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Abstract

In the contexts of Formal Verification (FV) and Automated Reasoning (AR), Satisfiability Mod-
ulo Theories (SMT) is an important discipline that allows for dealing with industrial-level de-
cision problems. Optimization Modulo Theories (OMT) extends Satisfiability Modulo Theories
with the ability to express, and optimize, objective functions.

Recently, there has been a growing interest towards OMT, as witnessed by an increasing
number of applications using, at their core, some OMT solver as main power-horse engine.
However, at present few OMT solvers exist, and the development of OMT technology is still
at an early stage, with large margins of improvement. We identify two major advancement
directions in particular. First, there is a general need for closing the expressiveness gap with
respect to SMT, and provide optimization procedures that can deal with the wider range of
theories supported by SMT solvers. Second, there is an urgent need for more efficient techniques
that can improve on the performance of state-of-the-art OMT solvers, because solving an OMT
problem is inherently more expensive than dealing with its SMT counterpart, often by at least
one order of magnitude.

In this dissertation, we present a variety of techniques that deal with the identified issues and
advance both the expressiveness and the efficiency of OMT. We describe our implementation
of these techniques inside OPTIMATHSAT, a state-of-the-art OMT solver based on MATH-
SAT5, along with its high-level architecture, Input/Output interfaces and configurable options.
Thanks to our novel contributions, OPTIMATHSAT can now deal with the single- and the multi-
objective incremental optimization of goals defined over multiple domains –the Boolean, the
mixed Linear Integer and Rational Arithmetic, the Bit-Vector and the Floating-Point domain–
including (Partial Weighted) MAXSMT.

We validate our theoretical contributions experimentally, by comparing the performance of
OPTIMATHSAT against other, competing, OMT solvers. Finally, we investigate the effective-
ness of OMT beyond the scope of Formal Verification, and describe an experimental evaluation
comparing OPTIMATHSAT with Finite Domain Constraint Programming tools on benchmark-
sets coming from their respective domains.
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Chapter 1

Introduction

Satisfiability Modulo Theories (SMT) denotes the problem of deciding the satisfiability of a
first-order formula with respect to a combination of decidable first-order theories [BSST09].
The last fifteen years have witnessed the development of very efficient SMT solvers, most
of which are based on the so-called lazy-SMT schema that combines the power of modern
Conflict-Driven Clause-Learning (CDCL) SAT solvers [MSLM09] with the expressiveness of
dedicated decision procedures (T -solvers) for several first-order theories of practical inter-
est such as linear arithmetic over the rationals (LRA), the integers (LIA) or their combina-
tion (LIRA), non-linear arithmetic over the reals (NLRA) or the integers (NLIA), arrays
(AR), bit-vectors (BV), floating-point arithmetic (FP), and their combinations thereof. (See
[NOT06, Seb07, BSST09] for an overview.). This has brought previously-intractable problems
to the reach of state-of-the-art SMT solvers, so much so that SMT has acquired a prominent
role in many applications of industrial interest such as Formal Verification (FV) of hardware
and software systems, Automated Reasoning (AR), resource planning, temporal reasoning and
scheduling of real-time embedded systems.

Optimization Modulo Theories (OMT), [NO06, CFG+10, ST12, DDMA12, CGSS13a, MP13,
LAK+14, LORR14, ST15a], is a more recent extension to Satisfiability Modulo Theories that
allows for finding a model of a first-order formula that is optimal with respect to some ob-
jective function through a combination of SMT and optimization procedures. Many SMT
problems of practical interest are derived from —or can be easily extended to— an optimiza-
tion problem. This is the case of SMT-based model checking with timed or hybrid systems,
(e.g. [ACKS02, ABCS05]), in which one may want to find those executions that optimize the
value of some parameter (e.g., a clock timeout value or the elapsed time) while full-filling or
violating some temporal logic property. For instance, [ST15a] suggests using OMT to find
the minimum opening time interval that causes a safety violation for a level crossing barrier.

1



CHAPTER 1. INTRODUCTION

A non-exhaustive list of the most recent OMT applications can be found towards the end of
this dissertation, while a few examples of less-recent OMT applications can also be found in
[NO06, CFG+10, ST12, CGSS13a, LAK+14, BP14, LORR14, ST15a, ST15c, ST17, ST18].

Since the seminal work of Nieuwenhuis and Oliveras in [NO06], which have dealt with
the Optimization Modulo Theories problem for first, there has been an increasing interest
around this topic. However, the research on OMT still appears to be at an early stage when
compared with other, more thoroughly studied, fields such as SMT. In fact, the number of
scientific publications in the literature that extend SMT with optimization is fairly limited,
[NO06, CFG+10, Roc11, ST12, DDMA12, MP13, CGSS13a, LAK+14, LORR14, ST15a], and
there are only a handful of more recent works that can be added to this figure, [BP14, BPF15,
ST15b, ST15c, ABCF16, NR16, ST17, AAdB+17, ST18, FBB18, KBE18, AAdB+18, TS19],
although we expect more to appear.

To this date, few OMT solvers exist that are also applicable beyond the scope of Partial
Weighted MAXSMT, namely BCLT [NO06, BNO+08, Roc11, LORR14], CEGIO [ABCF16,
AAdB+17, AAdB+18], HAZEL [NR16], OPTIMATHSAT [ST12, ST15a, ST15b, ST15c, ST17,
ST18, TS19], PULI [KBE18], SYMBA [LAK+14] and Z3 [BP14, BPF15]. To this aim, we ob-
serve that most of these solvers focus on different, partially overlapping, niche subsets of Opti-
mization Modulo Theories, and employ different standards for their Input/Output interfaces. In
practice, the combination of these two factors makes it hard to compare with one another the
few OMT solvers in existence.

In what follows we focus on the state of the art prior of the start of this Ph.D. program
(November 1st, 2014). Then, we make the following observations. Some of these works, such
as [NO06, CFG+10, CGSS13a], are applicable only to Partial Weighted MAXSMT, which is
strictly less expressive than Optimization Modulo Theories with Linear Integer/Rational Arith-
metic cost functions [ST15a]. The optimization procedures described by Sebastiani and Tomasi
in [ST12, ST15a] and by Li et al. in [LAK+14] can only deal with OMT with a Linear Rational
Arithmetic objective. In contrast, those described by R. O. Vendrel in [Roc11] and Manolios
et al. in [MP13] deal with Linear Integer Arithmetic objectives only. Neither of these works
expressively supports Mixed Linear Integer and Rational Arithmetic objectives, and [LAK+14]
is the only work describing some form of multi-objective optimization support. Their approach,
however, is limited to the case in which every goal can be considered a completely independent
target from all the others, akin to solving a number of separate OMT problems in parallel. Last,
we observe that none of these works on OMT describes an incremental interface allowing for
pushing and popping subformulas and objective functions from the formula stack, allowing for
reusing useful information from one call to the other. This appears to be a relevant limitation
because SMT back-ends are often invocked incrementally like, e.g., in the context of Formal

2
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Verification.

Based on the above considerations on the status of Optimization Modulo Theories before
the start of this research, we identify the following improvements as necessary milestones to
unleash the full potential of Optimization Modulo Theories and make it further adopted in the
context of real-world, industrial-level, applications.

First, there is a general need to bridge the expressiveness gap of Optimization Modulo Theo-
ries when compared to Satisfiability Modulo Theories, and go beyond the various Linear Arith-
metic restrictions that are currently supported by OMT and MAXSMT solvers. This not only
means introducing optimization procedures that can handle Mixed Linear Integer and Rational
Arithmetic goals and combination of theories at the same time, but also objective functions de-
fined in other theories than Linear Arithmetic, such as the theory of Bit-Vectors and the theory
of Floating-Point numbers.

Second, it is necessary to investigate possible approaches for improving the performance
of OMT solvers, including methods that are only applicable to objective functions abiding to
certain format restrictions (like, e.g., MAXSMT). This goal is easily justifiable by observing
that while the leap from SMT to OMT can appear to be quite small from the perspective of
an end-user, due to the ease with which a new objective can be both declared and used, in
practice solving an OMT problem can be orders of magnitude harder in terms of computational
effort than dealing with its SMT counter-part. This is due to the fact that in an SMT solver the
search stops as soon as the first feasible solution is hit, whereas in an OMT solver the search
is normally terminated only when an optimal solution is found. In practice, dealing with the
latter goal is a significantly more daunting task than satisfiability, that can require enumerating
multiple suboptimal solutions along the search and also certifying the absence of an improving
solution at the end of the optimization search. Therefore, we believe that Optimization Modulo
Theories can greatly benefit from the investigation of more efficient techniques that may bring
previously intractable applications within the reach of OMT solvers.

A third improvement direction, closely related to the previous goal, is incrementality. This
refers to the ability to push and pop both constraints and objectives on the formula stack of an
OMT solver, while being able to reuse useful information automatically learned by the OMT
solver across multiple optimization searches. This feature, that is widely supported among SMT
solvers, can be crucial for achieving significant search speed-up when dealing with applications
that require performing a large number of incremental calls to the tool, each bringing small
changes to the previous formula.

Fourth, Optimization Modulo Theories can also greatly benefit from further extending the
pioneering work of Li et al. on multi-objective optimization in [LAK+14]. In particular, some
OMT applications —like, e.g., [NSGM16a, NSGM16b, NSGM17]— may benefit from the
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ability of performing Lexicographic or Pareto-optimization search over a set of constraints.
Fifth, we believe it is worth considering whether the range of applications of Optimization

Modulo Theories can be extended further beyond its natural Formal Verification (FV) and Au-
tomated Reasoning (AR) domains, and to what extent. In this respect, it is worth noting that
there are other tool families that allow for optimizing some objective function under a set of
constraints, such as Finite Domain Constraint Programming (FDCP) and Mixed Integer Lin-
ear Programming (MILP). Among its strengths, Optimization Modulo Theories can rely on
native Boolean reasoning capabilities, that may prove to be an edge when dealing with highly
combinatorial problems, and the ability to handle theories that are commonly not supported
by tools coming from other research fields, such as the theory of arrays (AR) or the theory
of uninterpreted functions with equality (EUF). Previous works, such as [BPV09, BPSV09,
BSV10, BPSV12], have already started investigating those applications for which Satisfiability
Modulo Theories can be competitive with FDCP and MILP tools. Part of the work described in
this thesis is devoted to pushing forward this research work, focusing on Optimization Modulo
Theories.

On the whole, the expected benefits from the rise of more efficient and expressive Optimiza-
tion Modulo Theories solvers are many-fold.

• In those application fields that already benefit from SMT technology —like, e.g., Formal
Verification and AI Planning— the rise of efficient OMT tools should allow for addressing
more sophisticate versions of those problems (like, e.g., planning with resource optimiza-
tion).

• In those application fields that typically make use of FDCP/MILP back-end engines
instead —like, e.g., scheduling, industrial plant optimization [JG02], electrical grid opti-
mization [TCHS13], planning with resources [BLPS15, DPSS15]— OMT could play as
an interesting alternative, taking advantage from several distinctive features that can be
inherited from SMT: the native (and very efficient) handling of Boolean operators, incre-
mentality, the capability of combining arithmetic with other theories (e.g. EUF , arrays,
bit-vectors, data-structures, ...).

• Other application fields —e.g., machine learning, conceptual modeling— can benefit
from OMT as enabling technology for new approaches. For example, the very recent
Structured Learning Modulo Theories [TSP17] and goal-modeling optimization [cgm]
already employ the OMT solver OPTIMATHSAT as back-end engine.
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Contributions

In this dissertation, we broaden the horizon of Optimization Modulo Theories along several
directions, including

• A combination of SMT, Linear Programming (LP) and Integer Linear Programming (ILP)
techniques for dealing with OMT problems with Mixed Linear Integer and Rational
Arithmetic objectives (§4.1);

• An effective use of sorting network circuits to speed up the optimization search when
dealing with OMT problems with Pseudo-Boolean cost functions and Partial Weighted
MAXSMT problems (§4.2.1);

• An extension of the OMT(LRA ∪ T ) procedures presented in [ST12, ST15a] to deal
with OMT problems with Bit-Vector (§4.3.1) and Floating-Point (§4.4.1) cost functions;

• A generalization of the maximization algorithms for unsigned Bit-Vectors presented in
[NR16], that has not been co-authored by the Ph.D. candidate, to deal with the mini-
mization or the maximization of both signed and unsigned Bit-Vector goals (§4.3.2 and
§4.3.3);

• A novel algorithm based on binary-search for dealing with OMT problems with Floating-
Point cost functions (§4.4.2), inspired by an analogous approach presented in [NR16] for
handling unsigned BV goals;

• A description of two techniques for implementing, with little effort, an incremental OMT
solver on top of an incremental SMT solver (§4.5);

• A definition of Multi-Objective Optimization Modulo Theories (§4.6), and all of its vari-
ants. An effective encoding for MINMAX and MAXMIN goals into single-objective OMT
(§4.6.1). Optimization procedures for dealing with Multiple-Independent Optimization
(§4.6.2), Lexicographic Optimization (§4.6.3) and Pareto Optimization (§4.6.4);

and more.
We have implemented all of these novel functionalities in OPTIMATHSAT, an OMT solver

that has been first presented by Sebastiani and Tomasi in [ST12, ST15a] and that we have sub-
stantially re-implemented from scratch. OPTIMATHSAT is based on the MATHSAT5 SMT
solver [mata, CGSS13b]. We describe the architecture of our new implementation in Chap-
ter §5.

As part of the work subject of this dissertation, we have also incorporated into OPTIMATH-
SAT a few relevant OMT approaches that have been presented by other researchers working on
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the same topics. This includes the Maximum Resolution engine for OMT with Pseudo-Boolean
and MAXSMT objectives that has been first presented in [NB14, BP14], a modified version
of the OBV-WA and OBV-BS algorithms for BV optimization that have been first presented in
[NR16] and a porting from scratch of the lemma-lifting approach for MAXSMT problems that
has been previously presented in [CGSS13a].

In addition, we have extended OPTIMATHSAT with three novel input/output interfaces,
including

• an extended version of the SMT-LIBV2 format supporting the novel optimization func-
tionalities (§5.3.1),

• a new MINIZINC interface for dealing with problems that are typically handled with
FDCP solvers (§5.3.2), and

• a new API, with C, Python and Java bindings (§5.3.3).

We include, in Chapter §6, several experimental evaluations that we have performed to
validate the approaches proposed in this thesis. Most experiments compare OPTIMATHSAT,
using various configurations, against other state-of-the-art OMT solvers with similar solving
capabilities, on benchmark-sets challenging the newly introduced functionalities. One of these
experiments compares OPTIMATHSAT with a selection of Finite Domain Constraint Program-
ming tools on formulas that are traditionally handled with FDCP solvers, and vice-versa (§6.6).
Part of these results have been collected by a Master Degree student at University of Trento,
Francesco Contaldo, under the co-supervision of the Ph.D. candidate, and they have been in-
cluded in his Master Thesis together with a compiler from the SMT-LIBV2 format to MINIZ-
INC, and also additional experimental data.

Publications

A significant part of the content of this dissertation has already been published in

• [ST15c] — Roberto Sebastiani and Patrick Trentin. Pushing the Envelope of Optimization
Modulo Theories with Linear-Arithmetic Cost Functions. In Proc. Int. Conference on
Tools and Algorithms for the Construction and Analysis of Systems, TACAS’15, volume
9035 of LNCS. Springer, 2015

• [ST15b] — Roberto Sebastiani and Patrick Trentin. OptiMathSAT: A Tool for Optimiza-
tion Modulo Theories. In Proc. International Conference on Computer-Aided Verifica-
tion, CAV 2015, volume 9206 of LNCS. Springer, 2015
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• [ST16] — Roberto Sebastiani and Patrick Trentin. On the Benefits of Enhancing Op-
timization Modulo Theories with Sorting Networks for MaxSMT. In Proceedings of
the 14th International Workshop on Satisfiability Modulo Theories, SMT-2016., CEUR
Workshop Proceedings, 2016

• [ST17] — Roberto Sebastiani and Patrick Trentin. On Optimization Modulo Theories,
MaxSMT and Sorting Networks. In Proc. Int. Conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS’17, volume 10205 of LNCS. Springer,
2017

• [ST18] — Roberto Sebastiani and Patrick Trentin. OptiMathSAT: A Tool for Optimiza-
tion Modulo Theories. Journal of Automated Reasoning, Dec 2018

• [TS19] — Patrick Trentin and Roberto Sebastiani. Optimization Modulo the Theory of
Floating-Point Numbers. In Proc. Int. Conference on Automated Deduction, CADE 27,
LNCS/LNAI. Springer, 2019. To appear.

Structure

This thesis is divided in two parts.

Part I provides an essential introduction to necessary background knowledge and terminology,
and a survey of the related work. In particular,

Chapter §2 introduces the reader with essential notions about Propositional Satisfiabil-
ity (§2.1) and Satisfiability Modulo Theories (§2.2), and then extensively covers
the state of the art in Optimization Modulo Theories prior to the start of this Ph.D.
(§2.3). We conclude this chapter with a bare-bone introduction to Finite Domain
Constraint Programming and a survey of work in the literature across both fields
that are of interest for this dissertation.

Chapter §3 provides an overview of the related work on Optimization Modulo Theo-
ries that is of interest for this dissertation. In particular, it surveys those scientific
publications about OMT that have been published after the beginning of this Ph.D.
study.

Part II is devoted to the description of the main contributions of this thesis. In detail,

Chapter §4 illustrates major advances in the context of Optimization Modulo Theories
that occurred during the span of this Ph.D. study. Section §4.1 extends the OMT
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procedures for Linear Rational Arithmetic objectives presented in [ST12, ST15a] to
the case of Mixed Integer Linear Arithmetic. Section §4.2 deals with OMT prob-
lems wherein the cost function is a Pseudo-Boolean term, and also with Partial
Weighted MAXSMT. In the first part, we show an effective use of sorting networks
that enhances the basic optimization-search schema in use by the OMT solver. In
the second part, we describe OPTIMATHSAT’s implementation of the Maximum
Resolution engine presented in [NB14, BP14]. Section §4.3 describes how to deal
with Bit-Vector cost functions using a basic OMT-based search-schema, and also
the OBV-WA and the OBV-BS algorithms first presented in [NR16]. Section §4.4
focuses instead on Floating-Point objective functions; it describes a basic OMT-
based search-schema and also OFP-BS, a novel optimization search algorithm in-
spired by the OBV-BS engine in [NR16]. Section §4.5 illustrates two useful tech-
niques for incremental Optimization Modulo Theories solving. Section §4.6 defines
the Multi-Objective Optimization problem in the context of Optimization Modulo
Theories. Then, it describes procedures for dealing with MINMAX/MAXMIN ob-
jectives, Multiple-Independent optimization, Lexicographic optimization and Pareto
optimization. Section §4.7 concludes this chapter with a simple extension of All-
SMT to the case of Optimization Modulo Theories.

Chapter §5 is devoted to the description of the implementation details concerning OPTI-
MATHSAT. Section §5.1 provides a high-level overview of its architecture, whereas
Section §5.2 goes into the details of its distinctive approach to optimization, that cur-
rently sets it apart from other OMT solvers. Section §5.3 illustrates the Input/Output
interfaces of OPTIMATHSAT, including its Extended SMT-LIBV2 Interface, its
MINIZINC Interface and its public API. The Chapter is concluded with a detailed
overview of the configurable options of OPTIMATHSAT, showing how to activate
and use the functionalities described in Chapter §4 and their variants.

Chapter §6 presents a number of experimental evaluations that have been performed to
validate, at an implementation level, the scientific contributions described in this
thesis. Section §6.1 illustrates an experiment on OMT formulas with a Linear In-
teger Arithmetic objective. Section §6.2 deals with Pseudo-Boolean and Partial
Weighted MAXSMT goals. Section §6.3 and Section §6.4 evaluate the procedures
for Bit-Vector and Floating-Point optimization respectively. Section §6.5 compares
basic single-objective optimization with incremental and multi-objective optimiza-
tion. The Chapter is concluded in Section §6.6 with a comparison among OPTI-
MATHSAT and MINIZINC solvers on a few benchmark-sets coming from their re-
spective domains.
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Chapter §7 contains a survey of some relevant scientific works using Optimization Mod-
ulo Theories (§7.1) and the description of a handful of applications of OPTIMATH-
SAT that have been of primary importance in guiding the research and development
of the features described in this dissertation (§7.2).

Finally, in Chapter §8 we draw some conclusions on the research work presented in this thesis
and we outline some possible directions for future development expanding on this research.
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Chapter 2

Background & State of the Art

This chapter provides an introduction to background and state of the art concepts that are used
throughout this dissertation. The presented material on Propositional Satisfiability and Satisfi-
ability Modulo Theories is mostly taken from [NOT06, Seb07, BHvMW09, BSST09], whereas
the content on Optimization Modulo Theories is based on a variety of publications on the topic,
[NO06, CFG+10, Roc11, ST12, DDMA12, MP13, CGSS13a, LAK+14, LORR14, ST15a],
and also on the background content of previous publications of the author of this dissertation
[ST15b, ST15c, ST17, ST18, TS19].

The topics being presented are:

§2.1 Propositional Satisfiability (SAT): basic concepts and terminology, followed by an essen-
tial description of both DPLL and CDCL, the most well-known algorithms for deciding
SAT.

§2.2 Satisfiability Modulo Theories (SMT): starts with basic concepts and terminology, and
then focuses with a greater level of detail on the so-called “lazy” approach for SMT
(§2.2.1). Various additional topics are touched, including incremental SMT (§2.2.2),
some SMT theories of interest (§2.2.3) and combination of theories in SMT (§2.2.4).

§2.3 Optimization Modulo Theories (OMT): introduces the problem of performing optimiza-
tion in SMT, also known as Optimization Modulo Theories. It covers OMT with Linear
Rational Arithmetic cost functions (§2.3.1), OMT with Linear Integer Arithmetic cost
functions (§2.3.2) and OMT with Pseudo Boolean and MAXSMT objectives (§2.3.3).

§2.4 Constraint Programming and SAT/SMT/OMT: introduces, in Section §2.4.1, (Finite Do-
main) Constraint Programming (FDCP), a restriction of Constraint Programming (CP)
that is closely related to the domains of SAT, SMT and OMT solving. Then, after short
overview of the MINIZINC and FLATZINC languages that are widely adopted by FDCP
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solvers (§2.4.2), it reviews (§2.4.3) a few literature works crossing the border among the
FDCP and the SAT, SMT and OMT domains, focusing only on those excerpts that we
have deemed as being relevant for this dissertation.

Note. This chapter illustrates the state of the art in Optimization Modulo Theories at the
time in which this Ph.D. was started (November, 2014). Therefore, with the exception of
a few studies that were kept inside this chapter to preserve the continuity of presentation,
any other OMT-related work which has been published after this date that we are aware of
is described either in the Related Work (§3), among OMT Applications (§7.1) or among
OPTIMATHSAT Applications (§7.2).

2.1 Propositional Satisfiability

Let X def
= {x1, ..., xn} be a set of n Boolean variables. A literal l is a variable xi or its negation

¬xi. A clause C is a disjunction of literals l1 ∨ ... ∨ lk.
A propositional formula ϕ is said to be in Conjunctive Normal Form (CNF) if it is a con-

junction of clauses C1∧ ...∧Cm. Notation-wise, a clause C and a CNF formula ϕ are also often
represented as a set of literals {l1, ..., lk} and a set of clauses {C1, ..., Cm} respectively.

As outlined in [Tse68], for every non-CNF formula ϕ an equisatisfiable CNF formula ϕ′

can be generated in polynomial time. Therefore, in the rest of this thesis we assume that every
formula ϕ is in CNF.

In the context of propositional satisfiability (SAT) [BHvMW09], Boolean variables can be
either assigned or unassigned. An assigned variable x evaluates to either ⊥ (false) or > (true).
When a variable x has not yet been assigned a value, we use undef to denote its undefined
value. An assignment is a function µ : X → {undef,⊥,>} that maps each assigned variable
x to a value in {⊥,>} and the remaining variables to undef . An assignment µ is said to be a
complete (truth) assignment if it maps all variables xi ∈ X to a value in {⊥,>}. Otherwise, if
there exists some xj ∈ X mapped to undef , it is a partial (truth) assignment. Given some µ,
a clause C is said to be satisfied if at least one of these literals evaluates to >, and unsatisfied
otherwise. Given a (partial) truth assignment µ and a clause C, C is said to be a unit clause
when all-but-one literals li ∈ C evaluate to ⊥, so that C can only be satisfied if µ assigns the
remaining literal lj to the value >.

Given a CNF formula ϕ, the goal of propositional satisfiability is to find a (complete) truth
assignment µ such that all clauses Ci ∈ ϕ are satisfied. Formally, this is denoted by the writ-
ing µ |= ϕ. In the following, we give a brief introduction to two of the most widely known
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approaches for SAT. We refer the reader to the vast literature on propositional satisfiability for
a more comprehensive introduction on the topic, e.g. [GKSS08, KBK09, LM09, MSLM09,
Pre09, RM09].

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm [DP60, DLL62]. Given a CNF
formula ϕ, this procedure starts from an initially empty assignment µ, in which all variables x
are undefined, and then tries to incrementally extend it to a complete truth assignment µ that
propositionally satisfies ϕ.

The algorithm recursively selects some unassigned Boolean variable xi belonging to some
undecided clause C, and separately explores the case of assigning x to the value ⊥ and to the
value > (not necessarily in this order). The second case is explored only when the first one
resulted in a contradiction, that is, it made some clause C unsatisfiable. Moreover, if both cases
are found to be unsatisfiable, then the search procedure backtracks to the most recent point
in which it can make a different, unexplored, decision on the value of some xi (if any). The
search terminates with SAT when the partial truth assignment µ is successfully extended to a
complete truth assignment that propositionally satisfies ϕ. Otherwise, the procedure terminates
with UNSAT when it unsuccessfully explored all possible cases.

A number of (satisfiability-preserving) clause-transformation rules are applied to greatly
improve the efficiency of the DPLL procedure. Among these, a particularly important role is
played by unit propagation. Given a unit clause C in which some li ∈ C is still undecided and
the remaining literals C \ li evaluate to ⊥, the rule forces the DPLL solver to explore only the
case in which li is assigned to >, as C would otherwise remain unsatisfied.

Conflict-Driven-Clause-Learning (CDCL) Algorithm [MSLM09]. The CDCL algorithm
is an evolution of DPLL that replaces the original chronological backtracking mechanism with
a backjumping mechanism based on conflict analysis and clause learning.

Similarly to DPLL, the procedure starts with an empty assignment µ and it attempts to
extend µ to a complete assignment µ′ that satisfies the input formula ϕ. In CDCL, the search
proceeds in a stack-based loop and it is organised in decision levels, starting from level 0.
The latter contains the original set of input clauses ϕ after the application of pre-processing
and unit-propagation. For each new level, the CDCL engine performs three steps: Decision,
Boolean Constraint Propagation (BCP) and Backjumping and Learning.

In a Decision step, the (partial) assignment µ is extended with a new decision literal l, that
is heuristically selected among the set of literals in ϕ that are still undecided.

Then, the CDCL algorithm applies BCP to iteratively deduce, by means of unit-propagation,
all literals l′ that are implied by µ. Each of these literals is tagged with the clause that caused
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its propagation, called antecedent clause, and added to µ. BCP ends either when there are no
more literals that can be deduced or when µ causes some clause C ∈ ϕ to be falsified. In the
first case, the search continues with a new decision if there is still some undecided literal in
ϕ, and terminates with SAT otherwise. If instead the search incurs in a conflict, then a step of
Backjumping and learning is performed.

To perform a Backjump, the implication graph —which is implicitly defined on the search-
stack by the set of antecedent clauses— has to be traversed to identify the subset η of literals
that caused C to be falsified (conflict set). Then, the conflict clause C ′ def

= ¬η is learned, and
the search backjumps to some previous decision level blevel in which the procedure would have
done something different if the new clause C ′ was already known (for details on some strategies
for picking blevel see [MsS99, ZMMM01]). Compared with the chronological backtracking
approach of DPLL, backjumping is a lot more effective because it immediately jumps to the
place in which a mistake was performed, thus avoiding a lot of useless search.

Learning C ′ guarantees that the same mistake will not be repeated again in the future, be-
cause as soon as all-but-one literals in η are decided, then the remaining literal is unit-propagated
to ⊥. However, clause learning can also heavily impact the overall performance due to generat-
ing a large number of new clauses. For this reason, CDCL solvers typically employ a technique
called clause discharging, that heuristically drops unnecessary learned clauses from the formula
stack, e.g. using their size and activity as relevance indicators.

Finally, the search ends with UNSAT when two contradictory literals l and ¬l are assigned
at level 0 as a result of unit-propagation.

2.2 Satisfiability Modulo Theories

In the following, we provide a brief overview to Satisfiability Modulo Theories (SMT), focusing
for the most part on lazy SMT. The material presented in this section is standard in SMT, and it
is mostly taken from [NOT06, Seb07, BSST09]. Hence, we refer the reader to these publications
for a broader, and drastically more rigorous, introduction to the topic.

Basics. We assume that the reader is familiar with standard first order logic, and otherwise
refer to any book that gives an introduction on the topic (e.g. [vD94]).

In the following, let Σ be a first-order signature containing function and predicate symbols
with their arities, and V be a set of variables. A 0-ary function symbol c is called a constant.
A 0-ary predicate symbol A is called a Boolean atom. A Σ-term is either a variable in V or
it is built by applying function symbols in Σ to Σ-terms. If t1, ..., tn are Σ-terms and P is a
predicate symbol, then P (t1, ..., tn) is a Σ-atom. If l and r are two Σ-terms, then the Σ-atom
l = r is called a Σ-equality and ¬(l = r) (also written as l 6= r) is called a Σ-disequality. A
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Σ-formula ϕ is built in the usual way out of the universal and existential quantifiers ∀, ∃, the
Boolean connectives ∧, ¬, and Σ-atoms. We use the standard Boolean abbreviations: “ϕ1∨ϕ2”
for “¬(¬ϕ1∧¬ϕ2)”, “ϕ1 → ϕ2” for “¬(ϕ1∧¬ϕ2)”, “ϕ1 ← ϕ2” for “¬(¬ϕ1∧ϕ2)”, “ϕ1 ↔ ϕ2”
for “¬(ϕ1∧¬ϕ2)∧¬(¬ϕ1∧ϕ2)”, “>” [resp. “⊥”] for the true [resp. false] constant. A Σ-literal
is either a Σ-atom (a positive literal) or its negation (a negative literal). The set of Σ-atoms and
Σ-literals occurring in ϕ are denoted by Atoms(ϕ) and Lits(ϕ) respectively. A formula ϕ is
said to be quantifier-free if it does not contain quantifiers, and ground if it has no free variables.
A disjunction of literals is called a clause.

Notationally, we use the greek letters ϕ, ψ to represent Σ-formulas, the capital letters Ai’s
and Bi’s to represent Boolean atoms, and the Greek letters α, β, γ to represent Σ-atoms in
general, the letters li’s to represent Σ-literals. If l is a negative Σ-literal ¬β, then by “¬l” we
conventionally mean β rather than ¬¬β.

We also assume that the reader is familiar with the usual first-order notions of interpretation,
satisfiability, validity, logical consequence and theory, as given, e.g., in [vD94]. We write Γ |= ϕ

to denote that ϕ is a logical consequence of the (possibly infinite) set Γ of formulas.
Throughout this dissertation, for simplicity and if not specified otherwise, we shall refer

—with a small abuse of notation— to predicates of arity zero as Boolean variables, and to
uninterpreted constants as theory variables (or simply as variables, when the meaning is clear
from the context).

Theory (T ). A Σ−-theory is a set of first-order sentences with signature Σ. We use the
symbol T to denote a Σ−-theory. We use the prefix “T -” to denote any atom/clause/formula
that is defined solely in terms of elements in the theory T . In this dissertation, we consider only
quantifier-free first-order theories with equality, meaning that the symbol “=” is interpreted as
the identity relation in each T 1.

A Σ-structure I is a model of a Σ-theory T if I satisfies every sentence in T . A Σ-formula is
satisfiable in T (or T -satisfiable) if it is satisfiable in a model of T . We write γ |=T ϕ to denote
T ∪ γ |= ϕ. Two Σ-formulas ϕ and ψ are T -equisatisfiable if and only if ϕ is T -satisfiable
if and only if ψ is T -satisfiable. We call Satisfiability Modulo (the) Theory T , SMT (T ), the
problem of establishing the T -satisfiability of Σ-formulas, for some background theory T . We
call a theory solver for T (T -solver) any procedure that can establish whether any given finite
conjunction of quantifier-free Σ-literals is T -satisfiable or not.

Henceforth, for simplicity and if not specified otherwise, we may omit the “Σ-” prefix from
term, formula, theory, models, etc. Moreover, by “formulas”, “atoms” and “literals” we implic-

1Therefore, as a consequence of focusing only on the quantifier-free fragment of each theory T and in absence
of any ambiguity, throughout this document we drop —with a small abuse of notation— the “Quantifier Free” (i.e.
“QF”) prefix from the name of each SMT theory being considered (e.g. QF_LIRA becomes LIRA).
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itly refer to quantifier-free formulas, atoms and literals respectively.

Given a disjunction
∨n
i=1 xi = yi, where xi, yi are variables, a conjunction Γ of T -literals in

a theory T is said to be convex if and only if it is always true that Γ |=T
∨n
i=1 xi = yi if and only

if Γ |=T xi = yi for some i ∈ [1, n]. A theory T is said to be convex if all possible conjunctions
of its T -literals are convex in T . A theory T is said to be stably-infinite if and only if for each
T -satisfiable formula ϕ there exists a model of T whose domain is infinite and that satisfies ϕ.
Any convex theory T whose models’ domains have all cardinality strictly greater than one is
stably-infinite [BDS02].

Abstraction/Refinement (T 2B/B2T ). Given a first-order T -formula ϕ, its proposition-
al/Boolean abstraction ϕp is obtained by replacing each T -atom in ϕ with a fresh Boolean
constant. The T -formula ϕ is called refinement of ϕp. We assume the availability of a mapping
T 2B (“theory to Boolean”) from theory atoms to fresh Boolean constants and its inverse B2T
(“Boolean to theory”) to get the propositional abstraction ϕp from ϕ and vice versa.

Truth Assignment. We call a truth assignment µ for a T -formulaϕ a truth value assignment
to the T -atoms of ϕ. A truth assignment µ is said to be total if it assigns a value to every atom
in ϕ, and partial otherwise. Syntactically identical instances of the same T -atom are always
assigned identical truth values; syntactically different T -atoms, e.g., (t1 ≥ t2) and (t2 ≤ t1),
are treated differently and may thus be assigned different truth values.

We represent a truth assignment µ for ϕ as a set of T -literals

{α1, ..., αN ,¬αN+1, ...,¬αM , A1, .., AR,¬AR+1, ...,¬AS}

where the αi’s are Σ-atoms and Ai’s are Boolean propositions. Positive literals αi, Aj mean
that the corresponding atoms is assigned to true, negative literals ¬αi, ¬Aj mean that the cor-
responding atom is assigned to false. If µ2 ⊆ µ1, then we say that µ1 extends µ2 and that µ2

subsumes µ1. Sometimes we represent a truth assignment also as the formula given by the con-
junction of its literals. Notationally, we use the Greek letters µ, η to represent truth assignments.

Satisfiability. Given a truth assignment µ, we denote with µp the Boolean abstraction of
µ, that is, µp def

= T 2B(µ). Given a total truth assignment µ for ϕ, we say that µ propositionally
satisfies ϕ, written µ |=p ϕ, if and only if µp |= ϕp, where ϕp is the Boolean abstraction of ϕ.
We say that a partial truth assignment µ propositionally satisfies ϕ if and only if all the total
truth assignments for ϕ that extend µ propositionally satisfy ϕ. We say that ϕ is propositionally
satisfiable if and only if there exist an assignment µ |=p ϕ. We say that ϕ is propositionally
unsatisfiable if no such µ exists. We say that ϕ is T -satisfiable if and only if there exists some
total truth assignment µ for ϕ such that µ propositionally satisfies ϕ and µ is T -satisfiable. We
say that ϕ is T -unsatisfiable if there exist no such T -satisfiable truth assignment µ for ϕ that
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propositionally satisfies ϕ. A structure M is said to be a model of a theory T if M satisfies
every formula in T . We say that a formula ϕ is T -satisfiable if it is satisfiable in a model of T .

Definition 2.2.1. (T -Solver [BSST09]). Given a first-order theory T for which the
(ground) satisfiability problem is decidable and a conjunction/set of theory literals (T -
literals) µ, a theory solver for T (T -Solver) is any decision procedure that is capable to
decide the satisfiability of µ in T .

In the case µ is T -unsatisfiable, a typical T -Solver not only returns UNSAT, but also a theory
conflict set η such that η ⊆ µ and η is T -unsatisfiable. We note that a conflict set η does not
need to be minimal and that its negation ¬η is called theory conflict clause. If instead µ is
T -satisfiable then the T -Solver returns SAT. In addition, it may also be able to generate one (or
more) deductions of the form {l1, ..., ln} |=T l such that {l1, ..., ln} ⊆ µ and l is an unassigned
T -literal (i.e. l 6∈ µ). The formula (

∨n
i=1 ¬li ∨ l) is called a theory-deduction clause. Both

theory-conflict clauses and theory-deduction clauses are valid in T , and are therefore called
theory lemmas or T -lemmas.

Definition 2.2.2. (Satisfiability Modulo Theories (SMT) [BSST09]). Let T def
=
⋃
i Ti,

where each pair of theories Ti, Tj in T is signature-disjoint, meaning that Ti and Tj share
no symbol except for the equality symbol “=”. Then, Satisfiability Modulo Theories is
the problem of deciding the satisfiability of Boolean combinations of propositional atoms
and theory atoms that belong to T .

In §2.2.1 we provide a short introduction to the salient aspects of the so-called “lazy” ap-
proach [Seb07, BSST09], also known as “DPLL (T )” [NOT06], that is implemented by modern
SMT solvers. The incremental extension of “lazy” SMT solving is explored in §2.2.2, followed
by §2.2.3 with a lightweight excursus of some notable SMT theories T that are of interest for
this dissertation, introducing concepts that will be used later on. We conclude with combination
of theories in SMT in §2.2.4.

2.2.1 The “lazy” SMT Scheme

A “lazy” SMT solver combines combines a propositional SAT solver based on the DPLL al-
gorithm2 with a number of T -Solvers, (at least) one for each theory T of interest. With this

2Modern DPLL solvers often implement the CDCL techniques described in §2.1. For this reason, in this thesis
we often use the name CDCL to refer to the SAT engine embedded in a “lazy” SMT solver.
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function T -DPLL (T -formula ϕ, T -assignment &µ)

1: res := T -PREPROCESS(ϕ, µ)

2: if (res == conflict) then
3: return UNSAT

4: ϕp := T 2B(ϕ)

5: µp := T 2B(µ)

6: while true do
7: T -DECIDE_NEXT_BRANCH(ϕp, µp)

8: while true do
9: res := T -DEDUCE(ϕp, µp)

10: if (res == SAT) then
11: µ := B2T (µp)

12: return SAT

13: else if (res == conflict) then
14: 〈blevel, η〉 := T -ANALYZE_CONFLICT(ϕp, µp)

15: if (blevel < 0) then
16: return UNSAT

17: else
18: T -BACKTRACK(blevel, ϕp, µp, ηp)

19: else
20: break

Figure 2.1: An online schema of T -DPLL based on modern DPLL [Seb07].

approach, the DPLL engine is used to enumerate truth assignments µpi that propositionally sat-
isfy the Boolean abstraction ϕp of the input formula ϕ (i.e. µpi |=p ϕ

p), whereas the T -Solvers
are used to check that µi, where µi

def
= B2T (µpi ), is T -satisfiable.

T -DPLL Algorithm. The basic schema of a “lazy” SMT solver is shown in algorithm 2.1.
The procedure takes as inputs a T -formula ϕ and an (initially empty) set of T -literals µ, that is
updated during the search.

The search starts by invoking T -PREPROCESS(), a procedure that transforms ϕ into a sim-
pler and equi-satisfiable formula —possibly in CNF— and correspondingly updates µ if neces-
sary (line 1). In the case the SMT solver detects that ϕ is unsatisfiable while performing this
simplification step, the search is early-terminated with UNSAT (lines 2-3). Otherwise, the SMT
solver uses the function T 2B to generate the Boolean abstractions ϕp and µp starting from ϕ

and µ (lines 4-5), so that it can apply the SAT based techniques described in §2.1.

After entering the main loop (lines 6-20), the first step is to call T -DECIDE_NEXT_BRANCH()
to extend µp with some currently unassigned literal l from ϕp. Here, the literal l is called deci-
sion literal and it is picked according to some heuristic function that might take into considera-
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tion the semantics of T . The number of decision literals in µ after performing this step is called
decision level of l.

Inside the inner loop (lines 8-20), the function T -DEDUCE() is used to iteratively deduce all
literals l′ that derive from the current truth assignment (i.e. ϕ ∧ µ |=p l

′) at line 9. This step
is akin to BCP in §2.1 and it keeps running up until when one of the following circumstances
arises:

(i) µp satisfies ϕp (i.e. µp |=p ϕp), so that T -DEDUCE() checks the T -satisfiability of
B2T (µp) by invoking the appropriate T -solver(s). The result of T -DEDUCE() is SAT

if every T -solver returns SAT, and conflict otherwise.

(ii) µp propositionally violates ϕp (i.e. µp ∧ ϕp |=p ⊥), so that T -DEDUCE() returns UNSAT.

(iii) no more literals can be deduced, so that T -DEDUCE() returns UNKNOWN.

The return value of T -DEDUCE(), res, is then subsequently handled as follows:

(i) if it is equal to SAT, then T -DPLL terminates with the same value after µp is refined into
a set of T -literals µ with the aid of function B2T () (lines 10-12).

(ii) if it is equal to conflict, then the SMT solver encountered a conflict either at the propo-
sitional or at the theory level. In both cases, the search proceeds similarly to the CDCL
approach described in §2.1. It invokes a procedure named T -ANALYZE_CONFLICT() to
identify a subset ηp of µp —a.k.a. the conflict set— that is causing the conflict and the
decision level blevel to which the search has to backtrack (line 14). If the conflict is not a
logical consequence of a previous branching step, i.e. blevel is equal to 0, then the search
terminates with UNSAT (lines 15-16). Otherwise, T -BACKTRACK() extends ϕ with the
conflict clause ¬η and backjumps to blevel. Both ϕ and µ are updated accordingly (lines
17-18).

(iii) if it is equal to UNKNOWN, then the SMT solver exists the inner loop and proceeds with a
new Decision by jumping at the next iteration of the outer loop (lines 19-20).

The search continues up until when a T -consistent set of literals µ is generated, meaning
that ϕ is T -satisfiable, or when every possible assignment leads to a conflict, meaning that ϕ is
T -unsatisfiable.
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Enhancements. In the following, we provide a brief list of the most important enhancements
that are typically adopted to improve the performance of the basic online T -DPLL schema
shown in algorithm 2.1. We refer the reader to [NOT06, Seb07, BSST09] for more details and
techniques.

• Early Pruning (EP). T -solvers are invoked on B2T (µp) even when µp is still a partial
truth assignment, possibly (at least) once before each new Decision, so that in the case
of a conflict the search can immediately backtrack without exploring any of the (many)
possible extensions of µp. On the one hand, this enhancement allows the SMT solver to
discover T -conflicts —that are typically small— earlier in the search, thus sparing lots
of search. On the other hand, invoking any T -solver is typically more expensive than
simple BCP. To lower the impact of this approach, T -solvers are typically designed to be
incremental and “remember” their computation status from one call to the other, so that
they do not have to start from scratch each time µ is extended by a new literal l.

• Weak Early Pruning (WEP) [Seb07]. Allows T -solvers to perform only an approximate,
but cheaper, satisfiability check during EP calls, thus reducing the overhead of EP as a
whole. In practice, during EP calls T -solvers are allowed to return SAT even when the
current truth assignment µ is T -inconsistent, as long as they are able to identify such
inconsistency during non-EP calls.

• T -propagation [NOT06]. Given η
def
= {l1, ..., ln} such that η ⊆ µ and an unassigned

literal lp corresponding to an atom in ϕ, if the T -solver is able to deduce that η |=T l,
where l def

= B2T (lp), then lp is unit-propagated by extending µp with the implied literal. In
addition, the T -deduction clause (

∨n
i=1 ¬li ∨ l) can be permanently learned by the SMT

solver to be used in backjumping and learning. When relatively cheap, this technique
can have cascade benefits to the overall performance, as T -propagating one literal l may
allow new literals to be assigned by BCP or deduced by a new round of T -propagation.

• Layering [BBC+05c, BCF+07]. Each T -solver may be organised in a layered hierarchy
S1, ..., SN of increasing expressibility and complexity, so that each Si is able to decide
a theory Ti that is a sub-theory of Ti+1. Greater expressibility and complexity entails
more expensive procedures for deciding the satisfiability of µ over the fragment of T
being supported. In this architecture, only the top-most solver SN is able to decide the
full theory T . Layering plays a significant role when µ is T -inconsistent, because the
T -solver can return UNSAT as soon as some solver Si reveals such inconsistency, without
a need to invoke any of the more expensive engines.

• Splitting on-demand [BNOT06]. A T -solver is allowed to return UNKNOWN plus a set of
new T -lemmas containing new T -atoms, whose abstraction is then handled by the SAT
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engine at the Boolean level, as with the other clauses in ϕ. This enhancement leverages
the very efficient techniques implemented within the SAT engine (e.g. conflict-driven
backjumping and learning) to perform disjunctive reasoning that would otherwise have
to be directly handled by the T -solver whenever this is necessary. This technique does
not only positively impact on the performance, but it also allows for simpler T -solver
implementations.

• Pure Literal Filtering [Seb07]. Given any T -atom that occurs only positively [resp. neg-
atively] in the input formula ϕ, the SMT solver is allowed to (safely) drop every negative
[resp. positive] occurrence of it from µ before handing it over to the T -solver. Intuitively,
none of these T -atoms is crucial to determining the T -satisfiability of µ. As a result, the
T -solver benefits both from being asked to handle fewer literals at a time, and also from
the fact that removing “useless” T -literals from µ increases the chances that the tracked
set of T -literals is found to be consistent.

2.2.2 Incremental SMT

A common feature that characterizes modern SMT solvers is the availability of a stack-based
incremental interface (see e.g. [ES04]), that allows for pushing/popping subformulas ϕi into an
internal stack of formulas Φ

def
= {φ1, ..., φk} and then to incrementally check the satisfiability of

ϕ
def
=
∧k
i=1 φi.

Efficient incremental SMT is possible thanks to a status-based design that applies to both
the T -DPLL engine as well as to any T -solver. This design preserves the search status from
one incremental call to the other, such as learned clauses and the phase-saving value of each
Boolean literal. As a result, when invoked on ϕ, the SMT solver can reuse a clause C that was
learned during a previous call on some ϕ′, provided that (1) C was derived only from clauses
that are still in ϕ and that (2) C was not discharged in the meantime. In the particular case in
which ϕ′ ⊆ ϕ, then the SMT solver is able to reuse all clauses that were learned while checking
the satisfiability of ϕ′. An additional benefit of the status-based design is that it allows for an
efficient restore of the previous state upon a subformulas discharge event.

A possible approach for incremental SMT (used, e.g., by MATHSAT5 [CGSS13b]), follows.
First, the stack of formulas Φ, which we defined as {φ1, ..., φk}, is rewritten into the new stack
Φ′

def
= {A1 → φ1, ..., Ak → φk}, where each Ai is a fresh Boolean variable. Then, the SMT

solver checks the satisfiability of Φ′ under the assumption of the variables {A1, ..., Ak}, so that
every learned clause C that is derived from some φi is in the form ¬Ai ∨ C ′ [ES04]. When a
subformula φi is popped from the stack of formulas, the corresponding Boolean variable Ai is
no longer assumed in subsequent satisfiability checks. As a result of dropping Ai from the set

23



CHAPTER 2. BACKGROUND & STATE OF THE ART

of assumptions, any learned clause C of the form ¬Ai ∨ C ′ becomes inactive, meaning that it
no longer contributes to the satisfiability of the input formula and thus it can be ignored by the
SMT solver. Hence, a clause can be safely stored in memory from one call to the other, at least
up until when, after becoming inactive, it is automatically garbage-collected to free up some
space.

2.2.3 Theories of Interest

In the following we take a closer look to a short list of notable theories T that are typically han-
dled by SMT solvers and are also of interest for Optimization Modulo Theories in the context
of this dissertation. We refer the interested reader to [Seb07, BSST09] and to the SMT-LIB
website [smt] for more theories T and a more formal (and detailed) presentation.

Equality and Uninterpreted Functions (EUF).

This is a first order theory for quantifier-free formulas that only deals with the following equality
(2.1a) and congruence (2.1b) axioms, defined for every function symbol f and predicate symbol
P :

∀x.(x = x),∀x, y.(x = y → y = x),∀x, y, z.((x = y ∧ y = z)→ x = z) (2.1a)

∀x1, ..., xn, y1, ..., yn.((
∧n

i=1
xi = yi)→ f(x1, ..., xn) = f(y1, ..., yn))

∀x1, ..., xn, y1, ..., yn.((
∧n

i=1
xi = yi)→ P (x1, ..., xn)↔ P (y1, ..., yn))

(2.1b)

The EUF theory is both stably-infinite and convex. Moreover, given a quantifier-free set of
literals, EUF-satisfiability is both decidable and polynomial.

Linear Arithmetic (LIRA).

The theory of Linear Arithmetic (LIRA) is the quantifier-free first order theory with equality
whose atoms are in the form (a1 · x1 + ... + an · xn ./ a0), such that ./∈ {≤, <, 6=,=,≥, >},
each ai is an (interpreted) constant symbol that belongs to either the Rational or Integer domain
and each xi is either a Rational or an Integer variable. The restriction of LIRA to the Rational
and Integer domain only is the theory of Linear Rational Arithmetic (LRA) and Linear Integer
Arithmetic (LIA) respectively.

Linear Rational Arithmetic (LRA). The theory of LRA is both stably-infinite and convex.
Moreover, the LRA-satisfiability of quantifier-free sets of LRA-atoms is both decidable and
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polynomial [Kha79]. Modern SMT solver often implement some type of Simplex-based proce-
dure for LRA-satisfiability [DdM06b], that has the benefits of being efficient, incremental and
backtrackable, it allows for aggressive T -deductions and it directly handles strict inequalities
[DdM06b].

Linear Integer Arithmetic (LIA). The theory of LIA is stably-infinite and non-convex. In
contrast with LRA, the LIA-satisfiability of quantifier-free sets of LIA-atoms is decidable
and NP-complete [Pap81]. Several algorithms have been proposed in the past, often com-
bined with one another, to handle LIA-satisfiability efficiently: Simplex-based search with
Branch&Bound [Sch99], Gomory’s cutting planes method [DM06a], the Omega test [Pug92]
based on the Fourier-Motzkin algorithm, and others (e.g. [DDA09, Gri12]).

Remark 2.2.1. In the context of SMT solving, which has its main applications in the
domains of formal verification and model checking, it is of absolute importance that the
SMT solver is able to guarantee the correctness of a result. For this reason, the Linear
Arithmetic algorithms employed by SMT solvers are typically built on top of infinite-
precision-arithmetic software packages, thus avoiding incorrect results due to numerical
errors and to overflows.

Bit-Vectors (BV).

The theory of fixed-width Bit-Vectors (BV) is a quantifier-free first order theory with equality
that is used, for instance, to represent Register Transfer Level (RTL) hardware circuits at a
higher, modular, level than what is possible with a purely propositional approach (e.g. “bit
blasting”). In addition, the BV theory can also be used to deal with problems steaming from the
software verification domain (e.g. [GD07]).

In the BV theory, a bit is a Boolean variable that can be interpreted as 0 or 1 and a BV
variable v[n] of width n is a sequence of n bits [obj[0], ..., obj[n − 1]], where v[0] is the Most
Significant Bit (MSB) and v[n− 1] is the Least Significant Bit (LSB)3 A BV constant of width
n is an interpreted vector of n values in {0, 1}. We overline a bit value or a BV value to denote
its complement (e.g., [11010010] is [00101101]). A BV variable/constant of width n can be
unsigned, in which case its domain is [0, 2n − 1], or signed, that we assume to comply with
the two’s complement representation, so that its domain is [−2(n−1), 2(n−1) − 1]. Therefore, the
vector [11111111] can be interpreted either as the unsigned BV constant 255[8] or as the signed
BV constant −1[8]. Following the SMT-LIBV2 standard [smt], we may also represent a BV

3 In the literature, v[0] and v[n − 1] commonly represent the LSB and the MSB respectively. We use the
opposite notation because we always reason from the MSB down to the LSB.
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constant in binary (e.g. 28[8] is written #b00011100) or in hexadecimal (e.g. 28[8] is written
#x1C) form.

A BV term is built from BV constants, variables and interpreted BV functions that represent
standard RTL operators: word concatenation (e.g. 3[8] ◦ x[8]), subword selection (e.g. (3[8][6 :

3])[4]), modulo-n sum and multiplication (e.g. x[8] +8 y
[8] and x[8] ·8 y[8]), bit-wise operators

(like, e.g., andn, orn, xorn, notn), left and right shift <<n, >>n. A BV atom can be built by
combining BV terms with interpreted predicates like≥n,<n (e.g. 0[8] ≥8 x

[8]) and equality. We
refer the reader to [smt, Had15] for further details on the syntax and semantics of the Bit-Vector
theory.

The theory of BV is non-stably infinite and non-convex. Furthermore, the BV-satisfiability
of sets of quantifier-free BV-atoms is decidable and NP-complete. In the context of SMT solv-
ing, two main families of approaches have been proposed. In the eager approach, BV terms
and constraints are encoded into SAT via bit-blasting [GD07, BB09, Bru09, Had15, NPFB15,
Nie17]. Instead, in the lazy approach, the BV encoding is not immediately expanded —to avoid
any scalability issue— and the BV solver is composed by a layered set of techniques, each of
which deals with a sub-portion of the BV theory [BD02, BBC+05a, BCF+07, Had15]. The
empirical evidence of [HBJ+14] has shown that the two approaches are complementary to one
another and that BV solving can benefit from a portfolio solution combining both techniques in
one solver.

Floating-Point (FP).

The theory of Floating-Point Numbers (FP), [smt, RW10, BTRW15], is a quantifier-free first
order theory with equality that is based on the IEEE standard 754-2008, [iee08], for floating-
point arithmetic, restricted to the binary case. A major difference with [iee08] is that the theory
of FP defined in [RW10, BTRW15] allows for every possible exponent and significand length.

A FP sort is an indexed nullary sort identifier of the form (_ FP <ebits> <sbits>) such
that both ebits and sbits are positive integers greater than one, ebits defines the number of bits
in the exponent and sbits defines the number of bits in the significand, including the hidden bit.

A FP variable v with sort (_ FP <ebits> <sbits>) can be indifferently viewed as a
vector of n def

= ebits + sbits bits, where v[0] is the Most Significant Bit (MSB) and v[n − 1] is
the Least Significant Bit (LSB), or as a triplet of Bit-Vectors 〈sign, exp, sig〉 such that sign is
a BV of size 1, exp is a BV of size ebits and sig is a BV of size sbits− 1. A FP constant is a
triplet of BV constants. Given a fixed floating-point sort, i.e. a pair 〈ebits, sbits〉, the following
FP constants are implicitly defined:

26



CHAPTER 2. BACKGROUND & STATE OF THE ART

value Symbol BV Repr.
plus infinity (_ +oo <ebits> <sbits>) (fp #b0 #b1...1 #b0...0)

minus infinity (_ -oo <ebits> <sbits>) (fp #b1 #b1...1 #b0...0)

plus zero (_ +zero <ebits> <sbits>) (fp #b0 #b0...0 #b0...0)

minus zero (_ -zero <ebits> <sbits>) (fp #b1 #b0...0 #b0...0)

not-a-number (_ NaN <ebits> <sbits>) (fp t #b1...1 s)

where t is either 0 or 1 and s is a BV that contains at least a 1.
Setting aside special FP constants, the remaining FP values can be classified to be either

normal or subnormal (a.k.a. denormal) [iee08]. A FP number is said to be subnormal when
every bit in its exponent is equal to zero, and normal otherwise. The significand of a normalFP
number is always interpreted as if the leading binary digit is equal 1, whereas for denormalized
FP values the leading binary digit is always 0. This allows for the representation of numbers
that are closer to zero, although with reduced precision.

Example 2.2.1. Let x be the normal FP constant (_ FP #b0 #b1100 #b0101000),
and y be the subnormal FP constant (_ FP #b0 #b0000 #b0101000), so that their
corresponding sort is (_ FP <4> <8>). Then, according to the semantics defined in the
IEEE standard 754-2008 [iee08], the floating-point value of x in decimal notation is given by:

x = (−1)0 · 2(12−7) ·
(

1 +
7∑
i=1

(
x[4 + i] · 2−i

))
= 1 · 25 ·

(
1 +

1

22
+

1

24

)
= 25 · 24 + 22 + 1

24

= 2 · 21

= 42

and the value of y is given by:

y = (−1)0 · 2(0−7+1) ·
(

0 +
7∑
i=1

(
y[4 + i] · 2−i

))
= 1 · 2−6 ·

(
1

22
+

1

24

)
=

1

26
· 22 + 1

24

=
5

210
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�

The theory of FP provides a variety of built-in floating-point operations as defined in the
IEEE standard 754-2008. This includes binary arithmetic operations (e.g. +,−, ?,÷), basic
unary operations (e.g. abs,−), binary comparison operations (e.g. ≤, <, 6=,=, >,≥), the re-
mainder operation, the square root operation and more. Arithmetic operations are performed
as if with infinite precision, but the result is then rounded to the “nearest” representable FP
number according to the specified rounding mode. Five rounding modes are made available, as
in [iee08].

The most common approach for FP-satisfiability is to encode FP expressions into BV
formulas based on the circuits used to implement floating-point operations, using appropri-
ate under- and over-approximation schemes —or a mixture of both— to improve performance
[BKW09, ZWR14, ZWR17, ZBWR18]. Then, the BV-Solver is used to deal with the FP
formula, using either the eager or the lazy BV approach. An alternative approach, based
on abstract interpretation, is presented in [BDG+13, BDG+14, HGBK12]. With this tech-
nique, called Abstract CDCL (ACDCL), the set of feasible solutions is over-approximated with
floating-point intervals, so that intervals-based conflict analysis is performed to decide FP-
satisfiability.

2.2.4 Combination of Theories in SMT

Typical SMT(T ) applications deal with problems in which the theory T is given by the com-
bination of two (or more) simpler theories, so that T def

=
⋃n
i=1 Ti. For instance, an atom like

f(4x + y) = g(2x − y) combines both uninterpreted function symbols (i.e. f, g) with linear
arithmetic constraints (i.e. 4x + y, 2x − y). Modern “lazy” SMT solvers employ a variety of
techniques for dealing with combination of theories.

When dealing with the combination of some stably infinite theories T1 and T2 with disjoint
signatures (i.e. “Nelson-Oppen” theories), the Nelson-Oppen approach for theory combination
[NO79, Opp80, Sho84] can be used. Two theories T1 and T2 are said to be signature-disjoint if
T1 and T2 share no symbol other than the equality symbol. In the Nelson-Oppen schema, each
Ti-solver separately solves its own fragment of the input problem, limited to its own theory Ti,
and it is in direct communication with the other theory solver(s) to exchange implied equalities
and disequalities over shared variables.

Other, more recent, approaches for theory combination include Delayed Theory Combina-
tion (DTC) and Model-Based Theory Combination.

In Delayed Theory Combination, [BBC+05b, BBC+06, BCF+06], each Ti-solver interacts
only with the CDCL engine, and it does not directly exchange any information with the other
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theory solvers. The CDCL engine is used to enumerate satisfiable propositional truth assign-
ments that assign a value not only to the atoms in the input formula, but also to the interface
(dis)equalities (i.e. (dis)equalities over variables shared by multiple theories). Moreover, the
CDCL engine is also used to efficiently handle case splits resulting from the entailment of dis-
junctions of interface equalities in non-convex theories.

In Model-Based Theory Combination, [dMB08], interface equalities are built during the
search using the modelMi generated by the corresponding Ti-solver when a satisfiable (com-
plete) truth assignment is found. More specifically, a new interface equality u = v is generated
for each pair of interface variables u and v such thatMi(u) =Mi(v). Then, when the CDCL
engine branches on an interface equality for the first time, it is initially assigned the value >, so
that its consistency with respect to other theories can be either confirmed or disproved; in the
latter case it results in a T -conflict and the search proceeds as usual.

In the case of theories that are not stably-infinite (e.g., the theory of Bit-Vectors), and thus
are not Nelson-Oppen theories, other approaches have been proposed (see, e.g., [TZ05, RRZ05,
JB10]).

2.3 Optimization Modulo Theories

As a first approximation, Optimization Modulo Theories (OMT) [NO06, CFG+10, ST12, DDMA12,
MP13, CGSS13a, ST15a, LAK+14, LORR14] can be seen as the optimization-extended ver-
sion of Satisfiability Modulo Theories. More in detail, given a satisfiable ground SMT formula
ϕ and some objective function obj, Optimization Modulo Theories solves the problem of finding
a modelM of ϕ whose value of obj, denoted with minobj(ϕ), is minimum.

Due to its broad definition, Optimization Modulo Theories is an umbrella word that encom-
passes several —distinct, albeit related— problems and a variety of optimization techniques.
Instead of following a simple chronological order, we chose to organize the OMT literature
based on the specific class of OMT problem being targeted. The latter is determined based on
which Theory the objective function obj belongs. As a result, we distinguish three main groups
of works:

• Section §2.3.1 covers OMT(LRA ∪ T ), dealing with Linear Rational Arithmetic (LRA)
cost functions

• Section §2.3.2 illustrates OMT(LIA∪T ), dealing with Linear Integer Arithmetic (LIA)
cost functions

• Section §2.3.3 describes OMT(PB ∪ T ), dealing with both Pseudo-Boolean (PB) ob-
jectives, and also MAXSMT
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Combination of Theories in OMT. One important result of [ST12, ST15a] is that the the
same optimization techniques designed for OMT(LRA) can be used to deal with OMT(LRA∪
T ), where T is some stably-infinite theory (or a combination thereof) with equality such that
LRA and T are signature-disjoint as in [NO79]. This result comes nearly for free when the
underlying SMT solver uses Delayed Theory Combination [BBC+06] for dealing with multiple
theories T .

It is easy to see that the same result applies when the objective function is of any other
type than LRA like, for example, a LIA, a LIRA, a PB, a MAXSMT, a BV or a FP goal.
Therefore, for the sake of a clear and readable explanation, in the following we illustrate the
general optimization procedures and techniques for when T is the empty theory and refer the
reader to [ST12, ST15a] for a detailed overview on how to handle the general case. For the same
reasons, the same simplification is applied to any other variant of single- and multiple-objective
OMT that is explored throughout this dissertation.

2.3.1 OMT (LRA ∪ T )

The Optimization Modulo Theories problem for Linear Rational Arithmetic cost functions is
defined as follows.

Definition 2.3.1. (OMT(LRA ∪ T ), OMT(LRA)). Let ϕ be a ground SMT(LRA ∪ T )

formula and obj be a LRA variable occurring in ϕ. We call an Optimization Modulo
LRA ∪ T problem, the problem of finding a modelM for ϕ (if any) whose value of obj,
denoted with minobj(ϕ), is minimum. We call an Optimization Modulo LRA problem,
written OMT(LRA), an OMT(LRA ∪ T ) problem where T is the empty theory. (The
dual definition where we look for the maximum follows straightforwardly)

As observed in [ST12], OMT(LRA ∪ T ) allows for a straightforward encoding of various
problem domains of interest, like Linear Programming (LP), Linear Disjunctive Programming
(LDP) [Bal98] and Linear Generalized Disjunctive Programming (LGDP) [RG94].

Three main approaches have been proposed for dealing with OMT(LRA ∪ T ). The first
two are the offline and inline schemata presented in [ST12, ST15a] and implemented in OP-
TIMATHSAT. The third one is the Symbolic Optimization Algorithm of SYMBA, an OMT tool
presented by Li et al. in [LAK+14].

Offline Schema [ST12, ST15a]

Figure 2.2 shows the mixed linear- and binary-search offline schema presented in [ST12, ST15a]
for dealing with OMT(LRA ∪ T ). In this approach, similarly to [LAK+14, BP14, BPF15], the
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optimization search proceeds through a sequence of incremental calls to the underlying SMT
solver, which is used as a black-box. Hereafter, we provide a concise description of this method
based on the contents of [ST12, ST15a], and refer the reader to these publications for a more
detailed presentation.

The algorithm takes as input a ground SMT(LRA ∪ T ) formula ϕ, a LRA goal obj and
an optional range [l, u[ for the optimization search. When not provided, l and u default to −∞
and +∞ respectively.

Remark 2.3.1. In [ST12, ST15a], the range [lb, ub[ is the domain of values for obj in
which the OMT solver searches for a model M of ϕ when minimizing obj. After the
first range update, the current upper bound ub corresponds to the value of obj in a known
modelM of ϕ. Therefore, the upper bound is excluded from the search domain to avoid
generating the same modelM again. Conversely, the lower bound lb is contained in the
search interval because it is updated only when the conjunction ϕ ∧ (obj < lb) is found
to be unsatisfiable. When obj is maximized the interpretation is dual and effective range
is ]lb, ub].

The convention established in [ST12, ST15a] is that the same interpretation is applied
to any user-provided value for the initial lower and upper bounds l and u, so that the
initial range is [l, u[ in minimization and ]l, u] in maximization.

At the beginning,M is set to the ∅ and the initial range [l, u[ is used to initialize the current
range [lb, ub[ (line 1). At any given point in time, the latter holds an over-approximation of the
set of feasible values for obj. To ensure that this invariant holds when the search is started, ϕ
is extended with a pair of constraints that bound the feasible domain of obj within the range
[lb, ub[ (line 2).

The main optimization search is performed in a loop (lines 3-20), and terminates only when
the ub ≤ lb, that is, when the over-approximation of the feasible domain of obj becomes empty.
Search progress is ensured, at each iteration, with an update to the value of either lb or ub that
makes the range [lb, ub[ smaller. Each iteration of the main loop consists of a single linear- or
binary-search step.

Remark 2.3.2. As observed in [ST12, ST15a], the underlying SMT solver is invoked
incrementally at each iteration of the loop. Hence, subsequent calls to the SMT solver
enjoy a substantial speedup from reusing lots of previously generated information like,
for example, any clause created by the clause learning mechanism (see Section §2.2.2).

In a linear-search step, the code in the intervals of lines 5-8 and 14-19 is never executed.
Hence, a linear-search step starts by searching for a truth assignment µ that propositionally
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function OFFLINE_OMT(ϕ, obj, l, u)

1: lb := l ; ub := u ; M := ∅
2: ϕ := ϕ ∪ {¬(obj < lb), (obj < ub)}
3: while (lb < ub) do
4: binary_step := BINSEARCHSTEP()

5: if (binary_step) then
6: pivot := COMPUTEPIVOT(lb, ub)

7: PIV := (obj < pivot)

8: ϕ := ϕ ∪ {PIV }
9: 〈res, µ〉 := SMT.INCREMENTALSOLVE(ϕ)

10: if (res == SAT) then
11: 〈M, ub〉 := LRA-MINIMIZE(obj, µ)

12: ϕ := ϕ ∪ {(obj < ub)}
13: else
14: if (binary_step) then
15: η := SMT.EXTRACTUNSATCORE(ϕ)

16: if (PIV ∈ η) then
17: lb := pivot

18: ϕ := (ϕ\{PIV }) ∪ {¬PIV }
19: continue
20: lb := ub

21: if (M 6= ∅) then
22: return 〈SAT, ub,M〉
23: else
24: return 〈UNSAT,+∞, ∅〉

Figure 2.2: Offline OMT(LRA) procedure based on Mixed Linear/Binary Search [ST12,
ST15a].
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satisfies ϕ (line 9). If ϕ is satisfiable, then the OMT solver invokes SMT.LRA-MINIMIZE() to
find the modelM of minimum cost ub corresponding to the truth assignment µ (line 11). The
function SMT.LRA-MINIMIZE() is an extended version of the simplex-based LRA-Solver
of [DdM06b]. The minimum cost ub can be equal to −∞ if obj is unbounded on the truth
assignment µ. At this point, ϕ is extended with a unit clause of the form (obj < ub) (line 12),
so that ϕ is no longer satisfied by µ. As a result, any future call to the underlying SMT solver is
forced to look for a new propositional model µ′ for which the value of obj can be smaller than
ub. If instead the call to SMT.INCREMENTALSOLVE() at line 9 returns UNSAT, then it means
that in the current search interval [lb, ub[ there is no valid assignment of value for obj. Hence,
the lower bound lb is updated with the value of ub (line 20), causing the OMT solver to exit the
loop the next time its guard is checked.

A binary-search step starts with a call to COMPUTEPIVOT() (line 6), an heuristic function
that yields a new pivot value contained in the interval [lb, ub[ (e.g. lb+ub

2
). Then the formula

ϕ is extended with the (possibly new) atom PIV , defined as (obj < pivot), to temporar-
ily restrict the feasible domain of obj in the interval [lb, pivot[ (lines 7-8). If the next call to
SMT.INCREMENTALSOLVE() finds that ϕ is still satisfiable, then the OMT solver proceeds as
in a linear-search step: it computes the new minimum ub and updates bothM and ϕ. Other-
wise, if ϕ is unsatisfiable, then the unsatisfiable core η is extracted and examined (lines 15-16).
If the atom PIV belongs to η, then it means that there exists no satisfiable truth assignment
µ for which obj can be assigned a value in the interval [lb, pivot[. Therefore, lb is set to the
value of pivot and PIV is replaced by its negation inside ϕ so that the range [pivot, ub[ will be
explored in the next iteration of the loop (lines 17-19). If instead PIV 6∈ η, then it means that
ϕ \ {PIV } is unsatisfiable for the whole range [lb, ub[. In this case, the search proceeds as in
an unsatisfiable linear-search step by setting lb equal to ub and causing the loop to terminate.

When the optimization search has terminated (lines 21-24), the OMT solver yields a triple
〈SAT, ub,M〉 if ϕ was found to be satisfiable, and 〈UNSAT,+∞, ∅〉 otherwise.

We report a few important facts about binary-search that were made in [ST12, ST15a].
First, a binary-search step can only be performed when both lb and ub have a finite value.

In minimization a finite upper bound ub is easily determined by means of a linear-search step,
therefore the user is only required to provide an initial lower bound. In maximization, the
requirement is dual.

Second, a binary-search step must be interleaved infinitely often with a linear-search step
to prevent non-termination when the non-empty range [lb, ub[ is unsatisfiable. In fact, executing
exclusively in binary-search in this situation can result in an infinite number of lower bound
updates, because infinite-precision arithmetic guarantees that it is always possible to find a
new pivot in [lb, ub[, no matter how small the range becomes. On this regard, the authors of
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[ST12, ST15a] suggested that, based on their empirical experience, the best performance is
obtained by starting with an initial linear-search step that can provide tighter estimate of the
upper bound ub, and then alternate each binary-search step with a linear-search one.

Third, a binary-search step is not necessarily more convenient than a linear-search step. On
the one hand, limiting the search space to the interval [lb, pivot[ may result in a tighter upper
bound ub than by searching it in the whole range [lb, ub[. On the other hand, this search can be
very time-consuming if the interval [lb, pivot[ contains no satisfiable solution, because detecting
LIRA-unsatisfiability is typically much more expensive than generating a new model4. For
this reason, the authors of [ST12, ST15a] proposed an adaptive version of BINSEARCHSTEP()
that determines the next search step based on an heuristic evaluation of the cost-benefit ratio of
the most recent linear- and binary- search steps.

Inline Schema [ST12, ST15a]

In addition to the offline schema, the authors of [ST12, ST15a] also presented in the same
publications the so-called inline schema. Both approaches employ exactly the same range-
minimization approach, comprised by a number of linear- and binary-search steps, that we
have just described for the offline schema. However, while the offline schema proceeds through
a sequence of incremental calls to the underlying SMT solver used as a black-box, in the inline
schema the whole optimization search is pushed within the CDCL Boolean-search loop of the
standard lazy SMT schema [Seb07, BSST09]. In this way, the optimum value of obj is retrieved
with a single run of the SMT search-loop. The authors implemented both approaches in OP-
TIMATHSAT and reported consistently better performance with the inline architecture in the
experimental evaluation of [ST12, ST15a].

Hereafter, we succintely describe the main aspects of the inline schema based on the content
of [ST12, ST15a], bearing in mind the high-level of similarity with the already presented offline
schema.

Initialization: the output modelM is empty, while the current lower bound lb and the current-
upper bound ub are respectively initialized to the input lower bound l and upper bound u if
available, −∞ and +∞ otherwise.

Range Updating & Pivoting. The algorithm maintains the following invariant on the range
[lb, ub[. The upper bound ub [resp. lower bound lb] is assigned the lowest [resp. highest] value
v such that the atom (obj < v) [resp. ¬(obj < v)] is assigned at level 0 of the CDCL Boolean-
search loop. The search terminates if ϕ is unsatisfiable, so that there is no optimal solution,

4This conclusion is based on the empirical experience in [ST12, ST15a, ST15c] when dealing with
OMT(LIRA ∪ T ).
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pivot

(obj < pivot)

ϕ

µ |= ϕ

lb ub

ub′

ϕ ∧ (obj < pivot) ∧ (obj < ub′)

(obj < pivot)

ϕ

µ |= ϕ

lb

LRA-MINIMIZE(obj, µ)

lb′

ϕ ∧ ¬(obj < pivot)

ϕ

µ |= ϕ

ub

Figure 2.3: A possible execution of the inline schema. (I) Pivoting on (obj < pivot). (II)
Decreasing the upper bound to ub′. (III) Increasing the lower bound to pivot.
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or when ub becomes smaller or equal lb. Each time the search goes back to level 0, it can
decide whether to execute the next search step in linear- or —when both lb and ub are finite—
in binary-search mode. In the latter case, a pivot ∈ [lb, ub[ value is computed (e.g. with lb+ub

2
),

and the (possibly new) atom PIV = (obj < pivot) is forcibly decided at level 1 of the CDCL
Boolean-search loop. This decision temporarily restricts the search to the interval [lb, pivot[, as
depicted figure 2.3-(I).
Decreasing the Upper Bound. Whenever the CDCL search generates a complete truth as-
signment µ that propositionally satisfies ϕ, the OMT solver computes ub′, that is, the minimum
value of obj in correspondence with the truth assignment µ. This is done byLRA-MINIMIZE(),
that is incrementally called after the decision procedure for LRA-satisfiability to avoid starting
from scratch. Then, the unit clause (obj < ub′) is learned, so that the CDCL Boolean-search
is forced to backjump to level 0 and unit-propagate it. This permanently restricts the search to
the interval [lb, ub′[, as depicted figure 2.3-(II). When the upper bound decrement occurs in a
binary-search step, the atom (obj < pivot) is also learned prior to backjumping to level 0. This
allows the CDCL loop to reuse any clause of the form ¬(obj < pivot)∨C that might have been
generated when searching for a cost in the range [lb, pivot[.
Increasing the Lower Bound. When ϕ ∧ {(obj < pivot)} is LRA-inconsistent, the CDCL
Boolean-search eventually generates a conflict clause of the form ¬(obj < pivot) ∨ η′ such that
all literals in η′ are permanently assigned to > at level 0. As a result, the search is forced to
backjump at level 0 and unit-propagate ¬(obj < pivot). This case, shown in Figure 2.3-(III),
permanently restricts the cost range to the interval [pivot, ub[.

We refer the reader to the description of the offline schema for what concerns some key
aspects of binary-search in the inline schema, since the same considerations apply here.

Symbolic Optimization Algorithm [LAK+14]

In [LAK+14], Li et al. proposed SYMBA, an alternative OMT(LRA ∪ T ) tool built on top of
the Z3 SMT solver.

Differently than [ST12, ST15a], the authors deal with the optimization of multiple indepen-
dent LRA objectives obj1, ..., objN at the same time, where the goal is to find the set of models
M1, ...,MN such that each Mi is optimal with respect to its corresponding goal obji. To
this aim, dealing with this problem can be seen as being totally equivalent to solving N single-
objective OMT(LRA ∪ T ) problems, one for each obji. However, handling multiple objectives
at the same time allows for sharing SMT search steps among multiple objectives and a better
exploitation of clause learning, as shown in the performance evaluations of [LAK+14, ST15c].

Li et al. presented both and “offline” and an “inline” version of their tool. In the “offline”
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implementation, the underlying SMT solver is used as a black-box, and the optimization search
is advanced via the incremental application of a set of inference rules that either (1) force an
improvement of the current solution along some objective direction (2) prove that some objec-
tive is unbounded. The “inline” implementation extends the “offline” version by modifying the
LRA-Solver in Z3 to also return the optimal value of a goal obji given a fixed truth assign-
ment µ, as with the inline schema of [ST12, ST15a]. As shown in the empirical evaluation of
[LAK+14], this addition allows the “inline” approach to outperform the “offline” architecture
since it drastically reduces the number of SMT queries necessary to find the optimal solution.

2.3.2 OMT (LIA ∪ T )

The Optimization Modulo Theories problem for Linear Integer Arithmetic cost functions is
defined as follows.

Definition 2.3.2. (OMT(LIA ∪ T ), OMT(LIA)). Let ϕ be a ground SMT(LIA ∪ T )

formula and obj be a LIA variable occurring in ϕ. We call an Optimization Modulo
LIA ∪ T problem, the problem of finding a modelM for ϕ (if any) whose value of obj,
denoted with minobj(ϕ), is minimum. We call an Optimization Modulo LIA problem,
written OMT(LIA), an OMT(LIA ∪ T ) problem where T is the empty theory. (The
dual definition where we look for the maximum follows straightforwardly)

To the best of our knowledge, there exists only one publicly available work on OMT(LIA)5

and this is the master’s thesis of R. O. Vendrell [Roc11], which builds upon the “SMT with
progressively stronger theories” approach of [NO06] (see Section §2.3.3).

In this thesis, the authors extended the BCLT SMT solver [BNO+08] with a minimiza-
tion procedure for LIA objectives embedded within the T -Solver for Linear Integer Arith-
metic6. As a first building step, the authors provide a detailed description of how the decision
procedure for LRA-satisfiability —based on the simplex-based LRA-Solver of [DdM06b]—
can be extended with optimization capabilities. The end result of this transformation is sim-
ilar to the function LRA-MINIMIZE() described in [ST12, ST15a] (see Section §2.3.1) for

5We recall that in this section we consider only those works that were made publicly available prior to the start
of this Ph.D. (November, 2014). Any other work is reported in the Related Work (§3). Moreover, here we do not
consider those approaches that deal with the more-specific OMT(PB ∪ T ) and MAXSMT problems with Integer
weights. These approaches are separately covered in Section §2.3.3.

6To be precise, [Roc11] also describes another implementation based on using an off-the-shelf ILP solver
(CPLEX) for the optimization part. This approach is not considered here because the experimental evaluation of
[Roc11] has shown that, on the benchmark-set being considered, the combination of BCLT with CPLEX did not
show any added benefit compared with using CPLEX as a standalone solver. We refer the interested reader to
[Roc11] for more details.
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OMT(LRA ∪ T ). Given a complete truth assignment µ and an objective obj, it returns the
model interpretation M of µ that makes obj LRA-minimum. As stated in [Roc11], if some
variable need to take Integer values, then a complete LIA-MINIMIZE() procedure can be
obtained by combining LRA-MINIMIZE() with the well-known Branch&Bound and cutting
planes techniques.

The overall optimization search is based on [NO06] and it proceeds similarly to the inline
schema —running in linear-search mode— of [ST12, ST15a] and described in Section §2.3.1.
Given a complete truth assignment µ that satisfies the input formula ϕ, the solver invokes the
LIA-MINIMIZE() procedure to retrieve the corresponding minimum value ub of obj, and then
adds the linear cut obj < ub to the database of constraints, so that the SMT solver is forced to
find a new truth assignment µ′ improving the value of obj. The search ends when the value of
obj cannot be improved any further.

2.3.3 OMT(PB ∪ T )/MAXSMT

Two important subcases of OMT(LRA∪T ) are represented by OMT(PB∪T ) and MAXSMT7.
In this section, we present both subcases together since they allow to deal with the same class
of problems: an instance of MAXSMT can be encoded as a OMT(PB ∪ T ) problem and
vice-versa.

Another important aspect to be noticed is that in both cases the optimization search has only
a Boolean component, due to the fact that the value of the cost function is univocally determined
by the truth assignment µ over the atoms of the input formula. This is substantially different
from the general case of OMT(LRA ∪ T ), for which it is necessary to compute the minimum-
cost LRA-model for each satisfying truth assignment µ found along the optimization search.

OMT with Pseudo-Boolean cost functions

The Optimization Modulo Theories problem for Pseudo-Boolean cost functions is defined as
follows.

7Here, we immediately note that MAXSMT is MAXSAT lifted to the case of SMT formulas. In this thesis, we
assume that the reader is familiar with MAXSAT, and otherwise refer to [LM09, MSAGL11] for an introduction
on the topic.
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Definition 2.3.3. (OMT(PB ∪ T ), OMT(PB)). Let ϕ be a ground SMT(T ) formula and
obj be defined as follows:

obj
def
=
∑
i

wi · Ai , wi ∈ R and Ai are Boolean variables

We call an Optimization Modulo PB ∪ T problem, the problem of finding a modelM
for ϕ (if any) whose value of obj, denoted with minobj(ϕ), is minimum. We call an Opti-
mization Modulo PB problem, written OMT(PB), an OMT(PB ∪ T ) problem where T
is the empty theory.

In the literature, two main approaches have been proposed to deal with OMT(PB): an
encoding of the problem into OMT(LRA) [ST12, ST15a] and, when all weights wi ∈ Z, the
“Theory of Costs” C [CFG+10].

OMT(LRA) encoding [ST12, ST15a]. A OMT(PB ∪ T ) problem 〈ϕ, obj〉 can be encoded
as an OMT(LRA) instance 〈ϕ′, obj′〉 as follows. First, a fresh Rational variable xi is introduced
for each wi in obj. Then, ϕ′ and obj′ are defined as

ϕ′
def
= ϕ ∧

∧
i

((¬Ai ∨ (xi = wi)) ∧ (Ai ∨ (xi = 0))) ∧ (2.2a)∧
i

((0 ≤ xi) ∧ (xi ≤ wi)) (2.2b)

obj′
def
=

∑
i

xi (2.2c)

As noted in [ST15a], although the constraints in (2.2b) may appear redundant from a logical
perspective, they noticeably improve the performance. This is because these constraints allow
early-pruning calls to the LRA-Solver to detect a possible LRA inconsistency among the cur-
rent partial truth assignment over variables Ai and any linear cut of the form ¬(ub ≤ obj), that
is typically pushed on the formula stack during the minimization of obj.

Theory of Costs [CFG+10]. In [CFG+10], Cimatti et al. introduced the “Theory of Costs” C
and extended the standard lazy SMT schema with a decision procedure for C, called C-Solver,
that would deal with both Pseudo-Boolean (PB) objectives and Pseudo-Boolean constraints.
The proposed C-Solver was combined with two distinct single-objective optimization schemas,
one based on branch-and-bound and another on bisection-search, and implemented in a fork of
the MATHSAT [matb] SMT solver.
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The “Theory of Costs” C allows for the definition of multiple objectives objj , each taking
the form

objj
def
=

Nj∑
i=1

ITE(Aji , w
j
i , 0) (2.3)

where ITE is a function returning wji when Aji is assigned to true and 0 otherwise. A fresh
Integer variable cj is introduced to represent the value of each objj . Moreover, two additional
predicates are introduced with the language of theory C. The first is a binary predicate BC(cj, w),
requiring cj to be smaller or equal to the integer constant w. The second is a ternary predicate
IC(cj, i, wji ), that states that the i-th component of the pseudo-boolean sum (2.3) increases the
value of cj by an amount equal towji . These predicates are used to encode the objective function,
that is thus kept signature-disjoint with respect to the other theories T appearing in the problem.

Notice that, while the language of theory C allows one to define multiple objective functions,
the optimization procedures in [CFG+10] can handle the optimization of only one objj goal at
a time. In addition, these routines are limited to deal with PB objectives with Integer weights
only.

Partial Weighted MAXSMT

The Partial Weighted MAXSMT problem is defined as follows.

Definition 2.3.4. (Partial Weighted MAXSMT, Partial MAXSMT, Weighted MAXSMT).
A Partial Weighted MAXSMT problem is a pair 〈ϕh, ϕs〉, where ϕh is the set of “hard”
T -clauses, and ϕs is a collection of positive-weighted “soft” T -clauses of the form
〈Ci, wi〉, and the goal is to find the maximum-weight set of T -clauses ψs, ψs ⊆ ϕs,
such that ϕh ∪ ψs is T -satisfiable [NO06, CFG+10, ABP+11b, CGSS13a].

A Partial MAXSMT problem is a Partial Weighted MAXSMT problem in which all
“soft” T -clauses in ϕs have a unitary weight.

A Weighted MAXSMT problem is a Partial Weighted MAXSMT problem in which
the set of “hard” T -clauses ϕh is empty.

In the literature, three main approaches have been presented to deal with partial weighted
MAXSMT problems. The first is “SMT with progressively stronger theories”, proposed in
[NO06]; the second is to encode MAXSMT as an OMT(PB) or OMT(LRA) instance [ST12,
ST15a], and the third is to combine a MAXSAT solver and an SMT solver together [CGSS13a,
BP14, BPF15].
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SMT with progressively stronger theories [NO06]. In [NO06], Nieuwenhuis and Oliveras
presented the general “SMT with progressively stronger theories” framework for dealing with
weighted MAXSAT and weighted MAXSMT problems, that has been implemented in BCLT

[BNO+08].
Given a MAXSMT pair 〈ϕh, ϕs〉, this approach introduces a fresh Boolean variable pi and

a fresh Integer variable ki for each “soft” clause 〈Ci, wi〉, so that each clause Ci is replaced by
Ci∨pi. Then, an initial background theory T0 is introduced and given the constraints

∧N
i=1(pi →

(ki = wi)) ∧ (¬pi → (ki = 0)), plus an additional cost function k1 + ... + kN ≤ u, where u
is a fresh Integer variable. In addition, the underlying SMT solver is extended with a new
DPLL (T ) rule T -STRENGTHEN that allows one to iteratively strengthen the initial theory T0
via Branch&Bound up until the optimal solution is found.

Each time a complete truth assignment µi is found, such that µ propositionally satisfies the
initial set of constraints and it is Ti-consistent, the cost function is evaluated and the correspond-
ing value ubi becomes the new upper bound of the optimization search. Then, the application
of T -STRENGTHEN replaces the theory Ti with a theory Ti+1 that extends Ti with a linear cut
of the form u < ubi. As a result, any truth assignment µ′ for which the value of the cost func-
tion is not smaller than ubi is now Ti+1-inconsistent. Consequently, the rule application causes
the underlying CDCL engine to backjump and look for a novel truth assignment µ′ that may
improve the value of the cost function. The optimization search terminates when no such truth
assignment is found.

OMT(PB)/OMT(LRA) encoding [ST12, ST15a]. A MAXSMT pair 〈ϕh, ϕs〉 can be en-
coded into a OMT(PB) pair 〈ϕ, obj〉 as follows. First, a fresh Boolean variableAi is introduced
for each soft constraint Ci ∈ ϕs. Then, ϕ and obj are defined as

ϕ
def
= ϕh ∪

⋃
〈Ci,wi〉∈ϕs

{(Ai ∨ Ci)}; (2.4a)

obj
def
=

∑
〈Ci,wi〉∈ϕs

wi · Ai (2.4b)

The resulting OMT(PB) instance can then be directly solved with any technique that directly
targets this kind of encoding (e.g. [CFG+10]), or subdue a subsequent transformation step into
OMT(LRA) using equations (2.2), so that any OMT(LRA) solver can be employed.

MAXSAT and SMT combination [ABP+11b, CGSS13a, BP14, BPF15]. With this ap-
proach, some dedicated MAXSAT engine is coupled with an SMT solver, so that the former
is leveraged to find the Boolean abstraction with minimum cost and the second provides the
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T -solvers for deciding the T -satisfiability of any Boolean assignment found by the MAXSAT
engine.

Ansótegui et al. [ABP+11b] describe an experimental evaluation over Resource-Constrained
Project Scheduling Problem (RCPSP) instances using an implementation of a MAXSMT solver,
built on top of YICES. The underlying SMT solver was extended with two MAXSAT algorithms
based on unsat-core extraction, WPM1 [ABL09] and WBO [MSP09], enriched with an heuris-
tic giving priority to cores involving constraints with higher weights. This implementation is
not publicly available.

In [CGSS13a], Cimatti et al. presented a “modular” version of this approach, that allows
one to combine a modern lazy SMT solver with an arbitrary propositional MAXSAT solver,
used as a black-box. In this architecture, the SMT solver is used to produce an increasingly
larger set of theory lemmas, whose Boolean abstraction is then fed to the MAXSAT engine
to progressively refine the sequence of solutions that are found by it. The search terminates
with an optimal solution when the truth assignment µ generated by the MAXSAT engine does
not result in any T -conflict within the SMT solver, or when a conflict involving only “hard”
clauses is generated, meaning that the input problem is unsatisfiable as a whole. The authors of
[CGSS13a] implemented their solution on top of the MATHSAT5 SMT solver, and combined
it with a number of external MAXSAT engines.

In most situations, the use of a dedicated MAXSAT engine can outperform the translation
into OMT(PB)/OMT(LRA) by a significant margin. However, there are some situations in
which the encoding into OMT(PB)/OMT(LRA) is the only applicable approach in practice
due to some inherent limitations of the former approach. The first issue is that, to the best of our
knowledge, many MAXSAT engines deal with integer weights only and, unlike OMT, some
of them might suffer when dealing with problems containing large and non factorable weights.
Both of these conditions apply, for example, to the OMT formulas used to deal with Support
Vector Machines in [TSP17]. In this case, the weight of a “soft” clause is a high-precision
rational value resulting from previous runs of the Machine Learning approach, and rounding
these values would affect the accuracy of the whole learning process. The second issue is that
a dedicated MAXSAT engine cannot be used in the presence of OMT problems featuring an
objective function that is the result of the linear combination of Pseudo-Boolean and arithmetic
terms (like, e.g., for Linear Generalized Disjunctive Programming problems [ST15a]), or the
non-trivial combination of several Pseudo-Boolean sums as in [TSP17].

Generalized MAXSMT

The Partial Weighted MAXSMT problem can be generalized as follows.

42



CHAPTER 2. BACKGROUND & STATE OF THE ART

Definition 2.3.5. (Generalized MAXSMT). A Generalized MAXSMT is a Partial Weighted
MAXSMT in which the weights wi are not restricted to be positive.

Intuitively, in a Generalized MAXSMT, a negative weight wi becomes a reward —instead of a
cost— for falsifying the corresponding clause Ci.

The solution of a Generalized MAXSMT 〈ϕh, ϕs〉 can be found with the aid of any MAXSMT
solver upon applying the following transformations. First, any zero-weighted clause in ϕs is re-
moved from the problem as it provides no contribution to the solution. Then, any soft clause
〈Ci, wi〉 such that wi < 0 is replaced by a new soft clause 〈¬Ci, − wi〉. As a result of this
transformation, the optimal modelM of the new MAXSMT problem 〈ϕh, ϕ′s〉, extended with
a suitable Boolean assignment for any zero-weighted soft clause that was previously removed,
is also an optimal model for the original Generalized MAXSMT problem. In fact, the only
difference among the two encodings lies in the numerical value of the cumulative-weight of
all unsatisfied soft clauses, that we also call the objective function. More precisely, the opti-
mal value of objective in the Generalized MAXSMT instance is equal to that of the MAXSMT
encoding plus

∑
〈Ci,wi〉∈ϕs|wi<0

wi.

Any Generalized MAXSMT problem is encoded as an OMT(PB) instance with the same
approach used for MAXSMT. In addition, any OMT(PB) instance 〈ϕ, obj〉, where obj

def
=∑

iwi · Ai, can be rewritten as a Generalized MAXSMT instance:

〈ϕ,
⋃
i

〈¬Ai, wi〉〉 (2.5)

Clearly, when wi > 0 for every i, then OMT(PB) maps directly into MAXSMT.

From now on, unless differently specified, we will use MAXSMT to denote the general case
of Generalized Partial Weighted MAXSMT.

2.4 Constraint Programming and SAT/SMT/OMT

In this section, we briefly introduce Finite Domain Constraint Programming (FDCP), a re-
striction of Constraint Programming (CP) in which the domain of unknown variables is al-
ways finite. Since we are mainly interested in talking about the mutual connections among
FDCP and SAT, SMT and OMT solving, we do not provide a comprehensive background on
FDCP and touch only a few of its most essential aspects. For a more in-depth and detailed
introduction to the topic, we refer the interested reader to publications on the topic such as
[Tsa93, Bar99, RBW06], that are also the main sources of the material being presented.
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2.4.1 (Finite Domain) Constraint Programming

At a high-level, Constraint Programming (CP) can be seen as a programming paradigm for
solving large, combinatorial, problems described in terms of a list of high-level constraints
expressing the relationship among several variables, each of which takes a value in a given
domain.

Definition 2.4.1. (Constraint Satisfaction Problem [Tsa93, RBW06]). More formally, a
Constraint Satisfaction Problem (CSP) is defined as:

• a set of variables X = {x1, ..., xn},

• for each variable xi, a finite domain Di of possible values, and

• a set of constraints that restrict the values that the variables can simultaneously
take.

CSP problems are most commonly solved either by systematic search, usually enhanced
with Constraint Propagation techniques for greater efficiency, or by stochastic and heuristic
search.

In systematic search, the space of solutions is traversed by extending a partial assignment
of values over the variables xi, until a consistent solution is found. For better performance,
systematic search is complemented with conflict analysis. This is used to guide a backjump-
ing mechanism that rolls back the search, undoing the assignment decision causing the incon-
sistency [Gas79]. Alternatively, instead of conflict analysis, the search can use a look-ahead
schema. In this approach, the domain of the variables that are not already contained in the cur-
rent assignment is (temporarily) restricted along the search to exclude any future conflict with
the assignment under construction [Bar99].

Systematic search is often combined with consistency techniques [Mon74, Wal75, Mac77,
Kum92], that analyze the constraint graph of a CSP problem to remove (some) inconsistent
values from the domain of variables. In the constraint graph, nodes and edges correspond to the
variables and constraints of the CSP problem respectively. Inconsistent values can be identified
by analyzing either unary constraints, as in Node Consistency (NC), or binary constraints using
the notion of arc-consistency, [Lar02, DAC10], that allows one to discard any value of a variable
domain for which another variable does not have a corresponding satisfiable value.

In stochastic and heuristic search —like, e.g., in the hill-climbing algorithm [Nil80] or the
min-conflicts heuristic [MJPL92]— a complete assignment is first randomly generated and then
refined via minor value adjustments that reduce the number of conflicting constraints. Random
restarts and heuristic techniques are employed to escape from local minima.
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When a CSP is paired with an objective function, which is defined over a subset of the
variables in X , we speak of Constraint Optimization Problem (COP) [Tsa93, RBW06]. Intu-
itively, the distinction among a CSP and a COP is that the former is only interested in finding
a generic solution (or all solutions) of a problem, while the latter looks for the optimal solution
(or a good approximation of the optimal solution) according to some fixed function ranking all
possible solutions. The most widely known approach for dealing with optimization in CSP is
Branch and Bound [LW66]. In the simplest implementation, the search space is explored sys-
tematically, (possibly) enumerating all (satisfiable) assignment of values. In minimization, each
time the current assignment is extended with a new value, an heuristic function is evaluated. If
the result of this evaluation exceeds a given cutoff threshold —that is initially set to +∞ and
updated each time a complete assignment is generated— then current assignment is discarded,
along all of its possible extensions, and the search is rolled back to a previous decision level in
which a different value assignment can be performed.

2.4.2 MINIZINC

MINIZINC, [NSB+07], is a widely adopted high-level declarative language for modeling CSP
problems. For a detailed presentation of this language, we refer the interested reader to [Minb].
For the purposes of this dissertation, it suffices to know that the MINIZINC standard, [mina],

(I) defines three scalar types (Booleans, machine Integers and Floats) and two compound
types (sets and fixed-size arrays of some scalar type),

(II) provides an extensive library of predefined global constraints, that increase both the eas-
iness of use and the readability of MINIZINC models,

(III) supports useful language constructs such as if-then-else, let expressions, uni-
versal and existential comprehensions over finite domains, user-defined predicates and
more.

A MINIZINC model is typically flattened into a FLATZINC [fla] instance, using the MZN2FZN

compiler, before it is handed over to a MINIZINC solver. The purpose of FLATZINC is to bridge
the gap among the high-level modeling in MINIZINC, and the need for a fixed, and easy-to-
parse, input format that simplifies the implementation of the input interface of a MINIZINC

solver. To this aim, we notice that the global constraints in MINIZINC express more com-
plex relations among the objects of the language than those FLATZINC constraints. Normally,
a MINIZINC solver is not required to directly support any global constraints, as these can be
compiled by the MZN2FZN tool into a standardized FLATZINC representation that uses only
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regular constraints and, if necessary, a number of fresh support variables. Even so, it can be
convenient for a MINIZINC solver to handle global constraints directly, especially when it can
use ad hoc decision procedures for dealing with them efficiently.

Each year, the CP community gravitating around the MINIZINC language hosts the MINIZ-
INC Challenge, [Minb], a competition among MINIZINC solvers on a vast library of benchmarks
containing planning, scheduling and logistic problems (and more).

2.4.3 FDCP vs. SAT, SMT and OMT

For many years, the research on FDCP and that on SAT—including its recent SMT and OMT
extensions— has proceeded on parallel tracks, often with a significant degree of exchange of
good ideas and techniques. Originally, this separation can be attributed to the different focus of
their respective research communities, with the former more preoccupied about solving plan-
ning, scheduling and logistic problems, and the latter focused on the formal verification of both
Software and Hardware systems. Over the years, the cross-fertilization among the two fields has
pushed the two communities increasingly close to one another. Nowadays, the solvers designed
in each, respective, community not only adopt similar techniques but they can also sometimes
be used to deal with similar (or even coinciding) applications, at least for some classes of prob-
lems (e.g. planning and scheduling).

Distinctive features.

Despite some overlap, there still remain significant differences among the two worlds.

FDCP solvers typically display a stronger focus on combinatorial reasoning over finite do-
mains (e.g. integers) than SMT and OMT solvers. To this aim, they benefit from very effi-
cient consistency algorithms that reduce the number of possible conflicts encountered along the
search. In addition, FDCP applications are typically modeled in widely adopted, high-level
declarative languages such as the MINIZINC format in Section §2.4.2. The latter provides a va-
riety of standardized global constraints for modeling complex subproblems recurring in many
applications, so that ad hoc procedures can be implemented to efficiently deal with them.

SAT, SMT and OMT solvers —taken altogether— typically provide very efficient Boolean
reasoning capabilities and an incremental interface that allows one to reuse learned information
to increase the speed of subsequent searches when checking the satisfiability of closely related
instances. Moreover, lazy SMT and OMT solvers (see Section §2.2.1) commonly display a
greater level of expressiveness than FDCP tools, at least in terms of supported theories. For
instance, SMT and OMT solvers support the theory of arrays (AR), the theory of uninterpreted
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functions with equality (EUF), and several other theories, also with infinite-domain, as those
described in Section §2.2.3.

When focusing only on linear arithmetic, which is handled by both categories of solvers,
we notice that an SMT (and OMT) solver must provide —among other features— accurate
infinite precision reasoning (at least as a fall-back), the ability to extract a (possibly small)
subset of conflicting constraints from an unsatisfiable formula —the so-called unsat core— and
also efficient procedures for the typical incremental usage of the tool (see Section §2.2.2). In
contrast, the typical MINIZINC solver is not required to support any of these features, so that
it can use more sophisticated techniques for linear arithmetic than those typically implemented
in SMT and OMT solvers.

The most widely adopted language to model SMT and OMT applications is represented by
the SMT-LIBV2 format, [smt], (and its extensions) which is a much simpler and lower-level
language than those used by FDCP solvers. In particular, due to the lack of global constraints,
complex subproblems recurring in many applications have to be manually broken down and
encoded in terms of simpler grammatical structures (each time). However, in SMT and OMT
the same problem can often be modeled in multiple ways, using a different subset of theories
or constraints. On this regard, we notice that the particular choice of theories and constraints
used to model a certain problem can have a huge impact on the performance of SMT and OMT
solvers. This can be due to multiple reasons such as the different complexity of each theory, the
efficiency of the decision procedures implemented in the corresponding T -solver, the complex
and hardly-predictable interaction between the input set of constraints and the various heuristics
implemented in SMT and OMT solvers. As a result, modeling problems for SMT and OMT
solvers is typically harder than doing so for FDCP solvers, and it requires a higher level of
expertise to guarantee the best performance —and, in some cases, even the ability to produce a
definitive answer— of the SMT and OMT tool used to solve it.

Related Research.

Recently, there has been an increasing interest in bridging the gap among the two research
communities and, in particular, compare the effectiveness of FDCP, SAT, SMT and OMT tools
on problems steaming from the other research community. In fact, two of the relevant challenges
in Satisfiabiliy Modulo Theories characterized in [NO06, NORCR07] are 1) integrating SMT
with techniques used in Constraint Programming to deal with global constraints and 2) find new
solutions to tackle Partial Weighted MAXSMT to handle Weighted CSP problems efficiently.
This research goal extends also to other research communities such as Mixed Integer Linear
Programming (MILP), an extension of Linear Programming (LP) that involves both discrete
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and continuous variables.

CSP and FDCP. In [BPV09, BPSV09], Bofill et al. presented SIMPLY, a compiler that
translates CSP problems encoded in a declarative language similar to MINIZINC, [Minb], into
SMT-LIBV2, [smt], the standard input format of SMT solvers. In a follow up of that work,
Bofill et al. presented FZN2SMT [BSV10, BPSV12], a novel framework for translating CSP
problems from the MINIZINC format into Version 1 of the SMT-LIB language. Differently
than SIMPLY, the new framework is comprised of an existing MZN2FZN tool, that compiles
the original models into the FLATZINC format, and a novel FZN2SMT compiler performing the
last step of the conversion. Optimization problems, that cannot be encoded in the standardized
SMT-LIB format, are solved by the FZN2SMT compiler directly, using an optimization pro-
cedure built on top of YICES, [DdM06a], an external SMT solver used as a black-box. The
experimental evaluations in [BPV09, BPSV09], have shown that SMT can be competitive on
benchmarks requiring substantial Boolean reasoning. Remarkably, the tool was able to score, at
the MINIZINC Challenge competition, a gold and a silver medal in 2010 and two silver medals
both in 2011 and 2012.

Comment. Part of the work presented in this dissertation falls in the same track as that of
[BPV09, BPSV09, BSV10, BPSV12]. As illustrated in Section §5.3.2, we extended OPTI-
MATHSAT with a a new interface for dealing with MINIZINC and FLATZINC models, that can
be used to solve CSP problems directly as well as to convert the input model in the extended
SMT-LIBV2 format used by OMT solvers.

Differently than in the work of Bofill et al., the main optimization procedure in OPTIMATH-
SAT is inlined with the underlying SMT solver, an approach that has been shown to be more
efficient than using the SMT solver as a black-box [ST12]. A second, important, difference
is that the framework presented in [BSV10, BPSV12] targets the Version 1 of the SMT-LIB,
and does not support any of the optimization extensions to the SMT-LIBV2 standard used by
OMT solvers. The fact that the original framework is closed source, with only the binaries be-
ing freely distributed, and seemingly no longer maintained, also made it necessary to provide
a new alternative to prosecute the research on this track. Last, we notice that the existing tools
produce SMT-LIBV2 formulas in which neither the original Boolean structure nor global con-
straints are retained, making OMT solvers potentially less efficient at handling these problems.
The MINIZINC interface implemented in OPTIMATHSAT makes an effort to overcome this
limitation, wherever possible.

In a different set of studies, various authors considered the problem of directly encoding
CSP instances in the input format used by SMT solvers, and compared various alternative
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formulations of the same CSP problem to identify the modeling approach yielding the best
performance.

In [FP14], Frisch et al. found that even tiny changes in the encoding of a CSP instance
have a significant impact on the performance of an SMT solver. Not only that, the experimental
evaluation has also shown that the various SMT solvers under consideration respond differently
to changes in the encoding of the CSP problem, meaning that the same encoding could work
well for some SMT solvers but be very poor for others. Given the prominent role of cardinality
constraints in CSP problems, Frisch et al. compared various such encodings in [FG10], looking
for the best alternative when dealing with a SAT solver.

In a related study, [ABP+13], Ansótegui et al. have shown that SMT can be an interest-
ing, and potentially competitive, approach for dealing with Weighted CSP (WCSP) instances.
A Weighted CSP problem is obtained from an over-constrained CSP instance by relaxing
some of its constraints. Similarly to Partial Weighted MAXSMT, described in Section §2.3.3,
Weighted CSP admits the use of optional weights to establish a satisfaction priority among
the various soft- and meta-constraints. These weights do not have to be constant-valued. The
Weighted CSPs instances in [ABP+13], encoded in some extended version of the MINIZINC

format [ABP+11a, ABP+11c, ABP+13], are compiled either into COP or into Partial Weighted
MAXSMT, and then solved. The experimental evaluation included in [ABP+13], performed
over benchmarks encoding the Nurse Rostering Problem (NRP) and the Balanced Academic
Curriculum Problem (BACP), compared the CSP solver CPLEX, [IBM10], with the SMT solver
YICES, [DdM06a].

In [AGJ+14], Akgun et al. have shown that flattening MINIZINC models into a FLATZ-
INC instances can introduce model-based symmetries that are not contained in the original CSP
formulation. We recall here that symmetries in the encoding of a problem can lead to search
redundancy and thus longer solving time, and that one common approach to mitigate this prob-
lem is to introduce lexicographic ordering constraints in the formulation of the problem to break
these symmetries. Therefore, in [EF14] Elgabou et al. studied the problem of finding the best
encoding for lexicographic ordering constraints in terms of the efficiency of the corresponding
SMT search.

Comment. On the whole, we can summarize the outcome of these studies as follows. On
the one hand, SMT can be a potentially interesting and efficient technology for dealing with
CSP, especially in the case of problems requiring substantial Boolean reasoning such as the
scheduling instances in [ABP+11b]. On the other hand, modeling CSP problems for SMT
solvers requires a higher-level of expertise because the same CSP instance can have many
possible alternative formulations, but the performance of SMT solvers on each encoding are
hardly predictable in advance. Having learned this lesson from the research literature, when
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developing a new framework for solving CSP problems with Optimization Modulo Theories
(see Section §5.3.2), we decided to target our implementation over a specific OMT solver,
OPTIMATHSAT [opt], to take full advantage of its strengths and features.

A significant branch of the literature went in the opposite direction, and investigated how
to extend the benefits of efficient SAT and SMT techniques to the domain of CSP tools and
problems. For instance, Ohrimenko et al. presented a Finite Domain Constraint Propagation
solver built on top of a SAT solver in [OSC07, OSC09]. For this purpose, the SAT engine was
extended by the authors with lazy clause generation procedures mimicking the deduction step
of a typical finite domain propagator. In a closely related study, [FS09], Feiydy et al. presented
a FDCP solver extended with an internal SAT engine, used for recording clauses learned along
the search and quick backjumping in the search.

To conclude, we mention that after the achievements of Bofill et al. at the MINIZINC Chal-
lenge with their work on FZN2SMT [BSV10, BPSV12], that earned them a total of one gold
and five silver medals over the span of three years, there has been an increasing number of
SAT/SMT tools participating at the annual MINIZINC Challenge. This is the case of HAIFACSP
[VS10, VS15, VS16] a CSP solver using ideas from CSP and SAT literature, and PICATSAT
[ZK17] that uses the LINGELING [Bie18] SAT solver as a black-box. Remarkably, the former
won two gold and a silver medal in 2016 and a bronze medal in 2018, and the latter won a total
of three silver medals and three bronze medals from 2016 to 2018.

MILP and LGDP. For a long time, MILP problems have been efficiently solved by a com-
bination of LP, branch-and-bound search and various cutting-plane methods (see e.g. [Lod09]).
More recently, SAT techniques have also been integrated in these decision procedures for MILP
problems (see, e.g., [ABKW08]).

Linear Disjunctive Programming (LDP) problems are LP problems where linear constraints
are connected by conjunctions and disjunctions [Bal98]. Linear Generalized Disjunctive Pro-
gramming (LGDP) is a generalization of LDP that has been proposed in [RG94] as an alterna-
tive model to the MILP problem. In contrast with MILP, which is entirely based on algebraic
equations and inequalities, LGDP allows for combining algebraic and logical equations with
Boolean propositions through Boolean operators, that results in a much more natural represen-
tation of discrete decisions. The state-of-the-art approach for dealing with LGDP problems
is through some MILP reformulation, [RG94, VG04, SG05, SG12], by means of an efficient
encoding of disjunctions and logic propositions that can be handled with some efficient MILP
solver such as CPLEX [IBM10]. An important point is that LGDP and OMT(LRA) can be
encoded into each other. In this regard, the experimental evaluation in [ST15a] has shown
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that OMT tools can be a competitive alternative to state-of-the-art MILP solvers on problems
requiring a significant amount of Boolean reasoning.

Another, notable, example of this research trend is represented by [MP13], in which Mano-
lios et al. presented Integer Linear Programming Modulo Theories (IMT), a sound and complete
framework for combining ILP with a background solvers for signature-disjoint stably-infinite
theories T , and INEZ, a novel IMT solver. Differently than SMT, that is centered around a
SAT solver, in IMT the search is guided by a Branch and Cut procedure that communicates
with some T -solver by means of interface difference logic inequalities that, intuitively, serve
the same purpose as interface variables for theory combination in SMT (see Section §2.2.4). In
their experimental evaluation, the authors have shown that IMT can be competitive with respect
to SMT on a set of benchmarks derived from the problem of synthesizing architectural models
for a Boeing 787 Dreamliner. We notice that the approach of [MP13] cannot combine ILP with
LRA ∪ T , because LIA ∪ T and LRA ∪ T are not signature-disjoint (see Definition 2 in
[MP13]).
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Chapter 3

Related Work

In Chapter 2, we introduced the reader to the background and state of the art of Optimization
Modulo Theories, covering the relevant scientific literature published prior to the start of this
Ph.D. (November, 2014). In this chapter, we briefly examine those scientific publications that
have been published after the beginning of this Ph.D. study and that are relevant to us.

Recent Works.

Z3 [BP14, BPF15]. In [BP14, BPF15], Bjorner et al. presented VZ, an OMT solver that was
initially built as an extension of Z3 [z3] and then later on merged with the underlying SMT
solver8.

For what concerns single-objective optimization, Z3 supports OMT(LIRA∪T ), OMT(BV ∪
T ), OMT(PB ∪ T ) and MAXSMT solving.

• To the best of our knowledge, the OMT(LIRA ∪ T ) functionality in Z3 is similar to
the one described in Section §4.1, and it also benefits from specialized algorithms for
unbounded-solution detection and bound-tightening.

• According to [NR16], which cites a private communication with the authors of [BP14,
BPF15] as its source, Z3 deals with OMT(BV ∪ T ) through a reduction to partial
weighted MAXSMT, as described in Section §4.3.

• Z3 features several specialized engines for dealing with OMT(PB ∪ T ) and MAXSMT
problems including, among others, WMAX and MAXRES. The former approach uses a
specialized theory solver of costs similar to [CFG+10], that we describe in Section §2.3.3.
The latter approach combines the core-guided Maximum Resolution MAXSAT Engine,

8For this reason, we henceforth refer to either tool with the name Z3.
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presented by Narodytska et al. in [NB14], with the lazy-SMT solving framework. With
this approach, all clauses are initially asserted as “hard”, and an inference rule is used
to progressively relax the initial set of clauses so that to remove any conflict —found
along the search— involving some “soft” clause, up until the set of “soft” clauses be-
comes empty or a purely “hard” conflict is found. Since this method has also been added
to OPTIMATHSAT (later on), we provide an in-depth description of MAXRES in Sec-
tion §4.2.2.

To the best of our knowledge, Z3 also ships with preprocessing techniques that re-encode
the 0-1 integer variables of the input formula into Pseudo-Boolean or MAXSMT con-
straints, for better performance. In addition, Z3 features a Pseudo-Boolean T -solver that
can generate sorting circuits on demand for Pseudo-Boolean inequalities featuring sums
with small coefficients [BPF15, Bjo16].

When dealing with multiple objectives, Z3 supports Multiple-Independent (a.k.a Boxed),
Lexicographic and Pareto optimization.

• Z3’s implementation of Multiple-Independent OMT is similar to the one available in
OPTIMATHSAT, that is described in Section §4.6.2. The main difference among the
two implementations is that in Z3 the optimization functionality is built on top of the
underlying SMT solver, similarly to the offline approach described in Section §2.3.1. In
addition, Z3 uses ad hoc techniques for detecting unbounded solutions.

• To the best of our knowledge, Z3’s implementation of its Lexicographic optimization
algorithm is not documented in any publication. We describe OPTIMATHSAT’s imple-
mentation of Lexicographic optimization in Section §4.6.3.

• The Pareto optimization approach implemented by Z3 is based on the Guided Improve-
ment Algorithm presented in [REJ09]. In Section §4.6.4 we describe a very similar ap-
proach, implemented in OPTIMATHSAT, and also a different Pareto optimization algo-
rithm based on lexicographic optimization.

Similarly to OPTIMATHSAT, in Z3 optimization is supported with any combination of
theories. Moreover, both OMT solvers are incremental, and allow for pushing and popping
both objectives and clauses on the internal stack of formulas. In Section §4.5, we describe how
this feature is achieved in OPTIMATHSAT.

HAZEL [NR16]. Another, relevant, related work is [NR16]. In this paper, Nadel et al. orig-
inally presented the Bit-Vector Optimization with Weak Assumptions (OBV-WA) and the Bit-
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Vector Optimization with Binary Search (OBV-BS) algorithms, both of which can deal with
unsigned OMT(BV ∪ T ) formulas quite efficiently.

The OBV-WA algorithm modifies the decision and backtrack mechanism of the underlying
SMT solver, transforming the bits of the BV goal into high-priority decision variables with
preset phase-saving values, to force the optimization search to explore the search-space starting
from the more-than-optimal (unsatisfiable) subregion.

The OBV-BS algorithm performs a binary search exploration over the bits of the objective
function, using a sequence of incremental calls to the underlying SMT solver and, optionally,
phase-saving initialization for the better performance.

Both algorithms are fully incremental, and have been implemented within Intel’s eager BV
solver HAZEL [Nad14].

In this dissertation, we describe a generalization of these two algorithms to the case of
both signed and unsigned BV optimization, that we have implemented in OPTIMATHSAT af-
ter learning about [NR16]. OPTIMATHSAT’s implementations of the OBV-WA and OBV-BS

algorithms are described in Sections §4.3.2 and §4.3.3 respectively.

MAXHS-MSAT [FBB18]. Quite recently, Fazekas et al. presented in [FBB18] a new frame-
work for dealing with MAXSMT based on the state-of-the-art Implicit Hitting Set (IHS) algo-
rithm. The latter is a MAXSAT algorithm that combines an Integer Programming (IP) solver,
used to generate candidate sets of soft clauses that hit a set of constraints in an optimal way,
with a SAT solver for checking satisfiability. In their paper, the authors have described a general
formal reasoning calculus for lifting the IHS method to the SMT level, to deal with MAXSMT.
The paper describes an experimental evaluation, including a comparison with OPTIMATHSAT
and Z3, showing the benefits of this approach.

PULI [KBE18]. In another recent work, Kovásznai et al. presented PULI, a novel OMT
solver for quantifier free formulas with Uninterpreted Functions (UF) and Linear Integer Arith-
metic (LIA). Differently from other OMT solvers, PULI applies linear regression analysis over
a user-defined resource function to speed up the convergence of the OMT solver towards the
optimal solution. An even more significant performance improvement is obtained when dealing
with monotonous OMT problems. In their paper, the authors included an experimental evalua-
tion performed over sets of benchmarks derived from their Wireless Sensor Networks (WSNs)
OMT application described in [KBE17, KEB18] (see Section §7.1) and also on the well-known
Knapsack problem. The experiments show the validity of this approach and its effectiveness in
speeding up the basic OMT procedures described in Section §2.3.1.

55



CHAPTER 3. RELATED WORK

CEGIO [ABCF16, AAdB+17, AAdB+18]. Recently, Araujo et al. presented a Counterexam-
ple Guided Inductive Optimization (CEGIO) algorithm based on Satisfiability Modulo Theories,
for dealing with the optimization of a wide-range of functions, including non-linear and non-
convex problems using fixed-point arithmetic. In contrast with the Optimization Modulo Theo-
ries described in this dissertation, in [ABCF16, AAdB+17, AAdB+18] the optimization search
is iteratively advanced by solving a sequence of SMT formulas and by analyzing their corre-
sponding counterexamples generated with an internal SMT solver used as a black-box. Each
SMT formula consists in a verification problem automatically generated with Bounded Model
Checking (BMC) techniques and derived from an ANSI-C model of the original optimization
problem. Similarly to OMT, the CEGIO optimization algorithm guarantees the optimality of the
solution even when other, traditional, techniques can get trapped by local minima. Experimental
results included in [ABCF16, AAdB+17, AAdB+18] show the benefits of this approach.

Other Works.

Some OMT solvers appeared prior to the start of this Ph.D. study. Therefore, we have already
described their techniques in Chapter 2. For clarity of illustration and an easier comparison with
OPTIMATHSAT, we briefly recap some important details about these OMT solvers, that would
otherwise remain scattered throughout this dissertation.

BCLT [NO06, BNO+08, Roc11, LORR14]. With their pioneering work in [NO06], Nieuwen-
huis and Oliveras presented BCLT, the first SMT solver with optimization capabilities that has
appeared on the scene of Satisfiability Modulo Theories, and paved the way for the advent of
Optimization Modulo Theories. Remarkably, BCLT has also been the first OMT solver featuring
optimization procedures for the general case of Integer Linear Arithmetic optimization [Roc11].
These procedures have been used in [LORR14] to extend BCLT with a decision procedure for
polynomial constraints, that is, Non-Linear Integer Arithmetic.

In this dissertation, we describe the OMT(LIA ∪ T ) procedures of BCLT in Section §2.3.2,
and illustrate the OMT(PB ∪ T ) and MAXSMT handling of BCLT in Section §2.3.3. The
optimization procedures described in [NO06, BNO+08, Roc11], are not incremental and, for
what concerns OMT(LIA ∪ T ), do not allow for mixed integer/real optimization.

SYMBA [LAK+14]. SYMBA is an OMT(LRA ∪ T ) solver built on top of the Z3 SMT
solver used as a black-box, that allows for optimizing multiple LRA objectives according to the
Multiple-Independent combination approach. For a detailed description of the OMT(LRA ∪
T ) procedure of [LAK+14], we refer the reader to the last part of Section §2.3.1. In [LAK+14],
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the authors note that the OMT solver is not incremental, it does not handle strict LRA in-
equalities (i.e. >, <) and it only supports combination of theories as long as the theory T is
signature-disjoint with LRA≤. OMT(LIRA ∪ T ), in particular, is not supported.

We recall that OMT(PB ∪ T ) and MAXSMT can be encoded into each other, and that both are
strictly less general than OMT(LRA ∪ T ). In Section §2.3.3, we described various techniques
for dealing with this kind of problems, including, e.g., [NO06, CFG+10, ABP+11b, CGSS13a].

Here, we also mention that the SMT solver YICES [DM06b] provides support for MAXSMT,
although there is no publicly-available documentation of its procedures. In addition, Ansótegui
et al. [ABP+11b] describe the evaluation of an implementation of a MaxSMT procedure based
on YICES, although this implementation is not publicly available.
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Chapter 4

Advances in OMT

This chapter illustrates major advances in the context of Optimization Modulo Theories that
occurred during this Ph.D. study.

This chapter is organized as follows:

§4.1 OMT (LIRA ∪ T ): OMT with Mixed Linear Integer Arithmetic cost functions [ST15c].

§4.2 OMT (PB ∪ T )/ MAXSMT: OMT with Pseudo-Boolean and MAXSMT cost functions.
In §4.2.1, we consider the standard OMT-based search enriched with sorting networks
[ST17], whereas in §4.2.2 we illustrate an alternative approach based on the MAXRES

engine [NB14, BP14].

§4.3 OMT (BV ∪ T ): OMT with Bit-Vector cost functions. In §4.3.1, we illustrate the stan-
dard OMT-based search, whereas in §4.3.2 and in §4.3.3 we describe the Bit-Vector Op-
timization with Weak Assumptions (OBV-WA) and the Bit-Vector Optimization with Bi-
nary Search (OBV-BS) algorithms respectively, both of which were originally presented
in [NR16].

§4.4 OMT (FP ∪ T ): OMT with Floating-Point cost functions [TS19]. We consider a stan-
dard OMT-based approach first (§4.4.1), and then present the novel Floating-Point Opti-
mization with Binary Search (OFP-BS) algorithm in §4.4.2.

§4.5 Incremental OMT: a description of a two useful techniques for creating an incremental
Optimization Modulo Theories solver [ST15c].

§4.6 Multi-Objective Optimization: a definition of the problem, followed by a detailed anal-
ysis of a variety of multi-objective combinations that are supported by OMT solvers
[LAK+14, BP14, BPF15, ST15b, ST15c]. We include in our presentation a descrip-
tion of: MINMAX/ MAXMIN Combination (§4.6.1), Multiple-Independent Optimization
(§4.6.2), Lexicographic Optimization (§4.6.3) and Pareto Optimization (§4.6.4).
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§4.7 All-OMT: a simple extension of All-SMT to the case of Optimization Modulo Theories.

Full Disclosure. Most of the material presented in the following sections is taken from
publications co-authored by the Ph.D. candidate in collaboration with Prof. Roberto
Sebastiania [ST15b, ST15c, ST17, ST18, TS19].

In order to maintain the flow of the discourse, and as a premise to the description of
OPTIMATHSAT in Chapter §5, we also include innovations not co-authored by the Ph.D.
candidate but implemented in OPTIMATHSAT (like, e.g., [NB14, BP14, NR16]). When
this is the case, we include in the incipit of the corresponding section an explicit full
disclosure statement clearly stating the original authors of the methods being described
and referencing the source material.

We note that, in this dissertation, the description of these methods is centered around
OPTIMATHSAT’s implementation. When this differs from the one described in the orig-
inal work, we highlight these differences and refer to the original publication for more
details on the original approach.

aProf. Roberto Sebastiani, roberto.sebastiani@unitn.it, DISI, University of Trento, Italy.

4.1 OMT (LIRA ∪ T )

In the following, we describe the OMT(LIRA ∪ T ) handling of OPTIMATHSAT presented
in [ST15c], which is based on the OMT(LIA ∪ T ) extension of OPTIMATHSAT presented in
[Tre14].

The Optimization Modulo Theories problem for Linear Integer and Rational Arithmetic cost
functions is defined as follows.

Definition 4.1.1. (OMT(LIRA∪T ), OMT(LIRA)). Let ϕ be a ground SMT(LIRA∪
T ) formula and obj be a LIRA variable occurring in ϕ. We call an Optimization Mod-
ulo LIRA ∪ T problem, the problem of finding a modelM for ϕ (if any) whose value
of obj, denoted with minobj(ϕ), is minimum. We call an Optimization Modulo LIRA
problem, written OMT(LIRA), an OMT(LIRA ∪ T ) problem where T is the empty
theory. (The dual definition where we look for the maximum follows straightforwardly)

We note that OMT(LIRA ∪ T ) is conceptually different from both OMT(LRA ∪ T )

(described in §2.3.1) and OMT(LIA ∪ T ) (described in §2.3.2), as it allows for a mixed use
of Integer and Rational variables and constraints.
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Remark 4.1.1. In general, the solution of a bounded OMT(LIA ∪ T ) problem can be
found through a simple enumeration of all possible models M of ϕ, since in this case
there are only finitely many of them. This can be done, for example, using either the
linear- or the binary-search schemata of [ST12, ST15a] described in §2.3.1. However,
this approach is insufficient both when the objective function obj is not lower-bounded
and when obj is a mixed LIRA expression. In these cases, a LIA-minimization proce-
dure is necessary to guarantee termination. In addition, the availability of such a proce-
dure can speed up the optimization search by preventing a truth assignment µ from being
generated multiple times along the search.

In OPTIMATHSAT, the inline schema for LRA optimization described in Section §2.3.1 is
adapted to deal with the case of LIRA objectives by replacing the procedure LRA-MINIMIZE

with a novel LIRA-MINIMIZE one. Given a complete truth assignment µ, such that µ proposi-
tionally satisfies ϕ, the function LIRA-MINIMIZE performs an initial unboundedness test and
then, if obj is bounded in correspondence with µ, searches the optimal value of obj by leveraging
the LIRA-solver implemented in MATHSAT5 [Gri12, CGSS13b].

Unboundedness test. Given an OMT(LIRA ∪ T ) problem 〈ϕ, obj〉, an easy-to-see prop-
erty is that obj can only be unbounded over ϕ if the corresponding OMT(LRA ∪ T ) instance
〈ϕ′, obj′〉, obtained by discarding the integrality constraints on any Integer variable in the orig-
inal problem, is unbounded [BGH87]. Therefore, given a truth assignment µ and the corre-
sponding set of LIRA constraints, we can check whether obj is LIRA-unbounded for µ with
a simple run of the LRA-MINIMIZE() procedure of §2.3.1. Invoking the latter procedure has
three possible outcomes. The first is that obj is found to be unbounded, and therefore−∞ can be
returned. The second possible outcome is that obj is bounded and the resulting optimum model
M happens to not violate any integrality constraint of the original problem. In this case, both
the model M and the corresponding value of obj can be returned with no further effort. The
third case is when the LRA-optimal modelM violates (some of) the integrality constraints in
the original problem. In this case, LIRA-MINIMIZE() performs a local Branch&Bound search
to assign each Integer variable an integral value.

Branch&Bound. In the literature, Branch&Bound is a well-known approach for exploring
the feasible space of a Mixed Integer Linear Programming (MILP) problem. Roughly speaking,
the problem of finding an optimal integral solution is reduced to solving a sequence of Linear
Programming (LP) subproblems in which an increasing number of Integer variables is forced to
evaluate to an Integer value with the use of additional linear constraints blocking any undesired
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assignment of values.
In OPTIMATHSAT, the underlying SMT solver MATHSAT5, [CGSS13b], is already pro-

vided with a built-in Branch&Bound procedure for checking LIRA-satisfiability [Gri12]. This
is adapted for dealing with the optimization of a LIRA goal obj as follows. First, the function
LRA-MINIMIZE() of §2.3.1 is invoked on each node of the Branch&Bound tree, to ensure that
the value of obj is always locally optimal with respect to the LRA-domain associated with the
node itself. Second, each time a new integral modelM is found in correspondence with some
node of the Branch&Bound tree, the Branch&Bound search is restarted and a new linear cut
of the form (obj < ub) is pushed on the local stack of constraints. Since the value of obj is
known to be bounded, it follows that the optimal value of obj must be necessarily found after
a finite number of restarts, after which the local stack of constraints becomes unsatisfiable. At
this point, the most recently found integral model M and the corresponding LIRA-optimal
value of obj can be returned.

This particular restart-based approach toLIRA optimization is enabled by the implementa-
tion of the Branch&Bound decision procedure for LIRA in MATHSAT5, that features several
advanced features designed for search efficiency. Two features are particularly noteworthy. The
first is the use of historical information to drive the Branch&Bound search across subsequent
runs, so that good past decisions are replicated whenever possible. The second is an internal
backjumping mechanism based on conflict-set analysis, that allows the OMT solver to automat-
ically discard a large number of unsatisfiable LP subproblems without exploring them one by
one. For more details about these and other enhancements, we refer the reader to [Gri12].

Improvements. In most situations, the above Branch&Bound implementation is reasonably
efficient in practice, so much so that the optimal value of obj is found with very few restarts,
often even in the first run. However, as widely known in the literature, there are some de-
generate cases in which the Branch&Bound approach becomes very inefficient and has some
difficulty in finding the optimal solution. In these situations, other techniques such as cutting
planes can be employed to rescue the OMT solver. Since such advanced techniques are already
made available by the MATHSAT5 LIRA-solver, we implemented a truncated variant of the
Branch&Bound search in which LIRA-MINIMIZE() stops as soon as it finds its first integral
model or it exhausts its budget. Then, the procedure returns the suboptimal value ub of obj to
the CDCL search loop, that learns a constraint of the form (obj < ub) as in §2.3.1. On the
one hand, this has the advantage that the next satisfiability check involving the LIRA-solver
will now use the entire stack of specialized routines it contains, including cutting planes, and
not just the Branch&Bound module. If the stack of formulas is still satisfiable, this guarantees
a relatively cheap improvement of the cost function value. On the other hand, this approach
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might cause the OMT solver to consider a truth assignment µ more than once.

Experimental Evaluation. In Section §6.1, we compare the implementation of these
techniques on top of OPTIMATHSAT with other state-of-the-art OMT solvers.

4.2 OMT (PB ∪ T )/MAXSMT

Both OMT(PB ∪ T ) and MAXSMT constitute two important —and frequent— subcases of
OMT(LRA ∪ T ). To this aim, in the Background & State of the Art, Section §2.3.3, we
illustrated a variegated number of techniques for dealing with these two problems that have
been previously proposed in the literature.

We describe two additional techniques that have been recently proposed in the context of
Optimization Modulo Theories. The first approach, is a revisited version of the OMT(LRA ∪
T ) encoding (see §2.3.3) for OMT(PB ∪ T ) and MAXSMT that exploits sorting networks
to gain a significant performance advantage. This method, which we describe in full detail in
Section §4.2.1, was first presented in [ST17]. The second approach is MAXRES, a core-based
MAXSAT engine first presented by Narodytska et al. in [NB14] and then used to deal with
MAXSMT problems by Bjorner et al. in [BP14]. We illustrate MAXRES in Section §4.2.2.

4.2.1 Sorting Networks Approach

As described in Section §2.3.3, an option for dealing with OMT(PB ∪ T ) and MAXSMT is
to encode these problems into an OMT(LRA ∪ T ) pair 〈ϕ, obj〉, so that the inline OMT opti-
mization procedures described in Section §2.3.1 can then be used to find the optimal solution.
However, in [ST17] we have shown that a naive application of this approach can suffer from
poor performance with some types of formulas and so it would benefit from the use of more
sophisticated techniques such as Sorting Networks.

In this section, we provide a detailed description of the performance issues and the solution,
based on Sorting Networks, proposed in [ST17]. We also note that, henceforth, we will focus
our description on the case of PB objectives only to simplify the discussion. This does not
cause any loss of generality, since any MAXSMT goal can be rewritten as a OMT(PB ∪ T )

problem, as shown in Section §2.3.3.

Performance issues [ST17].

In [ST17], we observed that the usual optimization with linear-search (Section §2.3.1) can end
up generating exponentially many Theory Lemmas when dealing with a PB objective obj in
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which all weights have the same value w:

obj
def
= w ·

n−1∑
i=0

Ai. (4.1)

Let obj be an objective as in Equation (4.1) to be minimized, and µ be a satisfiable (and total)
truth assignment found by the OMT solver during the search. Then, givenAT = {Ai |µ |= Ai}
and k = |AT |, the upper bound value of obj in µ is ub = w · k. As described in Section §2.3.1,
the OMT solver learns a unit clause in the form ¬(ub ≤ obj) for each truth assignment µ found
in linear-search mode. Learning this unit clause removes the current truth assignment µ from
the feasible search space, which is thus narrowed as a result, and forces the OMT solver to
search for another truth assignment µ′ —with a smaller upper bound ub′— in the next iteration
of the optimization search.

As observed in [ST17], the effect of learning the unit clause ¬(ub ≤ obj) is not limited to
the removal of the current truth assignment µ from the feasible space. In fact, it also makes
inconsistent any other (partial) truth assignment µ′ setting exactly k (or more) variables Ai to
True. More precisely, learning such clause prunes at least γ =

(
n
k

)
truth assignments from the

search space, where γ is the number of of possible permutations of µ over the variables Ai.
Regrettably, since the unit clause ¬(ub ≤ cost) is a LRA term, the CDCL engine is unable

to determine by simple Boolean Constraint Propagation (BCP) the resulting inconsistency of
any (partial) truth assignment µ′ setting exactly k variables to True. It is not until the T -solver
for linear rational arithmetic is invoked that such inconsistency can be revealed, and a conflict
clause blocking the (partial) truth assignment µ′ can be learned as a Theory Lemma. This re-
liance on the LRA-Solver to reveal such inconsistencies presents two major drawbacks. The
first is that the T -solver for linear rational arithmetic is much more resource-demanding than
BCP. The second issue is that both SMT and OMT solvers invoke the LRA-Solver less fre-
quently than BCP, precisely to amortize its cost. As a result, the OMT solver can perform
poorly when dealing with this kind of objectives.

Note that the exact same problematic arises when the OMT solver learns a unit clause of
the form ¬(pivot ≤ obj) in a binary-search step during the minimization of obj. When obj is
maximized, a dual case occurs.

Example 4.2.1. Figure 4.1 depicts a toy example of OMT search over the pair 〈ϕ, obj〉, where
ϕ is an SMT formula and obj

def
=
∑4

i=1Ai (i.e., wi = 1 for every i).
Since obj is a Pseudo-Boolean objective, we assume that the problem has been first encoded

into OMT(LRA ∪ T ) using Equations (2.2a)-(2.2c), so that (1) the input formula ϕ is now
extended with ∪4i=1{(¬Ai ∨ (xi = 1)), (Ai ∨ (xi = 0)), (0 ≤ xi), (xi ≤ 1)} and (2) the goal obj

is rewritten as
∑4

i=1 xi.
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Figure 4.1: A simple example of OMT search with aPB objective (Figure taken from [ST17]).

Let’s suppose that, as depicted on the left-hand side of Figure 4.1, the OMT solver finds
a truth assignment µ such that µ |= ϕ and {A1, A2,¬A3,¬A4} ⊆ µ. Then, the value of the
objective function in µ, i.e. 2, is a new upper bound for obj. Thus, the unit clause ¬(2 ≤ obj) is
learned and the Boolean search is restarted to find a better solution (if any).

In the subsequent run of the Boolean search, depicted at the center of Figure 4.1, A1 and
A2 are again decided9. As a consequence, the (partial) truth assignment µ′ that is now being
constructed contains {¬(2 ≤ obj), (x1 = 1), (x2 = 1)}, which is LRA-inconsistent. However,
this inconsistency in the (partial) truth assignment µ′ is not revealed up until when the (more ex-
pensive) LRA-Solver is invoked, which, depending on the early-pruning strategy implemented
in the OMT solver, can happen after µ′ has been further extended by BCP.

Eventually, the LRA-Solver determines the inconsistency of µ′, and the OMT solver learns
the conflict clause ¬A1∨¬A2 to prevent the conflicting assignment from being generated again.
The search is then forced to backjump and toggle the value of A2, as shown on the right-
hand side of Figure 4.1. At this point, a completely legitimate scenario is that A3 is decided
to be true, causing a new conflict with respect to the unit clause learned by the optimization
search, and so on. In this way, the solver can pointlessly enumerate and check all the up-to

(
4
2

)
truth assignments that are (1) consistent with ϕ and that (1) assign two variables Ai to True
at the same time, despite of the fact that none of these truth assignments is compatible with
¬(2 ≤ obj). �

9We note that this is not a remote possibility, due to the effect of the phase-saving technique that is applied in
both SMT and OMT solvers.
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Figure 4.2: The basic schema of a sorting network relation (Figure taken from [ST17]).

The general case. The performance issue identified in [ST17] is not limited to the simple
case depicted in Equation (4.1) and can be generalized to any PB objective obj in which there
are groups of Boolean variables Ai sharing the same weight:

obj = τ1 + ...+ τm, (4.2)∧m
j=1 ( (τj = wj ·

∑kj
i=1Aji) ∧ (0 ≤ τj) ∧ (τj ≤ wj · kj) ), (4.3)

where the logically-redundant constraints (0 ≤ τj) ∧ (τj ≤ wj · kj) are added for the same
reason as with (2.2b).

OMT with Sorting Networks [ST17].

A solution for this efficiency issue, that we presented in [ST17], is to leverage bidirectional
sorting networks so that the inconsistency of a (partial) truth assignment µ with respect to a
unit clause in the form ¬(ub ≤ cost) can be revealed earlier in the search by means of Boolean
Constraint Propagation (BCP).

Definition 4.2.1. (Sorting network, bidirectional sorting network [ST18]). We call sorting
network a relation among n input Boolean variables Ai and n output Boolean variables
outi, as illustrated in Figure 4.2, such that if in the current (partial) truth assignment µ,
k variables are set to True, n −m variables are set to False and m − k are unassigned,
then by Boolean Constraint Propagation out0, ..., outk−1 are set to True, outm, ..., outn−1
are set to False and outk, ..., outm−1 are not propagated.

A sorting network is said to be bidirectional if it is also the case that if outk−1 is forced
to be True (that is, at least k inputs must be True) and n− k inputs Ai are False, then by
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Boolean Propagation all other unassigned Ais are automatically set to True; vice-versa,
if outk+1 is forced to be False (that is, at most k inputs can be True) and n− k inputs Ai
are True, then all other unassigned Ais are automatically set to False.

Given a bidirectional sorting network circuit C with n inputs A0, ..., An−1 and n outputs
out0, ..., outn−1, we encode a OMT(PB ∪ T ) problem 〈ϕ, obj〉, such that obj

def
= w ·

∑n−1
i=0 Ai,

into an OMT(LRA) instance 〈ϕ′′, obj′′〉 as follows:

ϕ′′
def
= ϕ′ ∧ C ∧

k=n−1∧
k=0


outk → ((k + 1) · w ≤ obj)

¬outk → (obj ≤ k · w)

¬((k + 1) · w ≤ obj) ∨ ¬(obj ≤ k · w)

(4.4a)

obj′′
def
= obj′ (4.4b)

where ϕ′ and obj′ are defined as in Equations (2.2a)-(2.2c). The logically redundant constraints
at the third line of Equation (4.4a) are added to the formula so that the negation of (obj ≤
(i − 1) · w) is directly implied by BCP from (i · w ≤ obj) (and vice versa), without the aid of
the LRA-Solver.

The main advantage of encoding an OMT(PB ∪ T ) problem as in Equations (4.4a)-(4.4b)
is that, whenever the OMT solver (1) learns a unit clause in the form (obj < k · w) (i.e. as a
consequence of finding a satisfiable truth assignment µ in which k variables Ai are true, or as
part of a binary-search step in which pivot = k · w) and (2) the search is restarted from level
zero to find a new satisfiable truth assignment µ′, as soon as k−1 inputs Ai are assigned to True
in µ′ then by BCP the remaining n− k+ 1 inputs are immediately propagated to False. Dually,
when the OMT solver learns a unit clause in the form (obj > k · w), as soon as n − k inputs
Ai are assigned to False in the (partial) truth assignment µ′ under construction then by BCP the
remaining k inputs are immediately propagated to True.

Example 4.2.2. Figure 4.3 considers the same OMT problem 〈ϕ, obj〉, with obj
def
=
∑4

i=1Ai, as
in Example 4.2.1. This time, however, the OMT(PB ∪ T ) instance is encoded with Equations
(4.4a)-(4.4b) into OMT(LRA ∪ T ) with sorting network.

In particular, ϕ is now extended with (1) the same clauses as in Example 4.2.1 (2) a bidirec-
tional sorting-network relationC having {A1, A2, A3, A4} as inputs and {out1, out2, out3, out4}
as outputs (3) the constraints

∧4
i=1(outi → (i ≤ obj)),

∧4
i=1(¬outi → (obj ≤ (i − 1)) and∧4

i=1(¬(i ≤ obj) ∨ ¬(obj ≤ (i− 1))). The goal obj is rewritten as
∑4

i=1 xi, same as before.
Let’s assume that, as shown on the left-hand side of Figure 4.3, the search behaves as in Ex-

ample 4.2.1 up until it finds the same satisfiable truth assignment µ such that {A1, A2,¬A3,¬A4} ⊆
µ, for which the value of obj is equal to 2. Then, same as before, the OMT solver learns the unit
clause ¬(2 ≤ obj) to find an improving solution, and the Boolean search is restarted.
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Figure 4.3: A simple example of OMT search with sorting networks (Figure taken from
[ST17]).

This time, however, the search follows a different path. In fact, due to the presence on the
formula stack of the bidirectional sorting network C and the constraint out2 → (2 ≤ obj),
learning the unit clause ¬(2 ≤ obj) causes the outputs {out2, out3, out4} to be immediately
unit propagated to False by BCP. Moreover, as depicted at the center of Figure 4.3, as soon
as A1 is decided then all the remaining inputs {A2, A3, A4} are immediately unit propagated
to False by BCP. Compared to the scenario depicted in Example 4.2.1, this saves up to

(
4
2

)
(expensive) calls to the LRA-Solver.

When the set {A1,¬A2,¬A3,¬A4} is eventually extended to a complete truth assignment
µ′ such that µ′ |= ϕ, the OMT solver learns the new unit clause ¬(1 ≤ obj) and the search
proceeds as shown on the right-hand side of Figure 4.3. �

Method generalization. This approach based on sorting networks can be generalized to deal
with OMT(PB ∪ T ) problems 〈ϕ, obj〉 in which groups of terms share the same weight wj , as
for the objective function defined in Equations (4.2)-(4.3).

In this case, a separate sorting network circuit has to be generated for each term τj in (4.2)-
(4.3). Then, as described in [ST17], the following constraints are introduced in the formula to
ensure that the circuit is activated by BCP∧m

j=1

∧kj
i=1( ¬(wj · i ≤ obj)→ ¬(wj · i ≤ τj) ), (4.5)

Note that these constraints are not always sufficient to avoid some (expensive) calls to the
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LRA-Solver, and generally tend do be more effective if the number of groups with uniform
weight in the PB sum is limited. To this aim, consider the extreme case of a PB objective in
which every Boolean variable Ai has a unique weight wi as an example. If µ is the most recent
satisfiable truth assignment and it contains Ak such that ∀i.wk > wi and at least one other Ai,
then when ¬(ub ≤ cost) is learned none of the implications in (4.5) gets activated by BCP.

To overcome this limitation, the following workaround can be used. Each time a satisfiable
µ is found, the OMT solver does not only learn ¬(ub ≤ cost), but also the following clause

m∨
j=1

¬(ubτj ≤ τj) (4.6)

where ubτj is the value of τj in the current truth assignment µ. This constraint forces the Boolean
search to improve the value of at least one τj , but possibly many more, over the corresponding
sorting circuit Cj at each linear-step of the optimization search.

Bidirectional Sorting Networks.

In OPTIMATHSAT, we have so far considered two sorting network encodings: the sequential
counter encoding in [Sin05], that we have extended to be bidirectional, and the cardinality
network encoding in [ANORC11, ANOR13].

Bidirectional Sequential Counter Encoding [Sin05]. In [Sin05], Sinz et al. present LT n,kSEQ,
also known as the sequential counter encoding, to deal with cardinality constraints in the form
≤ k(A1, ..., An). A sequential counter circuit of size n is composed by n subcircuits, each of
which computes a partial sum Si =

∑i
j=1Aj , represented in unary form with the bits Si,j , i.e.,

Si,j = > if
∑i

r=1Ar ≥ j, so that outj
def
= Sn,j , j ∈ [1..n]. The (CNF version of the) following

formula is the encoding of LT n,kSEQ presented in [Sin05], for k def
= n:

(A1 → S1,1) ∧
∧n
i=2{((Ai ∨ Si−1,1)→ Si,1)} ∧ (4.7)∧n

i=2{(¬Ai ∨ ¬Si−1,n)} ∧
∧n
j=2{(¬S1,j)} ∧ (4.8)∧n

i,j=2{(((Ai ∧ Si−1,j−1) ∨ Si−1,j)→ Si,j)} (4.9)

To make it bidirectional, we reintroduced the left implications “←” of the encoding of each gate
that were dropped in [Sin05]:

(A1 ← S1,1) ∧
∧n
i=2{((Ai ∨ Si−1,1)← Si,1)} ∧ (4.10)∧n

i,j=2(((Ai ∧ Si−1,j−1) ∨ Si−1,j)← Si,j). (4.11)
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The main advantage of the bidirectional sequential counter encoding is that it is fully incre-
mental, meaning that a sorting circuit C with n inputsA1, ..., An can be easily (1) extended with
an extra unary adder subcircuit to deal with n + 1 inputs A1, ..., An+1 (2) shrunk by dropping
the last subcircuit to deal with the n − 1 inputs A1, ..., An−1 only. This property is particularly
useful when dealing with PB/MAXSMT objectives defined via the assert-soft command
(see Section §5.3.1), since “soft” clauses can be incrementally pushed and popped from the
formula stack. On the other hand, LT n,kSEQ requires O(k · n) clauses and variables, and since in
our application k def

= n then it can be resource-demanding when dealing with a large number of
inputs.

Bidirectional Cardinality Network Encoding [ANORC11, ANOR13]. The cardinality net-
work encoding, presented in [ANORC11, ANOR13], is based on the underlying sorting scheme
of the well-known merge-sort algorithm. The main advantage of the cardinality network encod-
ing is that its space complexity is bounded byO(n log2 k) in the number of clauses and variables
where, in our case, k = n.

In this dissertation, we omit an illustration of this encoding due to the fact that its technical
details are not quite relevant to the presentation as a whole, and also because we would not be
able to add anything interesting on top of the very detailed examination made by the original
authors in [ANORC11, ANOR13]. We refer the interested reader to these publications.

4.2.2 MAXRES Approach [NB14, BP14]

Full Disclosure. MAXRES is a core-based MAXSAT engine that was first presented in
[NB14] and later ported into Z3 for dealing with MAXSMT objectives [BP14]. Neither
of these publications have been co-authored by the Ph.D. candidate. The engine treats
both hard and soft clauses as hard clauses, and progressively relaxes the resulting problem
by replacing all the soft clauses in the unsatisfiable cores found along the search with a
fewer number of new soft clauses. The algorithm ends either when the unsatisfiable core
contains no soft clause, meaning that the formula is unsatisfiable as a whole, or when a
satisfiable solution is found, that is guaranteed to also be optimal by construction.

We describe a MAXRES implementation, built on [NB14, BP14], that was subsequently
introduced in OPTIMATHSAT for dealing with both MAXSMT and generic Pseudo-Boolean
objectives [ST17]. Our goal is to make our presentation as unique as possible, even when it is
based on other people’s work. On this regard, we note that the procedures in [NB14] focus on
propositional satisfiability, whereas [BP14] does not include any pseudocode and it provides,
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function MAXRES(ϕh, ϕs)

1: ϕs, opt := PREPROCESS(ϕs)

2: while true do
3: 〈res,M〉 := SMT.CHECK(ϕh ∧

∧
〈Ci,wi〉∈ϕs

Ci)

4: if (res == UNKNOWN) then
5: return 〈UNKNOWN,−, ∅〉
6: else if (res == SAT) then
7: return 〈SAT, opt,M〉
8: else
9: τ := SMT.GET_UNSAT_CORE()

10: τs, wmin := GET_SOFT_CORE(ϕs, τ)

11: if (τs == ∅) then
12: return 〈UNSAT,−, ∅〉
13: else
14: ϕh := ϕh ∪

∨
〈Ci,wi〉∈τs ¬Ci

15: opt := opt+ (MINIMIZE ? wmin : −wmin)

16: ϕs := ϕs \ τs
17: ϕs := ϕs ∪

⋃
〈Ci,wi〉∈τs .(wi − wmin > 0 ? 〈Ci, wi − wmin〉 : ∅)

18: if (| τs |> 1) then
19: ϕh := ϕh ∪

⋃
〈Ci,wi〉∈τs .Bi → (Bi−1 ∧ Ci)

// B0 := >, ∀i>0.Bi is fresh Boolean var
20: ϕs := ϕs ∪

⋃
〈Ci,wi〉∈{τs\〈C1,w1〉} .〈Bi−1 ∨ Ci, wmin〉

Figure 4.4: The MAXRES engine implemented in OPTIMATHSAT.

instead, a high-level description of the algorithm. We provide the missing pseudocode and we
also (1) consider the case of soft clauses with arbitrary weights (i.e. negative, zero or positive
valued) and (2) allow for both the minimization and the maximization of the objective function.
Last, we note that the argument for the termination of MAXRES given in [BP14] assumes that
each soft clause has an unitary weight. Although this assumption does not result in any loss of
generality, we chose to show a variant of such proof that does not rely on it.

Input. The algorithm, shown in Figure 4.4, takes as input a set of hard clauses ϕh, that must
always satisfied, and a set of n soft clauses ϕs = {〈C1, w1〉, ..., 〈Cn, wn〉}.
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Preprocessing. The first step is to transform the input problem into a canonical representation
(line 1). Any soft clause 〈Ci, wi〉 with a weight wi equal to 0 is removed from the set ϕs. Any
soft clause 〈Ci, wi〉 such that wi < 0 is replaced by a new soft clause 〈¬Ci,−wi〉. To ensure
that the optimal value of the objective function is preserved by this transformation, the negative
weight wi is added to an internal accumulator. Additionally, if the optimization goal is to
maximize the objective function, then every soft clause 〈Ci, wi〉 is replaced by 〈¬Ci, wi〉 and
the corresponding weight wi is also added to the internal accumulator. At the end of this phase,
the set ϕs contains only positive-weighted soft clauses. The updated set of soft clauses and the
value of the internal accumulator are then returned to the main function. The latter value is used
to initialize the objective function, and it corresponds to the value of obj when the conjunction
of ϕh with all the soft clauses in ϕs, treated as hard clauses, is satisfiable.

MAXRES main loop. The loop starts by checking the satisfiability of the conjunction of ϕh
with all soft clauses inϕs, treated as hard clauses (line 3). If the underlying SMT solver is unable
to decide satisfiability, the algorithm stops with UNKNOWN (lines 4-5). If the conjunction of
all formulas is satisfiable, then the search has terminated and the model M can be returned,
together with the optimal value of the objective function opt (lines 6-7).

Otherwise, the SMT solver answers with UNSAT. The corresponding unsat core τ , which is
such that τ ⊆ {ϕh ∪

⋃
〈Ci,wi〉∈ϕs

Ci} and τ |=T ⊥, is retrieved from the SMT solver (line 9). The
function GET_SOFT_CORE() is invoked to retrieve the subset τs of all soft clauses contained in
τ , and to get the minimum weight wmin among the weights of all soft clauses contained in τs
(line 10). Here, wmin corresponds to the progress made by this search step towards the optimal
value of the objective function and, by construction, it is larger than 0 when τs is different from
the empty set. If τs is empty, then the conflict set τ only contains hard clauses and the search
can be terminated as the input problem is unsatisfiable (lines 11-12). Otherwise, the conflict
is caused by one or more soft clauses being asserted as hard. Therefore, the execution jumps
at line 14 to relaxate the problem with the application of the Maximum Resolution rule as in
[BP14].

The first step is to ensure that the unsat core τ cannot be generated again by learning the
blocking clause

∨
〈Ci,wi〉∈τs ¬Ci (line 14). Any hard clause in the conflict set τ need not to

be included in the blocking clause, as it is forcibly assumed when the SMT solver is invoked.
As a result, the learned clause forces at least one soft clause 〈Ci, wi〉 in τs to be assigned to
false in future iterations of the search, ensuring a small search progress towards the optimal
solution. This progress is taken into account by compensating the value of the objective function
according to the optimization direction (line 15). Moreover, since at each loop iteration all
soft clauses are treated as hard ones, the entire soft core τs is removed from ϕs, as it would
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otherwise cause a conflict when conjoined with the newly learned blocking clause (line 16).
When some soft clause 〈Ci, wi〉 in τs has weight wi > wmin, the removal of 〈Ci, wi〉 has to
be compensated with the introduction of a new soft clause 〈Ci, w′i〉 where w′i := wi − wmin

(line: 17). This preserves the contribution of the original soft clause 〈Ci, wi〉 to the value of the
objective function, even after it is removed from ϕs, when Ci is set to false.

When τs contains more than one soft clause, then additional compensation clauses are nec-
essary to preserve the value of the objective function. The reason for this is that the transforma-
tions in lines 14-17 do not take into account that in future iterations of the optimization search
multiple Ci from τs might be contemporarily assigned to false. In such a case, the value of the
objective function should be compensated for a multiple m · wmin of wmin, where the factor m
is given by the number of clauses Ci set to false. The code in lines 19-20 does exactly that.
First, it introduces k fresh support variables Bi of Boolean type, one for each soft clause in τs,
and constrains each Bi to imply the first i− 1 clauses Ci being assigned true (line 19). Then, it
extends ϕs with k − 1 new soft clauses of the form C ′i := 〈Bi−1 ∨ Ci, wmin〉. Intuitively, Bi−1

is used to ensure that a soft clause C ′i which contains a Ci assigned to false is ignored, unless
another Cj with j < i assigned to false is known to exist. The conflict clause learned at line
14 guarantees the existence of some Cj assigned to false, and since this was already accounted
for with the adjustment of the objective function value at line 15, it must not be handled again.

Termination. An argument for termination can be made by proving that the innermost part
of the loop, comprised by the lines ranging from 14 up to 20, can only be executed for a finite
number of times. Given this fact, it is then trivial to see that the algorithm is subsequently forced
to terminate at lines 5, 7 or 12.

Hence, we limit our discussion to the case in which MAXRES found a non-empty conflict
set of soft clauses τs. Let φ be a set of soft clauses in the form {〈C1, w1〉, ..., 〈Cn, wn〉}), then
we define W(φ) to be a function yielding the total weight of all soft clauses contained in φ, i.e.∑i=n

i=1 wi. The key observation of this proof is that the set of soft clauses τs is first removed
from ϕs (line 16) and then replaced by a new set of soft clauses τ ′s (lines 17/20) such that
W(τ ′s) < W(τs). This can be seen by expanding the expression of W(τs)

W(τs)
def
= W({〈C1, w1〉, ..., 〈C|τs|, w|τs|〉})

=

i=|τs|∑
i=1

wi =

i=|τs|∑
i=1

(wmin + wi − wmin)

=

i=|τs|∑
i=1

(wi − wmin)+ | τs | ·wmin

(4.12)
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and the one of W(τ ′s)

W(τ ′s)
def
= W

(⋃
〈Ci,wi〉∈τs

.〈Ci, wi − wmin〉
)

+ W
(⋃

〈Ci,wi〉∈{τs\〈C1,w1〉}
.〈Bi−1 ∨ Ci, wmin〉

)
=

i=|τs|∑
i=1

(wi − wmin) +

i=|τs|∑
i=2

wmin

=

i=|τs|∑
i=1

(wi − wmin) + (| τs | − 1) · wmin

(4.13)

so that we get

W(τs)− W(τ ′s)
def
=
( i=|τs|∑

i=1

(wi − wmin)+ | τs | ·wmin
)

−
( i=|τs|∑

i=1

(wi − wmin) + (| τs | − 1) · wmin
)

=

i=|τs|∑
i=1

(wi − wmin)−
i=|τs|∑
i=1

(wi − wmin)

+ | τs | ·wmin − (| τs | − 1) · wmin
= 0 + (| τs | − | τs | + 1) · wmin
= wmin

(4.14)

By construction, all soft clauses in ϕs have a strictly positive weight wi. The value wmin is
also guaranteed to be positive, since it is equal to the minimum weight wi of all soft clauses in
the conflict set τs ⊆ ϕs. Hence, by Equation (4.14), we have that W(τ ′s) < W(τs) and that the
cumulative weight of the set of soft clauses ϕ′s := ϕs \ τs ∪ τ ′s resulting from the execution
of lines 14-20 is strictly smaller than that of ϕs. Therefore, we can conclude that the algorithm
can perform only a finite number of relaxations, stretching at most up until when W(ϕ′s) := 0,
and then it has to terminate.

Experimental Evaluation. In Section §6.2, we demonstrate the benefits of the sorting
network circuit enhancement and the remarkable performance of the MAXRES engine
with a number of experimental evaluations on OMT(PB ∪ T ) and Partial Weighted
MAXSMT formulas.
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4.3 OMT (BV ∪ T )

Full Disclosure. The Bit-Vector Optimization with Weak Assumptions (OBV-WA) and
the Bit-Vector Optimization with Binary Search (OBV-BS) algorithms, described in Sec-
tion §4.3.2 and Section §4.3.3 respectively, have been first presented by Nadel et al. in
[NR16] and have not been co-authored by the Ph.D. candidate.

Unsigned Bit-Vector optimization was first introduced by Bjorner et al. in [BP14, BPF15],
and was later drastically improved by Nadel et al. in [NR16]. In this thesis, we present a
generalization of the methods and techniques described in [BP14, BPF15, NR16] to the case of
both signed and unsigned BV optimization. We have presented this approach in [TS19].

Without any loss of generality, we assume that every non-trivial BV objective function f(...)

is replaced by a BV variable obj by conjoining “obj = f(...)” to the input formula. We use the
symbol n to denote the bit width of obj, and obj[i] to denote the i-th bit of obj, where obj[0]

and obj[n − 1] are the Most Significant Bit (MSB) and the Least Significant Bit (LSB) of obj

respectively.3 We use the symbol µk to denote a generic (possibly partial) assignment that
assigns at least the k most-significant bits of obj. We use the symbol τk to denote an assignment
to the k most-significant bits of obj. Given i < k, we denote by µk[i] [resp. τk[i]] the value in
{0, 1} assigned to obj[i] by µk [resp. τk]. Moreover, we use the expression [[µk]]i where i ≤ k

to denote the restriction of µk to the i most-significant bits of obj, obj[0], ..., obj[i− 1]. Given a
modelM of ϕ and a variable v, we denote byM(v) the evaluation of v inM.

We define the Bit-Vector Optimization problem as follows.

Definition 4.3.1. (OMT(BV ∪ T ), OMT(BV), minobj). Let ϕ be a ground SMT(BV ∪ T )

formula and obj be a —signed or unsigned— BV variable occurring in ϕ. We call an
Optimization Modulo BV ∪ T problem, the problem of finding a modelM for ϕ (if any)
whose value of obj, denoted with minobj(ϕ), is minimum with respect to the total order
relation ≤n for signed BVs if obj is signed, and the one for unsigned BVs otherwise. We
call an Optimization ModuloBV problem, written OMT(BV), an OMT(BV ∪ T ) problem
where T is the empty theory. (The dual definition where we look for the maximum follows
straightforwardly)

We introduce the (novel) notion of a BV attractor to generalize the unsigned BV opti-
mization methods described in [BP14, BPF15, NR16] to the case of signed and unsigned BV
optimization.

77



CHAPTER 4. ADVANCES IN OMT

Definition 4.3.2. (Attractor, Attractor equalities). When minimizing [resp. maximizing],
we call attractor for obj the smallest [resp. greatest] BV-value attr of the sort of obj.
We call vector of attractor equalities the vector A such that A[k]

def
= (obj[k] = attr[k]),

k ∈ [0..n− 1].

Example 4.3.1. If obj[8] is an unsigned BV objective of width 8, then its corresponding attractor
attr is 0[8], i.e. [00000000], when obj[8] is minimized and it is 255[8], i.e. [11111111], when obj[8]

is maximized. When obj[8] is instead a signed BV objective, following the two’s complement
encoding, the corresponding attr is −128[8], i.e. [10000000], for minimization and 127[8], i.e.
[01111111], for maximization. �

In essence, the attractor can be seen as the target value of the optimization search and there-
fore it can be used to determine the desired improvement direction and to guide the decisions
taken by the optimization search. By construction, if a model M satisfies all equalities A[i],
thenM(obj) = attr. More generally, ifM is a model of ϕ, then the value of obj inM, denoted
withM(obj), is given by

τ(obj) =
i=n−1∑
i=0

(2n−1−i · ITE(M(A[i]), attr[i], attr[i])) (4.15)

when obj is an unsigned BV objective, and by

τ(obj) =
i=n−1∑
i=1

(2n−1−i · ITE(M(A[i]), attr[i], attr[i]))

− (2n−1) · ITE(M(A[0]), attr[0], attr[0])

(4.16)

when obj is a signed BV objective, using the two’s complement representation. The function
ITE, appearing in both previous equations, returns attr[i] if the attractor equality A[i] is true in
M and attr[i] otherwise.

With a small abuse of notation, and when this does not cause ambiguities, we sometimes
use an attractor equality A[i]

def
= (obj[i] = attr[i]) to denote the single-bit assignment obj[i] :=

attr[i] and its negation¬A[i] to denote the assignment to the complement value obj[i] := attr[i].

Definition 4.3.3. (Lexicographic maximization) Consider an OMT instance 〈ϕ, obj〉 and
the vector of attractor equalitiesA. We say that an assignment τn to obj lexicographically
maximizes A with respect to ϕ if and only if, for every k ∈ [0..n− 1],

• τn[k] = attr[k] if ϕ ∧ [[τn]]k ∧ A[k] is unsatisfiable,

• τn[k] = attr[k] otherwise.
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where A[k] is the attractor equality (obj[k] = attr[k]). (The dual definition of “lexico-
graphically minimizes” switches attr[k] with attr[k].) Given a modelM for ϕ, we say
thatM lexicographically maximizes A with respect to ϕ if and only if its restriction to
obj lexicographically maximizes A with respect to ϕ.
Starting from the MSB to the LSB, τn [resp. M] in Definition 4.3.3 assigns to each obj[k]

the value attr[k] unless it is inconsistent with respect to ϕ and the assignments to the previous
obj[i]s, i ∈ [0..k − 1]. Notice that this corresponds to minimize [resp. maximize] the value∑n−1

k=0 2n−1−k ·(obj[k]xor1attr[k]) [resp.
∑n−1

k=0 2n−1−k ·(obj[k] nxor1 attr[k])], —where xorn
is the bitwise-xor operator and nxorn is its complement— because 2n−1−i >

∑n−1
k=i+1 2n−1−k.

Example 4.3.2. Let obj[3] be a signed BV goal of 3 bits to be minimized and attr def
= [100] be

its attractor, so that the corresponding vector of attractor equalities A is equal to [obj[0] =

1, obj[1] = 0, obj[2] = 0].
An assignment τ3

def
= {A[0],¬A[1],¬A[2]} (for which obj[3] = −1[3]) is lexicographically

better than τ ′3
def
= {¬A[0], A[1], A[2]} (for which obj[3] = 0[3]), because the former satisfies the

attractor equality corresponding to the MSB while the latter does not. Moreover, the assignment
τ3 is lexicographically worse than the assignment τ ′′3

def
= {A[0],¬A[1], A[2]} (for which obj[3] =

−2[3]), because —all the rest being equal— the latter assignment makes the attractor equality
(obj[2] = 0) true. �

The following fact derives from the above definitions and the properties of two’s comple-
ment representation adopted by the SMT-LIBV2 standard10 for signed BV .

Theorem 4.3.4. An optimal solution of an OMT(BV ∪ T ) problem 〈ϕ, obj〉 is any model
M of ϕ that lexicographically maximizes the vector of attractor equalities A.

We demonstrate that Theorem 4.3.4 holds, for both signed and unsigned BV objectives,
using the following argument.

Proof. (We prove the case of minimization, since that of maximization is dual)
Let 〈ϕ, obj〉 be an OMT(BV ∪ T ) problem where obj is a BV objective to be mini-

mized and attr is its attractor, that is, the smallest value that can be represented with a BV
value of the same sort of obj. Let A be the corresponding vector of attractor equalities
such that, for each i, A[i] = (obj[i] = attr[i]). Finally, let M be a a model of ϕ that
lexicographically maximizes A, where τn is the restriction ofM to the n bits of obj and
M(obj) is the model value of obj, computed with Equation (4.15) if obj is an unsigned

10If the standard adopted were the sign-and-magnitude binary encoding, then Theorem 4.3.4 would not hold.
Nevertheless, in such a case we could adopt a simplified version of the technique for FP optimization described
in Section §4.4.
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BV objective and with Equation (4.16) otherwise. By definition, model M is an opti-
mal solution for 〈ϕ, obj〉 if there exists no other modelM′ such thatM′ satisfies ϕ and
M′(obj) <M(obj). Hence, we show by contradiction that no suchM′ can exist.

Assume (for the sake of contradiction), that there exists a modelM′ of ϕ such that
M′(obj) < M(obj), and let τ ′n be the restriction of M′ to the n bits of obj. Since
M′(obj) 6= M(obj), by Equations (4.15)-(4.16) there must be at least one index i for
which τn[i] 6= τ ′n[i]. Let m be the smallest index i, from 0 to n − 1, such that τn[m] 6=
τ ′n[m]. We set τm

def
= [[τn]]m, τm+1

def
= [[τn]]m+1 and τ ′m+1

def
= [[τ ′n]]m+1. Then, τm ⊂ τm+1,

τm ⊂ τ ′m+1, τm+1 6= τ ′m+1. In particular, τm+1[m] = τ ′m+1[m] and therefore τm+1[m] =

attr[m] if τ ′m+[m] = attr[m], and vice versa.
We split our proof in two parts: in the first we consider of an unsigned BV goal, while

in the second part we consider the case of a signed BV objective.
CASE I: obj is an unsigned BV goal. Then, we distinguish two subcases.

In the first case, τm+1[m] = attr[m] and τ ′m+1[m] = attr[m]. From τm+1[m] =

attr[m] and the fact that τn lexicographically maximizesA, we derive thatϕ∧τm∧A[m] is
unsatisfiable, where A[m]

def
= (obj[m] = attr[m]). Since τm ⊂ τ ′m+1 ⊆ τ ′n and τ ′m+1[m] =

attr[m], we conclude that ϕ ∧ τ ′n is unsatisfiable, so that M′ cannot be a model of ϕ,
contradicting the initial assumption.

In the second case, τm+1[m] = attr[m] and τ ′m+1[m] = attr[m]. For M′(obj) <

M(obj) to hold, the difference ∆
def
= M′(obj) −M(obj) computed in Equation (4.17)

must be smaller than zero.

∆ =

i=n−1∑
i=0

(2n−1−i · ITE(M′(A[i]), attr[i], attr[i]))−

i=n−1∑
i=0

(2n−1−i · ITE(M(A[i]), attr[i], attr[i]))

= 2n−1−m · (attr[m]− attr[m]) +

i=n−1∑
i=m+1

(2n−1−i · ITE(M′(A[i]), attr[i], attr[i]))−

i=n−1∑
i=m+1

(2n−1−i · ITE(M(A[i]), attr[i], attr[i]))

= 2n−1−m +

i=n−1∑
i=m+1

(2n−1−i · (ITE(M′(A[i]), attr[i], attr[i])− ITE(M(A[i]), attr[i], attr[i]))

(4.17)

In Equation (4.17), we have used the following facts: (I)M(A[k]) =M′(A[k]) for every
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k ∈ [0,m− 1], (II)M(A[m]) is true, (III)M′(A[m]) is false and (IV) attr[m]− attr[m]

is equal 1 because obj is interpreted as an unsigned BV and it is being minimized, which
means that attr = 0[n].

It can be seen that there cannot exist any pair of models 〈M,M′〉 such thatM′[obj] <

M[obj], because for any positive k def
= n− 1−m, the value 2k (a.k.a. 2n−1−m) is strictly

larger than
∑i=k−1

i=0 2i (a.k.a.
∑i=n−1

i=m+1 2n−1−i). This contradicts the initial assumption
thatM′(obj) <M(obj).
CASE II: obj is a signed BV goal. Then, we distinguish —once again— two subcases.

In the first case, m is larger than 0. Therefore,M(obj) andM′(obj) are either both
negative or both positive. Looking at Equation (4.16), which adheres to the two’s com-
plement representation rules, we observe that the sign bit results in a constant-valued
displacement of the model value M(obj), that is otherwise equal to the one computed
by Equation (4.15). Since the value assigned to obj[0] byM andM′ provides the same
(fixed) contribution to the value of obj, we can ignore the sign bit and restrict our focus
on the remaining n− 1 bits. In this way, we obtain a new obj′

def
= [obj[1], ..., obj[n− 1]], a

new attr′
def
= [attr[1], ..., attr[n−1]] and a new A′

def
= [(obj[1] = attr[1]), ..., (obj[n−1] =

attr[n − 1])]. For all intents and purposes, following the two’s complement represen-
tation, the new goal obj′ can be considered as an unsigned BV goal as it was obtained
by dropping the sign bit from obj. As a consequence, we can apply the same argument
illustrated in CASE I over the new obj′, attr′ and A′.

In the second case, m is equal to 0. By assumption, M′(obj) < M(obj) so we
have thatM′(obj) < 0 andM(obj) ≥ 0. Given that obj is being minimized, the value
of attr[0] is equal to 1, and therefore we immediately get that [[τn]]1[0] = attr[0] and
[[τ ′n]]1[0] = attr[0]. From [[τn]]1[0] = attr[0] and the fact that, by assumption,M—hence
τn— lexicographically maximizes A, we have that ϕ∧ [[τn]]0∧A[0] is unsatisfiable. Since
[[τn]]0 = ∅ and A[0]

def
= (obj[0] = attr[0]), then it follows that ϕ ∧ (obj[0] = attr[0])

is unsatisfiable. Therefore, we conclude that M′ cannot be a satisfiable model of ϕ,
contradicting the initial assumption.

Using Definitions 4.3.2 and 4.3.3 with Theorem 4.3.4, we can reduce any Bit-Vector Opti-
mization problem 〈ϕ, obj〉 to a lexicographic OMT(LRA ∪ T ) problem or to partial weighted
MAXSMT.

Reduction to lexicographic OMT(LRA∪ T ). A OMT(BV ∪ T ) problem can be straight-
forwardly encoded into a lexicographic OMT(LRA ∪ T ) instance 〈ϕ, obj0, ..., objn−1〉 by set-
ting each obji equal to ITE(A[i], 1, 0), where A[i] is the i-th attractor equality (obj[i] = attr[i]).
With this approach, the maximization of each objective function in lexicographic order results

81



CHAPTER 4. ADVANCES IN OMT

in the lexicographical satisfaction of the set of attractor equalities. Therefore, by Proposition
4.3.4, the optimal solution of the original OMT(BV ∪ T ) problem is returned.

Reduction to partial weighted MAXSMT [BP14, BPF15].11 A OMT(BV ∪ T ) problem
can be encoded as a partial weighted MAXSMT problem 〈ϕh, ϕs〉, where the input formula ϕ is
transformed into the set of “hard” T -clauses ϕh, andA is assigned to the set of “soft” T -clauses
ϕs. The weight ai of each each soft clause (obj[i] = attr[i]), is set to be equal to 2n−1−i. We
recall here that the goal of a partial weighted MAXSMT problem is to find the subset of “soft”
T -clauses with maximum-weight, as described in §2.3.3. Since the weight ai of each “soft” T -
clause Ci is strictly larger than the sum of the weights of all Cj such that j > i, the MAXSMT
solver assigns higher preference to the satisfaction of the attractor equality (obj[i] = attr[i])

than to any other attractor equality (obj[j] = attr[j]) where j > i. Thus, the optimal model
found by the partial weighted MAXSMT search is also optimal for the original OMT(BV ∪ T )

problem by Proposition 4.3.4.

Rather than using a reduction to a known problem, it is possible to approach OMT(BV ∪ T )

more directly using a dedicated engine for BV optimization. In the following, we consider three
main approaches for OMT(BV ∪ T ). Section §4.3.1 illustrates the case of a simple linear- and
binary-search approach, based on the inline OMT schema presented in §2.3.1. Sections §4.3.2
and §4.3.3 present the signed extensions of the Bit-Vector Optimization with Weak Assumptions
(OBV-WA) and the Bit-Vector Optimization with Binary Search (OBV-BS) algorithms respec-
tively, both of which have been originally presented by Nadel et al. in [NR16]. For these last
two approaches, we provide a concise description of the main ideas underlying these methods
and then proceed by illustrating the existing differences among the procedures described in
[NR16] and our re-implementation in OPTIMATHSAT.

4.3.1 Signed/unsigned OMT-based Search

The OMT-based schema presented here is a new extension of the inline linear-, binary- and
adaptive-search schemas for OMT(LRA ∪ T ) —first presented in [ST12, ST15a] and de-
scribed in Section §2.3.1— to deal with both signed and unsigned BV objectives. In this regard,
we note that in [NR16] Nadel et al. describe a simple linear- and binary-schema for unsigned
BV optimization built on top of an SMT solver used as a black-box. However, in contrast with
[NR16], in OPTIMATHSAT the optimization schema is inline with the underlying SMT solver.

11We generalize the unsigned BV optimization approach employed by [BP14, BPF15] to the case of both signed
and unsigned BV optimization using the notion of BV objective attractor. Furthermore, we note that the original
approach is described in [NR16], that cites “private communication with the authors of [BP14, BPF15]” as its
own source, and not in [BP14, BPF15].
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This approach, implemented on top of OPTIMATHSAT, has been shown to outperform the cor-
responding offline implementation on a set of OMT(LRA ∪ T ) benchmarks included in an
experimental evaluation of [ST12, ST15a].

On the whole, very few changes are necessary to adapt the OMT schemas for OMT(LRA ∪
T ) (see Section §2.3.1) to the case of signed and unsigned BV optimization.

First, we notice that the domain of any BV variable is finite in the Theory of Bit-Vectors,
and thus —in principle— a simple enumeration of all possible values would suffice to exhaust
the solution space and find the desired optimal solution, similarly to the case of a LIA objective
with finite domain.

In the case of an eager BV-encoding in particular, we observe that extending the BV-solver
with an embedded optimization procedure would be wasting CPU cycles. This is because BV
terms are bit-blasted during the preprocessing of the formula, and therefore the value of any
BV objective is distinctively determined by the truth assignment that is being generated by the
CDCL engine. As a result, an optimization procedure confined within the BV engine would not
be able to locally improve the value of the objective function.

When the lazy BV-encoding is used, an optional dedicated optimization procedure can be
embedded within the BV-solver, although this is not strictly necessary. In the following, to
keep things as simple as possible, we assume that no such dedicated optimization procedure is
embedded within the Bit-Vector T -solver.

Second, we notice that the size of the domain of an unconstrained BV variable of bit width
n —albeit finite— is still exponential in n. This means that a simple linear search over a
BV objective may end up enumerating an exponential number of satisfiable truth assignments
before finding the optimal solution value. Therefore, it is pretty much always convenient to
run the optimization in binary-search mode. In its simplest implementation, the binary-search
strategy places the pivot value so as to halve the solution space, determined by the range of
bits, at each iteration. Thus, the search is guaranteed to converge in at most n binary-search
iterations, where n is the number of bits of the BV objective. An alternative approach is to use
the following heuristic function, evaluated on the Rational domain and converted back to a BV
value, to compute the pivot placement:

pivot
def
= floor(ρ · ub + (1− ρ) · lb) + ∆

where lb and ub are the current lower and upper bound of obj respectively, ρ belongs to the
interval [0, 1[ (e.g. 1

2
) and ∆ is equal to 1 if the expression inside floor() is fractional and the

objective is to be minimized, 0 otherwise.
This heuristic has two advantages. First, it allows one to control the aggressiveness of

the range-partitioning strategy by adjusting the value of ρ. Second, it takes into account any

83



CHAPTER 4. ADVANCES IN OMT

optional initial lower/upper bounds provided by the user of the application. As shown in the
following example, this can result in fewer search steps to converge to the optimal solution. We
note, however, that fewer search steps do not necessarily mean better overall performance, as
the cost of each binary-step is non-uniform and it usually cannot be predicted in advance.

Example 4.3.3. Let obj[8] be a BV objective of width 8 to be minimized, and let [50[8],64[8][

be the initial search interval specified by the end-user and 61[8] its optimal value. Assume, for
simplicity, that each satisfiable step results in the smallest possible improvement of the objective
function, and that the input formula admits a satisfiable model whenever the optimization goal
is included in the range of values [61[8],63[8]].

Then, the sequence of pivot atoms generated by an OMT solver minimizing obj[8] with a
binary-search computed over the bits of the objective function is as follows:

obj[8] <[8] 128
[8] (sat,M[obj[8]] = 63[8]; s.i.: [50[8],63[8][) =⇒ continue

obj[8] <[8] 64[8] (sat,M[obj[8]] = 62[8]; s.i.: [50[8],62[8][) =⇒ continue
obj[8] <[8] 32[8] (unsat, s.i.: [50[8],62[8][) =⇒ backtrack
obj[8] <[8] 48[8] (unsat, s.i.: [50[8],62[8][) =⇒ backtrack
obj[8] <[8] 56[8] (unsat, s.i.: [56[8],62[8][) =⇒ backtrack
obj[8] <[8] 60[8] (unsat, s.i.: [60[8],62[8][) =⇒ backtrack
obj[8] <[8] 62[8] (sat,M[obj[8]] = 61[8]; s.i.: [60[8],61[8][) =⇒ continue
obj[8] <[8] 61[8] (unsat, s.i.: [61[8],61[8][) =⇒ stop.

In the above sequence, we show the optimization search interval (a.k.a “s.i.”) at the end of each
binary-search step. The search, following the same schema described in Section §2.3.1, ends
when the search interval becomes empty.

If instead the OMT solver minimizes obj[8] with a binary-search computed over the actual
range of the objective function, then the following sequence of pivot atoms is generated with ρ
equal to 1

2
:

obj[8] <[8] 57
[8] (unsat, s.i.: [57[8],63[8][) =⇒ backtrack

obj[8] <[8] 61
[8] (unsat, s.i.: [61[8],63[8][) =⇒ backtrack

obj[8] <[8] 62
[8] (sat,M[obj[8]] = 61[8]; s.i.: [61[8],61[8][) =⇒ stop.

Using this approach, the optimal solution is found with fewer search steps. �

4.3.2 A signed extension of OBV-WA [NR16]

The Bit-Vector Optimization with Weak Assumptions algorithm, for the maximization of un-
signed BV objectives, was first presented by Nadel et al. [NR16]. In their work, Nadel et al.
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transformed the bits [obj[0], ..., obj[n− 1]] of the BV objective into high-priority decision vari-
ables for the underlying SAT solver, starting from the MSB down to the LSB. Moreover, they
initialized the phase saving of each obj[i] to 1 (for minimization, to 0) to automatically drive the
CDCL search towards the optimal value. Since the combination of these two techniques makes
the algorithm approach the optimal value starting from the unsatisfiable region, the optimization
search could be stopped as soon as a model was found.

We notice that this approach can be extended to deal with the optimization, in either direc-
tion, of both signed and unsigned BV objectives. To do so, we exploit the attractor equalities
associated with the objective function obj.

First, for each attractor equality of the form obj[i] = attr[i] we introduce a fresh Boolean
decision variable Ai such that Ai ↔ obj[i] = attr[i]. Then, we provide the following (optional)
enhancements over the regular OMT-based approach described in §4.3.1:

• branching preference: each Ai is added to the list of the preferred Boolean variables for
branching, starting from the MSB down to the LSB. This has the benefit of causing the
highest possible backjump when any conflict involving a unit clause in the form (obj < lb)

[resp. (obj > ub)] is encountered while minimizing [resp. maximizing] the objective
function.

• polarity initialization: the phase-saving value of each Ai is initialized to true at the
beginning of the search, so that the first time the SAT engine encounters Ai as a decision
variable it tries to assign true first. As a result, the solver prefers looking for candidate
values of obj that are closer to the target attr.

Activating both of these enhancements at the same time forces the OMT-based approach de-
scribed in §4.3.1 to behave like the OBV-WA algorithm in [NR16] (disregarding the fact that the
latter is designed to directly handle unsigned BV objectives only). This is because the Boolean
search at the SAT level takes precedence over the outer optimization schema, and therefore the
combination of the two enhancements makes the OMT solver approach the optimal solution
starting from the (possibly empty) unsatisfiable region as in OBV-WA. As a consequence, the
OMT solver does not need to certify that the value of the objective function is optimal and can
return as soon as a model is found.

4.3.3 A signed extension of OBV-BS [NR16]

The Bit-Vector Optimization with Binary Search algorithm was also presented in [NR16] first.
As for OBV-WA, the original algorithm dealt with the maximization of unsigned BV objectives
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only, that we extend to also deal with signed BV objectives using the definition of BV objective
attractor in Section §4.3.

The search starts by looking for an initial modelM that satisfies the input formula ϕ. If no
suchM is found, then ϕ is unsatisfiable and the algorithm ends here. Otherwise, OBV-BS enters
a loop over the bits in the objective function, starting from the leading MSB obj[0] and ending
with the trailing LSB obj[n− 1]. If obj[i] is true inM, then obj[i] cannot be improved and it is
thus added to an initially empty list of of assumptions Γ. After that, the execution flow jumps
at the next loop iteration, or stops if the LSB has just been visited. Otherwise, the algorithm
checks whether the value of the objective function can be improved by assigning obj[i] to true.
This is done by verifying the satisfiability of ϕ under assumptions, whereby the assumptions list
is given by Γ∪obj[i]. If that’s indeed the case and the underlying solver answers with SAT, then
obj[i] is added to the list of assumptions Γ andM is updated with a new model that is closer to
the optimal solution. Otherwise, Γ is extended with ¬obj[i]. In either case, the search jumps at
the beginning of the loop with the next bit of the BV objective being evaluated, if any. At the
end of the loop, the optimal solution can be extracted by the modelM that was most recently
found, or extrapolated from the list of assumptions Γ.

Similarly to OBV-WA, the performance of OBV-BS can be enhanced by initializing the phase
saving value of each obj[i] to 1 prior to any satisfiability check performed with the underlying
SMT solver [NR16].

Definitions 4.3.2 and 4.3.3 with Theorem 4.3.4 suggest a direct extension to the minimiza-
tion/maximization of signed BV of the OBV-BS algorithm for unsigned BV in [NR16]: ap-
ply the unsigned-BV maximization [resp. minimization] algorithm of [NR16] to the objective
obj′

def
= (obj nxorn attr) [resp. obj′

def
= (obj xorn attr)] instead than simply to obj [resp. obj].

Experimental Evaluation. In Section §6.3, we reproduce the experimental evaluation
contained in [NR16], and compare the effect of enabling the proposed enhancements on
the performance of OPTIMATHSAT.

4.4 OMT (FP ∪ T )

In the following, we describe the OMT(FP ∪ T ) handling of OPTIMATHSAT described in
[TS19], which is based on the OMT(BV ∪ T ) procedures presented by Nadel et al. in [NR16].

Without any loss of generality, we assume that every non-trivialFP objective function f(...)

is replaced by a FP variable obj by conjoining “obj = f(...)” to the input formula. Following
the same conventions established in Section §2.2.3, we indifferently represent a FP objective
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obj with sort (_ FP <ebits> <sbits>) as a vector of n bits [obj[0], ..., obj[n − 1]], where
n

def
= ebits + sbits, or as a triplet of Bit-Vectors 〈sign, exp, sig〉 such that sign is a BV of size

1, exp is a BV of size ebits and sig is a BV of size sbits − 1. We write obj[i] to denote the
i-th bit of obj, where obj[0] and obj[n − 1] are the Most Significant Bit (MSB) and the Least
Significant Bit (LSB) of obj respectively.3 We use the symbol µk to denote a generic (possibly
partial) assignment that assigns at least the k most-significant bits of obj. We use the symbol
τk to denote an assignment to the k most-significant bits of obj. Given i < k, we denote by
µk[i] [resp. τk[i]] the value in {0, 1} assigned to obj[i] by µk [resp. τk]. Moreover, we use the
expression [[µk]]i where i ≤ k to denote the restriction of µk to the i most-significant bits of obj,
obj[0], ..., obj[i−1]. Given a modelM of ϕ and a variable v, we denote byM(v) the evaluation
of v inM.

We define the Floating-Point Optimization problem as follows.

Definition 4.4.1. (OMT(FP ∪ T ), OMT(FP), minobj). Let ϕ be a ground SMT(FP ∪
T ) formula and obj be a FP variable occurring in ϕ. We call an Optimization Modulo
FP ∪ T problem, the problem of finding a modelM for ϕ (if any) whose value of obj,
denoted with minobj(ϕ), is either

• minimum with respect to the usual total order relation ≤ for FP numbers, if ϕ is
satisfied by at least one modelM′ such thatM′(obj) is not NAN,

• some binary representation of NAN, otherwise.

We call an Optimization Modulo FP problem, written OMT(FP), an OMT(FP ∪ T )

problem where T is the empty theory. (The dual definition where we look for the maximum
follows straightforwardly)

Definition 4.4.1 is made complicated by the fact that obj can be NAN. In fact, in the
SMT-LIBV2 standard the comparisons {≤, <,≥, >} between NAN and any other FP value
always evaluated to false because NAN has multiple representations at the binary level (see
Table 4.1). Also, requiring the optimal solution to be always different from NAN makes the
resulting OMT(FP ∪ T ) problem 〈ϕ ∧ ¬IsNaN(obj), obj〉 unsatisfiable when ϕ is satisfied
only by modelsM such thatM(obj) is NAN. For these reasons, we admit NAN as the optimal
solution value for obj if and only if ϕ is satisfied only by modelsM such thatM(obj) is NAN.

In the rest of this section we assume that we have already checked, in sequence, that

i) the input formula ϕ is satisfiable —by invoking an SMT(FP ∪ T ) solver on ϕ. If the
solver returns UNSAT, then there is no need to proceed;
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ii) ϕ is satisfied by at least one modelM′ such thatM′(obj) is not NAN —by invoking an
SMT(FP ∪ T ) solver on ϕ ∧ ¬IsNaN(obj) if the model M returned by the previous
SMT call is such that M(obj) is NAN. If the solver returns UNSAT, then we conclude
that the minimum is NAN.

After that, we can safely focus our investigation on the restricted OMT(FP ∪ T ) problem
〈ϕnoNaN, obj〉, where ϕnoNaN

def
= ϕ ∧ ¬IsNaN(obj), knowing it is satisfiable.

In Section §4.3, we have introduced the concept of a BV objective attractor, and we have
shown how this can be used to drive the optimization search towards the optimum value, when
minimizing or maximizing a signed or an unsigned BV goal. However, in the case of floating-
point optimization, it is not possible to statically determine the attractor value, before the search
is even started. This is due to the more complex representation of FP variables, that uses three
separate Bit-Vectors (i.e. sign, exponent and significand), and the presence of various classes
of special values (i.e. zeros, infinity, NAN), that make Definition 4.3.2 ambiguous for FP
optimization. We illustrate this problem with the following example.

Example 4.4.1. Let 〈ϕnoNaN, obj〉 be an OMT(FP ∪ T ) problem where obj is a FP objective,
of sort (_ FP 3 5), to be minimized. To make our explanation easier to follow, we show in
Table 4.1 a short list of sample values for an FP variable of the same sort as obj. Each FP
value is represented as a triplet of Bit-Vectors 〈sign, exp, sig〉 —following the SMT-LIBV2
conventions described in Section §2.2.3— and also in decimal notation.

From Table 4.1, we immediately notice that the binary representation of both the exponent
and the significant of a floating-point number grows in opposite directions in the positive and
in the negative domains. In addition, by sorting the values according to their binary repre-
sentation, we observe that −∞ [resp. +∞ ] is not the smallest [resp. greatest] representable
FP value in the negative [resp. positive] domain. In fact, both extreme ends of the table are
occupied by NAN, that has multiple binary representations.

In what follows, we temporarily disregard the effects of unit-propagation, that might assign
some (or all) bits of obj as a result of some constraints in ϕnoNaN, and pick some values as
candidate attractors for an FP goal to be minimized.

Suppose that the attractor is chosen to be equal to the value−∞ listed at row 9 in Table 4.1,
which is the smallest FP value with respect to the total order relation ≤ for FP numbers.
Assume that the optimal value of the FP goal is the subnormal FP value (fp #b1 #b000

#b1111) (i.e. −15
64

). Then, it can be seen that after both the sign and the exponent bits have
been decided to be equal #b1 and #b000 respectively, the remaining bits of the attractor pull
the search in the wrong direction, that is, towards −0.
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sign exp sig value
1 #b0 #b111 #b1111 NAN

... ... ... NAN
2 #b0 #b111 #b0000 +∞
3 #b0 #b110 #b1111 31

2

... ... ... ...
4 #b0 #b000 #b0001 1

64

5 #b0 #b000 #b0000 +0

6 #b1 #b000 #b0000 −0

7 #b1 #b000 #b0001 − 1
64

... ... ... ...
8 #b1 #b110 #b1111 −31

2

9 #b1 #b111 #b0000 −∞
... ... ... NAN

10 #b1 #b111 #b1111 NAN

Table 4.1: Sample values for a FP variable with sort (_ FP 3 5).

Selecting a different FP value as candidate attractor does not really solve the problem;
rather, it results in a different set of issues.

For instance, an attractor equal to the NAN value listed at row 10 in Table 4.1, which is the
smallest representable FP value according to the binary ordering, would solve the problem for
the previous case in which the optimum FP value is (fp #b1 #b000 #b1111). However,
this attractor would remain an unsuitable choice for an OMT(FP ∪ T ) instance where theFP
goal is forced to be positive, because after the sign bit of the objective function has been decided
to be equal #b0 the remaining bits of the attractor drive the search in the wrong direction, that
is, towards +∞. �

Since there is no statically determined FP value that can be used as an attractor when
dealing with floating-point optimization, we introduce the new concept of dynamic attractor.

Definition 4.4.2. (Dynamic Attractor.) Let 〈ϕnoNaN, obj〉 be a restricted OMT(FP ∪ T )

problem, where ϕnoNaN
def
= ϕ ∧ ¬IsNaN(obj) is a satisfiable SMT(FP ∪ T ) formula and

obj is a FP objective to be minimized [resp. maximized]. Let k ∈ [0..n] and τk be an
assignment to the k most-significant bits of obj.

Then, we say that an FP-value attrτk for obj is a dynamic attractor for obj with
respect to τk if and only if it is the smallest [resp. largest] FP value different from
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NAN such that the k most-significant bits of attrτk have the same value of the k most-
significant bits of obj in τk. We call vector of attractor equalities the vector Aτk such that
Aτk [i]

def
= (obj[i] = attrτk [i]), i ∈ [0..n− 1].

With a small abuse of notation, and when this does not cause ambiguities, we sometimes use
an dynamic attractor equality Aτk [i]

def
= (obj[i] = attrτk [i]) to denote the single-bit assignment

obj[i] := attrτk [i] and its negation ¬Aτk [i] to denote the assignment to the complement value
obj[i] := attrτk [i].

The following fact derives from the above definitions and the properties of IEEE 754-2008
standard representation adopted by SMT-LIBV2 standard for FP .

Lemma 4.4.3. Let 〈ϕnoNaN, obj〉 be a restricted minimization [resp. maximization] OMT(FP ∪
T ) problem, let τk be an assignment to obj[0]...obj[k− 1] and attrτk be its corresponding
dynamic attractor, for some k ∈ [0..n − 1]. Let τk+1

def
= τk ∪ {obj[k] := attrτk [k]} and

τ ′k+1
def
= τk∪{obj[k] := attrτk [k]}, and letM,M′ two models for ϕnoNaN that extend τk+1

and τ ′k+1 respectively.
ThenM(obj) ≤M′(obj) [resp.M(obj) ≥M′(obj)].

Proof. (We prove the case of minimization, since that of maximization is dual with re-
spect to the value of the sign bit.) We distinguish three cases based on the value of k.

Case k = 0 (sign bit). Then attrτ0 [0] = 1, τ1 = {obj[0] = 1} and τ ′1 = {obj[0] = 0},
where obj[0] is the MSB of obj and represents the sign of the floating-point value. Then
obj is smaller or equal zero in every modelM and larger or equal zero in every model
M′ of ϕnoNaN, so thatM(obj) ≤M′(obj) is verified.

Case k ∈ [1..ebits] (exponent bits), where ebits is the number of bits in the exponent
of obj. Then, attrτk [k] is 1 if τk[0] = 1 and 0 otherwise.

In the first case, obj can only be negative in bothM andM′. More precisely,M(obj)

can be either −∞ or a normal negative value, whereasM′(obj) can be either a normal
or a subnormal negative value. Hereafter, we consider only the case in which both have
a normal negative value, because the case in whichM(obj) = −∞ orM′(obj) is sub-
normal are both trivial, given that the absolute value of any subnormal FP number is
smaller than the absolute value of any normal FP number. Furthermore, we disregard
the significand bits inM andM′ because their contribution to the value of obj is always
less significant than that of the bits in the exponent. Given these premises, the exponent
value of obj in every possible M is larger than the exponent of obj in every possible
M′ by a value equal to 2ebits−k and therefore, given that bothM(obj) andM′(obj) are
negative,M(obj) ≤M′(obj).
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The case in which τk[0] = 0, that is when obj can only be positive in bothM andM′,
is dual.

Case k > ebits (significand bits). Then there are three subcases.
If for every i ∈ [1..ebits] the value of τk[i] is equal 1, then the only possible value of

M(obj) for every possibleM is +∞, and therefore attrτk [k] = 0. On the other hand,
there exists no possible modelM′ of ϕnoNaN, because the assignment obj[k] = 1 would
imply obj being equal to NAN, so the statementM(obj) ≤M′(obj) is vacuously true.

If instead there is some i ∈ [1..ebits] such that τk[i] = 0, then attrτk [k] is 1 if τk[0] = 1

(i.e. obj is negative) and 0 otherwise (i.e. obj is positive). In both cases, we can disregard
the exponent bits inM andM′ because their contribution to the value of obj is the same
in either model. For the same reasons, sinceM(obj) andM′(obj) can only be either both
normal or both subnormal, we can ignore the contribution of the leading hidden bit and
focus on the bits of the significand.

When τk[0] = 1 and obj must be negative, the decimal value of the significand inM
is larger than the decimal value of every possible significand inM′ by exactly 2−(k−ebits).
Given that bothM(obj) andM′(obj) are negative, we have thatM(obj) ≤M′(obj).

The case in which τk[0] = 0, that is when obj can only be positive in both M and
M′, is dual.

Lemma 4.4.3 states that, given the current assignment τk to the k most-significant bits of
obj, obj[k] = attrτk [k] is always the best extension of τk to the next bit (when it does not
conflict with ϕnoNaN). A dynamic attractor attrτk can thus be used by the optimization search
to guide the assignment of the k + 1-th bit of obj towards the direction of maximum gain that
is allowed by τk, so that to obtain the “best” extension τk+1 of τk. Once the (new) assignment
τk+1 is found, the OMT solver can compute the dynamic attractor attrτk+1

for obj with respect
to τk+1 and then use it to assign the k + 2-th bit of obj, and so on.

Let 〈ϕnoNaN, obj〉 be an OMT(FP ∪ T ) instance, such that obj is a FP variable of n
bits, and τ0 be an initially empty assignment. If at each step of the optimization search the
assignment of the k-th bit of obj is guided by the dynamic attractor for obj with respect to
τk, then the corresponding sequence of n dynamic attractors (of increasing order k) is unique
and depends exclusively on ϕnoNaN. Intuitively, this is the case because the (current) dynamic
attractor always points in the direction of maximum gain. We illustrate this in the following
example.

Example 4.4.2. Let 〈ϕnoNaN, obj〉 be an OMT(FP ∪ T ) problem where obj is a FP objective,
of sort (_ FP 3 5), to be minimized, as in Example 4.4.1. At the beginning of the search,
nothing is known about the structure of the solution. Therefore, τ0 = ∅ and, since obj is
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being minimized, the dynamic attractor for obj with respect to τ0 (i.e. attrτ0) is equal to (fp
#b1 #b111 #b0000) (i.e. −∞), that gives a preference to any feasible value of obj in the
negative domain.

If at some point of the optimization search we discover that the domain of the objective
function can only be positive, so that the first bit of obj is permanently set to 0 in τ1, then the
new dynamic attractor for obj with respect to τ1 (i.e. attrτ1) is equal to (fp #b0 #b000

#b0000) (i.e. +0).
Furthermore, if later on we also find out that at least one bit in the exponent of obj can

be assigned to 0 in a feasible solution of the problem that extends τi, for some i, then we can
remove +∞ from the optimization search interval. �

Definition 4.4.4. (Attractor Trajectory Aϕ). Consider the restricted OMT(FP ∪ T )

problem 〈ϕnoNaN, obj〉 such that ϕnoNaN
def
= ϕ∧¬IsNaN(obj) as in Definition 4.4.2, a triplet

of inductively-defined sequences 〈{τ0, τ1, ..., τn}, {attrτ0 , attrτ1 , ..., attrτn}, {Aτ0 , Aτ1 , ..., Aτn}〉
—where each τk is an assignment to the first k most-significant bits of obj such that
τk ⊂ τk+1, attrτk is its corresponding dynamic attractor and Aτk is its corresponding
vector of attractor equalities— so that, for every k ∈ [0..n− 1]:

(i) τk+1[k] = attrτk [k] if ϕnoNaN ∧ τk ∧ Aτk [k] is unsatisfiable,

(ii) τk+1[k] = attrτk [k] otherwise.

Then we define the attractor trajectory Aϕ as the vector [Aτ0 [0], ..., Aτn−1 [n− 1]].

The attractor trajectory Aϕ contains those attractor equalities (obj[k] = attrτk [k]) that are
of critical importance for the decisions taken by the optimization search. Intuitively, this is the
case because the value of the k-th bit of obj (i.e. obj[k]) is still undecided in τk.

Example 4.4.3. Let 〈ϕnoNaN, obj〉 be a restricted OMT(FP ∪ T ) problem where obj is a FP
objective, of sort (_ FP 3 5), to be minimized, as in Example 4.4.1. We consider the case
in which the input formula ϕnoNaN requires obj to be larger or equal 29/2 and it does not impose
any other constraint on the value of obj. Given the sequence of (partial) assignments τ0, ..., τ8
in Figure 4.5, the corresponding list of dynamic attractors and the corresponding vectors of
attractor equalities, then the attractor trajectory Aϕ is equal to the vector [obj[0] = 1, obj[1] =

0, obj[2] = 0, obj[3] = 0, obj[4] = 0, obj[5] = 0, obj[6] = 0, obj[7] = 0]. �

Lemma 4.4.5. Consider 〈ϕnoNaN, obj〉, τ0, ..., τn, attrτ0 , ..., attrτn , Aτ0 , ..., Aτn , and Aϕ
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τ0 = ∅ attrτ0 = (fp #b1 #b111 #b0000) = [1.111.1111] [i.e.−∞] =⇒ UNSAT

τ1 = τ0 ∪ {obj[0] = 0} attrτ1 = (fp #b0 #b000 #b0000) = [0.000.0000] [i.e. +0] =⇒ UNSAT

τ2 = τ1 ∪ {obj[1] = 1} attrτ2 = (fp #b0 #b100 #b0000) = [0.100.0000] [i.e. +2] =⇒ UNSAT

τ3 = τ2 ∪ {obj[2] = 1} attrτ3 = (fp #b0 #b110 #b0000) = [0.110.0000] [i.e. +8] =⇒ SAT

τ4 = τ3 ∪ {obj[3] = 0} attrτ4 = (fp #b0 #b110 #b0000) = [0.110.0000] [′′ ′′ ] =⇒ UNSAT

τ5 = τ4 ∪ {obj[4] = 1} attrτ5 = (fp #b0 #b110 #b1000) = [0.110.1000] [i.e. +12] =⇒ UNSAT

τ6 = τ5 ∪ {obj[5] = 1} attrτ6 = (fp #b0 #b110 #b1100) = [0.110.1100] [i.e. +14] =⇒ SAT

τ7 = τ6 ∪ {obj[6] = 0} attrτ7 = (fp #b0 #b110 #b1100) = [0.110.1100] [′′ ′′ ] =⇒ UNSAT

τ8 = τ7 ∪ {obj[7] = 1} attrτ8 = (fp #b0 #b110 #b1101) = [0.110.1101] [i.e. 29/2]

Aτ0 = [obj[0] = 1, obj[1] = 1, obj[2] = 1, obj[3] = 1, obj[4] = 0, obj[5] = 0, obj[6] = 0, obj[7] = 0]

Aτ1 = [obj[0] = 0, obj[1] = 0, obj[2] = 0, obj[3] = 0, obj[4] = 0, obj[5] = 0, obj[6] = 0, obj[7] = 0]

Aτ2 = [obj[0] = 0, obj[1] = 1, obj[2] = 0, obj[3] = 0, obj[4] = 0, obj[5] = 0, obj[6] = 0, obj[7] = 0]

Aτ3 = [obj[0] = 0, obj[1] = 1, obj[2] = 1, obj[3] = 0, obj[4] = 0, obj[5] = 0, obj[6] = 0, obj[7] = 0]

Aτ4 = [obj[0] = 0, obj[1] = 1, obj[2] = 1, obj[3] = 0, obj[4] = 0, obj[5] = 0, obj[6] = 0, obj[7] = 0]

Aτ5 = [obj[0] = 0, obj[1] = 1, obj[2] = 1, obj[3] = 0, obj[4] = 1, obj[5] = 0, obj[6] = 0, obj[7] = 0]

Aτ6 = [obj[0] = 0, obj[1] = 1, obj[2] = 1, obj[3] = 0, obj[4] = 1, obj[5] = 1, obj[6] = 0, obj[7] = 0]

Aτ7 = [obj[0] = 0, obj[1] = 1, obj[2] = 1, obj[3] = 0, obj[4] = 1, obj[5] = 1, obj[6] = 0, obj[7] = 0]

Aτ8 = [obj[0] = 0, obj[1] = 1, obj[2] = 1, obj[3] = 0, obj[4] = 1, obj[5] = 1, obj[6] = 0, obj[7] = 1]

Figure 4.5: An example of FP optimization using the dynamic attractor. (“=⇒ SAT/UNSAT”
denotes the satisfiability of ϕnoNaN∧τk∧Aτk [k], the symbols “′′ ′′” stand for “the same as above”.
For ease of illustration, we have underlined the critical bit attrτk [k] in the attractors and each
attractor equality of the attractor trajectory Aϕ inside the vectors of attractor equalities.)

as in Definition 4.4.4. Then τn lexicographically maximizes Aϕ with respect to ϕnoNaN.

Proof. By Definition 4.4.4, we have that, for each k ∈ [0..n− 1],

(i) τk+1[k] = attrτk [k] if ϕnoNaN ∧ τk ∧ Aτk [k] is unsatisfiable,

(ii) τk+1[k] = attrτk [k] otherwise.

By construction, τk = [[τn]]k. Therefore, we can replace τk with [[τn]]k so that

(i) [[τn]]k+1[k] = attr[[τn]]k [k] if ϕnoNaN ∧ [[τn]]k ∧ A[[τn]]k [k] is unsatisfiable,

(ii) [[τn]]k+1[k] = attr[[τn]]k [k] otherwise.
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We notice the following facts. For each k ∈ [0..n − 1], [[τn]]k ⊂ τn. Furthermore, for
each k ∈ [0..n − 1], Aϕ[k] = A[[τn]]k [k] because Aϕ[k] = Aτk [k] by the definition of
attractor trajectory, and Aτk [k] = A[[τn]]k [k] by the equality τk = [[τn]]k. Thus, we can
replace [[τn]]k+1 with τn and A[[τn]]k [k] with Aϕ[k], as follows. For each k ∈ [0..n− 1],

(i) τn[k] = attrτn [k] if ϕnoNaN ∧ [[τn]]k ∧ Aϕ[k] is unsatisfiable,

(ii) τn[k] = attrτn [k] otherwise.

Hence, τn lexicographically maximizes Aϕ with respect to ϕnoNaN.

Finally, we make the following two observations. The first is that the sequence τ0, τ1, ..., τn
in Definition 4.4.4 can be iteratively constructed using its list of requirements, for instance,
by means of a sequence of incremental calls to an SMT solver. The second, more important,
observation is that τn corresponds to the assignment of values that makes obj optimal in ϕnoNaN.

Using the above definitions, we show that the following fact holds.

Theorem 4.4.6. Let 〈ϕnoNaN, obj〉, τ0, ..., τn, attrτ0 , ..., attrτn , Aτ0 , ..., Aτn , and Aϕ be
as in Definition 4.4.4. Then, any model M of ϕnoNaN that lexicographically maxi-
mizes the attractor trajectory Aϕ is an optimal solution for the OMT(FP ∪ T ) problem
〈ϕnoNaN, obj〉.

Proof. (We prove the case of minimization, since that of maximization is dual.)
By Lemma 4.4.5 we have that τn lexicographically maximize Aϕ. Let M be a model
of ϕnoNaN that lexicographically maximizes Aϕ, and let µ be its restriction to obj. Since
both τn and M lexicographically maximize Aϕ, for the uniqueness of τn, we immedi-
ately notice that µ = τn, so that τk = [[µ]]k for each k ∈ [0..n] and µ lexicographically
maximize Aϕ.

By definition,M is an optimal solution for 〈ϕnoNaN, obj〉 if and only if there exists no
other modelM′ for it such thatM′(obj) <M(obj). Hence, we show by contradiction
that no suchM′ can exist.

Assume (for the sake of contradiction), that there exists a modelM′ for ϕnoNaN, such
thatM′(obj) <M(obj), and let µ′ be the restriction ofM′ to obj. Then there must be at
least one index i for which µ[i] 6= µ′[i]. Let m be the smallest such index. Recalling that
τm = [[µ]]m and τm+1 = [[µ]]m+1, we set τ ′m+1

def
= [[µ′]]m+1. Then, τm ⊂ τm+1, τm ⊂ τ ′m+1,

τm+1 6= τ ′m+1. In particular, τm+1[m] = τ ′m+1[m] and therefore τm+1[m] = attrτm [m] if
τ ′m+1[m] = attrτm [m], and vice versa.

Then, we distinguish two cases.
In the first case, τm+1[m] = attrτm [m] and τ ′m+1[m] = attrτm [m] . From τm+1[m] =
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attrτm [m] and the fact that µ lexicographically maximizes Aϕ, we derive that ϕnoNaN ∧
τm ∧Aϕ[m] is unsatisfiable, where Aϕ[m]

def
= (obj[m] = attrτm [m]). Since τm ⊂ τ ′m+1 ⊆

µ′ and τ ′m+1[m] = attrτm [m], we conclude that ϕnoNaN ∧ µ′ |= ⊥, so thatM′ cannot be a
model of ϕnoNaN, contradicting the initial assumption.

In the second case, τm+1[m] = attrτm [m] and τm+1[m] = attrτm [m] . Therefore, by
Lemma 4.4.3, for every pair of modelsM1,M2 for ϕnoNaN that extend respectively τm+1

and τ ′m+1 we have thatM1(obj) ≤M2(obj). Since τm+1 = [[µ]]m+1 and τ ′m+1 = [[µ′]]m+1,
it follows thatM′(obj) 6<M(obj), contradicting the initial assumption.

In this thesis, we consider two approaches for dealing with OMT(FP ∪ T ): a basic OMT-
based search, using the inline OMT schema presented in §2.3.1, and Floating-Point Optimiza-
tion with Binary Search (OFP-BS), a new engine inspired to the OBV-BS algorithm for Bit-Vector
optimization presented in [NR16].

4.4.1 OMT-based Search

The OMT-based approach for OMT(FP ∪ T ) adapts the linear-, binary- and adaptive-search
schemata for OMT(LRA ∪ T ) —described in §2.3.1— to deal with FP objectives.

In the basic linear-search schema, the optimization search is advanced by means of a se-
quence of linear cuts, each of which forces the OMT solver to look for a new modelM′ that
improves the value of obj with respect to the most recent model M. In the binary-search
schema, instead, the OMT solver learns an incremental sequence of pivoting cuts that bisect the
current domain of the objective function. Hereafter, we succinctly describe the binary-search
schema for OMT(FP ∪ T ), that requires minimal variations with respect to the binary-search
schema for OMT(LRA ∪ T ) in Section §2.3.1. At the beginning of the optimization search
and following each update of the lower (lb) and upper (ub) bounds of obj, the OMT solver
computes a (new) pivoting value as follows:

pivot
def
= floor(ρ · ub + (1− ρ) · lb)

where ρ is contained in the interval [0, 1[ (e.g. 1
2
). When minimizing [resp. maximizing], the

pivot must be checked to not lie outside the range ]lb, ub] [resp. [lb, ub[] due to the side effects of
rounding operations. If that is the case, a regular linear search step should be performed instead,
as learning the pivoting cut (obj < pivot) [resp. (obj > pivot)] is not guaranteed to advance the
optimization search (e.g. when pivot is equal lb). Alternatively, instead of validating the pivot,
a linear search step could simply be guaranteed to be performed infinitely often. If the pivoting
cut is satisfiable, the upper bound of obj is updated with the value of obj in the corresponding
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modelM. Otherwise, the lower bound is made equal to pivot. The algorithm terminates when
the search interval [lb, ub[ becomes empty.

In general, it is reasonable to expect the binary-search schema to converge towards the
optimal solution faster than the linear-search schema, because the feasible domain of a FP
goal can be comprised by an exponentially large number of values (with respect to the bit width
of the cost function).

In either schema, whenever the optimization engine encounters for the first time a solution
such that obj = NAN, the OMT solver learns a unit clause of the form ¬(ISNAN(obj)) to look
for an optimal solution different from NAN (if any).

Differently from the case of OMT(LRA ∪ T ) described in Section §2.3.1, when dealing
withFP objectives it is not necessary to implement a specialized optimization procedure within
the FP-Solver to guarantee the termination of the optimization search. This is nice because
such procedure is actually not available when Floating-Point terms are bit-blasted into Bit-
Vectors eagerly, or when the ACDCL FP-Solver is used, because by the time the optimization
procedure is called the domain interval of any FP term contains a singleton value. In contrast,
such a minimization procedure could be envisaged when the OMT solver uses a lazyFP-Solver
as back-end to speed up the convergence towards the optimal solution12.

Enhancements. Assume the choice of an arbitrary FP-value attr = [attr[0], ..., attr[n−1]]

as static attractor for the FP goal obj = [obj[0], ..., obj[n − 1]], the corresponding vector of
attractor equalities is [obj[0] = attr[0], ..., obj[n− 1] = attr[n− 1]]. For each attractor equality
of the form (obj[i] = attr[i]), we introduce a fresh Boolean decision variableAi such thatAi ↔
(obj[i] = attr[i]). Then, (a combination of) the following techniques can be used to optionally
enhance either OMT-based search schema, similarly to the case of OMT(BV) described in
[NR16].

• branching preference: starting from the MSB and down to the LSB, each Ai is marked
as a preferred variable for branching. This has the benefit of causing the highest possible
backjump when any conflict involving a unit clause in the form (obj < lb) (resp. (obj >

ub)) is encountered while minimizing (resp. maximizing) the objective function.

• polarity initialization: the phase-saving value of each Ai is initialized to true at the
beginning of the search, so that the first time the SAT engine encounters Ai as a decision
variable it tries to assign true first. As a result, the solver prefers looking for candidate
values of obj that are closer to the target attr.

12Currently, there is no such specialized optimization procedure embedded within the lazy FP-Solver of OP-
TIMATHSAT, so we will not describe this approach any further.
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In the lucky case, using either (or both) of these techniques can enhance the performance
of the OMT solver, by pulling the optimization search in the right direction. In the unlucky
case, using either (or both) of these techniques can have no effect, or even hinder the overall
performance. For instance, in the case of the linear-search optimization schema, enabling both
options with the wrong choice of attractor value can force the OMT solver to start the search
from the furthest possible point from the optional solution, and thus enumerate an exponential
number of intermediate solutions. Naturally, the OMT-based optimization search algorithm is
still guaranteed to terminate even in the worst-case scenario, but the unpredictable performance
makes using either technique a generally unsuitable option in practice.

4.4.2 OFP-BS

The Floating-Point Optimization with Binary Search algorithm is a new engine for OMT(FP ∪
T ) that is inspired by the OBV-BS algorithm for OMT(BV) [NR16] and is a direct implementa-
tion of Definition 4.4.4 and Theorem 4.4.6.

The optimization search tries to lexicographically maximize an implicit attractor trajectory
vector Aϕ, that is incrementally derived from the current value of the dynamic attractor. The
raw value of the dynamic attractor’s bits drive the optimization search towards the direction of
maximum gain at any given point in time, without disrupting any decision that has been already
made. The dynamic attractor is incrementally updated along the search, based on the outcome of
the previous rounds of the optimization search. At each round, one bit of the objective function
is assigned its final value. The first round decides the sign, the next batch of rounds decides the
exponent and the remaining rounds decide the fine-grained details of the significand.

The pseudocode of OFP-BS is shown in Figure 4.6. The arguments of the algorithm are the
input formula ϕ and the FP objective obj, where obj is a FP variable with ebits bits in the
exponent, sbits− 1 in the significand and n def

= ebits+ sbits bits overall.

The procedure starts by checking whether the input formula ϕ is satisfiable and immediately
terminates otherwise (lines 1-3). If obj = NAN inM then the procedure checks whether there
exists a modelM′ for ϕ ∧ ¬IsNaN(obj) (lines 4-5). If this is not the case, the procedure termi-
nates immediately and returns the pair 〈SAT,M〉 (line 7). Otherwise, the modelM is updated
with the new modelM′, and ϕ is permanently extended with the constraint ¬IsNaN(obj) (lines
9-10).

At this point, the procedure initializes the value of the dynamic attractor by invoking an ex-
ternal function UPDATE_DYNAMIC_ATTRACTOR() with the empty assignment τ as parameter,
so that the returned value is equal to −∞ when minimizing and +∞ when maximizing (lines
11-12). Then, the execution moves to the core part of the OFP-BS algorithm (lines 15-28), which
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function OFP-BS (ϕ, obj)

1: 〈res,M〉 := SMT.CHECK_UNDER_ASSUMPTIONS(ϕ, ∅)
2: if (res == UNSAT) then
3: return 〈res, ∅〉 // ϕ is unsatisfiable

4: ϕ := ϕ ∧ ¬IsNaN(obj)

5: if (M(obj) == NAN) then
6: 〈res,M′〉 := SMT.CHECK_UNDER_ASSUMPTIONS(ϕ ∧ ¬IsNaN(obj), ∅)
7: if (res == UNSAT) then
8: return 〈SAT,M〉 // obj can only be NAN

9: else
10: M :=M′

11: ϕ := ϕ ∧ ¬IsNaN(obj)

12: τ := ∅ // from now on, obj cannot be equal NAN

13: attrτ := UPDATE_DYNAMIC_ATTRACTOR(τ)

14: SMT.SET_BRANCHING_PREFERENCE(obj)

15: SMT.UPDATE_BITS_POLARITY_TO(obj, attrτ )

16: for i := 0 up to n− 1 do
17: eq := (obj[i] = attrτ [i]) // attractor equality Aτ [i]

18: if (M |= eq) then
19: τ := τ ∪ {eq}
20: else
21: SMT.SET_BRANCHING_PREFERENCE(obj)

22: SMT.UPDATE_BITS_POLARITY_TO(obj, attrτ )

23: 〈res,M′〉 := SMT.CHECK_UNDER_ASSUMPTIONS(ϕ, τ ∪ {eq})
24: if (res == SAT) then
25: τ := τ ∪ {eq}
26: M :=M′

27: else
28: τ := τ ∪ {¬eq}
29: attrτ := UPDATE_DYNAMIC_ATTRACTOR(τ)

30: return 〈SAT,M〉

Figure 4.6: OFP-BS Algorithm for Floating-Point optimization.
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consists of a loop over the bits of obj, starting from the MSB obj[0] down to the LSB obj[n−1].

Inside this loop, OFP-BS first checks whether the value of obj[i] inM matches the i-th bit
of the (current) dynamic attractor attrτ . If so, then the i-th bit is already set to its “best” value
in M. Thus, the assignment τ is permanently extended with obj[i] = attrτ [i] (line 16), and
the optimization search moves to the next iteration of the loop. If instead obj[i] 6= attrτ [i] in
M, we need to verify whether the value of the objective function in M can be improved by
forcing the i-th bit of obj equal to the i-th bit of the dynamic attractor. To do so, we incre-
mentally invoke the underlying SMT solver, this time checking the satisfiability of ϕ under the
list of assumptions τ ∪ {obj[i] = attrτ [i]} (line 22). If the SMT solver returns SAT, then the
value of the objective function has been successfully improved. Hence, τ is extended with an
assignment setting obj[i] equal to attrτ [i], and M is replaced with the new model M′ (lines
23-25). Otherwise, it is not possible to improve the objective function by toggling the value of
obj[i], and τ is permanently extended with obj[i] 6= attrτ [i] (line 27). At this point, there is a
mismatch between the value of the first i+ 1 bits of obj inM, corresponding to the assignment
τ , and those of the current dynamic attractor. This mismatch is resolved by calling the function
UPDATE_DYNAMIC_ATTRACTOR() with the updated assignment τ as parameter (line 28). In
either case, the execution moves to the next iteration of loop.

After exactly n iterations of the loop, the optimization search terminates with the pair
〈SAT,M〉, whereM is the optimum model of the given OMT(FP ∪ T ) instance. The OFP-BS

algorithm requires at most n+ 2 incremental calls to an underlying SMT(FP) solver. The test
in rows 17-18 allows for saving lots of such SMT calls when the current model already assigns
obj[i] to its corresponding value in the attractor.

The function UPDATE_DYNAMIC_ATTRACTOR() takes as input τ , a (partial) assignment
over the k most-significant bits of obj and, when obj is minimized 13, and it essentially works
as follows. If τ = ∅, then nothing is known about the solution of the problem, so −∞ is
returned. Otherwise, the procedure must compute the smallest FP value different from NAN
(if any) that extends τ . Since τ 6= ∅ then we know that the sign of the objective function has
been permanently decided in τ . If obj[0] = 0 in τ , i.e. obj must be positive, the procedure must
return the smallest positiveFP value admitted by τ . Hence, we extend τ with

⋃i=n−1
i=|τ | obj[i] = 0

and return the corresponding FP value. If obj[0] = 1 in τ , i.e. obj can take negative values,
the procedure must return the largest negative FP value admitted by τ . We first check whether
there exists a bit in the exponent of obj that is assigned to 0 in τ . If that is the case, we extend
τ with

⋃i=n−1
i=|τ | obj[i] = 1 and return the corresponding FP value. Otherwise, the procedure

returns the value −∞, that is still a viable extension of τ .

13The implementation of UPDATE_DYNAMIC_ATTRACTOR() is dual when obj is maximized.
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function UPDATE_DYNAMIC_ATTRACTOR (τ )

1: static attrτ = −∞ // track −∞

2: if (τ 6= ∅) then
3: k := SIZE(τ)− 1

4: attrτ [k] = (1− attrτ [k]) // flip current bit

5: if (τ [0] == 0) then
6: for i := k + 1 up to n− 1 do
7: attrτ [i] = 0 // track smallest positive value

8: else
9: if (k ≤ ebits) then

10: for i := k + 1 up to n− 1 do
11: attrτ [i] = 1 // track largest negative value

12: return attrτ

Figure 4.7: The function UPDATE_DYNAMIC_ATTRACTOR().

Enhancements. The performance of OFP-BS can be improved with one of the following en-
hancements:

• branching preference: the bits of the FP objective obj are marked inside the SMT
solver as preferred variables for branching starting from the MSB down to the LSB (lines
11 and 18). This ensures that conflicts involving the value of the objective function are
handled as early as possible, possibly reducing the amount of work that needs to be redone
after each backjump.

• polarity initialization: prior to any call to the underlying SMT solver, the phase-saving
value of each obj[i] is initialized with the value of the corresponding dynamic attractor’s
bit (rows 12 and 19). This encourages the SMT solver to assign the bits of obj so as to
reassemble the bits of the dynamic attractor, thus possibly reducing the number of times
that the SMT solver needs to be called.

At the beginning of the search, the OMT solver has no information on the best improving di-
rection to follow. On this regard, we observe that the value of every bit in the dynamic attractor
can change after the sign of the objective function has been decided. Furthermore, the value of
all the significand’s bits in the dynamic attractor can also change during the process of deter-
mining the optimal exponent value of the objective function. If the OMT solver applies either
enhancement before the correct improving direction is known, this may cause the underlying
SMT engine to advance the search starting from a sub-optimal set of initial decisions. This can
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be especially the case when both enhancements are enabled at the same time. In order to miti-
gate this issue, we have designed a variant of our optimization-search approach which does not
apply either enhancement on those bits of the objective function for which the best improving
direction is not yet known. We call this variant safe bits restriction.

Experimental Evaluation. In Section §6.4, we compare the two optimization approaches
for Floating-Point objectives on a set of automatically generated benchmarks. Moreover,
we compare the effect of enabling the proposed enhancements on the performance of
OPTIMATHSAT.

4.5 Incremental OMT

In this section, we define what it means for an OMT solver to be incremental and how this
feature is realized within OPTIMATHSAT [ST15c]. Incremental OMT is an extension of incre-
mental SMT (see Section §2.2.2), and it is currently available in both Z3 and OPTIMATHSAT.

Definition 4.5.1. (Incremental OMT). An OMT solver is said to be incremental if it is
able to propagate any useful information learned while solving some OMT problem to
any future optimization instance. To this aim, an incremental OMT is required to allow
for pushing and popping both objectives and clauses from the formula stack at runtime.

As observed in [ST15c], an OMT solver can be easily made incremental if the underlying
SMT solver provides an incremental interface of its own. Luckily, the current trends in both SAT
and lazy SMT solving is that of providing an incremental interface, due to the great performance
benefit it provides. This is also the case for OPTIMATHSAT, which is based on the SMT
solver MATHSAT5. In the following, we illustrate how OPTIMATHSAT exploits MATHSAT5
incremental capabilities to provide its own incremental OMT interface.

Stack Based Incrementality. In the case of the inline single-objective optimization schema
described in §2.3.1, we notice that all clauses that are learned by the OMT solver along the
search are either spontaneously learned by the SMT solver or “artificially” introduced by the
optimization engine. The former set of formulas includes either T -lemmas (that are always
valid in T ) or clauses derived from T -lemmas and the input formula ϕ. The second set of
formulas, instead, is comprised by clauses of the form Cµ

def
= obj < ubi (plus obj < pivot and its

negation in binary-search mode) that are used to drive the search towards the optimal value14.
14In the case of Multiple-independent OMT, which is introduced in Section §4.6.2, Cµ is defined as∨

obji∈O′(obji < ubi), where O′ is the set of objectives currently being tracked.
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If the underlying SMT solver is incremental, then the OMT solver can be made incremental
by dropping after each optimization search all and only those clauses that were “artificially”
introduced on the formula stack. The remaining clauses can instead be preserved to improve
the performance of any subsequent OMT call.

Assumptions Based Incrementality. Rather than throwing away every “artificial” clause af-
ter each OMT search, an alternative solution is to leverage incremental SMT with assumptions.

With this technique, each call to the OMT solver is associated with a fresh Boolean variable
Ak, that is then assumed by the underlying SMT solver at the beginning of the search. Then,
whenever an “artificial” unit clause C is generated along the search, the OMT solver learns the
clause ¬Ak ∨ C instead. For instance, Cµ

def
= (obj < ubi) gets replaced by C∗µ

def
= ¬Ak ∨ (obj <

ubi). In any subsequent call to the OMT solver, the Boolean variable Ak is no longer assumed
and therefore any “artificial” clause created at this stage is no more active.

Compared with the stack-based incrementality, this approach has a twofold advantage that
boost the performance even further. First, similarly to the other technique, it allows one to reuse
any T -lemma (and derived clause) that is learned by the underlying SMT solver. Second, it
also prevents any clause of the form ¬(obj < ubi) ∨ C —which may be created after learning
Cµ

def
= (obj < ubi)— from being discarded. In any subsequent call to the OMT solver, these

clauses are activated as soon as a clause of the form (obj < val) is learned, where val is a
constant smaller or equal ubi. This happens whenever the current minimum of obj becomes
smaller or equal ubi again, and also when the pivot value of a binary-search step is picked to be
smaller or equal ubi.

Experimental Evaluation. In Section §6.5, we show the benefits of Incremental OMT
with an experiment that compares it with the non-incremental solving of a number of
OMT formulas representing the same problem.

4.6 Multi-Objective Optimization

In Optimization Modulo Theories, multiple objective functions obji can be defined within the
same input formula ϕ, depending on the requirements of the target application.

Definition 4.6.1. (Multi-Objective OMT). Let ϕ be a ground SMT formula and O be a
set of N objective functions {obj1, ..., objN}, where each obji is defined over terms in ϕ.
We call the pair 〈ϕ,O〉 a Multi-Objective OMT problem.
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Remark 4.6.1. In general, the set of objectives {obj1, ..., objN} in a Multi-Objective OMT
problem 〈ϕ,O〉 does not need to be of homogeneous, so that each obji can be indifferently
an LRA, an LIA, an LIRA, a PB, a MAXSMT, a BV or a FP objective.

In the following, we briefly examine how multiple objectives can be efficiently combined
with one another in a MINMAX/MAXMIN problem (§4.6.1). Then, we provide an overview
of the main multi-objective optimization schemes that are supported by OMT solvers. These
include multiple-independent optimization (§4.6.2), lexicographic optimization (§4.6.3) and
Pareto optimization (4.6.4).

Remark 4.6.2. (Objective Combination) We note that the simplest way to combine mul-
tiple objectives with one another is to use SMT-LIBV2language constructs of the ap-
propriate type to build more complex goals. For example, given the set obj1, ..., objN of
LIRA-objectives, a recurrent requirement is that of optimizing an arbitrary weighted
sum of these goals, i.e.,

∑
iwi ·obji. We assume the reader is familiar with this approach,

and do not discuss it any further.

4.6.1 MINMAX/MAXMIN Combination

Definition 4.6.2. (MINMAX OMT, MAXMIN OMT). Given an SMT formula ϕ and a set
of goals {obj1, ..., objN}, we call MINMAX OMT the problem of finding the model M
that minimizes the maximum value of the obji’s.

Dually, we call MAXMIN OMT the problem of finding the modelM that maximizes
the minimum value of all obji.

As described in [ST15b], such a MINMAX OMT problem can be encoded into a single-
objective OMT instance 〈ϕ′, obj′〉, where

ϕ′
def
= ϕ ∧

N∧
i=1

(obji ≤ obj′) (4.18)

and obj′ is a fresh variable of the same type as the goals in {obj1, ..., objN}. (The encoding of
MAXMIN OMT is dual.)

4.6.2 Multiple-Independent Optimization

We define the Multiple-Independent OMT problem as follows.
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Definition 4.6.3. (Multiple-Independent OMT [LAK+14, BP14, BPF15, ST15b, ST15c]).
Let 〈ϕ,O〉 be a multi-objective OMT problem, where ϕ is a ground SMT formula andO def

=

{obj1, ..., objN}, as in Definition 4.6.1. We call Multiple-Independent OMT problem,
a.k.a Boxed OMT problem [BP14, BPF15], the problem of finding in one single run a
set of models {M1, ...,MN} such that each Mi makes obji minimum on the common
formula ϕ. We use the notation 〈ϕ,O〉� to formally indicate a Multiple-Independent
OMT problem.

Remark 4.6.3. Solving a Multiple-Independent OMT problem 〈ϕ, {obj1, ..., objN}〉2 is
akin to independently solving N single-objective OMT problems 〈ϕ, obj1〉, ..., 〈ϕ, objN〉.
However, the former allows for factorizing the search and thus obtaining a significant
performance boost when compared to the latter approach [LAK+14, BP14, ST15c].

In [ST15c], we extended the single-objective optimization procedures of [ST12, ST15a] to
deal with a Multiple-Independent OMT problem 〈ϕ,O〉� where each obji was a LIRA goal.
Hereafter, we describe the same optimization procedure that was presented in [ST15c] and
implemented in OPTIMATHSAT, noting that in this context we consider goals of any type, that
is, each obji can be indifferently an LRA, an LIA, an LIRA, a PB, a MAXSMT, a BV or a
FP objective15. A similar approach is implemented in Z3 [BP14, BPF15].

Input. The algorithm takes as input a pair 〈ϕ,O〉�, where O def
= {obj1, ..., objN}, and returns

a list of minimum-cost models {M1, ...,MN} and the corresponding list of minimum values
{ub1, ..., ubN}.

Initialization. We assume, without any loss of generalization, that the algorithm starts after
a round of the SMT solver found a satisfiable modelM for the input formula ϕ. This allows
us to disregard the case in which ϕ is unsatisfiable and, more importantly, to avoid introducing
any special notation for dealing with the domain differences among LIRA, BV and FP ob-
jectives16. Therefore, the algorithm is initialized with a list of watched objectives O′ = O and,
for every obji ∈ O, an initial modelMi set to be equalM and an initial upper bound ubi set to
be equalM(obji).

15Here, we assume that we do not separately apply any of the specialized optimization procedures among
those described for BV (§4.3), FP (§4.4) and PB/MAXSMT (§4.2.2) goals. Furthermore, we assume that any
PB/MAXSMT objective has been previously encoded into a LIRA goal as described in §4.2.1.

16The symbols −∞ and +∞, which in [ST15c] were used to indicate the absence of a lower bound and the
absence of a solution respectively, could be source of confusion when dealing with FP objectives, since the
domain of a FP variable admits its own −∞/+∞ values defined in the FP Theory.
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Main Loop. Like in the case of inline single-objective optimization (see Section §2.3.1), the
optimization search proceeds by enumerating satisfiable truth assignments that propositionally
satisfy both the input formula ϕ and any learned clause.

Each time a consistent truth assignment µ is found, and for each watched objective obji ∈
O′, the OMT solver invokes the appropriate T -minimization procedure over µ to find the model
M′

i and the corresponding minimum value ub′i
def
=M′

i(obji). If ub′i < ubi, then both the current
upper bound ubi and the model Mi are updated with the values of ub′i and M′

i respectively.
Additionally, in the case of aLIRA objective obji, if the latter is found to be not lower-bounded
over the propositional model µ by the LIRA-minimization procedure, then it is also removed
from the list of watched objectives O′. This is not needed for BV and FP objectives, as their
domain can only contain finitely many values.

Then, the OMT solver learns the clause

Cµ
def
=

∨
obji∈O′

(obji < ubi) (4.19)

and proceeds with another round of the CDCL-based SMT search looking for an improving
truth assignment µ′.

Remark 4.6.4. The clause (4.19) ensures a progress in the minimization of at least one
watched objective obji, since by construction Cµ is such that µ ∧ Cµ |=T ⊥. The algo-
rithm, however, can simultaneously improve the value of possibly many more than one of
the remaining watched objectives at each round of the OMT search.

Termination. The search terminates either when (1) O′ is empty or when (2) the conjunction
of ϕ with the most recent Cµ is unsatisfiable, that is, when ϕ ∧ Cµ |=T ⊥.

The argument for the termination of the multiple-independent OMT algorithm descends di-
rectly from the proof of termination in the case of single-objective optimization. In fact, the
unit clauses contained in Cµ are the same as those generated in single-objective optimization.
Learning this clause guarantees that, at some point of the search for an improving truth assign-
ment µ′, the SMT solver is forced to decide the literal associated to one such unit clauses, thus
ensuring a progress in the minimization of the corresponding watched objective obji.

Example 4.6.1. Figure 4.8 shows a toy example of multiple-independent OMT search over the
pair 〈ϕ, {obj1, obj2}〉�, which is taken from [ST15c]. The definitions of ϕ, obj1 and obj2 are
given in Figure 4.8.

In a possible execution of the OMT solver, the optimization search finds the consistent truth
assignment µ1, defined as in Figure 4.8, first. (For the sake of readability, redundant liter-
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1 3 40

1

3

obj1

obj2

ϕ
def
= (1 ≤ y) ∧ (y ≤ 3)

∧ (((1 ≤ x) ∧ (x ≤ 3)) ∨ (x ≥ 4))

∧ (obj1 = −y) ∧ (obj2 = −x− y)

µ1
def
= {(1 ≤ y), (y ≤ 3), (1 ≤ x), (x ≤ 3),

(obj1 = −y), (obj2 = −x− y)}
µ2

def
= {(obj1 = −y), (obj2 = −x− y),

(1 ≤ y), (y ≤ 3), (x ≥ 4),

(obj2 < −6)}

µ2µ1

Figure 4.8: An example of multiple-independent OMT search with OPTIMATHSAT on the
same toy example presented in [LAK+14] (Figure taken from [ST15c]).

als were removed from each µi, e.g. “¬(x ≥ 4)” from µ1.) The result of invoking the T -
minimization procedure over µ1 is a pair of new upper bounds ub1 = −3 and ub2 = −6 for the
watched objectives obj1 and obj2 respectively. Thus, the clause (obj1 < −3) ∨ (obj2 < −6) is
learned and the OMT solver resumes the search for a satisfiable truth assignment, eventually
finding µ2. With the aid of the T -minimization procedure invoked over µ2, the OMT solver is
then able to determine that obj2 is lower unbounded, so that it can be removed from the current
list of watched objectives O∗. The upper bound for obj1, instead, remains unchanged. The new
unit clause (obj1 < −3) is learned, causing an inconsistency on the formula stack and thus
terminating the optimization search. At the end of the search, the optimal values for obj1 and
obj2 are −3 and −∞ respectively.

In an alternative execution, the consistent truth assignment µ2 \ {(obj2 < −6)} is found
first, so that the solutions obj1 = −3 and obj2 = −∞ are immediately obtained and the unit
clause (obj1 < −3) is learned. As a consequence, the optimization search terminates without
generating µ1. �

Improvements. In [ST15c], we proposed three enhancements to the above procedure.
First, at each round of optimization search, only the most recently generated clause Cµ is

kept on the formula stack, while those generated previously are safely dropped from the formula
stack. This is because the clause Cµ becomes stronger as the search makes some progress
towards the optimal solution.

Second, before the T -minimization procedure is invoked on µ, we use the corresponding
T -solver to check whether the constraint (obji < ubi) is satisfiable on µ. If that is not the case,
then there is no chance —with the current truth assignment— of improving the value of obji
and we avoid calling the T -minimization procedure.

Third, when the upper bound value ubi of a watched objective obji is improved to the new
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value ub′i, we also learn the T -valid clause (obji < ubi) → (obji < ub′i). Then, as soon as
(obji < ub′i) is assigned to true, this allows for “activating” any clause in the form ¬(obji <

ubi) ∨ C that was automatically learned in a previous round of the CDCL-based SMT search.

Comparison with [LAK+14]. The optimization approach for multiple-independent OMT de-
scribed above, adopted by both OPTIMATHSAT and Z3 [BP14, BPF15, ST15b, ST15c], is
substantially different from that presented by Li et al. in [LAK+14] and described in Section
§2.3.1.

In our approach, each time a new truth assignment is generated by the CDCL-based SMT
search, the OMT solver uses a dedicated T -minimization procedure to eagerly improve the
upper bound value of as many objectives obji as possible.

In comparison, the algorithm described in [LAK+14], implemented on top of the Z3 SMT
solver, relies on set of inference rules to either (1) force an improvement of the current solution
along some objective direction or (2) prove that some objective is unbounded. Hence, in contrast
with our approach, each inference rule application only affects one objective obji at a time.

Moreover, while OPTIMATHSAT can handle multiple-independent OMT of a mixed set of
LRA, LIA, LIRA, BV , FP , PB and MAXSMT objectives indifferently, the tool presented
in [LAK+14] deals with LRA objectives only.

Experimental Evaluation. In Section §6.5, we demonstrate the benefits of the Multiple-
Independent optimization technique described here with an experimental evaluation that
compares it with Incremental OMT, and also with the sequential solving of single-objective
instances representing the same problem.

4.6.3 Lexicographic Optimization

We define the Lexicographic OMT problem as follows.

Definition 4.6.4. (Lexicographic OMT [BP14, BPF15, ST15b, ST15c]). Let 〈ϕ,O〉 be a
multi-objective OMT problem, whereϕ is a ground SMT formula andO def

= {obj1, ..., objN},
as in Definition 4.6.1. We call Lexicographic OMT problem, the problem of finding the
modelM that satisfies ϕ and makes each obji minimum in decreasing order of priority.
We use the notation 〈ϕ,O〉L to formally indicate a Lexicographic OMT problem.

Lexicographic optimization was first introduced in OMT by Bjorner et al. in [BP14], where
they illustrated the general problem and provided an implementation in an optimizing version
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function UNIFIED_LEX(ϕ, obj1, ..., objN )

1: 〈res,M′〉 := SMT.CHECK(ϕ)

2: if (res == UNSAT) then
3: return 〈UNSAT, ∅〉
4: let b1, ..., bN+1 be fresh Boolean literals
5: repeat
6: M :=M′

7: α := {b1,¬bN+1} ∪⋃i=N
i=1 {bi → (obji ≤M[obji] ∧ (obji <M[obji] ∨ bi+1))}

8: 〈res,M′〉 := SMT.CHECK_UNDER_ASSUMPTIONS(ϕ, α)

9: until (res == UNSAT)

10: return 〈SAT,M〉

Figure 4.9: The lexicographic OMT algorithm based on unified search implemented in OPTI-
MATHSAT.

of Z3. In the following, we describe in detail two approaches for lexicographic optimization
with OMT solvers that have been implemented in OPTIMATHSAT.

Remark 4.6.5. As observed in remark 4.6.1, multi-objective OMT does not constrain the
goals in the set {obj1, ..., objN} to have all the same type. Therefore, in this section we
consider approaches that are applicable to heterogeneous sets of goals only and do not
contemplate some other specialized techniques that are applicable when all objectives
have the same type (e.g. in the case of lexicographic optimization of a set of MAXSMT
goals, some of the lexicographic extensions to MAXSAT presented in [MSAGL11] could
be adopted by OMT solvers).

In this section, we describe two procedures for lexicographic optimization, namely UNI-
FIED_LEX and ITERATED_LEX. The first algorithm can be implemented on top of any SMT
solver, but it is limited by the fact that the optimization search is not guaranteed to terminate
in the case of LRA goals —due to Zeno-ness effects [ST12, ST15a]— and also in the case of
unbounded LIA goals. Conversely, the second algorithm has no such limitations, but it can
only be implemented on top of an OMT solver with some single-objective optimization proce-
dure for the cost function at hand. We provide a more extensive comparison among the two
approaches at the end of this section.

UNIFIED_LEX. The algorithm, shown in Figure 4.9, takes as input the SMT formula ϕ and
the sorted list of objectives obj1, ..., objN .
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The procedure starts by searching an initial modelM for the input formula ϕ (line 1). If no
such model exists, i.e. ϕ is unsatisfiable, then the solver returns UNSAT and terminates (lines
2-3). Otherwise, the solver instantiates a list b1, ..., bN+1 of N + 1 fresh Boolean literals (line
4). Then, it enters a loop which purpose is to improve the current modelM up until when the
optimal solution is found. The algorithm guarantees that at each iteration of the loop the value
of at least one objective function obji is improved with respect to the previous model. Although
the optimization search is not required to advance in any fixed order, it forbids any improvement
of value for a goal obji that requires worsening the value of some other goal objj such that j < i.

At beginning of each iteration of the loop, the current modelM is updated with the most
recently found one (line 6). Then, the procedure instantiates a new set of assumptions α (line
7) with the literal b1, the negated literal ¬bN+1 and N constraints. Each of these constraints
requires that, when the Boolean literal bi is decided, (1) the value of the objective function costi
must be smaller or equal than its previous value in the most recent modelM and (2) if the value
of costi cannot be improved with respect to its previous value in the most recent modelM, then
the Boolean literal bi+1 is implied. The Boolean literal b1 is included in the set of assumptions to
ensure that the first constraint is activated, while the negation of the Boolean literal bN+1 serves
the purpose of signaling the end of the optimization search, as it causes an inconsistency as
soon as bN+1 becomes implied. Intuitively, this hierarchical chain of constraints in α requires
an improvement on the value of objective obji or, alternatively, it allows for maintaining the
same value for obji while recursively shifting the same obligations on the next objective obji+1

in the list, up until the value of some objj is actually improved or the last Boolean literal bN+1

is implied, meaning that the value of every objective cannot be improved any further.
Then, algorithm checks the satisfiability of the input formula ϕ under the assumptions of set

of constraints α together with the first literal in b, that activates the hierarchy of constraints in
α (line 8). The call to the underlying SMT solver returns SAT if there exists an assignment of
values to the objectives obj1, ..., objN that is lexicographically better than the one inM. In this
case, the algorithm proceeds with the next iteration of the loop, looking for a further improving
solution. Otherwise, when the call to the underlying SMT solver returns UNSAT, the optimal
modelM is returned after breaking the loop (lines 9-10).

ITERATED_LEX [ST15c]. The algorithm, shown in Figure 4.10, takes as input the SMT for-
mula ϕ and the sorted list of objectives obj1, ..., objN .

Overall, the optimization search proceeds in rounds, starting from the goal with highest
priority, namely, obj1. At each round, the OMT solver finds the optimal model M for obji
over the input formula ϕ conjoined with the —initially empty— list of assumptions α (line 3).
Depending on the result of this check, there can be three cases.
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function ITERATED_LEX(ϕ, obj1, ..., objN )

1: α := ∅
2: for i := 1 up to N do
3: 〈res,M〉 := OMT.MINIMIZE(ϕ ∪ α, obji)

4: if (res == UNSAT) then
5: return 〈UNSAT, ∅〉
6: else if (IS_MINUS_INF(M[obji])) then
7: return 〈SAT,M〉
8: α := α ∪ {obji =M[obji]}
9: if (i < N) then

10: α := α ∪ {obji+1 ≤M[obji+1]}
11: return 〈SAT,M〉

Figure 4.10: The lexicographic OMT algorithm based on iterated optimization implemented
in OPTIMATHSAT.

If the set of constraints in unsatisfiable, then the input formula ϕ is unsatisfiable and the
algorithm stops with UNSAT as returned value (lines 4-5). It is worth noting that (1) since α is
initially empty, the first call to the OMT solver can only return UNSAT if ϕ is inconsistent (2)
if a round is found to be satisfiable and it returns a modelM, then the following round cannot
return UNSAT because no constraint added to α removesM from the feasible space.

If the goal obji is found to be not lower-bounded, then the algorithm returns SAT along the
most recently found modelM (lines 6-7), because it is not possible to improve the solution any
further.

If, instead, the optimal value of obji is finite, then the algorithm adds a constraint to α

that binds the value of costi to be equal to the one it has in the current model M (line 8).
Furthermore, it extends α with a look-ahead constraint that forces the next objective obji+1 in
the list (if any) to be smaller or equal its current model value in M (lines 9-10). The benefit
of learning this unit clause is that it restricts the feasible search space for the underlying OMT
solver and, given a PB/MAXSMT goal, it can also trigger any sorting network circuit that may
be added to the input problem (see Section §4.2.1).

Algorithms comparison. The main merit of the UNIFIED_LEX procedure is that it can be
implemented on top of any, preferably incremental, SMT solver. Moreover, it can be used to
target any bounded-domain objective obji that belongs to a Theory T that is not dense, that
is, it is not true that given any pair of value 〈a, b〉 in T there exists a third value c such that
a < c < b. Both of these constraints are required to guarantee the termination of the procedure,
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which could otherwise result in an infinite chain of solutions, possibly with an infinitesimal
improvement at each step, and not terminate.

Conversely, the ITERATED_LEX algorithm has no such limitations, and can be executed on
any input problem as long as the OMT solver can handle the optimization of obji in single-
objective mode using, for example, the inline optimization-search schema described in Section
§2.3.1. In this case, compared to the UNIFIED_LEX algorithm, the OMT solver benefits from
the availability of a T -minimization procedure as it can help reducing the number of explored
solutions and it allows one to deal with both unbounded objectives and dense Theories (e.g.
LRA). In addition, if an objective obji is given an initial lower bound, it can benefit from using
either the binary- or adaptive-search modes to further reduce the number of explored solutions.
It is worth noting that the OMT solver is not limited to using the CDCL-based optimization
schema, but it can also apply any specialized optimization procedure that is made available for
a given objective obji. This includes OBV-WA/OBV-BS for BV goals (see Section §4.3), OFP-
BS for FP objectives (see Section §4.4) and MAXRES for PB/MAXSMT goals (see Section
§4.2.2).

4.6.4 Pareto Optimization

Pareto optimization with OMT made its first official appearance in the paper [BP14], where
Bjorner et al. described the general Pareto optimization problem and provided the pseudocode
of a procedure for dealing with it based on the Guided Improvement Algorithm (GIA) presented
in [REJ09]. This procedure was implemented in the Z3 OMT solver.

In order to define the Pareto OMT problem, we define the concepts of Pareto domination
and Pareto Optimality first. Hereafter, without any loss of generality, we assume that every cost
function is subject to minimization.

Definition 4.6.5. (Pareto domination). Let ϕ be a ground SMT formula and obj be an
objective function. Then, given a pair of models 〈Mi,Mj〉 such that both models satisfy
ϕ, we say that a model Mj Pareto dominates Mi if ∀u.Mj(obju) ≤ Mi(obju) and
∃v.Mj(objv) <Mi(objv).

Definition 4.6.6. (Pareto Optimality). Given a multi-objective OMT problem 〈ϕ,O〉,
where ϕ is a ground SMT formula and O def

= {obj1, ..., objN}, is a set of N objective
functions, as in Definition 4.6.1. A modelMi of ϕ is said to be Pareto optimal if and only
if there does not exist a modelMj of ϕ such that Mj Pareto dominatesMk.

The collection of all Pareto optimal models is called Pareto front.
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function GUIDED_IMPROVEMENT_ALG(ϕ, obj1, ..., objN )

1: α := ∅
2: while true do
3: INPLACE_SHUFFLE(obj1, ..., objN)

4: 〈res,M〉 := OMT.PARTIAL_LEX(ϕ ∪ α, obj1, ..., objN)

5: if (res == UNSAT) then
6: return 〈UNSAT, ∅〉
7: while (res == SAT) do
8: c1 :=

∧N
i=1 obji ≤M[obji] // no obji worse

9: c2 :=
∨N
i=1 obji <M[obji] // some obji better

10: 〈res,M〉 := OMT.PARTIAL_LEX(ϕ ∪ α ∪ {c1, c2}, obj1, ..., objN)

11: α := α ∪ {c2}
12: yield 〈SAT,M〉

Figure 4.11: The callback version of the Guided Improvement Algorithm for Pareto OMT
implemented in OPTIMATHSAT and based on [REJ09, BP14].

Definition 4.6.7. (Pareto OMT [BP14, BPF15]). Let 〈ϕ,O〉 be a multi-objective OMT
problem, where ϕ is a ground SMT formula and O def

= {obj1, ..., objN}, as in Definition
4.6.1. We call Pareto OMT problem, the problem of finding a (possibly infinite) set of
models {M1, ...,MM} of ϕ that belong to the Pareto front. We use the notation 〈ϕ,O〉P
to formally indicate a Pareto OMT problem.

In the following, we describe two procedures for dealing with Pareto OMT problems. The
first algorithm is an implementation of the Guided Improvement Algorithm (GIA) that is made
available in OPTIMATHSAT and it is similar to the one implemented in Z3 [BP14]. The sec-
ond procedure is a novel approach, also based on the general GIA schema, that leverages the
availability of a lexicographic optimization procedure to overcome some limitations of the first
solution.

Guided Improvement Algorithm [REJ09, BP14].

In the following, we describe the implementation of the Guided Improvement Algorithm [REJ09]
in OPTIMATHSAT. The algorithm follows in the footsteps of Z3’s approach as it was presented
by Bjorner et al. in [BP14], with only minor differences.

The algorithm, shown in Figure 4.11, takes as input an SMT formula ϕ plus a set of objec-
tives {obj1, ..., objN}, and it starts with an empty list of assumptions α.
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Each iteration of the main loop from line 2 to line 12 can either yield a Pareto-optimal
modelM (line 12) or return UNSAT (lines 5-6), which can either mean that the input formula ϕ
is unsatisfiable as a whole (at the first iteration), or that the whole Pareto front has been explored
(in any subsequent round).

Remark 4.6.6. We note that, in OPTIMATHSAT, unlike Z3, we first shuffle the set of
objectives {obj1, ..., objN} at the beginning of each round (line 3). On the one hand, this
encourages the OMT solver to explore the Pareto front from different directions rather
than choosing subsequent solutions from the same neighborhood, which can be useful
when the Pareto front contains infinitely-many elements. On the other hand, exploring
from different directions results in a fragmented feasible search-space that causes addi-
tional overhead in the long run. Still, we consider this performance trade-off acceptable.

OPTIMATHSAT invokes PARTIAL_LEX() over the input formula ϕ extended with the set
of assumptions α to find an initial model M that can later on be improved according to the
Guided Improvement Algorithm strategy. The procedure PARTIAL_LEX() is such that given an
input formula ϕ, it looks for an arbitrary (and complete) propositional truth assignment µ that
satisfies ϕ first, and then computes the lexicographic-optimal modelM corresponding to ϕ∪µ
using only the minimization procedure inside each T -Solver. If every input objective obji has
a bounded optimal solution, this has two benefits. First, it reduces the number of iterations of
the inner loop at lines 7-10, since it forces the OMT solver to generate a new truth assignment
µ′ at each step. Second, it avoids Zeno-ness behavior when some objective obji belongs to the
Theory of LRA or mixed LIRA. If the result of PARTIAL_LEX() is UNSAT, the procedure
terminates immediately (lines 5-6).

Otherwise, the OMT solver is given the task of iteratively improving the initial modelM
to obtain a Pareto-optimal solution (lines 7-10). To do so, it creates two constraints c1 and c2
which require that the value of every obji is kept at least as “good” as in the current modelM
(c1), and also that the value of some obji is “improved” along its optimization direction (c2). In
the subsequent call to PARTIAL_LEX() (line 10), the combination of c1 and c2, forces the OMT
solver to search for a modelM′ that Pareto-dominatesM.

The inner loop terminates when the OMT solver finds a modelM such that there exists no
other M′ that dominates it. In this case, the Pareto-optimal model M is added to the set of
Pareto-front solutions (line 12). Before looking for another Pareto-optimal modelM′, the set
of assumptions α is extended with the most recently generated constraint c2 to removeM from
the feasible space.
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Termination. The outer loop in the Guided Improvement Algorithm depicted in Figure 4.11
is not guaranteed to terminate when there are infinitely-many Pareto-optimal models M to
enumerate. This can be the case when obji is either an unbounded LIA objective or a (possibly
bounded) mixed Rational/Integer goal.

Remark 4.6.7. Moreover, the inner loop at lines 7-10 is also not guaranteed to termi-
nate when it is always possible to find a modelM′ such thatM′ |= ϕ andM′ Pareto-
dominates the current modelM.

We illustrate this scenario with the following toy example.

Example 4.6.2. Consider the case of a Pareto OMT problem 〈obj1 = obj2, obj1, obj2〉P . The
execution of PARTIAL_LEX at line 4 of the algorithm depicted in Figure 4.11 returns a model
M in which both obj1 and obj2 are assigned an arbitrary large, but still finite, representative
value ub. Assume, for example, that ub

def
= −109, then the solver instantiates c1

def
= obj1 ≤

−109 ∧ obj2 ≤ −109 and c2
def
= obj1 < −109 ∨ obj2 < −109. Neither of these constraints

prevents the OMT solver from generating, at the next iteration, a new modelM′ in which the
model value of both obj1 and obj2 has been decreased even by a fractional amount. �

Lexicographic Guided Improvement Algorithm.

We present here an improvement of the previous algorithm, namely Lexicographic Guided Im-
provement Algorithm, that does not suffer from non-termination in the case it is always possible
to find a modelM′ such thatM′ |= ϕ andM′ Pareto-dominates the most recently found model
M. To achieve this, it incorporates an automated mechanism for detecting unbounded objective
functions and it exploits the available lexicographic optimization engine more effectively.

Unboundedness types. Given a Pareto OMT problem 〈ϕ, obj1, ..., objN〉P such that ϕ is a
satisfiable ground SMT formula, each obji can be either bounded or unbounded.

An objective obji is said to be bounded if its optimal value is always finite over the input
formula ϕ. An objective obji is said to be unbounded if there exists some truth assignment µ
such that µ makes ϕ satisfiable and obji is unbounded in correspondence with µ.

Given a model M of ϕ, we say that an unbounded goal obji is semi-bounded if it has a
finite optimal value over the single-objective OMT instance 〈ϕ ∧ c1, obji〉, where c1 is defined
as follows:

c1
def
=

N∧
j=1

objj ≤M[objj] (4.20)
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Constraint c1 encodes one of the two necessary and sufficient properties that must be met
by a modelM′ of ϕ so thatM′ can be said to Pareto-dominateM. Intuitively, an unbounded
objective obji is bounded by c1 when its value can be arbitrarily decreased only as long as the
value of some other objective objj can be correspondingly increased.

Example 4.6.3. Consider the case of a Pareto OMT problem 〈ϕ, obj1, ..., obj4〉P where ϕ def
=

{0 ≤ obj1, (obj1 ≤ 3)→ (obj2 = −obj3)}.
Then obj1 is bounded by the value 0, while obj2, obj3 and obj4 are unbounded. Let µ def

=

{0 ≤ obj1, obj1 ≤ 3, obj2 = −obj3} be a truth assignment satisfying the input formula ϕ, and
let M def

= {obj1 = 3, obj2 = −5, obj3 = 5, obj4 = 0} be a model of ϕ corresponding to the
truth assignment µ. Then both obj2 and obj3 are semi-bounded in correspondence with the
model M, because the constraint obj2 = −obj3 transforms an upper bound on either objec-
tive in a lower bound for the other goal. Neither obj2 nor obj3 are necessarily semi-bounded
for a completely different choice of values. For example, consider the case of a truth as-
signment µ def

= {0 ≤ obj1,¬(obj1 ≤ 3),¬(obj2 = −obj3)} and its corresponding model M def
=

{obj1 = 4, obj2 = −1, obj3 = −1, obj4 = 0}. �

In the following, we illustrate the main ideas of the Lexicographic Guided Improvement Algo-
rithm first, and then describe its pseudocode in detail.

Lexicographic Optimization. Let 〈ϕ, obj1, ..., objN〉P be a Pareto OMT problem such that
ϕ is a satisfiable ground SMT formula and every obji is bounded. Then, the model found by
solving the Lexicographic OMT problem 〈ϕ, obj1, ..., objN〉L is by definition a Pareto-optimal
solution for the instance 〈ϕ, obj1, ..., objN〉P .

If the size of the Pareto front is also finite, then it is possible to extract all Pareto-optimal so-
lutions by iteratively solving a sequence of Lexicographic OMT problems 〈ϕ ∪ α, obj1, ..., objN〉L,
where the initially empty set of constraints α is extended at each iteration to block any point
that is Pareto-dominated by any Pareto-optimal modelM found so far.

If some obji is unbounded, then solving the associated Lexicographic OMT problem is not
guaranteed to result in a Pareto-optimal model. In fact, as described in §4.6.3, the lexicographic
optimization search yields as soon as it encounters a goal obji with an unbounded value.

We proceed as follows when dealing with a Pareto OMT problem that contains some un-
bounded goal obji. First, we sort the objectives obj1, ..., objN so that the initial k goals in the list
are all bounded and the last N − k objectives are unbounded. Second, we use the lexicographic
optimization procedure over the sorted list of objectives to get a modelM of ϕ. By construc-
tion, the returned modelM is Pareto-optimal with respect to the initial problem restricted to the
bounded objectives only, i.e. 〈ϕ, obj1, ..., objk〉P . We use the modelM and the Equation (4.20)
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function LEX_GUIDED_IMPROVEMENT_ALG(ϕ, obj1, ..., objN )

1: α := ∅
2: β, γ, res := CLASSIFY_OBJS(ϕ, obj1, ...objN)

3: if (res == UNSAT) then
4: return 〈UNSAT, ∅〉
5: while true do
6: SHUFFLE(β)

7: 〈res,M, unb〉 := OMT.ITERATED_LEX(ϕ ∪ α, β, γ)

8: if (res == UNSAT) then
9: return 〈UNSAT, ∅〉

10: if (unb) then
11: c1 :=

∧N
i=1 obji ≤M[obji] // no obji worse

12: 〈res,M, unb〉 := OMT.ITERATED_LEX(ϕ ∪ α ∪ c1, β, γ)

13: if (unb) then
14: return 〈UNKNOWN, ∅〉
15: c2 :=

∨N
i=1 obji <M[obji] // some obji better

16: α := α ∪ {c2}
17: yield 〈SAT,M〉

Figure 4.12: The callback version of the Lexicographic Guided Improvement Algorithm for
Pareto OMT implemented in OPTIMATHSAT.

to create a bounding box that restricts the search space to exclude any potential solution that
does not Pareto-dominate with respect to modelM. As a result, this forces any semi-bounded
—within the region delimited by the constraint— goal objj to immediately become bounded.
The lexicographic optimization engine is then invoked once again by the OMT solver to get
a new modelM′ of ϕ. If no objective function is still unbounded, thenM′ is Pareto-optimal
for the original problem. Otherwise, M′ is still dominated by some other model M′′ of ϕ.
At this point, one option is to proceed with the enumeration of all the candidate solutions that
Pareto-dominateM′, that can be infinitely many. This is the approach taken by the Guided Im-
provement Algorithm implementation that was previously presented. Another possibility is to
simply give up, and terminate the search with an UNKNOWN result rather than to remain stuck
in an infinite loop. This gives the end-user a chance to reformulate the problem and to remove
the cause of non-termination.

Algorithm. The pseudocode of the Lexicographic Guided Improvement Algorithm is depicted
in Figure 4.12.
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As usual, the procedure takes as input an SMT formulaϕ plus a set of objectives {obj1, ..., objN},
and it starts with an empty list of assumptions α.

At the beginning of the search, the algorithm invokes a function CLASSIFY_OBJS() that
splits the set of objectives {obj1, ..., objN} in two disjoint subsets β and γ (line 2). The procedure
uses the engine for Multiple-independent OMT to place every bounded goal obji in the set β
and the remaining ones in γ. In the case ϕ is detected to be unsatisfiable by CLASSIFY_OBJS(),
then the algorithm terminates (lines 3-4).

If ϕ is satisfiable, the OMT solver enters the main loop of the algorithm (lines 5-18) that
extracts, at each iteration, a unique Pareto-optimal modelM of ϕ.

At the beginning of each iteration, the subset of objectives β is shuffled (line 6), for the same
reason outlined in remark 4.6.6 for the Guided Improvement Algorithm. Then, OPTIMATHSAT
invokes ITERATED_LEX() on the input formula ϕ extended with the set of assumptions α to
find an initial modelM of the input formula (if any). If UNSAT is returned, the procedure ter-
minates since the complete Pareto front has already been explored (lines 8-9). Otherwise, ITER-
ATED_LEX() found a modelM for ϕ∪α. The modelM is Pareto-optimal if the lexicographic
optimization search was able to terminate without encountering any unbounded objective. In
this case,M is added to the set of Pareto-front solutions and α is extended to remove from the
feasible search-space any model M′ that is Pareto-dominated by M (lines 15-17). If instead
ITERATED_LEX() encountered some unbounded objective, then each obji is upper-bounded us-
ing its value in the modelM, so that any semi-bounded goal is subsequently forced to become
bounded when the lexicographic engine is restarted (lines 11-12). If the formula still contains
some unbounded goal obji, then the algorithm simply gives up and returns UNKNOWN (lines
13-14). Otherwise, it jumps at line 15, where the Pareto-optimal modelM can then be handled
as previously described.

Termination. Similarly to the original algorithm, this variant of the Guided Improvement
Algorithm does still not terminate in the case in which there are infinitely-many Pareto-optimal
modelsM to be enumerated. However, in contrast with the previous approach, each iteration
of the main loop in the new algorithm is guaranteed to take only a finite amount of time. This
result is a trivial consequence of having removed any (possibly) infinite loop from this part of
the procedure implementation.

4.7 All-OMT

We define ALL-OMT as follows.
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function ALL-OMT(B, ϕ, obj1, ..., objN )

1: 〈res,M〉 := OMT.ITERATED_LEX(ϕ, obj1, ..., objN)

2: if (res == UNSAT) then
3: return 〈UNSAT, ∅〉
4: α :=

⋃
i(obji =M[obji])

5: while (res == SAT) do
6: yield 〈SAT,M〉
7: α := α ∪

∨
i(Bi 6=M[Bi])

8: 〈res,M〉 := SMT.CHECK_UNDER_ASSUMPTIONS(ϕ, α)

Figure 4.13: The basic ALL-OMT algorithm implemented in OPTIMATHSAT.

Definition 4.7.1. (ALL-OMT). Let 〈ϕ,O〉L be a lexicographic OMT problem such that
ϕ is a satisfiable ground SMT formula, O def

= {obj1, ..., objN} andM is a lexicographic-
optimum model that satisfies ϕ and makes each obji minimum in decreasing order of
priority as in Definition 4.6.4. Given a list of Boolean predicates B, we call ALL-OMT
the problem of enumerating all possible assignments of values to B that satisfy both the
input formula ϕ and

∧
i obji = M[obji]. The latter constraint ensures that the optimum

value of each obji is preserved while enumerating valid truth assignments.

Naturally, in the simplest case, O can be comprised by a single objective obj1 andM is the
solution of the single-objective optimization of obj1 over ϕ.

Notice that, according to the previous definition, ALL-OMT is not the same as enumerating
all possible models M′ of ϕ that preserve the optimal solution. In fact, this case would also
allow for enumerating all possible model values of any non-Boolean predicate like, for example,
a LIA or LRA variable. As a matter of fact, restricting the focus on Boolean predicates allows
us to guarantee the termination of the proposed ALL-OMT procedure.

Algorithm. The ALL-OMT procedure, shown in Figure 4.13, takes as input the set of inter-
esting Boolean predicates B, an SMT formula ϕ and a sorted list of objectives obj1, ..., objN .

The algorithm starts by looking for a model M that satisfies the input formula and is the
lexicographic-optimum realization of the input list of objectives obj1, ..., objN (line 1). If no
such model M exists, then ALL-OMT terminates with UNSAT (lines 2-3). Otherwise, a set
of assumptions α is initialized with a conjunction of constraints that force the value of each
objective obji to remain equal to its current optimal value in the lexicographic-optimum model
M (line 4).

Then, the OMT solver enters the main loop at the lines 5-8, from which it can escape only
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when it has enumerated all possible solutions of the ALL-OMT problem. As a first step, the
OMT solver yields the current optimum model M —from which an assignment of values to
the set of predicates B can be derived— to the caller (line 6). Then, it extends the set of
assumptions α with a constraint of the form

∨
i(Bi 6= M[Bi]), that removes the current model

M (and possibly many others) from the set of feasible solutions (line 7). At this point, the OMT
solver incrementally checks the satisfiability of ϕ conjoined with the set of assumptions α (line
8), and then jumps at the evaluation of the main loop condition.

Termination. Given a set of predicates B of size k, it is trivial to see that the ALL-OMT pro-
cedure in Figure 4.13 terminates. In fact, at each iteration the set of assumptions α is extended
with a constraint of the form

∨
i(Bi 6=M[Bi]), which is guaranteed to conflict with at least one

assignment of values to the set of predicates B that was previously satisfiable. As a result, the
OMT solver can enumerate at most 2k models of ϕ before the satisfiability check at line 8 is
forced to return UNSAT and the whole procedure terminates.
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Chapter 5

OptiMathSAT

This chapter describes the architecture and the input interfaces of OPTIMATHSAT [opt], an
Optimization Modulo Theories solver based on MATHSAT5 [CGSS13b]. OPTIMATHSAT
was first presented by Sebastiani and Tomasi in [ST12, ST15a], and subsequently extended
by Sebastiani and Trentin in [ST15b, ST15c, ST17, ST18, TS19].

This chapter is organized as follows:

§5.1 A high-level overview of the architecture of OPTIMATHSAT.

§5.2 A discussion on the compositional approach that is adopted by OPTIMATHSAT.

§5.3 An overview of the input/output interfaces of OPTIMATHSAT. Sections §5.3.1 and §5.3.2
cover the two file-based interfaces of OPTIMATHSAT, the first describing the extended
SMT-LIBV2 syntax and the second the MINIZINC interface of OPTIMATHSAT. Section
§5.3.3, instead, covers the public API accessible through its library.

§5.4 Documents the Configurable Options of OPTIMATHSAT.

Full Disclosure. Most of the material presented here is based on the content of [ST18],
that describes OPTIMATHSAT version 1.4.2. Since then, eight new updates have been re-
leased and OPTIMATHSAT reached version 1.6.2. Therefore, in this chapter we updated
the content of [ST18] to reflect the latest changes in the tool.

5.1 Architecture

OPTIMATHSAT is based on MATHSAT5, and it is developed in C++. The tool is made avail-
able at the web-page http://optimathsat.disi.unitn.it/. The website includes
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links for downloading the latest version of the tool’s binary and library, compiled for Linux,
Windows and Mac OS X. Moreover, it includes extensive documentation, code examples, a list
of publications describing or using the tool, the preferred contact address to get in touch with the
development team and more. OPTIMATHSAT inherits the license conditions of MATHSAT5,
and it is thus made freely available for research and evaluation purposes only.

Figure 5.1 depicts a simplified schema of OPTIMATHSAT architecture. At a high-level, the
tool takes as input a pair 〈ϕ,O〉, where ϕ is a (ground) SMT formula and O def

= obj1, ..., objN
is a set of objectives. When ϕ is unsatisfiable, the solver returns UNSAT. Otherwise, if ϕ is
satisfiable, OPTIMATHSAT returns SAT plus a set of modelsM def

=M1, ...,MN such thatMi

makes obji optimal over ϕ.

OPTIMATHSAT extends the SMT Interface of MATHSAT5 with an OMT Interface that
implements the optimization functionalities described in Chapter §4 while preserving the access
to all functionalities of the underlying SMT solver. In other words, OPTIMATHSAT behaves
as a wrapper of MATHSAT5 when none of its optimization, MAXSMT and Pseudo-Boolean
extensions are used.

The CDCL/SAT engine at the core of MATHSAT5 for dealing with Satisfiability Modulo
Theories is integrated with a flexible optimization procedure, identified with the Boxed Opti-
mizer block in Figure 5.1, that can handle Linear Arithmetic (see Sections §2.3.1 and §4.1),
Bit-Vector (see Section §4.3.1) and Floating-Point (see Section §4.4.1) objectives indifferently.
Throughout this dissertation we often use the wording “OMT-based approach” to refer to the
optimization search performed by this block, because it is based on the inline optimization
schema for OMT presented in [ST12, ST15a]. When dealing with single-objective problems,
the optimization search can run either in linear-, binary- or adaptive-search mode, as described
in Section §2.3.1. When dealing with multiple objectives, in the so-called Multiple-Independent
(a.k.a. Boxed) combination, the optimization search runs exclusively in linear-search mode ac-
cording to the approach described in Section §4.6.2.

The T -solver for linear arithmetic of MATHSAT5 is enhanced with the Simplex-based
optimization procedure for Linear Rational Arithmetic described in Section §2.3.1 and with
the Branch&Bound optimization procedure for Linear Integer Rational Arithmetic described in
Section §4.1. Both procedures are visually represented with the optimizer block enclosed by
the LIRA block in Figure 5.1. Currently, the various types of BV-Solvers and FP-Solvers that
are made available by MATHSAT5 contain only the stub of an ad-hoc optimization procedure,
that returns the current value of the objective function. Since at the time being these stubs are
reserved for future use and provide no other interesting functionality, they were hidden from the
general schema depicted in Figure 5.1.

The Objective block wraps the objective function to decouple the OMT-based optimization
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Figure 5.1: High-level overview of OPTIMATHSAT architecture.
Legend: black components are part of the underlying SMT solver, and blue ones are exclusively
part of OPTIMATHSAT
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search from the specific type of the objective being optimized. This modular approach makes
it easy to extend the OMT-based search of OPTIMATHSAT to support new objectives types,
provided that the underlying SMT solver includes a T -solver for that theory.

Figure 5.2 shows a detailed view of the OMT Interface block depicted in Figure 5.1. This
block contains most of the remaining functionalities introduced in OPTIMATHSAT, and it is
organized as a layered stack of independent blocks.

The top-most layer contains the public input/output interface of OPTIMATHSAT, that in-
cludes the novel optimization extensions to both the External C API (see Section §5.3.3)
and the SMT-LIBV2 parser (see Section §5.3.1), plus the new FLATZINC parser (see Sec-
tion §5.3.2).

Underneath the top-most layer is the Optimization Context block, that integrates the novel
functionalities of OPTIMATHSAT with those of MATHSAT5. In particular, it manages the stack
of objective functions, the configurable options for the optimization search (see Section §5.4),
the ALL-OMT algorithm described in Section §4.7, the functionality for retrieving optimum
models and other implementation details related to the OMT state that are hidden to the end-
user.

The Optimization Context block leverages the Sorting Network block to handle Pseudo-
Boolean/MAXSMT objectives and constraints defined with the assert-soft command, and
extends the input formula with one of the sorting network encodings described in Section §4.2.1.

The Multi-Objective Handling block is responsible for handling multi-objective OMT in-
stances according to the multi-objective combination approach selected in the configuration17.
The Pareto Engine block contains the Guided Improvement Algorithm and the Lexicographic
Guided Improvement Algorithm described in Section §4.6.4. This block uses the functionality
provided by the Lexicographic Engine, that contains both the Unified and Iterated algorithms
for lexicographic optimization described in Section §4.6.3.

Notice that, when dealing with Multiple-Independent (a.k.a. Boxed) OMT or single-objective
OMT instances, the objectives are handed directly to the underlying Optimization Engines
block for optimization. Whenever possible, depending on the type of the objective function
and on the configuration of the tool, OPTIMATHSAT invokes a specialized single-objective
optimization routine over each objective individually. In the case of BV objectives, OPTI-
MATHSAT can use either the OBV-WA algorithm described in Section §4.3.2, or the OBV-BS

algorithm described in Section §4.3.3. For FP objectives, OPTIMATHSAT can use the OFP-BS

algorithm described in Section §4.4.2. In the case of compatiblePB/MAXSMT objectives, OP-
TIMATHSAT can use either the MAXRES engine described in Section §4.2.2, or a porting into

17Notice that the Linear (see Chapter §4.6), MINMAX and MAXMIN (see Section §4.6.1) combinations of
objectives are directly handled by the Optimization Contex block through simple rewriting.
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Figure 5.2: Detailed high-level overview of OPTIMATHSAT OMT Interface.
Legend: blue components are exclusively part of OPTIMATHSAT, and the only red component
is an independent extension to MATHSAT5 that we ported in OPTIMATHSAT’s code-base
[CGSS13a]
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OPTIMATHSAT of the lemma-lifting approach presented in [CGSS13a], that was originally
implemented as an independent MATHSAT5 extension and requires an external MAXSAT en-
gine. All of the remaining objectives, for which no specialized optimization routine is used, are
lumped together and handed over to the Boxed Optimizer block embedded in the underlying
CDCL sat solver shown in Figure 5.1.

5.2 Compositional Approach

As described in Section §4.2, OPTIMATHSAT provides specialized techniques for dealing with
OMT(PB ∪ T ) and MAXSMT problems. One limitation of the OMT solver is that, at the
time being, it is only able to exploit these advanced techniques if Pseudo-Boolean objectives
and constraints are encoded as MAXSMT, that is, in terms of soft clauses.

Some OMT applications require the ability to define objective functions in terms of com-
plex combinations of LIRA, BV , FP , PB and MAXSMT goals. This is the case, e.g., of
Structured Learning Modulo Theories [TSP17] (see Section §7.2), where the objective func-
tion shown in (6.1) has both a PB and a LIRA component (see Section §6.2), or of Linear
Generalized Disjunctive Programming (LGDP) [RG94], in which the goal combines mixed
Boolean/numeric objectives.

OPTIMATHSAT deals with this necessity by adopting an explicit and compositional defi-
nition of objectives. This has three consequences. First, OPTIMATHSAT does not implicitly
create any objective function without an explicit request by the end-user. This is in contrast with
what is currently done in Z3, that defines MAXSMT goals implicitly. Second, objective func-
tions are no longer special, independent entities separated from the rest of the formula. Instead,
they are reusable objects that are treated in the same way as terms and constraints appearing in
the original formula. In particular, the stack of objectives is managed analogously as the stack
of formulas, meaning that issuing a push or a pop command contemporarily affects the state
of both stacks. Third, OPTIMATHSAT allows for the arbitrary composition of objectives as de-
scribed in Section §4.6, regardless of the fact that they are LIRA, BV , FP , PB or MAXSMT
goals. This includes both linear and MAXMIN/MINMAX compositions (§4.6.1), as well as the
Multiple-Independent (§4.6.2), the Lexicographic (§4.6.3) and the Pareto (§4.6.4) optimization.

In OPTIMATHSAT, an objective can be viewed as a term occurring in the formula. Each
objective is associated with a fresh term, of the same type, that acts as an alias for the objective
itself. OPTIMATHSAT guarantees that the alias evaluates to the same value of the objective
function for the whole duration of the optimization search, up until when the goal is popped
from the objectives stack.

Clearly, imposing constraints on objective functions affects the space of feasible solutions
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and can therefore have an impact on the outcome of the optimization search (i.e. the optimal
solution). Therefore, OPTIMATHSAT protects the end-user from an inadvertent improper use of
an objective alias by masking it with an internal variable. Whenever necessary, this precaution
can be circumvented by explicitly assigning a label to the objective function in the extended
SMT-LIBV2 language, e.g.

(minimize (+ var_1 ... var_N) :id my_label)

...

(assert (= total (+ my_label ...)))

or by using one of the available C API functions, e.g.

msat_term internal_term = msat_objective_get_term(env, obj);

The requirement for an explicit declaration and the reification of objectives into terms, which
includes MAXSMT goals, allows for combining an objective function with other terms and ob-
jectives appearing in the same formula to create novel constraints or to compose novel objec-
tives. Given an arbitrary set of objectives {obj1, ..., objN}, this can be done by linear composi-
tion if every obji is (convertible to) LIRA, or via a MAXMIN/MINMAX composition (§4.6.1)
when all objectives have the same type.

5.3 Input/Output Interfaces

The functionality of OPTIMATHSAT can be accessed directly, using its command line interface,
or through its public API. This section includes the following content:

§5.3.1 The Extended SMT-LIBV2 Interface, accessible through the command line.

§5.3.2 The MINIZINC Interface, accessible through the command line.

§5.3.3 The Public API of OPTIMATHSAT, accessible through its library.

The primary goal of the material presented here is to introduce the interest reader to the
usage of OPTIMATHSAT. Similarly to a tutorial, the presentation includes at least one usage
example for each interface. A secondary goal, in particular for the Extended SMT-LIBV2
Interface, is to provide some context and justification for certain design choices that were made
in the definition of some language extensions.

Regardless of the interface being used, an understanding of the the rich set of configurable
options of OPTIMATHSAT can be helpful to squeeze the best performance out of the tool. For
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this reason, we separately describe these options, common for all input interfaces, in Section
§5.4.

5.3.1 Extended SMT-LIBV2 Interface

One of the cornerstones of SMT is represented by the SMT-LIB initiative [smt], that develops
and promotes a standardized command-line input interface for all SMT solvers. In contrast, the
current state of OMT solving is a much more fragmented reality, due to the lack of a uniform
syntax that is both accepted by all OMT solvers and also handled in the same way. In an effort
to guarantee the maximum level of interoperability among solvers, and possibly move towards
a de facto standard, the input/output interface of OPTIMATHSAT has been gradually updated
over the years to become as compatible as possible with that of other OMT solvers, e.g., Z3.
Even so, there are still important and irreconcilable differences in the input/output interface of
OPTIMATHSAT that make it unique and require additional design care and translation effort
when modeling problems for multiple OMT solvers. This is a a consequence of the compo-
sitional approach adopted by OPTIMATHSAT, described in Section §5.2, as well as of other
design choices that depend on the underlying SMT solver, MATHSAT5.

In the following, we provide a comprehensive list of the syntactic extensions to the SMT-
LIBV2 standard introduced by OPTIMATHSAT to deal with Optimization Modulo Theories
instances. Then, we illustrate a running example taken from [ST18] that uses this interface, and
conclude with a discussion about the remaining compatibility issues among OPTIMATHSAT
and Z3 using the same running example.

Extended SMT-LIBV2 Syntax

Hereafter, we use square brackets to highlight optional syntactic elements of a syntactic exten-
sion that can be omitted when not needed. Moreover, we use <const_term to denote a term,
of the same type of the objective function, with a constant value.

Objectives Declaration. OPTIMATHSAT provides two essential ways to declare, and simul-
taneously push on the objectives stack, an optimization goal.

(minimize <term> [:id <string>] [:signed]

[:lower <const_term>] [:upper <const_term>])

(maximize <term> [:id <string>] [:signed]

[:lower <const_term>] [:upper <const_term>])
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The command minimize pushes the LIRA, BV or FP <term> on the internal stack of
objectives, so that it can be minimized at the next (check-sat) call. Dual for maximize.

(minmax <term> ... <term> [:id <string>] [:signed]

[:lower <const_term>] [:upper <const_term>])

(maxmin <term> ... <term> [:id <string>] [:signed]

[:lower <const_term>] [:upper <const_term>])

The syntactic sugar extension minmax pushes on the objectives stack a fresh <term>, of
the same type as the terms <term> ... <term>, whose optimum value matches with the
minimum maximum value of the argument list of terms <term> ... <term> (see Section
§4.6.1). Dual for maxmin.

Both types of objective declarations admit optional attributes that serve one of the following
two purposes.

• Objective Naming. The attribute :id is used to assign an explicit name to an objective
function. To associate the customized alias to the objective function, the former must
be declared of the same (or compatible) type of the latter. Naming an objective has two
useful applications. First, it can be used to retrieve the value of the objective function
from the satisfiable model, using the standard SMT-LIBV2 command (get-value

(<string>)). Second, it can be used to compose objective functions with one another,
as described in §5.2.

Remark 5.3.1. The SMT-LIBV2 standard provides the command define-fun,
that can be used to achieve similar goals as the :id attribute. Therefore, the :id
attribute does not increase the overall expressiveness of the language. Nonetheless,
we deemed useful extending the optimization syntax for objectives declaration with
this attribute for consistency with the case of PB/MAXSMT goals defined in terms
of soft clauses using the command assert-soft. A secondary advantage of this
extension is that it simplifies, at the implementation level, the identification of any
occurrence of objective recombination. In the future, this may be leveraged with
new techniques that exploit this knowledge.

• Sign Specification. In the case of a BV objective, the :signed attribute can be used
to tell OPTIMATHSAT that the value of the objective function should be interpreted as a
signed Bit-Vector rather than as an unsigned Bit-Vector, which is the default interpretation.
Currently, the :signed attribute is ignored when the objective function is of a different
type other than Bit-Vector.
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• Binary/Adaptive Search. Either (or both) of the optional attributes :lower and :upper
can be added to the definition of an objective function to restrict its feasible domain. In
the case of a minimize or maxmin command, the lower bound is considered not strict,
whereas the upper bound is considered strict. The interpretation is dual for maximize
and minmax.

The non-strict bound is required by OPTIMATHSAT to run the optimization search with
the binary- and adaptive-search modes described in Section §2.3.1. In absence of a non-
strict bound, OPTIMATHSAT runs in linear-search mode by default, regardless of the
tool’s configuration. OPTIMATHSAT is able to automatically determine the lower and
upper bound of an objective, without any input from the end-user, only when dealing
with PB/MAXSMT objectives solely defined in terms of the assert-soft command.

We remark that, in the case of the Multiple-Independent (a.k.a. Boxed) Optimization
approach described in Section §4.6.2, using either of these attributes to impose a bound
over an objective obji does not affect the feasible domain of other objectives in the same
formula, even when these have one or more variables in common with one another (e.g. x
and 2x). This is due to the definition of Multiple-Independent Optimization (see §4.6.2),
that requires the OMT solver to treat each objective obji as a completely independent
unit from the other goals in the same formula. In all other cases, bounding the objective
function is akin to pushing a bounding constraint on the formula stack, that affects the
feasible space of the formula as a whole, at least up until when the objective declaration
does not get out of scope.

PB/MAXSMT Terms. In OPTIMATHSAT, Pseudo-Boolean and MAXSMT goals and con-
straints should be defined in terms of soft clauses using the following command.

(assert-soft <term> [:id <string>] [:weight <const_term>])

The extension assert-soft adds term on the stack of soft clauses with a weight, of LIRA
type, equal to <const_term> (1 if omitted). All soft clauses with the same :id belong to
the same PB/MAXSMT term; if a soft clause is not assigned an :id attribute, then it is added
to the default group with label I .

The assert-soft command can be used to encode a Generalized MAXSMT instance di-
rectly (see Section §2.3.3), i.e. the extension admits soft clauses with zero or negative weights.
This design choice allows for easiness of use, in particular when the command is used to ex-
press general Pseudo-Boolean objectives and constraints. Internally, OPTIMATHSAT automat-
ically transforms the input set of soft clauses into a new set of purely-positive weighted soft
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clauses, as described in Section §2.3.3. This transformation step is required for compatibility
with the MAXSAT engines of OPTIMATHSAT (like, e.g., the MAXRES engine described in
Section §4.2.2 and any other external MAXSAT engine that can be plugged into OPTIMATH-
SAT using the lemma-lifting approach presented in [CGSS13a]), which commonly operate
under the assumption of a positive-weighted set of soft clauses.

Given a positive-weighted set of soft clauses ϕs belonging to the same id group, OPTI-
MATHSAT constrains id to be equal to

∑
i ITE(Ci, 0, wi), where Ci is a soft clause with weight

wi, and ITE is a function returning 0 when Ci is assigned to true and wi otherwise. In OPTI-
MATHSAT, the resulting id term can be arbitrarily minimized, maximized18, used to express
cardinality constraints or composed with other LIRA, BV , FP , PB or MAXSMT objectives
and terms to build mixed Boolean/numeric objective functions as in [TSP17, NSGM16a].

Remark 5.3.2. We recall that this is in contrast with what is currently possible in Z3,
which always implicitly defines a minimization objective for each group of soft clauses,
thus forbidding any form of objective combination when this language construct is used.
For more details, see Section §5.2.

Objectives Stack. The SMT-LIBV2 standard defines three commands for managing the as-
sertion stack of an incremental SMT solver, namely push, pop and reset-assertions.
To deal with OMT, OPTIMATHSAT extends the definition of these commands as follows.

(push <numeral>)

Given a <numeral> of value n, pushes n empty objective levels on the objectives stack. If n
is equal to 0, no objective levels are pushed.

(pop <numeral>)

Given a <numeral> of value n, smaller than the number of objective levels in the stack, pops
the n most-recent objective levels from the stack of objectives. If n is equal to 0, no objective
levels are popped. The first objective level, which is not created by a push command, cannot be
popped.

(reset-assertions)

18This can be useful, for example, when the starting set of soft clauses contains negative-weighted soft clauses.
The end-user is thus relieved from the necessity of manually encoding the problem under the more restrictive
positive-only requirement of the usual notion of a MAXSMT problem.
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Removes from the objective stack all objective levels beyond the first one. In addition, it re-
moves all objectives from the first objective level.

Optimization Search. The following SMT-LIBV2 command, that instructs an SMT solver to
check for the satisfiability of the conjunction of all formulas in the current context, is extended
by OPTIMATHSAT as follows.

(check-sat)

If the stack of objectives is empty, the OMT solver behaves as a regular SMT solver. Otherwise,
OPTIMATHSAT solves the corresponding Optimization Modulo Theories instance. When the
solver finishes attempting to do this, it replies on its regular output channel according to the
multi-objective combination approach selected in the configuration19. In Multiple-Independent
(§4.6.2) and Lexicographic (§4.6.3) optimization, OPTIMATHSAT answers with SAT if it found
a satisfiable solution for at least one objective function, with UNSAT if no solution was found for
the input formula, and with UNKNOWN otherwise. In incremental Pareto (§4.6.4) optimization,
OPTIMATHSAT answers with SAT each time it finds a Pareto-optimal solution, with UNSAT

when it exhausted the (possibly empty) set of Pareto-optimal solutions and with UNKNOWN

otherwise. The incremental Pareto-optimization search is restarted after an UNSAT result or a
command that alters the state of either the assertion or the objective stacks.

As described in Section §4.7, OPTIMATHSAT can enumerate all possible satisfiable assign-
ments to a fixed set of Boolean variables (i.e. <const_term> ... <const_term>) that
make a single-objective or a lexicographic OMT problem optimal. The following SMT-LIBV2
extension, which is also available in MATHSAT5 when dealing with a purely SMT instance, is
used to access this functionality.

(check-allsat (<const_term> ... <const_term>))

In the case of a satisfiable input formula, the output of this command extends the one of a
regular (check-sat) call by enumerating all of the satisfiable assignments to the given list
of interesting Boolean variables.

Inspecting Models. OPTIMATHSAT introduces two new extensions for inspecting the opti-
mal model(s) of an OMT formula.

19Currently, the various OMT solvers apply different multi-objective combination approaches by default.
Therefore, it is preferable to always explicitly configure this option in the OMT formula. We refer to Section §5.4.6
for instructions on how to do so.
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(get-objectives)

This command prints, on the regular output channel, the value of all objective functions cur-
rently stored in the stack of objectives. In the case that an objective function has not yet been
optimized, or OPTIMATHSAT was unable to determine the satisfiability of the input formula
before ending the search, the printed value is equal to UNKNOWN. In Lexicographic and Pareto
optimization mode, OPTIMATHSAT the printed value is equal to UNSAT under the same con-
ditions that make (check-sat) print the same value. Instead, in Multi-Independent (a.k.a
Boxed) optimization, the printed value in correspondence with an objective obji is equal to UN-
SAT when the conjunction of the input formula with the bounds imposed on the declaration of
the objective obji is unsatisfiable. This means that, in this optimization mode, there can be some
unsatisfiable objectives even when the input formula is satisfiable.

When the optimization search is configured to terminate prematurely, OPTIMATHSAT also
prints the latest search interval for any objective that was not fully optimized.

(load-objective-model <numeral>)

Given a positive <numeral> of value n, this command loads in the OMT solver’s environment
the satisfiable model corresponding to the objective having index n in the internal stack of
objectives. The internal stack of objectives is indexed starting from zero, so that the index 0

always corresponds to the least recently declared objective among those still on the stack. In
the case of a negative <numeral> of value m, OPTIMATHSAT accesses the objectives stack
in reverse order. For instance, the index −1 always corresponds to the most recently declared
objective on the stack, and the index −2 maps to the second-last objective declaration, if any.

In single-objective, Lexicographic and Pareto-optimization modes, OPTIMATHSAT loads
the optimum model in the environment, whenever available, without any explicit request from
the end-user. Instead, in the case of a multi-objective instance executed in Multiple-Independent
optimization mode, it is necessary to use this command to make the optimum model accessible
for inspection.

Extended SMT-LIBV2 Example

We use a simple OMT problem as an excuse to illustrate some language features of the extended
SMT-LIBV2 syntax introduce by OPTIMATHSAT with a practical example. We note that the
same example has been previously presented in [ST18], in which we used an earlier version of
the tool that printed a different output trace from the current version.
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Example 5.3.1. A 3D printing company must print 1100 units of the latest trending 3D model
for an urgent delivery that must be handled within a single day. To perform this task, it can
use four printers M0,M1,M2,M3. Given the desired 3D model, the estimated maximum daily
production capacity of each machine is of 800 units for M0, 500 units for M1, 600 units for
M2 and 200 units for M3. Taking into consideration the fixed electricity cost, the average
maintenance cost of each machine and the per-unit filament cost, the company estimates that
—for each unit being produced— the operating cost for machines M0,M1,M2 and M3 is equal
to 8, 9, 9 and 5 euro respectively.

The manager of this company is tasked with the goal of solving two different problems for
this delivery. A first goal is to find a production allocation of the machines such that (A) the
overall production cost is minimized and, at a tie, (B) the least number of machines is used.
A second, alternative, goal is to find a production allocation that minimizes the total cost (C),
which is given by the sum of the production cost with the compensation for the employees han-
dling the task. For this goal, the manager knows that (I) each machine needs to be supervised
by a different technician, (II) each technician is compensated with a daily wage equal to 32.5

euro and that (III) if a machine remains unused for the whole day, the technician does not need
to show up at work and the manager is not required to provide for any compensation.

Figure 5.3 shows an encoding of this simple OMT problem with the extended SMT-LIBV2
syntax. The lines from 1 to 24 encode the part of the problem that is common for both goals.
The lines from 25 to 35 encode the first goal as a lexicographic OMT instance over the two
objectives (A) and (B). Last, the lines from 36 to 42 encode the second, alternative, goal as a
single-objective OMT instance with (C) as the only target function.

The formula in Figure 5.3 is solved by OPTIMATHSAT in negligible time. The output of the
OMT solver is shown in Figure 5.4.

The lexicographic-optimal solution for the first goal, shown at lines 2-5, reveals that the
minimum production cost is equal to 8300 euro and that to print 1100 units of the desired item
within a day it is necessary to use at least 3 machines. Due to the symmetry among machines
M1 and M2, there are several ways to allocate the production so that it meets the demand
without exceeding the same minimum production cost of 8300 euro. This is reflected in the
model found by OPTIMATHSAT when solving for (A), shown at lines 6-15, which uses both M1

and M2 under their maximum capacity, printing 99 units with the first machine and only 1 with
the latter. The tie is broken by solving for (B) after fixing the optimum value of target (A). The
corresponding model, shown at lines 16-25, shows a better allocation of the resources used for
this task that allows machine M2 to not be used.

The optimal solution for the second goal (C), which optimizes the total cost for processing
the order, is shown at lines 27-30 and it corresponds to 8397.50 euro. �
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1 (set-option :produce-models true) ; enable print model

2 (declare-fun production_cost () Real)

3 (declare-fun q0 () Int) ; machine ’i’ production load

4 (declare-fun q1 () Int)

5 (declare-fun q2 () Int)

6 (declare-fun q3 () Int)

7 (declare-fun m0 () Bool) ; machine ’i’ is used

8 (declare-fun m1 () Bool)

9 (declare-fun m2 () Bool)

10 (declare-fun m3 () Bool)

11 (assert (<= 1100 (+ q0 q1 q2 q3))) ; set goods quantity

12 (assert (and ; set goods produced per machine

13 (and (<= 0 q0) (<= q0 800)) (and (<= 0 q1) (<= q1 500))

14 (and (<= 0 q2) (<= q2 600)) (and (<= 0 q3) (<= q3 200))

15 ))

16 (assert (and ; set machine ‘used‘ flag

17 (=> (< 0 q0) m0) (=> (< 0 q1) m1)

18 (=> (< 0 q2) m2) (=> (< 0 q3) m3)

19 ))

20 (assert (= production_cost (+ (* q0 8) (* q1 9) (* q2 9) (* q3 5)) ))

21 (assert-soft (not m0) :id used_machines)

22 (assert-soft (not m1) :id used_machines)

23 (assert-soft (not m2) :id used_machines)

24 (assert-soft (not m3) :id used_machines)

25 (push 1)

26 (minimize production_cost)

27 (minimize used_machines)

28 (set-option :opt.priority lex)

29 (check-sat) ; optimize (A), (B) lexicogr.

30 (get-objectives)

31 (load-objective-model 0) ; print model for (A)

32 (get-model)

33 (load-objective-model 1) ; print model for (B) after (A)

34 (get-model)

35 (pop 1)

36 (minimize (+ production_cost (* (/ 325 10) used_machines))

37 :id total_cost)

38 (set-option :opt.priority box)

39 (check-sat) ; optimize only (C)

40 (get-objectives)

41 (load-objective-model 0) ; print value of (C)

42 (get-value (total_cost))

Figure 5.3: Extended SMT-LIBV2 example (Formula taken from [ST18]).
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1 sat

2

3 (objectives

4 (production_cost 8300)

5 (used_machines 3)

6 )

7 ( (production_cost 8300)

8 (q0 800)

9 (q1 99)

10 (q2 1)

11 (q3 200)

12 (m0 true)

13 (m1 true)

14 (m2 true)

15 (m3 true)

16 (used_machines 4) )

17 ( (production_cost 8300)

18 (q0 800)

19 (q1 100)

20 (q2 0)

21 (q3 200)

22 (m0 true)

23 (m1 true)

24 (m2 false)

25 (m3 true)

26 (used_machines 3) )

27 sat

28

29 (objectives

30 ((+ production_cost (* (/ 65 2) used_machines)) (/ 16795 2))

31 )

32 ( (total_cost (/ 16795 2)) )

Figure 5.4: Extended SMT-LIBV2 example output.
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Extended SMT-LIBV2 Compatibility with Z3

The extended SMT-LIBV2 encoding shown in Example 5.3.1 is not compatible with Z3, for
the following reasons:

(i) The formula explicitly requests the minimization of the Pseudo-Boolean sum correspond-
ing to the MAXSMT group with identifier used_machines (line 27). In Z3, this results
in an error because a PB sum defined in this way is always implicitly minimized.

(ii) When Z3 assigns an implicit minimization goal to a MAXSMT group, it does so at a
location that corresponds to the assert-soft definition. This means that, given the
lexicographic OMT formula displayed in Figure 5.3, Z3 assigns a higher priority to the
minimization of used_machines than to the minimization of production_cost, thus
searching for an entirely different lexicographically-optimal solution than OPTIMATH-
SAT.

(iii) The definition of goal (C) at the lines 36 and 37 of Figure 5.3 leverages the compositional
approach of OPTIMATHSAT, described in Section 5.2, to express total_cost as the linear
combination of a LIRA term and a MAXSMT objective. This definition is currently
illegal in Z3 because it does not admit any use of the identifier of a group of soft clauses.

(iv) The label placed on goal (C) is not recognized by the parser of Z3.

(v) The extension load-objective-model, used to retrieve various optimum models in
the given example, is not supported by Z3.

Naturally, it is possible to find an alternative formulation of the problem that is both accepted
and interpreted in the same manner by both OPTIMATHSAT and Z3. However, for considerably
larger instances, this might negatively affect the performance of OPTIMATHSAT.

5.3.2 MINIZINC Interface

As part of the work of this Ph.D., OPTIMATHSAT was extended with a new input/output in-
terface for dealing with Finite Domain Constraint Programming (FDCP) problems encoded in
MINIZINC, the most widely adopted language in the field of FDCP solving that we succinctly
introduced in Section §2.4.2.
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FLATZINC Handling. As mentioned in Section §2.4.2, a MINIZINC model is typically flat-
tened into a FLATZINC [fla] instance, using the MZN2FZNcompiler, before being handed over
to a MINIZINC solver. The purpose of FLATZINC is to bridge the gap among the high-level
modeling in MINIZINC, and the need for a fixed, and easy-to-parse, input format that simplifies
the implementation of the input interface of a MINIZINC solver.

The MINIZINC Interface of OPTIMATHSAT targets the version 1.6 of the FLATZINC stan-
dard, that includes the most consolidated, and used, features of the language. Currently, OP-
TIMATHSAT supports most constraints defined in this version of the standard, excluding only
those that require the ability to use trigonometric, power or logarithmic functions and those that
require non-linear arithmetic reasoning in general20. All annotations in the FLATZINC model
are currently ignored, except for those marking output variables and arrays, that are used to
identify the interesting variables of the problem that have to be included in the printed model.

The global constraints in MINIZINC express more complex relations among the objects of
the language than the regular FLATZINC constraints. Normally, a MINIZINC solver is not re-
quired to directly support any global constraints, as these can be compiled by the MZN2FZN tool
into a standardized FLATZINC representation that uses only regular constraints and, if neces-
sary, a number of fresh support variables. Even so, it can be convenient for a MINIZINC solver
to handle global constraints directly, especially when it can use ad hoc decision procedures for
dealing with them efficiently. At the moment, OPTIMATHSAT does not implement specialized
decision procedures for any global constraints. Nonetheless, it has some special support for a
few global constraints, that consists in a suitable internal representation that leverages OPTI-
MATHSAT capabilities as efficiently as possible. For instance, this allows OPTIMATHSAT to
use sorting networks to directly encode cardinality constraints, that are otherwise expressed in
terms of PB and LIRA constraints when going through the MZN2FZN compiler.

Internally, OPTIMATHSAT represents the three basic types of FLATZINC as follows. A
FLATZINC bool is mapped into a Boolean. A FLATZINC int is represented using either the
theory of Linear Integer Arithmetic (LIA) or the theory of Bit-Vectors, depending on the tool’s
configuration. Last, a FLATZINC float is represented with the theory of Linear Rational
Arithmetic (LRA), despite the fact that OPTIMATHSAT inherits from MATHSAT5 efficient
decision procedures for dealing with the theory of Floating-Point such as the Abstract CDCL
engine presented in [HGBK12]. Although an encoding of this type was not explored so far,
and it may allow for an easy representation of some of the FLATZINC language features that

20An extended list of all the currently supported constraints is available at the web-page [opt]. We plan to
extend OPTIMATHSAT to support the complete FLATZINC 1.6 standard. This requires the completion of the
ongoing integration process with the new decision procedures of MATHSAT5 for transcendental and non-linear
arithmetic, that were recently introduced in the SMT solver [CGI+18].
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are currently still not being supported, using the theory of LRA seems to provide an easier
integration with constraints using the theory of LIA.

By default OPTIMATHSAT eliminates, whenever possible21, any 0-1 Integer variable con-
tained in the FLATZINC model. If successful, the 0-1 Integer variable is then subsequently
replaced with its Boolean counterpart inside any constraint referencing it. This transformation
is meant to improve OPTIMATHSAT’s overall performance, as performing Boolean Constraint
Propagation is typically much cheaper than using its decision procedure for Mixed Linear Inte-
ger and Rational Arithmetic (LIRA).

The only two non-basic types that are made available in FLATZINC are internally handled
by OPTIMATHSAT as follows. A FLATZINC set is encoded with an occurrence representation
approach that uses additional Boolean variables as witnesses of existence within the set, simi-
larly to [Ach09]. A FLATZINC array, instead, is given no explicit representation because it is
a simple container for other, related, objects and there is no need for any reasoning capability
over it, like the one offered by the theory of Arrays in SMT.

Multi-Objective FLATZINC Extension. The FLATZINC parser in OPTIMATHSAT deviates
from the official specification of the language in a fundamental aspect. In fact, it allows for mul-
tiple objective functions to be defined within the same model, even though this is not allowed
by the standard.

When the problem contains multiple objectives, these should be specified in a comma-
separated list contained in the same solve constraint. For instance, in the following snip-
pet of an extended FLATZINC model, OPTIMATHSAT is requested to minimize goal_1 and
maximize goal_2.

solve minimize goal_1, maximize goal_2;

The solution of a multi-objective FLATZINC model depends on the multi-objective optimiza-
tion approach being used, that can be chosen among the Multiple-Independent (a.k.a. Boxed),
the Lexicographic and the Pareto optimization modes described in Section §4.6. The desired
multi-objective combination mode can be selected using the command-line configurable option
-opt.priority=[box|lex|par], as described in Section §5.4.6.

MINIZINC to FLATZINC Conversion. A MINIZINC model must first be converted in the
FLATZINC format before OPTIMATHSAT can solve it. This task requires the MZN2FZN com-

21Typically, this transformation is effective only when BOOL2INT constraints appear as early as possible in the
input model.
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piler, that is distributed in the same package as the MINIZINC software library22. The simplest
way to use the MZN2FZN compiler is without any options, except for the name of the output file.
This results in a FLATZINC model that can be parsed by any MINIZINC solver, as it contains
only those constraints that are defined in the FLATZINC standard.

$ mzn2fzn model_file.mzn [data_file.dzn] \

-o output_file.fzn

Alternatively, it is possible to generate a FLATZINC model that specifically targets OPTI-
MATHSAT, by instructing the MZN2FZN compiler to not translate those global constraints for
which the OMT tool has special support.

If the library of global constraints that belongs to OPTIMATHSAT, called smt2, has al-
ready been installed on the system, it is sufficient to invoke the MZN2FZN tool as follows.

$ mzn2fzn -G smt2 \

model_file.mzn [data_file.dzn] \

-o output_file.fzn

Otherwise, if the directory of global constraints smt2 is missing, this can be installed as
follows. First, download the smt2.tar.gz package from the website of OPTIMATHSAT23.
Second, unpack the package inside the directory of global constraints of the target MINIZINC

distribution24.

FLATZINC to SMT-LIBV2 Conversion. An interesting aspect of OPTIMATHSAT is that it
can be used not only as a MINIZINC solver, but also as a converter from one file format to the
other. In particular, it can convert a FLATZINC model into an OMT instance encoded with the
Extended SMT-LIBV2 Syntax described in Section §5.3.125.

22Alternatively, when dealing with MINIZINC models containing Floating-Point values, we reccomend us-
ing the EMZN2FZN compiler made available at the address https://github.com/PatrickTrentin88/
emzn2fzn. The tool is designed to avoid rounding of Floating-Point values when flattening the input model.

23Direct link: http://optimathsat.disi.unitn.it/data/smt2.tar.gz.
24For versions 1.∗ of the MZN2FZN tool, the directory of global constraints is located at the path

${MINIZINC_PATH}/lib/minizinc. For version 2.0 and newer, the directory has been moved to the path
${MINIZINC_PATH}/share/minizinc.

25An alternative is represented by the FZN2SMT compiler published at [fzn]. We note, however, that FZN2SMT

converts a model in the SMT1 file format, with no optimization extension, while OPTIMATHSAT uses the Ex-
tended SMT-LIBV2 format that specifically aims to OMT solvers.
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To perform this conversion, we exploit the API tracing functionality inherited from MATH-
SAT5. The following command produces an OMT instance encoded with the same internal
representation used by OPTIMATHSAT to handle the input FLATZINC model.

$ optimathsat -input=fzn \

-debug.api_call_trace=1 \

-debug.api_call_trace_dump_config=False \

-debug.solver_enabled=False \

-debug.api_call_trace_filename=output.smt2 \

< input.fzn

In the case that the resulting OMT instance needs to be handed over to some other OMT solver
that does not interpret the assert-soft extension in the same way as OPTIMATHSAT (like,
e.g., Z3), it is necessary to add the option -opt.debug.expand_soft=True to the pre-
vious command. As described in Section §5.4.1, this eradicates the compatibility issue by
replacing any group of soft clauses with an adequate Pseudo-Boolean encoding in the resulting
OMT formula.

To solve the generated OMT instance with OPTIMATHSAT, the OMT solver should be ex-
ecuted with a few extra options, as in the following example. This ensures that OPTIMATHSAT
is run with the same configuration used when dealing with FLATZINC models.

$ optimathsat -model_generation=true \

-opt.print_objectives=true \

-opt.par.mode=callback \

< output.smt2

Extended FLATZINC Example.

Hereafter, we provide step-by-step instructions on how to use OPTIMATHSAT to solve a MINIZ-
INC instance of of the well-known NP-hard Cutstock problem, which goal is to minimize the
amount of stock material used to produce a number of goods.

Example 5.3.2. The MINIZINC model for the Cutstock problem, shown in Figure 5.5, is taken
from the the official MINIZINC distribution [Minb]26. Constraint C.1, at lines 14-16, ensures
that the number of pieces being produced is sufficient to cover the demand for each type of good.
Constraint C.2, at lines 18-21, ensures that total amount of stock material being used does not

26For the purposes of this example, we performed some minor change to the original model.
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1 %--------------------------------------------------------------------%

2 % Jakob Puchinger <jakobp@cs.mu.oz.au>, December 2007 %

3 %--------------------------------------------------------------------%

4

5 int: L; % stock unit length

6 int: K; % max no. of stock units used

7 int: N; % number of pieces

8 array[1..N] of int: lengths; % pieces length

9 array[1..N] of int: demands; % pieces demand

10 array[1..K] of var 0..1: pieces; % 1: stock used, 0: otherwise

11 array[1..K, 1..N] of var 0..K: items; % pieces cut from stock unit k

12 var int: obj; % objective

13

14 constraint forall(i in 1..N) ( % C.1

15 sum([ items[k, i] | k in 1..K ]) >= demands[i]

16 );

17

18 constraint forall( k in 1..K ) ( % C.2

19 sum(i in 1..N) (items[k,i] * lengths[i])

20 <= pieces[k] * L

21 );

22

23 constraint obj = sum([ pieces[k] | k in 1..K ]); % C.3

24

25 solve minimize obj;

26

27 output [ "Cost = ", show( obj ), "\n" ] ++

28 [ "Pieces = \n\t" ] ++ [show(pieces)] ++ [ "\n" ] ++

29 [ "Items = \n\t" ] ++

30 [ show(items[k, i]) ++ if k = K then "\n\t" else " " endif |

31 i in 1..N, k in 1..K ] ++ [ "\n" ];

32

33 % data

34 N = 3;

35 L = 10;

36 K = sum(demands);

37 lengths = [7, 5, 3];

38 demands = [2, 2, 4];

Figure 5.5: MINIZINC Cutstock example.
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exceed the available resources. Last, constraint C.3, at line 23, sets the objective function obj

to be equal to the total number of stock material units used.
The MINIZINC model is compiled into FLATZINC with the command

$ mzn2fzn -G smt2 cutstock.mzn

that results in the FLATZINC instance of the Cutstock problem shown in Figure 5.6. This simple
instance of the Cutstock problem is solved by OPTIMATHSAT in negligible time. As witnessed
by the following output trace, the optimal value of the objective function is 4.

$ optimathst -input=fzn < cutstock.fzn

% objective: obj (optimal model)

obj = 4;

items = array2d(1..8, 1..3, [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,

0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1]);

pieces = array1d(1..8, [0, 0, 1, 0, 0, 1, 1, 1]);

----------

=========

Experimental Evaluation. In Section §6.6, we show an experimental evaluation us-
ing this (novel) MINIZINC Interface and comparing the performance of OPTIMATHSAT
against those of other Finite Domain Constraint Programming tools on formulas taken
from the official MINIZINC competition and benchmark-sets steaming from the domain
of Formal Verification.

5.3.3 API Interface

OPTIMATHSAT extends the C API of MATHSAT5 with the new Optimization Modulo Theories
features. Like MATHSAT5, OPTIMATHSAT is distributed with scripts for building the Python
API27, using SWIG, and with a Java API. Both are automatically generated on top of the C API.

Introduction to the C API

In the following, we describe the most important C API extensions introduced by OPTIMATH-
SAT, with the goal of helping a new user getting started with the OMT library. For this purpose,

27The address https://github.com/PatrickTrentin88/omt_python_examples contains sev-
eral usage examples of the Python API of OPTIMATHSAT.

143

https://github.com/PatrickTrentin88/omt_python_examples


CHAPTER 5. OPTIMATHSAT

1 array [1..3] of int: demands = [2, 2, 4];

2 array [1..3] of int: lengths = [7, 5, 3];

3 array [1..24] of var 0..8: items :: output_array([1..8, 1..3]);

4 var 0..8: obj :: output_var;

5 array [1..8] of var 0..1: pieces :: output_array([1..8]);

6 constraint int_lin_eq([-1, 1, 1, 1, 1, 1, 1, 1, 1], [obj, pieces[1],

pieces[2], pieces[3], pieces[4], pieces[5], pieces[6], pieces[7],

pieces[8]], 0) :: defines_var(obj);

7 constraint int_lin_le([7, 5, 3, -10], [items[1], items[2], items[3],

pieces[1]], 0);

8 constraint int_lin_le([7, 5, 3, -10], [items[4], items[5], items[6],

pieces[2]], 0);

9 constraint int_lin_le([7, 5, 3, -10], [items[7], items[8], items[9],

pieces[3]], 0);

10 constraint int_lin_le([7, 5, 3, -10], [items[10], items[11], items

[12], pieces[4]], 0);

11 constraint int_lin_le([7, 5, 3, -10], [items[13], items[14], items

[15], pieces[5]], 0);

12 constraint int_lin_le([7, 5, 3, -10], [items[16], items[17], items

[18], pieces[6]], 0);

13 constraint int_lin_le([7, 5, 3, -10], [items[19], items[20], items

[21], pieces[7]], 0);

14 constraint int_lin_le([7, 5, 3, -10], [items[22], items[23], items

[24], pieces[8]], 0);

15 constraint int_lin_le([-1, -1, -1, -1, -1, -1, -1, -1], [items[1],

items[4], items[7], items[10], items[13], items[16], items[19],

items[22]], -2);

16 constraint int_lin_le([-1, -1, -1, -1, -1, -1, -1, -1], [items[2],

items[5], items[8], items[11], items[14], items[17], items[20],

items[23]], -2);

17 constraint int_lin_le([-1, -1, -1, -1, -1, -1, -1, -1], [items[3],

items[6], items[9], items[12], items[15], items[18], items[21],

items[24]], -4);

18 solve minimize obj;

Figure 5.6: FLATZINC Cutstock example.
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we assume that the reader is at least a bit familiar with the library of MATHSAT5. We refer the
interested reader to the official MATHSAT5 and OPTIMATHSAT websites, [matb] and [opt],
for more detailed documentation of the C API.

Environment. The Optimization Modulo Theories functionality of OPTIMATHSAT is acces-
sible through an environment instance apt for optimization.

msat_env msat_create_opt_env(msat_config cfg);

void msat_destroy_env(msat_env e);

The function msat_create_opt_env() creates an instance of environment with access to
all OMT functionality. The argument of type msat_config is a container that, like in MATH-
SAT5, allows the end-user to provide their own configuration overriding the default behavior of
the OMT solver. The returned value type is msat_env, which is the same used for an environ-
ment instance by MATHSAT5. As a consequence, the environment for optimization can also be
used as a regular MATHSAT5 environment, and it gives access to the same Satisfiability Mod-
ulo Theories functionalities. When the environment is no longer used, it should be manually
destroyed with the function msat_destroy_env() to properly free all of its resources.

Objectives Declaration. A simple minimization or maximization objective can be created
using one of the following commands.

msat_objective msat_make_minimize(msat_env e, msat_term goal,

msat_term lower, msat_term upper);

msat_objective msat_make_maximize(msat_env e, msat_term goal,

msat_term lower, msat_term upper);

Both functions take as argument the instance of (optimizing) environment in which the goal
should be created (env), an expression representing the objective function (goal), plus (op-
tional) lower and upper bound values for the optimization search. When the lower bound is
equal to msat_error_term28, the goal is assumed to not be lower-bounded. Dual for the
upper bound.

The following commands can be used to declare either a MINMAX or a MAXMIN goal,
described in Section §4.6.1.

28This value can be instantiated with the MATHSAT5 function msat_make_error_term().
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msat_objective msat_make_minmax(msat_env e, size_t l, msat_term ts[],

msat_term lower, msat_term upper);

msat_objective msat_make_maxmin(msat_env e, size_t l, msat_term ts[],

msat_term lower, msat_term upper);

Both functions take as input the reference (optimizing) environment in which the objective is
going to be created (env), the number of terms contained in the MINMAX/MAXMIN objective
(l), the corresponding list of terms to be used upon creating the MINMAX/MAXMIN objective
(ts[]), plus (optional) lower and upper bound values for the optimization search. The terms
contained in the list ts[] must be all of the same (or compatible) type. The bounds can be
omitted using the same approach described for a simple objective declaration.

Altogether, these four functions allow for declaring arbitrary LIRA, unsigned BV , FP ,
Pseudo-Boolean and MAXSMT objectives. In addition, for each of these commands OPTI-
MATHSAT provides an alternative variant that can be used to declare a signed BV objective.
The suffix “_signed” is appended to the name of each function, while the argument list re-
mains unchanged. When declaring an objective of any type other than BV , the original com-
mand and its variant result in the same objective instance being created.

After an objective has been declared, it is possible to use the following macro to check that
it has been correctly instantiated.

int MSAT_ERROR_OBJECTIVE(msat_objective o);

The function returns 1 if the msat_objective variable points to a valid objective and 0

otherwise.
When an objective is no longer needed, its allocated resources should be manually freed

using the following function.

void msat_destroy_objective(msat_objective o);

We note that, in the case that the objective has been previously pushed on the objectives stack
and it has not yet gone out of scope, destroying an objective does not result in an immediate
deallocation of all of its resources. The goal instance will be automatically destroyed after it is
removed from the stack of objectives.

Objectives Stack. In contrast with what happens when using the Extended SMT-LIBV2 syn-
tax (see Section §5.3.1), OPTIMATHSAT does not automatically push each new objective on
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the stack of objectives when using the API. Instead, the objective should be manually pushed
on the stack of objectives with the following command.

int msat_assert_objective(msat_env e, msat_objective o);

The stack of objectives is handled in parallel with the stack of formulas, in the same fashion
described for the Extended SMT-LIBV2 Interface in Section §5.3.1.

int msat_push_backtrack_point(msat_env e);

int msat_pop_backtrack_point(msat_env e);

int msat_reset_env(msat_env e);

The function msat_push_backtrack_point() pushes a checkpoint for backtracking
in an environment, while the function msat_pop_backtrack_point() backtracks to the
last checkpoint set in an environment. The function msat_reset_env(), instead, clears
both the assertion stack and the objectives stack. Any objective that has not yet been manually
destroyed remains valid even after being removed from the objectives stack, so that it can be
used multiple times.

OPTIMATHSAT provides some functionality for iterating over the stack of objectives that
are currently asserted, to facilitate keeping track of the objective functions loaded in the (opti-
mizing) environment. The function

msat_objective_iterator msat_create_objective_iterator(msat_env e);

creates an objective stack iterator for the given environment. When

int msat_objective_iterator_has_next(msat_objective_iterator i);

returns a value different from 0, then

int msat_objective_iterator_next(msat_objective_iterator i,

msat_objective *o);

saves in the pointer *o the next goal in the stack of objectives. Whenever an objective iterator
is no longer needed, its resources should be released by invoking

void msat_destroy_objective_iterator(msat_objective_iterator i);
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PB/MAXSMT Terms. As illustrated in Section §5.3.1 for the Extended SMT-LIBV2 In-
terface, in OPTIMATHSAT, Pseudo-Boolean and MAXSMT goals and constraints should be
defined in terms of soft clauses. The experimental evaluations in Section §6.2 witness that this
approach can significantly improve the performance of OPTIMATHSAT because it enables the
use of more sophisticated encodings and techniques at solving time. The command

int msat_assert_soft_formula(msat_env e, msat_term cl, msat_term w

const char *id);

adds the soft clause cl with weight w to the (possibly empty) set of soft clauses with the iden-
tifier id. The weight w must be a constant value of LIRA type and it can be negative, zero
or positive. This allows for a direct encoding of Generalized MAXSMT instances (see Sec-
tion §2.3.3). Internally, OPTIMATHSAT automatically transforms the input set of soft clauses
into a new set of purely-positive weighted soft clauses, as described in Section §2.3.3. This
transformation, completely transparent to the end-user, is necessary for compatibility with the
MAXSAT engines that can be used to deal with the OMT instance. We recall that OPTIMATH-
SAT uses MAXRES (see Section §4.2.2) as internal MAXSAT engine, and that any external
MAXSAT engine can be plugged into OPTIMATHSAT using the lemma-lifting approach pre-
sented in [CGSS13a].

Optimization Search. An Optimization Modulo Theories instance is solved by invoking the
following command.

msat_result msat_solve(msat_env e);

When the stack of objectives is empty, OPTIMATHSAT behaves like a regular SMT solver.
Otherwise, the OMT problem is solved according to the selected configuration of the tool. In
Multiple-Independent (§4.6.2) and Lexicographic (§4.6.3) optimization, the value returned by
this function is equal to SAT if a satisfiable solution was found for at least one objective function,
it is equal to UNSAT if OPTIMATHSAT was able to determine the unsatisfiability of the OMT
instance and it is equal to UNKNOWN otherwise. In incremental Pareto (§4.6.4) optimization,
the function returns SAT each time a new Pareto-optimal solution is found, it returns UNSAT

when the (possibly empty) set of Pareto-optimal solutions is exhausted and it returns UNKNOWN

otherwise. The incremental Pareto-optimization algorithm is restarted after each UNSAT result
or after a call to a function that alters the state of the assertion or the objective stacks.

In addition to the msat_result value returned by solving an OMT instance, which refers
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to the optimization search as a whole, OPTIMATHSAT separately associates to each objective
function its own msat_opt_result value that can be retrieved with the following function.

msat_opt_result msat_objective_result(msat_env e, msat_objective o);

Depending on the status of the optimization search on the objective specified in the argument
list, three possible values can be returned: SAT indicates that OPTIMATHSAT found some solu-
tion for the objective function, UNSAT indicates that the objective function is unsatisfiable with
respect to the input formula and UNKNOWN is used when the OMT solver is unable to decide
the satisfiability. The OMT solver further distinguishes a SAT result in three possible cases:
OPTIMAL, meaning that OPTIMATHSAT was able to find (and certify) the optimal solution,
APPROX, meaning that the optimization search was interrupted due to meeting the early termi-
nation criteria specified in the configuration, and PARTIAL, that is used for all other causes of
early termination of the optimization search (like, e.g., a timeout). In the case of a APPROX or
PARTIAL result, the model stored by OPTIMATHSAT in the objective function may or may not
be optimal.

Inspecting Models. When model generation is enabled, OPTIMATHSAT generates a satis-
fiable model of the input formula each time it updates the upper [resp. lower] bound of some
objective function being minimized [resp. maximized]. OPTIMATHSAT provides two ways to
access the model associated with an objective function. The function

int msat_load_objective_model(msat_env e, msat_objective o);

replaces the current model of OPTIMATHSAT with the model stored in the optimization goal,
whereas

msat_model msat_get_model(msat_env e, msat_objective o);

returns the model of the objective function directly.

In both cases, the content of the model can be inspected using the model iteration and eval-
uation functionalities made available by MATHSAT5. When the model instance is no longer
needed, this should be properly deallocated with

void msat_destroy_model(msat_model m);
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In general, the model stored in an objective function is not guaranteed to be optimal, unless
the corresponding msat_opt_result is equal to SAT and also OPTIMAL. In the case of an
unbounded or infinitesimal LIRA objective, OPTIMATHSAT generates a model in which the
value of the objective function is given a finite representation determined by the configuration
of the tool (see Section §5.4.4).

Other Functionalities. We refer to the official website [opt] for a detailed description of
the remaining, less prominent, functionalities provided by the API of OPTIMATHSAT. These
include

• Methods for retrieving additional status information at the end of the optimization search.
This is useful, for example, to extract the final lower and upper bound and evaluate the
overall progress when the optimization search is early terminated.

• Methods for performing a callback-based exploration of the Pareto front.

• The porting of the lemma-lifting interface presented in [CGSS13a] into OPTIMATH-
SAT, that allows one to use an external MAXSAT solver to deal with OMT(PB ∪
T )/MAXSMT instances.

and more.

C API Example

Hereafter, we illustrate, with a short code example, a possible use of the C API of OPTIMATH-
SAT for solving the same OMT problem illustrated in the Example 5.3.1. A very similar ex-
ample was presented in [ST18], that, however, used an earlier version of OPTIMATHSAT and
a less updated version of the API.

Example 5.3.3. Figure 5.7 shows the relevant parts29 of a possible C API encoding of the OMT
problem described in Example 5.3.1.

The target problem is a Lexicographic OMT instance. By default, OPTIMATHSAT handles
multiple objectives according to the Multiple-Independent (a.k.a. Boxed) OMT combination.
Therefore, the code at lines 6-9 overrides the default configuration of OPTIMATHSAT, en-
abling both lexicographic optimization (line 7) and model generation (line 8). Then, the config-
uration is used to create an optimizing instance of the environment, including all of the OMT

29In this example, we omit the part of the source code that is solely based on functionalities shared with
the underlying SMT solver MATHSAT5, and focus instead on the new optimization features introduced with
OPTIMATHSAT. The complete source code is made available on the official website of the OMT solver, [opt],
listed among the other API examples.
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1 #include "mathsat.h"

2 #include "optimathsat.h"

3

4 int main(int argc, char *argv[])

5 {

6 msat_config cfg = msat_create_config(); /* 1. configuration */

7 msat_set_option(cfg, "opt.priority", "lex");

8 msat_set_option(cfg, "model_generation", "true");

9 ...

10

11 msat_env env = msat_create_opt_env(cfg); /* 2. environment */

12

13 msat_term formula; /* 3. formula */

14 ...

15

16 msat_assert_formula(env, formula);

17

18 msat_term production_cost = ... ; /* 4. objectives */

19

20 msat_assert_soft_formula(env, not_m0, one, "used_machines");

21 ...

22

23 msat_term used_machines = msat_from_string(env, "used_machines");

24 ...

25

26 msat_objective obj[2];

27 obj[0] = msat_make_minimize(env, production_cost, none, none);

28 obj[1] = msat_make_minimize(env, used_machines, none, none);

29

30 msat_assert_objective(env, obj[0]); /* 5. optimization */

31 msat_assert_objective(env, obj[1]);

32

33 msat_result res = msat_solve(env);

34

35 msat_load_objective_model(env, obj[1]); /* 6. dump model */

36 ...

37

38 msat_destroy_objective(env, obj[1]); /* 7. free memory */

39 msat_destroy_objective(env, obj[0]);

40 msat_destroy_env(env);

41 msat_destroy_config(cfg);

42 }

Figure 5.7: Sample C API code.
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functionalities, at line 11. We note that, as described earlier in this Section, OPTIMATHSAT
uses distinct functions to instantiate an optimizing and a non-optimizing version of the environ-
ment. The code at lines 13-16, which is almost completely omitted as it uses only functionalities
shared with MATHSAT5, corresponds to the SMT-LIBV2 constraints at lines 11-19 of Fig-
ure 5.3. As in Example 5.3.1, the first objective is a LIRA expression labeled with the name
production_cost and the second goal is a PB term encoded as a group of soft clauses
with identifier the used_machines (lines 20-24). The pair of minimization objectives is then
created at lines 26-28. We note that the used_machines term used at line 28 is instanti-
ated by calling the MATHSAT5 function msat_from_string() over the identifier of the
MAXSMT sum after the group of soft clauses has been created. Similarly to the Extended
SMT-LIBV2 example, no lower and upper bound is imposed on either objective. Hence, the
empty term “none”, created with MSAT_MAKE_ERROR_TERM(), is used as placeholder for
the mandatory objective bounds. The resulting Lexicographic OMT problem is then solved at
line 33. By default, OPTIMATHSAT automatically sets the optimum model of a Lexicographic
OMT instance as the current model of the solver, so that it can then be accessed in the same
way as in MATHSAT5. However, since this is not necessarily the case for every multi-objective
combination approach, we show how to explicitly ask the OMT solver to do so at line 35. Fol-
lowing the best practice, the resources that are no longer used are manually released at lines
38-41.

The complete version of the source code show in Figure 5.7, available on OPTIMATHSAT’s
website, is then compiled and executed as follows.

$ g++ example_api.cpp \

-I${OPTIMATHSAT_DIR}/include/ \

-L${OPTIMATHSAT_DIR}/lib/ \

-lmathsat -lgmp -lgmpxx -lstdc++ \

-o example_api

$ ./example_api

Lex. optimum: 8300, 3

5.4 Configurable Options

After several years of research and development, OPTIMATHSAT now implements a broad
number of techniques, that can be fine-tuned using its rich set of configurable options. When-
ever necessary, we describe each configurable option in detail, to allow for an educated choice
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when using OPTIMATHSAT. We observe that, depending on the interface that is being used to
interact with the tool, there are several ways to set a configurable option.

• The option is specified as a command-line argument. Some options, like -input=...
and -config=..., should only be used as command-line arguments.

~$ optimathsat -option=VALUE ...

• The option is stored in a newline-separated configuration file, that is then separately
handed over to OPTIMATHSAT with the command-line option -config=FILE. The
arguments of the options should be in lowercase format, unless differently specified by
the -help page.

option=VALUE

...

• The option is added directly to the input formula using the SMT-LIBV2 syntax. Options
should be preferably listed in the header part of a formula, both because it can be too late
to set some of these options the OMT started to process the problem, and also because this
increases the visibility of any hard-coded option that might override any command-line
argument.

(set-option :config option=VALUE)

...

• When using OPTIMATHSAT via its public API, the configuration is specified with the
following function, same as MATHSAT5.

msat_set_option(cfg, "option", "VALUE")

5.4.1 Input/Output Interface Options

The default experience with OPTIMATHSAT can be personalized via a set of configurable op-
tions that allow the end-user to adjust the input/output behavior of the tool.
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Input format. When the command-line interface is used, it is possible to specify the language
in which the input formula is encoded with the option

-input=STR [default: smt2]

As seen in §5.3, OMT problems can be encoded using either one of the following two formats:
smt2, that corresponds to the Extended SMT-LIBV2 syntax for OMT (see Section §5.3.1), and
fzn, that accepts formulas adhering to the FLATZINC standard, plus minor language extensions
introduced by OPTIMATHSAT to support multi-objective combinations (see Section §5.3.2).

Verbosity. Another, often useful, option is

-opt.verbose=BOOL [default: false]

When this flag is enabled, OPTIMATHSAT displays additional status info along the optimiza-
tion search. In particular, it signals when the lower or the upper bounds of some objective
function gets updated by the optimization search.

Tracing. Among the rich set of features that are inherited for free from MATHSAT5, the API
Tracing functionality deserves a special mention. Although its main purpose is for logging
reasons, it can also be used to automatically generate OMT instances in the Extended SMT-
LIBV2 syntax starting from a FLATZINC problem, as seen in §5.3.2. By default, the resulting
instance is generated with an encoding that is best-suitable for OPTIMATHSAT, so that it can
be solved as efficiently as possible. However, the same formula might not be correctly han-
dled when handed over to Z3, due to a diverging handling of the assert-soft command.
OPTIMATHSAT provides the following option to overcome this issue.

-opt.debug.expand_soft=BOOL [default: false]

When the flag is enabled, any soft clause is automatically expanded into a Pseudo-Boolean
encoding. Otherwise, the assert-soft command is used.

Retro-compatibility. Prior to version 1.5.0, OPTIMATHSAT printed by default the values of
all objective functions when used from the command-line. Since then, in compliance with the
recent changes introduced in Z3, the Extended SMT-LIBV2 syntax has been enriched with
the command (get-objectives), that is used to issue an explicit request to display these
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values. As a result, newer versions of OPTIMATHSAT no longer autonomously display such
information by default. The following option was added to the tool for retro-compatibility.

-opt.print_objectives=BOOL [default: false]

When this option is enabled and OPTIMATHSAT is used from the command-line, the solver
prints the value of all objective functions after each (check-sat), even without an explicit
call to the new (get-objectives) command.

Since version 1.5.0 onward, the output format used by OPTIMATHSAT has also been up-
dated to be more uniform with that of Z3, in an effort to move forward towards a more easily
inter-operable environment. We introduced the following option, that controls the output format
used by the solver, for retro-compatibility.

-opt.output_format=STR [default: new]

The parameter can be set to old, that refers to the output format used by OPTIMATHSAT up
to version 1.4.5, or to new, that is the new standard adopted from version 1.5.0 onward.

5.4.2 OMT-based Search Options

Search Strategies. As described in §2.3.1, in OPTIMATHSAT the OMT-based search ad-
vances towards the optimum goal either in linear-, binary- or adaptive-search mode. The strat-
egy can be selected with the option

-opt.strategy=STR [default: lin]

The value lin is used for linear-search, bin for binary-search and ada for adaptive-search.
We recall that, in general, it is necessary to provide an initial lower bound [resp. upper bound]
when minimizing [resp. maximizing] some mixedLRIA, PB or MAXSMT objective function
to use the binary- and adaptive-search strategies. This information is not strictly necessary
when dealing with some BV or FP goal, although it can speedup the search.

When OPTIMATHSAT is executed in binary- or in adaptive-search mode, the optimization
search can be further adjusted using one of the following configurable options.

-opt.bin.pivot_position=FLOAT [default: 0.5]
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This option controls the desired aggressiveness of the pivoting cuts that are generated along the
optimization search in binary- and adaptive-search mode (see Section §2.3.1). A valid argument
is contained in the interval ]0, 1], and it indicates the relative position of the pivoting value with
respect to to the range of values that goes from the lower bound up to the upper bound. For
example, the value 0.5 corresponds to bisecting the search interval in two halves of the same
size. In general, the most suitable value to be assigned to this option depends on various factors
—including, e.g., the tightness of the initial range of the objective function that is provided
by the end-user, the encoding of the formula and the problem itself— and it is therefore best
determined hands-on.

-opt.bin.first_step_linear=BOOL [default: true]

This flag forces the first search step to run in linear-search mode. This is useful to obtain a
tighter estimate of the initial upper bound [resp. lower bound] when minimizing [resp. max-
imizing] some objective function. We note that, in OPTIMATHSAT, a tighter initial search
interval can positively affect the effectiveness of pivoting, at least for the first few steps.

-opt.bin.max_consecutive=INT [default: 1]

This option limits the maximum number of consecutive pivoting steps before OPTIMATHSAT is
forced to perform a linear-search step. As seen in §2.3.1, this is especially useful when dealing
with LIRA/LRA objectives, because it prevents ‘Zeno-ness” behavior when the optimization
search is advanced.

Search Learning. As described in §4.5, an incremental OMT solver is able to exploit learned
information across multiple optimization searches to improve the overall performance. In this
regard, OPTIMATHSAT can be optionally configured to learn, along the optimization search,
additional trivial implications which aim is to increase the chance that learned information is
re-used in subsequent incremental calls to the OMT solver.

-opt.learn_trivial_implications=BOOL [default: true]

When this flag is enabled, OPTIMATHSAT learns T -valid clauses of the form (obji < ui) →
(obji < u′i), where ui is the most recently found minimum value of obji and u′i is the previous
value of ui (Dual for maximization). As a result, as soon as the literal corresponding to (obji <

ui) is assigned to true in a subsequent incremental call to the OMT solver, then all previously-
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learned clauses in the form ¬(obji < u′i) ∨ C are “activated”. For more details, we refer the
interested reader to [ST15c].

5.4.3 Early Termination and Approximate Search Options

Generally speaking, solving an OMT problem requires considerably more effort than dealing
with the corresponding SMT problem obtained by discarding the objective functions. This has
two main causes. The first is that, in contrast with an SMT solver that stops at the first solution,
an OMT solver normally visits a (possibly large) number of intermediate solutions along the
optimization search. The second reason is that an OMT solver must certify the optimality of
the latest solution it finds before it is allowed to terminate the optimization search. In practical
terms, this means searching for another improving solution and proving that it does not exist.
The experimental evidence of [ST12, ST15a, ST15c] on OMT(LIRA ∪ T ) formulas has
shown that, on the benchmark-sets being subject to investigation, the certification step can be
quite expensive in practice and require up to (about) half of the entire search-time.

In some particular resource-demanding OMT applications a “good enough” estimate of the
optimal solution might be preferred over a certified optimal solution when the former can be
found in a relatively short amount of time compared to the latter. For example, this can be
the case for time-sensitive applications in which there is a trade-off in-between the desirable
progress in the optimization of some objective function and the amount of time that can be
devoted to this task.

For this reason, OPTIMATHSAT provides a number of useful options that allow for termi-
nating the search early and/or searching for an approximate solution.

Early Termination. The easiest way to end the optimization search early is to use the fol-
lowing option, that forces the OMT-based optimization search described in §2.3.1 to stop as
soon as every objective function being tracked has at least one (possibly not optimal) satisfiable
solution.

-opt.no_optimization=BOOL [default: false]

We notice that enabling this flag forces OPTIMATHSAT to behave similarly to a standard SMT
solver, which would also stop at the first solution, with the significant difference that OPTI-
MATHSAT performs an additional call to the T -minimization procedure for each objective in
the input formula. The returned model, is thus guaranteed to be minimal for the given 〈µ, obj〉
pair, where µ is the first (complete) satisfiable truth assignment that was found by OPTIMATH-
SAT and obj is the objective function (Dual in maximization). The main use-case of this option
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is to allow for designing new optimization procedures on top of OPTIMATHSAT—via its public
API— that need to have access to the underlying T -minimization procedures but do not want
to rely on the inline optimization-search procedure described in §2.3.1.

When dealing with time-sensitive applications, instead, the typical scenario involves the use
of some type of software timeout.

-timeout=FLOAT [default: 0]

This option can be used to impose a timeout, expressed in milliseconds, on the running-time of
the solver. We notice that the timer starts ticking from the moment in which the OMT search is
started and that a value equal to 0 means that no timeout is set.

-opt.soft_timeout=BOOL [default: false]

If this flag is enabled, the timeout set with -timeout=FLOAT is ignored if it occurs before
when each objective function has at least one (possibly suboptimal) satisfiable solution. If this
is the case, then the search is automatically terminated as soon as the latter condition becomes
is verified. In essence, the idea is to postpone an otherwise hard timeout that could terminate the
search before the solver is able to determine the satisfiability of the input formula. The use-case
scenario for this option is represented by those OMT applications for which an approximated
estimate of the optimal solution is acceptable, but the absence of any solution is not (see, e.g.,
[TSP17]).

Approximate Search. In some OMT applications, the time required to solve a problem is
not the only factor to take into consideration. Instead, another equally important property to
be considered is the perceived quality of a solution, often expressed in terms of the amount of
(estimated) progress made by the OMT search.

To this aim, OPTIMATHSAT provides two heuristic functions that can be used to perform
an approximated optimization search.

-opt.abort_interval=FLOAT [default: 0.0]

When the “abort interval” is set to a value v larger than 0.0, the optimization search stops as
soon as the size of the search interval becomes smaller than the threshold value v.

-opt.abort_tolerance=FLOAT [default: 0.0]
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When the “abort tolerance” is set to a value r larger than 0, the optimization search stops as soon
as the ratio among the current search interval size and the initial search interval size becomes
smaller than the value r.

We note that, in the case of Multiple-Independent optimization, the requirement for termi-
nating the whole optimization search is that the search interval of each objective being tracked
meets the condition for termination. Up until when every objective satisfies such condition, the
OMT solver is allowed to find an improving solution for any of them.

5.4.4 T -Specific Options

General T -Optimization. When minimizing an objective obji, OPTIMATHSAT invokes a
T -specific minimization procedure over each satisfiable and complete truth assignment µ that
propositionally satisfies the input formula, provided that this function is available for the theory
T (see Section §2.3.1). This behavior can be globally adjusted with the following option.

-opt.theory.no_optimization=BOOL [default: false]

Toggling this flag disables the call to the T -minimization procedure. Without calling this func-
tion, for each complete truth assignment µ that satisfies the input formula, OPTIMATHSAT is
forced to generate an arbitrary model that does not necessarily make the objective function min-
imal for the given truth assignment µ. As a consequence, the optimization search can be forced
to iterate over the same truth assignment µ multiple times, with a (generally) negative impact
on the performance. Overall, the optimization search may still be able to eventually converge at
the optimal solution when dealing with some theory T and some objective obji for which there
can only be finitely many enumerable solutions. However, the progress towards the optimum
solution can be much slower and in the case of LIRA objectives termination is not guaranteed.

LIRA-Theory

Search Behaviour. The OMT-based optimization procedures for OMT (LRA) and OMT
(LIRA), described in §2.3.1 and §4.1 respectively, can be fine-tuned with any combination of
the following options.

-opt.theory.la.ignore_non_improving=BOOL [default: true]

When this flag is enabled, the T -minimization procedure for LIRA objectives is invoked only
when the current truth assignment µ admits an improving solution for a given objective obji. In
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single-objective optimization, this condition is always verified so the value assigned to the op-
tion is ignored. Instead, when dealing with Multiple-Independent (a.k.a. Boxed) optimization, it
can happen that the set of T -atoms handed over to the T -minimization procedure does not admit
any improving solution for some objective obji (but not all). In this situation, OPTIMATHSAT
performs an additional T -satisfiability check over the set of constraints µ∧ (obji < ubi), where
ubi is the most recently found upper bound of obji. Whenever the set of constraints is found to
be T -inconsistent, OPTIMATHSAT can thus avoid wasting time by calling the (usually more
expensive) T -minimization procedure.

-opt.theory.la.lar_always_optimize=BOOL [default: false]

In single-objective optimization, enabling this option guarantees that the value of the objec-
tive function is always optimal at the end of each satisfiability check inside the Simplex-
based tableau embedded in the LRA-Solver. In other words, OPTIMATHSAT invokes the T -
minimization procedure after each satisfiability check, even on partial truth assignments. While
this feature may improve the performance when dealing with OMT problems with a strong
theory-combination component, it causes also some additional overhead. In multi-objective
optimization, this option has no effects.

As described in Section §4.1, the Branch&Bound search embedded in the T -minimization
procedure for LIRA objectives comes in two variants.

-opt.theory.la.laz_mode=STR [default: part]

When set to part, OPTIMATHSAT uses the “truncated” version of the LIA-minimization
procedure, and when set to full, OPTIMATHSAT runs the complete, but possibly more ex-
pensive, variant of LIRA-MINIMIZE(). On the one hand, the “truncated” version of the search
can result in the same truth assignment µ being generated multiple times along the optimization
search. On the other hand, OPTIMATHSAT is better equipped to handle those degenerate cases
for which a simple Branch&Bound search is not powerful enough, because it can exploit the
LIA-Solver of MATHSAT5 more thoroughly.

Model Values. Although internally the OMT solver is capable of dealing with LIRA con-
straints using infinite precision and symbolic computation, OPTIMATHSAT does not yet sup-
port generating a symbolic model of the input formula. Instead, it uses some finite notion of
“infinity” and “epsilon” to instantiate a concrete model of the input formula. Both of these
parameters can be fine-tuned with the following options.
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-opt.theory.la.infinite_pow=INT [default: 9]

With this option, the value of “infinity” is set to 10N , where N is the (strictly) positive value
used as an argument. When an objective obji is not lower-bounded, the model-construction
routine guarantees that the corresponding minobj value is smaller or equal to −10N . Dual for
maximization.

-opt.theory.la.delta_pow=INT [default: 6]

Passing a value N to this option results in an internal parameter, called δ, to be set to the value
10−N . Let minobj

def
= 〈r, e〉, where r is the rational component of minobj and e is the infinitesimal

component of minobj. Then, the model-construction routine guarantees that the concrete value
of minobj used in the modelM is chosen to be in the interval [r, r + δ · e[ when e > 0, and in
]r + δ · e, r] otherwise.

BV-Theory

Engine. In OPTIMATHSAT, the engine used for the optimization of signed/unsigned Bit-
Vector objectives can be selected with the option

-opt.theory.bv.engine=STR [default: obvbs]

This option accepts three possible values: omt for the OMT-based search described in Section
§4.3.1, obvwa for the OBV-WA algorithm [NR16] described in Section §4.3.2 and obvbs for
the OBV-BS algorithm [NR16] described in Section §4.3.3.

Search Behaviour. As described in Section §4.3, the BV-optimization routines in OPTI-
MATHSAT can be fine-tuned with the following two enhancements.

-opt.theory.bv.branch_preference=BOOL [default: false]

Enables the “branching preference” enhancement described in §4.3. With some simplification,
enabling this option guarantees that the CDCL engine gives priority to the unassigned bits of
the objective function first, starting from the MSB down to the LST, when branching over a
variable. Only when each bit of the objective function is assigned a value, either by BCP or
through a decision, the CDCL engine is allowed to branch over other unassigned literals.
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-opt.theory.bv.polarity=BOOL [default: true]

With some simplification, when this option is enabled, the phase-saving value of the bits of a
BV objective is initialized to push the optimization search towards the direction of maximum
gain. A more precise description is given in Section §4.3.

FP-Theory

Engine. OPTIMATHSAT provides two engines for Floating-Point optimization, as described
in Section §4.4, that can be selected with the following option.

-opt.theory.fp.engine=STR [default: ofpbs]

The option can be set to be equal to either omt, ofpbs or ofpbls. The value omt cor-
responds to the OMT-based search described in Section §4.4.1. The OMT-based search is
compatible with the eager approach for Floating-Point numbers, and also with the lazy ap-
proach when there is no constraint combining BV and FP terms together with one another,
and the option -theory.fp.bv_combination_enabled can be set to false. The value
ofpbs corresponds to the OFP-BS algorithm described in Section §4.4.2. This engine can han-
dle BV/FP combination, but it is only compatible with the eager Floating-Point engine. The
value ofpbls runs a modified version of the OFP-BS algorithm described in Section §4.4.2
that encodes the problem without using BV/FP combination. It is compatible with all three
Floating-Point engines of OPTIMATHSAT: eager, lazy and ACDCL. Except for the case of the
eager approach, it requires the option -theory.fp.bv_combination_enabled being
set to false and it does not support BV/FP combination. Furthermore, it is not compatible with
any search enhancement.

Search Behaviour. The following search enhancements can be activated when dealing with
some FP objective. Notice that the first two are the FP-equivalent version of the correspond-
ing BV options of the same name.

-opt.theory.fp.branch_preference=BOOL [default: false]

This option toggles the “branching preference” enhancement described in §4.4. With some
simplification, setting it to true guarantees that the CDCL engine gives priority to the unassigned
bits of the objective function first, starting from the MSB down to the LST, when branching over
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a variable. Only when each bit of the objective function is assigned a value, either by BCP or
through a decision, the CDCL engine is allowed to branch over other unassigned literals.

-opt.theory.fp.polarity=BOOL [default: true]

With some simplification, when this option is enabled, the phase-saving value of the bits of the
FP objective is initialized to push the optimization search towards the direction of maximum
gain. A more precise description is given in Section §4.4.

-opt.theory.fp.safe_bits_only=BOOL [default: true]

This flag controls the “safe bits restriction” enhancement described in Section §4.4. With some
simplification, it restricts the scope of the other two enhancements so that they only affect those
bits of the objective function for which the direction of maximum gain is certain at any given
moment.

5.4.5 Cardinality Constraints Options

In regard to OMT(PB ∪ T ) and MAXSMT solving, OPTIMATHSAT provides a compre-
hensive list of options that can be used to improve its performance. We recall that, at the
time being, OPTIMATHSAT can take advantage from these advanced features only when the
Pseudo-Boolean component of the input formula is encoded in terms of soft clauses, i.e. using
the assert-soft command. In the future, we plan to extend OPTIMATHSAT to lift this lim-
itation, e.g. by adding a preprocessing step with recognizes Pseudo-Boolean constraints while
the formula is still being parsed.

Engine. Currently, there are three distinct engines for dealing with MAXSMT and Pseudo-
Boolean objectives in OPTIMATHSAT. The engine can be selected using the following option.

-opt.maxsat_engine=STR [default: omt]

The value omt corresponds to the usual OMT-based search described in Section §4.2.1. When
the option is set to be equal to maxres, OPTIMATHSAT can use the MAXRES engine de-
scribed in Section §4.2.2. Last, by setting the option to ext, OPTIMATHSAT can use an
external MAXSAT engine to deal with the optimization problem. This feature is based on the
so-called Lemma Lifting approach, briefly described in §2.3.3, presented by Cimatti et al. in
[CGSS13a].
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Encoding. As seen in Section §4.2.1, OPTIMATHSAT uses an ad hoc internal encoding for
handling Pseudo-Boolean constraints specified with the assert-soft command. This en-
coding can be adjusted by means of any combination of the following options.

-opt.asoft.encoding=STR [default: car]

This option selects the type of encoding used for Pseudo-Boolean and MAXSMT constraints.
A value equal to la corresponds to the basic linear-arithmetic encoding described in Section
§2.3.3. The values seq and car coincide with the Bidirectional Sequential Counter Encoding
and the Bidirectional Cardinality Network Encoding respectively, both of which are described
in Section §4.2.1.

-opt.asoft.circuit_limit=INT [default: 20]

When larger than zero, this option sets an upper bound on the maximum number of inputs that
each (internally generated) sorting network circuit can have. In the case of Pseudo-Boolean
terms that require more inputs than the given threshold to be represented, OPTIMATHSAT
automatically splits these constraints into smaller and more easily manageable circuits. The
goal of this option is to limit the amount of memory required to represent certain cardinality
constraints. As shown in the experimental evaluation described in Section §6.2, this can be very
effective at improving the performance of OPTIMATHSAT when the Bidirectional Sequential
Counter Encoding is used.

-opt.asoft.reduce_vars=BOOL [default: true]

When this flag is enabled, OPTIMATHSAT does not associate a fresh Boolean variable to each
soft clause, as described in the encoding shown in Section §2.3.3. Instead, it uses the soft clause
directly. Overall, this reduces the number of variables in the problem.

-opt.asoft.prefer_pbterms=BOOL [default: true]

When this flag is activated, the Boolean label associated with each soft clause is added to the
list of preferred variables for branching, that is used by the internal CDCL engine to pick a new
decision variable. Enabling this option typically improves the performance of the OMT solver.
When the flag opt.asoft.reduce_vars is also enabled, then there is no Boolean label
associated with a soft clause. In this case, this technique is only applied to those soft clauses
whose guard is already a Boolean literal or its negation.
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-opt.asoft.no_bidirection=BOOL [default: false]

When this option is used, OPTIMATHSAT uses an asymmetric version of the Pseudo-Boolean
encoding described in §2.3.3 in which there is no bidirectional implication among a soft clause
and its Boolean label. In this case, the identifier associated with each group of soft clauses
should only be subject to upper-bounding and minimization. Any attempt to impose a lower
bound or to maximize such identifier has no effect on the result of the optimization search. Dis-
carding one direction of the implication relation can positively affect the search performance
in some situations, but this should only be done when the input formula can allow it. This op-
tion is ineffective when opt.asoft.reduce_vars is enabled, because without an explicit
labeling of soft clauses the encoding is always bidirectional.

5.4.6 Multi-Objective Options

Multi-Objective Combination. When the input formula contains multiple objectives, OP-
TIMATHSAT can handle it according to the various multi-objective combination approaches
described in §4.6. Similarly to Z3, in OPTIMATHSAT the desired type of handling technique
for multiple objectives can be selected with the following option.

-opt.priority=STR [default: box]

Possible values are: box for the Multiple-Independent objective combination (a.k.a. Boxed) de-
scribed in §4.6.2, lex for Lexicographic optimization (see Section §4.6.3) and par for Pareto
optimization (see Section §4.6.4). The lack of an explicit option for the multi-objective MIN-
MAX/MAXMIN combination described in Section §4.6.1 is intentional. In fact, as described in
§5.3.1, OPTIMATHSAT uses a “clever” encoding to rewrite these problems into an instance of
single-objective OMT.

In general, a good practice is to explicitly encode the desired value for this option directly
inside the OMT formula, because different OMT solvers use different multi-objective combi-
nation approaches by default.

Lexicographic Optimization. OPTIMATHSAT provides two dedicated engines for lexico-
graphic optimization that can be selected with the option

-opt.lex.engine=STR [default: ite]
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Admissible values are: uni for the SMT-based UNIFIED_LEX algorithm and ite for the OMT-
based ITERATED_LEX algorithm. Both algorithms are described in Section §4.6.3.

Pareto Optimization. OPTIMATHSAT is shipped with two engines for Pareto optimization.
The option

-opt.par.engine=STR [default: lex]

allows for an explicit selection of the desired Pareto-optimization engine. The parameter can
be either gia, that corresponds to the basic Guided Improvement Algorithm implementation, or
lex, that uses incremental Lexicographic optimization to extract Pareto-front solutions from
the feasible space. A detailed description of both approaches is provided in Section §4.6.4.

The Pareto front of a multi-objective OMT problem can be explored either in incremental
or callback mode.

In incremental mode, the execution of the Pareto-optimization algorithm is suspended when-
ever the OMT solver discovers a new Pareto-front solution. When this is the case, it returns the
value SAT and it hands back execution control to the end-user, who has a chance to inspect the
solver state and to retrieve the Pareto-optimal model. The Pareto-optimization algorithm is re-
sumed on the next satisfiability check, and it terminates with UNSAT when the complete Pareto
front has been explored, so that no other solution can be found. Notice that, when the Pareto
front is explored incrementally, the search is automatically restarted after termination (i.e. after
an UNSAT result), and also after any action that alters the state of either the stack of formulas or
the objectives stack (i.e. after an assert, an assert-soft, a push or a pop).

In callback mode, upon receiving the request for a satisfiability check from the end-user, the
Pareto-optimization algorithm is started and it is not interrupted up until when the entire Pareto
front has been explored. The end-user must provide a callback function to inspect the solver
state and to retrieve the Pareto-optimal solutions that are found during the search.

The following option, that accepts either incremental or callback as valid argu-
ments, controls the Pareto-search mode.

-opt.par.mode=STR [default: incremental]

In the case that the end-user is interacting with OPTIMATHSAT from the command-line
and that the OMT solver is running in callback mode, then it is possible to disable model-
printing so that only the value of the objective functions is displayed on screen. This behavior
is controlled by the option
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-opt.par.print_model=BOOL [default: true]

5.4.7 MINIZINC Options

When using the FLATZINC Interface of OPTIMATHSAT described in §5.3.2, the behavior of
the OMT tool can be subject to further customization both in terms of Input/Output and also in
terms of the internal representation that is given to the input model.

Search Exploration. In some FLATZINC applications, it is often useful to retrieve more than
the optimal solution of the problem. For example, it might be useful to display all (possibly
suboptimal) solutions that are encountered along the optimization search, or even all possible
solutions of the input problem.

-opt.fzn.partial_solutions=BOOL [default: false]

When this flag is enabled, OPTIMATHSAT prints each (possibly suboptimal) model of the input
problem that is encountered along the optimization search.

-opt.fzn.all_solutions=BOOL [default: false]

If this option is enabled, OPTIMATHSAT does not stop at the first optimal solution that it finds,
but it looks for other optimal models of the input formula. This concept is similar to the idea
of “All-OMT” described in §4.7. Given a set of Boolean predicates B, the goal of an All-OMT
problem is to enumerate all possible assignments of values to B that satisfy the input formula
and for which the objective function is fixed to its optimal value. In FLATZINC, the set B
contains all output variables and output arrays of the input problem, that can be of any type,
instead of just Boolean predicates.

In some situations, attempting to enumerate all optimal solutions can be an endeavoring,
and ultimately unnecessary, task. In the case that the end-user is satisfied with a limited number
of solutions, then the next option can be used to impose such an upper bound on the number of
iterations performed by the routine for model-enumeration.

-opt.fzn.max_solutions=INT [default: 0]
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Encoding Variants. When a FLATZINC formula is parsed, the constraints in the input for-
mula are transformed into a suitable internal representation that is based on the SMT-LIBV2
standard. Clearly, the performance of OPTIMATHSAT can be affected by this internal repre-
sentation and yield different results depending on its effectiveness. Currently, various internal
representations and heuristics are made available in OPTIMATHSAT through the following op-
tions.

-opt.fzn.ite_encoding=BOOL [default: true]

Enabling this option activates an internal heuristic that eliminates 0-1 variables appearing in the
original formula and substitutes their occurrences with a suitable propositional encoding. For
the best results, all bool2int constraints in the input formula should appear at the top of the
constraints section. Otherwise, OPTIMATHSAT can fail to recognize a 0-1 variable and elimi-
nate it. The benefit of this heuristic is twofold. First, it reduces the computational effort imposed
on the internal LIRA-Solver, by shifting it on the more efficient Boolean Constraint Propaga-
tion engine. Second, it further improves the effectiveness of other heuristic enhancements (like,
e.g., the next one in this list) when dealing with Pseudo-Boolean constraints.

-opt.fzn.asoft_encoding=BOOL [default: true]

When this flag is enabled, Pseudo-Boolean constraints are heuristically mapped into a suitable
internal encoding based on soft clauses rather than with the conventional linear programming
encoding that uses the theory of LIRA. This allows OPTIMATHSAT to use its sorting net-
works techniques, described in Section §4.2.1, and further improve the overall performance.

-opt.fzn.bv_all_different=BOOL [default: true]

If this feature is enabled, the global constraint all_different_int is encoded using Bit-
Vectors rather than LIRA-constraints. This may improve the performance when dealing with
a large number of elements or unsatisfiable combinations.

-opt.fzn.bv_integers=BOOL [default: false]

When this option is enabled, OPTIMATHSAT uses the theory of Bit-Vectors rather than LIA
to represent all Integer constants, variables and constraints that appear in the input problem.
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Chapter 6

Experimental Evaluations

This part of the Ph.D. thesis is devoted to the experimental evaluations that were performed to
investigate the behavior of OPTIMATHSAT and validate some of the technological advances in
OMT described in §4.

The Optimization Modulo Theories features subject to our investigation are:

§6.1 The OMT(LIRA ∪ T ) functionality described in §4.1 and restricted to the LIA case.
The results of this experiment have been previously presented in [ST15c].

§6.2 The MAXRES engine and the sorting networks enhancement for dealing with OMT(PB ∪
T ) and MAXSMT problems described in §4.2. The results of this experiments have been
previously presented in [ST17].

§6.3 The procedures for OMT(BV ∪ T ) described in §4.3. This is a new test and it does not
appear in any previous publication.

§6.4 The procedures for OMT(FP ∪ T ) described in §4.4. This is a new test and it does not
appear in any previous publication.

§6.5 The incremental and multi-objective OMT features described in §4.5 and §4.6 respec-
tively. These results have been first presented in [ST15c].

§6.6 A comparison among OMT and MINIZINC using OPTIMATHSAT as reference OMT
tool. Part of the results presented here have been produced by F. Contaldo, a student at
University of Trento, as part of their Master Thesis work.

The default testing workbench used for these experimental evaluations is a pair of two iden-
tical 8-core 2.20Ghz Xeon machines with 64GB of RAM and running Ubuntu Linux. Unless
differently specified, it can be assumed that each experiment was performed on this hardware
configuration.
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Note. We have collected together, in a single package, all the data related to the exper-
imental evaluations presented in this Chapter, including the benchmark-sets, the scripts
used to run the experiments, the tools being tested and the output data generated in the
original experiment. We make this package publicly available at the address http:
//disi.unitn.it/trentin/resources/phd_thesis_all.tar.gz.

6.1 OMT (LIA ∪ T ) Evaluation

In the following, we summarize the salient points of an experimental evaluation over OMT(LIA∪
T ) that we have previously presented in [ST15c]. We refer the interested reader to that publi-
cation for more details on the experimental evaluation .

Experiment Setup. The benchmark-set is comprised by 544 OMT(LIA ∪ T ) formulas de-
rived from SMT-based Bounded Model Checking and K-Induction of parametric problems, that
were generated with the SAL model checker30. The OMT tools considered in this experiment
are OPTIMATHSAT (v. 1.1), Z3 (v. 4.3.3), and BCLT (v. 1.3). Since SYMBA does not support
OMT(LIA ∪ T ), this tool was not included in the experimental evaluation. Each solver was
given up to 1200s. to solve each OMT(LIA ∪ T ) formula.

For what concerns OPTIMATHSAT, we evaluated its performance using the linear- (LIN),
binary- (BIN) and adaptive-search (ADA) schemata described in §2.3.1. In addition, we tested
the Branch&Bound optimization procedure of OPTIMATHSAT both with and without the “trun-
cated” (TRN) enhancement described in §4.1.

Experiment Results. The results of this experiment are shown in table 6.1 and figure 6.1.
Overall, both OPTIMATHSAT and Z3 were able to solve the whole benchmark-set, and Z3
used the least amount of time. The other tool under test, BCLT, had a timeout on 44 formulas.

When comparing the various OPTIMATHSAT configurations, we can make two observa-
tions. The first is that enabling the adaptive-search scheme, which uses an internal heuristic
to dynamically choose between executing a linear- or a binary-search step, improves the per-
formance of the OMT solver. The second observation is that using the “truncated” version of
the Branch&Bound search does not result in a noticeable performance improvement. After tak-
ing a closer look to the set of benchmarks and to the output of the OMT solver, we conjecture
that this is due to the fact that the optimization search is dominated by its Boolean component

30http://sal.csl.sri.com/.
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tool, configuration & encoding inst. term. timeout time (s.)
BCLT 544 500 44 93040
Z3 544 544 0 36089
OPTIMATHSAT(LIN) 544 544 0 91032
OPTIMATHSAT(BIN) 544 544 0 99214
OPTIMATHSAT(ADA) 544 544 0 88750
OPTIMATHSAT(TRN+LIN) 544 544 0 91735
OPTIMATHSAT(TRN+BIN) 544 544 0 99556
OPTIMATHSAT(TRN+ADA) 544 544 0 88730

Table 6.1: A comparison on the performance of BCLT, Z3 and different configurations of
OPTIMATHSAT on Bounded Model Checking problems.

when dealing with this particular benchmark-set. As a result, it is hardly likely that any en-
hancement on the optimization engine within the LIA-Solver can have a positive impact on the
performance of the OMT solver as a whole.

6.2 OMT (PB ∪ T )/MAXSMT Evaluation

In the following, we provide an overview of an extensive experimental evaluation on OMT(PB∪
T ) and partial weighted MAXSMT problems that we have previously published in [ST17]. We
refer the interested reader to this publication for more details on these experiments .

We categorize our experiments in two groups. The first group, including “CGMs with lexi-
cographic OMT” (§6.2.1) and “CGMs with un-weighted MAXSMT” (§6.2.2), deals with prob-
lems that can be tackled with MAXSAT-based approaches like those described in §2.3.3 and
§4.2.2. The second group, including “CGMs with MAXMIN OMT” (§6.2.3) and “LMT with
OMT(PB ∪ T )” (§6.2.4), covers the case of OMT formulas in which the objective function
has some non-PB component. For this reason, these cannot be handled with the more efficient
MAXSAT-based approaches but only with the OMT-based techniques described in §2.3.3 and
§4.2.1.

The main goals of these empirical evaluations are (1) to compare the performance of MAXSAT-
based approaches with respect to OMT-based ones on those OMT problems in which techniques
are applicable and (2) to evaluate the benefits of using sorting networks with OMT-based tech-
niques as described in §4.2.1.
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Figure 6.1: Pairwise comparisons between OPTIMATHSAT (TRN+ADA) and BCLT (left) and
Z3 (right). (Blue points denote satisfiable benchmarks, green denotes a timeout.)

General Setup. The benchmark-sets used in this experimental evaluation on OMT(PB ∪ T )

and MAXSMT were generated with one of the following two approaches. One group of for-
mulas was generated with the CGM-TOOL [cgm], a modeling and automated-reasoning tool
for requirement engineering, and it includes a number of OMT problems based on Constrained
Goal Models [NSGM16b, NSGM16a]. The second group of OMT problems was generated
by the PYLMT [pyl] framework and it is based on (Machine) Learning Modulo Theories
[TSP17]. Three out of four of the OMT(PB ∪ T )/MAXSMT benchmark-sets considered here
encode a problem that requires the capability of dealing with the Theory of LIRA. The fourth
benchmark-set, used in §6.2.2, is the only one that can be restricted to the Theory of LIA.
We evaluated the performance of both OPTIMATHSAT and Z3 over the OMT(LIRA ∪ T )

formulas. When dealing with the OMT(LIA ∪ T ) benchmark-set, we included also BCLT in
our experiment.

We used version 1.3.11 of OPTIMATHSAT for the experiment in §6.2.4 and version 1.4.1

for all others. When dealing with OMT formulas suitable for the OMT-based techniques, we
experimented with three different approaches: “LA”, the default OMT encoding described in
§2.3.3, “SEQ”, the bidirectional sequential counter encoding described in §4.2.1, and “CAR”,
the cardinality sorting network encoding described in §4.2.1. When dealing with OMT prob-
lems suitable for MAXSAT-based approaches, two additional configurations have been tested.
The first is the MAXRES engine of [NB14, BP14] implemented on top of OPTIMATHSAT as
described in §4.2.2. The second, applicable only on pure MAXSMT formulas, is the lemma-
lifting approach of [CGSS13a], that we have also implemented on top of OPTIMATHSAT using
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MAXINO [ADR15] as external MAXSAT engine.
For what concerns Z3, we used version 4.4.2 of this software and tested three different con-

figurations. This includes the default OMT-based approach of Z3, based on linear arithmetic,
the MAXRES engine [NB14, BP14], which is a MAXSAT-based approach, and WMAX[NO06].
As mentioned in [ST17], the technique used by Z3 for dealing with OMT(PB ∪ T )/MAXSMT
problems largely depends on the encoding of the input formula. Therefore, the subset of con-
figurations used for Z3 varies with each experiment.

6.2.1 CGMs with lexicographic OMT

Experiment Setup. The benchmark-set consists of 18996 formulas automatically-generated
with the CGM-TOOL in [NSGM16a]. Each formula is a lexicographic OMT(LIRA ∪ T ) in-
stance 〈ϕ, obj1, ..., objN〉L (§4.6.3), withN ranging from 1 to 3, that solves the problem of com-
puting the lexicographically-optimum realization of a Constrained Goal Model [NSGM16a].
Due to the large number of formulas, in this experiment each solver configuration was allowed
to execute for up to 100s., and then forced to terminate.

Note. In the original experimental evaluation, reported in [ST17], we have used version
4.4.2 of Z3. However, there was a bug in the lexicographic engine of this version of the
tool that prevented us from testing Z3 on this set of benchmarks using WMAX. Since this
issue has been recently solved, we have repeated the experiment with version 4.8.1 of Z3
using both optimization engines. The results are reported in Table 6.2 for a comparison.

Experiment Results. A summary of the performance results of both OPTIMATHSAT and Z3
on this benchmark-set is shown in table 6.2.

As a first observation, we note that as far as OPTIMATHSAT is concerned with extending the
input formula with either sorting networks increases the number of benchmarks solved within
the timeout. When the cardinality network encoding is used, this results in an improvement of
both the number of formulas being solved as well as of the solving time as a whole. In contrast,
using the sequential counter network results in a significant performance hit on a number of
benchmarks, as it is witnessed by the data in table 6.2 and the top-left plot in Figure 6.2. This
does not only affect unsatisfiable benchmarks, for which the use of sorting networks appears to
be not beneficial in general, but also satisfiable ones.

The performance gap among the two sorting network encodings is explained by the lower
space complexity of the cardinality network encoding used in [ANORC11, ANOR13]. This gap
can be reduced by limiting the size of the sorting network circuit that is generated at the runtime,
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Figure 6.2: Pairwise comparisons on lexicographic OMT formulas of [NSGM16b, NSGM16a]
without a limit on the circuit size (top) and with a limit of 20 components (bottom). (Brown
points denote unsatisfiable benchmarks, blue denote satisfiable ones and green ones represent
timeouts.).
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tool, configuration & encoding inst. term. timeout time (s.)
OPTIMATHSAT(OMT+LA) 18996 16316 2680 48832
OPTIMATHSAT(OMT+SEQ) 18996 16929 2067 90080
OPTIMATHSAT(OMT+CAR) 18996 17191 1805 39215
OPTIMATHSAT(MAXRES+LA) 18996 17933 1063 24369
OPTIMATHSAT(MAXRES+SEQ) 18996 18180 816 49088
OPTIMATHSAT(MAXRES+CAR) 18996 18197 799 26489
Z3(MAXRES) [V. 4.4.2] 18996 18996 0 1640
Z3(MAXRES) [V. 4.8.5] 18996 18996 0 1929
Z3(WMAX) [V. 4.8.5] 18996 18421 575 29401

Table 6.2: Comparison between various OPTIMATHSAT configurations and Z3 on the lexi-
cographic OMT formulas of [NSGM16b, NSGM16a].

(OMT-based) split sequential-counter enc. split cardinality-network enc.
vars inst. term. timeout time (s.) term. timeout time (s.)
∞ 18996 16929 2067 90080 17191 1805 39215
10 18996 17033 1963 39035 17058 1938 36636
15 18996 17061 1935 39264 17133 1863 37246
20 18996 17152 1844 43730 17190 1806 39492

Table 6.3: Effect of splitting the PB sums into chunks of maximum variable number (no
split, 10, 15, 20 variables) with the sequential-counter encoding and the cardinality-network
encoding.

so that the OMT solver keeps track of a fewer number of (smaller) clauses and variables. To
achieve this goal, it suffices to slice each Pseudo-Boolean sum into a number of smaller sized
chunks, and then generate a separate sorting circuit for each splice. Table 6.3 shows the result
of applying this technique using chunks of size up to 10, 15 and 20 components respectively.
The latter configuration, limiting the circuit to up to 20 components, it is also show-cased in
the bottom-left plot of Figure 6.2. The experimental data suggest that the sequential counter
encoding can benefit from this simple heuristic, both in terms of number of benchmarks being
solved and solving time. Among the two sorting networks, the leadership is maintained by the
cardinality network encoding, which however does not seem to be particularly affected by the
splitting strategy.

Overall, we observe that when using either optimization engine Z3 outperforms OPTI-
MATHSAT and, when using the MAXRES engine, it solves all problems in the benchmark-set.
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tool, configuration & encoding inst. term. timeout time (s.)
BCLT() 2499 1997 502 7194
OPTIMATHSAT(OMT+LA) 2499 1794 705 11178
OPTIMATHSAT(OMT+SEQ) 2499 2451 48 18033
OPTIMATHSAT(OMT+CAR) 2499 2186 313 10633
OPTIMATHSAT(MAXRES+LA) 2499 2499 0 128
OPTIMATHSAT(MAXRES+SEQ) 2499 2499 0 1638
OPTIMATHSAT(MAXRES+CAR) 2499 2499 0 257
OPTIMATHSAT(LEMMA-LIFTING+MAXINO) 2499 2497 2 343
Z3(MAXRES) 2499 2499 0 119
Z3(WMAX) 2499 1799 733 10549

Table 6.4: Results of various solvers, configurations and encodings on un-weighted MAXSMT
formulas derived from the Constrained Goal Model instances of [NSGM16b, NSGM16a].

6.2.2 CGMs with Un-weighted MAXSMT

Experiment Setup. The benchmark-set used in this experimental evaluation is a variant of
the one used in §6.2.1, in which the weight of all soft clauses has been made equal to 1

and the formulas containing more than one objective function were discarded. This yielded
2499 OMT(LIA ∪ T ) benchmarks in total, each of which is an instance of an un-weighted
MAXSMT problem. The search timeout for this experiment was set to 100s..

Experiment Results. The results of this experiment are shown in table 6.4.

We observe that, similarly to the previous experiment in §6.2.1, OPTIMATHSAT benefits
from extending the input formula with either sorting networks when using OMT-based tech-
niques. In fact, the data show a drastic increase in the number of formulas solved within the
timeout, which is particularly accentuated when the sequential counter encoding is used.

Using OPTIMATHSAT with any of the available MAXSAT-based techniques significantly
outperforms any variant based on the standard OMT search. In particular, OPTIMATHSAT
solves all of the benchmark-set instances when using the MAXRES engine and all-but-two for-
mulas when MAXINO is used.

As far as Z3 is concerned, we observe that it obtains the best score when using the MAXRES

engine, although the differences with respect to OPTIMATHSAT(MAXRES +LA) is negligible.
When using the WMAXengine, its performances are comparable to that of OPTIMATHSAT
with a standard OMT-based search.

176



CHAPTER 6. EXPERIMENTAL EVALUATIONS

tool, configuration & encoding inst. term. timeout time (s.)
OPTIMATHSAT(OMT+LA) 2399 2340 59 20841
OPTIMATHSAT(OMT+SEQ) 2399 2394 5 9511
OPTIMATHSAT(OMT+CAR) 2399 2395 4 8275
Z3(OMT +LA) 2399 2390 9 8076

Table 6.5: Results of various solvers with OMT-based techniques on MAXMIN formulas
derived from the Constrained Goal Model instances of [NSGM16b, NSGM16a] .
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Figure 6.3: Pairwise comparison on MAXMIN formulas from [NSGM16b, NSGM16a].
(Brown points denote unsatisfiable benchmarks, blue denote satisfiable ones and green ones
represent timeouts.).

6.2.3 CGMs with MAXMIN OMT

Experiment Setup. In this variant of the experiment in §6.2.1, we first selected only those
formulas containing at least three objectives obji and then normalized the range of each obji to
be included in the range [0, 1] (i.e., obji was divided by

∑
j wij). Then, we searched for the

optimal modelM that maximizes the minimum gain for each normalized objective obji. This
corresponds to solving a multi-objective OMT problem subject to the MAXMIN combination
described in §4.6.1. We note that in this evaluation we considered only those formulas that
originally contained at least three objectives, so that the resulting benchmark-set was comprised
by 2399 OMT(LIRA ∪ T ) problems. The search timeout was increased to 300s., to account
for the more complex optimization goal.
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tool, configuration & encoding inst. term. timeout time (s.)
OPTIMATHSAT(OMT+LA) 500 421 79 2607
OPTIMATHSAT(OMT+SEQ) 500 441 59 6381
OPTIMATHSAT(OMT+CAR) 500 442 58 6189
Z3(OMT+LA) 500 406 94 2120

Table 6.6: Comparison among various OPTIMATHSAT configurations and Z3 on a set of
benchmarks based on the Structured Learning Modulo Theories domain [TSP17].

Experiment Results. The results are reported in table 6.5, whilst figure 6.3 shows the pair-
wise comparisons of OPTIMATHSAT(OMT+LA) with respect to OPTIMATHSAT(OMT+CAR)
(left) and Z3(OMT) with respect to OPTIMATHSAT(OMT+CAR) (right). Looking at the data,
we observe that using either sorting networks encoding significantly improves the performance.
In addition, the right scatter-plot in Figure 6.3 suggest that OPTIMATHSAT performs equiva-
lently or slightly better than Z3 with the aid of the cardinality network encoding, when both use
OMT-based techniques.

6.2.4 LMT with OMT(PB ∪ T )

Experiment Setup. The benchmark-set used in this experiment is comprised by 500 formulas
generated by PYLMT [pyl]. As described in §7.2.1, PYLMT is a tool for Structured Learning
Modulo Theories [TSP17] that uses OPTIMATHSAT as back-end engine for doing inference in
the context of machine learning in hybrid domains. Each problem in this benchmark-set is an
OMT(PB ∪ T ) instance wherein obj is a LRA term defined as

obj
def
=

∑
j

wj ·Bj + cover −
∑
k

wk · Ck − |K − cover|, (6.1)

such that cover def
=

∑
i

wi · Ai (6.2)

Ai, Bj, Ck being Boolean atoms, wj, wk, wi being rational constants. Each OMT solver
configuration was allowed to run for up to 600s. to solve each instance in this experiment.

Experiment Results. Table 6.6 and Figure 6.4 show the performance results for OPTIMATH-
SAT and Z3 on this experiment.

Looking at the experimental data, we observe that the use of sorting networks provides a lim-
ited improvement to the performance of OPTIMATHSAT as a whole. As mentioned in [ST17],
we conjecture that this is due to the high diversity among the values of the weights wi, wj, wk
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Figure 6.4: Pairwise comparisons on OMT(PB ∪ T ) formulas from [TSP17]. (Blue points
denote satisfiable benchmarks, green denotes a timeout.)

appearing in the formulas. In fact, as described in §4.2.1, the sorting network enhancement is
most effective when many Pseudo Boolean terms share the same weight.

6.3 OMT (BV ∪ T ) Evaluation

In this experimental evaluation, we assessed the performance of OPTIMATHSAT over a subset
of the OMT(BV ∪ T ) formulas used by Nadel et al. in [NR16].

Experiment Setup. In this experiment, we used the default testing workbench described at
the beginning of Chapter §6. Similarly to [NR16], we set a timeout of 1800s. on each formula.
Differently than in [NR16], we have included only the BV-encoded version of the formulas used
in the original experiment. This is because, in their paper, Nadel et al. have shown that OMT
tools tend to perform poorly on this particular benchmark-set when the LIA-based encoding
is used. Moreover, we have restricted our evaluation on the subset of 254 crafted benchmarks
used in [NR16], as the industrial ones —together with the original tools used in [NR16]— have
not been made publicly available31. We recall here that each instance in this benchmark-set
encodes an OMT(BV ∪ T ) formula wherein the cost function is an unsigned BV .

The following OPTIMATHSAT (v. 1.5.1) configurations were included in our experimental
evaluation (For more details on each BV-optimization technique, see Section §4.3):

• OPTIMATHSAT(LIN): OMT-based linear search with BV objective.
31Source: private communication with one of the authors.
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• OPTIMATHSAT(BIN): OMT-based binary search with BV objective.

• OPTIMATHSAT(OBV-BS): the extended version of the OBV-BS algorithm in [NR16],
implemented on top of OPTIMATHSAT.

For each configuration, we separately tested the effect of enabling the branching prefer-
ence (BP) and polarity initialization (PI) enhancements described in §4.3. We recall here that,
as described in §4.3.2, enabling both of these enhancements at the same time forces OPTI-
MATHSAT—regardless of the selected BV optimization engine— to behave as in the OBV-WA

algorithm. This means that the OMT solver is forced to approach the optimal solution starting
from the unsatisfiable region, and advance step-by-step towards the optimal solution without
ever touching any suboptimal satisfiable solution.

In addition to OPTIMATHSAT, we included in our experiment Z3 (v. 4.6.0) and ran it
with its default configuration. Unfortunately, we were unable to include in our experimentation
the original OBV-WA and OBV-BS binaries used in [NR16], as neither of these tools was made
publicly available by the authors31.

We have independently verified the correctness of the optimal solution found by each OMT
configuration with a third-party SMT solver (MATHSAT5). To perform this cross-check as
efficiently as possible, we have enabled model generation on every configuration so that the
optimum model could be extracted and verified.

Experiment Results. The results of this experimental evaluation are summarized in table 6.7,
that includes a log-scale cactus plot for a visual comparison among the different configurations.

We start by looking at the results for the LIN and BIN configurations, that are very similar to
each other. In both cases, it can be seen that approaching the optimal solution starting from the
unsatisfiable region yields better performance than proceeding from the satisfiable region. In
fact, enabling both branching preference and polarity initialization nearly doubles the number
of formulas being solved for both the LIN and BIN configurations. On this regard, we note that
when the BP+PI combination is used then we get pretty uniform performance results with each
configuration being tested (that is, LIN, BIN and OBV-BS). This is witnessed by the data in
table 6.7, by the overlapping BP+PI lines in the cactus plot of Figure 6.5, and also by the sixth
scatter plot in Figure 6.5. This supports our previous observation that enabling both branching
preference and polarity initialization forces OPTIMATHSAT to behave as in OBV-WA regardless
of the BV engine being selected. As observed by Nadel et al. in [NR16], the performance
improvement obtained with OBV-WA is likely due to the fact that on this particular benchmark-
set the optimal solution of the BV objective lies very close to the maximum representable value
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tool, configuration & encoding inst. term. timeout time (s.)
OPTIMATHSAT(LIN) 254 53 201 6085
OPTIMATHSAT(LIN+BP) 254 57 197 11326
OPTIMATHSAT(LIN+PI) 254 55 199 9456
OPTIMATHSAT(LIN+BP+PI) [i.e. OBV-WA] 254 108 146 24917
OPTIMATHSAT(BIN) 254 62 192 12113
OPTIMATHSAT(BIN+BP) 254 55 199 8896
OPTIMATHSAT(BIN+PI) 254 62 192 11840
OPTIMATHSAT(BIN+BP+PI) [i.e. OBV-WA] 254 108 146 24905
OPTIMATHSAT(OBV-BS) 254 80 174 12548
OPTIMATHSAT(OBV-BS+BP) 254 69 185 11668
OPTIMATHSAT(OBV-BS+PI) 254 148 106 17860
OPTIMATHSAT(OBV-BS+BP+PI) [i.e. OBV-WA] 254 108 146 24892
Z3 254 129 125 20279
VIRTUAL BEST 254 148 106 17846
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OptiMathSAT(lin+pi)
OptiMathSAT(lin)

Table 6.7: Comparison among various OPTIMATHSAT configurations and Z3 on a subset of
254 OMT(BV ∪ T ) formulas taken from [NR16].
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with the BV variable itself. This makes it more convenient to explore the search space from
within the unsatisfiable more-than-optimal region.

We can also see that there is relatively small performance improvement when branching
preference and polarity initialization are enabled independently from one another over the LIN

configuration. This is to be expected because the set of pseudo-random and heuristic techniques
employed by the underlying CDCL solver result in a relatively random exploration of the search
space that can hit a large number of suboptimal solutions before reaching the optimal one. The
situation is slightly different for what concerns the BIN configuration, that uses a sequence
of pivoting steps to perform greater forward leaps towards the optimal solution. In this case,
enabling only branching preference is detrimental with respect to to the overall performance
because it delays the evaluation of each pivoting cut after the CDCL engine already decided
to assign some value to each bit of the BV objective. In the case the former set of decisions
conflict with the pivoting cut, the CDCL engine is forced to resolve each of these conflicting
decisions before that the rest of the input formula —which is where the search should focus—
can be taken into consideration.

Overall, the best performance is achieved by OPTIMATHSAT(OBV-BS+PI), that solves 148

formulas out of 254 within the timeout. As shown in table 6.7, we observe that OPTIMATH-
SAT(OBV-BS+PI) solves as many formulas as the computed VIRTUAL BEST configuration with
only a small disadvantage in terms of running time (14 seconds). The first four scatter plots in
Figure 6.5 provide a more detailed view on the performance of OPTIMATHSAT(OBV-BS+PI)
by comparing it with the best results obtained with the other configurations evaluated in this
experiment. In particular, we observe more than an order of magnitude improvement with re-
spect to the best LIN and BIN configurations, and a more contained advantage with respect to the
OBV-WA (a.k.a. BP+PI) optimization search. Moreover, the best configuration of OPTIMATH-
SAT performs significantly better than Z3 with its default configuration. The fifth scatter plot in
Figure 6.5, instead, provides a clear view of the overwhelming contribution of enabling polarity
initialization to the overall performance of the OBV-BS engine. This result is not surprising.
As a matter of fact, since the optimal solution on this set of benchmarks is very close to the
maximum representable value with the BV objective (see [NR16]), the initial branching value
that is being decided by the CDCL engine with the polarity initialization enhancement turns out
to be a good choice more often than not. By looking at the table in Figure 6.7, we note also that
OBV-BS performs better without the branching preference enhancement. Similarly to the case
of the BIN configuration, executing without BP allows the CDCL solver to let the structure of
the underlying input formula to lead the decision process over the bits of the BV objective, as
opposed to forcing a pseudo-random set of decisions that do not focus the optimization search
in any specific direction.
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Figure 6.5: Pairwise comparisons on OMT(BV ∪ T ) formulas of [NR16] among various
OPTIMATHSAT configurations and Z3. (Blue points denote satisfiable benchmarks, green
denotes a timeout.)
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Comparison with [NR16]. On the whole, the results of this experimental evaluation seem to
be compatible with those of [NR16], and lead to similar conclusions as in the original work. In
addition, our experiment provides a more detailed overview of the performance impact of two
optimization search enhancements, namely branching preference and polarity initialization,
proposed in [NR16] and also implemented in OPTIMATHSAT as described in §4.3.

However, we observe that our implementation of the OBV-WA and OBV-BS algorithms on
top of OPTIMATHSAT are unable to attain as good performance results as those shown in
[NR16]. For instance, the OBV-BS engine with polarity initialization used in [NR16] was able
to solve within the timeout all 254 formulas being considered, whereas in our experiment it
successfully solves only 148 of them. At the time being the reason for this discrepancy is
still unknown and it remains difficult to determine in practice, because the tool of [NR16] is
not available. Note that we are using a different hardware and experimental setup than in the
original experiment. Moreover, we implemented these engines on top of a different solver and
we introduced some minor changes to deal with a more general definition of the optimization
problem. Unfortunately, we are unable to compare with the original OBV-WA and OBV-BS

implementations as these were not made available by the authors.

6.4 OMT (FP ∪ T ) Evaluation

We assess the performance of OPTIMATHSAT on a set of OMT(FP) formulas that were gen-
erated using the SMT(FP) benchmark-set of [smt].

Experiment Setup. Due to resource constraints, this experiment was not performed on the
default testing workbench. Instead, we used an i7− 6500U 2.50GHz Intel Quad-Core machine
with 16GB of ram and running Ubuntu Linux 17.10. Moreover, for each formula being tested
we used a timeout of 600 seconds.

The OMT(FP) instances used in this experiment were automatically generated starting
from the satisfiable formulas included in the SMT(FP) benchmark-set of [smt]. We did not
consider any of the unsatisfiable instances that are present in the remote repository. For each
of the original SMT(FP) formulas we applied the following transformations. First, we ei-
ther relaxed or removed some of the constraints in the original problem, to broaden the set
of feasible solutions. This step is necessary because the majority of the original SMT(FP)

formulas admits only one solution. However, this is not necessarily the ideal situation when
comparing different optimization approaches. Second, for each FP variable v appearing inside
a SMT(FP) problem we generated a pair of OMT(FP) instances, one for the minimization
and another for the maximization of v. At the end of this step, we obtained 39536 OMT(FP)
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formulas. Third, we randomly selected up to 300 OMT(FP) instances from each of the five
groups of problems in the OMT(FP) benchmark-set. This filtering step yielded a total of 1120

SMT-LIBV2 formulas.
Using OPTIMATHSAT (v. 1.6.2), we consider two OMT-based baseline configurations,

OPTIMATHSAT(OMT+LIN) and OPTIMATHSAT(OMT+BIN), that run the linear- and the binary-
search respectively. These configurations have been tested using both the eager and the lazyFP
approaches. The third baseline approach, named OPTIMATHSAT(EAGER+OBV-BS), is based
on a reduction of the OMT(FP) problem to OMT(BV) and it uses OPTIMATHSAT’s imple-
mentation of the OBV-BS engine32 presented by Nadel et al. in [NR16]. For this test, we have
generated an OMT(BV) benchmark-set using a BV encoding that mimics the essential aspects
of the OFP-BS algorithm described Section §4.4.2.

We compared these baseline approaches with a configuration using the OFP-BS algorithm
and the eager FP approach, namely OPTIMATHSAT(EAGER+OFP-BS).

We have separately tested the effect of enabling the branching preference (BP), the polarity
initialization (PI) and the safe bits restriction (SO) enhancements described in Section §4.4,
whenever these options were supported by the given configuration.

Last, in order to assess the significance of the optimization problems used in this experiment,
we have collected the run-time statistics of OPTIMATHSAT on the SMT formulas obtained
by stripping the objective function from each OMT instance. We named this configuration
OPTIMATHSAT(EAGER+SMT).

We have not included other tools in our experiment because we are not aware of any other
OMT(FP) solver.

We have independently verified the correctness of the optimal solution found by each config-
uration with a third party SMT solver (MATHSAT5). To perform this cross-check as efficiently
as possible, we have enabled model generation on every configuration so that the optimum
model could be extracted and verified.

Experiment Results. The results of this experiment are listed in Table 6.8, that includes a
log-scale cactus plot for a visual comparison among the different configurations. In addition,
Figures 6.6, 6.7 and 6.8 show a selection of relevant pairwise comparisons among various OP-
TIMATHSAT configurations. Figure 6.6 focuses on variants of the OMT-based linear-search
approach, Figure 6.7 depicts variants of the OMT-based binary-search approach, whereas Fig-
ure 6.8 focuses on the OFP-BS engine.

For what concerns OMT-based linear-search optimization, we observe that OPTIMATH-
SAT performs the best when no enhancement is enabled. In particular, the empirical evidence

32The binaries of the original OMT(BV) tools presented in [NR16] are not publicly available.
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configuration & encoding inst. term. t.o. u bt st time (s.)
EAGER+OMT+LIN 1120 1003 117 0 5 73 76375
EAGER+OMT+LIN+PI 1120 1003 117 0 5 71 76785
EAGER+OMT+LIN+BP 1120 956 164 0 6 105 77480
EAGER+OMT+LIN+BP+PI 1120 873 247 0 77 217 54859

EAGER+OMT+BIN 1120 1014 106 0 11 281 67834
EAGER+OMT+BIN+PI 1120 970 150 0 8 285 69765
EAGER+OMT+BIN+BP 1120 1016 104 0 14 205 68255
EAGER+OMT+BIN+BP+PI 1120 991 129 0 65 321 56941

LAZY+OMT+LIN 1120 868 252 0 93 203 29832

LAZY+OMT+BIN 1120 900 220 0 90 243 33260

EAGER+OBVBS [REDUCTION] 1120 1013 107 0 14 141 65954

EAGER+OFPBS 1120 1017 103 0 9 171 70732
EAGER+OFPBS+PI 1120 1019 101 0 34 280 64896
EAGER+OFPBS+PI+SO 1120 1018 102 0 7 179 71430
EAGER+OFPBS+BP 1120 975 145 0 2 145 65543
EAGER+OFPBS+BP+SO 1120 1000 120 0 3 124 68390
EAGER+OFPBS+BP+PI 1120 1001 119 0 77 273 60365
EAGER+OFPBS+BP+PI+SO 1120 1006 114 19 32 245 59463

VIRTUAL BEST 1120 1074 46 - 559 1074 27788

EAGER+SMT [NO OPTIMIZATION] 1120 1048 72 - - - 9259

Table 6.8: Comparison among various OPTIMATHSAT configurations on a subset of 1120

OMT(FP) formulas generated from the SMT(FP) formulas of [smt]. The columns list the
total number of instances (inst.), the number of instances solved (term.), the number of timeouts
(t.o.), the number of instances uniquely solved by the given configuration (u), the number of
instances solved faster than any other configuration (bt), the total number of instances solved in
the shortest amount of time (st) and the total solving time for all solved instances (time).
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Figure 6.6: Pairwise comparisons on OMT(FP) formulas using OMT-based linear-search
and other configurations. (Blue points denote satisfiable benchmarks, green denotes a timeout.)
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Figure 6.7: Pairwise comparisons on OMT(FP) formulas using OMT-based binary-search
and other configurations. (Blue points denote satisfiable benchmarks, green denotes a timeout.)
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Figure 6.8: Pairwise comparisons on OMT(FP) formulas using the OFP-BS engine and other
configurations. (Blue points denote satisfiable benchmarks, green denotes a timeout.)
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suggests that enabling branching preference significantly increases the number of timeouts, gen-
erally deteriorating the performance (plot 1A in Fig. 6.6). Enabling only polarity initialization
does not result in an appreciable change on the running time of the solver (plot 1B in Fig. 6.6).
In contrast, enabling both enhancements at the same time has a small chance to result in a small
improvement of the search time (plot 2A in Fig. 6.6), but it generally worsens the performance
and results in a drastic increase in the number of timeouts (Table 6.8). We justify these results as
follows. First, when only polarity initialization is used, the phase-saving value that is being set
by OPTIMATHSAT does not really matter because the optimization search is dominated by the
structure of the formula itself rather than by the bits [obj[0], ..., obj[n− 1]] of the FP objective.
Second, when polarity initialization is used on top of branching preference, there is an even
more drastic decrease in performance due to the fact that the initial phase-saving value that is
statically assigned by the OMT solver to the bits of the FP objective cannot be expected to be
“good enough” for any situation. In fact, as illustrated in Example 4.4.1, the initial phase-saving
can be misleading and force the OMT solver —when running in linear-search— to explore an
exponential number of intermediate satisfiable solutions.

In the case of the OMT-based binary-search optimization approach, we observe that it
solves more formulas than linear-search and it generally appears to be faster (plot 3B in Fig. 6.6).
Overall, polarity initialization does not seem to be beneficial, whereas enabling branching pref-
erence increases the number of formulas solved within the timeout. This behavior is different
from the linear-search approach, and we conjecture that it is due to the fact that, with the OMT-
based binary-search approach, branching over the bits of the objective function can reveal in
advance any (partial) assignment to the bits of the objective function that it is inconsistent wrt.
the pivoting cuts learned by the optimization engine.

Using the lazy FP engine results in fewer formulas being solved within the timeout, al-
though a significant number of these benchmarks is solved faster than with any other configu-
ration (over 90 instances, for both configurations).

The OPTIMATHSAT(EAGER+OBV-BS) configuration is able to solve 1013 formulas within
the timeout, showing that OMT(FP) can be reduced to OMT(BV) effectively, and that –
on the given benchmark-set– the performance of this approach are comparable with the best
OMT(FP) configurations being tested.

Overall, the best performance is obtained by using the OFP-BS engine, with up to 1019

benchmark-set instances being solved in correspondence to the OPTIMATHSAT(EAGER+OFP-
BS+PI) configuration. In plot 2B of Figures 6.6 and 6.7, we show the pairwise comparison of
the best OFP-BS configuration with the best OMT-based run. Similarly to the case of OMT-
based optimization with linear-search, we observe that enabling branching preference generally
makes the performance worse (plot 1A in Fig. 6.8). Instead, when polarity initialization is used
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we observe a general performance improvement that does not only result in an increase in the
number of formulas being solved within the timeout, but also a noticeable reduction of the solv-
ing time as a whole. This is in contrast with the case of OMT-based optimization, and it can
be explained by the fact that OFP-BS uses an internal heuristic function to dynamically deter-
mine and update the most appropriate phase-saving value for the bits of the objective function
(i.e. the dynamic attractor described in §4.4). An equally important role is played by the safe
bits restriction, that limits the effects of branching preference and polarity initialization to only
certain bits of the dynamic attractor. As illustrated by the plots in the second and third rows
of Figure 6.8 and by the data in Table 6.8, this feature is particularly effective when used in
combination with branching preference.

The results of OPTIMATHSAT over the SMT-only version of the benchmark-set are re-
ported in Table 6.8 and in the scatter-plot 3B in Fig. 6.7, and show that for a large number of
instances the OMT problem is considerably harder than its SMT-only version There are a few
exceptions to this rule, that we ascribe to the fact that the removal of the objective function alters
the internal stack of formulas, and this can have unpredictable consequences on the behavior
of various internal heuristics that depend on it. A solution can be found in a shorter amount of
time when the sequence of (heuristic) choices is compatible with its assignment and it requires
little back-tracking effort.

6.5 Incremental and Multi-Objective OMT Evaluation

We illustrate the main results of our investigation on single-objective, incremental and multiple-
independent OMT(LRA ∪ T ), that we have previously published in [ST15c]. For a much more
detailed overview of this experiment, we refer the interested reader to our publication [ST15c].

Remark 6.5.1. Although the results shown hereafter were obtained with a version of the
OMT tools that is now outdated, we have not repeated our experimental evaluation for this
Ph.D. dissertation because we have no reason to believe that the results of doing so would
lead to different conclusions. To the best of our knowledge, no further advancement in
the field of OMT touched any of the involved technologies. Moreover, no new multi-
objective OMT tool appeared on the horizon.

Experiment Setup. The benchmarkset consists of 1103 multiple-independent OMT instances
〈ϕ,O〉� taken from [LAK+14], where ϕ is a ground SMT(LRA ∪ T ) formula, generated
starting from a C program belonging to the SW Verification Competition of 2013, and O is
a set {obj1, ..., objN} of LRA objectives, each of which corresponds to some variable in the
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tool, configuration & encoding inst. term. timeout time (s.)
OPTIMATHSAT(SINGLE-OBJECTIVE) 1103 1103 0 16161
OPTIMATHSAT(INCREMENTAL) 1103 1103 0 3477
OPTIMATHSAT(MULTI-OBJECTIVE) 1103 1103 0 901
Z3(SINGLE-OBJECTIVE) 1103 1101 2 10002
Z3(INCREMENTAL) 1103 1100 3 8683
Z3(MULTI-OBJECTIVE) 1103 1090 13 1761
SYMBA(100) 1103 1091 12 10917
SYMBA(40)+OPT-Z3 1103 1103 0 1128

Table 6.9: Comparison among OPTIMATHSAT, SYMBA and Z3 on SW verification problems
in [LAK+14].

C program. The general goal of the optimization search is to find an over-approximation of
the feasible domain of these variables, and therefore each objective must be both minimized
and maximized. In this experimental evaluation we used the default testing workbench that is
described in §6, and we set a timeout of 1200s. on the running time of each OMT solver.

Given a multiple-independent OMT instance 〈ϕ, obj1, ..., objN〉�, we considered three dif-
ferent approaches for dealing with it:

• SINGLE-OBJECTIVE: the original OMT instance is split into N independent single-
objective OMT problems 〈ϕ, obji〉; The cumulative time required to sequentially solve
all N instances is taken;

• INCREMENTAL: as above, without restarting the OMT solver in-between an optimization
search and the other; We leverage the incremental interface and replace each goal obji
with its successor obji+1 until all goals have been considered; The SMT formula ϕ is
asserted at the beginning of the search and never popped;

• MULTI-OBJECTIVE: the original OMT instance is fed directly to the Multiple-Independent
OMT engine described in §4.6.2.

We tested each approach using both Z3 (v. 4.3.3) and OPTIMATHSAT (v. 1.2.1), and
compared their performance with SYMBA, using its two best-performing configurations —
namely SYMBA(100) and SYMBA(40)+OPT-Z3— that were identified on this benchmark-set
in [LAK+14]. In this experimental evaluation the BCLT OMT solver is not considered as it does
not support OMT(LRA ∪ T ).
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Figure 6.9: Pairwise comparisons on multiple-independent OMT formulas of [LAK+14].
(Blue points denote satisfiable benchmarks, green denotes a timeout.)
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Experiment Results. The global performance of each configuration under test is shown in
Figure 6.9. Figure 6.9, instead, provides some relevant pairwise comparisons among the con-
figurations being tested.

By looking at first plot in Figure 6.9, we observe that by exploiting the incremental interface
of OPTIMATHSAT it is possible to obtain an uniformly relevant speedup. This is explained
by the fact that the OMT solver is given a chance to reuse any learned clause in subsequent
iterations of the optimization search, which can save a significant amount of effort as described
in §4.5.

The second plot of 6.9 shows that a more drastic performance speedup —about one order of
magnitude— is obtained when the Multiple-Independent OMT engine is used. The explanation
for this performance improvement is twofold. First, at each step of the optimization search
the OMT solver can improve the lower and upper bound of multiple objectives at the same
time, effectively sharing lots of Boolean and LIRA search. Second, the OMT solver needs
only one certification step to prove the absence of an improving solution for all the objectives
being considered33. The performance improvement obtained by using the Multiple-Independent
OMT engine is significantly better than with incremental OMT, as shown in the third plot of
Figure 6.9.

Analogous considerations hold for Z3.

The last three scatter plots of Figure 6.9 show the pairwise comparison between OPTI-
MATHSAT(MULTI-OBJECTIVE) and the following three tools configurations: Z3(MULTI-
OBJECTIVE) (plot 2B), SYMBA(100) (plot 3A) and SYMBA(40)+OPT-Z3 (plot 3B). From
these plots, we observe that OPTIMATHSAT performs much better than the default configura-
tion of SYMBA, namely SYMBA(100), and significantly better than both SYMBA(40)+OPT-Z3
and Z3(MULTI-OBJECTIVE).

6.6 OMT vs MINIZINC

As illustrated in Section §2.4.2, as part of the work of this Ph.D. we implemented in OPTI-
MATHSAT a new interface for problems encoded in the MINIZINC format. This extension
enables a comparison with the other Finite Domain Constraint Programming (FDCP) solvers
that support MINIZINC.

In the experimental evaluation in Section §6.6.1, we compare OPTIMATHSAT against other
top-scoring MINIZINC solvers on a set of benchmarks coming from the MINIZINC Challenge

33As mentioned in §2.3.1, the empirical evidence of [ST12, ST15a, ST15c] has shown that the certification step
is typically much more expensive than generating a new model when dealing with a LIRA objective.
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2016. In the experiments reported in Section §6.6.2, instead, we show a comparison among
OPTIMATHSAT and other MINIZINC tools on benchmark-sets derived from OMT applications.

The goal of these experiments is to investigate the behavior of tools coming from two com-
pletely different worlds. In the future, these preliminary results can be used to improve the
MINIZINC interface of OPTIMATHSAT and extend its range of applications even further.

6.6.1 MINIZINC Challenge (2016)

Experiment Setup. The benchmark-set is comprised by the 100 MINIZINC formulas used at
the MINIZINC Challenge of 2016. In this experiment, we evaluated OPTIMATHSAT (v. 1.6.0)
and a selection of the top-scoring MINIZINC solvers of the last years, including CHOCO (v.
4.0.4), CHUFFED, G12(FD) (v. 1.6.0), GECODE (v. 6.0.1), GUROBI (v. 8.0.1), HAIFACSP (v.
1.3.0), JACOP (v. 4.5.0), IZPLUS (v. 3.5.0), OR-TOOLS (v. 6.7.4981) and PICAT (v. 2.4#8).
We have been unable to include FZN2SMT [BSV10, BPSV12] in our experimental evaluation
because the tool does not seem to be compatible with the new features introduced by MINIZINC

v. 2.0, and the benchmark-set is not compatible MINIZINC v. 1.6, which was used by FZN2SMT

when it was released. Unless otherwise specified, we used the most recently available version
of each MINIZINC tool at the time in which the experiment was performed. Each MINIZ-
INC benchmark used in this experiment was first converted in the FLATZINC format using the
MZN2FZN compiler and, whenever available, the directory of global constraints corresponding
to the MINIZINC tool under examination. The only exception to this rule is PICAT(CP), for
which we have used the standard directory of global constraints, because the vendor-distributed
directory of global constraints resulted in some incorrect responses. Each solver was given up
to 1200s. to solve each formula.

We use two different configurations of OPTIMATHSAT, one encoding Integer variables in
the MINIZINC model with the Int sort of SMT-LIBV2, named OPTIMATHSAT(FZN+INT),
and the other, called OPTIMATHSAT(FZN+BV), using Bit-Vectors. With the former configura-
tion, the optimization search is performed using the OMT(LIRA ∪ T ) procedures described
in Section §4.1. The latter, instead, uses the OBV-BS algorithm described in Section §4.3.3.

Experiment Results. The global results of this experiment are shown in Table 6.10 and
in the cactus plot of Figure 6.10. Figures 6.11, 6.12, 6.13, 6.14 and 6.15, instead, provide
some relevant pairwise comparisons among the MINIZINC tools and the two OPTIMATHSAT
configurations being tested. Using the experimental data, we separately computed the virtual
best configuration among all MINIZINC solvers (i.e. VIRTUAL BEST(MINIZINC)) and the one
among both OPTIMATHSAT configurations (i.e. VIRTUAL BEST(OPTIMATHSAT)), and also
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tool, configuration & encoding inst. term. t.o. uns. err. time (s.) B1 B2
G12(FD) 100 21 75 0 4 8656 0 4
PICAT(CP) 100 21 79 0 0 8324 0 3
GECODE() 100 39 61 0 0 12163 0 16
CHOCO() 100 47 53 0 0 15679 1 19
IZPLUS() 100 50 50 0 0 6491 7 33
CHUFFED() 100 53 42 5 0 4822 5 34
JACOP() 100 58 42 0 0 16236 0 26
OR-TOOLS(CP) 100 62 8 30 0 1570 27 59
GUROBI() 100 72 28 0 0 5382 15 56
HAIFACSP() 100 73 27 0 0 5035 10 57
PICAT(SAT) 100 74 26 0 0 8637 11 45
OR-TOOLS(SAT) 100 84 16 0 0 12163 33 80
VIRTUAL BEST(MINIZINC) 100 93 7 0 0 3657 - 92

OPTIMATHSAT(FZN+INT) 100 55 42 3 0 7112 1 38
OPTIMATHSAT(FZN+BV) 100 57 43 0 0 13306 0 30
VIRTUAL BEST(OPTIMATHSAT) 100 68 32 0 0 9564 1 -

VIRTUAL BEST(ALL) 100 93 7 0 0 3657 - -

Table 6.10: A comparison on the performance of OPTIMATHSAT and various top-scoring
MINIZINC solvers on the MINIZINC Challenge 2016 formulas. The columns list the total
number of instances (inst.), the number of instances solved (term.), the number of timeouts
(t.o.), the number of unsupported problems (uns.), the number of run-time errors (err.), the
total solving time for all solved instances (time), the number of instances solved faster or equal
than VIRTUAL BEST(MINIZINC) (B1) and the number of instances solved faster or equal than
VIRTUAL BEST(OPTIMATHSAT) (B2).
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Figure 6.10: A comparison on the performance of OPTIMATHSAT and various top-scoring
MINIZINC solvers on the MINIZINC Challenge 2016 formulas.
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Figure 6.11: Pairwise comparisons on the MINIZINC Challenge 2016 formulas between OP-
TIMATHSAT, G12(FD), PICAT(CP) and GECODE. (Blue points denote satisfiable benchmarks,
green denotes a timeout and red denotes unsupported formulas)
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Figure 6.12: Pairwise comparisons on the MINIZINC Challenge 2016 formulas between
OPTIMATHSAT, CHOCO, IZPLUS and CHUFFED. (Blue points denote satisfiable benchmarks,
green denotes a timeout and red denotes unsupported formulas)
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Figure 6.13: Pairwise comparisons on the MINIZINC Challenge 2016 formulas between OP-
TIMATHSAT, JACOP, OR-TOOLS(CP) and GUROBI. (Blue points denote satisfiable bench-
marks, green denotes a timeout and red denotes unsupported formulas)
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Figure 6.14: Pairwise comparisons on the MINIZINC Challenge 2016 formulas between OP-
TIMATHSAT, HAIFACSP, PICAT(SAT) and OR-TOOLS(SAT). (Blue points denote satisfiable
benchmarks, green denotes a timeout and red denotes unsupported formulas)
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Figure 6.15: Pairwise comparisons on the MINIZINC Challenge 2016 formulas between the
two OPTIMATHSAT configurations. (Blue points denote satisfiable benchmarks, green denotes
a timeout and red denotes unsupported formulas)

the virtual best among all tools considered in the experiment (i.e. VIRTUAL BEST(ALL)). The
last two columns in Table 6.10 list the number of problems for which the given configura-
tion scored better (or equal) than the VIRTUAL BEST(MINIZINC) (col. B1) and the VIRTUAL

BEST(OPTIMATHSAT) (col. B2) configurations.

We start by looking at the MINIZINC solvers in Table 6.10. The best performing tool is OR-
TOOLS(SAT), followed by PICAT(SAT), HAIFACSP, GUROBI and OR-TOOLS(CP). By look-
ing at column B1, we observe that these MINIZINC solvers dominate over all other MINIZINC

solvers considered in this experiment. We observe that this result seems to be compatible with
the outcome of the recent (official) editions of the MINIZINC Challenge. The G12(FD) solver
encountered 4 sig-sev errors, whereas CHUFFED and OR-TOOLS(CP) were unable to handle
5 and 30 instances respectively, due to unsupported constraints in the FLATZINC encoding.

Among the two configurations of OPTIMATHSAT being tested, we observe that there are
3 unsupported problems with OPTIMATHSAT(FZN+INT). This is due to a limitation of the
MINIZINC interface that is not able to deal with any, even apparent, non-linear constraint ap-
pearing in the input model. The other configuration, called OPTIMATHSAT(FZN+BV), is not
affected by this problem and it is able to solve a couple more instances. This achievement,
however, comes at the price of a significant overhead, as it can be seen from the cactus plot
in Figure 6.10. Interestingly, the pairwise comparison depicted in Figure 6.15, shows that the
two OPTIMATHSAT configurations have an orthogonal behavior on several instances experi-
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encing a timeout with only one of the two. Among those 68 instances solved with at least one
configuration, OPTIMATHSAT solves 38 instances faster with the OPTIMATHSAT(FZN+INT)
configuration and 30 instances faster with the BV-based configuration.

On the whole, OPTIMATHSAT(FZN+BV) solves fewer problems than OR-TOOLS(SAT),
PICAT(SAT), HAIFACSP, GUROBI, OR-TOOLS(CP), and JACOP, and more instances than
G12(FD), PICAT(CP), GECODE, CHOCO, IZPLUS and CHUFFED. By looking at column B1
and the VIRTUAL BEST() rows, we observe that OPTIMATHSAT does not make any previously
unsolvable problem become solvable (within the timeout), and that there is only one instance
on which it is able to provide and answer faster than any other MINIZINC tool, by a negligible
margin. By looking at column B2, we observe that OPTIMATHSAT tends to be slower than the
majority of the MINIZINC tools, even when it solves more instances.

We conclude by noting that, further experimentation, with a larger set of benchmarks, is
necessary to derive any conclusive evidence indicating on which classes of MINIZINC problems
OPTIMATHSAT, and OMT tools in general, can be competitive.

6.6.2 OMT Benchmarks

Full Disclosure. The experimental evaluations contained in this Section have been per-
formed by Francesco Contaldo, a Master Degree student at University of Trento, under
the joint supervision of the Ph.D. Candidate and Prof. Roberto Sebastiani.

The student designed and implemented OMT2MZN, a compiler that translates formu-
las encoded in the Extended SMT-LIBV2 format for optimization, described in Sec-
tion §2.4.2, into the MINIZINC language [Minb]. This compiler was used by the F.
Contaldo to convert a number of OMT benchmark-sets into the MINIZINC format, and
then to perform an extensive experimental evaluation on these benchmarks.

Since this research work is closely related to the content presented in this dissertation,
and its outcome is of interest as an assessment of the work in this thesis, we have included
in this document a few interesting (preliminary) results, in agreement with the author F.
Contaldo. A complete summary of this work —including a description of the OMT2MZN

compiler, additional experiments and a more in-depth analysis of the results— is going
to be included in the Master Thesis of the student.

Hereafter, we show a comparison among OPTIMATHSAT and other FDCP solvers on for-
mulas derived from typical OMT applications.

General Setup. In each experiment, OPTIMATHSAT (v. 1.5.0) is tested twice. The first time
using the original SMT-LIBV2-encoded formula, and the second time with the corresponding
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(automatically generated) FLATZINC model. Testing OPTIMATHSAT twice serves two main
purposes. First, by checking the results of the OMT solver before and after the automatic trans-
formation of SMT-LIBV2-encoded formulas into FLATZINC models, it makes it possible to
discover any intrinsic limitation of this transformation. Second, it can provide some indication
of any performance loss (or gain) caused by the encoding transformation, although, admit-
tedly, this might be solver-dependent and not affect other FDCP solvers with the same order
of magnitude. Hereafter, we refer to the first configuration as OPTIMATHSAT(SMT), and to
the second configuration as OPTIMATHSAT(FZN). Internally, both configurations encode the
Int type of MINIZINC with the Integer sort of SMT-LIBV2 and, whenever necessary, use the
OMT(LIRA ∪ T ) procedure described in Section §4.1 for the optimization search.

The FDCP tools selected for these experiments are: CHOCO(v. 4.0.4), CHUFFED, G12(FD)
(v. 1.6.0), GECODE (v. 6.0.1), GUROBI (v. 8.0.1), HAIFACSP (v. 1.3.0), IZPLUS (v. 3.5.0),
JACOP (v. 4.5.0), MISTRAL (v. 2.0), OR-TOOLS (v. 6.7.4981) and PICAT (v. 2.4.8). Every
FDCP solver under consideration is tested only once, using the default configuration, over the
(automatically generated) FLATZINC model.

Each experiment has been performed on the default testing workbench described in Chap-
ter §6 and, unless otherwise specified, each tool was given up to 900s. to solve each formula. On
this regard, we note that the time required by the MZN2FZN compiler to translate the MINIZ-
INC instance into a FLATZINC model has been added to the runtime of the FLATZINC solver.
The reason for this is that, the MZN2FZN compiler is sometimes able to find the solution of
the input model while flattening it, because it applies simple propagation and inference rules
along its transformations. When this is the case, the resulting FLATZINC instance contains an
hard-coded solution, and the FDCP solver does not need to perform any search on its own.

Bounded Model Checking

Experiment Setup. The benchmark-set used in this experiment is comprised by a subset of 66

OMT(LRA ∪ T ) formulas taken from [ST15a], transformed into OMT(LIA ∪ T ) problems.
Each instance encodes a parametric verification problem using using Bounded Model Checking
(BMC) of invariants and K-Induction.

Experiment Results. The global results of this experiment are shown in Table 6.11. Fig-
ure 6.16, instead, shows the cactus plot comparison among those tools that were able to solve
at least one formula, and a couple of pairwise comparisons among the two OPTIMATHSAT
configurations being tested and PICAT(SAT).

The best performing tool, on this benchmark-set, is OPTIMATHSAT. Interestingly, the
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Figure 6.16: Pairwise comparisons on the Bounded Model Checking formulas used in
[ST15a], after being converted to OMT(LIA ∪ T ). (Blue points denote satisfiable bench-
marks, green denotes a timeout.)
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tool, configuration & encoding inst. term. timeout unsup. error time (s.)
CHOCO() 66 0 66 0 0 0
CHUFFED() 66 0 66 0 0 0
G12(FD) 66 0 0 0 66 0
GECODE() 66 0 66 0 0 0
GUROBI() 66 0 0 66 0 0
HAIFACSP() 66 0 66 0 0 0
IZPLUS() 66 0 0 0 66 0
JACOP() 66 0 62 0 4 0
MISTRAL() 66 0 0 0 66 0
OR-TOOLS(SAT) 66 0 66 0 0 0
OR-TOOLS(CP) 66 0 66 0 0 0
PICAT(SAT) 66 6 60 0 0 1583
PICAT(CP) 66 0 66 0 0 0
OPTIMATHSAT(FZN) 66 59 7 0 0 13038
OPTIMATHSAT(SMT) 66 54 12 0 0 6204

Table 6.11: A comparison on the performance of OPTIMATHSAT and various top-scoring
FDCP solvers on a subset of the Bounded Model Checking formulas used in [ST15a], after
being converted to OMT(LIA ∪ T ).

OMT solver is able to solve 5 more instances when the input formulas are encoded in the
FLATZINC format. By looking at Figure 6.16, we can see that the performance of OPTIMATH-
SAT(SMT) are very close to the virtual best configuration, except for the few more instances
that OPTIMATHSAT(FZN) is able to solve.

Except for PICAT(SAT), that terminates on 6 instances, all other FDCP solvers evaluated in
this experiment are unable to solve any formula in the benchmark-set. For GUROBI, the problem
is caused by the MZN2FZN-GUROBI compiler, which encounters an error while converting the
MINIZINC model generated with OMT2MZN tool. The 66 errors of G12(FD) and the 4 of
JACOP are due to hitting an upper bound to the program’s available memory. The errors of
IZPLUS and MISTRAL, instead, are caused by an invalid execution ending with a core dump.

Learning Modulo Theories (LMT) with OMT(PB ∪ T )

Experiment Setup. This experiment considers 510 OMT(PB ∪ T ) formulas generated by
PYLMT [pyl], a tool for Structured Learning Modulo Theories [TSP17] that uses OPTIMATH-
SAT as back-end engine for doing inference in the context of machine learning in hybrid do-
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mains. By construction, every instance in this benchmark-set is satisfiable. We refer the reader
to the description of the “LMT with OMT(PB ∪ T )” experiment in Section §6.2.4 for more
details on the benchmark-set.

The FDCP solvers evaluated in this experimental evaluation are G12(MIP), GECODE and
GUROBI. The remaining tools were discarded due to missing or incomplete support for floating-
point arithmetic.

Experiment Results. The results of this experiment, including a cactus plot comparison, are
shown in Table 6.12. In this table, we have added a new column named “corr.” that indicates the
number of formulas for which the solvers returned a correct solution. A solution is considered
correct if it is not equal to UNSAT and the relative error ∆ is smaller or equal 10−6; ∆ is defined
as follows:

∆
def
=
|osmt2 − ofzn|
|osmt2|

(6.3)

where osmt2 is the optimum value of the objective function found by OPTIMATHSAT(SMT),
used as a reference, and ofzn is the optimum value found by the other solver. We recall here that
OPTIMATHSAT uses infinite precision arithmetic reasoning, and we also note that the osmt2
value has been independently verified both for correctness and optimality.

From the table, it can be seen that OPTIMATHSAT terminates on 502 SMT-LIBV2-encoded
formulas in the benchmark-set, with the correct solution. However, when the OMT solver is
given as input the (automatically generated) FLATZINC models, it solves 236 problems within
the timeout and for only 35 of these it returns the correct solution. The outcome for the other
FDCP solvers is similar. For instance, GUROBI terminates on 506 instances but for only 22 of
these it provides the correct solution.

We explain the incorrect result as being the direct consequence of the intrinsic limitations of
the FLATZINC language, that does not provide any datatype with the same characteristics of the
Real sort of SMT-LIBV2. Therefore, during the translation of the original SMT-LIBV2 for-
mulas in the FLATZINC format, infinite-precision Real values get replaced by finite-precision
Floating-Point constants. A subsequent analysis revealed that these approximations are intro-
duced by the MZN2FZN compiler.
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tool, configuration & encoding inst. term. corr. timeout error time (s.)
G12(FD) 510 436 0 71 3 27568
GECODE() 510 212 24 298 0 145
GUROBI() 510 506 22 4 0 4163
OPTIMATHSAT(FZN) 510 236 35 274 0 205
OPTIMATHSAT(SMT) 510 502 502 8 0 4740
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103
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OptiMathSAT(SMT)
OptiMathSAT(FZN)
Gecode()
Gurobi()

Table 6.12: A comparison on the performance of OPTIMATHSAT and various FDCP solvers
on Learning Modulo Theories (LMT) formulas from [TSP17]. The cactus plot does not include
any instance terminated with an incorrect result.
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Chapter 7

Applications

In comparison with the well-established fields of Satisfiability Modulo Theories (§2.2) and even
of (Finite Domain) Constraints Programming with Optimization (§2.4), outside the context
of MAXSMT the research on Optimization Modulo Theories is still at an early stage and it
could benefit from more attention to develop more sophisticated and efficient techniques for its
applications.

This chapter contains a collection of scientific works using Optimization Modulo Theories
for both research purposes and real-world applications. We split our presentation in two parts.
Section §7.1 contains a selection of recent scientific works using Optimization Modulo Theories
at their core, not necessarily focused on OPTIMATHSAT. Section §7.2, instead, describes a
few publications dealing with real-world applications that have been of primary importance to
guide both the development of OPTIMATHSAT and the research advances presented in this
dissertation.

The goals of this chapter are not only to justify our research work on Optimization Modulo
Theories and to provide evidence of its largely untapped potential, but also to draw the attention
of the community on this research topic and the potential benefits of further improvements.

7.1 OMT Applications

Hereafter, we briefly describe a selection of scientific studies using Optimization Modulo The-
ories for some relevant applications in the domains of formal verification, program analysis,
scheduling, planning with resources and more. On the whole, our goal is to provide —with
a few examples— concrete evidence of the great potential of Optimization Modulo Theories
when dealing with real-world applications of primary interest. For this reason, we omit several
details from the scientific publications being cited, and limit our view to those features of the
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target application that have been technologically enabled, or enriched, by OMT.

Static Analysis

Static analysis deals with the problem of automatically deriving universally valid properties
of a (piece of) program such as the fact that a given error state is unreachable in every possi-
ble execution. In the last years, Satisfiability Modulo Theories has been increasingly adopted
among static analysis tools, thanks to advances both in terms of expressiveness and in terms of
performance.

In [CLO+16], Optimization Modulo Theories, has been used to speedup the constraint-
based method, a well-known approach that has been applied to a plethora of tasks in the con-
text of program analysis such as invariant generation and proving termination. Typically, the
constraint-based method requires the capability to deal with non-linear SMT formulas to instan-
tiate constraints with Farkas’ Lemma. In their work, Candeago et al. proposed a new encoding
of this problem that is applicable when the program at hand can be restricted to the Difference
Logic (DL) fragment of linear arithmetic. This approach is based on a MAXSMT formulation
and does not require any capability to reason on non-linear arithmetic. As a result, it allows the
use of much cheaper SMT solving techniques and a wider range of (MAXSMT) tools to deal
with the same problem. The paper is complemented with an experimental evaluation showing
the high impact of this approach on the performance of the VERYMAX verification system, that
uses the OMT solver BCLT at its core.

In [Kar17], Karpenkov applies Optimization Modulo Theories to the problem of finding
inductive invariants, that is, universally valid properties that hold in the initial state of a program
and imply themselves under the program transition. To this aim, the novel policy iteration
approach presented in this dissertation, called Local Policy Iteration (LPI), uses OMT as part
of a widening operator that is guaranteed to return the least inductive invariant after finitely
many applications. The LPI approach is implemented inside the open-source software verifier
CPACHECKER, [BK11], and it is uses the OMT solver Z3 as a black-box via the JAVASMT
API [KFB16].

Formal Verification & Model Checking

In the context of bounded program verification, functional properties are checked by analyzing
a finite number of objects and loop iterations. Traditionally, the extent of this verification is
controlled by the end-user, that provides both the number of objects and the number of loop
iterations to consider. In [LTBT17], Liu et al. proposed a new approach for automatically com-
puting the exact number of loop iterations to be checked based on the number of objects being
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considered. For this task, the input program and its specification are encoded as an Optimization
Modulo Theories formula in which the objective function represents the number of loop iter-
ations. The authors implement their approach in the prototype tool BOUNDJ, using the OMT
solver Z3 as a black-box.

Recently, Optimization Modulo Theories has also been used in the context of formal verifica-
tion of hybrid dynamical systems to synthesize barrier certificates [Rat17]. A barrier certificate
can be viewed as a function of the state of the dynamic system that separates an unsafe region
from all system trajectories starting from a given set of initial conditions. For this reason, it
can be used to prove the safety of the system itself. In [Rat17], a candidate barrier certificate is
generated from a simulation of the dynamic system and subsequently improved via a refinement
loop in the case in which it does not meet the requirements for being a barrier certificate, i.e. it is
spurious. In this framework, the role of Optimization Modulo Theories is to compute the candi-
date barrier certificate that ensures the greatest amount of progress at each step of the algorithm.
The paper is complemented with an implementation of the algorithm, using OPTIMATHSAT as
OMT oracle, and an experimental evaluation showcasing the advertised functionality.

Scheduling and Planning with Resources

In [KBE17, KEB18, KBE18], Kovásznai et al. investigated the use of Optimization Mod-
ulo Theories to deal with Wireless Sensor Networks (WSNs). In a Wireless Sensor Network
(WSN), dozens or even hundreds of spatially distributed sensor and actuator nodes cooperate
with one another to achieve a common goal like, e.g., monitoring physical or environmental
conditions and react upon them. Typically, WSNs are deployed with limited or no access to
an external source of power, so that batteries still remain the most prevalent power supply cur-
rently used. Therefore, it is of critical importance to find the sleep/wake-up scheduling that is
optimal in terms of energy efficiency, and to maximize the amount of time for which a WSN
can dependably deliver its services while enduring, at the same time, the loss of nodes in the
network. In [KBE17], Kovásznai proposed a formalization of this problem in Optimization
Modulo Theories, and compared the performance of Z3, SYMBA and OPTIMATHSAT on a set
of OMT(QF_UFLIA) formulas encoding randomly generated WSNs. This study was further
extended in [KEB18], where the same authors investigated which dependability and safety con-
straints appear to be the most challenging when dealing with increasingly denser WSNs. In this
paper, the authors focused their efforts on the OMT solver OPTIMATHSAT.

In [LÁN+17, LAN+18], Leofante et al. leveraged the expressiveness of Optimization Mod-
ulo Theories to deal with various multi-robot scheduling problems. Typically, this class of
problems is handled with heuristic approaches that, however, do not guarantee the optimality
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of the computed solution. The integrated system presented in [LÁN+17, LAN+18] employs
the OMT solver Z3 to synthesize optimal plans for multi-robot systems, and an on-line execu-
tive to deploy the generated plan and collect runtime feedback on its execution by the fleet of
robots. The authors thoroughly investigated the effectiveness of this approach on the RoboCup
Logistics League (RCLL) problem, demonstrating its capabilities and weaknesses. The ex-
perience gained in [LÁN+17, LAN+18] has been leveraged by Bit-Monnot et al. to design
SMARTPLAN, [BLP+18], a task planner for smart factories based on Optimization Modulo
Theories. The tool extends the previous work with a new general-purpose OMT-based en-
coding that can deal with logistic applications outside the multi-robot scenario presented in
[LÁN+17, LAN+18].

A common problem when deploying automated production systems is to find the optimal
assignment of jobs to machines. A well-known NP-hard variant of this task is the Job-Shop
Scheduling Problem (JSP). Traditionally, JSP is solved using either Mixed Integer Linear Pro-
gramming (MILP), Constraint Programming (CP) or ad hoc heuristic algorithms. In [RBÅ18],
Roselli et al. considered a formulation of the Job-Shop Scheduling Problem based on Opti-
mization Modulo Theories. In their work, the authors compared the performance of GUROBI,
a MILP solver, with those of the OMT solvers Z3 and OPTIMATHSAT. The results of their
experimental evaluation show that OMT, in particular when using Z3, can be a competitive
alternative to state-of-the-art commercial MILP solvers both in terms of expressiveness and in
terms of solving-time performance.

In a recent paper, [OCS18], Oliver et al. describe an application of Optimization Modulo
Theories in the context of Time Sensitive Networks (TSN). In particular, in the paper they ad-
dress the problem of synthesizing communication schedules for the Gate Control Lists (GCLs)
defined in the IEEE 802.1Qbv Standard. The synthesis problem, formalized in terms of the The-
ory of Arrays (AR), leverages OMT to find the realization that minimizes the receiving jitter
for the incoming streams of data, and also to find the best trade-off among the effective com-
munication jitter and the number of windows available for each egress port. The experimental
results demonstrate the applicability of OMT-based techniques to this approach for small- and
medium-sized networks, whereas for larger networks the authors suggest that a combination of
heuristic and OMT-based techniques could be the most promising approach.

Software Security Engineering

In many organizations, authorization policies can impose constraints on the workflow of an or-
ganization due to security or privacy concerns. These policies are designed to avoid errors and
frauds, but they may also represent an obstacle to the completion of certain tasks when these
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cannot be executed without violating certain constraints. A violation can be resolved by extend-
ing the privileges of some users, or by canceling the execution of a task and, perhaps, missing
or changing a previously set goal. From an organizational point of view, the ideal solution is
one that minimizes the cost effect of these violations on the business of the organization. In
[BdSR18], Bertolissi et al. presented the Multi-Objective Workflow Satisfiability Problem (MO-
WSP), that formalizes the above problem using Bounded Model Checking and Optimization
Modulo Theories. The proposed solution has also been validated by the authors by testing it on
real-world workflows, and tested for scalability on artificially generated instances.

7.2 OPTIMATHSAT Applications

In the following, we briefly mention a few examples of recent applications —that are very in-
novative in their respective domains— that have been technologically enabled by Optimization
Modulo Theories and that use OPTIMATHSAT as main back-end engine for automated reason-
ing.

Some of these applications were of primary importance to both push and guide the develop-
ment of some of the ideas and approaches described in Chapters §4 and §5.

7.2.1 Learning Modulo Theories

In the context of Machine Learning applications, performing inference and learning in hybrid
domains is a particularly daunting task, that requires the capability of reasoning over both con-
tinuous and Boolean/discrete variables.

In Structured Learning Modulo Theories (SLMT), [TSP17], this problem is address by com-
bining (Structured-Output) Support Vector Machines (SVNs) with Optimization Modulo Theo-
ries. In the same paper, Teso et al. presented LMT, the first machine learning tool implementing
the SLMT approach [lmt]. The software uses OPTIMATHSAT as back-end OMT engine, where
it is used as inference and separation oracle.

Figure 7.1 depicts an application example taken from [TSP17], whereby LMT deals with
the problem of automatic character drawing. In this application, the SLMT framework uses
OPTIMATHSAT to deal with OMT formulas whereby the objective function is comprised by
the complex arithmetic combination of several Pseudo-Boolean terms such as the Equation (6.1)
reported in Section §6.2.

We refer the reader to [TSP17, Pas16] for details.
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Figure 7.1: An example of SLMT application to the hybrid domain of automatic character
drawing taken from [TSP17]. The picture depicts the results for the task of drawing the “C”
12× 12-pixel character.

7.2.2 Constrained Goal Models

In the context of Requirements Engineering, Goal Models (GM) are commonly used to repre-
sent software requirements, goals and design qualities [VL01].

Constrained Goal Models (CGMs), [NSGM16a, NSGM16b, NSGM17], enriches Goal Mod-
els with constraints that can be used to express preferences, numerical attributes and resources
(like, e.g., scores, financial cost, workforce, etc.). In [NSGM16a, NSGM16b], the authors
presented CGM-TOOL, [cgm], a software that allows for modeling and reasoning on CGMs.
Internally, the CGM-TOOL uses the OMT solver OPTIMATHSAT as workhorse engine to auto-
matically verify whether CGMs are realizable and, in such case, find their optimal realizations
according to some criteria.

Figure 7.2 show a simple example of a CGM for scheduling a meeting, taken from [NSGM16a,
NSGM16b, NSGM17]. We refer the interested reader to [NSGM16a, NSGM16b] for more de-
tails and to [ADB+18, AAMF18] for some application examples.

7.2.3 WCET

In the context of real-time systems, it is often useful to compute an upper bound on the worst-
case execution time (WCET) of programs subject to hard time constraints. In [HAMM14],
Henry et al. described a novel approach for computing the WCET of loop-free C programs with
Optimization Modulo Theories. Using OMT, the authors were able to take into account the
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Figure 7.2: A simple CGM example taken from [NSGM16a]. The model highlights, in yel-
low color, the optimal realization that lexicographically minimizes the sorted list of numerical
objectives 〈Penalty −Reward, workT ime, cost〉, found with OPTIMATHSAT.

semantics of a piece of program to prune infeasible paths from the search space and produce a
tighter estimate of the WCET, in some cases with an impressive improvement over the state of
the art. In their paper, Henry et al. used the OMT solver Z3 and enriched the encoding of the
problem with appropriate cuts to bring it to a tractable size.

Recently, the Ph.D. candidate —in collaboration with David Monniaux34 and Prof. Roberto
Sebastiani35— reproduced the research work of [HAMM14], and modified it to use OPTI-
MATHSAT as its main workhorse engine. To achieve this goal, the Ph.D. candidate imple-
mented from scratch a Difference Logic (DL) solver in OPTIMATHSAT. This solver was then
extended with the capability of learning T -lemmas derived from subsequent T -conflicts that
act as a replacement for the additional cuts used in [HAMM14]. Unpublished preliminary ex-
perimental results show the usefulness of this approach. The source code for this project is
available at [wce].

34David Monniaux, David.Monniaux AT univ-grenoble-alpes.fr, VERIMAG, Grenoble, France.
35Prof. Roberto Sebastiani, roberto.sebastiani@unitn.it, DISI, University of Trento, Italy.

215

mailto:david.monniaux@univ-grenoble-alpes.fr
mailto:roberto.sebastiani@unitn.it


CHAPTER 7. APPLICATIONS

7.2.4 Quantum Annealing

In the context of quantum computing, Quantum Annealers (QA) are specialized quantum com-
puters that minimize objective functions, defined over binary variables, by physically exploit-
ing quantum effects [JAG+11, BCI+14]. Currently, Quantum Annealing platforms such as the
D-Wave 2000Q [dwa] allow for the optimization of quadratic objectives defined over binary
variables (qubits), solving quadratic unconstrained binary optimization (QUBO) problems. In
the last decade, QA systems have scaled with Moore-like growth, such that current architectures
provide 2048 sparsely-connected qubits, and continued exponential growth is anticipated.

In [BCM+17, BCM+18], Bian et al. have investigated the problem of effectively encoding
SAT and MaxSAT problems into QUBOs, so that they can be fed to and solved by state-of-
the-art D-Wave 2000Q QAs. To this aim, OPTIMATHSAT is used off-line to create libraries of
QUBO encodings of useful Boolean functions by automatically computing an optimal choice
of (I) the QUBO input parameter values and of (II) variable-to-qubit placement, so that to max-
imize a parameter (gap) stating the robustness of the system with respect to noise. The two
problems (I) and (I)+(II) are addressed by solving an OMT(LRA) and an OMT(LRIA∪UF)
problem respectively. We refer the reader to [BCM+17, BCM+18] for details.
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Conclusions and Future Research
Directions

A few years ago, the advent of Optimization Modulo Theories has sprang new opportunities
for research and real-world applications, even outside the domains of Formal Verification and
Automated Reasoning. Because OMT solving is a resource demanding task, there has been
an ever-increasing pressure for more efficient OMT techniques as this technology has become
more widespread. At the same time, there has also been an increasing demand for more expres-
siveness and functionalities that goes way beyond its initial conception.

In this thesis, we have advanced the research on Optimization Modulo Theories along sev-
eral research directions, focusing on improving its efficiency and expressiveness. We have
also presented OPTIMATHSAT, a state-of-the-art Optimization Modulo Theories solver that
we have extended to support, among other things, both single- and multi-objective optimiza-
tion over arbitrary sets of LRA, LIA, LRIA, BV , FP , PB and MAXSMT cost functions.
We have provided a detailed description of OPTIMATHSAT’s architecture, of its input/output
interfaces and also of the algorithms it implements under the surface. We have concluded our
presentation with a selected review of experimental results, partly published in previous papers,
which confirm the validity of our implementation.

We believe that the work presented in this thesis builds solid foundations for future research,
and it consolidates the position of OPTIMATHSAT as a state-of-the-art Optimization Modulo
Theories solver and as a viable alternative to other, competing, tools through a number of small,
but significant, improvements.

Nonetheless, the field of Optimization Modulo Theories still remains a largely unexplored
territory, with great margins for improvement. Looking at the research presented in this thesis,
and focusing on OPTIMATHSAT in particular, we identify the following research goals as main

217



CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

improvement directions.
First, we envisage the opportunity to explore the possibility to integrate more robust Pareto

optimization approaches inside OPTIMATHSAT that perform some kind of systematic explo-
ration search granting a better view of the Pareto front being constructed in the case of LRA
and unbounded objectives (like, e.g., [LTZ05, LLGCM10]).

Second, we envisage the opportunity to investigate —and to integrate into OPTIMATHSAT
if successful— OMT versions of the novel SMT procedures for NLRA [CGI+17a] and for
NLRA plus transcendental functions [CGI+17b], both of which have been recently imple-
mented on top of MATHSAT5.

Third, we envisage the opportunity to further investigate the potential use of Optimization
Modulo Theories as an alternative to MINIZINC tools, and extend OPTIMATHSAT to make it
the bridge of two worlds that are now seemingly distinctly separated. This goal may require a
more in-depth investigation on the strengths and weaknesses of Optimization Modulo Theories
with respect to tools coming from the MINIZINC world to identify any technological gap that
is critical to the performance. Currently, without such an investigation, we identify three main
improvement directions for OPTIMATHSAT: the inclusion of a T -solver for the theory of (fi-
nite) sets, that are heavily used in the context of MINIZINC solving, and the development of
dedicated procedures for dealing with global constraints.

Finally, we hope for a tighter integration between OPTIMATHSAT and MATHSAT5, that
could strengthen the position of both solvers and speed up their adoption.
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