PH.D. DISSERTATION

ICT

Doctoral School

ICT INTERNATIONAL DOCTORAL SCHOOL
DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE
UNIVERSITY OF TRENTO

Optimization Modulo Theories
with OPTIMATHSAT

PATRICK TRENTIN

Advisor:

Prof. Roberto Sebastiani
DISI, UNIVERSITY OF TRENTO, ITALY

MAy 2019






Abstract

In the contexts of Formal Verification (FV) and Automated Reasoning (AR), Satisfiability Mod-
ulo Theories (SMT) is an important discipline that allows for dealing with industrial-level de-
cision problems. Optimization Modulo Theories (OMT) extends Satisfiability Modulo Theories
with the ability to express, and optimize, objective functions.

Recently, there has been a growing interest towards OMT, as witnessed by an increasing
number of applications using, at their core, some OMT solver as main power-horse engine.
However, at present few OMT solvers exist, and the development of OMT technology is still
at an early stage, with large margins of improvement. We identify two major advancement
directions in particular. First, there is a general need for closing the expressiveness gap with
respect to SMT, and provide optimization procedures that can deal with the wider range of
theories supported by SMT solvers. Second, there is an urgent need for more efficient techniques
that can improve on the performance of state-of-the-art OMT solvers, because solving an OMT
problem is inherently more expensive than dealing with its SMT counterpart, often by at least
one order of magnitude.

In this dissertation, we present a variety of techniques that deal with the identified issues and
advance both the expressiveness and the efficiency of OMT. We describe our implementation
of these techniques inside OPTIMATHS AT, a state-of-the-art OMT solver based on MATH-
SATS, along with its high-level architecture, Input/Output interfaces and configurable options.
Thanks to our novel contributions, OPTIMATHS AT can now deal with the single- and the multi-
objective incremental optimization of goals defined over multiple domains —the Boolean, the
mixed Linear Integer and Rational Arithmetic, the Bit-Vector and the Floating-Point domain—
including (Partial Weighted) MAXSMT.

We validate our theoretical contributions experimentally, by comparing the performance of
OPTIMATHSAT against other, competing, OMT solvers. Finally, we investigate the effective-
ness of OMT beyond the scope of Formal Verification, and describe an experimental evaluation
comparing OPTIMATHS AT with Finite Domain Constraint Programming tools on benchmark-

sets coming from their respective domains.
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Chapter 1
Introduction

Satisfiability Modulo Theories (SMT) denotes the problem of deciding the satisfiability of a
first-order formula with respect to a combination of decidable first-order theories [BSSTOQ9].
The last fifteen years have witnessed the development of very efficient SMT solvers, most
of which are based on the so-called lazy-SMT schema that combines the power of modern
Conflict-Driven Clause-Learning (CDCL) SAT solvers [MSLMOQ9] with the expressiveness of
dedicated decision procedures (7 -solvers) for several first-order theories of practical inter-
est such as linear arithmetic over the rationals (LR.A), the integers (LZ.A) or their combina-
tion (LZR.A), non-linear arithmetic over the reals (N LR.A) or the integers (N LZ.A), arrays
(AR), bit-vectors (BV), floating-point arithmetic (FP), and their combinations thereof. (See
[NOTO06, SebQ7, BSSTO9] for an overview.). This has brought previously-intractable problems
to the reach of state-of-the-art SMT solvers, so much so that SMT has acquired a prominent
role in many applications of industrial interest such as Formal Verification (FV) of hardware
and software systems, Automated Reasoning (AR), resource planning, temporal reasoning and

scheduling of real-time embedded systems.

Optimization Modulo Theories (OMT), [NOO6, CFG™10,/ST12, DDMA12,[CGSS13a, MP13,
LAK™ 14, LORRI14, ST15al], is a more recent extension to Satisfiability Modulo Theories that
allows for finding a model of a first-order formula that is optimal with respect to some ob-
jective function through a combination of SMT and optimization procedures. Many SMT
problems of practical interest are derived from —or can be easily extended to— an optimiza-
tion problem. This is the case of SMT-based model checking with timed or hybrid systems,
(e.g. [ACKSO02, |ABCS035]), in which one may want to find those executions that optimize the
value of some parameter (e.g., a clock timeout value or the elapsed time) while full-filling or
violating some temporal logic property. For instance, [ST15a] suggests using OMT to find

the minimum opening time interval that causes a safety violation for a level crossing barrier.
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CHAPTER 1. INTRODUCTION

A non-exhaustive list of the most recent OMT applications can be found towards the end of
this dissertation, while a few examples of less-recent OMT applications can also be found in
[NOO06, ICFG™ 10, [ST12, [CGSS13a, LAK™ 14, BP14, LORR14, [ST154, [ST15¢,[ST17, STT8].

Since the seminal work of Nieuwenhuis and Oliveras in [NOO6], which have dealt with
the Optimization Modulo Theories problem for first, there has been an increasing interest
around this topic. However, the research on OMT still appears to be at an early stage when
compared with other, more thoroughly studied, fields such as SMT. In fact, the number of
scientific publications in the literature that extend SMT with optimization is fairly limited,
[NOO06, CEFG ™10, Roc11,ST12, DDMAT12, MP13},ICGSS13a, LAK™ 14, [LORR14, [STT54], and
there are only a handful of more recent works that can be added to this figure, [BP14, BPF15,
STI15b, ST15¢, ABCF16, NR16, [ST17, AAdB™ 17, [ST18, FBB18, KBEI1S, I AAdB™ 18, TS19],
although we expect more to appear.

To this date, few OMT solvers exist that are also applicable beyond the scope of Partial
Weighted MAXSMT, namely BCLT [NOO6, BNO™08, Rocll, LORR14], CEGIO [ABCFI6),
AAdB™17,|/AAdB™ 18], HAZEL [NR16]], OPTIMATHS AT [ST12,/ST154,ST15bl,IST15¢,IST17,
STI18,TS19]], PuLI [KBE18]], SYMBA [LAK™14] and Z3 [BP14, BPF15]. To this aim, we ob-
serve that most of these solvers focus on different, partially overlapping, niche subsets of Opti-
mization Modulo Theories, and employ different standards for their Input/Output interfaces. In
practice, the combination of these two factors makes it hard to compare with one another the
few OMT solvers in existence.

In what follows we focus on the state of the art prior of the start of this Ph.D. program
(November 1%, 2014). Then, we make the following observations. Some of these works, such
as [NOO6, CFG™ 10, ICGSS13al], are applicable only to Partial Weighted MAXSMT, which is
strictly less expressive than Optimization Modulo Theories with Linear Integer/Rational Arith-
metic cost functions [ST15a]. The optimization procedures described by Sebastiani and Tomasi
in [ST12,/ST154] and by Li et al. in [LAK™14] can only deal with OMT with a Linear Rational
Arithmetic objective. In contrast, those described by R. O. Vendrel in [Rocl1] and Manolios
et al. in [MP13]] deal with Linear Integer Arithmetic objectives only. Neither of these works
expressively supports Mixed Linear Integer and Rational Arithmetic objectives, and [LAK™14]]
is the only work describing some form of multi-objective optimization support. Their approach,
however, is limited to the case in which every goal can be considered a completely independent
target from all the others, akin to solving a number of separate OMT problems in parallel. Last,
we observe that none of these works on OMT describes an incremental interface allowing for
pushing and popping subformulas and objective functions from the formula stack, allowing for
reusing useful information from one call to the other. This appears to be a relevant limitation

because SMT back-ends are often invocked incrementally like, e.g., in the context of Formal
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CHAPTER 1. INTRODUCTION

Verification.

Based on the above considerations on the status of Optimization Modulo Theories before
the start of this research, we identify the following improvements as necessary milestones to
unleash the full potential of Optimization Modulo Theories and make it further adopted in the
context of real-world, industrial-level, applications.

First, there is a general need to bridge the expressiveness gap of Optimization Modulo Theo-
ries when compared to Satisfiability Modulo Theories, and go beyond the various Linear Arith-
metic restrictions that are currently supported by OMT and MAXSMT solvers. This not only
means introducing optimization procedures that can handle Mixed Linear Integer and Rational
Arithmetic goals and combination of theories at the same time, but also objective functions de-
fined in other theories than Linear Arithmetic, such as the theory of Bit-Vectors and the theory
of Floating-Point numbers.

Second, it is necessary to investigate possible approaches for improving the performance
of OMT solvers, including methods that are only applicable to objective functions abiding to
certain format restrictions (like, e.g., MAXSMT). This goal is easily justifiable by observing
that while the leap from SMT to OMT can appear to be quite small from the perspective of
an end-user, due to the ease with which a new objective can be both declared and used, in
practice solving an OMT problem can be orders of magnitude harder in terms of computational
effort than dealing with its SMT counter-part. This is due to the fact that in an SMT solver the
search stops as soon as the first feasible solution is hit, whereas in an OMT solver the search
is normally terminated only when an optimal solution is found. In practice, dealing with the
latter goal is a significantly more daunting task than satisfiability, that can require enumerating
multiple suboptimal solutions along the search and also certifying the absence of an improving
solution at the end of the optimization search. Therefore, we believe that Optimization Modulo
Theories can greatly benefit from the investigation of more efficient techniques that may bring
previously intractable applications within the reach of OMT solvers.

A third improvement direction, closely related to the previous goal, is incrementality. This
refers to the ability to push and pop both constraints and objectives on the formula stack of an
OMT solver, while being able to reuse useful information automatically learned by the OMT
solver across multiple optimization searches. This feature, that is widely supported among SMT
solvers, can be crucial for achieving significant search speed-up when dealing with applications
that require performing a large number of incremental calls to the tool, each bringing small
changes to the previous formula.

Fourth, Optimization Modulo Theories can also greatly benefit from further extending the
pioneering work of Li et al. on multi-objective optimization in [LAK™14]. In particular, some
OMT applications —like, e.g., [NSGM16a, NSGM16b, NSGM17]— may benefit from the

3



CHAPTER 1. INTRODUCTION

ability of performing Lexicographic or Pareto-optimization search over a set of constraints.
Fifth, we believe it is worth considering whether the range of applications of Optimization
Modulo Theories can be extended further beyond its natural Formal Verification (FV) and Au-
tomated Reasoning (AR) domains, and to what extent. In this respect, it is worth noting that
there are other tool families that allow for optimizing some objective function under a set of
constraints, such as Finite Domain Constraint Programming (FDCP) and Mixed Integer Lin-
ear Programming (MILP). Among its strengths, Optimization Modulo Theories can rely on
native Boolean reasoning capabilities, that may prove to be an edge when dealing with highly
combinatorial problems, and the ability to handle theories that are commonly not supported
by tools coming from other research fields, such as the theory of arrays (AR) or the theory
of uninterpreted functions with equality (EUF). Previous works, such as [BPV09, BPSV(09,
BSV10, BPSV12]], have already started investigating those applications for which Satisfiability
Modulo Theories can be competitive with FDCP and MILP tools. Part of the work described in
this thesis is devoted to pushing forward this research work, focusing on Optimization Modulo

Theories.

On the whole, the expected benefits from the rise of more efficient and expressive Optimiza-

tion Modulo Theories solvers are many-fold.

e In those application fields that already benefit from SMT technology —like, e.g., Formal
Verification and Al Planning— the rise of efficient OMT tools should allow for addressing
more sophisticate versions of those problems (like, e.g., planning with resource optimiza-

tion).

e In those application fields that typically make use of FDCP/MILP back-end engines
instead —like, e.g., scheduling, industrial plant optimization [JG02], electrical grid opti-
mization [[TCHS13l], planning with resources [BLPS15, [DPSS15]— OMT could play as
an interesting alternative, taking advantage from several distinctive features that can be
inherited from SMT: the native (and very efficient) handling of Boolean operators, incre-
mentality, the capability of combining arithmetic with other theories (e.g. EUF, arrays,
bit-vectors, data-structures, ...).

e Other application fields —e.g., machine learning, conceptual modeling— can benefit
from OMT as enabling technology for new approaches. For example, the very recent
Structured Learning Modulo Theories [TSP17] and goal-modeling optimization [cgm]
already employ the OMT solver OPTIMATHS AT as back-end engine.
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Contributions

In this dissertation, we broaden the horizon of Optimization Modulo Theories along several

directions, including

e A combination of SMT, Linear Programming (LP) and Integer Linear Programming (ILP)
techniques for dealing with OMT problems with Mixed Linear Integer and Rational
Arithmetic objectives (§4.1);

e An effective use of sorting network circuits to speed up the optimization search when
dealing with OMT problems with Pseudo-Boolean cost functions and Partial Weighted

MAXSMT problems (§4.2.1);

e An extension of the OMT(LR.A U T) procedures presented in [ST12, [ST15a] to deal
with OMT problems with Bit-Vector (§4.3.1)) and Floating-Point (§4.4.T)) cost functions;

e A generalization of the maximization algorithms for unsigned Bit-Vectors presented in
[NR16], that has not been co-authored by the Ph.D. candidate, to deal with the mini-
mization or the maximization of both signed and unsigned Bit-Vector goals (§4.3.2] and
§4.3.3));

e A novel algorithm based on binary-search for dealing with OMT problems with Floating-
Point cost functions (§4.4.2)), inspired by an analogous approach presented in [NR16] for
handling unsigned BY goals;

e A description of two techniques for implementing, with little effort, an incremental OMT
solver on top of an incremental SMT solver (§4.5));

e A definition of Multi-Objective Optimization Modulo Theories (§4.6), and all of its vari-
ants. An effective encoding for MINMAX and MAXMIN goals into single-objective OMT
(§4.6.1). Optimization procedures for dealing with Multiple-Independent Optimization

(§4.6.2), Lexicographic Optimization (§4.6.3) and Pareto Optimization (§4.6.4);

and more.

We have implemented all of these novel functionalities in OPTIMATHSAT, an OMT solver
that has been first presented by Sebastiani and Tomasi in [ST12,ST15a] and that we have sub-
stantially re-implemented from scratch. OPTIMATHSAT is based on the MATHSATS SMT
solver [mata, CGSS13b]. We describe the architecture of our new implementation in Chap-
ter §51

As part of the work subject of this dissertation, we have also incorporated into OPTIMATH-

SAT a few relevant OMT approaches that have been presented by other researchers working on
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CHAPTER 1. INTRODUCTION

the same topics. This includes the Maximum Resolution engine for OMT with Pseudo-Boolean
and MAXSMT objectives that has been first presented in [NB14, BP14], a modified version
of the OBV-WA and OBV-BS algorithms for B)Y optimization that have been first presented in
[NR16] and a porting from scratch of the lemma-lifting approach for MAXSMT problems that
has been previously presented in [CGSS13al.

In addition, we have extended OPTIMATHSAT with three novel input/output interfaces,

including

e an extended version of the SMT-LIBV2 format supporting the novel optimization func-
tionalities (§5.3.1)),
e a new MINIZINC interface for dealing with problems that are typically handled with

FDCP solvers (§5.3.2)), and
e anew API, with C, Python and Java bindings (§5.3.3).

We include, in Chapter §6| several experimental evaluations that we have performed to
validate the approaches proposed in this thesis. Most experiments compare OPTIMATHS AT,
using various configurations, against other state-of-the-art OMT solvers with similar solving
capabilities, on benchmark-sets challenging the newly introduced functionalities. One of these
experiments compares OPTIMATHS AT with a selection of Finite Domain Constraint Program-
ming tools on formulas that are traditionally handled with FDCP solvers, and vice-versa (§06.6).
Part of these results have been collected by a Master Degree student at University of Trento,
Francesco Contaldo, under the co-supervision of the Ph.D. candidate, and they have been in-
cluded in his Master Thesis together with a compiler from the SMT-LIBV2 format to MINIZ-

INC, and also additional experimental data.

Publications
A significant part of the content of this dissertation has already been published in

o [ST15c] — Roberto Sebastiani and Patrick Trentin. Pushing the Envelope of Optimization
Modulo Theories with Linear-Arithmetic Cost Functions. In Proc. Int. Conference on
Tools and Algorithms for the Construction and Analysis of Systems, TACAS’15, volume
9035 of LNCS. Springer, 2015

e [ST15b] — Roberto Sebastiani and Patrick Trentin. OptiMathSAT: A Tool for Optimiza-
tion Modulo Theories. In Proc. International Conference on Computer-Aided Verifica-
tion, CAV 2015, volume 9206 of LNCS. Springer, 2015
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e [ST16] — Roberto Sebastiani and Patrick Trentin. On the Benefits of Enhancing Op-
timization Modulo Theories with Sorting Networks for MaxSMT. In Proceedings of
the 14th International Workshop on Satisfiability Modulo Theories, SMT-2016., CEUR
Workshop Proceedings, 2016

e [ST17] — Roberto Sebastiani and Patrick Trentin. On Optimization Modulo Theories,
MaxSMT and Sorting Networks. In Proc. Int. Conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS 17, volume 10205 of LNCS. Springer,
2017

e [STI18] — Roberto Sebastiani and Patrick Trentin. OptiMathSAT: A Tool for Optimiza-
tion Modulo Theories. Journal of Automated Reasoning, Dec 2018

e [TS19] — Patrick Trentin and Roberto Sebastiani. Optimization Modulo the Theory of
Floating-Point Numbers. In Proc. Int. Conference on Automated Deduction, CADE 27,
LNCS/LNALI. Springer, 2019. To appear.

Structure
This thesis is divided in two parts.

Part[Il provides an essential introduction to necessary background knowledge and terminology,

and a survey of the related work. In particular,

Chapter §2| introduces the reader with essential notions about Propositional Satisfiabil-
ity (§2.1) and Satisfiability Modulo Theories (§2.2)), and then extensively covers
the state of the art in Optimization Modulo Theories prior to the start of this Ph.D.
(§2.3). We conclude this chapter with a bare-bone introduction to Finite Domain
Constraint Programming and a survey of work in the literature across both fields
that are of interest for this dissertation.

Chapter §3] provides an overview of the related work on Optimization Modulo Theo-
ries that is of interest for this dissertation. In particular, it surveys those scientific
publications about OMT that have been published after the beginning of this Ph.D.
study.

Part[IT] is devoted to the description of the main contributions of this thesis. In detail,

Chapter §4 illustrates major advances in the context of Optimization Modulo Theories
that occurred during the span of this Ph.D. study. Section extends the OMT

7
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procedures for Linear Rational Arithmetic objectives presented in [ST12,ST15a] to
the case of Mixed Integer Linear Arithmetic. Section §4.2] deals with OMT prob-
lems wherein the cost function is a Pseudo-Boolean term, and also with Partial
Weighted MAXSMT. In the first part, we show an effective use of sorting networks
that enhances the basic optimization-search schema in use by the OMT solver. In
the second part, we describe OPTIMATHSAT’s implementation of the Maximum
Resolution engine presented in [NB14, BP14]. Section §4.3|describes how to deal
with Bit-Vector cost functions using a basic OMT-based search-schema, and also
the OBV-WA and the OBV-BS algorithms first presented in [NR16]. Section
focuses instead on Floating-Point objective functions; it describes a basic OMT-
based search-schema and also OFP-BS, a novel optimization search algorithm in-
spired by the OBV-BS engine in [NR16]. Section §4.5|illustrates two useful tech-
niques for incremental Optimization Modulo Theories solving. Section §4.6]defines
the Multi-Objective Optimization problem in the context of Optimization Modulo
Theories. Then, it describes procedures for dealing with MINMAX/MAXMIN ob-
jectives, Multiple-Independent optimization, Lexicographic optimization and Pareto
optimization. Section concludes this chapter with a simple extension of All-
SMT to the case of Optimization Modulo Theories.

Chapter §3] is devoted to the description of the implementation details concerning OPTI-
MATHSAT. Section §5.1|provides a high-level overview of its architecture, whereas
Section §5.2]goes into the details of its distinctive approach to optimization, that cur-
rently sets it apart from other OMT solvers. Section §5.3|illustrates the Input/Output
interfaces of OPTIMATHSAT, including its Extended SMT-LIBV2 Interface, its
MINIZINC Interface and its public API. The Chapter is concluded with a detailed
overview of the configurable options of OPTIMATHS AT, showing how to activate
and use the functionalities described in Chapter §4|and their variants.

Chapter §6| presents a number of experimental evaluations that have been performed to
validate, at an implementation level, the scientific contributions described in this
thesis. Section §6.1] illustrates an experiment on OMT formulas with a Linear In-
teger Arithmetic objective. Section §6.2] deals with Pseudo-Boolean and Partial
Weighted MAXSMT goals. Section §6.3|and Section §6.4] evaluate the procedures
for Bit-Vector and Floating-Point optimization respectively. Section §6.5|compares
basic single-objective optimization with incremental and multi-objective optimiza-
tion. The Chapter is concluded in Section §6.6| with a comparison among OPTI-
MATHS AT and MINIZINC solvers on a few benchmark-sets coming from their re-

spective domains.
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Chapter §7| contains a survey of some relevant scientific works using Optimization Mod-
ulo Theories (§7.1) and the description of a handful of applications of OPTIMATH-
SAT that have been of primary importance in guiding the research and development
of the features described in this dissertation (§7.2)).

Finally, in Chapter §§| we draw some conclusions on the research work presented in this thesis

and we outline some possible directions for future development expanding on this research.
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Chapter 2

Background & State of the Art

This chapter provides an introduction to background and state of the art concepts that are used
throughout this dissertation. The presented material on Propositional Satisfiability and Satisfi-
ability Modulo Theories is mostly taken from [NOTO06, Seb07, BHvMWO09, BSSTO09]], whereas
the content on Optimization Modulo Theories is based on a variety of publications on the topic,
[NOO06, CFGT10, Roclll, ST12, DDMA12, MP13] [CGSS13a, LAK'14, LORR14, [ST15a],
and also on the background content of previous publications of the author of this dissertation
[STI15b, ST15¢, ST17,IST18, [TS19].

The topics being presented are:

§2.1] Propositional Satisfiability (SAT): basic concepts and terminology, followed by an essen-
tial description of both DPLL and CDCL, the most well-known algorithms for deciding
SAT.

§2.2) Satisfiability Modulo Theories (SMT): starts with basic concepts and terminology, and
then focuses with a greater level of detail on the so-called “lazy” approach for SMT
(§2.2.1). Various additional topics are touched, including incremental SMT (§2.2.2),
some SMT theories of interest (§2.2.3) and combination of theories in SMT (§2.2.4)).

§2.3] Optimization Modulo Theories (OMT): introduces the problem of performing optimiza-
tion in SMT, also known as Optimization Modulo Theories. It covers OMT with Linear
Rational Arithmetic cost functions (§2.3.1), OMT with Linear Integer Arithmetic cost
functions (§2.3.2)) and OMT with Pseudo Boolean and MAXSMT objectives (§2.3.3).

§2.4] Constraint Programming and SAT/SMT/OMT: introduces, in Section §2.4.1] (Finite Do-
main) Constraint Programming (FDCP), a restriction of Constraint Programming (CP)
that is closely related to the domains of SAT, SMT and OMT solving. Then, after short
overview of the MINIZINC and FLATZINC languages that are widely adopted by FDCP
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solvers (§2.4.2), it reviews (§2.4.3)) a few literature works crossing the border among the
FDCP and the SAT, SMT and OMT domains, focusing only on those excerpts that we
have deemed as being relevant for this dissertation.

Note. This chapter illustrates the state of the art in Optimization Modulo Theories at the
time in which this Ph.D. was started (November, 2014). Therefore, with the exception of
a few studies that were kept inside this chapter to preserve the continuity of presentation,
any other OMT-related work which has been published after this date that we are aware of
is described either in the Related Work (§3), among OMT Applications (§7.1)) or among
OPTIMATHSAT Applications (§7.2).

2.1 Propositional Satisfiability

Let X = {zy,...,x,} be a set of n Boolean variables. A [iteral [ is a variable x; or its negation

—x;. A clause C'is a disjunction of literals [y V ... V [.

A propositional formula ¢ is said to be in Conjunctive Normal Form (CNF) if it is a con-
junction of clauses C; A ... A C,,. Notation-wise, a clause C' and a CNF formula ¢ are also often
represented as a set of literals {1, ..., [ } and a set of clauses {C", ..., C,,, } respectively.

As outlined in [Tse68], for every non-CNF formula ¢ an equisatisfiable CNF formula ¢’
can be generated in polynomial time. Therefore, in the rest of this thesis we assume that every
formula ¢ is in CNFE.

In the context of propositional satisfiability (SAT) [BHvMWO9], Boolean variables can be
either assigned or unassigned. An assigned variable x evaluates to either L (false) or T (true).
When a variable = has not yet been assigned a value, we use undef to denote its undefined
value. An assignment is a function p : X — {undef, L, T} that maps each assigned variable
x to a value in {_L, T} and the remaining variables to unde f. An assignment y is said to be a
complete (truth) assignment if it maps all variables z; € X to a value in {_L, T }. Otherwise, if
there exists some x; € X mapped to undef, it is a partial (truth) assignment. Given some i,
a clause C' is said to be satisfied if at least one of these literals evaluates to T, and unsatisfied
otherwise. Given a (partial) truth assignment p and a clause C', C' is said to be a unit clause
when all-but-one literals /; € C' evaluate to L, so that C' can only be satisfied if ;1 assigns the
remaining literal /; to the value T.

Given a CNF formula ¢, the goal of propositional satisfiability is to find a (complete) truth
assignment g such that all clauses C; € ¢ are satisfied. Formally, this is denoted by the writ-

ing 4 = ¢. In the following, we give a brief introduction to two of the most widely known
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approaches for SAT. We refer the reader to the vast literature on propositional satisfiability for
a more comprehensive introduction on the topic, e.g. [GKSS0S8, KBK09, LM09, MSLLMQ9,
Pre09, RMOQ9].

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm [DP60, DLL62]. Given a CNF
formula ¢, this procedure starts from an initially empty assignment z, in which all variables x
are undefined, and then tries to incrementally extend it to a complete truth assignment p that
propositionally satisfies ¢.

The algorithm recursively selects some unassigned Boolean variable x; belonging to some
undecided clause C', and separately explores the case of assigning z to the value L and to the
value T (not necessarily in this order). The second case is explored only when the first one
resulted in a contradiction, that is, it made some clause C' unsatisfiable. Moreover, if both cases
are found to be unsatisfiable, then the search procedure backtracks to the most recent point
in which it can make a different, unexplored, decision on the value of some x; (if any). The
search terminates with SAT when the partial truth assignment p is successfully extended to a
complete truth assignment that propositionally satisfies . Otherwise, the procedure terminates
with UNSAT when it unsuccessfully explored all possible cases.

A number of (satisfiability-preserving) clause-transformation rules are applied to greatly
improve the efficiency of the DPLL procedure. Among these, a particularly important role is
played by unit propagation. Given a unit clause C' in which some [; € C'is still undecided and
the remaining literals C' \ [; evaluate to L, the rule forces the DPLL solver to explore only the

case in which [; is assigned to T, as C' would otherwise remain unsatisfied.

Conflict-Driven-Clause-Learning (CDCL) Algorithm [MSLM09]. The CDCL algorithm
is an evolution of DPLL that replaces the original chronological backtracking mechanism with
a backjumping mechanism based on conflict analysis and clause learning.

Similarly to DPLL, the procedure starts with an empty assignment y and it attempts to
extend y to a complete assignment g that satisfies the input formula . In CDCL, the search
proceeds in a stack-based loop and it is organised in decision levels, starting from level 0.
The latter contains the original set of input clauses ¢ after the application of pre-processing
and unit-propagation. For each new level, the CDCL engine performs three steps: Decision,
Boolean Constraint Propagation (BCP) and Backjumping and Learning.

In a Decision step, the (partial) assignment y is extended with a new decision literal [, that
is heuristically selected among the set of literals in ¢ that are still undecided.

Then, the CDCL algorithm applies BCP to iteratively deduce, by means of unit-propagation,
all literals I’ that are implied by n. Each of these literals is tagged with the clause that caused
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its propagation, called antecedent clause, and added to ;.. BCP ends either when there are no
more literals that can be deduced or when p causes some clause C' € ¢ to be falsified. In the
first case, the search continues with a new decision if there is still some undecided literal in
¢, and terminates with SAT otherwise. If instead the search incurs in a conflict, then a step of
Backjumping and learning is performed.

To perform a Backjump, the implication graph —which is implicitly defined on the search-
stack by the set of antecedent clauses— has to be traversed to identify the subset 7 of literals
that caused C to be falsified (conflict set). Then, the conflict clause C’ = —n is learned, and
the search backjumps to some previous decision level blevel in which the procedure would have
done something different if the new clause C’ was already known (for details on some strategies
for picking blevel see [MsS99, ZMMMO1]). Compared with the chronological backtracking
approach of DPLL, backjumping is a lot more effective because it immediately jumps to the
place in which a mistake was performed, thus avoiding a lot of useless search.

Learning C’ guarantees that the same mistake will not be repeated again in the future, be-
cause as soon as all-but-one literals in 7 are decided, then the remaining literal is unit-propagated
to L. However, clause learning can also heavily impact the overall performance due to generat-
ing a large number of new clauses. For this reason, CDCL solvers typically employ a technique
called clause discharging, that heuristically drops unnecessary learned clauses from the formula
stack, e.g. using their size and activity as relevance indicators.

Finally, the search ends with UNSAT when two contradictory literals [ and —[ are assigned

at level O as a result of unit-propagation.

2.2 Satisfiability Modulo Theories

In the following, we provide a brief overview to Satisfiability Modulo Theories (SMT), focusing
for the most part on lazy SMT. The material presented in this section is standard in SMT, and it
is mostly taken from [NOTO06, Seb07, BSSTO09]]. Hence, we refer the reader to these publications
for a broader, and drastically more rigorous, introduction to the topic.

Basics. We assume that the reader is familiar with standard first order logic, and otherwise
refer to any book that gives an introduction on the topic (e.g. [vD94]).

In the following, let 3 be a first-order signature containing function and predicate symbols
with their arities, and V be a set of variables. A 0-ary function symbol c is called a constant.
A 0O-ary predicate symbol A is called a Boolean atom. A Y.-term is either a variable in V or
it is built by applying function symbols in ¥ to X-terms. If ¢, ...,¢, are 2-terms and P is a
predicate symbol, then P(t1,...,t,) is a X-atom. If [ and r are two X-terms, then the ¥-atom
[ = ris called a X-equality and —(I = r) (also written as [ # r) is called a 3-disequality. A
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Y-formula o is built in the usual way out of the universal and existential quantifiers V, 4, the
Boolean connectives A, —, and X-atoms. We use the standard Boolean abbreviations: “p; V p5”

R 29 ¢ 2 ¢

for “=(=gp1 A=p2)”, “o1 = a7 for “= (1 A=p2)”, “p1 4= @2 for “=(—p1 Apa)”, “p1 <> pa”
for “=(p1 Amo) A= (—p1 Awa)”, “T7 [resp. “L”] for the true [resp. false] constant. A X-literal
is either a X-atom (a positive literal) or its negation (a negative literal). The set of >-atoms and
Y.-literals occurring in ¢ are denoted by Atoms(y) and Lits(y) respectively. A formula ¢ is
said to be quantifier-free if it does not contain quantifiers, and ground if it has no free variables.
A disjunction of literals is called a clause.

Notationally, we use the greek letters ¢, v to represent Y-formulas, the capital letters A;’s
and B;’s to represent Boolean atoms, and the Greek letters «, 3, 7y to represent >.-atoms in
general, the letters /;’s to represent X-literals. If [ is a negative X.-literal =, then by “—[” we
conventionally mean f rather than ——/.

We also assume that the reader is familiar with the usual first-order notions of interpretation,
satisfiability, validity, logical consequence and theory, as given, e.g., in [vD94]]. We write I" = ¢
to denote that ¢ 1s a logical consequence of the (possibly infinite) set I' of formulas.

Throughout this dissertation, for simplicity and if not specified otherwise, we shall refer
—with a small abuse of notation— to predicates of arity zero as Boolean variables, and to
uninterpreted constants as theory variables (or simply as variables, when the meaning is clear
from the context).

Theory (7). A Y—-theory is a set of first-order sentences with signature 3. We use the
symbol T to denote a >—-theory. We use the prefix ““7-” to denote any atom/clause/formula
that is defined solely in terms of elements in the theory 7. In this dissertation, we consider only
quantifier-free first-order theories with equality, meaning that the symbol “="" is interpreted as
the identity relation in each 7{]

A Y-structure Z is a model of a X-theory 7 if Z satisfies every sentence in 7. A X-formula is
satisfiable in T (or T -satisfiable) if it is satisfiable in a model of 7. We write v =7 ¢ to denote
T U~ E ¢. Two X-formulas ¢ and @) are T -equisatisfiable if and only if ¢ is T -satisfiable
if and only if v is T -satisfiable. We call Satisfiability Modulo (the) Theory T, SMT (T ), the
problem of establishing the 7 -satisfiability of >-formulas, for some background theory 7. We
call a theory solver for T (T -solver) any procedure that can establish whether any given finite
conjunction of quantifier-free >-literals is 7 -satisfiable or not.

Henceforth, for simplicity and if not specified otherwise, we may omit the “X-” prefix from

99 ¢

term, formula, theory, models, etc. Moreover, by “formulas”, “atoms” and “literals” we implic-

Therefore, as a consequence of focusing only on the quantifier-free fragment of each theory 7 and in absence
of any ambiguity, throughout this document we drop —with a small abuse of notation— the “Quantifier Free” (i.e.
“QF”) prefix from the name of each SMT theory being considered (e.g. QF_LIRA becomes LZR.A).
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itly refer to quantifier-free formulas, atoms and literals respectively.

Given a disjunction \/?:l x; = y;, where x;, y; are variables, a conjunction I" of T -literals in
a theory 7 is said to be convex if and only if it is always true that I" =7 \/!"_, x; = v, if and only
if I' =7 x; = y; for some ¢ € [1,n]. A theory T is said to be convex if all possible conjunctions
of its T -literals are convex in 7. A theory 7 is said to be stably-infinite if and only if for each
T -satisfiable formula ¢ there exists a model of 7 whose domain is infinite and that satisfies (.
Any convex theory 7 whose models’ domains have all cardinality strictly greater than one is
stably-infinite [BDS02].

Abstraction/Refinement (725/B27T). Given a first-order 7-formula ¢, its proposition-
al/Boolean abstraction P is obtained by replacing each 7 -atom in ¢ with a fresh Boolean
constant. The 7 -formula ¢ is called refinement of ¢”. We assume the availability of a mapping
T 2B (“theory to Boolean”) from theory atoms to fresh Boolean constants and its inverse B27
(“Boolean to theory”) to get the propositional abstraction ¢ from ¢ and vice versa.

Truth Assignment. We call a truth assignment p for a 7 -formula ¢ a truth value assignment
to the 7 -atoms of (. A truth assignment  is said to be total if it assigns a value to every atom
in ¢, and partial otherwise. Syntactically identical instances of the same 7 -atom are always
assigned identical truth values; syntactically different 7 -atoms, e.g., (t; > t2) and (to < t),
are treated differently and may thus be assigned different truth values.

We represent a truth assignment g for ¢ as a set of 7 -literals

{Oél, ey N, TON 41, ey ﬁOéM,Al, ..,AR, _|AR+1, caey _‘AS}

where the «;’s are X-atoms and A;’s are Boolean propositions. Positive literals «;, A; mean
that the corresponding atoms is assigned to true, negative literals —cy;, =A; mean that the cor-
responding atom is assigned to false. If us C pq, then we say that iy extends pi5 and that po
subsumes |1;. Sometimes we represent a truth assignment also as the formula given by the con-
junction of its literals. Notationally, we use the Greek letters (i, 1) to represent truth assignments.

Satisfiability. Given a truth assignment p, we denote with p? the Boolean abstraction of
11, that is, u? = T 2B (u). Given a total truth assignment x for ¢, we say that u propositionally
satisfies o, written /1 =, , if and only if ;P |= P, where ¢” is the Boolean abstraction of (.
We say that a partial truth assignment p propositionally satisfies o if and only if all the total
truth assignments for ¢ that extend p propositionally satisfy ¢. We say that ¢ is propositionally
satisfiable if and only if there exist an assignment . |=, . We say that ¢ is propositionally
unsatisfiable if no such p exists. We say that ¢ is T -satisfiable if and only if there exists some
total truth assignment g for  such that u propositionally satisfies ¢ and p is 7 -satisfiable. We
say that o is T -unsatisfiable if there exist no such 7 -satisfiable truth assignment p for ¢ that
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propositionally satisfies ¢. A structure M is said to be a model of a theory 7 if M satisfies
every formula in 7. We say that a formula ¢ is T -satisfiable if it is satisfiable in a model of 7.

Definition 2.2.1. (7 -Solver [[BSST09]). Given a first-order theory T for which the
(ground) satisfiability problem is decidable and a conjunction/set of theory literals (7 -
literals) u, a theory solver for T (T -Solver) is any decision procedure that is capable to
decide the satisfiability of j1in T.

In the case y is T -unsatisfiable, a typical 7 -Solver not only returns UNSAT, but also a theory
conflict set 1 such that n C p and n is 7 -unsatisfiable. We note that a conflict set 1 does not
need to be minimal and that its negation —7 is called theory conflict clause. 1If instead p is
T -satisfiable then the 7 -Solver returns SAT. In addition, it may also be able to generate one (or
more) deductions of the form {1, ...,1,} =7 [ such that {/,...,1,} C p and [ is an unassigned
T-literal (i.e. | ¢ p). The formula (\/]_, —l; \VV 1) is called a theory-deduction clause. Both

theory-conflict clauses and theory-deduction clauses are valid in 7, and are therefore called

theory lemmas or T -lemmas.

Definition 2.2.2. (Satisfiability Modulo Theories (SMT) [BSST09]). Let T £ U, 7
where each pair of theories T;, T; in T is signature-disjoint, meaning that T; and T; share
no symbol except for the equality symbol “=". Then, Satisfiability Modulo Theories is
the problem of deciding the satisfiability of Boolean combinations of propositional atoms
and theory atoms that belong to T

In §2.2.1) we provide a short introduction to the salient aspects of the so-called “lazy” ap-
proach [Seb07, BSST09], also known as “DPLL (7)” [NOTO06], that is implemented by modern
SMT solvers. The incremental extension of “lazy” SMT solving is explored in followed
by with a lightweight excursus of some notable SMT theories 7 that are of interest for
this dissertation, introducing concepts that will be used later on. We conclude with combination
of theories in SMT in §2.2.4]

2.2.1 The “lazy” SMT Scheme

A “lazy” SMT solver combines combines a propositional SAT solver based on the DPLL al-
gorithnﬂ with a number of 7 -Solvers, (at least) one for each theory 7 of interest. With this

Modern DPLL solvers often implement the CDCL techniques described in For this reason, in this thesis
we often use the name CDCL to refer to the SAT engine embedded in a “lazy” SMT solver.
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function 7-DPLL (7 -formula ¢, 7T -assignment & 1)
1: res := T-PREPROCESS (¢, i)

2: if (res == conflict) then
3: return UNSAT
4: P =T2B(p)
5: uP = T2B(u)
6: while true do
7: T-DECIDE_NEXT_BRANCH (P, iP)
8: while ¢rue do
9: res == T -DEDUCE(pP, u?)
10: if (res == SAT) then
11: w= B2T (uP)
12: return SAT
13: else if (res == conflict) then
14: (blevel,n) == T-ANALYZE_CONFLICT (P, 1iP)
15: if (blevel < 0) then
16: return UNSAT
17: else
18: T-BACKTRACK (blevel, o, uP, nP)
19: else
20: break

Figure 2.1:  An online schema of 7-DPLL based on modern DPLL [Seb07].

approach, the DPLL engine is used to enumerate truth assignments p! that propositionally sat-
isfy the Boolean abstraction ¢” of the input formula ¢ (i.e. 1! |=, ), whereas the 7-Solvers
are used to check that ji;, where ji; = B27 (;17), is T -satisfiable.

T-DPLL Algorithm. The basic schema of a “lazy” SMT solver is shown in algorithm
The procedure takes as inputs a 7 -formula ¢ and an (initially empty) set of 7 -literals 1, that is
updated during the search.

The search starts by invoking 7 -PREPROCESS(), a procedure that transforms ¢ into a sim-
pler and equi-satisfiable formula —possibly in CNF— and correspondingly updates j if neces-
sary (line 1). In the case the SMT solver detects that ¢ is unsatisfiable while performing this
simplification step, the search is early-terminated with UNSAT (lines 2-3). Otherwise, the SMT
solver uses the function 725 to generate the Boolean abstractions ¢” and p” starting from ¢
and p (lines 4-5), so that it can apply the SAT based techniques described in §2.1]

After entering the main loop (lines 6-20), the first step is to call 7 -DECIDE_NEXT_BRANCH()
to extend pP with some currently unassigned literal [ from P. Here, the literal [ is called deci-

sion literal and it is picked according to some heuristic function that might take into considera-
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tion the semantics of 7. The number of decision literals in y after performing this step is called
decision level of [.

Inside the inner loop (lines 8-20), the function 7-DEDUCE() is used to iteratively deduce all
literals [’ that derive from the current truth assignment (i.e. ¢ A 1 =, [') at line 9. This step
is akin to BCP in §2.1] and it keeps running up until when one of the following circumstances

arises:

(i) pP satisfies P (i.e. p? k=, ¢P), so that T-DEDUCE() checks the 7 -satisfiability of
B2T (147) by invoking the appropriate 7 -solver(s). The result of 7-DEDUCE() is SAT
if every T -solver returns SAT, and conflict otherwise.

(ii) p* propositionally violates ¢” (i.e. P A ¢P =, L), so that T-DEDUCE() returns UNSAT.

(iii) no more literals can be deduced, so that 7 -DEDUCE() returns UNKNOWN.

The return value of 7-DEDUCE(), res, is then subsequently handled as follows:

(i) if it is equal to SAT, then 7-DPLL terminates with the same value after x” is refined into
a set of 7 -literals ;¢ with the aid of function B27 () (lines 10-12).

(i1) if it is equal to conflict, then the SMT solver encountered a conflict either at the propo-
sitional or at the theory level. In both cases, the search proceeds similarly to the CDCL
approach described in It invokes a procedure named 7 -ANALYZE_CONFLICT() to
identify a subset n” of u” —a.k.a. the conflict set— that is causing the conflict and the
decision level blevel to which the search has to backtrack (line 14). If the conflict is not a
logical consequence of a previous branching step, i.e. blevel is equal to 0, then the search
terminates with UNSAT (lines 15-16). Otherwise, 7-BACKTRACK() extends ¢ with the
conflict clause —n and backjumps to blevel. Both ¢ and p are updated accordingly (lines
17-18).

(i11) if it is equal to UNKNOWN, then the SMT solver exists the inner loop and proceeds with a
new Decision by jumping at the next iteration of the outer loop (lines 19-20).

The search continues up until when a 7 -consistent set of literals u is generated, meaning
that ¢ is 7 -satisfiable, or when every possible assignment leads to a conflict, meaning that ¢ is
T -unsatisfiable.
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Enhancements. In the following, we provide a brief list of the most important enhancements

that are typically adopted to improve the performance of the basic online 7-DPLL schema
shown in algorithm 2.1 We refer the reader to [NOTO06), [Seb07, BSST09] for more details and

techniques.
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e Early Pruning (EP). T -solvers are invoked on 527 (u?) even when p” is still a partial

truth assignment, possibly (at least) once before each new Decision, so that in the case
of a conflict the search can immediately backtrack without exploring any of the (many)
possible extensions of x”. On the one hand, this enhancement allows the SMT solver to
discover T -conflicts —that are typically small— earlier in the search, thus sparing lots
of search. On the other hand, invoking any 7 -solver is typically more expensive than
simple BCP. To lower the impact of this approach, 7 -solvers are typically designed to be
incremental and “remember” their computation status from one call to the other, so that

they do not have to start from scratch each time 4 is extended by a new literal /.

Weak Early Pruning (WEP) [SebQ7]. Allows T -solvers to perform only an approximate,
but cheaper, satisfiability check during EP calls, thus reducing the overhead of EP as a
whole. In practice, during EP calls T -solvers are allowed to return SAT even when the
current truth assignment g is 7 -inconsistent, as long as they are able to identify such

inconsistency during non-EP calls.

def

T -propagation [NOT06]. Given n = {ly,...,1,} such that » C p and an unassigned
literal [” corresponding to an atom in ¢, if the T -solver is able to deduce that n =7 [,
where [ = B27 (IP), then [” is unit-propagated by extending ;. with the implied literal. In
addition, the T -deduction clause (\/;_, —l; V l) can be permanently learned by the SMT
solver to be used in backjumping and learning. When relatively cheap, this technique
can have cascade benefits to the overall performance, as 7 -propagating one literal [ may

allow new literals to be assigned by BCP or deduced by a new round of 7 -propagation.

Layering [BBCT05¢, BCFT07]. Each T -solver may be organised in a layered hierarchy
Sy, ..., S of increasing expressibility and complexity, so that each S; is able to decide
a theory 7; that is a sub-theory of 7;,;. Greater expressibility and complexity entails
more expensive procedures for deciding the satisfiability of p over the fragment of 7
being supported. In this architecture, only the top-most solver Sy is able to decide the
full theory 7. Layering plays a significant role when g is 7 -inconsistent, because the
T -solver can return UNSAT as soon as some solver 5; reveals such inconsistency, without

a need to invoke any of the more expensive engines.

Splitting on-demand [BNOTO6|. A T -solver is allowed to return UNKNOWN plus a set of

new T -lemmas containing new ‘T -atoms, whose abstraction is then handled by the SAT
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engine at the Boolean level, as with the other clauses in ¢. This enhancement leverages
the very efficient techniques implemented within the SAT engine (e.g. conflict-driven
backjumping and learning) to perform disjunctive reasoning that would otherwise have
to be directly handled by the 7 -solver whenever this is necessary. This technique does
not only positively impact on the performance, but it also allows for simpler 7 -solver

implementations.

e Pure Literal Filtering [Seb07]. Given any 7 -atom that occurs only positively [resp. neg-
atively] in the input formula ¢, the SMT solver is allowed to (safely) drop every negative
[resp. positive] occurrence of it from p before handing it over to the 7T -solver. Intuitively,
none of these 7 -atoms is crucial to determining the 7 -satisfiability of x. As a result, the
T -solver benefits both from being asked to handle fewer literals at a time, and also from
the fact that removing “useless” 7T -literals from y increases the chances that the tracked

set of T -literals is found to be consistent.

2.2.2 Incremental SMT

A common feature that characterizes modern SMT solvers is the availability of a stack-based
incremental interface (see e.g. [ES04]), that allows for pushing/popping subformulas ¢; into an
internal stack of formulas & = {1, ..., ¢r } and then to incrementally check the satisfiability of
2 = /\f:l ;.

Efficient incremental SMT is possible thanks to a status-based design that applies to both
the 7-DPLL engine as well as to any 7 -solver. This design preserves the search status from
one incremental call to the other, such as learned clauses and the phase-saving value of each
Boolean literal. As a result, when invoked on ¢, the SMT solver can reuse a clause C' that was
learned during a previous call on some ', provided that (1) C' was derived only from clauses
that are still in (¢ and that (2) C' was not discharged in the meantime. In the particular case in
which ¢’ C ¢, then the SMT solver is able to reuse all clauses that were learned while checking
the satisfiability of /. An additional benefit of the status-based design is that it allows for an
efficient restore of the previous state upon a subformulas discharge event.

A possible approach for incremental SMT (used, e.g., by MATHS ATS5 [CGSS13bl]), follows.
First, the stack of formulas ®, which we defined as {¢1, ..., ¢ }, is rewritten into the new stack
P = {A] = ¢1,..., A, — ¢}, where each A; is a fresh Boolean variable. Then, the SMT
solver checks the satisfiability of &' under the assumption of the variables { A, ..., Ax}, so that
every learned clause C' that is derived from some ¢; is in the form —A; V C’ [ES04]]. When a
subformula ¢; is popped from the stack of formulas, the corresponding Boolean variable A; is

no longer assumed in subsequent satisfiability checks. As a result of dropping A; from the set
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of assumptions, any learned clause C' of the form —A; vV C’ becomes inactive, meaning that it
no longer contributes to the satisfiability of the input formula and thus it can be ignored by the
SMT solver. Hence, a clause can be safely stored in memory from one call to the other, at least
up until when, after becoming inactive, it is automatically garbage-collected to free up some

space.

2.2.3 Theories of Interest

In the following we take a closer look to a short list of notable theories 7 that are typically han-
dled by SMT solvers and are also of interest for Optimization Modulo Theories in the context
of this dissertation. We refer the interested reader to [Seb07, BSST09]] and to the SMT-LIB
website [smf]] for more theories 7 and a more formal (and detailed) presentation.

Equality and Uninterpreted Functions (U4 F).

This is a first order theory for quantifier-free formulas that only deals with the following equality
(2.1a) and congruence (2.1b]) axioms, defined for every function symbol f and predicate symbol
P:

Ve(z =x),Ve,y (e =y - y=2z),Vr,y,z.((t =y ANy =2) > x = z2) (2.1a)
va:la ey Ty Y1, 7yn((/\221 T = yz> - f(xh 7xn) = f(yb ayn)>

i (2.1b)
Yy, ..., Ty, yl, ...,yn.((/\i:1 ;i =y;) = P(x1,...,z) < P(y1, .., Yn))

The EUF theory is both stably-infinite and convex. Moreover, given a quantifier-free set of
literals, EU F-satisfiability is both decidable and polynomial.

Linear Arithmetic (LZR.A).

The theory of Linear Arithmetic (LCITR.A) is the quantifier-free first order theory with equality
whose atoms are in the form (ay - x1 + ... + a, - T, X ap), such that € {<, <, #, = > >},
each q; is an (interpreted) constant symbol that belongs to either the Rational or Integer domain
and each z; is either a Rational or an Integer variable. The restriction of LZR.A to the Rational
and Integer domain only is the theory of Linear Rational Arithmetic (LR.A) and Linear Integer
Arithmetic (LZA) respectively.

Linear Rational Arithmetic (LR.A). The theory of LRA is both stably-infinite and convex.
Moreover, the LR A-satisfiability of quantifier-free sets of LR.A-atoms is both decidable and
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polynomial [Kha79]]. Modern SMT solver often implement some type of Simplex-based proce-
dure for LR A-satisfiability [DAMO06b], that has the benefits of being efficient, incremental and
backtrackable, it allows for aggressive T -deductions and it directly handles strict inequalities
[DdMO6b].

Linear Integer Arithmetic (LZ.A). The theory of LZ A is stably-infinite and non-convex. In
contrast with LRA, the LZ A-satisfiability of quantifier-free sets of £Z.4-atoms is decidable
and NP-complete [Pap81]. Several algorithms have been proposed in the past, often com-
bined with one another, to handle £Z.A-satisfiability efficiently: Simplex-based search with
Branch&Bound [Sch99], Gomory’s cutting planes method [DMO06a], the Omega test [Pug92]|
based on the Fourier-Motzkin algorithm, and others (e.g. [DDAOQ9, |Gr112]).

Remark 2.2.1. In the context of SMT solving, which has its main applications in the
domains of formal verification and model checking, it is of absolute importance that the
SMT solver is able to guarantee the correctness of a result. For this reason, the Linear
Arithmetic algorithms employed by SMT solvers are typically built on top of infinite-
precision-arithmetic software packages, thus avoiding incorrect results due to numerical
errors and to overflows.

Bit-Vectors (BYV).

The theory of fixed-width Bit-Vectors (BV) is a quantifier-free first order theory with equality
that is used, for instance, to represent Register Transfer Level (RTL) hardware circuits at a
higher, modular, level than what is possible with a purely propositional approach (e.g. “bit
blasting”). In addition, the BY theory can also be used to deal with problems steaming from the
software verification domain (e.g. [GDOQ7]).

In the BV theory, a bit is a Boolean variable that can be interpreted as 0 or 1 and a BY
variable v["l of width n is a sequence of n bits [obj[0], ..., obj[n — 1]], where v[0] is the Most
Significant Bit (MSB) and v[n — 1] is the Least Significant Bit (LSBf] A BV constant of width
n is an interpreted vector of n values in {0, 1}. We overline a bit value or a B) value to denote
its complement (e.g., [11010010] is [00101101]). A BV variable/constant of width n can be
unsigned, in which case its domain is [0,2" — 1], or signed, that we assume to comply with
the two’s complement representation, so that its domain is [—2("~1 2(*=1) — 1], Therefore, the
vector [11111111] can be interpreted either as the unsigned BY constant 255! or as the signed
BV constant —18!. Following the SMT-LIBV?2 standard [smf], we may also represent a 5

3 In the literature, v[0] and v[n — 1] commonly represent the LSB and the MSB respectively. We use the
opposite notation because we always reason from the MSB down to the LSB.
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constant in binary (e.g. 28! is written #b00011100) or in hexadecimal (e.g. 28!® is written
#x1C') form.

A BYV term is built from BV constants, variables and interpreted ) functions that represent
standard RTL operators: word concatenation (e.g. 3! o x[®l), subword selection (e.g. (31¥[6 :

8 . y1®), bit-wise operators

3])), modulo-n sum and multiplication (e.g. x® +4 y® and x!
(like, e.g., and,,, or,,, Xor,, not,), left and right shift <<,, >>,,. A BV atom can be built by
combining BY terms with interpreted predicates like >,,, <, (e.g. 088 >¢ x[®) and equality. We
refer the reader to [smt, Had15] for further details on the syntax and semantics of the Bit-Vector

theory.

The theory of BV is non-stably infinite and non-convex. Furthermore, the BV -satisfiability
of sets of quantifier-free B)-atoms is decidable and NP-complete. In the context of SMT solv-
ing, two main families of approaches have been proposed. In the eager approach, B) terms
and constraints are encoded into SAT via bit-blasting [GDO7, BB09, Bru09, [Had15, INPEB15,
Niel7]]. Instead, in the lazy approach, the BY encoding is not immediately expanded —to avoid
any scalability issue— and the BV solver is composed by a layered set of techniques, each of
which deals with a sub-portion of the BV theory [BD0O2, BBC*05a, BCF"07, Had15]. The
empirical evidence of [HBJ™ 14] has shown that the two approaches are complementary to one
another and that BY solving can benefit from a portfolio solution combining both techniques in

one solver.

Floating-Point (FP).

The theory of Floating-Point Numbers (FP), [smtf, RW10, BTRW13], is a quantifier-free first
order theory with equality that is based on the IEEE standard 754-2008, [1ee08]], for floating-
point arithmetic, restricted to the binary case. A major difference with [1ee08]] is that the theory
of 7P defined in [RW 10, BTRW 5] allows for every possible exponent and significand length.

A FP sortis an indexed nullary sort identifier of the form (_ FP <ebits> <sbits>) such
that both ebits and sbits are positive integers greater than one, ebits defines the number of bits

in the exponent and sbits defines the number of bits in the significand, including the hidden bit.

A FP variable v with sort (_ FP <ebits> <sbits>) can be indifferently viewed as a
vector of n = ebits + sbits bits, where v[0] is the Most Significant Bit (MSB) and v[n — 1] is
the Least Significant Bit (LSB), or as a triplet of Bit-Vectors (sign, exp, sig) such that sign is
a BY of size 1, exp is a BY of size ebits and sig is a BY of size sbits — 1. A FP constant is a
triplet of BY constants. Given a fixed floating-point sort, i.e. a pair (ebits, sbits), the following
F'P constants are implicitly defined:
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value Symbol BY Repr.

plus infinity (_ +oo0 <ebits> <sbits>) (fp #b0 #bl...1 #b0...0)
minus infinity (_ —oo <ebits> <sbits>) (fp #bl #bl...1 #b0...0)
plus zero (_ +zero <ebits> <sbits>) (fp #b0 #b0...0 #b0...0)
minus zero (_ —zero <ebits> <sbits>) (fp #bl #b0...0 #b0...0)
not-a-number (_ NaN <ebits> <sbits>) (fp t #bl...1 s)

where t is either 0 or 1 and s is a BV that contains at least a 1.

Setting aside special /P constants, the remaining /P values can be classified to be either
normal or subnormal (a.k.a. denormal) [1ee08]]. A FP number is said to be subnormal when
every bit in its exponent is equal to zero, and normal otherwise. The significand of a normal FP
number is always interpreted as if the leading binary digit is equal 1, whereas for denormalized
F'P values the leading binary digit is always 0. This allows for the representation of numbers

that are closer to zero, although with reduced precision.

Example 2.2.1. Let x be the normal FP constant (_ FP #b0 #b1100 #b0101000),
and y be the subnormal FP constant (_ FP #b0 #b0000 #b0101000), so that their
corresponding sort is (_ FP <4> <8>). Then, according to the semantics defined in the
IEEE standard 754-2008 [liee08], the floating-point value of x in decimal notation is given by:

r= (—1). 2027 (1+Z< 4+ 1] - ))

11
=1.2° (1+§+24)

_ o5 2 +22 41
=2
=2-21

= 42

and the value of vy is given by:

s (1 1
=1-2 ﬁ—’_?
22 4+1
T 26 o
5

= w0
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<&

The theory of F'P provides a variety of built-in floating-point operations as defined in the
IEEE standard 754-2008. This includes binary arithmetic operations (e.g. +, —, %, +), basic
unary operations (e.g. abs, —), binary comparison operations (e.g. <, <,#,=, >, >), the re-
mainder operation, the square root operation and more. Arithmetic operations are performed
as if with infinite precision, but the result is then rounded to the “nearest” representable FP
number according to the specified rounding mode. Five rounding modes are made available, as
in [1ee08|].

The most common approach for FP-satisfiability is to encode FP expressions into BV
formulas based on the circuits used to implement floating-point operations, using appropri-
ate under- and over-approximation schemes —or a mixture of both— to improve performance
[BKWO09, ZWR14, ZWR17, ZBWRI18]]. Then, the BV-Solver is used to deal with the FP
formula, using either the eager or the lazy BY approach. An alternative approach, based
on abstract interpretation, is presented in [BDG™ 13, BDG' 14, HGBK12]]. With this tech-
nique, called Abstract CDCL (ACDCL), the set of feasible solutions is over-approximated with
floating-point intervals, so that intervals-based conflict analysis is performed to decide JFP-

satisfiability.

2.2.4 Combination of Theories in SMT

Typical SMT(7") applications deal with problems in which the theory 7 is given by the com-
bination of two (or more) simpler theories, so that 7 “ U?Zl 7;. For instance, an atom like
f(4z + y) = g(2x — y) combines both uninterpreted function symbols (i.e. f,g) with linear
arithmetic constraints (i.e. 4z + y, 2z — y). Modern “lazy” SMT solvers employ a variety of
techniques for dealing with combination of theories.

When dealing with the combination of some stably infinite theories 7; and 75 with disjoint
signatures (i.e. “Nelson-Oppen” theories), the Nelson-Oppen approach for theory combination
[NO79, Opp80, ISho84] can be used. Two theories 7; and 7 are said to be signature-disjoint if
71 and 75 share no symbol other than the equality symbol. In the Nelson-Oppen schema, each
T;-solver separately solves its own fragment of the input problem, limited to its own theory 7,
and it is in direct communication with the other theory solver(s) to exchange implied equalities
and disequalities over shared variables.

Other, more recent, approaches for theory combination include Delayed Theory Combina-
tion (DTC) and Model-Based Theory Combination.

In Delayed Theory Combination, [BBCT05b, BBCT06, BCE"06], each 7;-solver interacts

only with the CDCL engine, and it does not directly exchange any information with the other
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theory solvers. The CDCL engine is used to enumerate satisfiable propositional truth assign-
ments that assign a value not only to the atoms in the input formula, but also to the interface
(dis)equalities (i.e. (dis)equalities over variables shared by multiple theories). Moreover, the
CDCL engine is also used to efficiently handle case splits resulting from the entailment of dis-
junctions of interface equalities in non-convex theories.

In Model-Based Theory Combination, [dMBOS]], interface equalities are built during the
search using the model M generated by the corresponding 7;-solver when a satisfiable (com-
plete) truth assignment is found. More specifically, a new interface equality u = v is generated
for each pair of interface variables v and v such that M;(u) = M,(v). Then, when the CDCL
engine branches on an interface equality for the first time, it is initially assigned the value T, so
that its consistency with respect to other theories can be either confirmed or disproved; in the
latter case it results in a 7 -conflict and the search proceeds as usual.

In the case of theories that are not stably-infinite (e.g., the theory of Bit-Vectors), and thus
are not Nelson-Oppen theories, other approaches have been proposed (see, e.g., [TZ05, RRZ05,
JB10]).

2.3 Optimization Modulo Theories

As a first approximation, Optimization Modulo Theories (OMT) [NOO6, CFG™10,[ST12,[DDMA12,
MP13], ICGSS13a, ST15a, LAK™ 14, LORR14] can be seen as the optimization-extended ver-
sion of Satisfiability Modulo Theories. More in detail, given a satisfiable ground SMT formula

© and some objective function obj, Optimization Modulo Theories solves the problem of finding

a model M of ¢ whose value of obj, denoted with ming;(¢), is minimum.

Due to its broad definition, Optimization Modulo Theories is an umbrella word that encom-
passes several —distinct, albeit related— problems and a variety of optimization techniques.
Instead of following a simple chronological order, we chose to organize the OMT literature
based on the specific class of OMT problem being targeted. The latter is determined based on
which Theory the objective function 0bj belongs. As a result, we distinguish three main groups

of works:
e Section §2.3.1|covers OMT(LR.A U T), dealing with Linear Rational Arithmetic (CR.A)
cost functions

e Section §2.3.2]illustrates OMT(LZAU T ), dealing with Linear Integer Arithmetic (LL.A)
cost functions

e Section §2.3.3|describes OMT(PB U T), dealing with both Pseudo-Boolean (PB) ob-
jectives, and also MAXSMT
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Combination of Theories in OMT. One important result of [ST12, IST15al] is that the the
same optimization techniques designed for OMT(LR.A) can be used to deal with OMT(LR.A U
T), where T is some stably-infinite theory (or a combination thereof) with equality such that
LRA and T are signature-disjoint as in [NO79]. This result comes nearly for free when the
underlying SMT solver uses Delayed Theory Combination [BBCT06] for dealing with multiple
theories 7.

It is easy to see that the same result applies when the objective function is of any other
type than LRA like, for example, a LZA, a LIRA, a PB,a MAXSMT, a BY or a FP goal.
Therefore, for the sake of a clear and readable explanation, in the following we illustrate the
general optimization procedures and techniques for when 7 is the empty theory and refer the
reader to [ST12,ST15al] for a detailed overview on how to handle the general case. For the same
reasons, the same simplification is applied to any other variant of single- and multiple-objective

OMT that is explored throughout this dissertation.

231 OMT (LRAUT)

The Optimization Modulo Theories problem for Linear Rational Arithmetic cost functions is

defined as follows.

Definition 2.3.1. (OMT(LRAUT), OMT(LRA)). Let © be a ground SMT(LRAU T)
formula and obj be a LR.A variable occurring in . We call an Optimization Modulo
LRA U T problem, the problem of finding a model M for ¢ (if any) whose value of 0bj,
denoted with ming;(), is minimum. We call an Optimization Modulo LRA problem,
written OMT(LRA), an OMT(LRA U T) problem where T is the empty theory. (The

dual definition where we look for the maximum follows straightforwardly)

As observed in [ST12], OMT(LR.A U T) allows for a straightforward encoding of various
problem domains of interest, like Linear Programming (LP), Linear Disjunctive Programming
(LDP) [Bal98] and Linear Generalized Disjunctive Programming (LGDP) [RG94].

Three main approaches have been proposed for dealing with OMT(LR.A U T). The first
two are the offline and inline schemata presented in [ST12, ST15a] and implemented in OP-
TIMATHSAT. The third one is the Symbolic Optimization Algorithm of SYMBA, an OMT tool
presented by Li et al. in [LAK™14].

Offline Schema [[ST12,ST15a]

Figure2.2]shows the mixed linear- and binary-search offline schema presented in [ST12,/ST15al]
for dealing with OMT(LR.A U T). In this approach, similarly to [LAK™ 14, BP14, BPF13], the
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optimization search proceeds through a sequence of incremental calls to the underlying SMT
solver, which is used as a black-box. Hereafter, we provide a concise description of this method
based on the contents of [ST12, IST15a], and refer the reader to these publications for a more
detailed presentation.

The algorithm takes as input a ground SMT(LR.A U T) formula ¢, a LR.A goal obj and
an optional range [/, u[ for the optimization search. When not provided, ! and u default to —oo
and o0 respectively.

Remark 2.3.1. In [ST12, [ST15a], the range [Ib, ub| is the domain of values for obj in
which the OMT solver searches for a model M of ¢ when minimizing obj. After the
first range update, the current upper bound ub corresponds to the value of obj in a known
model M of ¢. Therefore, the upper bound is excluded from the search domain to avoid
generating the same model M again. Conversely, the lower bound Ib is contained in the
search interval because it is updated only when the conjunction ¢ A (obj < Ib) is found
to be unsatisfiable. When obj is maximized the interpretation is dual and effective range
is |Ib, ub].

The convention established in [ST12,|ST15a] is that the same interpretation is applied
to any user-provided value for the initial lower and upper bounds [ and u, so that the

initial range is [/, u[ in minimization and ]/, u| in maximization.

At the beginning, M is set to the () and the initial range [/, u[ is used to initialize the current
range [Ib, ub[ (line 1). At any given point in time, the latter holds an over-approximation of the
set of feasible values for obj. To ensure that this invariant holds when the search is started, ¢
is extended with a pair of constraints that bound the feasible domain of obj within the range
[Ib, ub[ (line 2).

The main optimization search is performed in a loop (lines 3-20), and terminates only when
the ub < Ib, that is, when the over-approximation of the feasible domain of obj becomes empty.
Search progress is ensured, at each iteration, with an update to the value of either Ib or ub that
makes the range [Ib, ub[ smaller. Each iteration of the main loop consists of a single linear- or
binary-search step.

Remark 2.3.2. As observed in [ST12, IST15al], the underlying SMT solver is invoked
incrementally at each iteration of the loop. Hence, subsequent calls to the SMT solver
enjoy a substantial speedup from reusing lots of previously generated information like,
for example, any clause created by the clause learning mechanism (see Section §2.2.2).

In a linear-search step, the code in the intervals of lines 5-8 and 14-19 is never executed.

Hence, a linear-search step starts by searching for a truth assignment p that propositionally
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function OFFLINE_OMT(y, obj, [, u)
Llb=1; ub=u; M:=90
2: ¢ =@ U{=(obj < Ib), (obj < ub)}
3: while (Ib < ub) do

4: binary_step = BINSEARCHSTEP()

5: if (binary_step) then

6: pivot := COMPUTEPIVOT(Ib, ub)

7: PIV = (obj < pivot)

8: o =pU{PIV}

9: (res, u) = SMT.INCREMENTALSOLVE(y)
10: if (res == SAT) then

11: (M, ub) == LRA-MINIMIZE (obj, 1)
12: v =@ U{(obj < ub)}

13: else

14: if (binary_step) then

15: n = SMT.EXTRACTUNSATCORE(p)
16: if (PIV € n) then

17: Ib := pivot

18: o= (e\{PIV})U{=-PIV}
19: continue

20: Ib := ub

21: if (M # () then

22: return (SAT,ub, M)

23: else

24: return (UNSAT, 400, 0)

Figure 2.2:  Offline OMT(LR.A) procedure based on Mixed Linear/Binary Search [ST12,
ST15al.
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satisfies ¢ (line 9). If ¢ is satisfiable, then the OMT solver invokes SMT.LR.A-MINIMIZE() to
find the model M of minimum cost ub corresponding to the truth assignment g (line 11). The
function SMT.LR.A-MINIMIZE() is an extended version of the simplex-based LR.A-Solver
of [DdMO6b]. The minimum cost ub can be equal to —oco if obj is unbounded on the truth
assignment y. At this point, ¢ is extended with a unit clause of the form (obj < ub) (line 12),
so that ¢ is no longer satisfied by p. As a result, any future call to the underlying SMT solver is
forced to look for a new propositional model ' for which the value of obj can be smaller than
ub. If instead the call to SMT.INCREMENTALSOLVE() at line 9 returns UNSAT, then it means
that in the current search interval [Ib, ub][ there is no valid assignment of value for obj. Hence,
the lower bound Ib is updated with the value of ub (line 20), causing the OMT solver to exit the
loop the next time its guard is checked.

A binary-search step starts with a call to COMPUTEPIVOT() (line 6), an heuristic function
that yields a new pivot value contained in the interval [Ib, ub] (e.g. @). Then the formula
¢ is extended with the (possibly new) atom PV, defined as (obj < pivot), to temporar-
ily restrict the feasible domain of obj in the interval [Ib, pivot| (lines 7-8). If the next call to
SMT.INCREMENTALSOLVE() finds that ¢ is still satisfiable, then the OMT solver proceeds as
in a linear-search step: it computes the new minimum ub and updates both M and ¢. Other-
wise, if ¢ 1s unsatisfiable, then the unsatisfiable core 1) is extracted and examined (lines 15-16).
If the atom PIV belongs to 7, then it means that there exists no satisfiable truth assignment
w for which obj can be assigned a value in the interval [Ib, pivot[. Therefore, Ib is set to the
value of pivot and PIV is replaced by its negation inside ¢ so that the range [pivot, ub[ will be
explored in the next iteration of the loop (lines 17-19). If instead PIV ¢ 7, then it means that
¢ \ {PIV'} is unsatisfiable for the whole range [Ib, ub[. In this case, the search proceeds as in
an unsatisfiable linear-search step by setting |b equal to ub and causing the loop to terminate.

When the optimization search has terminated (lines 21-24), the OMT solver yields a triple
(SAT, ub, M) if ¢ was found to be satisfiable, and (UNSAT, +00, (}) otherwise.

We report a few important facts about binary-search that were made in [ST12,ST15al.

First, a binary-search step can only be performed when both Ib and ub have a finite value.
In minimization a finite upper bound ub is easily determined by means of a linear-search step,
therefore the user is only required to provide an initial lower bound. In maximization, the
requirement is dual.

Second, a binary-search step must be interleaved infinitely often with a linear-search step
to prevent non-termination when the non-empty range [Ib, ub] is unsatisfiable. In fact, executing
exclusively in binary-search in this situation can result in an infinite number of lower bound
updates, because infinite-precision arithmetic guarantees that it is always possible to find a

new pivot in [lIb, ub[, no matter how small the range becomes. On this regard, the authors of
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[ST12, IST15a] suggested that, based on their empirical experience, the best performance is
obtained by starting with an initial linear-search step that can provide tighter estimate of the
upper bound ub, and then alternate each binary-search step with a linear-search one.

Third, a binary-search step is not necessarily more convenient than a linear-search step. On
the one hand, limiting the search space to the interval [Ib, pivot[ may result in a tighter upper
bound ub than by searching it in the whole range [Ib, ub[. On the other hand, this search can be
very time-consuming if the interval [Ib, pivot| contains no satisfiable solution, because detecting
LTR.A-unsatisfiability is typically much more expensive than generating a new mode]ﬂ For
this reason, the authors of [ST12,ST15a] proposed an adaptive version of BINSEARCHSTEP()
that determines the next search step based on an heuristic evaluation of the cost-benefit ratio of

the most recent linear- and binary- search steps.

Inline Schema [ST12, ST15a]

In addition to the offline schema, the authors of [ST12, ST15a] also presented in the same
publications the so-called inline schema. Both approaches employ exactly the same range-
minimization approach, comprised by a number of linear- and binary-search steps, that we
have just described for the offline schema. However, while the offline schema proceeds through
a sequence of incremental calls to the underlying SMT solver used as a black-box, in the inline
schema the whole optimization search is pushed within the CDCL Boolean-search loop of the
standard lazy SMT schema [Seb07, BSST(09]. In this way, the optimum value of obj is retrieved
with a single run of the SMT search-loop. The authors implemented both approaches in OPp-
TIMATHS AT and reported consistently better performance with the inline architecture in the
experimental evaluation of [ST12,ST15a].

Hereafter, we succintely describe the main aspects of the inline schema based on the content
of [ST12,ST15a], bearing in mind the high-level of similarity with the already presented offline
schema.

Initialization: the output model M is empty, while the current lower bound Ib and the current-
upper bound ub are respectively initialized to the input lower bound [ and upper bound w if
available, —oo and +oo otherwise.

Range Updating & Pivoting. The algorithm maintains the following invariant on the range
[Ib, ub|. The upper bound ub [resp. lower bound Ib] is assigned the lowest [resp. highest] value
v such that the atom (obj < v) [resp. —(obj < v)] is assigned at level 0 of the CDCL Boolean-

search loop. The search terminates if  is unsatisfiable, so that there is no optimal solution,

“This conclusion is based on the empirical experience in [ST12, [ST15a, [STI5c] when dealing with
OMT(LIRA U T).
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Figure 2.3: A possible execution of the inline schema. (I) Pivoting on (obj < pivot). (II)

Decreasing the upper bound to ub’. (IIT) Increasing the lower bound to pivot.
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or when ub becomes smaller or equal Ib. Each time the search goes back to level 0, it can
decide whether to execute the next search step in linear- or —when both |b and ub are finite—
in binary-search mode. In the latter case, a pivot € [Ib, ub] value is computed (e.g. with 2542),
and the (possibly new) atom PIV = (obj < pivot) is forcibly decided at level 1 of the CDCL
Boolean-search loop. This decision temporarily restricts the search to the interval [Ib, pivot|, as
depicted figure 2.3}(I).

Decreasing the Upper Bound. Whenever the CDCL search generates a complete truth as-
signment ;. that propositionally satisfies ¢, the OMT solver computes ub’, that is, the minimum
value of obj in correspondence with the truth assignment 4. This is done by LR.A-MINIMIZE(),
that is incrementally called after the decision procedure for LR.A-satisfiability to avoid starting
from scratch. Then, the unit clause (obj < ub/) is learned, so that the CDCL Boolean-search
is forced to backjump to level 0 and unit-propagate it. This permanently restricts the search to
the interval [Ib, ub’[, as depicted figure (II). When the upper bound decrement occurs in a
binary-search step, the atom (obj < pivot) is also learned prior to backjumping to level 0. This
allows the CDCL loop to reuse any clause of the form —(obj < pivot) V C' that might have been
generated when searching for a cost in the range [Ib, pivot].

Increasing the Lower Bound. When ¢ A {(obj < pivot)} is LR.A-inconsistent, the CDCL
Boolean-search eventually generates a conflict clause of the form —(obj < pivot) V 7’ such that
all literals in 7 are permanently assigned to T at level 0. As a result, the search is forced to
backjump at level 0 and unit-propagate —(obj < pivot). This case, shown in Figure (III),

permanently restricts the cost range to the interval [pivot, ub.

We refer the reader to the description of the offline schema for what concerns some key

aspects of binary-search in the inline schema, since the same considerations apply here.

Symbolic Optimization Algorithm [LAK™14]

In [LAK™14], Li et al. proposed SYMBA, an alternative OMT(LR.A U T) tool built on top of
the Z3 SMT solver.

Differently than [ST12,ST15a], the authors deal with the optimization of multiple indepen-
dent LR.A objectives objy, ..., obj at the same time, where the goal is to find the set of models
My, ..., My such that each M, is optimal with respect to its corresponding goal obj;,. To
this aim, dealing with this problem can be seen as being totally equivalent to solving N single-
objective OMT(LR.A U T) problems, one for each obj,. However, handling multiple objectives
at the same time allows for sharing SMT search steps among multiple objectives and a better
exploitation of clause learning, as shown in the performance evaluations of [LAK™ 14, [ST15¢]].

Li et al. presented both and “offline” and an “inline” version of their tool. In the “offline”
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implementation, the underlying SMT solver is used as a black-box, and the optimization search
is advanced via the incremental application of a set of inference rules that either (1) force an
improvement of the current solution along some objective direction (2) prove that some objec-
tive is unbounded. The “inline” implementation extends the “offline” version by modifying the
LRA-Solver in Z3 to also return the optimal value of a goal obj; given a fixed truth assign-
ment p, as with the inline schema of [ST12, [ST15a]. As shown in the empirical evaluation of
[LAK™14], this addition allows the “inline” approach to outperform the “offline”” architecture

since it drastically reduces the number of SMT queries necessary to find the optimal solution.

232 OMT (LZA U T)

The Optimization Modulo Theories problem for Linear Integer Arithmetic cost functions is
defined as follows.

Definition 2.3.2. (OMT(LZA U T), OMT(LZA)). Let ¢ be a ground SMT(LZA U T)
formula and obj be a LI A variable occurring in . We call an Optimization Modulo
LTA U T problem, the problem of finding a model M for o (if any) whose value of obj,
denoted with ming;(), is minimum. We call an Optimization Modulo LI.A problem,
written OMT(LTZA), an OMT(LTA U T) problem where T is the empty theory. (The

dual definition where we look for the maximum follows straightforwardly)

To the best of our knowledge, there exists only one publicly available work on OMT(EIA)E]
and this is the master’s thesis of R. O. Vendrell [Rocl1], which builds upon the “SMT with
progressively stronger theories” approach of [NOO6] (see Section §2.3.3).

In this thesis, the authors extended the BCLT SMT solver [BNO™T08] with a minimiza-
tion procedure for LZ.A objectives embedded within the 7 -Solver for Linear Integer Arith-
metidﬂ As a first building step, the authors provide a detailed description of how the decision
procedure for LR .A-satisfiability —based on the simplex-based LR.A-Solver of [DAMO6b]—
can be extended with optimization capabilities. The end result of this transformation is sim-
ilar to the function LR.A-MINIMIZE() described in [ST12, [ST15a] (see Section §2.3.1)) for

>We recall that in this section we consider only those works that were made publicly available prior to the start
of this Ph.D. (November, 2014). Any other work is reported in the Related Work (§3). Moreover, here we do not
consider those approaches that deal with the more-specific OMT(PB U T) and MAXSMT problems with Integer

weights. These approaches are separately covered in Section
To be precise, [RocI1]l also describes another implementation based on using an off-the-shelf ILP solver

(CPLEX) for the optimization part. This approach is not considered here because the experimental evaluation of
[Rocl1]] has shown that, on the benchmark-set being considered, the combination of BCLT with CPLEX did not
show any added benefit compared with using CPLEX as a standalone solver. We refer the interested reader to
[Roc11]] for more details.
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OMT(LRA U T). Given a complete truth assignment . and an objective obj, it returns the
model interpretation M of u that makes obj LR.A-minimum. As stated in [Rocll1]], if some
variable need to take Integer values, then a complete £LZ.A-MINIMIZE() procedure can be
obtained by combining LR.A-MINIMIZE() with the well-known Branch&Bound and cutting
planes techniques.

The overall optimization search is based on [NOO6] and it proceeds similarly to the inline
schema —running in linear-search mode— of [ST12| [ST15a] and described in Section §2.3.1]
Given a complete truth assignment p that satisfies the input formula ¢, the solver invokes the
LI A-MINIMIZE() procedure to retrieve the corresponding minimum value ub of obj, and then
adds the linear cut obj < ub to the database of constraints, so that the SMT solver is forced to
find a new truth assignment ;' improving the value of obj. The search ends when the value of

obj cannot be improved any further.

2.3.3 OMT(PB U T)/MAXSMT

Two important subcases of OMT(LR.A U T) are represented by OMT(PB U T) and MAXSMT[]
In this section, we present both subcases together since they allow to deal with the same class
of problems: an instance of MAXSMT can be encoded as a OMT(PB U T) problem and
vice-versa.

Another important aspect to be noticed is that in both cases the optimization search has only
a Boolean component, due to the fact that the value of the cost function is univocally determined
by the truth assignment p over the atoms of the input formula. This is substantially different
from the general case of OMT(LR.A U T), for which it is necessary to compute the minimum-

cost LR.A-model for each satisfying truth assignment  found along the optimization search.

OMT with Pseudo-Boolean cost functions

The Optimization Modulo Theories problem for Pseudo-Boolean cost functions is defined as

follows.

"Here, we immediately note that MAXSMT is MAXSAT lifted to the case of SMT formulas. In this thesis, we
assume that the reader is familiar with MAXS AT, and otherwise refer to [LMO09, MSAGIL 11]] for an introduction
on the topic.
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Definition 2.3.3. (OMT(PB U T), OMT(PB)). Let @ be a ground SMT(T ) formula and
obj be defined as follows:

obj “ Z w; - A; , w; € Rand A; are Boolean variables

We call an Optimization Modulo PB U T problem, the problem of finding a model M
for ¢ (if any) whose value of 0bj, denoted with miney (i), is minimum. We call an Opti-
mization Modulo PB problem, written OMT(PB), an OMT(PB U T) problem where T
is the empty theory.

In the literature, two main approaches have been proposed to deal with OMT(PB): an
encoding of the problem into OMT(LR.A) [ST12,[ST15a] and, when all weights w; € Z, the
“Theory of Costs” C [CEG™10].

OMT(LR.A) encoding [ST12,ST15a]. A OMT(PB U T ) problem (¢, obj) can be encoded
as an OMT(LR.A) instance (', obj’) as follows. First, a fresh Rational variable z; is introduced
for each w; in obj. Then, ¢’ and obj’ are defined as

0= oA NRAV (2= w) A (A V (2 = 0))) A (2.22)
A0 < ) A (25 < wy)) (2.2b)
obj' £ "z, (2.2¢)

As noted in [ST15al, although the constraints in (2.2b) may appear redundant from a logical
perspective, they noticeably improve the performance. This is because these constraints allow
early-pruning calls to the LR.A-Solver to detect a possible LR.A inconsistency among the cur-
rent partial truth assignment over variables A; and any linear cut of the form —(ub < obj), that

is typically pushed on the formula stack during the minimization of obj.

Theory of Costs [CFG™10]. In [CFG™10], Cimatti et al. introduced the “Theory of Costs” C
and extended the standard lazy SMT schema with a decision procedure for C, called C-Solver,
that would deal with both Pseudo-Boolean (PB) objectives and Pseudo-Boolean constraints.
The proposed C-Solver was combined with two distinct single-objective optimization schemas,
one based on branch-and-bound and another on bisection-search, and implemented in a fork of
the MATHS AT [matbl] SMT solver.
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The “Theory of Costs” C allows for the definition of multiple objectives obj’, each taking
the form

obj’ & ZITE (A7 w!,0) (2.3)

where ITE is a function returning w{ when Az is assigned to true and 0 otherwise. A fresh
Integer variable ¢/ is introduced to represent the value of each obj’. Moreover, two additional
predicates are introduced with the language of theory C. The first is a binary predicate BC(¢’, w),
requiring ¢/ to be smaller or equal to the integer constant w. The second is a ternary predicate
1c(c?, i, w) ) that states that the i-th component of the pseudo-boolean sum (2.3)) increases the
value of ¢/ by an amount equal to wi . These predicates are used to encode the objective function,
that is thus kept signature-disjoint with respect to the other theories 7 appearing in the problem.

Notice that, while the language of theory C allows one to define multiple objective functions,
the optimization procedures in [CEGT10] can handle the optimization of only one obj’ goal at
a time. In addition, these routines are limited to deal with P8 objectives with Integer weights
only.

Partial Weighted MAXSMT

The Partial Weighted MAXSMT problem is defined as follows.

Definition 2.3.4. (Partial Weighted MAXSMT, Partial MAXSMT, Weighted MAXSMT).
A Partial Weighted MAXSMT problem is a pair (pp, ps), where y, is the set of “hard”
T-clauses, and @, is a collection of positive-weighted “soft” T -clauses of the form
(Cy,w;), and the goal is to find the maximum-weight set of T-clauses Vs, Vs C s,
such that oy, U, is T -satisfiable [NOO6, CFG™ 10, ABP™ 11b,|CGSS13d].

A Partial MAXSMT problem is a Partial Weighted MAXSMT problem in which all
“soft” T -clauses in ps have a unitary weight.

A Weighted MAXSMT problem is a Partial Weighted MAXSMT problem in which
the set of “hard” T -clauses py, is empty.

In the literature, three main approaches have been presented to deal with partial weighted
MAXSMT problems. The first is “SMT with progressively stronger theories”, proposed in
[NOOG]; the second is to encode MAXSMT as an OMT(PB) or OMT(LR.A) instance [ST12]
ST15al], and the third is to combine a MAXS AT solver and an SMT solver together [CGSS13a,
BP14, BPF15].
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SMT with progressively stronger theories [NO06]. In [NOO6], Niecuwenhuis and Oliveras
presented the general “SMT with progressively stronger theories” framework for dealing with
weighted MAXSAT and weighted MAXSMT problems, that has been implemented in BCLT
[BNO™08].

Given a MAXSMT pair (@, ©s), this approach introduces a fresh Boolean variable p; and
a fresh Integer variable k; for each “soft” clause (C;, w;), so that each clause C; is replaced by
C;V p;. Then, an initial background theory 7 is introduced and given the constraints /\f\il (pi —
(ki = w;)) A (=p; — (ki = 0)), plus an additional cost function k; + ... + ky < u, where u
is a fresh Integer variable. In addition, the underlying SMT solver is extended with a new
DPLL (7) rule 7-STRENGTHEN that allows one to iteratively strengthen the initial theory 7
via Branch&Bound up until the optimal solution is found.

Each time a complete truth assignment ; is found, such that x propositionally satisfies the
initial set of constraints and it is 7;-consistent, the cost function is evaluated and the correspond-
ing value ub; becomes the new upper bound of the optimization search. Then, the application
of 7-STRENGTHEN replaces the theory 7; with a theory 7, that extends 7; with a linear cut
of the form u < ub;. As a result, any truth assignment y for which the value of the cost func-
tion is not smaller than ub; is now 7;;-inconsistent. Consequently, the rule application causes
the underlying CDCL engine to backjump and look for a novel truth assignment p’ that may
improve the value of the cost function. The optimization search terminates when no such truth

assignment is found.

OMT(PB)/OMT(LR.A) encoding [ST12, ST15a]. A MAXSMT pair (@, ps) can be en-
coded into a OMT(PB) pair (¢, obj) as follows. First, a fresh Boolean variable A; is introduced

for each soft constraint C; € ¢,. Then, ¢ and obj are defined as

e onu | {Avaeny (2.42)
(Civwi>690s
obj= Y w4 (2.4b)
(Ciywi)Eps

The resulting OMT(PB) instance can then be directly solved with any technique that directly
targets this kind of encoding (e.g. [CFG™10]), or subdue a subsequent transformation step into
OMT(LR.A) using equations (2.2)), so that any OMT(LR.A) solver can be employed.

MAXSAT and SMT combination [ABP"11b, (CGSS13a, BP14, BPF15]. With this ap-
proach, some dedicated MAXSAT engine is coupled with an SMT solver, so that the former

is leveraged to find the Boolean abstraction with minimum cost and the second provides the
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T -solvers for deciding the T -satisfiability of any Boolean assignment found by the MAXS AT
engine.

Ansoétegui et al. [ABP™ 11b] describe an experimental evaluation over Resource-Constrained
Project Scheduling Problem (RCPSP) instances using an implementation of a MAXSMT solver,
built on top of YICES. The underlying SMT solver was extended with two MAXSAT algorithms
based on unsat-core extraction, WPM1 [[ABL09] and WBO [MSPO09], enriched with an heuris-
tic giving priority to cores involving constraints with higher weights. This implementation is
not publicly available.

In [CGSS13a], Cimatti et al. presented a “modular” version of this approach, that allows
one to combine a modern lazy SMT solver with an arbitrary propositional MAXSAT solver,
used as a black-box. In this architecture, the SMT solver is used to produce an increasingly
larger set of theory lemmas, whose Boolean abstraction is then fed to the MAXSAT engine
to progressively refine the sequence of solutions that are found by it. The search terminates
with an optimal solution when the truth assignment ;. generated by the MAXS AT engine does
not result in any 7 -conflict within the SMT solver, or when a conflict involving only “hard”
clauses is generated, meaning that the input problem is unsatisfiable as a whole. The authors of
[CGSS13a] implemented their solution on top of the MATHSATS SMT solver, and combined

it with a number of external MAXSAT engines.

In most situations, the use of a dedicated MAXSAT engine can outperform the translation
into OMT(PB)/OMT(LR.A) by a significant margin. However, there are some situations in
which the encoding into OMT(PB)/OMT(LR.A) is the only applicable approach in practice
due to some inherent limitations of the former approach. The first issue is that, to the best of our
knowledge, many MAXSAT engines deal with integer weights only and, unlike OMT, some
of them might suffer when dealing with problems containing large and non factorable weights.
Both of these conditions apply, for example, to the OMT formulas used to deal with Support
Vector Machines in [[ISP17]]. In this case, the weight of a “soft” clause is a high-precision
rational value resulting from previous runs of the Machine Learning approach, and rounding
these values would affect the accuracy of the whole learning process. The second issue is that
a dedicated MAXSAT engine cannot be used in the presence of OMT problems featuring an
objective function that is the result of the linear combination of Pseudo-Boolean and arithmetic
terms (like, e.g., for Linear Generalized Disjunctive Programming problems [ST15a]), or the
non-trivial combination of several Pseudo-Boolean sums as in [[TSP17].

Generalized MAXSMT

The Partial Weighted MAXSMT problem can be generalized as follows.
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Definition 2.3.5. (Generalized MAXSMT). A Generalized MAXSMT is a Partial Weighted
MAXSMT in which the weights w; are not restricted to be positive.

Intuitively, in a Generalized MAXSMT, a negative weight w; becomes a reward —instead of a
cost— for falsifying the corresponding clause Cj.

The solution of a Generalized MAXSMT (@, ) can be found with the aid of any MAXSMT
solver upon applying the following transformations. First, any zero-weighted clause in ¢ is re-
moved from the problem as it provides no contribution to the solution. Then, any soft clause
(Cy,w;) such that w; < 0 is replaced by a new soft clause (—~C;, — w;). As a result of this
transformation, the optimal model M of the new MAXSMT problem (py,, ¢.), extended with
a suitable Boolean assignment for any zero-weighted soft clause that was previously removed,
is also an optimal model for the original Generalized MAXSMT problem. In fact, the only
difference among the two encodings lies in the numerical value of the cumulative-weight of
all unsatisfied soft clauses, that we also call the objective function. More precisely, the opti-
mal value of objective in the Generalized MAXSMT instance is equal to that of the MAXSMT
encoding plus Z<Ci7wi>€¢’s|wi<0 w;.

Any Generalized MAXSMT problem is encoded as an OMT(PB) instance with the same
approach used for MAXSMT. In addition, any OMT(PB) instance (¢, obj), where obj =
Zi w; - A;, can be rewritten as a Generalized MAXSMT instance:

(o, [ (~Ai wi)) (2.5)
Clearly, when w; > 0 for every i, then OMT(PB) maps directly into MAXSMT.

From now on, unless differently specified, we will use MAXSMT to denote the general case
of Generalized Partial Weighted MAXSMT.

2.4 Constraint Programming and SAT/SMT/OMT

In this section, we briefly introduce Finite Domain Constraint Programming (FDCP), a re-
striction of Constraint Programming (CP) in which the domain of unknown variables is al-
ways finite. Since we are mainly interested in talking about the mutual connections among
FDCP and SAT, SMT and OMT solving, we do not provide a comprehensive background on
FDCP and touch only a few of its most essential aspects. For a more in-depth and detailed
introduction to the topic, we refer the interested reader to publications on the topic such as
[Tsa93. Bar99, RBWO06], that are also the main sources of the material being presented.
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2.4.1 (Finite Domain) Constraint Programming

At a high-level, Constraint Programming (CP) can be seen as a programming paradigm for
solving large, combinatorial, problems described in terms of a list of high-level constraints
expressing the relationship among several variables, each of which takes a value in a given

domain.

Definition 2.4.1. (Constraint Satisfaction Problem [Tsa93, RBWO0G6]). More formally, a
Constraint Satisfaction Problem (CSP) is defined as:

e a set of variables X = {xy,...,2,},
e for each variable x;, a finite domain D; of possible values, and

e a set of constraints that restrict the values that the variables can simultaneously
take.

CSP problems are most commonly solved either by systematic search, usually enhanced
with Constraint Propagation techniques for greater efficiency, or by stochastic and heuristic
search.

In systematic search, the space of solutions is traversed by extending a partial assignment
of values over the variables x;, until a consistent solution is found. For better performance,
systematic search is complemented with conflict analysis. This is used to guide a backjump-
ing mechanism that rolls back the search, undoing the assignment decision causing the incon-
sistency [Gas79]. Alternatively, instead of conflict analysis, the search can use a look-ahead
schema. In this approach, the domain of the variables that are not already contained in the cur-
rent assignment is (temporarily) restricted along the search to exclude any future conflict with
the assignment under construction [Bar99].

Systematic search is often combined with consistency techniques [Mon/4, Wal'/5, Mac77,
Kum92]||, that analyze the constraint graph of a CSP problem to remove (some) inconsistent
values from the domain of variables. In the constraint graph, nodes and edges correspond to the
variables and constraints of the CSP problem respectively. Inconsistent values can be identified
by analyzing either unary constraints, as in Node Consistency (NC), or binary constraints using
the notion of arc-consistency, [Lar02, IDAC10], that allows one to discard any value of a variable
domain for which another variable does not have a corresponding satisfiable value.

In stochastic and heuristic search —like, e.g., in the hill-climbing algorithm [Nil80] or the
min-conflicts heuristic [MJPL92]— a complete assignment is first randomly generated and then
refined via minor value adjustments that reduce the number of conflicting constraints. Random

restarts and heuristic techniques are employed to escape from local minima.
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When a CSP is paired with an objective function, which is defined over a subset of the
variables in X, we speak of Constraint Optimization Problem (COP) [Tsa93, RBWO06]. Intu-
itively, the distinction among a CSP and a COP is that the former is only interested in finding
a generic solution (or all solutions) of a problem, while the latter looks for the optimal solution
(or a good approximation of the optimal solution) according to some fixed function ranking all
possible solutions. The most widely known approach for dealing with optimization in CSP is
Branch and Bound [LW60]. In the simplest implementation, the search space is explored sys-
tematically, (possibly) enumerating all (satisfiable) assignment of values. In minimization, each
time the current assignment is extended with a new value, an heuristic function is evaluated. If
the result of this evaluation exceeds a given cutoff threshold —that is initially set to +oo and
updated each time a complete assignment is generated— then current assignment is discarded,
along all of its possible extensions, and the search is rolled back to a previous decision level in

which a different value assignment can be performed.

2.4.2 MINIZINC

MINIZINC, [NSBT07], is a widely adopted high-level declarative language for modeling CSP
problems. For a detailed presentation of this language, we refer the interested reader to [Minb]].
For the purposes of this dissertation, it suffices to know that the MINIZINC standard, [mina],

(I) defines three scalar types (Booleans, machine Integers and Floats) and two compound

types (sets and fixed-size arrays of some scalar type),

(II) provides an extensive library of predefined global constraints, that increase both the eas-
iness of use and the readability of MINIZINC models,

(IIT) supports useful language constructs such as i f-then-else, let expressions, uni-
versal and existential comprehensions over finite domains, user-defined predicates and

more.

A MINIZINC model is typically flattened into a FLATZINC [fla] instance, using the MZN2FZN
compiler, before it is handed over to a MINIZINC solver. The purpose of FLATZINC is to bridge
the gap among the high-level modeling in MINIZINC, and the need for a fixed, and easy-to-
parse, input format that simplifies the implementation of the input interface of a MINIZINC
solver. To this aim, we notice that the global constraints in MINIZINC express more com-
plex relations among the objects of the language than those FLATZINC constraints. Normally,
a MINIZINC solver is not required to directly support any global constraints, as these can be
compiled by the MZN2FZN tool into a standardized FLATZINC representation that uses only
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regular constraints and, if necessary, a number of fresh support variables. Even so, it can be
convenient for a MINIZINC solver to handle global constraints directly, especially when it can
use ad hoc decision procedures for dealing with them efficiently.

Each year, the CP community gravitating around the MINIZINC language hosts the MINIZ-
INC Challenge, [Minbl], a competition among MINIZINC solvers on a vast library of benchmarks
containing planning, scheduling and logistic problems (and more).

2.4.3 FDCP vs. SAT, SMT and OMT

For many years, the research on FDCP and that on SAT—including its recent SMT and OMT
extensions— has proceeded on parallel tracks, often with a significant degree of exchange of
good ideas and techniques. Originally, this separation can be attributed to the different focus of
their respective research communities, with the former more preoccupied about solving plan-
ning, scheduling and logistic problems, and the latter focused on the formal verification of both
Software and Hardware systems. Over the years, the cross-fertilization among the two fields has
pushed the two communities increasingly close to one another. Nowadays, the solvers designed
in each, respective, community not only adopt similar techniques but they can also sometimes
be used to deal with similar (or even coinciding) applications, at least for some classes of prob-

lems (e.g. planning and scheduling).

Distinctive features.

Despite some overlap, there still remain significant differences among the two worlds.

FDCP solvers typically display a stronger focus on combinatorial reasoning over finite do-
mains (e.g. integers) than SMT and OMT solvers. To this aim, they benefit from very effi-
cient consistency algorithms that reduce the number of possible conflicts encountered along the
search. In addition, FDCP applications are typically modeled in widely adopted, high-level
declarative languages such as the MINIZINC format in Section The latter provides a va-
riety of standardized global constraints for modeling complex subproblems recurring in many
applications, so that ad hoc procedures can be implemented to efficiently deal with them.

SAT, SMT and OMT solvers —taken altogether— typically provide very efficient Boolean
reasoning capabilities and an incremental interface that allows one to reuse learned information
to increase the speed of subsequent searches when checking the satisfiability of closely related
instances. Moreover, lazy SMT and OMT solvers (see Section §2.2.1)) commonly display a
greater level of expressiveness than FDCP tools, at least in terms of supported theories. For
instance, SMT and OMT solvers support the theory of arrays (AR), the theory of uninterpreted
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functions with equality (£UF), and several other theories, also with infinite-domain, as those
described in Section §2.2.3]

When focusing only on linear arithmetic, which is handled by both categories of solvers,
we notice that an SMT (and OMT) solver must provide —among other features— accurate
infinite precision reasoning (at least as a fall-back), the ability to extract a (possibly small)
subset of conflicting constraints from an unsatisfiable formula —the so-called unsat core— and
also efficient procedures for the typical incremental usage of the tool (see Section §2.2.2)). In
contrast, the typical MINIZINC solver is not required to support any of these features, so that
it can use more sophisticated techniques for linear arithmetic than those typically implemented
in SMT and OMT solvers.

The most widely adopted language to model SMT and OMT applications is represented by
the SMT-LIBV2 format, [smf], (and its extensions) which is a much simpler and lower-level
language than those used by FDCP solvers. In particular, due to the lack of global constraints,
complex subproblems recurring in many applications have to be manually broken down and
encoded in terms of simpler grammatical structures (each time). However, in SMT and OMT
the same problem can often be modeled in multiple ways, using a different subset of theories
or constraints. On this regard, we notice that the particular choice of theories and constraints
used to model a certain problem can have a huge impact on the performance of SMT and OMT
solvers. This can be due to multiple reasons such as the different complexity of each theory, the
efficiency of the decision procedures implemented in the corresponding 7 -solver, the complex
and hardly-predictable interaction between the input set of constraints and the various heuristics
implemented in SMT and OMT solvers. As a result, modeling problems for SMT and OMT
solvers is typically harder than doing so for FDCP solvers, and it requires a higher level of
expertise to guarantee the best performance —and, in some cases, even the ability to produce a
definitive answer— of the SMT and OMT tool used to solve it.

Related Research.

Recently, there has been an increasing interest in bridging the gap among the two research
communities and, in particular, compare the effectiveness of FDCP, SAT, SMT and OMT tools
on problems steaming from the other research community. In fact, two of the relevant challenges
in Satisfiabiliy Modulo Theories characterized in [NOO6, NORCRO7|] are 1) integrating SMT
with techniques used in Constraint Programming to deal with global constraints and 2) find new
solutions to tackle Partial Weighted MAXSMT to handle Weighted CSP problems efficiently.
This research goal extends also to other research communities such as Mixed Integer Linear

Programming (MILP), an extension of Linear Programming (LP) that involves both discrete
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and continuous variables.

CSP and FDCP. In [BPVQ9, BPSVQ9], Bofill et al. presented SIMPLY, a compiler that
translates CSP problems encoded in a declarative language similar to MINIZINC, [Minb], into
SMT-LIBV2, [smf], the standard input format of SMT solvers. In a follow up of that work,
Bofill et al. presented FZN2SMT [BSV10, BPSV12]], a novel framework for translating CSP
problems from the MINIZINC format into Version 1 of the SMT-LIB language. Differently
than SIMPLY, the new framework is comprised of an existing MZN2FZN tool, that compiles
the original models into the FLATZINC format, and a novel FZN2SMT compiler performing the
last step of the conversion. Optimization problems, that cannot be encoded in the standardized
SMT-LIB format, are solved by the FZN2SMT compiler directly, using an optimization pro-
cedure built on top of YICES, [DdMO06a], an external SMT solver used as a black-box. The
experimental evaluations in [BPV09, BPSV09], have shown that SMT can be competitive on
benchmarks requiring substantial Boolean reasoning. Remarkably, the tool was able to score, at
the MINIZINC Challenge competition, a gold and a silver medal in 2010 and two silver medals
both in 2011 and 2012.

Comment. Part of the work presented in this dissertation falls in the same track as that of
[BPV09, BPSV09, BSV10, BPSV12]. As illustrated in Section §5.3.2] we extended OPTI-
MATHSAT with a a new interface for dealing with MINIZINC and FLATZINC models, that can
be used to solve CSP problems directly as well as to convert the input model in the extended
SMT-LIBV2 format used by OMT solvers.

Differently than in the work of Bofill et al., the main optimization procedure in OPTIMATH-
SAT is inlined with the underlying SMT solver, an approach that has been shown to be more
efficient than using the SMT solver as a black-box [ST12]. A second, important, difference
is that the framework presented in [BSV10, BPSV12]] targets the Version 1 of the SMT-LIB,
and does not support any of the optimization extensions to the SMT-LIBV?2 standard used by
OMT solvers. The fact that the original framework is closed source, with only the binaries be-
ing freely distributed, and seemingly no longer maintained, also made it necessary to provide
a new alternative to prosecute the research on this track. Last, we notice that the existing tools
produce SMT-LIBV2 formulas in which neither the original Boolean structure nor global con-
straints are retained, making OMT solvers potentially less efficient at handling these problems.
The MINIZINC interface implemented in OPTIMATHS AT makes an effort to overcome this

limitation, wherever possible.

In a different set of studies, various authors considered the problem of directly encoding

CSP instances in the input format used by SMT solvers, and compared various alternative
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formulations of the same CSP problem to identify the modeling approach yielding the best
performance.

In [EP14], Frisch et al. found that even tiny changes in the encoding of a CSP instance
have a significant impact on the performance of an SMT solver. Not only that, the experimental
evaluation has also shown that the various SMT solvers under consideration respond differently
to changes in the encoding of the CSP problem, meaning that the same encoding could work
well for some SMT solvers but be very poor for others. Given the prominent role of cardinality
constraints in CSP problems, Frisch et al. compared various such encodings in [FG10], looking
for the best alternative when dealing with a SAT solver.

In a related study, [ABP"13]], Ansétegui et al. have shown that SMT can be an interest-
ing, and potentially competitive, approach for dealing with Weighted CSP (WCSP) instances.
A Weighted CSP problem is obtained from an over-constrained CSP instance by relaxing
some of its constraints. Similarly to Partial Weighted MAXSMT, described in Section
Weighted CSP admits the use of optional weights to establish a satisfaction priority among
the various soft- and meta-constraints. These weights do not have to be constant-valued. The
Weighted CSPs instances in [ABP™13], encoded in some extended version of the MINIZINC
format [ABP™11a, ABP™11¢c,|/ABP™13], are compiled either into COP or into Partial Weighted
MAXSMT, and then solved. The experimental evaluation included in [ABPT13], performed
over benchmarks encoding the Nurse Rostering Problem (NRP) and the Balanced Academic
Curriculum Problem (BACP), compared the CSP solver CPLEX, [[BM10], with the SMT solver
YICES, [[DdMO06al].

In [AGJT14], Akgun et al. have shown that flattening MINIZINC models into a FLATZ-
INC instances can introduce model-based symmetries that are not contained in the original CSP
formulation. We recall here that symmetries in the encoding of a problem can lead to search
redundancy and thus longer solving time, and that one common approach to mitigate this prob-
lem is to introduce lexicographic ordering constraints in the formulation of the problem to break
these symmetries. Therefore, in [EEF14] Elgabou et al. studied the problem of finding the best
encoding for lexicographic ordering constraints in terms of the efficiency of the corresponding
SMT search.

Comment. On the whole, we can summarize the outcome of these studies as follows. On
the one hand, SMT can be a potentially interesting and efficient technology for dealing with
CSP, especially in the case of problems requiring substantial Boolean reasoning such as the
scheduling instances in [ABPT11b]. On the other hand, modeling CSP problems for SMT
solvers requires a higher-level of expertise because the same CSP instance can have many
possible alternative formulations, but the performance of SMT solvers on each encoding are

hardly predictable in advance. Having learned this lesson from the research literature, when
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developing a new framework for solving CSP problems with Optimization Modulo Theories
(see Section §5.3.2), we decided to target our implementation over a specific OMT solver,
OPTIMATHSAT [opt], to take full advantage of its strengths and features.

A significant branch of the literature went in the opposite direction, and investigated how
to extend the benefits of efficient SAT and SMT techniques to the domain of CSP tools and
problems. For instance, Ohrimenko et al. presented a Finite Domain Constraint Propagation
solver built on top of a SAT solver in [OSCO07, IOSCQ9]. For this purpose, the SAT engine was
extended by the authors with lazy clause generation procedures mimicking the deduction step
of a typical finite domain propagator. In a closely related study, [FSO9]], Feiydy et al. presented
a FDCP solver extended with an internal SAT engine, used for recording clauses learned along
the search and quick backjumping in the search.

To conclude, we mention that after the achievements of Bofill et al. at the MINIZINC Chal-
lenge with their work on FZN2SMT [BSV 10, BPSV12]], that earned them a total of one gold
and five silver medals over the span of three years, there has been an increasing number of
SAT/SMT tools participating at the annual MINIZINC Challenge. This is the case of HAIFACSP
[VS10, VS15, IVS16] a CSP solver using ideas from CSP and SAT literature, and PICATSAT
[ZK17]] that uses the LINGELING [Biel8]] SAT solver as a black-box. Remarkably, the former
won two gold and a silver medal in 2016 and a bronze medal in 2018, and the latter won a total

of three silver medals and three bronze medals from 2016 to 2018.

MILP and LGDP. For a long time, MILP problems have been efficiently solved by a com-
bination of LP, branch-and-bound search and various cutting-plane methods (see e.g. [Lod09]).
More recently, SAT techniques have also been integrated in these decision procedures for MILP
problems (see, e.g., [ABKWOS]).

Linear Disjunctive Programming (LDP) problems are LP problems where linear constraints
are connected by conjunctions and disjunctions [Bal98|]. Linear Generalized Disjunctive Pro-
gramming (LGDP) is a generalization of LDP that has been proposed in [RG94] as an alterna-
tive model to the MILP problem. In contrast with MILP, which is entirely based on algebraic
equations and inequalities, LGDP allows for combining algebraic and logical equations with
Boolean propositions through Boolean operators, that results in a much more natural represen-
tation of discrete decisions. The state-of-the-art approach for dealing with LGDP problems
is through some MILP reformulation, [RG9Y94, [VGO4, SGOS, SG12], by means of an efficient
encoding of disjunctions and logic propositions that can be handled with some efficient MILP
solver such as CPLEX [IBMI10]. An important point is that LGDP and OMT(LR.A) can be

encoded into each other. In this regard, the experimental evaluation in [ST15a] has shown
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that OMT tools can be a competitive alternative to state-of-the-art MILP solvers on problems
requiring a significant amount of Boolean reasoning.

Another, notable, example of this research trend is represented by [MP13], in which Mano-
lios et al. presented Integer Linear Programming Modulo Theories (IMT), a sound and complete
framework for combining ILP with a background solvers for signature-disjoint stably-infinite
theories 7, and INEZ, a novel IMT solver. Differently than SMT, that is centered around a
SAT solver, in IMT the search is guided by a Branch and Cut procedure that communicates
with some 7T -solver by means of interface difference logic inequalities that, intuitively, serve
the same purpose as interface variables for theory combination in SMT (see Section §2.2.4). In
their experimental evaluation, the authors have shown that IMT can be competitive with respect
to SMT on a set of benchmarks derived from the problem of synthesizing architectural models
for a Boeing 787 Dreamliner. We notice that the approach of [MP13]] cannot combine ILP with
LRA U T, because LZA U T and LRA U T are not signature-disjoint (see Definition 2 in
[MP13])).
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Chapter 3

Related Work

In Chapter 2| we introduced the reader to the background and state of the art of Optimization
Modulo Theories, covering the relevant scientific literature published prior to the start of this
Ph.D. (November, 2014). In this chapter, we briefly examine those scientific publications that
have been published after the beginning of this Ph.D. study and that are relevant to us.

Recent Works.

73 [BP14, BPF15]. In [BP14,BPF15], Bjorner et al. presented VZ, an OMT solver that was
initially built as an extension of Z3 [z3] and then later on merged with the underlying SMT
solverl

For what concerns single-objective optimization, Z3 supports OMT(LZRAUT), OMT(BY U
T), OMT(PB U T) and MAXSMT solving.

e To the best of our knowledge, the OMT(LZR.A U T) functionality in Z3 is similar to
the one described in Section §4.1] and it also benefits from specialized algorithms for

unbounded-solution detection and bound-tightening.

e According to [NR16], which cites a private communication with the authors of [BP14,
BPF15]] as its source, Z3 deals with OMT(BY U T) through a reduction to partial
weighted MAXSMT, as described in Section §4.3]

e 73 features several specialized engines for dealing with OMT(PB U T) and MAXSMT
problems including, among others, WMAX and MAXRES. The former approach uses a
specialized theory solver of costs similar to [CFG™10], that we describe in Section
The latter approach combines the core-guided Maximum Resolution MAXSAT Engine,

8For this reason, we henceforth refer to either tool with the name Z3.
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presented by Narodytska et al. in [NB14], with the lazy-SMT solving framework. With
this approach, all clauses are initially asserted as “hard”, and an inference rule is used
to progressively relax the initial set of clauses so that to remove any conflict —found
along the search— involving some “soft” clause, up until the set of “soft” clauses be-
comes empty or a purely “hard” conflict is found. Since this method has also been added
to OPTIMATHSAT (later on), we provide an in-depth description of MAXRES in Sec-
tion §4.2.2

To the best of our knowledge, Z3 also ships with preprocessing techniques that re-encode
the 0-1 integer variables of the input formula into Pseudo-Boolean or MAXSMT con-
straints, for better performance. In addition, Z3 features a Pseudo-Boolean 7 -solver that

can generate sorting circuits on demand for Pseudo-Boolean inequalities featuring sums
with small coefficients [BPE15, |Bjo16].

When dealing with multiple objectives, Z3 supports Multiple-Independent (a.k.a Boxed),

Lexicographic and Pareto optimization.

e 73’s implementation of Multiple-Independent OMT is similar to the one available in
OPTIMATHSAT, that is described in Section §4.6.2] The main difference among the
two implementations is that in Z3 the optimization functionality is built on top of the
underlying SMT solver, similarly to the offline approach described in Section In

addition, Z3 uses ad hoc techniques for detecting unbounded solutions.

e To the best of our knowledge, Z3’s implementation of its Lexicographic optimization
algorithm is not documented in any publication. We describe OPTIMATHSAT’s imple-

mentation of Lexicographic optimization in Section §4.6.3]

e The Pareto optimization approach implemented by Z3 is based on the Guided Improve-
ment Algorithm presented in [REJO9]]. In Section we describe a very similar ap-
proach, implemented in OPTIMATHS AT, and also a different Pareto optimization algo-
rithm based on lexicographic optimization.

Similarly to OPTIMATHSAT, in Z3 optimization is supported with any combination of
theories. Moreover, both OMT solvers are incremental, and allow for pushing and popping
both objectives and clauses on the internal stack of formulas. In Section §4.5| we describe how
this feature is achieved in OPTIMATHSAT.

HAZEL [NR16]]. Another, relevant, related work is [NR16]]. In this paper, Nadel et al. orig-
inally presented the Bit-Vector Optimization with Weak Assumptions (OBV-WA) and the Bit-

54



CHAPTER 3. RELATED WORK

Vector Optimization with Binary Search (OBV-BS) algorithms, both of which can deal with
unsigned OMT(BY U T) formulas quite efficiently.

The OBV-WA algorithm modifies the decision and backtrack mechanism of the underlying
SMT solver, transforming the bits of the B) goal into high-priority decision variables with
preset phase-saving values, to force the optimization search to explore the search-space starting
from the more-than-optimal (unsatisfiable) subregion.

The OBV-BS algorithm performs a binary search exploration over the bits of the objective
function, using a sequence of incremental calls to the underlying SMT solver and, optionally,
phase-saving initialization for the better performance.

Both algorithms are fully incremental, and have been implemented within Intel’s eager BV
solver HAZEL [Nad14].

In this dissertation, we describe a generalization of these two algorithms to the case of
both signed and unsigned BV optimization, that we have implemented in OPTIMATHS AT af-
ter learning about [NR16]. OPTIMATHSAT’s implementations of the OBV-WA and OBV-BS
algorithms are described in Sections §4.3.2]and §4.3.3|respectively.

MAXHS-MSAT [FBB18]. Quite recently, Fazekas et al. presented in [FBB18]] a new frame-
work for dealing with MAXSMT based on the state-of-the-art Implicit Hitting Set (IHS) algo-
rithm. The latter is a MAXSAT algorithm that combines an Integer Programming (IP) solver,
used to generate candidate sets of soft clauses that hit a set of constraints in an optimal way,
with a SAT solver for checking satisfiability. In their paper, the authors have described a general
formal reasoning calculus for lifting the IHS method to the SMT level, to deal with MAXSMT.
The paper describes an experimental evaluation, including a comparison with OPTIMATHS AT
and Z3, showing the benefits of this approach.

PuLl [KBE18]. In another recent work, Kovasznai et al. presented PULI, a novel OMT
solver for quantifier free formulas with Uninterpreted Functions (UF) and Linear Integer Arith-
metic (LIA). Differently from other OMT solvers, PULI applies linear regression analysis over
a user-defined resource function to speed up the convergence of the OMT solver towards the
optimal solution. An even more significant performance improvement is obtained when dealing
with monotonous OMT problems. In their paper, the authors included an experimental evalua-
tion performed over sets of benchmarks derived from their Wireless Sensor Networks (WSNs)
OMT application described in [KBE17, KEB18]| (see Section and also on the well-known
Knapsack problem. The experiments show the validity of this approach and its effectiveness in
speeding up the basic OMT procedures described in Section
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CEGI0 [ABCF16, AAdB"17, AAdB"18]]. Recently, Araujo et al. presented a Counterexam-
ple Guided Inductive Optimization (CEGIO) algorithm based on Satisfiability Modulo Theories,
for dealing with the optimization of a wide-range of functions, including non-linear and non-
convex problems using fixed-point arithmetic. In contrast with the Optimization Modulo Theo-
ries described in this dissertation, in [ABCF16, AAdB™ 17, AAdB™ 18| the optimization search
is iteratively advanced by solving a sequence of SMT formulas and by analyzing their corre-
sponding counterexamples generated with an internal SMT solver used as a black-box. Each
SMT formula consists in a verification problem automatically generated with Bounded Model
Checking (BMC) techniques and derived from an ANSI-C model of the original optimization
problem. Similarly to OMT, the CEGIO optimization algorithm guarantees the optimality of the
solution even when other, traditional, techniques can get trapped by local minima. Experimental
results included in [ABCF16,/AAdB™ 17, IAAdB™18]] show the benefits of this approach.

Other Works.

Some OMT solvers appeared prior to the start of this Ph.D. study. Therefore, we have already
described their techniques in Chapter[2] For clarity of illustration and an easier comparison with
OPTIMATHS AT, we briefly recap some important details about these OMT solvers, that would

otherwise remain scattered throughout this dissertation.

BCLT [NO06, BNO" 08, RocI1,[LORR14]. With their pioneering work in [NOO6], Nieuwen-
huis and Oliveras presented BCLT, the first SMT solver with optimization capabilities that has
appeared on the scene of Satisfiability Modulo Theories, and paved the way for the advent of
Optimization Modulo Theories. Remarkably, BCLT has also been the first OMT solver featuring
optimization procedures for the general case of Integer Linear Arithmetic optimization [Rocl1]].
These procedures have been used in [LORR14]] to extend BCLT with a decision procedure for
polynomial constraints, that is, Non-Linear Integer Arithmetic.

In this dissertation, we describe the OMT(LZ.A U T) procedures of BCLT in Section
and illustrate the OMT(PB U T) and MAXSMT handling of BCLT in Section The
optimization procedures described in [NOO6, BNO™08, Roc11]], are not incremental and, for
what concerns OMT(LZA U T), do not allow for mixed integer/real optimization.

SYymBA [LAK™14]. SYMBA is an OMT(LR.A U T) solver built on top of the Z3 SMT
solver used as a black-box, that allows for optimizing multiple £LR.4 objectives according to the
Multiple-Independent combination approach. For a detailed description of the OMT(LR.A U
T) procedure of [LAK™14], we refer the reader to the last part of Section In [LAK™14],
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the authors note that the OMT solver is not incremental, it does not handle strict LR.A in-
equalities (i.e. >, <) and it only supports combination of theories as long as the theory 7 is
signature-disjoint with LRA=. OMT(LZIR.A U T), in particular, is not supported.

We recall that OMT(PB U T ) and MAXSMT can be encoded into each other, and that both are
strictly less general than OMT(LR.A U T). In Section we described various techniques
for dealing with this kind of problems, including, e.g., [NOO6, CFG™ 10, ABP™ 11bl[CGSS13al.

Here, we also mention that the SMT solver YICES [DMO6b] provides support for MAXSMT,
although there is no publicly-available documentation of its procedures. In addition, Ansétegui
et al. [ABP™11b] describe the evaluation of an implementation of a MaxSMT procedure based

on YICES, although this implementation is not publicly available.
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Chapter 4

Advances in OMT

This chapter illustrates major advances in the context of Optimization Modulo Theories that
occurred during this Ph.D. study.
This chapter is organized as follows:

§4.1 OMT (LIRA U T): OMT with Mixed Linear Integer Arithmetic cost functions [ST15c].

§4.2) OMT (PB U T)/MAXSMT: OMT with Pseudo-Boolean and MAXSMT cost functions.
In §4.2.1] we consider the standard OMT-based search enriched with sorting networks
[ST17], whereas in §4.2.2 we illustrate an alternative approach based on the MAXRES
engine [NB14, BP14].

OMT (BY U T): OMT with Bit-Vector cost functions. In we illustrate the stan-
dard OMT-based search, whereas in §4.3.2]and in §4.3.3| we describe the Bit-Vector Op-
timization with Weak Assumptions (OBV-WA) and the Bit-Vector Optimization with Bi-
nary Search (OBV-BS) algorithms respectively, both of which were originally presented
in [NR16].

OMT (FP U T). OMT with Floating-Point cost functions [TS19]. We consider a stan-

dard OMT-based approach first (§4.4.1)), and then present the novel Floating-Point Opti-
mization with Binary Search (OFP-BS) algorithm in §4.4.2]

§4.3] Incremental OMT: a description of a two useful techniques for creating an incremental
Optimization Modulo Theories solver [ST15c]].

§4.6] Multi-Objective Optimization: a definition of the problem, followed by a detailed anal-
ysis of a variety of multi-objective combinations that are supported by OMT solvers
[LAK™ 14, BP14, BPF13, [STI5b, ST15¢]. We include in our presentation a descrip-
tion of: MINMAX/MAXMIN Combination (§4.6.1), Multiple-Independent Optimization

(§4.6.2), Lexicographic Optimization (§4.6.3) and Pareto Optimization (§4.6.4).
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All-OMT: a simple extension of A/[-SMT to the case of Optimization Modulo Theories.

Full Disclosure. Most of the material presented in the following sections is taken from
publications co-authored by the Ph.D. candidate in collaboration with Prof. Roberto
Sebastiani’| [ST15b, ST15¢, [ST17,ST18| TS19].

In order to maintain the flow of the discourse, and as a premise to the description of
OPTIMATHSAT in Chapter §5| we also include innovations not co-authored by the Ph.D.
candidate but implemented in OPTIMATHSAT (like, e.g., [NB14, BP14,INR16]). When
this is the case, we include in the incipit of the corresponding section an explicit full
disclosure statement clearly stating the original authors of the methods being described
and referencing the source material.

We note that, in this dissertation, the description of these methods is centered around
OPTIMATHS AT’s implementation. When this differs from the one described in the orig-
inal work, we highlight these differences and refer to the original publication for more

details on the original approach.

“Prof. Roberto Sebastiani, roberto.sebastiani @unitn.it, DISI, University of Trento, Italy.

41 OMT (LZRA U T)

In the following, we describe the OMT(LZR.A U T) handling of OPTIMATHS AT presented
in [ST15c]], which is based on the OMT(LZ.A U T ) extension of OPTIMATHS AT presented in
[Trel4].

The Optimization Modulo Theories problem for Linear Integer and Rational Arithmetic cost

functions is defined as follows.

Definition 4.1.1. (OMT(LIRAUT), OMT(LIR.A)). Let  be a ground SMT(LIR.A U
T) formula and obj be a LIR.A variable occurring in p. We call an Optimization Mod-
ulo LIRA U T problem, the problem of finding a model M for ¢ (if any) whose value
of obj, denoted with mine;(), is minimum. We call an Optimization Modulo LIRA
problem, written OMT(LIR.A), an OMT(LIRA U T) problem where T is the empty
theory. (The dual definition where we look for the maximum follows straightforwardly)

We note that OMT(LZR.A U T) is conceptually different from both OMT(LRA U T)
(described in §2.3.1) and OMT(LZ.A U T) (described in §2.3.2), as it allows for a mixed use

of Integer and Rational variables and constraints.

62


mailto:roberto.sebastiani@unitn.it

CHAPTER 4. ADVANCES IN OMT

Remark 4.1.1. In general, the solution of a bounded OMT(LZA U T) problem can be
found through a simple enumeration of all possible models M of ¢, since in this case
there are only finitely many of them. This can be done, for example, using either the
linear- or the binary-search schemata of [ST12, [ST15a] described in §2.3.1] However,
this approach is insufficient both when the objective function obj is not lower-bounded
and when obj is a mixed LZR.A expression. In these cases, a LZ . A-minimization proce-
dure is necessary to guarantee termination. In addition, the availability of such a proce-
dure can speed up the optimization search by preventing a truth assignment y from being

generated multiple times along the search.

In OPTIMATHS AT, the inline schema for LR.A optimization described in Section §2.3.1]is
adapted to deal with the case of LZR.A objectives by replacing the procedure LR.A-MINIMIZE
with a novel LZR.A-MINIMIZE one. Given a complete truth assignment (i, such that . proposi-
tionally satisfies ¢, the function LZR.A-MINIMIZE performs an initial unboundedness test and
then, if obj is bounded in correspondence with i, searches the optimal value of obj by leveraging
the LZR.A-solver implemented in MATHS ATS [Gril2, ICGSS13b].

Unboundedness test. Given an OMT(LZRA U T) problem (i, obj), an easy-to-see prop-
erty is that obj can only be unbounded over ¢ if the corresponding OMT(LR.A U T) instance
(¢', 0bj'), obtained by discarding the integrality constraints on any Integer variable in the orig-
inal problem, is unbounded [BGH&7]. Therefore, given a truth assignment y and the corre-
sponding set of LZR.A constraints, we can check whether obj is LZR.4A-unbounded for p with
a simple run of the LR.A-MINIMIZE() procedure of Invoking the latter procedure has
three possible outcomes. The first is that obj is found to be unbounded, and therefore —oo can be
returned. The second possible outcome is that obj is bounded and the resulting optimum model
M happens to not violate any integrality constraint of the original problem. In this case, both
the model M and the corresponding value of obj can be returned with no further effort. The
third case is when the £LR.A-optimal model M violates (some of) the integrality constraints in
the original problem. In this case, LZR.A-MINIMIZE() performs a local Branch&Bound search

to assign each Integer variable an integral value.

Branch&Bound. In the literature, Branch&Bound is a well-known approach for exploring
the feasible space of a Mixed Integer Linear Programming (MILP) problem. Roughly speaking,
the problem of finding an optimal integral solution is reduced to solving a sequence of Linear
Programming (LP) subproblems in which an increasing number of Integer variables is forced to

evaluate to an Integer value with the use of additional linear constraints blocking any undesired
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assignment of values.

In OPTIMATHS AT, the underlying SMT solver MATHSATS, [CGSS13b], is already pro-
vided with a built-in Branch&Bound procedure for checking LZR A-satisfiability [Gril2]]. This
is adapted for dealing with the optimization of a LZR.A goal obj as follows. First, the function
LRA-MINIMIZE() of §2.3.1]is invoked on each node of the Branch&Bound tree, to ensure that
the value of obj is always locally optimal with respect to the £LR.4-domain associated with the
node itself. Second, each time a new integral model M is found in correspondence with some
node of the Branch&Bound tree, the Branch&Bound search is restarted and a new linear cut
of the form (obj < ub) is pushed on the local stack of constraints. Since the value of obj is
known to be bounded, it follows that the optimal value of obj must be necessarily found after
a finite number of restarts, after which the local stack of constraints becomes unsatisfiable. At
this point, the most recently found integral model M and the corresponding LZR.A-optimal
value of obj can be returned.

This particular restart-based approach to LZR.A optimization is enabled by the implementa-
tion of the Branch&Bound decision procedure for LZR.A in MATHS ATS, that features several
advanced features designed for search efficiency. Two features are particularly noteworthy. The
first is the use of historical information to drive the Branch&Bound search across subsequent
runs, so that good past decisions are replicated whenever possible. The second is an internal
backjumping mechanism based on conflict-set analysis, that allows the OMT solver to automat-
ically discard a large number of unsatisfiable LP subproblems without exploring them one by
one. For more details about these and other enhancements, we refer the reader to [[Gril2]].

Improvements. In most situations, the above Branch&Bound implementation is reasonably
efficient in practice, so much so that the optimal value of obj is found with very few restarts,
often even in the first run. However, as widely known in the literature, there are some de-
generate cases in which the Branch&Bound approach becomes very inefficient and has some
difficulty in finding the optimal solution. In these situations, other techniques such as cutting
planes can be employed to rescue the OMT solver. Since such advanced techniques are already
made available by the MATHSATS LIR.A-solver, we implemented a fruncated variant of the
Branch&Bound search in which LZR.A-MINIMIZE() stops as soon as it finds its first integral
model or it exhausts its budget. Then, the procedure returns the suboptimal value ub of obj to
the CDCL search loop, that learns a constraint of the form (obj < ub) as in On the
one hand, this has the advantage that the next satisfiability check involving the LZR.A-solver
will now use the entire stack of specialized routines it contains, including cutting planes, and
not just the Branch&Bound module. If the stack of formulas is still satisfiable, this guarantees

a relatively cheap improvement of the cost function value. On the other hand, this approach
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might cause the OMT solver to consider a truth assignment ;. more than once.

Experimental Evaluation. In Section we compare the implementation of these
techniques on top of OPTIMATHS AT with other state-of-the-art OMT solvers.

42 OMT (PB U T)/MAXSMT

Both OMT(PB U T) and MAXSMT constitute two important —and frequent— subcases of
OMT(LRA U T). To this aim, in the Background & State of the Art, Section we
illustrated a variegated number of techniques for dealing with these two problems that have
been previously proposed in the literature.

We describe two additional techniques that have been recently proposed in the context of
Optimization Modulo Theories. The first approach, is a revisited version of the OMT(LR.A U
T) encoding (see for OMT(PB U T) and MAXSMT that exploits sorting networks
to gain a significant performance advantage. This method, which we describe in full detail in
Section §4.2.1] was first presented in [ST17]]. The second approach is MAXRES, a core-based
MAXSAT engine first presented by Narodytska et al. in [NB14] and then used to deal with
MAXSMT problems by Bjorner et al. in [BP14]. We illustrate MAXRES in Section

4.2.1 Sorting Networks Approach

As described in Section an option for dealing with OMT(PB U T) and MAXSMT is
to encode these problems into an OMT(LR.A U T)) pair (p, obj), so that the inline OMT opti-
mization procedures described in Section §2.3.1] can then be used to find the optimal solution.
However, in [ST17] we have shown that a naive application of this approach can suffer from
poor performance with some types of formulas and so it would benefit from the use of more
sophisticated techniques such as Sorting Networks.

In this section, we provide a detailed description of the performance issues and the solution,
based on Sorting Networks, proposed in [ST17]. We also note that, henceforth, we will focus
our description on the case of PB objectives only to simplify the discussion. This does not
cause any loss of generality, since any MAXSMT goal can be rewritten as a OMT(PB U T)
problem, as shown in Section §2.3.3]

Performance issues [ST17].

In [[ST17], we observed that the usual optimization with linear-search (Section §2.3.1) can end

up generating exponentially many Theory Lemmas when dealing with a P8 objective 0Obj in

65



CHAPTER 4. ADVANCES IN OMT

which all weights have the same value w:

n—1
obj = w- ) A;. (4.1)
=0

Let obj be an objective as in Equation (#.1)) to be minimized, and 1 be a satisfiable (and total)
truth assignment found by the OMT solver during the search. Then, given Ay = {A; |p = A;}
and k = |Ar|, the upper bound value of obj in j is ub = w - k. As described in Section
the OMT solver learns a unit clause in the form —(ub < obj) for each truth assignment x found
in linear-search mode. Learning this unit clause removes the current truth assignment x4 from
the feasible search space, which is thus narrowed as a result, and forces the OMT solver to
search for another truth assignment 1/ —with a smaller upper bound ub’— in the next iteration
of the optimization search.

As observed in [ST17], the effect of learning the unit clause —(ub < obj) is not limited to
the removal of the current truth assignment . from the feasible space. In fact, it also makes
inconsistent any other (partial) truth assignment g’ setting exactly & (or more) variables A; to
True. More precisely, learning such clause prunes at least v = (Z) truth assignments from the
search space, where ~y is the number of of possible permutations of ;. over the variables A;.

Regrettably, since the unit clause —(ub < cost) is a LR.A term, the CDCL engine is unable
to determine by simple Boolean Constraint Propagation (BCP) the resulting inconsistency of
any (partial) truth assignment ;' setting exactly k variables to True. It is not until the 7 -solver
for linear rational arithmetic is invoked that such inconsistency can be revealed, and a conflict
clause blocking the (partial) truth assignment y' can be learned as a Theory Lemma. This re-
liance on the £LR.A-Solver to reveal such inconsistencies presents two major drawbacks. The
first is that the 7 -solver for linear rational arithmetic is much more resource-demanding than
BCP. The second issue is that both SMT and OMT solvers invoke the LR.A-Solver less fre-
quently than BCP, precisely to amortize its cost. As a result, the OMT solver can perform
poorly when dealing with this kind of objectives.

Note that the exact same problematic arises when the OMT solver learns a unit clause of
the form —(pivot < obj) in a binary-search step during the minimization of obj. When obj is

maximized, a dual case occurs.

Example 4.2.1. Figure depicts a toy example of OMT search over the pair {(p, obj), where
@ is an SMT formula and obj e Z?Zl A; (i.e., w; = 1 for every i).

Since 0bj is a Pseudo-Boolean objective, we assume that the problem has been first encoded
into OMT(LRA U T) using Equations (2.2a)-(2.2d)), so that (1) the input formula ¢ is now
extended with U!_ {(=A; V (z; = 1)), (4A; V (z; = 0)), (0 < x;), (z; < 1)} and (2) the goal obj

. , 4
is rewritten as ) ,_, T;.
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Learned Clauses —(2 < obj) —A; V= A,y
Ay Ay
Az Az As
1 1
LA-Solver LA-Solver

Figure 4.1: A simple example of OMT search with a P13 objective (Figure taken from [ST17]).

Let’s suppose that, as depicted on the left-hand side of Figure the OMT solver finds
a truth assignment . such that p |= ¢ and {Ay, Ay, ~As, Ay} C p. Then, the value of the
objective function in i, i.e. 2, is a new upper bound for obj. Thus, the unit clause —(2 < obj) is
learned and the Boolean search is restarted to find a better solution (if any).

In the subsequent run of the Boolean search, depicted at the center of Figure Ay and
Ag are again decideaﬂ As a consequence, the (partial) truth assignment 1’ that is now being
constructed contains {—(2 < obj), (z1 = 1), (z2 = 1)}, which is LR.A-inconsistent. However,
this inconsistency in the (partial) truth assignment i’ is not revealed up until when the (more ex-
pensive) LR.A-Solver is invoked, which, depending on the early-pruning strategy implemented
in the OMT solver, can happen after i’ has been further extended by BCP.

Eventually, the LR.A-Solver determines the inconsistency of 1, and the OMT solver learns
the conflict clause ~ A1\ — A, to prevent the conflicting assignment from being generated again.
The search is then forced to backjump and toggle the value of As, as shown on the right-
hand side of Figure At this point, a completely legitimate scenario is that Az is decided
to be true, causing a new conflict with respect to the unit clause learned by the optimization
search, and so on. In this way, the solver can pointlessly enumerate and check all the up-to (3)
truth assignments that are (1) consistent with @ and that (1) assign two variables A; to True
at the same time, despite of the fact that none of these truth assignments is compatible with
—(2 < obj). ©

9We note that this is not a remote possibility, due to the effect of the phase-saving technique that is applied in
both SMT and OMT solvers.
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Figure 4.2: The basic schema of a sorting network relation (Figure taken from [ST17]).

The general case. The performance issue identified in [ST17] is not limited to the simple
case depicted in Equation (4.T)) and can be generalized to any P8 objective obj in which there
are groups of Boolean variables A; sharing the same weight:

obj= T+ ... + T, 4.2)
Njzy (15 = w; - S A A0S T A(r < wpky)), (4.3)

where the logically-redundant constraints (0 < 7;) A (7; < wj; - k;) are added for the same

reason as with (2.2D).

OMT with Sorting Networks [ST17].

A solution for this efficiency issue, that we presented in [ST17], is to leverage bidirectional
sorting networks so that the inconsistency of a (partial) truth assignment p with respect to a
unit clause in the form —(ub < cost) can be revealed earlier in the search by means of Boolean
Constraint Propagation (BCP).

Definition 4.2.1. (Sorting network, bidirectional sorting network [IST/8]). We call sorting
network a relation among n input Boolean variables A; and n output Boolean variables
out;, as illustrated in Figure such that if in the current (partial) truth assignment [,
k variables are set to True, n — m variables are set to False and m — k are unassigned,
then by Boolean Constraint Propagation outy, ..., outy_1 are set to True, out,,, ..., out, 1
are set to False and outy, ..., out,, 1 are not propagated.

A sorting network is said to be bidirectional if it is also the case that if outy_ is forced

to be True (that is, at least k inputs must be True) and n — k inputs A; are False, then by
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Boolean Propagation all other unassigned A;s are automatically set to True; vice-versa,

if outy. 1 is forced to be False (that is, at most k inputs can be True) and n — k inputs A;

are True, then all other unassigned A;s are automatically set to False.

Given a bidirectional sorting network circuit C' with n inputs Ay, ..., A,,_1 and n outputs
outy, ..., out,_1, we encode a OMT(PB U T) problem (i, obj), such that obj = w - 31" A,,
into an OMT(LR.A) instance (", obj") as follows:

pen_1 | Utk = ((k+1) - w < obj)
S0// def 90/ ANC A /\ —outy — (Obj < k- w) (443.)
= =((k+1)-w < obj) V —=(obj < k- w)
obj" = obf (4.4b)

where ' and obj’ are defined as in Equations (2.2a)-(2.2c). The logically redundant constraints
at the third line of Equation (4.4ad) are added to the formula so that the negation of (obj <
(1 — 1) - w) is directly implied by BCP from (i - w < obj) (and vice versa), without the aid of
the LR.A-Solver.

The main advantage of encoding an OMT(PB U T) problem as in Equations (4.4a)-(4.4b)
is that, whenever the OMT solver (1) learns a unit clause in the form (obj < k- w) (i.e. as a
consequence of finding a satisfiable truth assignment x in which & variables A; are true, or as
part of a binary-search step in which pivot = k - w) and (2) the search is restarted from level
zero to find a new satisfiable truth assignment 1/, as soon as k — 1 inputs A; are assigned to True
in 4/ then by BCP the remaining n — k + 1 inputs are immediately propagated to False. Dually,
when the OMT solver learns a unit clause in the form (obj > & - w), as soon as n — k inputs
A; are assigned to False in the (partial) truth assignment ;' under construction then by BCP the

remaining k inputs are immediately propagated to True.

Example 4.2.2. Figure 4.3|considers the same OMT problem (y, obj), with obj < Zle A;, as
in Example This time, however, the OMT(PB U T) instance is encoded with Equations
(@.4a)-@.4b) into OMT(LRA U T) with sorting network.

In particular, @ is now extended with (1) the same clauses as in Example (2) a bidirec-
tional sorting-network relation C having { Ay, As, As, A4} as inputs and {outy, outs, outs, outy}
as outputs (3) the constraints \;_, (out; — (i < obj)), \i_,(—out; — (obj < (i — 1)) and
N, (=(i < obj) V =(obj < (i — 1))). The goal obj is rewritten as 3";_, x;, same as before.

Let’s assume that, as shown on the left-hand side of Figure the search behaves as in Ex-
ampleup until it finds the same satisfiable truth assignment jv such that { Ay, Ay, — Az, — Ay} C
1, for which the value of obj is equal to 2. Then, same as before, the OMT solver learns the unit

clause —(2 < obj) to find an improving solution, and the Boolean search is restarted.
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Learned Clauses

Figure 4.3: A simple example of OMT search with sorting networks (Figure taken from
[ST17).

This time, however, the search follows a different path. In fact, due to the presence on the
formula stack of the bidirectional sorting network C' and the constraint outy — (2 < obj),
learning the unit clause —(2 < obj) causes the outputs {outy, outs, out,} to be immediately
unit propagated to False by BCP. Moreover, as depicted at the center of Figure as soon
as A is decided then all the remaining inputs {As, As, A4} are immediately unit propagated
to False by BCP. Compared to the scenario depicted in Example this saves up to (;1)
(expensive) calls to the LR.A-Solver.

When the set { Ay, Ay, ~ A3, = Ay} is eventually extended to a complete truth assignment
p' such that 1/ |= ¢, the OMT solver learns the new unit clause —~(1 < obj) and the search
proceeds as shown on the right-hand side of Figure o

Method generalization. This approach based on sorting networks can be generalized to deal
with OMT(PB U T) problems (g, obj) in which groups of terms share the same weight w;, as
for the objective function defined in Equations (4.2)-@.3).

In this case, a separate sorting network circuit has to be generated for each term 7; in {.2))-
(#.3). Then, as described in [ST17], the following constraints are introduced in the formula to
ensure that the circuit is activated by BCP

Ajy NiZi (=(w; - i < obj) — =(w; -1 < 75) ), (4.5)
Note that these constraints are not always sufficient to avoid some (expensive) calls to the
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LR.A-Solver, and generally tend do be more effective if the number of groups with uniform
weight in the PB sum is limited. To this aim, consider the extreme case of a P83 objective in
which every Boolean variable A; has a unique weight w; as an example. If y is the most recent
satisfiable truth assignment and it contains Ay such that Vi.w; > w; and at least one other A;,
then when —(ub < cost) is learned none of the implications in (4.5]) gets activated by BCP.

To overcome this limitation, the following workaround can be used. Each time a satisfiable

w is found, the OMT solver does not only learn —(ub < cost), but also the following clause
\/ ~(ub,, < 7) (4.6)
j=1

where ub.. is the value of 7; in the current truth assignment 4. This constraint forces the Boolean
search to improve the value of at least one 7;, but possibly many more, over the corresponding

sorting circuit C; at each linear-step of the optimization search.

Bidirectional Sorting Networks.

In OPTIMATHSAT, we have so far considered two sorting network encodings: the sequential
counter encoding in [Sin05)], that we have extended to be bidirectional, and the cardinality
network encoding in [ANORCI11, ANOR13].

Bidirectional Sequential Counter Encoding [Sin0S]. In [Sin03], Sinz et al. present LTng,

also known as the sequential counter encoding, to deal with cardinality constraints in the form
< k(Aq, ..., A,). A sequential counter circuit of size n is composed by n subcircuits, each of
which computes a partial sum 5; = Z;:l A;, represented in unary form with the bits S, ;, i.e.,
Si; = Tif 3!, A, > j,sothat out; = S, ;, j € [1..n]. The (CNF version of the) following

formula is the encoding of LTg}fQ presented in [Sin03], for k = n:

(A = S1,1) ANA((A V Sici1) = Sin) A 4.7
N A (5 ALV =Si10)} AN {(581,) 1 A (4.8)
/\Zj:2{(((‘4i A Si—1j-1)V Sic1;) = Sij)} (4.9)

To make it bidirectional, we reintroduced the left implications “<—" of the encoding of each gate
that were dropped in [Sin05]:

(A1 — 5171) A A;l:g{((Al V Si—l,l) — Si71)} A\ (4.10)
/\ZJIZ(((AZ A Si—l,j—l) \% Si—l,j) — Si,j)' 4.11)
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The main advantage of the bidirectional sequential counter encoding is that it is fully incre-
mental, meaning that a sorting circuit C' with n inputs Ay, ..., A,, can be easily (1) extended with
an extra unary adder subcircuit to deal with n + 1 inputs Ay, ..., A,,+1 (2) shrunk by dropping
the last subcircuit to deal with the n — 1 inputs Ay, ..., A,,_; only. This property is particularly
useful when dealing with PB/MAXSMT objectives defined via the assert—-soft command
(see Section §5.3.1), since “soft” clauses can be incrementally pushed and popped from the
formula stack. On the other hand, LTgl’fQ requires O(k - n) clauses and variables, and since in
our application k& = n then it can be resource-demanding when dealing with a large number of
inputs.

Bidirectional Cardinality Network Encoding [ANORCI11,/ANOR13]. The cardinality net-
work encoding, presented in [ANORCI11,/ANOR13], is based on the underlying sorting scheme
of the well-known merge-sort algorithm. The main advantage of the cardinality network encod-
ing is that its space complexity is bounded by O(n log” k) in the number of clauses and variables
where, in our case, k = n.

In this dissertation, we omit an illustration of this encoding due to the fact that its technical
details are not quite relevant to the presentation as a whole, and also because we would not be
able to add anything interesting on top of the very detailed examination made by the original
authors in [ANORCI11, ANOR13]]. We refer the interested reader to these publications.

4.2.2 MAXRES Approach [NB14, BP14]

Full Disclosure. MAXRES is a core-based MAXSAT engine that was first presented in
[NB14] and later ported into Z3 for dealing with MAXSMT objectives [BP14]. Neither
of these publications have been co-authored by the Ph.D. candidate. The engine treats
both hard and soft clauses as hard clauses, and progressively relaxes the resulting problem
by replacing all the soft clauses in the unsatisfiable cores found along the search with a
fewer number of new soft clauses. The algorithm ends either when the unsatisfiable core
contains no soft clause, meaning that the formula is unsatisfiable as a whole, or when a
satisfiable solution is found, that is guaranteed to also be optimal by construction.

We describe a MAXRES implementation, built on [NB14, BP14], that was subsequently
introduced in OPTIMATHSAT for dealing with both MAXSMT and generic Pseudo-Boolean
objectives [ST17]. Our goal is to make our presentation as unique as possible, even when it is
based on other people’s work. On this regard, we note that the procedures in [NB14]] focus on

propositional satisfiability, whereas [BP14]] does not include any pseudocode and it provides,
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function MAXRES(¢p, ©5)

1: s, opt := PREPROCESS(;)
2: while true do
3: (res, M) == SMT.CHECK(pn A A\ (¢, wiye, Ci)

4: if (res == UNKNOWN) then

5 return (UNKNOWN, —, (})

6: else if (res == SAT) then

7: return (SAT, opt, M)

8: else

9: 7 := SMT.GET_UNSAT_CORE()

10: Ts, Wnin ‘= GET_SOFT_CORE((pg, T)

11: if (7, == () then

12: return (UNSAT, —, ()

13: else

14 Yr = pp U \/<Ci7wi>e»rs —Cj

15: opt == opt + (MINIMIZE ? Wpin © —Wpmin)

16: Qs = 05 \ Ts

17: Vs = g U U<C“W>€TS (Wi — Win > 07 (Ciyw; — Wipin) = 0)
18: if (| 75 | > 1) then

19: op = pp U U(Ci,wi)ETs B; = (Bi-1 N Cy)

/Il By = T, V;~¢.B; is fresh Boolean var

20: Ys = s U U(Ci,wi)e{n\(chwﬁ} ABi—1 V Cj, Wiin)

Figure 4.4: The MAXRES engine implemented in OPTIMATHSAT.

instead, a high-level description of the algorithm. We provide the missing pseudocode and we
also (1) consider the case of soft clauses with arbitrary weights (i.e. negative, zero or positive
valued) and (2) allow for both the minimization and the maximization of the objective function.
Last, we note that the argument for the termination of MAXRES given in [BP14]] assumes that
each soft clause has an unitary weight. Although this assumption does not result in any loss of

generality, we chose to show a variant of such proof that does not rely on it.

Input. The algorithm, shown in Figure takes as input a set of hard clauses ¢, that must

always satisfied, and a set of n soft clauses ¢ = {(C1,w;), ..., (Cy, wy) }.
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Preprocessing. The first step is to transform the input problem into a canonical representation
(line 1). Any soft clause (C};, w;) with a weight w; equal to 0 is removed from the set ¢5. Any
soft clause (C;, w;) such that w; < 0 is replaced by a new soft clause (—C;, —w;). To ensure
that the optimal value of the objective function is preserved by this transformation, the negative
weight w; is added to an internal accumulator. Additionally, if the optimization goal is to
maximize the objective function, then every soft clause (C;, w;) is replaced by (—C;, w;) and
the corresponding weight w; is also added to the internal accumulator. At the end of this phase,
the set (, contains only positive-weighted soft clauses. The updated set of soft clauses and the
value of the internal accumulator are then returned to the main function. The latter value is used
to initialize the objective function, and it corresponds to the value of obj when the conjunction
of o, with all the soft clauses in g, treated as hard clauses, is satisfiable.

MAXRES main loop. The loop starts by checking the satisfiability of the conjunction of ¢y,
with all soft clauses in g, treated as hard clauses (line 3). If the underlying SMT solver is unable
to decide satisfiability, the algorithm stops with UNKNOWN (lines 4-5). If the conjunction of
all formulas is satisfiable, then the search has terminated and the model M can be returned,
together with the optimal value of the objective function opt (lines 6-7).

Otherwise, the SMT solver answers with UNSAT. The corresponding unsat core 7, which is
such that 7 C {¢, U U(Ci,m)e o C;}and 7 =7 L, isretrieved from the SMT solver (line 9). The
function GET_SOFT_CORE() is invoked to retrieve the subset 7, of all soft clauses contained in
7, and to get the minimum weight w,,;, among the weights of all soft clauses contained in 7
(line 10). Here, w,,;, corresponds to the progress made by this search step towards the optimal
value of the objective function and, by construction, it is larger than 0 when 7; is different from
the empty set. If 7, is empty, then the conflict set 7 only contains hard clauses and the search
can be terminated as the input problem is unsatisfiable (lines 11-12). Otherwise, the conflict
is caused by one or more soft clauses being asserted as hard. Therefore, the execution jumps
at line 14 to relaxate the problem with the application of the Maximum Resolution rule as in
[BP14].

The first step is to ensure that the unsat core 7 cannot be generated again by learning the
blocking clause \/ ¢, ,.vc,, C; (line 14). Any hard clause in the conflict set 7 need not to
be included in the blocking clause, as it is forcibly assumed when the SMT solver is invoked.
As a result, the learned clause forces at least one soft clause (C;, w;) in 7, to be assigned to
false in future iterations of the search, ensuring a small search progress towards the optimal
solution. This progress is taken into account by compensating the value of the objective function
according to the optimization direction (line 15). Moreover, since at each loop iteration all

soft clauses are treated as hard ones, the entire soft core 75 is removed from ¢, as it would
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otherwise cause a conflict when conjoined with the newly learned blocking clause (line 16).
When some soft clause (C;, w;) in 75 has weight w; > W, the removal of (C;, w;) has to
be compensated with the introduction of a new soft clause (C;, w}) where w, = w; — Wpn
(line: 17). This preserves the contribution of the original soft clause (C;, w;) to the value of the
objective function, even after it is removed from ¢, when C; is set to false.

When 7, contains more than one soft clause, then additional compensation clauses are nec-
essary to preserve the value of the objective function. The reason for this is that the transforma-
tions in lines 14-17 do not take into account that in future iterations of the optimization search
multiple C; from 7, might be contemporarily assigned to false. In such a case, the value of the
objective function should be compensated for a multiple m - w,,,;, of Wy, Where the factor m
is given by the number of clauses C; set to false. The code in lines 19-20 does exactly that.
First, it introduces k fresh support variables B; of Boolean type, one for each soft clause in 75,
and constrains each B; to imply the first i — 1 clauses C; being assigned ¢rue (line 19). Then, it
extends o, with & — 1 new soft clauses of the form C} := (B; 1 V C;, Wy, ). Intuitively, B;_;
is used to ensure that a soft clause C? which contains a C; assigned to false is ignored, unless
another C; with j < 7 assigned to false is known to exist. The conflict clause learned at line
14 guarantees the existence of some C; assigned to false, and since this was already accounted
for with the adjustment of the objective function value at line 15, it must not be handled again.

Termination. An argument for termination can be made by proving that the innermost part
of the loop, comprised by the lines ranging from 14 up to 20, can only be executed for a finite
number of times. Given this fact, it is then trivial to see that the algorithm is subsequently forced
to terminate at lines 5, 7 or 12.

Hence, we limit our discussion to the case in which MAXRES found a non-empty conflict
set of soft clauses 7,. Let ¢ be a set of soft clauses in the form {(C, w1), ..., (Cy, w,)}), then
we define W(¢) to be a function yielding the total weight of all soft clauses contained in ¢, i.e.
Zzzrf w;. The key observation of this proof is that the set of soft clauses 7; is first removed
from ¢, (line 16) and then replaced by a new set of soft clauses 7/ (lines 17/20) such that
W(7!) < W(7s). This can be seen by expanding the expression of W(7;)

W(7s) = W{{(Cr,wi), oo (Clry win ) })

i=|7s| i=|7s]
; 121 ( ) 4.12)
i=|7s|

- Z (wz - wmin)+ | Ts ’ *“Wmin

i=1
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and the one of W(7/)

(Ci,’wi>€7's

+
=

( U<ci,wi>e{rs\<cl wi)}

1=|7s| i=|7s

|
1=2

=1
so that we get
i=|7s]
W(TS) - W<Té) d:ﬁ ( Z (wz - wmm)+ ’ Ts ’ wmm)
i=1
i:‘TS‘
=1
i=|7s| i=|7s|
=1 i=1
+ |Ts | 'wmin_<|7—s| _1)wmzn
:O—’—(’TS’ - ‘TS‘ +1)wmzn
= Wmin

(Bi—1 V C, wmm))

(4.13)

(4.14)

By construction, all soft clauses in ¢ have a strictly positive weight w;. The value w,,;, is

also guaranteed to be positive, since it is equal to the minimum weight w; of all soft clauses in
the conflict set 7, C ;. Hence, by Equation (¢.14), we have that W(7.) < W(7,) and that the

cumulative weight of the set of soft clauses ¢/, == ¢, \ 75, U 7. resulting from the execution

of lines 14-20 is strictly smaller than that of . Therefore, we can conclude that the algorithm

can perform only a finite number of relaxations, stretching at most up until when W(y,) = 0,

and then it has to terminate.

MAXSMT formulas.

Experimental Evaluation. In Section we demonstrate the benefits of the sorting
network circuit enhancement and the remarkable performance of the MAXRES engine
with a number of experimental evaluations on OMT(PB U T) and Partial Weighted
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43 OMT BV UT)

Full Disclosure. The Bit-Vector Optimization with Weak Assumptions (OBV-WA) and
the Bit-Vector Optimization with Binary Search (OBV-BS) algorithms, described in Sec-
tion §4.3.2) and Section §4.3.3|respectively, have been first presented by Nadel et al. in
[NR16] and have not been co-authored by the Ph.D. candidate.

Unsigned Bit-Vector optimization was first introduced by Bjorner et al. in [BP14, BPF15]],
and was later drastically improved by Nadel et al. in [NR16]. In this thesis, we present a
generalization of the methods and techniques described in [BP14, BPE15,INR16] to the case of
both signed and unsigned BY optimization. We have presented this approach in [TS19].

Without any loss of generality, we assume that every non-trivial B) objective function f(...)
is replaced by a BY variable obj by conjoining “obj = f(...)” to the input formula. We use the
symbol n to denote the bit width of obj, and obj[i| to denote the i-th bit of obj, where obj[0]
and obj[n — 1] are the Most Significant Bit (MSB) and the Least Significant Bit (LSB) of obj
respectively® We use the symbol 1, to denote a generic (possibly partial) assignment that
assigns at least the £ most-significant bits of obj. We use the symbol 7 to denote an assignment
to the k most-significant bits of obj. Given i < k, we denote by p[i] [resp. 7x[¢]] the value in
{0, 1} assigned to obj[i] by py [resp. 7x]. Moreover, we use the expression [u]; where i < k
to denote the restriction of i, to the ¢ most-significant bits of obj, obj[0], ..., obj[i — 1]. Given a
model M of ¢ and a variable v, we denote by M v) the evaluation of v in M.

We define the Bit-Vector Optimization problem as follows.

Definition 4.3.1. (OMT(BYV U T'), OMT(BV), miney;). Let © be a ground SMT(BY U T)
formula and obj be a —signed or unsigned— BV variable occurring in ¢. We call an
Optimization Modulo BY U T problem, the problem of finding a model M for ¢ (if any)
whose value of 0bj, denoted with minobj(go), is minimum with respect to the total order
relation <,, for signed BVs if 0bj is signed, and the one for unsigned BV's otherwise. We
call an Optimization Modulo BY problem, written OMT(BYV), an OMT(BY U T) problem
where T is the empty theory. (The dual definition where we look for the maximum follows
straightforwardly)

We introduce the (novel) notion of a BV attractor to generalize the unsigned BV opti-
mization methods described in [BP14, BPF15, INR16] to the case of signed and unsigned B)

optimization.
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Definition 4.3.2. (Attractor, Attractor equalities). When minimizing [resp. maximizing],
we call attractor for 0bj the smallest [resp. greatest] BY-value attr of the sort of 0Obj.
We call vector of attractor equalities the vector A such that A[k] £ (obj[k] = attr[k]),
ke ]0.n —1].

Example 4.3.1. Ifobj 8 s an unsigned BY objective of width 8, then its corresponding attractor
attr is 01, i.e. [00000000], when obj®®! is minimized and it is 255, i.e. [11111111], when obj"®
is maximized. When obj[S] is instead a signed BY objective, following the two’s complement
encoding, the corresponding attr is —128081 je. [10000000], for minimization and 12781 je.
[01111111], for maximization. o

In essence, the attractor can be seen as the target value of the optimization search and there-
fore it can be used to determine the desired improvement direction and to guide the decisions
taken by the optimization search. By construction, if a model M satisfies all equalities A[i],
then M (obj) = attr. More generally, if M is a model of ¢, then the value of obj in M, denoted
with M (obj), is given by

i=n—1
7(obj) = Z (2" 17" ITE(M(AJQ), attr[d], attr[i])) (4.15)
i=0
when obj is an unsigned BV objective, and by

i=n—1

7(obj) = Z (2" 1 1TR(M(ALQ]), attr[i], attrli]))

—_(2”_1) -1TE(M(A]0)), attr|0], attr[0])

when obj is a signed BV objective, using the two’s complement representation. The function

(4.16)

ITE, appearing in both previous equations, returns attr[i if the attractor equality A[i] is true in
M and attr[i] otherwise.

With a small abuse of notation, and when this does not cause ambiguities, we sometimes
use an attractor equality A[i] = (obj[i] = attr[i]) to denote the single-bit assignment obj[i] :=

attr|i] and its negation = A[7] to denote the assignment to the complement value obj[i] := attr[i].

Definition 4.3.3. (Lexicographic maximization) Consider an OMT instance (p, obj) and
the vector of attractor equalities A. We say that an assignment T,, to 0bj lexicographically

maximizes A with respect to ¢ if and only if, for every k € [0..n — 1],
o 7,[k] = attr[k] if o A [Tn]k N Alk] is unsatisfiable,

o 7,k] = attr[k] otherwise.
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where Alk] is the attractor equality (objk] = attr[k]). (The dual definition of “lexico-

graphically minimizes” switches attr[k] with attr[k].) Given a model M for o, we say

that M lexicographically maximizes A with respect to o if and only if its restriction to

obj lexicographically maximizes A with respect to .

Starting from the MSB to the LSB, 7,, [resp. M] in Definition assigns to each obj[k]
the value attr[k] unless it is inconsistent with respect to ¢ and the assignments to the previous
obj[i]s, © € [0..k — 1]. Notice that this corresponds to minimize [resp. maximize] the value

1o 2"k (obj[k] xor, attr[k]) [resp. S_r—s 2"~ '*- (obj[k] nxor, attr[k])], —where xor,

. . . o . —1—4 —1 —1—
is the bitwise-xor operator and nxor,, is its complement— because 2" '7* > Y ' 41 2" 1=k,

Example 4.3.2. Let obj® be a signed BV goal of 3 bits to be minimized and attr % [100] be
its attractor, so that the corresponding vector of attractor equalities A is equal to [obj[0] =
1, 0bj[1] = 0, obj[2] = 0].

An assignment T3 < {A[0], ~A[1], = A[2]} (for which obj® = —1B) is lexicographically
better than 75 = {—A[0], A[1], A[2]} (for which obj® = 0B)), because the former satisfies the
attractor equality corresponding to the MSB while the latter does not. Moreover, the assignment
74 is lexicographically worse than the assignment 7§ < { A[0], -~ A[1], A[2]} (for which obj®®) =
—28), because —all the rest being equal— the latter assignment makes the attractor equality
(obj[2] = 0) true. o

The following fact derives from the above definitions and the properties of two’s comple-
ment representation adopted by the SMT-LIBV?2 standar for signed BV.

Theorem 4.3.4. An optimal solution of an OMT(BY U T) problem (i, obj) is any model

M of ¢ that lexicographically maximizes the vector of attractor equalities A.

We demonstrate that Theorem holds, for both signed and unsigned BY objectives,
using the following argument.

Proof. (We prove the case of minimization, since that of maximization is dual)

Let (p, obj) be an OMT(BY U T) problem where obj is a BV objective to be mini-
mized and attr is its attractor, that is, the smallest value that can be represented with a B)
value of the same sort of 0bj. Let A be the corresponding vector of attractor equalities
such that, for each i, Afi] = (obj[i] = attr[i]). Finally, let M be a a model of ¢ that
lexicographically maximizes A, where T, is the restriction of M to the n bits of obj and
M (obj) is the model value of obj, computed with Equation (.15]) if obj is an unsigned

101f the standard adopted were the sign-and-magnitude binary encoding, then Theorem would not hold.
Nevertheless, in such a case we could adopt a simplified version of the technique for /P optimization described

in Section §Ef}
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80

BV objective and with Equation (4.16) otherwise. By definition, model M is an opti-
mal solution for (i, obj) if there exists no other model M’ such that M’ satisfies ¢ and
M’ (obj) < M (obj). Hence, we show by contradiction that no such M’ can exist.
Assume (for the sake of contradiction), that there exists a model M’ of ¢ such that
M'(obj) < M(obj), and let 7/ be the restriction of M’ to the n bits of obj. Since
M’ (obj) # M(obj), by Equations ({#.13)-(4.16) there must be at least one index i for
which 7,,[i] # 7/[i]. Let m be the smallest index ¢, from 0 to n — 1, such that 7,,[m| #

7/ Im]. We set 7oy = [Tl i1 = [Talmis and 7y = [7.]ms1. Then, 7 C Tony1,

Ton C Thits Tmi1 # Thi1. In particular, 7,,41[m] = 7/, [m] and therefore 7, 1[m] =
attr[m] if 7/, [m] = attr[m], and vice versa.

We split our proof in two parts: in the first we consider of an unsigned BV goal, while
in the second part we consider the case of a signed B) objective.

CASE I: obj is an unsigned BV goal. Then, we distinguish two subcases.

In the first case, 7,,11[m| = attr[m] and 7/, ,[m] = attr[m]. From 7,,1[m] =
W[m] and the fact that 7,, lexicographically maximizes A, we derive that p A7, AA[m] is
unsatisfiable, where A[m] £ (obj[m| = attr[m]). Since 7,,, C 7/, C 7 and 7/, ,[m] =
attr[m], we conclude that ¢ A 7/, is unsatisfiable, so that M’ cannot be a model of ¢,
contradicting the initial assumption.

In the second case, 7,,,11[m| = attr[m] and 7/, ,[m] = attr[m]. For M'(obj) <
M(obj) to hold, the difference A = M’ (obj) — M (obj) computed in Equation @.17)
must be smaller than zero.

i (217 TE(M(AL)), attr[i], attr[i])) —
i=0
i (2171 1TE(M(A[A]), attr[i], attr[i]))
i=0
= 2"~1=m (attr[m] — attr[m]) +
S @ (M (AL, attr (i, atr ) — @.17)

1=m-+1

A

i=n—1
ST @ TE(M(AL)), attri], attr[i])
i=m+1
= gn-l-m 4
i=n—1
> @ (irE(M(A[i]), attrli], attr[i]) — 1TE(M(ALA)), attr[i], attr[i])

i=m-+1

In Equation (.17)), we have used the following facts: (I) M(A[k]) = M’'(A[k]) for every
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k € [0,m— 1], D) M(A[m]) is true, (IIT) M’ (A[m]) is false and (IV) attr[m] — attrm]
is equal 1 because Obj is interpreted as an unsigned ) and it is being minimized, which
means that attr = 0",

It can be seen that there cannot exist any pair of models (M, M) such that M'[ob]] <
M obj], because for any positive k 2 n — 1 — m, the value 2% (ak.a. 2~17™) is strictly
larger than Zilg_l 2 (ak.a. ZZ%}I 2"~1=%) This contradicts the initial assumption
that M’ (obj) < M (obj).

CASE II: obj is a signed B) goal. Then, we distinguish —once again— two subcases.

In the first case, m is larger than 0. Therefore, M (obj) and M’ (obj) are either both
negative or both positive. Looking at Equation (4.16), which adheres to the two’s com-
plement representation rules, we observe that the sign bit results in a constant-valued
displacement of the model value M (obj), that is otherwise equal to the one computed
by Equation (4.15)). Since the value assigned to obj[0] by M and M’ provides the same
(fixed) contribution to the value of obj, we can ignore the sign bit and restrict our focus
on the remaining n — 1 bits. In this way, we obtain a new obj’ = [obj[1], ..., obj[n — 1]], a
new attr’ = [attr[l], ..., attr[n—1]] and anew A’ = [(obj[1] = attr[1]), ..., (obj[n—1] =
attr[n — 1])]. For all intents and purposes, following the two’s complement represen-
tation, the new goal obj’ can be considered as an unsigned BY goal as it was obtained
by dropping the sign bit from obj. As a consequence, we can apply the same argument
illustrated in CASE I over the new obj', attr’ and A'.

In the second case, m is equal to 0. By assumption, M’(obj) < M/obj) so we
have that M'(obj) < 0 and M (obj) > 0. Given that obj is being minimized, the value
of attr[0] is equal to 1, and therefore we immediately get that [7,,]1[0] = attr[0] and
[7/]1[0] = attr[0]. From [7,]1[0] = attr[0] and the fact that, by assumption, M —hence
T,— lexicographically maximizes A, we have that A [7,,]o A A[0] is unsatisfiable. Since
[7.Jo = 0 and A[0] = (obj[0] = attr[0]), then it follows that ¢ A (obj[0] = attr[0])
is unsatisfiable. Therefore, we conclude that M’ cannot be a satisfiable model of ¢,

contradicting the initial assumption. [

Using Definitions 4.3.2] and [4.3.3] with Theorem [4.3.4] we can reduce any Biz-Vector Opti-
mization problem (p, obj) to a lexicographic OMT(LR.A U T) problem or to partial weighted
MAXSMT.

Reduction to lexicographic OMT(LRAU 7). AOMT(BY U T) problem can be straight-
forwardly encoded into a lexicographic OMT(LR.A U T ) instance (i, obj, ..., obj,_;) by set-

ting each obj; equal to ITE(A[i], 1,0), where A[i] is the i-th attractor equality (obj[:] = attr]i]).

With this approach, the maximization of each objective function in lexicographic order results
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in the lexicographical satisfaction of the set of attractor equalities. Therefore, by Proposition
the optimal solution of the original OMT(BY U T) problem is returned.

Reduction to partial weighted MAXSMT [BP14, BPF15]/] A OMT(BY U T) problem
can be encoded as a partial weighted MAXSMT problem (¢, ¢5), where the input formula ¢ is
transformed into the set of “hard” 7 -clauses (;,, and A is assigned to the set of “soft” 7 -clauses
¢s. The weight a; of each each soft clause (obj[i] = attr[i]), is set to be equal to 2"~ 1%, We
recall here that the goal of a partial weighted MAXSMT problem is to find the subset of “soft”
T -clauses with maximum-weight, as described in §2.3.3] Since the weight a; of each “soft” 7 -
clause Cj is strictly larger than the sum of the weights of all C; such that j > i, the MAXSMT
solver assigns higher preference to the satisfaction of the attractor equality (obj[i] = attr[i])
than to any other attractor equality (obj[j] = attr[j]) where j > i. Thus, the optimal model
found by the partial weighted MAXSMT search is also optimal for the original OMT(BY U T)
problem by Proposition [4.3.4]

Rather than using a reduction to a known problem, it is possible to approach OMT(BY U T)
more directly using a dedicated engine for 3) optimization. In the following, we consider three
main approaches for OMT(BY U T). Section illustrates the case of a simple linear- and
binary-search approach, based on the inline OMT schema presented in §2.3.1] Sections §4.3.2]
and §4.3.3|present the signed extensions of the Bit-Vector Optimization with Weak Assumptions
(OBV-WA) and the Bit-Vector Optimization with Binary Search (OBV-BS) algorithms respec-
tively, both of which have been originally presented by Nadel et al. in [NR16]. For these last
two approaches, we provide a concise description of the main ideas underlying these methods
and then proceed by illustrating the existing differences among the procedures described in
[NR16] and our re-implementation in OPTIMATHS AT.

4.3.1 Signed/unsigned OMT-based Search

The OMT-based schema presented here is a new extension of the inline linear-, binary- and
adaptive-search schemas for OMT(LR.A U T) —first presented in [ST12, [ST15a] and de-
scribed in Section to deal with both signed and unsigned BY objectives. In this regard,
we note that in [NR16] Nadel et al. describe a simple linear- and binary-schema for unsigned
BY optimization built on top of an SMT solver used as a black-box. However, in contrast with
[NR16], in OPTIMATHS AT the optimization schema is inline with the underlying SMT solver.

T We generalize the unsigned 3V optimization approach employed by [BP14,[BPF13] to the case of both signed
and unsigned BY optimization using the notion of BV objective attractor. Furthermore, we note that the original
approach is described in [NR16], that cites “private communication with the authors of [[BP14) IBPFI5|]” as its
own source, and not in [BP14, BPF15]].
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This approach, implemented on top of OPTIMATHS AT, has been shown to outperform the cor-
responding offline implementation on a set of OMT(LR.A U T ) benchmarks included in an
experimental evaluation of [ST12,ST15al.

On the whole, very few changes are necessary to adapt the OMT schemas for OMT(LR.A U
T) (see Section to the case of signed and unsigned BY optimization.

First, we notice that the domain of any BV variable is finite in the Theory of Bit-Vectors,
and thus —in principle— a simple enumeration of all possible values would suffice to exhaust
the solution space and find the desired optimal solution, similarly to the case of a LZ.A objective
with finite domain.

In the case of an eager BV-encoding in particular, we observe that extending the BY-solver
with an embedded optimization procedure would be wasting CPU cycles. This is because BY
terms are bit-blasted during the preprocessing of the formula, and therefore the value of any
BV objective is distinctively determined by the truth assignment that is being generated by the
CDCL engine. As a result, an optimization procedure confined within the B} engine would not
be able to locally improve the value of the objective function.

When the lazy BYV-encoding is used, an optional dedicated optimization procedure can be
embedded within the BV-solver, although this is not strictly necessary. In the following, to
keep things as simple as possible, we assume that no such dedicated optimization procedure is
embedded within the Bit-Vector 7T -solver.

Second, we notice that the size of the domain of an unconstrained BV variable of bit width
n —albeit finite— 1is still exponential in n. This means that a simple linear search over a
BV objective may end up enumerating an exponential number of satisfiable truth assignments
before finding the optimal solution value. Therefore, it is pretty much always convenient to
run the optimization in binary-search mode. In its simplest implementation, the binary-search
strategy places the pivot value so as to halve the solution space, determined by the range of
bits, at each iteration. Thus, the search is guaranteed to converge in at most n binary-search
iterations, where n is the number of bits of the B) objective. An alternative approach is to use
the following heuristic function, evaluated on the Rational domain and converted back to a BY
value, to compute the pivot placement:

pivot = floor(p-ub+ (1 —p)-Ib) + A

where |b and ub are the current lower and upper bound of obj respectively, p belongs to the
interval [0, 1] (e.g. %) and A is equal to 1 if the expression inside floor() is fractional and the
objective is to be minimized, 0 otherwise.

This heuristic has two advantages. First, it allows one to control the aggressiveness of

the range-partitioning strategy by adjusting the value of p. Second, it takes into account any
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optional initial lower/upper bounds provided by the user of the application. As shown in the
following example, this can result in fewer search steps to converge to the optimal solution. We
note, however, that fewer search steps do not necessarily mean better overall performance, as

the cost of each binary-step is non-uniform and it usually cannot be predicted in advance.

Example 4.3.3. Let obj® be a BY objective of width 8 to be minimized, and let [508), 64|
be the initial search interval specified by the end-user and 61 its optimal value. Assume, for
simplicity, that each satisfiable step results in the smallest possible improvement of the objective
function, and that the input formula admits a satisfiable model whenever the optimization goal
is included in the range of values 61 638]],

Then, the sequence of pivot atoms generated by an OMT solver minimizing obj® with a

binary-search computed over the bits of the objective function is as follows:

obj® <y 1288 (sar, M[obj®] = 638; 5.i.: 5018 6318) = continue
obj®l <1 648 (sar, M[obj®®)] = 62; s.i.: [5018) 6218]) = continue
obj® <1 328 (unsat, s.i.: [50%), 62[8] [) = backtrack

obj!®! <[g] 488 (unsat, s.i.: [501, 621[) = backtrack

objl®! <ig 566 (unsat, s.i.: [561, 6218) = backtrack

obj®! <[g] 60 (unsat, s.i.: [6018), 6218]) = backtrack

obj® < 628 (sar, M[obj®®'] = 61; s.i.: [601F) 61F]) = continue
obj® < 618 (unsat, s.i.: (618, 61F)]) = stop.

In the above sequence, we show the optimization search interval (a.k.a ““s.1.”’) at the end of each
binary-search step. The search, following the same schema described in Section §2.3.1] ends
when the search interval becomes empty.

If instead the OMT solver minimizes obj 8 with a binary-search computed over the actual
range of the objective function, then the following sequence of pivot atoms is generated with p

equal to %

obj® <) 578 (unsat, s.i.: (571,63 ) = backtrack
obj® <5 618 (unsat, s.i.: 61, 630[) = backtrack
objt®l <5 62 (sar, M[obj®] = 618; s.i.: (611, 618]) = stop.

Using this approach, the optimal solution is found with fewer search steps. o

4.3.2 A signed extension of OBV-WA [NR16]

The Bit-Vector Optimization with Weak Assumptions algorithm, for the maximization of un-
signed BY objectives, was first presented by Nadel et al. [NR16]. In their work, Nadel et al.
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transformed the bits [obj[0], ..., obj[n — 1]] of the BV objective into high-priority decision vari-
ables for the underlying SAT solver, starting from the MSB down to the LSB. Moreover, they
initialized the phase saving of each obj|i] to 1 (for minimization, to 0) to automatically drive the
CDCL search towards the optimal value. Since the combination of these two techniques makes
the algorithm approach the optimal value starting from the unsatisfiable region, the optimization
search could be stopped as soon as a model was found.

We notice that this approach can be extended to deal with the optimization, in either direc-
tion, of both signed and unsigned BY objectives. To do so, we exploit the attractor equalities
associated with the objective function obj.

First, for each attractor equality of the form obj[i] = attr[i] we introduce a fresh Boolean
decision variable A; such that A; <+ obj[i] = attr[i]. Then, we provide the following (optional)
enhancements over the regular OMT-based approach described in §4.3.1}

¢ branching preference: each A; is added to the list of the preferred Boolean variables for
branching, starting from the MSB down to the LSB. This has the benefit of causing the
highest possible backjump when any conflict involving a unit clause in the form (obj < Ib)
[resp. (obj > ub)] is encountered while minimizing [resp. maximizing] the objective

function.

e polarity initialization: the phase-saving value of each A; is initialized to true at the
beginning of the search, so that the first time the SAT engine encounters A; as a decision
variable it tries to assign true first. As a result, the solver prefers looking for candidate
values of 0bj that are closer to the target attr.

Activating both of these enhancements at the same time forces the OMT-based approach de-
scribed in §4.3.1]to behave like the OBV-WA algorithm in [NR16] (disregarding the fact that the
latter is designed to directly handle unsigned BV objectives only). This is because the Boolean
search at the SAT level takes precedence over the outer optimization schema, and therefore the
combination of the two enhancements makes the OMT solver approach the optimal solution
starting from the (possibly empty) unsatisfiable region as in OBV-WA. As a consequence, the
OMT solver does not need to certify that the value of the objective function is optimal and can

return as soon as a model is found.

4.3.3 A signed extension of OBV-BS [NR16]

The Bit-Vector Optimization with Binary Search algorithm was also presented in [NR16] first.

As for OBV-WA, the original algorithm dealt with the maximization of unsigned B) objectives
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only, that we extend to also deal with signed BV objectives using the definition of BY objective
attractor in Section §4.3]

The search starts by looking for an initial model M that satisfies the input formula ¢. If no
such M is found, then ¢ is unsatisfiable and the algorithm ends here. Otherwise, OBV-BS enters
a loop over the bits in the objective function, starting from the leading MSB obj[0] and ending
with the trailing LSB obj[n — 1]. If obj[¢] is true in M, then obj[i|] cannot be improved and it is
thus added to an initially empty list of of assumptions I'. After that, the execution flow jumps
at the next loop iteration, or stops if the LSB has just been visited. Otherwise, the algorithm
checks whether the value of the objective function can be improved by assigning obj[i] to true.
This is done by verifying the satisfiability of ¢ under assumptions, whereby the assumptions list
is given by I' U obj[é]. If that’s indeed the case and the underlying solver answers with SAT, then
obj[7] is added to the list of assumptions I" and M is updated with a new model that is closer to
the optimal solution. Otherwise, I is extended with —obj]i]. In either case, the search jumps at
the beginning of the loop with the next bit of the BV objective being evaluated, if any. At the
end of the loop, the optimal solution can be extracted by the model M that was most recently
found, or extrapolated from the list of assumptions I'.

Similarly to OBV-WA, the performance of OBV-BS can be enhanced by initializing the phase
saving value of each objli] to 1 prior to any satisfiability check performed with the underlying
SMT solver [NR16].

Definitions [4.3.2] and [4.3.3| with Theorem [4.3.4] suggest a direct extension to the minimiza-
tion/maximization of signed BY of the OBV-BS algorithm for unsigned BV in [NR16]: ap-

ply the unsigned-BY maximization [resp. minimization] algorithm of [NRI6|] to the objective
obj’ £ (obj nxor, attr) [resp. obj’ Z (obj xor,, attr)] instead than simply to 0bj [resp. obj].

Experimental Evaluation. In Section we reproduce the experimental evaluation
contained in [NR16l], and compare the effect of enabling the proposed enhancements on
the performance of OPTIMATHS AT.

44 OMT (FP UT)

In the following, we describe the OMT(FP U T) handling of OPTIMATHSAT described in
[TS19], which is based on the OMT(BY U T) procedures presented by Nadel et al. in [NR16].

Without any loss of generality, we assume that every non-trivial 7P objective function f(...)
is replaced by a F'P variable obj by conjoining “obj = f(...)” to the input formula. Following
the same conventions established in Section we indifferently represent a /P objective
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obj with sort (_ FP <ebits> <sbits>) as a vector of n bits [obj[0], ..., obj[rn — 1]], where
n = ebits + sbits, or as a triplet of Bit-Vectors (sign, exp, sig) such that sign is a BY of size
1, exp is a BV of size ebits and sig is a BV of size sbits — 1. We write obj[i] to denote the
i-th bit of obj, where obj[0] and obj[n — 1] are the Most Significant Bit (MSB) and the Least
Significant Bit (LSB) of obj respectively® We use the symbol i, to denote a generic (possibly
partial) assignment that assigns at least the £ most-significant bits of obj. We use the symbol
Tr to denote an assignment to the &£ most-significant bits of obj. Given ¢ < k, we denote by
i) [resp. Tx[é]] the value in {0, 1} assigned to obj[i] by py [resp. 7i]. Moreover, we use the
expression [1]; where @ < k to denote the restriction of y, to the ¢ most-significant bits of obj,
obj[0], ..., obj[i — 1]. Given a model M of ¢ and a variable v, we denote by M (v) the evaluation
of v in M.

We define the Floating-Point Optimization problem as follows.

Definition 4.4.1. (OMT(FP U T), OMT(FP), ming;). Let  be a ground SMT(FP U
T) formula and obj be a F'P variable occurring in ¢. We call an Optimization Modulo
FP U T problem, the problem of finding a model M for ¢ (if any) whose value of 0bj,

denoted with miney (i), is either

o minimum with respect to the usual total order relation < for F'P numbers, if ¢ is
satisfied by at least one model M' such that M’ (obj) is not NAN,

e some binary representation of NAN, otherwise.

We call an Optimization Modulo FP problem, written OMT(FP), an OMT(FP U T)
problem where T is the empty theory. (The dual definition where we look for the maximum

follows straightforwardly)

Definition is made complicated by the fact that obj can be NAN. In fact, in the
SMT-LIBV2 standard the comparisons {<, <, >, >} between NAN and any other FP value
always evaluated to false because NAN has multiple representations at the binary level (see
Table 4.T)). Also, requiring the optimal solution to be always different from NAN makes the
resulting OMT(FP U T) problem (¢ A —IsNaN(obj), obj) unsatisfiable when ¢ is satisfied
only by models M such that M (obj) is NAN. For these reasons, we admit NAN as the optimal
solution value for obj if and only if ¢ is satisfied only by models M such that M (obj) is NAN.

In the rest of this section we assume that we have already checked, in sequence, that

i) the input formula ¢ is satisfiable —by invoking an SMT(FP U T) solver on . If the

solver returns UNSAT, then there is no need to proceed;
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i1)  is satisfied by at least one model M’ such that M’(obj) is not NAN —by invoking an
SMT(FP U T) solver on ¢ A —IsNaN(obj) if the model M returned by the previous
SMT call is such that M (obj) is NAN. If the solver returns UNSAT, then we conclude
that the minimum is NAN.

After that, we can safely focus our investigation on the restricted OMT(FP U T) problem
{(PnoNaN, 0bj), where pnonaN ZoA —IsNaN(obj), knowing it is satisfiable.

In Section we have introduced the concept of a BY objective attractor, and we have
shown how this can be used to drive the optimization search towards the optimum value, when
minimizing or maximizing a signed or an unsigned BY goal. However, in the case of floating-
point optimization, it is not possible to statically determine the attractor value, before the search
is even started. This is due to the more complex representation of F'P variables, that uses three
separate Bit-Vectors (i.e. sign, exponent and significand), and the presence of various classes
of special values (i.e. zeros, infinity, NAN), that make Definition @ ambiguous for FP

optimization. We illustrate this problem with the following example.

Example 4.4.1. Let (pnonan, 0bj) be an OMT(FP U T) problem where 0bj is a F'P objective,
of sort (_ FP 3 5), to be minimized. To make our explanation easier to follow, we show in
Table a short list of sample values for an F'P variable of the same sort as obj. Each FP
value is represented as a triplet of Bit-Vectors (sign, exp, sig) —following the SMT-LIBV2
conventions described in Section §2.2.31— and also in decimal notation.

From Table we immediately notice that the binary representation of both the exponent
and the significant of a floating-point number grows in opposite directions in the positive and
in the negative domains. In addition, by sorting the values according to their binary repre-
sentation, we observe that —oo [resp. +0oco | is not the smallest [resp. greatest] representable
F'P value in the negative [resp. positive] domain. In fact, both extreme ends of the table are
occupied by NAN, that has multiple binary representations.

In what follows, we temporarily disregard the effects of unit-propagation, that might assign
some (or all) bits of obj as a result of some constraints in p,onaN, and pick some values as
candidate attractors for an F'P goal to be minimized.

Suppose that the attractor is chosen to be equal to the value —oc listed at row 9 in Table .1
which is the smallest F'P value with respect to the total order relation < for F'P numbers.
Assume that the optimal value of the P goal is the subnormal FP value (fp #bl #b000
#b1111) (ie. _G—if ). Then, it can be seen that after both the sign and the exponent bits have
been decided to be equal #b1 and #b000 respectively, the remaining bits of the attractor pull

the search in the wrong direction, that is, towards —0.

88



CHAPTER 4. ADVANCES IN OMT

sign exp sig value
1 | #0 #bl1l #bll11 | NAN
NAN

2 | #0 #blll #b0000 | +o0

3 | #b0 #bl110 #bll111 3
4 | #b0 #b000 #b0001 =
5 | #b0 #b000 #b0000 +0
6 | #bl #b000 #b000O -0
7 | #b1 #b000 #b0001 | —L

#bl #b110 #bllll 31
#b1 #bl11 #b0000 | —o0
NAN
10 | #b1 #Db111 #bl111 | NAN

Table 4.1: Sample values for a /P variable with sort (_ FP 3 5).

Selecting a different F'P value as candidate attractor does not really solve the problem;
rather, it results in a different set of issues.

For instance, an attractor equal to the NAN value listed at row 10 in Table which is the
smallest representable F'P value according to the binary ordering, would solve the problem for
the previous case in which the optimum FP value is (fp #bl #b000 #bl111). However,
this attractor would remain an unsuitable choice for an OMT(FP U T) instance where the FP
goal is forced to be positive, because after the sign bit of the objective function has been decided
to be equal #b0 the remaining bits of the attractor drive the search in the wrong direction, that

is, towards +0o0. o

Since there is no statically determined FP value that can be used as an attractor when

dealing with floating-point optimization, we introduce the new concept of dynamic attractor.

Definition 4.4.2. (Dynamic Attractor.) Let (@nonan, 0bj) be a restricted OMT(FP U T)
problem, where pponan 2 @ A —IsNaN(obj) is a satisfiable SMT(FP U T) formula and
obj is a F'P objective to be minimized [resp. maximized]. Let k € [0..n] and 1y, be an
assignment to the k most-significant bits of obj.

Then, we say that an F'P-value attr,, for obj is a dynamic attractor for obj with
respect to 7y if and only if it is the smallest [resp. largest] F'P value different from
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NAN such that the k most-significant bits of attr,, have the same value of the k most-
significant bits of obj in 7, We call vector of attractor equalities the vector A, such that
A, [i] £ (obj[i] = attr,,[i]), i € [0.n — 1].

With a small abuse of notation, and when this does not cause ambiguities, we sometimes use

an dynamic attractor equality A, [i] =

(obj[7] = attr,,[i]) to denote the single-bit assignment
obj[i] := attr,,[i] and its negation —A,, [i] to denote the assignment to the complement value
obj[i] := attry, [i].

The following fact derives from the above definitions and the properties of IEEE 754-2008

standard representation adopted by SMT-LIBV?2 standard for FP.

Lemma 4.4.3. Let (pnonan, 0bj) be a restricted minimization [resp. maximization] OMT(FP U
T') problem, let 73, be an assignment to obj[0]...obj[k — 1] and attr,, be its corresponding
dynamic attractor, for some k& € [0.n — 1]. Let 71 = 73, U {obj[k] := attr,, [k]} and

That & U {obj[k] := W}, and let M, M’ two models for ¢,onan that extend 7541

and 7;_ | respectively.

Then M (obj) < M’(obj) [resp. M (obj) > M’ (obj)].

Proof. (We prove the case of minimization, since that of maximization is dual with re-
spect to the value of the sign bit.) We distinguish three cases based on the value of k.

Case k£ = 0 (sign bit). Then attr,,[0] = 1, 7 = {obj[0] = 1} and 7| = {obj[0] = 0},
where obj[0] is the MSB of obj and represents the sign of the floating-point value. Then
obj is smaller or equal zero in every model M and larger or equal zero in every model
M’ of nonan, SO that M (obj) < M’(obj) is verified.

Case k € [1..cbits| (exponent bits), where ebits is the number of bits in the exponent
of obj. Then, attr,, [k] is 1 if 7,[0] = 1 and O otherwise.

In the first case, obj can only be negative in both M and M’. More precisely, M (obj)
can be either —oo or a normal negative value, whereas M’(obj) can be either a normal
or a subnormal negative value. Hereafter, we consider only the case in which both have
a normal negative value, because the case in which M (obj) = —oo or M’ (obj) is sub-
normal are both trivial, given that the absolute value of any subnormal /P number is
smaller than the absolute value of any normal /P number. Furthermore, we disregard
the significand bits in M and M’ because their contribution to the value of obj is always
less significant than that of the bits in the exponent. Given these premises, the exponent
value of obj in every possible M is larger than the exponent of obj in every possible
M’ by a value equal to 2¢°**~* and therefore, given that both M (obj) and M’(obj) are
negative, M (obj) < M’(obj).
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The case in which 7;,[0] = 0, that is when obj can only be positive in both M and M’,
is dual.

Case k£ > ebits (significand bits). Then there are three subcases.

If for every i € [1..ebits| the value of 7;[i] is equal 1, then the only possible value of
M (obj) for every possible M is 400, and therefore attr,, [k] = 0. On the other hand,
there exists no possible model M’ of ¢,onan, because the assignment obj[k] = 1 would
imply obj being equal to NAN, so the statement M (obj) < M/’(obj) is vacuously true.

If instead there is some ¢ € [1..ebits| such that 7, [i] = 0, then attr,, [k]is 1 if 7, [0] = 1
(i.e. obj is negative) and 0 otherwise (i.e. 0bj is positive). In both cases, we can disregard
the exponent bits in M and M’ because their contribution to the value of obj is the same
in either model. For the same reasons, since M (obj) and M/ (obj) can only be either both
normal or both subnormal, we can ignore the contribution of the leading hidden bit and
focus on the bits of the significand.

When 7;[0] = 1 and obj must be negative, the decimal value of the significand in M
is larger than the decimal value of every possible significand in M’ by exactly 2~ (k—¢bits)
Given that both M (obj) and M’ (obj) are negative, we have that M (obj) < M’ (obj).

The case in which 7;,[0] = 0, that is when 0bj can only be positive in both M and
M, is dual. O

Lemma |4.4.3| states that, given the current assignment 7, to the &£ most-significant bits of
obj, objlk] = attr,, [k] is always the best extension of 7, to the next bit (when it does not
conflict with ¢nonan). A dynamic attractor attr,, can thus be used by the optimization search
to guide the assignment of the k£ + 1-th bit of obj towards the direction of maximum gain that
is allowed by 7%, so that to obtain the “best” extension 73,1 of 7. Once the (new) assignment
Tr+1 18 found, the OMT solver can compute the dynamic attractor atir,,_, for obj with respect
to 7,1 and then use it to assign the k& + 2-th bit of obj, and so on.

Let (¢nonan, 0obj) be an OMT(FP U T) instance, such that obj is a FP variable of n
bits, and 7y be an initially empty assignment. If at each step of the optimization search the
assignment of the k-th bit of obj is guided by the dynamic attractor for obj with respect to
Tk, then the corresponding sequence of n dynamic attractors (of increasing order k) is unique
and depends exclusively on ¢nonan- Intuitively, this is the case because the (current) dynamic
attractor always points in the direction of maximum gain. We illustrate this in the following

example.

Example 4.4.2. Let (pnonan, 0bj) be an OMT(FP U T ') problem where 0bj is a F'P objective,
of sort (_ FP 3 5), to be minimized, as in Example At the beginning of the search,

nothing is known about the structure of the solution. Therefore, 7 = () and, since obj is
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being minimized, the dynamic attractor for obj with respect to T (i.e. attry,) is equal to (fp
#b1 #b111 #b0000) (i.e. —00), that gives a preference to any feasible value of obj in the
negative domain.

If at some point of the optimization search we discover that the domain of the objective
function can only be positive, so that the first bit of obj is permanently set to 0 in Ty, then the
new dynamic attractor for Obj with respect to 11 (i.e. attr;,) is equal to (fp #b0 #b000
#b0000) (i.e. +0).

Furthermore, if later on we also find out that at least one bit in the exponent of 0bj can
be assigned to 0 in a feasible solution of the problem that extends T;, for some 1, then we can

remove +oo from the optimization search interval. o

Definition 4.4.4. (Attractor Trajectory A,). Consider the restricted OMT(FP U T)
problem (pnonan, Obj) such that Ynonan & @ A-lIsNaN(obj) as in Deﬁnition atriplet

of inductively-defined sequences ({1y, 11, ..., T }, {attr,, attr , ..., attr; }, { A, Arys ooy Ar })
—where each Ty is an assignment to the first k most-significant bits of obj such that

Tk C Ty, attre, is its corresponding dynamic attractor and A, is its corresponding
vector of attractor equalities— so that, for every k € [0..n — 1]:

(i) Tre1[k] = attre, [k] if @nonan A Tk A Ay, [k] is unsatisfiable,

(ii) Tit1|k] = attr;, [k] otherwise.

Then we define the attractor trajectory A, as the vector [A,[0], ..., A, [n — 1]].

The attractor trajectory A, contains those attractor equalities (obj[k] = attr,, [k]) that are
of critical importance for the decisions taken by the optimization search. Intuitively, this is the
case because the value of the k-th bit of obj (i.e. obj[k]) is still undecided in 7.

Example 4.4.3. Let (pnonan, Obj) be a restricted OMT(FP U T) problem where 0bj is a FP
objective, of sort (_ FP 3 5), to be minimized, as in Example We consider the case
in which the input formula pnonaN requires obj to be larger or equal 29/2 and it does not impose
any other constraint on the value of obj. Given the sequence of (partial) assignments 1y, ..., Tg
in Figure the corresponding list of dynamic attractors and the corresponding vectors of

attractor equalities, then the attractor trajectory A, is equal to the vector [obj[0] = 1, obj[1] =
0, 0bj[2] = 0, 0bj[3] = 0, obj[4] = 0, obj[5] = 0, obj[6] = 0, obj[7] = 0]. o

Lemma 4.4.5. Consider (@nonan, Obj), To, ..., Ty, attryy, ... attr.,, A, ..., A;,, and A,

92



CHAPTER 4. ADVANCES IN OMT

0="0 attr;, = (fp #bl #bl11l #b0000) =[1.111.1111] [i.e. —oo] = UNSAT
71 = 1o U {obj[0] =0} attr,, = (fp #b0 #b000 #b0000) = [0.000.0000] [le +0] = UNSAT
o =11 U{obj[1] =1} attr,, = (fp #b0 #b100 #b0000) = [0.100.0000]  [ie.+2] == UNSAT
73 =7 U{obj[2] =1} attr,, = (£p #b0 #b110 #b0000) = [0.110.0000] [i.e.+8] = SAT
74 =13 U {obj[3] =0} attr;, = (fp #b0 #b110 #b0000) = [0.110.0000] [ "] = UNSAT
75 = 14 U {obj[4] = 1} attr,, = (fp #b0 #b110 #b1000) = [0.110.1000] [i.e. +12] = UNSAT
76 = 75 U {obj[5] = 1} attry, = (fp #b0 #b110 #b1100) =[0.110.1100] [i.e. +14] = SAT
77 = 16 U {obj[6] =0} attr., = (fp #b0 #b110 #b1100) =[0.110.1100] [" ] = UNSAT
13 = 17 U {obj[7] =1} attr,, = (fp #b0 #b110 #b1101) =[0.110.1101] [i.e.29/2]

A, = [obj[0] = 1,0bj[1] = 1,0bj[2] = 1, 0bj[3] = 1, 0bj[4] = 0, 0bj[5] = 0, obj[6] = 0, obj[7] = 0]

A, = [obj[0] = 0, 0bj[1] = 0, 0bj[2] = 0, 0bj[3] = 0, 0bj[4] = 0, 0bj[5] = 0, obj[6] = 0, obj[7] = 0]

A, = [0bj[0] = 0,0bj[1] = 1,0bj[2] = 0, 0bj[3] = 0, 0bj[4] = 0, obj[5] = 0, obj[6] = 0, obj[7] = 0]

A., = [obj[0] = 0, 0bj[1] = 1, 0bj[2] = 1, 0bj[3] = 0, obj[4] = 0, obj[5] = 0, obj[6] = 0, obj[7] = 0]

A, = [obj[0] = 0,0bj[1] = 1,0bj[2] = 1, 0bj[3] = 0,0bj[4] = 0, 0bj[5] = 0, 0bj[6] = 0, 0bj[7] = 0]

A, = [obj[0] = 0, 0bj[1] = 1, 0bj[2] = 1, 0bj[3] = 0, 0bj[4] = 1, 0bj[5] = 0, 0bj[6] = 0, obj[7] = 0]

A, = [0obj[0] = 0, 0bj[1] = 1, 0bj[2] = 1, 0bj[3] = 0, 0bj[4] = 1, 0bj[5] = 1, 0bj[6] = 0, obj[7] = 0]

A, = [obj[0] = 0, 0bj[1] = 1, 0bj[2] = 1, 0bj[3] = 0, 0bj[4] = 1, 0bj[5] = 1, 0bj[6] = 0, obj[7] = 0]

A, = [obj[0] = 0, 0bj[1] = 1,0bj[2] = 1, 0bj[3] = 0, 0bj[4] = 1, 0bj[5] = 1, 0bj[6] = 0, obj[7] = 1]

Figure 4.5: An example of /P optimization using the dynamic attractor. (“=—> SAT/UNSAT”

/1

denotes the satisfiability of pnonan AT A A, [K], the symbols stand for “the same as above”.

For ease of illustration, we have underlined the critical bit attr,, [k] in the attractors and each
attractor equality of the attractor trajectory A, inside the vectors of attractor equalities.)

as in Definition #.4.4, Then 7, lexicographically maximizes A, with respect to ©noNaN-
Proof. By Definition we have that, for each k € [0..n — 1],

(i) Tes1]k] = attry, [k] if pnonan A Tie A A, [K] is unsatisfiable,

(1) Try1]k] = attr,, [k] otherwise.
By construction, 7, = [7,,]x. Therefore, we can replace 75, with [7,,] so that

(2) [males1(k] = attrp, g, [k] if @nonan A [Tn]k A Apr,p, [K] is unsatisfiable,

(ii) [7n]ks1[k] = attrys, ;. (k] otherwise.
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We notice the following facts. For each k € [0..n — 1], [7,]x, C 7,. Furthermore, for
each k € [0.n — 1], A k] = A, .[k] because A, k] = A, [k] by the definition of
attractor trajectory, and A, [k] = A[.,,[k] by the equality 7, = [7,]z. Thus, we can
replace [7,]x+1 with 7,, and A, 1, [k] with A, [k], as follows. For each k € [0..n — 1],

(i) T.[k] = attr., [k] if nonan A [Tn]k A Ay K] is unsatisfiable,

(13) T,|k] = attr,, [k] otherwise.

Hence, 7, lexicographically maximizes A, with respect to @nonaN- O

Finally, we make the following two observations. The first is that the sequence ¢, 71, ..., T,
in Definition 4.4.4] can be iteratively constructed using its list of requirements, for instance,
by means of a sequence of incremental calls to an SMT solver. The second, more important,
observation is that 7,, corresponds to the assignment of values that makes obj optimal in ©ponaN-

Using the above definitions, we show that the following fact holds.

Theorem 4.4.6. Let (pnonan, Obj), 7o, ..., T, attre,, ..., attr,,, A, ..., A;,, and A, be
as in Definition #.4.4] Then, any model M of p,onan that lexicographically maxi-
mizes the attractor trajectory A, is an optimal solution for the OMT(FP U T) problem

<S0noNaN7 Ob.J>

Proof. (We prove the case of minimization, since that of maximization is dual.)

By Lemma we have that 7, lexicographically maximize A,. Let M be a model
of pnonan that lexicographically maximizes A, and let . be its restriction to obj. Since
both 7,, and M lexicographically maximize A, for the uniqueness of 7,,, we immedi-
ately notice that u = 7,, so that 7, = [u]y for each k& € [0..n] and p lexicographically
maximize A,,.

By definition, M is an optimal solution for (¢nonan, Obj) if and only if there exists no
other model M’ for it such that M’(obj) < Mobj). Hence, we show by contradiction
that no such M’ can exist.

Assume (for the sake of contradiction), that there exists a model M’ for ©,onan, SUch
that M’(obj) < M (obj), and let 1/ be the restriction of M’ to obj. Then there must be at
least one index ¢ for which p[i] # p/[i]