

Curriculum 1. Civil and Environmental Engineering

Francesco Serafin

Enabling modeling framework with
surrogate modeling capabilities and
complex networks

Doctoral School in Civil, Environmental and
Mechanical Engineering

2
0
1
9

 -
 D

o
c

to
ra

l
th

e
s
is

Except where otherwise noted, contents on this book are licensed under a Creative
Common Attribution - Non Commercial - No Derivatives
4.0 International License

I

University of Trento
Doctoral School in Civil, Environmental and Mechanical Engineering
http://web.unitn.it/en/dricam
Via Mesiano 77, I-38123 Trento
 Tel. +39 0461 282670 / 2611 - dicamphd@unitn.it

UNIVERSITY OF TRENTODepartment of Civil, Environmental and MechanicalEngineering

Enabling modeling framework withsurrogate modeling capabilities and complex networks

Dissertation
submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy
in Civil and Environmental Engineering

by
Francesco Serafin

Supervisor: PhD Prof Riccardo RigonCo-Advisor: PhD Olaf David

2019

C O N T E N T S
1 introduction 11.1 Problem statement 11.1.1 Motivations 21.1.1.1 Issues related to the use of mathematical modelson the field 31.1.1.2 Issues related to the use of mathematical modelsin research environments 51.2 Summary 92 background work and significance 112.1 Background work 112.1.1 Background work to facilitate operational use of environ-mental models for service delivery organizations 112.1.2 Background work to facilitate operational use of environ-mental models in research environments 152.2 Context 192.3 Scope 202.4 Objectives statement 212.5 Relevance 222.6 Summary 233 surrogate modeling 253.1 Literature review 263.2 Research questions 283.3 Research design and Methods 293.3.1 Methodological approach 303.3.1.1 NeuroEvolution of Augmenting Topologies(NEAT) 303.3.1.2 Feature selective NEAT 363.3.1.3 Ensemble of surrogate models and uncertaintyquantification 383.3.1.4 Framework-enabled NEAT based Surrogate mod-eling (FeNS) 383.3.2 Technical approach and implementation 453.3.2.1 MongoDB 453.3.2.2 Microservice architecture and RESTfulAPI 473.3.2.3 Cloud Service Integration Platform (CSIP) 503.3.2.4 Encog 543.3.2.5 Surrogate Model Services implementation 553.4 Case studies 813.4.1 RUSLE2 823.4.1.1 DoE 1 823.4.1.2 DoE 2 863.4.1.3 DoE 3 923.4.1.4 Conclusions 983.4.2 Agricultural Ecosystem Services (AgES) 993.4.2.1 DoE 1003.4.2.2 Conclusions 1043.5 Summary 105

i

ii contents
4 complex network based physical modeling 1074.1 Introduction 1074.1.1 River network - graph structure analogy 1094.2 Literature review 1104.3 Research questions 1114.4 Research design and Methods 1154.4.1 Methodological approach 1154.4.1.1 Directed Acyclic Graph data structure(DAG) 1154.4.1.2 Environmental Modeling Framework 1194.4.1.3 Implicit parallelism 1204.4.2 Technical approach and implementation 1214.4.2.1 Object Modeling System v3 (OMS3) 1214.4.2.2 Graph Modeling Structure: NET3 1474.5 Case studies 1674.5.1 GEOframe: Monitoring hydrological extremes 1684.5.1.1 Application 1684.5.1.2 NET3 additional features 1684.5.2 GEOframe: JSWMM 1714.5.2.1 Application 1714.5.2.2 NET3 additional features 1724.5.3 FICUS: System of systems of models 1744.5.3.1 Application 1744.5.3.2 NET3 additional features 1764.6 Summary 1765 conclusion 1775.1 FeNS: conclusion and future development 1775.2 NET3: conclusion and future development 179a increasing complexity 181a.1 SWAT 182a.1.1 User experience 183a.1.2 Software metrics 185a.2 SWMM 187a.2.1 User experience 188a.2.2 Software metrics 189b r and python annotation bindings for oms 193b.1 Introduction 194b.2 User experience 194b.3 Technical approach and implementation 197b.3.1 R back-end: Rserve 198b.3.2 Python back-end: Jep 198b.4 Docker image bundle 198b.4.1 OMS R packages management 199b.4.2 OMS Python packages management 199b.5 Applications 199b.5.1 RUG model 200b.5.2 TRANSIMS model 200b.6 Conclusions 201bibliography 203

L I S T O F F I G U R E S
Figure 1 OMS-compliant modeling solution that implements the wa-ter budget as theory of embedded reservoir, credit Bancheri(2017). 8Figure 2 Schematic to represents evolution of research modelsfrom stand-alone applications to encapsulated framework-compliant components. This processed unified/simplifieduser-model interface and model-model intercommunication,and enabled model runs on high performance computingenvironments. The arrow on the left side illustrates thereduction of model approach complexity by standardizinginput/output formats, and the reduction of model mainte-nance and development cost. 12Figure 3 Schematic to represent sub service and database depen-dencies of CSIP-R2. The overall dependencies are about290GB in size. 13Figure 4 OMS-compliant components designed and developed byDr. Giuseppe Formetta and released in the initial versionof JGrass-NewAGE, credit Formetta et al. (2014a). 16Figure 5 Schematic of watershed scale processes domains in amountain catchment, credit Montgomery (1999). 19Figure 6 Schematic to represent current modeling practice. Researchscientists take advantage of the benefits of EMF architec-tural design and modeling flexibility to release/deploy aswell as access conceptual/physical models; opposingly, ser-vice delivery organizations make use of last enhancementsin terms of scientific knowledge and modeling practiceto provide stakeholders and policy makers with accurateestimate of quantity of interest. 20Figure 7 Schematic of actual contributions of this dissertation. Anew surrogate modeling layer is interpose to bridge thegap between service delivery organizations and conceptu-al/physical models. Contemporary, EMF modeling capa-bilities are extended by implementing a graph modelingstructure. This allows for bridging the gap between re-searcher scientists and modeling platforms by enablingmodelers creativity and elevating concept of modeling en-capsulation and re-use. 22Figure 8 Single hidden layer feedforward neural network, creditGovindaraju and Rao (2000a). 27Figure 9 Competing conventions problem. The two ANNs haveidentical structure but different order of hidden neurons.Here, crossovering the two networks might result in missingone of the 3 hidden units. 32Figure 10 The genome (left side) maps the actual network structure(right side). Two genes (node and connection) describeneuron types and their interconnections. 33

iii

iv list of figures
Figure 11 Example of add node mutation. Left hand side illustratesthe original ANN genotype and phenotype, while righthand side illustrates ANN genotype and phenotype afterstructural mutation. 34Figure 12 Example of add link mutation. Left hand side illustratesthe original ANN genotype and phenotype, while righthand side illustrates ANN genotype and phenotype afterstructural mutation. 35Figure 13 Process of two mating parents. 35Figure 14 Left hand side shows the initial structure of NEAT gener-ated ANN. Right hand side shows the initial structure ofa FS-NEAT generated ANN. 37Figure 15 Dataset splitting in training, validation, and testing. 38Figure 16 With respect to Figure 2, this schematic illustrates theintroduction of a second step. In addition to frameworkencapsulation, original research model runs generate SMs,which can be used with little or no user effort and don’t re-quire any model maintenance and development cost. 39Figure 17 Generic FeNS concept. ML library employes originalmodel runs to emerge eSM from any modeling solu-tion. 40Figure 18 FeNS architectural design. FeNS-proxy interposes be-tween user and model service, orchestrates parsing, re-trieval and computing input/output original model param-eters, and finally triggers surrogate model generation byfeeding FeNS-eSM with input/output snapshots. 44Figure 19 CSIParchitecture, credit David et al. (2014a). 51Figure 20 Set of 5 CSIP services that allows for generating theSM. 56Figure 21 Sequence diagram of CSIP-collect service. 57Figure 22 Sequence diagram of CSIP-collect service when csv file isattached. 60Figure 23 Formal structure of MongoDB “raw” collection. 60Figure 24 Sequence diagram of CSIP-normalize service. 61Figure 25 Schematic of the Stages involved in the Feature Scalingaggregator pipeline. 63Figure 26 Sequence diagram of CSIP-normalize service when "raw"and "valid" collection are available. 66Figure 27 Formal structure of MongoDB "normalized" collec-tion. 67Figure 28 Conceptual approach of CSIP-train ensemble SMs. 68Figure 29 Sequence diagram of CSIP-train service. 68Figure 30 UML of implemented scaling mechanism. 70Figure 31 Conceptual approach of CSIP-validation service. 73Figure 32 Formal structure of MongoDB "trained.files" collec-tion 74Figure 33 Formal structure of MongoDB "trained.files" collec-tion 75Figure 34 Formal structure of MongoDB "trained.files" collec-tion 76Figure 35 Sequence diagram of CSIP-select service. 77Figure 36 UML of implemented selection mechanism. 78Figure 37 Formal structure of MongoDB "selected" collection. 79

list of figures v
Figure 38 Sequence diagram of CSIP-run service. 79Figure 39 Geographic distribution of the Corn Belt, credit (Greenet al. (2018a)). 83Figure 40 Cherokee county in Iowa. 84Figure 41 Generic SM input/output structure for DoE 1. 84Figure 42 Red crosses represents SM estimates, while black dotsrepresents original RUSLE2 runs. 85Figure 43 Scatterplot of SM estimates against RUSLE2 re-sults. 86Figure 44 Buena Vista and Clay counties in Iowa. 87Figure 45 Generic SM input/output structure for DoE2. 88Figure 46 Expert modules design for DoE2. 89Figure 47 Cluster 1. Boxplots represents the ensemble of SMs esti-mates against RUSLE2 erosion runs (red crosses). 90Figure 48 Cluster 1. Scatterplot of SM estimates (computed onthe median of each boxplot) and RUSLE2 simulated val-ues. 90Figure 49 Cluster 2. Boxplots represents the ensemble of SMs esti-mates against RUSLE2 erosion runs (red crosses). 91Figure 50 Cluster 2. Scatterplot of SM estimates (computed onthe median of each boxplot) and RUSLE2 simulated val-ues. 91Figure 51 Buena Vista, Cherokee, Clay and Wrigth counties inIowa. 93Figure 52 Generic SM input/output structure for DoE3. 94Figure 53 Expert modules design for DoE3. 95Figure 54 Cluster 1. Boxplots represents the ensemble of SMs esti-mates against RUSLE2 erosion runs (red crosses). 95Figure 55 Cluster 1. Scatterplot of SM estimates (computed onthe median of each boxplot) and RUSLE2 simulated val-ues. 96Figure 56 Cluster 2. Boxplots represents the ensemble of SMs esti-mates against RUSLE2 erosion runs (red crosses). 96Figure 57 Cluster 2. Scatterplot of SM estimates (computed onthe median of each boxplot) and RUSLE2 simulated val-ues. 97Figure 58 Cluster 3. Boxplots represents the ensemble of SMs esti-mates against RUSLE2 erosion runs (red crosses). 97Figure 59 Cluster 3. Scatterplot of SM estimates (computed onthe median of each boxplot) and RUSLE2 simulated val-ues. 98Figure 60 SFIR watershed across Wright, Franklin, Hamilton, andHardin counties, credit Green et al. (2018b). 99Figure 61 Generic SM input/output structure for DoE1. 101Figure 62 Boxplots represents the ensemble of SMs estimates againstAgES runoff computations (red squares). 102Figure 63 Scatterplot of SM estimates (computed on the median ofeach boxplot) and AgES simulated values. 102Figure 64 Boxplots represents the ensemble of SMs estimates againstAgES runoff computations (red squares). 103Figure 65 Scatterplot of SM estimates (computed on the median ofeach boxplot) and AgES simulated values. 103

vi list of figures
Figure 66 Boxplots represents the ensemble of SMs estimates againstAgES runoff computations (red squares). 104Figure 67 Scatterplot of SM estimates (computed on the median ofeach boxplot) and AgES simulated values. 104Figure 68 Representation of the river network - graph structure anal-ogy, credit Bancheri (2017) 109Figure 69 Generic schematization of a hydropower plant. Part of thestored water flows through the penstock from the dam, whilethe remaining flow through the diversion reach. Credit,Palen Lab blog. 113Figure 70 Schematization of OMS3 architectural design, credit Davidet al. (2013). 123Figure 71 Execution phases, and data flow of OMS3 modeling solu-tion, credit David et al. (2013) 126Figure 72 UML of OMS3 available modeling simulation types. 129Figure 73 Usage example of @In annotation, credit David et al.(2013). 138Figure 74 Usage example of @Out to @In component fields connec-tion, credit David et al. (2013). 140Figure 75 NET3 conceptual design. From a single OMS3 mod-eling solution to interconnected and intercommunicatingmodeling solutions. 147Figure 76 NET3 conceptual design. Every node of the graph model-ing structure runs a different modeling solution to betterfit physical processes description. Intercommunication be-tween modeling solutions happens with unlimited numberof variables. 147Figure 77 UML of NET3 DiGraph class. 148Figure 78 NET3 family concept. 149Figure 79 UML of search algorithm data structures. 154Figure 80 Concept of search upstream or downstream. 155Figure 81 UML of OMS3 available modeling simulation types. 156Figure 82 Generic factory method design pattern, credit Gamma(1995). 158Figure 83 UML of NET3 factory method design pattern. 159Figure 84 UML of OMS3 available modeling simulation types in-cluding NET3. 162Figure 85 Webgis front-end, credit Bancheri et al. (2018a). 168Figure 86 HRUs, credit Bancheri et al. (2018a). 168Figure 87 Multi-site calibration, credit Bancheri et al. (2018a). 170Figure 88 GEOframe validation at Ponte La Marmora, credit Bancheriet al. (2018a) 171Figure 89 GEOframe validation at Agri SS106, credit Bancheri et al.(2018a) 171Figure 90 NET3-JSWMM component granularity, credit Dalla Torreet al. (2018); Dalla Torre (2019). 172Figure 91 JSWMM modeling results, Dalla Torre et al. (2018);Dalla Torre (2019) 173Figure 92 FICUS SSoM conceptual design. 175Figure 93 SSoM results displayed from the FICUS-UI. 175Figure 94 NET3 Graph of Graphs conceptual design. 176Figure 95 Trend of number of input files required for running a SWATsimulation over official releases. 184

https://palenlab.wordpress.com/2017/10/11/run-of-river-hydropower-and-salmonids-potential-effects-and-perspective-on-future-research/

list of figures vii
Figure 96 Trend of number of input parameters to setup for runninga SWAT simulation over official releases. 184Figure 97 Trend of number of lines of source code (blue line) andcomments (red line) in SWAT code base over official re-leases. 185Figure 98 Trend of number of lines of files of the SWAT code baseover official releases. 186Figure 99 Percentage of number of added, modified, removed, andunchanged lines of code between SWAT consecutive offi-cially released versions. Percentages are computed on theolder version. 187Figure 100 Trend of number of lines of source code (blue line) andcomments (red line) in SWMM code base over officiallyreleased versions. Left Y axis shows the magnitude of thenumber of lines of code, right Y axis shows the magnitudeof the number of lines of comments. 189Figure 101 Percentage of number of added, modified, and removed linesof code between SWMM consecutive officially releasedversions. 190Figure 102 RUG modeling solution: Java components in light orange,R OMS-compliant components in light blue. 200Figure 103 TRANSIMS sample modeling solution: Java component inlight orange, Python OMS-compliant component in lightgreen. 201

L I S T O F TA B L E S
Table 1 Modified table from Rizzoli et al. (2006) illustratesmatches between model user types (rows) and their roles(columns). 2Table 2 Standard API exposed by a generic public class Di-Graph. 117Table 3 Standard API exposed by a generic public classSearchAlgo. 118Table 4 Comparison between heavyweight (traditional) andlightweight frameworks, credit Lloyd et al. (2011). 124Table 5 List of OMS3 provided statistical moments. 133Table 6 List of OMS3 provided model efficiencies. 134Table 7 Number of file, lines of code, and comments of SWAT overofficial releases. 186Table 8 Percentage of identical, modified, removed, and added num-ber of lines of code between SWAT versions (percentagecomputed on the older version). 187Table 9 Number of file and lines of code of SWMM code base overofficial releases. 190Table 10 Percentage of modified, removed, and added number of linesof code between SWMM versions (percentage computedon the older version). 191Table 11 R and Python available data types. 197

ix

L I S T O F A LG O R I T H M S
1 Pseudo-code of FS-NEAT population initialization in Encog. 71

xi

L I S T I N G S
3.1 JSON Object of a generic model input parameter. 423.2 JSON Object for STANDARD input parameter. 423.3 JSON Object for COMPUTED input parameter. 423.4 JSON Object for ADDITIONAL input parameter. 433.5 JSON Object for DEPENDENCY DERIVED input parameter. 433.6 JSON Object for OUTPUT parameter. 433.7 Example of a putDependencies method. 433.8 REST call to EFH2, credit David et al. (2014a). 533.9 JSON response from a CSIP-eft run, credit David et al. (2014a). . . 533.10 CSIP-compliant EFH2 model, credit David et al. (2014a). 543.11 Template JSON payload of CSIP-collect. 573.12 Template JSON payload of CSIP-collect to generate a commondedicated “validation” collection. 593.13 Template JSON payload of CSIP-normalize service. 613.14 MongoDB Java client of Feature Scaling aggregator pipeline. 623.15 Stage 1 code snippet. 643.16 Stage 2 code snippet. 643.17 Stage 3 code snippet. 643.18 Conditional operator leveraged in Stage 3. 653.19 Stage 4 code snippet. 653.20 Stage 5 code snippet. 653.21 Stage 6 code snippet. 663.22 Template JSON payload of CSIP-train service. 693.23 Template JSON payload of CSIP-select service. 763.24 Template JSON payload of CSIP-run service. 793.25 Generic JSON response of CSIP-run service. 804.1 Example of a POJO class turned into OMS-compliant componentby accommodating OMS3 annotations. 1254.2 OMS3 modeling solution formal structure. 1274.3 Example of OMS3 modeling solution, credit Rigon et al. (2016) andBancheri (2017). 1284.4 Example of resource section in OMS3 modeling simulation with listof single resources. 1304.5 Example of resource section in OMS3 modeling simulation witharray of resources. 1304.6 Example of available options in the OMS3 plot sub-element. 1304.7 OMS3 plot element. 1314.8 OMS3 plot element. 1314.9 OMS3 plot element. 1314.10 OMS3 plot element. 1314.11 Example of OMS3 summary element with single statistic. 1324.12 Example of OMS3 summary element with multiple statistics on aspecified period of time. 1334.13 Example of OMS3 efficiency implementing multiple methods. 1344.14 Results of OMS3 efficiency. 1354.15 Example of output strategy provided in a OMS3 modeling simulation.1354.16 Example of OMS3 model element extracted from Listing 4.3, creditRigon et al. (2016) and Bancheri (2017). 136

xiii

xiv listings
4.17 OMS3 component sub-element formal structure. 1374.18 Example of OMS3 component sub-element. 1374.19 OMS3 parameter subelement formal structure. 1374.20 Example of OMS3 parameter subelement. 1374.21 Example of OMS3 parameter file. 1384.22 Usage example of parameter subelement in OMS3 modeling simulation.1394.23 OMS3 connect subelement formal structure. 1394.24 Example of OMS3 connect subelement derived from Listing 4.3. . . . 1394.25 Example of OMS3 logging subelement with logging level per com-ponent. 1404.26 Example of OMS3 logging subelement with one dedicated compo-nent logging in addition to generic logging level. 1414.27 Example of OMS3 logging subelement with generic logging level. . 1414.28 Implementation of Logging class in OMS-compliant component. . . . 1414.29 OMS3 invoke method in modeling simulation. 1424.30 OMS3 run method. 1434.31 OMS3 initialize reflective call. 1434.32 OMS3 input parameter read in and set up. 1434.33 OMS3 execute reflective call. 1434.34 OMS3 finalize reflective call. 1434.35 OMS3 generic implementation of callAnnotated method. 1444.36 OMS3 while conditional execution. 1444.37 OMS3 implicit parallelization. 1454.38 OMS3 implicit parallelization. 1464.39 NET3 declaration of vertices and edges data structures. 1484.40 NET3 instantiation of vertices and edges. 1484.41 Example of Java synchronized wrapper class. 1484.42 NET3 Family private class. 1504.43 NET3 Family private class. 1504.44 NET3 vertex initialization. 1514.45 NET3 family initialization. 1514.46 NET3 post ordering. 1514.47 NET3 DiGraph reversing. 1524.48 Breadth first path data structure implementation. 1544.49 Depth first path data structure implementation. 1544.50 Depth first path data structure implementation. 1564.51 Upstream searching algorithm implementation. 1574.52 Downstrean searching algorithm implementation. 1574.53 NET3 graph search algorithm implementation. 1584.54 NET3 encapsulation of depth first and breadth first. 1604.55 Net3 DSL sim file. 1614.56 Formal structure of NET3 search direction DSL. 1624.57 Usage example of NET3 search direction DSL. 1624.58 NET3 run method. 1634.59 NET3 observer initialization. 1644.60 NET3 observer notification. 1644.61 NET3 ready for simulation check. 1654.62 Example of a POJO class turned into OMS/NET3-compliant com-ponent by accommodating OMS3 and NET3 annotations. 1654.63 inFluxes/outFluxes DSL usage example. 1664.64 inFluxes formal structure. 1664.65 outFluxes formal structure. 1664.66 NET3 flags and paramfiles extensions. 169

listings xv
4.67 NET3 flags calibrate extension. 1704.68 NET3-JSWMM access to common data structure, credit Dalla Torreet al. (2018); Dalla Torre (2019). 174B.1 R OMS-compliant version of the AttractorAnalysis.R 195B.2 Python OMS-compliant version of the TransimsObj.py 196

A C R O N Y M S
AgES AgroEcoSystem
AgES-W AgroEcoSystem-Watershed
ANN Artificial Neural Network
API Application Programming Interface
BFS breadth-first search
BSON Binary jSON
CCA Common Component Architecture
CCP Cloud Computing Platform
CE Cellular Encoding
CI continuous integration
CSIP Cloud Service Integration Platform
CSU Colorado State University
CPU Central Processing Unit
CV Cross Validation
DAG Directed Acyclic Graph
DEM Digital Elevation Model
DFS depth-first search
DoE design of experiments
DOI Digital Object Identifier
DSL Domain Specific Language
DSS Decision Support System
EMF Environmental Modeling Framework
eSM ensemble of surrogate models
ESMF Earth System Modeling Framework
ESP ensemble streamflow prediction
FD-NEAT Feature Deselective NEAT
FeNS Framework enabled NEAT-based Surrogate modeling
FICUS Framework for Integrating the Complexity of Uncertain Systems
FIFO First-In-First-Out
FS-NEAT Feature Selective NEAT

xvii

xviii listings
GA Genetic Algorithm
GIS Geofraphic Information System
GoF goodness of fit
GoG Graph of Graphs
GMS Graph Modeling Structure
GPL General Purpose Programming Language
GPU Graphics Processing Unit
GUI Graphical User Interface
HRU hydrological response unit
HTTP HyperText Transfer Protocol
JAMI Just Another Model Interpolator
JDK Java Development Kit
JSON JavaScript Object Notation
JVM Java Virtual Machine
LIFO Last-In-First-Out
LOC Lines of Code
LOOCV leave-one-out cross-validation
MA Microservice Architecture
MaaS Model as a Service
ML Machine Learning
MLPs Multilayer Perceptrons
MPI message passing interface
MSE Mean Squared Error
NE NeuroEvolution
NEAT NeuroEvolution of Augmenting Topology
NS Nash-Sutcliffe
OMS Object Modeling System
PDGP Parallel Distributed Genetic Programming
POJO Plain Old Java Object
PRMS Precipitation-Runoff Modeling System
PSO Particle Swarm Optimization
RAM random-access memory
REST REpresentational State Transfer

listings xix
RMSE Root Mean Squared ErrorROA Resource-Oriented ArchitectureROTO Routing Outputs to OutletRRS Reproducible-Research SystemRTE Run Time EnvironmentRUG Regional Urban GrowthRUSLE2 Revised Universal Soil Loss Equation, Version 2SaaS Software as a ServiceSE Software EngineeringsGA Structured Genetic AlgorithmSFIR South Fork Iowa RiverSM Surrogate ModelSOA Service Oriented ArchitectureSoC separation of concernsSSoM System of Systems of ModelsSVD Singular Value DecompositionSWA Southfork Watershed AllianceSWAT Soil & Water Assessment ToolSWE Snow Water EquationSWMM Storm Water Management ModelSWRBB Simulator of Water Resources in Rural BasinTDD Test-Driven DevelopmentTIN triangulated irregular networkTRANSIMS TRansportation ANalysis SIMulation SystemTV training+validationTWEANN Topology and Weight Evolving Artificial Neural NetworksWPS Web Processing ServicesUML Unified Modeling LanguageURI Uniform Resource IdentifierUSDA United Stated Department of AgricultureUSDA-ARS United States Department of Agriculture - Agricultural ResearchServiceUSDA-NRCS United States Department of Agriculture - Natural ResourcesConservation ServiceVCS Version Control System

A B S T R A C T
Conceptual and physically based environmental simulation models as productsof research environments efforts became complex software over time in order toallow describing the behaviour of natural phenomena more accurately. Resultsfrom these models are considered accurate but often require to operate an entiresystem of modeling resources with dedicated knowledge, an extensive set up, andsometimes significant computational time. Model complexity limits wide modeladaptation among consultants because of lower available technical resources andcapabilities. However, models should be ubiquitous to use in both research andconsulting environments.
This dissertation aims to address and alleviate two aspects of research modelcomplexity: 1) for researchers, the model design complexity with respect to itsinternal software structure and 2) for consultants, the model application complexitywith respect to data and parameter setup, runtime requirements, and proper modelinfrastructure setup. The first contribution provides modeling design and implemen-tation support by managing interacting modeling solutions as “Directed AcyclicGraph”, while the second one helps to create surrogate models of complex physicalmodels as a streamlined process.Both contributions are implemented within the Object Modeling System(OMS)/Cloud Service Integration Platform (CSIP) modeling framework and in-frastructure and were applied in various studies.
First, a Machine Learning (ML)-based surrogate model approach is presentedto respond to field application requirementes to get quick but "accurate enough"model results with limited input and limited a-priori knowledge of the internalphysical processes involved. The surrogate model aims to capture the behaviour ofa physical model as an ensemble system of Artificial Neural Network (ANN). Here,the NeuroEvolution of Augmenting Topology (NEAT) technique has been leveragedbecause of its integration of a genetic approach to build and evolve its ANNs duringsupervised training. Throughout this phase, the thorough design of the servicesfacilitate seamless monitoring of structural mutations of the artificial neural networkand its performances with respect to behavioural emulation of the original modelresponse. This results in a streamlined surrogate model generation. Furthermore,the stochasticity inherent to the evolutionary genetic algorithm combined witha specially designed cross-validation approach allows for straightforward use ofthe ensemble application. Several, slightly different artificial neural networksare concurrently trained. The ensemble system is built upon the selection of theutmost performant surrogate models and is used collectively to provide uncertaintyquantified results when applied against new data.
Secondly, a Directed Acyclic Graph (DAG) modeling structure NET3 was de-veloped. NET3 provides appropriate data structures to represent modeling statesinteractions as relationships based on network topologies. The inherent structureof the DAG commands the execution of modeling tasks. NET3 implicitly managesthe parallel computation depending on the network topology. A node of a NET3modeling structure encapsulates any sort of modeling solution such as a systemof ordinary differential equations, a set of statistical rules, or a system of partialdifferential equations. Each link connects these modeling solutions by handling their

xxi

xxii listings
data flow. As a result, NET3 simplifies 1) the translation of physical mathematicalconcepts into model components, and 2) the management of complex interactionsof modeling solutions. NET3 also pushes forward the idea of separating concernsbetween software architecture and scientific model codebase. It manages aspectsthat relate to the architectural design of the graph modeling structure and letsresearch scientist focus on their model’s domain. NET3 improves encapsulationand reusability of scientific/mathematical concepts. It avoids code duplication byallowing the same modeling solution to be adopted in different nodes and finelyadapted to specific requirements. In summary, NET3 enables a new level of model-ing flexibility by allowing to quickly change model representations to explore newmodeling solutions.

The two presented contributions were integrated into the OMS/CSIPEnvironmental Modeling Framework (EMF)/Cloud Computing Platform (CCP).EMFs are standard practice in environmental modeling because they represent asoftware solution of separating the burden of software architectural design manage-ment from scientific research.Here, OMS/CSIP has been identified “advanced” in terms of EMFs design. Itoffers high flexibility, low language invasiveness, fine and thorough architecturaldesign, and innovative cloud computing deployment infrastructure. These aspectsmake OMS/CSIP infrastructure the suitable platform to host NEAT based surrogatemodeling and NET3 extensions. Framework enabled NEAT-based Surrogatemodeling (FeNS) results from the full integration of NEAT based surrogate modelingapproach with OMS/CSIP platform. Here, the surrogate model approach wasdeveloped as CSIP services to help transitioning from research models to “field
models” by enabling the modeling framework to interact with CSIP services, MLlibraries, and a NoSQL database to emerge model surrogates for a(ny) modellingsolution. OMSCSIP was extended to harvest data from each model run andautomatically derive the surrogate model at the modeling framework level. NET3extends OMS modeling simulations to run as a graph network of interconnectedmodeling solutions. Furthermore, it enhances available OMS calibration algorithmsto become multi-site calibration procedures. OMS already provided implicit parallelcomputation of independent components in a modeling solution. NET3 now adds afurther layer of implicit parallelism by concurrently running independent modelingsolutions.

Two studies were carried out to develop and test FeNS while three applicationssupported the development and testing of NET3.Surrogate models of the Revised Universal Soil Loss Equation, Version 2(RUSLE2) were generated to scale up from simple test cases with a constrainedinput space to more generic applications including a larger variety of input parame-ters. The main goal of the surrogate model was to streamline and simplify accessto the RUSLE2 model behaviour. We performed sensitivity analysis of RUSLE2to limit the input space to only relevant parameters (e.g. soil properties, climateparameter, field geometries, crop rotation description). The main study area wasthe State of Iowa starting from a single county (Clay county) ending up to fourcounties (Buena Vista, Cherokee, Clay, and Wright). Clustering methodologieswere applied to improve surrogate model accuracy and to accelerate the trainingprocess by reducing the dataset size. The overall “goodness-of-fit” against thetesting dataset estimated on the median of the uncertainty quantified result of thesurrogate models ensemble was always above 0.95 Nash-Sutcliffe (NS), Root MeanSquared Error (RMSE) between 0.13 and 0.36, and bias between -0.07 and 0.02.In many cases, accuracy of the surrogate model with respect to testing dataset wasabove 0.98 NS.

listings xxiii
Surrogate models of the AgroEcoSystem (AgES) were generated to apply andtest FeNS methodology to a semi-distributed hydrologic model. The main goalof the surrogate model was to streamline and simplify access to the AgES modelbehaviour. Only relevant lumped parameters on watershed centroid were used totrain the surrogate models and limit the input space to only relevant parameters (e.g.precipitation, groundwater level, LAI, and potential evapotranspiration). The mainstudy area was the South Fork Iowa River (SFIR) watershed in the State of Iowaacross Wright, Franklin, Hamilton, and Hardin counties. The overall “goodness-of-fit”against the testing dataset estimated on the median of the uncertainty quantifiedresult of the surrogate models ensemble was above 0.97 NS, RMSE of 2.24, andbias of -0.0794.With respect to NET3, the first application is the real-time modeling of floodforecasting through GEOframe system for the Civil Protection of Regione Basilicataimplemented by PhD Bancheri. To scale the computation and finely tune calibrationparameters, the Basilicata river basins were split into subcatchments where eachwas represented by a different NET3 node.The second application was part of Mr. Dalla Torre’s master’s thesis where thecomputational core of the rainfall-runoff model of Storm Water Management Model(SWMM by EPA) was componentized. NET3 now allows for reimplementing aconcise and lightweight SWMM modeling core and highly parallel model runs.Software architectural design of rainfall-runoff, routing and sewer pipe designcomponents targeted separation of concerns, single responsibility, and encapsulationprinciples. It resulted in clean and minimized code base. NET3 manages componentconnections and scalable computation by hosting rainfall-runoff modeling solutioninto separated nodes from routing and sewer pipe design modeling solution. It alsoenables each node of the modeling structure to 1) access a shared data structure tofetch input data from and push results to (SWMMobject), and 2) internally analyzethe upstream subtree in order to adjust sewer pipe design parameters.The third test case is the application of a System of Systems of Models (SSoM)where each node of the graph modeling structure encapsulates a single responsibilitysystem of urban models. Because of the stochasticity involved in each system ofmodels, the entire graph modeling solution was required to run several times andgenerate independent realizations. Hence, NET3 was enabled to run a Graph ofGraphs (GoG) modeling structure.

1 I N T R O D U C T I O N
Contents1.1 Problem statement 11.1.1 Motivations 21.1.1.1 Issues related to the use of mathematicalmodels on the field 31.1.1.2 Issues related to the use of mathematicalmodels in research environments 51.2 Summary 9

1.1 problem statement
Conceptual and physically based environmental simulation models as productsof research environments efforts became over time complex software that allow foraccurately describing the behaviour of natural phenomena. However, on-the-fieldpersonnel and consultant agencies struggle to properly exercise these models be-cause of their steep learning curve and excessive runtime requirements. Additionally,scientists themselves strive to maintain and improve such modeling software mostlybecause the development lacks proper software architecture design and applicationof good programming principles.
The development history of a model usually starts from a core mathematicalconcept codified into a piece of software for solving one dedicated problem. Over thetime, the need of accounting for more simultaneous physical processes, describingand studying natural phenomena at different scales or introducing innovativeengineering design practices drives model development by expanding functionalitiesand capabilities.The increased complexity goes usually along with a higher number of inputparameters and datasets, and more complicated numerical methods for solvingcoupled differential equations (Formetta et al. (2014a)). Research advancementsin modeling or mathematical fields and technological progress resulting in highercomputational power and high resolution data availability fuel the need for modelsrepresenting environmental reality at different scale more accurately.
This evolutionary process mutates the initial single responsibility code base intomulti-responsibilities model: its core gets expanded with additional computationalmodules, subroutines or even tools for managing and homogenizing a wide varietyof input datasets, model parameters and model structures. The mathematical modelbecomes over time a mix of multidisciplinary tools which have to be maintainedand developed. Advancements in each tool have to be coordinated and integratedwith advancements in every other related tool. For example, between 1980s and1990s GIS algorithms and capabilities got to the point of proved stability androbustness and GUIs facilitated user interaction to perform complex geographicalanalysis (Brovelli (2006)). In the following years, as reported by Westervelt (2001)some famous modeling softwares such as AGNPS (Young et al. (1989)), ANSWERS

1

2 introduction
(Beasley et al. (1980)), CASC2D (Julien and Saghafian (1991)), GLEAMS (Leonardet al. (1987)), SWAT (Arnold and Allen (1999)), RZWQM (Team et al. (1998)), WEPP(Laflen et al. (1991)), MODFLOW (Harbaugh et al. (2000)), WAMS (DePinto andRodgers (1994)) integrated GIS (GRASS (Goran et al. (1983); Ehlschlaeger (1989);Westervelt et al. (1991)) in these specific cases) interfaces and algorithms in theirmodeling core (Cronshey et al. (1993); Rewerts and Engel (1991); Krummel et al.(1996); Hay et al. (1993); Srinivasan (1992); Srinivasan et al. (1998); Arnold et al.(1995)). Since then, mathematical models and GIS capabilities developed alongtogether. Practical examples are the management and integration of satelliteimagery and data assimilation techniques in the standard usage of process-basedmodels (Akinmolayan et al. (2018); Anees et al. (2018); Bayramov et al. (2019)).

In the next section, a deeper analysis of the identified problem is performed.Solid bases and motivations are provided to support the relevance of this research.
1.1.1 Motivations

Conceptual/physical models should be ubiquitous to use in both research andconsulting environments. Rizzoli et al. (2006) correctly summarizes model user typesand roles (Table 1 is a slightly modified version of Rizzoli et al. (2006)). However,no model actually fits requirement from every user and role simultaneously.
Users Roles HardCoders SoftCoders Linkers Run-ners Player View-ers ProvidersPrime 4 4Other End Users 4 4 4 4Technical 4 4 4Researchers 4 4 4 4 4Table 1: Modified table from Rizzoli et al. (2006) illustrates matches between model usertypes (rows) and their roles (columns).
The use of numerical models in both scientific and consultant environments ischallenging because of a number of issues. The analysis of these issues motivatedthis research. However, before going into details of each issue, it is important tounderstand the meaning of “operational use” in research and consultant communities.
Service delivery organizations and consultant companies are mainly end-usersof mathematical models. Their goal is to leverage software features to providestakeholders and decision makers with accurate information in topic like conservationpractices (e.g. land management and crop operations to avoid excessive soil erosion),prediction of quantity of interest (e.g. water quantity for electric power planmanoeuvres), etc.They don’t develop or maintain software, they are not capable or interested inimproving numerical methods, conceptual design or physical process representationsdue to lack of expertise and resources. Furthermore, from an IT perspective,they may not have in-house computing environments available to run and deploymodeling software. Consequently, they have to rely on third-party environmentsand personnel.
In research environments, “operational use” means both maintenance/developmentand application of mathematical models.Model development involves the integration of last enhancements in conceptualdesign, or numerical/mathematical and physical fields. Additionally, maintenance

1.1 problem statement 3
of integrated tools like GIS capabilities are an important part of model evolution.IT development involves integration and maintenance of modeling frameworks, dbconnections and design, and proper development to keep up with last innovations, e.g.,cloud computing, scalability on computer clusters and super-computing environmentsin general.The application side involves model testing and state-of-art consultancy exercisesto solve particular problems. In this case, high expertise is available to dealwith complex scientific debugging procedures and results interpretation, input datamanagement and preparation, calibration and sensitivity analysis procedures (Greenet al. (2015)). Complete model understanding allows for identifying conceptual,mathematical/numerical problems and modeling inaccuracies and finely tuning inputparameters and mathematical aspects, thoroughly testing each and every modelcapability.Unfortunately, smaller research groups cannot rely on suitable IT expertisein order to properly design, develop, and maintain big complex models. Pastexperiences show how lacking of proper software architecture design ends up withchaotic, hardly developable and readable/debuggable code bases (Rizzoli et al.(2006); David et al. (2013); Formetta et al. (2014a)). Which in turn slows downresearch advancements.

Now that the concept of “operational use” in both environments has been intro-duced and described, it’s easier to understand that there are issues related to dailyuse of conceptual and physical models. And these issues are, nevertheless, different.Consequently, this problem statement deepens issues analysis in two differentsubsections. The next subsection identifies and describes issues related to theoperational use of mathematical models on the field or in consultant agencies.Subsequently, issues related to operational use of mathematical models in researchenvironments are tackled.
1.1.1.1 Issues related to the use of mathematical models on the fieldEnvironmental models are regularly applied by consultant agencies and on-the-field personnel. However, daily use is not effortless due to a series of constraintsand issues that are following analyzed.

Rainfall-runoff modelling may serve as an example here. Rainfall-runoff is ahighly nonlinear, spatially heterogeneous, and very complex process (Srinivasuluand Jain (2009); Beven (2011)) which is comprised of several different, interconnectedprocesses, some of which are not clearly understood yet (Hrachowitz and Clark(2017); Young and Leedal (2013); Zhang and Govindaraju (2000); Porporato andRidolfi (2001)). The modeling approach evolved over time from a pure empiricalform (the Rational Method is the first empirical model ever published in 1851,developed by Thomas Mulvaney), through conceptual models (first models datesback to 1960s, when simplified equations describing hydrological processes werenumerically integrated thanks to increased computational power (Wheater et al.(2012); Beven (2011)), to a fully physically based one (1970s computational powerwas such to solve partial differential equations (Wheater et al. (2012); Beven (2011);Wagener et al. (2004)). Strengths of empirical models are small input parameter setsrequired and a fast model runtime. However, they lack result accuracy and physicalunderstanding of involved phenomena. The need of comprehensive understanding ofphysical processes at different scales pushed research efforts toward the developmentof conceptual models first and fully physically based consequently.
Conceptual models are built upon a conceptual representation of the analyzedprocess (Wheater et al. (2012); Beven (2011)). Processes are described by simplified

4 introduction
ordinary differential equations, and, in the case of rainfall-runoff models, schematizedthrough interconnected reservoirs (Bancheri et al. (2019)). This allows on-the-fieldpersonnel to easily understand the model behaviour. However, the implementedequations involve a number of parameters that are not directly or physicallymeasurable. Thus, complex calibration procedures are necessary to estimate thoseparameters for a specific catchment. Here, the “equifinality” problem arises (Beven(1993)): different combinations of parameter values may fit observed data especiallywhen available data have restricted information content and the performance criterionis based off of a single objective function (Wheater et al. (2012)). Then it is impossibleto uniquely identify the model structure and apply it to ungauged catchments. Whencalibration procedures cannot solve the non-identifiability problem (Beven (1993)),a single set of parameters cannot be estimated. In this case, Generalized SensitivityAnalysis (Spear and Hornberger (1980)) allows to select “behavioural” set ofparameters according to observed data (Wheater et al. (2012)). Afterwords, themodel output is uncertainty quantified and contribution of each input parameteruncertainty evaluated (Wikipedia (2018)).The equifinality problem has a smaller impact on simulation runs when it comesto multi-criteria optimization. Here, additional information are available andintegrated into calibration procedures (Yapo et al. (1998); Wagener et al. (2001,2000)). Nonetheless, modeling tool-kits support sensitivity analysis in order toinvestigate and identify the most suitable model structure and parameter uncertainty(Wheater et al. (2012)).In summary, conceptual models are easily understandable without specific ex-pertise because of their abstract representation of the real world. However, theyrequire both calibration and sensitivity analysis procedures which involve severalmodel runs, setup of design of experiments, and final interpretation of parameterestimate and model outputs.

Physically based or mechanistic models are built upon partial differential equa-tions. The latter are the most accurate mathematical description of physical processes(Wheater et al. (2012); Fatichi et al. (2016)). These equations are discretized asfinite difference, finite elements or finite volumes over a spatial mesh and solvednumerically (Wheater et al. (2012); Pechlivanidis et al. (2011)). And research inthis field is highly active (e.g. Casulli (2017), Tubini et al. (2017), and Dumbseret al. (2019)) (Fatichi et al. (2016); Paniconi and Putti (2015)).Physical models differ from conceptual models because input parameters areactually state variables (Devia et al. (2015); Fatichi et al. (2016)). These havephysical meaning and are actually measurable (Wheater et al. (2012)).Theoretically these models should be used in ungauged catchments, with inputparameters estimated a priori. However, this practice is not directly achievable fortwo reasons: (a) small-scale catchments and laboratory experiments are main sourcesof the physics underneath these modes and make them not straightly applicables tobig catchments; (b) some parameters cannot be evaluated on the entire study area,e.g. spatial heterogeneity of soil stratification. Thus, a comprehensive representationof the study area in terms of input dataset is hardly feasible (Wheater et al. (2012);Pechlivanidis et al. (2011)).Here, calibration procedures can be useful when some input parameters areunknown, even if they are not mandatory in a mechanistic model workflow. Con-sequently, sensitivity analysis become useful as well in order to estimate modeluncertainty.Nonetheless, these type of models need a big amount of detailed input informationto satisfy initial state requirements. They are really complex and high expertise isrequired to manage them (Devia et al. (2015)). They require long run-time since amodel run basically happens in each computational cell of the grid. Additionally,

1.1 problem statement 5
dedicated supercomputing environments can speed up the computation only if modelarchitectural design account for parallel, or scalable algorithms (Devia et al. (2015)).

The analysis of the different available model types helps to summarize issuesand limitations on-the-field personnel and consultant agencies have to deal with inorder to apply conceptual and mechanistic models:1. Thorough understanding of concerned model: both type of models requirein-depth understanding and expertise. Calibration and sensitivity analysisprocedures are fundamental parts in the entire setup of conceptual models.Physics of the involved processes has to be perfectly clear when it comesto setup physical model parameters. Otherwise, wrong usage of tools andparameters setup can lead to incorrect and deceptive results. Planningenvironments cannot always rely on these expertise.2. Data collection and preparation: big dataset feed both type of models.In conceptual models, they are mostly required for calibration procedures.For mechanistic models instead, spatially distributed initial conditions andstudy area characterizations are mandatory information. Technology evolutionallows to meet these needs by providing satellite data, finer grid rastermaps, low-error measuring instruments. However, these information are notavailable everywhere and, if they are, data preparation and assimilation arenot trivial tasks and required dedicated proficiencies and GIS capabilities.Additionally, the lack of input standards which especially concerns old models,calls for the design of model-specific applications to convert raw data intomodel-compliant inputs. As a result, data collection and preparation end upbeing a long and tedious operation consultant agencies don’t always havetime and expertise required to deal with.3. Run-time: both type of model simulations are computationally expensive.Calibration and sensitivity analysis procedures require several conceptualmodel runs to select the set of parameters that better fits observed dataor to estimate model uncertainty. Differently, physically based models arecomputationally demanding because numerical methods return accurate resultson finer grids. Service delivery organizations usually need quick results evenif not the most accurate.Furthermore, even if models are designed to take advantage of multi-processorsmachines or computer clusters, service delivery organizations don’t usuallyhave physical access to supercomputing environments and cannot rely onin-house proficiency to manage them. Yet, if supercomputing environments arenot available, relying on third-party machines and personnel with dedicatedexpertise is expensive.In summary, the analysis of issues related to daily use of conceptual or physicallybased models in planning/consultant environments identifies three main topics: (1)lacking of model understanding and expertise in order to fully manage and leveragemodel capabilities; (2) the absence of required input dataset for feeding calibrationand sensitivity analysis procedures or time to handle and properly convert raw datainto model-compliant data; (3) unavailability of proper IT infrastructures to reducecomputational runtime or lacking of expertise to apply them.
1.1.1.2 Issues related to the use of mathematical models in research envi-ronmentsMathematical models result from research environment efforts. Here, “operationaluse” of these models essentially has two meanings:

6 introduction
1. model maintenance and development, which differs from software maintenanceand development since mostly target bug fixing of modelled processes andintegration of recent numerical and mathematical enhancements, rather thansoftware architecture refactoring;
2. model testing and application to advanced problems that have often neverbeen addressed before.

In both cases, scientists’ approach to research models is not straightforward andthe reasons are following described. A paragraph with a dedicated analysis foreach previously listed issue is provided. Paragraph 1.1.1.2.1 introduces to EMFsmethodology as well, which is used throughout paragraph 1.1.1.2.2.
1.1.1.2.1 Issue experienced during model maintenance and developmentResearch outputs are always up to state-of-art in terms of scientific content.However, mathematical models historically lack of proper software engineering andhave been designed as monolithic code base. The latter has been identified as themain cause of current difficulties in model development and maintenance (Formettaet al. (2014a); Rizzoli et al. (2006); David et al. (2013)). The introduction of EMFsin modeling workflow alleviates source code maintenance and development. Yet,EMFs actually limits modeler creativity.
Monolithic applications constraint collective model development, model sharingand reusability because the code structure lacks of separation of concerns (Martin(2009); Newman (2015)), which means that there are no boundaries between differentscientific/mathematical concepts (David et al. (2013); Nadareishvili et al. (2016)).Consequently, a scientists needs deep understanding of the entire model to makemodifications and speed up the debugging process (Newman (2015); Nadareishviliet al. (2016)). In terms of deployment into production environment, just a single bugfix or modification of a single line of code of a monolithic application requires thedeployment of the entire software (Nadareishvili et al. (2016)). Not to mention thescalability issue: enabling a simple multithreading computation in a monolithicsoftware is complicated already, scalability on computer clusters even more (Newman(2015); Nadareishvili et al. (2016)). As a result, leveraging state-of-art computerhardware solutions becomes a cumbersome and most likely unachievable goal.There are several reasons why software architecture has always had low priority inenvironmental model research. Historical, cultural, resource and reward constraintshave been identified by David et al. (2013) and are following summarized.From an historical point of view, when the era of model development started, C andFORTRAN were the most notable general purpose programming languages to beginwith. These languages rely on free and open source compilers and tools as well asactive developer communities. They are procedural programming languages though,which already addresses software development towards monolithic architecture.From a cultural standpoint, environmental modelers usually have self-taughtprogramming knowledge and low expertise in software design and architecturalpatterns (David et al. (2013); Rizzoli et al. (2006)). Their biggest desire is to diveinto deeper and more accurate descriptions of environmental processes, model them,and implement them to test the improved modeling solution (David et al. (2013)). Itis obviously not possible and fair to ask a natural resource scientist or engineer totake care of both modeling development and software architecture design.Here the third constraint comes up. A computer scientist, software engineer orhydroinformatic engineer should take care of properly choosing the most suitablesoftware design by anticipating target architectures to support multi language inter-operable systems, high performance computing environments, and most importantly

1.1 problem statement 7
the refactoring of poorly designed modules (David et al. (2013); Rizzoli et al. (2006)).However, research budgets are typically limited and expertise of previous listedprofessional figures are not usually accounted for.The last constraint, rewards perspective, usually hinges to pure achievement ofresult accuracy. Model reusability and long-term maintainability frequently havelow value and priority consequently.Eventually, the highest quality scientific model codebase ends up being anhandcrafted monolith of thousands of lines of code, which is hard to refactor andredesign (David et al. (2013)).

Several EMFs have been developed in the last decade in order to move theburden of software architectural design apart from pure scientific research. Someof the most notable are: OpenMI (Blind and Gregersen (2005); Gregersen et al.(2007)), Common Component Architecture (CCA) (Bernholdt et al. (2003)), EarthSystem Modeling Framework (ESMF) (Collins et al. (2005)), Common ModelingProtocol (Moore et al. (2007)), and OMS (David et al. (2013)).EMFs are built upon the notion of component-based software development. Theyelevate the principle of separation of concerns by splitting responsibilities betweenframework and components. A component is a typical object-oriented programmingconcept where a class or module is the core building block of the entire application(Peckham et al. (2013); David et al. (2013)). The framework enables a software“plug-ins” system where a series of precompiled components can be plugged inor unplugged on necessity . It takes care of runtime component connections viadynamic linking and other complicated tasks such as multi language interoperability,multi-threading parallelization of algorithms, temporal-spatial stepping, etc. (Davidet al. (2013)).Accordingly, a monolithic codebase can be refactored into a framework-compliantset of components by extracting the scientific knowledge only and splitting it intosingle responsibility functional units. Good software design practice identifies theoptimum level of component granularity into the encapsulation of a single physicalprocess per module, e.g. evapotranspiration, infiltration, runoff, etc. (Peckham et al.(2013)). Working with higher or lower level of granularity is possible though andmight be necessary in specific cases (Qu and Duffy (2007)). However, the “oneconceptual/physical process per unit” design identify the most flexible granularitylevel where scientists can easily swap out an old modeling methodology for aninnovative or a more appropriate one. Additionally, interfaces between componentsand related framework connections become “physical domain boundaries” and
“physical fluxes exchange” respectively, further elevating the concept of modelingnatural phenomena.The benefits of employing an EMF in modeling workflow are streamlined modeldevelopment, improved developer’s software quality and reliability, time and costeffectiveness, high level of modeling flexibility.Several models are framework compliant already, e.g. GEOframe-NewAGE(Bancheri (2017); Formetta et al. (2011); Formetta (2013); Formetta et al. (2013b,a,2014a,b, 2016a,c); Abera et al. (2017a,b)), Precipitation-Runoff Modeling Sys-tem (PRMS) (Leavesley et al. (2005)), AgES and it predecessor AgroEcoSystem-Watershed (AgES-W) (Ascough II et al. (2012); Ascough et al. (2014); Green et al.(2014, 2015)), BioMA (Donatelli et al. (2012)), and TopoFlow (Peckham et al. (2017)).A deeper analysis of GEOframe-NewAGE to establish the upsides of modellingwith components is proposed in subsection 2.1.2 Background work to facilitate
operational use of environmental models in research environments.Nevertheless, EMFs must facilitate the transition of modeler creativity frommathematical equations into component implementations (David et al. (2013)).

8 introduction

Figure 1: OMS-compliant modeling solution that implements the water budget as theory of embedded reservoir,credit Bancheri (2017).
This lets modeler exploring new problem solving approaches further widening theboundaries of actual modeling techniques.Figure 1 is used here for the sake of example. It represents the OMS-compliantmodeling solution designed by Bancheri (2017) for testing the theory of embeddedreservoir model developed during her doctoral research. It estimates the waterbudget for a generic watershed.This modeling solution is pretty flexible already: it allows for easily swappingout a single conceptual/physical process, e.g. surface flow, with a different or maybesimpler implementation. However, this modeling approach constraints a scientist tomodel an entire watershed as an homogeneous entity.If this is the case of a small watershed, a single modeling solution might matchscientist requirements already. It doesn’t properly work for a big watershed involvingmountain, hill, and plain subcatchments. Here, a modeler might want to finelytune modeling solution parameters for each type of subcatchment. She/he mightalso want to switch a specific module for a different component per each type ofsubcatchment, or she/he might want to run completely different modeling solutionsin each subcatchment. Additionally, human artifacts such as power plant couldpotentially become part of a complex modeling solution. But they require dedicatedmathematical model and possibly different time loops.As a result, implementation of complex modeling solutions by leveraging actualframeworks capabilities is not achievable. Actual EMFs functionalities limit mod-eler creativity and talent. Current EMFs capabilities push back the modeling ofcomplex interconnections and related potential scalable computation to modelerresponsibilities.

1.1.1.2.2 Issue experienced during model testing and application to ad-vanced problemsThe second issue encountered during regular operational use of mathemati-cal models in research environments relates to actual application to state-of-artconsultancy problems.In this particular case, scientists don’t usually have time constraints or lacking ofdata compared to service delivery organizations. Consequently, application of fullmathematical model is achievable and actually fundamental: deep understanding ofphysical processes allows for studying state-of-art problems and improving modelingtechniques eventually.The constraints are rather on the steep learning curve a scientist has to dealwith while approaching a new model. Poor software design and lacking of softwarecoding standards are usually accompanied by deficient source code management.

1.2 summary 9
Research environments are still resistant to adoption of version control systems totrack software development, and code peer review is not usually part of standardworkflow (David et al. (2013)).Additionally, a modeler might need to investigate the involved phenomenonfrom different scales and perspectives, and experiment with modeling solutionsconsequently. This research methodology requires modeling software to providehigh level flexibility to easily accommodate modeler creativity.

1.1.1.2.3 Summary of issues related to the use of mathematical models inresearch environmentsSummarizing, the analysis of issues related to the daily use of conceptualor physically based models in research environments identifies the necessity ofadopting EMFs in everyday workflow and the needs of improving their flexibility to:
1. facilitate model maintenance and development;
2. avoid error-prone code duplication;
3. improve modeler productivity and accommodate modeler creativity.

1.2 summary
The problem statement of this dissertation identifies issues related to the useof mathematical models for (A) service delivery organizations and (B) researchenvironments.
Operational use of conceptual/physical models in service delivery organizationsmeans leveraging research modeling advancements as knowledge encapsulatedblack-box to support stakeholders and decision makers’ questions with accuratepredictions and information.However, consultancy agencies struggle to properly exercise research simulationmodels since they may lack of (1) expertise to understand conceptual or physicalprocesses requirements to set up calibration or sensitivity analysis procedures;(2) time to collect and prepare datasets to satisfy models high resolution inputparameter requirements; (3) in-house availability of computing environments todeploy and exercise modeling simulations.
Operational use of conceptual/physical models in research environments meanscodebase maintenance, implementation of modeling advancements, and designof modeling simulations for state-of-art consultancy applications. In researchenvironments, a simulation model is a white-box since research scientists haveto implement last enhancements in conceptual design, or numerical/mathematicaland physical fields. Additionally, scientists need to dig into model implementationwhen it comes to thoroughly tune calibration procedures and input parameters foradvanced applications.However research scientists struggle to maintain and develop simulation modelcode base since their are not software engineers, usually have self-taught program-ming knowledge, and model design commonly lacks of accurate software architecture.Furthermore, current modeling tools constraint modeler creativity and impede thedesign of innovative modeling solutions.
Issues in both consultant agencies and research environments are getting moreand more important since simulation model code base complexity is constantly

10 introduction
growing due to integration of research enhancements, engineering practices andadditional capabilities such as GIS algorithms. A brief analysis of notable modelingsoftware (Soil & Water Assessment Tool (SWAT) and Storm Water ManagementModel (SWMM)), which have been developed for more than a decade, is availablein Appendix A NET3: conclusion and future development to demonstrate thisincreasing complexity: SWAT overall increment of number of lines of code in about15 years is more than 100%, while SWMM source grew up of 40% in about 14years.

The next chapter presents background work and material that attempted toovercome identified constraints. The detailed analysis of current applications ofEMFs/CCPs in modeling workflows allows for identifying context and scope ofthis dissertation, introducing to research contributions proposed to solve identifiedproblems.

2 B A C KG R O U N D W O R K A N DS I G N I F I C A N C E
Contents2.1 Background work 112.1.1 Background work to facilitate operational use ofenvironmental models for service delivery organiza-tions 112.1.2 Background work to facilitate operational use of envi-ronmental models in research environments 152.2 Context 192.3 Scope 202.4 Objectives statement 212.5 Relevance 222.6 Summary 23

This chapter introduces to important background information for understandingthe significance of this dissertation.Section 2.1 exhaustively describes previous works in attempt to facilitate op-erational use of environmental models for service delivery organizations and inresearch environments. Section 2.2 identifies the modeling core to intervene to,while Section 2.3 points to identified methodologies to expand modeling capabilitiesand flexibility. Section 2.4 introduces to the actual contributions of this dissertationand describes identified strategies to (1) facilitate access to model behaviour forservice delivery organizations, and (2) simplify model development and maintenanceand elevate modeler creativity for researchers and modelers. Finally, Section 2.5summarizes who will benefit from this research.
2.1 background work

The identified problems in service delivery organizations and research environ-ments are well established and literature reveals that research work has beendone already while attempting to overcome limitations and constraints (David et al.(2013); Peckham et al. (2013)).This section focuses on analyzing background work that has been conducted so far.Following the structure of this dissertation, background work related to operationaluse of mathematical models in consultancy agencies is separately described frombackground work related to operational use of mathematical models in researchenvironments.
2.1.1 Background work to facilitate operational use of environmentalmodels for service delivery organizations

Briefly summarizing, problems that concern service delivery organizations withdaily use of conceptual/physical models are mostly related to:
1. the need of thorough understanding of the conceptual schema or physicalprocesses implemented;

11

12 background work and significance
2. the requirement of big dataset for calibrations and simple runs;
3. long computational run-time.

The design of complex IT hardware and software infrastructures and the use ofsurrogate (or complexity reduction) models are two actual attempts to overcomethese constraints. This section introduces to benefits and limitations of such problemsolving methodologies.
IT infrastructures, supercomputing environments and computer clusters are hard-ware answers to requirement of higher computational power for reducing modelrun-time.The exploitation of these powerful hardware resources necessitates of propersoftware infrastructures such as EMFs CCPs (Rizzoli et al. (2006); David et al.(2013); Peckham et al. (2013)).The adoption of EMFs and CCPs carries two additional benefits to servicedelivery organizations workflow: (1) facilitates encapsulation of simulation models,consequently unifying and simplifying user-model interface by leveraging input/out-put standards and model-model interface by managing models intercommunication;(2) reduces cost of model development and maintenance by decoupling softwarearchitectural design aspects from actual scientific code base (see Figure 2).

Figure 2: Schematic to represents evolution of research models from stand-alone applicationsto encapsulated framework-compliant components. This processed unified/sim-plified user-model interface and model-model intercommunication, and enabledmodel runs on high performance computing environments. The arrow on the leftside illustrates the reduction of model approach complexity by standardizinginput/output formats, and the reduction of model maintenance and developmentcost.
However, if they moderate the run-time problem, facilitate data preparation, andreduce cost expenditure for software development and maintenance, they cannotsimplify data-collection operations. The identical input dataset is still required fora framework-compliant or web-service model run.Additionally, EMFs and CCPs only partially tackle the issue of understandingsimulation model internals: they let user take advantage model capabilities as ablack box but they don’t and cannot simplify calibration and sensitivity analysisprocedures.Databases setup is a further software solution for tackling requirements of bigdatasets to calibrate and run environmental models. RUSLE2 (Renard et al. (1997);Foster et al. (2000, 2001)) serves here for the sake of example.

2.1 background work 13
RUSLE2 estimates the amount of soil loss along based upon rainfall and relatedoverland flow (Foster (2005)). Several input parameters are required to set up aRUSLE2 model run: from weather conditions, to soil composition and properties, tocrop land operations and management impact on soil erosion, etc. To limit the userburden in collecting and setting up input parameters, United States Department ofAgriculture - Natural Resources Conservation Service (USDA-NRCS) and UnitedStates Department of Agriculture - Agricultural Research Service (USDA-ARS)agencies gathered survey of required input parameters across the entire US intoextensive dedicated databases. Consequently, RUSLE2 CSIP-service automaticallyconnects to the proper database at run-time and retrieves user selected parameters.Figure 3 shows the actual set up of the CSIP-R2 web-service. Four databasesare connected directly or through microsubservices to the main R2 CSIP-service.SSURGO contains soil information, LMOD (David et al. (2014b)) contains landmanagement and operations information, while the other two databases provide forremaining parameter requirements.

Figure 3: Schematic to represent sub service and database dependencies of CSIP-R2. Theoverall dependencies are about 290GB in size.
This model setup surely support and ease user approach to RUSLE2. However,it facilitates RUSLE2 application only within US boundaries.In summary, complex IT hardware and software infrastructures are importantbackground work that served as a first attempt to tackle service delivery organizationissues. They simplify some of the inherent complexities of using conceptual/physicalmodels but they:
a. shift the responsibility and workload of model simulation runs to the hostingenvironment;b. don’t lighten user’s burden of data collection, parameter and modeling solutionsetup;c. still require model knowledge for handling calibration and sensitivity analysisprocesses.

Surrogate (or complexity reduction) model is a completely different approach tocontemporarily tackle each one of the three problems initially described in thissection. These specific types of models are developed to emulate the originalsimulation model behaviour and speed up the computational time without sacri-ficing accuracy (Asher et al. (2015)). They were mainly introduced in workflows

14 background work and significance
requiring many simulation runs, such as uncertainty analysis, sensitivity analysis,and optimization frameworks (Beh et al. (2017); Asher et al. (2015); Razavi et al.(2012b)). Here, long runtimes is a big issue and inhibits real time application ofcomplex models, as well.Three classes of surrogate models exist. Razavi et al. (2012b) proposes a thoroughreview of surrogate modeling applied to water resources. In a subsequent paper,Asher et al. (2015) identifies, classifies and thoroughly describes the main categoriesof surrogate models applied to groundwater modeling starting from Razavi et al.(2012b). The resulting taxonomy is following briefly analyzed:

a. Projection-based models everage the projection of actual model equationsinto a basis of orthogonal vectors to reduce the size of the initial vector space.This methodology requires ad-hoc mathematical analysis of each equationimplemented in the original model.
b. Hierarchical or multi-fidelity models generate from the original models byreducing numerical accuracy, or by ignoring or approximating some physicalprocesses. In the first case, reducing numerical accuracy slightly tackle onlythe run-time issue. This type of complexity reduction allows for getting prettyaccurate results because physical components are identical to the originalmodel. However, the entire input dataset and in-depth model understandingare still required for a simulation set up. The second option slightly tackles thethree problems altogether: it speeds up simulation run-time, requires a smallerinput dataset, and simplifies the inner modeling complexity. However, thesekind of models might still have long computational time, require calibrationprocedures and consequently model understanding and large input dataset. Furthermore, they are not able to return accurate results because it isnot possible to compensate simplified physical processes of a system withcorrective parameters (Razavi et al. (2012b)).
c. Data-driven models (or response surface models) are statistical or empiricalmodels, which are able to capture and approximate the original model be-haviour (the response surface, typically a nonlinear hyperplane) by learningthe existing nonlinear relationship between a set of original input/outputsnapshots. There is no direct emulation of any inner conceptual/physicalprocess described in the original simulation model. Literature reports abouta large variety of approximation methodologies used for surrogate model-ing. In the most recent literature, ANNs are among the utmost commonlyused techniques. ANNs are notably flexible function approximators (Razaviet al. (2012b)). However, standard methodologies like Multilayer Percep-trons (MLPs) require several subjective decisions to develop and apply aproper ANN. These decisions involve selection of (1) the optimal structure,(2) the number of hidden layers, (3) the number of neurons in each hiddenlayer, and (4) the type of transfer function. As a result, surrogate model setupentails an iterative trial-and-error approach (Razavi et al. (2012b)).

In summary, three types of surrogate models have been largely studied andapplied in water resources topics. Projection-based and multi-fidelity modelsoriginate from actual simplifications of internal conceptual/physical processes oforiginal simulation models, and are tightly coupled with model internals. Thus,these surrogate models require mathematical analysis or ad-hoc configurationsfor properly emulating each and every simulation model. Oppositely, structuresof data-driven models (ANNs in this specific case) are completely decoupled fromoriginal simulation models.

2.1 background work 15
This section analyzed background work research community carried out toovercome problems service delivery organizations face in their daily use of concep-tual/physical models.EMFs and CCPs methodologies have been investigated. They facilitate andsmooth the approach to mathematical simulation models by (i) elevating capabilitiesof exploiting powerful state-of-art hardware systems, (ii) unifying user-model andmodel-model interfaces, and (iii) seamlessly accessing available databases resources.However, they don’t solve (A) long computation runs (which management is simplyshift to hosting environments); (B) user’s burden of data collection, parameterand modeling solution setup; (C) difficulty in handling calibration and sensitivityanalysis procedures.Additionally, surrogate modeling methodology has been investigated. Threetypes of complexity reduction models have been analyzed and all of them tackletwo service delivery organizations problems by reducing computational time andinput data requirements. However:1. projection-based models require ad-hoc mathematical analysis, which are notsuited for service delivery organizations requirements;2. hierarchical or multi-fidelity models might still have long computational time,require calibration procedures and model understanding consequently, andlarge input datasets;3. data-driven methodology seems the most appealing approach since its struc-ture is totally decoupled from the original simulation model but standardmethodologies still entail an iterative trial-and-error approach.

2.1.2 Background work to facilitate operational use of environmentalmodels in research environments
Briefly summarizing, problems that concern research environments with dailyoperational use of conceptual/physical models are mostly related to:1. difficulties in model maintenance and development;2. error-prone code duplication;3. lack of model flexibility which limits modeler productivity and creativity.Research community is aware of challenges, constraints, and frustrations relatedto monolithic code application maintenance, development, and evolution (Rizzoliet al. (2006); Quesnel et al. (2009); Formetta et al. (2014a)).The adoption of EMFs in modeling workflows alleviates these problems but itis not widespread among research environments still and sometimes constraintsmodeler creativity and productivity.A notable, highly published, state-of-art, framework-compliant hydrological sys-tem is GEOframe (Formetta et al. (2014a); Bancheri (2017)). GEOframe serveshere for the sake of demonstrating benefits and limitations of integrating EMFs inmodeling workflow.
GEOframe system (Bancheri (2017); Rigon et al. (2018)) originates from JGrass-NewAGE project (Formetta et al. (2014a)).JGrass-NewAGE is a semi-distributed, physically based, OMS compliant hydro-logical system (Formetta et al. (2014a)). Its development started as a result of AdigeRiver Authority’s request for a modeling tool capable of studying drought periods ofthe river Adige (Rigon (2014)). The entire system results from the interconnectionof three groups of software components (Formetta et al. (2014a); Bancheri (2017)):

16 background work and significance
1. uDig Geofraphic Information System (GIS) is a GIS interface, which allowsfor geographic data visualization and manipulation;2. JGrasstools (uDig spatial toolbox) (Abera et al. (2014)), which allows forraster maps management and geomorphological analysis, and includes HortonMachine computing tools (Rigon et al. (2006a,b));3. NewAGE is a collection of OMS-compliant hydrological modeling componentswhich are following briefly analyzed.

Figure 4: OMS-compliant components designed and developed by Dr. Giuseppe Formettaand released in the initial version of JGrass-NewAGE, credit Formetta et al.(2014a).
Figure 4 from Formetta et al. (2014a) illustrates model components implementedin JGrass-NewAGE. They are grouped into seven categories thoroughly designedby Dr. Giuseppe Formetta. Going through Figure 4 from top to bottom, the firstgroup of software component is the geomorphic and Digital Elevation Model (DEM)analyses, which allow for analyzing raw topographic data and convert it intoJGrass-NewAGE input entries. This group of components comprises of raster andvector readers/writers, Pitfiller component for filling DEM artificial depressions,

FlowDir component for estimating flow direction map based off of D-8 algorithm,
HackLength component for identifying the main stream reach (Rigon et al. (1998)),
ExtractNetwork component for estimating the channel network based off of drainagedirection map, HachStream component (Rigon et al. (2006a)) for channel networkordering, Netnumbering component (Rigon et al. (2006a)) to couple the hillslope ID

2.1 background work 17
with network link it discharges to, and Pfafstetter component for properly numberingthe channel network (Formetta et al. (2014a)).The second group of components is the meteorological interpolation tool, whichprovides ordinary and detrended kriging components in addition to Just Another
Model Interpolator (JAMI) component (Formetta et al. (2014a); Bancheri (2017)).Radiation forcing is the third group, which makes available shortwave and
longwave computational components (Formetta et al. (2013b, 2014a, 2016a)).The fourth group relates to evapotranspiration estimate, which provides for threedifferent approaches: Fao-Evapotranspiration, Penman-Monteith, and Priestly-
Taylor (Formetta et al. (2014a)).Runoff production and Snow Melt are the fifth group. Here, two models for runoffestimation are provided: Hymod and Duffy. Snow melt Snow Water Equation (SWE)is bundled into a dedicated component application (Formetta (2013); Formetta et al.(2013a, 2014b)).The sixth section includes the channel routing following the Pfafstetter number-ing(Formetta et al. (2011); Formetta (2013); Formetta et al. (2014a)).Finally, the seventh group provides automatic calibration tools such as Particle
Swarm Optimization (PSO) and DREAM (Formetta et al. (2011); Formetta (2013);Formetta et al. (2014a)).The first version of JGrass-NewAGE demonstrates unprecedented capabilitiesalready: its main author, Dr. Giuseppe Formetta, designed and developed the entiresystem by providing alternative computational components per hydrological group.Components can be swap out at runtime by leveraging OMS3 framework (Davidet al. (2013)). JGrass-NewAGE system is highly tested and published (Formettaet al. (2011); Formetta (2013); Formetta et al. (2013b,a, 2014a,b, 2016a,c,b); Aberaet al. (2014, 2017a,b)).

Bancheri (2017) enriches the already large variety of modeling components byadding four computational applications: clearness index computation for estimatingthe incoming and top atmosphere shortwave radiation ratio; net radiation forcomputing the incoming/outgoing energy balance; embedded reservoir model forconceptualizing water budget throughout interconnected reservoirs; and travel timeanalysis (Bancheri et al. (2015); Rigon et al. (2016); Bancheri (2017); Bancheriet al. (2017a, 2018a,c); Rigon et al. (2018)).
Despite JGrass-NewAGE high potential and capabilities, Bancheri (2017) reportsthat early stage modeling components are still influenced by procedural architecturaldesign and lack of software documentation. As a result, Dr. Marialaura Bancherirefactores most of the available components (Bancheri (2017); Bancheri et al.(2018b)) by leveraging object oriented programming notions and design patterns(Gamma (1995); Freeman et al. (2004)). Figure 1 from Bancheri (2017) illustratesthe hydrological budget by leveraging newly implemented and redesigned modelingcomponents (Bancheri (2017); Bancheri et al. (2018b)).Additionally, Bancheri (2017) concretely introduces Reproducible-Research Sys-tem (RRS) nto JGrass-NewAGE project to consolidate modeling component ap-plications lifecycle across every stage: development, deployment, and production(Bancheri et al. (2016); Bancheri (2017); Bancheri et al. (2017b, 2018a)). Here,the GEOframe organization is founded to define the set of RRS open standards.Consequently, JGrass-NewAGE project is renamed GEOframe system. A softwarecomponent is GEOframe-compliant if it adheres to the following lifecycle:
1. history of software development maintained with git Version ControlSystem (VCS) and regularly committed to GitHub repository hosted athttps://github.com/geoframecomponents;

https://github.com/geoframecomponents

18 background work and significance
2. components developed as IDE-independent projects by using Gradle buildingsystem (Berglund and McCullough (2011));
3. Unit tests serially run at each new VCS commit by incorporating Travis-CIcontinuous integration in software deployment practice (Beck (2003); Meyer(2014));
4. OMS3 projects for modeling simulation testing deployed athttps://github.com/geoframeOMSprojects;
5. modeling components documented according to GEOframe standard andpublished to http://geoframe.blogspot.com/;
6. tagged modeling components uniquely identified by a Digital Object Identifier(DOI) number leveraging Zenodo archival system.

GEOframe RRS standards are tangible application of David et al. (2013) state-ment:
“Adopting software coding standards, using version control systemsto manage source code, and performing code peer reviews can beimportant steps towards improving model code development that willeventually help expedite adoption of modeling frameworks.”

Eventually, GEOframe overcomes previously identified JGrass-NewAGE codingpractice constraints (Bancheri et al. (2016); Bancheri (2017); Bancheri et al. (2017b,2018a)) and innovative modeling components are being developed (Bottazzi andRigon (2018a,b); Tubini et al. (2017, 2018)). Architectural re-design and refactoringof JGrass-NewAGE in addition to application of RRS open standard was possiblethanks to its component based structure. This is a very important aspect when itcomes to model development and maintenance.
However, Bancheri (2017) still reports modeling constraints with respect to highlyheterogeneous systems. Actual OMS3 capabilities allow for simulating a catchmentwater budget as a whole modeling solution. Finely tuning of modeling parametersfor different behavioural domains such as mountain, hill, and plain subcatchmentsis currently not possible. Figure 5 from Montgomery (1999) illustrates this concept,which is thoroughly described in Montgomery (1999) and presented in Serafin et al.(2018a).This section analyzed background work research community carried out to over-come problems research scientists face in their operational use of conceptual/physicalmodels. The case of JGrass-NewAGE/GEOframe (Formetta et al. (2014a); Bancheri(2017)) has been described to demonstrate that framework-compliant hydrologicalsystems:
1. foster modeler creativity (run-time swap out of modeling components);
2. facilitate model development and refactoring by encapsulating conceptual/-physical processes description into single responsibility model components;
3. increase publishing rate (potentially one paper per component developed);
4. easily accommodate RRS open standard.

However, EMFs functionalities need to be expanded to not constraint modelerproductivity and creativity.

https://github.com/geoframeOMSprojects
http://geoframe.blogspot.com/

2.2 context 19

Figure 5: Schematic of watershed scale processes domains in a mountain catchment, creditMontgomery (1999).

2.2 context
Although at first glance problems and constraints in both research and consultancyenvironments seem unrelated, this dissertation identifies a common software core tointervene on and accommodate requirements from both sources.Strong communication and collaboration between research environments andservice delivery organizations historically featured in research advancements andmodeling goals achievements. Conceptual/physical models were and still are theintermediaries of this ongoing interaction (Dall’Amico et al. (2018); Bancheri et al.(2018a)).Problem statement analysis and background work considerations identify EMFsas valuable mainstream tool and proper foster platform where naturally developinnovative modeling practices (Argent (2004); David et al. (2013)).Figure 6 emphasizes the current modeling architecture. Here, EMFs facilitateand fasten communication between researchers and consultancy environments: re-searchers utilize EMF platforms as (1) hosting environment for model developmentand testing and (2) deployment hub of state-of-art modeling applications; servicedelivery organizations tap into EMF hubs to improve their consultancy capabili-ties and provide scientifically up-to-date answers to policy, decision makers andstakeholders.Although problems arising from the two communities are tackled separately, thecommon solution strategy indicates EMFs as the suitable software architecturallayer for hosting modeling methodology development.

20 background work and significance

Figure 6: Schematic to represent current modeling practice. Research scientists takeadvantage of the benefits of EMF architectural design and modeling flexibilityto release/deploy as well as access conceptual/physical models; opposingly,service delivery organizations make use of last enhancements in terms of scientificknowledge and modeling practice to provide stakeholders and policy makers withaccurate estimate of quantity of interest.
This dissertation locates in EMFs the suitable layer for accommodating researchenvironment and service delivery organization requirements and proposes a set offramework capability extensions to attempt problem solutions in the next section.

2.3 scope
The scope of this dissertation is to expand EMFs and CCPs capabilities toaccommodate research environment and service delivery organization requirements.According to the structure of this dissertation, scope of research related to consul-tancy agencies problems and scope of research related to research environmentsissues are separately described.
Service delivery organizations need a fast, lightweight, and “accurate enough” toolcapable of emulating original conceptual/physical model behaviour with fewer inputinformation. Background work identifies surrogate models (or complexity reductionmodels) as promising methodology to accomplish this task. Different alternativesurrogate models are available in literature, and background work establishesdata-driven surrogate model as most appealing approach since its structure istotally decoupled from original simulation model.This dissertation will research methodological and technical approaches thatallows for enabling a modeling framework to interact with ML libraries to emergedata-driven model surrogates a(ny) modeling solution.The scope of this research topic narrows to the emulation of selected aspects of theoriginal model behaviour. It is surely of high interest to establish a relation betweensurrogate model and actual/measured data. This is of fundamental importanceespecially when the estimate of original model is wrong and measured data mightcompensate model constraints. However, this dissertation won’t invistigate thisfurther topic, which is postponed for later research.
Research environments need a proper strategy to overcome actual limitationsand constraints research scientists face while developing and maintaining, orsimply applying conceptual/physical models. Background work identifies EMFsas state-of-art software environments to foster separation of software architecturalaspects from scientific concepts. These software tools already facilitate modeldevelopment and usage, and elevate modeler creativity, which was previously

2.4 objectives statement 21
constrained by monolithic applications. However, problem statement and backgroundwork demonstrate how state-of-art modeling solutions start limiting modeler needs.This dissertation will research methodological and technical approaches that allowfor expanding EMFs capabilities in terms of modeling flexibility. This dissertationwill investigate the integration of graph theory into EMFs core capabilities toaccommodate research scientists requirements of modeling complex network-likeinteractions by expanding the already flexible EMFs modeling approach.

In conclusion, this dissertation will research methodological and technical ap-proaches for:
1. enabling a modeling framework to interact with ML libraries to emergedata-driven model surrogates a(ny) modeling solution;2. integrating graph theory into EMFs core capabilities to accommodate researchscientists requirements of modeling complex network-like interactions byexpanding the already flexible EMFs modeling approach.

2.4 objectives statement
This dissertation contributes to the expansion of actual EMFs and CCPs capabil-ities with respect to development, maintenance, and access to modeling resources.
To achieve this goal, CSIP/OMS (David et al. (2013); Lloyd et al. (2011, 2012);David et al. (2014a)) has been identified as state-of-art in terms of EMFs to beginwith. It has proven to be the perfect fostering environment for further expansions anddevelopments. A higher level of modeling flexibility will be enhanced by elevatingits valuable features and already advanced modeling capabilities. Subsubsection3.3.2.3 Cloud Service Integration Platform (CSIP) and 4.4.2.1 Object Modeling

System v3 (OMS3) investigate and analyze the motivation behind the choice ofCSIP/OMS.
This dissertation will develop two framework extensions to accommodate researchscientists and service delivery organizations requirements. Figure 7 illustrate bothconcepts:
1. A modeling layer of surrogate modeling capabilities will be interposedbetween conceptual/physically based model and modeling users such asconsultant agencies, service delivery organizations, and on-the-field personnelto help transitioning from research to field. To emerge data-driven modelsurrogates a(ny) modeling solution, the modeling framework will be enabledto interact with ML libraries. Here, NEAT (Stanley and Miikkulainen (2002);Whiteson et al. (2005)) will streamline the automated process of modelcreation. Literature reviews doesn’t report any current application of NEATalgorithms in environmental modeling or surrogate modeling methodologies.Finally, this dissertation introduces the concept of FeNS and the protocolthat rules framework-ML libraries interaction.2. The integration of a flexible complex network based graph modeling structure(NET3) into OMS3 software core will extend OMS3 modeling capabilities.This approach will be designed over river network - graph structure analogy.To facilitate model development and elevate modeler creativity, NET3 willconnect modeling solutions, provide a further layer of implicit paralleliza-tion,and allow for easy implementation of additional features. NET3 will

22 background work and significance
streamline the transition from forced homogeneous modeling of environmentalfeatures to highly heterogeneous and finely tuned environmental modeling.

Figure 7: Schematic of actual contributions of this dissertation. A new surrogate modelinglayer is interpose to bridge the gap between service delivery organizationsand conceptual/physical models. Contemporary, EMF modeling capabilities areextended by implementing a graph modeling structure. This allows for bridging thegap between researcher scientists and modeling platforms by enabling modelerscreativity and elevating concept of modeling encapsulation and re-use.
Ensuring that these approaches will completely bridge actual gaps betweenresearch environments and conceptual/physical models, and service delivery orga-nizations and conceptual/physical models is out of the scope of this dissertation.However, the enhanced functionalities will facilitate access to mathematical modelsand create solid foundations for fostering future modeling practice developments.

2.5 relevance
The findings of this study will redound to the benefit of research scientists andservice delivery organizations by facilitating development and access to modelingresources.
Service delivery organizations will be provided with automatically generatedsurrogate modelling capabilities to facilitate and speed up simulation runs. Asa results, running a large variety of modeling scenarios will be faster and lesscomputationally demanding. This potentially fastens support to policy and deci-sion making processes. Additionally, the surrogate model will be a lightweight“detachable” tool that can run from within portable devices on the field with limitedinformation and no internet connection.
Research environments will be provided with innovative EMFs capabilities whichwill stave off actual modeling simulation constraints. This will result in fasterand easier model development and maintenance by allowing for more complexand tunable modeling solutions while promoting code reuse and EMFs-compliantmodeling practices. Furthermore, this will facilitate and accommodate creativemodeling approaches by allowing for easy implementation of complex network-based modeling solutions.

2.6 summary 23
2.6 summary

This chapter analyzes background work that drove this dissertation towardidentification of context, scope and objectives statement.This dissertation contextualizes CSIP/OMS EMF/CCP, and defines two researchgoals to expand its modeling capabilities for accommodating requirements fromservice delivery organizations and research environments accordingly.This dissertation will research methodological and technical approaches forenabling a modeling framework to interact with ML libraries to emerge data-drivenmodel surrogates a(ny) modeling solution. This study investigates NEAT algorithmsto automatically emerge the model surrogate and defines FeNS protocol to enablethe intercommunication between modeling framework and ML libraries.This dissertation will research methodological and technical approaches forexpanding modeling framework capabilities with graph modeling structure. Thisstudy investigates graph theory and actual software implementation into modelingplatforms that resembles river network - graph structure analogy.
Two distinct chapters describe the two identified approaches by following identicaloutline: literature review and research questions determine starting point of eachstudy and path that guides through the research respectively, while researchmethodologies and case studies report methods leveraged to carry out the analysisand their application to actual test cases.Chapter 3 researches surrogate modeling approaches and their integration intomodeling framework, while Chapter 4 discusses the integration of graph modelingstructures in the modeling workflow.

3 S U R R O G AT E M O D E L I N G
Contents3.1 Literature review 263.2 Research questions 283.3 Research design and Methods 293.3.1 Methodological approach 303.3.1.1 NeuroEvolution of Augmenting Topologies(NEAT) 303.3.1.2 Feature selective NEAT 363.3.1.3 Ensemble of surrogate models and uncer-tainty quantification 383.3.1.4 Framework-enabled NEAT based Surro-gate modeling (FeNS) 383.3.2 Technical approach and implementation 453.3.2.1 MongoDB 453.3.2.2 Microservice architecture and RESTfulAPI 473.3.2.3 Cloud Service Integration Platform(CSIP) 503.3.2.4 Encog 543.3.2.5 Surrogate Model Services implementa-tion 553.4 Case studies 813.4.1 RUSLE2 823.4.1.1 DoE 1 823.4.1.2 DoE 2 863.4.1.3 DoE 3 923.4.1.4 Conclusions 983.4.2 Agricultural Ecosystem Services (AgES) 993.4.2.1 DoE 1003.4.2.2 Conclusions 1043.5 Summary 105

The problem statement of this dissertation highlights applicability constraintsof conceptual and physical models originating from research in consultant andplanning environments. Due to their complexity, data resolution requirements,number of parameters, platform affinity, and other criteria mathematical modelsare rarely suited “out-of the box” or field and consulting applications. A surrogatemodeling methodology is proposed to tackle these issues and facilitate the transitionfrom research models to service delivery organizations and consultant agenciesrequirements. This dissertation proposes a ML-based surrogate model approachaiming to capture the intrinsic knowledge of a mathematical model into an ensemblesystem of artificial neural networks and make it available for providing simplifiedanswers to on the field problem-specific questions. A surrogate modeling approachwas developed to help transitioning from research to field by enabling a modelingframework to interact with ML libraries to emerge model surrogates a(ny) modelling
25

26 surrogate modeling
solution. CSIP/OMS was extended and utilized to harvest data and derive thesurrogate-model at the modeling framework level. Here, NEAT techniques in anensemble application, combined with ANN uncertainty quantification are the mainmethodologies used and following exhaustively described.
3.1 literature review

Surrogate modeling is not a new concept in research environments. The firstpublication dates back to Blanning (1975), where the author conceptualizes theneed for surrogate models (named metamodels in that paper) for sensitivity analysispurposes. Kleijnen (1975) rovides statistical tools to make Blanning’s theoryoperational.Since then, this idea has evolved and largely applied in workflows requiringmany simulation runs such as optimization, sensitivity and uncertainty analysisoperational management, and prediction (e.g. Viana and Haftka (2008); Razavi et al.(2012b); Asher et al. (2015); Beh et al. (2017)). Here, long runtimes is a big issueand inhibits real time application of complex models as well. Several papers havebeen published on the topic. Razavi et al. (2012b) and Asher et al. (2015) are themost important review articles on surrogate modeling in water resources.
Asher et al. (2015) reports the usage of different names like metamodels (Blanning(1975)), reduced models (Willcox and Peraire (2002)), model emulators (O’Hagan(2006)), proxy models (Bieker et al. (2007)), lower fidelity models (Robinson (2007);Robinson et al. (2008)), and response surfaces (Regis and Shoemaker (2005)).He also provides a detailed taxonomy of surrogate models based off of theirmathematical structure:
• Data-driven methods: (AKA response surface, statistical and black boxmethod) are empirical approximator surrogates created from a set of modelinputs/outputs which emulate high-fidelity model responses;
• Projection-based methods: (AKA reduced order, reduced basis and modelreduction methods) are generated by creating a basis of orthonormal vectorsto reduce dimension subspace where project governing equations (usuallyKrylov-based and Singular Value Decomposition (SVD) methods);
• Multifidelity based methods: (AKA multiscale, hierarchical and physicallybased methods) result from decreasing numerical resolution or by reducingunderlying physics complexity.The goal of this research is to automatically generate surrogate models atframework level without requiring user extensive intervention. Between the threepreviously listed categories, the choice of the methodology to use fell into data-driven methods. Here, ANN are the only highly non-linear approximator that canbe automatically generated.Consequently, this dissertation and this literature review focus on responsesurface surrogates and ANN more specifically.

The following definition allows for understanding the reason why this mathemat-ical tool is named artificial neural network:“A neural network is a massively parallel distributed processor thathas a natural propensity for storing experimental knowledge and makingit available for use.It resemble the brain in two respects:

3.1 literature review 27
1. Knowledge is acquired by the network through a learning process;2. Interneuron connection strengths known as synaptic weights areused to store the knowledge.”

- Haykin and Lippmann (1994) -
A more rigorous mathematical definition describes an ANN as a directed graph(Floreano et al. (2008)). Here each node (or neuron), except for the input layer, isthe actual processing element: a usually nonlinear static transfer function transformsthe weighted sum of input values into a single output value (Govindaraju and Rao(2000b)) (see Figure 8).

Figure 8: Single hidden layer feedforward neural network, credit Govindaraju and Rao(2000a).
ANN is an empirical data-driven type of models generated by capturing thebehaviour of high fidelity model through their input and output datasets.Over the past 20 years, applications of ANNs (McCulloch and Pitts (1943))to water related topics for surrogate modeling purposes have taken off thanks toadvancements in computational power and parallel distributed environments butmore importantly, after the introduction of solid mathematical basis by Hopfield(1982) and Rumelhart et al. (1985).ANN-based Surrogate Model (SM)s have been used for uncertainty-basedautomatic calibration studies such as Khu and Werner (2003) (they performedauto-calibration of SWMM model), or Zhang et al. (2009) (they performed auto-calibration of SWAT model), or Zou et al. (2009) (they performed auto-calibrationof WASP model).They have been implemented in multiobjective optimization settings such as Lionget al. (2001) (they performed auto-calibration of HydroWorks model through bi-objective optimization) or Behzadian et al. (2009) (they performed the optimizationof water distribution system monitoring locations through bi-objective optimization).

28 surrogate modeling
Shrestha et al. (2009) replaces computationally demanding Monte Carlo simula-tions with ANN-based SMs (they performed prediction of uncertainty estimation ofa hydrologic model). Yan and Minsker (2006, 2010) make use of neural networks tosolve integer optimization problems (they designed groundwater remediation strate-gies using MODFLOW and RT3D for flow field and contaminant concentration).
However, Razavi et al. (2012b) emphasize the relevance of identifying the optimalstructure of an ANN to properly design ANN-based surrogates, and the fact thatthis results from researcher subjective decisions and trial-and-error processes.Additionally, they underline the ANN nature of being inexact or almost exactemulators, which might not fit requirement of approximating deterministic responseof a computer model for optimization purposes.Although ANN-based SM might not perform perfectly away from design sites,Asher et al. (2015) states that

“Despite their drawbacks, well used data-driven approaches remaina valuable tool in applications such as decision support and integratemodeling, where it may be necessary to limit both the number ofparameters and the ranges which they take. Quick runtime oncecalibrated and their non intrusive nature make data-driven methodsparticularly useful for these applications.”
- Asher et al. (2015) -

This research attempts to overcome current limitations of ANN-based surrogatesand targets the automatically emerging of the surrogate model at a framework levelin addition to input space dimensionality reduction.The final goal is to provide service delivery organizations with a lightweight andeasy to use tool to facilitate decision support on the field.
3.2 research questions

This section introduces to research questions this dissertation investigates on.Each research question is briefly analyzed.
RQ1: Can we sufficiently duplicate the behaviour of relevant conceptual orphysically based models with abstract generic implementation of surrogatemodels?ANN-based SM as methodology itself has been widely applied and proved to returnaccurate estimates (Kourakos and Mantoglou (2009); Yan and Minsker (2006)).However, the structure of each surrogate results from researcher subjective decisionsand trial-and-error processes (multilayer perceptron neural network might haveone or more hidden layers and the actual number of hidden nodes is usuallyconsequence of a trial and error procedure).NeuroEvolution of Augmenting Topology NEAT is an evolutionary algorithmdesigned to evolve the structure of a neural network starting from the minimaltopology and incrementally growing it. This methodology allows for automaticallyemerging SM with the most appropriate internal structure since topology andweights of the artificial neural network evolve during supervised learning.

3.3 research design and methods 29
RQ2: How can we properly split the input dataset in order to emulate modelsbehaviours more accurately?Resampling methods are widely applied in modern statistics and are fundamentaltools for ANN methodologies as well (James et al. (2013)). Here, cross-validationis mainly applied for:
• Model assessment: in order to estimate the performance of a model andavoid overfitting;
• Model selection: in case of fixed structure ANN, leave-one-out cross-validation (LOOCV) and k-fold Cross Validation (CV) are mainly used totest ANN with different structures and select the most performant one.

In this research ANN methodologies are utilized as model behaviour approxima-tors. Thus, the relation between model input and output should be described by ahidden but well defined nonlinear function since the dataset is noise-free. As aresult, model assessment (overfitting) is not the biggest concern.Regarding model selection, NEAT takes advantage of the benefits of a geneticalgorithm to build the ANN structure during the training phase. Thus, NEAT endsup generating a different ANN every time the training process starts, even if it isfed with the same training dataset. Consequently, standard resampling methodscannot be applied to this research.However, properly splitting the training dataset to homogeneously cover thedomain space and leveraging NEAT aleatoric process to generate several slightlydifferent ANNs might potentially improve SM estimates accuracy.
RQ3: How can we improve surrogate model results accuracy and providestrong support in the decision making process consequently?One of the main goals of mathematical/engineering models is to facilitate andsupport decision making processes. This goal is achieved by quantifying the rangeof possible, which means estimating uncertainty and variability of the model (Swilerand Giunta (2007)). The NEAT methodology involves several aleatoric processes,which might be used to uncertainty quantifying ensemble of ANNs result.Furthermore, ensemble learning has demonstrated to improve result accuracywith respect to single ANN application (Yu et al. (2008); Guo et al. (2012)).Combining ensemble learning with uncertainty quantification leads to achievingtwo goals: improve result accuracy while supporting and ease decision makingprocesses.

3.3 research design and methods
This research aims to support consultant agencies by providing a more lightweightand easier to use surrogate of an actual mathematical model. This surrogate isgenerated at a framework level by expanding framework capabilities.Thus, this research has been driven by the need of:
• Automatically generate the surrogate model at framework level;
• Generate a surrogate model able to provide accurate results and supportdecision makers by uncertainty quantifying surrogate model behaviour.

Subsection 3.3.1 Methodological approach introduces to the two main method-ologies this research utilizes and the two conceptual contributions:

30 surrogate modeling
• NeuroEvolution of Augmenting Topologies (NEAT) is the evolutionary algo-rithm capable of creating the structure of the ANN while adjusting connectionweights during the training phase (Stanley and Miikkulainen (2002));
• Feature Selective NEAT (FS-NEAT) is a NEAT extension that introduces animplicit dimensionality reduction mechanism to select only input parametersthat yield to the best ANN performance during the training phase (Whitesonet al. (2005));
• Ensemble of SMs coupled to uncertainty quantification of SM results is themethodology developed to take advantage of FS-NEAT inherent stochasticityand improve result accuracy;
• Framework-enabled NEAT based Surrogate modeling (FeNS) is the finalconcept and contribution of this dissertation. FeNS integrates the threepreviously introduced methodologies at framework for automatically emergingthe SM.

Subsection 3.3.2 Technical approach and implementation deeply describes soft-ware libraries, Application Programming Interface (API)s, and platforms employed toextend framework functionalities to generate the surrogate model. An introductionto MongoDB database as well as Microservices and RESTful API is proposed.Then, a comprehensive description of CSIP serves as a preamble to the detailedanalysis of FeNS system.
3.3.1 Methodological approach
3.3.1.1 NeuroEvolution of Augmenting Topologies (NEAT)Stanley and Miikkulainen in 2002 published the paper “Evolving Neural Net-
works through Augmenting Topologies”, describing a new evolutionary algorithmcapable of gaining benefits from contemporary evolving both structure and weightsof an artificial neural network (Stanley and Miikkulainen (2002)). At that time,several algorithms of the Topology and Weight Evolving Artificial Neural Net-works (TWEANN)s family were able to simultaneously evolve both topology andweights already (Angeline et al. (1994); Braun and Weisbrod (1993); Dasgupta andMcGregor (1992); Fullmer and Miikkulainen (1992); Gruau et al. (1996); Krishnanand Ciesielski (1994); Lee and Kim (1996); Maniezzo (1994); Opitz and Shavlik(1997); Pujol and Poli (1998); Yao and Liu (1998); Zhang and Muhlenbein (1993)).The open question in neuroevolution was about gaining advantage from the con-temporaneous evolution of topology and weights. NEAT is designed to evolve thestructure of a neural network starting from the minimal topology and incrementallygrowing it. This fasten the learning process by keeping the size of the search spaceof connection weights at its minimum. Stanley and Miikkulainen demonstrated howthe best fixed-topology neural networks were outperformed by NEAT (Stanley andMiikkulainen (2002)). This paper was also a valuable contribution to research ingenetic algorithms Genetic Algorithm (GA)s: NEAT algorithm, indeed, is able toprogressively complexify and optimize the neural networks over generations Stanleyand Miikkulainen (2002).

Solutions of four well established problems are the actual innovations behindNEAT algorithm:
1. TWEANN Encoding;
2. Competing conventions;

3.3 research design and methods 31
3. Protecting innovations;
4. Initial population and topological innovation.

The four issues are following briefly introduced. Subsequently, NEAT solutionsare described.
3.3.1.1.1 ProblemsNetwork encodingThere are two types of genetic representations for encoding an artificial neuralnetwork: direct and indirect encoding schemes.
Direct encoding is characterised by more explanatory representation. Every nodeand connection in the genome appears in the phenotype as well. For example,Structured Genetic Algorithm (sGA) Dasgupta and McGregor (1992) describe theconnection matrix through the traditional bit string; Parallel Distributed GeneticProgramming (PDGP) (Pujol and Poli (1998)) makes use of both a graph structureand a linear genome of node definitions to ease crossovering. Both structures showevident limits like a fixed number of nodes in the network, or number of nodes isconsequence of human choice.
Indirect encoding has a less explicit representation because connections andnodes are explicitly defined in the genome but they can be extracted from it. Forexample, in Cellular Encoding (CE) (Gruau (1993)) specialized graph transformationlanguage are utilized for programming the genomes in order to specify cell division.However, there wasn’t a deep understanding of indirect encoding at that time, soone of major drawbacks was an uncontrolled way of searching for solutions. Thisled indirect encoding to focus on some suboptimal classes of topologies.
Competing conventions (permutations)Competing conventions problems happen when:
A. Several options are available to solve the weight optimization problemwith neural network;

Figure 9 illustrates two ANNs able to reproduce the same function with identicalstructure but different representation (chromosomes). Simply flipping hidden neuron1 (H1) and hidden neuron 3 (H3) makes the two ANNs incompatible for crossoverbecause there is a high probability of losing important information. The crossoverof representation (H1,H2,H3) with (H3,H2,H1) can potentially result in (H1,H2,H1)or (H3,H2,H3), losing H3 information in the first case and H1 in the second one.Crossovering these genomes has high probability of resulting into damaged offspring.
B. There is more than one topology to express the same neural network;
C. Genomes of different sizes can represent similar solutions.

The crossover in cases B and C could potentially fail because neural networkrepresentations may not match up. In detail, this happens when genes are in thesame position on different chromosomes but represent totally dissimilar traits.Here, the constraint is positional crossovering: genes properly match up dependingon their traits, even if their are located at different positions on different chromosomes.Actual alignment strategy is required.

32 surrogate modeling

Figure 9: Competing conventions problem. The two ANNs have identical structure butdifferent order of hidden neurons. Here, crossovering the two networks mightresult in missing one of the 3 hidden units.
Protecting innovationThe result of a mutation process generates a network with a new structure. Rarelythe newly added node or connection are perfectly tuned and they usually don’t havepositive impact on network fitness. For example, when a new connection is added, itsweight is likely to be not optimized consequently decreasing network performance.Equivalently, the addition of a new node to the network structure generates anew extra nonlinearity which becomes part of network behaviour. Furthermore, theaddition of a new node automatically involves the addition of a new connectionwith a default weight value.As a result, the new structure has to be optimized for some generation beforeits actual use. However, the loss of fitness penalizes the new network in thepopulation which may not survive for enough generations to be properly optimized.This innovation has to be somehow protected long enough and actually check itsgoodness once maturity is reached.
Initial population and topological innovationThe initial population in TWEANNs systems is usually randomly generatedwhich means that each genome starts with a random topology. This opens twofurther scenarios. A starting network may have:
a. no connection from each of its inputs to its output;b. useless nodes or connections because they have never been evaluated before(and get rid of structures that shouldn’t have to be there require additionalavoidable efforts).

There shouldn’t be any hidden node in the initial population in order to start withminimal topology networks. A structure should grow only if the final fitness has apositive impact.
3.3.1.1.2 SolutionsFrom direct to genetic encodingNEAT makes use of direct encoding-type linear representation of network con-nectivity to describe genomes. Each genome contains two lists (see Figure 10):

3.3 research design and methods 33
Genome (Genotype) Network (Phenotype)

Figure 10: The genome (left side) maps the actual network structure (right side). Two genes (node and connection)describe neuron types and their interconnections.
• Node Genes: available input, hidden, and output nodes;
• Connection Genes: each connection gene contains in-node, out-node, con-nection weight, if the connection is enabled and an innovation number (fullydescribed in the next section, it allows for identifying same genes in differentgenomes during crossover).NEAT evolves connection weights and network structure through mutation pro-cess. During each generation, connection weights get perturbed or not (standardNeuroEvolution (NE) connection mutation). Only two structural mutations areallowed:
• Add connection: this adds a new connection gene between two unconnectednodes with a random weight;
• Add node: this adds a new node between two connected nodes. Thus, the oldweighted link is replaced by two new connections between the old nodes andthe new one. This mutation strongly affects the current value of the fitnessbehaviour of the newly created neural network. To moderate this process,NEAT sets the weight of the connection to the new node to 1 while sets theweight of the connection from the new node identical to the old one.In this way, the mutation lets the genome’s size slowly increase.

Historical markings to overcome competing convetions problemsNatural dynamics are strongly inspirational for the development of GAs and theway they overcome competing conventions problem actually inspires NEAT solutionas well.
Gene amplification (Darnell and Doolittle (1986); Watson et al. (1988)) is theprocess that allows for adding new genes to the genomes during sexual reproduction.Thus, even real genomes are not of fixed-length, otherwise there wouldn’t havebeen any evolution from single cells to actual organisms. In order to successfullycrossover, genes correctly align during the synapsis if they are homologous, i.e.they represent the same trait. This concept is named homology.NEAT defines two genes homologous if they have same historical origin. Becausethey originate from the same ancestral gene, they represent the identical structureand match up for crossovering. This concept equates to nature’s homology.

34 surrogate modeling
A global innovation number is introduced to keep track of the structural mutationchronological order. This index increments when a new gene is added and isassigned to it. For example, considering two subsequent structural mutations to thenetwork in Figure 10: addition of node 5 (Figure 11), and addition of connectiongene 1 - 6 contemporary to disablement of of connection gene node 1 - 4 (Figure12). When node 5 is added, the two newly created connection genes between node2 - 5 and node 5 - 6 get assigned the innovation numbers 10 and 11 respectively.If connection gene 1 - 4 gets pruned out immediately after, innovation number 12gets assigned to newly created connection gene 1 - 6.

Figure 11: Example of add node mutation. Left hand side illustrates the original ANNgenotype and phenotype, while right hand side illustrates ANN genotype andphenotype after structural mutation.
When two genomes mate, genes with identical innovation number (matching

genes) crossover and offsprings inherit the ancestor’s innovation number. The choicebetween two matching is completely random. If two genomes have non-matchinggenes, disjoint genes (non-matching genes within the range of the other parent’sinnovation numbers) and excess genes (non-matching genes outside the range ofthe other parent’s innovation numbers) are inherited from the more fit parent (seeFigure 13).Global innovation number is the only index required by NEAT to perform theartificial synapsis and properly line up matching genes. Additionally, NEAT collectsthe list of innovations that happened in the current epoch. Consequently, identicalinnovation number gets assigned to the same structural mutation that occurs morethan once during the same generation.
Speciation to protect structural innovationNature developed the concept of niche to protect structural innovation. Differentstructures usually belong to different species. Challenges between species happenin different niches.
NEAT algorithm implements a similar concept: the entire population is dividedinto species, each species groups networks with comparable topologies so that

3.3 research design and methods 35

Figure 12: Example of add link mutation. Left hand side illustrates the original ANNgenotype and phenotype, while right hand side illustrates ANN genotype andphenotype after structural mutation.

Figure 13: Process of two mating parents.

36 surrogate modeling
when a structural innovation happens the new network fits into the more suitableniche where it optimizes and initially compete only with similar networks.NEAT estimates a compatibility distance (delta) between networks in order toproperly group them. Here, the solution to the competing convention problemscomes to help.

“The more disjoint two genomes are, the less evolutionary historythey share, and thus the less compatible they are”- Stanley and Miikkulainen (2002) -
The distance between two genomes results from the linear combination of disjoint(D) and excess (E) genes, in addition to averaged weight differences of matchinggenes (W) (disable genes included):

δ =
c1E
N +

c2D
N + c3W (3.1)

N is the number of genes in the bigger genome, c1, c2, and c3 allows for balancingthe significance of the three factors. δ is evaluated against a threshold δt .
In order to avoid a species to take over the entire population, NEAT reproductionmechanism is based off of explicit fitness sharing (Goldberg et al. (1987)). The finalfitness (f ′) of each genome (i) is adjusted according to the distance (δ) from theother genomes (j):

f ′i =
fi∑n

j=1 sh(δ(i, j)),
{
sh = 0 for δ > δt
sh = 1 otherwise (3.2)

Thus, the final fitness is penalized by the number of genomes already presentsin a specific species. Every species is assigned a potentially different number ofoffspring in proportion to the sum of final adjusted fitness of its member organisms.Worst performing genomes are eliminated during species reproduction, and survivingoffspring in each species eventually replace the entire population.
Incremental growth from minimal structureIn the NEAT algorithm, population always start off with no hidden nodes. As aresult, the search algorithm always looks for solutions in the minimal-dimensionalspace possible throughout all generations. In fact, a network, that starts from theminimal structure, grows only if the structural mutation improves solution quality.This design clearly improve algorithm performance since the search space isalways at its minimum.

3.3.1.2 Feature selective NEATFS-NEAT improves the standard NEAT algorithm by adding the feature selectionprocess, which automatically selects inputs that yield the best ANN performance(Whiteson et al. (2005)). This process recognizes redundant and not significantparameters and prune them. This constraint the dimension of the search space tothe lowest size possible.
FS-NEAT was developed for three main reasons (Whiteson et al. (2005)):
• alleviating human responsibility of properly setting up machine learningsystem by enabling the searching algorithm to select only the subset of theinput parameters that increase learning performance;

3.3 research design and methods 37
• avoiding the presence of not relevant inputs which can slow down or evenimpede learning;
• controlling the pruning out of useless input parameters which can be compu-tationally expensive. This leads also to ask as less features as possible tothe end-user willing to apply the trained ANN.Before FS-NEAT, feature selection methodologies were grouped in two categories(Langley (1994)):a. Filters (Bonnlander and Weigend (1994); Kira and Rendell (1992)). Thesemethodologies are based off of the analysis of labeled data. Filters don’taccount for the actual learning algorithm that will use the data.b. Wrappers (Narendra and Fukunaga (1977); Pudil et al. (1994)). Thesemethodologies make use of a meta-learner to evaluate the feature sets whichis computationally expensive.FS-NEAT overcomes previously listed constraints by selecting the the mostsuitable features during the learning task. FS-NEAT differs from regular NEATonly for the setup of the initial population. NEAT algorithm generates a populationwhere each input of a neural network is connected to each output (Stanley andMiikkulainen (2002)). This surely generates small networks to start with. However,those are not the smallest networks possible. Additionally, with this kind ofstructure the learning algorithm assumes that every input is useful to gain the bestperformance. Which may not always be the case (Whiteson et al. (2005)).The smallest dimensional space to start with would be a pool of completelydisconnected input and output nodes with no hidden nodes. However, this kind ofnetwork requires at least one generation to start producing outputs, which wouldbe prodigal (Whiteson et al. (2005)).FS-NEAT initializes the population in the following way (see Figure 14):1. each output node is linked to a bias node;2. considering a set of I inputs, each node i ∈ I has a probability 1

|I| to getlinked to every output node.

Figure 14: Left hand side shows the initial structure of NEAT generated ANN. Right handside shows the initial structure of a FS-NEAT generated ANN.
This strategy allows for creating a very diversified initial population. Then, theevolutionary algorithm will select the most performant individuals and start applyingstructural mutations and crossover.

38 surrogate modeling
3.3.1.3 Ensemble of surrogate models and uncertainty quantificationThe ensemble of surrogate models approach (Serafin et al. (2018b)) resultsfrom combining the stochasticity inherent to the evolutionary genetic algorithmimplemented in NEAT to a specifically designed cross validation-like technique.

NEAT evolves connection weights and network structure through mutation process(Stanley and Miikkulainen (2002)). Accordingly, the neuroevolutionary algorithminvolves two type of stochastic mutation processes:
1. connection weight perturbation, which may or may not happen dependingupon standard neuroevolution connection mutation;
2. structural mutation, which involves random addition of a connection genebetween two disconnected nodes, or a node gene between two alreadyconnected node genes.

This stochastic procedure already generates a slightly different ANN every timea training process fed with identical input/output snapshots starts. Training anensemble of ANNs results in several SMs capable of properly emulating the originalmodel behaviour even if they differ in structural topology and connection weights.Instead of choosing one single ANN out of a trained ensemble, an accuratelydesigned cross validation-like procedure is used to emphasize this behaviouralstochasticity.Supervised learning methodologies require to split the available dataset intothree sets: training, validation, and testing (Govindaraju and Rao (2000a); Friedmanet al. (2001); James et al. (2013)). Thus, the entire dataset is initially divided intotwo groups: training+validation (TV) dataset, and testing (see Figure 15).
Figure 15: Dataset splitting in training, validation, and testing.

Afterwards, right before the beginning of the learning process, the TV datasetis randomly split into training and validation datasets. The partitioning algorithmmakes sure that the two sets have same probability distribution, in order to breakdown the TV dataset into two significant samples.As a result of this splitting procedure, each ANN is trained and initially validatedagainst slightly different datasets, ending up with a unique structure capable ofemulating original model behaviour.
The ensemble system results from concurrently training several ANNs andfollowing selecting the utmost performant ones. The ensemble system is thencollectively run to provide uncertainty quantified results against the testing datasetand subsequently applied against new data.

3.3.1.4 Framework-enabled NEAT based Surrogate modeling (FeNS)Framework-enabled NEAT based Surrogate modeling (FeNS) concept has beendesigned to support, facilitate, and automate the transitioning from research modelsto “field models”.
Model complexity in terms of data resolution requirements, number of parameters,platform affinity, calibration or sensitivity analysis procedures, causes problemsin consultant environments for timely delivery of research models themselves, IT

3.3 research design and methods 39
deployment infrastructure management, model usability and data provisioning foron-the-field personnel, performance expectations, and field user training (Davidet al. (2013)).The use of EMFs and CCPs such as CSIP/OMS (David et al. (2013, 2014a);Lloyd et al. (2012)) alleviated some of the implications for model users (David et al.(2012); Lloyd et al. (2011)). The introduction of these software in the modelingworkflow is represented by Step 1 in Figure 16.Independently from model type, size, and complexity, any research simulationmodel is encapsulated into model components or web-services. As a result, user-model interface is simplified and unified by the adoption of standard input/outputdata formats (approach complexity in Figure 16). Legacy models are effortlesslyencapsulated as black-box software applications into EMFs/CCPs workflow as well.Eventually, EMFs/CCPs moderate run-time issue by leveraging innovative hard-ware infrastructure such as super-computing environments and computer clusters(David et al. (2013, 2014a); Lloyd et al. (2012)).

Figure 16: With respect to Figure 2, this schematic illustrates the introduction of a secondstep. In addition to framework encapsulation, original research model runsgenerate SMs, which can be used with little or no user effort and don’t requireany model maintenance and development cost.
Nevertheless, EMFs/CCPs don’t completely overcome service delivery organiza-tion issues with respect to operational use of mathematical models. Calibration andsensitivity analysis procedures, and high resolution data are still required for amodel simulation run, which turns out to be computationally demanding nonetheless.
FeNS attempts to overcome actual constraints by providing service deliveryorganizations with an easy to use, lightweight, automatically generated tool whichderives from original simulation model.In addition to unification of user-model interface (Figure 16 - Step 1), this tool,namely ANN-based surrogate model, allows for inner structure unification (Figure16 - Step 2): here, SMs originating from different conceptual/physical modelsshows identical structure, which is composed by a variable number of functionalunits (nodes and connections) and is completely decoupled from original simulationmodel internal structure. This allows for applying the SM as a black-box withoutany specific modeling proficiency.Additionally, by training SMs to emulate original model behaviour using relevantinput entries only, user-approach complexity is minimized.

In conclusion, the SM allows for emulating original simulation model by:

40 surrogate modeling
• reducing the number of input parameters required;
• answering application specific questions almost instantaneously withoutasking for any modeling proficiency;
• minimizing SM development and deployment cost, automatically generatingthe SM at a framework level (Figure 16 - Step 2)

3.3.1.4.1 FeNS conceptEMFs/CCPs foster research simulation model runs and directly manage input/out-put dataset.Since each input/output model run implicitly represents part of the originalmodel behaviour, that piece of information is of fundamental importance to emerge aproperly calibrated SM. Consequently, EMFs/CCPs need to be utilized to harvestinput/output model runs and emerge SM at the modeling framework level.

Figure 17: Generic FeNS concept. ML library employes original model runs to emergeeSM from any modeling solution.
Figure 17 explains the concept:

1. EMFs/CCPs-compliant conceptual/physical model (PM) runs generate (Gen)model outputs (O(PM)) corresponding to provided input data (I(PM));
2. EMF/CCP harvests I(PM)/O(PM) data snapshots;
3. when a sufficient amount of I(PM)/O(PM) snapshots are collected, NEATneuroevolutionary ML algorithm (ML) starts emerging (Train) n-SMs;
4. once n-SMs are created, the utmost performant ones are selected to compose(UQ) the ensemble of surrogate models (eSM) (eSM(PM));
5. finally, the eSM(PM) is queried by the end user to accurately answerapplication specific question.

3.3 research design and methods 41
3.3.1.4.2 FeNS protocolFeNS protocol defines a set of rules for integrating FeNS approach into frameworkworkflow requiring little or no user effort.To begin with, FeNS concept is split into two main stages:

STAGE A. harvesting of input/output snapshots of original model runs;
STAGE B. automated emerging of eSM from any modeling simulation.

Here, STAGE A requires intervention on current model simulation workflow andhence is the only stage that affects model user experience. STAGE B might requiresome dedicated SM input parameters set up but mostly necessitates of designingad-hoc applications for asynchronously emerging the eSM.FeNS protocol regulates issues and constraints related to integration of bothstages in framework workflow. Problem decomposition into elementary units allowsfor identifying and analyzing required rules.
STAGE A: harvesting of I/O snapshots of original model runsThis is the only stage that affects model user experience since it involves originalmodel simulation workflow.While interfacing with a model run, user is required to identify (or tag) relevantmodel inputs to properly describe selected model outputs. This tagging systemallows FeNS to recognize the parameters to harvest from the original model runand collect afterwords.In addition to tagging parameters available from within model configuration file,model user might want to perform mathematical operations on specific input param-eters to reduce input space dimensionality. This might involve model parametersretrieved from thirty parties data providers such as remote databases or other modeldependencies. Consequently, each original model needs to expose data providerdependencies.
FeNS identifies two model simulation workflow aspects which need to accommo-date model parameter tagging and expose model data dependencies:
a. user-model interface to extend tagging of input parameters;
b. simulation model source code to expose model data dependencies.

The next two paragraphs introduce to the set of non-invasive changes requiredto integrate FeNS methodology in the framework-compliant model workflow.For the sake of example, the description of this protocol is based off of OMS/CSIPEMF/CCP input/output standard format (JavaScript Object Notation (JSON) pay-load), and RESTful compliant CSIP-services.
A. USER-MODEL INTERFACE A generic model user interfaces to the simu-lation model through a configuration file such as JSON payload. Here, user listsrequired model input entries and input settings.To trigger the SM generation process, user needs to select relevant model inputparameters, identify model results, and potentially perform mathematical operationsto aggregate array or maps of input data.FeNS identifies 5 categories of input/output parameters:
• STANDARD input parameters;
• COMPUTED input parameters;

42 surrogate modeling
• DEPENDENCY DERIVED input parameters;
• ADDITIONAL input parameters;
• OUTPUT model parameters.Input model parameters are described through JSON Objects in a standard JSONpayload and adhere to the formal structure in Listing 3.1.

Listing 3.1: JSON Object of a generic model input parameter.
1 {2 "name": "param_name",3 "value": "param_value"4 }FeNS introduces the additional JSON key "description" which allows auser to:1. identify which input/output parameter has to be collected: "collect_in"or "collect_out" respectively;2. describe the mathematical operation to perform: "math_expression"(e.g. averaged sum) or "methodology" (e.g. kriging);3. list the dependency to derive the parameter from (this element might not bemandatory): "dependency" (e.g. database name).Modified JSON Object of each category of model parameters is following described.

A.1 STANDARD input parameter No operation needs to be performed on astandard input parameter, which simply has to be tagged and collected by FeNSsystem, consequently (see Listing 3.2)
Listing 3.2: JSON Object for STANDARD input parameter.

1 {2 "name": "param_name",3 "value": "param_value",4 "description": "collect_in"5 }

A.2 COMPUTED input parameter This input parameter might require mathe-matical operations to be reduced to a single relevant value. This parameter might bein the form of array, map, etc. Consequently, the description field needs to containthe mathematical operation to perform to the input parameter. This operation mightbe:
• mathematical expression;
• methodology such as lumped kriging on watershed centroid.JSON formal structure of this input parameter might look like Listing 3.3.

Listing 3.3: JSON Object for COMPUTED input parameter.
1 {2 "name": "param_name",3 "value": [val0, val1, ...],4 "description": "collect_in,math_expression/methodology"5 }

3.3 research design and methods 43
A.3 ADDITIONAL input parameter This parameter is not part of standardmodel input dataset. However, it is derived as a result of mathematical operationsperformed on a list of actual input parameters. This allows for applying inputdimensionality reduction and summarizing the behaviour of several input parametersinto a single one. JSON formal structure resemble Listing 3.3 but doesn’t containany explicit value (see Listing 3.4).

Listing 3.4: JSON Object for ADDITIONAL input parameter.
1 {2 "name": "param_name",3 "description": "collect_in,math_expression/methodology"4 }

A.4 DEPENDENCY DERIVED input parameter This parameter is not avail-able in the original input set of model parameters and is actually derived from dataprovider model dependencies. Here, the dependency to look for might be specifiedin the JSON payload (see Listing 3.5).
Listing 3.5: JSON Object for DEPENDENCY DERIVED input parameter.

1 {2 "name": "param_name",3 "description": "collect_in,4 math_expression/methodology,dependency"5 }

A.5 OUTPUT parameter The output parameter is not obviously part of theoriginal model JSON payload. However, it has to be identified and collected (seeListing 3.6).
Listing 3.6: JSON Object for OUTPUT parameter.

1 {2 "name": "param_name",3 "description": "collect_out"4 }

B. SIMULATION MODEL SOURCE CODE The simulation model is notasked to perform any additional operation on the parameter set. The simulationmodel needs to collect data provider dependencies information only (e.g. databaseconnections) and returns them along with model results. Still using JSON payloadfor the sake of example, this informations are collected into the JSON response.A simulation model is required to implement one additional method such as
putDependencies (Listing 3.7) provided by the framework API.

Listing 3.7: Example of a putDependencies method.
1 @Override2 public void doProcess() throws Exception {34 ...56 putDependencies(<list of dependencies>);78 }

44 surrogate modeling

MongoDB database
It collects I/O snapshots

and SMs

Dependencies
LMOD, SSURGO,CR +

generic dependencies

Databases

Databases

FeNS-proxy ModelService FeNS-eSMuser

FeNS-eSMModelServiceFeNS-proxy

framework

user

POST run

surrogate model

eSM model response

POST collect

original model

response

dependencies

POST

POST http://<host>/m/model/1.0

Figure 18: FeNS architectural design. FeNS-proxy interposes between user and model service, orchestrates parsing,retrieval and computing input/output original model parameters, and finally triggers surrogate modelgeneration by feeding FeNS-eSM with input/output snapshots.
STAGE B: automated emerging of eSMThe automated creation of the eSM relies on ad-hoc development of frameworkapplications against ML libraries.To emerge the eSM, FeNS system identifies 4 steps:
1. data collection into dedicated database;2. data normalization;3. SM training (actual SM creation);4. SM run against new dataset.

Specifically, last step replaces original model run when SM estimates becomeaccurate enough. To provide this functionality, a further application might berequired to select the most performant SMs only. This application is locatedbetween SM training (step 3) and SM run (step 4) and it is identified as SMselection. FeNS set of applications is following referred to FeNS-eSM.
3.3.1.4.3 FeNS architectural designFeNS protocol identifies the set of rules for collecting model parameters and themain steps for automatically emerging the SM at a framework level.FeNS architectural design defines the architectural aspects that allow for actuallyaccomplish the goal of SM creation by subjecting to FeNS protocol constraints.Figure 18 illustrates FeNS architectural design.FeNS system relies on the introduction of two additional elements to the standardframework workflow:
a. FeNS-proxy

3.3 research design and methods 45
b. FeNS-eSM

A. FeNS-proxyFeNS-proxy orchestrate the actual connection between original model serviceand FeNS-eSM to trigger surrogate model generation. This allows for moving theburden of collecting/processing input and output data aside from user or originalmodel service, thus avoid original model modifications.FeNS-proxy is in charge of parsing the input JSON payload and identifyingthe input parameters already available for collection. It additionally providescomputational capabilities for operating mathematical equations to aggregate inputarray or maps or deriving additional parameters.FeNS-proxy synchronously waits for model service to return output JSON re-sponse and list of data providers to fetch additional information from. When requireddata are retrieved from data providers, FeNS-proxy terminates pending computationsand packages input/output snapshot for triggering SM generation.Eventually, when the eSM is completely generated, FeNS-proxy looks up to alist of eSM available and queries the surrogate model instead of the original model.
B. FeNS-eSMFeNS-eSM is a set of microservices that interacts with FeNS-proxy and Mon-goDB database to generate the ensemble of surrogate models. These servicesorchestrate the operations identified by FeNS protocol STAGE B:
1. Data collection;
2. Data normalization;
3. Surrogate model training;
4. Selection of most performant surrogate models;
5. Run of the eSM against new data.

Section 3.3.2.5 Surrogate Model Services implementation at page 55 exhaustivelydescribes the current implementation of FeNS-eSM CSIP-services.
3.3.2 Technical approach and implementation
3.3.2.1 MongoDBMongoDB is a NoSQL database that arose in the early 2000s. It was createdby Dwight Merriman and Eliot Horowitz to overcome limitations of standard SQLdatabases when dealing with big data.

MongoDB “doesn’t try to be everything to everyone” (Chodorow (2013)). It rathertackles the two principal issues a db developer faces when working with increasingamount of data and web applications: speed and scalability.For example, it’s common practice to initially set up a single server to storelimited amount of data. When the volume of data starts passing the threshold ofterabyte in size, the developer needs to design a replication set up to properlyscale out reads, a caching layer coupled with fine queries tuning to reduce dbresponse time, data sharding to accurately spread out data across multiple machines.Eventually, the developer ends up redesigning the entire database because theschema initially chosen locks any kind of development and expansion (Chodorow(2013)). This lack of flexibility due to the use of fixed schemas, tables, and rows is

46 surrogate modeling
the real constraint of relational SQL databases. By contrast, MongoDB is built onthe notion of collections and documents. Documents are sets of key-value pairs andare the fundamental data unit. They have no predefined or fixed schema (nesteddocuments are allowed) which allows for easing the experimenting process in orderto identify the best set up, and document modifications because fields can be addedor removed with no type or size constraints (Chodorow (2013)). Collections containsets of documents with different field structures. For the sake of analogy, documentsand collections are like rows and tables in relational databases language.

Document is the core concept that allows MongoDB databases to be massivelyscalable and sharded. Data in documents are self-contained and key-values pairsstructure facilitates queries. Thus, documents can easily split up across differentmachines which are in charge of updating their own subset of the entire dataset (datasharding) (Plugge et al. (2015)). Furthermore, these features well fit active/activecluster configuration: two or more actively running nodes concurrently check ifthey store data required by a specific MongoDB query/request; the only servercontaining desired information responds to the request (Plugge et al. (2015)). Thisis the most optimized configuration in terms of load balancing. The workload isaccurately redistributed across the cluster, preventing overload issues in a singlenode.MongoDB capabilities are elevated by this scale out configuration (horizontalscalability across multiple nodes) rather than a scale up one (vertical scalabilityon a bigger machine). Vertical scalability is typical of relational databases whichare not suitable for active/active cluster configuration. It is surely the easiest setup but a bigger and faster machine is expensive and no more improvements arepossible when physical limit is reached (Chodorow (2013); Plugge et al. (2015)). Onthe other side, horizontal scalability is cheaper because relies on several smallerconnected machines but it is hardly manageable. Here MongoDB plays a key rolebecause it automatically takes care of balancing data and load across availablemachines, redistributing documents and figuring out how to spread data when anew machine is added to the cluster (Chodorow (2013)).
In terms of performances, MongoDB workload is based off of maximizing random-access memory (RAM) usage by caching queries indexes and further queries infor-mations, and by preallocating data files. Furthermore, MongoDB stores documentsin Binary jSON (BSON) format, which is binary form JSON format. The latter isperfectly suitable for exchanging and storing data in a self-contained schemalessdocument (Plugge et al. (2015)). MongoDB uses BSON instead of plain JSONbecause it speeds up processing and searching operations through stored files andallows for managing binary data.
MongoDB provides geospatial indexing as well, indexing technique that allowsfor selecting location-based data, e.g. querying stored data within a given range(Plugge et al. (2015)).
In order to purse speed and massive scalability, MongoDB developers chose notto include transactional semantic1, joins and master/master replication2 featuresin the architectural design. However, if transactional support is required, a hybridconfiguration of SQL and NoSQL databases is the best solution. This allows forcontemporary leveraging the most suitable features of both type of databases.

1 Transactional semantic is a feature of SQL databases which guarantees data consistency even duringpower failures or software errors. It satisfies the ACID (Atomicity, Consistency, Isolation, Durability)properties.2 Master/master replication (or multi-master replication) concept allows different servers to accept writerequests.

3.3 research design and methods 47
3.3.2.2 Microservice architecture and RESTful APICloud computing systems are state-of-art in terms of modeling environments. Inorder to leverage available hardwares, cloud computing systems rely on microservicearchitecture as Service Oriented Architecture (SOA), and REpresentational StateTransfer (REST)ful API as the most widely used way to interface users and remoteservices. This section introduces to the concepts of microservice/microservicearchitecture and REST.

Microservice Architecture (MA) was developed to overcome issues and constraintsrelated to deployment and resiliency of large monolithic applications (Nadareishviliet al. (2016)). The main goal was to break up big applications into several smallservices (services granularity) in order to build a system of replaceable overmaintainable piece of software.Nadareishvili et al. in “Microservice architecture: aligning principles, practices,
and culture” (2016) defines a microservice as

“[. . .] an independently deployable component of bounded scope thatsupports interoperability through message-based communication,”
and a microservice architecture as

“[. . .] a style of engineering highly automated, evolvable softwaresystem made up of capability-aligned microservices.”
There are no strict definitions of microservice and microservice architecture. Theyrather change from company to company because it mostly comes to achieving threegoals: speed and safety at scale (Nadareishvili et al. (2016); Newman (2015)).Speed relates to the need of quickly change and deploy a specific part of an entireapplication. Safety is always a fundamental aspect: no matter how quick youmake changes and redeploy the microservice, if you break the production systemyour efforts are useless. Thus, the proper trade-off between speed and safety is abasic element. Scale links to the inevitable aspect of growing demand to access anapplication. Thus, software has to be designed and built to deal with demand thatcan grows over beginning expectations (Nadareishvili et al. (2016)).To achieve these goals, every microservice application has to be (Nadareishvili et al.(2016); Newman (2015)):
• Small size: there can’t be a single size as a generic rule for every microservice.There is the cohesion principle , which is a stronger concept of single

responsibility (Martin (2009)). Basically, a microservice gathers every singleaspect of a bigger application that changes for the same reason.
• Bounded by contexts: a microservice needs to be self-contained withinboundaries of a more complex system. This allows for increasing cohesionof each single module, reducing coupling between modules in the system.Furthermore, this philosophy opposes to one-size-fits-all approach and ratherfacilitates polyglotism of technologies (graph-oriented database for describingthe international relationships of a company vs document-oriented databasefor collecting communications between companies), languages and frameworks.This aspect allows for developing every microservice with the most suitableprogramming language, shorten the process of software development.
• Independently deployable: when a microservice is small and bounded bycontexts, it is also independently deployable. Software developer can modifyor reimplement one single service and deploy it. There is no need for large

48 surrogate modeling
and long deployment anymore. Furthermore, this allows for fast rollback if thedeveloped component of the entire system fails. The microservice architectureavoid a failure cascade. The production environments maintains its workingstatus, while MA gracefully degrades system functionalities avoiding a totalfailure.

• Messaging enabled: communications to and between microservices happenby posting requests through the net. This configuration enables the sys-
tematization. If MA eases the process of microservices design, burden andcomplexity are handled by the system. The latter is designed to managemodules communication. It doesn’t deal with internals and behaviours of eachmodule. This design eases the process of handling growable systems.

• Autonomously developed: when dealing with big monolithic applications,none of the software developers in the team knows everything about thatsoftware. In case of failure, bug fixing is a slow process because softwaredeveloper has to go through the entire code and find out the cause of the failure.Same procedure happens when it comes to maintain or modify the monolithicapplication. MA allows for setting up autonomous and context experts teamsof developers. Microservice cohesion reduces dependencies between teams.As a results, the process of making code available to production is faster andindependent from each other module.
• Disposable: when a microservice is not updated and not suited for a specificapplication, it can be easily disposed and a new microservice redesigned. Theset up of autonomously developing MA facilitates the design of disposable

code.
• Decentralized: if there is no central body managing the entire system, thereare fewer bottlenecks in the process to make developed code available inproduction environment. The bulk of work is spread out between independentteams of developers who speed up development/deployment operations.
• Built and release with automated processes: continuous integration (CI)automates the building and testing process by adding an automated layerof safety where every test runs constantly. This reduces the probability ofdeploying software with errors. This software development practice effectivelyimpacts production code quality only if Unit Tests covering each and every MAcapability are developed accordingly. The Test-Driven Development (TDD)movement sponsors this policy through important practical laws (from Martin(2009, 2007)):First Law: You may not write production code until you have written afailing unit test.Second Law: You may not write more of a unit test than is sufficient tofail, and not compiling is failing.Third Law: You may not write more production code than is sufficientto pass the currently failing test.To sum up, production code and unit tests are tightly developed simultaneously.As a result, software improvements that break actual state of the computationalsystem are caught and identified immediately.

REpresentational State Transfer (REST) is an architectural style introduced byFielding and Taylor in his PhD dissertation “Architectural Styles and the Design
of Network-based Software Architectures” (Fielding and Taylor (2000)). Fielding’s

3.3 research design and methods 49
goal is to regulate communication between client and server by defining a set ofsoftware engineering principles. Detailed requirements of web services (component)implementation and descriptions of protocol syntax are not part of REST constraints.The latter rather focus on roles of components, their interactions, and data elementsinterpretation (Fielding and Taylor (2000)). REST-compliant web services arecalled RESTful web services, while their exposed APIs are RESTful APIs.The actual REST-compliant architecture is the Resource-Oriented Architecture(ROA), introduced by Richardson and Ruby in “RESTful web services” (Richardsonand Ruby (2008)). In every RESTful system there are three main actors involved:

1. Uniform Resource Identifier (URI): it is a label that univocally identifiesand addresses a resource (Allamaraju (2010)). It is the name of that resource.Resource doesn’t have a concrete definition. A resource is identifiable withany concrete or abstract object, representable with a binary sequence, storableon memory drives, and identified by a URI (Richardson and Ruby (2008)).2. HyperText Transfer Protocol (HTTP): it is the protocol that provides themethods for defining the uniform interface. This allows the user to interactwith web resources by sending requests and getting response through auniform and predefined set of verbs. These are GET, POST, PUT, andDELETE.3. Representation (XML/JSON/HTML): it is the data or metadata (an e-bookand its reviews or cover image respectively) of the actual state of the resource(Richardson and Ruby (2008)).
A RESTful system follows the 6 constraints defined by Roy Fielding. If any ofthe required principles is violated, that system cannot be defined as RESTful.
1. CLIENT-SERVER ARCHITECTURE: this allows for separating concernsbetween the actual user interface exposed to the client and the data stored inthe server. The benefit client-side is a wider portability of the user interfacewhich can be designed to adhere to different platforms requirements. Thebenefit server-side is an improved services granularity which eases scalability,service simplicity and independent development and deployment;2. STATELESSNESS: there is just one interaction between client and server.The client submits a request which makes him transitioning to a new state.This transitioning state lasts until the server returns a representation (theresponse), which contains every link to allow the client to start a new statetransition. In this simple communication process, the server doesn’t storeany client context while the client maintains the session state instead. Thisprinciple improves reliability because it eases the process of recovering frompartial failure; scalability because the server doesn’t store any informationfrom the client in between requests allowing for freeing resources at the endof each request and processing parallel interactions; visibility because theclient request contains every information required by the service to correctlyprocess the response, no monitoring system is required to look for previousclient requests data in order to fulfill the current request;3. CACHEABILITY: server responses implicitly or explicitly state whether theyare cacheable or not. This allows clients or intermediaries to cache onlysuitable data preventing from caching stale or not appropriate data. Datacaching reduces latency and improves user-perceived performance conse-quently. The user interacts with client cache or an intermediary, limitingclient-server communication and improving services scalability;

50 surrogate modeling
4. LAYERED SYSTEM: this is a system with one or more layers (intermediaryservers) in between client and server. The client may not communicate withthe end server but he gets identical resources. As a result, load balancing iseffectively managed, caching is provided on different levels, and some layersmight be responsible of enforcing security policies. The overall system hasa better scalability but overhead and latency could be downside of dataprocessing;
5. CODE ON DEMAND (OPTIONAL): a server can send executable code tothe client to extend functionalities during the session;
6. UNIFORM INTERFACE: this concept is the key of REST design. It allowsfor standardizing the client-server interaction, improving decoupling andfacilitating independent evolution of each part involved consequently. Fourconstraints separate REST from other architectural styles:a) Resource identification in requests: a resource identifier URI is used toidentify a specific resource in the request sent from a component to theother.b) Resource manipulation through representations: once the client re-ceives a resource representation and related metadata, he owns everyinformation required to alterate or delete that resource.c) Self-descriptive messages: every message involved in the client-servercommunication contains all the information the connector (client, server,cache, resolver, tunnel) needs to properly process it, e.g. each media type(data format of a representation) indicates which parser the connectorhas to use.d) Hypermedia as the engine of application state (HATEOAS): each serverresponse to a client request has to contains all the hyperlinks that allowthe client to dynamically keep changing state by looking through furtheravailable actions and resources.

The drawback of a uniform interface comes to efficiency degradation. A standard-ized form is used to transfer information indeed, which cannot be as efficient as aoptimized one.
3.3.2.3 Cloud Service Integration Platform (CSIP)The Cloud Service Integration Platform CSIP (David et al. (2014a)) is a Modelas a Service (MaaS) (Zou et al. (2012)) platform that provides access to researchmodeling simulations as cloud based web-services. The CSIP hosting environmentis designed for (i) elevating computational scalability, (ii) facilitating softwareapplication modularity, (iii) improving cost-productivity trade-off, while (iv) providingand open deployment system.

A MaaS platform resembles the Software as a Service (SaaS) platform behaviour:it enables highly granular software applications reusability over the network butit narrows down its scope to (environmental) models rather than generic softwarecomponents (Roman et al. (2009)).A MaaS platform works as a service provider, thus simplifying model user accessto research modeling solutions. As a matter of fact, in addition to move the burdenof managing execution environments from model users to hosting environment, itcan potentially satisfy model input data requirement automatically (David et al.(2014a)).

3.3 research design and methods 51
A MaaS is built on top of a CCP, which is a pool of virtual computational resourcesaccessed over the network. These resources (hardware, platforms, and web-services)are allocated and disposed on user’s request. Advantages of CCPs vary from (1) noin-house resources maintenance, development and administration; (2) secure accessand data protection; (3) guaranteed availability; (4) flexible updates of operatingsystems and applications on a large scale (David et al. (2014a)).Only recently, this computational environment became appealing to the scientificcommunity, which discovered its potential and capabilities and started make aviable option for research projects (Jha et al. (2011); David et al. (2014a)).

Figure 19: CSIParchitecture, credit David et al. (2014a).
CSIP elevates the MaaS concept by “(1) accounting for modeling service elas-

ticity and scalability, (2) leveraging contemporary computational approaches, (3)
addressing traceability within operational settings, and (4) allowing platform and
language agnostic service access and cloud agnostic deployments while providing
a simple, non-invasive approach to leverage legacy and new modeling solution with
minimal development effort” (David et al. (2014a)) (Figure 19).CSIP architectural design doesn’t rely on a web-service central management,which facilitates provision of failover and redundancy features. Consequently, alarge number of users can potentially perform several parallel model execution eachwithout performance degradation.

CSIP interfaces with its MaaS services through a simple and open API, whichadheres to RESTful API architectural design concepts (Fielding and Taylor (2002)).The service-client communication of model input and output parameters happensvia JSON data objects.
The CSIP project was established and is actively developed at Colorado StateUniversity (CSU) in partnership with USDA-NRCS and USDA-ARS. CSIP cur-rently hosts 250+ active environmental models and data services. CSIP-servicescan be easily accessed, tested and finally integrated into service delivery organiza-tions information system workflows since they are deployed to OMSLab stagingbackends.

52 surrogate modeling
Catalog of inventoried services is currently growing and made available at

https://alm.engr.colostate.edu/cb/project/csip.
For the sake of example, some of the available model services are: WEPP,WEPS, RUSLE2 (water and wind erosion prediction); SCI, STIR (soil quality);SWAT (SWAT-CP & SWAT-DEG), AgES-W, WQM, CFA (water quality and streamdegradation); PRMS, NRCS Hydrotools (hydrology, water supply forecasting,stream hydraulics and sediment transport); GRAS (grazing management).Some of the available data services are: NRCS Soil Data Mart (soil data);CLIGEN, WINDGEN, PRISM (climate data); ESIS/EDIT (ecological site data);WQM (pesticides data); LMOD (land management and crop rotations data).Relevant representative cases of CSIP-services integration into service deliveryorganization workflows are: NRCS Integration Erosion and Resource Stewardshipapplications, which is the next generation Conservation Desktop application designedover CSIP-services access through NRCS API gateway; Wastewater TreatmentPlant (WWTP), in which Colorado Department of Public Health and Environment(CDPHE) runs Flow Analysis (CFA) against USGS LOADEST and flood regressionanalysis models for monitoring regulations; National Cooperative Highway ResearchProgram (NCHRP), which studies sediment transport and yield in water bodies(David et al. (2014a)).
3.3.2.3.1 CSIP APICSIP interfaces with its MaaS services through a simple and open API, whichadheres to RESTful API architectural design concepts (Fielding and Taylor (2000,2002); David et al. (2014a)). REST architecture is deeply described in Section3.3.2.2 Microservice architecture and RESTful API.The service-client communication of model input and output parameters happensvia JSON data objects.
CSIP REST protocol regulates access to CSIP-services. Although this protocolis similar to OpenGIS Consortium Web Processing Services (WPS) (Consortiumet al. (2007)), data definitions, data descriptions, and meta-data are simplified tofacilitate web-service access (David et al. (2014a)). A client is allowed to performthree operations against CSIP API through CSIP implementation:
1. Request a list of operative model and data services, which returns back servicemeta-data and implementation specifics;
2. Request model or data service details on a specific operation (e.g. inputrequirement and format);
3. Execute the model or data service by satisfying input parameter requirementsand specifying optional metadata to control service execution.

Execution request can be submitted as synchronous (“sync”) or asynchronous(“async”). Afterwards, the model service state change to “Running”, and can (i)complete successfully and return “Finished”, (ii) fail and return “Failed”, or (iii) getcancelled by the client and return “Cancelled” (David et al. (2014a)).Listing 3.8 shows a REST call to EFH2 service: service endpoint (POST); targethost (Host), metadata for proper JSON content negotiation (Accept and Content-
Type). Listing 3.9 shows the service response, which includes the original request(field “parameter”) and the “result” field conforming REST standard. The “metainfo”field lists model run metadata.

https://alm.engr.colostate.edu/cb/project/csip

3.3 research design and methods 53
Listing 3.8: REST call to EFH2, credit David et al. (2014a).

1 POST /csip-eft/m/efh2/1.1 HTTP/1.12 Host: <host>3 Accept: application/json4 Content-Type: application/jsonInput files can be attached to a HTTP POST CSIP request as multipart formdata attachments. The “result” section of a service run response may contain aURL pointing to additional model outputs. HTTP GET CSIP request against thatURL allows for retrieving the additional model output in their legacy output format.HTTP GET CSIP request against the service endpoint returns a request “template”.
Listing 3.9: JSON response from a CSIP-eft run, credit David et al. (2014a).

1 {2 "metainfo": {3 "status": "Finished",4 "first_poll": 1000,5 "next_poll": 1000,6 "suid": "c6808036-db0b-11e3-84c6-8d184928a57a",7 "tstamp": "2014-02-14T02:02:17+0000",8 "service_url": "http:\/\/localhost:8080\/csip-eft\/m\/efh2\/1.0",9 "cpu_time": 16,10 "expiration_date": "2014-05-14T02:07:17+0000"11 },12 "parameter": [13 {14 "name": "precip",15 "description": "precip",16 "unit": "inch",17 "min": "1",18 "max": "15",19 "value": 1420 },21 {22 "name": "runoffcurvenumber",23 "min": "40",24 "max": "95","value": 9025 },26 {27 "name": "stormtype",28 "value": "I"29 },30 {31 "name": "watershedlength",32 "unit": "ft",33 "min": "200",34 "max": "26000",35 "value": 150036 },37 {38 "name": "watershedslope",39 "unit": "%",40 "min": "0.1",41 "max": "64",42 "value": 0.543 }44],45 "result": [46 {47 "name": "runoff",48 "value": 12.7549 },50 {51 "name": "timeofconcentration",

54 surrogate modeling
52 "value": 0.72717853 },54 {55 "name": "unitpeakdischarge",56 "value": 0.370021857 }58]59 }

CSIP services are implemented against CSIP core library, which takes advantageof Java Jersey RESTful framework, and JAX-RS reference implementation (Burke(2013)). Listing 3.10 shows the service implementation of EFH2 model (USDA(1987)).
Listing 3.10: CSIP-compliant EFH2 model, credit David et al. (2014a).

1 @Name("EFH2")2 @Description("Storm runoff model based on " +3 "conventions in Engineering Field Handbook.")4 @Path("m/efh2/1.0")5 @Polling(first = 1000, next = 1000)6 public classV1_0 extends AbstractModelService {7 // the model8 EFH2HydrologyModel model = newEFH2HydrologyModel();910 @Override11 protectedString process()throwsException {12 Map m = getParamMap();13 model.setPrecip(m.get("precip").getDouble(VALUE));14 model.setRunoffCurveNumber(15 m.get("runoffcurvenumber").getInt(VALUE));16 // ... obtain more parameter here17 return model.simulate() == 0 ? EXEC_OK : EXEC_FAILED;18 }1920 @Override21 protected JSONArray createResults() throwsException {22 JSONArray result = newJSONArray();23 result.put(JSONUtils.data("runoff",24 model.getRunoffQ()));25 result.put(JSONUtils.data("timeofconcentration",26 model.getTimeOfConcentration()));27 result.put(JSONUtils.data("unitpeakdischarge",28 model.getUnitPeakDischarge()));29 return result;30 }31 }

3.3.2.4 EncogEncog is an open source machine learning framework developed by Jeff Heatonand released under Apache License version 2.0. The Encog library is available forJava and C], and it has been designed to pursue high scalability and adaptabilityto exploit multicore processors (Heaton (2015)).This framework provides a large variety of machine learning models that canbe used for regression, classification, and clustering purposes. The software isaccurately designed and the exposed API allows for easily and quickly interchangemachine learning methodology used with few or no code modifications.The multithreaded implementation of the main training algorithms is finely tunedand empirical benchmarks show how Encog outperforms many concurrent Java andC] libraries (Taheri (2010); Ramos-Pollán et al. (2012); Iuhasz et al. (2013)).

3.3 research design and methods 55
The library is well documented and about 150 examples are provided to exercisemost of the API capabilities (Heaton (2015)).The available machine learning models are following listed:
• Adaline, Feedforward, Hopfield, PNN/GRNN, RBF, FS-NEAT and Hyper-NEAT neural networks;
• Generalized linear regression (GLM);
• Genetic programming;
• K-means clustering;
• K-nearest neighbors;
• Linear regression;
• Self-organizing map (SOM);
• Simple recurrent network (Elman and Jordan);
• Support vector machine (SVM).

Optimization algorithms to minimize a loss function (e.g. particle swarm opti-mization, Nelder-Mead and simulated annealing) along with preprocessing tool fortraining, test, and validation data set splitting are provided.Encog allows for storing and reloading a trained artificial neural network lever-aging Java serialization.
3.3.2.5 Surrogate Model Services implementationFeNS is implemented as a set of 5 CSIP microservices: collect, normalize, train,
select, and run. User calls the services in the previous order to (1) collect andstore model input/output snapshots into an application dedicated NoSQL database,(2) normalize the uploaded dataset, (3) train, validate, and store a collection ofANNs, (4) select the utmost performant ones to build an ensemble of ANNs, and(5) run the ensemble of ANNs against new data. Figure 20 illustrates the FeNSCSIP-services pipeline workflow: the left side (SM GENERATION) is actuallyhidden to the end user who interacts with the CSIP-run service only (right handside, SM APPLICATION).CSIP microservices have been designed on the following principles:
• simplify user-service interface by exposing strictly necessary parameters;
• avoid non essential data transfer from database to service and vice-versa;
• interact with database collections to track data and SMs metadata over theFeNS services pipeline, and enrich them with additional information overservice run.

Users interface with each web-service by posting a JSON payload.Each payload is composed of two sections to comply with CSIP API:
metainfo, and parameter. The metainfo section lists information to con-trol a service run (e.g. ‘‘mode’’: ‘‘async’’ to request asynchronousrun). The parameter section contains an array of JSON Objects. EachJSON Object contains two <key>:<value> tuple with predefined keys:
<name>: <service_var_name> and <value>: <value_to_assign>.Some fields of the CSIP-collect JSON payload might have an additional

56 surrogate modeling

Figure 20: Set of 5 CSIP services that allows for generating the SM.
<description>: <var_description> tuple. Section 3.3.2.5.1 Service 1:
raw data collection explains purpose and usage of this extra field.Each JSON payload set up service-specific input parameters. Consequently,every JSON payload contains a different set of JSON Objects. User can retrieve apayload template of each service by using a GET request.This subsection is organized as follow: Section Service 1: raw data collectiondescribes the collection of raw data into dedicated database per snapshot or byattaching a csv file of snapshots to the JSON request; Section Service 2: data
normalization introduces to the computationally cost-effective implementation ofthe normalization aggregator pipeline; Section Service 3: SM creationanalyzesthe core service walking through TV dataset splitting, SM training, SM validation,and SM store phases; Section Service 4: SMs selection, building the ensembledescribes implemented strategies to select the most performant SMs and build theeSM; Section Service 5: eSM run shows post and response of an ensemble run.

Each subsection provides service sequence diagram, service payload template,and database formal structure design. Service implementation code snippets andUnified Modeling Language (UML) diagram are presented when necessary tointegrate service algorithm description.
3.3.2.5.1 Service 1: raw data collectionThe first service collects the raw TV dataset into a dedicated MongoDB collectionfor later ANN training. It manages the upload of a single snapshot of input/outputmodel data as well as a csv file containing a list of snapshots.Figure 21 shows the interactive behaviour of the CSIP-collect service through asequence diagram.A data-driven SM learns and traps the knowledge of a conceptual/physical modelby capturing the nonlinear model behaviour hidden into an input/output snapshot.Thus, the collection of big number of combinations of model input/output is thefirst step towards the creation of an SM. CSIP-collect service stores data andrelated metadata into a raw MongoDB database collection.CSIP-collect service provides two options to parse and store raw data and relatedmetadata:
1. per snapshot: collection of single input/output snapshot;
2. per csv file: collection of numerous input/output snapshots from a csv file.

The two options are following separately analyzed.

3.3 research design and methods 57

Figure 21: Sequence diagram of CSIP-collect service.
Collection per snapshotCollecting data per snapshot requires a single combination of original modelinput/output. Listing 3.11 shows a CSIP-collect JSON request template.

Listing 3.11: Template JSON payload of CSIP-collect.
1 {2 "metainfo": {},3 "parameter": [4 {5 "name": "annName",6 "value": "db_name"7 },8 {9 "name": "in_var1",10 "value": 0.1,11 "description": "in"12 },13 {14 "name": "in_var2",15 "value": 19,16 "description": "in, [0.1,0.9]"17 },18 {19 "name": "in_var3",20 "value": 0,21 "description": "in, normalized"22 },23 {24 "name": "out_var1",25 "value": 0.28,26 "description": "out"27 },28 {29 "name": "out_var2",30 "value": 141.893,31 "description": "out, normalized"32 },33 {34 "name": "out_var3",35 "value": 0.081694489550937,36 "description": "out, [-1, 1]"37 }38]39 }

58 surrogate modeling
The model parameter section is an array that contains a list of JSON objects.The first object contains two <key>: <value> tuple: <name>: <annName>and <value>: <db_name>. Here, the CSIP-collect service checks if thedatabase db_name already exists: if it does exist, the snapshot of data is pushedto the bottom of the raw collection; if it doesn’t exist, an new database and a rawcollection are created.The following JSON objects are the list of variables required for training thesurrogate model. Every variable object contains the model variable name, its valueand description. The latter is of key importance since it contains comma separatedlist of variable metadata required by following services in the FeNS pipeline. Thedescription field can contains three type of information 3.11.

1. Type (in/out): it describes if the variable is input or output of the supervisedlearning process;2. Normalization (normalized): it tells if the variable is normalized already;3. Normalization min and max ([normmin,normmax]): the range the variablehas to be normalized in.
Only the Type metadata is mandatory. If it is not provided, CSIP-collect skipsthat variable and doesn’t push it to the database. If the other two fields are missing,default values are assumed: normalized=false (variable requires normalization),

norm_min=0 and norm_max=1.
Collection per csv fileIf a csv file is attached to the JSON payload, CSIP-collect service enables adifferent input/output snapshots parsing. The structure of a basic JSON payloadremains identical to Listing 3.11 . Here, CSIP-collect service reads only variablenames and description, and skips value fields. Afterwords, CSIP-collect processesthe csv file header and uploads to the database only columns which names arelisted in the JSON payload. CSIP-collect implements a collection algorithm whichallows for pushing to the database chunks of 10000 snapshots at a time. Thisvery effective design allows for collecting hundred of thousands of snapshots in fewseconds.By default data provided to CSIP-collect service (per snapshot or per csv file)are considered the previously called TV dataset (Section Ensemble of surrogate

models and uncertainty quantification). CSIP-train service uses the normalized TVdataset to randomly creates training and validation datasets. Consequently, eachSM is trained on a different dataset but also validate on a different dataset. Whenit comes to selecting the most performant SMs, CSIP-select goes through validationstatistics of each trained SM and select the most accurate. However, each SM isvalidated on a different dataset, thus CSIP-select comparison are not “perfectly”fair.The described methodology is acceptable when user deals with small dataset.If the number of snapshots gathered in the csv file is of considerable size, usermay want to split them into two subsets and store them into separated collections:a TV dataset for SMs training; and a further validation dataset which is usedby the CSIP-train service to commonly validate every trained SM against. Thisallows CSIP-select to actually compare SM validation performances computed onthe identical dataset.Detailed explanation of how datasets are split and used by CSIP-train serviceis available at Paragraph Service 3: SM creation. Listing 3.12 highlights the twoextra JSON objects required to enable this additional dataset splitting.

3.3 research design and methods 59
Listing 3.12: Template JSON payload of CSIP-collect to generate a common dedicated

“validation” collection.
1 {2 "metainfo": {},3 "parameter": [4 {5 "name": "annName",6 "value": "name of the surrogate model"7 },8 {9 "name": "split",10 "value": "true"11 },12 {13 "name": "training_perc",14 "value": "0.8"15 },16 {17 "name": "variable 1",18 "value": 0.1,19 "description": "in"20 },21 {22 "name": "variable 2",23 "value": 0 ,24 "description": "in, normalized"25 },26 {27 "name": "variable 3",28 "value": 141.893,29 "description": "in, [0.1,0.9]"30 },31 {32 "name": "variable 4",33 "value": 0.081694489550937,34 "description": "out, [-1, 1]"35 }36]37 } When split boolean variable is true, the splitting mechanism is enabled. It splitsthe uploaded data into TV and common validation dataset based on a user-definedpercentage, making sure that the two datasets have similar probability distribution.It also checks that min and max values for each variable are part of the TV dataset.

TV dataset is always stored into the so called “raw” collection either using persnapshot or per csv file collection. If split option is enabled, the common validationdataset is pushed into the dedicated “validation” collection.Figure 22 shows the interactive behaviour of the CSIP-collect service througha sequence diagram when split option is enabled. Here, TV dataset and commonvalidation dataset are stored into “raw” collection and “validation” collectionrespectively.
MongoDB: formal structureCSIP-collect service stores each original model variable as a BSON Document.Figure 23 shows the formal structure of the “raw” collection; if “validation” collectionis created, it has identical formal structure.MongoDB automatically creates id_ (ObjectId is the unique immutable primarykey that identifies each document) and timestamp (Date object holds the time thecollection is created). values is the actual array of collected raw data. metadatacontains a list of fields that fully describe the model variable: variable name; in/out

60 surrogate modeling

Figure 22: Sequence diagram of CSIP-collect service when csv file is attached.

if the variable is model input or output (type); true/false if the raw data is normalizedalready (norm); the lowest boundary for normalization algorithm (norm_min); thehighest boundary for normalization algorithm (norm_max); the actual min and maxvalues in the provided raw data array; and a values_id which is identical to everyvariable and changes only when CSIP-collect service pushes additional data tothe collection. CSIP-select services uses values_id field to invalidate old SMs.Detailed description is provided in Paragraph 3.3.2.5.4 Service 4: SMs selection,
building the ensemble.

Figure 23: Formal structure of MongoDB “raw” collection.

3.3 research design and methods 61
3.3.2.5.2 Service 2: data normalizationThe second service normalizes the TV dataset collected into “raw” MongoDBcollection and stores normalized results into a dedicated collection called “normal-

ized”.Figure 24 shows the interactive behaviour of the CSIP-normalize service througha sequence diagram.

Figure 24: Sequence diagram of CSIP-normalize service.
The CSIP-normalize service works as gateway to the database. Since CSIP-normalize doesn’t perform any operation on the data and Feature Scaling is theonly normalization algorithm currently available, the JSON payload requests isreally minimal.

Listing 3.13: Template JSON payload of CSIP-normalize service.
1 {2 "metainfo": {},3 "parameter": [4 {5 "name": "annName",6 "value": "db_name"7 }8]9 } CSIP-normalize service integrates MongoDB aggregation operations to performarithmetic expressions on grouped data records database-side. This allows foravoiding raw data copy from database to service and normalized data vice versa.As a result, CSIP-normalize service sole responsibility is to build the aggregationoperator and push it to the database.

MongoDB provides three different aggregation operators: single purpose aggre-gation methods, map-reduce function, and aggregation pipeline.Single purpose aggregation operations and map-reduce function are not part ofthe CSIP-normalize normalization pipeline but are briefly introduced for the sakeof completeness.Single purpose aggregation operations simply performs aggregation operationson documents of an entire collection. Its use is pretty straightforward but lacksof flexibility and provides pretty limited functionalities such as count and distinctoperations applied to documents that matches a find() query (MongoDB (2019a)).Map-reduce function performs a mapping of each selected document of thecollection (i.e. documents that matches a find() query) and emits document key-value pairs (MongoDB (2019b)). If a key has multiple values, the key is reduced :

62 surrogate modeling
MongoDB collects and condenses the aggregated data and returns a document orwrites results to a collection (MongoDB (2019b)). JavaScript is utilized to performcustom map-reduce functions. This allows for higher flexibility with respect tosingle purpose aggregation and aggregation pipeline. Contemporary, it increasescomplexity and ineffectiveness.

CSIP-normalize normalization pipeline is an aggregation pipeline. The latter is aframework designed upon the idea of processing documents off of a single collectionin a multi-stage pipeline (MongoDB (2019b)). The entire collection passes throughthe pipeline, and every stage performs one in-memory operation. A stage mayfilter out documents, generate new ones or transform them. Especially the lastoperation is of particular interest for the normalization pipeline. Transformationshappen because of pipeline expressions which might be arithmetic expressions,array expressions, text expressions, etc (MongoDB (2019b)). Expressions operateon fields of input documents. Because of their flexible syntax, nesting expressionsis allowed.Before describing the Java MongoDB client syntax that implements the normal-ization pipile, the Feature Scaling equation is presented:
f (x) =

(x − dL) ∗ (nH −nL)
dH −dL

+ nL , (3.3)
where x is the value to normalize, dH is the maximum value in the array, dL isthe minimum value in the array, nH and nL the maximum and minimum values tonormalize data in.Listing 3.14 shows the Java MongoDB client syntax that implements the Fea-ture Scaling equation. The normalization pipeline concurrently operates on eachdocument of the collection.

Listing 3.14: MongoDB Java client of Feature Scaling aggregator pipeline.
1 asList(2 // stage 13 project(fields(4 excludeId(),5 include("values", "metadata.name", "metadata.type",6 "metadata.norm", "metadata.norm_min", "metadata.norm_max",7 "metadata.min", "metadata.max", "metadata.values_id"),8 computed("count", new Document("$size", "$values")),9 computed("range", new Document(10 "$subtract", asList("$metadata.max", "$metadata.min")))11)),12 // stage 213 unwind("$values"),14 // stage 315 project(fields(16 excludeId(),17 include("values", "min", "max", "count",18 "metadata.name", "metadata.type", "metadata.norm",19 "metadata.norm_min", "metadata.norm_max", "metadata.values_id"),20 computed("normVals", new Document(21 "$cond", asList("$metadata.norm", "$values", new Document(22 "$sum", asList(new Document(23 "$divide", asList(new Document(24 "$multiply", asList(new Document(25 "$subtract", asList("$values", "$min")),new Document(26 "$subtract", asList("$metadata.norm_max",27 "$metadata.norm_min"))28)29), "$range")30), "$metadata.norm_min")

3.3 research design and methods 63
31))32))33)),34 // stage 435 group(new Document("name", "$metadata.name")36 .append("type", "$metadata.type")37 .append("norm", "$metadata.norm")38 .append("norm_min", "$metadata.norm_min")39 .append("norm_max", "$metadata.norm_max")40 .append("values_id", "$metadata.values_id")41 .append("count", "$count")42 .append("min", "$min")43 .append("max", "$max"), push("values", "$normVals")),44 // stage 545 project(fields(46 excludeId(),47 computed("timestamp", new Date()),48 computed("metadata", new Document("name", "$_id.name")49 .append("type", "$_id.type")50 .append("norm", "$_id.norm")51 .append("norm_min", "$_id.norm_min")52 .append("norm_max", "$_id.norm_max")53 .append("values_id", "$_id.values_id")54 .append("count", "$_id.count")55 .append("min", "$_id.min")56 .append("max", "$_id.max")57 .append("min_index", new Document(58 "$indexOfArray", asList("$values", "$_id.norm_min")))59 .append("max_index", new Document(60 "$indexOfArray", asList("$values", "$_id.norm_max")))),61 computed("values", "$values"))62),63 // stage 664 out(to_collection)65);

Listing 3.14 already highlights that the entire pipeline is split into 6 stages:Stage 1 implements a project operator as well as Stage 3 and Stage 5; Stage 2implements an unwind operator; Stage 4 implements a group operator; Stage 6implements an out operator. Figure 25 shows the schematic of the normalizationpipeline. Each rectangle represents a BSON document. Stage 1 operates on asingle BSON document. Stage 2 explodes the input single BSON document tooperate on its nested BSON documents. Stage 3 gets a list of BSON documentsfrom the previous Stage and combines them. Stage 4 and 5 operates on a singleBSON document, while Stage 6 takes care of transferring Stage 5 output to a newMongoDB collection.

Figure 25: Schematic of the Stages involved in the Feature Scaling aggregator pipeline.
Stage 1 is a projection operator (Listing 3.15): it analyzes values and metadataof the input document (on original model variable) and returns a single BSON

64 surrogate modeling
document with fields required to compute feature scaling expression exclusively.This limits the scope of the data query improving computational speed and efficiency.

Listing 3.15: Stage 1 code snippet.
3 project(fields(4 excludeId(),5 include("values", "metadata.name", "metadata.type",6 "metadata.norm", "metadata.norm_min", "metadata.norm_max",7 "metadata.min", "metadata.max", "metadata.values_id"),8 computed("count", new Document("$size", "$values")),9 computed("range", new Document(10 "$subtract", asList("$metadata.max", "$metadata.min")))11)),The _id of the input document is excluded by excludeId() method, which isincluded in the output BSON by default otherwise.The include() method groups fields already available from the input documentinto one projection (the array of values, metadata.name, metadata.type, meta-

data.norm, metadata.norm_min, metadata.norm_max, metadata.min, metadata.max,
metadata.values_id). These fields may be necessary to perform the normalizationoperation or just important metadata to carry over to the normalized collection.Two additional fields are actually created during the project Stage and includedinto the BSON document: count and range (Listing 3.15 - Line 8,9). The latterare created using the computed() method, which returns the computed value of thegiven expression.The count field is the number of elements in the values array. size is theMongoDB predefined operator that carries out this task.The range field is the subtraction of max and min values in the raw data array,and is following used as denominator of the Feature Scaling expression.

Stage 2 performs the unwind() operation (Listing 3.16).
Listing 3.16: Stage 2 code snippet.

13 unwind("$values"),In order to enable actual computation on each value of the values array, theBSON document output from Stage 1 is disassembled: one document per value isextracted and created in memory.
Stage 3 operates the actual normalization algorithm on each document output ofthe unwind stage (Listing 3.17).

Listing 3.17: Stage 3 code snippet.
15 project(fields(16 excludeId(),17 include("values", "min", "max", "count",18 "metadata.name", "metadata.type", "metadata.norm",19 "metadata.norm_min", "metadata.norm_max", "metadata.values_id"),20 computed("normVals", new Document(21 "$cond", asList("$metadata.norm", "$values", new Document(22 "$sum", asList(new Document(23 "$divide", asList(new Document(24 "$multiply", asList(new Document(25 "$subtract", asList("$values", "$min")),new Document(26 "$subtract", asList("$metadata.norm_max",27 "$metadata.norm_min"))28)

3.3 research design and methods 65
29), "$range")30), "$metadata.norm_min")31))32))33)),For each processed document, the _id field is excluded (excludeId() method)while metadata (metadata.name, metadata.type, metadata.norm, metadata.norm_min,

metadata.norm_max, metadata.values_id) and relevant fields (values, min, max,
count) are included in the document that is sent over to the following stage.Stage 3 actually computes the normalized value by applying the normalizationequation to the input value (Listing 3.17). normVals is following added to the outputBSON document.The core of the algorithm from the most nested to the most external module (Listing3.17): (1) subtracts values and min, and metadata.norm_max and metadata.norm_min;(2) multiplies the two subtractions; (3) divides the multiplication by range; and (4)finally sums the division to metadata.norm_min.The most external module is the cond conditional expression operator. It is aternary operator that checks metadata.norm field to avoid the normalization of analready normalized input dataset (Listing 3.18). metadata.norm is a true booleanfield if values of the variable stored in the document involved is already normalized,false otherwise.

Listing 3.18: Conditional operator leveraged in Stage 3.
1 new Document("$cond", asList("$metadata.norm",2 "$values", <NORMALIZATION>))Every ouput BSON document from Stage 3 contains a single normalized value.

Stage 4 makes use of group() operator to merge documents with a singlenormalized value into one document gathering the array of normalized values(Listing 3.19).
Listing 3.19: Stage 4 code snippet.

35 group(new Document("name", "$metadata.name")36 .append("type", "$metadata.type")37 .append("norm", "$metadata.norm")38 .append("norm_min", "$metadata.norm_min")39 .append("norm_max", "$metadata.norm_max")40 .append("values_id", "$metadata.values_id")41 .append("count", "$count")42 .append("min", "$min")43 .append("max", "$max"), push("values", "$normVals")),Here, the push operator plays a key role: it pulls normalized value normValsfrom each document output of Stage 3 and pushes them into the array values ofthe new single BSON document. The latter is the only output of Stage 4.
Stage 5 simply adds few extra metadata to the incoming BSON document:

timestamp generated using the Date object, index of min and max values in the
values array through the indexOfArray expression (Listing 3.20).

Listing 3.20: Stage 5 code snippet.
45 project(fields(46 excludeId(),47 computed("timestamp", new Date()),

66 surrogate modeling
48 computed("metadata", new Document("name", "$_id.name")49 .append("type", "$_id.type")50 .append("norm", "$_id.norm")51 .append("norm_min", "$_id.norm_min")52 .append("norm_max", "$_id.norm_max")53 .append("values_id", "$_id.values_id")54 .append("count", "$_id.count")55 .append("min", "$_id.min")56 .append("max", "$_id.max")57 .append("min_index", new Document(58 "$indexOfArray", asList("$values", "$_id.norm_min")))59 .append("max_index", new Document(60 "$indexOfArray", asList("$values", "$_id.norm_max")))),61 computed("values", "$values"))62),

Stage 6 writes the input documents into “normalized” MongoDB collection(Listing 3.21).
Listing 3.21: Stage 6 code snippet.

64 out(to_collection)

The MongoDB aggregation framework provides very limited mathematical opera-tors. However, javascript functions can be stored on the database server and usedthrough the map-reduce aggregation operators.
"validation” collection normalizationCSIP-normalize service checks if “validation” collection exists in the database. Ifthe collection is available, CSIP-normalize pushes the just described normalizationpipeline to this collection as well. Normalized results are stored into “validNorm”collection. Figure 26 shows the interactive behaviour of the CSIP-normalize servicethrough a sequence diagram when both “raw” and “validation” collection areavailable. Compared to Figure 26, here two aggregation pipelines are sent toMongoDB database, and two normalized collection are created consequently.Even if both collection are available and two normalization processes are per-formed, the aggregation pipeline is very effective and requires few seconds fornormalizing hundred of thousands of snapshots.

Figure 26: Sequence diagram of CSIP-normalize service when "raw" and "valid" collectionare available.

3.3 research design and methods 67
MongoDB: formal structureCSIP-normalize service stores each normalized variable as a BSON Document.Figure 27 shows the formal structure of the “normalized” collection; if “validation”collection is available, a “validNorm” collection is created with identical formalstructure.With respect to “raw” collection formal structure (Figure 23), “normalized” meta-data lists three additional fields: count of the number of elements in the array, andindex of min and max values in the array (min_index, max_index).

Figure 27: Formal structure of MongoDB "normalized" collection.
3.3.2.5.3 Service 3: SM creationThe third service is the core of the FeNS pipeline since it creates the SM throughsupervised learning, evaluates SM goodness of fit and stores both structure andrelated metadata into the database.A single run of CSIP-train service generates one SM. Consequently, CSIP-trainservice has to be invoked several times to create a collection of SMs (Figure 28).For the sake of description, CSIP-train service workflow can be split into foursteps:
1. TV dataset splitting;2. SM training;3. SM validation;

68 surrogate modeling

Figure 28: Conceptual approach of CSIP-train ensemble SMs.
4. SM store.

Figure 29 shows the interactive behaviour of the CSIP-train service through asequence diagram. Here, the interaction ModelService - MongoDB database aftera client POST request is crucial part of the service architectural design.The interaction ModelService - MongoDB database is described through threearrows: top-arrow directed from MongoDB to ModelService represents the trans-ferring of “normalized” collection from database to CSIP-train service; the secondarrow directed from ModelService to MongoDB symbolizes the process of storing avalidated but partially trained SM and its metadata; the third and last arrow di-rected from ModelService to MongoDB indicates the process of storing the validatedSM and its metadata when the training phase is over.The description of the ModelService - MongoDB interaction shows that SMtraining, validation, and store phases actually overlaps: during the training phase,user might decide to regularly validate and store a partially trained ANN toevaluate SM emulation performance, the so called recovery phase. Consequently,validation-store phases are potentially nested into SM training, and additionallyrun when the training phase is over.

Figure 29: Sequence diagram of CSIP-train service.
Along with application specific database name, the JSON request payloadcontains seven fields required to set up split mechanism, genetic algorithm, trainingthresholds, and recovery recurrence: scale_mechanism and training_perc allowfor choosing the splitting algorithm and the percentage of training and validationdatasets; population and connection_density set up initial number and structure ofANNs in the neuroevolutionary genetic algorithm; training_error and max_epochsdefine two training stopping criteria such as Mean Squared Error (MSE) thresholdand maximum number of iterations (or epochs) respectively; recovery_epochs defines

3.3 research design and methods 69
the recurrence of recovery phase (validation and store nested in the training phase)(Listing 3.22). Further details on splitting algorithms and training stopping criteriaare provided in Paragraph PHASE 1: TV dataset splitting and PHASE 2: SM
training respectively.Every phase of CSIP-train service following analyzed and UML diagrams areprovided when helpful to the description.

Listing 3.22: Template JSON payload of CSIP-train service.
1 {2 "metainfo": {},3 "parameter": [4 {5 "name": "annName",6 "value": "clay_test"7 },8 // splitting section9 {10 "name": "training_perc",11 "value": 0.812 },13 {14 "name": "scale_mechanism",15 "value": "SameDistribution"16 },17 // NEAT set up18 {19 "name": "population",20 "value": 300021 },22 {23 "name": "connection_density",24 "value": 125 },26 // actual training set up27 {28 "name": "training_error",29 "value": 0.0130 },31 {32 "name": "max_epochs",33 "value": 500034 },35 // storing set up36 {37 "name": "recovery_epochs",38 "value": 50039 }40]41 }

PHASE 1: TV dataset splittingThe first step of the SM creation is the split of the normalized TV dataset from
“normalized” collection. Here, the modeler may want to randomize the TV datasetbefore splitting it, or keep it in the provided order.Consequently, CSIP-train service implements three split algorithms:
• simple algorithm splits TV dataset in training and validation on user-definedpercentage;
• random algorithm randomizes TV dataset before splitting it in training andvalidation on user-defined percentage;

70 surrogate modeling

Figure 30: UML of implemented scaling mechanism.
• same distribution randomizes TV dataset, splits training and validationdataset making sure that snapshots containing min or max values of eachvariable are in the training dataset, compares probability distribution oftraining and validation dataset per variable and if are not similar restarts thealgorithm.

User can set the scale_mechanism in the JSON payload to “simple”, “random”, or“samedistribution”.Splitting algorithm is designed by implementing Simple Factory principle througha static method (Freeman et al. (2004)). Additional splitting algorithms are easilyimplemented by extending ScalingMechanism abstract class and overriding the
getStrategy() and compute() methods (Figure 30).The getStrategy() method returns the name of the splitting mechanism, whichbecomes part of the SM metadata stored in the SM dedicated MongoDB collection.The compute method hosts the implementation of the actual algorithm and returnsthe “random training” and “random validation” datasets to the SM training method.

PHASE 2: SM trainingThe second step is the actual creation of the SM. Here, NEAT employes the
“random training” dataset in a supervised learning procedure coupled to neuroevo-lutionary genetic algorithm to emerge the SM.

population field in the JSON payload defines the initial number of the ANNsthat are concurrently generated by the neuroevolutionary genetic algorithm in oneCSIP-train instance. Only the best genome survives the supervised learning processand becomes the SM.NEAT supervised learning procedure is based on a stochastic approach. Con-sequently, the bigger the initial population the higher the chance to generate amore accurate SM. However, a wider population is computationally more expensivesince the genomes concurrently mutates and evolves. CSIP-train service initialpopulation default value is set to 1 000 units.
connection_density is the parameter that defines the initial connection frequencybetween input and output nodes of each genome in the FS-NEAT population.Encog NEAT (Heaton (2015)) implements this algorithm with a nested for state-ment: the outer for statem loops over each input node while the inner for statementloops through every output node. Input node and output node get connected if a ran-

3.3 research design and methods 71
domly generated number between 0 and 1 (excluded) is smaller than user-provided
connection_density (Algorithm 1).Algorithm 1: Pseudo-code of FS-NEAT population initialization in Encog.Input: input nodesOutput: output nodes

1 foreach input node do2 foreach output node do3 if random value < connection_density then4 connect input to output nodes with random weight5 end6 end7 endWith a connection density of 0.1, very few input nodes have initial probability ofbeing connected to output nodes. With a connection density of 1.0, every input nodeis connected to each output node. The range of connection density values between0.0 and 1.0 (excluded) activates FS-NEAT (Whiteson et al. (2005)) features: notevery input node is connected to the output nodes and the neuroevolutionary geneticalgorithm adds connection if and only if it improves genome accuracy.FS-NEAT has proven to generate more performant as well as lightweight ANNs(Whiteson et al. (2005)). However, it slows down the training process. Thus,
connection_density default value is set to 1.0.

The training phase stops when one exit strategy is met. CSIP-train uses user-provided parameters training_error and max_epochs to enable three default exitstrategies:
1. “threshold error reached” when the MSE of the best genome is smaller than

training_error ;2. “max epochs reached” when neuroevolutionary algorithm reaches the numberof max_epochs allowed;3. “constant error” when the MSE of the best genome remains constant for 100epochs.
In case “normValid” collection is available in the database, CSIP-train uses

“random validation” dataset generated from TV dataset splitting phase to additionallyprovide overfitting exit strategy:
4. “overtraining” when the MSE of the best genome computed on “random

validation” dataset starts increasing during the training.
If “normValid” collection is available in the database, CSIP-train uses this datasetto validate the SM; CSIP-train uses “random validation” dataset otherwise. Furtherdetails are provided in paragraph PHASE 3: SM validation.
With respect to overfitting issue, this phenomenon happens when a statisticalmodel fits existing noise in the dataset instead of the underlying function (Razaviet al. (2012a)). This is a well known and studied phenomenon when it comes toapplying statistical models to physical experiments and measured data.In case of noise-free data obtained from deterministic simulation models runs(surrogate modeling applications), overfitting is still an issue, even if it is sometimesneglected (Sexton et al. (1998); Jin et al. (2002); Razavi et al. (2012a)). Here,overtraining mainly happens when the statistical model is overparameterized inregard to available dataset size (large degree of freedom).

72 surrogate modeling
The actual potential problem for surrogate modeling applications is “conformability

of the model structure with the shape of the available data” (Razavi et al. (2012a)).Regression analysis based off of curve-fitting with predefined model structureare not affected by the conformability issue since the assigned shape of modelstructure covers the entire input space. Opposingly, ANN methodologies are highlyinfluenced by conformability issue since their behavioural emulation of originalmodel snapshots results from combination of several local flexible nonlinear unitresponses. Razavi et al. (2012a) demonstrates the conformability issue with twosingle-hidden-layer ANNs: a more flexible structure with 15 neurons, and a moreparsimonious structure with 8 hidden neurons. However, this constraint is mainlyemphasized when the dataset is not well distributed over the domain space toproperly describe the model behaviour.Generally speaking, ANN methodologies have proven of high capability of prop-erly recognizing and emulating underlying function in most application domain(Razavi et al. (2012a)). Nevertheless, Razavi et al. (2012a) suggests early stop-ping and Bayesian regularization to overcome ANN-based SM overfitting andconformability issues.FeNS currently proposes four approaches to avoid ANN unpredictable fluctua-tions and fortifies the entire methodology:
1. early stopping, even though this methodology requires big dataset which isnot always available;
2. ensemble system of SMs coupled to uncertainty quantification of eSM results,which smooth potential unpredictable behaviour of each single SM;
3. TV dataset random split based off of same probability distribution of the twooutcoming datasets;
4. reduced degree of freedom by selecting relevant original model input param-eter only (based off of scientist knowledge + FS-NEAT).

Further investigations on this problem are required since FS-NEAT is an innova-tive approach to environmental SM applications, and no background literature existson the topic. Additionally, FS-NEAT notably creates highly flexible and formallyunstructured ANNs, which behaviour in SM applications has to be deeply exam-ined and tested. Supplementary investigations on automated integration of Haltonsequence approach to design of experiments (DoE) to and Bayesian regularizationare required as well.Nonetheless, FeNS system has been currently tested on case studies preparedby attempting to homogeneously cover the entire input space.
PHASE 3: SM validationThis step executes during the training phase depending upon recovery_epochsuser-defined parameter and when the training process is completed. Here, thepartially or fully trained SM runs with “random validation” dataset, or “common

validation” input dataset if available. SM estimates are compared to “random
validation” or “common validation” original model results through a sequence ofefficiency/goodness of fit indices (Figure 31):
• absDiff: absolute difference;
• absVolumeError: absolute volume error;
• dsGrad: double sum analysis gradient;

3.3 research design and methods 73
• Fhf: Fenicia high flow;
• Flf: Fenicia low flow;
• Ioa: index of agreement;
• Kge: Kling and Gupta efficiency;
• Modeldev: model deviation;
• Nashsutcliffe: Nash-Sutcliffe efficiency;
• Nbias: bias error;
• Pbias: percent bias;
• Personscorrelation: pearson correlation;
• Pwrmse: peak weighted root mean squared error;
• R2: r squared;
• Rmse: root mean squared error;
• transformeRmse: transformed root mean squared error.

Figure 31: Conceptual approach of CSIP-validation service.
Since the NEAT algorithm creates the ANN from a layer of input nodes and alayer of output nodes, user might be interested in following growth and evolution ofthe ANN structure. As a result, the structure of the best genome is analyzed rightafter the validation phase and number of input nodes, output nodes, hidden nodes,and links becomes part of the ANN historical evolution metadata.
PHASE 4: SM storeThis step executes after PHASE 3: SM validation during the training phasedepending upon recovery_epochs user-defined parameter and when the trainingprocess is completed.During this step, CSIP-train collects metadata and ANN structure and stores theminto the database (database design is thoroughly analyzed in section MongoDB:

formal structure). CSIP-train service implements MongoDB GridFS API to storethe serialized structure of the SM. GridFS automatically stores the binary file ofthe SM in “trained.chunk” collection and metadata in “trained.files” collection. SMdocuments in “trained.chunk” collection and “trained.files” collection are overriddenevery time CSIP-train pushes SM information to the database. However, CSIP-trainrunning service keeps track of best genome score and structure evolution duringtraining and growing arrays of historical evolutions.

74 surrogate modeling
MongoDB: formal structureFigure 32, Figure 33, and Figure 34 shows the formal structure of the “trained.files”collection. “trained.chunk” collection contains only the binary format of the SMstructure. In addition to _id, length, chunkSize, uploadDate, and md5 which areautomatically generated by MongoDB, the BSON document of an SM containsa metadata BSON document. Here, nn_id and suid (Figure 32) are hooks forCSIP-train service to:
1. delete the currently stored SM BSON document when a newer document isready to overwrite (SM store recovery phase);
2. connect to the running service to check its status;

respectively. variables document is a carry on of variables metadata from
“normalized” collection (Figure 23). hyper_params document collects user-definedparameters in the JSON payload (Figure 33). performance document stores lastcomputed goodness of fit (GoF) indices of the partially or fully trained SM peroutput (Figure 33). history document contains number of epochs and exit_strategywhen the training is completed as well as the arraylist of scores (MSE) of the bestgenome over the training (Figure 34). This arraylist grows over number of pushedrecovery information. best_net_structure stores the evolution of the structure of thebest genome over the training (Figure 34).

Figure 32: Formal structure of MongoDB "trained.files" collection

3.3 research design and methods 75

Figure 33: Formal structure of MongoDB "trained.files" collection

76 surrogate modeling

Figure 34: Formal structure of MongoDB "trained.files" collection
3.3.2.5.4 Service 4: SMs selection, building the ensembleThe fourth service goes through the performance of every trained and validatedSM, picks the utmost performant ones based off of user defined criteria and storesSM IDs into a separated collection named “selected”.SM might train to provide more than one answer (more than one output node).However, CSIP-select provides selection algorithms that check performance on asingle output only.CSIP-select service is called when the training phase of a collection of SMsis over and every SM has been validated against the validation dataset. Figure35 shows the interactive behaviour of the CSIP-select service through a sequencediagram.In addition to the application specific database name, the JSON payload containsfour fields required to set up the selection mechanism: the output variable to checkSM performance of, the mechanism type, the threshold value, and the error type(Listing 3.23).

Listing 3.23: Template JSON payload of CSIP-select service.
1 {2 "metainfo": {},3 "parameter" : [4 {5 "name": "annName",

3.3 research design and methods 77
6 "value": "db_name"7 },8 {9 "name": "variable",10 "value": "out_var"11 },12 {13 "name": "mechanism",14 "value": "percentile"15 },16 {17 "name": "threshold",18 "value": 9519 },20 {21 "name": "error",22 "value": "nashSutcliffe"23 }24]25 } Here, the modeler may want to select all the available SMs or pick the utmostperformant ones to create the ensemble of SMs.Consequently, CSIP-select service provides three selection mechanisms:

1. error mechanism loops over user-choice statistical error of each trained SMand stores valid SMs and their IDs, which performances are above a userdefined threshold, into two lists;
2. percentile mechanism (1) computes the probability distribution of user-choicestatistical error of valid SMs, (2) identifies error threshold for user providedpercentile, (3) loops over user-choice statistical error of each trained SM andstores valid SMs and their IDs, which performances are above the threshold,into two lists;
3. number mechanism simply selects the n-utmost performant SMs dependingon the user chosen statistical error and stores valid SMs and their IDs intotwo lists.

CSIP-select selection mechanism identifies valid SMs by checking if values_idin each SM metadata (Figure 32) is identical to values_id in “raw” collectionmetadata (Figure 23): if values_id are identical, the SM has been trained on lastprovided dataset and is marked as selectable consequently; if values_id differs,

Figure 35: Sequence diagram of CSIP-select service.

78 surrogate modeling

Figure 36: UML of implemented selection mechanism.
the SM has been trained on a older and thus partial dataset and is marked asunselectable consequently.CSIP-select selection mechanism retrieves already sorted SMs and their meta-data, from the most to the less performant one. This is achieved by pushing tothe database a sorting algorithm properly tuned depending on positive or negativetrend of user-choice statistical error to process. This architectural choice has fouradvantages:

1. speeds up the sorting process by leveraging MongoDB native algorithms;
2. avoids the burden of designing effective sorting algorithm service-side andattempts to delegate as many operations as possible database-side;
3. shortens selection loop since SMs that perform worse than user-choicethreshold are the last in the processing list and never checked consequently;
4. invokes one single sorted information transfer from database to runningservice.

Selection mechanism is designed implementing the Simple Factory principlethrough a static method. Additional selection mechanism are easily implementedby extending SelectionMechanism abstract class and overriding the selectmethod (Figure 36).The ensemble of SMs is created once the utmost performant SMs are selected.To attempt to estimate ensemble accuracy, CSIP-select runs the ensemble of SMsagainst available dataset, which is:
a. common validation dataset if available;
b. TV dataset otherwise,

uncertainty quantifies ensemble estimate, and compute percentage of originalmodel results between quartiles and min-max.This is not an optimal design choice since it doesn’t properly describe theensemble of SMs accuracy. More investigation is required.Finally the IDs of the selected SMs are stored into “selected” collection alongwith ensemble metadata.
MongoDB: formal structureFigure 37 shows the formal structure of the “selected” collection. In addition to

_id and timestamp, which are provided by default, selected_id contains the arrayof selected SM IDs, while percentage_btw_quartiles and percentage_btw_min-maxstore information of ensemble of SMs accuracy.

3.3 research design and methods 79

Figure 37: Formal structure of MongoDB "selected" collection.
3.3.2.5.5 Service 5: eSM runThe fifth service runs the ensemble of selected SMs against user provided data.Figure 38 shows the interactive behaviour of the CSIP-run service through asequence diagram.

Figure 38: Sequence diagram of CSIP-run service.
CSIP-run service is the only exposed service to on-the-field personnel. It justrequires the input snapshot to provide uncertainty quantified result. Consequently,the JSON payload is a simplified version of CSIP-collect payload (Listing 3.12): nooutput parameters need to be provided and input parameters require no descriptionsince their required metadata are stored in the database already (Listing 3.24).

Listing 3.24: Template JSON payload of CSIP-run service.
1 {2 "metainfo": {},3 "parameter": [4 {5 "name": "annName",6 "value": "db_name"7 },8 {9 "name": "in_var1",10 "value": 0.1

80 surrogate modeling
11 },12 {13 "name": "in_var2",14 "value": 1915 },16 {17 "name": "in_var3",18 "value": 519 },20 {21 "name": "in_var4",22 "value": 023 },24 {25 "name": "in_var5",26 "value": 7527 }28]29 } After parsing the JSON payload, CSIP-run service retrieves metadata from

“normalized” collection to normalize user-provided snapshot, retrieves and run theensemble of SMs, and returns denormalized uncertainty quantified results (min,first quartile, median, third quartile, and max). The JSON response may look likeListing 3.25.
Listing 3.25: Generic JSON response of CSIP-run service.

1 {2 "metainfo": {3 "status": "Finished",4 "suid": "221c7df8-da0e-11e8-8b41-0f54b71099b1",5 "cloud_node": "10.43.0.16",6 "request_ip": "129.82.52.206",7 "service_url": "http:\/\/csip.engr.colostate.edu:8088" +8 "\/csip-ann\/m\/run\/1.0",9 "tstamp": "2018-10-27 11:31:27",10 "cpu_time": 35,11 "expiration_date": "2018-10-27 11:31:57"12 },13 "parameter": [14 {15 "name": "annName",16 "value": "8088-r2_bv_ch_cl_wr_53_110_he"17 },18 {19 "name": "slope",20 "value": 1421 },22 {23 "name": "length",24 "value": 8025 },26 {27 "name": "stir",28 "value": 11029 },30 {31 "name": "contour",32 "value": 033 },34 {35 "name": "kffact",36 "value": 0.3737 },38 {

3.4 case studies 81
39 "name": "sand",40 "value": 541 },42 {43 "name": "silt",44 "value": 6345 },46 {47 "name": "clay",48 "value": 3249 },50 {51 "name": "biomass",52 "value": 105.18714071821253 },54 {55 "name": "r_factor",56 "value": 140.54957 }58],59 "result": [{60 "name": "erosion",61 "value": 18.717869790589237,62 "min": 18.210253820784978,63 "1q": 18.54484936734709,64 "3q": 18.94649079819633,65 "max": 19.21732651235383,66 "percentage btw quartiles": 23,67 "percentage btw min-max": 55,68 "vals": [69 19.087608233884957,70 18.936707790276103,71 19.21732651235383,72 18.64971025814681,73 18.52709377865761,74 18.786029323031663,75 18.210253820784978,76 18.59811613341554,77 18.523385448879388,78 18.94975180083640379]80 }]81 }

3.4 case studies
This section introduces to actual applications of the FeNS methodology. Todemonstrate its goodness, the following experiments are carried out on real testcases.
The entire experiment suite is focused on dimensionality reduction. In order tofacilitate as much as possible the access to original model knowledge, the number ofinput resources required for an eSM run was kept as lowest as possible. Scientistexpertise allowed for selecting only the indispensable parameters or estimateweighted averaged values representative of a specific phenomenon.

Every experiment carried out followed this structure:
1. Data collection: NEAT-based SM is data driven. This means that the SMlearns the mathematical model behaviour from the analysis of a large varietyof input/output snapshots. In order to generate the training/testing dataset

82 surrogate modeling
for each specific experiment, the actual mathematical model run several timesunder different scenarios. The model involved in this suite of experiments ishosted as CSIP services at CSU super-computing environment.

2. Experiment run: this step involves the chain of FeNS services for creatingand running the ensemble of surrogate models. The suite of experimentsallowed for debugging and refining web-services pipeline.
3. Result analysis: boxplots are generated out of uncertainty quantified resultsfrom eSM run against testing dataset. Further error analysis is performed.
4. Following DoE: in order to generalize the SM behaviour by emulatinga broader variety of scenarios, more complex DoE are designed and onlyindispensable additional parameters are selected.

3.4.1 RUSLE2
Version 2 of the Revised Universal Soil Loss Equation (RUSLE2) is a mathe-matical model that allows for estimating soil loss, sediment yield, and sedimentcharacteristics as a result of rill and interrill erosion phenomena generated byrainfall and related runoff (Foster (2005)). RUSLE2 can be applied to large scaleanalysis for erosion rate inventory, or “field” scale geographic areas to estimate po-tential erosion rates for guiding conservation and erosion control planning. RUSLE2is usually applied on a large variety of land use: cropland, pastureland, rangeland,disturbed forestland, construction sites, mined land, reclaimed land, landfills, militarylands (Foster (2005)).
DoE for to the creation of SMs for RUSLE2 are mainly focused on emulating thesoil erosion as a results of land management for crop rotation corn and soybeansin Iowa.The main reason relates to the importance of corn: at a global scale, it is themost valuable grain crop (used for human food, livestock feed, and biofuel) and theUSA itself produces over 36% (Green et al. (2018a)). This crop is mainly grownwithin the Midwest Corn Belt, which includes 12 Midwest states (from East toWest, Figure 39): Ohio, Kentucky, Michigan, Indiana, Illinois, Wisconsin, Missouri,Iowa, Minnesota, Kansas, Nebraska, and South Dakota.This DoE focuses on scenarios in Iowa because it is the main producer of cornalong with Illinois and Minnesota. Thus, consultant and planning agencies likeUSDA-NRCS are really focused and interested in SMs able to emulate RUSLE2behaviour for Iowa scenarios.

3.4.1.1 DoE 1The first experiment aimed to test the capability of FeNS system to recognizeand emulate the hidden nonlinear function that describes RUSLE2 behaviour withrespect to predicted soil erosion.Additionally, the first experiment served as a guinea pig to test that selected inputparameters were actually adequate to describe model behaviour for a simplifiedscenario.
3.4.1.1.1 DoE 1 - Step 1The first step of the DoE was focused on generating the training/testing datasetfor the following scenario:

3.4 case studies 83

Figure 39: Geographic distribution of the Corn Belt, credit (Green et al. (2018a)).
• Location: Cherokee county (IA). In this area (Northwest Iowa), Loess isthe predominant silt-sized sediment. Galva-Primghar are the major soilcomponents. Slopes are mostly gentle (or nearly level), but can get verysteep bordering stream valleys. This is a great first test case in order to varyfrom low to high steepness which returns low and high soil erosion values(Figure 40);
• Field length: constant (100 m);
• Field steepness: varying by 0.1% in between admissible soil optimal range;
• Field contouring: simulation runs with contoured fields or not;
• Land management: 8 types of soil managements. In order to reduce the listof operations and management practices to a single value per type, the soiltillage intensity rate (STIR) of each land operation have been summed into asingle value;
• Soil: 4 types of soils of the same Galva family. Every soil is described bya number of parameters which result from surveys collected into SSURGOdatabase. Three parameters were selected to represent soil behaviour: KFFactor (soil erodibility), Silt percentage, and Component percentage (thepercentage of that type of soil in a soil sample).

R2:8088 v2.1 CSIP-service was concurrently hit around 500 times, properlypermuting previously listed parameters. This process was automated by developinga proper Python3 script leveraging to:
1. read in an input JSON template payload;
2. replace standard parameters with properly permuted values;
3. run the CSIP-service;
4. parse the output json payload and store erosion results.

84 surrogate modeling

Figure 40: Cherokee county in Iowa.
3.4.1.1.2 DoE 1 - Step 2The second step started by shuffling collected data and splitting it into 90% TVdataset and 10% testing. The TV dataset was uploaded onto a new MongoDBdatabase hosted on erams10 server. After normalization process, only one surrogatemodel was created for the sake of testing. The final structure of the artificial neuralnetwork had 6 input nodes (Figure 41):
• Steepness
• Contouring (yes, 1, or no, 0)
• STIR value
• KF factor
• Silt percentage
• Component percentage

The only output node was the erosion rate.

Figure 41: Generic SM input/output structure for DoE 1.
The surrogate model was generated using default parameters:
• Initial population = 1 000
• Connection density = 1
• Final training error = 10−4

3.4 case studies 85
• Training data set = 90%
• Validation data set = 10%
• Splitting mechanism = “Same Distribution”

3.4.1.1.3 DoE 1 - Step 3Consequently, the testing dataset run against the surrogate model. SM resultsare plot against R2 original model results and analyzed.Plot in Figure 42 and Figure 43 illustrate results comparison. Figure 42 showsthe actual comparison between observed (origin model runs are represented witha black circle) and simulated (SM estimated results are represented with a redcross) values. Preliminary results show that the single ANN was able to learn andaccurately replicate RUSLE2 behaviour.

Figure 42: Red crosses represents SM estimates, while black dots represents originalRUSLE2 runs.
Figure 43 illustrates the scatter-plot of observed vs simulated. Here, most of theerosion values lay on the 1:1 line or are really close, which means that accurateresults are predicted for low and high erosion values. Even if high erosion valuesare rarely generated from model runs, the SM is generally capable of emulatingthe original model behaviour.To conclude this preliminary test, the SM is able to understand and learn RUSLE2behaviour. Selected input parameters sufficiently replicate/describe original modelbehaviour and drive SM learning to accurately predict erosion rates. However,component percentage employed in this experiment is not a real soil parameter andcan potentially mislead the learning process.
3.4.1.1.4 DoE 1 - Step 4This introductory test case supported development and validation of the FeNSmethodology. It was an important step to assess applicability of NEAT algorithmsto surrogate modeling practices. Furthermore, this introductory test case resultedin first exercise of NEAT capabilities applied to an environmental topic, which isrelevant since it has never done before. This was an important test case to startdebugging the entire FeNS pipeline, since the dataset was easy to generate andmanage.

86 surrogate modeling

Figure 43: Scatterplot of SM estimates against RUSLE2 results.
Nevertheless, this first DoE was a simple example. DoE 2 was driven by the needof increasing the range of values of input parameters. 2 additional soil managementsand 15 soil types from different soil families were included in the dataset generation.Furthermore, the study area was expanded from a single county to two counties toaccount for different weather conditions.

3.4.1.2 DoE 2The second experiment aimed to confirm NEAT capabilities to recognize, learnand emulate the hidden nonlinear function that describes RUSLE2 behaviour withrespect to predicted soil erosion.Compared to DoE 1, a larger range of values of relevant input parameters wasused. 15 additional soil types and 2 more soil managements became part of thedataset to generate a broader variety of RUSLE2 runs.This experiment was conducted excluding component percentage, a previouslyused input parameter, since it doesn’t really describe any actual soil characteristicand might potentially mislead training process and SM emulation capabilities.Opposingly, clay and sand percentages became part of the learning dataset tocomprehensively describe soil properties. To account for different weather conditions,the study area was extended from one to two counties in the State of Iowa.In order to fasten the training process, the dataset was split into two separatedata clusters based upon STIR value (input parameter):
• Cluster1 : STIR 5 →53
• Cluster2 : STIR 53 →110

where STIR = 53 is the overlapping boundary.The final overall SM structure result in a modular neural network : the inputdomain is split into multiple sub-domains, each sub-domain is assigned to aresponsible expert module. Eventually, a complex mapping problem is decomposedinto several simpler ones.

3.4 case studies 87
As a result, two separate ensemble of SMs with identical structure but differentresponsibility were generated.
Summarizing, one input node was removed (component percentage) and three newinput nodes were added (clay percentage, sand percentage, and weather condition)to the final structure of the SM.
3.4.1.2.1 DoE 2 - Step 1The first step of the DoE was focused on generating the training/testing datasetfor the following scenario:
• Location: Buena Vista and Clay counties (IA). This area is still northwestIowa. Here, loess with silt-sized sediment and glacial till with unsorted glacialsediment are the predominant soils. Slopes are nearly level to moderatelysloping. This test case allows for taking into account two different weatherconditions (Figure 44);
• Field length: constant (100 m);
• Field steepness: varying by 0.1% in between admissible soil optimal range;
• Field contouring: simulation runs with contoured fields or not;
• Land management: 10 types of soil managements. In order to reduce thelist of operations and management practices to a single value per type, thesoil tillage intensity rate (STIR) of each land operation have been summedinto a single value;
• Soil: 19 types of soils from different families. Every soil is described bya number of parameters which result from surveys collected into SSURGOdatabase. Four parameters were selected to represent soil behaviour: KFFactor (soil erodibility), Silt, Clay, and Sand percentage.

Figure 44: Buena Vista and Clay counties in Iowa.
R2:8088 v2.1 CSIP-service was concurrently hit about 5000 time, properly per-muting previously listed parameters. This process was automated by developing aproper Python3 script leveraging to:
1. read in an input JSON template payload;

88 surrogate modeling
2. replace standard parameters with properly permuted values;3. run the CSIP-service;4. parse the output json payload and store erosion results.

3.4.1.2.2 DoE 2 - Step 2The second step started by shuffling collected data and splitting it into 90% TVdataset and 10% testing. The TV dataset was uploaded onto a new MongoDBdatabase hosted on erams10 server. After normalization process, 10 SM werecollected to generate an eSM per cluster. The final structure of each SM had 8input nodes (Figure 45):
• R factor (weather condition)
• Steepness
• Contouring (yes, 1, or no, 0)
• STIR value
• KF factor
• Silt percentage
• Sand percentage
• Clay percentage

The only output node was the erosion rate.

Figure 45: Generic SM input/output structure for DoE2.
The overall structure of the clustered eSM is shown in Figure 46. Here, theexpert module returns original model emulated results based upon user-providedinput parameters. If STIR value is less than 53, the first expert module returnsuncertainty quantified results off of eSM cluster 1. If STIR value is greater than 53,the second expert module returns uncertainty quantified results off of eSM cluster2. If user question lays right on the cluster boundary (STIR value equal to 53),both expert modules answer the question. Consequently, FeNS system computesuncertainty quantified results off of the 20 collected answers: eSM cluster 1 andeSM cluster 2 together.Each SM was generated using the following hyper parameters:
• Initial population = 5000

3.4 case studies 89

Figure 46: Expert modules design for DoE2.
• Connection density = 0.1
• Final training error = 10−4
• Training dataset = 90%
• Validation dataset = 10%
• Splitting mechanism = “Same Distribution”

3.4.1.2.3 DoE 2 - Step 3Consequently, the testing dataset run against the clustered eSM. SM estimateare plotted against RUSLE2 original model results and analyzed.
Figure 47 and Figure 48 show performance of first eSM cluster. Figure 47 showsthe actual comparison between observed (original model runs are represented witha red cross) and eSM emulated uncertainty quantified (boxplots represent eSMruns) values. eSM estimates are pretty accurate since NS efficiency is above 0.99,RMSE is 0.13 t/acre and BIAS is only slightly negative -0.0069. The accuracy ismirrored in the scatterplot estimated vs original model erosion laying on a 1:1 line.Figure 49 and Figure 50 show performance of second eSM cluster. Figure 49shows the actual comparison between observed (original model runs are representedwith a red cross) and eSM emulated uncertainty quantified (boxplots represent eSMruns) values. eSM estimates are pretty accurate since NS is above 0.98, RMSE is0.3 t/acre and BIAS is only slightly positive 0.021. The accuracy is mirrored in thescatterplot estimated vs original model erosion laying on a 1:1 line.
3.4.1.2.4 DoE 2 - Step 4DoE 2 confirmed goodness of NEAT methodology for surrogate modeling purposes.NEAT is still capable of learning and emulating original model behaviour evenwith enlarged dataset. FeNS system coupled to input data clustering allow foraccurately answer user specific questions.
Nevertheless, DoE 2 still doesn’t account for different field lengths. Additionally,a variety of crop yields need to be considered, since RUSLE2 provides erosionestimates based off of user-selected crop yield.As a result, DoE 3 has been designed by including a larger study area, differentfield lengths, and varying crop yield.

90 surrogate modeling

X151 X155 X159 X163 X167 X171 X175 X179 X183 X187 X191 X195 X199

0
1

2
3

4
5

6
7

Erosion rate − RUSLE2 − cluster 1

sample

er
os

io
n

[to
ns

/a
cr

e]

Prediction estimators

NSE= 0.9932
RMSE= 0.1309
BIAS= −0.0069

Figure 47: Cluster 1. Boxplots represents the ensemble of SMs estimates against RUSLE2erosion runs (red crosses).

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

Scatterplot − RUSLE2 − cluster 1

R2 erosion [tons/acre]

F
eN

S
−

R
2

er
os

io
n

[to
ns

/a
cr

e]

Prediction estimators

NSE= 0.9932
RMSE= 0.1309
BIAS= −0.0069

Figure 48: Cluster 1. Scatterplot of SM estimates (computed on the median of each boxplot)and RUSLE2 simulated values.

3.4 case studies 91

X51 X55 X59 X63 X67 X71 X75 X79 X83 X87 X91 X95 X99

0
2

4
6

8
10

12

Erosion rate − RUSLE2 − cluster 2

sample

er
os

io
n

[to
ns

/a
cr

e]

Prediction estimators

NSE= 0.9872
RMSE= 0.302
BIAS= 0.021

Figure 49: Cluster 2. Boxplots represents the ensemble of SMs estimates against RUSLE2erosion runs (red crosses).

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
10

Scatterplot − RUSLE2 − cluster 2

R2 erosion [tons/acre]

F
eN

S
−

R
2

er
os

io
n

[to
ns

/a
cr

e]

Prediction estimators

NSE= 0.9872
RMSE= 0.302
BIAS= 0.021

Figure 50: Cluster 2. Scatterplot of SM estimates (computed on the median of each boxplot)and RUSLE2 simulated values.

92 surrogate modeling
3.4.1.3 DoE 3The third experiment aimed to account for a larger input space by adding twomore input parameters, and by strategizing input space clustering in order toaccurately estimate high erosion values.The entire simulation results in a larger range of selected input parameterscompared to DoE 2. 17 more soil types were used to generate a broad varietyof RUSLE2 runs. Field length and weighted average crop rotation biomass wereadded in order to comprehensively describe field geometry and forecasted cropgrowth respectively. In order to account for different weather conditions, study areawas expand from two to four different counties.In addition to DoE 2 input data clustering on STIR value equal 53, dataset forSTIR value greater than 53 was clustered on erosion value. Here, high erosion ratesresult from combination of high field steepness, heavily impacting soil managementpractices, and easily erodible soil. However, high erosion rates are rarely generatedfrom RUSLE2 runs. Consequently, a dedicated cluster allows for properly emulatingthis localized specific model behaviour. As a result, the entire dataset was properlysplit into three clusters:
• Cluster1 : STIR 5 →53
• Cluster2 : STIR 53 →110 and erosion < 11 tons/acre
• Cluster3 : STIR 53 →110 and erosion > 10 tons/acre

The three clusters have overlapping training dataset on STIR 53. The two clustersfor 53 ≤ STIR ≤ 110 have overlapping training dataset for erosion between 10and 11 tons/acre. This makes both expert module able to answer question whenthe gate neural network foresees erosion bigger than 10 tons/acre and smaller than11 tons/acre.
The final overall SM structure result in a modular neural network: the inputdomain is split into multiple sub-domains, each sub-domain is assigned to aresponsible expert module. Eventually, a complex mapping problem is decomposedinto several simpler ones.As a result, three separate ensemble of SMs with identical structure but differentresponsibility were generated.
Summarizing, two new input nodes were added (field length, and weightedaverage of yield per crop) to the final structure of the SM.
3.4.1.3.1 DoE 3 - Step 1The first step of the DoE was focused on generating the training/testing datasetfor the following scenario:
• Location: Buena Vista, Cherokee, Clay, and Wright counties (IA). This areais still northwest Iowa. Four families of soil characterize the region involved:Northwest Iowa Loess, Tazewell Glacial Till, Loamy Wisconsin Glacial Till,and Clayey Lake Deposits. Here, loess with silt-sized erosional sediments,loamy glacial till, glacial outwash, and local alluvium are the predominantsoils. Minor areas are covered in silty and clayey glacial lacustrine sedimentsoverlying calcareous loamy glacial till. Slopes are nearly level to moderatelysloping. Minor areas consist of broad, plane and convex ridges, long, convexside slopes, and concave drainageway. This test case allows for taking intoaccount four different weather conditions (Figure 51);

3.4 case studies 93
• Field length: varying in between admissible steepness range;
• Field steepness: varying by 0.1% in between admissible soil optimal range;
• Field contouring: simulation runs with contoured fields or not;
• Land management: 10 types of soil managements. In order to reduce thelist of operations and management practices to a single value per type, thesoil tillage intensity rate (STIR) of each land operation have been summedinto a single value;
• Biomass: weighted average of yield per crop. This parameter results froman average of crop characteristics in order to account for different corn andsoybeans yields;
• Soil: 36 types of soils from different families. Every soil is described bya number of parameters which result from surveys collected into SSURGOdatabase. Four parameters were selected to represent soil behaviour: KFFactor (soil erodibility), Silt, Clay, and Sand percentage.

Figure 51: Buena Vista, Cherokee, Clay and Wrigth counties in Iowa.
R2:8088 v2.1 CSIP-service was concurrently hit about 180 000 time, properlypermuting previously listed parameters. This process was automated by developinga proper Python3 script to:1. read in an input JSON template payload;2. replace standard parameters with properly permuted values;3. run the CSIP-service;4. parse the output json payload and store erosion results.
3.4.1.3.2 DoE 3 - Step 2The second step started by splitting the entire dataset in three subsets: A)STIR = 53, B) STIR < 53, and C) STIR > 53. Afterwords collected data areshuffled and split it into 90% TV dataset and 10% testing. The TV dataset percluster was uploaded in a new MongoDB database hosted on erams10 server. Afternormalization process, 10 surrogate models were collected to generate an eSM percluster. The final structure of each artificial neural network had 10 input nodes(Figure 52):

94 surrogate modeling
• R factor (weather condition)
• Steepness
• Contouring (yes, 1, or no, 0)
• STIR value
• KF factor
• Silt percentage
• Sand percentage
• Clay percentage
• BiomassThe only output node was the erosion rate.

Figure 52: Generic SM input/output structure for DoE3.
The overall structure of the clustered eSM is shown in Figure 53. Here, the expertmodule returns original model emulated results based upon user-provided inputparameters. If STIR value is less than 53, the first expert module returns uncertaintyquantified results off of eSM cluster 1. If STIR value is greater than 53, the ANNgate is responsible of enabling the second or third expert module depending on itsforecast of high or low erosion value. The ANN gate is a NEAT-generated ANNtrained to forecast high or low erosion value based off of user provided input data.If the gate forecasts low erosion rate, the eSM cluster 2 is enabled. If the gateforecasts high erosion rate, the eSM cluster 3 is enabled (Figure 53).Each SM was generated using the following hyper parameters:
• Initial population = 5 000
• Connection density = 0.1
• Final training error = 10−4
• Training dataset = 90%
• Validation dataset = 10%
• Splitting mechanism = “Same Distribution”Consequently, three ensembles of ANNs and a gating network were trained.

3.4 case studies 95

Figure 53: Expert modules design for DoE3.
3.4.1.3.3 DoE 3 - Step 3Consequently, the testing dataset run against the clustered eSM. SM estimateare plotted against RUSLE2 original model results and analyzed.
Cluster STIR ≤ 53Figure 54 and Figure 55 show performance of first eSM cluster. Figure 54 showsthe actual comparison between observed (original model runs are represented witha red cross) and eSM emulated uncertainty quantified (boxplots represent eSMruns) values. eSM estimates are pretty accurate since NS efficiency is above 0.95,RMSE is 0.3297 and BIAS 0.0033. The accuracy is mirrored in the scatterplotwhere estimated vs original model erosion values lay on a 1:1 line.

X4151 X4156 X4161 X4166 X4171 X4176 X4181 X4186 X4191 X4196

0
2

4
6

8
10

12

Erosion rate − RUSLE2 − cluster 1

sample

er
os

io
n

[to
ns

/a
cr

e]

Prediction estimators

NSE= 0.9593
RMSE= 0.3297
BIAS= 0.0033

Figure 54: Cluster 1. Boxplots represents the ensemble of SMs estimates against RUSLE2erosion runs (red crosses).
Cluster STIR ≥ 53 and erosion < 11 tons/acreFigure 56 and Figure 57 show performance of second eSM cluster. Figure 56shows the actual comparison between observed (original model runs are representedwith a red cross) and eSM emulated uncertainty quantified (boxplots representeSM runs) values. eSM estimates are pretty accurate since NS efficiency is above

96 surrogate modeling

●
●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●●●
●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
10

Scatterplot − RUSLE2 − cluster 1

R2 erosion [tons/acre]

F
eN

S
−

R
2

er
os

io
n

[to
ns

/a
cr

e]
Prediction estimators

NSE= 0.9593
RMSE= 0.3297
BIAS= 0.0033

Figure 55: Cluster 1. Scatterplot of SM estimates (computed on the median of each boxplot)and RUSLE2 simulated values.
0.97, RMSE is 0.32 and BIAS is 0.0116. The accuracy is mirrored in estimated vsoriginal model erosion values laying on a 1:1 line in the scatterplot.

X3201 X3206 X3211 X3216 X3221 X3226 X3231 X3236 X3241 X3246

0
2

4
6

8
10

Erosion rate − RUSLE2 − cluster 2

sample

er
os

io
n

[to
ns

/a
cr

e]

Prediction estimators

NSE= 0.9747
RMSE= 0.3207
BIAS= 0.0116

Figure 56: Cluster 2. Boxplots represents the ensemble of SMs estimates against RUSLE2erosion runs (red crosses).
Cluster STIR ≥ 53 and erosion > 11 tons/acreFigure 58 and Figure 59 show performance of third eSM cluster. Figure 58shows the actual comparison between observed (original model runs are representedwith a red cross) and eSM emulated uncertainty quantified (boxplots representeSM runs) values. eSM estimates are pretty accurate since NS efficiency is above0.98, RMSE is 0.37 and BIAS -0.0683. The accuracy is mirrored in estimated vsoriginal model erosion values laying on a 1:1 line in the scatterplot.

3.4 case studies 97

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

0 2 4 6 8

0
2

4
6

8

Scatterplot − RUSLE2 − cluster 2

R2 erosion [tons/acre]

F
eN

S
−

R
2

er
os

io
n

[to
ns

/a
cr

e]

Prediction estimators

NSE= 0.9747
RMSE= 0.3207
BIAS= 0.0116

Figure 57: Cluster 2. Scatterplot of SM estimates (computed on the median of each boxplot)and RUSLE2 simulated values.

X51 X55 X59 X63 X67 X71 X75 X79 X83 X87 X91 X95 X99

10
12

14
16

18
20

22
24

Erosion rate − RUSLE2 − cluster 3

sample

er
os

io
n

[to
ns

/a
cr

e]

Prediction estimators

NSE= 0.9856
RMSE= 0.3665
BIAS= −0.0683

Figure 58: Cluster 3. Boxplots represents the ensemble of SMs estimates against RUSLE2erosion runs (red crosses).

98 surrogate modeling

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10 12 14 16 18 20 22

10
12

14
16

18
20

22

Scatterplot − RUSLE2 − cluster 3

R2 erosion [tons/acre]

F
eN

S
−

R
2

er
os

io
n

[to
ns

/a
cr

e]
Prediction estimators

NSE= 0.9856
RMSE= 0.3665
BIAS= −0.0683

Figure 59: Cluster 3. Scatterplot of SM estimates (computed on the median of each boxplot)and RUSLE2 simulated values.
One single gate ANN was trained to forecast erosion rate higher or lower than10.5 tons/acre based off of identical eSM input data structure. When run againstthe testing dataset, the gate ANN was wrong 14 times only over 9 754 samples.
3.4.1.3.4 DoE 3 - Step 4DoE3 demonstrates the goodness of FeNS methodology even by enlarging inputspace dimensions by adding field length and crop yield. Despite reduced number ofinput parameters compared to original model input, FeNS is capable of emulatingoriginal model behaviour with respect to erosion rate.Analyzing the identical input snapshot fed to eSM, the gate ANN has provedto be capable of accurately forecasting high or low erosion rate. However, onesingle gate ANN was trained instead of a ensemble gates and one single gatingstrategy has been developed. Clustering the input space is surely a useful technique.It allows for fastening eSM training by reducing TV dataset size, and improveestimate accuracy by splitting modeling behaviour responsibility between differentcooperating eSMs.
Next DoE has to be designed on a larger study area and broader variety of soilproperties, management and crops. Different gating strategies has to be developedto evaluate differences between options and pick the most accurate one. Clusteringtechnique is surely important stage of data preprocessing but it is still a trial anderror process without any sort of automation.

3.4.1.4 Conclusions
Despite reduced number of input parameters compared to original model entries,FeNS is capable of emulating original RUSLE2 behaviour with respect to erosionrate. Every DoE developed demonstrates goodness of FeNS methodology. TheseDoEs were milestones in supporting FeNS design, development, and testing.

3.4 case studies 99
However, DoEs can be improved by retrieving more homogeneous and betterdistributed model snapshots over the entire domain space and investigating intodata clustering methodologies.Data clustering is a useful technique since it allows for fastening eSM training byreducing TV dataset size, and improve estimate accuracy by splitting responsibilityof modeling behaviour emulation between different cooperating eSMs. Consequently,the design of automated data clustering algorithm as part of FeNS pipeline is afundamental improvement.

3.4.2 Agricultural Ecosystem Services (AgES)
AgES is a modular, Java-based, fully distributed watershed model (Ascough IIet al. (2015b), Ascough II et al. (2015a), Green et al. (2014), Green et al. (2015)).It implements hydrologic/water quality modeling components for simulating dailywater budget per hydrological response unit (HRU), in addition to plant, soil andnutrient processes interactions.Even if it is less computational expensive that a full 3D physically based model(Green et al. (2014)), AgES still requires long computational time and a largeinput dataset to perform a simulation run. Five categories of input data areidentified: spatial structure (described with topology, HRU attributes, channelreach and routing files); management (described with management, crop rotation,landuse, fertilizer, and till files); parameters (described with crop types, soil horizonsproperties, groundwater properties files); and climate data (precip, relative orabsolute humidity, temperature, solar radiation, and wind speed files).
DoE for generating SMs of AgES are mainly focused on emulating daily runoffas a result of rainfall distribution in space and time, soil characteristic and topologyof the modelled watershed, and groundwater storage capacity.South Fork Iowa River SFIR is a watershed located in central Iowa, which coversan area of 581 km2 across Wright, Franklin, Hamilton, and Hardin counties (Greenet al. (2018b)) (Figure 60). The average annual precipitation is about 850mm,while the average annual air temperature is 10.5 ◦C.

Figure 60: SFIR watershed across Wright, Franklin, Hamilton, and Hardin counties, creditGreen et al. (2018b).
SFIR is of particular interest for United Stated Department of Agriculture (USDA)Conservation Effects Assessment Program (https://www.ars.usda.gov/

https://www.ars.usda.gov/anrds/ceap/iowa-southfork/
https://www.ars.usda.gov/anrds/ceap/iowa-southfork/

100 surrogate modeling
anrds/ceap/iowa-southfork/) since it is used as a benchmark water-shed in the Corn Belt for monitoring environmental impact of intensive livestockmanagement and usage of agro-chemicals to grow rainfed crops (Tomer et al. (2008)).The Southfork Watershed Alliance (SWA) (http://www.
southforkwatershed.org/) demonstrates the actual regional interestin preserving SFIR environmental integrity. The SWA is an advisory team thatworks in close contact with stakeholders to encourage agricultural managementand conservation practices.Consequently, service delivery organization such as USDA-NRCS and potentiallySWA are interested in SMs capable of emulating AgES behaviour for SFIR waterquantity/quality scenarios to support stakeholder decisions on the field.This DoE is the first attempt to exercise FeNS methodology on a fully distributedwatershed model. Consequently, further investigation on expanding FeNS-AgEScapabilities on nitrogen prediction becomes of great importance to monitor streamwater quality.
3.4.2.1 DoEThis experiment aimed to test the capability of FeNS system to recognize andemulate the hidden nonlinear function that describes AgES behaviour with respectto predicted daily runoff at the outlet of the SFIR watershed.

3.4.2.1.1 DoE - Step 1AgES was properly calibrated to estimate streamflow and nitrogen quantity atcatchment outlet as a result of cropland management practices (Green et al. (2018b)).The entire watershed was divided into 3 015 HRUs, and since SFIR watershed ischaracterized by photole depressions, 1 948 HRUs were modelled including tiledrainage AgES module (74% of the SFIR watershed). 99% of the cultivated areaproduced corn and soybean. AgES simulations run daily from Saturday 1st January,2000 until Thursday 1st January, 2015. Further details are thoroughly described inGreen et al. (2018b).
3.4.2.1.2 DoE - Step 2To emulate AgES behaviour with respect to current day runoff Q(t), only themost sensitive parameters were selected. A total of 7 fully lumped input parameterswere identified and following listed:
• Precipitation - P(t);
• Leaf Area Index - LAI(t);
• Potential Evapotranspiration - PotET (t);
• Variation of snow depth - ∆SD(t , t − 1);
• Groundwater level - GW (t − 1);
• Soil Saturation - SSat(t − 1);
• Runoff - Q(t − 1).

These parameters result from the arithmetic mean of actual model input valuescomputed on the centroid of each HRU. The only exception is Runoff - Q(t − 1)which is estimated at the watershed outlet.

https://www.ars.usda.gov/anrds/ceap/iowa-southfork/
https://www.ars.usda.gov/anrds/ceap/iowa-southfork/
http://www.southforkwatershed.org/
http://www.southforkwatershed.org/

3.4 case studies 101
As a result, current watershed runoff was expressed as:

Q(t) = f (P(t), LAI(t),PotET (t), ∆SD(t , t − 1),
GW (t − 1),SSat(t − 1),Q(t − 1)), (3.4)

where P(t) is the current meteorological forcing; LAI(t) and PotET (t) char-acterize current state of plant/crop canopy; ∆SD(t , t − 1) represent the variationof snow storage between current and previous day; GW (t − 1), SSat(t − 1), and
Q(t − 1) identify the actual state of the watershed and ideally provide an estimateof stored water. Since the response time of the watershed is about 1 day, noinformation older than previous day have been taken into account. Figure 61 showsthe final eSM setup.

Figure 61: Generic SM input/output structure for DoE1.
The collected AgES snapshots were split into 90% TV dataset (Saturday 1stJanuary, 2000 - Sunday 31st March, 2013) and 10% testing (Monday 1st April, 2013- Monday 16th June, 2014). Each SM was generated using the following hyperparameters:
• Initial population = 5 000
• Connection density = 0.1
• Final training error = 10−4
• Training dataset = 90%
• Validation dataset = 10%
• Splitting mechanism = “Same Distribution”

3.4.2.1.3 DoE - Step 3Figure 62, Figure 64, and Figure 66 show FeNS - eSM performance for runoff
Q(t) estimates. These plot illustrate eSM emulation of four peak runoff dischargesout of the entire testing dataset (the entire testing set is 442 timestamps). Predictionestimators are computed on the entire testing set, instead.In Figure 62, Figure 64, and Figure 66, red crosses indicate original AgES runoffcomputation, while boxplots indicates FeNS-eSM uncertainty quantified results.Prediction performance of the eSM are evaluated on the median of each boxplot.

FeNS-eSM is capable of emulating AgES model behaviour on the testing dataset.NS is above 0.97, RMSE is slightly below 2.25, and finally the BIAS is slightlynegative -0.0794.The AgES-eSM was built with 16 SMs with totally different structures: thesmallest SM has 4 hidden nodes and 27 links, while the structure of the biggestSM consists of 9 hidden nodes and 52 connections.

102 surrogate modeling
Despite spatially lumped reduced number of input entries compared to originalmodel parameters, FeNS is overall capable of emulating original AgES behaviour.However, it sometimes shows inaccuracy in reproducing the rising (Figure 62)and decreasing limb of the hydrogram (Figure 66). Further DoEs will investigatetechniques for improving estimate accuracy.

Runoff − Southfork

R
un

of
f [

m
3/

s]

Time [d]
20

13
−0

4−
01

20
13

−0
4−

03

20
13

−0
4−

05

20
13

−0
4−

07

20
13

−0
4−

09

20
13

−0
4−

11

20
13

−0
4−

13

20
13

−0
4−

15

20
13

−0
4−

17

20
13

−0
4−

19

20
13

−0
4−

21

20
13

−0
4−

23

20
13

−0
4−

25

20
13

−0
4−

27

20
13

−0
4−

29

20
13

−0
5−

01

20
13

−0
5−

03

20
13

−0
5−

05

20
13

−0
5−

07

20
13

−0
5−

09

20
13

−0
5−

11

20
13

−0
5−

13

20
13

−0
5−

15

20
13

−0
5−

17

20
13

−0
5−

19

0
20

40
60

80
10

0

Prediction estimators

NSE= 0.9764
RMSE= 2.2449
BIAS= −0.0794

Figure 62: Boxplots represents the ensemble of SMs estimates against AgES runoff compu-tations (red squares).

●●
●

●
●

●
●●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

10 20 30 40 50

10
20

30
40

50

Scatterplot − Southfork

Ages Runoff [m3/s]

A
N

N
 R

un
of

f [
m

3/
s]

Prediction estimators

NSE= 0.9764
RMSE= 2.2449
BIAS= −0.0794

Figure 63: Scatterplot of SM estimates (computed on the median of each boxplot) and AgESsimulated values.

3.4 case studies 103

Runoff − Southfork

R
un

of
f [

m
3/

s]

Time [d]
20

13
−0

5−
21

20
13

−0
5−

23

20
13

−0
5−

25

20
13

−0
5−

27

20
13

−0
5−

29

20
13

−0
5−

31

20
13

−0
6−

02

20
13

−0
6−

04

20
13

−0
6−

06

20
13

−0
6−

08

20
13

−0
6−

10

20
13

−0
6−

12

20
13

−0
6−

14

20
13

−0
6−

16

20
13

−0
6−

18

20
13

−0
6−

20

20
13

−0
6−

22

20
13

−0
6−

24

20
13

−0
6−

26

20
13

−0
6−

28

20
13

−0
6−

30

20
13

−0
7−

02

20
13

−0
7−

04

20
13

−0
7−

06

20
13

−0
7−

08

0
20

40
60

80
10

0

Prediction estimators

NSE= 0.9764
RMSE= 2.2449
BIAS= −0.0794

Figure 64: Boxplots represents the ensemble of SMs estimates against AgES runoff compu-tations (red squares).

●●●●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

0
20

40
60

80
10

0

Scatterplot − Southfork

Ages Runoff [m3/s]

A
N

N
 R

un
of

f [
m

3/
s]

Prediction estimators

NSE= 0.9764
RMSE= 2.2449
BIAS= −0.0794

Figure 65: Scatterplot of SM estimates (computed on the median of each boxplot) and AgESsimulated values.

104 surrogate modeling
Runoff − Southfork

R
un

of
f [

m
3/

s]

Time [d]
20

14
−0

5−
06

20
14

−0
5−

08

20
14

−0
5−

10

20
14

−0
5−

12

20
14

−0
5−

14

20
14

−0
5−

16

20
14

−0
5−

18

20
14

−0
5−

20

20
14

−0
5−

22

20
14

−0
5−

24

20
14

−0
5−

26

20
14

−0
5−

28

20
14

−0
5−

30

20
14

−0
6−

01

20
14

−0
6−

03

20
14

−0
6−

05

20
14

−0
6−

07

20
14

−0
6−

09

20
14

−0
6−

11

20
14

−0
6−

13

20
14

−0
6−

15

0
20

40
60

80
10

0

Prediction estimators

NSE= 0.9764
RMSE= 2.2449
BIAS= −0.0794

Figure 66: Boxplots represents the ensemble of SMs estimates against AgES runoff compu-tations (red squares).

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●●●●●●●●●●●●●●●●●●●

●

0 5 10 15 20 25

0
5

10
15

20
25

Scatterplot − Southfork

Ages Runoff [m3/s]

A
N

N
 R

un
of

f [
m

3/
s]

Prediction estimators

NSE= 0.9764
RMSE= 2.2449
BIAS= −0.0794

Figure 67: Scatterplot of SM estimates (computed on the median of each boxplot) and AgESsimulated values.
3.4.2.2 ConclusionsDespite spatially lumped reduced number of input entries compared to originalmodel parameters, FeNS is overall capable of emulating original AgES behaviourwith respect to predicted daily runoff at the outlet of SFIR watershed.However, with the purpose of supporting service delivery organizations such asUSDA-NRCS and SWA on the field, capabilities of eSM for AgES model need tobe expanded. Here, the eSM has to be trained to emulate AgES response withrespect to nitrogen load, since monitoring the environmental impact of intensivelivestock management and usage of agro-chemicals to grow rainfed crops is a bigconcern in the Corn Belt.

3.5 summary 105
Additionally, since AgES computes runoff and nitrogen load per HRU, FeNS canpotentially scale down and generate eSM for each HRU. This improves decisionmaking process support by providing service delivery organizations with estimatesof runoff and nitrogen load on a field scale.

3.5 summary
This chapter introduces to design and implementation of Framework enabledNEAT-based Surrogate modeling (FeNS) approach.Literature review illustrates motivations behind the choice of building the FeNSsystem on top of ANN data-driven empirical surrogates, instead of leveragingprojection based or multifidelity methods. Literature review also identifies drawbacksof ANN surrogate methodologies but underline previous research that values thisapproach for decision support and integrate modeling.Afterwards, research questions identify the milestones that drive the developmentof FeNS.Research design and methods describe methodological and technical approachesutilized to achieve the automated generation of SMs at a framework level. Thissection introduces to NeuroEvolution of Augmenting Topology (NEAT) and FeatureSelective NEAT (FS-NEAT) and analyzes the genetic evolutionary algorithm thatallows for automatically emerge SM from provided original model input/outputsnapshots. To take full advantage of the stochasticity involved in the evolutionaryalgorithm, a cross validation-like procedure is specifically designed and analyzed.This allows for emerging an ensemble of surrogate models and uncertainty quan-tifying eSM results. Finally, these methodologies are actually integrated at aframework level. FeNS concept allows for identifying the protocol that rules themerging of previously described methodologies into framework workflow withoutchanging user approach to standard simulation model workflow. FeNS architecturaldesign illustrates the software elements that facilitate the integration of evolutionaryalgorithm and ensemble of ANN in the modeling framework, and automaticallyemerge the eSM. The technical approach describes MongoDB features, microser-vice architecture and RESTful API, Cloud Service Integration Platform (CSIP) API,Encog ML library, and finally CSIP-services the FeNS system is build upon.DoEs for emulating RUSLE2 and AgES demonstrate goodness of FeNS method-ology and allows for identifying future developments and improvements.
Next chapter describes the integration of NET3 approach into OMS3 to facilitateresearch model maintenance, development and application. Literature review andresearch questions determine starting point of the study and path that guidesthrough the research respectively. Research methodologies and case studiesdescribe methods employed to carry out the integration of graph theory applied toa graph modeling structure into OMS3 and consequent application to actual testcases.

4 C O M P L E X N E T W O R K B A S E DP H Y S I C A L M O D E L I N G
Contents4.1 Introduction 1074.1.1 River network - graph structure analogy 1094.2 Literature review 1104.3 Research questions 1114.4 Research design and Methods 1154.4.1 Methodological approach 1154.4.1.1 Directed Acyclic Graph data structure(DAG) 1154.4.1.2 Environmental Modeling Frame-work 1194.4.1.3 Implicit parallelism 1204.4.2 Technical approach and implementation 1214.4.2.1 Object Modeling System v3(OMS3) 1214.4.2.2 Graph Modeling Structure: NET3 1474.5 Case studies 1674.5.1 GEOframe: Monitoring hydrological extremes 1684.5.1.1 Application 1684.5.1.2 NET3 additional features 1684.5.2 GEOframe: JSWMM 1714.5.2.1 Application 1714.5.2.2 NET3 additional features 1724.5.3 FICUS: System of systems of models 1744.5.3.1 Application 1744.5.3.2 NET3 additional features 1764.6 Summary 176

4.1 introduction
The problem statement of this dissertation highlights constraints and limitationsresearch scientists face while dealing with environmental simulation model code base.Here, the term “operational use” applies to model maintenance and development,and state-of-art consultancy applications.
The integration of last enhancements in terms of conceptual model design,numerical integrations, physical processes descriptions, GIS capabilities, and othertools to already existing code base is fundamental part of research efforts andadvancements. This improves environmental models results accuracy in simulatingnatural phenomena.However, further integration of innovative engineering design practices or physicalprocesses descriptions become cumbersome and counterproductive due to increas-ing software code base complexity and lacking of proper software architectural

107

108 complex network based physical modeling
design. Additionally, these aspects complicates the application of simulation modelsitself since they increase requirements of IT computational infrastructure man-agement, data preparation proficiency, and difficulty in understanding code baseimplementation of modelled processes.Summarizing, operational use of environmental simulation models is not a smoothand straightforward process due to inner complexity of model code base. As aconsequence, further research enhancements get slowed down.

The adoption of EMFs facilitated both environmental simulation model main-tenance and development, and their application. EMFs were originally designedand promoted to foster separation of software architectural design from scientificcontent. A framework enables a sort of software “plug-ins” system: each conceptu-al/physical process is encapsulated into a single stand alone software applicationand the framework manages interconnection of modeling applications as part of awhole modeling solution. The system plug-in design simplifies the creation of newmodeling solution by allowing for easily swapping out a model component from theoriginal modeling solution for a different one.This software architectural concept helps transitioning modeler creativity frommathematical equations into component implementations and model creations.
By the time EMFs were released, modelling an entire watershed by swapping outcomponents to tests different modeling approaches was a very innovative researchmethodology. However, this constraints scientists to model a watershed as anhomogeneous entity. To account for watershed heterogeneity and allow for furthermodeler creativity, EMFs features need to be expanded.OMS3 is state-of-art in terms of EMFs, and motivations behind this statementare subjects of further deep investigation in subsubsection 4.4.2.1, Object Modeling

System v3 (OMS3). To improve and expand OMS modeling flexibility, a directedacyclic graph (DAG) modeling structure (NET3) (Serafin et al. (2017, 2018a)) isimplemented and fully integrated into the OMS core. This allows for connectinginterrelated OMS modeling solutions and run them as a whole, more complex system.The initial prototype has been developed upon the semi-distributed hydrologicalsystem GEOframe. Thus, implementation and main features derive from modelercreativity needs in terms of hydrological modeling.However, further examples demonstrate NET3 flexibility of modeling any complexnetwork based applications.JSWMM is a Java component based redesign of Storm Water Management Model(SWMM), which allows for both designing and verifying a storm sewer network.JSWMM architectural design takes advantage of the benefits of OMS3-NET3capabilities of avoiding code duplication and implicitly parallelize independentmathematical computations. JSWMM has been developed as part of the UrbanHydrology module of the GEOframe environment.System of Systems of Models (SSoM) is a software application developed forFramework for Integrating the Complexity of Uncertain Systems (FICUS) project.SSoM makes use of OMS3-NET3 capabilities of encapsulating completely differentOMS modeling solutions in different nodes of the graph modeling structure, andinterconnecting them as whole system. Furthermore, SSoM specifically leveragesOMS multi-language interoperability of connecting Java, Python, and R OMScompliant components (Serafin et al. (2018c)).

4.1 introduction 109
4.1.1 River network - graph structure analogy

The requirement of improving EMFs modeling flexibility with graph modelingstructure capabilities derives from river networks - graph structure modeling analogy(Figure 68).

Figure 68: Representation of the river network - graph structure analogy, credit Bancheri(2017)
A river network subdivides a catchment in interconnected units. Here, each unitfosters a large variety of natural phenomena. From modeling perspective, eachnatural process can be conceptualized into a model component. Consequently,a modeling solution happens to connect model components to reproduce naturalphenomena interactions at unit scale.Finally, a graph modeling structure orchestrates modeling solution interconnec-tions, which reproduces natural interaction of interrelated units following rivernetwork topology.
The landscape of a watershed landforms with valleys and a dendritic river network(Howard (1994)). Hillslopes are identified by convex to linear topography whilethe river network is identified by interconnected channels delimited by river banks(Montgomery and Dietrich (1989); Montgomery and Foufoula-Georgiou (1993);Howard (1994); Hooshyar et al. (2016)). Proper modeling of an heterogeneousdrainage basin involves the analysis of size/scale of slopes and related valley net-works (Ehlschlaeger (1989); Montgomery and Foufoula-Georgiou (1993); Demir andSzczepanek (2017)). Thus, accurate analysis of watershed hydrological behaviourbegins by splitting the entire study area in homogeneous units.Several studies have been carried out to investigate different strategies toidentify channels head (Montgomery and Dietrich (1988); Montgomery and Foufoula-Georgiou (1993)), delineate the river network and subdivide an entire watershedin subwatersheds and interwatersheds starting from DEMs (Ehlschlaeger (1989);Montgomery and Foufoula-Georgiou (1993); Hooshyar et al. (2016); Demir andSzczepanek (2017)). Older algorithms require channel initiation thresholds (slope-area (Dietrich et al. (1993); Ijjasz-Vasquez and Bras (1995)), Strahler’s order(Peckham (1995)), contributing area (Band (1986); Tarboton et al. (1991))). Innovativemethods take advantage of the benefits recent availability of DEMs with resolutionlower than 3m (high resolution DEMs) to more accurately estimate geomorphologicand hydrologic features. Here, openness (Sofia et al. (2011)), slope direction(Lashermes et al. (2007)), curvature (Sofia et al. (2011); Pelletier (2013)), and

110 complex network based physical modeling
curvature with k-means clustering (Hooshyar et al. (2016)) are the main topographicattributes used.These hydro-geomorphic analysis can be automated and several Open SourceGIS software applications have been developed, e.g. JGrasstools and the SpatialToolbox in uDIG (Abera et al. (2014); Formetta et al. (2014a)), LandSerf (Wood(2009)), Geospatial Analysis Tools (Lindsay (2005)), TauDEM (Tarboton (1997)),GRASS GIS (Jasiewicz and Metz (2011)), and GeoNet (Passalacqua et al. (2010b,a)).These methods and software applications allow for accurately characterizingriver network and subwatersheds with minimal human impacts (Hooshyar et al.(2016)). Subwatersheds, or analogous entities such as hillslope or HRU, can beconsidered independent and interconnected by hydrodynamical networks (surfaceflow, interflow, and groundwater flow) (Grübsch and David (2001)).From a modeling perspective, it is possible to bundle the modeling behaviour of asubcatchment and related channel into a single and independent entity (mass/energystorage compartments) which shares fluxes (mass, energy fluxes and exchanges)with connected entities (Phillips et al. (2015)). Consequently, the natural rivernetwork is conceptualized into a tree-like structure of interconnected entities.However, human infrastructures have a relevant impact on current river networktopologies. Since derivations, hydropower, and other artifacts are heavily dissemi-nated over a watershed and its subwatersheds consequently, a tree-like structuredoesn’t provide enough modeling flexibility.A graph-like structure enables a further layer of modeling adaptability to con-ceptualize natural river network as well as human infrastructures into a complexmodeling solution.Here, the mathematical standpoint hinges to graph theory, which allows fordescribing and analyzing any network and its properties (Heckmann et al. (2015)).Graph theory in environmental applications is an emerging field of research (Phillipset al. (2015)).The actual programming implementation comes down to graph data structure, itstraversing, and parallel computation of independent nodes.When a graph data structure is implemented into a modeling framework such asOMS3, each node is enabled to handle modeling solutions instead of data only.

The next section reviews scientific literature with respect to applications of graphdata structure to environmental modeling problems. The Research Questions sectionhighlights the main points this dissertation tries to answer to. The Research designintroduces to the methodologies used to pursue the objectives of this research:the methodological approach summarizes directed acyclic graph data structure,environmental modeling frameworks, and implicit parallelism from a theoreticalstandpoint; the technical approach deeps down to the motivations of expandingOMS3 computational capabilities and NET3 actual implementation.
4.2 literature review

The application of graph theory and related computational algorithms in hydro-logical modeling and engineering network problems is a long-studied concept.One of the first applications dates back to Apostolopoulos and Georgakakos(1997).Here, the authors design a parallel algorithm built upon a tree-like topologyof the drainage network to speed up the computation of streamflow predictionswith distributed hydrologic models. At that time, parallel computers and distributedcomputing environments were recent technological enhancements and parallel

4.3 research questions 111
algorithms were innovative methodologies to satisfy computation needs of real-timeforecasting of floods and flash floods events.Following publications focused on improving parallel algorithms in order toachieve higher efficiency and computational performance.For the sake of distributed modeling, Grübsch and David (2001) propose aheuristic divide and conquer algorithm to deal with computational challenge ofsubdividing water catchments into (theoretically) unlimited number of subareas.Here the goal is to make use of graph theory, and more precisely tree-like topology,to properly distribute the computational load among networked multiprocessorscomputer clusters. The authors develop a graph partitioning algorithm to groupset of subareas and assign them to specific processors, consequently limitinginterprocessor-communication overhead.Vivoni et al. (2005) parallelizes a fully distributed hydrological model by lever-aging graph-based domain decomposition of a water catchment into interconnectedsubbasins. He proposes a message passing interface (MPI)-based version oftriangulated irregular network (TIN)-based Real-time Integrated Basin Simulator(tRIBS) and demonstrates performance and efficiency compared to a sequentialversion.Afterwords, several publications propose MPI-based parallelization of hydrologi-cal models based on spatial domain decomposition of a watershed into interrelatedsubcatchements.Wang et al. (2011) proposes the mapping of a drainage network into specificallydesigned binary-tree structure: when three or more upstream sub-basins flow intothe same stream reach, a virtual node with no topological features works as jointof two upstream sub-basin and then merges with the remaining sub-basin. Here,the actual implementation is based on a MPI master-slave architecture with acentralized database that works as system data center.Li et al. (2011) discusses another MPI master-slave computational approachbased on dynamic decomposition of a drainage network to better control loadbalance.Liu et al. (2016) proposes a two-level parallelization method for improvingfully-distributed model computational scalability by leveraging MPI API.However, every contribution is completely focused on improving parallel algorithmsefficiency, computing time, and speedup ratio. There is no mention on modelingflexibility, code reusability, operating system interoperability, and the concept ofseparating software architectural aspects (e.g. implicit parallelization) from scientificcontents is not a concern. Actually, Li et al. (2011) states that

[. . .] since the parallel programs and simulation models are blended,neither the frameworks [MPI] nor the codes for parallelization can bereused by other models.
In conclusion, to take advantage of previously described parallel computationalframeworks or algorithms, a research scientist needs to develop dedicated program-ming proficiency.

4.3 research questions
This section introduces to the research questions investigated by this dissertation.Each research question is briefly analyzed. Two research subquestions (RQ3.a andRQ3.b) are also proposed but not investigated and remain open questions for futureresearch work.

112 complex network based physical modeling
RQ1: What is the best strategy to simplify development and run of conceptu-al/physical model?Environmental modeling frameworks introduced three main revolutionary conceptsin the scientific modeling community: (1) software encapsulation, (2) plug-in system,and (3) code duplication avoidance. The main goal of this dissertation is to elevatethese concepts to a further layer of flexibility and abstraction.The introduction to this chapter states that graph theory, and its actual implemen-tation, can be applied to improve hydrological modeling at basin scale. Watershedswith minimal human impact are easily mapped to tree structures where nodesare mass/energy storage compartments and links are mass/energy fluxes. Variousapplications/frameworks in the past implemented this structure already (Grübsch etal. 2001, Li et al. 2010, Zaliapin et al. 2010, Cui et al. 2011, Wang et al. 2011,Demir et al. 2017).However several contributions highlight how engineering works affect streamnetwork and watershed modeling consequently (Gregory 2006, Whol 2006). Damconstruction, diversion, culvert or draining systems, and mini-hydro power plantsinvolve changes in flux directions and require dedicated modeling (Gregory 2006,Whol 2006). For example, modeling a run-of-river mini-hydro power plant necessi-tates of accurate design. Here, the modeler may want to simulate different scenariosto estimate the amount of:
1. electric power generated during the working hours of the turbines in thepowerhouse while monitoring the impact of water diversion on physical andecological conditions along the diverted reach;2. sediment flowing into the de-silting box;3. electric power generated based off of the amount of water diverted intothe penstock, which depends itself on the hydrodynamic conditions of thedownstream reach.

A tree data structure is not suited for modeling these processes because it doesn’tallow a node (downstream reach) to have out-connection to more than one node(two in this specific example: run-of-river mini-hydro power plant and divertedstream reach, Figure 69).Additionally, a tree-like structure limits modeler creativity when it comes tomodel HRUs instead of subwatersheds. An HRU might have several other HRUsflowing in and it might flow out to more than one HRU and stream reach.This research identifies with a directed acyclic graph (DAG) data structure, themost suitable tool for elevating EMFs modeling flexibility. A DAG allows for:
1. potentially encapsulating a different modeling solution in each node of awhole modeling structure;2. easily plug in and out nodes in the entire graph modeling structure;3. avoiding code duplication by re-using the same packaged source code foridentical modeling solutions used in different nodes of the graph structure;4. managing n-inputs and n-outputs for each node.

RQ2: What is the most suitable EMF core to expand and make more flexible?Object Modeling System v3 (OMS3) David et al. (2013) has been identified asstate-of-art in terms of environmental modeling frameworks.OMS3 design is based off of the following notable software engineering ap-proaches David et al. (2013):

4.3 research questions 113

Figure 69: Generic schematization of a hydropower plant. Part of the stored water flowsthrough the penstock from the dam, while the remaining flow through the diversionreach. Credit, Palen Lab blog.
• non-invasive lightweight framework design (modelers don’t have to importand learn complex APIs);
• component-based model development;
• graceful adaptation/integration of legacy models or already existing codebase;
• automated generation of model documentation by leveraging componentmetadata;
• implicit parallel computation of independent model components;
• modeling solution setup through user-friendly, flexible, groovy-based DomainSpecific Language (DSL);
• integration with cloud-based platform CSIP (Lloyd et al. (2012); David et al.(2014a)) to enable computational scalability.

The design of OMS3 has been driven by the following concept:
Environmental model development needs to be creative, i.e., newapproaches have to be explored that go beyond the boundaries ofgiven programming languages, data structures, algorithms, and existingarchitectures. EMFs should foster creativity, and not constrain themodeler to the framework developer’s view. - David et al. (2013) -

Several scientific publications demonstrate the effectiveness of modeling withOMS-compliant components (Abera et al. (2017a,b); Ascough II et al. (2012);Bancheri (2017); Bancheri et al. (2018a,b); Dalla Torre et al. (2018); Formetta(2013); Formetta et al. (2013b,a, 2014a,b, 2016a,c); Green et al. (2015)). As a result,OMS3 is the most suitable EMF for hosting the development of NET3.

https://palenlab.wordpress.com/2017/10/11/run-of-river-hydropower-and-salmonids-potential-effects-and-perspective-on-future-research/

114 complex network based physical modeling
RQ3: What is the most effective strategy to fasten computational time of com-plex simulation models without requiring researchers to develop any specificparallel software development skill?The parallelization of several hydrological models is implemented upon a master-slave computing approach with MPI APIs (Hluchy et al. (2001); Rao (2005); Cuiet al. (2011); Wang et al. (2011)). Fine development of MPI-compliant algorithmsrequires programming proficiencies and deep knowledge on shared memory andcomputational workload management. Exclusively accurate design allows for prop-erly scaling across computer clusters and exploiting their entire computationalpower (Tran and Hluchy (2004)). Furthermore, MPI-based software application hasto compile on each hosting operating system and hardware, constraining softwareportability.More recent applications implement against Graphics Processing Unit (GPU),innovative hardware solutions that allow for highly parallel computation (Kalyanapuet al. (2011)). Once again, running GPU-compliant software requires NVIDIA™graphic cards, limiting software portability.In terms of software implementation, developing against MPI or CUDA® APIsnecessitates of dedicated programming knowledge and hardware.
OMS3 is a Java-based framework. As a result, any kind of portability issue isresolved since the Java Virtual Machine (JVM) runs on top of any operating system.Java parallelization entry level is multi-threading, which allows for parallelizingsoftware applications on one single computer by leveraging multi-core CentralProcessing Unit (CPU)s (David et al. (2013)). Parallel computation in hydrologicalmodels is hardly achievable because of their complexity. OMS3 enables implicitparallelism of independent components in a modeling solution. OMS3 managescreation and intercommunication of computational threads: independent componentsare executed by different threads while threads communicate through data flowbetween connected components. Encapsulating each conceptual/physical processof the hydrologic cycle into a single component is the only model developer’sresponsibility. Then, the model user describes component connections through themodeling simulation file. Eventually, OMS3 automatically parallelizes the run ofindependent processes (or OMS-compliant components), thus requiring no parallelprogramming skills to model developers.OMS3 takes advantage of the inherent indepence of conceptual/physical processesof a modeling solution to implicitly parallelize simulation run. NET3 enables afurther layer of implicit parallelization by leveraging the graph structure topologyto concurrently run modeling solutions of independent nodes.
RQ3.a: Can this further layer of implicit parallelism effectively speed up thecomputation of both small and large scale modeling solutions?
This dissertation won’t be able to investigate this research question. It remainsan interesting open question which requires dedicated work to properly demonstrateif this further layer of implicit parallelism speeds up the computation of smaller andlarger complex modeling solutions.
RQ3.b: What is the proper trade off between graph topology and componentconnections related parallelizations?
This dissertation won’t be able to investigate this research question. It remainsan interesting open question which requires purposeful work to properly define themost effective trade off between the number of computational threads to dedicate

4.4 research design and methods 115
to component-connections parallelism and the number of computational threads todedicate to graph topology parallelism.
4.4 research design and methods

This research aims to accommodate modelers and researchers requirements offacilitating environmental model development and use. To achieve this goal, EMFscapabilities are extended by implementing a fully integrated Graph ModelingStructure (GMS).The GMS originates from a standard DAG where each node runs a modelingsolution. Afterwords, the GMS connects modeling solution results into a complextopology-driven modeling solution.Thus, this research has been driven by the need of:
• Simplifying– the development of complex modeling solutions;– the runs of complex modeling solutions;
• Improving the flexibility of actual EMFs to accommodate modelers creativityand talent;
• Reducing computational time by enabling a further layer of implicit paral-lelization.

Subsection Methodological approach introduces to three main methodologiesthis research is built upon:
1. Directed Acyclic Graph data structure (DAG) is the data structure thatmanages interconnected OMS3 simulation files in topological order;2. Environmental Modeling Framework are modeling software that allow forcompletely decoupling model code development from framework architecturalinfrastructure and design;3. Implicit parallelism is a framework functionality that tacitly parallelizes thecomputation of independent modeling components.

Subsection Technical approach and implementation comprehensively introduce tothe architectural design of the Object Modeling System v3 (OMS3) environmentalmodeling framework. This preamble allows for deeply describing the implementationof the Graph Modeling Structure (GMS) NET3.
4.4.1 Methodological approach
4.4.1.1 Directed Acyclic Graph data structure (DAG)This section introduces to basic notions of graph theory from discrete mathand basic requirements to implement a directed acyclic graph data structure fromcomputer science related field.The paragraph Graph theory review highlights reviews basic (e.g. node, edge,and path) and formal definitions (e.g. directed graph and undirected graph). Themain sources are McCreary and Reed (1993), Grübsch and David (2001), and Cuiet al. (2011).In paragraph DiGraph API and traversing algorithms, discrete math definitionsare translated into software design concepts. Here, the scope of this dissertation

116 complex network based physical modeling
is narrowed down to directed graph since directed hydrological fluxes connectmass/energy storage compartments. Thus, brief introduction on digraph standardAPI, its representations and implementations are summarized and following utilizedin NET3 technical approach. Concepts derives from chapter 4 of Sedgewick andWayne (2011), and Cui et al. (2011).

4.4.1.1.1 Graph theory reviewA graph G is a mathematical structure that consists of individual objects and linksbetween those objects. It allows for modeling the pairwise connections betweenthose objects (Sedgewick and Wayne (2011)).Formally, a graph is an ordered pair G = (N ,E) where a finite set of nodes N(G)(or vertices) are connected through a finite set of edges (or arcs) E ⊆ NxN . Everyedge e ∈ E(G) defines a relation between a unique pair of nodes u, v ∈ N(G). A
null graph is the smallest graph possible which has one single node with no edges.A path of length n from v0 to vn in a graph G is a finite sequence of connectednodes v0, v1, . . . , vn where (vi, vi+1) ∈ E(G), i ∈ ℵ | 0 ≤ i ≤ n− 1. The number ofedges between v0 and vn defines the length of the path. v0 is the start node of thepath while vn is the end node. The set of every path in G is PG . A cycle in G is apath p = (v0, v1, . . . , vn) where vi = vk | 0 ≤ i < k ≤ n that connects a node toitself. A simple path in G connects two vertices without revisiting any vertices oredges. A simple cycle in G connects a node to itself without revisiting any nodesor edges except for the starting or ending node. A graph is acyclic if PG doesn’tcontain any cycle.A graph G is connected if and only if ∃p ∈ PG | p = (u, . . . , v)∀u, v ∈ N , thusthe set of path PG contains a path for any pair of different nodes u, v .A directed graph (or digraph) is a particular class of graphs where the edge set
E(G) is ordered and every edge e ∈ E(G) defines a binary relation between twonodes (u, v) | u, v ∈ N(G). Node u is called parent, tail or immediate predecessorof v , while v is called child, head or immediate successor of u. The set of nodes Swhere each s ∈ S has no immediate predecessors is called source of G .

S = s ∈ G | (v , s) 6∈ E(G) ∀v ∈ N(G). (4.1)
The set of nodes M where each m ∈ M has no immediate successor is called

sink of G .
M = m ∈ G | (m, v) 6∈ E(G) ∀v ∈ N(G). (4.2)

In a digraph, a node v is reachable from a node u if and only if ∃p ∈ PG | p =
(u, . . . , v). In a digraph, it is possible to the define the outdegree of a node u asthe number of out-edges, that is the number of edges pointing from the node u.Conversely, the indegree of a node u quantifies the number of edges pointing tothe node u, namely in-edges.A directed acyclic graph (DAG) G does not contain any cycle in the set PG .A tree is a DAG where there is only one sink node m (called also root) and itexists a path p = (u, . . . ,m) that connects every node u 6= m to the root. Sourcesof a tree are called leafs.An undirected graph is characterized by an edge set E of unordered pair ofnodes: each edge e ∈ E links two distinct nodes u, v ∈ N in both directions.
u 6= v because self-loops are forbidden. Formally, if G = (N ,E) is a directedgraph, an undirected graph G′ is created from G by extending E with its inverserelation E−1: G′ = (N ,E ∪E−1). This allows for considering each edge in E andits backward edge.

4.4 research design and methods 117
4.4.1.1.2 DiGraph API and traversing algorithmsThe API of a directed graph (DiGraph) is built on top of the data structureimplemented. A DiGraph has three different possible representations:
• Adjacency matrix: it is a NxN array of binary bits. The entry xij is 1 ifthere is an edge between node i and j , 0 otherwise. The memory requiredto store this data structure is O(N2). The time required to access, add orremove an edge is O(1). However, the entire matrix has to be reallocatedand copied over if a node is added or removed. This operation is a O(N2)algorithm. This data structure is very useful when it comes to storing densegraphs.
• Array of edges: it is an array of length E . Each element of the arraydescribes the edge by storing the ordered pair of vertices, starting and endingpoints of the edge. Here the data structure is stored in O(E) memory, whichlinearly grows with the number of edges of the graph. Accessing or removingan edge is an O(E) algorithm: edge IDs are not stored, thus the entirearrays is parsed to select the proper pair of vertices connected by the edgeinvolved. A new edge is added with O(1) effort.
• Adjacency list: it is an array of length N . Each element of the array containsone vertex and the sequence of its outedges. The memory usage is O(N +E),which can get to O(N2) in case of a dense or fully connected graph. Thus,this data structure is better suited for sparse graphs rather than dense oneswhere an adjacency matrix is more performant. Access, insertion or deletionof a vertex require O(1) to O(N) effort, depending upon the data structureused to store the array.

The fundamental methods exposed by a DiGraph API are briefly explained in table2.
Table 2: Standard API exposed by a generic public class DiGraph.Returned dt Method signature Description

DiGraph() Default constructor
DiGraph(Topology topology) Reads in and builds theDiGraph from topology file

int getN() number of vertices
int getE() number of edges

void addEdge(int startNode,
int endNode)

add edge from startNodeto endNode
void deleteEdge(int startNode,

int endNode)
delete edge from startN-ode to endNode

boolean edgeExists(int startNode,
int endNode)

check if an edge existsbetween startNode andendNode
void addNode(int newNode) add newNode to the Di-Graph
void deleteNode(int node) delete node from the Di-Graph

boolean nodeExists(int node) check if node is part of theDiGraph
Iterable<Integer> getChildren(int node) children nodes of node

(. . . continue to next page)

118 complex network based physical modeling
Returned dt Method signature Description
DiGraph reverse() returns a reversed Di-Graph (edges are reversed)
String toString() @override

There are many more methods that can potentially be implemented to extendDiGraph API capabilities. However, they are mainly application specific and properalgorithms need to be accurately designed.
Next step is definition and implementation of searching algorithms and respectiveAPIs (table 3).

Table 3: Standard API exposed by a generic public class SearchAlgo.Returned dt Method signature Description
void compute(String direction,

Integer source,
DiGraph graph)

Search for subbranches inthe graph
Boolean hasPathTo(Integer vertex) Search if vertex is con-nected to source

Iterator<Integer> pathTo(Integer vertex) Return the path from vertexto source
Although properties of nodes and edges are easily accessed through the DiGraphAPI, properties related to the overall DiGraph result from the analysis of each andevery vertex and related connections. Consequently, traversing the structure ofedges and nodes becomes key in application-specific problems.Searching algorithms usually have dedicated APIs as a consequence of decouplingdata representation from processing components. These APIs are designed oncomposition (HAS-A relationship) to reference to an object by using instancevariables. In other words, a fully built DiGraph is passed as argument to thesearching algorithm constructor. Then, the algorithm queries the DiGraph tosystematically examine nodes and edges properties, and move along node to nodeconnections. The two most important algorithms are depth-first and breadth-firstsearch.The depth-first search (DFS) solves the source reachability (or connectivity)problem:
• single-source reachability: it checks if a path between a source node s anda target node u exists in the given DiGraph;
• multiple-source reachability: it checks if a path between a source node sin a set of source nodes S and a target node u exists in the given DiGraph.

Furthermore, it solves the single-source paths problem by identifying the paththat connects a source node s and a target node u. Paths discovered by DFSdepends on the data structure used to store the DiGraph and the type of recursivesearch algorithm implemented.The breadth-first search (BFS) solves the single-source shortest paths problemby checking if a path between a source node s and a target node u exists andidentifying the shortest one.The difference between DFS and BFS algorithms sits in rule used to extractthe next node to process from the storing data structure: DFS retrieves the mostrecently added node by leveraging a stack type data structure, while BFS retrieves

4.4 research design and methods 119
the least recently added node by leveraging a queue type data structure. As a result,BFS deeply analyzes all the connections closer to the source node first beforemoving to further connections. Opposingly, DFS looks at the furthest connectionfrom the source node first, moving to a layer closer connection only when findsdead ends.DiGraph are widely applied to scheduling problems where a set of tasks areto be completed under precedence constraints: certain tasks must await previoustasks to complete before starting their run. Here, tasks are nodes of the DiGraphand directed edges schedule precedence constraints (or topological order).In precedence-constrained type of problems, a DiGraph can’t contain a directedcycle because it would end up in a infinite loop with no feasible solution. Conse-quently, the DiGraph becomes a Directed Acyclic Graph (DAG).
4.4.1.2 Environmental Modeling FrameworkThis section introduces to definition, architectural aspects and design of genericframeworks. It following focuses on EMFs and their additional design concepts.

A framework is a software library that simplifies the development of domain specificapplications by providing reusable design (Gamma (1995); Lloyd et al. (2011)). Itimplicitly defines a set of rules for building each domain specific application, whichresults in applications with similar code structure and classes/objects partitioning(Gamma (1995)). It differs from a software library because it controls the overallprogram (set of applications) execution flow by applying the inversion of controldesign pattern.A software framework elevates the concept of separation of concerns (SoC) bydealing with several complicated software architectural aspects like high performancecomputing and thread control, infrastructure constraints, programming languagespecifications, hosting environment constraints (operating systems and underlyingplatforms), etc. (David et al. (2013)). It abstracts these aspects to a level that isappealing for non-specialists. As a result, application development is streamlinedand application designers can specifically focus on application domain functionalities(Gamma (1995)).Development goal of software frameworks is design reuse over code reuse.However, the addition of accurate design of framework compliant components avoidcode duplication and consequent drawbacks.Software frameworks are being developed for supporting code development indifferent fields like financial modeling (Birrer and Eggenschwiler (1993)), decisionsupport systems (Gachet (2003)), compilers for programming languages on specifichardware (Johnson et al. (1992)), graphical editors for music composition or me-chanical CAD (Vlissides and Linton (1990); Johnson (1992)), and environmentalmodeling (Bernholdt et al. (2003); Hill et al. (2004); Blind and Gregersen (2005);Collins et al. (2005); Gregersen et al. (2007); Moore et al. (2007); Peckham et al.(2013); David et al. (2013)).This dissertation focuses on EMFs, which are designed to facilitate environmentalresearch scientists in developing and maintaining mathematical models.The development of a conceptual/physical model requires the understanding ofphysical description of natural phenomena and software development skills. EMFsfacilitate separation of these concerns by providing the research scientist withtailored libraries that abstract software architecture design from model implementa-tion. In addition to previously listed framework generic capabilities, EMFs featuresinclude seamless access to data, encapsulation of conceptual/physical processes intofunctional units (o model components), management of components interconnectionand intercommunication, conversion of physical units between connected components,

120 complex network based physical modeling
handling of temporal and spatial stepping, simulation data analysis by visualizingplot results (David et al. (2013)). Furthermore, EMFs provide tools for managinginteroperability between different programming languages (Serafin et al. (2018c);David et al. (2013); Dahlgren et al. (2004)). This smooths the learning curve toapproach an EMF by allowing research scientist to use their favorite language.The adoption of EMFs as a standard practice has several advantages like:
• reducing model development cost and time by facilitating the integration oflegacy models with new models and maintaining existing modeling practices;
• elevating model component reuse in different modeling solutions by avoidingcode duplication and consequent error prone software maintenance anddebugging;
• introduction of combination of QA/QC into model component lifecycle toprevent model bugs, errors or defects and improve software runtime qualityand error traceability;
• repurposing model solutions for new business needs;
• promoting the concept of reproducible research by providing consistent andverifiable model results (Bancheri et al. (2018b)).

As pointed out in Rizzoli et al. (2008), the modeler should experience an immediatereturn on investment by adopting a framework designed to increase modelingproductivity.Eventually, EMFs elevate modeler creativity as well by leveraging the plug-insystem of model components to facilitate the creation of different modeling solutionsscenarios (David et al. (2013); Peckham et al. (2013)).
In conclusion, software frameworks facilitate domain specific application designby elevating the concept of separation of concerns: the management of softwarearchitectural design aspects such as high performance computing and hostingenvironment constraints are delegated to the modeling framework, while applicationdevelopers focus on domain specific application design.

4.4.1.3 Implicit parallelismThis section briefly introduces to the concept of explicit and implicit parallelism.Formal definitions are provided since are used in section Technical approach and
implementation.

State-of-art in terms of CPU is multi-core processor, which means that two ormore autonomous processor cores (or processing units) are placed on a single chippackage (Ovatman et al. (2011)).These types of CPUs are installed on a large variety of devices starting from per-sonal computers and smartphones. As a result, parallel programming in applicationsoftware is a fundamental methodology that allows for speeding up the computa-tional effort while fully taking advantage of the underlying hardware (Ovatmanet al. (2011)).The design of software application that integrates parallelized algorithms andmanagement of thread execution is called explicit parallelism. This requires pro-gramming proficiency since the software developer masters the concurrent executionof parallel tasks, their synchronization and communication, and related memorymanagement.

4.4 research design and methods 121
Explicit parallelism is not standard practice when it comes to design framework-compliant components. The framework actually manages these software architecturalaspects. Consequently, research scientists or components developers are responsiblefor component implementation and can plan for proper software system decompositionand granularity (David et al. (2013); Peckham et al. (2013)).This contrapposes to the previously mentioned methodology and it is calledimplicit parallelism. Here the framework identifies each component as a potentialparallel task and schedules its execution based off of component interconnection.This methodology might not result in a optimal parallel efficiency since componentdeveloper has no control on the overall program execution, not even the singletask consequently. However, programmer doesn’t have to worry about processescommunication and management and can improve parallelization effectiveness byfinely tuning system granularity.
In summary, implicit parallelism is a software architectural aspect most modelingframeworks implements to allow model developer for taking advantage of state-of-artcomputational processing unit without requiring parallel programming proficiency.Implicit parallelism is a notable feature of OMS3 and is furtherly extended byNET3 to provide for a further layer of computational speed up.

4.4.2 Technical approach and implementation
The Technical approach and implementation section describes the technicalmethodologies that are part of this dissertation.In the first sub section, the Object Modeling System v3 (David et al. (2013))is introduced. OMS3 is an open source framework released under MIT licence.OMS3 has been designed and developed by Dr Olaf David at Colorado StateUniversity (Fort Collins, CO). The development of this EMF has been supportedby USDA-NRCS and USDA-ARS. The Object Modeling System v3 (OMS3) subsection introduces to the software engineering design and notable functionalitiesthat make OMS3 state-of-art in terms of EMFs. The author of this dissertationDOESN’T take any credit with respect to OMS3 framework code base in general,OMS3 architectural design, and OMS3 implementation. Dr David is the sole authorof OMS3 (David et al. (2013)).The second subsection “Graph Modeling Structure: NET3” introduces to theactual contribution of this dissertation. NET3 has been developed to expand OMS3modeling capabilities. NET3 is released as part of OMS3 modeling framework.Consequently, NET3 is Open Source project released under MIT licence.

4.4.2.1 Object Modeling System v3 (OMS3)The Object Modeling System v3 is a Java based integrated environmental modelingframework, which supports a workflow to develop and deliver environmental modelsto user organizations.OMS3 allows for consistently and efficiently building science components, whichare fundamental functional units to disaggregate a complex environmental model in(Lloyd et al. (2011); David et al. (2013)). It also supports modules calibration andtesting for facilitating model component development, modification or adjustment asscience advances, and repurposing for emerging customer requirements.This section focuses on describing OMS3 unique features and providing anoverall workflow example by stepping through code base details. The paragraph
Overview introduces to the foundations of the OMS3 architecture and its mostimportant architectural design aspects. The paragraph Framework invasivenessdescribes the use of Java annotations to enable OMS3 architectural design aspects

122 complex network based physical modeling
and make OMS3 a lightweight framework. Furthermore, this subsection illustratesthe model developer standpoint of leveraging OMS3 annotations to transform aPlain Old Java Object (POJO) into an OMS-compliant component. The paragraph
Simulation DSL describes the actual interface between modeler and frameworkworkflow: the Groovy-based DSL flexibility is demonstrated by analyzing the DSLfunctionalities and their mapping into OMS3 internal code base. The paragraph
Modeling concept (model) - oms3.dsl.Model.java describes the core partof the OMS3 modeling solution. DSL concepts are illustrated as well as theirmapping into OMS3 internal classe. Finally, paragraph Simulation run providesan overall workflow of the OMS3 internals for a modeling solution run.

4.4.2.1.1 OverviewOMS3 is a lightweight integrated environmental modeling framework. It sup-ports the modeling process by streamlining model code development, providing forseamless model access to data, and data analysis and visualization.OMS3 results from a complete redesign of OMS2. It minimizes model invasiveness,improves portability, adaptability and infrastructure integration (David et al. (2013)).Additionally, it simplifies component integration, emphasizes implicit auto-scalingof simulation models in multi-core and multi-processor environments, providesfor modeling simulation traceability and integrity, and is capable of generatingauto-documentation of models and simulations (David et al. (2013)). The frameworkaddresses agencies traceability requirements with program tracking and financialmanagement responsibilities. Agencies running simulation models can utilize thebenefits of OMS3 to create auditable simulation trails based on Secure HashAlgorithms, which is a Federal Information Processing (FIP) Standard. A furtherrelevant feature is the capability to auto-document a model and simulation structureinto an open document standard such as Docbook5+.
Figure 70 illustrates the four foundations of the OMS3 principle architecture:(1) modeling resources, (2) system knowledge base, (3) development tools, and (4)modeling/simulation products. An overall introduction to the framework workflow isfollowing summarized.Modeling resources are databases, services, version control systems, or otherrepositories (David et al. (2013)). Knowledge base and development tools arepart of the OMS3 core. The OMS3 system derives information out of the con-nected resources and transforms it into framework knowledge bases. The OMS3development tools use this generated knowledge bases to create modeling andsimulation products (David et al. (2013)). Modeling and simulation products aremodel applications (science components), simulations supporting calibration and op-timization procedures as well as parameter sensitivity analysis, results visualizationand statistical analysis, audit trails for reproducible research and legal purposes,and documentation.The main architectural design aspects of the OMS3 framework are:
1. runtime introspection for parsing class structure, fields, methods, and theirvalues, which allows the framework to hook into component entry points;
2. annotation of relevant class information, methods, and fields;
3. reflection as a methodology for accessing object fields and invoking objectmethods.

4.4 research design and methods 123

Figure 70: Schematization of OMS3 architectural design, credit David et al. (2013).
4.4.2.1.2 Framework invasivenessThis section introduces to generic framework invasiveness concept. Definitions oftight and loose coupling architectural design as well as heavyweight and lightweightframework are provided. Knowledge of these notions allow for understanding andappreciating OMS3 characteristics that make it a lightweight non invasive framework.An example of POJO annotation is provided. Additionally, Appendix B illustratesthe adaptation of R and Python scripts into OMS-compliant components (Serafinet al. (2018c)).
Framework invasiveness is code coupling aspect that quantifies the level ofdependencies a framework imposes to a compliant component (Lloyd et al. (2011)).Framework invasiveness correlates inversely with quality of modeling code (Lloydet al. (2011)).The definition of framework invasiveness resembles object-oriented coupling,which is the degree of dependencies between two software components (Gamma(1995)). Two classes are tightly coupled when they strongly depend on each other,and are hardly reusable in isolation consequently (Gamma (1995)). Opposingly,loosely coupled design allows classes to properly interact without deep knowledge ofeach other implementation (Freeman et al. (2004)). This design principle facilitatesindependent reusability and portability of two classes while elevating modifiability,extensibility, and overall maintainability (Gamma (1995)). Previous research on thetopic showed an inverse correlation between object-oriented coupling and softwarefault proneness (Briand et al. (2000, 1999)).
Richardson (2006) provides definitions for heavyweight and lightweight frame-works, which essentially differ in the size of exposed API.A heavyweight framework API has normally a considerable size. Consequently,familiarizing with this API requires time and expertise. It additionally generatesextensive dependency with the application code.Differently, a lightweight framework replaces massive APIs with alternativemethodologies. This approach restrains the use of framework dedicated data types,interfaces, classes and it bounds the amount of boilerplate code in domain specificcomponents.Lloyd et al. (2011) thoroughly summarized the comparison between heavyweightand lightweight framework design, which resulted in table 4.

124 complex network based physical modeling
Table 4: Comparison between heavyweight (traditional) and lightweight frameworks, creditLloyd et al. (2011).Traditional framework Lightweight frameworkComponents under the frameworkare:

• bound statically at compiletime
• ightly coupled to the frame-work by extension of frame-work classes, implementationof framework interfaces, useof framework specific datatypes/classes, and use offramework specific function-s/methods
• framework provides special-ized versions of native lan-guage data types
• framework has a “large” pro-gramming interface (API)
• framework use may dependon many libraries

Components under the frameworkare:
• bound dynamically at runtime by use of language anno-tations/dependency injectiontechniques (inversion of con-trol software design pattern)
• loosely coupled and largelyindependent of the framework
• convention over configuration:developers only specify un-conventional details in codeas defaults are otherwise as-sumed
• framework uses native lan-guage data types
• framework has a “small” pro-gramming interface (API)

With respect to OMS3, its lightweight non invasive approach is following de-scribed.OMS3 introduces programming language annotations as innovative methodologyfor describing component metadata. Instead of developing against traditionalframework APIs, a component developer accommodates OMS3 annotations oncomponent elements (e.g. classes, methods, fields) that are relevant for buildingthe modeling solution. The framework captures component annotations throughruntime introspection, and interprets related information for properly building modelmetadata. This simple and effective design fully adheres to the Inversion of Controlprinciple (Fowler (2004)): as a result of model metadata, the framework drivessimulation execution and data flow. This approach allows for annotating any POJOsand legacy software applications, which can be used from within the frameworkconsequently.This is a lightweight non-invasive approach since no framework specific datatypes need to be used and no framework interfaces or abstract classes need to beimplemented or extended from within the model component.Richardson (2006) demonstrated the effectiveness of this approach on otherdomain specific applications such as web application and enterprise frameworks.
Each and every OMS3 annotation start with the <at> symbol (@). To summarizethe main functionalities, three different groups are identified (David et al. (2013)):
1. Mandatory annotations - These annotations are mandatory for executing amodeling component. @Execute is accommodated above the method signa-ture that rules the component execution and is invoked by the framework at

4.4 research design and methods 125
runtime. @In and @Out are located above each input/output field declarationrespectively. Annotated fields identify the incoming and outcoming flow ofdata in and to a component and they must be declared public to be accessedby the framework. OMS3 is in charge of handling the data transfer protocolbetween components. It exchanges any data type independently from datasemantic or structure.2. Supportiving annotations - These annotations are optional. However theyfacilitate and bound model execution by introducing additional informationsuch as @Unit to describe the physical unit of a model parameter, or @Rangeto constrain the admissible value of a model parameter.3. Documentation annotations - Although these annotations are optional as well,they provide useful metadata which facilitate model component readabilityand maintainability consequently. This information are also parsed by theframework to automatically generate model documentation (@Description,
@Author, @Version).Listing 4.1 shows a simple example of an annotated OMS-compliant component.

Listing 4.1: Example of a POJO class turned into OMS-compliant component by accommo-dating OMS3 annotations.
1 package example;23 import oms3.annotations.*;45 @Description("Compute cylinder volume")6 @Author(name = "Francesco Serafin",7 contact = "francesco.serafin.3@gmail.com")8 @Keywords("cylinder volume")9 @Bibliography("David, O., Ascough II, J. C., Lloyd, W.,10 Green, T. R., Rojas, K. W., Leavesley,11 G. H., & Ahuja, L. R. (2013).12 A software engineering perspective on environmental modeling13 framework design: The Object Modeling System.14 Environmental Modelling & Software, 39, 201-213.")15 @VersionInfo("0.1")16 @Status(Status.TESTED)17 public class CylinderVolume {1819 @Description("Radius of cylinder base")20 @Role(Role.PARAMETER+Role.VARIABLE)21 @Unit("meters")22 @In23 public double radius;2425 @In26 public double height;2728 @Out29 public double volume;3031 @Execute32 public void compute() {33 volume = circleArea(radius) * height;34 System.out.println(‘‘The volume is: ‘‘ + volume);35 }3637 private double circleArea(double radius) {38 return Math.pow(radius, 2) * Math.PI;39 }4041 }

126 complex network based physical modeling
Line 3 of Listing 4.1 shows the only dependency between framework and OMS-compliant component: import oms3.annotations.* is required to make useof all the available OMS3 annotations.OMS3 supports the Initialize/Run/Finalize cycle by providing two further annota-tions @Initialize and @Finalize along with @Execute to rule the modelexecution flow. This allows for tagging two extra methods within a Java class thatare invoked before (@Initialize) and after (@Finalize) the main methodtagged with @Execute (Figure 71).

Figure 71: Execution phases, and data flow of OMS3 modeling solution, credit David et al.(2013)
In conclusion, definitions of framework invasiveness and code coupling are providedto introduce to the concept of Java annotations, which make OMS3 a lightweightnon-invasive framework. Listing 4.1 shows the adaptation of a POJO test case intoOMS-compliant component. Multi-language operability is exercised in Appendix B.
4.4.2.1.3 Simulation DSLThis subsection introduces to generic DSL definition and actual application toenvironmental modeling solutions. OMS3 DSL and its mapping into OMS3 codebase are thoroughly analyzed. OMS3 DSL formal structure and the concept ofsimulation file are provided. Afterwords, each of the seven main DSL elementsof an OMS3 simulation file are individually described. Simulation, Resources,Analysis, Summary Output, Model Efficiencies, and Simulation Output Strategy areintroduced as independent subsections. Model element requires a different sectionsince it is the DSL core concept.
A domain specific language is a programming language (usually declarative)designed to simplify the solution of domain-specific problems through dedicatednotations and abstractions (Van Deursen et al. (2000)). A DSL is a very expressiveand powerful but small language which works on top of a General Purpose Pro-gramming Language (GPL) with the main goal of narrowing GPL scope (Fowler(2010); Van Deursen et al. (2000)).Regarding EMFs specific applications, a DSL interposes between the collectionof model components and the modeling framework. It simplifies the definition of aset of framework instructions which are required to properly execute a modelingsolution.

4.4 research design and methods 127
Traditionally, properly balanced mix of DSL and GPL facilitate modelers workand improve software application effectiveness (David et al. (2012)). Furthermore, aDSL is more flexible and powerful option to complex Graphical User Interface (GUI).
OMS3 provides a flexible and user-friendly DSL to facilitate modelers work ofsetting up the modeling simulation. Through the DSL, a user generates a runtimesystem of rules (protocol) to:
1. select the type of OMS3 simulation to run;2. identify and list the model components required to build the modeling solution;3. specify the mandatory input data entry points to initially feed the modelingsolution pipeline;4. describe modeling components interconnections.

OMS3 provides several DSL concepts for various purposes, which facilitate thetransitioning of modeler creativity and ideas to lower level framework implementationof a modeling solution. Some examples of DSL concepts are basic model simulation,parameter calibration, sensitivity analysis, and ensemble streamflow prediction(ESP) (David et al. (2012)).OMS3 leverages Groovy language and its provided DSL builder design patternto set up a runtime simulation (Gamma (1995); Dearle (2010); David et al. (2013)).After this brief introduction to DSL definition and the generic OMS3 usage, fulldescription of OMS3 DSL is provided. Thus, following simulation DSL alwaysrefers to specific OMS3 application.
Independently of the simulation type, a simulation DSL file is expected to have

*.sim, *.luca, *.esp, *.fast, or *.ps extension and adhere to the formalstructure in Listing 4.2.
Listing 4.2: OMS3 modeling solution formal structure.

1 // comment2 <root element>(<key:value>, <key:value>, ...) {34 <element>(<properties like above>) {5 // more subelements..6 }78 <element>(<properties like above>) {9 // more sublements or just elements with value10 <element> <value>11 }1213 <element>(<properties like above>)1415 <element> {16 <element ..17 }18 // more subelements19 }

Comments can be singled lined (‘// . . . ’) or can span multiple lines (‘/* . . . */’)such as in C++, Java, or Groovy. There is only one root element, which is usuallythe identified simulation type. Every element might have properties, provided inparenthesis after the element name (parenthesis can be omitted if there are noproperties), and sub elements within curly brackets (curly brackets can be omittedif there are no sub elements). This hierarchical structure (element, sub element) is

128 complex network based physical modeling
similar to XML style but (1) results in less verbose statements, (2) can potentiallycontain GPL constructs (because of the Groovy language), and (3) is executablethrough the OMS3 runtime. Properties are a list of comma separated tuple of
<key>:<value> pairs.A basic simulation (*.sim) is the standard methodology to setup and run amodeling solution. Listing 4.3 shows a typical simulation DSL (Rigon et al. (2016);Bancheri (2017)).
Listing 4.3: Example of OMS3 modeling solution, credit Rigon et al. (2016) and Bancheri(2017).

1 import static oms3.SimBuilder.instance as OMS32 def home = oms_prj3 def startDate= "1994-01-01 00:00"4 def endDate= "1995-01-01 00:00"5 OMS3.sim(name:"TT_integrator") {6 resource "$oms_prj/lib"7 build(targets:"all")8 model(while:"reader_data_Qtt.doProcess") {9 components {1011 "reader_data_Qtt" "org.[...].OmsTimeSeriesIteratorReader"12 "integrator" "integrator.InjectionTimeIntegration"13 "writer_Qint" "org.[...].OmsTimeSeriesIteratorWriter"1415 }1617 parameter{1819 "reader_data_Qtt.file" "${home}/data/Qtt.csv"20 "reader_data_Qtt.idfield" "ID"21 "reader_data_Qtt.tStart" "${startDate}"22 "reader_data_Qtt.tEnd" "${endDate}"23 "reader_data_Qtt.tTimestep" 6024 "reader_data_Qtt.fileNovalue" "-9999"2526 "integrator.ID" 20927 "integrator.tStartDate" "${startDate}"28 "integrator.tEndDate" "${endDate}"2930 "writer_Qint.file" "${home}/output/Qtt_int.csv"31 "writer_Qint.tStart" "${startDate}"32 "writer_Qint.tTimestep" 6033 "writer_Qint.fileNovalue" "-9999"3435 }3637 connect {3839 "reader_data_Qtt.outData" "integrator.inQoutvalues"40 "integrator.outHMQ" "writer_Qint.inData"4142 }43 }44 } Groovy runtime (GroovyShell.java class) is the actual engine that parsesthe DSL and creates the sim element of the SimBuilder.java class (Listing4.3 - line 5).The GroovyShell.java class is instantiated from within the
SimBuilder.java class and, through a cascade of nested building pro-cesses, initializes the Sim.java object. During the nested building processes,
GroovyShell.java object populates Resource, Build, and Model (Listing4.3 - line 6:8) fields declared in the Sim object.

4.4 research design and methods 129

Figure 72: UML of OMS3 available modeling simulation types.
Sim DSL root element allows for setting up six contemporary ele-ments: model{}, outputstrategy{}, resource{}, efficiency{},

summary{}, and analysis{}. This elements correspond to framework Java Ob-jects, and are built by the Groovy runtime. Listing 4.3 exercises only resource{},
build{}, and model{}. Nevertheless, a brief introduction to every elementis provided as well. model{} element is deeply investigated in the Modelingconcepts section.

Simulation (sim) - oms3.dsl.Sim.java
Sim DSL root element is mapped into Sim.java class, which extends theabstract class AbstractSimulation.java. OMS3 provides six different typesof actual implemented simulations through subclassing: Sim, Esp, Luca, Fast,

DDS, and ParticleSwarm (Figure 72).They all expose a similar API due to the subclassing behaviour but have differentsimulation targets. However, thanks to a thorough and effective architectural design,core parts of the framework implementation such as implicit parallelization arereused. Consequently, this dissertation describes and step through Sim class only.
Resources (resource) - oms3.dsl.Resource.javaEvery simulation manages resources such as a model executable, DLLs, parameterfiles, climate data input, documentation, etc. The resource element allows for listingof those resources. Three different usage options of the resource listings areavailable:
• All jar files listed in a resource element are added to the classpath for JAVAmodel execution. Jar files can be referenced as local files or URLs, if themodel is loaded from a remote location. If no Jar files are listed, the frameworklooks for model applications int the default classpath.
• All files regardless of which type are used for digest computation to ensurecomprehensive hashing of all simulation resources.

130 complex network based physical modeling
• Other tools for remote execution within a cluster can use the resource listingto copy those files to other machines.

A resource section of a modeling simulation might look like Listing 4.4.
Listing 4.4: Example of resource section in OMS3 modeling simulation with list of singleresources.

1 import static oms3.SimBuilder.instance as OMS32 def home = oms_prj3 def startDate= "1994-01-01 00:00"4 def endDate= "1995-01-01 00:00"5 OMS3.sim(name:"TT_integrator") {6 resource "\$oms_prj/lib/jgt-grass-0.7.7-SNAPSHOT.jar"7 resource "\$oms_prj/lib/TT.jar"8 resource "\$oms_prj/data/ETtt.csv"9 } The resource values always follow the resource keyword. It also shows the useof string replacement in order to reference a common root directory (\$oms_prj).Alternatively the files above can be provided as a list of Strings to one resourceelement (Note the required brackets and parentheses - Listing 4.5). Both notationsdo have the same semantics.
Listing 4.5: Example of resource section in OMS3 modeling simulation with array of re-sources.

1 import static oms3.SimBuilder.instance as OMS32 def home = oms_prj3 def startDate= "1994-01-01 00:00"4 def endDate= "1995-01-01 00:00"5 OMS3.sim(name:"TT_integrator") {6 resource (["$oms_prj/lib/jgt-grass-0.7.7-SNAPSHOT.jar",7 "$oms_prj/lib/TT.jar",8 "$oms_prj/data/ETtt.csv"])9 }

Analysis (analysis) - oms3.dsl.analysis.Chart.javaAn analysis elements provides for post run analysis by means of plotting/graphingfeatures. It is an optional step of a modeling simulation. OMS3 provides thefollowing types of analysis plots:
• Time series plots;
• Flow duration plots;
• Scatter plots.

The following type is specifically developed for Ensemble Streamflow Prediction(ESP):
• Esp trace analysis plots.

An analysis element can potentially contain any number of previously definedplot objects as sub-elements (Listing 4.6).
Listing 4.6: Example of available options in the OMS3 plot sub-element.

1 import static oms3.SimBuilder.instance as OMS32 OMS3.sim(name:"Efcarson") {

4.4 research design and methods 131
3 \dots4 analysis(title:"Simulation Output") {5 timeseries(title:"East Fork Carson") {6 x(file:"%last/out1.csv", column:"date")7 y(file:"%last/out1.csv", column:"basin_cfs")8 y(file:"%last/out1.csv", column:"runoff[0]")9 }10 timeseries(title:"Error") {11 x(file:"%last/out1.csv", column:"date")12 calc(eq:"sim - obs") {13 sim(file:"%last/out1.csv", column:"basin_cfs")14 obs(file:"%last/out1.csv", column:"runoff[0]")15 }16 calc(eq:"sim - obs", acc:true) {17 sim(file:"%last/out1.csv", column:"basin_cfs")18 obs(file:"%last/out1.csv", column:"runoff[0]")19 }20 }21 flowduration {22 y(file:"%last/out1.csv", column:"basin_cfs")23 y(file:"%last/out1.csv", column:"runoff[0]")24 }25 scatter {26 x(file:"%last/out1.csv", column:"basin_cfs")27 y(file:"%last/out1.csv", column:"runoff[0]")28 }29 }30 \dots31 }

Every plot object reads in datasets that are stored as CSV tabular data. A columnof the CSV file is identified by (i) file name, (ii) table name, and (iii) column name(Listing 4.7). However, the analysis element can handle some shortcuts in contextof the simulation. There are some examples:
Listing 4.7: OMS3 plot element.

1 x(file:"$oms_prj/SIM/0003/out1.csv", table"efc", column:"runoff")

A column is fully referenced with file, table, and column name. The file name isaccessed with the absolute path (Listing 4.8).
Listing 4.8: OMS3 plot element.

1 x(file:"$oms_prj/SIM/%last/out1.csv", table"efc", column:"runoff")

A column is fully referenced with file, table, and column name. The file name isaccessed with the absolute path but refers to the last simulation run. The meaningof ’last’ depends on the chosen output strategy (Listing 4.9).
Listing 4.9: OMS3 plot element.

1 x(file:"%last/out1.csv", table"efc", column:"runoff")

In Listing 4.10, the file reference is in the simulation context. It points to a file inthe last output folder for the running simulation.
Listing 4.10: OMS3 plot element.

1 x(file:"%last/out1.csv", column:"runoff")

132 complex network based physical modeling
If the table name is not provided, analysis element assumes a table with thesimulation name (Listing 4.10). This option provides the highest flexibility in termsof independent data path referencing.In case of n-simulation context run, OMS3 provides three predefined variables toaccess CSV data files.
• %first - The first simulation output in the run sequence. (For numberedoutputs is the folder with the lowest number, for timed output the oldestsimulation time);
• %previous - The previous simulation output in the run sequence. (Fornumbered output this is the folder with the highest number - 1, for timedoutput the second recent simulation time);
• %last - The last simulation output in the sequence (For numbered outputthis is the folder with the highest number, for timed output the most recentsimulation time).

In case of a SIMPLE output strategy, %first, %previous, and %last referto the same output folder.Implementing those variables in a modeling simulation file has several benefits.Once a generic analysis configuration is created using %last variable, it alwaysrefers to the most recent output of each simulation run.Additionally, user can always compare last and previous output runs and analysethe impact of model parameter changes.In a further scenario, a modeler can compare the output of the last simulation runagainst a baseline dataset. The latter is referenced with a full qualified absolutepath name.
%first1, %previous, and %last variables facilitate modeler’s workflow byavoiding manual changes of hard coded absolute paths to analysis file at eachsimulation run.
Summary Output (summary) - oms3.dsl.Summary.javaThe summary element provides ad-hoc statistics for selected model (state) vari-ables. Statistical moments are computed over a selected aggregation period oftime. Five aggregation periods are provided: daily, weekly, monthly, yearly, or theentire simulation. The summary of only one variable at a time can be analyzed,and the identified variable has to be tagged as model component output with @Outannotation.Listing 4.11 shows a usage example of the summary element within the

SimpleModel simulation.
Listing 4.11: Example of OMS3 summary element with single statistic.

1 sim(name:"SimpleModel") {23 // define the model4 model(classname:"tw.Thornthwaite") {5 ...6 }7 summary(time:"time", var:"basin_ro", statistics:MAX, file:stats.txt)8 } Here, the maximum value of the output variable basin_ro is computed overthe total simulation time, and stored in the file stats.txt. The latter is automaticallysaved in the simulation output folder.

4.4 research design and methods 133
Listing 4.12: Example of OMS3 summary element with multiple statistics on a specifiedperiod of time.

1 sim(name:"SimpleModel") {23 // define the model4 model(classname:"tw.Thornthwaite") {5 \dots6 }7 summary(time:"time", var:"runoff[4]",8 statistics:MEAN+MIN+LAG1, period:YEARLY)9 } Listing 4.12 shows a more complex usage example: element 4 of the runoffarray is aggregated over one year time and its minimum, mean and autocorrelationconsequently redirected to the console standard output.Table 5 shows the list of OMS3 provided statistical moments.
Table 5: List of OMS3 provided statistical moments.Moment Description

MEAN MEAN =
1
N
∑N

i=1 xi
MAX MAX = maxi(xi)

MIN MIN = mini(xi)

COUNT COUNT = count(xi)

RANGE RANGE = maxi(xi)−mini(xi)

MEDIAN MED =

Y(N+1)/2, if N ia odd,12(YN/2 + Y1+N/2), if N is even.
STDDEV SD =

√ 1
N
∑N

i=1(xi − x)2

VAR VAR =
1
N
∑N

i=1(xi − x)2

MEANDEV MD =
1
N
∑N

i=1(xi − x)2
SUM SUM =

∑N
i=1 xi

PROD PROD =
∏N
i=1 xi

Q1 First quartile
Q2 Second quartile
Q3 Third quartile

LAG1 LAG-1 autocorrelation

134 complex network based physical modeling
Model Efficiencies (efficiency) - oms3.dsl.Efficiency.javaModel efficiencies are commonly used to quantify prediction performance of asimulation model by computing parameter aggregation based on observed andsimulated values of the same model property. OMS3 provides several modelefficiencies. A comprehensive list is provided in Table 6.

Table 6: List of OMS3 provided model efficiencies.Moment Description EquationABSDIF Absolute difference ∑n
i=1 |Qi,o −Qi,s|

ABSDIFLOG Absolute differenceLog ∑n
i=1 | lnQi,o − lnQi, s|

AVE Absolute Volume Er-ror |
∑n

i=1 Qi,s −Qi,o|
IOA Index of Agreement 1− ∑n

i=1 |Qi,o −Qi,s|∑n
i=1 |Qi,s −Qo|+ |Qi,o −Qo|

IOA2 Index of Agreement(Pow 2) 1− ∑n
i=1(Qi,o −Qi,s)2∑n

i=1(Qi,s −Qo)2 + (Qi,o −Qo)2

NS Nash-Sutcliffe 1− ∑n
i=1(Qi,o −Qi,s)2∑n
i=1(Qi,o −Qo)2

NSLOG Log of Nash-Sutcliffe 1− ∑n
i=1 |Qi,o −Qi,s|∑n
i=1 |Qi,o −Qo|

NS2LOG Log of Nash-Sutcliffe(Pow 2) 1− ∑n
i=1(lnQi,o − lnQi,s)2∑n
i=1(lnQi,o − lnQo)2

BIAS Bias ∑n
i=1(Qi,o −Qi,s)∑n

i=1 Qi,o
RMSE Root Mean SquareError

√1
n
∑n

i=1(Qs −Qo)2

Listing 4.13 illustrates a usage example of efficiency element in a modelingsolution. OMS3 allows for computing multiple efficiencies simultaneously bycombining different performance coefficients with + operator.
Listing 4.13: Example of OMS3 efficiency implementing multiple methods.

1 sim(name:"Efcarson") {2 // define the model3 model(classname:"model.PrmsDdJh") {4 // ... parameter here5 }6 efficiency(obs:"runoff[0]", sim:"basin_cfs",7 methods:NS+NS2+ABSDIF+TRMSE)8 }

4.4 research design and methods 135
Additional table output for requested efficiencies is produced by executing amodeling simulation (Listing 4.14).

Listing 4.14: Results of OMS3 efficiency.
1 Efficiencies ns1 ns2 absdif trmse2 runoff/basin_cfs 0.66512 0.82971 764.30044 2.44043

Simulation Output Strategy (outputstrategy) -
oms3.dsl.OutputDescriptor.javaModeling solutions results are usually stored in output files such as timesseries predicted runoff, sediment yield, etc. The outputstrategy element of amodeling simulation provides different strategies for storing modeling outputs. Thesestrategies are consistent methodology when dealing with subsequent simulationsonly.The types of supported output strategy schemes are:
• SIMPLE: The simulation creates a folder to hold the model output files. Eachnew simulation run will overwrite existing files with the same name. Thesimulation output folder is: <output dir>/<sim name>.
• NUMBERED: The simulation creates a new folder for each simu-lation run. A new simulation will not overwrite the output fromthe previous one. The last simulation always names the outputfolder with the highest number. The simulation output folder is:
<output dir>/<sim name>/<simulation run number>.
• TIME: The simulation creates a new folder for each simulationrun. A new simulation will not overwrite the output from the pre-vious one. The last simulation always names the output folderwith the simulation start time. The simulation output folder is:
<output dir>/<sim name>/<simulation start time>

Listing 4.15 shows a usage example of an output strategy for a simple modelingsolution.
Listing 4.15: Example of output strategy provided in a OMS3 modeling simulation.

1 sim(name:"SimpleModel") {23 outputstrategy(dir:"$oms_prj/out", scheme:NUMBERED)45 // define the model6 model(classname:"tw.Thornthwaite") {7 // add parameter8 parameter {9 climateFile "$oms_prj/data/tw/climate.cst"10 }11 }12 }

4.4.2.1.4 Modeling concept (model) - oms3.dsl.Model.javaThis subsection introduces to OMS3 modeling concept. This is the core partof each modeling solutions. As a result, DSL and actual mapping into frameworkobjects are presented. An OMS3 model element provides four different sub elements.

136 complex network based physical modeling
Components, parameter, connection, and logging sub elements are independentlyanalyzed.

The model element is the core part of every simulation type. It describes themodel components to be used in the modeling solution, how to manage them, andhow to feed them with proper input data and components input/output connections.An OMS-compliant component can be any Class that contains a method taggedwith @Execute annotation, which indicates the component execution entry point.Listing 4.16 is extracted from Listing 4.3 (Travel Time analysis from Rigon et al.(2016)) and highlights three of the most important model sub elements.The model element can manage five sub elements total: component{},
parameter{}, connect{}, resource, and logging{}. Listing 4.16 il-lustrates a usage case for components{}, parameter{}, and connect{}only. Nevertheless, except for resource previously described, a brief introduction tothe logging sub element is performed as well.
Listing 4.16: Example of OMS3 model element extracted from Listing 4.3, credit Rigon et al.(2016) and Bancheri (2017).

8 model(while:"reader_data_Qtt.doProcess") {9 components {1011 "reader_data_Qtt" "org.[...].OmsTimeSeriesIteratorReader"12 "integrator" "integrator.InjectionTimeIntegration"13 "writer_Qint" "org.[...].OmsTimeSeriesIteratorWriter"1415 }1617 parameter{1819 "reader_data_Qtt.file" "${home}/data/Qtt.csv"20 "reader_data_Qtt.idfield" "ID"21 "reader_data_Qtt.tStart" "${startDate}"22 "reader_data_Qtt.tEnd" "${endDate}"23 "reader_data_Qtt.tTimestep" 6024 "reader_data_Qtt.fileNovalue" "-9999"2526 "integrator.ID" 20927 "integrator.tStartDate" "${startDate}"28 "integrator.tEndDate" "${endDate}"2930 "writer_Qint.file" "${home}/output/Qtt_int.csv"31 "writer_Qint.tStart" "${startDate}"32 "writer_Qint.tTimestep" 6033 "writer_Qint.fileNovalue" "-9999"3435 }3637 connect {3839 "reader_data_Qtt.outData" "integrator.inQoutvalues"40 "integrator.outHMQ" "writer_Qint.inData"4142 }43 }

Modeling components (components)The modeling components sub element allows for listing all the OMS-compliantcomponents involved in the modeling solution and assigning them a component ID.This sub element adheres to the formal structure in Listing 4.17.

4.4 research design and methods 137
Listing 4.17: OMS3 component sub-element formal structure.

9 model(while:"reader_data_Qtt.doProcess") {10 components {1112 // list of every component involved in the modeling solution13 <cID> <package + classname>1415 }The component <cID> name is a user defined unique component IDwhich points to the actual component name preceded by the entire packagename <package + classname>. The <cID> is used across the entiremodel element to refer to that specific model component. Both <cID> and
<package + classname> are String objects and are space separated.Listing 4.18 shows the component sub element for modeling solution in Listing 4.16.

Listing 4.18: Example of OMS3 component sub-element.
8 model(while:"reader_data_Qtt.doProcess") {9 components {1011 "reader_data_Qtt" "org.[...].OmsTimeSeriesIteratorReader"12 "integrator" "integrator.InjectionTimeIntegration"13 "writer_Qint" "org.[...].OmsTimeSeriesIteratorWriter"1415 }The Groovy runtime parses the components sub element during the building pro-cess of the modeling solution, and stores <cID> and <package + classname>into a list of <key:value> pairs in the Model.java object.

Parameters (parameter)The model parameter sub element allows the specification of input values, whichare the entry points to initially feed a model simulation pipeline. Listing 4.19illustrates the parameter sub element formal structure.
Listing 4.19: OMS3 parameter subelement formal structure.

1 parameter(<key:value>, <key:value>, ...) {23 // list of input parameters4 <cID>.<paramName> <value>56 }

<cID> is the component ID of modeling component that contains <paramName>.
<paramName> matches the Class field tagged with @In OMS annotation.This subsection can reference an external file that contains a list of modelparameters (e.g. Listing 4.21) and additionally specify extra parameters betweencurly brackets (Listing 4.20).

Listing 4.20: Example of OMS3 parameter subelement.
1 model(while:"reader_data_Qtt.doProcess") {2 // parameter3 parameter(file:"params.csd") {4 climateFile "c:/projects/ngmf.models/src/tw/climate.cst"5 outputFile "output.csv"6 runoffFactor 0.57 latitude 35.0

138 complex network based physical modeling
8 smcap 200.09 }10 }

Listing 4.21: Example of OMS3 parameter file.
1 @S,Parameter,2 created by, Dr. Bancheri,3 created at,Thu Jun 25 13:44:42 MDT 2017,456 @P, alfa_r,1.13178 @P, alfa_s,0.455910 @P, meltingTemperature,2.02981112 @P,combinedMeltingFactor,0.1601314 @P,freezingFactor,0.00351516 @P,radiationFactor,8.52502271122546E-51718 @P,alfa_l,0.41061920 @P,kc_canopy_out,0.212122 @P,s_RootZoneMax,144.98

The parameter file key takes a file name as paired value (params.csd)(Listing 4.20 - line 3). File name can be referenced with absolute or relative filepath, that relates to the base directory of the OMS project.The parameter sub element can also contains a list of
<cID>.<paramName> <value> pairs (see Listing 4.20). Values arespace separated from their keys and have valid Java/Groovy data types such asStrings, Numbers, Files, etc. Those data types have to match the data type of thecorresponding @In field in the model component. However, OMS3 SPI systemattempts to convert the values into the proper original component field data type, ifthe value is specified as generic String. For example, the climateFile value (Listing4.20 - line 4) is provided as String input parameter. Since climateFile original datatype is a File object, OMS3 SPI converts converts the String input and instantiatea new File. Figure 73 illustrates the actual implementation of the parameter DSLprinciple.

Figure 73: Usage example of @In annotation, credit David et al. (2013).
If file property and parameter values are provided and specify the same parameter,the sub element will overwrite the parameter values specified in the file property(Listing 4.20).

4.4 research design and methods 139
Listing 4.22 shows an additional use of the parameter element. Multiple parameterelements can help splitting parameter sets in groups and allow for redefinition.
Listing 4.22: Usage example of parameter subelement in OMS3 modeling simulation.

1 model(classname:"my.model") {2 // parameter defintion3 parameter(file:"params.csv") // parameterfile only4 parameter(file:"params-dates.csv") // parameterfile only5 parameter(file:"params-files.csv") { // parameterfile+explicit6 testdir "/tmp/test"7 }8 parameter { // only explicit parameter9 coeff 2.3410 }11 }More generally, parameter value reading and setting order works as follow: aparameter at a higher line number in the sim file overwrites the same one at alower line number. It is not relevant if it comes from a file or is explicitly specified.The Groovy runtime parses the parameter sub element during the buildingprocess, and stores <cID>.<paramName> and <value> into a Param Object.Eventually, a list of Param Objects gets created as a field of the main Modelobject.
Component connections (connect)The connect sub element is a required section to define connections of severalmodeling components into a modeling solution. It adheres to the formal structure inListing 4.23.

Listing 4.23: OMS3 connect subelement formal structure.
1 connect {23 // @Out -> @In4 <cID_a>.<outVar> <cID_b>.<inVar>5 <cID_a>.<outVar> <cID_c>.<inVar>67 }

<outVar> and <inVar> match the original model component Class fieldstagged with @Out and @In OMS annotations respectively. They are specifiedas space separated <key> <value> pair and are fields of different componentClasses (<cID_a> and <cID_b> accordingly). Figure 74 illustrates the actualimplementation of the component connection DSL principle.A Class field can be contemporary tagged with both @In and @Out OMSannotations. Input/output fields can be any type of Java Object. Proper connectionhappens when Output to Input field Objects match. If they don’t match, OMS3 SPIsystem attempts to convert the Output Object into the required Input Object. If theconversion fails, an error message is thrown.An actual example is shown in Listing 4.24 and extracted from Listing 4.3(parameter section omitted for sake of brevity).
Listing 4.24: Example of OMS3 connect subelement derived from Listing 4.3.

8 model(while:"reader_data_Qtt.doProcess") {9 components {1011 "reader_data_Qtt" "org.[...].OmsTimeSeriesIteratorReader"

140 complex network based physical modeling

Figure 74: Usage example of @Out to @In component fields connection, credit David et al.(2013).
12 "integrator" "integrator.InjectionTimeIntegration"13 "writer_Qint" "org.[...].OmsTimeSeriesIteratorWriter"1415 }1617 ...1819 connect {2021 "reader_data_Qtt.outData" "integrator.inQoutvalues"22 "integrator.outHMQ" "writer_Qint.inData"2324 }Here, outData of the component reader_data_Qtt feeds the input variable

inQoutvalues required by integrator component. outHMQ of integrator thenfeeds inData variable and solves the dependency with writer_Qint component.The Groovy runtime parses the connect sub element during the building pro-cess, and stores <cID_a>.<outVal> and <cID_b>.<inVal> into a listof <key:value> pairs Objects. This is the out2in field of the main
Model.java object for component <cID_a>.Component connections happen at runtime: when <cID_a> simulation concludesthe OMS controller transfers Object reference pointing to <outVal> memoryspace to <inVal> of component <cID_b>.

Logging (logging)The logging sub-element is an optional part of a model element. It controls thelogging levels for single components or for the whole model. In order to use thelogging feature, components have to obtain and use OMS3 logger accordingly.A logger is an object that allows output handling based on logging levels. Suchlevels usually indicate the severeness of a message. The Java logging infrastructuresupports 7 logging levels by default, ranging from FINEST (the lowest priority orimportance) to SEVERE (the highest importance). In addition, OMS3 provides level
OFF to completely turn off every logging message. If a logging level is provided,every logging message of identical or higher priority are sent and printed to consolestandard output.Listing 4.25 illustrates logging usage example. Here, the logging element is partof the model element. It lists the component class names and associates them withdedicated log levels for a simulation run.

Listing 4.25: Example of OMS3 logging subelement with logging level per component.
1 model(classname:"my.model") {

4.4 research design and methods 141
2 // logging definition3 logging {4 "StreamFlow" "INFO"5 "GwFlow" "CONFIG"6 }7 }The component StreamFlow in my.model is assigned the logging level INFO,the GwFlow component is assigned a finer grained CONFIG logging level. Thedefault logging level for every other mode component is set to WARNING by default.

Listing 4.26: Example of OMS3 logging subelement with one dedicated component loggingin addition to generic logging level.
1 model(classname:"my.model") {2 // logging definition3 logging (all:"INFO"){4 "StreamFlow" "FINEST"5 }6 }Listing 4.26 shows that the default logging level for each model component isset to INFO, while StreamFlow is assigned the most verbose logging level.

Listing 4.27: Example of OMS3 logging subelement with generic logging level.
1 model(classname:"my.model") {2 // logging definition3 logging (all:"OFF")4 }The logging element in Listing 4.27 turns off the logging system for the wholemodel. Completely disabling the logging system means that even severe problemswithin modeling components are not reported.The modeling component has to be properly setup to accommodate OMS3 loggingfunctionalities (Listing 4.28). This allows for leveraging the previously describedlogging features within a modeling solution. The modeling component has to importJava logging utility and implement static reference of a logger object in Classfield declaration (Listing 4.28 - line 6).

Listing 4.28: Implementation of Logging class in OMS-compliant component.
1 import java.util.logging.*; // 1.2 ...3 public class Ddsolrad {45 static final Logger log =6 Logger.getLogger("oms3.model." +7 this.class.getSimpleName()); //2.8 ...910 @Execute11 public void exec() {12 ...1314 if (log.isLoggable(Level.INFO)) { // 3.15 log.info("Solrad " + basin_potsw); // 4.16 }17 }18 ...19 }Summarizing, to implement the Logging feature, four main steps are followed(Listing 4.28):

142 complex network based physical modeling
1. Import the logging classes from the java.util package.
2. Obtain a logger instance using the Logger.getLogger() call. De-clare this reference static to share it across all instances of this classand final to make it a constant. The argument must start with the String
oms3.model. and must end with the component’s simple class name. Use
getSimpleName() as shown in Listing 4.28 to obtain this name from theclass itself, rather than hard typing it to the logger as a String.

3. The logger can be used at any location within the component methods. Listing4.28 shows a guarded logging as recommended practice. This pattern checksif a logging statement results in a logging output before it gets executed. Thisreduces memory fragmentation and reduces garbage collection by avoidingcreation of unnecessary strings if logging levels are disabled. Statement inListing 4.28 checks if logging system enables INFO and higher levels.
4. The statement issues the logging message at the INFO level. Use the methods
severe(), warning(), info(), config(), fine(), finer(), and
finest() accordingly.

The use of Logging system in modeling components provides for high flexibilityof diagnostics and messaging, and is efficiently configurable from within a modelingsimulation.
4.4.2.1.5 Simulation runThis subsection introduces to framework workflow and analyzes a sample exerciseof a model simulation run.
As previously stated, Groovy runtime parses the entire *.sim file and buildsevery object required by the modeling solution. The final simulation Object is thenready for starting the overall computation.Through a reflective call, OMS3 SimBuilder invokes the run() methodimplemented in the AbstractSimulation.java class (Figure 72) and conse-quently overridden in every Class that extends it. This dissertation describes therun method of a Sim.java Object.

Listing 4.29: OMS3 invoke method in modeling simulation.
1 /**2 * Invokes a simulation method. (run | doc | analysis | ...)3 *45 * @author Olaf David6 * @param target the target simulation object7 * @param name the name of the method (e.g. run())8 * @throws Exception generic exception9 */10 private static Object invoke(Object target,11 String name) throws Exception {12 return target.getClass().getMethod(name).invoke(target);13 }

Initially, the super.run() method is called to initialize the simulation run bysetting up system properties if provided, and checking if the Model Object hasbeen created.

4.4 research design and methods 143
Listing 4.30: OMS3 run method.

1 /**2 *3 * @author Olaf David4 */5 protected void initRun() {6 setSystemProperties();7 if (getModelElement() == null) {8 throw new ComponentException("missing ’model’ element.");9 }10 }1112 /**13 *14 * @author Olaf David15 */16 public Object run() throws Exception {17 initRun();18 return null;19 }Then, the model component is retrieved from the Model Object and the methodstagged with @Initialize OMS3 annotation are invoked through a reflectivecall.
Listing 4.31: OMS3 initialize reflective call.

1 // @author Olaf David2 ComponentAccess.callAnnotated(comp, Initialize.class, true);This initializes the model components and executes algorithms implemented incomponent methods tagged with @Initialize.The modeling simulation pipeline is fed with input parameters before invokingthe @Execution method.
Listing 4.32: OMS3 input parameter read in and set up.

1 // @author Olaf David2 // setting the input data;3 UnifiedParams parameter = model.getParameter();4 boolean success = parameter.setInputData(comp, log);The most important step in a simulation run is the execution of the core part ofthe entire modeling solution. This is achieved by invoking the methods tagged with
@Execute annotation.

Listing 4.33: OMS3 execute reflective call.
1 // @author Olaf David2 ComponentAccess.callAnnotated(comp, Execute.class, false);When the core computation is over, methods tagged with the @Finalizeannotation are invoked to conclude the modeling solution run.

Listing 4.34: OMS3 finalize reflective call.
1 // @author Olaf David2 ComponentAccess.callAnnotated(comp, Finalize.class, true);The ComponentAccess class manages reflective accesses to componentsinternals. As a result, it allows for final component integration into a modeling

144 complex network based physical modeling
solution. More specifically speaking, the callAnnotated method extracts themethod of interest with a reflective call and invokes it.

Listing 4.35: OMS3 generic implementation of callAnnotated method.
1 /**2 * Call an method by Annotation.3 *4 * @author Olaf David5 * @param o the object to call.6 * @param ann the annotation7 * @param lazy if true, the a missing annotation is OK. if false the8 * annotation has to be present or a Runtime exception is thrown.9 */10 public static void callAnnotated(Object o,11 Class<? extends Annotation> ann, boolean lazy) {12 try {13 getMethodOfInterest(o, ann).invoke(o);14 } catch (IllegalAccessException ex) {15 throw new RuntimeException(ex);16 } catch (InvocationTargetException ex) {17 throw new RuntimeException(ex.getCause());18 } catch (IllegalArgumentException ex) {19 if (!lazy) {20 throw new RuntimeException(ex.getMessage());21 }22 }23 }The overall execution of the entire modeling solution is managed by the

Controller.java class. The next subsection introduces to OMS3 While con-ditional implemented in simulation in Listing 4.3 line 8 and the internalExec()method of the Controller.java class. internalExec() method is of spe-cific importance since it fires up, executes, and shuts down Java concurrent threadsimplicitly required by the modeling solution.
4.4.2.1.6 Controller Class and Implicit parallelismThis subsection describes the core part of OMS3 model simulation run andintroduces to OMS3 implicit parallelism.
The While conditional Class works as an OMS compliant component since its

execute() method is tagged with the @Execute annotation.
Listing 4.36: OMS3 while conditional execution.

1 /**2 * While Component.3 *4 * @author Olaf David5 *6 */7 public class While extends Conditional {89 @Override10 @Execute11 public void execute() throws ComponentException {12 check();13 while (cond.alive) {14 internalExec();15 }16 }17 }

4.4 research design and methods 145
This OMS component is bundled into the modeling solution when the Groovyruntime parses the model element of the *.sim file.This component repeatedly calls the internalExec() method while thecondition is true (or alive) cond.alive.The internalExec() method is the most relevant method of the

Controller.java class. It retrieves the collection of modeling componentscomps and initializes the counter of the number of threads to comps.size().
Listing 4.37: OMS3 implicit parallelization.

1 /**2 *3 * @author Olaf David4 *5 */6 protected void internalExec() throws ComponentException {7 Collection<ComponentAccess> comps = oMap.values();8 [...]9 latch.load(comps.size());10 final ExecutorService executor = getExecutorService();11 if (rc == null) {12 rc = new Runnable[comps.size()];13 int i = 0;14 for (final ComponentAccess co : comps) {15 rc[i++] = new Runnable() {1617 @Override18 public void run() {19 try {20 co.exec();21 latch.countDown();22 } catch (ComponentException ce) {23 synchronized (lock) {24 if (E == null) {25 E = ce;26 }27 }28 latch.open();29 Threads.shutdownAndAwaitTermination(executor);30 }31 }32 };33 }34 }35 if (E == null) {36 for (Runnable r : rc) {37 executor.submit(r);38 }39 }4041 try {42 latch.await();43 } catch (InterruptedException IE) {44 // nothing to do here.45 }46 [...]47 }Then, a vector of Runnable of length comps.size() is allocated and initial-ized, so each component has its own Runnable Object. During the initializationphase, the run() method of the Runnable interface is implemented to be executedby its dedicated thread. The run() method simply calls the component executionand decreases the latch counter when the simulation is over. The implementationof the Latch class is available at Listing 4.38.

146 complex network based physical modeling

Listing 4.38: OMS3 implicit parallelization.
1 /**2 *3 * @author Olaf David4 *5 */6 static private class Latch {78 private int count;9 private final Lock lock = new ReentrantLock();10 private Condition condition = lock.newCondition();1112 void load(int count) {13 this.count = count;14 }1516 void open() {17 lock.lock();18 try {19 count = 0;20 condition.signal();21 } finally {22 lock.unlock();23 }24 }2526 void countDown() {27 lock.lock();28 try {29 if (--count <= 0) {30 condition.signal();31 }32 } finally {33 lock.unlock();34 }35 }3637 void await() throws InterruptedException {38 lock.lock();39 try {40 while (count > 0) {41 condition.await();42 }43 } finally {44 lock.unlock();45 }46 }47 }

After initialization, the Runnable tasks are submitted by the
ExecutorService for execution. The ExecutorService managesthe scheduling of component execution. Threads communicates through componentinterconnection: a simulation component starts when required inputs (@Inannotated fields) are satisfied; component outputs (@Out annotated fields)become following connected component inputs, which executes only when everyinput is satisfied. This implementation is based off of data flow multi-processsynchronization, and is a common application of the producer-consumer designpattern.

4.4 research design and methods 147
4.4.2.2 Graph Modeling Structure: NET3

NET3 is graph modeling structure implemented as additional simulation type tothe already large variety provided by OMS3.Figure 75 illustrates NET3 conceptual design. Here, a modeling frameworkis represented by a red rounded rectangle. In the left side of Figure 75, OMS3orchestrates the workflow of a single modeling solution (credit Bancheri (2017)).In the right side, OMS3+NET3 enable each node of the graph data structure tomanage a modeling solution, and orchestrate modeling solutions interconnectedworkflow.

Figure 75: NET3 conceptual design. From a single OMS3 modeling solution to intercon-nected and intercommunicating modeling solutions.

Figure 76: NET3 conceptual design. Every node of the graph modeling structure runs adifferent modeling solution to better fit physical processes description. Inter-communication between modeling solutions happens with unlimited number ofvariables.
This section is organized as follow. Paragraph DiGraph API -

oms3.ds.graph.DiGraph.java introduces to NET3 graph data structureimplementation and API. Paragraph Searching algorithms describes architecturaldesign principles that drove the implementation of traversing algorithms and re-quired data structures. Finally, paragraph Graph simulation delineates the actualintegration of NET3 graph data structure and search algorithms into OMS3 work-flow, by describing NET3 DSL, and its management of parallel modeling solutionruns and their interconnection.

148 complex network based physical modeling
4.4.2.2.1 DiGraph API - oms3.ds.graph.DiGraph.javaThe DiGraph Java class implements the graph modeling structure and exposesrequired API only.UML in Figure 77 illustrates public methods exposed by DiGraph API, privatemethods, and the structure of private class Family. No public fields are exposesby DiGraph API to avoid uncontrolled changes in their state.

Figure 77: UML of NET3 DiGraph class.
The modeling structure is built upon two private fields declared as Java Map classes(Listing 4.39).

Listing 4.39: NET3 declaration of vertices and edges data structures.
1 Map<Integer, Object> vertices;2 Map<Integer, Family> edges;Vertices and edges are instantiated as a ConcurrentHashMap from the

DiGraph constructor (Listing 4.40).
Listing 4.40: NET3 instantiation of vertices and edges.

1 public DiGraph() {2 vertices = new ConcurrentHashMap<>();3 edges = new ConcurrentHashMap<>();4 }Here, ConcurrentHashMap has been identified as most suitable data structuresince it is a concurrent collection, and the DiGraph is designed to work underheavily threaded environment. The reason that motivated this choice is followingbriefly summarized.A concurrent collection differs from synchronized collections such as Vectorand Hashtable (which are available since first version of Java DevelopmentKit (JDK)), or Collections.synchronizedXxx factory methods (which areavailable since JDK 1.2) (Goetz and Peierls (2006)). For the sake of example,
Collections.synchronizedMap in Listing 4.41 is the factory method thatallocates a synchronized wrapper class of the original HashMap.

Listing 4.41: Example of Java synchronized wrapper class.

4.4 research design and methods 149
12 Map<Inter, Object> tmpMap =3 Collections.synchronizedMap(new HashMap<Integer, Object>();The difference between synchronized and concurrent collections sits in the typeof synchronization policy implemented (Goetz and Peierls (2006)):

a. synchronized collections have their state encapsulated and each and everypublic method is synchronized. As a result, access to the collection isserialized, namely allowed to a single thread at once;
b. concurrent collections allow multiple threads to access the collection statesimultaneously. The synchronization policy is based on a completely differentlocking mechanism: for instance, locking striping is implemented to make
ConcurrentHashMap thread safe. This mechanism is based off of a fine-grain partition locking. User can define a set of locks (by default 16), each ofwhich controls one segment of the hash buckets. As a consequence, concurrentreading threads are always guaranteed map access, also while writing threadsare performing stored data modifications. Simultaneous writing threads areactually constrained to the number of guard locks defined.

Synchronization policy B definitely allows for a far higher throughput in heavilythreaded environments compared to synchronization policy A. It dramatically im-proves scalability especially in systems with many multi-core processors (Goetzand Peierls (2006)).
Keys of the vertices map are the indices of each node of the modeling structure.The corresponding Object is used for the implicit parallelization and deeply describedin subparagraph NET3 implicit parallelization.
The edges map stores the indices of each node of the modeling structure andcorresponding Family connections. The Family private class simply stores rela-tionships to and from the subject node. Figure 78 illustrates the concept of NET3Family.

Figure 78: NET3 family concept.
Here, parents are indices of the nodes connected with outcoming edges from thesubject node, children are indices of the nodes connected with incoming connectionsto the subject node (Figure 4.42).

150 complex network based physical modeling
Listing 4.42: NET3 Family private class.

1 private class Family {23 private final Set<Integer> parents;4 private final Set<Integer> children;5 private boolean root = false;67 public Family() {8 parents = new HashSet<>();9 children = new HashSet<>();10 }1112 public void addChild(Integer child) {13 children.add(child);14 }1516 public void addParent(Integer parent) {17 if (parent == 0) {18 root = true;19 return;20 }21 parents.add(parent);22 }2324 private Integer childrenNumber() {25 return children.size();26 }2728 private Integer parentsNumber() {29 return parents.size();30 }31 }

The DiGraph API can be split in two groups of public methods: standarddirected graph API methods and observer pattern related methods (Listing 4.42).The latter are deeply described in paragraph Graph simulation since the observerpattern is fundamental architectural design aspect of the overall graph implicitparallel simulation run.Standard directed graph API methods allow for building the DiGraph andexposing DiGraph characteristics for searching algorithms.The DiGraph is built by Groovy runtime by parsing atopology file. The latter is a text file of space separated
<from_index_node> <to_index_node> tuple. The entire graph isbuilt by using two methods only: addConnection(parent, child), and
addVertex(child, new HashMap<>()) (Listing 4.43).

Listing 4.43: NET3 Family private class.
1 while ((currentLine = topology.readLine()) != null) {23 String[] family = currentLine.split(‘‘\\s+’’);45 [...]67 int parent = Integer.parseInt(family[1]);8 int child = Integer.parseInt(family[0]);91011 [...]1213 digraph.addConnection(parent, child);14 digraph.addVertex(child, new HashMap<>());15

4.4 research design and methods 151
1617 [...]181920 } The method addVertex simply adds the key of the node and an empty

HashMap for later use to the vertices map (Listing 4.44).
Listing 4.44: NET3 vertex initialization.

1 public void addVertex(Integer key, Object value) {2 if (key != 0) {3 vertices.putIfAbsent(key, value);4 }5 }The method addConnection builds the families of both parent and child: itadds parent to the child’s family, and child to the parent’s family (Listing 4.45).
Listing 4.45: NET3 family initialization.

1 public void addConnection(Integer parent, Integer child) {2 addParent(parent, child);3 addChild(parent, child);4 }56 private void addParent(Integer parent, Integer child) {7 Family family =8 (edges.containsKey(child)) ? edges.get(child) : new Family();9 family.addParent(parent);10 edges.put(child, family);11 }1213 private void addChild(Integer parent, Integer child) {14 if (parent == 0) {15 return;16 }17 Family family =18 (edges.containsKey(parent)) ? edges.get(parent) : new Family();19 family.addChild(child);20 edges.put(parent, family);21 }Other methods provided by the API such as outDegree and inDegreereturn the number of connections outcoming from and incoming to the source noderespectively. getChildren and getParents return the set of nodes connectedto the source node.
subTreePostOrder and reverse have been implemented for later use andare part of the architectural design aspects for implementing automatic parallelmulti-site calibration (Listing 4.46 and Listing 4.47).

Listing 4.46: NET3 post ordering.
1 public List<Integer> subTreePostOrder(int vertex) {2 List<Integer> vertices = new ArrayList<>();3 Family fam = edges.get(vertex);4 ordering(fam, vertices);5 vertices.add(vertex);6 return vertices;7 }89 private void ordering(Family family, List<Integer> vertices) {

152 complex network based physical modeling
10 for (Integer child : family.children) {11 Family childFamily = edges.get(child);12 ordering(childFamily, vertices);13 vertices.add(child);14 }15 }

Listing 4.47: NET3 DiGraph reversing.
1 public DiGraph reverse() {2 precondition();3 DiGraph reversedDiGraph = new DiGraph();4 edges.keySet().forEach(vertex -> {5 Set<Integer> formerChildren = edges.get(vertex).children;6 formerChildren.forEach((newParent) -> {7 reversedDiGraph.addConnection(newParent, vertex);8 });9 });10 reversedDiGraph.addVerteces(vertices);11 return reversedDiGraph;12 }

reverse method simply reverses the connection orders thus transforming parentsin children and vice versa. It is an exact copy of the original graph with reversedconnections (Listing 4.47).
4.4.2.2.2 Searching algorithmsSearching algorithms are the core part of a graph data structure. As a result,the oms3.ds.graph.traversers package has been accurately designed inorder to allow for future development and capabilities expansion.The architectural design principles of the searching algorithms implementation are:
1. decoupling data representation from processing components: this allowsfor decoupling actual algorithm implementations from the representation of thedata structure (Sedgewick and Wayne (2011)). Consequently, each algorithmis implemented in its own class, which allows for easier maintenance anddevelopment. DiGraph.java is the data structure representation, deeplyanalyzed in the previous section, while the collection of classes in pack-age oms3.ds.graph.traversers encapsulate search and traversingalgorithms;
2. algorithm encapsulation: it results from (1) analysis of a family of algorithms,(2) identification of common implementation parts between applications, (3)separation of parts that vary in each algorithm from parts that remain identicalacross applications, (4) encapsulation of varying behaviours in dedicatedclasses (Gamma (1995); Freeman et al. (2004)). The design principle issummarized in “Identify the aspects of your application that vary and separate

them from what stays the same” (Freeman et al. (2004)).
3. polymorphism & dynamic binding: polymorphic objects match same inter-face or abstract class but behave differently and are implemented on a IS-Arelationship (Gamma (1995)). “By programming to an interface and not an

implementation”, the inherited interface (or extended abstract class) allowsprogrammer for declaring or implementing against common behaviour of poly-morphic objects at compile time and instantiating or committing to behaviourof the actual object at runtime (Gamma (1995); Freeman et al. (2004)).

4.4 research design and methods 153
4. composition: complex functionalities are obtained by composing objectswith HAS-A relationship (Gamma (1995); Freeman et al. (2004)). “Favor

composition over inheritance” doesn’t break software encapsulation (Gamma(1995)).
5. dependency inversion principle: dependencies between abstract high-levelclasses and concrete low-level classes have to be minimized (Freeman et al.(2004)). “Depend upon abstractions. Do not depend upon concrete classes”(Freeman et al. (2004)).

Two algorithms are implemented: breadth first and depth first searches. However,the flexible design allows for easily expand the searching API with additionalcustom algorithms.BFS and DFS have been introduced in paragraph DiGraph API and traversing
algorithms already. Additionally, this API implements downstream and upstreamsearch directions for both algorithms.Data representations of BFS and DFS are decoupled from actual algorithmimplementations. Subparagraph Data structures: Strategy Pattern -
oms3.ds.graph.traversers.AlgorithmDS.java shows data represen-tation of BFS and DFS, which take advantage of the benefit of First-In-First-Out (FIFO) andLast-In-First-Out (LIFO) data structures respectively to expose onesingle common API. Subparagraph Abstract implementation of searching algorithms:
Factory Method Pattern -
oms3.ds.graph.traversers.GraphSearchAlgo.java describes thelightweight and flexible abstract implementation of searching algorithms as aresult of proper data structure choice.

Data structures: Strategy Pattern -
oms3.ds.graph.traversers.AlgorithmDS.javaIn order to avoid code duplication, improve code reuse, facilitate encapsulationand separation of concerns, the main difference between BFS and DFS has beenidentified in their data representation. As a result, proper design of Strategy Patternallows for encapsulating the different data representation in dedicated Java classbut exposing one common identical API.The UML in Figure 79 illustrates the Strategy Pattern implemented.
AlgorithmDS API exposes three methods: add(Integer vertex),

delete(), isEmpty(). Independently from the underneath data structure,the client interacts with:
1. add(Integer vertex): a new node is added to the data structure;
2. delete(): a node is retrieved and removed from the data structure;
3. isEmpty(): always returns the state of the data structure.

The difference between instantiating a BFPalgoDS and a DFPalgoDS sits inthe type of data structure implemented: the first class implements a FIFO datastructure, the second class implements a LIFO data structure.The BFPalgoDS data structure is a Queue, which supports the FIFO policy:the @Override implementation of the add(Integer vertex) method addsthe vertex at the end of the queue data structure; the @Override implementationof the delete() methods removes and returns the least recently inserted vertex.

154 complex network based physical modeling

Figure 79: UML of search algorithm data structures.
Listing 4.48: Breadth first path data structure implementation.

1 /**2 *3 * @author Francesco Serafin4 */5 class BFPalgoDS extends AlgorithmDS {67 Queue<Integer> queue;89 protected BFPalgoDS() {10 queue = new PriorityQueue<>();11 }1213 @Override14 protected void add(Integer vertex) {15 queue.add(vertex);16 }1718 @Override19 protected Integer delete() {20 return queue.remove();21 }2223 @Override24 protected Boolean isEmpty() {25 return queue.isEmpty();26 }2728 } The DFPalgoDS data structure is a Stack, which supports the LIFO policy: the
@Override implementation of the add(Integer vertex) method pushes thevertex at the begging of the stack data structure; the @Override implementationof the delete() methods removes and returns (pops) the most recently insertedvertex.

Listing 4.49: Depth first path data structure implementation.

4.4 research design and methods 155
1 /**2 *3 * @author Francesco Serafin4 */5 class DFPalgoDS extends AlgorithmDS {67 Stack<Integer> stack;89 protected DFPalgoDS() {10 stack = new Stack<>();11 }1213 @Override14 protected void add(Integer vertex) {15 stack.push(vertex);16 }1718 @Override19 protected Integer delete() {20 return stack.pop();21 }2223 @Override24 protected Boolean isEmpty() {25 return stack.isEmpty();26 }2728 }

The DiGraph is a directed graph. Thus, a client application might want tosearch for paths starting from the source node in two directions: upstream anddownstream (Figure 80).

Figure 80: Concept of search upstream or downstream.
The SearchDirection abstract class implements Strategy Pattern to encap-sulate the common behaviour of searching towards upstream and downstream direc-tions. It enhances flexibility by composing its data structure with AlgorithmDSabstract class (Figure 81).
SearchDirection implements against AlgorithmDS API: isDone() re-turns if the AlgorithmDS is empty, delete() deletes a vertex from the datastructure, while add(Integer vertex) adds a vertex to the data structure.
SearchDirection has the additional field path, which is implemented as an

ArrayDeque of Integer Objects. This field stores the path from the source

156 complex network based physical modeling

Figure 81: UML of OMS3 available modeling simulation types.
node to the end node, which results from the searching algorithm analysis. The
getPath() method returns the path when the searching algorithm is done.

Listing 4.50: Depth first path data structure implementation.
1 abstract class SearchDirection {23 protected AlgorithmDS algoDS;4 protected ArrayDeque<Integer> path = null;56 abstract protected Set<Integer> getNeighbourhood(Integer vertex,7 DiGraph graph);89 abstract protected void addToPath(Integer vertex);1011 protected Boolean isDone() {12 return algoDS.isEmpty();13 }1415 protected Integer delete() {16 return algoDS.delete();17 }1819 protected void add(Integer vertex) {20 algoDS.add(vertex);21 }2223 protected void allocatePath() {24 if (path != null)25 throw new IllegalStateException();2627 path = new ArrayDeque<>();28 }2930 protected Iterable<Integer> getPath() {31 if (path == null)32 throw new IllegalStateException();3334 return path;35 }3637 } The two abstract methods getNeighbourhood and addToPath defines theactual behaviour of SearchDirection extended classes: Upstream looks forneighbours in vertex’s children while Downstream in vertex’s parents; Ustreamadds the vertex to the end of the dequeue while Downstream to the front of thedequeue.

4.4 research design and methods 157
Listing 4.51: Upstream searching algorithm implementation.

1 class Upstream extends SearchDirection {23 protected Upstream(AlgorithmDS algoDS) {4 this.algoDS = algoDS;5 }67 @Override8 protected Set<Integer> getNeighbourhood(Integer vertex,9 DiGraph graph) {10 return graph.getChildren(vertex);11 }1213 @Override14 protected void addToPath(Integer vertex) {15 path.add(vertex);16 }1718 }

Listing 4.52: Downstrean searching algorithm implementation.
1 class Downstream extends SearchDirection {23 protected Downstream(AlgorithmDS algoDS) {4 this.algoDS = algoDS;5 }67 @Override8 protected Set<Integer> getNeighbourhood(Integer vertex,9 DiGraph graph) {10 return graph.getParents(vertex);11 }1213 @Override14 protected void addToPath(Integer vertex) {15 path.push(vertex);16 }1718 }

Abstract implementation of searching algorithms: Factory Method Pattern -
oms3.ds.graph.traversers.GraphSearchAlgo.javaThe implemented Strategy Pattern for both AlgorithmDS and

SearchDirection in addition to composition of SearchDirectionwith AlgorithmDS provide for four different searching options: depth firstupstream and downstream, and breadth first upstream and downstream.The Java classes described so far still miss the actual searching algorithmimplementation. In order to keep on designing a flexible and expandable digraphtraversing framework, the processing algorithm has to be encapsulated into a singleabstract class, and decoupled from concrete instantiations of:
a. DiGraph representation;b. Searching algorithm type;c. Searching direction.

This architectural design allows each and every object relationship within theframework to be described and managed through abstract classes (Gamma (1995)).Eventually, the choice of the algorithm to instantiate is deferred to subclassesoutside the framework (Gamma (1995)).

158 complex network based physical modeling
This class creational pattern is the behaviour of a Factory Method Pattern: aninterface rules the object creation, but actual class instantiation is deferred tosubclasses (Gamma (1995)). Figure 82 illustrates the generic UML of a Factory

Method Pattern.

Figure 82: Generic factory method design pattern, credit Gamma (1995).
The Creator interface delegates the responsibility of object instantiation to theactual ConcreteCreator class, which manufactures the ConcreteProductin the FactoryMethod() implementation. The Creator interface becomes anabstract class when it contains implementation of operational methods as well.Figure 83 shows the UML of the pattern actually implemented.Here, abstract class GraphSearchAlgo.java is the Creator interface. Itdelegates the responsibility of object instantiations to DepthFirstPaths.javaand BreadthFirstPaths.java. Listing 4.53 shows the source code of

GraphSearchAlgo.
Listing 4.53: NET3 graph search algorithm implementation.

1 public abstract class GraphSearchAlgo {23 private Map<Integer, Integer> edgeTo;4 private Map<Integer, Boolean> marked;5 private SearchDirection searchDir;6 private Integer source;78 public void compute(String direction,9 Integer source, DiGraph graph) {10 initialize(graph, source);11 searchDir = buildAlgo(direction);1213 marked.put(source, Boolean.TRUE);14 searchDir.add(source);15 while (!searchDir.isDone()) {16 Integer vertex = searchDir.delete();17 searchDir.getNeighbourhood(vertex, graph)18 .forEach(neighbour -> {19 if (!marked.get(neighbour)) {20 edgeTo.put(neighbour, vertex);21 marked.put(neighbour, Boolean.TRUE);22 searchDir.add(neighbour);23 }24 });25 }26 }2728 private void initialize(DiGraph graph, Integer source) {29 this.source = source;30 this.edgeTo = new ConcurrentHashMap<>();31 this.marked = new ConcurrentHashMap<>();

4.4 research design and methods 159

Figure 83: UML of NET3 factory method design pattern.

160 complex network based physical modeling
32 graph.getVertecesIndeces().forEach(index -> {33 this.marked.put(index, Boolean.FALSE);34 });35 }3637 public Boolean hasPathTo(Integer vertex) {38 return marked.get(vertex);39 }4041 public Iterator<Integer> pathTo(Integer vertex) {42 if (!hasPathTo(vertex)) {43 return null;44 }4546 searchDir.allocatePath();47 for (int i = vertex; i != source; i = edgeTo.get(i)) {48 searchDir.addToPath(i);49 }50 searchDir.addToPath(source);51 return searchDir.getPath().iterator();52 }5354 protected SearchDirection buildAlgo(AlgorithmDS algoDS,55 String direction) {56 if (direction.equals("upstream")) {57 return new Upstream(algoDS);58 } else if (direction.equals("downstream")) {59 return new Downstream(algoDS);60 } else {61 // Add msg62 throw new UnsupportedOperationException();63 }64 }6566 abstract protected SearchDirection buildAlgo(String direction);67 } From a Factory Method Pattern standpoint, the implementationof abstract buildAlgo method in DepthFirstPaths.java and

BreadthFirstPaths.java is a simple call to super.buildAlgowith a new instantiation of the appropriate data structure and the search direction(see Listing 4.54 a) and b)).
Listing 4.54: NET3 encapsulation of depth first and breadth first.

1 public class DepthFirstPaths extends GraphSearchAlgo {23 @Override4 protected SearchDirection buildAlgo(String direction) {5 return super.buildAlgo(new DFPalgoDS(), direction);6 }78 }910 public class BreadthFirstPaths extends GraphSearchAlgo {1112 @Override13 protected SearchDirection buildAlgo(String direction) {14 return super.buildAlgo(new BFPalgoDS(), direction);15 }1617 }

GraphSearchAlgo API doesn’t expose any Factory Method. It exposes themethod compute, which (1) initializes the required data structures, (2) instantiatesthe SearchDirection, (3) computes the actual searching from the source node;

4.4 research design and methods 161
and the method pathTo, which returns the path to a target node. Additionally, itexposes a hasPathTo method, which allows for checking if a path exists betweensource and target nodes.

4.4.2.2.3 Graph simulationThis section describes the integration of NET3 data structures and searchingalgorithms into OMS3 core.Subparagraph NET3 DSL describes the interface between user and NET3framework capabilities. Subparagraph NET3 implicit parallelization introducesto architectural design of NET3 implicit parallelization of independent modelingsolutions run. Finally, the interconnection of modeling solutions is analyzed insubparagraph NET3 memory management.
NET3 DSLIn order to simplify NET3 user experience and fully integrate NET3 capabilitiesinto OMS3 modeling framework, the available DSL has been expanded.
One main simulation file allows for setting up NET3 input entries and rules theworkflow execution.The graph simulation DSL file is expected to have a *.sim extension and adhereto the identical formal structure of a standard Sim file.Listing 4.55 shows a typical graph simulation DSL. The initial testing of NET3was carried out through Dr Bancheri’s applications. As a result, the following DSLsare extracted from Bancheri (2017) and Bancheri et al. (2018a).

Listing 4.55: Net3 DSL sim file.
1 import static oms3.SimBuilder.instance as OMS3234 OMS3.graph(path: "./data/Basento/topoBasento_106.csv",5 simpath: "./simulation_basento/simulation_calibrazione/") {67 build()89 graph(traverser: "downstream.all") {10 parameter(file: "$oms_prj/data/Basento/mixed_params.csv")11 }1213 } NET3 is invoked by using OMS3.graph() at Line 8 Listing 4.55, which is theidentical call to OMS3.sim simulation.As a matter of fact, the AbstractSimulation.java class is now extendedby SimGraph as well, the new simulation DSL which resembles the behaviourof the standard Sim DSL, but rules the overall execution of one simulation file ineach node of the graph modeling structure (Figure 84).To maintain the analogy with a standard OMS3 modeling solution, the graphsection at Line 13 Listing 4.55 is identical to the model section of an OMS3 simfile.The path variable at Line 8 Listing 4.55 is mandatory to build the Graph modelfirst, and DiGraph data structure secondly. That variable points to NET3 topologyfile, which is text file that describes the modeling solution interconnections: it listsspace separated <child> <parent> relationships (child and parent are twointegers), it must have at least one root (parent with index 0), and it cannot containany loop.

162 complex network based physical modeling

Figure 84: UML of OMS3 available modeling simulation types including NET3.
Each node index listed in the topology file corresponds to a simulation file thatrules the node dedicated modeling solution such as Figure 1. That simulation fileis name <node_index>.sim.The traverser of the Graph model (Line 13 Listing 4.55) is the NET3 parameterthat rules DiGraph data structure traversing: it allows for analyzing the entirenetwork topology or extracting and analyzing a sub-branch only.The traverser parameter adheres to the following formal structure:

<searchDirection>.<algorithm>. Listing 4.55 illustrates the most com-mon application: the entire network topology is analyzed by following naturalconnections (downstream) between each node of the structure (all).Beta functionalities (still under development and not fully tested yet) allow forparsing one subbranch of the structure only. The traverser might be coupled to aforeach parameter to adhere to the following formal structure:
Listing 4.56: Formal structure of NET3 search direction DSL.

1 graph(traverser: "<seachDirection>.<algorithm>",2 foreach: "from_node -> to_node") {3 [...]4 } Here, searchDirection can be downstream or upstream, algorithmcan be breadthfirst or depthfirst. With respect to foreach parameter,
from_node and to_node are two indices in the network topology. If the twonodes are connected, the subbranch is extracted and analyzed, otherwise an errormessage is thrown.A NET3 subbranch analysis example is shown in Listing 4.57.

Listing 4.57: Usage example of NET3 search direction DSL.
1 graph(traverser: "downstream.breadthfirst",2 foreach: "10 -> 4") {3 [...]4 } Once again, this functionality has not been fully tested yet and is currently underdevelopment. However, it is fundamental architectural aspect and initial step forfurtherly designing automated parallel multi-site calibrations.

4.4 research design and methods 163
The parameter sub element in Listing 4.55 resembles the behaviour of parametersub element in subparagraph Parameters (parameter). User can specify a file aswell as a list of parameters which are then used to overwrite parameters defined inevery modeling simulation which runs in each node of the modeling structure.When the Groovy runtime parses NET3 sim file, a SimGraph simulation isinstantiated. Successively, a Graph model is instantiated, which in turn instantiatesand manages the DiGraph data structure.
NET3 implicit parallelizationWhen the entire graph simulation has been built and instantiated by Groovyruntime, the run method in SimGraph class is invoked (Listing 4.58).

Listing 4.58: NET3 run method.
1 @Override2 public Object run() throws Exception {3 super.run();45 [...]67 if (setpath == null) {8 setpath = graph.newModelComponent();9 }1011 int availProc = (numCores != null) ?12 numCores : Runtime.getRuntime().availableProcessors();1314 ExecutorService executor =15 Executors.newFixedThreadPool(availProc);1617 RunSimulations sim =18 new RunSimulations(setpath, executor, availProc);19 sim.run();20 executor.shutdown();2122 return comp;23 }Here, the Graph model returns the ConcurrentLinkedDeque<Integer>object, which contains the indices selected by the searching algorithm during theGroovy build runtime process. In the most generic case, the dequeue with everysingle node in the graph modeling structure is returned.Afterwords, a new ExecutorService with the number of available processorsis instantiated. The private class RunSimulations manages the entire graphmodel run.Depending on the number of available processors, the number of con-current simulation threads are submitted. Each thread goes through the

ConcurrentLinkedDeque looking for a node of the network topology readyto run.This algorithm works on a Observer Pattern-like design. The logic behindthis architectural design is following described (each available processing threadperforms this algorithm):
1. the index of a node of the network topology to be processed is extracted fromthe ConcurrentLinkedDeque;
2. the thread holding the extracted index checks its availability to run (all itsupstream nodes have already run);

164 complex network based physical modeling
3. if the node is not ready to run the next index in the
ConcurrentLinkedDeque is extracted and the algorithm startsfrom point 1 again;4. if the node is ready to run, input requirements get satisfied (see Subparagraph
NET3 memory management) and the modeling solution named with the nodeindex is executed;5. once the modeling solution execution is over, its outputs are pushed to amemory buffer (see Subparagraph NET3 memory management);6. finally, node’s parents get notified that simulation of this children is done.This logic resembles the one-to-many dependency behaviour of an Observer

pattern. In this pattern there are two actors involved: a subject (or publisher) andan observer (or subscriber). The observer is interested in getting notified whenthe subject changes its state. Consequently, it subscribes to receive notifications.Any number of observers can subscribe to receive information from one subject,and an observer can subscribe to any number of subjects. Each subject doesn’tknow anything about who subscribed to get its notifications, it simply publishesthe change of its state. The observer queries the subject state to update thesynchronization (Gamma (1995)).NET3 resembles this behaviour since parents subscribe to receive notification oftheir children status. When the DiGraph is instantiated by the Groovy runtime,the initialize method (Figure 81) creates an HashMap<Integer, Boolean>for each node in the vertices data structure.
Listing 4.59: NET3 observer initialization.

1 public void initialize() {2 vertices.keySet().forEach((vertex) -> {3 Family fam = edges.get(vertex);4 HashMap<Integer, Boolean> hm = (HashMap) vertices.get(vertex);5 if (fam.childrenNumber() != 0) {6 for (Integer child : fam.children) {7 hm.put(child, Boolean.FALSE);8 }9 } else {10 hm.put(0, Boolean.TRUE);11 }12 vertices.replace(vertex, hm);13 });14 }This HashMap is initialized with value Boolean.FALSE for each key, whichis the child index. Boolean.FALSE means that the simulation of that child is notdone yet. When the simulation of the child is over, the Graph model notifies theparent that child computation is done by calling the parentNotice method.This notifies each child’s parent that child state changed and replaces
Boolean.FALSE with Boolean.TRUE.

Listing 4.60: NET3 observer notification.
1 public void parentNotice(Integer vertex) {2 edges.get(vertex).parents.forEach(parent -> {3 HashMap<Integer, Boolean> hm =4 (HashMap<Integer, Boolean>) vertices.get(parent);5 hm.replace(vertex, Boolean.TRUE);6 vertices.replace(parent, hm);7 });8 }

4.4 research design and methods 165
The readyForSim method is queried by each thread with the node indexeach thread is holding (step 2 of the RunSimulation algorithm). This methodreturns true only if node’s children have value Boolean.TRUE in the hashmapcorresponding.

Listing 4.61: NET3 ready for simulation check.
1 public boolean readyForSim(Integer vertex) {2 return !((HashMap<Integer, Boolean>)3 vertices.get(vertex)).containsValue(false);4 }

NET3 memory managementCommunication between interconnected nodes happens through a thread safememory buffer. This buffer is a common memory space where each node of thegraph modeling solution pushes its output to when the simulation run is over.Before starting a model run, each node satisfies input requirements by pullinginput data from the memory buffer. The previously described observer-like modelingrun makes sure that a node accesses to pull methods when its children have pushedtheir output already.
Node inputs/outputs have to be identified from within the proper model component.In order to keep the lightweight invasiveness of OMS3, the annotation functionalitieshave been expended by adding two new annotations: @InNode (incoming variable)and @OutNode(outcoming variable).

Listing 4.62: Example of a POJO class turned into OMS/NET3-compliant component byaccommodating OMS3 and NET3 annotations.
1 package example;23 import oms3.annotations.*;45 public class CylinderVolume {67 @InNode8 public double radius;910 @In11 public double height;1213 @OutNode14 public double volume;1516 @Execute17 public void compute() {18 volume = circleArea(radius) * height;19 System.out.println("The volume is: " + volume);20 }2122 private double circleArea(double radius) {23 return Math.pow(radius, 2) * Math.PI;24 }2526 } OMS3 requires that components connections are specified in the *.sim file (seeSubparagraph Component connections (connect)). A similar policy is required toconnect modeling solutions. The model element of a sim file has been enriched with

166 complex network based physical modeling
two additional sub elements: inFluxes and outFluxes. Listing 4.63 shows anusage example.

Listing 4.63: inFluxes/outFluxes DSL usage example.
1 /*2 * Hello ’world’ example.3 * A component printing a greeting.4 */5 import static oms3.SimBuilder.instance as OMS367 OMS3.sim() {89 // build()1011 model(while: "c.goon") {1213 components {14 "in1" "ex0.In1"15 "c" "ex0.Component"16 "out1" "ex0.Out1"17 }1819 parameter {20 "c.val" 14.021 "c.other_val" 1.022 }2324 inFluxes {25 "15.outval1" "in1.inval1"26 "15.out_other_val1" "in1.in_other_val1"27 }2829 outFluxes {30 "out1.outval1" "31 "out1.out_other_val1" "32 }3334 connect {35 "in1.outval" "c.inval"36 "c.outval" "out1.inval"37 "in1.out_other_val" "c.in_other_val"38 "c.out_other_val" "out1.in_other_val"39 }40 }41 }

inFluxes sub element adheres to the following formal structure:
Listing 4.64: inFluxes formal structure.

1 inFluxes {2 <child_node_A>.<variable> <cID_1>.<variable>3 <child_node_B>.<variable> <cID_2>.<variable>4 }The parent node needs to specify which child to pull specific information from.
outFluxes sub element adheres to the following formal structure:

Listing 4.65: outFluxes formal structure.
1 outFluxes {2 <cID_1>.<variable> ""3 <cID_2>.<variable> ""4 }

4.5 case studies 167
Here, the output variables have to be simply listed and associated to an emptyString.

4.5 case studies
As previously stated, Dr. Bancheri continuously tested every new NET3 im-provement and asked for implementation of some functionalities like parameteroverwriting and first requirements for multi-site calibration development. As a result,4.5.1 is the first application following introduced (Bancheri (2017); Bancheri et al.(2017a, 2018a)). The author of this dissertation doesn’t take any credit with respectto 4.5.1 application development. This application is described in this dissertationsince it leverages NET3 functionalities.Additionally, two further applications have been developed to exercise anddemonstrate NET3 capabilities applied to generic complex networks problems.JSWMM is a Java-based redesigned version of Storm Water Management Model(SWMM), urban hydrology model part of the GEOframe system. The innovativearchitectural design of JSWMM utilizes the benefits of OMS3-NET3 capabilities to(1) split monolithic code base into conceptual/physical processes and encapsulatethem into modeling components, and (2) avoid code duplication by reusing identicalmodeling solutions to model run off and routing in each node of a complex sewernetwork. This application is Mr. Dalla Torres’s master’s project (Dalla Torre et al.(2018)). The author of this dissertation directly supervised Mr. Dalla Torre alongarchitectural design and software development of his master’s project. Mr. DallaTorre holds the authorship of software engineering design and source code ofJSWMM.System of systems of models (SSoM) is a multi-languages multi-models appli-cation developed for the Framework for Integrating the Complexity of UncertainSystems (FICUS) (Burkhalter et al. (2018); Ehlschlaeger et al. (2014b,a, 2018b,c,a);Westervelt et al. (2017)). This application is built upon NET3 capabilities ofencapsulating independent modeling solutions in separated nodes, and connectinginteroperable nodes based off of input/output relationships. Here, modeling solutionsrun different models, which are also implemented in different programming languages(Serafin et al. (2018c)). The author of this dissertation doesn’t take any credit withrespect to code base of models included in the SSoM application (Transims andHISA) and set up of their input files. The author of this dissertation designedthe graph modeling solution, developed required NET3 capabilities, developedOMS3 R and Python bindings (Serafin et al. (2018c)), developed OMS-compliantPython wrappers to run Transims components, and implemented highly parallelizedOMS-compliant R plotting components.These two additional applications are part of this dissertation because eachone of them required development of specific NET3 features, which are followingdescribed.

Each subsection is organized with an Application paragraph to introduce tothe application itself, and a NET3 additional features paragraph to summarizededicated NET3 features developed.

168 complex network based physical modeling
4.5.1 GEOframe: Monitoring hydrological extremes
4.5.1.1 ApplicationThis application is a Decision Support System (Decision Support System (DSS))developed with the final goal of monitoring and forecasting hydrological extremeevents in Basilicata region, Italy (Grasso et al. (2017); Bancheri et al. (2018a)).The DSS has been implemented on front/back ends software engineering design.The separation of concerns principle has been elevated to split the representationlayer (front end: WebGIS Figure 85) from the computational modeling layer (backend: GEOframe)(Bancheri et al. (2018a)).

Figure 85: Webgis front-end, credit Bancheri et al. (2018a).
Here, the back end is a graph modeling solution developed on GEOframesemi-distributed physically based hydrological system and OMS3-NET3 softwareframework.To simulate hydrological and hydraulic variables in near-real time, the entireBasilicata region was divided into about 160 interconnected HRUs (Bancheri et al.(2018a)) (Figure 86).

Figure 86: HRUs, credit Bancheri et al. (2018a).
This infrastructure results in a complex network that perfectly fits NET3 modelingcapabilities. Figure 1 at the beginning of this dissertation shows the runoff modelingsolution computed in each node of graph modeling structure.

4.5.1.2 NET3 additional featuresThis application, along with Bancheri (2017), is the main unit test the developmentof NET3 has been based on.

4.5 case studies 169
In addition to main features (e.g. implicit parallelization, integration of NET3 withLUCA calibration), two supplementary capabilities have been specifically designedfor this application:
1. parameterization per HRU;2. multi-site calibration.

4.5.1.2.1 Parameterization per HRUThis feature allows for setting up a dedicated set of parameters per HRU. Theparameters can be easily tuned from within modeling solution of each node of theGMS. Additionally, the main graph simulation file allows for:
1. defining a set of parameters that are potentially common to several modelingsolution in the parameter sub element of the graph element (Section NET3DSL Listing 4.66). The additional flag element list which node to overwriteparameters to;2. defining an extra paramFile element that lists space separated nodenumber and parameter files to read parameters from.

Listing 4.66: NET3 flags and paramfiles extensions.
1 import static oms3.SimBuilder.instance as OMS323 OMS3.graph(path: "$oms_prj/.../topoBradano_SanGiuliano.csv",4 simpath: "./simulation_Bradano/sim[...]e_SanGiuliano/") {5 build()67 graph(traverser: "downstream.all") {8 parameter(file: "$oms_prj/data/Bradano/mixed_params_SG.csv")910 }1112 flags {13 "1" "{overwrite}"14 "2" "{overwrite}"15 "3" "{overwrite}"16 [...]17 "35" "{overwrite}"18 "36" "{overwrite}"19 "37" "{overwrite}"20 }2122 paramfiles {23 "1" "$oms_prj/data/Bradano/mixed_params_SG.csv"24 "28" "$oms_prj/data/Bradano/mixed_params_SG.csv"25 "37" "$oms_prj/data/Bradano/mixed_params_SG.csv"26 }2728 }

4.5.1.2.2 Multi-site calibrationThis feature is of fundamental importance when it comes to calibrating modelingparameters per group of HRUs against internal monitoring sites within the maincatchment.Figure 87 facilitates the description of this functionality. Two monitoring site areavailable in this catchment of Basilicata region: Ponte La Marmora and Agri SS106.In order to make use of important available data, a first calibration procedure is

170 complex network based physical modeling

Figure 87: Multi-site calibration, credit Bancheri et al. (2018a).
set up on HRU 6. Then, calibrated parameters remain constant in HRU 6 duringcalibration procedure against monitoring site in Agri SS106.NET3 allows for defining which node of the graph modeling simulation to calibratefrom the element flags.

Listing 4.67: NET3 flags calibrate extension.
1 import static oms3.SimBuilder.instance as OMS323 /*4 * Luca calibration.5 */6 OMS3.luca(name: "EFC-luca_Agri_Ponte_70",7 path: "$oms_prj/data/Agri/topoAgri_Ponte.csv",8 simpath: "./simulation_Agri/sim_calib_Ponte/") {910 graph(traverser: "downstream.all"){11 parameter(file: "$oms_prj/data/Agri/mixed_params_Ponte.csv")12 }13 flags {14 "1" "{calibrate}"15 "2" "{calibrate}"16 "3" "{calibrate}"17 "4" "{calibrate}"18 "5" "{calibrate}" // 6 is missing, won’t be calibrated19 "7" "{calibrate}"20 [...]21 }2223 run_start "2013-12-15"24 calibration_start "2013-12-15"25 run_end "2014-12-15"26 rounds 22728 // step definitions29 step {30 parameter {3132 [...]33 alfa_l (lower:0.3, upper:0.9,calib_strategy:MEAN)3435 kc_canopy_out (lower:0.1, upper:2,calib_strategy:MEAN)36 [...]37 }

4.5 case studies 171
3839 objfunc(method:KGE, timestep:RAW,invalidDataValue:-9999) {40 sim(file:"$oms_prj/output/Agri/Calib/Idrogramma_6_Agr.csv",41 table:"table", column:"value_6")42 obs(file:"$oms_prj/data/Agri/Agri_PonteLaMarmora.csv",43 table:"table", column:"value_6")44 }45 max_exec 20046 }4748 }Figure 88 and Figure 89 show calibration results at Ponte La Marmora and AgriSS106.

Time

Q
,
[m

3
/s

]

Agri Ponte la marmora validazione

0
5
0

1
0
0

1
5
0

Agri_sim[, 3]
Agri_mis[, 3]

0 5000 10000 15000

GoF's:

ME = -0.6
MAE = 1.61
RMSE = 3.38
NRMSE = 50.9
PBIAS = -14.8
RSR = 0.51
rSD = 0.9
NSE = 0.74
mNSE = 0.34
rNSE = 0.77
d = 0.92
md = 0.72
rd = 0.93
r = 0.87
R2 = 0.75
bR2 = 0.6
KGE = 0.78
VE = 0.6

Figure 88: GEOframe validation at Ponte La Marmora, credit Bancheri et al. (2018a)

Time

Q
,
[m

3
/s

]

Agri SS106

0
2
0
0

4
0
0

6
0
0

8
0
0

Agri_sim[, 3]
Agri_mis[1:length(Agri_sim[, 3]), 3]

0 5000 10000 15000

GoF's:

ME = 4.86
MAE = 12.34
RMSE = 26.19
NRMSE = 67.8
PBIAS = 27.7
RSR = 0.68
rSD = 0.98
NSE = 0.54
mNSE = 0.19
rNSE = 0
d = 0.87
md = 0.58
rd = 0.72
r = 0.77
R2 = 0.6
bR2 = 0.51
KGE = 0.64
VE = 0.3

Figure 89: GEOframe validation at Agri SS106, credit Bancheri et al. (2018a)

4.5.2 GEOframe: JSWMM
4.5.2.1 ApplicationThis application results from a Java-based software architectural redesign ofSWMM (Storm Water Management Model), in addition to major computationalmodules reimplementation.SWMM is a computational model for estimating quantity and quality of urbanrunoff. Its application ranges from modeling of single event to long-term simulations.It is broadly used especially for stormwater and sanitary sewer design, analysis of

172 complex network based physical modeling
pollutant transport, treatment strategies of point and nonpoint sources, and urbanplanning (Gironás et al. (2010)).Here, the main goals of JSWMM exercise are to: (1) redesign runoff androuting original SWMM modules as component-based OMS-compliant software,thus creating a flexible and expandable infrastructure for accommodating futuredevelopments; (2) add a design component to original SWMM workflow for actuallydesigning the storm sewer network and not just verifying it (Dalla Torre et al.(2018); Dalla Torre (2019)). This goals are achieved without impacting on userexperience, namely original SWMM input/output file format don’t change.JSWMM runoff, pipe design, and routing computational methods are encapsulatedinto independent components.Instead of computing runoff, routing, and pipe design in a single modeling com-ponent per drainage area (standard modeling approach), runoff and routing/designcomponents for each drainage area are bundled into separated nodes of the networktopology. This approach allows for leveraging high computational scalability ofNET3 implicit parallelization (Figure 90) (Dalla Torre et al. (2018); Dalla Torre(2019)).

Figure 90: NET3-JSWMM component granularity, credit Dalla Torre et al. (2018);Dalla Torre (2019).
JSWMM has been tested and validated on Fossolo Network sample dataset.Figure 91 illustrates JSWMM results compared to original SWMM run out of adrainage area and overall urban network outlet.

4.5.2.2 NET3 additional featuresTwo supplementary NET3 features have been specifically designed to accommo-date modeling requirements from this application:1. allowing runoff, pipe design, and routing components to access a single datastructure to resemble original SWMM workflow;2. providing pipe design component with access to node indices of its upstreamsubnetwork for adjusting the depth of each upstream pipe.These features are currently not flexibly implemented and require additionalarchitectural design.

4.5 case studies 173

Figure 91: JSWMM modeling results, Dalla Torre et al. (2018); Dalla Torre (2019)

174 complex network based physical modeling
4.5.2.2.1 Access to common data structureListing 4.68 shows NET3 DSL that enables the main simulation file to push anempty data structure to the memory buffer before starting the computation on theurban network.

Listing 4.68: NET3-JSWMM access to common data structure, credit Dalla Torre et al.(2018); Dalla Torre (2019).
1 import static oms3.SimBuilder.instance as OMS32 import org.altervista.growworkinghard.jswmm.dataStructure.SWMMobject34 OMS3.graph(path: "./data/topo_small.csv",5 simpath: "./simulation_test/") {67 resource "$oms_prj/lib"89 build()1011 graph(traverser: "downstream.all") {1213 }1415 model() {1617 components {18 "c" "ex0.OutT"19 }2021 outFluxes {22 "c.datastructure" ""23 }24 }2526 } Consequently, every component from each node of the graph data structure canaccess this common memory location and push/pull data resembling SWMM originalbehaviour.

4.5.2.2.2 Access to upstream sub-branchNET3 provides a hidden variable to JSWMM pipe design component with a listof indices of upstream nodes. This allows JSWMM to adjust the depth of upstreampipes when the current pipe has been designed.
4.5.3 FICUS: System of systems of models
4.5.3.1 ApplicationThis application allows for analyzing people’s access to facilities such as water,fuel, etc. before and after amenity disruptions (Burkhalter et al. (2018); Ehlschlaegeret al. (2018c,a); Lu et al. (2018); Westervelt et al. (2017); Xie et al. (2019)).Here, NET3 has been utilized as a result of the need for interconnecting differentmodels, Transims (Smith et al. (1995)) and HISA, with different iterative loops (seenode 9 and node 11 in Figure 92). NET3 allows for encapsulating completelydifferent modeling solutions in different nodes of the modeling structure, andinterconnecting them regardless.Additionally, this application exercises OMS3-NET3 multi language interoper-ability by enabling seamless communication between Java, Python, and R OMS-compliant components (Serafin et al. (2018c)).

4.5 case studies 175

Figure 92: FICUS SSoM conceptual design.

Figure 92 illustrates an SSoM modeling solution: each node of the graphmodeling structure encapsulates different types of modeling solutions. Here, orangerectangles indicates Java components (e.g. node 10), green rectangles representsPython components (e.g. node 6), and light blue rectangles indicates R components(e.g. node 15).
Figure 93 shows two screenshots of the FICUS-UI for visualization and analysisof uncertainty quantified geographically spatialized raster/vectorial data (creditOlaf David and David Patterson).

Figure 93: SSoM results displayed from the FICUS-UI.

176 complex network based physical modeling
4.5.3.2 NET3 additional featuresSince both Transims and HISA models implement stochastic algorithms, theidentical complex modeling solution in Figure 92 has to run several times to allowfor generating different realizations out of the same scenario.NET3 provides the graph of graphs feature where each node of the graph modelingstructure is enabled to run an inner graph modeling structure.

Figure 94: NET3 Graph of Graphs conceptual design.
Figure 94 illustrates the graph of graphs modeling solution. Here, node 100, node

ith, and node Nth run one SSoM (Figure 92). Eventually, uncertainty quantificationof water, fuel, and facility access are evaluated (node 20, 21, and 22 Figure 94).Nodes in the graph of graphs modeling solution have to run sequentially becauseof design constraints in the current graph memory management.
4.6 summary

This chapter introduces to design and implementation of NET3 graph modelingstructure approach.Literature review illustrates previous applications of graph data structure inenvironmental modeling and identifies lack of flexibility and portability acrossdifferent operating systems in addition to programming proficiency requirements forfully taking advantage of developed platforms.Research questions identify milestones that drive analysis, design and implemen-tation of NET3 (graph modeling structure).Research design and methods describe methodological and technical approachesutilized to achieve flexible implementation of complex network like modeling solu-tions. Introduction to graph theory and its related algorithm implementation areproposed, as well as description of environmental modeling frameworks and theconcept of implicit parallelism. Since EMFs is the hosting platform for fosteringNET3 implementation, detailed description and analysis of OMS3 is provided.Finally, NET3 design and implementation are thoroughly examined.Three applications exercise NET3 features. The hydrological model GEOframe isexpanded and utilized as back-end for a DSS in Basilicata region, and additionallyillustrates the river network - graph structure analogy. A NET3 based redesign ofSWMM (JSWMM) demonstrates how a finely tuned model component granularityallows for leveraging higher level of implicit parallelization. System of Systemsmodel exercise NET3 flexibility in a complex urban modeling environment.Next chapter describes conclusions and future developments for FeNS and NET3.

5 C O N C L U S I O N
Contents5.1 FeNS: conclusion and future development 1775.2 NET3: conclusion and future development 179
Following the structure of this dissertation, conclusion and future developmentfor Framework-enabled NEAT based Surrogate modeling (FeNS) and NET3 areseparately described.
5.1 fens: conclusion and future develop-ment

A long-known discrepancy managing physical based models exists to fullycomprehend, correctly parameterize, performantly execute, and flexibly deploy themin research and service delivery environments. Research organizations fund thedevelopment of the models, but do not fund their integration into service deliveryorganization systems and workflows. Service delivery organizations fund integratingmodels into their systems and workflows, but usually find this a very difficult,inefficient, and time-consuming task, often failing because the research model hasbecome unwieldy and too burdensome to use. For widespread frequent use, servicedelivery organizations need the model to compute results quickly with limited set-up,reduced data entry, taking advantage of existing organization-wide data resources.
To bridge this gap, this dissertation aims to address and alleviate researchmodel application complexity with respect to data and parameter setup, runtimerequirements, and proper model infrastructure setup. This dissertation proposesa data driven based surrogate modeling approach aiming to capture the intrinsicknowledge of a physical model into an ensemble system of artificial neural networks.This methodology accommodates application needs to get quick and “accurateenough” model results with limited input entries and limited a-priori knowledgeof internal processes involved in conceptual/physical models. Here, the data-driven methodology was used as an inexact emulator of any deterministic computersimulation model.FeNS system enables modeling framework to interact with machine learninglibraries to emerge model surrogates any modelling solution. This facilitates thetransitioning of mathematical models from research to field by automating theprocess of generation of ensemble of surrogate models. CSIP/OMS was extendedand utilized to harvest data and derive the surrogate model at the modelingframework level.
FeNS demonstrates an opportunity for service delivery organizations to consoli-date and streamline model delivery and application.Recent advancements in machine learning techniques have proven to be suitedfor creating surrogate models of conceptual/physical models: surrogate models arecapable of accurately emulate original research model behaviours by using relevant

177

178 conclusion
input entries only. Preliminary design of experiments show Nash-Sutcliffe accuracyabove 0.95.Surrogote models are homogeneous in their implementation and use, whereasconceptual/physical models are heterogenous in development, setup, and deployment.This provides service delivery organizations with a simplified access to mathematicalmodels knowledge without requiring for dedicated modeling expertise and complexIT deployment infrastructure setup and management.Surrogame models allow for more consistent deployment on server, desktop, andmobile while being platform and operating system independent, potentially runon-the-field with no internet coverage, and can be subject to dataset-like lifecycle.Ensemble of surrogate models improves estimate accuracy by training severalartifical neural networks on slightly different datasets, while uncertainty quantifica-tion of ensemble of surrogate models runs smooths the overall eSM behaviouralemulation capability.FeNS combines presented methodologies and approaches to allow for auto-matically emerging surrogate models from any modelling solution in a controlledenvironment, utilizing maximal computation resources for training, and deliveringand applying ensemble of surrogate models within consultancy organizations requir-ing for minimal computational resources. Additionally, surrogate models necessitateof basic or no IT infrastructure management and provide uncertainty quantifiedanswer with minimal response times. FeNS-R2 eSM with 10 artificial neuralnetworks is about 80 KB in size and provides erosion rate estimate in around 100ms. Opposingly, CSIP-R2 web service system is about 300 GB in size (databasedependencies included) and returns erosion rate in around 10 s.

FeNS methodology and design is at early stage of development. Consequently,this dissertation identifies steps required to strengthen FeNS pipeline and facilitateits usage.Design of Experiments demonstrate necessity of dataset clustering to fasten eSMgeneration and divide original modeling emulation responsibility. Currently, FeNSmanagement of clustered data and eSMs is delegated to user manual set up. Oncontrary, this process has to be automated by designing an additional FeNS-servicewhich takes care of creating required clustered data MongoDB collections.Furthermore, discovering clusters in dataset resulting from determinist modelbehaviour is a trial-and-error process. Two different approaches will be investigatedto attempt the automation of this delicate and important process:
a. Stanley and Miikkulainen (2002) states that continuous state spaces facilitateNEAT learning and elevate its effectiveness. Discontinuity curves fromscattered data can be detected and recovered (Bozzini and Rossini (2013)).As a result, proper cluster on data discontinuities might elevate NEAT features.
b. DoE 3 has proven FeNS capability of emulating RUSLE2 behaviour on thefew high erosion data available by developing a dedicated eSM cluster. Theanalysis of the distribution of original model responses might allows foridentifying areas with scarce data. As a result, dedicated clusters might beable to improve overall eSMs accuracy by learning model behaviour off ofrare/scarce data.

Finally, different gating strategy has to be tested since only one basic approachhas been exercised in DoE 3.Razavi et al. (2012a) underlines model conformability issue of ANN-based SM.Two different approaches will be investigated to automatically avoid this relevantANN-based SM methodology issue:

5.2 net3: conclusion and future development 179
a. Integrate Halton Sequence generator as part of FeNS pipeline to automati-cally harvest homogeneously distributed original model responses.
b. Implement Bayesian Regularization as a part of NEAT genome performanceevaluation Razavi et al. (2012a).

With respect to NEAT algorithm implemented in the Encog library (Heaton(2015)) and part of the FeNS system, three code base developments are identified:
a. Encog is currently a multithreaded library efficiently designed and imple-mented. However, computational scalability on available nodes in a computercluster needs to be implemented to properly take advantage of CSIP/OMScloud computing environment potential.
b. Wang et al. (2013) demonstrates that NEAT learning process can be fasten bymore accurately numbering ANN nodes. Encog currently implement standardNEAT node numbering by Stanley and Miikkulainen (2002).
c. Feature Deselective NEAT (FD-NEAT) (Tan et al. (2009)) is an alternativefeature selection algorithm that has proven to be a promising methodologyfor classification tasks (Tan et al. (2009)). This methodology might be helpfulfor developing new gating strategies and should be tested against FS-NEAT.However, this neuroevolutionary algorithm is not part of Encog capabilitiesyet.

5.2 net3: conclusion and future develop-ment
Lack of proper software architecture design and application of good programmingprinciples at early stage of model layout obstruct and slow down research modelmaintenance and development.Additionally, the need of accounting for more simultaneous physical processes,describing and studying natural phenomena at different scales or introducing inno-vative engineering design practices drives model development into more capable aswell as complex software application. Here, the lack of input/output standard formats,poor documentation and deficient scientific algorithm implementation complicateuser approach to a new model, make model learning curve rather steep, and impedeuser to translate her/his modeling creativity into simulation results eventually.The introduction of environmental modeling frameworks (EMF)s overall alleviatesthese issues. However, research community is still reluctant in adopting EMFs asstandard model development workflow. Furthermore, actual applications demonstratethat current EMFs modeling capabilities limit modeler creativity anyway.
To overcome these relevant modeling constraints, this dissertation confirms theneed of introducing EMFs in standard workflow and support their widespread useby describing the successful case of JGrass-NewAGE/GEOframe system.Most importantly this dissertation aims to address and alleviate complex researchmodeling solutions maintenance, development, and application and proposes theextension of EMFs flexibility by integrating a graph modeling structure to elevatethe concept of modeling encapsulation and software reusability.NET3 is graph modeling structure fully integrated in the core of OMS3 andexpands OMS3 capabilities by interconnecting different modeling solutions thatshare common input/output variables. Every modeling solution is encapsulated

180 conclusion
into a node of the graph modeling structure, and same modeling components canbe reused in different nodes avoiding code duplication, error-prone maintenanceand development, and thus facilitating composition of complex innovative modelingsolution.

NET3 demonstrates an opportunity for research model developers and users tostreamline complex modeling solution maintenance and development and to wideopen modeler creativity.NET3 makes use of the river network - graph structure analogy to facilitatecomposition of network based modeling solution (see Subsection 4.5.1). It allowsfor setting up different modeling solutions to properly describe physical processesin mountain, hill, and plain subcatchments and connecting them. It allows for finelytuning model input parameters per subcatchment, provides multi-site calibrationcapabilities.NET3 enables a further layer of implicit parallelization based on network topologyto speed up the overall simulation run-time. Thoroughly setting up modeling solutiongranularity allows for higher level of computational scalability (see Subsection4.5.2).NET3 is a flexible graph modeling structure that can be applied to any networkbased modeling solution and allows for different iterative loops (temporal or conver-gence) in each node of the modeling structure. It additionally allows for running ainner graph modeling structure from within each node of a graph modeling structure(see Subsection 4.5.3).NET3 strictly follows OMS3 design principles (and EMFs more generally) andfully decouples software architectural aspects from scientific concepts. LeveragingNET3 features doesn’t require any additional programming proficiency comparedto OMS3 requirements.However this dissertation doesn’t investigate every research question proposedand additionally identifies several areas of NET3 improvements.Since application of graph theory is a very active field of research, the followingtwo questions are soon to be studied:
1. Can NET3 layer of implicit parallelism effectively speed up the computationof both small and large scale modeling solutions?
2. What is the proper trade off between graph topology (NET3) and componentconnections (OMS3) related parallelizations?

Before investigating these research questions, NET3 has to be redesigned toproperly scale on available nodes of a computer cluster network. NET3 imple-mentation is currently based off of multithreading computation. This architecturalaspect doesn’t allow for deeply leveraging super computing environments.A “scalable” NET3 will allow for properly implementing automated parallelmulti-site calibration procedures; finely designing memory management to overcomecurrent limitations when it comes to modeling with Graph of Graphs feature; addi-tionally implementing automated management of enabled/disabled computationalbranches.

A I N C R E A S I N G C O M P L E X I T Y
Contentsa.1 SWAT 182a.1.1 User experience 183a.1.2 Software metrics 185a.2 SWMM 187a.2.1 User experience 188a.2.2 Software metrics 189In Section Issues related to the use of mathematical models on the field, anin-depth analysis of limits and constraints of operational use of mathematical modelsin consultancy and research environments has been performed. To support thereasons that motivate this research, a further analysis on model complexity withrespect to user learning curve is conducted. As expected, mathematical modelsdevelops and evolves over time. This might have positively or negatively affectedissues related to operational use just described. Surely, software and code basebecame more and more complex. The evaluation of this increasing complexity alongwith analysis of positive or negative impact of software usability is an importantcontribution to this research.Leveraging available model documentation and open source environmental simu-lation models, two type of measurements are performed:

1. Number of model input parameters;2. Software Engineering (SE) metrics.
The number of model input parameters relates to model user’s efforts in preparingand preprocessing input model data to properly reflect the study area. It is a meansfor evaluating model user experience.SE metrics is a set of measurements and indices to support software engineersevaluation of code base aspects: from software quality, to cost estimate of theentire project, to size/complexity of a software package in order to properly planfuture maintenance (Boughton (2011)). As a consequence, software metrics returnsobjective, reproducible, and quantifiable values of software quality, complexity, andmaintainability (Boughton (2011)).
Some of most common software metrics are following listed and briefly described(Wikipedia (2004)):
• Code coverage: (or test coverage) estimates the percentage of source codeexecuted during test suite runs. In order to systematically test each portion ofthe code, input data varies between the range of all possible and significantcombinations (Miller and Maloney (1963)). The higher the code coverage thelower the possibility of unexpected software bugs.
• Cohesion: is the “degree to which the elements inside a module belong

together” (Yourdon and Constantine (1979); Stevens et al. (1974)). A class ormodule highly cohesive (and consequently loosely coupled) has importantattributes like robustness, reusability, readability, and reliability.
181

182 increasing complexity
• Coupling: measures how strongly two modules or classes are interconnected.A loosely coupled software (and consequently highly cohesive) usually indi-cates good software architecture and design.
• Cyclomatic complexity: (or McCabe’s complexity) evaluates “the number of

linearly independent paths within a section of source code”. Control flowgraph is the ideal representation: “the nodes of the graph correspond to
invisible groups of commands of a program, and a directed edge connects two
nodes if the second command might be executed immediately after the first
command”.

• Number of Lines of Code (LOC): counting the number of lines in the sourcecode, it provides a measure of the size of a computer program. Physical LOCaccounts for the pure lines of code without comment lines, while logical LOC(or LLOC) tries to estimate the number of executable statements.
The software cloc Danial (2018) has been used to carry out the following metricanalysis. cloc is able to estimate blank lines, comment lines, and physical linesof source code. It is also able to evaluate differences between previously listedfeatures when two versions of the same software are provided.
Two environmental models were analyzed with respect to their evolution in sourcecode, comments, and number of model parameters to support the hypothesis of anincreasing complexity over time. Those models were selected since they have beendeveloped for more than a decade and have an established user and developercommunity. Additionally, model source code of early/previous versions was madeavailable for this study by the original model developer or group. Every model isbriefly introduced, user and software metrics are obtained and discussed.

a.1 swat
Soil and Water Assessment Tool (SWAT) is a semi-distributed, watershed (riverbasin) scale, physically based model. Its development started in the early 1990sat USDA-ARS in Temple, Texas, led by Dr. J. G. Arnold, and it’s an ongoingprocess still (Devia et al. (2015)). It addresses environmental issues that relateto the evaluation of management practices effects on water resources, sedimentstransport and nonpoint-source pollution (e.g. agricultural chemical yields) (Arnoldet al. (2012)).SWAT originates from the merging of two models: Simulator of Water Resourcesin Rural Basin (SWRBB) (Williams et al. (1985); Arnold et al. (1990)) and RoutingOutputs to Outlet (ROTO) (Arnold et al. (1995)). SWRBB was a water qualityassessment tool. Its applicability constraints were watersheds size (up to fewhundred square kilometers) and number (up to 10 subbasins). These constraintsbecame a real modeling issue in the late 1980s, when the Bureau of IndianAffairs required a monitoring tool for evaluating water quality within americannative reservations. The targets were Arizona and New Mexico reservation landswhich cover a total area of several thousands square kilometers. ROTO was thenimplemented to handle and connect several outputs from SWRBB runs and properlyroute them through channels and reservoirs. This temporary solution worked morelike a prototype for the proposed problem. SWAT is the final product, a completelyredesigned and reimplemented software built from the previous experience ofcombining SWRBB and ROTO capabilities.

a.1 swat 183
Even without diving into each detail of initial hydrological processes implementedin SWAT, it is recognizable how the merging of two models results into a big coresimulation software. The merging process additionally allows for coupling previouslyindependent features (e.g. routing (ROTO) of water quality results estimated inindependent watershed (SWRBB)) which originate a more capable as well ascomplex software code base.Since the initial merging phase in the early 1990s, significant improvementsexpanded SWAT capabilities. The most noteworthy functionalities are well describedin Williams et al. (2008), and following briefly summarized:
• Addition of management of multiple HRUs;
• Crop managements area adding auto-fertilization and auto-irrigation manage-ment options, adding CO2 evaluation during crop growth for climatic change,improving grazing manure applications;
• Hydrological processes area adding canopy storage, adding Penman-Monteithpotential evapotranspiration, improving snow melt routines, adding Green &Ampt infiltration module, adding Muskingum routing method, adding weatherforecast scenarios;
• Water quality processes area improving in-stream nutrient water qualityequations, in-stream pesticide routing, nutrient cycling routines, addingreservoir/pond/wetland nutrient removal by settling, adding routing of metals,adding bacteria transport algorithms.

To evaluate the potential impact of these new functionalities on modeling codebase growth and consequent user experience, source code of four consequential of-ficially released versions of SWAT are analyzed. Downloaded software is availableonline at https://swat.tamu.edu/software/swat-executables/and classified as follow: SWAT2000, SWAT2005, SWAT2009, and SWAT2012(latest release).
a.1.1 User experience

From a user standpoint, SWAT is a well documented software. Every release isprovided with detailed user documentation and some releases (2005 and 2009) areaccompanied by two files actually: theory and input/output documentations.Although available documentation facilitates user approach to the model byproviding usage references and requirement descriptions to begin with, learninghow to get started with the simulation software might not be a quick and easy task.Considering I/O documentation only, which is common to every software release,the number of pages goes from about 450 in the first release till 650 in the latest.Furthermore, from a brief analysis of available documentation, user has to dealwith an important number of input files: from 33 for v2000 to 37 for v2009 andv2012 (see Figure 95).The number of input parameters is an important metric that allows for estimatingamount of user’s data and work required for setting up a modeling simulation.Although model set up (and consequent input parameter requirements) is builtupon computational modules enabled for a specific type of modeling simulation, anoverall evaluation of number of model input parameters between versions returnsan important increment between first two versions (v2000, v2005) (from 540 inputparameters to 612) and constant trend over the other version (v2005, v2009, v2012)(see Figure 96).

https://swat.tamu.edu/software/swat-executables/

184 increasing complexity

●

●

● ●

SWAT: # input files over versions

SWAT versions

in

pu
t f

ile
s

v2000 v2005 v2009 v2012

30
32

.5
35

37
.5

40

Figure 95: Trend of number of input files required for running a SWAT simulation overofficial releases.

●

● ● ●

SWAT: # input parameters over versions

SWAT versions

in

pu
t p

ar
am

et
er

s

v2000 v2005 v2009 v2012

50
0

53
0

56
0

59
0

62
0

Figure 96: Trend of number of input parameters to setup for running a SWAT simulationover official releases.

a.1 swat 185
Users’ Documentation of each model version states that some parameters inseveral input files are derived using the SWAT GIS tool. Consequently, a modeluser doesn’t really have to provide data or information for each and every inputparameter. Additionally, some input files and related parameters are optional andnot required for a simple standard SWAT run.
In conclusion, SWAT is a thoroughly documented, heavily tested and validatedmodeling software. Its development lasts for over two decades and it is an ongoingprocess still. Several modeling modules and wide range of modeling capabilitiesare made available and this reflects to important documentation size, input filesand input parameters number. Although this last two metrics haven’t increasedmuch over software versions, learning how to accurately and correctly make use thissort of model requires study and dedicated knowledge. User approach to SWATbegins with a user manual of about 650 pages and more than 600 available inputparameters.

a.1.2 Software metrics
SWAT is Fortran code base. Fortran is a notable general-purpose imperativeprogramming language, which is usually codified into monolithic software applica-tions. This is a drawback when it comes to software maintenance and development.Monoliths are notably close to modifications since their structure is resistant toaccommodate new features (Martin (2009); David et al. (2013); Newman (2015);Nadareishvili et al. (2016)). This analysis, however, doesn’t investigate complexitywith respect to software maintenance and development and narrows its scope tophysical lines of source code and comments. cloc facilitated the estimate of thesetwo metrics.Estimated metrics (Figure 97) shows a growing trend for both number of lines ofcode and comments across available software versions.

●

●

●

●

SWAT: LOC over versions

SWAT versions

LO
C

●

●

●

●

v2000 v2005 v2009 v2012

15
00

0
20

00
0

25
00

0
30

00
0

35
00

0

code
comments

Figure 97: Trend of number of lines of source code (blue line) and comments (red line) inSWAT code base over official releases.
The first SWAT version analyzed (v2000) shows a 1:1 relationship betweennumber of lines of code and comments. This is a positive aspect since means thatsource code, algorithms, and routines APIs are described.

186 increasing complexity
The positive trend of lines of code and comments over SWAT versions indicatesmodel developer dedications in documenting newly added modules and computingcapabilities.
The overall increment of number of lines of code from v2000 to v2012 is morethan 100% (Figure 98 and Table 7): the initial computational core was about 16 300lines and ended up being about 34 100 lines.

●

●
●

●

SWAT: # of files over versions

SWAT versions

of

 fi
le

s

v2000 v2005 v2009 v2012

20
0

24
0

28
0

32
0

36
0

Figure 98: Trend of number of lines of files of the SWAT code base over official releases.
The biggest improvement was between v2000 and v2005. The initial core jumpedfrom 16 300 to 27 000 lines of code with a total increment of around 80% (Figure97 and Figure 99, Table 8). The number of files increased of 50% (Figure 98) goingfrom 215 to 305. Number of file in the following versions (v2009, v2012) remainedalmost constant.
Table 7: Number of file, lines of code, and comments of SWAT over official releases.SWAT2000 SWAT2005 SWAT2009 SWAT2012files 215 305 301 308

loc (code) 16 308 27 068 31 114 34 113
loc (comment) 18 199 22 311 25 819 27 452

Around 38% of lines of code (6 174) was added between v2005 and v2009, while13.4% only (1 173) between v2009 and v2012 (Figure 99 and Table 8). Betweenthese three software versions the amount of modified lines of code is almost constantand around 8% (Figure 99 and Table 8). The negative trend of added lines of codeopposes to a positive trend of unaltered lines of code: between v2005 and v200968.3% of software code base stays the same while this amount rises up to 88%between v2009 and v2012 (Figure 99 and Table 8).This analysis demonstrates that number of lines of code added to SWAT codebase actually reflects the amount of innovative features listed by Williams et al.(2008). The overall computational core duplicated in size between the first and thelast release.However, a negative trend of added lines of code between versions opposes to apositive trend of unchanged lines of code (Figure 99). This drive to two conclusions:

a.2 swmm 187

0

25

50

75

v2000−v2005 v2005−v2009 v2009−v2012

Version

LO
C

Category

added

modified

removed

same

SWAT: LOC comparison between versions

Figure 99: Percentage of number of added, modified, removed, and unchanged lines ofcode between SWAT consecutive officially released versions. Percentages arecomputed on the older version.
1. the inner complexity of the simulation model keeps on increasing since newlines of code (and new functionalities consequently) are always added oversoftware releases;2. SWAT software core base is getting to a point of consolidated robustnessand stability since the amount of unmodified lines of code is rising over 88%.Summarizing, SWAT is a complex software which every release is enriched ofnew functionalities with. This reflects into an increasing number of lines of code andintrinsic complexity in model maintenance and development consequently. However,the addition rate of new features over releases slows down in favor of robust andconsolidated software core.

Table 8: Percentage of identical, modified, removed, and added number of lines of codebetween SWAT versions (percentage computed on the older version).v2000-v2005 v2005-v2009 v2009-v2012same 10 355 63.5% 18 493 68.3% 27 436 88.2%
modified 3 588 22% 2 401 8.9% 2 505 8%
removed 236 14.5% 10 220 22.8% 4 172 3.8%
removed 13 125 80.5% 6 174 37.8% 1 173 13.4%

a.2 swmm
Storm Water Management Model (SWMM) is a computational model for estimat-ing quantity and quality of urban runoff. Its application ranges from modeling ofsingle event to long-term simulations. It is broadly used especially for stormwaterand sanitary sewer design, analysis of pollutant transport, treatment strategies ofpoint and nonpoint sources, and urban planning (Gironás et al. (2010)).

188 increasing complexity
Two main modules constitute the whole software: the runoff component and therouting component. The first one operates on a subcatchment scale: precipitationfalling on each subcatchment generates runoff and pollutant load. The secondcomponent routes the generated runoff throughout a network of pipes, channels andseveral type of facilities and instruments like storage/treatment devices, pumps, andregulators.
The development history of this notable software started in 1971 (Rossman (2010)).SWMM I is the first software release and was developed by Metcalf & Eddy, Inc.,Water Resources Engineers, and University of Florida. Since then, four moreofficial major version have been released: SWMM II (1975, contributor Universityof Florida) which is the actual first widely distributed release; SWMM 3 (1981,contributors University of Florida, and Camp Dresser & McKee) where full dynamicwave flow algorithm, Green-Ampt infiltration, snow melt and continuous simulationwere added; SWMM 3.3 (1983, contributor US EPA) which is the first PC versionever released (previous versions are paper only); and SWMM 4 (1988, contributorsOregon State University and Camp Dresser & McKee) where groundwater, RDII,and irregular channel cross-sections were introduced.SWMM 5 is the latest stable version. Initially released in 2005, it has beenactively developed, supported and released on a regular bases in the last 14 years.US EPA and CDM-Smith are the main contributors. Several new features wereadded throughout its development. However, the most important advancementsrelate to complete translation and refactoring of the core engine from Fortranlanguage to C language and the addition of a graphical user interface.
The analysis of SWMM development history includes SWMM5 only. The sourcecode of previous versions is not available online. However, SWMM5 accounts for24 official releases over 15 years. The analyzed source code was downloaded fromopenswmm website and USEPA website.

a.2.1 User experience
User documentation contains detailed and exhaustive explanations for preparinga SWMM modeling solution.A comprehensive and well developed GUI smooths user’s very first approach toSWMM. It also facilitates input data and parameters management and set up.However, user has to recursively edit the project file to design the sewer system.This is an acceptable workflow when limited number of sewer pipes, facilities, andinstruments are involved. The process becomes complicated and overwhelming incase of larger project files stored in CAD or GIS formats. Here, user might have tomanually set up input parameters for each modeling object such as network nodesor links.

Software modeling input objects and parameters are following briefly summarized.SWMM allows for modeling processes of four water management related cate-gories: hydrology, hydraulics, water quality, and treatment. The overall number ofmodeling objects is 20. Every modeling object can be finely tuned from within theproject file, which is split into 44 different sections.111 generic modeling simulation parameters are provided. The other parametersare dedicated to describe the modeling behaviour of each element of the sewernetwork: 8 parameters describe rain gauge behaviour; 67 characterize sub catchmentwhile 8 represent subareas responses; 19 parameters are required for LID design;14 characterize an aquifer; 6 a junction, additional 6 an outfall; 11 parameters

https://www.openswmm.org/Code/Home
https://github.com/USEPA/Stormwater-Management-Model

a.2 swmm 189
represent the divider behaviour; 13 for a storage; 9 for a conduit; 7 for a pump; 8for an orifice; 12 for a weir; 8 for an outlet; 19 for a cross-section; 6 head-loss; 31pollutant; 27 per node.The overall number of input parameters is 382 accounting for a network with oneelement per category (Rossman (2010)).These numbers surely express high level of software flexibility and adaptabilityto modeler requirements. They intrinsically indicate important amount of study andwork to (1) understand how model operates, and (2) actually provide and set upinput parameters for a modeling simulation run.Additional analysis and comparison of modeling objects and input parametersbetween software version are not since only one user manual is provided andgenerically refers to SWMM5.

In conclusion, SWMM is a flexible and highly tunable modeling software thatmakes available a large number of modeling objects and input parameters. Thisindicates a steeper learning curve to finely set up and exercise a modeling simulation.Furthermore, the addition of innovative engineering solutions to water managementproblems will intrinsically reflect into an increasing number of modeling object andinput parameters consequently.
a.2.2 Software metrics

SWMM5, previously coded in Fortran, was completely redesigned for the 2005release and is currently C code base. C is a notable general-purpose impera-tive programming language, which is usually codified into monolithic softwareapplications.

●
●

● ●

●

● ●

●

● ●
●

●

●

●●●●●

●

●●

●

● ●

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

SWMM: LOC over versions

time

lo
c

●

●

●

●

●

● ●

●

●
●

●
●

●
●●●●●

●

●
●

●

●

●

time

Li
ne

 o
f c

om
m

en
ts

v5
.0

.0
03

v5
.0

.0
07

v5
.0

.0
08

v5
.0

.0
09

v5
.0

.0
11

v5
.0

.0
12

v5
.0

.0
13

v5
.0

.0
14

v5
.0

.0
15

v5
.0

.0
16

v5
.0

.0
17

v5
.0

.0
18

v5
.0

.0
22

v5
.1

.0
01

v5
.1

.0
02

v5
.1

.0
03

v5
.1

.0
05

v5
.1

.0
06

v5
.1

.0
07

v5
.1

.0
08

v5
.1

.0
09

v5
.1

.0
10

v5
.1

.0
11

v5
.1

.0
12

85
00

90
00

95
00

10
00

0
10

50
0

11
00

0
11

50
0

12
00

0

code
comments

Figure 100: Trend of number of lines of source code (blue line) and comments (red line)in SWMM code base over officially released versions. Left Y axis shows themagnitude of the number of lines of code, right Y axis shows the magnitude ofthe number of lines of comments.
Analysis over time of number of lines of code and comments in the SWMM5 officialreleases illustrates positive and similar trends (Figure 100). This demonstratesdevelopers dedication in regularly commenting newly added modeling capabilitiesand algorithms.The total number of lines of code goes from 19 570 for version v5.0.003 to 27 461for version v5.1.012 (Figure 100 and Table 9). This is a reasonable development

190 increasing complexity
over 14 years (+40%). It indicates software maturity and stability as well asconsistent implementation of new modeling features to accommodate innovativewater management related engineering methodologies. As a matter of fact, Figure101 shows only percentages of added, modified and removed number of lines ofcode since 90% of software core doesn’t change in between released versions.

0.0

2.5

5.0

7.5

10.0

12.5

v5
.0

.0
03

−v
5.

0.
00

7

v5
.0

.0
07

−v
5.

0.
00

8

v5
.0

.0
08

−v
5.

0.
00

9

v5
.0

.0
09

−v
5.

0.
01

1

v5
.0

.0
11

−v
5.

0.
01

2

v5
.0

.0
12

−v
5.

0.
01

3

v5
.0

.0
13

−v
5.

0.
01

4

v5
.0

.0
14

−v
5.

0.
01

5

v5
.0

.0
15

−v
5.

0.
01

6

v5
.0

.0
16

−v
5.

0.
01

7

v5
.0

.0
17

−v
5.

0.
01

8

v5
.0

.0
18

−v
5.

0.
02

2

v5
.0

.0
22

−v
5.

1.
00

1

v5
.1

.0
01

−v
5.

1.
00

2

v5
.1

.0
02

−v
5.

1.
00

3

v5
.1

.0
03

−v
5.

1.
00

5

v5
.1

.0
05

−v
5.

1.
00

6

v5
.1

.0
06

−v
5.

1.
00

7

v5
.1

.0
07

−v
5.

1.
00

8

v5
.1

.0
08

−v
5.

1.
00

9

v5
.1

.0
09

−v
5.

1.
01

0

v5
.1

.0
10

−v
5.

1.
01

1

v5
.1

.0
11

−v
5.

1.
01

2

Version

LO
C

Category

added

modified

removed

SWMM: LOC comparison between versions

Figure 101: Percentage of number of added, modified, and removed lines of code betweenSWMM consecutive officially released versions.
Trend in Figure 101 mostly shows little adjustments and improvements of softwaremodeling capabilities and performance in between software releases such as (1)management of lateral groundwater flow to groundwater module; (2) encapsulationof algorithms for solving the momentum equation of dynamic wave flow routing insewer pipes to improve computational parallelization; (3) addition of routines toevaluate conduit water evaporation and infiltration rate; (4) addition of routinesfor estimating LID hydrologic performance; (5) code refactoring and application ofsoftware design principles.
In conclusion, SWMM is a well developed and maintained modeling software.The overall source code grew up of 40% in about 14 years. This is a plausibledevelopment rate, which demonstrates a regular implementation of new engineeringmodeling practices and software release consequently. The increasing number oflines of source code (and modeling features consequently) intrinsically reflects intoa growing complexity in model maintenance, development, and usage.
Table 9: Number of file and lines of code of SWMM code base over official releases.SWMM version Loc (code) Loc (comment)v5.0.003 19 570 8 223v5.0.007 19 451 8 665v5.0.008 19 852 9 115v5.0.009 19 878 9 179v5.0.011 20 866 8 608v5.0.012 21 434 8 921v5.0.013 21 464 8 935v5.0.014 22 081 9 288v5.0.015 22 257 9 394

(. . . continue to next page)

a.2 swmm 191
SWMM version Loc (code) Loc (comment)v5.0.016 22 310 9 436v5.0.017 22 421 9 531v5.0.018 22 508 9 574v5.0.022 24 273 10 558v5.1.001 25 513 10 503v5.1.002 25 515 10 506v5.1.003 25 515 10 508v5.1.005 25 518 10 519v5.1.006 25 524 10 523v5.1.007 26 023 10 774v5.1.008 26 973 11 662v5.1.009 26 985 11 704v5.1.010 27 171 11 884v5.1.011 27 440 12 171v5.1.012 27 461 12 282

Table 10: Percentage of modified, removed, and added number of lines of code betweenSWMM versions (percentage computed on the older version).SWMM versions modified added removedv5.0.003-v5.0.007 734 3.8% 1 518 7.8% 1 637 8.3%v5.0.007-v5.0.008 190 1% 478 2.4% 77 0.4%v5.0.008-v5.0.009 13 0.1% 36 0.18% 10 0.1%v5.0.009-v5.0.011 2 341 11.8% 1 168 5.9% 180 0.9%v5.0.011-v5.0.012 326 1.6% 1 545 7.4% 977 4.7%v5.0.012-v5.0.013 130 0.6% 79 0.4% 49 0.2%v5.0.013-v5.0.014 443 2.1% 847 3.9% 230 1.1%v5.0.014-v5.0.015 311 1.4% 260 1.2% 84 0.4%v5.0.015-v5.0.016 21 0.1% 72 0.3% 19 0.1%v5.0.016-v5.0.017 69 0.3% 153 0.7% 42 0.2%v5.0.017-v5.0.018 83 0.4% 123 0.5% 36 0.2%v5.0.018-v5.0.022 39 1.8% 2 087 9.3% 322 1.4%v5.0.022-v5.1.001 2 272 9.4% 2 911 12% 1 671 6.9%v5.1.001-v5.1.002 6 0.1% 3 0% 1 0%v5.1.002-v5.1.003 12 0.1% 0 0% 0 0%v5.1.003-v5.1.005 13 0.1% 11 0% 8 0%v5.1.005-v5.1.006 59 0.2% 8 0% 2 0%v5.1.006-v5.1.007 240 0.9% 645 2.5% 146 0.6%v5.1.007-v5.1.008 815 3.1% 1 422 5.5% 472 1.9%v5.1.008-v5.1.009 12 0.1% 13 0.1% 1 0%v5.1.009-v5.1.010 117 0.4% 294 1.1% 108 0.4%v5.1.010-v5.1.011 276 1% 393 1.4% 124 0.5%v5.1.011-v5.1.012 61 0.2% 62 0.2% 41 0.2%

B R A N D P Y T H O N A N N OTAT I O NB I N D I N G S F O R O M S
Contentsb.1 Introduction 194b.2 User experience 194b.3 Technical approach and implementation 197b.3.1 R back-end: Rserve 198b.3.2 Python back-end: Jep 198b.4 Docker image bundle 198b.4.1 OMS R packages management 199b.4.2 OMS Python packages management 199b.5 Applications 199b.5.1 RUG model 200b.5.2 TRANSIMS model 200b.6 Conclusions 201OMS3 is an environmental modeling framework designed to support and simplifythe development of scientific environmental models. It is implemented in Java, aprogramming language that allows the framework to be flexible and non-invasive.Consequently, Java is the native language for developing OMS-compliant compo-nents. However, OMS3 aims to ensure the longevity of old model implementationsby providing C/C++ and Fortran bindings that allow for connecting slightly mod-ified legacy environmental software to newly developed Java components. In therecent years, three scientific programming languages drew the modeling community’sattention: R, Python, and NetLogo. They have a flat learning curve, numerousscientific libraries, and duck typing makes them an attractive solution for fast script-ing. Furthermore, they have an active developer community that keep releasingand improving open source scientific packages. This is a relevant aspect when itcomes to facilitating and speeding up the implementation of scientific algorithms.Therefore, OMS3 integration capabilities have recently been enhanced to provideR, Python, and NetLogo bindings. As a result, multi-language modeling solutionscan be tailored to meet the scientific community’s needs. Thanks to the framework’snon-invasiveness, R, Python and NetLogo scripts must only be slightly modifiedwith source code annotations to become OMS-compliant components. The resultingcomponents are nevertheless still executable from within the original environments.This contribution shows two actual applications of the implemented R and Pythonbindings, the NetLogo implementation is not addressed in this paper. The RegionalUrban Growth (RUG) is implemented in R and the TRansportation ANalysis SIMula-tion System (TRANSIMS) models require the Python Run Time Environment (RTE)module to run. The RUG model is a landscape model capable of evaluating impactsof new regional urban development on surrounding environment and projectinglong-term growth-management plans. TRANSIMS is a software suite based on acellular automata microsimulator which performs regional transportation systemanalyses. Both model suites are among OMS enabled models for the FICUS project,the “Framework for Integrating the Complexity of Uncertain Systems”. Furthermore,the model application flexibility was enhanced by introducing Docker containers inthe workflow to alleviate the burden of complex software management and setup.

193

194 r and python annotation bindings for oms
b.1 introduction

OMS3 is a flexible and non-invasive environmental modeling framework (Davidet al. (2013); Lloyd et al. (2011)). Its main objective is to simplify environmental modeldevelopment by streamlining the translation of physical processes into programmingalgorithms. It allows for encapsulating each algorithm into a standalone componentensuring the single responsibility principle. It lowers the development effort relatedto data reading and writing, data analysis and visualization, component interaction,temporal-spatial stepping and multi-threading/multi-processor computations. As aresult scientists can focus on scientific understanding of environmental phenomenarather than software development.
OMS3 is Java-based, and therefore Java components are natively supported. Inorder to maintain compatibility with legacy Fortran and C/C++ software, OMS3makes use of native shared libraries and provides Fortran and C/C++ bindings.However, the modeling community’s use of scripting/programming languages likeR, Python and NetLogo is rapidly taking off. These languages are easy to learnand use because of their friendly syntax and semantics. They rely on user anddeveloper communities, which share on-line implementation and problems solutions,generic information and most importantly well designed scientific packages. Somenotable Python examples are NumPy (Oliphant (2006)) and SciPy (Jones et al.(2014)). Some notable R examples are gstat (Pebesma and Wesseling (1998)),raster (Hijmans et al. (2015)) and randomForest (Liaw et al. (2002)).
Scientists and engineers solely want to focus on solving their research questionsand problems. These scripting languages are consequently very attractive andproper OMS3 bindings have become necessary. The main concern while developingOMS bindings was to keep the user experience in setting up Python and R OMS-compliant components as close as possible to OMS Java component development.Section B.2 is focused on describing the user approach in modifying Python and Rscripts into OMS-compliant components. Section B.3 describes actual frameworkside implementation of both bindings while section B.4 introduces the process ofbundling OMS3 into a Docker image. Section B.5 shows two actual applications:the R-based Regional Urban Growth (RUG) model (Westervelt et al. (2011)) andthe Python wrapped TRansportation ANalysis SIMulation System (TRANSIMS)model (Smith et al. (1995)). Section B.6 provides concluding remarks and identifiescurrent constraints and needs for future development.
Moreover, OMS3 was recently bundled into a Docker (Merkel (2014)) imageto further simplify user experience: once Docker is installed on the machine, nofurther software installation and library linking are required to run OMS3. A userneeds to provide only a properly set up OMS3 project. The Docker container thentakes care of building the project and running the modeling solution, automaticallyconnecting every type of component.

b.2 user experience
An OMS component is basically a plain Java class with framework metadataannotations. Input/output variables are listed as fields and annotated with @Inand @Out OMS annotations. The one mandatory method with an @Executeannotation encapsulates the main algorithm and calls related methods or objects.Two more methods can be annotated with @Initialize and @Finalize and

b.2 user experience 195
are respectively executed before and after the entire simulation. They are optionalmethods, though. A user may also add further optional annotations to capturecomments and component design ideas into metadata for generating documentationlater or perform tests.

These basic concepts were used in the design of both Python and R bindings.Accordingly, two main development steps were identified to seamlessly adapt Pythonor R scripts into OMS-compliant components:
1. Determine the function encapsulating the main algorithm if the script isalready split into functions, otherwise wrap the entire script into one mainfunction;
2. Identify input and output variables and list them at the very beginning of thescript.

Then, suitable annotations have to be accomodated. Listing B.1 and ListingB.2 ease the understanding of this simple but crucial step: Listing B.1 shows theannotated code snippet of the R component AttractorAnalysis.R, which ispart of the RUG model; Listing B.2 illustrates the annotated code snippet of thePython component TransimsObj.py, which is the Python wrapper for executingand connecting TRANSIMS executables.A couple of similarities can be underlined in Listing B.1 and Listing B.2: annota-tions are hidden in comments; Java data types are explicitly specified right after
@In and @Out annotations.The first aspect allows for maintaining compatibility of scripts with their originalinterpreters. To execute the OMS-compliant scripts from within their originalenvironments, user is asked to: (1) assign input values to each input variable andnull values to each output variable (or just comment them to avoid parsing errors);(2) call the main function to execute the script.

The second aspect takes into account the absence of declared data types in bothPython and R. Thus, Java equivalent types must be defined between parenthesesright after the annotation to allow for proper conversions when R or Pythoncomponents are connected to Java or Fortran or C/C++ components.Listing B.1 shows how a stack of raster maps (masterRaster, line 5), a list ofraster maps (interconnectMaps, line 8) and a list of strings (instructions,line 11) are fed to the AttractorAnalysis.R component. After the propercomputation, the raster map describing the attractiveness of strategic locations inthe study area (attractorMap, line 14) is returned. Listing B.2 shows how thepath to the directory gathering TRANSIMS modules (BINDIR, line 6), the pathto the working directory (PROJECT, line 8), the name of the TRANSIMS module(executable, line 10) and name of the related file of input data and parameters(controlFile, line 12) are inputs to the TransimsObj.py component. Whenthe run is over, the component returns the proper message (simDone, line 14).
Listing B.1: R OMS-compliant version of the AttractorAnalysis.R

1 library(raster)2 library(doParallel)34 # @In("CoverageStack")5 masterRaster67 # @In("List<GridCoverage2D>")8 interconnectMaps

196 r and python annotation bindings for oms
910 # @In("List<String>")11 instructions1213 # @Out("GridCoverage2D")14 attractorMap1516 # @Execute17 main <- function() {18 # RUG attractor analysis19 # ...20 attractorMap <<- calcAttractorMap()21 }

Listing B.2: Python OMS-compliant version of the TransimsObj.py
1 import os2 import sys3 from TransimsRTE import *45 # @In("String")6 BINDIR7 # @In("String")8 PROJECT9 # @In("String")10 executable11 # @In("String")12 controlFile13 # @Out("String")14 simDone1516 # @Execute17 def execute():18 # Transims OMS object19 # ...20 global simDone21 simDone = "Transims obj processed"Currently, only standard data type matching is available1. The R bindingtemporarily provides an inner matching of Raster, List of Raster and

CoverageStack between the raster R package and the Geotools Java library.However, a plug-in system of data type conversions is under development. Thepurpose is to allow each user to implement the proper conversion between datatypes, and sharing it with the entire community. Nevertheless, two connected R orPython components can share generic Object data type which does not require anymatching (see Table 11 for available data types conversions).One design aspect relates to both bindings: in order to actually fill outputvariables and avoid declaring local function variables, a user must make use ofspecific operators. In R scripts, output variables must be assigned using the doublearrow assignment operator <<- which allows for modifying variables in a parentlevel (e.g. attractorMap in line 20, Listing B.1). In Python scripts, outputvariables must be declared global at the very beginning of the main function toallow for modifying variables at parent level (e.g. simDone at line 20, Listing B.2).Output variables have to be declared outside the main function as well (e.g. line14, Listing B.1 and Listing B.2). In this way, OMS3 can access their content andperform proper connections with other components.With respect to framework invasiveness, no specific OMS3 or other APIs have tobe imported or extended.
1 Python binding makes use of jarray instead of Numpy data structures because jarray makes data transferfaster and more efficient for the back-end Jep.

b.3 technical approach and implementation 197
Table 11: R and Python available data types.Java data type R data type Python data typeint int int

double double double
String String String
int[] vector of int jarray(. . . ,JINT_ID,. . .),from jep import jarray, JINT_ID
double[] vector of double jarray(. . . ,JDOUBLE_ID,. . .),from jep import jarray, JDOU-BLE_ID
String[] vector of String jarray(. . . ,JSTRING_ID,. . .),from jep import jarray,JSTRING_ID
GridCoverage2D raster
CoverageStack RasterStack
List<GridCoverage2D> list() of Raster
Object Object Object
List<Integer> []
List<Double> []
List<String> []
List<Object> []
Map<Object, Object> dictionary

b.3 technical approach and implementa-tion
To provide for a smooth user experience the actual implementation burden ismoved into the framework. Python and R are both cross-platform, interpreted, high-level scripting and programming languages. Thus, they both require interpreters toparse and execute a script. Simple access through shared libraries like Fortran orC/C++ through JNI (Gordon (1998)) does not work. Consequently, OMS3 needs todirectly intercommunicate to R and Python interpreters.

The common approach implies the generation of a Java OMS component aimingto wrap a single R or Python script while building the OMS3 project. EventuallyOMS3 calls only Java classes. When it is time to run the Java wrapper, this startsa connection to R or Python environment, sends the script to get parsed by theproper interpreter, sends input data and retrieves output information. It providesalso for properly converting input/output standard data types or data structuresbetween languages. Obviously, R and Python environments have to be alreadyinstalled on the machine and correctly linked to OMS3.

198 r and python annotation bindings for oms
b.3.1 R back-end: Rserve

Rserve is a TCP/IP server developed by Urbanek (2003) to take advantage ofbenefits of R functionalities from within different programming languages. It wasdeveloped following three important design principles: separation of the R systemfrom the application, flexibility for leveraging most R facilities and speed to have aperformant client-server communication. However, the most interesting feature is themanagement of multiple clients simultaneously. Rserve creates a different data spaceand working directory for each new connection. Because each R OMS-compliantcomponent opens a new independent connection to the R environment, multiple ROMS-compliant components can be executed in parallel without interference. Thisallows for leveraging OMS3 implicit multithreading computation.
Rserve requires installation of an R interpreter and the Rserve package on alocal computer to properly work with OMS3.

b.3.2 Python back-end: Jep
Jep is an open source Python package (https://github.com/ninia/jep)that utilizes both JNI and CPython API to run a Python interpreter from within theJVM. Its main feature is that of creating a different sandboxed sub-interpreter foreach new Jep instance. In this way concurrent sub-interpreters don’t share importedmodules or global variables, thus avoiding conflicts.
To properly exercise Jep from within OMS3, the Jep package has to be installedin addition to the proper Python interpreter. This is not trivial on Windows OSwhich requires an additional installation of a dedicated build tool. Furthermore, Jepshared libraries have to be accurately linked to the correct environment variable (e.g.

LD_LIBRARY_PATH) to be accessible by the Java process. Switching betweenPython2 and Python3 might be confusing and error prone as well.
b.4 docker image bundle

As explained in subsections R back-end: Rserve and Python back-end: Jep,Rserve and Jep require installation of a proper R or Python environment andaccurate linking of involved libraries, Jep especially. But this means that a user isexpected to take care of software installation and required libraries, which are bothOS specific and require some OS proficiencies. This is diametral to the OMS3principle of simplifying user experience by separating responsibilities betweenusers and software developers. To overcome this constraint a recently releasedtechnology has been leveraged and OMS3 has been bundled into a Docker image.
Docker is a software system that packages a software application and its depen-dencies into an image. It then runs that image as a virtual container on top of ahost OS. It is similar to a virtual machine (VM) since it isolates the running processof bundled applications from interfering with running processes of the host OS.However, container virtualization is more lightweight than a Hypervisor based VM.It virtualizes at operating-system-level without the needs of a hypervisor, whichis an additional software on top of the host OS to create, run and manage virtualmachines(Merkel (2014)). Docker images are platform independent. Consequently,the same Docker containers run on every OS once Docker is properly installed.

https://github.com/ninia/jep

b.5 applications 199
A Docker image results from a build process that starts off from a Dockerfile.The latter contains instructions required to install and setup applications alongwith dependencies. It also contains instructions for proper library linking andenvironment variables set up. The latter don’t interfere with environment variableof the host operating system because Docker isolates the bundled application fromthe hosting OS. To correctly exercise an OMS modeling solution the OMS projectis mounted into the running Docker container. The OMS3 image is made availableat https://hub.docker.com/r/omslab/oms/ and Dockerfiles are madeavailable at https://github.com/sidereus3/oms-docker.
Both, R and Python rely on hundreds of packages which cannot be includedinto a Docker image for the sake of size limits and the impossibility of continuousupdates when new packages are released. To overcome this constraint two slightlydifferent approaches have been implemented.

b.4.1 OMS R packages management
User scripts normally import standard and locally installed R packages throughthe library() command. The Docker image manages linking of bundled Renvironment to the additional Rlibs/build/ folder.
The OMS Docker image provides a feature that allows for automatically down-loading and building R packages required by R scripts in the OMS project. This isa one-time process which is enabled during OMS project build. When specific Rpackages are required, the user is asked to create a Rlibs folder inside the mainOMS project. The user has to provide a file named package.txt with a list of namesof required packages, located in Rlibs. During the building step, the Dockercontainer looks for Rlibs folder. If it exists and contains the file package.txt,the container reads all the listed packages and builds the dependency tree. Then itstarts downloading source code of each package into Rlibs/source/ creatinga local R package repository. As a final step, the Docker image goes through therepository, and builds and installs each package into Rlibs/build/.
Because Docker is platform independent the OMS project can be zipped andmoved to a different machine. If the version of the Docker image does not change,the transferred OMS projects can be directly executed.

b.4.2 OMS Python packages management
The OMS Docker image does not currently provide any tool for automaticallydownloading required python packages and related dependencies. However, if theuser provides Python packages within the folder Pylibs/ in the main projectdirectory, the OMS Docker image automatically makes new modules and packagesavailable for standard import.

b.5 applications
The development of both R and Python binding has been continuously testedwith two actual models in order to gain experience and drive the developmentdirection from the very beginning. The R binding was tested using the RUG model,while the Python binding was tested with the TRANSIMS model.

https://hub.docker.com/r/omslab/oms/
https://github.com/sidereus3/oms-docker

200 r and python annotation bindings for oms
b.5.1 RUG model

The Regional Urban Growth (RUG) model evaluates the attractiveness of a specificlocation with respect to urban growth. It is a raster based model: input data is alandscape raster map which allows for estimating development attraction on eachlocation depending on proximity to development attractors (roads, highways, etc.)(Westervelt et al. (2011)). The RUG model was a stand-alone, well implemented Rsoftware that takes advantage of availability of R packages like raster (Hijmanset al. (2015)), doParallel (Calaway et al. (2015)), randomForest (Liaw et al. (2002))and gdistance (Van Etten (2012)). To make this model OMS-compliant, it was splitinto three different components: Travel Time Analysis, Development Analysis andAttractor Analysis. This partitioning made possible to identify functions containingthe main algorithms and input/output data.
The RUG model performs a raster based analysis, and thus two Java componentsfor raster reading and writing were implemented leveraging Geotools APIs. Propermappings for Raster, List of Rasters and CoverageStack data struc-tures between Java and R (and vice versa) were included in the R binding. Thefinal modeling solution is illustrated in Figure 102.

Figure 102: RUG modeling solution: Java components in light orange, R OMS-compliantcomponents in light blue.
b.5.2 TRANSIMS model

The TRansportation ANalysis and SIMulation System (TRANSIMS) model eval-uates integrated regional transportation systems. Regional population of individualtravelers and freight loads with travel activities and travel plans are core of mod-eling computation (Smith et al. (1995)). TRANSIMS is more a set of tools than ahomogeneous model. Each module is a stand-alone C++ program, which buildsinto a separate, statically linked executable.
A Python Module for encapsulating TRANSIMS executables has been recentlyreleased. TRANSIMS RTE improves scripting flexibility providing for easy modelingsolution design. It allows for setting up TRANSIMS keywords, e.g. @NEW and

@OLD, and running a proper executable and related control file from within aPython script. Because a TRANSIMS modeling solution is a sequence of callsto different modules, a generic TRANSIMS-OMS component has been abstractedfrom a Python script. A simple Java class reads a csv file with a list of executable

b.6 conclusions 201
names and related control files and the feeds the TRANSIMS-OMS componentwhile the list is empty. A sample modeling solution is shown in Figure 103.

Figure 103: TRANSIMS sample modeling solution: Java component in light orange, PythonOMS-compliant component in light green.

b.6 conclusions
This paper shows how two of the most notable and widely used programminglanguages in the scientific community have been integrated into OMS3. It can beconcluded that the process of Python/R scripts adaptation into OMS-compliantcomponents is straightforward and doesn’t require user specific proficiency inunderstanding mixed language programming. This opens a future perspective foreasily creating multi-language modeling solutions, that implement againts alreadyavailable scientific packages and avoid code duplication.
Thank to the innovative technology of Docker containers, a user does not ex-perience the burden of connecting OMS3 with Python and R interpreters. Anautomated process for R package retrieval and building is provided in the Dockerimage. The two presented applications demonstrate the applicability and relevance.The implementation aims for design consistency with existing annotation basedrepresentation of components.
However, some limitations still exist and will be addressed in future developments:a fully flexible mapping of R/Python into Java data structures is not yet available;automated process for Python packages retrieval is not provided; and only the latestversion of a deployed R package is retrieved, user cannot automatically downloada specific package version.

B I B L I O G R A P H Y
Abera, W., Antonello, A., Franceschi, S., Formetta, G., and Rigon, R. (2014). The udigspatial toolbox for hydro-geomorphic analysis. Geomorphological Techniques,2(4.1):1–19.
Abera, W., Formetta, G., Borga, M., and Rigon, R. (2017a). Estimating the waterbudget components and their variability in a pre-alpine basin with jgrass-newage.

Advances in water resources, 104:37–54.
Abera, W., Formetta, G., Brocca, L., and Rigon, R. (2017b). Modeling the waterbudget of the upper blue nile basin using the jgrass-newage model system andsatellite data. Hydrology and Earth System Sciences, 21(6):3145–3165.
Akinmolayan, A., Adepoju, K., Adelabu, S., and Osunmadewa, A. (2018). Estimatingpotential annual soil loss of watershed in nigeria using rulse in a gis and remotesensing environment. In IGARSS 2018-2018 IEEE International Geoscience and

Remote Sensing Symposium, pages 7504–7507. IEEE.
Allamaraju, S. (2010). Restful web services cookbook: solutions for improving

scalability and simplicity. " O’Reilly Media, Inc.".
Anees, M., Abdullah, K., Nawawi, M., Norulaini, N., Syakir, M., and Omar, A. (2018).Soil erosion analysis by rusle and sediment yield models using remote sensingand gis in kelantan state, peninsular malaysia. Soil Research, 56(4):356–372.
Angeline, P. J., Saunders, G. M., and Pollack, J. B. (1994). An evolutionary algorithmthat constructs recurrent neural networks. IEEE transactions on Neural Networks,5(1):54–65.
Apostolopoulos, T. K. and Georgakakos, K. P. (1997). Parallel computation forstreamflow prediction with distributed hydrologic models. Journal of Hydrology,197(1-4):1–24.
Argent, R. M. (2004). An overview of model integration for environmental appli-cations—components, frameworks and semantics. Environmental Modelling &

Software, 19(3):219–234.
Arnold, J. G. and Allen, P. M. (1999). Automated methods for estimating baseflowand ground water recharge from streamflow records 1. JAWRA Journal of the

American Water Resources Association, 35(2):411–424.
Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J.,Srinivasan, R., Santhi, C., Harmel, R., Van Griensven, A., Van Liew, M. W., et al.(2012). Swat: Model use, calibration, and validation. Transactions of the ASABE,55(4):1491–1508.
Arnold, J. G., Williams, J., Nicks, A., Sammons, N., et al. (1990). Swrrb; a basinscale simulation model for soil and water resources management. SWRRB; a

basin scale simulation model for soil and water resources management.

Arnold, J. G., Williams, J. R., and Maidment, D. R. (1995). Continuous-time waterand sediment-routing model for large basins. Journal of Hydraulic engineering,121(2):171–183.
203

204 bibliography
Ascough, J., Green, T., David, O., Kipka, H., McMaster, G., Fink, M., Krause, P., andKralisch, S. (2014). Advances in distributed watershed modeling: A review andapplication of the agroecosystem-watershed (ages-w) model. In 7th Intl. Congress

on Env. Modelling and Software. International Environmental Modelling and
Software Society (iEMSs): San Diego, CA, USA, this issue.

Ascough II, J., David, O., Krause, P., Heathman, G., Kralisch, S., Larose, M., Ahuja, L.,and Kipka, H. (2012). Development and application of a modular watershed-scalehydrologic model using the object modeling system: Runoff response evaluation.
Transactions of the ASABE, 55(1):117–135.

Ascough II, J. C., Green, T. R., David, O., Kipka, H., and MACMASTER, G. (2015a).The spatially-distributed agroecosystem-watershed (ages-w) hydrologic/waterquality (h/wq) model for assessment of conservation effects. In Annual Hydrology
Days Conference Proceedings, pages 23–25.

Ascough II, J. C., Green, T. R., David, O., Kipka, H., McMaster, G. S., and Lighthart,N. P. (2015b). The agroecosystem-watershed (ages-w) model: Overview andapplication to experimental watersheds. In 2015 ASABE Annual International
Meeting, page 1. American Society of Agricultural and Biological Engineers.

Asher, M. J., Croke, B. F., Jakeman, A. J., and Peeters, L. J. (2015). A review ofsurrogate models and their application to groundwater modeling. Water Resources
Research, 51(8):5957–5973.

Bancheri, M. (2017). A flexible approach to the estimation of water budgets and its
connection to the travel time theory. PhD thesis, University of Trento.

Bancheri, M., Abera, W., Rigon, R., Formetta, G., David, O., and Serafin, F. (2015).Implementing a travel time model for the entire river adige: the case on jgrass-newage. In AGU Fall Meeting Abstracts.
Bancheri, M., Formetta, G., Serafin, F., Rigon, R., Green, T. R., and David, O. (2016).Replicability of a modelling solution using newage-jgrass. In International

Environmental Modelling and Software Society (iEMSs), Tolosa, France.
Bancheri, M., Mita, L., Viaggiano, D., and Manfreda, S. (2018a). Geoframe-newage:a web-based early warning decision support system. In EGU General Assembly

Conference Abstracts, volume 20, page 16526.
Bancheri, M., Rigon, R., Serafin, F., Abera, W., and Bottazzi, M. (2017a). Strategiesfor estimating the water budget at different scales using the jgrass-newage system.In AGU Fall Meeting Abstracts.
Bancheri, M., Serafin, F., Bottazzi, M., Abera, W., Formetta, G., and Rigon, R. (2018b).The design, deployment, and testing of kriging models in geoframe with sik-0.9.8. Geoscientific Model Development, 11(6):2189–2207.
Bancheri, M., Serafin, F., Formetta, G., Rigon, R., and David, O. (2017b). Jgrass-newage hydrological system: an open-source platform for the replicability ofscience. In EGU General Assembly Conference Abstracts, volume 19, page 17109.
Bancheri, M., Serafin, F., and Rigon, R. (2018c). Travel-time (tt) based modelling oftransport in hydrological systems. In Integrated Hydrosystem Modelling.
Bancheri, M., Serafin, F., and Rigon, R. (2019). The representation of hydrologicaldynamical systems using the extended petri nets (epn). Water Resources Research.

bibliography 205
Band, L. E. (1986). Topographic partition of watersheds with digital elevationmodels. Water resources research, 22(1):15–24.Bayramov, E., Schlager, P., Kada, M., Buchroithner, M., and Bayramov, R. (2019).Quantitative assessment of climate change impacts onto predicted erosion risksand their spatial distribution within the landcover classes of the southern caucasususing gis and remote sensing. Modeling Earth Systems and Environment, pages1–9.Beasley, D., Huggins, L., and Monke, a. (1980). Answers: A model for watershedplanning. Transactions of the ASAE, 23(4):938–0944.Beck, K. (2003). Test-driven development: by example. Addison-Wesley Professional.Beh, E. H., Zheng, F., Dandy, G. C., Maier, H. R., and Kapelan, Z. (2017). Ro-bust optimization of water infrastructure planning under deep uncertainty usingmetamodels. Environmental Modelling & Software, 93:92–105.Behzadian, K., Kapelan, Z., Savic, D., and Ardeshir, A. (2009). Stochastic samplingdesign using a multi-objective genetic algorithm and adaptive neural networks.

Environmental Modelling & Software, 24(4):530–541.Berglund, T. and McCullough, M. (2011). Building and Testing with Gradle. "O’Reilly Media, Inc.".Bernholdt, D. E., Elwasif, W. R., Kohl, J. A., and Epperly, T. G. (2003). A componentarchitecture for high-performance computing. Technical report, Lawrence LivermoreNational Lab., CA (US).Beven, K. (1993). Prophecy, reality and uncertainty in distributed hydrologicalmodelling. Advances in water resources, 16(1):41–51.Beven, K. J. (2011). Rainfall-runoff modelling: the primer. John Wiley & Sons.Bieker, H. P., Slupphaug, O., Johansen, T. A., et al. (2007). Real-time productionoptimization of oil and gas production systems: A technology survey. SPE
Production & Operations, 22(04):382–391.Birrer, A. and Eggenschwiler, T. (1993). Frameworks in the financial engineeringdomain an experience report. In European Conference on Object-Oriented
Programming, pages 21–35. Springer.Blanning, R. W. (1975). The construction and implementation of metamodels.
simulation, 24(6):177–184.Blind, M. and Gregersen, J. (2005). Towards an open modelling interface (openmi)the harmonit project. Advances in Geosciences, 4:69–74.Bonnlander, B. V. and Weigend, A. S. (1994). Selecting input variables using mutualinformation and nonparametric density estimation. In Proceedings of the 1994
International Symposium on Artificial Neural Networks (ISANN’94), pages 42–50.Citeseer.Bottazzi, M. and Rigon, R. (2018a). Coupling the schymanski-or formula with amulti-layer canopy model. In EGU General Assembly Conference Abstracts,volume 20, page 16132.Bottazzi, M. and Rigon, R. (2018b). Coupling the schymanski-or formula with amulti-layer canopy model. In International Environmental Modelling and Software
Society (iEMSs), Fort Collins, Colorado, USA.

206 bibliography
Boughton, A. (2011). Software metrics.
Bozzini, M. and Rossini, M. (2013). The detection and recovery of discontinuitycurves from scattered data. Journal of Computational and Applied Mathematics,240:148–162.
Braun, H. and Weisbrod, J. (1993). Evolving neural feedforward networks. In Artificial

Neural Nets and Genetic Algorithms, pages 25–32. Springer.
Briand, L. C., Wüst, J., Daly, J. W., and Porter, D. V. (2000). Exploring the relationshipsbetween design measures and software quality in object-oriented systems. Journal

of systems and software, 51(3):245–273.
Briand, L. C., Wüst, J., Ikonomovski, S. V., and Lounis, H. (1999). Investigating qualityfactors in object-oriented designs: an industrial case study. In Proceedings of

the 21st international conference on Software engineering, pages 345–354. ACM.
Brovelli, M. A. (2006). History of gis. Laboratrio Geomatica, Politecnico di Milano.
Burke, B. (2013). RESTful Java with JAX-RS 2.0: Designing and Developing

Distributed Web Services. " O’Reilly Media, Inc.".
Burkhalter, J. A., Ehlschlaeger, C. R., Morrison, D. M., Myers, N. R., Lu, L., Petit, A.,Ouyang, Y., David, O., Serafino, F., Patterson, D., et al. (2018). Integrated analyticsimulation tools to support emergency management. In Next-Generation Analyst

VI, volume 10653, page 106530F. International Society for Optics and Photonics.
Calaway, R., Weston, S., Tenenbaum, D., and Analytics, R. (2015). doparallel:Foreach parallel adaptor for the ‘parallel’package. R package version, 1(10).
Casulli, V. (2017). A coupled surface-subsurface model for hydrostatic flows undersaturated and variably saturated conditions. International Journal for Numerical

Methods in Fluids, 85(8):449–464.
Chodorow, K. (2013). MongoDB: The Definitive Guide: Powerful and Scalable

Data Storage. " O’Reilly Media, Inc.".
Collins, N., Theurich, G., Deluca, C., Suarez, M., Trayanov, A., Balaji, V., Li, P., Yang,W., Hill, C., and Da Silva, A. (2005). Design and implementation of componentsin the earth system modeling framework. The International Journal of High

Performance Computing Applications, 19(3):341–350.
Consortium, O. G. et al. (2007). Inc. opengis web processing service (wps) specifica-tion, 2007, www document.
Cronshey, R., Theurer, F., and Glenn, R. (1993). Gis-water quality computermodel interface: A prototype. In Second International Conference/Workshop

on Integrating Geographic Information Systems and Environmental Modeling,
Breckenridge, Colorado.

Cui, Z., Koren, V., Cajina, N., Voellmy, A., and Moreda, F. (2011). Hydroinformaticsadvances for operational river forecasting: using graphs for drainage networkdescriptions. Journal of Hydroinformatics, 13(2):181–197.
Dahlgren, T., Epperly, T., Kumfert, G., and Leek, J. (2004). Babel user’s guide. CASC,

Lawrence Livermore National Laboratory. version 0.9. 0 edn.(January 2004).
Dalla Torre, D. (2019). Swmm through giuh and oms3: the design of stormwaterdrainage systems leveraging net3. Master’s thesis, University of Trento.

bibliography 207
Dalla Torre, D., Serafin, F., David, O., and Rigon, R. (2018). Swmm through giuh andoms3: the design of stormwater drainage systems leveraging net3. In International

Environmental Modelling and Software Society (iEMSs), Fort Collins, Colorado,
USA.

Dall’Amico, M., Endrizzi, S., and Tasin, S. (2018). Mysnowmaps: Operative high-resolution real-time snow mapping. In Proceedings, International Snow Science
Workshop, Innsbruck, Austria, pages 328–332.

Danial, A. (2018). Cloc: Counting lines of code.
Darnell, J. E. and Doolittle, W. (1986). Speculations on the early course of evolution.

Proceedings of the National Academy of Sciences, 83(5):1271–1275.
Dasgupta, D. and McGregor, D. R. (1992). Designing application-specific neuralnetworks using the structured genetic algorithm. In Combinations of Genetic

Algorithms and Neural Networks, 1992., COGANN-92. International Workshop
on, pages 87–96. IEEE.

David, O., Ascough Ii, J., Lloyd, W., Green, T., Rojas, K., Leavesley, G., and Ahuja, L.(2013). A software engineering perspective on environmental modeling frameworkdesign: The object modeling system. Environmental Modelling & Software,39:201–213.
David, O., Lloyd, W., Ascough, I., James, C., Green, T. R., Olson, K., Leavesley, G.,and Carlson, J. R. (2012). Domain specific languages for modeling and simulation:use case oms3. In International Environmental Modelling and Software Society

(iEMSs), Leipzig, Germany.
David, O., Lloyd, W., Rojas, K., Arabi, M., Geter, F., Ascough, I., James, C., Green, T.,Leavesley, G., and Carlson, J. (2014a). Model-as-a-service (maas) using the cloudservices innovation platform (csip). In International Environmental Modelling and

Software Society (iEMSs), San Diego, California, USA.
David, O., Yaegea, L., Rojasd, K., Greenc, T., Kipkaa, H., Lloydab, W., Carlsona,J., Geterd, F., and Ascoughc, J. (2014b). The land management and operationsdatabase (lmod). In International Environmental Modelling and Software Society

(iEMSs), San Diego, California, USA.
Dearle, F. (2010). Groovy for Domain-Specific Languages. Packt Publishing Ltd.
Demir, I. and Szczepanek, R. (2017). Optimization of river network representationdata models for web-based systems. Earth and Space Science, 4(6):336–347.
DePinto, J. V. and Rodgers, P. (1994). Development of geo-wams: A modelingsupport system for integrating gis with watershed analysis models. Lake and

Reservoir Management, 9(2):68.
Devia, G. K., Ganasri, B., and Dwarakish, G. (2015). A review on hydrologicalmodels. Aquatic Procedia, 4:1001–1007.
Dietrich, W. E., Wilson, C. J., Montgomery, D. R., and McKean, J. (1993). Analysis oferosion thresholds, channel networks, and landscape morphology using a digitalterrain model. The Journal of Geology, 101(2):259–278.
Donatelli, M., Cerrani, I., Fanchini, D., Fumagalli, D., and Rizzoli, A.-E. (2012).Enhancing model reuse via component-centered modeling frameworks: the visionand example realizations. In Proc. International Congress on Environ. Modell. &

Soft., Sixth Biennial Meeting. Leipzig, Germany.

208 bibliography
Dumbser, M., Balsara, D. S., Tavelli, M., and Fambri, F. (2019). A divergence-freesemi-implicit finite volume scheme for ideal, viscous, and resistive magnetohydro-dynamics. International Journal for Numerical Methods in Fluids, 89(1-2):16–42.Ehlschlaeger, C. R. (1989). Using the aˆ t search algorithm to develop hydrologicmodels from digital elevation data. In Proceedings of the International Geographic

Information System (IGIS) Symposium, Baltimore, MD, pages 275–281.Ehlschlaeger, C. R., Burkhalter, J. A., David, O., Westervelt, J. D., Morrison, D. A.,Ouyang, Y., Ross, J., Arabi, M., Patterson, D., Myers, N. R., Carey, B., Bastian,E., Gao, Y., , Lu, L., Serafin, F., Traff, K., Petit, A. M., et al. (2018a). Observationson the implementation of a general purpose spatiotemporal risk analysis systemsupporting black swan theory. In University Consortium for Geographic Information
Science.Ehlschlaeger, C. R., David, O., Ouyang, Y., Westervelt, J. D., Morrison, D. A., Patterson,D., Serafin, F., Lu, L., Burkhalter, J. A., Myers, N. R., et al. (2018b). A computationalframework for interoperating uncertainty quantified social system models. In
International Environmental Modelling and Software Society (iEMSs), Fort
Collins, Colorado, USA.Ehlschlaeger, C. R., David, O., Ouyang, Y., Westervelt, J. D., Morrison, D. A., Patterson,D., Serafin, F., Lu, L., Burkhalter, J. A., Myers, N. R., Petit, A. M., et al. (2018c).Observations on the implementation of a general purpose spatiotemporal riskanalysis system supporting black swan theory. In Conceptualizing a Geospatial
Software Institute (GSI).Ehlschlaeger, C. R., DIA, L. M. T. F., Brown, M., Baxter, C. L., Burkhalter, M. J.,Calfas, G. W., Copeland, L., CI, M. C., Drigo, M. M., Morrison, A., et al. (2014a).
Socio-Cultural Analysis with the Reconnaissance, Surveillance, and Intelligence
Paradigm. US Army Corps of Engineers, Engineer Research and DevelopmentCenterEhlschlaeger, C. R., DIA, L. M. T. F., NGA, M. D. E. B., NGA, E. B., and Brandenberger,M. J. (2014b). Understanding Megacities with the Reconnaissance, Surveillance,
and Intelligence Paradigm. US Army Corps of Engineers, Engineer Researchand Development CenterFatichi, S., Vivoni, E. R., Ogden, F. L., Ivanov, V. Y., Mirus, B., Gochis, D., Downer,C. W., Camporese, M., Davison, J. H., Ebel, B., et al. (2016). An overview of currentapplications, challenges, and future trends in distributed process-based modelsin hydrology. Journal of Hydrology, 537:45–60.Fielding, R. T. and Taylor, R. N. (2000). Architectural styles and the design of
network-based software architectures, volume 7. University of California, IrvineIrvine, USA.Fielding, R. T. and Taylor, R. N. (2002). Principled design of the modern webarchitecture. ACM Transactions on Internet Technology (TOIT), 2(2):115–150.Floreano, D., Dürr, P., and Mattiussi, C. (2008). Neuroevolution: from architecturesto learning. Evolutionary Intelligence, 1(1):47–62.Formetta, G. (2013). Hydrological modelling with components: the OMS3 NewAge-
JGrass system. PhD thesis, University of Trento.Formetta, G., Antonello, A., Franceschi, S., David, O., and Rigon, R. (2014a). Hy-drological modelling with components: A gis-based open-source framework.
Environmental Modelling & Software, 55:190–200.

bibliography 209
Formetta, G., Bancheri, M., David, O., and Rigon, R. (2016a). Performance of site-specific parameterizations of longwave radiation. Hydrology and Earth System

Sciences, 20(11):4641–4654.
Formetta, G., Capparelli, G., David, O., Green, T. R., and Rigon, R. (2016b). Integrationof a three-dimensional process-based hydrological model into the object modelingsystem. Water, 8(1):12.
Formetta, G., Capparelli, G., and Versace, P. (2016c). Evaluating performance ofsimplified physically based models for shallow landslide susceptibility. Hydrology

and Earth System Sciences, 20(11):4585–4603.
Formetta, G., Kampf, S., David, O., and Rigon, R. (2013a). The cache la poudre riverbasin snow water equivalent modeling with newage-jgrass. Geoscientific Model

Development Discussions, 6(3).
Formetta, G., Kampf, S. K., David, O., and Rigon, R. (2014b). Snow water equiva-lent modeling components in newage-jgrass. Geoscientific Model Development,7(3):725–736.
Formetta, G., Mantilla, R., Franceschi, S., Antonello, A., and Rigon, R. (2011). Thejgrass-newage system for forecasting and managing the hydrological budgets atthe basin scale: models of flow generation and propagation/routing. Geoscientific

Model Development, 4(4):943–955.
Formetta, G., Rigon, R., Chávez, J., and David, O. (2013b). Modeling shortwave solarradiation using the jgrass-newage system. Geoscientific Model Development,6(4):915–928.
Foster, G. (2005). Draft science documentation, revised universal soil loss equationversion 2 (rusle2). washington (dc): Agricultural research service. US Department

of Agriculture.
Foster, G., Yoder, D., McCool, D., Weesies, G., Toy, T., Wagner, L., et al. (2000).Improvements in science in rusle2. Improvements in science in RUSLE2., pages1–19.
Foster, G., Yoder, D., Weesies, G., and Toy, T. (2001). The design philosophy behindrusle2: Evolution of an empirical model. In Soil Erosion, page 95. AmericanSociety of Agricultural and Biological Engineers.
Fowler, M. (2004). Inversion of control containers and the dependency injectionpattern. http://www. martinfowler. com/articles/injection. html.
Fowler, M. (2010). Domain-specific languages. Pearson Education.
Freeman, E., Robson, E., Bates, B., and Sierra, K. (2004). Head first design patterns." O’Reilly Media, Inc.".
Friedman, J., Hastie, T., and Tibshirani, R. (2001). The elements of statistical

learning, volume 1. Springer series in statistics New York, NY, USA:.
Fullmer, B. and Miikkulainen, R. (1992). Using marker-based genetic encodingof neural networks to evolve finite-state behaviour. In Toward a Practice of

Autonomous Systems: Proceedings of the First European Conference on Artificial
Life, pages 255–262. MIT Press.

Gachet, A. (2003). A new component in the classification of dss development tools.
Journal of Decision Systems, 12(3-4):271–281.

210 bibliography
Gamma, E. (1995). Design patterns: elements of reusable object-oriented software.Pearson Education India.Gironás, J., Roesner, L. A., Rossman, L. A., and Davis, J. (2010). A new applicationsmanual for the storm water management model (swmm). Environmental Modelling

& Software, 25(6):813–814.Goetz, B. and Peierls, T. (2006). Java concurrency in practice. Pearson Education.Goldberg, D. E., Richardson, J., et al. (1987). Genetic algorithms with sharing formultimodal function optimization. In Genetic algorithms and their applications:
Proceedings of the Second International Conference on Genetic Algorithms, pages41–49. Hillsdale, NJ: Lawrence Erlbaum.Goran, W. D., Dvorak, W. E., Warren, L. V., and Webster, R. D. (1983). Fort hoodgeographic information system: Pilot system development and user instructions.Technical report, CONSTRUCTION ENGINEERING RESEARCH LAB (ARMY)CHAMPAIGN IL.Gordon, R. (1998). Essential JNI: Java Native Interface. Prentice-Hall, Inc.Govindaraju, R. S. and Rao, A. R. (2000a). Artificial Neural Networks in Hydrology,volume 36. Kluwer Academic Publishers.Govindaraju, R. S. and Rao, A. R. (2000b). Artificial Neural Networks in Hydrology,volume 36. Kluwer Academic Publishers.Grasso, S., Giuzio, L., Viggiano, D., and Manfreda, S. (2017). Sviluppo di un sistemaweb-gis per l’early warning di criticità pluviometrica. In Proceedings of the 21
Conferenza Nazionale ed EXPO., pages 641–650.Green, T. R., Erskine, R. H., Ascough II, J. C., Vandenberg, B., Pfennig, B., Kipka, H.,David, O., and Coleman, M. L. (2014). Agroecosystem-watershed (ages-w) modeldelineation and scaling. In Proceedings of the Seventh International Congress
on Environmental Modelling and Software. June, pages 15–19.Green, T. R., Erskine, R. H., Coleman, M. L., David, O., Ascough, J. C., and Kipka,H. (2015). The agroecosystem (ages) response-function model simulates layeredsoil-water dynamics in semiarid colorado: Sensitivity and calibration. Vadose
Zone Journal, 14(8).Green, T. R., Kipka, H., David, O., and McMaster, G. S. (2018a). Where is theusa corn belt, and how is it changing? Science of the Total Environment,618:1613–1618.Green, T. R., Kipka, H., Tomer, M., McMaster, G. S., Beeson, P., Lighthart, N., David,O., Arabi, M., and Ascough, J. (2018b). Streamflow rates and nitrogen loads in thesouth fork iowa river, usa: Simulations with spatial interactions and tile drainageindicate high manure applications. Agricultural Water Management.Gregersen, J., Gijsbers, P., and Westen, S. (2007). Openmi: Open modelling interface.
Journal of hydroinformatics, 9(3):175–191.Gruau, F. (1993). Genetic synthesis of modular neural networks. In Proceedings of
the 5th International Conference on Genetic Algorithms, pages 318–325. MorganKaufmann Publishers Inc.Gruau, F., Whitley, D., and Pyeatt, L. (1996). A comparison between cellularencoding and direct encoding for genetic neural networks. In Proceedings of the
1st annual conference on genetic programming, pages 81–89. MIT Press.

bibliography 211
Grübsch, M. and David, O. (2001). How to divide a catchment to conquer itsparallel processing. an efficient algorithm for the partitioning of water catchments.

Mathematical and computer modelling, 33(6-7):723–731.
Guo, Z., Zhao, W., Lu, H., and Wang, J. (2012). Multi-step forecasting for wind speedusing a modified emd-based artificial neural network model. Renewable Energy,37(1):241–249.
Harbaugh, A. W., Banta, E. R., Hill, M. C., and McDonald, M. G. (2000). Modflow-2000, the u. s. geological survey modular ground-water model-user guide tomodularization concepts and the ground-water flow process. Open-file Report. U.

S. Geological Survey, page 134.
Hay, L., Knapp, L., and Bromberg, J. (1993). Integrating geographic informationsystems, scientific visualization systems, statistics, and an orographic precipitationmodel for a hydro-climatic study of the gunnison river basin, southwesterncolorado. In Proceedings of the Second International Conference/Workshop

on Integrating Geographic Information Systems and Environmental Modeling,
Breckenridge, CO.

Haykin, S. and Lippmann, R. (1994). Neural networks, a comprehensive foundation.
International journal of neural systems, 5(4):363–364.

Heaton, J. (2015). Encog: library of interchangeable machine learning models forjava and c#. Journal of Machine Learning Research, 16:1243–1247.
Heckmann, T., Schwanghart, W., and Phillips, J. D. (2015). Graph theory—recentdevelopments of its application in geomorphology. Geomorphology, 243:130–146.
Hijmans, R. J., van Etten, J., Cheng, J., Mattiuzzi, M., Sumner, M., Greenberg, J. A.,Lamigueiro, O. P., Bevan, A., Racine, E. B., Shortridge, A., et al. (2015). Package‘raster’. R package.
Hill, C., DeLuca, C., Suarez, M., Da Silva, A., et al. (2004). The architecture of theearth system modeling framework. Computing in Science & Engineering, 6(1):18.
Hluchy, L., Froehlich, D., Tran, V. D., Astalos, J., Dobrucky, M., and Nguyen, G. T.(2001). Parallel numerical solution for flood modeling systems. In International

Conference on Parallel Processing and Applied Mathematics, pages 485–492.Springer.
Hooshyar, M., Wang, D., Kim, S., Medeiros, S. C., and Hagen, S. C. (2016). Valley andchannel networks extraction based on local topographic curvature and k-meansclustering of contours. Water Resources Research, 52(10):8081–8102.
Hopfield, J. J. (1982). Neural networks and physical systems with emergent collec-tive computational abilities. Proceedings of the national academy of sciences,79(8):2554–2558.
Howard, A. D. (1994). A detachment-limited model of drainage basin evolution.

Water resources research, 30(7):2261–2285.
Hrachowitz, M. and Clark, M. P. (2017). Hess opinions: The complementary meritsof competing modelling philosophies in hydrology. Hydrology and Earth System

Sciences, 21(8):3953–3973.
Ijjasz-Vasquez, E. J. and Bras, R. L. (1995). Scaling regimes of local slope versuscontributing area in digital elevation models. Geomorphology, 12(4):299–311.

212 bibliography
Iuhasz, G., Munteanu, V. I., and Negru, V. (2013). Data mining considerationsfor knowledge acquisition in real time strategy games. In 2013 IEEE 11th

International Symposium on Intelligent Systems and Informatics (SISY), pages331–336. IEEE.
James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to

statistical learning, volume 112. Springer.
Jasiewicz, J. and Metz, M. (2011). A new grass gis toolkit for hortonian analysis ofdrainage networks. Computers & Geosciences, 37(8):1162–1173.
Jha, S., Katz, D. S., Luckow, A., Merzky, A., and Stamou, K. (2011). Understandingscientific applications for cloud environments. Cloud computing: principles and

paradigms, pages 345–371.
Jin, Y., Olhofer, M., and Sendhoff, B. (2002). A framework for evolutionary optimizationwith approximate fitness functions. IEEE Transactions on evolutionary computation,6(5):481–494.
Johnson, R. E. (1992). Documenting frameworks using patterns. In OOPSLA,volume 92, pages 63–76. Citeseer.
Johnson, R. E., McConnell, C., and Lake, J. M. (1992). The rtl system: A frameworkfor code optimization. In Code Generation—Concepts, Tools, Techniques, pages255–274. Springer.
Jones, E., Oliphant, T., and Peterson, P. (2014). {SciPy}: Open source scientifictools for {Python}.
Julien, P. Y. and Saghafian, B. (1991). Casc2d user’s manual: a two-dimensionalwatershed rainfall-runoff model. CER; 90/91-12.
Kalyanapu, A. J., Shankar, S., Pardyjak, E. R., Judi, D. R., and Burian, S. J. (2011).Assessment of gpu computational enhancement to a 2d flood model. Environmental

Modelling & Software, 26(8):1009–1016.
Khu, S.-T. and Werner, M. G. (2003). Reduction of monte-carlo simulation runs foruncertainty estimation in hydrological modelling. Hydrology and Earth System

Sciences Discussions, 7(5):680–692.
Kira, K. and Rendell, L. A. (1992). A practical approach to feature selection. In

Machine Learning Proceedings 1992, pages 249–256. Elsevier.
Kleijnen, J. P. (1975). A comment on blanning’s “metamodel for sensitivity analysis:the regression metamodel in simulation”. Interfaces, 5(3):21–23.
Kourakos, G. and Mantoglou, A. (2009). Pumping optimization of coastal aquifersbased on evolutionary algorithms and surrogate modular neural network models.

Advances in water resources, 32(4):507–521.
Krishnan, R. and Ciesielski, V. B. (1994). Delta-gann: A new approach to trainingneural networks using genetic algorithms. In University of Queensland. Citeseer.
Krummel, J., Dunn, C., Eckert, T., and Ayers, A. (1996). A technology to analyzespatiotemporal landscape dynamics: Application to cadiz township (wisconsin).

1996a) op. cit, pages 169–174.
Laflen, J. M., Lane, L. J., and Foster, G. R. (1991). Wepp: A new generation of erosionprediction technology. Journal of Soil and Water Conservation, 46(1):34–38.

bibliography 213
Langley, P. (1994). Selection of relevant features in machine learning. In Proceedings

of the AAAI Fall symposium on relevance, pages 1–5.
Lashermes, B., Foufoula-Georgiou, E., and Dietrich, W. E. (2007). Channel networkextraction from high resolution topography using wavelets. Geophysical Research

Letters, 34(23).
Leavesley, G., Markstrom, S., Viger, R., and Hay, L. (2005). Usgs modular modelingsystem (mms)-precipitation-runoff modeling system (prms) mms-prms. Singh, V.,

and Frevert, D., CRC Press, Boca Raton, USA, pages 159–177.
Lee, C.-H. and Kim, J.-H. (1996). Evolutionary ordered neural network with alinked-list encoding scheme. In Proceedings of IEEE International Conference

on Evolutionary Computation, pages 665–669. IEEE.
Leonard, R., Knisel, W., and Still, D. (1987). Gleams: Groundwater loading effectsof agricultural management systems. Transactions of the ASAE, 30(5):1403–1418.
Li, T., Wang, G., Chen, J., and Wang, H. (2011). Dynamic parallelization of hydrolog-ical model simulations. Environmental Modelling & Software, 26(12):1736–1746.
Liaw, A., Wiener, M., et al. (2002). Classification and regression by randomforest. R

news, 2(3):18–22.
Lindsay, J. B. (2005). The terrain analysis system: A tool for hydro-geomorphicapplications. Hydrological Processes: An International Journal, 19(5):1123–1130.
Liong, S.-Y., Khu, S.-T., and Chan, W.-T. (2001). Derivation of pareto front with geneticalgorithm and neural network. Journal of Hydrologic Engineering, 6(1):52–61.
Liu, J., Zhu, A.-X., Qin, C.-Z., Wu, H., and Jiang, J. (2016). A two-level parallelizationmethod for distributed hydrological models. Environmental modelling & software,80:175–184.
Lloyd, W., David, O., Ascough, I., James, C., Green, T., Carlson, J., Lyon, J., andRojas, K. (2012). The cloud services innovation platform-enabling service-basedenvironmental modelling using infrastructure-as-a-service cloud computing. In

International Environmental Modelling and Software Society (iEMSs), Leipzig,
Germany.

Lloyd, W., David, O., Ascough, J., Rojas, K. W., Carlson, J. R., Leavesley, G., Krause, P.,Green, T. R., and Ahuja, L. (2011). Environmental modeling framework invasiveness:Analysis and implications. Environmental Modelling & Software, 26(10):1240–1250.
Lu, L., Wang, X., Ouyang, Y., Roningen, J., Myers, N., and Calfas, G. (2018). Vulner-ability of interdependent urban infrastructure networks: Equilibrium after failurepropagation and cascading impacts. Computer-Aided Civil and Infrastructure

Engineering, 33(4):300–315.
Maniezzo, V. (1994). Genetic evolution of the topology and weight distribution ofneural networks. IEEE Transactions on neural networks, 5(1):39–53.
Martin, R. C. (2007). Professionalism and test-driven development. Ieee Software,24(3):32–36.
Martin, R. C. (2009). Clean code: a handbook of agile software craftsmanship.Pearson Education.

214 bibliography
McCreary, C. and Reed, A. (1993). A graph parsing algorithm and implementation.

Tech. Rpt. TR-93-04, Dept. of Comp. Sci and Eng., Auburn U.McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent innervous activity. The bulletin of mathematical biophysics, 5(4):115–133.Merkel, D. (2014). Docker: lightweight linux containers for consistent developmentand deployment. Linux Journal, 2014(239):2.Meyer, M. (2014). Continuous integration and its tools. IEEE software, 31(3):14–16.Miller, J. C. and Maloney, C. J. (1963). Systematic mistake analysis of digitalcomputer programs. Commun. ACM, 6(2):58–63.MongoDB (2019a). Mongodb: Aggregation. docs.mongodb.com/manual/
aggregation/#single-purpose-aggregation-operations. Ac-cessed: 2019-01-13.MongoDB (2019b). Mongodb: Map-reduce. docs.mongodb.com/manual/
core/map-reduce/. Accessed: 2019-01-13.Montgomery, D. R. (1999). Process domains and the river continuum 1. JAWRA
Journal of the American Water Resources Association, 35(2):397–410.Montgomery, D. R. and Dietrich, W. E. (1988). Where do channels begin? Nature,336(6196):232.Montgomery, D. R. and Dietrich, W. E. (1989). Source areas, drainage density, andchannel initiation. Water Resources Research, 25(8):1907–1918.Montgomery, D. R. and Foufoula-Georgiou, E. (1993). Channel network source repre-sentation using digital elevation models. Water Resources Research, 29(12):3925–3934.Moore, A., Holzworth, D., Herrmann, N., Huth, N., and Robertson, M. (2007). Thecommon modelling protocol: A hierarchical framework for simulation of agriculturaland environmental systems. Agricultural Systems, 95(1-3):37–48.Nadareishvili, I., Mitra, R., McLarty, M., and Amundsen, M. (2016). Microservice
architecture: aligning principles, practices, and culture. " O’Reilly Media, Inc.".Narendra, P. M. and Fukunaga, K. (1977). A branch and bound algorithm for featuresubset selection. IEEE Transactions on computers, pages 917–922.Newman, S. (2015). Building microservices: designing fine-grained systems. "O’Reilly Media, Inc.".Oliphant, T. E. (2006). A guide to NumPy, volume 1. Trelgol Publishing USA.Opitz, D. W. and Shavlik, J. W. (1997). Connectionist theory refinement: Geneticallysearching the space of network topologies. Journal of Artificial Intelligence
Research, 6:177–209.Ovatman, T., Weigert, T., and Buzluca, F. (2011). Exploring implicit parallelism inclass diagrams. Journal of Systems and Software, 84(5):821–834.O’Hagan, A. (2006). Bayesian analysis of computer code outputs: A tutorial.
Reliability Engineering & System Safety, 91(10-11):1290–1300.Paniconi, C. and Putti, M. (2015). Physically based modeling in catchment hydrologyat 50: Survey and outlook. Water Resources Research, 51(9):7090–7129.

docs.mongodb.com/manual/aggregation/#single-purpose-aggregation-operations
docs.mongodb.com/manual/aggregation/#single-purpose-aggregation-operations
docs.mongodb.com/manual/core/map-reduce/
docs.mongodb.com/manual/core/map-reduce/

bibliography 215
Passalacqua, P., Do Trung, T., Foufoula-Georgiou, E., Sapiro, G., and Dietrich,W. E. (2010a). A geometric framework for channel network extraction from lidar:Nonlinear diffusion and geodesic paths. Journal of Geophysical Research: Earth

Surface, 115(F1).Passalacqua, P., Tarolli, P., and Foufoula-Georgiou, E. (2010b). Testing space-scalemethodologies for automatic geomorphic feature extraction from lidar in a complexmountainous landscape. Water resources research, 46(11).Pebesma, E. J. and Wesseling, C. G. (1998). Gstat: a program for geostatisticalmodelling, prediction and simulation. Computers & Geosciences, 24(1):17–31.Pechlivanidis, I., Jackson, B., McIntyre, N., and Wheater, H. (2011). Catchment scalehydrological modelling: a review of model types, calibration approaches anduncertainty analysis methods in the context of recent developments in technologyand applications. Global NEST journal, 13(3):193–214.Peckham, S. D. (1995). Self-similarity in the three-dimensional geometry and
dynamics of large river basins. PhD thesis, University of Colorado.Peckham, S. D., Hutton, E. W., and Norris, B. (2013). A component-based approachto integrated modeling in the geosciences: The design of csdms. Computers &
Geosciences, 53:3–12.Peckham, S. D., Stoica, M., Jafarov, E., Endalamaw, A., and Bolton, W. R. (2017).Reproducible, component-based modeling with topoflow, a spatial hydrologicmodeling toolkit. Earth and Space Science, 4(6):377–394.Pelletier, J. D. (2013). A robust, two-parameter method for the extraction of drainagenetworks from high-resolution digital elevation models (dems): Evaluation usingsynthetic and real-world dems. Water Resources Research, 49(1):75–89.Phillips, J. D., Schwanghart, W., and Heckmann, T. (2015). Graph theory in thegeosciences. Earth-Science Reviews, 143:147–160.Plugge, E., Hows, D., Membrey, P., and Hawkins, T. (2015). The Definitive Guide to
MongoDB: A complete guide to dealing with Big Data using MongoDB. Apress.Porporato, A. and Ridolfi, L. (2001). Multivariate nonlinear prediction of river flows.
Journal of Hydrology, 248(1-4):109–122.Pudil, P., Novovičová, J., and Kittler, J. (1994). Floating search methods in featureselection. Pattern recognition letters, 15(11):1119–1125.Pujol, J. C. F. and Poli, R. (1998). Evolving the topology and the weights of neuralnetworks using a dual representation. Applied Intelligence, 8(1):73–84.Qu, Y. and Duffy, C. J. (2007). A semidiscrete finite volume formulation for multiprocesswatershed simulation. Water Resources Research, 43(8).Quesnel, G., Duboz, R., and Ramat, É. (2009). The virtual laboratory environment–anoperational framework for multi-modelling, simulation and analysis of complexdynamical systems. Simulation Modelling Practice and Theory, 17(4):641–653.Ramos-Pollán, R., Guevara-López, M. Á., and Oliveira, E. (2012). A softwareframework for building biomedical machine learning classifiers through gridcomputing resources. Journal of medical systems, 36(4):2245–2257.Rao, P. (2005). A parallel rma2 model for simulating large-scale free surface flows.
Environmental Modelling & Software, 20(1):47–53.

216 bibliography
Razavi, S., Tolson, B. A., and Burn, D. H. (2012a). Numerical assessment ofmetamodelling strategies in computationally intensive optimization. Environmental

Modelling & Software, 34:67–86.
Razavi, S., Tolson, B. A., and Burn, D. H. (2012b). Review of surrogate modeling inwater resources. Water Resources Research, 48(7).
Regis, R. G. and Shoemaker, C. A. (2005). Constrained global optimization ofexpensive black box functions using radial basis functions. Journal of Global

optimization, 31(1):153–171.
Renard, K. G., Foster, G. R., Weesies, G., McCool, D., Yoder, D., et al. (1997).

Predicting soil erosion by water: a guide to conservation planning with the
Revised Universal Soil Loss Equation (RUSLE), volume 703. United StatesDepartment of Agriculture Washington, DC.

Rewerts, C. C. and Engel, B. (1991). Answers on grass: Integrating a watershedsimulation with a gis. Paper-American Society of Agricultural Engineers (USA).
no. 91-2621.

Richardson, C. (2006). POJOs in Action: Developing Enterprise Applications with
Lightweight Frameworks. Manning Publications Co.

Richardson, L. and Ruby, S. (2008). RESTful web services. " O’Reilly Media, Inc.".
Rigon, R. (2014). Jgrass-newage history - version zero and version one. Accessed:2019-01-13.
Rigon, R., Bancheri, M., Formetta, G., and de Lavenne, A. (2016). The geomor-phological unit hydrograph from a historical-critical perspective. Earth Surface

Processes and Landforms, 41(1):27–37.
Rigon, R., Bertoldi, G., and Over, T. M. (2006a). Geotop: A distributed hydrologicalmodel with coupled water and energy budgets. Journal of Hydrometeorology,7(3):371–388.
Rigon, R., Ghesla, E., Tiso, C., and Cozzini, A. (2006b). The horton machine: asystem for dem analysis the reference manual. Università degli Studi di Trento.
Rigon, R., Rodriguez-Iturbe, I., and Rinaldo, A. (1998). Feasible optimality implieshack’s law. Water resources research, 34(11):3181–3189.
Rigon, R., Tubini, N., Bottazzi, M., Serafin, F., and Marialaura, B. (2018). Experiencesin using geotop model (pde based) and geoframe-newage system (odes based).In Integrated Hydrosystem Modelling.
Rizzoli, A., Leavesley, G., Ascough, I., Argent, R., Athanasiadis, I., Brilhante, V.,Claeys, F., David, O., Donatelli, M., Gijsbers, P., et al. (2008). Integrated modellingframeworks for environmental assessment and decision support. State of the Art

and new perspective.
Rizzoli, A., Svensson, M., Rowe, E., Donatelli, M., Muetzelfeldt, R., van der Wal, T.,van Evert, F., and Villa, F. (2006). Modelling framework (seamframe) requirements.Technical report, SEAMLESS.
Robinson, T., Eldred, M., Willcox, K., and Haimes, R. (2008). Surrogate-based opti-mization using multifidelity models with variable parameterization and correctedspace mapping. Aiaa Journal, 46(11):2814–2822.

bibliography 217
Robinson, T. D. (2007). Surrogate-based optimization using multifidelity models with

variable parameterization. PhD thesis, Massachusetts Institute of Technology.Roman, D., Schade, S., Berre, A., Bodsberg, N. R., and Langlois, J. (2009). Modelas a service (maas). In AGILE Workshop: Grid Technologies for Geospatial
Applications, Hannover, Germany.Rossman, L. A. (2010). Storm water management model user’s manual, version 5.0.National Risk Management Research Laboratory, Office of Research andRumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning internalrepresentations by error propagation. Technical report, California Univ SanDiego La Jolla Inst for Cognitive Science.Sedgewick, R. and Wayne, K. (2011). Algorithms. Addison-Wesley Professional.Serafin, F., Bancheri, M., David, O., and Rigon, R. (2017). On complex networksrepresentation and computation of hydrologycal quantities. In AGU Fall Meeting
Abstracts.Serafin, F., Bancheri, M., David, O., and Rigon, R. (2018a). On complex networkcomputation of mountain catchments. In 5th IAHR European Congress - New
challenges in hydraulic research and engineering.Serafin, F., David, O., Dozier, A. Q., Carlson, J. R., and Ehlschlaeger, C. R. (2018b).Framework-enabled meta-modeling. In International Environmental Modelling
and Software Society (iEMSs), Fort Collins, CO, USA.Serafin, F., Westervelt, J. D., Ehlschlaeger, C. R., David, O., Liqun, L., Petit, A. M.,Zhoutong, J., and Yanfeng, O. (2018c). R and python annotation bindings for oms.In International Environmental Modelling and Software Society (iEMSs), Fort
Collins, CO, USA.Sexton, R. S., Dorsey, R. E., and Johnson, J. D. (1998). Toward global optimizationof neural networks: a comparison of the genetic algorithm and backpropagation.
Decision Support Systems, 22(2):171–185.Shrestha, D., Kayastha, N., and Solomatine, D. (2009). A novel approach to parameteruncertainty analysis of hydrological models using neural networks. Hydrology
and Earth System Sciences, 13(7):1235–1248.Smith, L., Beckman, R., and Baggerly, K. (1995). Transims: Transportation analysisand simulation system. Technical report, Los Alamos National Lab., NM (UnitedStates).Sofia, G., Tarolli, P., Cazorzi, F., and Dalla Fontana, G. (2011). An objective approachfor feature extraction: distribution analysis and statistical descriptors for scalechoice and channel network identification. Hydrology and earth system sciences,15(5):1387–1402.Spear, R. and Hornberger, G. (1980). Eutrophication in peel inlet—ii. identificationof critical uncertainties via generalized sensitivity analysis. Water Research,14(1):43–49.Srinivasan, R. (1992). Spatial Decision Support System for Assessing Agricultural
Non-Point Source Pollution Using GIS. PhD thesis, Purdue University.Srinivasan, R., Ramanarayanan, T. S., Arnold, J. G., and Bednarz, S. T. (1998). Largearea hydrologic modeling and assessment part ii: model application 1. JAWRA
Journal of the American Water Resources Association, 34(1):91–101.

218 bibliography
Srinivasulu, S. and Jain, A. (2009). Rainfall-runoff modelling: Integrating avail-able data and modern techniques. In Practical Hydroinformatics, pages 59–70.Springer.Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural networks throughaugmenting topologies. Evolutionary computation, 10(2):99–127.Stevens, W. P., Myers, G. J., and Constantine, L. L. (1974). Structured design. IBM

Systems Journal, 13(2):115–139.Swiler, L. P. and Giunta, A. A. (2007). Aleatory and epistemic uncertainty quantifi-cation for engineering applications. Technical report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States); SandiaTaheri, T. (2010). Benchmarking and comparing encog, neuroph and joone neuralnetworks. http://goo.gl/A56iyx. Accessed: 2018-08-25.Tan, M., Hartley, M., Bister, M., and Deklerck, R. (2009). Automated feature selectionin neuroevolution. Evolutionary Intelligence, 1(4):271–292.Tarboton, D. G. (1997). A new method for the determination of flow directionsand upslope areas in grid digital elevation models. Water resources research,33(2):309–319.Tarboton, D. G., Bras, R. L., and Rodriguez-Iturbe, I. (1991). On the extraction ofchannel networks from digital elevation data. Hydrological processes, 5(1):81–100.Team, R. D., Hanson, J., Ahuja, L., Shaffer, M., Rojas, K., DeCoursey, D., Farahani,H., and Johnson, K. (1998). Rzwqm: Simulating the effects of management onwater quality and crop production. Agricultural Systems, 57(2):161–195.Tomer, M., Moorman, T., and Rossi, C. (2008). Assessment of the iowa river’s southfork watershed: part 1. water quality. journal of soil and water conservation,63(6):360–370.Tran, V. D. and Hluchy, L. (2004). Parallelizing flood models with mpi: Approachesand experiences. In International Conference on Computational Science, pages425–428. Springer.Tubini, N., Rigon, R., Gruber, S., and Casulli, V. (2018). New insights in modelingcoupled surface-subsurface flow in glacial and periglacial catchments. In EGU
General Assembly Conference Abstracts, volume 20, page 13980.Tubini, N., Serafin, F., Gruber, S., Casulli, V., and Rigon, R. (2017). New insights inpermafrost modelling. In EGU General Assembly Conference Abstracts, volume 19,page 4870.Urbanek, S. (2003). Rserve–a fast way to provide r functionality to applications. In
PROC. OF THE 3RD INTERNATIONAL WORKSHOP ON DISTRIBUTED
STATISTICAL COMPUTING (DSC 2003), ISSN 1609-395X, EDS.: KURT
HORNIK, FRIEDRICH LEISCH & ACHIM ZEILEIS, 2003 (HTTP://ROSUDA.
ORG/RSERVE. Citeseer.USDA, N. (1987). Estimating runoff and peak discharge.Van Deursen, A., Klint, P., and Visser, J. (2000). Domain-specific languages. Centrum
voor Wiskunde en Informatika, 5:12.Van Etten, J. (2012). R package gdistance: distances and routes on geographicalgrids (version 1.1-4).

http://goo.gl/A56iyx

bibliography 219
Viana, F. A. and Haftka, R. T. (2008). Using multiple surrogates for metamodel-ing. In Proceedings of the 7th ASMO-UK/ISSMO International conference on

engineering design optimization, pages 1–18.Vivoni, E. R., Mniszewski, S., Fasel, P., Springer, E., Ivanov, V., and Bras, R.(2005). Parallelization of a fully-distributed hydrologic model using sub-basinpartitioning. Eos Trans. AGU, 86(52).Vlissides, J. M. and Linton, M. A. (1990). Unidraw: A framework for buildingdomain-specific graphical editors. ACM Transactions on Information Systems
(TOIS), 8(3):237–268.Wagener, T., Boyle, D. P., Lees, M. J., Wheater, H. S., Gupta, H. V., and Sorooshian,S. (2001). A framework for development and application of hydrological models.
Hydrology and Earth System Sciences, 5(1):13–26.Wagener, T., Lees, M., and Wheater, H. (2000). Reducing conceptual rainfall-runoff modelling uncertainty. In Proc. of Workshop on “Runoff Generation and
Implications for River Basin Modelling”, Freiburg, Germany.Wagener, T., Wheater, H., and Gupta, H. V. (2004). Rainfall-runoff modelling in
gauged and ungauged catchments. World Scientific.Wang, H., Fu, X., Wang, G., Li, T., and Gao, J. (2011). A common parallel computingframework for modeling hydrological processes of river basins. Parallel Computing,37(6):302–315.Wang, H., Schmitt, J., and Ciucu, F. (2013). Performance modelling and analysisof unreliable links with retransmissions using network calculus. In Teletraffic
Congress (ITC), 2013 25th International, pages 1–9. IEEE.Watson, J. D., Hopkins, N. H., Roberts, J. W., Steitz, J. A., and Weiner, A. M.(1988). Molecular biology of the gene. In Molecular biology of the gene.Benjamin/Cummings Publishing.Westervelt, J. (2001). Simulation modeling for watershed management. SpringerScience & Business Media.Westervelt, J., BenDor, T., and Sexton, J. (2011). A technique for rapidly forecastingregional urban growth. Environment and Planning B: Planning and Design,38(1):61–81.Westervelt, J. et al. (1991). Introduction to grass 4. GRASS Information Center, US
Army CERL, Champaign, Illinois, US July.Westervelt, J. D., Ehlschlaeger, C. R., Burkhalter, J. A., and Baxter, C. L. (2017).Sparse-data forecasting of megacity growth. Military Operations Research,22(3):21–34.Wheater, H., Ballard, C., Bulygina, N., McIntyre, N., and Jackson, B. (2012).Modelling environmental change: quantification of impacts of land use and landmanagement change on uk flood risk. In System Identification, Environmental
Modelling, and Control System Design, pages 449–481. Springer.Whiteson, S., Stone, P., Stanley, K. O., Miikkulainen, R., and Kohl, N. (2005).Automatic feature selection in neuroevolution. In Proceedings of the 7th annual
conference on Genetic and evolutionary computation, pages 1225–1232. ACM.Wikipedia, c. (2004). Software metrics. https://en.wikipedia.org/wiki/
Software_metric. Accessed: 2018-07-12.

https://en.wikipedia.org/wiki/Software_metric
https://en.wikipedia.org/wiki/Software_metric

220 bibliography
Wikipedia, c. (2018). Sensitivity analysis. https://en.wikipedia.org/
wiki/Sensitivity_analysis. Accessed: 2018-08-05.Willcox, K. and Peraire, J. (2002). Balanced model reduction via the properorthogonal decomposition. AIAA journal, 40(11):2323–2330.Williams, J., Arnold, J., Kiniry, J., Gassman, P., and Green, C. (2008). History of modeldevelopment at temple, texas. Hydrological sciences journal, 53(5):948–960.Williams, J., Nicks, A., and Arnold, J. (1985). Simulator for water resources in ruralbasins. Journal of Hydraulic Engineering, 111(6):970–986.Wood, J. (2009). The landserf manual. User Guide for LandSerf, 23.Xie, S., An, K., and Ouyang, Y. (2019). Planning facility location under generallycorrelated facility disruptions: Use of supporting stations and quasi-probabilities.
Transportation Research Part B: Methodological, 122:115–139.Yan, S. and Minsker, B. (2006). Optimal groundwater remediation design using anadaptive neural network genetic algorithm. Water Resources Research, 42(5).Yan, S. and Minsker, B. (2010). Applying dynamic surrogate models in noisygenetic algorithms to optimize groundwater remediation designs. Journal of
Water Resources Planning and Management, 137(3):284–292.Yao, X. and Liu, Y. (1998). Towards designing artificial neural networks by evolution.
Applied Mathematics and Computation, 91(1):83–90.Yapo, P. O., Gupta, H. V., and Sorooshian, S. (1998). Multi-objective global opti-mization for hydrologic models. Journal of hydrology, 204(1-4):83–97.Young, P. C. and Leedal, D. (2013). Data-based mechanistic modelling and theemulation of large environmental system models. Environmental Modelling:
Finding Simplicity in Complexity, pages 111–131.Young, R., Onstad, C., Bosch, D., and Anderson, W. (1989). Agnps: A nonpoint-sourcepollution model for evaluating agricultural watersheds. Journal of soil and water
conservation, 44(2):168–173.Yourdon, E. and Constantine, L. L. (1979). Structured design: Fundamentals of a
discipline of computer program and systems design. Prentice-Hall, Inc.Yu, L., Wang, S., and Lai, K. K. (2008). Forecasting crude oil price with an emd-basedneural network ensemble learning paradigm. Energy Economics, 30(5):2623–2635.Zhang, B. and Govindaraju, R. S. (2000). Prediction of watershed runoff usingbayesian concepts and modular neural networks. Water Resources Research,36(3):753–762.Zhang, B.-T. and Muhlenbein, H. (1993). Evolving optimal neural networks usinggenetic algorithms with occam’s razor. Complex systems, 7(3):199–220.Zhang, X., Srinivasan, R., and Van Liew, M. (2009). Approximating swat model usingartificial neural network and support vector machine 1. JAWRA Journal of the
American Water Resources Association, 45(2):460–474.Zou, G., Zhang, B., Zheng, J., Li, Y., and Ma, J. (2012). Maas: Model as a service incloud computing and cyber-i space. In 2012 IEEE 12th International Conference
on Computer and Information Technology, pages 1125–1130. IEEE.Zou, R., Lung, W.-S., and Wu, J. (2009). Multiple-pattern parameter identification anduncertainty analysis approach for water quality modeling. Ecological Modelling,220(5):621–629.

https://en.wikipedia.org/wiki/Sensitivity_analysis
https://en.wikipedia.org/wiki/Sensitivity_analysis

Francesco Serafin receives a Master's Degree in Environmental Engineering from University of
Trento, Italy in 2014. His main research topic focuses on environmental modeling frameworks
development to 1) simplify dissemination and use of complex environmental models, and 2)
accommodate innovative modeling practices and facilitate model implementation, integration and
maintenance. During his PhD studies, he strengthened his environmental engineering background
and deepened his knowledge in computer science related topics. He investigated graph theory and
complex networks and their flexible adaptation to environmental modeling applications. He studied
data-driven surrogate modeling systems and their automated generation at a framework level. He
also spent one and a half year at Colorado State University to learn architectural concepts and
design of the state-of-art frameworks Object Modeling System v3 and Cloud Service Integration
Platform.

Conceptual and physically based environmental simulation models as products of
research environments efforts became complex software over time in order to allow
describing the behaviour of natural phenomena more accurately.
Results from these models are considered accurate but often require to operate an entire
system of modeling resources with dedicated knowledge, an extensive set up, and
sometimes significant computational time. Model complexity limits wide model adaptation
among consultants because of lower available technical resources and capabilities.
However, models should be ubiquitous to use in both research and consulting
environments.
This dissertation aims to address and alleviate two aspects of research model
complexity: 1) for researchers, the model design complexity with respect to its internal
software structure and 2) for consultants, the model application complexity with respect
to data and parameter setup, runtime requirements, and proper model infrastructure
setup. The first contribution provides modeling design and implementation support by
managing interacting modeling solutions as “Directed Acyclic Graph”, while the second
one helps to create surrogate models of complex physical models as a streamlined
process.
Both contributions are implemented within the Object Modeling System/Cloud Service
Integration Platform modeling framework and infrastructure and were applied in various
studies.

