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Abstract 
 

 

The Terahertz (THz) band of the electromagnetic spectrum, also defined as sub-

millimeter waves, covers the frequency range from 300 GHz to 10 THz. There are 

several unique characteristics of the radiation in this frequency range such as the 

non-ionizing nature, since the associated power is low and therefore it is considered 

as safe technology in many applications. THz waves have the capability of 

penetrating through several materials such as plastics, paper, and wood. Moreover, 

it provides a higher resolution compared to conventional mmWave technologies 

thanks to its shorter wavelengths. 

 

The most promising applications of the THz technology are medical imaging, 

security/surveillance imaging, quality control, non-destructive materials testing and 

spectroscopy. 

 

The potential advantages in these fields provide the motivation to develop room-

temperature THz detectors. In terms of low cost, high volume, and high integration 

capabilities, standard CMOS technology has been considered as an excellent 

platform to achieve a fully integrated THz imaging systems. 

 

In this PhD thesis, we report on the design and development of field effect transistor 

(FET) THz  direct detectors operating at low THz frequency (e.g. 300 GHz), as well 

as at higher THz frequencies (e.g. 800 GHz – 1 THz). In addition we investigated the 

implementation issues that limit the power coupling efficiency with the integrated 

antenna, as well as the antenna-detector impedance-matching condition. The 

implemented antenna-coupled FET detector structures aim to improve the detection 

behavior in terms of responsivity and noise equivalent power (NEP) for CMOS based 

imaging applications.  

 

Since the detected THz signals by using this approach are extremely weak with 

limited bandwidth, the next section of this work presents a pixel-level readout chain 

containing a cascade of a pre-amplification and noise reduction stage based on a 

parametric chopper amplifier and a direct analog-to-digital conversion by means of 

an incremental Sigma-Delta converter. The readout circuit aims to perform a lock-in 

operation with modulated sources. The in-pixel readout chain provides simultaneous 

signal integration and noise filtering for the multi-pixel FET detector arrays and 

hence achieving similar sensitivity by the external lock-in amplifier. 
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Next, based on the experimental THz characterization and measurement results of a 

single pixel (antenna-coupled FET detector + readout circuit), the design and 

implementation of a multispectral imager containing 10 x 10 THz focal plane array 

(FPA)  as well as 50 x 50 (3T-APS)  visible pixels is presented.  Moreover, the 

readout circuit for the visible pixel is realized as a column-level correlated double 

sampler. All of the designed chips have been implemented and fabricated in a 0.15-

µm standard CMOS technology. The physical implementation, fabrication and 

electrical testing preparation are discussed.  

 
 

Keywords  
 

CMOS, Field-effect transistor, Terahertz radiation, Direct detectors, On-chip 

antenna, Detectors, Readout circuit, Flicker noise, Responsivity, Noise 

Equivalent Power, Incremental ADC, Chopper, Correlated Double Sampling, 

Focal Plane Array (FPA), Multi-spectral Imaging. 
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1  
 

Introduction 
 

 

1.1 Background    

The portion of electromagnetic (EM) spectrum located between the microwave and 

infrared regions is defined as Terahertz (THz) band, as shown in Figure 1.1. It has 

been recognized by several other terms, indicating either an electronic or an optical 

approach. On the low frequency end, near the millimeter wave band, some authors 

refer to the THz band basically as sub-millimeter band, (denoting to the wavelength), 

some others refer to it with common terms such as gigahertz or far infrared  [1], [2]. 

Still now, THz band does not have any industrial standard definition. Terahertz band 

covers the region from 300 GHz to nearly 3 THz which corresponds to the 

wavelength ranging from 1 mm (microwave) down to 0.1 mm (infrared) [3], [4]. While 

certain applications such as THz spectroscopy and imaging are well established 

(since the 1950s) [5], [6], however, up to recent times this band was not a matter of 

much interest due to the difficulty of fabricating solid-state practical technologies for 

sensing, generation, transmission of this radiation at room temperature. 

Nevertheless, with the fast development in material science and standard fabrication 

technology, numerous applications such as manufacturing, communications, security 

and biomedical and materials/chemicals characterization are now appearing [7]–[11], 

and the so‐called terahertz gap has emerged as a subject of great attention thanks 

to its unique properties.  

 

 
 

Figure 1.1: Electromagnetic spectrum. 
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Most of the already established THz designs and systems are typically based on 

heavy bench-top instruments that have bulky size and high cost. Therefore, the 

major direction of terahertz research and its apparatuses has recently focused 

towards new concepts and new technologies for implementing both electronic 

circuits and electromagnetic designs, that are capable of operating at specific bands 

of this radiation providing high speed and being compact in size and power [12].  

 

Terahertz technology is rapidly growing and extending the boundaries of 

electromagnetic research for the optics and photonics communities. The recent 

research was devoted to the development of terahertz sensors and detectors [13]–

[15]. THz radiation has many interesting and peculiar properties that mitigate some 

of the disadvantages found in microwave and x-ray regions. By exploiting these 

properties, the THz technology holds promise for unique and revolutionary 

applications. In the next sections, some of the fundamental properties of THz 

radiation are outlined, and their major fields of applications are reviewed. 

 

1.2 THz Radiation Properties  

Terahertz radiation has several specific properties, with respect to other portions of 

the electromagnetic spectrum, and some of them are listed here below, to motivate 

some perspectives for the consequent application section of this chapter:   

 
 
1.2.1 Non-ionizing   

Non-ionizing means that, in the considered wavelengths, the photon energy is low 

and not sufficient to free electrons from atoms during irradiation. Electromagnetic 

waves with shorter wavelengths such as ultraviolet, x-rays, and gamma rays are  

ionizing radiation, whereas longer wavelength radiation such as visible, infrared, 

microwaves, terahertz, and radio waves are non-ionizing (See Figure 1.1). Non-

ionizing radiation is preferred for bio-medical imaging applications since the waves 

will not harmfully interfere with human DNA molecules and will not damage living 

tissue. At 1 THz, the photon energies are estimated to be of the orders from 0.4 meV 

up to 41.3 meV, as opposite to MeV levels at x-rays and therefore terahertz imaging 

can be considered as more safer technology to be used in biomedical applications 

[16].  
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1.2.2 Penetration  

One of the key advantages of terahertz radiation is that it can penetrate through a 

wide variety of non-polar and non-conducting (non-metallic) materials, including 

plastics, paper, cardboard, clothing, etc.[17]–[19] due to the low water content, 

particularly at frequencies below 1 THz. Therefore, terahertz radiation could be used 

in imaging of concealed threats inside packages or under clothes, for security of 

sensitive buildings such as airports and stations. Despite that, terahertz radiation is 

still at an early stage of development and cannot replace the existing x-ray and mm-

wave imaging systems, since they offer superior performance with higher penetration 

depth. 

 

 
Figure 1.2: Simple scheme of imaging system. 

 
1.2.3 High Resolution 

A typical imaging system is composed of an optical system (lens, mirror, etc.) and a 

focal plane imager (e.g. an array of detectors) as visible in Figure 1.2. Assume that 

the optical system has a diameter D and a focal length fL while the scene is at a 

distance L far from the optics.  

 

The optics forms the image ab at the image plane of an object AB in the scene. If the 

distance  L > fL , the image plane is very close to the focal plane, i.e. fL  ≈ 1, the 

difference of incoming angle, for rays emitted respectively by points A and B, is 

 

 α =
AB

L
                                                       (1.1) 
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The resolution of an optical system can be evaluated by Rayleigh criterion. By 

considering diffraction through a circular aperture, the minimum angle resolution 

beyond which the image is hardly resolved is given by: 
 

  αmin  = 1.22 ×
λ

D
                                             (1.2) 

 

Where λ is the wavelength, and D is the diameter of the lens aperture. Assuming 

that the image object is at a certain distance from the detector, the size of the image 

is given as 𝑎𝑏 ≈ 𝜃 ×  fL. Therefore the minimum distance between two resolved 

image points a and b is: 

 

  abmin  = 1.22 ×
λ

D
×  fL                                           (1.3) 

 

This spatial resolution has some constrains on pixel pitch. It can be seen that the 

pixel pitch should be at least equal to the spatial resolution because even if it is 

smaller, the resolution of the image acquired by the detector is not better than the 

physical limit. The diameter and focal length of the optical system is related to its f-

number (f#) by the expression:  

f# =
fL

D
                                                   (1.4) 

 

Accordingly, the spatial resolution can be revised as: 

 

  abmin  = 1.22 × λ ×  f#                               (1.5) 

 

The existing optical systems for millimeter wave operate at about 30 GHz and can 

achieve around 1 mm of spatial resolution at path distances less than 1 m. By 

moving towards the terahertz domain, not only is the resolution improved, but also 

the aperture required for the system can be smaller. The typical benchmark value of 

f-number is 1, which is also a reasonable lower limit; below this value some other 

phenomena such as aberration can reduce the image quality. Hence one can see 

that, in the best condition (f# = 1), the typical spatial resolution is 122 µm at 3 THz 

(λ = 100 µm ), 366 µm at 1 THz (λ = 300 µm), and turn into 1.220 mm at 300 GHz 

(λ = 1 mm) [12]. This leads to more compact imaging systems in the terahertz 

domain with respect to mm-waves. On the other hand x-ray systems have much 

better resolution with a much shorter wavelength (e.g. higher frequency). Thus, 

there’s always a trade-off between x-ray and T-rays in terms of resolution and 

penetration of the radiation, and also the ionizing energy specifications.  



27 

 

Figure 1.3: Atmospheric attenuation of the THz and IR spectrum.  Adapted from [20]. 

1.2.4 Atmospheric Effects 

Terahertz radiation suffers a severe atmospheric attenuation caused mostly by the 

molecules of water and different particles. Conditions such as fog or dust cause a 

strong attenuation and, as a result, it is impossible to perform measurements across 

wide transmission windows for broadband applications, since the attenuation varies 

with the signal frequency. Previous studies reported that propagation of radiation 

over a distance more than 100 meters is almost impossible for frequencies from 1 

THz up to 10 THz, even with a petaWatt of power [20]. Figure 1.3 displays a 

comparison of the absorption coefficient of millimeter waves, THz, and IR waves at 

sea level for different weather conditions. Under fog conditions, the THz absorption 

near 240 GHz is around 8 dB/km. It is visible, above this frequency value and below 

10 THz, the attenuation is mainly caused by atmospheric water vapor, with 

attenuation due to rain and fog that have a heavy impact and can reach values 

greater than 300 dB/km. It should be noted that the valleys between the peaks of 

curves define the transmission windows of the atmosphere that should be used in an 

imaging system to mitigate the propagation losses of the THz waves. Therefore, the 

THz imaging is more desirable at low frequency than at high frequency in respect to 

the signal losses caused by the atmospheric attenuation. 

 



28 

1.2.5 Healthy-Safe Technology 

Originally, terahertz radiation has been considered as a completely safe radiation 

because of its non-ionizing waves. However, this could not be truthfully the case, 

since it’s a relatively recent topic of research and not yet completely verified against 

prolonged exposure. Therefore, further investigations are required to define all of the 

effects and resulting limitations in exposure, particularly with high power levels of 

THz sources [21].  

 

1.3 THz Applications 

Over the past few years, terahertz technology has shown a great progress. Many 

new advances in the realization of THz sources and detectors [22], [23] have 

potentially opened up a wide range of applications, including explosive and 

concealed threads detection, biomedical imaging, non-destructive testing, quality 

control, and wireless communication systems [7]. Here, we briefly give an overview, 

describing the capability of THz technology in those fields.  

 

 

Figure 1.4: Samples THz images of different concealed objects obtained by a security 
screening system. Adapted from [24]. 

 

1.3.1 Security & Defence  

THz technology can be utilized in security and military applications in a similar 

fashion as x-ray screening, thanks to its ability to penetrate clothing and non-metallic 

materials, and its high resolution. Airport gates and important buildings are good 

examples of where terahertz security screening systems could be employed, 

potentially detecting chemical and biological objects in a passenger's luggage or 

concealed by a person [25]. Figure 1.4 shows different images of concealed 

weapons obtained with a THz screening system.  
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Figure 1.5: Samples of visible and THz images of tissue diagnosis of human skin using a 
TeraView system.  Adapted from [26]. 

 

1.3.2 Biology and Medicine  

Biological and medical imaging is also one of the leading drivers of terahertz 

technologies today [8], [27]. The key benefits arise from the non-ionizing nature of 

the terahertz radiation making it a safe technology. Terahertz imaging has been 

applied in analysing breast-tumours, cancer diagnosis in skin, liver and colon, in 

addition to monitoring of biological tissue and healing of wounds. Figure 1.5 shows 

samples of visible and THz images of tissue diagnosis of human skin using a 

TeraView system [26]. 

 

1.3.3 Terahertz Spectroscopy 

The principle of Terahertz Spectroscopy is based on the interaction between 

electromagnetic radiations and a matter [28]. It allows, within one single experiment, 

the determination of the opto-electrical properties of different materials over a wide 

frequency spectrum ranging from 100 GHz up to several THz [29]. This information 

can yield insight into material characteristics for a wide range of applications [8], [9]. 

Many different methods exist for performing THz spectroscopy such as: Fourier 

transform spectroscopy (FTS) and narrowband spectroscopy are perhaps the most 

common technique and widely used in passive systems for monitoring thermal-

emission lines of molecules, particularly in astronomy applications [30], [31] . A more 

recent technique is named THz time domain spectroscopy (THz-TDS) [32]. THz-TDS 

uses short electromagnetic waveforms produced by rectifying femtosecond optical 

pulses, which are typically produced using ultrafast lasers. Beside THz spectroscopy, 
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there are many other spectroscopic techniques such as near infrared, Raman, 

gamma, x-ray spectroscopy [33]. 

1.3.4 Quality Control and Non-Destructive Material Testing 

Another important application of terahertz systems is quality control and non-

destructive testing [10], [34]. Terahertz systems can potentially be utilized for 

inspections of manufacturing, fabrication process to guarantee product integrity and 

reliability to preserve a uniform quality level [35]. Terahertz imaging has the potential 

to detect component failures in semiconductors, plastics, or other material’s 

manufacturing that would not be otherwise noticeable. Furthermore, it is possibly 

feasible to characterise the properties, composition and impurities of substances, 

overcoming the physical limitations and subjective judgement of humans.    

 

 

Figure 1.6: The current communication systems for human spaceflight missions at S-band (2-4 
GHz Ku (12-18 GHz), and Ka (26-40 GHz). Adapted from [36]. 

1.3.5 Communications 

Nowadays, there are growing demands of using THz technology for wireless 

communications [37], as the communication over THz carrier frequencies consent 

overcoming the issues related to the lack of the available spectrum and can 

potentially provide wider bandwidth (higher bitrates) with respect to lower 

frequencies, and offering advantages over optical communication in satellite ground 

link [13], [38]. However the challenge arises from the fact that THz radiation normally 

has low power and suffer from high water absorption and other atmospheric effects, 

therefore it get severely attenuated over long distances. 
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Space-based communications is another application for terahertz, since in a space 

environment the atmospheric attenuation is not present [39]. The wider bandwidth of 

a terahertz link could enable a higher bitrate between systems. Terahertz wireless 

system gives the possibility to realize multi-gigabit throughput by fitting multiple GHz 

channel bandwidth with reduced complexity system design and simple modulation 

schemes compared to traditional spacecraft S-band, Ku-band, and Ka-band systems 

(Figure 1.6).     

 

1.4 Contributions of This Thesis 

The main focus of this research is the development and characterization of CMOS-

based terahertz imaging systems. CMOS standard technology was adopted for the 

implementation of different building blocks of the imaging focal plane arrays of 

different chips such as antennas, detectors, readout circuits, thanks to its low cost, 

scalability, commercial reliability, compact packaging, and low noise equivalent 

power (NEP) that suit well the requirements of terahertz detection systems.  

 

In an attempt to improve the terahertz detection behaviour in terms of responsivity 

and NEP, geometrically enhanced FET-based detector structures are introduced. 

The FET detector geometry and its parasitics play an important role on the power 

coupling efficiency and the detector-antenna impedance matching conditions:  

therefore, these FETs are integrated with several antennas operating at low 

frequency range (325 - 375 GHz) as well as at the high frequency range (800 GHz - 

1 THz), and are characterized in the same conditions for comparison.  The design of 

optimized antenna-coupled FET detectors was part of previous projects, while the 

THz characterizations and testing have been performed during this thesis project. 

 

The second chip contains a standalone readout chain having a size compatible with 

the pixel available area, integrated with a FET-based THz detector operating in the 

frequency range of 325 - 375 GHz, to process the detected signals. The 

implemented readout circuit contains a cascade of a preamplification and noise 

reduction stages based on a parametric chopper amplifier and a direct analog-to-

digital conversion (ADC) by means of an incremental ΣΔ converter, performing a 

lock-in operation with modulated sources.  

 

Then, the last chip contains 10 x 10 THz imager where each THz pixel is composed 

of an on-chip antenna-coupled FET detector and a low noise readout circuit. 

Moreover, visible pixels have been realized underneath the on-chip THz antennas 

for the objective of realizing a multispectral imaging system. Each visible pixel 
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includes a photodiode and reset, select and source follower transistors, implemented 

in 50 x 50 pixel array. Then, the visible pixels are readout by means of a column 

level correlated double sampler and followed by an output buffer for processing the 

signals. The main objective of the proposed imager architecture is to provide 

simultaneous signal integration and acquisition of the entire pixel array, so as to 

improve sensitivity, resolution or speed, and so to bring a further progress towards 

high-performance terahertz imagers.  

 

1.5 Organization of This Thesis 

The thesis is organized as follows: Chapter 2 presents an overview of the state of 

the art of terahertz sources and detectors that have been developed in literature over 

the past years, describing their generation/detection capabilities and their 

drawbacks. In particular, we emphasize FET-based detectors, as realized in this 

work. Then, the conventional terahertz performance parameters are explained in 

more detail. 

 

In Chapter 3, the design challenges of the realization of terahertz imaging systems in 

CMOS technology are discussed. Then, the chapter discusses the FET detection 

principles that are presented in literatures including plasma wave theory and 

distributed resistive self-mixing principles. Next, the analysis and design description 

of optimized detector structures are presented. Afterwards, the chip implementation 

and characterization and imaging setups along with the measurements and imaging 

results are discussed.  

 

Chapter 4 presents the system-level design considerations, followed by the principle 

of operation, circuit analysis and simulation results of the low noise readout chain. 

Then, the implementation of the terahertz pixel structure is explained. The electrical 

characterization and terahertz measurements of the readout chain are then 

discussed and validated the pixel performance. 

  

In chapter 5, the design and implementation of a multispectral imager containing 10 

x 10 THz pixels as well as 50 x 50 visible pixels is presented. The theoretical 

analysis, simulations and characterizations of the imager architecture are also 

presented in this chapter. Moreover, the physical implementation, fabrication and 

electrical testing preparation are discussed.  

 

Lastly, chapter 6 presents the conclusions and the discussion of future perspective 

of this work. 
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2  
 

Terahertz Generation and Detection 
(State-of-The-Art) 

 

 

This chapter reviews techniques and systems of different types of terahertz sources 

and detectors, realized in various technologies with their state of the art 

performance. It gives an overview about basic concepts of operation and principles 

to provide fundamental understanding of terahertz imaging systems. This chapter 

also describes detection performance parameters for terahertz detectors. 

 

2.1 THz Sources  

Although THz band locates between infrared and microwave regions, none of the 

signal generators in these two bands can simply be adapted for generation of THz 

signals. The difficulty of realizing electronic THz sources with adequately high power 

is due to the present limitations in conventional solid state electronic and 

semiconductor devices. These basic building blocks are limited by reactive 

parasitics, transit times that cause high-frequency roll-off or resistive losses that 

control the device impedances at these wavelengths [40], [41].  Other issues such as 

blocking, and heat dissipation significantly degrade the performance at high 

frequencies near 1 THz. In this section, we briefly discuss the physical principles of 

the widely used THz sources.    

 

2.1.1 Free Electron Laser Based Sources (FEL) 

Free electron lasers (FELs) have been known as light sources since 1960s: they can 

operate without the use of an active laser medium except free electrons [42]–[44]. 

Technically, this makes them able to operate in any preferred wavelength range. 

Their operation principle is based on the acceleration of the free electrons in vacuum 

to a relativistic speed, and then decelerating these high speed electrons by moving 

them through a magnetic structure such that they start to lose their energy which is 

eventually converted into light. FELs sources show several advantages such as high 

intensity and high power, easy tunability. FELs have shown their capability to the 

applications such as spectroscopy, imaging, and material analysis.  
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2.1.2 Backward-wave Oscillator (BWO) 

Backward wave oscillator (BWO) is a slow wave device, which operates based on 

the interaction between an electron beam and a backward wave in the spatial 

harmonics of a slow-wave structure [45]–[47]. BWO is considered to be a very 

promising THz radiation source for many applications providing power levels in the 

range of 1 - 100 mW with compact size, very reliable and can generate a CW signals 

in the frequency range of 0.1–1.5 THz [48]. The main drawback of BWO is that it 

requires an accelerating potential in the range 1 to 10 kV and an axial magnetic field 

of about 1 T to achieve higher output power levels in the THz range.  

 
2.1.3 Gunn, IMPATT and TUNNEL diodes 

Gunn, IMPATT and TUNNEL diodes have been developed by several research 

groups [49], [50]. They can be potentially used as an oscillator or amplifier in 

applications that require relatively low-power radio frequency (RF) signals, such as 

proximity sensors and wireless local area networks (LAN). These diodes have a 

potential for compact and coherent terahertz sources operating at room temperature 

and can generate a CW average power in the range of 0.1 - 1 mW around 400 GHz 

through frequency multiplication with two or more diodes.  

 

2.1.4 Frequency Multipliers  

Frequency multipliers are principally realized to shift sub-terahertz electronic 

oscillations into the terahertz range [51], where the fundamental RF frequency is 

passed through a cascaded chain of doubler and triplers to reach the desired 

frequency [52]–[54]. Most of frequency multipliers are balanced designs 

implemented with monolithic circuits mounted in split waveguide blocks, offering 

many advantages for generating terahertz waves such as high output power and 

efficiency, low noise, electronic tuning and compact design. Yet, still, there is 

considerable research work required for developing sources above 1 THz that have 

high signal quality and electronic frequency tuning. 

 
2.1.5 Optically Pumped Lasers (OPTL) 

A carbon dioxide pump laser can generate several frequencies ranging from 300 

GHz to 10 THz [55], [56], providing tens of milliwatts output power (typically 100 

mW). However, they work at discrete frequencies, are bulky and require several tens 

of watts of DC power. Accordingly, they are mainly limited to ground-based 

applications where size and power are not matters. Despite the limited power, OPTL 
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are commercially available by several companies such as Coherent Inc. and 

Edinburgh Inst.  

 
2.1.6 Quantum Cascade Lasers (QCLs) 

Quantum cascade lasers (QCL) are semiconductor laser sources for operating 

wavelengths ranging from a few micrometers (μm) to well above 10 μm and into the 

terahertz region. QCLs are designed such that the laser transitions are not between 

different electronic bands (valence and conduction) but on inter-sub-band transitions 

of the semiconductor structure. Those devices are designed to have a super-lattice 

such that the probability of electrons are in varying energy locations that results in 

splitting of a band into multiple permitted energies. 

 

QCLs are realized in a compact size and provide mW output power range and able 

to work in CW mode down to frequencies as low as 1.2 THz [57]–[59]. However, 

QCLs have no real frequency tunability (temperature variation causes a shift of few 

ppm) and need cryogenic cooling for maximizing the output power.      

 
2.1.7 Photomixers 

THz photomixers consists of the combination by heterodyning of two independent 

tunable laser sources having frequency difference in a desired terahertz region [60], 

[61]. The photoconductive antenna is the heart of photomixers [62], [63]. The 

photoconductive antenna (PA) simply contains an electrical dipole on a high-mobility 

semiconductor, fast enough to generate carriers in time with the beat frequency (e.g. 

in order of picoseconds). Photomixers have many advantages such as operating in 

CW mode, and being tunable; however, their output power in the 1 - 2 THz range is 

at least of one order of magnitude lower than the power produced by room 

temperature frequency multipliers.  

 

 

2.2 THz Detectors  

THz detectors are mainly based on three different physical principles, for example: 

photodetection, thermal power detection, rectification [21]. At first, THz detectors can 

be classified into incoherent (direct) and coherent (heterodyne) detectors [64], [65]. 

In incoherent detectors, only the signal intensity can be detected, whereas in 

coherent detectors both the signal amplitude and phase are measured. Coherent 

detectors provide a better noise performance by using heterodyning techniques[66], 
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[67]: the down-conversion of THz radiation is performed by mixing with a local 

oscillation. Coherent detectors show good performance in terms of sensitivity and 

responsivity, which makes these devices useful for spectroscopy applications [68]. 

On the other hand, direct THz detectors directly convert impinging THz radiation into 

a baseband signal without any local oscillator. They typically provide modest 

sensitivity and are well adequate for active imaging applications that require 

moderate spectral resolution. An overview of the widely used THz direct detectors is 

presented below. 

2.2.1 Golay Cell  

The Golay cell is a type of thermal THz detector that was originally developed for IR 

detection, it was first proposed by Marcel Golay in the 1940s [69], [70]. 

Fundamentally, as visible in Figure 2.1, it is composed of a gas chamber, an IR/THz 

absorbing film and a flexible membrane [71]–[73]. The incident radiation on the 

cavity is absorbed and converted to heat, which causes the gas to expand, resulting 

in a deformation in the reflective membrane.  

 

 

Figure 2.1: Cross-section and top view of Golay cell. adapted from [74]. 

 

This action can then be measured using optical, capacitive, or tunneling 

displacement transducers. Golay cells are normally fabricated as macroscopic 

devices, with apertures on the order of few mm in diameter and a device form factor 

on the scale of 10s of cm  [75]. These detectors can operate in the spectral range 

between 20 GHz to 20 THz.  
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2.2.2 Pyroelectric Devices 

Pyroelectric detectors are one of the most widely used thermal detectors for THz 

radiation, thanks to their high sensitivity, compactness and wide apertures for 

collecting the majority of power [76], [77]. These detectors contain a thin pyroelectric 

film that act as a capacitor such that its capacitance value changes (e.g. since their 

dielectric constant change) with respect to the temperature changes due to the 

incident THz radiation on the pyrolectric device.  

 

Therefore, by measuring the change of the current due to charging and discharging 

of this capacitor, an estimated value of the incident power can be determined. 

Pyroelectric detectors are sensitive only to heat (not wavelength), and therefore they 

require a window material for wavelength selection. Pyroelectric detectors have the 

advantages of being small, portable, exhibit a broad spectral response and they are 

less expensive than Golay cells.  

 

2.2.3 Kinetic Inductance and Superconducting Detectors 

Kinetic inductance and superconducting detectors are playing an increasingly 

important role in astronomy and biology [78], [79]. They can provide outstanding 

sensitivity at cryogenic temperatures, operating in the frequency range of 1 - 2 THz. 

However, there is still lack of accurate theoretical modeling which explains the 

complex mechanism of different aspects of such detectors; but this does not prevent 

researchers around the world from making experimental progress. 

 

2.2.4 Bolometers 

The micromachined bolometers are radiant-heat detectors [71], [72], which have 

been widely used to detect wavelengths in the THz and IR bands. Bolometers are 

composed of a temperature sensitive element that measures the increase of 

temperature due to the incident electromagnetic power by detecting an electric 

response (e.g. resistance change) [82], [83]. The sensing material that is utilized for 

the bolometer has a large impact on the sensitivity of the detector. They are 

implemented in a suspended bridge configuration for better thermal isolation with an 

absorber made by a thin film semiconductor as visible in Figure 2.2. Their response 

can be optimized through vacuum-packaging in order to cancel the losses caused by 

air convection. 
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Figure 2.2: Schematic of a simple bolometer. 

 

High performance bolometers need a temperature dependent material possessing a 

large temperature coefficient of resistance (TCR), low noise, and moderate 

resistance for reducing the mismatch with readout electronics input impedance. 

Bolometers can successfully be integrated with a CMOS process technology through 

a specialized process such as micromachining or above-IC wafer processing, and 

therefore, it gives the possibility to implement FPAs with their respective readout 

circuit [84]–[86].However, their main limitation is the high final cost, that includes 

vacuum packaging. 
 

   
Figure 2.3: Rectification behaviour of SBD coupled with an incident RF wave at zero bias. 
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2.2.5 Schottkey Barrier Diodes (SBDs) 

The Schottky barrier diodes (SBDs) are semiconductor–metal junction diodes [87]–

[91]. In principle, as any kind of diode, their detection capability is based on the 

strong nonlinear current–voltage characteristics as shown in Figure 2.3; the main 

characteristics of SBDs with respect to the semiconductor junctions is the speed, so 

they can rectify up to THz radiation. Recently, Poly-Gate-Separated (PGS) SBDs 

were reported with measured cutoff frequency of 860 GHz [83]. 

 

 

Figure 2.4: Cross-section and top view of PGS SBD. Adapted from [92]. 

The cross section and top view of the PGS SBD fabricated in a 130-nm digital CMOS 

process are presented in Figure 2.4. The SBDs feature a small junction capacitance 

C and a low resistance R, therefore they have a small RC time constant. This leads 

to fast response with a wide-bandwidth operation for THz rectification at room 

temperature. This requires devices that are small (< 1μm x•1μm). Furthermore, for 

more practical applications in THz imaging and sensing, to achieve a significantly 

adequate resolution, a large array (100 × 100 elements may be required) of 

detectors coupled with on-chip antenna elements is required. In most instances, a 

major area is occupied by the antenna element on the wafer. 
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2.2.6 Field Effect Transistors (FETs) 

Field-effect transistors (FET) have been exploited as direct detectors of THz 

radiation, thanks to CMOS technology which offers the benefit of a standard 

fabrication process with a high volume and the possibility of integration with readout 

electronics, which is required for future large sensor arrays and terahertz (THz) 

imaging systems. FET detector modeling is originally explained by the so-called 

resistive mixer principle [93]–[98]. The incident radiation by the antenna is coupled 

simultaneously to the gate and, through a gate-to-channel shunt capacitance, to the 

drain terminal of the FET. Therefore, it generates a DC voltage, which is proportional 

to the incident radiation power.  

 

This phenomenon can be also explained by the plasma-wave rectification theory 

proposed by Dyakonov and Shur [6], [100], as the FET  channel can be considered 

as a 2-D electron gas (2-DEG) with a hydrodynamic behavior similar to shallow 

water, providing an effective power detection mechanism thanks to the nonlinear 

characteristics of the FET. With the incident THz radiation, electron plasma waves 

are excited in the transistor channel propagating with frequencies in the THz range 

for short channel devices, and a voltage drop between the source and drain 

terminals is induced. So far numerous configurations of FET detectors have been 

developed, exhibiting good detection response and modest sensitivity at THz 

frequency range  [90]–[93]. Besides, grating-gate FET detectors ensure efficient 

coupling with incoming terahertz radiation due to the interdigitated metal gates. 

Hence they can provide much high responsivity than the standard FET detectors at 

cryogenic temperatures [105]. 

  

2.2.7 Graphene-Based FET Detectors (GFET) 

There is growing interest in utilizing graphene to implement FET detectors due to its 

excellent electrical and mechanical properties [106]–[108], because of high intrinsic 

carrier mobility and high carrier saturation velocity which open the possibility to 

increase the operation frequency of the standard FET device in the THz range. 

GFET operates as a typical FET detector according to the distributed resistive self-

mixing principle and it has a potential of increased sensitivity at room temperature 

operation. 
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2.3 THz Detection performance Parameters 

 

2.3.1 Responsivity (R)   

THz detectors are basically characterized in terms of their responsivity (R) and their 

noise equivalent power (NEP) that are evaluated with respect to the intensity of the 

incident THz radiation. The responsivity evaluates the detector efficiency of 

converting the impinging power into an electrical signal. It is defined as the voltage 

(Vdet) or current (Idet) generated by a detector, normalized by the incident power 

(Pin). It can be expressed as Eq. 2.2 for the voltage mode and as Eq. 2.3, for the 

current mode, depending on which quantity is produced by the detector and the 

employed readout technique. Therefore responsivity units are expressed in Volts per 

Watt or Amperes per Watt.  

 

RV =
Vdet

Pin
                                                      (2.2) 

 

 

RI =
Idet

Pin
                                                      (2.3) 

 

2.3.2 Noise Equivalent Power (NEP) 

The noise equivalent power, which measures the detector sensitivity, denotes the 

minimum detectable incident power in the system bandwidth. It is defined as the 

root-mean squared (RMS) voltage (Vn) or current (In) intrinsic noise generated by 

the detector in the system bandwidth divided by the voltage (RV) or the current 

responsivity (RI). The NEP is given by Eq. 2.4 for the voltage mode and by Eq. 2.5 

for the current mode operation. 

 

 

NEPV =
Vn

RV
                                                        (2.4) 

 

 

NEPI =
In

RI
                                                        (2.5) 
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2.3.3 Detectivity (D*) 

D∗ represents the sensitivity per unit active area of a detector, which makes it easier 

to compare the characteristics of different detectors. In many detectors, NEP is 

proportional to the square root of the detector active area, so D∗ is expressed by the 

following equation:  

 

D∗ =
√Adet B 

NEP
                                                (2.6) 

 

𝐷∗ was originally proposed for quantum detectors, in which the noise power is 

always proportional to the detector sensitive area Adet  and noise signal (Vn or In) is 

proportional to the square root of the area, where B is the system bandwidth. Thus, a 

larger value of D∗ indicates a better detection behaviour. The detectivity is given 

as  cm √Hz/W.  

2.3.4 Noise Equivalent Temperature Difference (NETD) 

An essential performance parameter for thermal detectors is the noise equivalent 

temperature difference (NETD) that represents the minimum detectable temperature 

difference (thermal resolution) over the system bandwidth. It is a figure of merit 

related not only to the sensor but also depends on the employed optics. NETD also 

relates to the NEP as it is stated in [109]  and it is given by: 

 

NETD =
NEP
∂Pd

∂T

× √B ×  
1 + 4f#

2

Adet 
                           (2.7) 

 

where Pd is the power density emitted as blackbody radiation, T is the blackbody 

temperature, f# is the focal ratio of the optics and depends on the ability of the lens 

to collect light, given by Eq. 1.4 in the previous chapter.  

  

2.4 Chapter Summary   

This chapter presented the state of the art review of THz sources and detectors 

realized in different technologies. In order to build an active imaging system, a 

combination between source and detector is required, where the detection 

performance can be less demanding by using a powerful source. The operation 

principles of the widely used THz sources are described and their pros and cons in 
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terms of performance, area and power are discussed. Moreover, the structure of 

each terahertz detector is described. In addition, some important figures of merits of 

the detectors are given. Table 2.1 provides a performance comparison of the state of 

the art THz detectors in terms of their operation frequency, speed, responsivity and 

noise equivalent power.  

 

Table 2.1: Terahertz detectors performance comparison. 

THz 

detector 

Response 

speed 

Frequency 

[THz] 

Responsivity 

[kV/W] 

NEP

 [𝐩𝐖 √𝐇𝐳] 

 

Golay cell 

 

 

Slow (50 ms) 

 

0.04 – 30 

 

10 – 100 

 

140 

 

Pyroelectric 

detector 

 

Slow (100 ms) 

 

0.1 – 30 

 

 

20 –  400 

 

1000 

 

Bolometer 

 

 

Moderate 

(1 ms) 

 

0.1 – 30 

 

100 – 1000 

 

0.1 

 

SBDs 

 

 

Fast (20 ps) 

 

0.1 – 10 

 

1 

 

1 –  50 

 

FET 

 

 

Fast 

 

0.1 – 8 

 

0.1 – 0.4 

 

10 – 100 

 

GFET 

 

 

Fast 

 

0.1 – 3 

 

0.05 – 0.1 

 

500 – 900 
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3  
 

On-Chip Terahertz Design Challenges 
and Detection Optimization 

 

 

This chapter present the main design considerations and integration challenges of 

terahertz imaging systems based on CMOS process technology. Mainly, it focuses 

on the design of antenna-coupled FET detectors, explaining the detection principles 

in more details. Then, it describes detector’s design methodology, while being 

compliant with process design rules imposed by the CMOS technology. Several FET 

detectors are implemented with the aim of enhancing the detection sensitivity. The 

first fabricated chip is described; in addition the characterization setups along with 

the measurements results are discussed.  

 

3.1 Design Considerations in THz Detectors  

Despite most of the previously addressed THz detectors exhibit high sensitivity, they 

are based on non-standard process technologies, which make it difficult to integrate 

such detectors with signal processing circuits on a single chip. Some also require 

specialized process steps, leading to complex fabrication processes. In addition, 

some of them require cooling systems to maintain the cryogenic temperatures in 

order to reduce the noise present in the device and detector circuit, which makes 

them bulky, heavy and power hungry.  

 

On the other hand, CMOS technology is the leading technology that can overcome 

the abovementioned limitations. In recent years, significant progress has been 

demonstrated with regard to CMOS based THz detectors. The advantages of CMOS 

technology include a standardized fabrication process, low-cost, low-power, high 

yield, and easy integration, simple digital interface, high speed, miniaturization, and 

smartness via on-chip CMOS processing circuits.   

 
In the previous chapter, among direct detectors, only SBDs and FETs have been 

implemented in literature using CMOS process technologies. Therefore, the scope of 

this work will be focused on CMOS based THz detectors and imagers. In particular, 

we are more interested in studying THz radiation detection by means of an antenna-

coupled FET based THz detectors, since they are not limited by their cut-off 



47 

frequency, as in SBDs, due to the plasmonic behavior that takes place inside the 

transistor’s channel enabling the THz detection. However, there are still many 

challenges to be addressed with this approach, mainly related to the detected 

signals characteristics. In the following paragraphs, these issues will be discussed. 

 

3.1.1 On-chip Terahertz Antenna 

The main bottlenecks of on-chip antenna are poor radiation efficiency and low gain 

[110]–[112]. In typical CMOS process technology, the antenna can be built using thin 

metal layers above a low resistivity silicon substrate (~1–10 Ω∙cm, εr = 11.7), 

resulting in the majority of impinging power being coupled in the substrate, which 

limits the performance of antennas. Additionally the implementation of the antenna-

coupled FET detector needs to meet the design density rules of the standard CMOS 

process technology, and the dimensions of the antenna are directly proportional to 

the wavelength of the radiation frequency. 

 

3.1.2 Power Coupling Efficiency 

The antenna impedance matching is challenging at terahertz frequency range since 

the parasitic elements have significant impacts on the impedance values [113], [114]. 

For maximum power transfer, the FET input impedance and the antenna impedance 

have to be conjugate match. According to [115], the FET responsivity (RV, V/W) is 

highly dependent on the proper matching between the antenna impedance (ZANT) 

and FET input impedance (ZFET), as expressed by: 

 

RV = [4εradRe(ZANT) |
ZFET

ZFET + ZANT
|

2

] ∙
1

4(Vgs − Vth)
                (3.1) 

Here, εrad is the radiation efficiency, Vgs is the gate-to-source bias voltage and 

Vth is the transistor’s threshold voltage. FET input impedance ZFET is typically 

based on a combination of parasitic shunt capacitances and series resistances [108], 

as described by:  

 

ZFET = √
Rds

j ω W L Cox
//  

1

j ω W L Cgs
                               (3.2) 

 

where, W, L are the device dimensions, ω is the frequency, Cox is the gate-to-

channel capacitance, and Cgs is the total gate-to-source capacitance. It can be noted 
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that the impedance has a capacitive behavior. The use of matching techniques is 

extremely challenging at frequency near 1 THz due to the high losses of the 

aluminum metal layers that form the antenna structure. Given that also the FET 

impedance is frequency dependent, in order to achieve a proper impedance 

matching, the antenna operating frequency can be tuned where it can achieve an 

inductive part that conjugate-matches the capacitive part of the FET detector. 

3.1.3 Signal/Noise Level Considerations 

The higher signal-to-noise ratio (SNR) at the detector’s output, the better image 

quality can be achieved. The SNR is typically determined by many factors such as: 

the output signal intensity of the detector, electronic and environmental noise, and 

the detector sensitivity. Within FBK’s THz experimental setup, typically the FET 

detector’s signal intensity is of the order a few microvolts with a limited bandwidth, 

since the frame rate goes from several tens of Hz to a few kHz in the case of THz 

imaging applications. With this signal characteristic, the low-frequency flicker noise 

severely influences the FET detector sensitivity and therefore degrades the SNR of 

the imaging system. All these issues make the accurate measurements of FET 

detector response extremely challenging. 

  
3.1.4 Integrated Readout Design Considerations 

Integrated readout circuits implemented in a noise-efficient way are expected to 

provide a further progress towards a high-performance THz detectors and imagers 

[116], [117]. Readout interfaces can be implemented at pixel level, column-level or 

chip level. In this work we focus on pixel-level readout circuits. However, many 

design constraints have to be considered. First, the readout interface must be 

designed with an input referred noise specification well below the intrinsic noise of 

the FET detector: to do so, the readout circuit should provide simultaneous signal 

integration and noise filtering in order to preserve detection sensitivity [118], while 

being capable to provide enough gain for the weak detected signal [119]. Secondly, 

the readout circuit should use minimum area and power so that it can be scaled to 

large imaging arrays.   

 

3.2 FET THz Detector Model     

The FET-based detection principle can be described by Figure 3.1. A FET-based 

THz detector consists of a MOS field effect transistor acting as a rectifying element 

which can detect the power of terahertz radiation received by the integrated antenna 
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and produces a proportional output DC voltage at the drain terminal. The gate is 

biased with a sub-threshold voltage (VGS) in order to create a weak-inversion layer 

from source to drain. FET detection operation can be explained with plasma wave 

theory or the self-mixing effect. 

 

 
 

Figure 3.1: FET-based detection principle. 

3.2.1 Plasma Wave Theory 

Plasma wave theory was first proposed by Dyakonov and Shur [6], [100] which 

anticipated that a steady current flow in a FET channel can become unstable 

bringing to generation of plasma waves, i.e. oscillations of electron density in space 

and time. The possibility of detection is due to nonlinearities of the plasma waves 

transfer in the transistor, since they can propagate in FET transistors with 

frequencies higher than their intrinsic cut-off frequency.  

 

When the THz radiation approaches to the transistor’s gate, the plasma oscillation 

will be induced near the source and drain terminals in the two-dimensional electron 

gas channel; as a result, a response to the terahertz radiation appears in the form of 

a DC voltage generated between source and drain (VDS), which is proportional to the 

radiation intensity. Typically this happens under certain a gate-to-source bias (VGS).  

 

The FET can operate either in the resonant or non-resonant (over-damped) mode 

depending on the angular frequency of the terahertz waves and the electron 

relaxation time. In case of CMOS based THz detectors, the expected operation 

mode is the non-resonant one due to the low electron mobility of silicon at room 

temperature. The overdrive voltage  VOV is the effective gate-to-channel voltage, 
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which equals to the difference between the gate voltage and the channel depletion 

threshold, given as:  

 
 

 VOV
=  Vg − Vth                                              (3.3) 

 

The detector response ( ΔVDS) can be approximated as [120]: 

 

 ΔVDS =
 VA

2

4VOV
                                                 (3.4) 

 

where  VA is the amplitude of the THz radiation induced voltage between the FET 

terminals.  

  

There are two different configurations of the FET THz detector according to the 

connections between FET and antenna: firstly, source-driven (SD), that can be 

realized by means of two transistors such that the antenna is connected to the 

sources of both transistors while the gates represent an AC ground (the signal 

results eventually applied to gate and source) and the DC signal is obtained at the 

drain terminal, and the second configuration is gate-driven (GD) with the antenna 

connection between the source and gate terminals. The later one has demonstrated 

a higher responsivity due to the lower parasitic shunt capacitance (SD structures 

appear as two devices in parallel). While the first one has shown a broadband 

operation. The second configuration is realized in the designed chips presented in 

this thesis. 
 

 
 

Figure 3.2:  Schematic of FET-based detector.  
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3.2.2 Self-mixing Principle  

The FET THz detection principle has been also explained by the self-mixing theory in 

a more circuit-focused understanding [121]. In this case, the FET device is 

considered as a resistive mixer with a coupling capacitance between gate and drain. 

According to the radiation frequency, the FET detection operation can be described 

by either the quasi-static model or the Non-quasi-static (NQS) model. Both models 

are briefly explained here below:  

 

3.2.2.1 Quasi-Static Model 

 

Quasi-static analysis can be primarily applied at low THz frequencies, where an 

unbiased (cold) FET acts as a square-law power detector that can operate in both 

saturation (active) or in triode (resistive) mode.  

Figure 3.2 shows the schematic of the FET detector described by the resistive mixer 

model. 

 

The resistive mixing can be obtained by an external coupling capacitor between the 

gate and the drain, providing a cross-modulation ( vgs(t) =  vds(t) =

VRF sin(ωt). A dc gate-bias voltage VGS is also provided to control the channel 

resistance. Therefore, the instantaneous value of the gate-to-source voltage is given 

by: 

 

 vGS(t) =  VGS + vgs(t) = VGS  +  VRF sin(ωt)                     (3.6) 

 

Under the cold bias condition, the FET’s drain current  ID is almost negligible, 

therefore, the FET is considered to be operating in the linear region and can be 

modelled as a voltage controlled current source in parallel with the drain-to-source 

channel resistance, thus: 

 

ids(t) = vds(t) × gds(t)                                       (3.7)   

 

Where gds(𝑡) is the FET’s drain-to-source conductance and can be written as: 

 

gds(t) =
W

L
μCox (vgs(t) − Vth −

vds(t)

2
)                      (3.8) 

 
Where 𝑉𝑡ℎ is the threshold voltage, W and L  are the FET’s width and length, μ is 

the mobility and Cox is the oxide capacitance per unit area respectively. Therefore, 
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by substituting Eq. 3.8 into Eq. 3.7, the dc current response, which can be extracted 

by neglecting the high frequency components at the drain terminal, can be calculated 

as: 

 

IDS = μCox

W

L
(

VRF
2

4
)                                             (3.9) 

 

Therefore, the rectified DC output voltage can be written as:  

 

VDS = (
VRF

2

4VOV
)                                             (3.10) 

 

This low-frequency analysis is further generalized by a non-quasi-static description. 

 

 

Figure 3.3: FET-based NQS detection principle. 

3.2.2.2 Non-Quasi-Static (NQS) RC-ladder model 

 

The simple Quasi-static analysis of square-law FET power detector is only valid in 

the low frequency range near RF and microwave frequencies, where the distributed 

nature of the device can be neglected. At higher frequencies, this model 

underestimates the effects of device parasitics and therefore, it has to be replaced 

by a non-quasi-static (NQS) distributed principle, which is also known as distributed 

resistive self-mixing. In this model, both the external gate-to-drain coupling capacitor 

at low frequencies and the non-quasi-static effects at terahertz frequencies are taken 

into consideration. 
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The FET THz detector will be operated above its typical cut-off frequency, where the 

non-quasi-static effects of the device can be considered by dividing the channel into 

segments, where each segment is short enough so that the ordinary quasi-static 

transistor equations can be used, as shown in Figure 3.3. Each segment Δx is 

utilized by a variable conductance gN(v) that is controlled by the gate-to-channel 

voltage v(n) and the segment capacitance equivalent Cn,ox  to the fraction of the 

total gate-to-channel capacitance Cox. Therefore the unit capacitance is given by: 

 

Cn,ox  = W Δx Cox                                          (3.11) 

 

The unit conductance depends on the conductivity “G” which is related to the 

channel length segment Δx and the time t.  

 

gN(v) =
G(v(Δx, t))

Δx
                                         (3.12) 

 

The model can be analyzed as an RC-transmission line, where each segment of the 

RC-ladder resembles a square-law mixer. Therefore, for infinitesimally short 

transistor segments, this leads to a partial differential equation as follows: 

 

∂

∂x
[G(v(x, t) − Vth)

𝜕v(x, t)

∂x
] = CoxW 

∂

∂x
v(x, t)            ( 3.13) 

 

Numerical solutions of Eq. 3.13 reveal strong cross-modulation response near to the 

gate-source contact with an exponential roll-off along the channel. It can be 

observed that each segment of the NQS model resembles the simple self-mixing 

power detector circuit, such that the distributed intrinsic gate-channel capacitance 

Cox does the same impact as the external coupling capacitor Cgd  in the low-

frequency quasi-static situation.  

 

The short channel FETs are expected to achieve better detection performance well 

above the transistor cut-off frequency as described by the distributed resistive self-

mixing principle, since shorter devices achieve higher self-mixing modulation 

efficiency due to lower parasitic capacitances as well as less parasitic resistance 

from the non-modulated part of the channel. FET terahertz detection has been 

described by other several models such as [122] presented a FET model based on 

EKV FET model. Other work presented a SPICE model based on distributed RC 

circuit; however the paper does not address the effect of non-zero drain–source 

current [123]. 
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3.3 Geometrically Enhanced FET-based THz Detectors 

The main advantages of exploiting antenna-coupled FETs as THz power detectors is 

the use of CMOS standard fabrication process, providing a compact solution for the 

implementation of a complete THz imaging systems, in addition to the possibility of 

integrating readout circuits for processing the detected signals. The FET detectors 

can be easily implemented in a pixel array and the detection performance can be 

potentially optimized by changing the device dimensions (W, L), offering more design 

flexibility. 

 

Previous studies attempted to optimize the FET detection response through utilizing 

different technologies and devices, for example using a Silicon lens with back-side 

illumination [124], in order to enhance the detector efficiency. Other research 

realized the FET detector in Silicon-on-isolator (SOI) CMOS technology [125], which 

offers lower parasitics of the detector devices improving the sensitivity, but it has the 

drawbacks of having thinner dielectrics and metals in its back-end, and much 

stringent metal-density rules. This makes difficult to achieve high-efficiency 

antennas, degrading the system performance. So far, little efforts have been 

invested in optimizing the detection behavior with respect to the geometrical 

configuration of the FET detector.  

 

The geometry of FET transistor has a strong impact on the effects of its parasitics. It 

should be noted that the use of deep-submicron FET transistors is expected to 

improve the detection and lower the noise through efficient modulation of the 

channel; however this results in higher intrinsic thermal noise of the device due to 

the higher channel resistance. On the other hand, the use of FET transistor with 

larger dimensions has, indeed, a lower thermal noise contribution; however this has 

an opposite impact on the antenna-FET matching due to larger gate capacitance. 

Therefore, for the sake of preserving good detection behavior for the FET detector, 

while improving the power coupling with the integrated antenna and its impedance-

matching restrictions, two different FET structures called trapezoidal gate FET (Trap) 

and extended source FET (Ext), are implemented in a gate-driven configuration as 

visible in Figure 3.4. In addition, Regular FET (Reg) has been realized for 

performance comparison. The trapezoidal FET is designed with the purpose of 

reducing the channel resistance through expanding the drain access conductance, 

and thus reducing the NEP while keeping a minimum gate-to-source overlap 

capacitance. The extended FET aims to reduce the parasitic capacitance between 

the polysilicon gate and the source metal contact by extending the diffusion of the 

source side further away, hence facilitating higher response. It should be noted that 
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these structures are realized without affecting the antenna-FET impedance matching 

since the transistor width is unchanged at the source contact. 

 

 

Figure 3.4: Layout view of the realized FET detector structures. 

 

3.4 THz On-chip Antenna Implementation 

The structure of the on-chip antenna can significantly affect the performance of the 

FET detector. As a result of the reported challenges of THz antenna design there 

were many CMOS integrated antennas are proposed for THz imaging systems, such 

as bow-tie antennas [126], ring antennas [127], planar dipole antennas [128] and 

patch antennas [129]. In this work we implemented a bow-tie antenna structure due 

to its higher efficiency since the larger width reduces resistance and therefore it has 

smaller losses. Moreover it is easier to satisfy metal coverage rules as the antenna 

area is larger. 

 

Different antennas have been designed to operate in the frequency range of 325–

375 GHz as well as at higher frequencies 850 GHz, 900 GHz and 1 THz. The bow-tie 

antenna is designed according to the methodology described in [130]. Figure 3.5 

describes the antenna structure with the metal stack of the CMOS technology. The 

adopted CMOS process provides six metal layers, with a thick metal option, 

sandwiched between layers of a dielectric with a relative permittivity ( 

ϵr = 4.1 ). The bow-tie antenna is built by top thick metal layer (MT), while the 

bottom layer M1 is utilized as a ground plane in order to shield the substrate and 

avoid the losses caused by the surface waves,    

 

The dielectric height from the ground plane to the bow-tie is approximately 7 μm. 

The remaining layers (M2 – M6) are used as square dummy patches to achieve the 

required metal density in order to meet the process design rules of CMOS 

technology. Furthermore, the top thick metal layer (MT) is compliant with the foundry 

rules without any dummy because of antenna arm structures. 
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Figure 3.5: Design of the differential bow-tie antenna in the adopted 150-nm CMOS 
technology. 

 

The gate and source terminals of the FET detector are directly connected to the 

differential antenna through stacked metal vias with minimum dimensions (0.24 μm),  

also the FET is designed with minimum dimensions (W/L = 0.32 μm/0.15μm) in 

order to reduce the inductance of this connection lines that could affect the FET-

antenna impedance matching. The 300 GHz antenna cell dimensions are 456 x 320 

μm2, while the antenna dimensions are 200 x 200 μm2 for the frequency range 850 

GHz - 1 THz. The 300 GHz antenna was designed as a square cell in a previous 

chip by modifying the dimensions of the ground plane to be 456 x 456 μm2.  

 

The antenna performance has been validated through CST Microwave studio EM 

simulations. In order to transfer the maximum power, the antenna impedance and 

the FET impedance have to be a complex conjugate pair. According the model 

described in [115], the FET impedance is evaluated based on the process 

parameters of the utilized CMOS technology. The antenna impedance (ZANT) 

versus the signal frequency is plotted in Figure 3.6, indicating ZANT = (146 + 497j) Ω 

at a frequency of 325 GHz and hence there is anyway non-optimal antenna-FET 

impedance matching at a certain frequency that gives a peak response at the 

desired frequency range. As is visible in Figure 3.7, the achieved radiation efficiency 

is in the range of 26 – 33% from 325 to 375 GHz with a range of directivity of 4.5 – 

5.1 dBi. In fact, the obtained efficiency is low due to the thin dielectric layer between 

the bow-tie and the ground plane, in addition to the conductor and dielectric losses at 

this frequency range. However, the simulations did not show any side lobes due to 

the surface waves, thanks to the reflector.  
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Figure 3.6: Simulation results of the antenna: antenna impedance in the frequency range of 
325 - 375 GHz. 

 

 

Figure 3.7:  Antenna radiation efficiency and directivity in the range of 325 - 375 GHz. 

 

At higher terahertz frequencies the radiation efficiency is better compared to the 300 

GHz antenna due to the fact that the ground plane is further away in relative terms 

with respect to the signal wavelength, and therefore the response is not canceled out 

by the mirror currents induced in the same ground plane. However, the impedance 

matching with the FET detectors became more challenging. Figure 3.8 shows the 

simulation results of the radiation efficiency, which is around of 58% with peak 

directivity range of 4.2 – 5 dBi over the frequency range of 0.85 – 1.1 THz for three 

different antennas, while Figure 3.9 shows the simulated antenna impedance.  
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Figure 3.8: Simulation of the antenna radiation efficiency and directivity at 850 GHz, 900 GHz, 
and 1 THz. 

 

Figure 3.9: Simulation of the input impedance of three antennas operating at 850 GHz, 900 
GHz, and 1 THz. 

Figure 3.10 shows the chip micrograph of multiple antenna-coupled terahertz 

detectors arranged in a pixel array for both 300 GHz (upper part) and 850 GHz – 1 

THz pixel (lower part) structures with a zoom in the layout design of one of the pixels. 

The proposed detector consists of an NMOS field effect transistor with non-biased 

channel as rectifying element, an integrated on-chip bow-tie antenna, where each 

pixel can be addressed individually. The antennas are only different in the 

dimensions of the bow-tie in order to operate at different radiation frequencies. THz 
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detector structures are realized in LFoundry 0.15-μm standard CMOS technology 

and fulfill all the technological constraints and reliability rules. 

 

 

Figure 3.10: Chip micrograph (inset: terahertz pixel layout). 

 

In this implementation the different antennas are properly sized and optimally 

matched in simulations for each of the selected frequencies to achieve a proper 

coupling with the FET detectors at the corresponding radiation frequencies. In fact, 

we built different high frequency FETs (e.g. 850, 900, 1000 GHz) in order to verify 

that in the whole range a comparable detection performance could be achieved 

similar to  the low frequency detectors (e.g. 300 GHz) implemented in the same die. 
 

3.5 Experiment Quasi-Optical Setup Description 

The THz measurements were performed with two different setups using CW THz 

sources that can cover the low frequency range of 270 – 380 GHz as well as the 

high frequency range of 850 GHz – 1 THz. The THz source is based on a frequency 

multiplier chain driven by a synthesizer (8 – 20 GHz) with a diagonal horn antenna to 

transmit the signal in the free space. The multiplier chain contains several doublers 

and triplers that can be installed to generate a THz signal in the desired frequency 

range. Figure 3.11 shows a picture of the characterization setup.  
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Figure 3.11: Picture of the experimental setup for the THz characterization. 

 

Figure 3.12 shows the configuration of the quasi-optical setup for the THz detectors 

characterization. The FET voltage response is recorded by using a lock-in amplifier 

(AMETEK 7265) with time constant of 200 ms. Typically, the lock-in sensitivity is 

chosen based on the FET signal intensity, which is related to the characteristics of  

emitted THz radiation ( e.g. frequency and power). The THz source and the lock-in 

amplifier are electronically chopped at near 1 kHz by using a function generator, so 

as to reduce the 1/f noise and the dc-offset. The maximum allowed chopping 

frequency is limited to 1 kHz: in this way the low-pass filter given by the lock-in 

amplifier input capacitance and the FET’s RDS do not influence the measurement. A 

user-controlled attenuation (UCA) switch is used for background subtraction. 

Therefore, additionally to the modulation, the data provided by the lock-in amplifier is 

further processed calculating the difference between the FET signal acquired with 

the THz source on and off (completely attenuated output signal). In this way, any 

coupling or interference due to an electromagnetic induction are removed. The 

measurements were performed in normal ambient air at room temperature. 
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Figure 3.12: Block diagram of the THz characterization setup. 

3.5.1 Impinging Input Power  

According to the measurement methodology described in [131], to estimate the 

impinging power on the THz test structure, the voltage response of a calibrated 

reference detector (e.g. pyroelectric device) placed at the same distance from the 

horn antenna is measured. The pyroelectric detector sensitive area was delimitated 

by a pin-hole with 2 mm diameter so as to reduce the radiation reflections effects 

inside the metal cylinder attached at the pyroelectric input.  

 

The pyroelectric power density is evaluated by dividing the measured voltage 

response by its responsivity which is given by the manufacturer. Then, the impinging 

power received by the FET-based THz detector structure could be obtained as the 

power density of the pyroelectric detector multiplied by the antenna effective 

area Aeff, as given by: 

Aeff = D 
λ2

4π
                                                 (3.14) 

 

where D is the antenna directivity, and λ is the wavelength of the THz signal.  
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Figure 3.13: Measured input power of FET detector vs. signal frequency at distance of 6 cm 
from the horn antenna. 

 

The impinging power delivered to the FET detector is estimated as: 

 

PFET = (
VPyro

Rpyro 
) (

Aeff

APyro
)                                          (3.15) 

 

here  APyro, VPyro and  Rpyro are the pyroelectric sensitive area, the measured 

pyroelectric voltage response and its responsivity respectively. By using this method, 

the estimated input power is independent on transmitter specifications. It is 

necessary to consider that the diffraction and reflection effects in the measurement 

setup could result in responsivity and NEP values characterized by minima and 

maxima, which are largely different than the actual detector performance. Therefore, 

these non-realistic values should be removed by smooth averaging of the measured 

data. The measured input power received by the THz detector as a function of signal 

frequency is presented in Figure 3.13, where the resulting averaged curve is also 

shown. The impinging power received by each pixel is around 100 – 200 nW over 

the frequency range of 260 – 370 GHz. Similarly, the impinging power is about 8 – 

35 nW for the frequency range from 850 GHz to 1 THz.  
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3.5.2 THz Imaging Setup 

The experimental setup for performing THz imaging acquisition is built as presented 

in Figure 3.14. The object to be imaged is vertically positioned in the focal point 

between two Zeonex lenses with 25 mm focal length, such that the THz beam is 

focused on the object by the first lens and collimated by the second lens and then 

refocused on the test chip. Since our chip sensor contains only a single pixel, a 

mechanical scanning is necessary to obtain a wide field of view. Therefore, a stepper 

motor is equipped to scan the image objects in the vertical and horizontal directions 

by a step size equals to the single pixel pitch (e.g. 0.2 mm for 850 GHz pixels or 0.4 

mm for 300 GHz pixels). In each motor step, part of the image object is registered by 

the pixel until the complete image is formed. 

 

Figure 3.14: Block diagram of the THz imaging setup. 

 

3.6 THz Characterizations and Imaging Results 

3.6.1 Low-frequency FET Detectors 

In order to characterize the low frequency FET detectors, the tunable CW source has 

been configured to generate terahertz signals in the range between 265 – 375 GHz, 

while the lock-in amplifier is configured with time constant of 500 ms and sensitivity 

of 100 μV, since the FET detector output signal is expected to be in the order of few 

μV. Firstly, the voltage response of each FET detector is normalized by the received 

input power in order to evaluate the responsivity. Voltage responsivity of the FET 

THz detector versus signal frequency is shown in Figure 3.15. In this measurement, 
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the THz source frequency was swept, while the gate bias voltage VGS was kept fixed 

at the optimal bias point for all the three FET structures. 

 

Correspondingly, Figure 3.16 shows the measured responsivity as a function of FET 

gate bias voltage where the peak response of each FET is near the FET threshold 

voltage. The measurements are obtained at modulation near 1 kHz.  
 

 

Figure 3.15: Voltage responsivity versus signal frequency. 

 

 
Figure 3.16: Voltage responsivity versus gate bias voltage. 

 

 

The NEP of the FET detector depends on the thermal noise voltage, which depends 

on the FET intrinsic resistance Rds. The intrinsic resistance can be measured using 

a multimeter and its noise density can be measured by a spectrum analyzer. Then, 
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the NEP of the detector is obtained as a ratio between thermal noise voltage of the 

channel resistance and its voltage responsivity. The measurement result of the NEP 

for the different structures is shown in Figure 3.17. Minimum NEP is 185 pW/√Hz at 

380 GHz was obtained by the trapezoidal gate FET at 0.48 V. It is possible to see 

that both extended source and trapezoidal gate detectors considerably achieved 

better detection behavior than the regular one. 

 

 

Figure 3.17: NEP versus gate bias voltage. 

3.6.2 High-frequency FET Detectors 

Similarly to low-frequency FET detectors, the THz characterization setup has been 

modified to test similar FETs operating in the frequency range of 850 GHz – 1 THz. 

Figure 3.18 shows the measured responsivity as a function of signal frequency, 

calculated as the FET voltage response normalized by the received power of each 

pixel. It can be seen that the peak responses of the three bow-tie antennas are 

slightly shifted to 885 GHz, 910 GHz, and 1.02 THz instead of 850 GHz, 900 GHz, 

and 1 THz respectively. This shift in frequency is possibly due to the imprecision of 

the electromagnetic simulator, and to the uncertainty of thicknesses and material 

properties (e.g. skin effect of CMOS metal layers in the THz frequency range). In this 

measurements, trapezoidal FETs always achieve higher response than the extended 

FET that can be understood as a higher self-mixing efficiency thanks to the improved 

asymmetry of the structure (see Figure 3.4). Indeed, the parasitic capacitance Cgd is 

larger and its impedance lower (1/jωCgd), so as the gate and drain are effectively 

shorted. Therefore, a higher voltage signal vds(t) ≈  vgs(t) = VRF  sin (ωt) will be 

transferred to the drain, resulting in higher DC current Ids = 〈vds(t) × gds(t)〉 as 
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given in Eq. 3.9 of the simple self-mixing model. Similar considerations hold also for 

the NQS model. Hence, this result in higher detected output voltage as it is given by 

the DC current multiplied by the DC output resistance, and therefore higher 

responsivity. 

 

 

Figure 3.18: Voltage responsivity versus signal frequency. 

Similarly, the extended FET demonstrates an improvement in responsivity which is 

due to the lower overall Cgs, thanks to the farther source connection, effectively 

decreasing the fringe capacitance between polysilicon and metal. In fact, the 

reduction of this parasitic decreases the signal attenuation due to the shorting path 

that prevents the power coupling to the FET channel (see Eq. 3.2). Measurements 

on 850 GHz antennas indicate a peak RV of 235 V/W and 211 V/W for trapezoidal 

and extended FETs respectively. With 900 GHz antennas, the responsivity drops 

slightly near 200 V/W for both FET structures. 

At 1 THz, the detectors achieve peak RV of 157 V/W and 143 V/W for trapezoidal 

and extended FETs respectively. It can be observed that the proposed FETs provide 

a RV higher than the regular one in all three antenna designs, showing a 

reproducible and consistent advantage. The responsivity measurements versus Vgs  

are obtained by tuning the THz source at fsrc = 885 GHz, 910 GHz, and 1.02 THz. 

As visible in Figure 3.19, the RV raises in the weak inversion and peaks 

approximately near the threshold voltage of the different FET structures. 
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Figure 3.19: Voltage responsivity versus gate bias voltage. 

In accordance with the initial design considerations, the trapezoidal FET realizes a 

lower thermal noise voltage (1.67 μVrms at Vgs = 0.46 V) than the extended FET 

(1.98 μVrms at Vgs = 0.47 V), since the enlarged access region at the drain side of 

the trapezoidal FET gives a lower Rds , accordingly improving the NEP. The 

measured NEP versus Vgs  is illustrated in Figure 3.20: the minimum NEP of the 

trapezoidal FET is 187 pW/√Hz measured at Vgs = 0.46 V and fsrc = 885 GHz, while 

the minimum NEP of the extended FET is 249 pW/√Hz obtained at Vgs of 0.47 V and 

fsrc = 910 GHz. Both proposed FETs show a considerably better NEP than the 

regular one, with the trapezoidal FET having an advantage of simultaneously 

improving voltage response and thermal noise, as explained before.  

 
Figure 3.20: NEP versus gate bias voltage. 
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(a) 

   

(b) 
Figure 3.21: Images of concealed metallic object inside a paper envelope: (a) a metallic ring 
captured by trapezoidal gate FET with 900 GHz antenna (fsrc = 910 GHz, Vgs = 0.46 V) (b) 
screw captured by extended drain FET with 1 THz antenna (fsrc = 1.02 THz, Vgs = 0.47 V). 

Under continuous terahertz illumination, metallic objects including a nut and a screw 

concealed inside a paper envelope are mechanically scanned by using a stepper 

motor with a resolution of 0.2 mm. Figure 3.21 displays two different images scanned 

at 910 GHz and 1.02 THz with trapezoidal gate and extended source FETs 

respectively, in a single-pixel mode. The dynamic range of the present imaging 

system is approximately 48 dB; the images result a bit defocused due to limited 

output power from the THz source and the struggle in tuning the optics distance with 

such a weak signal and a single-pixel operation. The scanned area is 20 x 20 mm2 

reaching a final image resolution of 100 × 100 pixels.   

Table 3.1 provides a performance summary and comparison of both low-frequency 

and high frequency FET THz detector structures. Both are fabricated and tested 

under the same conditions. The characterization results of the modified FET 

structures show values in line with typical performance that can be found in 

literature. In addition both of the modified detectors provide higher RV and lower NEP 

over the regular structures at no additional cost in terms of cost, complexity and 

area.   
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Table 3.1: Performance comparison for the implemented FET detector structures. 

 Frequency 

[THz] 

Max. 𝐑𝐕 

 [V/W] 

Min. NEP  

[pW/Hz1/2] 

 

Reg 

 

0.38 131 342 @ Vgs = 0.48 V 

0.85 171  

268 @ Vgs  = 0.48 V 0.9 116 

1  112 

 

Trap 

 

0.38 218 216 @ Vgs = 0.5 V 

0.85 235  

187 @ Vgs = 0.46 V 0.9 200 

1  157 

 

Ext  

0.38 239 210 @ Vgs = 0.5 V 

0.85 211  

249 @ Vgs = 0.47 V 0.9 200 

1 143 

 

 

3.7 Chapter Summary 

In this chapter, the design considerations and challenges of developing FET based 

THz detectors have been addressed. Moreover, the FET detection mechanisms by 

means of plasma wave theory and self-mixing principles have been discussed. The 

second part of this chapter presented the implementation of several THz pixel 

prototypes operating at both 265 – 380 GHz as well as 850 GHz – 1 THz frequency 

range. The FET detectors have been implemented in a 0.15-µm standard CMOS 

technology and experimentally characterized in terms of responsivity and NEP. At 

low radiation frequency, trapezoidal gate FET achieved a peak responsivity of 218 

V/W and minimum NEP of 216 pW/√Hz, while extended source FET obtained a peak 

responsivity of 239 V/W and minimum NEP of 210 pW/√Hz. Even when operating at 

frequencies near 1 THz, responsivity measurements on the proposed FET structures 

stay in the range of hundreds of V/W without degrading the performance, similar to 

the low-frequency FET detectors. At high frequency, the best performance is also 

achieved by the trapezoidal gate FET with 850 GHz antenna, with a peak 

responsivity of 235 V/W, and minimum NEP of 187 pW/√Hz, validating the improved 

power coupling efficiency between the antennas and FET detectors.  
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4  
 

In-Pixel Low-Noise Readout Integrated 
Circuits 

 

 

4.1 Motivation 

In the previous chapter, different FET structures were analysed through THz 

measurements so as to improve responsivity and noise performance when they are 

used as THz detectors in multi-pixel array: however, the weak-detected signal from 

the FET still needs to be processed. As an alternative to the lock-in techniques, an 

in-pixel readout circuit can provide simultaneous readout of multiple pixels, 

integrated functionalities, and a compact system. In the literature, only few 

representative design examples are reported. Therefore, this chapter discusses the 

design considerations for readout circuit implementation including the following: 1) a 

sufficient amplification of the weak detected signal by the FET, 2) the low frequency 

1/f noise and offset reduction techniques, 3) a small power consumption of the 

readout circuit, with area compatible with the physical size of antenna. 

Correspondingly, in order to achieve these objectives, a low-noise readout interface 

circuit is designed, built, and tested. According to the obtained THz characterization, 

a comparable detection performance to the state of the art designs is achieved. The 

proposed readout circuit has demonstrated the capability of preserving the minimum 

NEP of the FET detector at room temperature, while providing a direct digital output 

as a representation of the detected signals.  

 

4.2 Related Work 

In an attempt to enhance FET detector sensitivity, several approaches are reported 

in the literature for the implementation of the readout interface. In [129], a 3 x 5 FPA 

for imaging at 650 GHz has been introduced, with a readout circuit featuring a 

differential amplifier, which was a cause of significant noise and thus degraded the 

system performance. Besides, THz characterization of such an FPA is still 

dependent on using the lock-in technique to acquire raster-scanned THz images with 

very slow frame rates.  
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The work in [127] presented an architecture for a FET-based 1-k pixel camera for 

video imaging. In this architecture, an integration capacitor of 8 pF per pixel is 

utilized to decrease the integrated noise by reducing the system cut-off frequency, 

but still not filtering all the noise down to the video rate signal bandwidth.  

 

Another work in [132] efficiently addressed the noise filtering by realizing a 

demodulation chain based on high-Q Switched-Capacitor (SC) filtering. However, the 

1/f noise reduction always depends on the possibility of modulating the THz source 

at hundreds of kHz, which is not a cost-effective solution for a THz imaging system.  

 

A more recent work in [103], presented an FPA for imaging at 860 GHz, integrated 

with a single-readout chain comprehending a cascade of a chopper instrumentation 

amplifier and a sigma-delta ADC. Although the achieved THz performance 

parameters by the proposed imaging system, the large area of the readout circuit 

makes it not being compact to be fully integrated inside each pixel for simultaneous 

readout of multi-pixel imaging arrays. Besides, the power consumption is expected to 

be large due to the noise constraints with such a complex readout structure. 

 

In FBK Integrated Radiation and Image Sensor group, several THz readout circuits 

were proposed before. In [119], [133] an implementation of a readout interface based 

on a switched-capacitor integrator is fabricated in a 0.13-μm standard CMOS 

technology for THz imaging applications. [117] presented A THz pixel architecture 

implemented in a 0.15-μm CMOS technology and consists of a 370 GHz on-chip 

antenna, a FET-based THz detector and a chopper-stabilized switched-capacitor 

multistage readout interface performing in-pixel filtering and amplification.  

 

4.3 System-level Design 

Figure 4.1 illustrates the block diagram of the FET-based THz detector circuit 

integrated with the readout chain. The FET THz detector is realized by two NMOS 

transistors in a gate-driven structure: one of them is connected to the integrated 

antenna, acting as an active FET THz detector, rectifying the incident radiation. The 

second NMOS is acting as a blind detector, providing a reference device for offset 

compensation of the differential input pair, and therefore, only the voltage difference 

between the two detectors is amplified. The two FET detectors are biased with the 

same gate voltage. 
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Figure 4.1: Block diagram of the proposed THz FET detector and readout structure. 
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The integrated readout chain contains a cascade of a preamplification and noise 

reduction stage based on a parametric chopper amplifier and a direct analog-to-

digital conversion by means of an incremental sigma-delta converter, followed by a 

decimation stage that provides a 12-bit digital output as a measure of the intensity of 

the rectified FET signal. Initially, several high-level Matlab simulations were 

performed to scale the coefficients of the CT loop transfer function and to determine 

the design values that make sure the precise incremental ADC operation can be 

achieved. A Simulink model of the readout circuit design and the transient simulation 

results can be found in Appendix A.  

4.3.1 Parametric Chopper Amplification 

The operation principle of the parametric amplifier is schematically simplified in 

Figure 4.2. The parametric amplifier operates in a discrete-time mode, containing two 

sampling switches followed by two MOS varactors [134]. This amplification technique  

has the advantage of being noise-free with low power consumption [135]. The 

realized gain is basically given as the ratio of the small-signal gate capacitances of 

the MOS varactors during alternating the signals Clks and Clkboost in two non-

overlapped clock phases. The parametric amplifier is enclosed in between the 

chopper modulators that operate at a frequency of fch, which equals half of the 

operating frequency of the parametric amplifier. Therefore, they eliminate the 1/f 

noise from the signal path simultaneously along with reducing the thermal noise 

during the sampling and the boost phases of the parametric amplifier. 
 

 
Figure 4.2: 1/f noise and offset cancellation by using the parametric chopper amplifier. 
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The value of the passive gain is approximately 2–3, reducing the overall input 

referred thermal noise contribution of the readout chain. Figure 4.3 illustrates the 

simulations of the gain and noise of the chopper parametric amplifier, executed by 

Parametric Steady-State, AC and Noise (PSS/PAC and PNOISE) analyses. The 

simulations demonstrate a small noise contribution of 9 nV/√Hz dominated by only 

thermal noise with a passive voltage gain of 2.3 at a chopping frequency of 100 kHz. 

Three choppers are placed around the parametric amplifier and the transconductors 

in the feed-forward and feedback paths to reduce 1/f noise and the DC-offset. Only 

the feed-forward path is considered in Figure 4.2. The first chopper at the input 

modulates the FET signal, which is located at the source modulation 

frequency fmod, to the odd harmonics of the chopping frequency fch. Then, the 

modulated signal together with 1/f noise and the DC-offset are converted into current 

by the Gm stage of the incremental ADC. After that, the last chopper at the 

transconductor output demodulates the signal back to fmod and shifts the 1/f noise 

and the offset to the odd harmonics of chopping frequency, such that they will be 

filtered out by the loop filter realized with a Miller integrator. All the switches in the 

chopper modulators are realized with a complementary transmission gate with 

minimum transistor dimensions, to reduce the chopper spikes produced by the 

charge injection during the switching between the two clock phases. 

 

 

Figure 4.3: Gain and noise simulation results of the parametric amplifier at a chopping 
frequency of 100 kHz. 
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4.3.2 Continuous-Time Incremental Conversion 

Incremental sigma-delta (SD) Analog-to-Digital Converters (ADCs) benefit from the 

oversampling and noise shaping techniques with relaxed matching requirements 

similar to traditional SD ADCs [136]. The use of incremental SD operation in the THz 

detection context has the advantage of simultaneously integrating the rectified FET 

signal and averaging the detector noise, providing a one-to-one mapping between 

the FET signal and the digital output per each conversion cycle [137]. In this design, 

a first order modulator structure is realized, as it offers a medium resolution (i.e., 

more than 10 bits) that fulfils the requirements of THz imaging applications, without 

increasing the complexity in both the analog loop filter and the digital decimator 

[138]. Higher order modulators are avoided, due to their limited stability and higher 

power consumption. A Continuous-Time (CT) loop filter based on a Gm-C structure 

has been implemented, since it accommodates smaller settling and bandwidth 

requirements when compared to the switched-capacitor counterpart, and hence, it 

achieves lower power consumption [139].  

 

The operating principle of the readout chain can be explained in the conceptual 

timing diagram of Figure 4.4. The CT loop filter and the decimator are reset at the 

beginning of each conversion cycle (Tconv). Then, the slowly varying FET voltage 

signal (VFET) is continuously integrated and sampled for an integration period of Tint 

=  2n Tqnz, where n is the converter resolution and Tqnz is the sampling period. In 

each period of Tqnz, the integrator output voltage is compared to the quantizer 

threshold and a decision is made. Next, according to the quantizer decision, the 

voltage DAC feeds back either a +VREF or a -VREF signal to the input of the feedback 

transconductor; as a result, the up-down digital counter, which is realized as a 

decimator, will either increment or decrement its digital value. At the end of Tconv, 

the integrator output voltage can be described by: 

 

Vint =  
Gmin

Cint
Tqnz [2n VFET −

Gmfb

Gmin

 (Nup − Ndown) VREF]            (4.1) 

 
where Cint  =  C1  +  C2, Gmin and Gmfb are the integrating capacitor and 

effective transconductance values in the feed-forward and feedback paths, 

respectively. Nup and Ndown are the number of subtractions and additions of VREF 

respectively. 
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Figure 4.4: Timing diagram of the THz readout chain. 

The Least Significant Bit (LSB) resolution is thus defined by VREF scaled by the ration 

of the transconductance values in the feed-forward and feedback paths, as well as 

the number of clock cycles per one conversion as given by: 

VLSB = (
Gmin

Gmfb

)
VREF

2n                                           (4.2) 

 

Lastly, the digital counter value is extracted through a parallel-to-serial shift register 

and a new conversion cycle starts with cleared counter. A digital modulator is 

inserted between the quantizer and the counter: it operates at the same frequency of 

the source fmod, thus, permitting the measurement of the pixel output in both 

conditions (source on/source off) in order to compute the difference between them in 

similar way to the lock-in technique. Figure 4.5 shows the schematic of the 

implemented decimator.  
 

Figure 4.5: Schematic of the implemented decimator. 
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4.3.3 CT Loop Filter 

The transconductors (Gm stages), depicted in Figure 4.6, are designed using a 

pseudo-differential source degeneration topology with resistors acting as 

transconducting elements [140]. In principle, the follower transistors (M1–M2) 

transfer the input voltage to the resistor, consequently improving the linearity in the 

V-I conversion. Then, the current mirrors (M3–M6) transfer the currents to the 

outputs. 

 

Thus, the effective Gm value will be approximately equal to 1/R. PMOS transistors 

operating in weak inversion were used for the input differential pair due to their lower 

1/f noise contribution and to allow the use of near-ground input common-mode 

specified by the FET voltage signals. All the other transistors are sized to have a 

long channel length and operated in strong inversion such that the noise should be 

only dominated by the input pair. 

 

The output currents from the Gm cells are added/subtracted and then injected into a 

Miller integrator [141], such that the effect of finite output impedance at the 

transconductors’ outputs is reduced. The amplifier utilized in the Miller integrator is 

composed of a current buffer common-gate input followed by a common-source 

stage as visible in Figure 4.7. The bias current in the Gm stages and the Miller 

integrator, which sets the noise floor of the incremental ADC, is 4 µA, resulting in a 

total current dissipated in the incremental loop filter of 24 µA. 

 

 
Figure 4.6: Schematic of the pseudo-differential transconductor. 
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Figure 4.7: Schematic of the amplifier used in the Miller integrator. 

According to [142], the chopping frequency is chosen to be several times greater 

than the flicker noise corner (which is around 10 kHz, as obtained from the noise 

simulation), to effectively shift the 1/f noise out of the signal band and then it will 

filtered out by the loop filter of the incremental ADC. The integrating capacitors are 

implemented as Metal-Insulator-Metal (MIM) capacitors, while high-resistivity 

polysilicon is used for realizing the degeneration resistors. 

 

The readout channel has been analysed using periodic analysis (PSS, PAC and 

PNOISE) in Cadence. Figure 4.8 shows the simulated input referred noise voltage 

spectral density in three different configurations for the readout channel: without 

chopper modulator, with chopper modulator only active and lastly with parametric 

amplifier + chopper modulator active.   
 

 
Figure 4.8: Input referred noise voltage at three different configurations of the readout. 
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As visible when the chopper is in active mode, the flicker noise is completely 

removed and the input referred noise voltage spectral density of the system is 81 

nV/√Hz. While with the use of parametric amplifier the input referred noise voltage is 

reduced to 50.7 nV/√Hz thanks to the passive gain provided by the parametric 

amplifier. The input referred voltage noise of the overall system is mainly dominated 

by the noise of the input transconductor since the noise arising from the later analog 

blocks is neglected when referred to the input. Transient simulations were performed 

to scale the coefficients of the CT loop transfer function and guarantee that the 

integrator outputs are within proper bounds (i.e., ±VREF). The integrating capacitors 

are sized to be 800 fF, while the Gm values in the feed-forward and feedback paths 

are scaled to be 130.33 µS and 3.33 µS, equivalent to degeneration resistors of 7.5 

kΩ and 300 kΩ, respectively. The loop filter provides an amplification for the 

integrated FET signal by a voltage gain that can be evaluated as: 
 

Gain = (
2Gmin

Cint
) TConv                                   (4.3) 

 

4.3.4 Single-bit Quantizer 

The key design requirement for the quantizer is a high sampling speed with low 

power consumption.  Either single-bit or multi-bit quantizers can be employed in the 

incremental Sigma-Delta ADC. To reduce the distortion, multi-bit quantizers typically 

require dynamic element matching or calibration for the DACs, which increases the 

design complexity and requires additional area and power. In order to avoid this 

added complexity, a single-bit topology was chosen. Figure 4.9 illustrates the 

schematic of the implemented single-bit quantizer.  
 

 
 

Figure 4.9: Schematic of the implemented single-bit quantizer. 
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It is based on the structure presented in [143], containing a pre-amplifier stage to 

avoid the kick-back noise [144], followed by a positive feedback latched comparator. 

The implemented comparator is designed with minimum transistor dimensions, 

except for the bias transistor Mtail.  

 
 

 

4.3.5 Voltage DAC 

The voltage DAC schematic is shown in Figure 4.10. The quantizer will give an output 

of 1-bit digital value as input to the DAC. Then, the DAC converts the 1-bit digital to 

an analog signal and feeds it to the input of the feedback transconductor. The 

corresponding analog output signal from the DAC will also have two levels (+VREF, –

VREF). If the output of the quantizer is high, the DAC will generate positive reference 

voltage )+VREF( to the input of the feedback transconductor and in case of zero 

digital input to the DAC, the analog output will be a negative reference voltage )–

VREF(. The voltage VREF is set to a value that guarantees the integrator outputs are 

within a proper bound. 
 

 
Figure 4.10: Voltage DAC schematic. 

 

4.4 Readout Circuit Implementation 

Figure 4.11 shows a layout view of the THz readout chain. The most sensitive blocks 

to parasitic elements and transistors mismatch are the Miller integrator and the pre-

amplifier inside the quantizer. Therefore, in order to reduce the parasitic 

capacitances and resistances, and to improve the matching in the transistor pairs 

with equal size, the layout of these amplifiers have been done following the well-

known techniques that minimize gradient induced mismatches [145], [146]. 
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The main techniques that are used in the readout design are common-centroid 

layout and inter-digitization are considered as in [147]. The transistor array are made 

as compact as possible in order to make it less subject to nonlinear gradients. All 

transistors must be oriented in the same direction, which means that they need to be 

parallel to each other in order to avoid transconductance variations. Other related 

points include avoiding routing metal across the active gate area. In addition, 

decoupling capacitors are distributed over the channel to filter supply noise. 

Moreover, in order to avoid any coupling between digital and analog blocks of the 

chip, the analog areas are isolated from the digital logic by use of guard rings. For 

the same reason, separate supply and ground lines are used for digital and analog 

supplies.  
 

 
 

Figure 4.11: Layout view of the THz readout chain. 

A micrograph of the readout chain with THz antenna and FET detector is shown in 

Figure 4.12. The design has been fabricated in a 150-nm standard CMOS 

technology. The total area of the readout chain is 90 x 300 µm2. Two identical 

readout circuits are fabricated: one of them is integrated with the antenna-coupled 

FET THz detector, and the other is for the purpose of performing an electrical test for 

the readout circuit operation. Table 4.1 provides information about pin numbering, 

pin names, type and direction. 
 

 
Figure 4.12: Micrograph of the fabricated THz pixel structure. 
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4.5 Chip Measurements 

The test of the THz pixel structure is performed in two steps: firstly, the electrical 

testing of the readout circuit operation is performed, by using external input signals 

generated by a function generator. After that, a similar THz characterization setup as 

in Figure 3.12 is built to characterize a standalone FET detector and to validate the 

antenna operating frequency by using a lock-in amplifier. Lastly, the integrated 

readout chain is used in place of the lock-in amplifier so as to measure the FET 

signal in a digital representation. Figure 4.13 shows the schematic of the PCB board, 

where it can be seen both analog and digital signals that can be taken off-chip for 

test and debugging purposes for the test structure.  
 

 

Figure 4.13: Schematic of the PCB utilized for chip characterization. 

4.5.1 Electrical Measurements of the Readout Chain 

The measurement of the input-referred noise power is carried out in three different 

configurations of the THz readout chain as visible in Figure 4.14. The noise 

measurements were acquired at the CT loop filter output, while the differential input 

pins are shorted to ground. Then, it is divided by the expected closed-loop gain (see 

Eq. 4.5) in order to be referred to the input of the readout chain. The noise 

measurements are obtained at a chopping frequency of 100 kHz to effectively 

eliminate the 1/f noise and the DC-offset in the signal bandwidth. It is clear that the 

flicker noise is dominant at low frequency when the choppers are not active. In the 

second case, the parametric amplifier is bypassed and only the conventional 

chopper technique is presented to eliminate the flicker noise and hence only the 

thermal noise remains in the signal bandwidth.  
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The input noise spectrum density averages around -139 dB/Hz at lower frequencies. 

However, when the parametric amplifier is activated at the beginning of the readout 

chain, the provided passive gain of 2–3 reduces further the thermal noise by about 6 

dB. The measured input noise remains near -146 dB/Hz, which corresponds to a 

total integrated noise of 1.6 µVrms over a 1-kHz bandwidth. Considering that the 

intrinsic noise originated by the FET detector is around 3.64 µVrms, the readout can 

efficiently preserve the minimum NEP of the FET detector, limited only by its thermal 

noise voltage. The simulation of the total input noise power of the readout chain (see 

Figure 4.8) shows a good agreement with the measurement results.  

 

To validate the performance of the incremental sigma-delta converter, a sine wave 

with frequency of 500-Hz has been inserted as input to the readout chain. A Fast 

Fourier Transform (FFT) has been performed on the quantizer output by using a 

broadband oscilloscope. Figure 4.15 represents the measured graph of the output 

signal Power Spectral Density (PSD) presenting a first order quantization noise 

shaping with an oversampling ratio of 500, which is in a good agreement with the 

simulated one. Figure 4.16 shows the output noise power spectral density measured 

when the readout inputs are shorted to ground. 

 

 
 

Figure 4.14:  Measured input noise power: without noise reduction (black), with the 
conventional chopper technique (red) and with the proposed parametric chopper amplification 

(blue), chopping f = 100 kHz. 
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Figure 4.15: Simulated and measured output signal PSD of the incremental sigma-delta 

converter tested with an input sinusoidal tone at 500 Hz and sampling rate 1 MHz. 

 

 
Figure 4.16:  Noise PSD measured with shorted input to ground. 

 

The measured SNR is about  65 dB, which is equivalent to be 10.6 effective number 

of bits (ENOB), evaluated as [136]: 

 

ENOB = log2 (
2Vin,max

VLSB
)                                (4.4) 

 

SNR(dB) = 6 × ENOB + 1.76                          (4.5) 
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where Vin,max is the maximum input voltage. To increase the effective number of 

bits, the signal should be sampled by the ADC at a rate that is higher than the 

system’s required sampling rate (e.g. Nyquist frequency). The sampling rate (fS) of 

the incremental converter is set as a trade-off between the integrating capacitance 

area, bandwidth of the CT loop filter and the desired resolution, which depends on 

the number of clock cycles. Since the FET detected signals are modulated to have a 

maximum bandwidth of fsig = 1 kHz, high sampling rate is not necessary. 

Therefore, the quantizer is designed to operate with sampling frequency of 1 MHz to 

achieve an oversampling ratio (OSR) of 500 for the incremental conversion operation 

as given by:  

OSR =
fs

2 × fsig
                                            (4.6) 

 

 
 

Figure 4.17: Measured FET voltage responsivity and Noise Equivalent Power (NEP) versus 
gate bias voltage. 

 
4.5.2 Antenna-Coupled FET Detector Measurements 

The performance of a standalone antenna-coupled FET THz detector was evaluated 
through a lock-in amplifier with sensitivity and time constant of 500 µV and 200 ms, 
respectively. The FET voltage responsivity was calculated as the measured FET 
voltage response VFET normalized by the impinging power PFET. By sweeping the 

gate bias from the sub-threshold to the strong inversion region, as visible in Figure 
4.17, the FET detector achieved a peak responsivity of 318 V/W at a gate bias 
voltage of about 0.3 V, while it is decreased towards both the strong inversion 
region, since the Rds was reduced, and thus, the output voltage drop across it 
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decreases, and the sub-threshold, due to the reduction of the cut-off frequency of the 
FET + lock-in interface, below the source modulation frequency [148], [149]. 

The FET detector output noise voltage spectrum density was measured around 115 

nV/ √Hz, which was equivalent to the thermal noise contribution originated from the 

measured FET channel resistance Rds= 800 kΩ at a gate bias voltage of 0.3 V, as 

shown in Figure 4.18. Then, NEP can be estimated as the ratio between the 

measured thermal noise voltage and the FET responsivity. A minimum NEP of 281 

pW/√Hz was obtained at the same gate bias point of 0.3 V. 
 

 
 

Figure 4.18: Simulated and measured FET detector noise voltage spectral density versus 

frequency. 

 

 
Figure 4.19: Measured FET Voltage responsivity versus signal frequency. 
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Figure 4.19 shows the frequency sweep analysis for the FET responsivity with an 

inset illustrating the THz beam spot sensed by the FET detector. The beam spot was 

acquired on an X-Y transverse plane to the optical axis by scanning the pixel chip in 

0.4-mm steps using a stepper motor. It is also possible to observe that the FET 

detector responsivity is above 200 V/W from 355 – 375 GHz with a peak value of 

318 V/W near 365 GHz. 

4.6 Readout Responsivity and NEP Measurements 

Measurements of responsivity and NEP for the FET THz detector were eventually 

acquired through the implemented readout chain, instead of the external lock-in 

amplifier. The measurements were performed by modulating the THz source and the 

digital modulator at three different frequencies within the range of the FET detector 

bandwidth of 1 kHz. Thanks to the digital modulator, the recorded digital response 

was the net value of the difference between the two levels of the modulating signal 

waveform (with/without the THz signal), such that it could perform the lock-in 

function. The voltage response of the FET detector was recorded as 12-bit digital 

code through the shift register output per each conversion cycle. The integration time 

of the readout chain is related to the modulation frequency of the FET signals (<1 

kHz), which was varying in the range of 1 – 10 ms. The measured responsivity as a 

function of gate bias voltage is shown in Figure 4.20 at different modulation 

frequencies and the same sampling frequency, exhibiting a peak response close a 

0.3-V gate bias voltage. Since the readout directly converts the FET response to a 

digital output without any representative voltage, except the detector one, we had to 

redefine the responsivity. This new definition is obviously not comparable to 𝑅𝑉; 

however, the NEP still gives a metric for comparison because it is input-referred. The 

responsivity needs to be expressed as the output digital number (DN) per unit of 

impinging power (DN/W) instead of (V/W), as given by: 

 

Rdig =
DN

PFET
                                                 (4.7) 
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Figure 4.20: Readout responsivity as a function of FET gate bias voltage. 

 

 
Figure 4.21: Readout responsivity as a function of signal frequency. 

 
Similarly, Figure 4.21 illustrates the responsivity as a function of signal frequency, 

presenting peak values near 365 GHz, similarly to the standalone detector. NEP 

curves in Figure 4.22 were measured by calculating the standard deviation of several 

acquired digital outputs ∂DN, i.e., the RMS of the output code of each conversion 

cycle, divided by the measured responsivity acquired at a signal frequency of 365 

GHz. Then, it was divided by the square root of the FET bandwidth (i.e., fmod), as 

given by: 

NEP =
∂DN

Rdig√fmod

                                         (4.8) 
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The minimum NEP value of 376 pW/√Hz was obtained at a gate bias voltage near 

0.3 V and a modulation frequency of 130 Hz. The measured NEP was only due to 

the thermal noise contribution of the FET detector without being influenced by the 

readout noise, since the measured input noise power was significantly below the 

FET thermal noise. 

 

However, due to the fact that the dummy FET detector contributes to the total 

thermal noise voltage by its channel resistance, the obtained NEP by the readout 

chain was approximately √2 times higher than the measured NEP of a single FET 

detector. The total NEP of both active and dummy FETs, extracted from the 

standalone detector measurements, is visible (dashed line) in Figure 4.22, exhibiting 

a good agreement with the readout measurements. It can be noted that the total 

NEP (FETs + readout) seems to “cancel” noise at a low gate voltages: this is just an 

apparent reduction, due to the fact that the responsivity of the detector alone was 

lower in that range due to the larger RC time constant (because of the higher 

capacitance for the connection to the instrumentation), which was not present with 

the readout chain. 

 

 
 

Figure 4.22: NEP as a function of FET gate bias voltage (measured at 365 GHz). 

 

4.7 THz Imaging 

As presented in chapter 3, a similar optical experimental setup was used for 

performing THz imaging acquisition (see Figure 3.14), with the readout chain 

replacing the function of the lock-in amplifier.  Metallic and plastic objects concealed 

inside a paper envelope were mechanically scanned and captured in transmission 
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mode at 365 GHz and a modulation frequency of 130 Hz. A stepper motor stage was 

used to scan the objects in the vertical and horizontal directions by a step size of 0.4 

mm. As shown in Figure 4.23, the scanned images clearly resolve the structural 

details of the objects such as screws, a SIM card, a nut and a metallic ring. The 

scanned area is 20 x 20 mm2 with a total resolution of 50 x 50 pixels. 

 
The background interference pattern appearing in the images was due to the 

standing waves generated by multiple reflections inside the paper envelope. The 

acquisition time of each image was around 3.5 h, due to the limited speed of the 

stepper motors, mainly dominated by the actuator’s speed; however, the effective 

acquisition time amounted to just several seconds that compares favourably to an 

acquisition with a lock-in amplifier.  

 

 
Figure 4.23: THz images of different metallic/plastic objects hidden inside a paper envelope 

acquired at 365 GHz (source modulation f = 130 Hz) along with the photographs of the objects. 

 

Indeed, usually the lock-in amplifier requires an integration time in the range of 200 –

500 ms in order to achieve similar signal quality, while the proposed readout chain 

acquires the data of each pixel during an integration period in the range of 1 – 10 

ms, according to the applied modulation frequency. This is regardless of the time 

spent by the stepper motors to move between different pixels, showing 2 orders of 

magnitude improvement in the acquisition time. The overall performance of the 

presented THz pixel structure is summarized in Table 4.1.2 and compared to the 

recently-reported state of the art. The proposed THz pixel features: (1) a first order 

incremental ADC that is compact in terms of area and power and can be fully 

integrated inside the THz pixel, providing simultaneous integration and readout; (2) 

suitable for pixels also with smaller antennas (e.g., 800 GHz); (3) it does not require 

sources with a high modulation frequency, such that the overall cost of the THz 
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imaging system could be significantly reduced; (4) a direct conversion to the digital 

domain, which means robust and easy signal management; (5) low input-referred 

noise. 
 

Table 4.1: Performance comparison to the-state-of-the-art. 

 This Work TTST’2017 
[103] 

Sensors’16 
[132] 

JSSC’12 
[127] 

JSSC’09  
[129] 

Process 0.15 µm 0.18 µm 0.13 µm 65 nm 0.25 µm 

Input 
Referred 

Noise 

1.6 µVrms 2.03 µVrms 0.2 µVrms 2.45 µVrms - 

Power 
consumption  

80 µW - 320 µW 2.5 µW 5.5 mW 

Source 
Frequency 

325 – 375 
GHz 

860 GHz 270 GHz 856 GHz 650 GHz 

Modulation 
Frequency 

10 Hz – 1 
kHz 

177 Hz  156 kHz 5 kHz 30 kHz 

On-chip 
antenna 

Bow-tie 
antenna 

Patch 
antenna 

Bow-tie 
antenna 

Ring 
antenna 

Patch 
antenna 

Pixel size  456  456 
µm 2 

1330 x 440 

µm 2 
240  240 µm2 80  80 

µm 2 
200  150 

µm 2 

Maximum RV 783 

DN/µW 
3.3 kV/W 300 kV/W 140 kV/W 80 kV/W 

Minimum 
NEP 

376 

pW/Hz 
@ 130 Hz 

106 

pW/Hz 
@ 177 kHz 

533 pW   
@ 156 kHz 

12 nW 
@ 500kHz 

300 

pW/Hz 
@ 30 kHz  

 
 
 
 
 
 
 



93 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



94 

5  
 

Imaging Arrays and Multispectral 
Systems 

 
 

5.1 Motivation 

In the chapters 3 and 4, we presented in details the implementation of antenna-

coupled FET detectors and their detection performance was discussed and 

compared to the regular FET detectors. Then, the design specifications, 

implementation of the in-pixel readout circuit architecture and its characterization 

results were discussed. In this chapter we extend a single THz pixel to a multi-pixel 

FPA. The multi-pixel imager architecture essentially improves the system 

performance by achieving simultaneous signal acquisition of the entire detector array 

and therefore, it is expected to bring better detection in different aspects:  1) 

increased system sensitivity, since by striking incident radiation on the imager for 

longer exposure time with more pixels exposed simultaneously can result in a 

reduction of the system bandwidth, and consequently, the noise, 2)  the system 

resolution is improved with the imager architecture due to its larger number of pixels 

in each acquisition for a given exposure time, and lastly,  3) speed (frames per 

second) is increased, since a single frame can be obtained faster in the imager 

architecture because of parallelization.  

 

In the present work, we also aim to implement multi-spectral detection system with a 

special distribution of both visible and THz pixels. The circuits are explained in 

details: the pixel structure, comprising the visible pixel and THz pixels used as a 

basic building blocks, and their readout circuitries, including also other auxiliary 

blocks for addressing and extracting the individual pixels’ values. 

 

5.2 Optimization of The THz Readout Chain 

A few modifications have been considered in the THz readout circuit design, based 

on the measurements presented in the previous chapter, in order to improve 

uniformity for an array implementation. The THz readout circuit is redesigned to be 

more robust to the process variation and mismatch effects, in order to reduce pixel-

to-pixel variations; the design modifications are the following:  
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Figure 5.1: Modified Schematic of the Miller Integrator. 

 

 In order to increase the flexibility in the integration time, the integrating 

capacitors with feedback switches are designed to give four different selectable 

bandwidth values (through the switches D0, D1), with the possibility to reset the 

integrator output to a predefined value by using the pin VPRE as visible in Figure 

5.1. The layout view of the Miller integrator is shown in Figure 5.2. The 

integrating capacitors are sized to be C1 = 1 pF, C2 = 0.5 pF and C3 = 0.5 pF.  

 
 

Figure 5.2: Layout view of the modified Miller Integrator. 

 The principle of improving the linearity mismatch in the Gm stages  is that if 

identical nonlinearity is exist at the input and feedback paths they will 

compensate each other and the system linearity performance will be improved. 

The linearity of the transconductor stages has been improved by reducing the 
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gain. Figure 5.3 shows the DC sweep simulation of the differential input voltage 

to the Gm stage versus the achieved transconductance values at different 

sourced degenerated resistance values (Schematic is in Figure 4.6). 

 

Figure 5.3: DC sweep simulation of the differential input versus the obtained transconductance 
value at different source degenerated resistance values. 

 

By increasing the source degenerated resistance from 40 kΩ to 200 kΩ, the 

achieved transconductance reduces 24.3 µS to 5.2 µS respectively, resulting 

in better linearity. The Gm values in the feed-forward and feedback paths are 

scaled to be 20 µS and 3.2 µS, equivalent to degeneration resistors of 50 kΩ 

and 312 kΩ, respectively.  

 

 The main sources of mismatch in transistors are geometric sizes, process 

parameters and errors in drain to source voltages of the mirroring transistors. 

Thus, these mainly affect the addition/subtract current from the input and 

feedback Gm cells and the Miller integrator. Therefore, in order to provide more 

tunability, extra pins are included in the design of the readout circuit such as 

VBias_CG, VREF+, VREF-. Moreover, a separate current mirror-based biasing circuit 

(see Figure 5.17) is designed to tune the bias current in the CT loop filter (see 

Figure 4.6 and Figure 4.7).  
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5.3 Multispectral Imaging Architecture 

The proposed multispectral imager architecture is shown in Figure 5.4. It is 

composed of a 10 x 10 THz imaging array based on the plasma wave detection, 

where each pixel contains an on-chip antenna, a FET detector and an optimized 

readout circuit. The visible pixel array is composed of 50 x 50 pixels and it is located 

under the antennas, where square slots are formed in the antenna’s ground plane for 

illumination. In the bottom part, the readout of visible pixels has been implemented 

with a linear array of 50 column correlated double sampling (CDS) circuits. All 

column-wise circuits are serialized through the same output amplifier. 

 

 

Figure 5.4: Multispectral imager architecture. 

Figure 5.5 sketches the timing diagram of the imager. It is possible to see that the 

THz detector signals are integrated and then readout, row-by-row, during the 

integration time of visible pixels, with 1µs of available time to extract the pixel value 

by using the parallel-to-serial shift register in the pixel’s readout. Serialization to 

output takes place after integration period varying between 1 - 10 ms depending on 

the applied modulation frequency of THz source. Visible light integration is 

performed during an expected period of 15 - 20 ms, afterwards, 4 ms are allocated 

for visible readout at a rate of about 5 MS/s.  
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Figure 5.5: Timing diagram of the multispectral imager. 

The imager design is implemented in the same LFoundry 0.15 μm standard CMOS 

technology. Figure 5.6 shows the THz pixel layout that includes an on-chip bow-tie 

antenna operates at 0.35 THz, a FET detector, and its optimized readout circuit. The 

pixel dimensions are 456 μm × 456 μm. The square slots are designed in the 

antenna’s ground plane (Metal 1) and located at the same position of the visible 

pixels with dimensions of 8 μm x 8 μm, as openings for visible light. 
 

 

  

Figure 5.6: Layout of single THz pixel with the readout chain, including also the visible pixel 
realized under the antenna’s ground plane and in the middle of the readout. 
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The routing of the visible pixels is made by Metal 2 and Metal 3 above the antenna’s 

ground plane. Therefore, inside each THz pixel there is a small array of 5 x 5 visible 

pixels, with pixel pitch of 91.2 μm. The THz readout chain is compatible with the 

antenna size and is placed vertically under the antenna structure. Decoupling 

capacitors are utilized at the edges of the analog and digital parts of the readout to 

reduce any signal coupling or interference by shorting it to the ground.  

 

 

5.4 Visible Imaging Array 

 

5.4.1 3T- CMOS Active Pixel Sensor (3T-APS) 

The visible pixel is designed as typical three-transistor (3T), photodiode (PD) type 

CMOS Active Pixel Sensor (APS). It is composed by a photodiode, a reset transistor 

MRST, acts at the beginning of the integration and amplifier transistor MSF, acts as a 

source follower that extracts the signal charge and converts it into a voltage [150], 

and thus the output voltage follows the PD voltage. The use of a source follower 

amplifier improves the image quality and SNR with respect to passive pixel sensors 

(PPS). The signal is transferred to a horizontal output line through an access 

transistor MSEL. The estimated fill factor (FF) of the pixel is evaluated as:  

 

FF (%) =
 Light sensitive area 

Total pixel area  
                                   (5.1) 

 

5.4.1.1 Principle of Operation 

 
The operation principle of an APS is described with the timing diagram as visible in  

Figure 5.7. Scene integration starts when photodiode is reset when MRST is switched 

on. The PD is reset to the voltage value VRST = VDD − Vth, where Vth is the threshold 

voltage of transistor MRST. Next, MRST is turned off and the PD is electrically floating. 

During the light integration, the photo-generated carriers accumulate in the PD 

junction capacitance CPD. The accumulated charge changes the potential in the PD; 

the voltage of the PD VPD decreases according to the input light intensity. After an 

accumulation time, the select transistor MSEL is switched on and the output signal in 

the pixel is read out in a common column line providing also the current for the 

biasing. When the readout process is finished, MSEL is switched off and MRST is again 

switched on to repeat the above process.  
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Figure 5.7: Pixel schematic of a 3T-APS with the timing diagram. 

 

Typically the pixel voltage range is smaller than the supply voltage. The pixel voltage 

range depends on the reset voltage, the threshold voltage of the source follower, and 

the overdrive voltage of the load transistor. Increasing the overdrive voltage leads to 

increase in the column current and hence lowering the pixel signal range.  Therefore, 

optimum bias current has to be precisely defined for the image sensor architecture to 

achieve the specified speed and noise performance and the pixel signal range during 

the design process. 

 

The full-well capacity is the number of charges that can be accumulated in the PD. 

The larger the full-well capacity, the higher the dynamic range (DR), which in a linear 

pixel is determined as the ratio of the maximum output signal value Vmax to the 

minimum detectable signal value Vmin: 

 

DR =
Vmax

Vmin
 [dB]                                              (5.2) 

 
The conversion gain of the pixel is given as the voltage change when one charge 

(electron or hole) is accumulated in the PD. The conversion gain is therefore equal to 

q/CPD, where q is the electron charge. The full-well capacity increases with larger 

PD junction capacitance CPD, while the conversion gain is inversely proportional to 

CPD. This indicates a trade-off between the full-well capacity and the conversion 

gain. 
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 Figure 5.8: Layout of a 3T-APS pixel. 

 

5.4.1.2 Pixel Layout 

 

In the Figure 5.8, the layout of the visible pixel can be seen. It is possible to notice 

that the left part is occupied by the photodiode, while the remaining is dedicated for 

the layout of the three transistors. Metal 1 and metal 2 are used for internal routing of 

the pixel. The photodiode has been implemented in n+/psub diode. The pixel 

dimensions are 8 µm x 8 µm, and the fill factor (FF) is estimated to be 73%. 

 

5.4.2 Column-level Correlated Double Sampling Readout 

Circuit 

Normally, CMOS active pixel sensors suffer from spatial or fixed-pattern noise (FPN) 

in the pixel array because of offset and gain non-idealities in the voltage sampling 

process and from temporal noise. Temporal noise can be categorized into three 

additive components: (1) kTC noise and charge injection interference stemming from 

the photodiode reset, (2) photocurrent integration shot noise, and (3) readout noise. 
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Correlated double sampling (CDS) of the pixel voltage is a commonly used technique 

to eliminate offset FPN and reset noise in CMOS active pixel sensors[151]. Figure 

5.9 shows the CDS circuit that is implemented as a readout circuit in this work. The 

operation principle of this CDS circuit is to sample the voltage of the following reset, 

such that the final output is the result of subtraction between the integrated value 

and the reset, effectively suppressing FPN. In fact, this is not a “true” CDS, as the 

reset noise is not subtracted. The implemented CDS includes an operational 

transconductance amplifier, a pair of capacitors and some switches.  

 

The current mirror transistor MBBL provides the bias for the source followers inside 

every pixel in the same column line. When RSTCDS signal is high, the pixel output is 

sampled on the capacitor C1. Next, the pixel must be reset and with the amplifier in 

inverting configuration, such that every input signal difference is replicated to the 

CDS output. Therefore, if the pixel is reset (RSTPix is high), the pixel reset value is 

subtracted from the previously stored value and only the integrated value is available 

at the CDS output. The CDS circuit has been simulated with the 3T CMOS APS and 

the obtained waveforms are drawn in Figure 5.10 which confirms the timing and 

operation principle. 

 

 
 

Figure  5.9: Operating principle of column CDS for visible pixel. 

Capacitance values of C1 and C2 have been sized to make kTC noise negligible so 

to maintain the pixels’ signal to noise ratio until the output of the chip. The purpose of 

the switches RSTCDS and its invert in the feedback loop together with the capacitors 

is to reset the output voltage to a predefined value, which can be set using the input 

pin VREF.  In this way, the “zero-level” of the signal can be tuned. 
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Figure 5.10: Transient simulation of the CDS with 3T-APS. 

 

 

  

Figure 5.11: Current sweep simulation of visible pixel and CDS circuit. 
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The switch ColSEL is used to activate the individual column lines and to connect the 

output of CDS circuits to the buffer inside the chip. Current bias sweep analysis is 

performed in order to examine the maximum photocurrent acceptable in order to 

avoid the saturation at the CDS output during the photocurrent integration. Figure 

5.11 shows the photocurrent sweep simulations of the output voltage from the 

photodiode (green) without saturation and the converted voltage from the source 

follower output (red) and at the output of the CDS (Blue) exhibiting saturation near 

160 pA.   
 

 
Figure 5.12: Schematic of folded cascode OTA of the column CDS for visible pixel. 

 

5.4.2.1 OTA Design   

 
The operational amplifier is a key element that must be designed in order to 

guarantee the CDS correct operation with the visible pixels. A telescopic cascode 

operational amplifier could be a better solution than a folded cascode operational 

amplifier with the drawback of lower output voltage swing. Moreover, the telescopic 

cascode might need an additional stage on the output, to increase the voltage swing 

which consumes more power; at the same time, the second stage will reduce the 

speed of the overall amplifier. Hence, a single-ended folded cascode topology of the 

amplifier was chosen to minimize the power consumption and area. The utilized 

amplifier is seen in Figure 5.12 with a PMOS differential input pair, operating in weak 

inversion, for lower flicker noise. The system level specifications are listed down in 

Table 5.1 while the design details of the OTA and biasing circuitry are given in 

Appendix B.  
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Table 5.1: System-level specification of the folded cascode operational amplifier. 

Technology 0.15 µm 

DC Gain 60 dB 

Gain Bandwidth (GBW) 30 MHz 

Phase Margin (PM) 60º 

Load Capacitor  0.5 pF 

Input Noise Minimum as possible 

Bias Current 10 µA 

Supply Voltage 1.8 V 

 

Table 5.2 summarizes the transistor sizes of the implemented single-ended folded-

cascode amplifier with high-swing output, where the total device with is given by m x 

W. The switches were implemented with minimum size transistors in a 

complementary architecture to reduce the channel charge injection. 

 

Table 5.2: Transistor sizes of the implemented operational amplifier. 

Transistor Dimensions (W/L) Multiplier (m) 

M1, M2 5 µm / 300 nm 6 

M3 5 µm / 2 µm 2 

M4, M5 3 µm / 3 µm 2 

M6, M7 2.5 µm / 300 nm 4 

M8, M9 8 µm / 300 nm 4 

M10, M11 5 µm / 2 µm 2 

 

5.4.2.2 Simulation Results 

 

The performance of OTA directly affects the overall performance of the CDS circuit. 

Gain and unity gain bandwidth (UGB) of OTA are the key design factors in order to 

operate the CDS circuit at high frequency. Beginning with a DC simulation, a total 

current consumption of 21.8 μA was obtained, leading to a power consumption of 

39.24 μW. The AC simulation curves in Figure 5.13 show a gain of 60.8 dB, a cut-off 

frequency of 25.2 kHz, a GBW of 34.92 MHz, and a phase margin of 60.08° for a 

load capacitance of 0.5 pF. These main AC parameters are summarized in Table 5.3 

for typical conditions and in the four corners (FF, SF, FS, and SS).   
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Figure 5.13: AC simulations of Folded Cascode operational amplifier. 
 
 

 

Table 5.3: Amplifier corners simulation results (AC analysis). 

 TT FF SF FS SS 

Gain (dB) 60.8 61.22 60.8 60.26 59.76 

PM (deg.) 60.08° 59.92° 60.51° 59.92° 60.51° 

GBW (MHz) 34.92 36.37 35.6 33.54 32.76 

 

 

 
Figure 5.14: Operational amplifier noise simulation. 
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Since the flicker noise is inversely proportional to gate area, the pMOS differential 

pair transistors M1 – M2 were made as large as possible and are designed to 

operate in weak inversion with high gm whereas M4 – M5 and M10 – M11 are placed 

into strong inversion, which decreases their gm. Several simulations were conducted 

to minimize noise, while keeping the stability of the OTA. The noise simulation as a 

function of frequency is shown in Figure 5.14 with a total input referred noise of 31.2 

μV for a frequency range from 1 Hz to 1 MHz dominated by the input differential pair.  

 

5.4.2.3 Layout of Column-level CDS   

 

Figure 5.15 shows the layout view of the CDS circuit implemented as a column-wise 

readout for the visible pixel. An array of 1x 50 CDS circuit was realized at the bottom 

of the chip with pitch of 91.2 µm, hence 5 CDS circuits can fit one THz pixel with a 

pitch of 456 µm. The layout was realized following the previously described 

techniques that minimize gradient induced mismatches.  

 

 

Figure  5.15: Layout of the column-level CDS readout circuit. 
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Figure 5.16: Bias voltages generation schematic. 

5.4.3 Auxiliary Blocks 

Some other blocks need to be designed in order to set the operation mode of the 

active analog blocks and to control the digital blocks in the chip. In particular these 

blocks are utilized to handle the biasing of the circuits and generate the clock and 

reset signals and perform signal multiplexing.  

5.4.3.1 Bias Generation Circuits 
 

The circuit depicted in Figure 5.16 provides all the needed bias voltages for the 

column-level CDS circuit starting from a 10 A input current, as well as the common 

line current bias for the visible pixels which is 4 A. The right half part of the circuit 

generates the signals for the operational amplifier, as well as the bias voltage for the 

preamplifier used in the quantizer block of the THz readout chain. 

 

Figure 5.17: Current mirror schematic for Gm cells and Miller integrator. 
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A separate current mirror circuit is designed for copying the bias current in the Gm 

cells and the Miller integrator as visible in Figure 5.17, such that the bias current can 

be freely tuned without affecting other generated bias voltages in the chip. 

 

5.4.3.2 Multiplexers  

 

Due to the limited number of pins in the chip, multiplexers are designed to switch 

between different readout modes as shown in Figure 5.18. For instance by setting 

the THz/VIS input to logic 0, the THz Row/column decoders used to readout the THz 

FPA. On the other hand, when logic 1 is set to THz/VIS, the visible pixels can be 

scanned and readout using the same EN_Clk and EN_RST pins of the column and 

row decoders.  
 

 

 
 

Figure 5.18: Schematic of the multiplexer. 

 

5.4.3.3 Non-Overlapping Clock Generation Circuits 

 
A NOR-flip flop based circuit implements a non-overlapping two-phase clock signal 

generator and can be used to derive a two-phase clock signal from a single clock 

signal as shown in Figure 5.19. The non-overlapped clock generators are used to 

generate the chopper clock signals, and the parametric amplifier control clocks. 

 



110 

 
Figure  5.19: Schematic of the non-overlapped clock generator circuit. 

5.4.3.4 Column/Row Decoders 

 
Other blocks include row and column decoders; principally, a row decoder will enable 

a particular row and all the pixels will get active in that row, then by using the column 

decoder the pixel values are multiplexed one by one to the output buffer. The 

decoders are realized as shift-registers by DFF cells from the digital library of the 

used CMOS technology as shown in Figure 5.20, where EN_RST and EN_Clk are 

the resets and clock signals of the DFFs. A simulation of the waveforms for the row 

and column decoders to illustrate the timing is presented in Figure 5.21. 
 

 

 
 

Figure 5.20: Schematic of the implemented row and column decoders. 

 

 
Figure 5.21: Transient simulation of the implemented row and column decoders. 
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5.4.3.5 Output Buffers 

  

A two-stage Miller OTA is employed as a voltage buffer with unity feedback as 

shown in Figure 5.22 (a). In order to maintain the stability of the OTA, a 

compensation technique containing a nulling resistor in series with the compensation 

capacitor is utilized in the feedback of the second stage to split the low-frequency 

poles and achieve the desired phase margin and transient response. The schematic 

of the two-stage Miller OTA is depicted in Figure 5.22 (b). The first stage is made up 

of a pMOS differential pair (M1-M2) with a current mirror load (M3-M4). The second 

stage is realized by common source M7 with current mirror load M6. The required 

performance specifications of the Miller OTA are given in Table 5.4. The transistors 

dimensions are reported in Table 5.5, where the total device width is given by m x W. 

 

Table 5.4: Design specification of the two-stage Miller OTA. 

Technology 0.15 µm 

DC Gain 70 dB 

Gain Bandwidth (GBW) 30 MHz 

Phase Margin (PM) 45º 

Load Capacitor  15 pF 

Input Noise Minimum as possible 

Bias Current 20 µA 

Supply Voltage 1.8 V 

 

 

Table 5.5: Transistors dimensions of the Miller OTA. 

 Dimensions (W/L) Multiplier (m) 

M1,M2 10 µm / 300 nm 10 

M3, M4 10 µm / 1 µm 2 

M5 10 µm / 1 µm 1 

M6 10 µm / 1 µm 4 

M7 10 µm / 1 µm 4 
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(a) 
 

(b) 
 

Figure 5.22: Schematic of the output buffer (a), and the implemented Miller OTA (b). 

 

 
 

                Figure 5.23: The simulated open-loop frequency response of the Miller OTA. 

 

The amplifier was designed to drive a load of 15 pF with a 1.8-V supply voltage. 

Figure 5.23 shows the simulated open-loop frequency response of the amplifier. 

From the simulation results, the achieved dc gain is around 69 dB, the gain-

bandwidth product is near 28 MHz with a phase margin of 53.08° at the typical 

process corner, which are close to the required design specifications. The nulling 

resistor of 1.87 kΩŸ load and a compensation capacitance CC = 1.78 pF significantly 

improved the stability of the operational amplifier. The obtained corner simulation of 

the frequency response of the amplifier is reported in Table 5.6.   
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In the transient simulation of Figure 5.24, the operational amplifier was connected as 

a buffer so as to validate its output swing and slew rate. A step waveform from 

ground to VDD with a period of 1 μs is used as an input signal (red curve), the 

obtained output voltage swing is from 200 mV to 1.55 V (green curve) with a slew 

rate of 5.05 V/μs for the rising edge and of 5.08 V/μs in the opposite direction. The 

drain current of M1-M2 is set equal to 10 μ A, while the drain current of the second 

stage is 50 μA. 

 

Table 5.6: Amplifier corners simulation results (AC analysis). 

 TT FF SF FS SS 

Gain (dB) 69.28 69 69.57 69.87 69.45 

PM (deg.) 53.08° 52.69° 50.97° 52.46° 50.6° 

GBW (MHz) 28.6 30.29 29.18 27.59 26.49 

 
 

 

 
 

Figure 5.24: The simulated transient response of the Miller OTA in a buffer configuration. 

 

The amplifier noise simulation as a function of the frequency is presented in Figure 

5.25, with a total input referred noise of 33.5 μV for a frequency range from 1 Hz to 1 

MHz, where it is dominant by the input differential pair of amplifier input. One can 

ensure that the thermal and flicker noise of input transistors is much less than the 

pixel signal level (see Figure 5.10 and Figure 5.11) and therefore, will not degrade 

the performance.  
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Figure 5.25: The simulated input noise of the Miller OTA. 

The layout of the overall Op-Amp in a buffer configuration is shown in Figure 5.26. 
The cross-coupled layout technique was used for the first stage to reduce gradient-
induced mismatches among the matched transistors. The resistor is laid out in a 
polysilicon layer. Guard rings are used around the OTA’s components for the supply 
and ground. 
 
 

 
 

Figure 5.26: Layout of the output buffer using Miller OTA. 
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Figure 5.27: Chip Layout including the core and the padring. 

5.4.4 Chip Description 

Figure 5.27 shows the layout of the chip including the padring and sealing ring. The 

chip is fabricated in the same process technology from LFoundry but with an 

updated PDK models for the transistors. The total area occupied by the core is 4.72 

mm x 4.68 mm and it contains: 

 10 x 10 Antenna-coupled FET detectors with in-pixel readout interface. 

 50 x 50 3T-APS array. 

 The bottom area is occupied by the visible readout channels (1 x 50) 

featuring a CDS circuits. 

 Biasing and clock generation circuits, output buffers. 

Decoupling capacitors are used to fill out the empty space inside the pixels and 

around the core array and to filter the supply noise. The chip contains 34 pads 

located on the left side including two pins that are double bonded for VSSIO and 

VSSCORE pads and VDDIO and VDDCORE pads. While on the top and bottom 
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sides there are 2 pins over bonded on each side. The Chip micrograph is shown in 

Figure 5.28 with a zoom showing the pixel structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.28: Chip micrograph (inset: terahertz pixel structure). 
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The chip testing, at the moment of the thesis writing, is just begun and results are 

still not available. The chip is packaged in Ceramic Pin Grid Array (CPGA) with 

through-hole 120 gold-plated pins. The CPGA package has a ceramic substrate with 

enhanced thermal heat dissipation and a cavity of 11 mm x 11 mm. A testing board 

of Figure 5.29 is designed and its layout is drawn in Figure 5.30 . This board will be 

mounted on the master board for characterizing the chip.  
 

 

Figure 5.29: Schematic of the designed PCB testing board. 

 
 

Figure 5.30: Layout of the designed PCB testing board. 
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6  
 

Conclusions and Future Perspectives  
 
 
 
 
The main purpose of this work was to develop a room temperature THz detector for 

imaging applications by monolithically integrating THz antenna-coupled FET 

detector, and readout electronics into a commercial 150 nm CMOS process 

technology provided by LFoundry. 

 

Several FET structures were analyzed with respect to the device geometry, aiming to 

improve the terahertz detection behavior in the frequencies of 325 – 375 GHz, and 

800 GHz – 1 THz. The experimental results obtained from the fabricated chip were 

discussed in view of the main performance parameters defined by their NEP and 

responsivity. Moreover, the achieved imaging results by scanning were presented. 

The measurement results outlined the limitations and improvements suggested for 

future implementation and characterization of multi-pixel imaging array. 

  

Initially, design of a single THz pixel was examined with integrated readout circuit, 

replacing the lock-in technique and providing digital outputs for the FET detected 

signals with improved sensitivity thanks to the low noise performance without 

degrading the minimum NEP of the FET detector. A complete design analysis, 

simulations, implementation and characterization were presented in chapter 4, where 

the experimental results obtained from the circuit blocks compared well to the 

simulation ones, validating the readout circuit working principle with the first-order 

incremental A/D converter architecture. 

 

The integrated readout noise of 1.6 µVrms over a 1-kHz bandwidth resulted in a 

peak-SNR of 65 dB, sufficient for obtaining a good signal quality for THz imaging 

applications. The detection behavior of the FET detector with the readout chain has 

shown a good sensitivity with a minimum NEP value of 376 pW/√Hz at 365 GHz. 

 
The last part explained the design, simulation, fabrication and characterization of 

multispectral imaging system that combines both terahertz and visible frequency 

range. Based on the previous measurements of a single THz pixel, several design 

aspects are considered to design an optimized version of the readout circuit for 

better performance with an improved SNR. 
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The chip contains 10 x 10 FET-based THz imager architecture, that can provide a 

simultaneous in-pixel signal integration and noise filtering in order to achieve high 

sensitivity at 1-kHz frame rate. Moreover, a vertically integrated 50 x 50 3T – CMOS 

APS array is implemented under the THz antennas, with column wise CDS readout 

circuits to reduce the FPN. The chip testing just started at the end of this PhD thesis. 

The chip characterization results are expected to bring more insights in THz readout 

concept, while exhibiting new architecture of the vertically stacked multi-spectral 

pixel arrays. 

 

The research presented in this thesis can be extended in several directions. Some of 

them are briefly discussed in the following.  

 

Firstly, further investigation should be carried out to keep on enhancing the FET 

detector sensitivity. For instance, a combined FET detector structures that take the 

advantages of both Extended Source FET and Trapezoidal gate FETs can be 

realized. Thus these new FETs are expected to have lower intrinsic thermal noise, 

and at the same time, achieve higher self-mixing efficiency. Moreover, the FET 

detector performance should be analyzed with the trend of downscaling of CMOS 

technology.  

 

Secondly, the implementation of high frequency focal plane arrays is still an object 

that can bring much higher resolution and lower cost of THz imaging applications.  In 

this work pixel structures operating in the frequency range 0.85 – 1 THz are 

designed and characterized. Using readout circuits connected to these high 

frequency FET-based pixels is likely to bring a better performance, with an improved 

SNR. However, still high intensity THz power sources are needed to generate THz 

signals with sufficient impinging power.  

 

Lastly, still additional studies should be carried out to analyze the THz detection 

performance of the Graphene-based FETs (GFETs) detectors. Graphene-based 

FETs is expected to have excellent optical and electronic properties over standard 

FETs, since it has higher carrier mobility and only requires planar processing 

technologies similar to the ones already employed in the existing CMOS technology. 

 

Beside FET-based THz imagers, the existing microbolometer imagers (e.g. the 

MICROXCAM-384I-THZ by INO, Canada) and large integrated pyroelectric THz 

imaging arrays (e.g. the Pyrocam IIIHR by Ophir Inc.) are still leading the market 

trends thanks to their high performance however if heterodyning detection is taken 

into account, then the advantage of FET imagers is very clear since thermal 

detectors cannot work in heterodyne mode. 
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Appendix A: System-level Simulation: 
Matlab Simulink 

 

 

 

  

Figure A-1: Matlab Simulink model of Incremental Sigma Delta ADC  

 

Figure A-2 shows the transient simulation results of Incremental Sigma Delta ADC 

modelled by Matlab Simulink at the following conditions: Signal frequency = 1 kHz, 

sampling frequency = 1 MHz, OSR = 500, and chopping frequency = 100 kHz. 

 

 
Figure A-2: Transient simulation results of Incremental Sigma Delta ADC modelled by Matlab 

Simulink  
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Figure A-3 shows the signal power spectral density (PSD) of Incremental Sigma 

Delta ADC obtained by executing a fast Fourier transform (FFT) on the transient 

response of the quantizer output with a Hann window function. The output spectrum 

of the incremental ADC has been analyzed while the chopper technique is in active 

mode. The incremental ADC achieves 68-dB peak signal-to-noise ratio (SNR) 

equivalent to 10.7 bits effective resolution. 

 

 
 

Figure A-3: signal power spectral density (PSD) results of Incremental Sigma Delta ADC 

modelled by Matlab Simulink. 
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Appendix B: Folded Cascode OTA 
Design Analysis 

 

 
This section presents the analysis of a single-ended folded-cascode OTA that is 

utilized in the CDS circuit whose circuit diagram is presented in Figure B-1. A PMOS 

differential input pair (M1 and M2), operating in weak inversion, is used for lower 

flicker noise. Transistors M6 - M8 are cascode transistors to increase the output 

resistance. Transistors M4 and M5 have a larger W/L with respect to the other 

mirrors, but still smaller with respect to the differential pair. 

 
 

Figure B-1: Schematic of folded cascode OTA of the column CDS for visible pixel. 

 
 
To proceed with the OTA design, the main parameters of the chosen technology 

were verified through a DC simulation of a NMOS and a PMOS and using equations 

Eq. B − 1 and Eq. B − 2, where ID  is the drain current, rDS  is the drain to source 

resistance, λ is the channel-length modulation. 

 

ID =
μCox

2
  

W

L
(VGS − VTH)2                              (B − 1) 

 

rDS =
L

λID
                                              (B − 2) 
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The OTA performance parameters are determined as follows: the small signal 
voltage gain of a folded cascode is given by: 
 

Av = Gm ∗ Rout                                     (B − 3) 

 
Where Gm represents the equivalent transconductance of the OTA and Rout 

represents its output impedance. Both are defined as: 
 

Gm =
ID

Vin
 ≈ gm1                                        (B − 4) 

 

Rout = [gm8 rDS8rDS10]⧸⧸[gm6rDS6(rDS4//rDS1)]              (B − 5) 

 
Therefore, the voltage gain Av can be obtained as: 

 

Av = gm1 ∗ [gm8 rDS8rDS10]⧸⧸[gm6rDS6(rDS4//rDS1)]                 (B − 6) 

 
The dominant pole occurs at the output node due to the high impedance Rout  seen 

looking through that node. The location of dominant pole is given by: 
 

ωp1 = ω3dB =
1

RoutCL
                               (B − 7) 

 
Where CL represents the total capacitance present at the output node and is given 

by:  
CL = Cload + Cgd8 + Cdb8 + Cgd6 + Cdb6                  (B − 8) 

 
The unity gain bandwidth of the OTA is given by: 
 

fUGB = Av ∗ ω3db =
gm1

CL
                              (B − 9) 

 
For a given capacitive load, the unity gain bandwidth can be increased by increasing 
gm1 of the input differential pair.  

  
The input common mode range (ICMR) of the OTA is defined as the voltage range 

that can be applied to the input transistors without driving any transistor into triode 

region. The input common voltage Vin,CM that can place M3 at the edge of 

saturation is defined as: 

 
Vin,CM max =  VDD − Vov3 −  |VGS1|                      (B − 10) 
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where Vov3  is the overdrive voltage of M3 and is given by: 

 
|Vov3| = |VSG3 − |Vth3| |                                    (B − 11) 

 
On the other hand Vin,CM  can be low enough to place M3 and M4 at the edge of 

saturation region.  

 
Vin,CM min =  Vov4 −  |Vth1|                                 (B − 12) 

 
where 𝑉𝑜𝑣4 is the overdrive voltage of M4, therefore, the input common mode range 

is given as: 
 

Vov4 −  |Vth1| ≤ Vin,CM ≤ VDD − Vov3 − |VGS1|                  (B − 13) 

 
A wide-swing current mirror is realized through the connection between the gate of 

M11 and the drain of M9. The amplifier maximum output voltage is given by:  

 
Vout,max = VDD − |Vov11| − |VGS9| + |VTH8|                  (B − 14) 

 
This obtained output voltage is one threshold voltage higher than the one using 
regular output mirrors, the minimum output voltage is given by: 
 

Vout,min = Vov4 + Vov6                                      (B − 15) 

 

Concerning the OTA bias voltages, Vbp and Vbnare generated with current mirrors 

and an external current source, while Vcn and Vcp are obtained with diode-

connected transistors according to their estimated minimum values (to be increased 

by a safety margin) given by: 

 

Vcn = Vov4 + VGS6                                        (B − 16) 

 
 

Vcp = VDD − |Vov11| − |VGS9|                               (B − 17) 
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