τ z is the threshold for z-th topology type determined by the mean distance of the set

Mz . Then, the objective function becomes:

min
S,α

∑
ij
‖yi − yj‖22 sij + µ

∑
ij

cwij

(∑
t
αtdtij

)
sij

+β ‖S‖2F + βγ ‖α‖22
s.t., S ≥ 0,S1 = 1, α ≥ 0, αT 1 = 1

(2.22)

Forcing the number of connected components to be exactly K seems like an impossible

goal since this kind of structured constraint on the similarities is fundamental but also very

difficult to handle. In this paper, we will propose a novel but very simple method to achieve

this goal.

The matrix S ∈ RN×N obtained in the neighbor assignment can be seen as a similarity

matrix of the graph with the N data points as the nodes. For a nonnegative similarity matrix

S, there is a Laplacian matrix L associated with it. According to the definition of Laplacian

matrix, for any values of fi ∈ RK×1, L of a similarity matrix S can be calculated as:∑
ij
‖fi − fj‖22 sij = 2tr

(
FTLF

)
(2.23)
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where F ∈ RN×K with the i-th row formed by fi, L = D − ST
+S
2 is called the Laplacian

matrix in graph theory, the degree matrix D ∈ RN×N is defined as a diagonal matrix where the

i-th diagonal element is
∑

j (sji + sij) /2. The Laplacian matrix L has the following property.

Theorem 1 The numberK of the eigenvalue 0 of the Laplacian matrix L is equal to the number
of connected components in the graph with the similarity matrix S if S is nonnegative.

Theorem 1 indicates that if rank(L) = N − K, then the superpixels have K connected

components based on S. Motivated by Theorem 1, we add an additional constraint rank(L) =

N −K into the (2.22). Thus, our new similarity graph learning model is to solve:

min
S,α

∑
ij

∥∥yi − yj
∥∥2
2
sij + µ

∑
ij

cwij

(∑
t
αtdtij

)
sij

+β ‖S‖2F + βγ ‖α‖22
s.t.

{
S ≥ 0,S1 = 1, α ≥ 0, αT 1 = 1
rank (L) = N −K

(2.24)

It is difficult to solve the problem (2.24). Because L = D − (ST + S)/2 and D also depends

on S, the constraint rank(L) = N −K is not easy to tackle. In the next subsection, we will

propose a novel and efficient algorithm to solve this challenging problem.

2.3.4 Iterative optimization

Suppose ei is the i-th smallest eigenvalue of L, we know ei ≥ 0 since L is positive semi-

definite. It can be seen that the problem (2.24) is equivalent to the following problem for a

large enough value of ρ:

min
S,α

∑
ij

∥∥yi − yj
∥∥2
2
sij + µ

∑
ij

cwij

(∑
t
αtdtij

)
sij

+β ‖S‖2F + βγ ‖α‖22 + 2ρ
K∑
i=1

ei

s.t., S ≥ 0,S1 = 1, α ≥ 0, αT 1 = 1

(2.25)

When ρ is set to a large enough value 2,
∑K

i ei will be imposed to be close to 0, which results

in rank (L) = N −K.

2In the real implementation, we initialize ρ with 1000, and increase ρ to ρ × 2 if the current number of
connected components is less than K, and decrease rho to ρ/2 if the current number of connected components is
larger than K
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According to the Ky Fan’s Theorem (83), we have:

K∑
i=1

ei = min
F∈RN×K ,FT F=I

tr
(
FTLF

)
(2.26)

Therefore, the problem (2.25) is further equivalent to the following problem:

min
S,F,α

∑
ij

∥∥yi − yj
∥∥2
2
sij + µ

∑
ij

cwij

(∑
t
αtdtij

)
sij

+β ‖S‖2F + βγ ‖α‖22 + 2ρtr
(
FTLF

)
s.t.,

{
S ≥ 0,S1 = 1, α ≥ 0, αT 1 = 1

F ∈ RN×K ,FTF = I

(2.27)

Compared with the original problem (2.24), (2.27) is much easier to solve. We propose an

iterative method to minimize the above objective function (2.27).

Firstly, we initialize αt = 1/T and then S by the optimal solution to the problem (2.22).

Once these initial values are given, in each iteration, we first update F given S and α, and then

update S and α by fixing the other parameters. These steps are described below:

Update F: By fixing S and α, the problem (2.27) is equivalent to optimizing the following

objective function:

min
F∈RN×K ,FT F=I

tr
(
FTLF

)
(2.28)

The optimal solution F to the problem (2.28) is formed by theK eigenvectors of L correspond-

ing to the K smallest eigenvalues.

Update S: By fixing F and α, we can obtain S by optimizing (2.27). It is equivalent to optimize

the following objective function:

min
S≥0,S1=1

∑
ij

∥∥yi − yj
∥∥2
2
sij + ρ

∑
ij
‖fi − fj‖22 sij

+β ‖S‖2F + µ
∑
ij

cwij

(∑
t
αtdtij

)
sij

(2.29)

It can be reformulated as:

min
S≥0,S1=1

∑
i

(
βsisiT + (ai + µbi + ρci) siT

)
⇒ min

S≥0,S1=1

∑
i

(
sisiT + ai+µbi+ρci

β siT
) (2.30)

where ai = {aij , 1 ≤ j ≤ n} with aij =
∥∥yi − yj

∥∥2
2
, bi = {bij , 1 ≤ j ≤ n} with bij =∑

t α
tdtij and ci = {cij , 1 ≤ j ≤ n} ∈ R1×n with cij = ‖fi − fj‖22. It is further equivalent

to:

36



2.3 Unsupervised Video Segmentation 1

min
S≥0,S1=1

∑
i

(
si + ai+µbi+ρci

2β

)2
2

(2.31)

Then each si can be efficiently solved by using a quadratic programming solver, which will

be introduced in the next subsection (solution for problem (2.31)).

Update α: By fixing F and S, we can obtain α by optimizing (2.27). It is equivalent to optimize

the following objective function:

min
α≥0,αT 1=1

µ
∑
ij

cwij

(∑
t
αtdtij

)
sij + βγ ‖α‖22

⇒ min
α≥0,αT 1=1

µ
∑
t
αt
∑
ij
dtijsij/(maxwij−τwij)+βγ ‖α‖22

⇒ min
α≥0,αT 1=1

µdα+ βγ ‖α‖22

(2.32)

where d =
{
dt
}T
t=1

, dt =
∑

ij d
t
ijsij/(maxwij − τwij ) and maxwij is the max value of S with

the topological structure wij . Then we can use a quadratic programming solver to obtain α.

We update F,S and α iteratively until the objective function (2.22) converges, as shown in

Algorithm 1.

Algorithm 1: Solution for JGLVS
Input: Initialized α, segmentation number K, topology structure matrix W,

most-likely-linked sets M, parameters β, γ, µ, a large enough ρ;
Output: S ∈ RN×N with exact K connected components, α;

1: Initialize cz(x) using α, W and M;
2: Initialize S by the optimal solution of 2.22;
3: repeat
4: Fix S and α, calculate F according to the solution of problem (2.28);
5: Fix F and α, update S by solving the problem (2.31);
6: Fix F and S, update α by solving the problem (2.32);
7: Update cz(x) using α, W and M;
8: until convergence or max iteration is reached.
9: return S, α;

Solution for problem (2.31) In this subsection, we introduce an efficient solution for prob-

lem (2.31) for determining the regularization parameter β, so that we have fewer parameters to
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tune. The Lagrangian function of problem (2.31) is:

` (si, η, εi) = 1
2

∑
i

∥∥∥si + ai+µbi+ρci

2β

∥∥∥2
2

−η(sTi 1− 1)− sTi εi
(2.33)

where η, εi ≥ 0 are the Lagrangian multipliers, and β is the regularization parameter for each

si. Let dij=aij+µbij+ρcij . According to the KKT condition, it can be verified that the optimal

solution si should be:

sij =

(
−aij + µbij + ρcij

2β
+ η

)
+

(2.34)

By replacing η and εi according to the KKT condition, we obtain the optimal si. However,

in practice, we usually could achieve better performance if si is sparse, i.e., only the P near-

est neighbors of xi could have chance to connect to xi. Another benefit of learning a sparse

similarity matrix S is that the computational burden can be largely alleviated for subsequent

processing. With this motivation, we determine the parameter β.

Without loss of generality, suppose di1, di2, ..., diN are ordered from small to large. If

the optimal si has only P nonzero elements, then according to (2.34), we know siP > 0 and

si,P+1 = 0. Therefore, we have:

− diP
2βP

+ η > 0, −di,P+1

2βP+1
+ η ≤ 0 (2.35)

and

sTi 1 =
P∑
j=1

(− dij
2βi

+ η) = 1

⇒ η = 1
P + 1

2Pβi

P∑
j=1

dij

(2.36)

By replacing η in (2.35) using (2.36), we have the following inequality for βi:

P

2
dip −

1

2

P∑
j=1

dij < βi ≤
P

2
di,P+1 −

1

2

P∑
j=1

dij (2.37)

Therefore, in order to obtain an optimal solution si to the problem (2.31) that has exact P

nonzero values, we set

βi =
P

2
di,P+1 −

1

2

∑P

j=1
dij (2.38)
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The overall β is set to the mean of β1, β2, ..., βn. That is, we set β to be

β =
1

N

∑N

i=1

(
P

2
di,P+1 −

1

2

∑P

j=1
dij

)
(2.39)

The number of neighbors P is much easier to tune than the regularization parameter β since P

is an integer and has explicit meaning.

2.3.4.1 Streaming video segmentation

An effective streaming algorithm can enable us to process an arbitrary long video with limited

memory and computational resources, and thus is essential in video segmentation. We pro-

pose a simple yet effective clip-based segmentation method that scales well while maintaining

temporal coherence, without processing the entire volume at once.

1
1L

1
2L

1
3L

2
1L

2
2L

2
3L

1L

Figure 2.8: The segmentation labels L1, L2 of the overlapping frame f . L1 denotes the segmenta-
tion of the overlapping in the previous clip, and provides some constraints to the segmentation of
L2, which is the segmentation in the current clip.

We start by partitioning the video into equally sized clips of n frames (n = 6 in our exper-

iments), and one frame f is overlapped between neighboring clips. The temporal consistent

constraints are introduced by properly propagating solutions from previous temporal window

to the current window. Given the previous and current segmentation labels L1, L2 of the over-

lapping frame f , we first compute the similarity matrix O of different segments. The similarity

of the i-th segment iL1 in the previous segmentation and the j-th segment jL2 in the current

segmentation is defined as:

o(iL1 , jL2) = |miL1
∩mjL2

|/min
(
|miL1

|, |mjL2
|
)
, (2.40)
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(a) Images (b) HGB (c) SHGB (d) SOLD (e) Ours (f) GT

Figure 2.9: Qualitative comparisons with the state-of-the-art video segmentation methods HGB,
SHGB and SOLD. We can see that our method substantially outperforms the algorithms of HGB,
SHGB and SOLD.

where miL1
and mjL2

are masks to indicate which pixels belong to the segments iL1 and jL2 .

After obtaining the similarity matrix O, we can assign new segmentation ids to the segments

in L2. Intuitively, two segments with the highest similarity should have the same segment id.

However, there are three special cases to consider, which are illustrated in Fig. 2.8. The first

case is that a segment (e.g., 3L2) has no overlapping in the previous segment. Then a new

segment id should be assigned to 3L2 . The second case is that two segments (e.g., 1L2 and

2L2) are included by one previous segment (1L1). Then the one (2L2) with larger size will

be assigned the id (1) of overlapping segment (1L1), and the one (1L2) with smaller size will

be assigned a new id. Lastly, if one segment (e.g., 4L2) includes two previous segments (2L1

and 3L1), this segment will be assigned the id (2) of a larger segment (2L1). The algorithm

for generating temporal consistent constraints is given in Algorithm 2. It takes previous and

current segmentation labels L1 and L2, and similarity threshold threshold as input. And it

calculates which segment id in L1 corresponds to each segment in L2. Algorithm 2 outputs the

refined segmentation labels L′2 as well as the segment id mapping mapping.

2.3.5 Experiments

In this section, we evaluate our JGLVS on the standard benchmark VSB100 (79). First, we

compare our method with other state-of-the-art methods. Then, we further analyze the effec-

tiveness of our main components. Finally, we report the efficiency of our method.
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Algorithm 2: The algorithm for generation of the temporal consistent constraints be-
tween previous and current segmentation labels L1, L2 of the overlapping frame f .

Input: Previous and current segmentation labels L1 and L2, threshold threshold;
Output: Refined segmentation labels L′2, mapping;

1: Get number of segments num1 and num2 in L1 and L2;
2: Computer O by Eq.(2.40);
3: Assign mapping the ids with the largest similarity to L2 by

[value,mapping] = max(O);
4: for i = 1 : num2 do
5: if value(i) is smaller than threshold, then
6: Updating mapping(i) with a new id;
7: end if
8: if mapping(i) is used by a previous segment, then
9: Assign a new id to the segment with a smaller size;

10: end if
11: if Another segment in L1 has the same similarity to segment i as mapping(i), then
12: Updating mapping(i) with the id of a larger segment;
13: end if
14: Refine L2 to L′2 based on mapping;
15: end for
16: return L′2,mapping;

2.3.5.1 Experimental Settings

We give the details of dataset selection, feature extraction and evaluation metrics in this sub-

section.

Dataset: The selected VSB100 (79) is a very challenging dataset used for empirical eval-

uation. It is the largest video segmentation dataset with high definition frames, and consists

of four difficult sub-datasets: general, motion segmentation, non-rigid motion segmentation

and camera motion segmentation. Following the setting in (57, 79), we regard the general

sub-dataset (60 video sequences) as our test set for all the approaches.

To make the comparison comprehensive, we set {µ, γ} = {1000, 1}, {ρ} = {1000} and

{iteration} = {30} in the experiment. β is automatically determined by the algorithm. In

addition, the number of frames per window is set to be 6, and 1 frame is overlapped between
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BPR VPR
Algorithm ODS OSS AP ODS OSS AP

BMC (84) 0.47 0.48 0.32 0.51 0.52 0.38

VSS (26) 0.51 0.56 0.45 0.45 0.51 0.42

HGB (24) 0.47 0.54 0.41 0.52 0.55 0.52
SHGB(74) 0.38 0.46 0.32 0.45 0.48 0.44

SOLD (57) 0.54 0.58 0.40 0.53 0.60 0.46

Ours−calibration 0.64 0.64 0.45 0.53 0.58 0.49

Ours−consistency 0.65 0.65 0.50 0.51 0.53 0.47

Ours 0.65 0.65 0.48 0.55 0.61 0.51

Human 0.81 0.81 0.67 0.83 0.83 0.70

Table 2.2: Comparison of state-of-the-art video segmentation algorithms with our proposed
method on the test set of VSB100.

neighboring windows.

Features and Distances: Common boundary strength [cbs]. This measures distance in the

close vicinity of the common boundary between two superpixels if and jf by averaging the

common boundary strength. We take vijf the average UCM of (76) as a measure of the boundary

strength between i and j and define: cbs(if , jf ) = vijf .

Lab [lab]. This uses the distance between the median brightness and color of a superpixel in

Lab-color-space as a measure of the overall distance among two superpixels i and j, from the

same or different frames f and f ′: lab(if , jf ′) = ‖LABif − LABjf ′‖2.

Boundary optical flow [bof ]. We consider an optical flow estimation (26). The resulting uf (x)

allows to compute the motion distance in the vicinity of the boundary between two superpixels

by averaging their uf across the common boundary

ϕij
f : bof(if , jf )=

(∑
(xm

i ,xm
i )∈ϕij

f
‖uf (xmi )−uf

(
xmj
)
‖
2

)
/|ϕij

f |.

Superpixel optical flow [sof ]. This measures the overall motion distance between two super-

pixels if and jf ′ based on their median optical flow u: sof(if , jf ′) = ‖uif − ujf ′‖2.

Superpixel shape distance [ssd]. We measure the shape distance by comparing mjf ′ the shape

of a superpixel j at frame f ′ with the shape of if propagated with optical flow to frame f ′ (its

projected mask mf ′

if
). ssd is given by the Dice coefficient between the true mjf ′ and optical-

flow-projected mf ′

if
binary mask: ssd(if , jf ′) = 1− 2|mf ′

if
∩mjf′ |/

(
|mf ′

if
|+|mjf′ |

)
.
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Superpixel trajectories intersection [sti]. It measures the distance between superpixels if and

jf ′ which belongs to frames potentially further in time from each other f ′ = f + m,m > 2.

We consider the dense point trajectories of (85) as a measure of the shape (binary mask) pro-

jection. Let φ(if ) be the subset of trajectories intersecting superpixel if . The distance is the

Dice measure between the intersection sets

φ(if ) and φ(j′f ): sti(if , jf ′) = 1− 2|φ(if ) ∩ φ(j′f )|/
(
|φ(if )|+ |φ(j′f )|

)
.

Evaluation Metrics: Following (57, 79), we use two evaluation metrics: 1) Boundary Precision-

Recall (BPR), which casts the boundary detection problem as one of classifying boundary

from nonboundary pixels and measures the quality of a segmentation boundary map in the

precision-recall framework; and 2) Volume Precision-Recall (VPR), which optimally assigns

spatio-temporal volumes between the computer generated segmentation and the human an-

notated segmentations and then measures their overlap. For both BPR and VPR, we report

average precision (AP), optimal dataset scale (ODS), and optimal segmentation scale (OSS).

2.3.5.2 Comparison with state-of-the-art video segmentation methods
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Figure 2.10: Comparison curves of our framework with the state-of-the-art video segmentation
approaches BMC (84), VSS (26), HGB (24), SHGB (74) and SOLD (57).

We compare our approach with the following five state-of-the-art video segmentation al-

gorithms: BMC (84), VSS (26), HGB (24), SHGB (74) and SOLD (57). We also report our

method without calibration (Ours−calibration) and our method without temporal consistency

(Ours−consistency). Table 2.2 illustrates a summary of the aggregate evaluation performance,

including ODS, OSS and AP of both BPR and VPR. Fig.2.10 shows the BPR and VPR curves
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of the comparisons on the VSB100 dataset. From Table 2.2 and Fig.2.10, we have the following

observations:

• Our approach outperforms the state-of-the-art methods (BMC, VSS, HGB, SHGB and

SOLD) in both BPR and VPR on the VSB100 dataset. Specifically, our proposed method

outperforms the currently best performance (SOLD (57)) on both BPR and VPR by a

large margin, as it appears both in the Table 2.2 and Fig.2.10 (11%, 7% and 8% in BPR,

2%, 1% and 5% in VPR). Our AP in VPR is slightly lower than HGB. But we can

alleviate it by simply increasing the superpixels number, as shown in Table 2.4.

• Though VSS (26) and SOLD (57) exploits multiple cues as well, our method performs

better. This probably owes to the proposed joint graph learning and video segmentation

framework, and the automatically learned weights for different cues.

• SOLD (57) is a strong competitor. The superior performances over SOLD in both BPR

and VPR demonstrate that our approach can not only effectively infer the spatial simi-

larity between superpixels within a frame, but also preserve the longer-range temporal

consistency in a streaming mode.

• Temporal consistency processing plays an important role for VPR, as indicated in Table

2.2. An example is given in Fig.2.11 to illustrate the effect of temporal consistency

processing. If we do not constrain that the same object in the close frames to have the

same label, the performance on VPR metric will decrease.

• Topology calibration improves the performance, especially for VPR. This is due to that

without calibration, the distances of different topological structures (especially for cross

frame) are not comparable.

We illustrate qualitative results in Fig.2.9, comparing our proposed method to the state-

of-the-art video segmentation algorithms including HGB, SHGB and SOLD. Fig.2.9 shows

consistent results to the quantitative results. Our method is able to provide better distinguished

visual objects with well-localized boundaries and limited label leakage.

2.3.5.3 Component analysis

In this subsection, we study the effect of level and the different types of distances on our

proposed method.
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BPR VPR
Algorithm ODS OSS AP ODS OSS AP

CBS 0.64 0.64 0.46 0.43 0.46 0.38

BOF 0.64 0.64 0.44 0.43 0.44 0.37

LAB 0.64 0.65 0.45 0.51 0.53 0.43

SOF 0.64 0.64 0.47 0.42 0.45 0.37

SSD 0.64 0.64 0.44 0.51 0.56 0.45

STI 0.64 0.64 0.45 0.46 0.49 0.42

All 0.65 0.65 0.48 0.55 0.61 0.51

Human 0.81 0.81 0.67 0.83 0.83 0.70

Table 2.3: The effect of distances on our proposed method.

BPR VPR
Algorithm ODS OSS AP ODS OSS AP
Level = 25 0.59 0.59 0.54 0.54 0.58 0.56
Level = 50 0.64 0.65 0.53 0.55 0.57 0.51

Level = 75 0.65 0.65 0.48 0.55 0.61 0.51

Level = 95 0.64 0.64 0.47 0.55 0.59 0.46

Level = 125 0.61 0.61 0.41 0.53 0.58 0.40

Human 0.81 0.81 0.67 0.83 0.83 0.70

Table 2.4: The effect of level on our proposed method.

As described in Section 2.3.3, our proposed algorithm is imposed on the superpixels which

are extracted from (76). The number of superpixels is determined by the value of level. From

the Table 2.4, we can see that the level is important to the performance. In general, when

level = 75, the overall best performance is achieved for both BPR (65%, 65% and 48%) and

VPR (55%, 61% and 51%). In addition, when level = 25, the AP for both BPR and VPR

reaches the peak values: 54% and 56% respectively. This is due to that when level = 25,

more superpixels are generated and over-segmentation improves the precision but decreases

the recall (76).

The effect of different distances is analyzed and the results are shown in Table 2.3. As

described in Section 2.3.3, our method uses different types of pairwise distance between super-

pxiels for video segmentation. From Table 2.3, we can see that distances have different impact
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Original frames Without Temporal consistency With Temporal consistency

Figure 2.11: Segmentations of a given sequence of video frames. The left are the original frames,
the middle lines are the segmentations without temporal consistency, and the right lines are the
segmentations with temporal consistency processing. It is clear that if no temporal consistency
processing is applied, the same object in the successive frames cannot be guaranteed to have the
same segment id (i.e., label). In this case, the VPR will degrade.

on the performance, hence it is important to learn the weights for different distances. Using a

combined distances with learned weight achieves better performance than using a single dis-

tance.

2.3.5.4 Efficiency Analysis

In this subsection, we evaluate the time efficiency of our proposed method. These experiments

are carried out on a desktop with an Intel(R) Core (TM)2 Duo CPU and 8GB RAM. Our

method is conducted on the features of the generated superpixels, which are obtained in the

preprocessing step. The computational cost for our algorithm is O(N2) + O(N3). However,

we do segmentation on the N superpixels, which is usually 10-100s. Therefore, our method can

segment 1 frame within 0.2s on average, as indicated in Fig. 2.12. Fig. 2.12 reports the running
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time corresponding to the number of segmentations. In average, it costs 0.1895 seconds per

frame for our proposed method. Large number of segmentations does not necessarily consume

more time, because the optimization may terminate in less iterations.
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Figure 2.12: The running time (seconds per frame) vs. number of segmentations (K) of our pro-
posed method.

2.3.6 Conclusions

This Section proposes a framework that simultaneously learns the graph similarity matrix and

video segmentation, instead of first organizing the superpixels into graphs and then cutting the

generated graph for segmentation. Based on the spatial and visual information, each vertex is

assigned with adaptive and optimal neighbors for graph similarity learning. By imposing rank

constraints on the Laplacian matrix, the number of connected components in the generated

similarity graph are equal to the number of segmentations, sidestepping the need for separate

steps in similarity computation and graph cutting. Experimental results show that the proposed

unsupervised system outperforms state-of-the-art video segmentation algorithms by a large

margin on the VSB100 dataset.
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This method provides a series of advantages over the work presented in Section 2.2, specif-

ically a more precise temporal segmentation, and the guaranteed segmentation of background

objects.
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2.4 Unsupervised Adversarial Depth Estimation 2

While Sections 2.2 and 2.3 consider the data quality problem through a lack of annotations,

the method detailed in the current section is motivated by the difficulty of computing depth

maps for use in further tasks without the use highly expensive LIDAR annotations. The system

makes use of a cycled generative network to impose stronger constraints between the stereo

image pair, leading to the system learning better representations.

2.4.1 Introduction

} {
Fusion DlDr

True? Fake? True? Fake?

Il

Ir

Îl

Ir

Îr

Îl

Cycle

Figure 2.13: Motivation of the proposed unsupervised depth estimation approach using cycled
generative networks optimized with adversarial learning. The left and right image synthesis in a
cycle provides each other strong constraint and supervision to better optimize both generators. The
Îr and Îl are synthesized images. Final depth estimation is obtained by fusing the output from both
generators.

Most previous works considering deep architectures for predicting depth maps operate in a

supervised learning setting (33, 34, 35, 36) and, specifically, devise powerful deep regression

2"Unsupervised Adversarial Depth Estimation using Cycled Generative Networks" Andrea Pilzer*, Dan Xu*,
Mihai Puscas*, Elisa Ricci, Nicu Sebe; 2018 International Conference on 3D Vision (3DV)587-595 (3)
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models with Convolutional Neural Networks (CNN). These models are used for monocular

depth estimation, i.e. they are trained to learn the transformation from the RGB image do-

main to the depth domain in a pixel-to-pixel fashion. In this context, multi-scale CNN models

have shown to be especially effective for estimating depth maps (33). Upon these, proba-

bilistic graphical models, such as Conditional Random Fields (CRFs), implemented as neural

networks for end-to-end optimization, have proved to be beneficial, boosting the performance

of deep regression models (35, 36). However, supervised learning models require ground-truth

depth data which are usually costly to acquire. This problem is especially relevant with deep

learning architectures, as large amount of data are typically required to produce satisfactory

performance. Furthermore, supervised monocular depth estimation can be regarded as an ill-

posed problem due to the scale ambiguity issue (86).

To tackle these problems, recently unsupervised learning-based approaches for depth esti-

mation have been introduced (87, 88). These methods operate by learning the correspondence

field (i.e. the disparity map) between the two different image views of a calibrated stereo cam-

era using only the rectified left and right images. Then, given several camera parameters, the

depth maps can be calculated using the predicted disparity maps. Significant progresses have

been made along this research line (89, 90, 91). In particular, Godard et al. (90) proposed to

estimate both the direct and the reverse disparity maps using a single generative network and

utilized the consistency between left and right disparity maps to constrain on the model learn-

ing. Other works proposed to facilitate the depth estimation by jointly learning the camera

pose (92, 93). These works optimized their models relying on the supervision from the image

synthesis of an expected view, whose quality plays a direct influence on the performance of

the estimated disparity map. However, all of these works only considered a reconstruction loss

and none of them have explored using adversarial learning to improve the generation of the

synthesized images.

In this paper, we follow the unsupervised learning setting and propose a novel end-to-

end trainable deep network model for adversarial learning-based depth estimation given stereo

image pairs. The proposed approach consists of two generative sub-networks which predict

the disparity map from the left to the right view and vice-versa. The two sub-networks are

organized in a cycle (Fig. 2.13), such as to perform the image synthesis of different views in

a closed loop. This new network design provides strong constraint and supervision for each

image view, facilitating the optimization of both generators from the two sub-networks which

50



2.4 Unsupervised Adversarial Depth Estimation 1

are jointly learned with an adversarial learning strategy. The final disparity map is produced by

combining the output from the two generators.

In summary, the main contributions of this work are threefold:

• To the best of our knowledge, we are the first to explore using adversarial learning to

facilitate the image synthesis of different views in a unified deep network for improving

the unsupervised depth estimation;

• We present a new cycled generative network structure for unsupervised depth estimation

which can learn both the forward and the reverse disparity maps, and can synthesize the

different image views in a closed loop. Compared with the existing generative network

structures, the proposed cycled generative network is able to enforce stronger constraints

from each image view and better optimize the network generators.

• Extensive experiments on two large publicly available datasets (i.e. KITTI and Cityscapes)

demonstrate the effectiveness of both the adversarial image synthesis and the cycled gen-

erative network structure.

2.4.2 Related Work

Supervised Depth Estimation. Supervised deep learning greatly improved the performance

of depth estimation. Given enough ground-truth depth training data, deep neural networks

based approaches have achieved very promising performances in recent years. Multiple large-

scale depth-contained datasets (94, 95, 96, 97) have been published. In a single view set-

ting, NYUD (94) presents indoor images while Make3D (95) is recorded in outdoors. Instead

KITTI (96) and Cityscapes (97) are collected in outdoors with calibrated stereo cameras. Based

on these datasets, a significant effort has been made for the supervised monocular depth esti-

mation task (33, 35, 36, 98, 99). The multi-scale CNN (33) and probabilistic graphical models

based deep networks (35, 36, 100) also show an obvious performance boosting on the task.

Xu et al. (101) first introduce a structured attention mechanism for learning better multi-

scale deep representations for the task. However, the supervised-based approaches rely on the

expensive ground-truth depth data during training, which are not flexible to deploy crossing

application scenarios.

Unsupervised Depth Estimation. A more recent trend is unsupervised-based depth esti-

mation (91, 93, 102, 103). A remarkable advantage of unsupervised estimation lies in avoid-

ing the use of costly ground truth depth annotations in training. Deep stereo matching mod-
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Figure 2.14: An illustrative comparison of different methods for unsupervised stereo depth es-
timation: (a) traditional stereo-matching-based depth estimation, (b) the proposed unsupervised
adversarial depth estimation and (c) the proposed cycled generative networks for unsupervised
adversarial depth estimation. The symbols Dl, Dr denote discriminators, and Gl, Gr denote gen-
erators. The symbol Ŵ denotes a warping operation.

els (87, 88) are proposed for direct disparity estimation. In an indirect means, Garg et al. (89)

propose a classic approach for unsupervised monocular depth estimation based on image syn-

thesis. Godard et al. (90) propose to use forward and backward reconstructions of the different

image views, and multiple optimization losses are considered in the model. Zhou et al. (92)

jointly learn the depth and the camera pose as a reinforcement in a single deep network. There

are also works jointly learning the scene depth and ego-motion in monocular videos without

using groundtruth data (104, 105). However, none of these works considers the adversarial

learning scheme in their models to improve the image generation quality for better depth esti-

mation.

GANs. Generative-adversarial networks (GANs) have attracted a lot of attention for its

advantage in generation problems. Godfellow et al. (106) revisit the generative adversarial

learning strategy and show interesting results in the image generation task. After that, GANs

are applied into various generation applications, and different GAN models are developed, such

as CycleGAN (107) and DualGAN (108). There are few works in the literature considering

GAN models for the more challenging depth estimation task. Although Kundu et al. (109)

investigate adversarial learning for the task, they utilize it in a context of domain adaptation in

a single-track network, using a semi-supervised setting with an extra synthetic dataset, while

ours considers a fully unsupervised setting and the adversarial learning in a cycled generative
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Figure 2.15: Illustration of the detailed framework of the proposed cycled generative networks for
unsupervised adversarial depth estimation. The symbol c© denotes a concatenation operation; Lrec

represents the reconstruction loss for different generators; Lcon denotes a consistence loss between
the disparity maps generated from the two generators.

network aims to help the reconstruction of better image views. Both the intuition and the

network design are significantly different.

2.4.3 The Proposed Approach

We propose a novel approach for unsupervised adversarial depth estimation using cycled gener-

ative networks. An illustrative comparison of different unsupervised depth estimation models

is shown in Fig. 2.14. Fig. 2.14a shows traditional stereo matching based depth estima-

tion approaches, which basically learn a stereo matching network for directly predicting the

disparity (87). Different from the traditional stereo approaches, we estimate the disparity in

an indirect means through image synthesis from different views with the adversarial learning

strategy as shown in Fig. 2.14b. Fig. 2.14c shows our full model using the proposed cycled

generative networks for the task. In this section we first give the problem statement, and then

present the proposed adversarial learning-based unsupervised stereo depth estimation, and fi-

nally we illustrate the proposed full model and introduce the overall end-to-end optimization

objective and the testing process.

2.4.3.1 Problem Statement

We target at estimating a disparity map given a pair of images from a calibrated stereo camera.

The problem can be formally defined as follows: given a left image Il and a right image Ir

from the camera, we are interested in predicting a disparity map d in which each pixel value
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represents an offset of the corresponding pixel between the left and the right image. If given

the baseline distance bd between the left and the right camera and the camera focal length fl,

a depth map D can be calculated with the formula of D = (bd ∗ fl)/d. We indirectly learn

the disparity through the image synthesis. Specifically, assume that a left-to-right disparity

d
(l)
r is produced from a generative network Gl with the left-view image Il as input, and then a

warping function fw(·) is used to perform the synthesis of the right image view by sampling

from Il, i.e. Îr = fw(d
(l)
r , Il). A reconstruction loss between Îr and Ir is thus utilized to

provide supervision in optimizing the network Gl.

2.4.3.2 Unsupervised Adversarial Depth Estimation

We now introduce the proposed unsupervised adversarial depth estimation approach. Assum-

ing we have a generative networkGl composed of two sub-networks, a generative sub-network

G
(l)
l with input Il and a generative sub-network G(r)

l with input Ir. These are used to produce

two distinct left-to-right disparity maps d
(l)
r and d

(r)
r respectively, i.e. d

(l)
r = G

(l)
l (Il) and

d
(r)
r = G

(r)
l (Ir). The sub-network G(l)

l and G(r)
l exploit the same network structure using

a convolutional encoder-decoder, where the encoders aim at obtaining compact image repre-

sentations and could be shared to reduce the network capacity. Since the two disparity maps

are produced from different input images, and show complementary characteristics, they are

fused using a linear combination implemented as concatenation and 1× 1 convolution, and we

obtain an enhanced disparity map d′r, which is used to synthesize a right view image Îr via the

warping operation, i.e. Îr = fw(d′r, Il). Then we use an L1-norm reconstruction loss Lrec for

optimization as follows:

L(r)
rec = ‖Ir − fw(d′r, Il)‖1 (2.41)

To improve the generation quality of the image Îr and benefit from the advantage of adver-

sarial learning, we propose to use adversarial learning here for a better optimization due to its

demonstrated powerful ability in the image generation task (106). For the synthesized image

Îr, a discriminators Dr outputting a scalar value which is used to discriminate if the image

Îr or Ir is fake or true, and thus the adversarial objective for the generative network can be

formulated as follows:

L(r)
gan(Gl,Dr, Il, Ir) = EIr∼p(Ir)[logDr(Ir)]

+ EIl∼p(Il)[log(1−Dr(fw(d′r, Il)))]
(2.42)
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where we adopt a cross-entropy loss to measure the expectation of the image Il and Ir against

the distribution of the left and the right view images p(Il) and p(Ir) respectively. Then the joint

optimization loss is the combination of the reconstruction loss and the adversarial loss written

as:

L(r)
o = γ1L

(r)
rec + γ2L

(r)
gan (2.43)

where γ1 and γ2 are the weights for balancing the loss magnitude of the two parts to stabilize

the training process. In the testing phase, the inferred d′r is the final output.

2.4.3.3 Cycled Generative Networks for Adversarial Depth Estimation

In the previous section, we presented the adversarial learning-based depth estimation approach

which reconstructs from one image view to the other one in a straightforward way. In order

to make the image reconstruction from different views implicitly constrain on each other, we

further propose a cycled generative network structure. An overview of the proposed network

structure is shown in Fig. 2.4.2. The network produces two distinct disparity maps from dif-

ferent view directions, and synthesizes different-view images in a closed loop. In our network

design, not only the different view reconstruction loss helps for better optimization of the gen-

erators, but also the two disparity maps are connected with a consistence loss to provide strong

supervision from each half cycle.

We described the half-cycle generative network with adversarial learning in Section 2.4.3.2.

The cycled generative network is based on the half-cycle structure. To simplify the description,

we follow the notations used in Section 2.4.3.2. Assume we have obtained a synthesized image

Îr from the half-cycle network, and then Îr is further used as input of the next cycle generative

network. Let us denote the generator as Gr, which we exploit the encoder-decoder network

structure similar as Gl in Sec. 2.4.3.2. The encoder part of Gr can be also shared with the

encoder of Gl to have a more compact network model (we show the performance difference

between using and not using the sharing scheme), and the two distinct decoders are used to

produce two right-to-left disparity maps d
(l)
l and d

(r)
l corresponding the left- and the right-

view input images respectively. The two maps are also combined with the combination and

the convolution operation to have a fused disparity map d′l. Then we synthesize the left-view

image Îl via the warping operation as Îl = fw(d′l, Ir). An L1-norm reconstruction loss is used

for optimizing the generator Gr. Then the objective for optimizing the two generators of the
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full cycle writes

L(f)
rec = ‖Ir − fw(d′r, Il)‖1+‖Il − fw(d′l, Îr)‖1 (2.44)

We add a discriminatorDl for discriminating the synthesized image Îl, and then the adversarial

learning strategy is used for both the left and the right image views in a closed loop. The

adversarial objective for the full cycled model can be formulated as

L(f)
gan(Gl, Gr, Dr, Il, Ir) = EIr∼p(Ir)[logDr(Ir)]

+EIl∼p(Il)[log(1−Dr(fw(d′r, Il)))] + EIl∼p(Il)[logDl(Il)]

+EIr∼p(Ir)[log(1−Dl(fw(d′l, Îr)))]

(2.45)

Each half of the cycle network produces a disparity map corresponding to a different view

translation, i.e. d′l and d′r. To make them constrain on each other, we add an L1-norm consis-

tence loss between these two maps as follows:

L(f)
con = ||d′l − fw(d′l,d

′
r)||1 (2.46)

where since the two disparity maps are for different views and are not aligned, we use the

warping operation to make them pixel-to-pixel matched. The consistence loss put a strong

view constraint for each half cycle and thus facilitates the learning of both half cycles.

Full objective. The full optimization objective consists of the reconstruction losses of both

generators, the adversarial losses for both view synthesis and the half-cycle consistence loss. It

can be written as follows:

L(f)
o = γ1L

(f)
rec + γ2L

(f)
gan + γ3L

(f)
con. (2.47)

Where {γi}3i=1 represents a set of weights for controlling the importance of different optimiza-

tion parts.

Inference. When the optimization is finished, given a testing pair {Il, Ir}, the testing is

performed by combining the output disparity maps d′l and d′r in a weighted averaging scheme.

We treat the two half cycles with equal importance, and the final disparity map D is obtained

as the mean of the two, i.e. D = (d′l + fw(d′l,d
′
r))/2.

2.4.3.4 Network Implement Details

To describe the details of the network implementation, in terms of the generators Gl and Gr,

we use a ResNet-50 backbone network for the encoder part, and the decoder part contains
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RGB Image Eigen et al. (33) Zhou et al. (92) Garg et al. (89) Godard et al. (90) Ours GT Depth Map

Figure 2.16: Qualitative comparison with different competitive approaches with both supervised
and unsupervised settings on the KITTI test set. The sparse groundtruth depth maps are filled with
bilinear interpolation for better visualization.

five deconvolution with ReLU operations in which each 2 times up-samples the feature map.

The skip connections are also used to pass information from the backbone representations to

the deconvolutional feature maps for obtaining more effective feature aggregation. For the

discriminators Dl and Dr, we employ the same network structure which has five consecutive

convolutional operations with a kernel size of 3, a stride size of 2 and a padding size of 1, and

batch normalization (110) is performed after each convolutional operation. Adversarial loss is

applied to output patches. For the warping operation, a bilinear sampler is used as in (90).

2.4.4 Experimental Results

We present both qualitative and quantitative results on publicly available datasets to demon-

strate the performance of the proposed approach for unsupervised adversarial depth estimation.

2.4.4.1 Experimental Setup

Datasets. We carry out experiments on two large datasets, i.e. KITTI (96) and Cityscapes (97)

. For the KITTI dataset, we use the Eigen split (33) for training and testing. This split contains

22,600 training image pairs, and 697 test pairs. We do data augmentation with online random

flipping of the images during training. The Cityscapes dataset is collected using a stereo
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Method Sup
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

Half-Cycle Mono N 0.240 4.264 8.049 0.334 0.710 0.871 0.937

Half-Cycle Stereo N 0.228 4.277 7.646 0.318 0.748 0.892 0.945

Half-Cycle + D N 0.211 2.135 6.839 0.314 0.702 0.868 0.939

Full-Cycle + D N 0.198 1.990 6.655 0.292 0.721 0.884 0.949

Full-Cycle + D + SE N 0.190 2.556 6.927 0.353 0.751 0.895 0.951

Table 2.5: Quantitative evaluation results of different variants of the proposed approach on the
KITTI dataset for the ablation study. We do not perform cropping on the depth maps for evaluation
and the estimated depth range is from 0 to 80 meters.

camera from a driving vehicle through several German cities, during different times of the

day and seasons. It presents higher resolution images and is annotated mainly for semantic

segmentation. To train our model we combine the densely and coarse annotated splits to obtain

22,973 image-pairs. For testing we use the 1,525 image-pairs of the densely annotated split.

The test set also has pre-computed disparity maps for the evaluation.

Parameter Setup. The proposed model is implemented using the deep learning library Ten-

sorFlow (111). The input images are down-sampled to a resolution of 512× 256 from 1226×
370 in the case of the KITTI dataset, while for the Cityscapes dataset, at the bottom one fifth of

the image is cropped following (90) and then is resized to 512×256. The output disparity maps

from two input images are fused with a learned linear combination to obtain the final disparity

map with a size 512× 256. The batch size for training is set to 8 and the initial learning rate is

10−5 in all the experiments. We use the Adam optimizer for the optimization. The momentum

parameter and the weight decay are set to 0.9 and 0.0002, respectively. The final optimization

objective has weighed loss parameters γ1 = 1, γ2 = 0.1 and γ3 = 0.1. The learning rate is

reduced by half at both [80k, 100k] steps. For our experiments we used an NVIDIA Tesla K80

with 12 GB of memory.

Detailed Training Procedure. We train the half-cycle model with a standard training

procedure, i.e. initializing the network with random weights and making the network train

for a full 50 epochs. For the cycled model we optimize the network with an iterative training

procedure. After random weights initialization, we train the first half branch {Il, Ir} → Îr,

with generator Gl and discriminator Dr for a 20k iteration steps. After that we train the second

half branch {Îr, Il} → Îl with generator Gr and discriminator Dl for another 20k iterations.
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Method Sup
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

Saxena et al. (86) Y 0.280 - 8.734 - 0.601 0.820 0.926

Eigen et al. (33) Y 0.190 1.515 7.156 0.270 0.692 0.899 0.967

Liu et al. (35) Y 0.202 1.614 6.523 0.275 0.678 0.895 0.965

AdaDepth (109), 50m Y 0.162 1.041 4.344 0.225 0.784 0.930 0.974

Kuznietzov et al. (102) Y - - 4.815 0.194 0.845 0.957 0.987

Xu et al. (36) Y 0.132 0.911 - 0.162 0.804 0.945 0.981

Zhou et al. (92) N 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Garg et al. (89) N 0.169 1.08 5.104 0.273 0.740 0.904 0.962

AdaDepth (109), 50m N 0.203 1.734 6.251 0.284 0.687 0.899 0.958

Godard et al. (90) N 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Ours N 0.166 1.466 6.187 0.259 0.757 0.906 0.961

Ours with shared enc N 0.152 1.388 6.016 0.247 0.789 0.918 0.965

Ours, 50m N 0.158 1.108 4.764 0.245 0.771 0.915 0.966

Ours with shared enc, 50m N 0.144 1.007 4.660 0.240 0.793 0.923 0.968

Table 2.6: Comparison with state of the art. Training and testing are performed on the KITTI (96)
dataset. Supervised and semi-supervised methods are marked with Y in the supervision column,
unsupervised methods with N. Numbers are obtained on Eigen test split with Garg image cropping.
Depth predictions are capped at the common threshold of 80 meters, if capped at 50 meters we
specify it.

For the training of the first cycle branch, we do not use the cycle consistence loss since the

second half branch is not trained yet. Finally we jointly train the whole network with all the

losses embedded for a final round of 100k iterations.

Evaluation Metrics. To quantitatively evaluate the proposed approach, we follow several

standard evaluation metrics used in previous works (33, 90, 112). Given P the total number of

pixels in the test set and d̂i, di the estimated depth and ground truth depth values for pixel i,

we have (i) the mean relative error (abs rel): 1
P

∑P
i=1

‖d̂i−di‖
di

, (ii) the squared relative error (sq

rel): 1
P

∑P
i=1

‖d̂i−di‖2
di

, (iii) the root mean squared error (rmse):
√

1
P

∑P
i=1(d̂i − di)2, (iv) the

mean log 10 error (rmse log):
√

1
P

∑P
i=1 ‖ log d̂i − log di ‖2 (v) the accuracy with threshold

t, i.e. the percentage of d̂i such that δ = max(di
d̂i
, d̂idi ) < t, where t ∈ [1.25, 1.252, 1.253].
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Method Sup
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

Half-Cycle Mono N 0.467 7.399 5.741 0.493 0.735 0.890 0.945

Half-Cycle Stereo N 0.462 6.097 5.740 0.377 0.708 0.873 0.937

Half-Cycle + D N 0.438 5.713 5.745 0.400 0.711 0.877 0.940

Full-Cycle + D N 0.440 6.036 5.443 0.398 0.730 0.887 0.944

Table 2.7: Quantitative evaluation results of different variants of the proposed approach on the
Cityscapes dataset for the ablation study.

2.4.4.2 Ablation Study

To validate the adversarial learning strategy is beneficial for the unsupervised depth estimation,

and the proposed cycled generative network is effective for the task, we present an extensive

ablation study on both the KITTI dataset (see Table 2.5) and on the Cityscape dataset (see

Table 2.7).

Baseline Models. We have several baseline models for the ablation study, including (i)

Half-cycle with a monocular setting (half-cycle mono), which uses a straight forward branch to

synthesize from one image view to the other with a single disparity map output and the single

RGB image is as input during testing; (ii) half-cycle with a stereo setting (half-cycle stereo),

which uses a straight forward branch but with two disparity maps produced and combined; (iii)

half-cycle with a discriminator (half-cycle + D), which use a single branch as in (ii) while adds

a discriminator for the image synthesis; (iv) full-cycle with two discriminators (full-cycle + D),

which is our whole model using a full cycle with two discriminators added; (v) full-cycle with

two discriminators and sharing encoders (full-cycle + D + SE), which has the same structure

as (iv) while the parameters of the encoders of the generators are shared.

Evaluation on KITTI. As we can see from Table 2.5, the baseline model Half-Cycle

Stereo shows significantly better performance on seven out of eight evaluation metrics than

the baseline model Half-Cycle Mono, demonstrating that the utilization of the stereo images

and the combination of the two estimated complementary disparity maps clearly boosts the

performance.

By using the adversarial learning strategy for the image synthesis, the baseline Half-Cycle

+ D outperforms the baseline Half-Cycle Stereo with around 1.7 points gain on the metric of

Abs Rel, which verifies our initial intuition of using the adversarial learning to improve the
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RGB Image Half-Cycle Mono Half-Cycle Stereo Half-Cycle + D Full-Cycle + D GT Depth Map

Figure 2.17: Qualitative comparison of different baseline models of the proposed approach on the
Cityscapes testing dataset.

quality of the image synthesis, and thus gain the improvement of the disparity prediction. In

addition, we also observe in the training process, the adversarial learning helps to maintain a

more stable convergence trend with small oscillations in terms of the training loss than the one

without it (i.e. Half-Cycle Stereo), probably leading to a better optimized model.

It is also clear to observe that the proposed cycled generative network with adversarial

learning (Full-Cycle + D) achieved much better results than the models with only half cycle

(Half-Cycle + D) on all the metrics. Specifically, the Full-Cycle + D model improves the Abs

Rel around 2 points, and also improves the accuracy a1 around 1.9 points over Half-Cycle + D.

The significant improvement demonstrates the effectiveness of the proposed network design,

confirming that the cycled strategy brings stronger constraint and supervision to optimize the

both generators. Finally, we also show that the propose cycled model using a sharing encoder

for the generator (Full-Cycle + D + SE). By using the sharing structure, we obtain even better

results than the non-sharing model (Full-Cycle + D), which is probably because the shared one

has a more compact network structure and thus is relatively easier to optimize with a limited

number of training samples.

Evaluation on Cityscapes. We also conduct another ablation study on the Cityscapes

dataset and the results are shown in Table 2.7. We can mostly observe similar trend of the

performance gain of the different baseline models as we already analyzed on the KITTI dataset.
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The performance comparison of the baselines on this challenging dataset further confirms the

advantage of the proposed approach. For the comparison of the model Half-Cycle + D and

the model Full-Cycle + D, although the latter one achieves slightly worse results on the first

two error metrics, it still produces clearly better performance on the remaining six evaluation

metrics. Since there is no official evaluation protocol for depth estimation on this dataset, the

results are evaluated with the protocol on the KITTI, and are directly evaluated on the disparity

maps as they are directly proportional to each other. In Fig. 2.17, some qualitative comparison

of the baseline models are presented.

2.4.4.3 State of the Art Comparison

In Table 2.6, we compare the proposed full model with several state-of-the-art methods, in-

cluding the ones with the supervised setting, i.e. Saxena et al. (86), Eigen et al. (33), Liu et

al. (35), AdaDepth (109), Kuznietzov et al. (102) and Xu et al. (36), and the ones with the

unsupervised setting, i.e. Zhou et al. (92), AdaDepth (109), Garg et al. (89) and Godard et al.

(90). Among all the supervised approaches, we have achieved very competitive performance

to the best one of them (i.e. Xu et al. (36)), while ours is totally unsupervised without using

any ground-truth depth data in training. For comparison with the unsupervised methods, we

are also very close to the best competitor (i.e. Godard et al. (90)). AdaDepth (109) is the most

technically related to our approach, which considers adversarial learning in a context of do-

main adaptation with extra synthetic training data. Ours significantly outperforms their results

with both the supervised and unsupervised setting, further demonstrating the effectiveness of

the means we considered and proposed for unsupervised depth estimation with the adversarial

learning strategy. As far as we know, there are not quantitative results presented in the existing

works on the Cityscapes dataset.

2.4.4.4 Analysis on the Time Aspect.

For the training of the whole network model, on a single Tesla K80 GPU, it takes around 45

hours on KITTI dataset with around 22k training images. For the running time, in our case with

the resolution of 512 × 256, the inference of one image takes around 0.140 seconds, which is

a near real-time processing speed.
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2.4.5 Conclusions

In the current section we have presented a solution to a separate type of data quality scarcity,

where depth map estimation systems are expensive to learn in a supervised manner. As such

we present a novel approach for unsupervised deep learning for the depth estimation task using

the adversarial learning strategy in a cycled generative network structure. The new approach

provides a new insight that shows depth estimation can be effectively tackled via an unsuper-

vised adversarial learning of the stereo image synthesis. More specifically, a generative deep

network model is proposed to learn to predict the disparity map between two image views

under a calibrated stereo camera setting. Two symmetric generative sub-networks are respec-

tively designed to generate images from different views, and they are further merged to form a

closed cycle which is able to provide strong constraint and supervision to optimize better the

dual generators of the two sub-networks. Extensive experiments are conducted on two publicly

available datasets (i.e. KITTI and Cityscapes). The results demonstrate the effectiveness of the

proposed model, and show very competitive performance compared to state-of-the-arts on the

KITTI dataset.

The future work would contain using attention mechanism to guide the learning of the fea-

ture representations of the generators, and also consider using the graphical models for struc-

tured prediction on the output disparity map to have predictions with better scene structures.
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Low-shot Learning

In this chapter we explore methods of learning in a scenario where the quantity of available

data is scarce, specifically when the accessible data is in a long-tail distribution. This scarcity

of data cannot be mitigated with the methods described in Chapter 2, requiring techniques that

explicitly learn in this data context, i.e. few-shot learning. We extend the generative few-shot

learning approach first with learning a category-wise 3D model and sampling different per-

spectives from predicted instance-specific deformations to further boost generative diversity

(Section 3.2), and second we make use of available textual data to condition further sample

generation (Section 3.3). While both presented methods make use of additional information

during training, it can either be produced using unsupervised tools used on the available sam-

ples, or in the case of associated textual information there is likely a much larger volume of it

freely available in the wild.

3.1 Background and Related Work

In this section we briefly provide a broader context to the few-shot learning, how it is used to

tackle a lack in data quantity, and review previous work considering the related topics of few-

shot learning, 3D model learning and inference, self-paced learning, and multimodal learning.

Background Since the successful introduction of deep learning techniques, considerable re-

search has been conducted to reduce the amount of annotated data needed for training such

systems. For cases when the data restriction is a lack of quality, i.e. annotations, this prob-

lem has been approached systematically by developing algorithms which either require less
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expensive annotations such as semi-supervised or weakly supervised approaches, or more rig-

orously no annotations at all such as unsupervised systems (Chapter 2), trading a usual loss in

performance for much wider applicability.

More importantly, there exist situations where the availability of annotated data is heavily

skewed, reflecting the tail distribution found in the wild, where previously discussed systems

that generate proposals or low-level features are not helpful. Finetuning DNNs has been shown

to be effective in a context where the big data assumption holds (113). However, scenarios

where access is limited to only very few samples of novel data are extremely susceptible to

over-fitting. In consequence, research in the domain of low-shot learning, i.e. learning and

generalizing from only few training samples, has gained more and more interest (e.g. (114,

115, 116)).

Originally, few shot learning defined a scenario where the only very few samples per class

were accessible (117, 118, 119). With the advent of deep learning the assumption was broad-

ened, into having large amounts of data accessible for a number of base classes, with novel

classes bound by a scarce data regime. This more realistic scenario falls under a meta-learning

context, where a representation is learned on the base classes to be employed later on the novel

classes.

To leverage the powerful representations that can be learned on the base classes with a

DNN, a wide variety of meta-learning methods have been proposed. Santoro et al. (120) make

use of a memory network to better assimilate new data and make predictions using it. Edwards

et al. (121) aim to make use of learned dataset statistics to better fine-tune on new samples.

In contrast to more model-driven methods, (116) learn an embedding of the labelled examples

over which an attention mechanism can be utilized, while (115) learns a mapping from the

input to an embedding for which its class is represented by a prototype. Upon learning an

embedding, both methods make use of a simple k-nearest neighbor approach to infer the class

membership of unseen samples, implying that they can leverage the representational power of

DNNs in a low data regime.

However, even when optimizing the learning process for the low-shot scenario, the lack of

novel samples remains a hindrance. To mitigate this, a series of generative approaches have

been developed, increasing the number of novel class samples that can be utilized during train-

ing. Hariharan et al. (122) facilitates training the classifier by generating features, disregarding

realism or diversity criteria. While this approach provides a stable meta-learning process, and

practically generates useful hallucinated samples, the diversity of generated samples is bound
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by the samples used to learn the generator.

The current chapter contains two generative few-shot learning methods that increase sample

diversity in different manners:

Section 3.2 details a work where a canonical, categorical 3D model is learned, after which

predicted instance-wise deformations are used to sample novel viewpoints, increasing overall

diversity. In contrast, Section 3.3 makes use of abundant textual information to further diversify

the generative process. The system directly generates cross-modal feature vectors, and features

a real and generated feature combination strategy that allows for easy inference.

Few-Shot Learning For learning deep networks using limited amounts of data, different

approaches have been developed in recent years. Following Taigman et al. (123), Koch et

al. (118) interpreted this task as a verification problem, i.e. given two samples, it has to be

verified, whether both samples belong to the same class. Therefore, they employed siamese

neural networks (124) to compute the distance between the two samples and perform nearest

neighbor classification in the learned embedding space. Some recent works approach few-shot

learning by striving to avoid overfitting by modifications to the loss function or the regulariza-

tion term. Yoo et al. (15) proposed a clustering of neurons on each layer of the network and

calculated a single gradient for all members of a cluster during the training to prevent over-

fitting. The optimal number of clusters per layer is determined by a reinforcement learning

algorithm. A more intuitive strategy is to approach few-shot learning on data-level, meaning

that the performance of the model can be improved by collecting additional related data. Douze

et al. (125) proposed a semi-supervised approach in which a large unlabeled dataset containing

similar images was included in addition to the original training set. This large collection of

images was exploited to support label propagation in the few-shot learning scenario. Hariharan

et al. (122) combined both strategies (data-level and algorithm-level) by defining the squared

gradient magnitude loss, that forces models to generalize well from only a few samples, on the

one hand and generating new images by hallucinating features on the other hand. For the latter,

they trained a model to find common transformations between existing images that can be ap-

plied to new images to generate new training data (126). Other recent approaches to few-shot

learning have leveraged meta-learning strategies. Ravi et al. (114) trained a long short-term

memory (LSTM) network as meta-learner that learns the exact optimization algorithm to train

a learner neural network that performs the classification in a few-shot learning setting. This
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method was proposed due to the observation that the update function of standard optimization

algorithms like SGD is similar to the update of the cell state of a LSTM. Similarly, Finn et

al. (127) suggested a model-agnostic meta-learning approach (MAML) that learns a model

on base classes during a meta learning phase optimized to perform well when finetuned on a

small set of novel classes. Moreover, Bertinetto et al. (14) trained a meta-learner feed-forward

neural network that predicts the parameters of another, discriminative feed-forward neural net-

work in a few-shot learning scenario. Another technique that has been applied successfully to

few-shot learning recently is attention. (116) introduced matching networks for one-shot learn-

ing tasks. This network is able to apply an attention mechanism over embeddings of labeled

samples in order to classify unlabeled samples. One further outcome of this work is that it is

helpful to mimic the one-shot learning setting already during training by defining mini-batches,

called few-shot episodes with subsampled classes. Snell et al. (115) generalize this approach

by proposing prototypical networks. Prototypical networks search for a non-linear embedding

space (the prototype) in which classes can be represented as the mean of all corresponding

samples. Classification is then performed by finding the closest prototype in the embedding

space. In the one-shot scenario, prototypical networks and matching networks are equivalent.

3D Shape Learning Inferring the 3D shape of an object from differing viewpoints has long

been a topic of interest in computer vision. Based on the idea that there exists a categorical-

specific canonical shape, and that class-specific deformations of it can be learned, systems such

as SMPL (128) and "Keep it SMPL" (129) model a human 3D shape space, while Zuffi et al.

(130) perform a similar task for quadruped animals. However, even though these methods

are able to use synthetic training data, they still rely on a 3D shape ground truth. In contrast,

Kanazawa et al. (131) make use of much cheaper keypoint and segmentation mask annotations,

which allows both 3D mesh and texture inference for images.

Self-Paced Learning Recently, many studies have shown the benefits of organizing the train-

ing examples in a meaningful order (e.g., from simple to complex) for model training. Bengio

et al. (132) first proposed a general learning strategy: curriculum learning. They show that

suitably sorting the training samples, from the easiest to the most difficult, and iteratively train-

ing a classifier starting with a subset of easy samples (which is progressively augmented with

more and more difficult samples), can be useful to find better local minima. Note that in this

and in all the other curriculum-learning-based approaches, the order of the samples is provided
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by an external supervisory signal, taking into account human domain-specific expertise.

Curriculum learning was extended to self-paced learning by Kumar et al. (133). They proposed

the respective framework, automatically expanding the training pool in an easy-to-hard manner

by converting the curriculum mechanism into a concise regularization term. Curriculum learn-

ing uses human design to organize the examples, and self-paced learning can automatically

choose training examples according to the loss. Supancic et al. (53) adopt a similar framework

in a tracking scenario and train a detector using a subset of video frames, showing that this

selection is important to avoid drifting. Jiang et al. (134) pre-cluster the training data in order

to balance the selection of the easiest samples with a sufficient inter-cluster diversity. Pentina

et al. (135) propose a method in which a set of learning tasks is automatically sorted in order to

allow a gradual sharing of information among tasks. In Zhang et al.’s (136) model saliency is

used to progressively select samples in weakly supervised object detection. In context of visual

categorization some of these self-paced learning methods use CNN-based features to represent

samples (137) or use a CNN as the classifier directly (138).

Multimodal Learning Kiros et al (139) propose to align visual and semantic information in

a joint embedding space using a encoder-decoder pipeline to learn a multimodal representa-

tion. Building upon this, Faghri et al (140) improve the mixed representation by incorporating

a triplet ranking loss.

Karpathy et al (141) generate textual image descriptions given the visual data. Their model

infers latent alignments between regions of images and segments of sentences of their respec-

tive descriptions. Reed et al (142) focus on fine-grained visual descriptions. They present an

end-to-end trainable deep structured joint embedding trained on two datasets containing fine-

grained visual descriptions.

In addition to multimodal embeddings, another related field using data from different modali-

ties is text-to-image generation. Reed et al (143) study image synthesis based on textual infor-

mation. Zhang et al (144) greatly improve the quality of generated images to a photo-realistic

high-resolution level by stacking multiple GANs (StackGANs). Extensions of StackGANs in-

clude an end-to-end trainable version (144) and considering an attention mechanism over the

textual input (145). Sharma et al. (146) extended the conditioning by involving dialogue data

and further improved the image quality. Beside the usage of GANs for conditioned image

generation, other work employed Variational Autoencoders (147) to generate images (148).

However, they conditioned on attribute vectors instead of text.
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Some works have leveraged multimodal data to improve classification results. Elhoseiny et al

(149) collect noisy text descriptions and train a model that is able to connect relevant terms

to its corresponding visual parts. This allows zero-shot classification for unseen samples, i.e.

visual samples for novel classes do not exist. Similarly, Zhu et al. (150) train a classifier with

images generated by a GAN given noisy text descriptions and test their approach in a zero-shot

setup. Xian et al (12) follow this notion, however, generating feature vectors instead of images.

In the context of few-shot learnig, Pahde et al (4) have leveraged textual descriptions to gener-

ate additional training images. Along with a self-paced learning strategy for sample selection

this method improves few-shot learning accuracies.

3.2 Low-Shot Learning from Imaginary 3D Model1

3.2.1 Introduction

Novel class

Base classes

Predicted mesh

Mcategory

ΔM

- Viewpoint sampling
- Applying texture of

novel sample

Generated 
novel samples

Figure 3.1: Generative method based on (131): We first learn a generic mesh of the bird category.
This mesh is then altered to fit the appearance of the target bird. We rotate the predicted 3D
mesh to capture various viewpoints resulting in many 2D images that resemble the target bird.
Those meshs are then coated with the novel bird’s texture. To cope with the varying quality, we
subsequently apply a self-paced learning mechanism, which is elaborately outlined in figure 3.2
and in the remainder of the work. For the second approach to sample generation, we exploit the
pose variety of the base birds visible on the top left to enhance diversity. This approach is visualized
in Figure 3.3.

In this work we propose to maximize the visual generative capabilities to overcome quality

and diversity issues commonly seen in generative few-shot learning approaches. Specifically,
1"Low-Shot Learning from Imaginary 3D Model" Frederik Pahde, Mihai Marian Puscas, Jannik Wolff, Tassilo

Klein, Nicu Sebe, Moin Nabi; WACV 2019 (4)
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we assume a scenario where the base classes have a large amount of annotated data whereas

the data for novel categories are scarce. To alleviate the data shortage we employ a high qual-

ity generation stage by learning a 3D structure (131) of the novel class. A curriculum-based

discriminative sample selection method further refines the generated data, which promotes

learning more explicit visual classifiers.

Learning the 3D structure of the novel class facilitates low-shot learning by allowing us to

hallucinate images from different viewpoints of the same object. Simultaneously, learning the

novel objects’ texture map allows us for a controlled transfer of the novel objects’ appearance

to new poses seen in the base class samples. Freely hallucinating w.r.t. different poses and

viewpoints of a single novel sample then in turn allows us to guarantee novel class data diver-

sity. The framework by Kanazawa et al. (131) has proven to be very effective for learning both

3D models and texture maps without expensive 3D model annotations. While reconstructing

a 3D model from single images in a given category has been achieved in the past (151, 152),

these methods lack easy applicability to a hallucinatory setup and specifically miss any kind of

texture and appearance reconstruction. The intuition behind our idea is visualized in Fig. 3.1

With a broad range of images generated for varying viewpoints and poses for the novel class, a

selection algorithm is applied. To this end, we follow the notion of self-paced learning strategy,

which is a general concept that has been applied in many other studies (133, 138). It is related

to curriculum learning (132), and is biologically inspired by the common human process of

gradual learning, starting with the simplest concepts and increasing complexity. We employ

this strategy to select a subset of images generated from the imaginary 3D model, which are

associated with high confidence w.r.t. “class discriminativeness” by the discriminator.

The self-paced approach allows the method to handle the uncertainty related to the quality

of generated samples. Here the notion of “easy” is interpreted as “high quality”. Training

is then performed using only the subset consisting of images of sufficient quality. This set is

then in turn progressively increased in the subsequent iterations when the model becomes more

mature and is able to capture more complexity.

The main contributions of this work are: First, we massively expand the diversity of generating

data from sparse samples of novel classes through learning 3D structure and texture maps.

Second, we leverage a self-paced learning strategy facilitating reliable sample selection.

Our approach features robustness and outperforms the baseline in the challenging low-shot

scenario.
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√∫

Ranked images per category
Real images of 
novel classes

Generated images 
per category (noisy)

Add highest-ranking 
image per category in 

each iteration

G D

Train D

… …

…

Figure 3.2: Self-paced fine-tuning on novel classes: For each novel class, noisy samples are gen-
erated with different viewpoints and poses by G. Those images are ranked by D based on their
class-discriminatory power. The highest-ranking images are added to the novel samples and used
to update D, which is trained using a simple cross-entropy loss. This process is repeated multiple
times. Initially, D has been pre-trained on all base class data.

3.2.2 Method

3.2.2.1 Preliminaries

In this subsection we introduce the necessary notation.

Let I denote the image space, T the texture space , M the 3D mesh space and C = {1, ..., L}
the discrete label space. Further, let xi ∈ I be the i-th input data point, and yi ∈ C its label. In

the low-shot setting, we consider two subsets of the label space: Cbase for labels for which we

have access to a large number of samples, and the novel classes Cnovel, which are underrepre-

sented in the data. Note that both subsets exhaust the label space C, i.e. C = Cbase ∪ Cnovel.

We further assume that in general |Cnovel|� |Cbase|.
The dataset S decomposes as follows: S = Strain ∪ Stest, Strain ∩ Stest = ∅. The train-

ing data Strain consists of 2-tuples {(xi, yi)}Ni=1 taken from the whole data set containing

both image samples and labels. Furthermore, for 3D model prediction we also attach 3-tuples

{(li, ki,mi)}Ni=1, with li being a foreground object segmentation mask and ki a 15-point key-

point vector representing the pose of the object. Additionally, mi denotes the weak-perspective

camera, which is estimated by leveraging structure-from-motion on the training instances’ key-

points ki. The test data is drawn from the novel classes and does not contain any 3D informa-

tion, but solely images and their labels. Next, there is also Snovel
train = {(xi, yi, li, ki,mi) :

(xi, yi, li, ki,mi) ∈ Strain, yi ∈ Cnovel}Mi=1 ⊂ Strain, which denotes the training data for
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the novel categories. For each class in Cnovel, k samples can be used for training (k-shot),

resulting in
∣∣∣Snovel

train

∣∣∣� ∣∣Strain
∣∣

3.2.2.2 3D Model Based Data Generation

The underlying observation on which our method is based on is that increased diversity of gen-

erated images directly translates into higher classification performance for novel categories.

The proposed work aims at emulating processes in human cognition that allow for reconstruct-

ing different viewpoints and poses through conceptualizing a 3D model of an object of interest.

Specifically, we aim to learn such a 3D representation for novel samples appearing during

training and leverage it to predict different viewpoints and poses of that object.

We use the architecture proposed by Kanazawa et al. (131) to predict a 3D mesh Mi and

texture Ti from an image sample xi. With the assumption that all xi ∈ I represent objects of the

same category, the shape of each instance is predicted by deforming a learned category-specific

meshMcat. Note that category refers to the entire fine-grained bird dataset, as opposed to class.

All recovered shapes will share a common underlying 3D mesh structure, Mi = Mcat + ∆Mi,

with ∆Mi being the predicted mesh deformation for instance xi. Because the mesh M has

the same vertex connectivity as the average categorical mesh Mcat, and further as Msphere

representing a sphere, a predicted texture map Ti can be easily applied over any generated

mesh.

An advantage of (131) over related methods is that learning the 3D representation does not

require expensive 3D model or multi-view annotations.

Given (Mi, Ti,Θi) and Θ = (α, β, γ), where the three camera rotation angles α, β, γ are sam-

pled uniformly from [0, π/6], we can project the reconstructed object using fgen(Mi, Ti,Θi)

such that Xview
i = {x0i , ..., xLi } contains samples of the object seen from different viewpoints.

As Xview
i only contains different viewpoints of the novel object, it will not contain any

novel poses. This is a concern for non-rigid object categories, where it cannot be guaranteed

that the unseen samples in a novel class will have similar poses to the known samples in the

novel class. To mitigate this, the diversity of the generated data must be expanded to include

new object poses.

All meshes predicted from xj ∈ Sbase obtain the spherical texture map Ti corresponding to

xi ∈ Snovel
train using fgen(Mj , Ti,Θj). This transfers the shape from base class objects to novel

class instances resulting in Xpose
i = {xji , ..., xSi }.
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Using poses from images of different labels is an inherently noisy approach through inter-

class mesh variance. However, a subsequent sample selection strategy allows the algorithm to

make use of the most representative poses. Indeed, as seen in Figure 3.3, meshes Mj ∈ Sbase
exist for which the predicted images xji are visually similar to samples of the unseen classes.

Thus, for each sample xi ∈ Snoveltrain , a set of images Snovelgen = Xview
i ∪Xpose

i is generated.

This generated data captures both different viewpoints of the novel class and the appearance of

the novel class applied to differing poses from the base classes.

3.2.2.3 Pre-Training of Classifier

In the low-shot learning framework proposed by Hariharan and Girshick (13), a representation

of the base categorical data must be learned beforehand. This is achieved by learning a classifier

on the samples available in the base classes, i.e. xi ∈ Sbasetrain. For this task we make use of an

architecture identical to the StackGAN discriminator (144), modified to serve as a classifier.

This discriminatorD is learned on Sbasetrain by minimizing Lclass defined as a cross-entropy loss.

However, to accommodate for the different amount of classes in base and novel, D has

to be adapted. Specifically, the class-aware layer with |Cbase| output neurons is replaced and

reduced to |Cnovel| output neurons, which are randomly initialized. We refer to this adapted

classifier as D′. Subsequently, the network can be fine-tuned using the available novel class

data.

3.2.2.4 Self-Paced Learning

As seen in section 3.2.2.2, for a given novel sample xi ∈ Snovel
train we can generate Snovelgen =

Xview
i ∪Xpose

i , containing new viewpoints and poses of the given object.

For the self-paced learning stage, we fine-tune with the novel samples, as well as the sam-

ples generated through projecting the predicted 3D mesh and texture maps. i.e. with the data

given by Snoveltrain ∪ Snovelgen .

Unfortunately, the samples contained in Snovelgen can be noisy for a variety of reasons: failure

in predicting the 3D mesh deformation due to a too large difference between the categorical

mesh and the object mesh, or even viewpoints that are not representative to the novel class.

To mitigate this we propose a self-paced learning strategy ensuring that only the best gen-

erated samples within Snovel
gen are used.
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Again taking into account the setting of low-shot learning, we restrict the number of sam-

ples per class available to k. Due to the limited amount of samples, the initialized D′ will be

weak on the classification task, but sufficiently powerful for performing an initial ranking of the

generated images. For this task we employ the softmax activation for class-specific confidence

scoring. As D′ learns to generalize better, more difficult samples will be selected.

This entails iteratively choosing generated images that have highest probability in D′ for

Cnovel, yielding a curated set of generated samples Snovel
gen . An issue in selecting the highest

scoring sample in each iteration is the possibility of not making full use of the available data

w.r.t. its diversity - the highest scoring images being of a very similar pose and viewpoint to

the original sample.

We address this shortcoming by a using a clustering-and-discard strategy: For the novel

class training sample xi, we generate Xgen
i = {x0i , ...xL+Si } new images, representing new

viewpoints and poses of the object. Xgen
i is then further associated with Kgen

i = {k0i , ...kQi },
representing all the predicted keypoints of the associated generated samples. Kgen

i is clustered

using a simple k-means implementation (153). On every self-paced iteration, the pose cluster

associated to the selected top-ranked sample is discarded to increase data diversity.

Finally, we aggregate original samples and generated images Snovel
train ∪ S

novel
gen for training,

during which we update D′. Doing so yields both a more accurate ranking as well as higher

class prediction accuracy as the number of samples increases.

3.2.3 Experiments

3.2.3.1 Datasets

We test the applicability of our method on CUB-200-2011 (154), a fine-grained classification

datasets containing 11,788 images of 200 different bird species of size I ⊂ R256×256. The data

is split equally into training and test data. As a consequence, samples are roughly equally dis-

tributed, with training and test each containing≈ 30 images per class. Additionally, foreground

masks, semantic keypoints and angle predictions are provided by (131). Note that nearly 300

images are removed where the number of visible keypoints is less or equal than 6.

Following Zhang et al. (144), we split the data such that |Cbase| = 150 and |Cnovel| = 50.

To simulate low-shot learning, k ∈ {1, 2, 5, 10, 20} images of Cnovel are used for training, as

proposed by (122).

75



3. LOW-SHOT LEARNING

k

Model 1 2 5 10 20

Baseline 27.55 30.75 54.25 58.51 71.62

Views + poses 33.40 43.72 54.81 65.27 74.06

SPL w/ views 33.54 41.49 54.88 65.48 74.97

SPL w/ poses 33.82 42.47 54.95 64.85 73.64

SPL w/ poses + clustering 33.40 45.05 57.74 65.69 74.62

SPL w/ poses + views 35.29 41.98 55.37 66.04 71.48

SPL w/ poses + views (balanced) 35.77 44.56 54.60 64.30 74.83

SPL w/ all 36.96 45.40 58.09 66.53 74.83

Table 3.1: Ablation study of our model in a top-5, 50-way scenario on the CUB-200-2011 dataset
in different k-shot settings, best results are in bolt. We observe that each of the proposed extensions
increases the accuracy in at least one setting which justifies their usage. This regards to both, meth-
ods for generating additional data and the approach to only select generated samples of sufficient
quality for training the classifier.

3.2.3.2 Algorithmic Details

During representation learning, we train an initial classifier on the base classes for 600 epochs

and use Adam (155) for optimization. We set the learning rate τ to 10−3 and the batch size for

D to 32. In the initialization phase for self-paced learning, we constructD′ by replacing the last

layer of D by a linear softmax layer of size |Cnovel|. The resulting network is then optimized

using the cross-entropy loss function and an Adam optimizer with the same parameters. Batch

size is set to 32 and training proceeds for 20 epochs. Self-paced learning ofD′ continues to use

the same settings, i.e. the Adam optimizer minimizing a cross-entropy loss. In every iteration

we choose exactly one generated image per class and perform training for 10 epochs.

3.2.3.3 Models

In order to asses the performance of individual components, we perform an ablation study.

The simplest transfer learning approach is making use of a pre-trained representation and

then fine-tuning that model on the novel data. A first baseline (Baseline) uses this strategy:

we pre-train a classifier D on the base classes, following by fine-tuning with k novel class
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instances xi ∈ Snovel
train . This strategy makes use of the fine-grained character of the dataset,

learning initial representations on Cbase and performing classification on Cnovel.

A second model views + poses studies the validity of the generated viewpoint and pose

data. For r sampling iterations, a single uniformly sampled xi ∈ Snovelgen is attached to a novel

sample set.

We then introduce sample selection to our method. Note that viewpoint generation is

achieved through 3D Mesh Mi and texture Ti of the same sample xi, while the different poses

are generated through applying the novel class instance texture Ti to base class meshes Mj .

The SPL w/ views and SPL w/ poses sample the generated data from the generated viewpoints

Xview and Xpose respectively.

SPL w/ poses + views makes use of the entirety of Snovelgen , while SPL w/ poses + views

(balanced) tackles the data imbalance between different viewpoint samples and different pose

samples by ranking the two branches separately, and selecting one sample from each such that

for one novel sample, xmax,posei and xmax,viewi are used in fine-tuning.

The clustering-and-dismissal mechanism detailed in 3.2.2.4 is evaluated in the SPL w/

poses + clustering model, while SPL w/ all makes use of the method in its entirety.

3.2.3.4 Results of Ablation Study

The results of the ablation study outlined in the previous section are shown in Table 3.1, pre-

senting 50-way, top-5 accuracies for k-shot learning with k ∈ {1, 2, 5, 10, 20}.
We first evaluate the baseline model, which is trained on the base classes and fine-tuned on

the novel classes. Due to using a relatively shallow classification network, and the sparsity of

the novel samples, the network rapidly overfits.

Introducing more data diversity to the fine-tuning stage through 3D model inference pro-

vides a significant boost in performance in all k ∈ {1, 2, 5, 10, 20}With the generated samples

selected randomly, the network does not easily overfit, but this selection method provides no

protection against noisy generated samples.

Subsequent models evaluate different selection strategies across the two defined generated

data splits for new viewpoints and poses, i.e. Xview and Xpose. The contribution of the self

paced learning strategy can be evaluated directly comparing the top-5 accuracies of the view

+ poses model and the SPL w/ views + poses model. The increase of performance when k

is small shows that the selection strategy can achieve better performance, but inconsistently

across different k values.
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One cause of this problem is how the generated data is split, and whether the classifier has

access to the most valuable generated samples. In SPL w/ poses and SPL w/ views, we only

select samples from Xpose and Xview respectively. The experimental results of both models

are similar and inferior to SPL w/ views + poses, where both sets are used. Even with higher

performance, the aggregate model selects from Xview almost exclusively, hinting on a type of

mode collapse.

To further diversify the possible data picks, we "balance" the two sets: For each sample,

xmax,posei and xmax,viewi are selected as the highest scoring samples in their respective sets.

This disentangling of pose and viewpoint data offers an across-the-board improvement, as seen

in SPL w/ views + poses (balanced).

While normally each sample that was selected in self-paced iteration r is discarded, this

will likely leave a number of samples that are similar in pose, such that the classifier may rank

them as maximum. This does not add significant new information to the learning process, and

as such the clustering-by-pose method guiding the sample dismissal is introduced. Indeed,

as observed in SPL w/ all, both the sample-discard strategy, and the balancing strategy are

similar useful for selections in self-paced learning. With all discussed techniques introduced,

the model achieves a significant performance boost compared to the baseline.

3.2.3.5 Analysis of Self-Paced Fine-Tuning

We run several additional experiments to further analyze the behavior of our method. For

the those experiments we use the CUB-200-2011 bird dataset, and compare to the method by

Hariharan and Girshick (122) in Table 3.2.

Baseline NN Our (shallow) Our (ResNet) (122)

9.1 9.7 14.4 18.5 19.1

Table 3.2: Top-1, 50-way, 1-shot accuracies on the CUB-200-2011 dataset. We see that our shallow
CNN (trained with self-paced learning) exceeds both baselines. The ResNet (not trained with self-
paced learning) is within reach of Hariharan and Girshick’s model with SGM loss (122), for which
we have reproduced respective results.

We first report the baseline model in the top-1, 1-shot scenario. Due to the relative shal-

lowness of the classification network and without any sample selection or hallucination, the

performance is quite low.
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Figure 3.3: Texture from novel class birds is transferred onto poses from base class birds.
The generated samples have been previously selected by the discriminator w.r.t. to their class-
discriminatory power in the self-paced learning setting. Those hallucinations are visually similar
to unseen test samples, indicating their value for training a classifier.

Methods using simple nearest neighbour classifiers can perform well on few-shot learn-

ing tasks (156). We implement a simple nearest-neigbour classifier using the representations

learned in our baseline on the base class samples, xi ∈ Sbasetrain, specifically making use of the
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last hidden layer of the network. This model marginally outperforms the baseline.

Improving the novel class data diversity by using self-paced sample selection and k-means

clustering-and-dismissal, the performance rises by 5.3 points to 14.4, which equals more than

50% relative improvement.

So far, we have used a classifier with simple architecture and loss function in order to

present the most general possible framework and to allow for a fair comparison with baseline

methods. However, we expect a significant boost in accuracy using larger classifiers. To test

this hypothesis, we fine-tune a modified ResNet-18 (157). We first reduce the output dimen-

sionality of the last pooling layer from 512 to 256 by lowering the amount of filters. After

having trained this model on the base classes, we replace the last, fully-connected layer of size

|Cbase| with a smaller one of size |Cnovel| to account for the different amount of classes. Af-

terwards, we freeze all layers except the final one, and train with Snoveltrain ∪ Snovelgen after having

ranked the existing samples with the best shallow network. We observe comparable results to

Hariharan and Girshick (122) despite of neither having used the ResNet-18 as a ranking func-

tion for self-paced learning, nor performing iterative sampling. Note that our method provides a

general framework to augment the training set with class-discriminative generated samples that

can potentially be used in conjunction with more sophisticated methods as the SGM loss (122)

to obtain better results.

3.2.4 Conclusions

In this section we proposed to extend few-shot learning by incorporating image hallucination

from 3D models in conjunction with a self-paced learning strategy. Experiments on the CUB

dataset demonstrate that learning generative methods employing 3D models reaches perfor-

mance that significantly outperforms our baseline and is competitive to popular methods in the

field. Thus the proposed approach allows for an efficient compensation of the lack of data in

novel categories. For future work we plan to optimize the pipeline in an end-to-end fashion,

discarding the self-paced learning sample selection and replacing it with learnable viewpoint

angle parameters.

A disadvantage of the proposed approach is the use keypoint annotations for the categorical

3D mesh generation. While these keypoint annotations are vastly less expensive than complete

3D maps of the object, and can be predicted by existing methods on a large variety of data, it

is a direct trade between data quality and data quantity, leveraging existing low-level features

to generate novel samples.
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3.3 Multimodal feature generation for low-shot learning 2

The key assumption of this section is that incorporating multimodal data can provide the

means to inject diversity into the generation process by using generated cross-modal features to

broaden the scope of the sample space, and that textual information in particular is likely to be

available for scarce classes. If the method described in Section 3.2 trades data quality for data

quantity, the current method trades data quantity in a ’rich’ modality for quanitity in a ’poor’

modality, a practical assumption when regarding textual information compared to visual data.

3.3.1 Introduction

𝑝"#
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Figure 3.4: By leveraging cross-modally generated feature vectors we can condense the embed-
ding space and move the single-modal prototypes pI towards more reliable multimodal prototypes
pM improving the classification accuracy of unseen test samples in few-shot scenarios.

The most closely related work to this method is (4), which makes use of additional textual

data in an adversarial context, followed by a self-paced selection of the most discriminative

samples.

Our method builds upon the observation that the representations learned through DNNs are

powerful enough for the use of simple non-parametric classification techniques (158), and that

multi-modal data can improve generation diversity. To this end, an image encoder is first trained

on the available base classes, after which a text-conditional GAN learns a cross-modal mapping

between the textual and visual embedding spaces. This mapping can then be used to generate

feature representations that reside in the visual space, conditioned by textual data. Intuitively,

our method makes use of the cross-modal feature mapping to shift single-modal prototypes pI

(representing visual data) to pM , mimicking unseen samples of the novel classes. This process

2"Adversarially Learned Feature Generating Network for Low-Shot Learning"; Frederik Pahde, Mihai Marian
Puscas, Jannik Wolff, Tassilo Klein, Nicu Sebe, Moin Nabi, Under review, ICCV 2019
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Figure 3.5: Architecture of our proposed feature-generating network for few-shot learning: The
GAN framework containing a generator Gt and a discriminator D is optimized to transform a
text embedding given a pre-trained text encoder into the visual embedding space ϕ yielded by a
pre-trained image encoder. The discriminator computes a reconstruction loss (real/fake) and an
auxiliary classification loss.

can be observed in Fig. 3.4, where a given sample xi is classified differently though the shift

in the prototypes. In a prototypical space, k-NN, a non-parametric classification technique is

used, and thus only the representation learning stage requires multi-modal data, the inference

stage requiring only visual data.

The main contributions of this work include the use of a cross-modal feature generation

network in the context of few-shot learning. Furthermore, we suggest a strategy to combine

real and generated features, allowing us to infer the class membership of unseen samples with

a simple nearest neighbor approach. Our method outperforms our baselines and the state-of-

the-art approaches for multimodal and image-only few-shot learning by a large margin for the

CUB-200 and Oxford-102 datasets.

3.3.2 Method

To define our developed method we first introduce the necessary notation and then describe the

architecture of our framework.

3.3.2.1 Preliminaries

Let I denote the image space, T the text space and C = {1, ..., R} be the discrete label space.

Further, let xi ∈ I be the i-th input data point, ti ∈ T its corresponding textual description and

yi ∈ C its label. In the few-shot setting, we consider two disjunct subsets of the label space:

Cbase - labels for which we have access to sufficient data samples, and Cnovel novel classes,
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which are underrepresented in the data. Note that both subsets exhaust the label space C, i.e.

C = Cbase ∪ Cnovel. We further assume that in general |Cnovel|< |Cbase|.
We organize the data set S as follows. Training data Strain consists of tuples {(xi, ti, yi)}ni=1

taken from the whole data set and test data Stest = {(xi, yi) : yi ∈ Cnovel}mi=1 that belongs

to novel classes such that S = Strain ∪ Stest, Strain ∩ Stest = ∅. Naturally, we can also

consider Snovel
train = {(xi, ti, yi) : (xi, ti, yi) ∈ Strain, yi ∈ Cnovel}ki=1 ⊂ Strain, where in

accordance with a few-shot scenario k =
∣∣∣Snovel

train

∣∣∣ � ∣∣Strain
∣∣ = n. Additionally, in a few-

shot learning scenario, the number of samples per category of Cbase may be limited to g,

denoted by Snovel
train (g). Note that contrary to the benchmark defined by Hariharan et al. (122),

the few-shot learning scenario in this work is multimodal in training. However, the testing

phase is single-modal on image data of Cnovel.

3.3.2.2 Nearest Neighbor in Visual Embedding Space

The classification in the embedding space is performed with a simple nearest neighbor ap-

proach. The assumption is that given a powerful feature representation, such as ResNet-18

feature vectors, nearest neighbor is a viable choice as classification model and has proven to

outperform more sophisticated few-shot learning approaches (158). Therefore, we use the vi-

sual data from base classes Cbase to train an image encoder ΦI , providing a discriminative

visual embedding space ϕ. For novel visual samples xi ∈ Snovel
train , ΦI(xi) then provides the

embedding accordingly, featuring discriminativeness given by the pre-trained visual embed-

ding space ϕ.

Following (115), for every novel class k ∈ Cnovel we calculate a visual prototype pk of all

encoded training samples:

pk =
1

|Sk
train|

∑
(xi,yi)∈Sk

train

ΦI(xi), (3.1)

where Sk
train = {(xi, yi) ∈ Snovel

train |yi = k}ni=1 is the set of all training pairs (xi, yi) for class

k. Classification of test samples is performed by finding the closest prototype given a distance

function d(·). Thus, given a sample xtest ∈ Stest the class membership is predicted as follows:

c = arg min
k

d(ΦI(xtest), p
k) (3.2)
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This assigns the class label of the closest prototype to an unseen test sample. Given the assump-

tion that ϕ is a discriminative representation of visual data, Eq. 3.2 provides a powerful classi-

fication model. However, due to the few-shot scenario and the intrinsic feature sparsity in train-

ing space, Snovel
train is rather limited such that the computed class prototypes {pk : k ∈ Cnovel}

consequentially yields merely a rough approximation of the true class mean.

Dataset Method 1-shot 2-shot 5-shot 10-shot 20-shot

CUB Pahde et al. (4) 57.67 59.83 73.01 78.10 84.24

Image Only Baseline(Resnet-18+NN) 62.65±0.22 73.52±0.15 82.44±0.09 85.64±0.08 87.27±0.08

ZSL Baseline (Generated Resnet-18+NN) 58.28±0.22 65.62±0.19 71.79±0.14 74.15±0.11 75.32±0.13

Our Method (Multimodal Resnet-18 + NN) 70.39±0.19 78.62±0.12 84.32±0.06 86.23±0.08 87.47±0.09

Oxford-102 Pahde et al. (4) 78.37 91.18 92.21 - -

Image Only Baseline (Resnet-18+NN) 84.18±0.48 90.25±0.20 94.18±0.13 95.63±0.14 96.25±0.10

ZSL Baseline (Generated Resnet-18+NN) 73.35±0.52 77.52±0.34 81.14±0.25 82.95±0.28 83.97±0.21

Our Method (Multimodal Resnet-18 + NN) 86.52±0.36 91.31±0.18 94.57±0.13 95.74±0.13 96.38±0.10

Table 3.3: 50-way classification top-5 accuracy in comparison to other multimodal few-shot learn-
ing approaches and our baselines for CUB-200 and Oxford-102 datasets with n ∈ {1, 2, 5, 10, 20}

3.3.2.3 Cross-modal Feature Generation

A viable solution to enrich the training space to enable the calculation of more reliable estima-

tions of the class prototypes is to leverage the multimodality in Snovel
train . Thus, the core idea of

our method is to use textual descriptions provided in the training data to generate additional

visual feature vectors compensating the few-shot feature sparsity. Therefore, we propose to

train a text-conditional generative network Gt that learns a mapping from the encoded tex-

tual description into the pre-trained visual feature space ϕ for a given training tuple (xi, ti, yi)

according to

Gt(ΦT (ti)) ≈ ΦI(xi). (3.3)

For the purpose of cross-modal feature generation we use a modified version of text-condtional

generative adversarial networks (tcGAN) (143, 144, 145). The goal of tcGAN is to generate

an image given its textual description in the GAN framework (159). More specifically, the

tcGAN is provided with an embedding φT (·) of the textual description. Therefore, a common

strategy is to define two agentsG andD solving the adversarial game of generating images that

cannot be distinguished from real samples (G) and detecting the generated images as fake (D).

Because our strategy is to perform nearest-neighbor classification in a pre-trained embedding
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space ϕ, we slightly change the purpose of tcGAN. Instead of generating images xi ∈ I, we

optimize G to generate its feature representation ΦI(xi) in the space ϕ. Generally, the rep-

resentation vector in an embedding space has a lower dimensionality than the original image.

Consequentially, the generation of feature vectors is a computational cheaper task compared to

the generation of images.

To this end, our modified tcGAN can be trained by optimizing the following loss function,

(3.4)LtcGAN (Gt, D) = Exi∼pdata [logD (ΦI(xi))] + Eti∼pdata,z [logD (Gt (ΦT (ti), z))] ,

which entails the reconstruction loss that is used for the traditional GAN implementation (159).

Moreover, following (4, 150, 160) we define the auxiliary task of class prediction during the

training of the tcGAN. This entails augmenting the tcGAN loss given in Eq. 3.4 with a dis-

criminative classification term, which is defined as

Lclass (D) = EC,I [log p (C | I)] (3.5)

and Lclass (Gt) , Lclass (D) . (3.6)

Augmenting the original GAN loss with the defined auxiliary term, the optimization objectives

for D and Gt can now be defined as

L (D) = LtcGAN (Gt, D) + Lclass (D) (3.7)

L (Gt) = LtcGAN (Gt, D)− Lclass (Gt) , (3.8)

which are optimized in an adversarial fashion. The adversarial nature of the task forces the

generator to focus on the most class-discriminative feature elements. A visualization of our

cross-modal feature generating method can be seen in Fig. 3.5.

3.3.2.4 Multimodal Prototype

Having learned a strong text-to-image feature mapping Gt we can employ the conditional net-

work to generate additional visual features Gt(ΦT (ti)) given an textual description ti and a

pre-trained text encoder ΦT (·). This allows for computing a prototype from generated samples

Gt(ti) according to

pkT =
1

|Sk
train|

∑
(ti,yi)∈Sk

train

Gt(Φt(ti)). (3.9)
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Next, having both the true visual prototype pk from Eq. 3.1 and a prototype pkT computed from

generated feature vectors conditioned on textual descriptions from Eq. 3.9 a new joint prototype

can be computed using a weighted average of both representations:

pk =
pk + λ ∗ pkT

1 + λ
, (3.10)

where λ is a weighting factor and k ∈ Cnovel represents the class label of the prototype. Note

that the step in Eq. 3.10 can be repeated multiple times, because Gt allows for the generation

of a potentially infinite number of visual feature vectors in ϕ. The prediction of the class

membership of unseen test samples can now be performed with Eq. 3.2 using the updated

prototypes.

3.3.3 Experiments

Method 1-shot 5-shot

MAML (127) 38.43 59.15

Meta-Learn LSTM (114) 40.43 49.65

Matching Networks (116) 49.34 59.31

Prototypical Networks (115) 45.27 56.35

Metric-Agnostic Conditional Embeddings (161) 60.76 74.96

ResNet-18 (162) 66.54 ± 0.53 82.38 ± 0.43

ResNet-18 + Gaussian (162) 65.02 ± 0.60 80.79 ± 0.49

ResNet-18 + Dual TriNet (162) 69.61 ± 0.46 80.79 ± 0.49

Image Only Baseline (ResNet-18 + NN) 68.85 ± 0.86 83.93 ± 0.57

Our Full Method (Multimodal ResNet-18 + NN) 75.01 ± 0.81 85.30 ± 0.54

Table 3.4: Top-1 accuracies for the 5-way classification task on the CUB-200 dataset of our ap-
proach compared with single-modal state-of-the-art few-shot learning methods. We report the
average accuracy of 600 randomly samples few-shot episodes including 95% confidence intervals.

To confirm the general applicability of our method we perform several experiments using

two datasets. These experiments include comparisons to existing multimodal and single-modal

state-of-the-art approaches for few-shot learning.
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3.3.3.1 Datasets

We test our method on two fine-grained multimodal classification datasets. Specifically, we

use the CUB-200-2011 (154) with bird data and Oxford-102 (163) containing flower data for

our evaluation. The CUB-200 dataset contains 11,788 images of 200 different bird species,

with I ⊂ R256×256. The data is split equally into training and test data. As a consequence,

samples are roughly equally distributed, with training and test set each containing≈ 30 images

per category. Additionally, 10 short textual descriptions per image are provided by (142).

Similar to (144), we use the text-encoder pre-trained by Reed et al. (142), yielding a text

embedding space T ⊂ R1024 with a CNN-RNN-based encoding function. Following (144),

we split the data such that |Cbase| = 150 and |Cnovel| = 50. To simulate few-shot learning,

n ∈ {1, 2, 5, 10, 20} images of Cnovel are used for training, as proposed by (122). We perform

50-way classification, such that during test time, all classes are considered for the classification

task. In contrast, the Oxford-102 dataset contains images of 102 different categories of flowers.

Similar to the CUB-200 dataset, 10 short textual descriptions per image are available. As for

the CUB-200 dataset, we use the text-encoder pre-trained by Reed et al. (142), yielding a

text embedding space T ⊂ R1024. Following Zhang et al. (144), we split the data such that

|Cbase| = 82 and |Cnovel| = 20. To simulate few-shot learning, n ∈ {1, 2, 5, 10, 20} images

of Cnovel are used for training. Again, we perform classification among all available novel

classes, yielding a 20-way classification task.

3.3.3.2 Implementation Details

Image Encoding For image encoding we utilize a slightly modified version of the ResNet-

18 architecture (157). Specifically, we halve the dimensionality of every layer and add two

256-dimensional fully connected layers with LeakyRelu activation after the last pooling layer,

followed by a softmax classification layer with |Cbase| units. This network is trained on base

classes using the Adam optimizer (155) for 200 iterations with learning rate 10−3, which is de-

creased to 5×10−4 after 20 iterations. The last fully connected layer is employed as embedding

space ϕ.

Cross-Modal Generation For the text-to-image feature mapping we use a tcGAN architec-

ture inspired by StackGAN++ (144). In the generator Gt, following (144) the text embedding
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Figure 3.6: tSNE visualization of test samples (dots), prototypes pI computed from only real
image features (crosses) and multimodal prototypes pM computed from real image features and
generated features conditioned on text (triangles) in 5-way 1-shot scenario for CUB-200. The color
indicates the class membership. Furthermore, we show the top-5 results for an image retrieval task
for unseen images given the image-only prototype pI and the multimodal prototype pM . The color
of the border indicates the class membership.

ΦT (ti) is first passed into a conditioning augmentation layer to condense the input space dur-

ing training. This is followed by some upsampling convolutions, yielding a 256-dim output

vector, equivalent to the dimensionality of the image feature space ϕ. Given the calculated

feature vector Gt(ΦT (ti) and the original text embedding ΦT (ti), the discriminator D outputs

a conditional and an unconditional loss (see (144)) along with the auxiliary classifcation loss.

Adam is used to optimize both networks with learning rate 2×10−4 for 500 iterations. Having

trained a feature generating network Gt, we compute Gt(Φ(ti)) for all 10 available textual

descriptions per image and take the average in ϕ as its feature representation.

Classification We predict the class membership of test samples by calculating the nearest

prototype in the embedding space ϕ (see Eq. 3.2). As distance function with use the cosine

distance. To average visual and textual prototypes we set λ = 1 (see Eq. 3.10) and repeat this

step 10 times, updating Gt in every iteration.

3.3.3.3 Results

For the evaluation, we test our approach in the 50-way classification task for CUB-200, and

20-way classification for Oxford-102. We designed a strong baseline, in which we predict the

class label of unseen test samples by finding the nearest prototype in the the embedding space
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ϕ, where the prototype pkI is computed exclusively using the limited visual samples (image

only). Note that nearest neighbor classification is a powerful baseline in the context of few-shot

learning, as similarly suggested by other works (158). Furthermore, we evaluate our method

in a zero-shot setting, in which we generate feature vectors given the textual descriptions.

The class-label of unseen test samples is predicted by computing the nearest prototype pkT
containing exclusively generated features conditioned on the textual descriptions (ZSL). Our

full method calculates the average of both prototypes (multimodal). We compare our method

with (4), which to the best of our knowledge is the only existing work leveraging multimodal

data in the context of few-shot learning. Because the classification results highly depend on

the choice of samples available in a few-shot scenarios, we run the experiments 600 times

following (115) and sample a random few-shot episode, i.e. a random choice of n samples per

class in every iteration to cover randomness. We report the average top-5 accuracy including

95% confidence intervals in Tab. 3.3.

It can be observed that in every n-shot scenario we outperform our strong baselines and

the other existing approach for multimodal few-shot learning. In the CUB-200 dataset, we

outperform the baselines by a large margin, confirming our assumption that multimodal data

in training is beneficial. For Oxford-102 the margins are lower, however, we still increase the

classification results and outperform state-of-the-art results. Interestingly, our approach also

stabilizes the results as the confidence intervals decrease compared to the baselines.

3.3.3.4 Comparison to Single-modal Methods

Due to the lack of existing approaches leveraging multimodal data for few-shot learning, we

additionally compare our approach to existing methods using only image data during train-

ing. Outperforming these state-of-the-art image-only few-shot learning proves the benefi-

cial impact of additional text data during training. Specifically, we compare our method

with MAML (127), meta-learning LSTM (114), matching networks (116), prototypical net-

works (115) and metric-agnostic conditional embeddings (161). The results for CUB-200 for

these methods are provided in (162). We also include theirs results in our comparison. How-

ever, their experimental setup differs slightly from our evaluation protocol. Instead of perform-

ing 50-way classification, the results in (162) are reported for 5-way classification in the 1- and

5-shot scenarios. This implies that in every few-shot learning episode, 5 random classes are

sampled for which a classification task has to be solved, followed by the choice of n samples

that are available per class. For the sake of comparability, we also evaluated our approach in

89



3. LOW-SHOT LEARNING

the same experimental setup. We repeat our experiment for 600 episodes and report average

top-1 accuracy and 95% confidence intervals in Tab. 3.4.

It can be observed that even our image-only baseline, which performs nearest neighbor clas-

sification using prototypes in our modified ResNet-18 feature representation reaches state-of-

the-art accuracies. Including multimodal data during training outperforms the other approaches

in both 1- and 5-shot learning scenarios. This proves the strength of our nearest neighbor base-

line and shows that enriching the embedding space ϕ with generated features conditioned on

data from other modalites further improves the classification accuracies. In Fig. 3.6 we show

a tSNE visualization of the embedding space ϕ including the image-only and multimodal pro-

totypes pI and pM respectively in the 5-way classification task. The graph clearly shows some

clusters indicating the class membership. It can be observed that the generated feature vectors

shift the prototypes into regions where more unseen test samples can be classified correctly.

Moreover, Fig. 3.6 shows retrieval results of unseen classes for pI and pM .

3.3.4 Analysis

In order to get a further in-depth understanding of certain aspects of our method, we performed

some additional experiments analyzing its behavior. To this end, we use the CUB-200 dataset

for the experiments in this section.

3.3.4.1 Reducing Textual Data

In a first experiment we want to analyze the importance of the amount of available textual

descriptions. Note that for the experiments in Tab. 3.3 we used all 10 textual descriptions per

image to generate a feature vector Gt(Φ(ti). In this experiment we want to understand how

the model behaves at reduced text availability. Therefore, in addition to limiting the amount

of available images per novel class to n, we limit the amount of textual descriptions per image

to k ∈ {1, 2, 5, 10}. We evaluate the classification accuracy for n ∈ {1, 2, 5} with reduced

number of textual descriptions. In Fig. 3.7 we show the relative accuracy gains for the different

amount of texts compared to the image-only baseline. The x-axis shows the amount of texts

and the y-axis the relative accuracy gain. It can be observed that the lower the amount of

images n the higher is the accuracy gain given the text. The graphs show an increasing trend

which indicates that the more texts are available the more the classification accuracies can be

increased. This proves our assumption that enriching the embedding space ϕ is crucial to reach
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Figure 3.7: Relative top-5-accuracy gain for different amounts of available texts. The y-axis shows
the accuracy gain in relation to the image-only baseline and the x-axis the amount of available texts
per image k.

high classification results. Interestingly, in every n-shot scenario the second text leads to the

highest accuracy gain. However, adding more text constantly improves the results and is never

harmful to the model.

3.3.4.2 Impact of Prototype Shift

We investigate how the adjustment of a certain prototype impacts the classification perfor-

mance. Therefore, we analyze the per-class accuracy gain in correlation with the shift of the

prototype when exposed to multimodal data. The assumption we want to confirm whether

large adjustments to the prototype go along with higher accuracy gain compared to classes for

which the prototype remains almost unchanged. To this end, we measure change in prototype

between the original image-only prototype pI and the updated multimodal prototype pM using

the cosine distance denoted by d(pI , pM ). For every novel class, we analyze the correlation of

the prototype update to the accuracy gain compared to the image-only baseline. In Fig. 3.8 we

show the per-class accuracy gain for all prototypes in the 1-shot scenario. The x-axis shows the
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Figure 3.8: Per-class accuracy gain for prototypes after the adjustment with generated feature
vectors. The x-axis shows the rank of the prototype sorted by d(pI , pM ) and the y-axis the top-5-
accuracy gain for that particular class.

rank of the prototypes for all 50 novel classes of the CUB-200 dataset sorted by d(pM , pI) in a

descending order. The y-axis represents the accuracy gain for the certain prototype. We report

top-5 accuracy and show the average of the result for 100 few-shot episodes. It can be observed

that the more the prototype is changed (low rank) the higher is the accuracy gain for this par-

ticular class. On average, the most changed prototype leads to a per-class top-5 accuracy gain

of ca. 15%. Smaller changes have a smaller impact on the classification performance and on

average, adjusting the prototype with multimodal data is not harmful for the accuracy. This

suggests that the multimodal features carry complimentary information that is used to simulate

unseen novel class samples. At the same time it shows that the text-to-image feature mapping

is well learned, as the most diverse, or farthest multimodal features net the largest performance

gains.

92



3.3 Multimodal feature generation for low-shot learning 1

3.3.5 Conclusions

In this section we tackled the few-shot learning problem from a multimodal perspective. We

leveraged a nearest neighbor classifier in a powerful representation space. To mitigate the low

population problem caused by the few-shot scenario we developed a cross-modal generation

framework that is capable of enriching the visual feature space given data in another modality.

In contrast to section 3.2, this system does not require better quality data, but simply the

use of a modality where there exists abundant information regarding the task at hand. In the

case of textual data, this assumption can be justified when considering the volume of freely,

and legally available information available on most if not all topics.
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4

Catastrophic Forgetting

Previous chapters tackle cases where the data is restricted mechanically, where the required

data simply does not exist (Chapter 3) or the annotations needed for learning are prohibitively

expensive when broadly applying deep learning methods (Chapter 2). With evolving legisla-

tion regarding the access and storage of private data, any combination of quality and quantity

restrictions can occur. Lifelong learning systems are particularly vulnerable to such restrictions

- in the case where only data storage in restricted, operating in the strictly incremental "no look-

back" framework amplifies the network’s memory loss. In the following chapter we explore a

framework designed to mitigate catastrophic forgetting for such an image classification system

operating in a strictly class-incremental fashion.

4.1 Dynamic Generative Memory Network 1

4.1.1 Introduction

Several recent approaches try to mitigate forgetting by simulating synaptic plasticity in DNNs

(164, 165, 166, 167). Common to all these methods is the idea of discouraging updates of the

network parameters that keep old knowledge when learning new tasks. In this regard, Serrà et

al. (168) propose to rely on a hard attention to the task (HAT) mechanism. HAT finds parameter

subspaces for all tasks while allowing them to mutually overlap. The optimal solution is then

found in the corresponding parameter subspace of each task. It is noteworthy that all methods

above tackle the task-incremental scenario, i.e. a separate classifier (with a separate output

1"Learning to Remember: A Synaptic Plasticity Driven Framework for Continual Learning"; Oleksiy
Ostapenko, Mihai Puscas, Tassilo Klein, Moin Nabi, CVPR 2019, (5)
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layer per task) is learned to make predictions about each task. This further implies the avail-

ability of oracle knowledge of the task label at inference time.Such evaluation is often refereed

to as multi-head evaluation in which the task label is associated with a dedicated output head.

Alternatively, other approaches rely on single-head evaluation (166, 169). Here, the model

is evaluated on all classes observed during the training, no matter which task they belong to.

While single-head evaluation does not require oracle knowledge of the task label, it also does

not reduce the output space of the model to the output space of the task. Thus single-head eval-

uation represents a harder, yet more realistic setup. Single-head evaluation is predominantly

used in class-incremental setup, in which every newly introduced data batch contains examples

of one to many new classes.

As opposed to task-incremental setup, models in class incremental setup typically require

the replay of samples from previously seen categories when learning new ones. (166, 169,

170) show that such a replay based on real samples of previous tasks significantly alleviates

the problem of catastrophic forgetting in a class-incremental situation. Yet, retaining samples

has several intrinsic implications. First, it is very much against the notion of bio inspired

design as the brain by no means features the retrieval of raw information identical to originally

exposed impressions (171). Second, as pointed out by (172) and (169) storing raw samples

of previous data can violate data privacy and memory restrictions of real world applications.

Such restrictions are particularly relevant for the vision domain with its continuously growing

dataset sizes and rigorous privacy constraints.

In this work, we address the “strict” class incremental setup. We demand a classifier to

learn from a stream of data with different classes accruing at different times with no access to

previously seen data, i.e. no storing of real samples is allowed. Such a scenario is solely ad-

dressed by methods that rely on generative memory - a generative network is used to memorize

previously seen data distributions, samples of which can be replayed to the classifier at any

time. This largely transfers the forgetting problem from the class discriminator to the genera-

tor. Several strategies exist to avoid catastrophic forgetting in generative networks. The most

successful approaches make use of deep generative replay (DGR) (173) - repetitive training

from-scratch of the generator on a mix of synthesized samples (of previous tasks) and new real

samples every time a new task or class is introduced.

Another important factor in the continual learning setting is the ability to scale, i.e. to main-

tain sufficient capacity to accommodate for a continuously growing number of tasks. Given

invariant resource constraints, it is inevitable that with a growing number of tasks to learn,
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4.1 Dynamic Generative Memory Network 1

the model capacity is depleted at some point in time. This issue is again exacerbated when

simulating neural plasticity with hard attention mechanisms such as parameter level attention

masking. That is because weights blocked for previous tasks can be reused but not changed

during subsequent learning, continuously reducing the degree of freedom of the network. In

order to ensure sufficient degrees of freedom for every new task, we keep the number of "free"

weights (i.e. weights that can be changed) constant by expanding the network with exactly the

number of parameters what were blocked for the previous task.

Our contribution is twofold: (a) we introduce Deep Generative Memory (DGM) - an adver-

sarially trainable generative network that features neuronal plasticity through efficient learning

of a sparse attention masks for the network weights (DGMw) or layer activations (DGMa);

To best of our knowledge we are the first to introduce weight level masks that are learned

simultaneously with the base network; Furthermore, we conduct it in an adversarial context

of a generative model; DGM is able to incrementally learn new information during normal

adversarial training without the need to replay previous knowledge. (b) We propose an adap-

tive network expansion mechanism, facilitating resource efficient continual learning. In this

context, we compare the proposed method to state-of-the-art approaches for continual learn-

ing. Finally, we demonstrate that DGMw accommodates for higher efficiency, better parameter

re-usability and slower network growth then DGMa.

4.1.2 Related Work
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Figure 4.1: Dynamic Generative Memory: classification output ofD is trained on the real samples
of the current task t and synthesized sample of previously seen tasks 1...t− 1. Adversarial training
is accomplished with real and fake samples of current task. A connection plasticity in the generator
is learned simultaneously with the weights of the base network.

Among the first works dealing with catastrophic forgetting in the context of lifelong learn-
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ing are (174, 175, 176). In contrast to the proposed approach, these methods tackle this problem

by employing shallow neural networks, whereas our method makes use of modern deep archi-

tectures. In this regard, lately a wealth of works dealing with catastrophic forgetting in context

of deep neural networks have appeared in the literature, see e.g., (164, 165, 167, 168, 177).

However, all of these methods have been proposed for a “task-incremental learning” setup,

where a sequence of disjoint tasks is learned one after the other by a single network. In our

work we specifically propose a method to overcome catastrophic forgetting within the “class-

incremental learning” setup. The key difference in the task-incremental setup is that the model

learns a separate classifier for each task (i.e., multi-head), whereas in the latter the model learns

only a single classifier for all of the observed classes of all tasks (i.e., single-head). Notably, a

method designed for class-incremental learning can be generally applied in a task-incremental

setup, whereas a task incremental learner is generally limited to task incremental situations.

Several continuous learning approaches (169, 170, 178), address catastrophic forgetting in

the class-incremental setting, i.e. by storing raw samples of previously seen data and making

use of them during the training of subsequent tasks. Thus, iCarl (169) proposes to find m most

representative samples of each class whose mean feature space most closely approximates the

entire feature space of the class. The final classification task is done by the means of the nearest

mean-of-exemplars classifier.

Recently, there has been a growing interest in employing deep generative models for mem-

orizing previously seen data distributions instead of storing old samples. Thus (173, 179) rely

on the idea of generative replay, which requires retraining the generator from scratch at each

time step on a mixture of synthesized images of previous classes and real samples from cur-

rently available data. However, this approach suffers from a number of shortcomings. Apart

from being inefficient for training, it is severely prone to “semantic drifting”. Namely, the

quality of images generated at every memory replay point highly depends on the images gen-

erated during previous replays, which can result in loss of quality over time. In contrast to the

methods described above, we propose to utilize a single generator that is able to incrementally

learn new information during the normal adversarial training without the need to replay previ-

ous knowledge. This is achieved through efficiently learning a sparse mask for the units of the

generator network.

Similar to our method, (180) proposed to avoid retraining the generator at every time-step

on the previous classes by applying EWC (164), e.g. selective per-parameter regularization in

the generative network. We pursue a similar goal with the key difference of utilizing a hard

98



4.1 Dynamic Generative Memory Network 1

attention mechanism similar to the one described by (168, 181, 182). All three approaches

make use of the techniques originally proposed in the context of binary-valued networks (183).

Herein, binary weights are specifically learned from a real values embedding matrices that

are passed through a binarization function (e.g. sigmoid). To this end, (181, 182) learn to

mask a pre-trained network without changing the weights of the base networks, whereas (168)

(HAT) features binary mask-learning simultaneously with training the main network. While

DGMa features HAT-like layer activation masking, DGMw accomplishes binary mask learning

directly on the weights of the generator network simultaneously to the adversarial training.

Similarly to (184), we propose to expand the capacity of the employed network, in our case

the samples generator. Expansion is performed dynamically with increasing amount of attained

knowledge. However, (184) propose to keep track of the semantic drift in every neuron, and

then expand the network by duplicating neurons that are subject to sharp changes. In contrast,

we compute weightsâĂŹ importance concurrently during the course of network training by

modeling the neuron behavior using an explicit binary mask. As a result, our method explicitly

does not require any further network retraining after adding new capacity.

Other approaches like (178, 185) try to explicitly model short and long term memory with

separate networks while transferring the knowledge from the former one to the later in a sepa-

rate “sleeping” phase. In contrast to these methods our approach does not explicitly keep two

separate memory locations, but rather incorporates it implicitly in a single memory network.

Thus, the memory transfer occurs during the binary mask learning from non-binary (short term)

to completely binary (long term) values.

4.1.3 Preliminaries

Adopting the notation of (166), let St = {(xti, yti)}n
t

i=1 denote a collection of data belonging to

the task t ∈ T , where xti ∈ X is the input data and yti ∈ yt are the ground truth labels. While in

the (standard) non-incremental setup the entire dataset S = ∪|T |t=0St is available at once, in an

incremental setup it becomes available to the model in chunks St specifically only during the

learning of task t. Thereby, St can be composed of a collection of items from different classes,

or even from a single class only. Furthermore, during test time the output space covers all the

labels observed so far featuring the single head evaluation: Yt = ∪tj=1yj .
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4.1.4 Dynamic Generative Memory

Rationale. We consider a continual learning setup, in which a task solving model D has to

learn its parameters θD from the data St being available at the learning time of task t. Task

solver D should be able to maintain good performance on all classes Yt seen so far during

the training. A conventional ANN, while being trained on St, would adapt its parameters in

a way that exhibits good performance solely on the labels of the current task yt, the previous

tasks would be forgotten. To overcome this, we introduce a Generative Memory component G,

who’s task is to memorize previously seen data distributions. As visualized in Fig. 4.1, samples

of the previously seen classes are synthesized by G and replayed to the task solver D at each

step of continual learning to maintain good performance on the entire Yt. We train a generative

adversarial network (GAN)(186) and a sparse mask for the weights of its generator simulta-

neously. The learned masks model connection plasticity of neurons, thus avoiding overwriting

of important units by restricting SGD updates to the parameter segments of G that exhibit free

capacity.

Learning a binary mask. We consider a generator network GθG consisting of L layers,

and a discriminator network DθD . In our approach, DθD serves as both: a discriminator for

generated fake samples of the currently learned task and as a classifier for the actual learning

problem (AC-GAN (160) architecture). The system has to continually learn T tasks. During

the SGD based training of task t, we learn a set of binary masks M t = [mt
1, ...,m

t
L] for the

weights of each layer. Output of layer l is obtained by combining the binary mask mt
l with the

layer weights, e.g.

ytl = σact[(m
t
l ◦Wl)

>x], Wl ∈ Rp×n, (4.1)

for l being fully connected and σact some activation function. Wl is the weight matrix

for connections between layer l and l − 1, and · ◦ · corresponds to the Hadamard product of

matrices. In DGMw mt
l is shaped identically to Wl, whereas in case of DGMa the mask mt

l is

shaped as 1× n and should be expanded to the size of Wl. Extension to more complex models

such as e.g. CNNs is straightforward.

A single binary mask for the generator’s layer l and task t is given by:

mt
l = σ(s · etl), (4.2)
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where etl is a real-valued mask embeddings matrix, s is a positive scaling parameter s ∈ R+,

and σ a thresholding function σ : R → [0, 1]. We use the sigmoid function as a pseudo step-

function in order to ensure gradient flow to the embeddings e. In training of DGMw, we anneal

the scaling parameter s incrementally during epoch i from 0 to simax (local annealing). simax
is similarly adjusted over the course of I epochs from 0 to smax (global annealing with smax
being a fixed meta-parameter) following the scheme largely adopted from (168):

simax =
1

smax
+ (smax −

1

smax
)
i− 1

I − 1
(4.3)

s =
1

simax
+ (simax −

1

simax
)
b− 1

B − 1
. (4.4)

Here b ∈ {1, . . . , B} is the batch index and B the number of batches in each epoch of SGD

training. DGMa only features global annealing of s as it showed better performance.

In order to prevent the overwriting of the knowledge related to previously seen classes in

the generator network, gradients gl w.r.t. the weights of each layer l are multiplied by the

reverse of the accumulated binary masks for all previous tasks:

g′l = [1−m≤tl ]gl, m≤tl = max(mt
l ,m

t−1
l ), (4.5)

where g′l corresponds to the new weights gradient and m≤tl is the accumulated mask.

Similarly to (168), we promote sparsity of the binary mask by adding a regularization term

Rt to the loss function LG of the AC-GAN(160) generator:

Rt(M t,M t−1) =

∑L−1
l=1

∑Nl
i=1m

t
l,i(1−m<t

l,i )∑L−1
l=1

∑Nl
i=1 1−m<t

l,i

, (4.6)

whereNl is the number of parameters of layer l. Here, parameters that were reserved previously

are not penalized, promoting reuse of weight units over reserving new ones as new tasks are

learned.

Dynamic network expansion. As discussed by (182), significant domain shift between

tasks leads to rapid network capacity exhaustion, ultimately manifesting in catastrophic for-

getting. This can be explained by decreasing sparsity of the accumulated mask m≤tl over the

course of training. To avoid this effect, we take measures to ensure stationary sparsity of the

masks in each training cycle t. Consider network layer l with input vector of size p and output

vector of size n. At the beginning of the initial training cycle, the binary mask m1
l ∈ [0, 1]p×n

is initialized with zero sparsity. Thus, all neurons of the layer will be used, with all values of

the mask m1
l set to 0.5 (real-valued embeddings e1l are initialized with 0).
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MNIST (%) SVHN(%) CIFAR10(%) ImageNet-50(%)

Method A5 A10 A5 A10 A5 A10 A30 A50

JT 97.66 98.10 85.30 84.82 82.20 64.20 57.35 49.88

E
pi

so
di

c
m

em
or

y

iCarl-S (169) - 55.8 - - - - 29.38 28.98

EWC-S(164) - 79.7 - - - - - -

RWalk-S(166) - 82.5 - - - - - -

PI-S (165) - 78.7 - - - - - -

G
en

er
at

.
m

em
or

y

EWC-M (180) 70.62 77.03 39.84 33.02 - - - -

DGR (173) 90.39 85.40 61.29 47.28 - - - -

MeRGAN (179) 98.19 97.00 80.90 66.78 - - - -

DGMw (ours) 98.26 96.33 80.37 67.05 64.94 51.7 29.67 17.32

DGMa (ours) 99.17 98.14 84.18 68.36 62.50 50.80 25.93 15.16

Table 4.1: Comparison to the benchmark presented by (166) (episodic memory with real samples)
and (179) (generative memory) of approaches evaluated in class incremental setup. Joint training
(JT) represents the the performance of the discriminator trained in non-incremental fashion. Both
variants of our method are evaluated.

After the initial training cycle with the sparsity regularizer R1, the number of free weight

parameters not reserved by the mask will decrease to np − δ1, with δt corresponding to the

number of parameters reserved for the generation task t (t = 1 here). After training cycle t

of DGMw, we expand layer l’s number of output weights n by δt/p. The free capacity of the

layer is kept constant: (n+ δt/p)p− δt = np.

In practice we extend the number of output units n by dδt/pe. The number of free parame-

ters is thus either np, if δt/p ∈ Z, or np+ p, otherwise.

Joint training. The proposed system combines learning of three tasks that have to be

learned jointly: A generative, a discriminative and finally a classification task in the strictly

incremental class setup.

As such, using task labels as conditions, the generator network must learn from a training

set Xt = {Xt
1, ..., X

t
N} to generate images for task t. To this end, AC-GAN’s conditional

generator synthesizes images xt = GθG(t, z,Mt), where θG represents the parameters of the

generator network, z denotes a random noise vector.

The discriminator network is used to perform two tasks. First, a discriminative task, deter-

mining whether sample xt is real or fake. Second, a classification task, indicating which of the
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labels Yt = ∪tj=1yj seen so far can be associated with sample xt. To achieve both, the final

layer of the network has two branches corresponding to each task. The parameters correspond-

ing to each task are optimized in an alternating fashion. As such, the generator optimization

problem can be seen as minimizing LG = Lts −Ltc + λRUR
t, with Lc a classification error on

the auxiliary output, Ls a discriminative loss function used on the binary output layer of the

network, and Rt the regularizer term expanded upon in Equation 4.6.

To promote efficient parameter utilization, taking into consideration the amount of the net-

work already in use, the regularization weight λRU is multiplied by the ratio α = St
Sfree

, where

St is the size of the network before training the task t, and Sfree is the number of free neurons.

This ensures that less parameters are reused during early stages of training, and more during

the later stages when the model already has gained a certain level of maturity. The sensitivity

of λRU is investigated in Sec. 4.1.5.4.

The discriminator is optimized similarly through minimizing LD = Ltc − Lts + λGPL
t
gp,

where Ltgp represents a gradient penalty term implemented as in (187), to ensure a more stable

training process.

4.1.5 Experimental Results

In the following section we provide a qualitative and quantitative evaluation of our method

on a number of publicly available datasets. Furthermore, we provide a discussion upon the

performance of the different components.

4.1.5.1 Experiments

We perform experiments measuring the classification accuracy of our system in a strictly class

incremental setup on the following benchmark datasets: MNIST (188), SVHN (189), CIFAR-

10 (190), and ImageNet-50 (191). Similarly to (166, 169, 179) we report an average accuracy

(At) over the held-out test sets of classes 0...t seen so far during the training.

Datasets: The MNIST and SVHN datasets are composed of 60000 and 99289 images

respectively, containing digits. The main difference is in the complexity and variance of the

data used. SVHN’s images are cropped photos containing house numbers and as such present

varying viewpoints, illuminations, etc. CIFAR10 contains 60000 labelled images, split in 10

classes, roughly 6k images per class. Finally, we use a subset of the iILSVRC-2012 dataset

103



4. CATASTROPHIC FORGETTING

containing 50 classes with 1300 images per category. All images are further resized to 32 x 32

before use.

Architectures: We make use of the same architecture for the MNIST and SVHN exper-

iments, a 3-layer DCGAN (192), with the generator’s number of parameters modified to be

proportionally smaller (approx. 50%) than the architecture reported in (179). The projec-

tion and reshape operation is further performed with a convolutional layer instead of a fully

connected one. For the CIFAR-10 experiments, we use the CIFAR-10 ResNet architecture

proposed by (192). For the ImageNet-50 benchmark the discriminator features ResNet-18 ar-

chitecture. Note that all architectures used have been modified to function as an AC-GAN

(160).

All datasets are used to train a classification network in an incremental way, and the perfor-

mance of our method is evaluated quantitatively through comparison with benchmark methods.

Note that we compare our method mainly to the approaches that rely on the idea of generative

memory replay, e.g. replaying generator synthesized samples of previous classes to the task

solver without storing real samples of old data. For the sake of fairness we only consider

benchmarks evaluated in class incremental single head evaluation setup. Hereby, to best of

our knowledge (179) represent the state-of-the art benchmark followed by (173) and (180).

Next, we relax the strict incremental setup and allow partial storage of real samples of previous

classes. Here we compare to the iCarl (169), which is a state-of-the art method for continual

learning with storing real samples.

4.1.5.2 Results

A quantitative comparison of the both variants of the proposed DGM approach with other

methods is listed in Table 4.1. We use joint training (JT) as upper performance bound, here the

task solver D is trained in a non-incremental fashion on all real samples without adversarial

training being involved (not acting as discriminator for real/fakes). The first set of methods

evaluated by (166) do not adhere to the strictly incremental setup, and thus make use of stored

samples. Storing real samples if often refereed to as "episodic memory". The second set of

methods we compare with do not store any real data samples. Notably, the generator of our

method is initialized to by roughly 50% of the size of the network used by the other methods

in this group.

Our method outperforms the state of the art (180) and (173) on the MNIST and SVHN

benchmarks through the integration of the memory learning mechanism directly into the gen-
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Figure 4.2: Top-5 performance of DGMw
together with upper (JT) and lower (No
replay) performance bounds measured for
ImageNet-50 benchmark. DGM+real de-
notes variation with different ratios of real
samples added to the replay loop (25%-75%
of replayed samples being real)

0 1 2 3 4 5 6 7 8 9
task

200

400

600

800

1000

1200

1400

Si
ze

Size DGMa
Size DGMw
Worst case size

Figure 4.3: Network growth of DGMw and
DGMa in the incremental MNIST setup.
The worst case scenario refers adding the
initial size after each task. Size is reported
in terms of the number of neurons per layer.

erator network, and the expansion of said network as it saturates to accommodate new tasks.

We yield an increase in performance over (179), a method that is based on a replay strategy

for the generator network and does not provide dynamic expansion mechanism of the memory

network, leading to increased training time and sensitivity to semantic drift. As it can be ob-

served for both, our method and MeRGAN, the accuracy reported between 5-tasks and 10-tasks

of the MNIST benchmark has changed a little, suggesting that for this dataset and evaluation

methodology both approaches have largely curbed the effects of catastrophic forgetting.

Interestingly, DGM outperforms joint training on the MNIST dataset using the same archi-

tecture. This suggests that the strictly incremental training methodology forced the network to

learn better generalizations compared to what it would learn given all the data.

Given the high accuracies reached on the MNIST dataset largely give rise to questions con-

cerning saturation, we opted to perform further evaluation on the more visually diverse SVHN

dataset (189). In this context, increased data diversity translates to more difficult generation

and susceptibility to catastrophic forgetting. In fact, as can be seen in Tab. 4.1, the difference

between 5-task and 10-task accuracies is significantly larger in all methods than what can be

observed in the MNIST experiments. DGMa strongly outperforms all other methods on the

SVHN benchmark, whereas DGMw reaches the state of the art and slightly outperforms the

best competitor only after the 10-th task. This can be attributed primarily to our efficient net-

work expansion that allows for more redundancy in reserving representative neurons for each
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task, and a less destructive joint use of neurons between tasks. DGM thus becomes more stable

in the face of catastrophic forgetting.

The quality of the generated images after 10 stages of incremental training for MNIST,

SVHN and CIFAR-10 can be observed in Fig. 4.5. The generative network is able to provide

an informative and diverse set of samples for all previously seen classes without catastrophic

forgetting.

Finally in the ImageNet-50 benchmark we incrementally add 50 classes with 10 classes per

step and evaluate the classification performance of out system in a single-head evaluation. We

evaluate the Frechet Inception Distance (FID) (193) metric of the generated images over 50

classes in order to asses the perceptual quality of the generation. Dynamics of the FID metric

across the different tasks are provided in the appendix. In conjunction with the qualitative re-

sults shown in Fig. 4.6 it can be observed that little to no quality is lost for generating samples

from previous tasks evidencing that no knowledge is forgotten. Nevertheless, for each newly

learned task the discriminator network’s classification layer is extended with 10 new classes,

making the complexity of the classification problem to grow constantly (from 10-way classifi-

cation to 50-way classification). With the more complex ImageNet samples also the generation

task becomes much harder. These factors negatively impact the classification performance of

the task solver presented in the Fig. 4.2, where DGMw performs significantly worse then the

joint training (JT) upper bound.
epoch

Newly blocked (NB) Reused (R)

0  1  2  3  4  5  8 9

100

20

%

40

60

Tasks

80

 6  7

(a) Parameter re-usability

0  10  20  30  40  50  60  100

1.0

0.2

0.0

M
as

k 
va

lu
es

0.4

0.6

epoch

0.8

(b) Mask learning

Figure 4.4: Mask behaviour analysis: parameter re-usability and mask learning dynamics.

Next, we relax the strict incremental setup and allow the DGM to partially store real sam-

ples of previous classes and compare the performance to the sate-of-the-art iCarl (169)1. Note

that, iCarl relies only on storing real samples of previous classes introducing a smart sample
1We apply iCarl to the same classes of ImageNet as DGM with equal resolution using official implementation

of iCarl: https://github.com/srebuffi/iCaRL
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Top-1(%) Top-5(%)

Method A30 A50 A30 A50

JT 57.35 49.88 84.70 78.24

iCarl (K=1000) 29.38 28.98 69.98 59.49

iCarl (K=2000) 39.38 29.96 70.57 60.07

DGMw (K=1000) 47.27 30.24 76.73 56.76

DGMw (K=2000) 48.80 33.68 76.67 63.84

DGMw 29.67 17.32 62.53 40.76

DGMw (r=0.75) 50.80 38.22 78.27 64.64

DGMw (r=0.5) 49.33 40.40 78.20 67.12

DGMw (r=0.25) 42.33 30.20 74.60 57.32

Table 4.2: Performance comparison of DGM and iCarl. We run DGMw for different values of r,
e.g. different ratios of real/synthesized samples, and different K - maximal memory size.

selection strategy (for details refer to Sec. 4.1.2). We define a ratio of stored real and total

replayed samples r = nr/N , where N is the total number of samples replayed per class and

nr is the number of randomly selected real samples stored per each previously seen class. We

always keep the number of replayed samples balanced with the number of real samples of the

currently observed classes, thusN is set to be equal to the average number of samples per class

in the currently observed data chunk St. Furthermore, similarly to iCarl (169) we define K to

be the total number of real samples that can be stored by the algorithm in at any point of time.

We compare DGMw with iCarl for different values of K (e.g. K = 1000 and K = 2000 )

allowing the storage of K/|Yt| samples per class.

From Tab. 4.2 we observe that DGM is outperformed by iCarl when no real samples are

used (e.g. r = 0) after 50 classes in top-1 and after 30 and 50 classes in top-5 accuracy.

DGMw with only synthesized samples being replayed reaches iCarl’s performance in top-1

accuracy after 30 classes. Furthermore, we observe that adding real samples to the replay loop

boosts DGM’s classification accuracy beyond the iCarl’s one. Thus, already for r = 0.25 the

performance of our system can be improved significantly, encouraging that our method can be

successfully applied within few-shot regime. We now consider DGM and iCarl with the same
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Figure 4.5: 4/images_cvpr generated by DGM from MNIST(top), SVHN(middle), and CI-
FAR(bottom) after learning 10 tasks incrementally.

Figure 4.6: Examples of ImageNet samples generated by DGM after learning 5 tasks (50 classes)

memory sizeK (we test forK = 1000 andK = 2000). Here DGM outperforms iCarl in top-1

accuracy after 30 and 50 classes, in top-5 accuracy after 30 classes. This is largely attributed

to the advantage of DGM using generated samples additionally to the stored real once.

4.1.5.3 Plasticity evolution

We analyze how learning is accomplished within a given task t, and how this further affects

the wider algorithm. For a given task t, its corresponding binary mask Mt is initialized with

the scaling parameter s = 0. Fig. 4.4(b) shows the learning trajectories of the mask values

over the learning time of task t. As observed in Fig. 4.4(b), at task initialization of DGMa the

mask is completely non-binary (all mask values are 0.5). As training progresses, the scaling

parameter s is annealed, the network is encouraged to search for the most efficient parameter

constellation (epoch 2-10 Fig. 4.4(b)). But with most mask values near 0 (most of units are

not used, high efficiency is reached), the network’s capacity to learn is greatly curtailed. The

optimization process pushes the mask to become less sparse, the number of non-zero mask

values is steadily increasing until the optimal mask constellation is found, a trend observed

in the segment between the epoch 10 and 55 Fig. 4.4(b). This behaviour can be seen as a

short-term memory formation - if learning was stopped at e.g. epoch 40 only a relatively small

fraction of learnable units is binary masked, the units with non-binary mask values would be

still partially overwritten during the subsequent tasks, thus, partial forgetting would still occur.

A transition from short to the long-term memory occurs largely within the epochs 45-65. Here
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the most representative units are selected and reserved by the network, parameters that have not

made this transition are essentially left as unused for the learning task t. Finally, the optimal

neuron constellation is optimized for the given task from epoch 60 onwards. The plasticity

learning behaviors of DGMw is analyzed in the appendix.

For a given task t, masked units (neurons in DGMa, network weights in DGMw) can be

broadly divided into three types: (i) units that are not used at all (U) [masked with 0] , (ii) units

that are newly blocked for the task (NBt), (iii) units that have been reused from previous tasks

(NBt).

Figure 4.4(a) presents the evolution of the ratio of the (NBt) and (NBt) types over the

total number units blocked for the task t. Of particular importance is that the ratio of reused

units is increasing between tasks, while the ratio of newly blocked units is decreasing. These

trends can be justified by the network learning to generalize better, leading to a more efficient

capacity allocation for new tasks.

4.1.5.4 Size vs. accuracy trade-off

One of the primary strengths of DGM is an efficient generator network expansion compo-

nent, removing of which would lead to inability of the generator network to accommodate for

memorizing new new task (analysis provided in the supplementary material). Its performance

is directly related to how the network parameters are reserved during the incremental learn-

ing,which ultimately depends on the generator’s ability to generalize from previously learned

tasks. Fig. 4.3(b) reports network growth against the number of tasks learned. We find that

learning masks directly for the layer weights (DGMw) significantly boosts the parameter re-

usability, slowing down network growth as new tasks are introduced. Furthermore, one can

observe the efficiency of our network growth method compared to a worst case scenario, where

for every task we simply add the the initial number of network parameters.

Obviously, there is a trade-off between the network size and the quality of the synthesized

images, which is further reflected in the classification performance of the system. As described

in Sec. 4.1.4, hyperparameter that represents the re-usability factor during the training is λRU .

We analyze the sensitivity of this parameter in the Tab. 4.3. As expected, we observe that λRU

is negatively correlated with the network size and therefore the classification accuracy.
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λ 2e−6 2e−1 0.75 1 2 5

A5(%) 98.35 98.10 97.22 96.91 96.67 88.70

Size 364 352 311 286 261 193

Table 4.3: Sensitivity of parameter λRU (MNIST benchmark).

4.1.6 Conclusions

In this section we studied the continual learning problem in a context in which evolving legis-

lation can restrict their operation, specifically a single-head, strictly incremental context. We

proposed a Dynamic Generative Memory approach for class incremental continual learning.

Our results suggest that our approach successfully overcomes catastrophic forgetting by mak-

ing use of a conditional generative adversarial model where the generator is used as a memory

module through neural masking. We also show that the proposed dynamic memory expansion

mechanism facilitates a resource efficient generator adaptation to successfully accommodate

learning new tasks.
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Concluding Remarks

5.1 Summary and Remarks

In this thesis we have investigated methods for overcoming commonly seen cases of data

scarcity, through unsupervised annotation and feature estimation methods, few-shot learning

techniques and finally through overcoming catastrophic forgetting in strictly class-incremental

lifelong learning.

In Chapter 2 we have investigated a method of unsupervised, class agnostic spatio-temporal

tube production system (Section 2.2), based on expanding the image-level "objectness" cate-

gory to the temporal domain. Due to limitations in this method’s temporal localization capabili-

ties, we next proposed a method of providing more precise spatio-temporal annotations through

an unsupervised, pixel-level segmentation system (Section 2.3) that makes use of multiple im-

age level and temporal cues, organized into different topologies. For an optimal segmentation

of the resulting graph, the similarity and graph cutting are jointly optimized.

While these methods tackle the lack of quality in gathered data by easing the annotation

task through proposal generation and video segmentation, there are tasks for which low-level

features are required but difficult to learn. A particular case is depth estimation, where super-

vised learning requires expensive LIDAR depth maps. As such, in Section 2.4 we proposed

an unsupervised, depth estimation system that makes use of cycled adversarial learning. This

system proved the usability of generative adversarial learning for this task, the more rigorous

restrictions between the image views, provided by the synthesis cycle leading to a better op-

timization process. Overall this chapter provides a suite of unsupervised methods suitable for

spatio-temporal video segmentation and depth estimation.
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The next stage of our work detailed in Chapter 3 is focused on learning directly on data

whose distribution is skewed, a data quantity restriction. We developed a low-shot learning

system that makes use of a canonical, category-wise 3D model and predicted instance-specific

texture and mesh deformations to it (Section 3.2) to generate samples for classes where samples

are scarce. While learning a class specific 3D model does not provide the object kinematics,

it can be sampled for novel viewing angles and positions, increasing generated data diversity.

As a next stage we proposed a multi-modal generative few-shot learning classification system

(Section 3.3), under the assumption that textual data is often more abundant than visual data

for the scarce classes. Using this extra information we directly generate feature vectors, and

provide a strategy to combine generated and real samples such that an extremely simple nearest

neighbour approach is sufficient for state of the art classification performance. Within this

chapter we observe that the data scarcity problem can be overcome using either data of superior

quality, or data from an abundant modality to greatly outperform methods that do not use any

supplementary data. We posit that this is a reasonable stance to take, as data quality can be

improved using unsupervised systems, and textual data is particularly rich and comprehensive.

Finally, within Chapter 4 we tackle data storage restrictions caused by tightening legisla-

tion, and their effects on lifelong learning systems. Specifically, to overcome the exacerbated

catastrophic forgetting problem in life-long learning systems operating in a strictly incremental

fashion we have developed a generative, dynamically expanding network architecture. This

network overcomes the lack of stored data by generating samples from old knowledge at each

new incoming task, and retraining the classification network. An efficient binary mask mod-

ule preserves the old information within the generative subnetwork, which is expanded as new

tasks arrive to maintain enough capacity to learn and store incoming information.

5.2 Future Perspectives

As deep learning methods become more widely applied, methods of combating data scarcity

will become ever more useful. As such, in the case of video annotation systems, computational

efficiency and wider applicability are two of the paths in which they could be improved.

At the same time, the works detailed in this thesis on few-shot learning were only concen-

trated on the image domain, and more specifically on image-level fine-grained classification.

More powerful generative strategies can help expand these methods to a broader classification

scenario, and with the progress seen in video generation they can be expanded to the video
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domain. In the case of the work detailed in Section 3.2, and expansion to the temporal domain

would be extremely beneficial - learning an object’s kinematics would allow us to generate

extremely diverse and informative samples.

Finally, the catastrophic forgetting system presented has a series of generative and resource

limitations - the generative system can only be improved to better "remember" previously seen

data distributions, while the system itself grows its own memory footprint to handle new data.

Note that the network expansion rate decreases for each new task as more knowledge is stored.

This growth process can be further optimized to reach a saturation point earlier in the training,

for wider applicability.
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