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ABSTRACT

Conceptual and physically based environmental simulation models as products
of research environments efforts became complex software over time in order to
allow describing the behaviour of natural phenomena more accurately. Results
from these models are considered accurate but often require to operate an entire
system of modeling resources with dedicated knowledge, an extensive set up, and
sometimes significant computational time. Model complexity limits wide model
adaptation among consultants because of lower available technical resources and
capabilities. However, models should be ubiquitous to use in both research and
consulting environments.

This dissertation aims to address and alleviate two aspects of research model
complexity: 1) for researchers, the model design complexity with respect to its
internal software structure and 2) for consultants, the model application complexity
with respect to data and parameter setup, runtime requirements, and proper model
infrastructure setup. The first contribution provides modeling design and implemen-
tation support by managing interacting modeling solutions as “Directed Acyclic
Graph’, while the second one helps to create surrogate models of complex physical
models as a streamlined process.

Both contributions are implemented within the Object Modeling System
(OMS)/Cloud Service Integration Platform (CSIP) modeling framework and in-
frastructure and were applied in various studies.

First, a Machine Learning (ML)-based surrogate model approach is presented
to respond to field application requirementes to get quick but "accurate enough’
model results with limited input and limited a-priori knowledge of the internal
physical processes involved. The surrogate model aims to capture the behaviour of
a physical model as an ensemble system of Artificial Neural Network (ANN). Here,
the NeuroEvolution of Augmenting Topology (NEAT) technique has been leveraged
because of its integration of a genetic approach to build and evolve its ANNs during
supervised training. Throughout this phase, the thorough design of the services
facilitate seamless monitoring of structural mutations of the artificial neural network
and its performances with respect to behavioural emulation of the original model
response. This results in a streamlined surrogate model generation. Furthermore,
the stochasticity inherent to the evolutionary genetic algorithm combined with
a specially designed cross-validation approach allows for straightforward use of
the ensemble application. Several, slightly different artificial neural networks
are concurrently trained. The ensemble system is built upon the selection of the
utmost performant surrogate models and is used collectively to provide uncertainty
quantified results when applied against new data.

Secondly, a Directed Acyclic Graph (DAG) modeling structure NET3 was de-
veloped. NET3 provides appropriate data structures to represent modeling states
interactions as relationships based on network topologies. The inherent structure
of the DAGC commands the execution of modeling tasks. NET3 implicitly manages
the parallel computation depending on the network topology. A node of a NET3
modeling structure encapsulates any sort of modeling solution such as a system
of ordinary differential equations, a set of statistical rules, or a system of partial
differential equations. Each link connects these modeling solutions by handling their
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data flow. As a result, NET3 simplifies 1) the translation of physical mathematical
concepts into model components, and 2) the management of complex interactions
of modeling solutions. NET3 also pushes forward the idea of separating concerns
between software architecture and scientific model codebase. It manages aspects
that relate to the architectural design of the graph modeling structure and lets
research scientist focus on their model’'s domain. NET3 improves encapsulation
and reusability of scientific/mathematical concepts. It avoids code duplication by
allowing the same modeling solution to be adopted in different nodes and finely
adapted to specific requirements. In summary, NET3 enables a new level of model-
ing flexibility by allowing to quickly change model representations to explore new
modeling solutions.

The two presented contributions were integrated into the OMS/CSIP
Environmental Modeling Framework (EMF)/Cloud Computing Platform (CCP).
EMFs are standard practice in environmental modeling because they represent a
software solution of separating the burden of software architectural design manage-
ment from scientific research.

Here, OMS/CSIP has been identified “‘advanced” in terms of EMFs design. It
offers high flexibility, low lanquage invasiveness, fine and thorough architectural
design, and innovative cloud computing deployment infrastructure. These aspects
make OMS/CSIP infrastructure the suitable platform to host NEAT based surrogate
modeling and NET3 extensions. Framework enabled NEAT-based Surrogate
modeling (FeNS) results from the full integration of NEAT based surrogate modeling
approach with OMS/CSIP platform. Here, the surrogate model approach was
developed as CSIP services to help transitioning from research models to “field
models” by enabling the modeling framework to interact with CSIP services, ML
libraries, and a NoSQL database to emerge model surrogates for a(ny) modelling
solution. OMSCSIP was extended to harvest data from each model run and
automatically derive the surrogate model at the modeling framework level. NET3
extends OMS modeling simulations to run as a graph network of interconnected
modeling solutions. Furthermore, it enhances available OMS calibration algorithms
to become multi-site calibration procedures. OMS already provided implicit parallel
computation of independent components in a modeling solution. NET3 now adds a
further layer of implicit parallelism by concurrently running independent modeling
solutions.

Two studies were carried out to develop and test FeNS while three applications
supported the development and testing of NET3.

Surrogate models of the Revised Universal Soil Loss Equation, Version 2
(RUSLEZ2) were generated to scale up from simple test cases with a constrained
input space to more generic applications including a larger variety of input parame-
ters. The main goal of the surrogate model was to streamline and simplify access
to the RUSLEZ model behaviour. We performed sensitivity analysis of RUSLEZ
to limit the input space to only relevant parameters (e.g. soil properties, climate
parameter, field geometries, crop rotation description). The main study area was
the State of lowa starting from a single county (Clay county) ending up to four
counties (Buena Vista, Cherokee, Clay, and Wright). Clustering methodologies
were applied to improve surrogate model accuracy and to accelerate the training
process by reducing the dataset size. The overall “goodness-of-fit" against the
testing dataset estimated on the median of the uncertainty quantified result of the
surrogate models ensemble was always above 0.95 Nash-Sutcliffe (NS), Root Mean
Squared Error (RMSE) between 0.13 and 0.36, and bias between -0.07 and o.02.
In many cases, accuracy of the surrogate model with respect to testing dataset was
above 0.g8 NS.
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Surrogate models of the AgroEcoSystem (AgES) were generated to apply and
test FeNS methodology to a semi-distributed hydrologic model. The main goal
of the surrogate model was to streamline and simplify access to the AgES model
behaviour. Only relevant lumped parameters on watershed centroid were used to

train the surrogate models and limit the input space to only relevant parameters (e.q.

precipitation, groundwater level, LAl, and potential evapotranspiration). The main
study area was the South Fork lowa River (SFIR) watershed in the State of lowa

across Wright, Franklin, Hamilton, and Hardin counties. The overall ‘goodness-of-fit”

against the testing dataset estimated on the median of the uncertainty quantified
result of the surrogate models ensemble was above 0.97 NS, RMSE of 2.24, and
bias of -0.0794.

With respect to NETS3, the first application is the real-time modeling of flood
forecasting through GEOframe system for the Civil Protection of Regione Basilicata
implemented by PhD Bancheri. To scale the computation and finely tune calibration
parameters, the Basilicata river basins were split into subcatchments where each
was represented by a different NET3 node.

The second application was part of Mr. Dalla Torre's master’s thesis where the
computational core of the rainfall-runoff model of Storm Water Management Model
(SWMM by EPA) was componentized. NET3 now allows for reimplementing a

concise and lightweight SWMM modeling core and highly parallel model runs.

Software architectural design of rainfall-runoff, routing and sewer pipe design
components targeted separation of concerns, single responsibility, and encapsulation
principles. It resulted in clean and minimized code base. NET3 manages component
connections and scalable computation by hosting rainfall-runoff modeling solution
into separated nodes from routing and sewer pipe design modeling solution. It also
enables each node of the modeling structure to 1) access a shared data structure to
fetch input data from and push results to (SWMMobject), and 2) internally analyze
the upstream subtree in order to adjust sewer pipe design parameters.

The third test case is the application of a System of Systems of Models (SSoM)
where each node of the graph modeling structure encapsulates a single responsibility
system of urban models. Because of the stochasticity involved in each system of
models, the entire graph modeling solution was required to run several times and
generate independent realizations. Hence, NET3 was enabled to run a Graph of
Graphs (GoG) modeling structure.
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11 PROBLEM STATEMENT

Conceptual and physically based environmental simulation models as products
of research environments efforts became over time complex software that allow for
accurately describing the behaviour of natural phenomena. However, on-the-field
personnel and consultant agencies struggle to properly exercise these models be-
cause of their steep learning curve and excessive runtime requirements. Additionally,
scientists themselves strive to maintain and improve such modeling software mostly
because the development lacks proper software architecture design and application
of good programming principles.

The development history of a model usually starts from a core mathematical
concept codified into a piece of software for solving one dedicated problem. Over the
time, the need of accounting for more simultaneous physical processes, describing
and studying natural phenomena at different scales or introducing innovative
engineering design practices drives model development by expanding functionalities
and capabilities.

The increased complexity goes usually along with a higher number of input
parameters and datasets, and more complicated numerical methods for solving
coupled differential equations (Formetta et al. (2014a)). Research advancements
in modeling or mathematical fields and technological progress resulting in higher
computational power and high resolution data availability fuel the need for models
representing environmental reality at different scale more accurately.

This evolutionary process mutates the initial single responsibility code base into
multi-responsibilities model: its core gets expanded with additional computational
modules, subroutines or even tools for managing and homogenizing a wide variety
of input datasets, model parameters and model structures. The mathematical model
becomes over time a mix of multidisciplinary tools which have to be maintained
and developed. Advancements in each tool have to be coordinated and integrated
with advancements in every other related tool. For example, between 198os and
1ggos GIS algorithms and capabilities got to the point of proved stability and
robustness and GUIs facilitated user interaction to perform complex geographical
analysis (Brovelli (2006)). In the following years, as reported by Westervelt (2007)
some famous modeling softwares such as AGNPS (Young et al. (1989)), ANSWERS
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(Beasley et al. (1980)), CASC2D (Julien and Saghafian (1991)), GLEAMS (Leonard
et al. (1987)), SWAT (Arnold and Allen (1999)), RZWQM (Team et al. (1998)), WEPP
(Laflen et al. (1991)), MODFLOW (Harbaugh et al. (2000)), WAMS (DePinto and
Rodgers (1994)) integrated GIS (GRASS (Goran et al. (1983); Ehlschlaeger (1989);
Westervelt et al. (1991)) in these specific cases) interfaces and algorithms in their
modeling core (Cronshey et al. (1993); Rewerts and Engel (1991); Krummel et al.
(1996); Hay et al. (1993); Srinivasan (1992); Srinivasan et al. (1998); Arnold et al.
(1995)). Since then, mathematical models and GIS capabilities developed along
together. Practical examples are the management and integration of satellite
imagery and data assimilation techniques in the standard usage of process-based
models (Akinmolayan et al. (2018); Anees et al. (2018); Bayramov et al. (2019)).

In the next section, a deeper analysis of the identified problem is performed.
Solid bases and motivations are provided to support the relevance of this research.

1.1.1  Motivations

Conceptual/physical models should be ubiquitous to use in both research and
consulting environments. Rizzoli et al. (2000) correctly summarizes model user types
and roles (Table 1 is a slightly modified version of Rizzoli et al. (2006)). However,
no model actually fits requirement from every user and role simultaneously.

W Hard Soft Linkers Run ‘ Player View- ‘ »
Users Coders Coders ners ers Providers
Prime ‘ ‘ ‘ ‘ ‘ ‘ v ‘ v
Other End Users ‘ ‘ ‘ ‘ 4 ‘ 4 ‘ v ‘ v
Technical ‘ ‘ v ‘ v ‘ v ‘ ‘ ‘
Researchers ‘ v ‘ v ‘ v ‘ v ‘ v ‘ ‘

Table 1: Modified table from Rizzoli et al. (2006) illustrates matches between model user
types (rows) and their roles (columns).

The use of numerical models in both scientific and consultant environments is
challenging because of a number of issues. The analysis of these issues motivated
this research. However, before going into details of each issue, it is important to
understand the meaning of “operational use” in research and consultant communities.

Service delivery organizations and consultant companies are mainly end-users
of mathematical models. Their goal is to leverage software features to provide
stakeholders and decision makers with accurate information in topic like conservation
practices (e.g. land management and crop operations to avoid excessive soil erosion),
prediction of quantity of interest (e.g. water quantity for electric power plan
manoeuvres), etc.

They don’t develop or maintain software, they are not capable or interested in
improving numerical methods, conceptual design or physical process representations
due to lack of expertise and resources. Furthermore, from an IT perspective,
they may not have in-house computing environments available to run and deploy
modeling software. Consequently, they have to rely on third-party environments
and personnel.

In research environments, “operational use” means both maintenance/development
and application of mathematical models.

Model development involves the integration of last enhancements in conceptual
design, or numerical/mathematical and physical fields. Additionally, maintenance
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of integrated tools like GIS capabilities are an important part of model evolution.
IT development involves integration and maintenance of modeling frameworks, db
connections and design, and proper development to keep up with last innovations, e.g.,
cloud computing, scalability on computer clusters and super-computing environments
in general.

The application side involves model testing and state-of-art consultancy exercises
to solve particular problems. In this case, high expertise is available to deal
with complex scientific debugging procedures and results interpretation, input data
management and preparation, calibration and sensitivity analysis procedures (Green
et al. (2015)). Complete model understanding allows for identifying conceptual,
mathematical/numerical problems and modeling inaccuracies and finely tuning input
parameters and mathematical aspects, thoroughly testing each and every model
capability.

Unfortunately, smaller research groups cannot rely on suitable IT expertise
in order to properly design, develop, and maintain big complex models. Past
experiences show how lacking of proper software architecture design ends up with
chaotic, hardly developable and readable/debuggable code bases (Rizzoli et al.
(2006); David et al. (2013); Formetta et al. (2014a)). Which in turn slows down
research advancements.

Now that the concept of “operational use” in both environments has been intro-
duced and described, it's easier to understand that there are issues related to daily
use of conceptual and physical models. And these issues are, nevertheless, different.

Consequently, this problem statement deepens issues analysis in two different
subsections. The next subsection identifies and describes issues related to the
operational use of mathematical models on the field or in consultant agencies.
Subsequently, issues related to operational use of mathematical models in research
environments are tackled.

1.1.1.1  Issues related to the use of mathematical models on the field

Environmental models are reqularly applied by consultant agencies and on-the-
fleld personnel. However, daily use is not effortless due to a series of constraints
and issues that are following analyzed.

Rainfall-runoff modelling may serve as an example here. Rainfall-runoff is a
highly nonlinear, spatially heterogeneous, and very complex process (Srinivasulu
and Jain (2009); Beven (2011)) which is comprised of several different, interconnected
processes, some of which are not clearly understood yet (Hrachowitz and Clark
(2017); Young and Leedal (2013); Zhang and Govindaraju (2000); Porporato and
Ridolft (2001)). The modeling approach evolved over time from a pure empirical
form (the Rational Method is the first empirical model ever published in 1851,
developed by Thomas Mulvaney), through conceptual models (first models dates
back to 1gbos, when simplified equations describing hydrological processes were
numerically integrated thanks to increased computational power (Wheater et al.
(2012); Beven (2011)), to a fully physically based one (1g70s computational power
was such to solve partial differential equations (Wheater et al. (2012); Beven (2011);
Wagener et al. (2004)). Strengths of empirical models are small input parameter sets
required and a fast model runtime. However, they lack result accuracy and physical
understanding of involved phenomena. The need of comprehensive understanding of
physical processes at different scales pushed research efforts toward the development
of conceptual models first and fully physically based consequently.

Conceptual models are built upon a conceptual representation of the analyzed
process (Wheater et al. (2012); Beven (2011)). Processes are described by simplified
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ordinary differential equations, and, in the case of rainfall-runoff models, schematized
through interconnected reservoirs (Bancheri et al. (2019)). This allows on-the-field
personnel to easily understand the model behaviour. However, the implemented
equations involve a number of parameters that are not directly or physically
measurable. Thus, complex calibration procedures are necessary to estimate those
parameters for a specific catchment. Here, the “equifinality” problem arises (Beven
(1993)): different combinations of parameter values may fit observed data especially
when available data have restricted information content and the performance criterion
is based off of a single objective function (Wheater et al. (2012)). Then it is impossible
to uniquely identify the model structure and apply it to ungauged catchments. When
calibration procedures cannot solve the non-identifiability problem (Beven (1993)),
a single set of parameters cannot be estimated. In this case, Generalized Sensitivity
Analysis (Spear and Hornberger (1980)) allows to select ‘behavioural” set of
parameters according to observed data (Wheater et al. (2012)). Afterwords, the
model output is uncertainty quantified and contribution of each input parameter
uncertainty evaluated (Wikipedia (2018)).

The equifinality problem has a smaller impact on simulation runs when it comes
to multi-criteria optimization. Here, additional information are available and
integrated into calibration procedures (Yapo et al. (1998); Wagener et al. (2001,
2000)). Nonetheless, modeling tool-kits support sensitivity analysis in order to
investigate and identify the most suitable model structure and parameter uncertainty
(Wheater et al. (2012)).

In summary, conceptual models are easily understandable without specific ex-
pertise because of their abstract representation of the real world. However, they
require both calibration and sensitivity analysis procedures which involve several
model runs, setup of design of experiments, and final interpretation of parameter
estimate and model outputs.

Physically based or mechanistic models are built upon partial differential equa-
tions. The latter are the most accurate mathematical description of physical processes
(Wheater et al. (2012); Fatichi et al. (2016)). These equations are discretized as
finite difference, finite elements or finite volumes over a spatial mesh and solved
numerically (Wheater et al. (2012); Pechlivanidis et al. (2011)). And research in
this field is highly active (e.g. Casulli (2017), Tubint et al. (2017), and Dumbser
et al. (2019)) (Fatichi et al. (2016); Paniconi and Putti (2015)).

Physical models differ from conceptual models because input parameters are
actually state variables (Devia et al. (2015); Fatichi et al. (2016)). These have
physical meaning and are actually measurable (Wheater et al. (2012)).

Theoretically these models should be used in ungauged catchments, with input
parameters estimated a priori. However, this practice is not directly achievable for
two reasons: (a) small-scale catchments and laboratory experiments are main sources
of the physics underneath these modes and make them not straightly applicables to
big catchments; (b) some parameters cannot be evaluated on the entire study area,
e.g. spatial heterogeneity of soil stratification. Thus, a comprehensive representation
of the study area in terms of input dataset is hardly feasible (Wheater et al. (2012);
Pechlivanidis et al. (2011)).

Here, calibration procedures can be useful when some input parameters are
unknown, even if they are not mandatory in a mechanistic model workflow. Con-
sequently, sensitivity analysis become useful as well in order to estimate model
uncertainty.

Nonetheless, these type of models need a big amount of detailed input information
to satisfy initial state requirements. They are really complex and high expertise is
required to manage them (Devia et al. (2015)). They require long run-time since a
model run basically happens in each computational cell of the grid. Additionally,
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dedicated supercomputing environments can speed up the computation only if model
architectural design account for parallel, or scalable algorithms (Devia et al. (2015)).

The analysis of the different available model types helps to summarize issues
and limitations on-the-field personnel and consultant agencies have to deal with in
order to apply conceptual and mechanistic models:

1. Thorough understanding of concerned model: both type of models require
in-depth understanding and expertise. Calibration and sensitivity analysis
procedures are fundamental parts in the entire setup of conceptual models.
Physics of the involved processes has to be perfectly clear when it comes
to setup physical model parameters. Otherwise, wrong usage of tools and
parameters setup can lead to incorrect and deceptive results. Planning
environments cannot always rely on these expertise.

2. Data collection and preparation: big dataset feed both type of models.
In conceptual models, they are mostly required for calibration procedures.
For mechanistic models instead, spatially distributed initial conditions and
study area characterizations are mandatory information. Technology evolution
allows to meet these needs by providing satellite data, finer grid raster
maps, low-error measuring instruments. However, these information are not
available everywhere and, if they are, data preparation and assimilation are
not trivial tasks and required dedicated proficiencies and GIS capabilities.
Additionally, the lack of input standards which especially concerns old models,
calls for the design of model-specific applications to convert raw data into
model-compliant inputs. As a result, data collection and preparation end up
being a long and tedious operation consultant agencies don’t always have
time and expertise required to deal with.

3. Run-time: both type of model simulations are computationally expensive.
Calibration and sensitivity analysis procedures require several conceptual
model runs to select the set of parameters that better fits observed data
or to estimate model uncertainty. Differently, physically based models are
computationally demanding because numerical methods return accurate results
on finer grids. Service delivery organizations usually need quick results even
if not the most accurate.

Furthermore, even if models are designed to take advantage of multi-processors
machines or computer clusters, service delivery organizations don't usually
have physical access to supercomputing environments and cannot rely on
in-house proficiency to manage them. Yet, if supercomputing environments are
not available, relying on third-party machines and personnel with dedicated
expertise is expensive.

In summary, the analysis of issues related to daily use of conceptual or physically
based models in planning/consultant environments identifies three main topics: (1)
lacking of model understanding and expertise in order to fully manage and leverage
model capabilities; (2) the absence of required input dataset for feeding calibration
and sensitivity analysis procedures or time to handle and properly convert raw data
into model-compliant data; (3) unavailability of proper IT infrastructures to reduce
computational runtime or lacking of expertise to apply them.

1.1.1.2 Issues related to the use of mathematical models in research envi-
ronments

Mathematical models result from research environment efforts. Here, “operational
use” of these models essentially has two meanings:
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1. model maintenance and development, which differs from software maintenance
and development since mostly target bug fixing of modelled processes and
integration of recent numerical and mathematical enhancements, rather than
software architecture refactoring;

2. model testing and application to advanced problems that have often never
been addressed before.

In both cases, scientists’ approach to research models is not straightforward and
the reasons are following described. A paragraph with a dedicated analysis for
each previously listed issue is provided. Paragraph 1.1.1.2.1 introduces to EMFs
methodology as well, which is used throughout paragraph 1.1.1.2.2.

1.1.1.2.1  Issue experienced during model maintenance and development

Research outputs are always up to state-of-art in terms of scientific content.
However, mathematical models historically lack of proper software engineering and
have been designed as monolithic code base. The latter has been identified as the
main cause of current difficulties in model development and maintenance (Formetta
et al. (2014a); Rizzoli et al. (2006); David et al. (2013)). The introduction of EMFs
in modeling workflow alleviates source code maintenance and development. Yet,
EMFs actually limits modeler creativity.

Monolithic applications constraint collective model development, model sharing
and reusability because the code structure lacks of separation of concerns (Martin
(2009); Newman (2015)), which means that there are no boundaries between different
scientific/mathematical concepts (David et al. (2013); Nadareishvili et al. (2016)).
Consequently, a scientists needs deep understanding of the entire model to make
modifications and speed up the debugging process (Newman (2015); Nadareishvili
et al. (2016)). In terms of deployment into production environment, just a single bug
fix or modification of a single line of code of a monolithic application requires the
deployment of the entire software (Nadareishvili et al. (2016)). Not to mention the
scalability issue: enabling a simple multithreading computation in a monolithic
software is complicated already, scalability on computer clusters even more (Newman
(2015); Nadareishvili et al. (2016)). As a result, leveraging state-of-art computer
hardware solutions becomes a cumbersome and most likely unachievable goal.

There are several reasons why software architecture has always had low priority in
environmental model research. Historical, cultural, resource and reward constraints
have been identified by David et al. (2013) and are following summarized.

From an historical point of view, when the era of model development started, C and
FORTRAN were the most notable general purpose programming languages to begin
with. These languages rely on free and open source compilers and tools as well as
active developer communities. They are procedural programming languages though,
which already addresses software development towards monolithic architecture.

From a cultural standpoint, environmental modelers usually have self-taught
programming knowledge and low expertise in software design and architectural
patterns (David et al. (2013); Rizzoli et al. (2006)). Their biggest desire is to dive
into deeper and more accurate descriptions of environmental processes, model them,
and implement them to test the improved modeling solution (David et al. (2013)). It
is obviously not possible and fair to ask a natural resource scientist or engineer to
take care of both modeling development and software architecture design.

Here the third constraint comes up. A computer scientist, software engineer or
hydroinformatic engineer should take care of properly choosing the most suitable
software design by anticipating target architectures to support multi language inter-
operable systems, high performance computing environments, and most importantly
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the refactoring of poorly designed modules (David et al. (2013); Rizzoli et al. (2006)).
However, research budgets are typically limited and expertise of previous listed
professional figures are not usually accounted for.

The last constraint, rewards perspective, usually hinges to pure achievement of
result accuracy. Model reusability and long-term maintainability frequently have
low value and priority consequently.

Eventually, the highest quality scientific model codebase ends up being an
handcrafted monolith of thousands of lines of code, which is hard to refactor and
redesign (David et al. (2013)).

Several EMFs have been developed in the last decade in order to move the
burden of software architectural design apart from pure scientific research. Some
of the most notable are: OpenMI (Blind and Gregersen (2005); Gregersen et al.
(2007)), Common Component Architecture (CCA) (Bernholdt et al. (2003)), Earth
System Modeling Framework (ESMF) (Collins et al. (2005)), Common Modeling
Protocol (Moore et al. (2007)), and OMS (David et al. (2013)).

EMFs are built upon the notion of component-based software development. They
elevate the principle of separation of concerns by splitting responsibilities between
framework and components. A component is a typical object-oriented programming
concept where a class or module is the core building block of the entire application
(Peckham et al. (2013); David et al. (2013)). The framework enables a software
“plug-ins” system where a series of precompiled components can be plugged in
or unplugged on necessity . It takes care of runtime component connections via
dynamic linking and other complicated tasks such as multi language interoperability,
multi-threading parallelization of algorithms, temporal-spatial stepping, etc. (David
et al. (2013)).

Accordingly, a monolithic codebase can be refactored into a framework-compliant
set of components by extracting the scientific knowledge only and splitting it into
single responsibility functional units. Good software design practice identifies the
optimum level of component granularity into the encapsulation of a single physical
process per module, e.g. evapotranspiration, infiltration, runoff, etc. (Peckham et al.
(2013)). Working with higher or lower level of granularity is possible though and
might be necessary in specific cases (Qu and Duffy (2007)). However, the “one
conceptual/physical process per unit” design identify the most flexible granularity
level where scientists can easily swap out an old modeling methodology for an
innovative or a more appropriate one. Additionally, interfaces between components
and related framework connections become ‘physical domain boundaries” and
‘physical fluxes exchange” respectively, further elevating the concept of modeling
natural phenomena.

The benefits of employing an EMF in modeling workflow are streamlined model
development, improved developer’'s software quality and reliability, time and cost
effectiveness, high level of modeling flexibility.

Several models are framework compliant already, e.g. GEOframe-NewAGE
(Banchert (2017); Formetta et al. (2011); Formetta (2013); Formetta et al. (2013b,a,
2074a,b, 2016a,c); Abera et al. (2017a,b)), Precipitation-Runoff Modeling Sys-
tem (PRMS) (Leavesley et al. (2005)), AGES and it predecessor AgroEcoSystem-
Watershed (AgES-W) (Ascough Il et al. (2012); Ascough et al. (2014); Green et al.
(2014, 2015)), BioMA (Donatelli et al. (2012)), and TopoFlow (Peckham et al. (2017)).
A deeper analysis of GEOframe-NewAGE to establish the upsides of modelling
with components is proposed in subsection 2.1.2 Background work to facilitate
operational use of environmental models in research environments.

Nevertheless, EMFs must facilitate the transition of modeler creativity from
mathematical equations into component implementations (David et al. (2013)).
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Figure 1: OMS-compliant modeling solution that implements the water budget as theory of embedded reservoir,
credit Banchert (2017).

This lets modeler exploring new problem solving approaches further widening the
boundaries of actual modeling techniques.

Figure 1 is used here for the sake of example. It represents the OMS-compliant
modeling solution designed by Bancheri (2017) for testing the theory of embedded
reservoir model developed during her doctoral research. It estimates the water
budget for a generic watershed.

This modeling solution is pretty flexible already: it allows for easily swapping
out a single conceptual/physical process, e.g. surface flow, with a different or maybe
simpler implementation. However, this modeling approach constraints a scientist to
model an entire watershed as an homogeneous entity.

If this is the case of a small watershed, a single modeling solution might match
scientist requirements already. It doesn't properly work for a big watershed involving
mountain, hill, and plain subcatchments. Here, a modeler might want to finely
tune modeling solution parameters for each type of subcatchment. She/he might
also want to switch a specific module for a different component per each type of
subcatchment, or she/he might want to run completely different modeling solutions
in each subcatchment. Additionally, human artifacts such as power plant could
potentially become part of a complex modeling solution. But they require dedicated
mathematical model and possibly different time loops.

As a result, implementation of complex modeling solutions by leveraging actual
frameworks capabilities is not achievable. Actual EMFs functionalities limit mod-
eler creativity and talent. Current EMFs capabilities push back the modeling of
complex interconnections and related potential scalable computation to modeler
responsibilities.

1.1.1.2.2 Issue experienced during model testing and application to ad-
vanced problems

The second issue encountered during regular operational use of mathemati-
cal models in research environments relates to actual application to state-of-art
consultancy problems.

In this particular case, scientists don't usually have time constraints or lacking of
data compared to service delivery organizations. Consequently, application of full
mathematical model is achievable and actually fundamental: deep understanding of
physical processes allows for studying state-of-art problems and improving modeling
techniques eventually.

The constraints are rather on the steep learning curve a scientist has to deal
with while approaching a new model. Poor software design and lacking of software
coding standards are usually accompanied by deficient source code management.
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Research environments are still resistant to adoption of version control systems to
track software development, and code peer review is not usually part of standard
workflow (David et al. (2013)).

Additionally, a modeler might need to investigate the involved phenomenon
from different scales and perspectives, and experiment with modeling solutions
consequently. This research methodology requires modeling software to provide
high level flexibility to easily accommodate modeler creativity.

1.1.1.2.3  Summary of issues related to the use of mathematical models in
research environments

Summarizing, the analysis of issues related to the daily use of conceptual
or physically based models in research environments identifies the necessity of
adopting EMFs in everyday workflow and the needs of improving their flexibility to:

1. facilitate model maintenance and development;
2. avoid error-prone code duplication;

3. improve modeler productivity and accommodate modeler creativity.

1.2 SUMMARY

The problem statement of this dissertation identifies issues related to the use
of mathematical models for (A) service delivery organizations and (B) research
environments.

Operational use of conceptual/physical models in service delivery organizations
means leveraging research modeling advancements as knowledge encapsulated
black-box to support stakeholders and decision makers’ questions with accurate
predictions and information.

However, consultancy agencies struggle to properly exercise research simulation
models since they may lack of (1) expertise to understand conceptual or physical
processes requirements to set up calibration or sensitivity analysis procedures;
(2) time to collect and prepare datasets to satisfy models high resolution input
parameter requirements; (3) in-house availability of computing environments to
deploy and exercise modeling simulations.

Operational use of conceptual/physical models in research environments means
codebase maintenance, implementation of modeling advancements, and design
of modeling simulations for state-of-art consultancy applications. In research
environments, a simulation model is a white-box since research scientists have
to implement last enhancements in conceptual design, or numerical/mathematical
and physical fields. Additionally, scientists need to dig into model implementation
when it comes to thoroughly tune calibration procedures and input parameters for
advanced applications.

However research scientists struggle to maintain and develop simulation model
code base since their are not software engineers, usually have self-taught program-
ming knowledge, and model design commonly lacks of accurate software architecture.
Furthermore, current modeling tools constraint modeler creativity and impede the
design of innovative modeling solutions.

Issues in both consultant agencies and research environments are getting more
and more important since simulation model code base complexity is constantly
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growing due to integration of research enhancements, engineering practices and
additional capabilities such as GIS algorithms. A brief analysis of notable modeling
software (Soil & Water Assessment Tool (SWAT) and Storm Water Management
Model (SWMM)), which have been developed for more than a decade, is available
in Appendix A NET3: conclusion and future development to demonstrate this
increasing complexity: SWAT overall increment of number of lines of code in about
15 years is more than 100%, while SWMM source grew up of 40% in about 14
years.

The next chapter presents background work and material that attempted to
overcome identified constraints. The detailed analysis of current applications of
EMFs/CCPs in modeling workflows allows for identifying context and scope of
this dissertation, introducing to research contributions proposed to solve identified
problems.
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This chapter introduces to important background information for understanding
the significance of this dissertation.

Section 2.1 exhaustively describes previous works in attempt to facilitate op-
erational use of environmental models for service delivery organizations and in
research environments. Section 2.2 identifies the modeling core to intervene to,
while Section 2.3 points to identified methodologies to expand modeling capabilities
and flexibility. Section 2.4 introduces to the actual contributions of this dissertation
and describes identified strategies to (1) facilitate access to model behaviour for
service delivery organizations, and (2) simplify model development and maintenance
and elevate modeler creativity for researchers and modelers. Finally, Section 2.5
summarizes who will benefit from this research.

2.1 BACKGROUND WORK

The identified problems in service delivery organizations and research environ-
ments are well established and literature reveals that research work has been
done already while attempting to overcome limitations and constraints (David et al.
(2013); Peckham et al. (2013)).

This section focuses on analyzing background work that has been conducted so far.
Following the structure of this dissertation, background work related to operational
use of mathematical models in consultancy agencies is separately described from
background work related to operational use of mathematical models in research
environments.

2.1.1 Background work to facilitate operational use of environmental
models for service delivery organizations

Briefly summarizing, problems that concern service delivery organizations with
daily use of conceptual/physical models are mostly related to:

1. the need of thorough understanding of the conceptual schema or physical
processes implemented;

11
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2. the requirement of big dataset for calibrations and simple runs;

3. long computational run-time.

The design of complex IT hardware and software infrastructures and the use of
surrogate (or complexity reduction) models are two actual attempts to overcome
these constraints. This section introduces to benefits and limitations of such problem
solving methodologies.

IT infrastructures, supercomputing environments and computer clusters are hard-
ware answers to requirement of higher computational power for reducing model
run-time.

The exploitation of these powerful hardware resources necessitates of proper
software infrastructures such as EMFs CCPs (Rizzoli et al. (2006); David et al.
(2013); Peckham et al. (2013)).

The adoption of EMFs and CCPs carries two additional benefits to service
delivery organizations workflow: (1) facilitates encapsulation of simulation models,
consequently unifying and simplifying user-model interface by leveraging input/out-
put standards and model-model interface by managing models intercommunication;
(2) reduces cost of model development and maintenance by decoupling software
architectural design aspects from actual scientific code base (see Figure 2).

. Various
Models

Ste
Unifying the Use: Use
Framework
+
Service
encapsulation

Figure 2: Schematic to represents evolution of research models from stand-alone applications
to encapsulated framework-compliant components. This processed unified/sim-
plified user-model interface and model-model intercommunication, and enabled
model runs on high performance computing environments. The arrow on the left
side illustrates the reduction of model approach complexity by standardizing
input/output formats, and the reduction of model maintenance and development
cost.

APPROACH
COMPLEXITY
&
DEVELOP
COSsT

However, if they moderate the run-time problem, facilitate data preparation, and
reduce cost expenditure for software development and maintenance, they cannot
simplify data-collection operations. The identical input dataset is still required for
a framework-compliant or web-service model run.

Additionally, EMFs and CCPs only partially tackle the issue of understanding
simulation model internals: they let user take advantage model capabilities as a
black box but they don't and cannot simplify calibration and sensitivity analysis
procedures.

Databases setup is a further software solution for tackling requirements of big
datasets to calibrate and run environmental models. RUSLEZ2 (Renard et al. (1997);
Foster et al. (2000, 2001)) serves here for the sake of example.
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RUSLEZ estimates the amount of soil loss along based upon rainfall and related
overland flow (Foster (2005)). Several input parameters are required to set up a
RUSLE2 model run: from weather conditions, to soil composition and properties, to
crop land operations and management impact on soil erosion, etc. To limit the user
burden in collecting and setting up input parameters, United States Department of
Agriculture - Natural Resources Conservation Service (USDA-NRCS) and United
States Department of Agriculture - Agricultural Research Service (USDA-ARS)
agencies gathered survey of required input parameters across the entire US into
extensive dedicated databases. Consequently, RUSLE2 CSIP-service automatically
connects to the proper database at run-time and retrieves user selected parameters.

Figure 3 shows the actual set up of the CSIP-R2 web-service. Four databases
are connected directly or through microsubservices to the main R2 CSIP-service.
SSURGO contains soil information, LMOD (David et al. (2014b)) contains land
management and operations information, while the other two databases provide for
remaining parameter requirements.

SSURGO
CRdb (251 GB)
(14
GB)
climate
barriers,
hes,
contours
csip-lmod csip-misc csip-soils
(23 MB) (13 MB) (84 MB)

csip-r2
(8083 v2.1)
(58 MB)

Figure 3: Schematic to represent sub service and database dependencies of CSIP-R2. The
overall dependencies are about 2goGB in size.

This model setup surely support and ease user approach to RUSLEZ. However,
it facilitates RUSLEZ application only within US boundaries.

In summary, complex IT hardware and software infrastructures are important
background work that served as a first attempt to tackle service delivery organization
issues. They simplify some of the inherent complexities of using conceptual/physical
models but they:

A. shift the responsibility and workload of model simulation runs to the hosting
environment;

B. don't lighten user’s burden of data collection, parameter and modeling solution
setup;

c. still require model knowledge for handling calibration and sensitivity analysis
processes.

Surrogate (or complexity reduction) model is a completely different approach to
contemporarily tackle each one of the three problems initially described in this
section. These specific types of models are developed to emulate the original
simulation model behaviour and speed up the computational time without sacri-
ficing accuracy (Asher et al. (2015)). They were mainly introduced in workflows
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requiring many simulation runs, such as uncertainty analysis, sensitivity analysis,
and optimization frameworks (Beh et al. (2017); Asher et al. (2015); Razavi et al.
(2012b)). Here, long runtimes is a big issue and inhibits real time application of
complex models, as well.

Three classes of surrogate models exist. Razavi et al. (2012b) proposes a thorough
review of surrogate modeling applied to water resources. In a subsequent paper,
Asher et al. (2015) identifies, classifies and thoroughly describes the main categories
of surrogate models applied to groundwater modeling starting from Razavi et al.
(2012b). The resulting taxonomy is following briefly analyzed:

A. Projection-based models everage the projection of actual model equations
into a basis of orthogonal vectors to reduce the size of the initial vector space.
This methodology requires ad-hoc mathematical analysis of each equation
implemented in the original model.

B. Hierarchical or multi-fidelity models generate from the original models by
reducing numerical accuracy, or by ignoring or approximating some physical
processes. In the first case, reducing numerical accuracy slightly tackle only
the run-time issue. This type of complexity reduction allows for getting pretty
accurate results because physical components are identical to the original
model. However, the entire input dataset and in-depth model understanding
are still required for a simulation set up. The second option slightly tackles the
three problems altogether: it speeds up simulation run-time, requires a smaller
input dataset, and simplifies the inner modeling complexity. However, these
kind of models might still have long computational time, require calibration
procedures and consequently model understanding and large input data
set. Furthermore, they are not able to return accurate results because it is
not possible to compensate simplified physical processes of a system with
corrective parameters (Razavi et al. (2012b)).

c. Data-driven models (or response surface models) are statistical or empirical
models, which are able to capture and approximate the original model be-
haviour (the response surface, typically a nonlinear hyperplane) by learning
the existing nonlinear relationship between a set of original input/output
snapshots. There is no direct emulation of any inner conceptual/physical
process described in the original simulation model. Literature reports about
a large variety of approximation methodologies used for surrogate model-
ing. In the most recent literature, ANNs are among the utmost commonly
used techniques. ANNSs are notably flexible function approximators (Razavi
et al. (2012b)). However, standard methodologies like Multilayer Percep-
trons (MLPs) require several subjective decisions to develop and apply a
proper ANN. These decisions involve selection of (1) the optimal structure,
(2) the number of hidden layers, (3) the number of neurons in each hidden
layer, and (4) the type of transfer function. As a result, surrogate model setup
entails an iterative trial-and-error approach (Razavi et al. (2012b)).

In summary, three types of surrogate models have been largely studied and
applied in water resources topics. Projection-based and multi-fidelity models
originate from actual simplifications of internal conceptual/physical processes of
original simulation models, and are tightly coupled with model internals. Thus,
these surrogate models require mathematical analysis or ad-hoc configurations
for properly emulating each and every simulation model. Oppositely, structures
of data-driven models (ANNSs in this specific case) are completely decoupled from
original simulation models.
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This section analyzed background work research community carried out to
overcome problems service delivery organizations face in their daily use of concep-
tual/physical models.

EMFs and CCPs methodologies have been investigated. They facilitate and
smooth the approach to mathematical simulation models by (i) elevating capabilities
of exploiting powerful state-of-art hardware systems, (it) unifying user-model and
model-model interfaces, and (iii) seamlessly accessing available databases resources.
However, they don't solve (A) long computation runs (which management is simply
shift to hosting environments); (B) user's burden of data collection, parameter
and modeling solution setup; (C) difficulty in handling calibration and sensitivity
analysis procedures.

Additionally, surrogate modeling methodology has been investigated. Three
types of complexity reduction models have been analyzed and all of them tackle
two service delivery organizations problems by reducing computational time and
input data requirements. However:

1. projection-based models require ad-hoc mathematical analysis, which are not
suited for service delivery organizations requirements;

2. hierarchical or multi-fidelity models might still have long computational time,
require calibration procedures and model understanding consequently, and
large input datasets;

3. data-driven methodology seems the most appealing approach since its struc-
ture is totally decoupled from the original simulation model but standard
methodologies still entail an iterative trial-and-error approach.

2.1.2 Background work to facilitate operational use of environmental
models in research environments

Briefly summarizing, problems that concern research environments with daily
operational use of conceptual/physical models are mostly related to:

1. difficulties in model maintenance and development;
2. error-prone code duplication;
3. lack of model flexibility which limits modeler productivity and creativity.

Research community is aware of challenges, constraints, and frustrations related
to monolithic code application maintenance, development, and evolution (Rizzoli
et al. (2006); Quesnel et al. (2009); Formetta et al. (2014a)).

The adoption of EMFs in modeling workflows alleviates these problems but it
is not widespread among research environments still and sometimes constraints
modeler creativity and productivity.

A notable, highly published, state-of-art, framework-compliant hydrological sys-
tem is GEOframe (Formetta et al. (2014a); Banchert (2017)). GEOframe serves
here for the sake of demonstrating benefits and limitations of integrating EMFs in
modeling workflow.

GEOframe system (Bancheri (2017); Rigon et al. (2018)) originates from JGrass-
NewAGE project (Formetta et al. (2014a)).

JGrass-NewAGE is a semi-distributed, physically based, OMS compliant hydro-
logical system (Formetta et al. (2014a)). Its development started as a result of Adige
River Authority's request for a modeling tool capable of studying drought periods of
the river Adige (Rigon (2014)). The entire system results from the interconnection
of three groups of software components (Formetta et al. (2014a); Banchert (2017)):
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1. uDig Geofraphic Information System (GIS) is a GIS interface, which allows
for geographic data visualization and manipulation;

2. JGrasstools (uDig spatial toolbox) (Abera et al. (2014)), which allows for
raster maps management and geomorphological analysis, and includes Horton
Machine computing tools (Rigon et al. (2006a,b));

3. NewAGE s a collection of OMS-compliant hydrological modeling components
which are following briefly analyzed.

Geomorphologic model setup

[uDig - JGrasstools — Horton Machine]

Meteorological Interpolation tools

[ GEOSTATISTIC J (" DETERMINISTIC )
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Decomposition model different paramtrizations
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Figure 4: OMS-compliant components designed and developed by Dr. Giuseppe Formetta
and released in the initial version of JGrass-NewAGE, credit Formetta et al.
(2014a).

Figure 4 from Formetta et al. (2014a) illustrates model components implemented
in JGrass-NewAGE. They are grouped into seven categories thoroughly designed
by Dr. Giuseppe Formetta. Going through Figure 4 from top to bottom, the first
group of software component is the geomorphic and Digital Elevation Model (DEM)
analyses, which allow for analyzing raw topographic data and convert it into
JGrass-NewAGE input entries. This group of components comprises of raster and
vector readers/writers, Pitfiller component for filling DEM artificial depressions,
FlowDir component for estimating flow direction map based off of D-8 algorithm,
HackLength component for identifying the main stream reach (Rigon et al. (1998)),
ExtractNetwork component for estimating the channel network based off of drainage
direction map, HachStream component (Rigon et al. (2006a)) for channel network
ordering, Netnumbering component (Rigon et al. (2006a)) to couple the hillslope 1D
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with network link it discharges to, and Pfafstetter component for properly numbering
the channel network (Formetta et al. (2014a)).

The second group of components is the meteorological interpolation tool, which
provides ordinary and detrended kriging components in addition to Just Another
Model Interpolator (JAMI) component (Formetta et al. (2014a); Banchert (2017)).

Radiation forcing is the third group, which makes available shortwave and
longwave computational components (Formetta et al. (2013b, 2014a, 2016a)).

The fourth group relates to evapotranspiration estimate, which provides for three
different approaches: Fao-Evapotranspiration, Penman-Monteith, and Priestly-
Taylor (Formetta et al. (2014a)).

Runoff production and Snow Melt are the fifth group. Here, two models for runoff
estimation are provided: Hymod and Duffy. Snow melt Snow Water Equation (SWE)
is bundled into a dedicated component application (Formetta (2013); Formetta et al.
(2013a, 2014b)).

The sixth section includes the channel routing following the Pfafstetter number-
ing(Formetta et al. (2011); Formetta (2013); Formetta et al. (2014a)).

Finally, the seventh group provides automatic calibration tools such as Particle
Swarm Optimization (PSO) and DREAM (Formetta et al. (2011); Formetta (2013);
Formetta et al. (2014a)).

The first version of JGrass-NewAGE demonstrates unprecedented capabilities
already: its main author, Dr. Giuseppe Formetta, designed and developed the entire
system by providing alternative computational components per hydrological group.
Components can be swap out at runtime by leveraging OMS3 framework (David
et al. (2013)). JGrass-NewAGE system is highly tested and published (Formetta
et al. (2011); Formetta (2013); Formetta et al. (2013b,a, 2014a,b, 2016a,c,b); Abera
et al. (2014, 2017a,b)).

Banchert (2017) enriches the already large variety of modeling components by
adding four computational applications: clearness index computation for estimating
the incoming and top atmosphere shortwave radiation ratio; net radiation for
computing the incoming/outgoing energy balance; embedded reservoir model for
conceptualizing water budget throughout interconnected reservoirs; and travel time
analysis (Banchert et al. (2015); Rigon et al. (2016); Banchert (2017); Banchert
et al. (2017a, 2018a,c); Rigon et al. (2018)).

Despite JGrass-NewAGE high potential and capabilities, Bancheri (2017) reports
that early stage modeling components are still influenced by procedural architectural
design and lack of software documentation. As a result, Dr. Marialaura Banchert
refactores most of the available components (Bancheri (2017); Bancheri et al.
(2018b)) by leveraging object oriented programming notions and design patterns
(Gamma (1995); Freeman et al. (2004)). Figure 1 from Bancheri (2017) illustrates
the hydrological budget by leveraging newly implemented and redesigned modeling
components (Bancheri (2017); Bancheri et al. (2018b)).

Additionally, Bancheri (2017) concretely introduces Reproducible-Research Sys-
tem (RRS) nto JGrass-NewAGE project to consolidate modeling component ap-
plications lifecycle across every stage: development, deployment, and production
(Banchert et al. (2016); Banchert (2017); Banchert et al. (2017b, 2018a)). Here,
the GEOframe organization is founded to define the set of RRS open standards.
Consequently, JGrass-NewAGE project is renamed GEOframe system. A software
component is GEOframe-compliant if it adheres to the following lifecycle:

1. history of software development maintained with git Version Control
System (VCS) and regularly committed to GitHub repository hosted at
https://github.com/geoframecomponents;
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2. components developed as IDE-independent projects by using Gradle building
system (Berglund and McCullough (2011));

3. Unit tests serially run at each new VCS commit by incorporating Travis-Cl
continuous integration in software deployment practice (Beck (2003); Meyer
(2014));

4. OMS3  projects  for modeling simulation testing deployed at
https://github.com/geoframeOMSprojects;

5. modeling components documented according to GEOframe standard and
published to http://geoframe.blogspot.com/;

6. tagged modeling components uniquely identified by a Digital Object Identifier
(DOI) number leveraging Zenodo archival system.

GEOframe RRS standards are tangible application of David et al. (2013) state-

ment:

‘Adopting software coding standards, using version control systems
to manage source code, and performing code peer reviews can be
important steps towards improving model code development that will
eventually help expedite adoption of modeling frameworks."

Eventually, GEOframe overcomes previously identified JGrass-NewAGE coding
practice constraints (Bancheri et al. (2016); Banchert (2017); Bancheri et al. (2017b,
2018a)) and innovative modeling components are being developed (Bottazzi and
Rigon (2018a,b); Tubint et al. (2017, 2018)). Architectural re-design and refactoring
of JGrass-NewAGE in addition to application of RRS open standard was possible
thanks to its component based structure. This is a very important aspect when it
comes to model development and maintenance.

However, Bancheri (2017) still reports modeling constraints with respect to highly
heterogeneous systems. Actual OMS3 capabilities allow for simulating a catchment
water budget as a whole modeling solution. Finely tuning of modeling parameters
for different behavioural domains such as mountain, hill, and plain subcatchments
is currently not possible. Figure 5 from Montgomery (1999) illustrates this concept,
which is thoroughly described in Montgomery (1999) and presented in Serafin et al.
(2018a).

This section analyzed background work research community carried out to over-
come problems research scientists face in their operational use of conceptual/physical
models. The case of JGrass-NewAGE/GEOframe (Formetta et al. (2014a); Bancheri
(2017)) has been described to demonstrate that framework-compliant hydrological
systems:

1. foster modeler creativity (run-time swap out of modeling components);

2. facilitate model development and refactoring by encapsulating conceptual/-
physical processes description into single responsibility model components;

3. increase publishing rate (potentially one paper per component developed);

4. easily accommodate RRS open standard.

However, EMFs functionalities need to be expanded to not constraint modeler
productivity and creativity.
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Figure 7. Typical Coarse-Scale Riverine Process Domains for Pacific Northwest Drainage Basins.

Figure 5: Schematic of watershed scale processes domains in a mountain catchment, credit
Montgomery (1999).

2.2 CONTEXT

Although at first glance problems and constraints in both research and consultancy
environments seem unrelated, this dissertation identifies a common software core to
intervene on and accommodate requirements from both sources.

Strong communication and collaboration between research environments and
service delivery organizations historically featured in research advancements and
modeling goals achievements. Conceptual/physical models were and still are the
intermediaries of this ongoing interaction (Dall’Amico et al. (2018); Banchert et al.
(2018a)).

Problem statement analysis and background work considerations identify EMFs
as valuable mainstream tool and proper foster platform where naturally develop
innovative modeling practices (Argent (2004); David et al. (2013)).

Figure 6 emphasizes the current modeling architecture. Here, EMFs facilitate
and fasten communication between researchers and consultancy environments: re-
searchers utilize EMF platforms as (1) hosting environment for model development
and testing and (2) deployment hub of state-of-art modeling applications; service
delivery organizations tap into EMF hubs to improve their consultancy capabili-
ties and provide scientifically up-to-date answers to policy, decision makers and
stakeholders.

Although problems arising from the two communities are tackled separately, the
common solution strategy indicates EMFs as the suitable software architectural
layer for hosting modeling methodology development.
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Figure 6: Schematic to represent current modeling practice. Research scientists take
advantage of the benefits of EMF architectural design and modeling flexibility
to release/deploy as well as access conceptual/physical models; opposingly,
service delivery organizations make use of last enhancements in terms of scientific
knowledge and modeling practice to provide stakeholders and policy makers with
accurate estimate of quantity of interest.

This dissertation locates in EMFs the suitable layer for accommodating research
environment and service delivery organization requirements and proposes a set of
framework capability extensions to attempt problem solutions in the next section.

2.3 SCOPE

The scope of this dissertation is to expand EMFs and CCPs capabilities to
accommodate research environment and service delivery organization requirements.
According to the structure of this dissertation, scope of research related to consul-
tancy agencies problems and scope of research related to research environments
issues are separately described.

Service delivery organizations need a fast, lightweight, and "accurate enough” tool
capable of emulating original conceptual/physical model behaviour with fewer input
information. Background work identifies surrogate models (or complexity reduction
models) as promising methodology to accomplish this task. Different alternative
surrogate models are available in literature, and background work establishes
data-driven surrogate model as most appealing approach since its structure is
totally decoupled from original simulation model.

This dissertation will research methodological and technical approaches that
allows for enabling a modeling framework to interact with ML libraries to emerge
data-driven model surrogates a(ny) modeling solution.

The scope of this research topic narrows to the emulation of selected aspects of the
original model behaviour. It is surely of high interest to establish a relation between
surrogate model and actual/measured data. This is of fundamental importance
especially when the estimate of original model is wrong and measured data might
compensate model constraints. However, this dissertation won't invistigate this
further topic, which is postponed for later research.

Research environments need a proper strategy to overcome actual limitations
and constraints research scientists face while developing and maintaining, or
simply applying conceptual/physical models. Background work identifies EMFs
as state-of-art software environments to foster separation of software architectural
aspects from scientific concepts. These software tools already facilitate model
development and usage, and elevate modeler creativity, which was previously
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constrained by monolithic applications. However, problem statement and background
work demonstrate how state-of-art modeling solutions start limiting modeler needs.
This dissertation will research methodological and technical approaches that allow
for expanding EMFs capabilities in terms of modeling flexibility. This dissertation
will investigate the integration of graph theory into EMFs core capabilities to
accommodate research scientists requirements of modeling complex network-like
interactions by expanding the already flexible EMFs modeling approach.

In conclusion, this dissertation will research methodological and technical ap-
proaches for:

1. enabling a modeling framework to interact with ML libraries to emerge
data-driven model surrogates a(ny) modeling solution;

2. integrating graph theory into EMFs core capabilities to accommodate research
scientists requirements of modeling complex network-like interactions by
expanding the already flexible EMFs modeling approach.

2.4 OBJECTIVES STATEMENT

This dissertation contributes to the expansion of actual EMFs and CCPs capabil-
ities with respect to development, maintenance, and access to modeling resources.

To achieve this goal, CSIP/OMS (David et al. (2013); Lloyd et al. (2011, 2012);
David et al. (2014a)) has been identified as state-of-art in terms of EMFs to begin
with. It has proven to be the perfect fostering environment for further expansions and
developments. A higher level of modeling flexibility will be enhanced by elevating
its valuable features and already advanced modeling capabilities. Subsubsection
3.3.2.3 Cloud Service Integration Platform (CSIP) and 4.4.2.1 Object Modeling
System v3 (OMS3) investigate and analyze the motivation behind the choice of
CSIP/OMS.

This dissertation will develop two framework extensions to accommodate research
scientists and service delivery organizations requirements. Figure 7 illustrate both
concepts:

1. A modeling layer of surrogate modeling capabilities will be interposed
between conceptual/physically based model and modeling users such as
consultant agencies, service delivery organizations, and on-the-field personnel
to help transitioning from research to field. To emerge data-driven model
surrogates a(ny) modeling solution, the modeling framework will be enabled
to interact with ML libraries. Here, NEAT (Stanley and Miikkulainen (2002);
Whiteson et al. (2005)) will streamline the automated process of model
creation. Literature reviews doesn't report any current application of NEAT
algorithms in environmental modeling or surrogate modeling methodologies.
Finally, this dissertation introduces the concept of FeNS and the protocol
that rules framework-ML libraries interaction.

2. The integration of a flexible complex network based graph modeling structure
(NET3) into OMS3 software core will extend OMS3 modeling capabilities.
This approach will be designed over river network - graph structure analogy.
To facilitate model development and elevate modeler creativity, NET3 will
connect modeling solutions, provide a further layer of implicit paralleliza-
tion,and allow for easy implementation of additional features. NET3 will
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streamline the transition from forced homogeneous modeling of environmental
features to highly heterogeneous and finely tuned environmental modeling.

RESEARCHERS |:> e <:>

SERVICE DELIVERY
<: ORGANIZATIONS

= J

\ CSIP/OMS * NET3 J

Figure 7: Schematic of actual contributions of this dissertation. A new surrogate modeling
layer is interpose to bridge the gap between service delivery organizations
and conceptual/physical models. Contemporary, EMF modeling capabilities are
extended by implementing a graph modeling structure. This allows for bridging the
gap between researcher scientists and modeling platforms by enabling modelers
creativity and elevating concept of modeling encapsulation and re-use.

Ensuring that these approaches will completely bridge actual gaps between
research environments and conceptual/physical models, and service delivery orga-
nizations and conceptual/physical models is out of the scope of this dissertation.
However, the enhanced functionalities will facilitate access to mathematical models
and create solid foundations for fostering future modeling practice developments.

2.5 RELEVANCE

The findings of this study will redound to the benefit of research scientists and
service delivery organizations by facilitating development and access to modeling
resources.

Service delivery organizations will be provided with automatically generated
surrogate modelling capabilities to facilitate and speed up simulation runs. As
a results, running a large variety of modeling scenarios will be faster and less
computationally demanding. This potentially fastens support to policy and deci-
sion making processes. Additionally, the surrogate model will be a lightweight
“detachable” tool that can run from within portable devices on the field with limited
information and no internet connection.

Research environments will be provided with innovative EMFs capabilities which
will stave off actual modeling simulation constraints. This will result in faster
and easier model development and maintenance by allowing for more complex
and tunable modeling solutions while promoting code reuse and EMFs-compliant
modeling practices. Furthermore, this will facilitate and accommodate creative
modeling approaches by allowing for easy implementation of complex network-
based modeling solutions.
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2.6  SUMMARY

This chapter analyzes background work that drove this dissertation toward
identification of context, scope and objectives statement.

This dissertation contextualizes CSIP/OMS EMF/CCP, and defines two research
goals to expand its modeling capabilities for accommodating requirements from
service delivery organizations and research environments accordingly.

This dissertation will research methodological and technical approaches for
enabling a modeling framework to interact with ML libraries to emerge data-driven
model surrogates a(ny) modeling solution. This study investigates NEAT algorithms
to automatically emerge the model surrogate and defines FeNS protocol to enable
the intercommunication between modeling framework and ML libraries.

This dissertation will research methodological and technical approaches for
expanding modeling framework capabilities with graph modeling structure. This
study investigates graph theory and actual software implementation into modeling
platforms that resembles river network - graph structure analogy.

Two distinct chapters describe the two identified approaches by following identical
outline: literature review and research questions determine starting point of each
study and path that guides through the research respectively, while research
methodologies and case studies report methods leveraged to carry out the analysis
and their application to actual test cases.

Chapter 3 researches surrogate modeling approaches and their integration into
modeling framework, while Chapter 4 discusses the integration of graph modeling
structures in the modeling workflow.
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The problem statement of this dissertation highlights applicability constraints
of conceptual and physical models originating from research in consultant and
planning environments. Due to their complexity, data resolution requirements,
number of parameters, platform affinity, and other criteria mathematical models
are rarely suited “out-of the box" or field and consulting applications. A surrogate
modeling methodology is proposed to tackle these issues and facilitate the transition
from research models to service delivery organizations and consultant agencies
requirements. This dissertation proposes a ML-based surrogate model approach
aiming to capture the intrinsic knowledge of a mathematical model into an ensemble
system of artificial neural networks and make it available for providing simplified
answers to on the field problem-specific questions. A surrogate modeling approach
was developed to help transitioning from research to field by enabling a modeling
framework to interact with ML libraries to emerge model surrogates a(ny) modelling
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solution. CSIP/OMS was extended and utilized to harvest data and derive the
surrogate-model at the modeling framework level. Here, NEAT techniques in an
ensemble application, combined with ANN uncertainty quantification are the main
methodologies used and following exhaustively described.

3.1 LITERATURE REVIEW

Surrogate modeling is not a new concept in research environments. The first
publication dates back to Blanning (1975), where the author conceptualizes the
need for surrogate models (named metamodels in that paper) for sensitivity analysis
purposes. Kleijnen (1975) rovides statistical tools to make Blanning's theory
operational.

Since then, this idea has evolved and largely applied in workflows requiring
many simulation runs such as optimization, sensitivity and uncertainty analysis
operational management, and prediction (e.g. Viana and Haftka (2008); Razavi et al.
(2012b); Asher et al. (2015); Beh et al. (2017)). Here, long runtimes is a big issue
and inhibits real time application of complex models as well. Several papers have
been published on the topic. Razavi et al. (2012b) and Asher et al. (2015) are the
most important review articles on surrogate modeling in water resources.

Asher et al. (2015) reports the usage of different names like metamodels (Blanning
(1975)), reduced models (Willcox and Peraire (2002)), model emulators (O'Hagan
(2000)), proxy models (Bieker et al. (2007)), lower fidelity models (Robinson (2007);
Robinson et al. (2008)), and response surfaces (Regis and Shoemaker (2005)).

He also provides a detailed taxonomy of surrogate models based off of their
mathematical structure:

o Data-driven methods: (AKA response surface, statistical and black box
method) are empirical approximator surrogates created from a set of model
inputs/outputs which emulate high-fidelity model responses;

o Projection-based methods: (AKA reduced order, reduced basis and model
reduction methods) are generated by creating a basis of orthonormal vectors
to reduce dimension subspace where project governing equations (usually
Krylov-based and Singular Value Decomposition (SVD) methods);

o Multifidelity based methods: (AKA multiscale, hierarchical and physically
based methods) result from decreasing numerical resolution or by reducing
underlying physics complexity.

The goal of this research is to automatically generate surrogate models at
framework level without requiring user extensive intervention. Between the three
previously listed categories, the choice of the methodology to use fell into data-
driven methods. Here, ANN are the only highly non-linear approximator that can
be automatically generated.

Consequently, this dissertation and this literature review focus on response
surface surrogates and ANN more specifically.

The following definition allows for understanding the reason why this mathemat-
ical tool is named artificial neural network:

‘A neural network is a massively parallel distributed processor that
has a natural propensity for storing experimental knowledge and making
it available for use.

It resemble the brain in two respects:



3.1 LITERATURE REVIEW \

1. Knowledge is acquired by the network through a learning process;

2. Interneuron connection strengths known as synaptic weights are
used to store the knowledge.

- Haykin and Lippmann (1994) -

A more rigorous mathematical definition describes an ANN as a directed graph
(Floreano et al. (2008)). Here each node (or neuron), except for the input layer, is
the actual processing element: a usually nonlinear static transfer function transforms
the weighted sum of input values into a single output value (Govindaraju and Rao
(2000b)) (see Figure 8).
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Figure 8: Single hidden layer feedforward neural network, credit Govindaraju and Rao
(2000a).

ANN is an empirical data-driven type of models generated by capturing the
behaviour of high fidelity model through their input and output datasets.

Over the past 20 years, applications of ANNs (McCulloch and Pitts (1943))
to water related topics for surrogate modeling purposes have taken off thanks to
advancements in computational power and parallel distributed environments but
more importantly, after the introduction of solid mathematical basis by Hopfield
(1982) and Rumelhart et al. (1985).

ANN-based Surrogate Model (SM)s have been used for uncertainty-based
automatic calibration studies such as Khu and Werner (2003) (they performed
auto-calibration of SWMM model), or Zhang et al. (2009) (they performed auto-
calibration of SWAT model), or Zou et al. (2009) (they performed auto-calibration
of WASP model).

They have been implemented in multiobjective optimization settings such as Liong
et al. (2001) (they performed auto-calibration of HydroWorks model through bi-
objective optimization) or Behzadian et al. (2009) (they performed the optimization
of water distribution system monitoring locations through bi-objective optimization).
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Shrestha et al. (2009) replaces computationally demanding Monte Carlo simula-
tions with ANN-based SMs (they performed prediction of uncertainty estimation of
a hydrologic model). Yan and Minsker (2006, 2010) make use of neural networks to
solve integer optimization problems (they designed groundwater remediation strate-
gies using MODFLOW and RT3D for flow field and contaminant concentration).

However, Razavi et al. (2012b) emphasize the relevance of identifying the optimal
structure of an ANN to properly design ANN-based surrogates, and the fact that
this results from researcher subjective decisions and trial-and-error processes.

Additionally, they underline the ANN nature of being inexact or almost exact
emulators, which might not fit requirement of approximating deterministic response
of a computer model for optimization purposes.

Although ANN-based SM might not perform perfectly away from design sites,
Asher et al. (2015) states that

“Despite their drawbacks, well used data-driven approaches remain
a valuable tool in applications such as decision support and integrate
modeling, where it may be necessary to limit both the number of
parameters and the ranges which they take. Quick runtime once
calibrated and their non intrusive nature make data-driven methods
particularly useful for these applications.”

- Asher et al. (2015) -

This research attempts to overcome current limitations of ANN-based surrogates
and targets the automatically emerging of the surrogate model at a framework level
in addition to input space dimensionality reduction.

The final goal is to provide service delivery organizations with a lightweight and
easy to use tool to facilitate decision support on the field.

3.2 RESEARCH QUESTIONS

This section introduces to research questions this dissertation investigates on.
Each research question is briefly analyzed.

RQ1: Can we sufficiently duplicate the behaviour of relevant conceptual or
physically based models with abstract generic implementation of surrogate
models?

ANN-based SM as methodology itself has been widely applied and proved to return
accurate estimates (Kourakos and Mantoglou (2009); Yan and Minsker (2006)).
However, the structure of each surrogate results from researcher subjective decisions
and trial-and-error processes (multilayer perceptron neural network might have
one or more hidden layers and the actual number of hidden nodes is usually
consequence of a trial and error procedure).

NeuroEvolution of Augmenting Topology NEAT is an evolutionary algorithm
designed to evolve the structure of a neural network starting from the minimal
topology and incrementally growing it. This methodology allows for automatically
emerging SM with the most appropriate internal structure since topology and
weights of the artificial neural network evolve during supervised learning.
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RQ2: How can we properly split the input dataset in order to emulate models
behaviours more accurately?

Resampling methods are widely applied in modern statistics and are fundamental
tools for ANN methodologies as well (James et al. (2013)). Here, cross-validation
is mainly applied for:

e Model assessment: in order to estimate the performance of a model and
avoid overfitting;

e Model selection: in case of fixed structure ANN, leave-one-out cross-
validation (LOOCV) and k-fold Cross Validation (CV) are mainly used to
test ANN with different structures and select the most performant one.

In this research ANN methodologies are utilized as model behaviour approxima-
tors. Thus, the relation between model input and output should be described by a
hidden but well defined nonlinear function since the dataset is noise-free. As a
result, model assessment (overfitting) is not the biggest concern.

Regarding model selection, NEAT takes advantage of the benefits of a genetic
algorithm to build the ANN structure during the training phase. Thus, NEAT ends
up generating a different ANN every time the training process starts, even if it is
fed with the same training dataset. Consequently, standard resampling methods
cannot be applied to this research.

However, properly splitting the training dataset to homogeneously cover the
domain space and leveraging NEAT aleatoric process to generate several slightly
different ANNs might potentially improve SM estimates accuracy.

RQ3: How can we improve surrogate model results accuracy and provide
strong support in the decision making process consequently?

One of the main goals of mathematical/engineering models is to facilitate and
support decision making processes. This goal is achieved by quantifying the range
of possible, which means estimating uncertainty and variability of the model (Swiler
and Giunta (2007)). The NEAT methodology involves several aleatoric processes,
which might be used to uncertainty quantifying ensemble of ANNs result.

Furthermore, ensemble learning has demonstrated to improve result accuracy
with respect to single ANN application (Yu et al. (2008); Guo et al. (2012)).

Combining ensemble learning with uncertainty quantification leads to achieving
two goals: improve result accuracy while supporting and ease decision making
processes.

3.3 RESEARCH DESIGN AND METHODS

This research aims to support consultant agencies by providing a more lightweight
and easier to use surrogate of an actual mathematical model. This surrogate is
generated at a framework level by expanding framework capabilities.

Thus, this research has been driven by the need of:

e Automatically generate the surrogate model at framework level;

e Generate a surrogate model able to provide accurate results and support
decision makers by uncertainty quantifying surrogate model behaviour.

Subsection 3.3.1 Methodological approach introduces to the two main method-
ologies this research utilizes and the two conceptual contributions:
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o NeuroEvolution of Augmenting Topologies (NEAT) is the evolutionary algo-
rithm capable of creating the structure of the ANN while adjusting connection
weights during the training phase (Stanley and Miikkulainen (2002));

o Feature Selective NEAT (FS-NEAT) is a NEAT extension that introduces an
implicit dimensionality reduction mechanism to select only input parameters
that yield to the best ANN performance during the training phase (Whiteson
et al. (2005));

o Ensemble of SMs coupled to uncertainty quantification of SM results is the
methodology developed to take advantage of FS-NEAT inherent stochasticity
and improve result accuracy;

o Framework-enabled NEAT based Surrogate modeling (FeNS) is the final
concept and contribution of this dissertation. FeNS integrates the three

previously introduced methodologies at framework for automatically emerging
the SM.

Subsection 3.3.2 Technical approach and implementation deeply describes soft-
ware libraries, Application Programming Interface (APl)s, and platforms employed to
extend framework functionalities to generate the surrogate model. An introduction
to MongoDB database as well as Microservices and RESTful AP is proposed.
Then, a comprehensive description of CSIP serves as a preamble to the detailed
analysis of FeNS system.

3.3.1  Methodological approach

3.3.1.1  NeuroEvolution of Augmenting Topologies (NEAT)

Stanley and Miikkulainen in 2002 published the paper “Evolving Neural Net-
works through Augmenting Topologies”, describing a new evolutionary algorithm
capable of gaining benefits from contemporary evolving both structure and weights
of an artificial neural network (Stanley and Miikkulainen (2002)). At that time,
several algorithms of the Topology and Weight Evolving Artificial Neural Net-
works (TWEANN)s family were able to simultaneously evolve both topology and
weights already (Angeline et al. (1994); Braun and Weisbrod (1993); Dasqupta and
McGregor (1992); Fullmer and Miikkulainen (1992); Gruau et al. (1996); Krishnan
and Ciesielski (1994); Lee and Kim (1996); Maniezzo (1994); Opitz and Shavlik
(1997); Pujol and Poli (1998); Yao and Liu (1998); Zhang and Muhlenbein (1993)).
The open question in neuroevolution was about gaining advantage from the con-
temporaneous evolution of topology and weights. NEAT is designed to evolve the
structure of a neural network starting from the minimal topology and incrementally
growing it. This fasten the learning process by keeping the size of the search space
of connection weights at its minimum. Stanley and Miikkulainen demonstrated how
the best fixed-topology neural networks were outperformed by NEAT (Stanley and
Miikkulainen (2002)). This paper was also a valuable contribution to research in
genetic algorithms Genetic Algorithm (GA)s: NEAT algorithm, indeed, is able to
progressively complexify and optimize the neural networks over generations Stanley
and Miikkulainen (2002).

Solutions of four well established problems are the actual innovations behind
NEAT algorithm:

1. TWEANN Encoding;

2. Competing conventions;
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3. Protecting innovations;

4. Initial population and topological innovation.

The four issues are following briefly introduced. Subsequently, NEAT solutions
are described.

3.31.1.1  Problems
Network encoding

There are two types of genetic representations for encoding an artificial neural
network: direct and indirect encoding schemes.

Direct encoding is characterised by more explanatory representation. Every node
and connection in the genome appears in the phenotype as well. For example,
Structured Genetic Algorithm (sGA) Dasgupta and McGregor (1992) describe the
connection matrix through the traditional bit string; Parallel Distributed Genetic
Programming (PDGP) (Pujol and Poli (1998)) makes use of both a graph structure
and a linear genome of node definitions to ease crossovering. Both structures show
evident limits like a fixed number of nodes in the network, or number of nodes is
consequence of human choice.

Indirect encoding has a less explicit representation because connections and
nodes are explicitly defined in the genome but they can be extracted from it. For
example, in Cellular Encoding (CE) (Gruau (1993)) specialized graph transformation

language are utilized for programming the genomes in order to specify cell division.

However, there wasn't a deep understanding of indirect encoding at that time, so
one of major drawbacks was an uncontrolled way of searching for solutions. This
led indirect encoding to focus on some suboptimal classes of topologies.

Competing conventions (permutations)

Competing conventions problems happen when:

A. Several options are available to solve the weight optimization problem
with neural network;

Figure 9 illustrates two ANNs able to reproduce the same function with identical
structure but different representation (chromosomes). Simply flipping hidden neuron
1 (H1) and hidden neuron 3 (H3) makes the two ANNs incompatible for crossover
because there is a high probability of losing important information. The crossover
of representation (H1,H2,H3) with (H3,H2,H1) can potentially result in (H1,H2,H1)
or (H3,H2,H3), losing H3 information in the first case and H1 in the second one.

Crossovering these genomes has high probability of resulting into damaged offspring.

B. There is more than one topology to express the same neural network;

C. Genomes of different sizes can represent similar solutions.

The crossover in cases B and C could potentially fail because neural network

representations may not match up. In detail, this happens when genes are in the

same position on different chromosomes but represent totally dissimilar traits.
Here, the constraint is positional crossovering: genes properly match up depending

on their traits, even if their are located at different positions on different chromosomes.

Actual alignment strategy is required.
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Figure 9: Competing conventions problem. The two ANNSs have identical structure but
different order of hidden neurons. Here, crossovering the two networks might
result in missing one of the 3 hidden units.

Protecting innovation

The result of a mutation process generates a network with a new structure. Rarely
the newly added node or connection are perfectly tuned and they usually don't have
positive impact on network fitness. For example, when a new connection is added, its
weight is likely to be not optimized consequently decreasing network performance.
Equivalently, the addition of a new node to the network structure generates a
new extra nonlinearity which becomes part of network behaviour. Furthermore, the
addition of a new node automatically involves the addition of a new connection
with a default weight value.

As a result, the new structure has to be optimized for some generation before
its actual use. However, the loss of fitness penalizes the new network in the
population which may not survive for enough generations to be properly optimized.
This innovation has to be somehow protected long enough and actually check its
goodness once maturity is reached.

Initial population and topological innovation

The initial population in TWEANNSs systems is usually randomly generated
which means that each genome starts with a random topology. This opens two
further scenarios. A starting network may have:

A. no connection from each of its inputs to its output;

B. useless nodes or connections because they have never been evaluated before
(and get rid of structures that shouldn't have to be there require additional
avoidable efforts).

There shouldn’t be any hidden node in the initial population in order to start with
minimal topology networks. A structure should grow only if the final fitness has a
positive impact.

3.3.1.1.2 Solutions
From direct to genetic encoding

NEAT makes use of direct encoding-type linear representation of network con-
nectivity to describe genomes. Each genome contains two lists (see Figure 10):
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Genome (Genotype) Network (Phenotype)

Node Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
Genes Input Input Hidden Hidden Hidden Output
Connection In2 in1 In3 In 1 In4
Genes Out6 Out3 Out6 Out4 Out6 4 5
Weight 0.8 Weight 0.1 Weight 0.5 Weight 0.1 Weight 0.2
DISABLED Enabled Enabled DISABLED Enabled
Innov 1 Innov 2 Innov 3 Innov 4 Innov 6
In2 In2 In5 In1 In6
Out 4 Out5 Out 6 Out 6 Out5
Weight 0.1 Weight 0.7 Weight 0.4 Weight 0.6 Weight 0.9
Enabled Enabled Enabled Enabled Enabled 2
Innov 7 Innov 10 Innov 11 Innov 12 Innov 20

Figure 10: The genome (left side) maps the actual network structure (right side). Two genes (node and connection)
describe neuron types and their interconnections.

e Node Genes: available input, hidden, and output nodes;

e Connection Genes: each connection gene contains in-node, out-node, con-
nection weight, if the connection is enabled and an innovation number (fully
described in the next section, it allows for identifying same genes in different
genomes during crossover).

NEAT evolves connection weights and network structure through mutation pro-
cess. During each generation, connection weights get perturbed or not (standard
NeuroEvolution (NE) connection mutation). Only two structural mutations are
allowed:

e Add connection: this adds a new connection gene between two unconnected
nodes with a random weight;

e Add node: this adds a new node between two connected nodes. Thus, the old
weighted link is replaced by two new connections between the old nodes and
the new one. This mutation strongly affects the current value of the fitness
behaviour of the newly created neural network. To moderate this process,
NEAT sets the weight of the connection to the new node to 1 while sets the
weight of the connection from the new node identical to the old one.

In this way, the mutation lets the genome's size slowly increase.

Historical markings to overcome competing convetions problems

Natural dynamics are strongly inspirational for the development of GAs and the
way they overcome competing conventions problem actually inspires NEAT solution
as well.

Gene amplification (Darnell and Doolittle (1986); Watson et al. (1988)) is the
process that allows for adding new genes to the genomes during sexual reproduction.
Thus, even real genomes are not of fixed-length, otherwise there wouldn't have
been any evolution from single cells to actual organisms. In order to successfully
crossover, genes correctly align during the synapsis if they are homologous, i.e.
they represent the same trait. This concept is named homology.

NEAT defines two genes homologous if they have same historical origin. Because
they originate from the same ancestral gene, they represent the identical structure
and match up for crossovering. This concept equates to nature's homology.
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A global innovation number is introduced to keep track of the structural mutation
chronological order. This index increments when a new gene is added and is
assigned to it. For example, considering two subsequent structural mutations to the
network in Figure 10: addition of node 5 (Figure 11), and addition of connection
gene 1 - 6 contemporary to disablement of of connection gene node 1 - 4 (Figure
12). When node 5 is added, the two newly created connection genes between node
2 - 5 and node 5 - 6 get assigned the innovation numbers 10 and 11 respectively.
If connection gene 1 - 4 gets pruned out immediately after, innovation number 12
gets assigned to newly created connection gene 1 - 6.

Connection Connection

Genes Genes

In2 in1 In3 In1 In2 In1 n3 In1
outé out3 outé out4 out6 out3 out6 out4
Weight 0.8 Weight 0.1 Weight 0.5 Weight 0.1 Weight 0.8 Weight 0.1 Weight 0.5 Weight 0.1
Enabled Enabled Enabled Enabled DISABLED | Enabled Enabled Enabled
Innov 1 Innov 2 Innov 3 Innov 4 Innov 1 Innov 2 Innov 3 Innov 4
In4 In2 In4 In2 In2 In5
out6 out4 out6 out4 out5 out6
Weight 0.2 Weight 0.1 Weight 0.2 Weight 0.1 Weight 0.7 Weight 0.4
Enabled Enabled Enabled Enabled Enabled Enabled
Innov 6 Innov 7 Innov 6 Innov 7 Innov 10 Innov 11

Figure 11: Example of add node mutation. Left hand side illustrates the original ANN
genotype and phenotype, while right hand side illustrates ANN genotype and
phenotype after structural mutation.

When two genomes mate, genes with identical innovation number (matching
genes) crossover and offsprings inherit the ancestor’s innovation number. The choice
between two matching is completely random. If two genomes have non-matching
genes, disjoint genes (non-matching genes within the range of the other parent’s
innovation numbers) and excess genes (non-matching genes outside the range of
the other parent’s innovation numbers) are inherited from the more fit parent (see
Figure 13).

Global innovation number is the only index required by NEAT to perform the
artificial synapsis and properly line up matching genes. Additionally, NEAT collects
the list of innovations that happened in the current epoch. Consequently, identical
innovation number gets assigned to the same structural mutation that occurs more
than once during the same generation.

Speciation to protect structural innovation

Nature developed the concept of niche to protect structural innovation. Different
structures usually belong to different species. Challenges between species happen
in different niches.

NEAT algorithm implements a similar concept: the entire population is divided
into species, each species groups networks with comparable topologies so that
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Connection Connection

Genes Genes

In2 In1 In3 in1 In2 In1 In3 In1
out6 out3 outé out4 outé out3 out6 out4
Weight 0.8 Weight 0.1 Weight 0.5 Weight 0.1 Weight 0.8 Weight 0.1 Weight 0.5 Weight 0.1
Enabled Enabled Enabled Enabled Enabled Enabled Enabled DISABLED
Innov 1 Innov 2 Innov 3 Innov 4 Innov 1 Innov 2 Innov 3 Innov 4
n4 In2 In4 In2 In1

out6 Out4 outé out4 outé

Weight 0.2 Weight 0.1 Weight 0.2 Weight 0.1 Weight 0.5

Enabled Enabled Enabled Enabled Enabled

Innov 6 Innov 7 Innov 6 Innov 7 Innov 12

Figure 12: Example of add link mutation. Left hand side illustrates the original ANN
genotype and phenotype, while right hand side illustrates ANN genotype and
phenotype after structural mutation.

Parent 1 Parent 2

n2 in1 n3 in1 in2 in1 n3 in1
outs oute out4 oute outs oute outa

Weight 08 | Weight0.1 | Weight02 | Weight0.1 Weight08 | Weight0.3 | Weight05 | Weight 0.1
Enabled Enabled Enabled DISABLED DISABLED | Enabled Enabled Enabled
Innov 1 innov 2 Innov 3 Innov 4 Innov 1 innov 2 Innov 3 Innov 4
Ina In2 in1 In4 in2 In2 in5 in6
oute outa oute oute outa outs oute outs
Weight 04 | Weight0.1 | Weight 0.5 Weight02 | Weight06 | Weight07 | Weight04 | Weight0.9
Enabled Enabled Enabled Enabled Enabled Enabled Enabled Enabled
Innov 5 Innov & Innov 9 Innov 5 innov 6 Innov 7 Innov 8 nnov 13

Disjoint
Parent 1 In2 n1 n3 In1 In4 n2 in1
Outé Out3 Outé Outd Outé Outd Outb
Welght08 | Weight0.1 | Weight0.2 | Weighto.1 | Weighto4 | Weight0.1 Weight 0.5
Enabled Enabled Enabled DISABLED Enabled Enabled Enabled
Tnnov 1 Innov 2 nnov 3 Innov 4 Innov 5 Innov 6 Innov 9
Parent 2 in2 n1 n3 In1 In4 n2 In2 ns In6
Outé Out3 Outé Outd Outé Out4 o] Outé Outs
Weight08 | Weight0.3 | Weight0.5 | Weight0.1 | Weight0.2 | Weight06 | Weight07 | Weight 0.4 Weight 0.9
DISABLED | Enabled Enabled Enabled Enabled Enabled Enabled Enabled Enabled
Innov 1 Innov 2 Innov 3 Innov 4 Innov 5 Innov 6 Innov 7 Innov 8 Innov 13
Disjoint Disjoint Excess
Offspring In2 n1 n3 n1 In4 n2 In2 In5 In1 In6
outs oute outa oute outa outs o outs
Weight 0.8 Weight 0.3 Weight 0.5 Weight 0.1 Weight 0.4 Weight 0.6 Weight 0.7 Weight 0.4 Weight 0.5 Weight 0.9
DISABLED | Enabled Enabled DISABLED | Enabled Enabled Enabled Enabled Enabled Enabled
Innov 1 innov 2 innov 3 Innov 4 innov 5 innov 6 Innov 7 innov 8 Innov 9 Innov 13

Figure 13: Process of two mating parents.
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when a structural innovation happens the new network fits into the more suitable
niche where it optimizes and initially compete only with similar networks.

NEAT estimates a compatibility distance (delta) between networks in order to
properly group them. Here, the solution to the competing convention problems
comes to help.

“The more disjoint two genomes are, the less evolutionary history
they share, and thus the less compatible they are”

- Stanley and Miikkulainen (2002) -

The distance between two genomes results from the linear combination of disjoint
(D) and excess (E) genes, in addition to averaged weight differences of matching
genes (W) (disable genes included):

s=atb el 31
=N tTNTe 1)

N is the number of genes in the bigger genome, c1, ¢z, and c3 allows for balancing
the significance of the three factors. J is evaluated against a threshold 9.

In order to avoid a species to take over the entire population, NEAT reproduction
mechanism is based off of explicit fitness sharing (Coldberg et al. (1987)). The final
fitness (f/) of each genome (i) is adjusted according to the distance () from the
other genomes (j):

o f; _ { sh=0 f0r6>'5t (32)
> _j—1sh(a(ij)) sh =1 otherwise

Thus, the final fitness is penalized by the number of genomes already presents
in a specific species. Every species is assigned a potentially different number of
offspring in proportion to the sum of final adjusted fitness of its member organisms.
Worst performing genomes are eliminated during species reproduction, and surviving
offspring in each species eventually replace the entire population.

Incremental growth from minimal structure

In the NEAT algorithm, population always start off with no hidden nodes. As a
result, the search algorithm always looks for solutions in the minimal-dimensional
space possible throughout all generations. In fact, a network, that starts from the
minimal structure, grows only if the structural mutation improves solution quality.

This design clearly improve algorithm performance since the search space is
always at its minimum.

3.3.1.2 Feature selective NEAT

FS-NEAT improves the standard NEAT algorithm by adding the feature selection
process, which automatically selects inputs that yield the best ANN performance
(Whiteson et al. (2005)). This process recognizes redundant and not significant
parameters and prune them. This constraint the dimension of the search space to
the lowest size possible.

FS-NEAT was developed for three main reasons (Whiteson et al. (2005)):

o alleviating human responsibility of properly setting up machine learning
system by enabling the searching algorithm to select only the subset of the
input parameters that increase learning performance;
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e avoiding the presence of not relevant inputs which can slow down or even
impede learning;

e controlling the pruning out of useless input parameters which can be compu-
tationally expensive. This leads also to ask as less features as possible to
the end-user willing to apply the trained ANN.

Before FS-NEAT, feature selection methodologies were grouped in two categories
(Langley (1994)):

A. Filters (Bonnlander and Weigend (1994); Kira and Rendell (1992)). These
methodologies are based off of the analysis of labeled data. Filters don't
account for the actual learning algorithm that will use the data.

B. Wrappers (Narendra and Fukunaga (1977); Pudil et al. (1994)). These
methodologies make use of a meta-learner to evaluate the feature sets which
is computationally expensive.

FS-NEAT overcomes previously listed constraints by selecting the the most
suitable features during the learning task. FS-NEAT differs from reqular NEAT
only for the setup of the initial population. NEAT algorithm generates a population
where each input of a neural network is connected to each output (Stanley and
Miikkulainen (2002)). This surely generates small networks to start with. However,
those are not the smallest networks possible. Additionally, with this kind of
structure the learning algorithm assumes that every input is useful to gain the best
performance. Which may not always be the case (Whiteson et al. (2005)).

The smallest dimensional space to start with would be a pool of completely
disconnected input and output nodes with no hidden nodes. However, this kind of
network requires at least one generation to start producing outputs, which would
be prodigal (Whiteson et al. (2005)).

FS-NEAT initializes the population in the following way (see Figure 14):

1. each output node is linked to a bias node;

2. considering a set of / inputs, each node i € / has a probability ﬁ to get
linked to every output node.

O1 o1

1]

Figure 14: Left hand side shows the initial structure of NEAT generated ANN. Right hand
side shows the initial structure of a FS-NEAT generated ANN.

This strategy allows for creating a very diversified initial population. Then, the
evolutionary algorithm will select the most performant individuals and start applying
structural mutations and crossover.
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3-3.1.3 Ensemble of surrogate models and uncertainty quantification

The ensemble of surrogate models approach (Serafin et al. (2018b)) results
from combining the stochasticity inherent to the evolutionary genetic algorithm
implemented in NEAT to a specifically designed cross validation-like technique.

NEAT evolves connection weights and network structure through mutation process
(Stanley and Miikkulainen (2002)). Accordingly, the neuroevolutionary algorithm
involves two type of stochastic mutation processes:

1. connection weight perturbation, which may or may not happen depending
upon standard neuroevolution connection mutation;

2. structural mutation, which involves random addition of a connection gene
between two disconnected nodes, or a node gene between two already
connected node genes.

This stochastic procedure already generates a slightly different ANN every time
a training process fed with identical input/output snapshots starts. Training an
ensemble of ANNSs results in several SMs capable of properly emulating the original
model behaviour even if they differ in structural topology and connection weights.

Instead of choosing one single ANN out of a trained ensemble, an accurately
designed cross validation-like procedure is used to emphasize this behavioural
stochasticity.

Supervised learning methodologies require to split the available dataset into
three sets: training, validation, and testing (Covindaraju and Rao (2000a); Friedman
et al. (2001); James et al. (2013)). Thus, the entire dataset is initially divided into
two groups: training—+validation (TV) dataset, and testing (see Figure 15).

Train Validation Test

Figure 15: Dataset splitting in training, validation, and testing.

Afterwards, right before the beginning of the learning process, the TV dataset
is randomly split into training and validation datasets. The partitioning algorithm
makes sure that the two sets have same probability distribution, in order to break
down the TV dataset into two significant samples.

As a result of this splitting procedure, each ANN is trained and initially validated
against slightly different datasets, ending up with a unique structure capable of
emulating original model behaviour.

The ensemble system results from concurrently training several ANNs and
following selecting the utmost performant ones. The ensemble system is then
collectively run to provide uncertainty quantified results against the testing dataset
and subsequently applied against new data.

3.3.1.4 Framework-enabled NEAT based Surrogate modeling (FeNS)

Framework-enabled NEAT based Surrogate modeling (FeNS) concept has been
designed to support, facilitate, and automate the transitioning from research models
to “field models”.

Model complexity in terms of data resolution requirements, number of parameters,
platform affinity, calibration or sensitivity analysis procedures, causes problems
in consultant environments for timely delivery of research models themselves, IT
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deployment infrastructure management, model usability and data provisioning for
on-the-field personnel, performance expectations, and field user training (David
et al. (2013)).

The use of EMFs and CCPs such as CSIP/OMS (David et al. (2013, 2014a);
Lloyd et al. (2012)) alleviated some of the implications for model users (David et al.
(2012); Lloyd et al. (2011)). The introduction of these software in the modeling
workflow is represented by Step 1 in Figure 16.

Independently from model type, size, and complexity, any research simulation
model is encapsulated into model components or web-services. As a result, user-
model interface is simplified and unified by the adoption of standard input/output
data formats (approach complexity in Figure 16). Legacy models are effortlessly
encapsulated as black-box software applications into EMFs/CCPs workflow as well.

Eventually, EMFs/CCPs moderate run-time issue by leveraging innovative hard-
ware infrastructure such as super-computing environments and computer clusters
(David et al. (2013, 2014a); Lloyd et al. (2012)).

APPROACH
COMPLEXITY

& Various
DEVELOP Models
COSsT

Ste
Unifying the Use: Use

Framework

SerVIce
encapsulation

Step 2
Unifying the
Structure:

ML-ANN
training/
abstraction

Figure 16: With respect to Figure 2, this schematic illustrates the introduction of a second
step. In addition to framework encapsulation, original research model runs
generate SMs, which can be used with little or no user effort and don't require
any model maintenance and development cost.

Nevertheless, EMFs/CCPs don't completely overcome service delivery organiza-
tion issues with respect to operational use of mathematical models. Calibration and
sensitivity analysis procedures, and high resolution data are still required for a
model simulation run, which turns out to be computationally demanding nonetheless.

FeNS attempts to overcome actual constraints by providing service delivery
organizations with an easy to use, lightweight, automatically generated tool which
derives from original simulation model.

In addition to unification of user-model interface (Figure 16 - Step 1), this tool,
namely ANN-based surrogate model, allows for inner structure unification (Figure
16 - Step 2): here, SMs originating from different conceptual/physical models
shows identical structure, which is composed by a variable number of functional
units (nodes and connections) and is completely decoupled from original simulation
model internal structure. This allows for applying the SM as a black-box without
any specific modeling proficiency.

Additionally, by training SMs to emulate original model behaviour using relevant
input entries only, user-approach complexity is minimized.

In conclusion, the SM allows for emulating original simulation model by:
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e reducing the number of input parameters required;

e answering application specific questions almost instantaneously without
asking for any modeling proficiency;

e minimizing SM development and deployment cost, automatically generating
the SM at a framework level (Figure 16 - Step 2)

3.3.1.4.1 FeNS concept

EMFs/CCPs foster research simulation model runs and directly manage input/out-
put dataset.

Since each input/output model run implicitly represents part of the original
model behaviour, that piece of information is of fundamental importance to emerge a
properly calibrated SM. Consequently, EMFs/CCPs need to be utilized to harvest
input/output model runs and emerge SM at the modeling framework level.

Cumy < o (e (o <

=

Figure 17: Generic FeNS concept. ML library employes original model runs to emerge
eSM from any modeling solution.

Figure 17 explains the concept:

1. EMFs/CCPs-compliant conceptual/physical model (PM) runs generate (Gen)
model outputs (O(PM)) corresponding to provided input data (I(PM));

2. EMF/CCP harvests [(PM)/O(PM) data snapshots;

3. when a sufficient amount of [(PM)/O(PM) snapshots are collected, NEAT
neuroevolutionary ML algorithm (ML) starts emerging (Train) n-SMs;

4. once n-SMs are created, the utmost performant ones are selected to compose
(UQ) the ensemble of surrogate models (eSM) (eSM(PM));

5. finally, the eSM(PM) is queried by the end user to accurately answer
application specific question.
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3.3.1.4.2 FeNS protocol

FeNS protocol defines a set of rules for integrating FeNS approach into framework
workflow requiring little or no user effort.
To begin with, FeNS concept is split into two main stages:

STAGE A. harvesting of input/output snapshots of original model runs;

STAGE B. automated emerging of eSM from any modeling simulation.

Here, STAGE A requires intervention on current model simulation workflow and
hence is the only stage that affects model user experience. STAGE B might require
some dedicated SM input parameters set up but mostly necessitates of designing
ad-hoc applications for asynchronously emerging the eSM.

FeNS protocol regulates issues and constraints related to integration of both
stages in framework workflow. Problem decomposition into elementary units allows
for identifying and analyzing required rules.

STAGE A: harvesting of 1/0O snapshots of original model runs

This is the only stage that affects model user experience since it involves original
model simulation workflow.

While interfacing with a model run, user is required to identify (or tag) relevant
model inputs to properly describe selected model outputs. This tagging system
allows FeNS to recognize the parameters to harvest from the original model run
and collect afterwords.

In addition to tagging parameters available from within model configuration file,
model user might want to perform mathematical operations on specific input param-
eters to reduce input space dimensionality. This might involve model parameters
retrieved from thirty parties data providers such as remote databases or other model
dependencies. Consequently, each original model needs to expose data provider
dependencies.

FeNS identifies two model simulation workflow aspects which need to accommo-
date model parameter tagging and expose model data dependencies:

A. user-model interface to extend tagging of input parameters;

B. simulation model source code to expose model data dependencies.

The next two paragraphs introduce to the set of non-invasive changes required
to integrate FeNS methodology in the framework-compliant model workflow.

For the sake of example, the description of this protocol is based off of OMS/CSIP
EMF/CCP input/output standard format (JavaScript Object Notation (JSON) pay-
load), and RESTful compliant CSIP-services.

A. USER-MODEL INTERFACE A generic model user interfaces to the simu-
lation model through a configuration file such as JSON payload. Here, user lists
required model input entries and input settings.

To trigger the SM generation process, user needs to select relevant model input
parameters, identify model results, and potentially perform mathematical operations
to aggregate array or maps of input data.

FeNS identifies 5 categories of input/output parameters:

e STANDARD input parameters;
e COMPUTED input parameters;
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e DEPENDENCY DERIVED input parameters;
o ADDITIONAL input parameters;
e OUTPUT model parameters.

Input model parameters are described through JSON Objects in a standard JSON
payload and adhere to the formal structure in Listing 3.1.

Listing 3.1: JSON Object of a generic model input parameter.

1 {
2 "name": "param_name",
3 "value": "param_value"
4 }
FeNS introduces the additional JSON key "description" which allows a
user to:
1. identify which input/output parameter has to be collected: "collect_in"
or "collect_out™" respectively;
2. describe the mathematical operation to perform: "math_expression"
(e.g. averaged sum) or "methodology" (e.g. kriging);
3. list the dependency to derive the parameter from (this element might not be
mandatory): "dependency" (e.g. database name).
Modified JSON Object of each category of model parameters is following described.
A.1 STANDARD input parameter No operation needs to be performed on a
standard input parameter, which simply has to be tagged and collected by FeNS
system, consequently (see Listing 3.2)
Listing 3.2: JSON Object for STANDARD input parameter.
1 {
2 "name": "param_name",
3 "value": "param_value",
4 "description": "collect_in"
5 }

A.2 COMPUTED input parameter This input parameter might require mathe-
matical operations to be reduced to a single relevant value. This parameter might be
in the form of array, map, etc. Consequently, the description field needs to contain
the mathematical operation to perform to the input parameter. This operation might
be:

e mathematical expression;
e methodology such as lumped kriging on watershed centroid.

JSON formal structure of this input parameter might look like Listing 3.3.

Listing 3.3: JSON Object for COMPUTED input parameter.

"name": "param_name",
"value": [valO, vall, ...],
"description": "collect_in,math_expression/methodology"
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A.3 ADDITIONAL input parameter This parameter is not part of standard
model input dataset. However, it is derived as a result of mathematical operations
performed on a list of actual input parameters. This allows for applying input
dimensionality reduction and summarizing the behaviour of several input parameters
into a single one. JSON formal structure resemble Listing 3.3 but doesn't contain
any explicit value (see Listing 3.4).

Listing 3.4: JSON Object for ADDITIONAL input parameter.

"name": "param_name",
"description": "collect_in,math_expression/methodology"

A.4 DEPENDENCY DERIVED input parameter This parameter is not avail-
able in the original input set of model parameters and is actually derived from data
provider model dependencies. Here, the dependency to look for might be specified
in the JSON payload (see Listing 3.5).

Listing 3.5: JSON Object for DEPENDENCY DERIVED input parameter.

"name": "param_name",
"description": "collect_in,
math_expression/methodology, dependency"

A5 OUTPUT parameter The output parameter is not obviously part of the
original model JSON payload. However, it has to be identified and collected (see
Listing 3.6).

Listing 3.6: JSON Object for OUTPUT parameter.

"name": "param_name",
"description": "collect_out"

B. SIMULATION MODEL SOURCE CODE The simulation model is not
asked to perform any additional operation on the parameter set. The simulation
model needs to collect data provider dependencies information only (e.g. database
connections) and returns them along with model results. Still using JSON payload
for the sake of example, this informations are collected into the JSON response.

A simulation model is required to implement one additional method such as
putDependencies (Listing 3.7) provided by the framework APL.

Listing 3.7: Example of a putDependencies method.

@Override
public void doProcess () throws Exception {

putDependencies (<list of dependencies>);
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Figure 18: FeNS architectural design. FeNS-proxy interposes between user and model service, orchestrates parsing,
retrieval and computing input/output original model parameters, and finally triggers surrogate model
generation by feeding FeNS-eSM with input/output snapshots.

STAGE B: automated emerging of eSM

The automated creation of the eSM relies on ad-hoc development of framework
applications against ML libraries.
To emerge the eSM, FeNS system identifies 4 steps:

1. data collection into dedicated database;
2. data normalization;

3. SM training (actual SM creation);

4. SM run against new dataset.

Specifically, last step replaces original model run when SM estimates become
accurate enough. To provide this functionality, a further application might be
required to select the most performant SMs only. This application is located
between SM training (step 3) and SM run (step 4) and it is identified as SM
selection. FeNS set of applications is following referred to FeNS-eSM.

3.3.1.4.3 FeNS architectural design

FeNS protocol identifies the set of rules for collecting model parameters and the
main steps for automatically emerging the SM at a framework level.

FeNS architectural design defines the architectural aspects that allow for actually
accomplish the goal of SM creation by subjecting to FeNS protocol constraints.
Figure 18 illustrates FeNS architectural design.

FeNS system relies on the introduction of two additional elements to the standard
framework workflow:

A. FeNS-proxy
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B. FeNS-eSM

A. FeNS-proxy

FeNS-proxy orchestrate the actual connection between original model service
and FeNS-eSM to trigger surrogate model generation. This allows for moving the
burden of collecting/processing input and output data aside from user or original
model service, thus avoid original model modifications.

FeNS-proxy is in charge of parsing the input JSON payload and identifying
the input parameters already available for collection. It additionally provides
computational capabilities for operating mathematical equations to aggregate input
array or maps or deriving additional parameters.

FeNS-proxy synchronously waits for model service to return output JSON re-
sponse and list of data providers to fetch additional information from. When required
data are retrieved from data providers, FeNS-proxy terminates pending computations
and packages input/output snapshot for triggering SM generation.

Eventually, when the eSM is completely generated, FeNS-proxy looks up to a
list of eSM available and queries the surrogate model instead of the original model.

B. FeNS-eSM

FeNS-eSM is a set of microservices that interacts with FeNS-proxy and Mon-
goDB database to generate the ensemble of surrogate models. These services
orchestrate the operations identified by FeNS protocol STAGE B:

1. Data collection;

2. Data normalization;

3. Surrogate model training;

4. Selection of most performant surrogate models;

5. Run of the eSM against new data.

Section 3.3.25 Surrogate Model Services implementation at page 55 exhaustively
describes the current implementation of FeNS-eSM CSIP-services.

3.3.2 Technical approach and implementation

3.3.2.1  MongoDB

MongoDB is a NoSQL database that arose in the early 2000s. It was created
by Dwight Merriman and Eliot Horowitz to overcome limitations of standard SQL
databases when dealing with big data.

MongoDB “doesn’t try to be everything to everyone” (Chodorow (2013)). It rather
tackles the two principal issues a db developer faces when working with increasing
amount of data and web applications: speed and scalability.

For example, it's common practice to initially set up a single server to store
limited amount of data. When the volume of data starts passing the threshold of
terabyte in size, the developer needs to design a replication set up to properly
scale out reads, a caching layer coupled with fine queries tuning to reduce db
response time, data sharding to accurately spread out data across multiple machines.
Eventually, the developer ends up redesigning the entire database because the
schema initially chosen locks any kind of development and expansion (Chodorow
(2013)). This lack of flexibility due to the use of fixed schemas, tables, and rows is
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the real constraint of relational SQL databases. By contrast, MongoDB is built on
the notion of collections and documents. Documents are sets of key-value pairs and
are the fundamental data unit. They have no predefined or fixed schema (nested
documents are allowed) which allows for easing the experimenting process in order
to identify the best set up, and document modifications because fields can be added
or removed with no type or size constraints (Chodorow (2013)). Collections contain
sets of documents with different field structures. For the sake of analogy, documents
and collections are like rows and tables in relational databases lanquage.

Document is the core concept that allows MongoDB databases to be massively
scalable and sharded. Data in documents are self-contained and key-values pairs
structure facilitates queries. Thus, documents can easily split up across different
machines which are in charge of updating their own subset of the entire dataset (data
sharding) (Plugge et al. (2015)). Furthermore, these features well fit active/active
cluster configuration: two or more actively running nodes concurrently check if
they store data required by a specific MongoDB query/request; the only server
containing desired information responds to the request (Plugge et al. (2015)). This
is the most optimized configuration in terms of load balancing. The workload is
accurately redistributed across the cluster, preventing overload issues in a single
node.

MongoDB capabilities are elevated by this scale out configuration (horizontal
scalability across multiple nodes) rather than a scale up one (vertical scalability
on a bigger machine). Vertical scalability is typical of relational databases which
are not suitable for active/active cluster configuration. It is surely the easiest set
up but a bigger and faster machine is expensive and no more improvements are
possible when physical limit is reached (Chodorow (2013); Plugge et al. (2015)). On
the other side, horizontal scalability is cheaper because relies on several smaller
connected machines but it is hardly manageable. Here MongoDB plays a key role
because it automatically takes care of balancing data and load across available
machines, redistributing documents and figuring out how to spread data when a
new machine is added to the cluster (Chodorow (2013)).

In terms of performances, MongoDB workload is based off of maximizing random-
access memory (RAM) usage by caching queries indexes and further queries infor-
mations, and by preallocating data files. Furthermore, MongoDB stores documents
in Binary jSON (BSON) format, which is binary form JSON format. The latter is
perfectly suitable for exchanging and storing data in a self-contained schemaless
document (Plugge et al. (2015)). MongoDB uses BSON instead of plain JSON
because it speeds up processing and searching operations through stored files and
allows for managing binary data.

MongoDB provides geospatial indexing as well, indexing technique that allows
for selecting location-based data, e.g. querying stored data within a given range
(Plugge et al. (2015)).

In order to purse speed and massive scalability, MongoDB developers chose not
to include transactional semantic', joins and master/master replication’ features
in the architectural design. However, if transactional support is required, a hybrid
configuration of SQL and NoSQL databases is the best solution. This allows for
contemporary leveraging the most suitable features of both type of databases.

Transactional semantic is a feature of SQL databases which guarantees data consistency even during
power failures or software errors. It satisfies the ACID (Atomicity, Consistency, Isolation, Durability)
properties.

Master/master replication (or multi-master replication) concept allows different servers to accept write
requests.
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3.3.2.2  Microservice architecture and RESTful API

Cloud computing systems are state-of-art in terms of modeling environments. In
order to leverage available hardwares, cloud computing systems rely on microservice
architecture as Service Oriented Architecture (SOA), and REpresentational State
Transfer (REST)ful APl as the most widely used way to interface users and remote
services. This section introduces to the concepts of microservice/microservice
architecture and REST.

Microservice Architecture (MA) was developed to overcome issues and constraints
related to deployment and resiliency of large monolithic applications (Nadareishvili
et al. (2016)). The main goal was to break up big applications into several small
services (services granularity) in order to build a system of replaceable over
maintainable piece of software.

Nadareishvili et al. in ‘Microservice architecture: aligning principles, practices,
and culture” (2016) defines a microservice as

‘[...] an independently deployable component of bounded scope that
supports interoperability through message-based communication,”

and a microservice architecture as

'...] a style of engineering highly automated, evolvable software
system made up of capability-aligned microservices.”

There are no strict definitions of microservice and microservice architecture. They
rather change from company to company because it mostly comes to achieving three

goals: speed and safety at scale (Nadareishvili et al. (2016); Newman (2015)).

Speed relates to the need of quickly change and deploy a specific part of an entire
application. Safety is always a fundamental aspect: no matter how quick you
make changes and redeploy the microservice, if you break the production system
your efforts are useless. Thus, the proper trade-off between speed and safety is a
basic element. Scale links to the inevitable aspect of growing demand to access an
application. Thus, software has to be designed and built to deal with demand that
can grows over beginning expectations (Nadareishvili et al. (2016)).

To achieve these goals, every microservice application has to be (Nadareishvili et al.

(2016); Newman (2015)):

e Small size: there can't be a single size as a generic rule for every microservice.

There is the cohesion principle , which is a stronger concept of single
responsibility (Martin (2009)). Basically, a microservice gathers every single
aspect of a bigger application that changes for the same reason.

e Bounded by contexts: a microservice needs to be self-contained within
boundaries of a more complex system. This allows for increasing cohesion

of each single module, reducing coupling between modules in the system.

Furthermore, this philosophy opposes to one-size-fits-all approach and rather
facilitates polyglotism of technologies (graph-oriented database for describing
the international relationships of a company vs document-oriented database

for collecting communications between companies), languages and frameworks.

This aspect allows for developing every microservice with the most suitable
programming language, shorten the process of software development.

e Independently deployable: when a microservice is small and bounded by
contexts, it is also independently deployable. Software developer can modify
or reimplement one single service and deploy it. There is no need for large
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and long deployment anymore. Furthermore, this allows for fast rollback if the
developed component of the entire system fails. The microservice architecture
avoid a failure cascade. The production environments maintains its working
status, while MA gracefully degrades system functionalities avoiding a total
failure.

Messaging enabled: communications to and between microservices happen
by posting requests through the net. This configuration enables the sys-
tematization. If MA eases the process of microservices design, burden and
complexity are handled by the system. The latter is designed to manage
modules communication. It doesn't deal with internals and behaviours of each
module. This design eases the process of handling growable systems.

Autonomously developed: when dealing with big monolithic applications,
none of the software developers in the team knows everything about that
software. In case of failure, bug fixing is a slow process because software
developer has to go through the entire code and find out the cause of the failure.
Same procedure happens when it comes to maintain or modify the monolithic
application. MA allows for setting up autonomous and context experts teams
of developers. Microservice cohesion reduces dependencies between teams.
As a results, the process of making code available to production is faster and
independent from each other module.

Disposable: when a microservice is not updated and not suited for a specific
application, it can be easily disposed and a new microservice redesigned. The
set up of autonomously developing MA facilitates the design of disposable
code.

Decentralized: if there is no central body managing the entire system, there
are fewer bottlenecks in the process to make developed code available in
production environment. The bulk of work is spread out between independent
teams of developers who speed up development/deployment operations.

Built and release with automated processes: continuous integration (Cl)
automates the building and testing process by adding an automated layer
of safety where every test runs constantly. This reduces the probability of
deploying software with errors. This software development practice effectively
impacts production code quality only if Unit Tests covering each and every MA
capability are developed accordingly. The Test-Driven Development (TDD)
movement sponsors this policy through important practical laws (from Martin
(2009, 2007)):

First Law: You may not write production code until you have written a
failing unit test.

Second Law: You may not write more of a unit test than is sufficient to
fail, and not compiling is failing.
Third Law: You may not write more production code than is sufficient

to pass the currently failing test.

To sum up, production code and unit tests are tightly developed simultaneously.
As a result, software improvements that break actual state of the computational
system are caught and identified immediately.

REpresentational State Transfer (REST) is an architectural style introduced by
Fielding and Taylor in his PhD dissertation ‘Architectural Styles and the Design
of Network-based Software Architectures” (Fielding and Taylor (2000)). Fielding's
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goal is to regulate communication between client and server by defining a set of
software engineering principles. Detailed requirements of web services (component)
implementation and descriptions of protocol syntax are not part of REST constraints.
The latter rather focus on roles of components, their interactions, and data elements
interpretation (Fielding and Taylor (2000)). REST-compliant web services are
called RESTful web services, while their exposed APIs are RESTful APls.

The actual REST-compliant architecture is the Resource-Oriented Architecture
(ROA), introduced by Richardson and Ruby in "RESTful web services” (Richardson
and Ruby (2008)). In every RESTful system there are three main actors involved:

1. Uniform Resource Identifier (URI): it is a label that univocally identifies
and addresses a resource (Allamaraju (2010)). It is the name of that resource.
Resource doesn’t have a concrete definition. A resource is identifiable with
any concrete or abstract object, representable with a binary sequence, storable
on memory drives, and identified by a URI (Richardson and Ruby (2008)).

2. HyperText Transfer Protocol (HTTP): it is the protocol that provides the
methods for defining the uniform interface. This allows the user to interact
with web resources by sending requests and getting response through a
uniform and predefined set of verbs. These are GET, POST, PUT, and
DELETE.

3. Representation (XML/JSON/HTML): it is the data or metadata (an e-book
and its reviews or cover image respectively) of the actual state of the resource
(Richardson and Ruby (2008)).

A RESTful system follows the 6 constraints defined by Roy Fielding. If any of
the required principles is violated, that system cannot be defined as RESTful.

1. CLIENT-SERVER ARCHITECTURE: this allows for separating concerns
between the actual user interface exposed to the client and the data stored in
the server. The benefit client-side is a wider portability of the user interface
which can be designed to adhere to different platforms requirements. The
benefit server-side is an improved services granularity which eases scalability,
service simplicity and independent development and deployment;

2. STATELESSNESS: there is just one interaction between client and server.
The client submits a request which makes him transitioning to a new state.
This transitioning state lasts until the server returns a representation (the
response), which contains every link to allow the client to start a new state
transition. In this simple communication process, the server doesn’t store
any client context while the client maintains the session state instead. This
principle improves reliability because it eases the process of recovering from
partial failure; scalability because the server doesn’t store any information
from the client in between requests allowing for freeing resources at the end
of each request and processing parallel interactions; visibility because the
client request contains every information required by the service to correctly
process the response, no monitoring system is required to look for previous
client requests data in order to fulfill the current request;

3. CACHEABILITY: server responses implicitly or explicitly state whether they
are cacheable or not. This allows clients or intermediaries to cache only
suitable data preventing from caching stale or not appropriate data. Data
caching reduces latency and improves user-perceived performance conse-
quently. The user interacts with client cache or an intermediary, limiting
client-server communication and improving services scalability;
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4. LAYERED SYSTEM: this is a system with one or more layers (intermediary
servers) in between client and server. The client may not communicate with
the end server but he gets identical resources. As a result, load balancing is
effectively managed, caching is provided on different levels, and some layers
might be responsible of enforcing security policies. The overall system has
a better scalability but overhead and latency could be downside of data
processing;

5. CODE ON DEMAND (OPTIONAL): a server can send executable code to
the client to extend functionalities during the session;

6. UNIFORM INTERFACE: this concept is the key of REST design. It allows
for standardizing the client-server interaction, improving decoupling and
facilitating independent evolution of each part involved consequently. Four
constraints separate REST from other architectural styles:

a) Resource identification in requests: a resource identifier URI is used to
identify a specific resource in the request sent from a component to the
other.

b) Resource manipulation through representations: once the client re-
ceives a resource representation and related metadata, he owns every
information required to alterate or delete that resource.

c) Self-descriptive messages: every message involved in the client-server
communication contains all the information the connector (client, server,
cache, resolver, tunnel) needs to properly process it, e.g. each media type
(data format of a representation) indicates which parser the connector
has to use.

d) Hypermedia as the engine of application state (HATEOAS): each server
response to a client request has to contains all the hyperlinks that allow
the client to dynamically keep changing state by looking through further
available actions and resources.

The drawback of a uniform interface comes to efficiency degradation. A standard-
ized form is used to transfer information indeed, which cannot be as efficient as a
optimized one.

3.3.2.3 Cloud Service Integration Platform (CSIP)

The Cloud Service Integration Platform CSIP (David et al. (2014a)) is a Model
as a Service (MaaS) (Zou et al. (2012)) platform that provides access to research
modeling simulations as cloud based web-services. The CSIP hosting environment
is designed for (i) elevating computational scalability, (ii) facilitating software
application modularity, (iii) improving cost-productivity trade-off, while (iv) providing
and open deployment system.

A Maa$ platform resembles the Software as a Service (SaaS) platform behaviour:
it enables highly granular software applications reusability over the network but
it narrows down its scope to (environmental) models rather than generic software
components (Roman et al. (2009)).

A Maa$ platform works as a service provider, thus simplifying model user access
to research modeling solutions. As a matter of fact, in addition to move the burden
of managing execution environments from model users to hosting environment, it
can potentially satisfy model input data requirement automatically (David et al.
(2014a)).
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A Maa$ is built on top of a CCP, which is a pool of virtual computational resources
accessed over the network. These resources (hardware, platforms, and web-services)
are allocated and disposed on user’s request. Advantages of CCPs vary from (1) no
in-house resources maintenance, development and administration; (2) secure access
and data protection; (3) guaranteed availability; (4) flexible updates of operating
systems and applications on a large scale (David et al. (2014a)).

Only recently, this computational environment became appealing to the scientific
community, which discovered its potential and capabilities and started make a
viable option for research projects (Jha et al. (2011); David et al. (2014a)).

Sl 9.0
L AL

Developer FtM Admin

ALM | FPP Project
Tracker Requirements  Burndown BiPortal Dashboard
T bili
raceability P
{Codebeamer) Configiration Tests Reports.
Manamement

Development
Business Intelligence

waow | @ B B B B B B B BB

Project  Biodiversity Land use Soil Soil Carbon  Irrigation  Water Quality Energy Use GHG  Warehouse
Consefvation @
Continuous.
enkins

Integration

(staging)

csu
Kubernetes/Docker

Amazon
Elastic Container

Deployment

Service
(Production)

Figure 19: CSlIParchitecture, credit David et al. (2014a).

CSIP elevates the Maa$S concept by ‘(1) accounting for modeling service elas-
ticity and scalability, (2) leveraging contemporary computational approaches, (3)
addressing traceability within operational settings, and (4) allowing platform and
language agnostic service access and cloud agnostic deployments while providing
a simple, non-invasive approach to leverage legacy and new modeling solution with
minimal development effort” (David et al. (2014a)) (Figure 19).

CSIP architectural design doesn't rely on a web-service central management,
which facilitates provision of failover and redundancy features. Consequently, a
large number of users can potentially perform several parallel model execution each
without performance degradation.

CSIP interfaces with its MaaS services through a simple and open API, which
adheres to RESTful API architectural design concepts (Fielding and Taylor (2002)).
The service-client communication of model input and output parameters happens
via JSON data objects.

The CSIP project was established and is actively developed at Colorado State
University (CSU) in partnership with USDA-NRCS and USDA-ARS. CSIP cur-
rently hosts 250+ active environmental models and data services. CSIP-services
can be easily accessed, tested and finally integrated into service delivery organiza-
tlons information system workflows since they are deployed to OMSLab staging
backends.
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Catalog of inventoried services is currently growing and made available at
https://alm.engr.colostate.edu/cb/project/csip.

For the sake of example, some of the available model services are: WEPP,
WEPS, RUSLE2 (water and wind erosion prediction); SCI, STIR (soil quality);
SWAT (SWAT-CP & SWAT-DEG), AgES-W, WOM, CFA (water quality and stream
degradation); PRMS, NRCS Huydrotools (hydrology, water supply forecasting,
stream hydraulics and sediment transport); GRAS (grazing management).

Some of the available data services are: NRCS Soil Data Mart (soil data);
CLIGEN, WINDGEN, PRISM (climate data); ESIS/EDIT (ecological site data);
WOQOM (pesticides data); LMOD (land management and crop rotations data).

Relevant representative cases of CSIP-services integration into service delivery
organization workflows are: NRCS Integration Erosion and Resource Stewardship
applications, which is the next generation Conservation Desktop application designed
over CSIP-services access through NRCS AP| gateway; Wastewater Treatment
Plant (WWTP), in which Colorado Department of Public Health and Environment
(CDPHE) runs Flow Analysis (CFA) against USGS LOADEST and flood regression
analysis models for monitoring regulations; National Cooperative Highway Research
Program (NCHRP), which studies sediment transport and yield in water bodies
(David et al. (2014a)).

3.3.231 CSIP API

CSIP interfaces with its Maa$S services through a simple and open API, which
adheres to RESTful APl architectural design concepts (Fielding and Taylor (2000,
2002); David et al. (2014a)). REST architecture is deeply described in Section
3.3.2.2 Microservice architecture and RESTful API.

The service-client communication of model input and output parameters happens
via JSON data objects.

CSIP REST protocol regulates access to CSIP-services. Although this protocol
is similar to OpenGIS Consortium Web Processing Services (WPS) (Consortium
et al. (2007)), data definitions, data descriptions, and meta-data are simplified to
facilitate web-service access (David et al. (2014a)). A client is allowed to perform
three operations against CSIP API through CSIP implementation:

1. Request a list of operative model and data services, which returns back service
meta-data and implementation specifics;

2. Request model or data service details on a specific operation (e.g. input
requirement and format);

3. Execute the model or data service by satisfying input parameter requirements
and specifying optional metadata to control service execution.

Execution request can be submitted as synchronous (“sync”) or asynchronous
(“async”). Afterwards, the model service state change to “‘Running”, and can (i)
complete successfully and return “Finished”, (i) fail and return “Failed’, or (iil) get
cancelled by the client and return “Cancelled” (David et al. (2014a)).

Listing 3.8 shows a REST call to EFH2 service: service endpoint (POST); target
host (Host), metadata for proper JSON content negotiation (Accept and Content-
Type). Listing 3.9 shows the service response, which includes the original request
(fleld ‘parameter”) and the “result” field conforming REST standard. The ‘metainfo”
field lists model run metadata.
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Listing 3.8: REST call to EFH2, credit David et al. (2014a).

POST /csip-eft/m/efh2/1.1 HTTP/1.1

Host: <host>
Accept: application/json

Content-Type: application/json

Input files can be attached to a HTTP POST CSIP request as multipart form
data attachments. The “result” section of a service run response may contain a
URL pointing to additional model outputs. HTTP GET CSIP request against that

URL allows for retrieving the additional model output in their legacy output format.
HTTP GET CSIP request against the service endpoint returns a request ‘template”.

Listing 3.9: JSON response from a CSIP-eft run, credit David et al. (2014a).

"metainfo": {
"status": "Finished",
"first_poll": 1000,
"next_poll": 1000,
"suid":

"c6808036-db0b-11e3-84c6-8d184928a57a",

"tstamp": "2014-02-14T02:02:17+0000",
"service_url": "http:\/\/localhost:8080\/csip-eft\/m\/efh2\/1.0",

"cpu_time": 16,
"expiration_date":
}I
"parameter": |
{
"name": "precip",
"description": "precip",
"unit": "inch",
"min": "1",
"max": "15",
"value": 14
}7
{
"name" "runoffcurvenumber",
"min": "40",
"max": "95", "value":
}I
{
"name": "stormtype",
"value": "I"
s
{
"name": "watershedlength",
"unit": "ft",
"min": "200",
"max": "26000",
"value": 1500
}y
{
"name": "watershedslope",
"unit": "&",
"min": "O0.1",
"max": "64",
"value": 0.5
}
1,
"result": [
{
"name": "runoff",
"value": 12.75
by

{

"name" :

"2014-05-14T02:07:17+0000"

"timeofconcentration",

53



54

52
53
54
55
56
57
58
59

| SURROGATE MODELING

"value": 0.727178
b
{

"name": "unitpeakdischarge",
"value": 0.3700218

CSIP services are implemented against CSIP core library, which takes advantage
of Java Jersey RESTful framework, and JAX-RS reference implementation (Burke
(2013)). Listing 3.10 shows the service implementation of EFH2 model (USDA
(1987)).

Listing 3.10: CSIP-compliant EFH2 model, credit David et al. (2014a).

@Name ( "EFH2")
@Description( "Storm runoff model based on " +
"conventions in Engineering Field Handbook.")

@Path( "m/efh2/1.0")
@Polling(first = 1000, next = 1000)
public classV1_0 extends AbstractModelService {

// the model

EFH2HydrologyModel model = newEFH2HydrologyModel () ;

@Override
protectedString process () throwsException {
Map m = getParamMap () ;
model.setPrecip (m.get ("precip") .getDouble (VALUE) ) ;
model.setRunoffCurveNumber (
m.get ("runoffcurvenumber") .getInt (VALUE) ) ;

// ... obtain more parameter here

return model.simulate() == 0 ? EXEC_OK : EXEC_FAILED;
}
@Override

protected JSONArray createResults () throwsException {
JSONArray result = newJSONArray () ;
result.put (JSONUtils.data ("runoff",
model.getRunoffQ()));
result.put (JSONUtils.data ("timeofconcentration",
model.getTimeOfConcentration()));
result.put (JSONUtils.data ("unitpeakdischarge",
model.getUnitPeakDischarge()));
return result;

3.3.2.4 Encog

Encog is an open source machine learning framework developed by Jeff Heaton
and released under Apache License version 2.0. The Encog library is available for
Java and Cf, and it has been designed to pursue high scalability and adaptability
to exploit multicore processors (Heaton (2015)).

This framework provides a large variety of machine learning models that can
be used for regression, classification, and clustering purposes. The software is
accurately designed and the exposed API allows for easily and quickly interchange
machine learning methodology used with few or no code modifications.

The multithreaded implementation of the main training algorithms is finely tuned
and empirical benchmarks show how Encog outperforms many concurrent Java and
Ct libraries (Tahert (2010); Ramos-Pollan et al. (2012); luhasz et al. (2013)).
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The library is well documented and about 150 examples are provided to exercise
most of the API capabilities (Heaton (2015)).
The available machine learning models are following listed:

e Adaline, Feedforward, Hopfield, PNN/GRNN, RBF, FS-NEAT and Hyper-
NEAT neural networks;

e Generalized linear regression (GLM);

e Cenetic programming;

e K-means clustering;

e K-nearest neighbors;

e Linear regression;

e Self-organizing map (SOM);

e Simple recurrent network (Elman and Jordan);

e Support vector machine (SVM).

Optimization algorithms to minimize a loss function (e.g. particle swarm opti-
mization, Nelder-Mead and simulated annealing) along with preprocessing tool for
training, test, and validation data set splitting are provided.

Encog allows for storing and reloading a trained artificial neural network lever-
aging Java serialization.

3.3.2.5 Surrogate Model Services implementation

FeNS is implemented as a set of 5 CSIP microservices: collect, normalize, train,
select, and run. User calls the services in the previous order to (1) collect and
store model input/output snapshots into an application dedicated NoSQL database,
(2) normalize the uploaded dataset, (3) train, validate, and store a collection of
ANNIs, (4) select the utmost performant ones to build an ensemble of ANNs, and
(5) run the ensemble of ANNs against new data. Figure 20 illustrates the FeNS
CSIP-services pipeline workflow: the left side (SM GENERATION) is actually
hidden to the end user who interacts with the CSIP-run service only (right hand
side, SM APPLICATION).

CSIP microservices have been designed on the following principles:

e simplify user-service interface by exposing strictly necessary parameters;
e avoid non essential data transfer from database to service and vice-versa;

e interact with database collections to track data and SMs metadata over the
FeNS services pipeline, and enrich them with additional information over
service run.

Users interface with each web-service by posting a JSON payload.
Each payload is composed of two sections to comply with CSIP APl
metainfo, and parameter.  The metainfo section lists information to con-
trol a service run (e.q. ‘mode’’: ‘‘async’’ to request asynchronous
run). The parameter section contains an array of JSON Objects. Each
JSON Object contains two <key>:<value> tuple with predefined keys:
<name>: <service_var_name> and <value>: <value_to_assign>.

Some fields of the CSIP-collect JSON payload might have an additional
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SM GENERATION SM APPLICATION

DATA GENERATION/CO ON RUN + UNCERTAINTY QUAN ATION
csip-collect

DATA NORMALIZATION
csip-normalize

+
VALIDATION
csip-train

ANALYSIS + SMs ON
csip-select

Figure 20: Set of 5 CSIP services that allows for generating the SM.

<description>: <var_description> tuple. Section 3.3.25.1 Service 1:
raw data collection explains purpose and usage of this extra field.

Each JSON payload set up service-specific input parameters. Consequently,
every JSON payload contains a different set of JSON Objects. User can retrieve a
payload template of each service by using a GET request.

This subsection is organized as follow: Section Service 1: raw data collection
describes the collection of raw data into dedicated database per snapshot or by
attaching a csv file of snapshots to the JSON request; Section Service 2: data
normalization introduces to the computationally cost-effective implementation of
the normalization aggregator pipeline; Section Service 3: SM creationanalyzes
the core service walking through TV dataset splitting, SM training, SM validation,
and SM store phases; Section Service 4. SMs selection, building the ensemble
describes implemented strategies to select the most performant SMs and build the
eSM; Section Service 5: eSM run shows post and response of an ensemble run.

Each subsection provides service sequence diagram, service payload template,
and database formal structure design. Service implementation code snippets and
Unified Modeling Language (UML) diagram are presented when necessary to
integrate service algorithm description.

3.3.2.5.1 Service 1: raw data collection

The first service collects the raw TV dataset into a dedicated MongoDB collection
for later ANN training. It manages the upload of a single snapshot of input/output
model data as well as a csv file containing a list of snapshots.

Figure 21 shows the interactive behaviour of the CSIP-collect service through a
sequence diagram.

A data-driven SM learns and traps the knowledge of a conceptual/physical model
by capturing the nonlinear model behaviour hidden into an input/output snapshot.

Thus, the collection of big number of combinations of model input/output is the
first step towards the creation of an SM. CSIP-collect service stores data and
related metadata into a raw MongoDB database collection.

CSIP-collect service provides two options to parse and store raw data and related
metadata:

1. per snapshot: collection of single input/output snapshot;

2. per csv file: collection of numerous input/output snapshots from a csv file.

The two options are following separately analyzed.
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Client ModelServices

GET http://<host>/m/collect/1.0

MongoDB

FI

Get required parameters

JSON Parameter Template

POST http://<host>/m/collect/1.0 &

Execute collect (sync/async)
with specific parameter

JSON Model Results

RAW data collection

MongoDB

!
l

Client ModelServices

Figure 21: Sequence diagram of CSIP-collect service.

Collection per snapshot

Collecting data per snapshot requires a single combination of original model
input/output. Listing 3.11 shows a CSIP-collect JSON request template.

Listing 3.11: Template JSON payload of CSIP-collect.

{
"metainfo": {},
"parameter": |
{
"name": "annName",
"value": "db_name"
}l
{

"name": "in_varl",
"value": 0.1,
"description": "in"

"name": "in_var2",
"value": 19,
"description": "in, [0.1,0.91"

"name": "in_var3",
"value": O,
"description": "in, normalized"

"name": "out_varl",
"value": 0.28,
"description": "out"

"name": "out_var2",
"value": 141.893,
"description": "out, normalized"

"name": "out_var3",
"value": 0.081694489550937,
"description": "out, [-1, 11"
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The model parameter section is an array that contains a list of JSON objects.

The first object contains two <key>: <value> tuple: <name>: <annName>
and <value>: <db_name>. Here, the CSIP-collect service checks if the
database db_name already exists: if it does exist, the snapshot of data is pushed
to the bottom of the raw collection; if it doesn’t exist, an new database and a raw
collection are created.

The following JSON objects are the list of variables required for training the
surrogate model. Every variable object contains the model variable name, its value
and description. The latter is of key importance since it contains comma separated
list of variable metadata required by following services in the FeNS pipeline. The
description field can contains three type of information 3.11.

1. Type (infout): it describes if the variable is input or output of the supervised
learning process;

2. Normalization (normalized): it tells if the variable is normalized already;

3. Normalization min and max ([normyin, normpax]): the range the variable
has to be normalized in.

Only the Type metadata is mandatory. If it is not provided, CSIP-collect skips
that variable and doesn’t push it to the database. If the other two fields are missing,
default values are assumed: normalized=false (variable requires normalization),
norm_min=o0 and norm_max=1.

Collection per csv file

If a csv file is attached to the JSON payload, CSIP-collect service enables a
different input/output snapshots parsing. The structure of a basic JSON payload
remains identical to Listing 3.11 . Here, CSIP-collect service reads only variable
names and description, and skips value fields. Afterwords, CSIP-collect processes
the csv file header and uploads to the database only columns which names are
listed in the JSON payload. CSIP-collect implements a collection algorithm which
allows for pushing to the database chunks of 10000 snapshots at a time. This
very effective design allows for collecting hundred of thousands of snapshots in few
seconds.

By default data provided to CSIP-collect service (per snapshot or per csv file)
are considered the previously called TV dataset (Section Ensemble of surrogate
models and uncertainty quantification). CSIP-train service uses the normalized TV
dataset to randomly creates training and validation datasets. Consequently, each
SM is trained on a different dataset but also validate on a different dataset. When
it comes to selecting the most performant SMs, CSIP-select goes through validation
statistics of each trained SM and select the most accurate. However, each SM is
validated on a different dataset, thus CSIP-select comparison are not ‘perfectly”
fair.

The described methodology is acceptable when user deals with small dataset.
If the number of snapshots gathered in the csv file is of considerable size, user
may want to split them into two subsets and store them into separated collections:
a TV dataset for SMs training; and a further validation dataset which is used
by the CSIP-train service to commonly validate every trained SM against. This
allows CSIP-select to actually compare SM validation performances computed on
the identical dataset.

Detailed explanation of how datasets are split and used by CSIP-train service
is available at Paragraph Service 3: SM creation. Listing 3.12 highlights the two
extra JSON objects required to enable this additional dataset splitting.
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Listing 3.12: Template JSON payload of CSIP-collect to generate a common dedicated
‘validation” collection.

"metainfo": {},

"parameter": |
{
"name": "annName",
"value": "name of the surrogate model"
by
{
"name": "split",
"value": "true"
}I
{
"name": "training_perc",
"value": "0.8"
b
{
"name": "variable 1",
"value": 0.1,
"description": "in"
b
{
"name": "variable 2",
"value": 0 ,
"description": "in, normalized"
b
{
"name": "variable 3",
"value": 141.893,
"description": "in, [0.1,0.9]"
b
{
"name": "variable 4",
"value": 0.081694489550937,
"description": "out, [-1, 1]"

When split boolean variable is true, the splitting mechanism is enabled. It splits
the uploaded data into TV and common validation dataset based on a user-defined

percentage, making sure that the two datasets have similar probability distribution.
It also checks that min and max values for each variable are part of the TV dataset.

TV dataset is always stored into the so called ‘raw” collection either using per
snapshot or per csv file collection. If split option is enabled, the common validation
dataset is pushed into the dedicated ‘validation” collection.

Figure 22 shows the interactive behaviour of the CSIP-collect service through
a sequence diagram when split option is enabled. Here, TV dataset and common
validation dataset are stored into “raw” collection and ‘validation” collection
respectively.

MongoDB: formal structure

CSIP-collect service stores each original model variable as a BSON Document.

Figure 23 shows the formal structure of the “raw” collection; if “validation” collection
is created, it has identical formal structure.

MongoDB automatically creates id_ (Objectld is the unique immutable primary
key that identifies each document) and timestamp (Date object holds the time the
collection is created). values is the actual array of collected raw data. metadata
contains a list of fields that fully describe the model variable: variable name; infout
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Client ModelServices
GET http://<host>/m/collect/1.0 ;

MongoDB

| I

JSON Parameter Template

POST http://<host>/m/collect/1.0 i

Execute collect (sync/async)
with specific parameter

JSON Model Results “raw” data collection
“validation” data collection

oo

MongoDB

Client ModelServices

Figure 22: Sequence diagram of CSIP-collect service when csv file is attached.

if the variable is model input or output (type); true/false if the raw data is normalized
already (norm); the lowest boundary for normalization algorithm (norm_min); the
highest boundary for normalization algorithm (norm_max); the actual min and max
values in the provided raw data array; and a values_id which is identical to every
variable and changes only when CSIP-collect service pushes additional data to
the collection. CSIP-select services uses values_id field to invalidate old SMs.
Detailed description is provided in Paragraph 3.3.25.4 Service 4: SMs selection,
building the ensemble.

raw
—h var_1
—E):| var_2

——"]_id: Objectld("5b976ab2e4e5e6002019fd6")
— " Jtimestamp: 2018-09-10 23:43:10.022Z
—E):| metadata

I name: erosion

type: out

norm: false

norm_min: 0.0

norm_max: 1.0

min: 0.032890596303003

max: 15.5027417746151

S

values_id: 5b97018edc03900001b9cd1f

—hvalues
—hvarj

Figure 23: Formal structure of MongoDB “raw” collection.
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3.3.2.5.2 Service 2: data normalization

The second service normalizes the TV dataset collected into “raw” MongoDB
collection and stores normalized results into a dedicated collection called “normal-
ized".

Figure 24 shows the interactive behaviour of the CSIP-normalize service through
a sequence diagram.

Client ModelServices

GET http:/<host>/m/normalize/1.0

MongoDB

FI

at

Get required parameters

JSON Parameter Template

POST http://<host>/m/normalize/1.0 iAggregate pipeline to raw collection

Execute normalize (sync/async)
with specific parameter

JSON Model Results

Normalize
collection

MongoDB

Client ModelServices

Figure 24: Sequence diagram of CSIP-normalize service.

The CSIP-normalize service works as gateway to the database. Since CSIP-
normalize doesn't perform any operation on the data and Feature Scaling is the
only normalization algorithm currently available, the JSON payload requests is
really minimal.

Listing 3.13: Template JSON payload of CSIP-normalize service.

"metainfo": {},

"parameter": |
{
"name": "annName",
"value": "db_name"

CSIP-normalize service integrates MongoDB aggregation operations to perform
arithmetic expressions on grouped data records database-side. This allows for
avoiding raw data copy from database to service and normalized data vice versa.
As a result, CSIP-normalize service sole responsibility is to build the aggregation
operator and push it to the database.

MongoDB provides three different aggregation operators: single purpose aggre-
gation methods, map-reduce function, and aggregation pipeline.

Single purpose aggregation operations and map-reduce function are not part of
the CSIP-normalize normalization pipeline but are briefly introduced for the sake
of completeness.

Single purpose aggregation operations simply performs aggregation operations
on documents of an entire collection. Its use is pretty straightforward but lacks
of flexibility and provides pretty limited functionalities such as count and distinct
operations applied to documents that matches a find() query (MongoDB (2019a)).

Map-reduce function performs a mapping of each selected document of the
collection (i.e. documents that matches a £ind () query) and emits document key-
value pairs (MongoDB (2019b)). If a key has multiple values, the key is reduced:
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MongoDB collects and condenses the aggregated data and returns a document or
writes results to a collection (MongoDB (2019b)). JavaScript is utilized to perform
custom map-reduce functions. This allows for higher flexibility with respect to
single purpose aggregation and aggregation pipeline. Contemporary, it increases
complexity and ineffectiveness.

CSIP-normalize normalization pipeline is an aggregation pipeline. The latter is a
framework designed upon the idea of processing documents off of a single collection
in a multi-stage pipeline (MongoDB (2019b)). The entire collection passes through
the pipeline, and every stage performs one in-memory operation. A stage may
filter out documents, generate new ones or transform them. Especially the last
operation is of particular interest for the normalization pipeline. Transformations
happen because of pipeline expressions which might be arithmetic expressions,
array expressions, text expressions, etc (MongoDB (2019b)). Expressions operate
on fields of input documents. Because of their flexible syntax, nesting expressions
is allowed.

Before describing the Java MongoDB client syntax that implements the normal-
ization pipile, the Feature Scaling equation is presented:

(x —dp) = (ny—ny)
f(x) =
dy—d;

where x is the value to normalize, dyy is the maximum value in the array, d; is
the minimum value in the array, ny and n; the maximum and minimum values to
normalize data in.

Listing 3.14 shows the Java MongoDB client syntax that implements the Fea-
ture Scaling equation. The normalization pipeline concurrently operates on each
document of the collection.

+ 0y, (33)

Listing 3.14: MongoDB Java client of Feature Scaling aggregator pipeline.

asList (
// stage 1
project (fields (
excludeId(),

include ("values", "metadata.name", "metadata.type",
"metadata.norm", "metadata.norm_min", "metadata.norm_max",
"metadata.min", "metadata.max", "metadata.values_id"),
computed ("count", new Document ("$size", "Svalues")),
computed ("range", new Document (
"Ssubtract", asList ("Smetadata.max", "Smetadata.min")))
)) o,
// stage 2
unwind ("$values"),
// stage 3

project (fields (
excludeId(),

include ("values", "min", "max", "count",
"metadata.name", "metadata.type", "metadata.norm",
"metadata.norm_min", "metadata.norm_max", "metadata.values_id"),

computed ("normVals", new Document (
"Scond", asList ("$Smetadata.norm", "$values", new Document (
"Ssum", asList (new Document (
"Sdivide", asList (new Document (
"Smultiply", asList (new Document (
"Ssubtract", asList ("S$Svalues", "Smin")),new Document (
"Ssubtract", asList ("Smetadata.norm_max",
"Smetadata.norm_min"))
)
), "Srange")
), "Smetadata.norm_min")
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))
))
))
// stage 4

group (new Document ("name",
.append ("type",
.append ("norm",
.append ("norm_min",
.append ("norm_max",
.append ("values_id",
.append ("count",
(

.append ("min",

.append ("max",
// stage 5
project (fields (

excludeId(),

computed ("timestamp",
computed ("metadata",
.append ("type",
.append ("norm",
.append ("norm_min",

.append
.append

.append ("count",
"$_id.min")
"$_id.max")

.append ("min",
.append ("max",
.append ("min_index",

(
(
(
(
("
(
(
(

'norm_max",
'values_id",

3.3 RESEARCH DESIGN AND METHODS

"Smetadata.name")

"Smetadata.type")
"Smetadata.norm")

"Smetadata.norm_min")
"Smetadata.norm_max")
"Smetadata.values_id")

"Scount")
"Smin" )
"$Smax"), push("values",

"SnormvVals")),

new Date()),

new Document ("name", "S$_id.name")

"$_id.type")
"S_id.norm")

"$S_id.norm_min")

"$S_id.norm_max")
"$_id.values_id")

"$_id.count")

new Document (

"SindexOfArray", asList ("$values", "$_id.norm _min")))
.append ("max_index", new Document (
"$indexOfArray", asList ("$values", "$_id.norm_max")))),

computed ("values",

),
// stage 6

out (to_collection)

) i

"S$values"))

Listing 3.14 already highlights that the entire pipeline is split into 6 stages:
Stage 1 implements a project operator as well as Stage 3 and Stage 5; Stage 2
implements an unwind operator; Stage 4 implements a group operator; Stage 6
implements an out operator. Figure 25 shows the schematic of the normalization
pipeline. Each rectangle represents a BSON document. Stage 1 operates on a
single BSON document. Stage 2 explodes the input single BSON document to
operate on its nested BSON documents. Stage 3 gets a list of BSON documents
from the previous Stage and combines them. Stage 4 and 5 operates on a single
BSON document, while Stage 6 takes care of transferring Stage 5 output to a new

MongoDB collection.

Stage 1

Stage 2

Stage 3

Stage 4 Stage 5
%> B

Figure 25: Schematic of the Stages involved in the Feature Scaling aggregator pipeline.

Stage 1 is a projection operator (Listing 3.15): it analyzes values and metadata
of the input document (on original model variable) and returns a single BSON
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document with fields required to compute feature scaling expression exclusively.
This limits the scope of the data query improving computational speed and efficiency.

Listing 3.15: Stage 1 code snippet.

project (fields (
excludeId(),

include ("values", "metadata.name", "metadata.type",
"metadata.norm”", "metadata.norm_min", "metadata.norm_max",
"metadata.min", "metadata.max", "metadata.values_id"),

computed ("count", new Document ("S$size", "Svalues")),

computed ("range", new Document (
"Ssubtract", asList ("Smetadata.max", "Smetadata.min")))
)) s

The _id of the input document is excluded by exclude1d() method, which is
included in the output BSON by default otherwise.

The include () method groups fields already available from the input document
into one projection (the array of values, metadata.name, metadata.type, meta-
data.norm, metadata.norm_min, metadata.norm_max, metadata.min, metadata.max,
metadata.values_id). These fields may be necessary to perform the normalization
operation or just important metadata to carry over to the normalized collection.

Two additional fields are actually created during the project Stage and included
into the BSON document: count and range (Listing 3.15 - Line 8,g). The latter
are created using the computed () method, which returns the computed value of the
given expression.

The count field is the number of elements in the values array. size is the
MongoDB predefined operator that carries out this task.

The range field is the subtraction of max and min values in the raw data array,
and is following used as denominator of the Feature Scaling expression.

Stage 2 performs the unwind () operation (Listing 3.16).

Listing 3.16: Stage 2 code snippet.

unwind ("$values"),

In order to enable actual computation on each value of the values array, the
BSON document output from Stage 1 is disassembled: one document per value is
extracted and created in memory.

Stage 3 operates the actual normalization algorithm on each document output of
the unwind stage (Listing 3.17).

Listing 3.17: Stage 3 code snippet.

project (fields (
excludeId(),
include ("values", "min", "max", "count",
"metadata.name", "metadata.type", "metadata.norm",
"metadata.norm_min", "metadata.norm_max", "metadata.values_id"),
computed ("normVals", new Document (
"Scond", asList ("$metadata.norm", "S$values", new Document (
"Ssum", asList (new Document (
"sdivide", asList (new Document (
"Smultiply", asList (new Document (
"Ssubtract", asList ("$values", "Smin")),new Document (
"Ssubtract", asList ("$metadata.norm_max",
"Smetadata.norm_min"))
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), "Srange")
), "Smetadata.norm_min")

For each processed document, the _id field is excluded (exclude1d() method)
while metadata (metadata.name, metadata.type, metadata.norm, metadata.norm_min,
metadata.norm_max, metadata.values_id) and relevant fields (values, min, max,
count) are included in the document that is sent over to the following stage.

Stage 3 actually computes the normalized value by applying the normalization
equation to the input value (Listing 3.17). normVals is following added to the output
BSON document.

The core of the algorithm from the most nested to the most external module (Listing
3.17): (1) subtracts values and min, and metadata.norm_max and metadata.norm_min;
(2) multiplies the two subtractions; (3) divides the multiplication by range; and (4)
finally sums the division to metadata.norm_min.

The most external module is the cond conditional expression operator. It is a
ternary operator that checks metadata.norm field to avoid the normalization of an
already normalized input dataset (Listing 3.18). metadata.norm is a true boolean
field if values of the variable stored in the document involved is already normalized,
false otherwise.

Listing 3.18: Conditional operator leveraged in Stage 3.

new Document ("Scond", asList ("Smetadata.norm",
"Svalues", <NORMALIZATION>))

Every ouput BSON document from Stage 3 contains a single normalized value.
Stage 4 makes use of group() operator to merge documents with a single

normalized value into one document gathering the array of normalized values
(Listing 3.19).

Listing 3.19: Stage 4 code snippet.

group (new Document ("name", "Smetadata.name")

.append ("type", "Smetadata.type")

.append('norm" "Smetadata.norm")

.append ("norm_min", "$metadata.norm_min")

.append ("norm_max" "Smetadata.norm_max")

.append ("values_ 1d" "Smetadata.values_id")

.append ("count", "Scount")

.append ("min", "Smin")

.append ("max", "S$max"), push("values", "$normvVals")),

Here, the push operator plays a key role: it pulls normalized value normVals
from each document output of Stage 3 and pushes them into the array values of
the new single BSON document. The latter is the only output of Stage 4.

Stage 5 simply adds few extra metadata to the incoming BSON document:
timestamp generated using the Date object, index of min and max values in the
values array through the indexOfArray expression (Listing 3.20).

Listing 3.20: Stage 5 code snippet.

project (fields (
excludeId(),
computed ("timestamp"”", new Date()),
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computed ("metadata", new Document ("name", "$_id.name")
.append ("type", "$_id.type")
.append ("norm", "$_id.norm")
.append ("norm_min", "$_id.norm_min")
.append ("norm_max", "$_id.norm_max")
(
(
(
(

.append ("values_id", "$_id.values_id")
.append ("count", "$_id.count")
.append ("min", "$_id.min")
.append ("max", "$_id.max")
.append ("min_index", new Document (
"$indexOfArray", asList ("$values", "$_id.norm_min")))
.append ("max_index", new Document (
"$indexOfArray", asList ("$values", "$_id.norm_max")))),
computed ("values", "S$values"))
)

Stage 6 writes the input documents into ‘normalized” MongoDB collection
(Listing 3.21).

Listing 3.21: Stage 6 code snippet.

out (to_collection)

The MongoDB aggregation framework provides very limited mathematical opera-
tors. However, javascript functions can be stored on the database server and used
through the map-reduce aggregation operators.

"validation” collection normalization

CSIP-normalize service checks if “validation” collection exists in the database. If
the collection is available, CSIP-normalize pushes the just described normalization
pipeline to this collection as well. Normalized results are stored into ‘validNorm”
collection. Figure 26 shows the interactive behaviour of the CSIP-normalize service
through a sequence diagram when both “raw” and “validation” collection are
available. Compared to Figure 26, here two aggregation pipelines are sent to
MongoDB database, and two normalized collection are created consequently.

Even if both collection are available and two normalization processes are per-
formed, the aggregation pipeline is very effective and requires few seconds for
normalizing hundred of thousands of snapshots.

Client ModelServices MongoDB
GET http://<host>/m/normalize/1.0 f

POST http://<host>/m/normalize/1.0 tAggregate pipeline to raw collection

JSON Parameter Template

Normalize
ollection

IAggregate pipeline to valid collection

A e e
with specific parameter 3
ValidNorm
collection
Client ModelServices MongoDB

Figure 26: Sequence diagram of CSIP-normalize service when raw” and ‘valid" collection
are available.

s,
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MongoDB: formal structure

CSIP-normalize service stores each normalized variable as a BSON Document.
Figure 27 shows the formal structure of the ‘normalized” collection; if ‘validation”
collection is available, a “validNorm” collection is created with identical formal
structure.

With respect to “raw” collection formal structure (Figure 23), “normalized” meta-
data lists three additional fields: count of the number of elements in the array, and
index of min and max values in the array (min_index, max_index).

normalized

—hvar_l

—E):|var_2

“—h_id: Objectld("5b97d3ace4e5e6b02e05de05")
— " Jtimestamp: 2018-09-11 14:39:36.097Z

—E):| metadata
—h name: stir

—htype: in
—hnorm: false
—hnorm_min: 0.0
—hnorm_max: 1.0

—"Jvalues_id: 5b97018edc03900001b9cd1f
— " Jcount: 87771
—hmin: 5.0
—hmax: 53.0
—hmin_index: 3
—hmax_index: 0
—hvalues
—hvarj

Figure 27: Formal structure of MongoDB ‘normalized” collection.

3.3.2.5.3 Service 3: SM creation

The third service is the core of the FeNS pipeline since it creates the SM through
supervised learning, evaluates SM goodness of fit and stores both structure and
related metadata into the database.

A single run of CSIP-train service generates one SM. Consequently, CSIP-train
service has to be invoked several times to create a collection of SMs (Figure 28).

For the sake of description, CSIP-train service workflow can be split into four
steps:

1. TV dataset splitting;
2. SM training;

3. SM validation;
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Figure 28: Conceptual approach of CSIP-train ensemble SMs.

4. SM store.

Figure 29 shows the interactive behaviour of the CSIP-train service through a
sequence diagram. Here, the interaction ModelService - MongoDB database after
a client POST request is crucial part of the service architectural design.

The interaction ModelService - MongoDB database is described through three
arrows: top-arrow directed from MongoDB to ModelService represents the trans-
ferring of “normalized” collection from database to CSIP-train service; the second
arrow directed from ModelService to MongoDB symbolizes the process of storing a
validated but partially trained SM and its metadata; the third and last arrow di-
rected from ModelService to MongoDB indicates the process of storing the validated
SM and its metadata when the training phase is over.

The description of the ModelService - MongoDB interaction shows that SM
training, validation, and store phases actually overlaps: during the training phase,
user might decide to regularly validate and store a partially trained ANN to
evaluate SM emulation performance, the so called recovery phase. Consequently,
validation-store phases are potentially nested into SM training, and additionally
run when the training phase is over.

Client ModelServices
GET http://<host>/m/train/1.0 :

MongoDB

| I

JSON Parameter Template

POST http://<host>/m/train/1.0

JSON Model Results

ANN and metadata stored

Retrieved normalized collection
Execute training (sync/async)
with specific parameter

Client ModelServices MongoDB

Figure 29: Sequence diagram of CSIP-train service.

Along with application specific database name, the JSON request payload
contains seven fields required to set up split mechanism, genetic algorithm, training
thresholds, and recovery recurrence: scale_mechanism and training_perc allow
for choosing the splitting algorithm and the percentage of training and validation
datasets; population and connection_density set up initial number and structure of
ANN s in the neuroevolutionary genetic algorithm; training_error and max_epochs
define two training stopping criteria such as Mean Squared Error (MSE) threshold
and maximum number of iterations (or epochs) respectively; recovery epochs defines
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the recurrence of recovery phase (validation and store nested in the training phase)
(Listing 3.22). Further details on splitting algorithms and training stopping criteria
are provided in Paragraph PHASE 1. TV dataset splitting and PHASE 2: SM
training respectively.

Every phase of CSIP-train service following analyzed and UML diagrams are
provided when helpful to the description.

Listing 3.22: Template JSON payload of CSIP-train service.

"metainfo": {},
"parameter": |
{
"name": "annName",
"value": "clay_test"

} r
// splitting section
{

"name": "training_perc",
"value": 0.8

}I

{
"name": "scale_mechanism",
"value": "SameDistribution"

I

// NEAT set up

{
"name": "population",
"value": 3000

"name": "connection_density",
"value": 1

}l

// actual training set up

{
"name": "training_error",
"value": 0.01

"name": "max_epochs",
"value": 5000

} 14
// storing set up
{

"name": "recovery_epochs",
"value": 500

PHASE 1: TV dataset splitting

The first step of the SM creation is the split of the normalized TV dataset from
‘normalized” collection. Here, the modeler may want to randomize the TV dataset
before splitting it, or keep it in the provided order.

Consequently, CSIP-train service implements three split algorithms:

e simple algorithm splits TV dataset in training and validation on user-defined
percentage;

e random algorithm randomizes TV dataset before splitting it in training and
validation on user-defined percentage;
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Figure 30: UML of implemented scaling mechanism.

o same distribution randomizes TV dataset, splits training and validation
dataset making sure that snapshots containing min or max values of each
variable are in the training dataset, compares probability distribution of
training and validation dataset per variable and if are not similar restarts the
algorithm.

User can set the scale_mechanism in the JSON payload to “simple”, “random”, or
“samedistribution”.

Splitting algorithm is designed by implementing Simple Factory principle through
a static method (Freeman et al. (2004)). Additional splitting algorithms are easily
implemented by extending ScalingMechanism abstract class and overriding the
getstrategy () and compute () methods (Figure 30).

The getstrategy () method returns the name of the splitting mechanism, which
becomes part of the SM metadata stored in the SM dedicated MongoDB collection.
The compute method hosts the implementation of the actual algorithm and returns
the “random training” and ‘random validation” datasets to the SM training method.

PHASE 2: SM training

The second step is the actual creation of the SM. Here, NEAT employes the
‘random training” dataset in a supervised learning procedure coupled to neuroevo-
lutionary genetic algorithm to emerge the SM.

population field in the JSON payload defines the initial number of the ANNs
that are concurrently generated by the neuroevolutionary genetic algorithm in one
CSIP-train instance. Only the best genome survives the supervised learning process
and becomes the SM.

NEAT supervised learning procedure is based on a stochastic approach. Con-
sequently, the bigger the initial population the higher the chance to generate a
more accurate SM. However, a wider population is computationally more expensive
since the genomes concurrently mutates and evolves. CSIP-train service initial
population default value is set to 1 000 units.

connection_density is the parameter that defines the initial connection frequency
between input and output nodes of each genome in the FS-NEAT population.

Encog NEAT (Heaton (2015)) implements this algorithm with a nested for state-
ment: the outer for statem loops over each input node while the inner for statement
loops through every output node. Input node and output node get connected if a ran-
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domly generated number between o and 1 (excluded) is smaller than user-provided
connection_density (Algorithm 1).

Algorithm 1: Pseudo-code of FS-NEAT population initialization in Encog.

Input: input nodes
Output: output nodes

1 foreach input node do

2 foreach output node do

3 if random value < connection_density then

4 connect input to output nodes with random weight
5 end

6 end

7 end

With a connection density of 0.1, very few input nodes have initial probability of
being connected to output nodes. With a connection density of 1.0, every input node
is connected to each output node. The range of connection density values between
0.0 and 1.0 (excluded) activates FS-NEAT (Whiteson et al. (2005)) features: not
every input node is connected to the output nodes and the neuroevolutionary genetic
algorithm adds connection if and only if it improves genome accuracy.

FS-NEAT has proven to generate more performant as well as lightweight ANNs
(Whiteson et al. (2005)). However, it slows down the training process. Thus,
connection_density default value is set to 1.0.

The training phase stops when one exit strategy is met. CSIP-train uses user-
provided parameters training_error and max_epochs to enable three default exit
strategtes:

1. ‘threshold error reached” when the MSE of the best genome is smaller than
training_error;

2. "max epochs reached” when neuroevolutionary algorithm reaches the number
of max_epochs allowed;

3. “constant error” when the MSE of the best genome remains constant for 100
epochs.

In case “normValid” collection is available in the database, CSIP-train uses
‘random validation” dataset generated from TV dataset splitting phase to additionally
provide overfitting exit strategy:

4. “overtraining” when the MSE of the best genome computed on “random
validation” dataset starts increasing during the training.

If “normValid” collection is available in the database, CSIP-train uses this dataset
to validate the SM; CSIP-train uses ‘random validation” dataset otherwise. Further
details are provided in paragraph PHASE 3: SM validation.

With respect to overfitting issue, this phenomenon happens when a statistical
model fits existing noise in the dataset instead of the underlying function (Razavi
et al. (2012a)). This is a well known and studied phenomenon when it comes to
applying statistical models to physical experiments and measured data.

In case of noise-free data obtained from deterministic simulation models runs
(surrogate modeling applications), overfitting is still an issue, even if it is sometimes
neglected (Sexton et al. (1998); Jin et al. (2002); Razavi et al. (2012a)). Here,
overtraining mainly happens when the statistical model is overparameterized in
regard to available dataset size (large degree of freedom).
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The actual potential problem for surrogate modeling applications is “conformability
of the model structure with the shape of the available data” (Razavi et al. (2012a)).
Regression analysis based off of curve-fitting with predefined model structure
are not affected by the conformability issue since the assigned shape of model
structure covers the entire input space. Opposingly, ANN methodologies are highly
influenced by conformability issue since their behavioural emulation of original
model snapshots results from combination of several local flexible nonlinear unit
responses. Razavi et al. (2012a) demonstrates the conformability issue with two
single-hidden-layer ANNs: a more flexible structure with 15 neurons, and a more
parsimonious structure with 8 hidden neurons. However, this constraint is mainly
emphasized when the dataset is not well distributed over the domain space to
properly describe the model behaviour.

Generally speaking, ANN methodologies have proven of high capability of prop-
erly recognizing and emulating underlying function in most application domain
(Razavi et al. (2012a)). Nevertheless, Razavi et al. (2012a) suggests early stop-
ping and Bayesian regularization to overcome ANN-based SM overfitting and
conformability issues.

FeNS currently proposes four approaches to avoid ANN unpredictable fluctua-
tions and fortifies the entire methodology:

1. early stopping, even though this methodology requires big dataset which is
not always available;

2. ensemble system of SMs coupled to uncertainty quantification of eSM results,
which smooth potential unpredictable behaviour of each single SM;

3. TV dataset random split based off of same probability distribution of the two
outcoming datasets;

4. reduced degree of freedom by selecting relevant original model input param-
eter only (based off of scientist knowledge + FS-NEAT).

Further investigations on this problem are required since FS-NEAT is an innova-
tive approach to environmental SM applications, and no background literature exists
on the topic. Additionally, FS-NEAT notably creates highly flexible and formally
unstructured ANNs, which behaviour in SM applications has to be deeply exam-
ined and tested. Supplementary investigations on automated integration of Halton
sequence approach to design of experiments (DoE) to and Bayesian regularization
are required as well.

Nonetheless, FeNS system has been currently tested on case studies prepared
by attempting to homogeneously cover the entire input space.

PHASE 3: SM validation

This step executes during the training phase depending upon recovery epochs
user-defined parameter and when the training process is completed. Here, the
partially or fully trained SM runs with ‘random validation” dataset, or “common
validation” input dataset if available. SM estimates are compared to ‘random
validation” or “common validation” original model results through a sequence of
effictency/goodness of fit indices (Figure 31):

e absDiff: absolute difference;
e absVolumeError: absolute volume error;

e dsGrad: double sum analysis gradient;
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o Fhf: Fenicia high flow;

o FLIf: Fenicia low flow;

e loa: index of agreement;

e Kge: Kling and Gupta efficiency;

o Modeldev: model deviation;

o Nashsutcliffe: Nash-Sutcliffe efficiency;
o Nbias: bias error;

e Pbias: percent bias;

o Personscorrelation: pearson correlation;
o Pwrmse: peak weighted root mean squared error;
o R2: r squared;

o Rmse: root mean squared error;

o transformeRmse: transformed root mean squared error.

Figure 31: Conceptual approach of CSIP-validation service.

Since the NEAT algorithm creates the ANN from a layer of input nodes and a
layer of output nodes, user might be interested in following growth and evolution of
the ANN structure. As a result, the structure of the best genome is analyzed right
after the validation phase and number of input nodes, output nodes, hidden nodes,
and links becomes part of the ANN historical evolution metadata.

PHASE 4: SM store

This step executes after PHASE 3: SM validation during the training phase
depending upon recovery_epochs user-defined parameter and when the training
process is completed.

During this step, CSIP-train collects metadata and ANN structure and stores them
into the database (database design is thoroughly analyzed in section MongoDB:
formal structure). CSIP-train service implements MongoDB GridFS APl to store
the serialized structure of the SM. GridFS automatically stores the binary file of
the SM in ‘trained.chunk” collection and metadata in ‘trained.files” collection. SM
documents in ‘trained.chunk” collection and ‘trained.files” collection are overridden
every time CSIP-train pushes SM information to the database. However, CSIP-train
running service keeps track of best genome score and structure evolution during
training and growing arrays of historical evolutions.
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MongoDB: formal structure

Figure 32, Figure 33, and Figure 34 shows the formal structure of the “trained.files”
collection. ‘trained.chunk” collection contains only the binary format of the SM
structure. In addition to _id, length, chunkSize, uploadDate, and md5 which are
automatically generated by MongoDB, the BSON document of an SM contains
a metadata BSON document. Here, nn_id and suid (Figure 32) are hooks for
CSIP-train service to:

1. delete the currently stored SM BSON document when a newer document is
ready to overwrite (SM store recovery phase);

2. connect to the running service to check its status;

respectively. variables document is a carry on of variables metadata from
‘normalized” collection (Figure 23). hyper_params document collects user-defined
parameters in the JSON payload (Figure 33). performance document stores last
computed goodness of fit (GoF) indices of the partially or fully trained SM per
output (Figure 33). history document contains number of epochs and exit_strateqgy
when the training is completed as well as the arraylist of scores (MSE) of the best
genome over the training (Figure 34). This arraylist grows over number of pushed
recovery information. best_net_structure stores the evolution of the structure of the
best genome over the training (Figure 34).

files
sm_1
sm_2
_id: Objectld(*5bd291d9782caa00014b6dc2")
length: 1985
chunkSize: 261120
uploadDate: 2018-10-26 04:02:33.752Z
md5: 99fdf7ff8211c99bee74a504f99ab63f
metadata
—""Jnn_id: 5bc49e5e782caa00014b69d8

—E;variables
10

—E‘;m

ﬁname: clay
ﬁtype: in
ﬁnorm: false
ﬁnorm_min: 0.0
ﬁnorm_max: 1.0
ﬁvalues_id: 5b97018edc03900001b9cd1f
"] count: 87771
ﬁmin: 15.0
% max: 36.0
ﬁmin_index: 20
—E]max_index: 11
— 121

3]

—E]suid:

Figure 32: Formal structure of MongoDB ‘trained.files” collection
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—f_?)j hyper_params
ﬁtrainingierror: 0.0001

ﬁ max_epochs: 50000

ﬁ recovery_epochs: 100

ﬁ training_perc: 0.9
ﬁscale_mechanism: SameDistribution
ﬁ population: 5000
—E]connection_density: 0.1

—f_?)j performance
ﬁ out_varl

—f_?)j out_var2

—"]absDiff: 1932.44677182455

—{"]absVolumeError: 42.4634620208041
—{""]dsGrad: 1.0027064372087
—{""Jerr_sum: 42.4634620208041
F—""fnf: 0.1677007694287

—"fif: 0.0761190421551565
—"Jioa: 0.983671266203247
F—{""Jkge: 0.940939710378973
—{""JmodelDev: 1.00290492339339
F—""Jnashsutcliffe: 0.938820623441237
—"Jnbias: -0.0028965092558873
—{""Jnorm_rmse: 0.247344651364777
—{""pbias: -0.28965092558873
—"JpersonsCorrelation: 0.969125964214582
""" ]pwrmse: 0.603506840281479

—"]r2: 0.939205134514843

—{"rmse: 0.40951284403386

L JtransformedRmse: 0.152239223511397

—E] out_var3

Figure 33: Formal structure of MongoDB ‘trained.files” collection
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epochs: 50001

exit_strategy: max_epochs reached: 50000
scores

[0]: 0.00276295167133781

[1]: 0.00232491365754576

[499]: 0.000610328903718558

—f{; best_net_structure

"] 5bc49e5e782caad0014b69d8_100

5bc49e5e782caa00014b69d8_200
link_number: 11
input_nodes: 10
output_nodes: 1
hidden_nodes: 0

structure: <xml_file>

L—{"]5bc49e5e782caa00014b69d8_50000
L Jsm3
—Lsm.4

Figure 34: Formal structure of MongoDB ‘trained.files” collection

3.3.25.4 Service 4: SMs selection, building the ensemble

The fourth service goes through the performance of every trained and validated
SM, picks the utmost performant ones based off of user defined criteria and stores
SM IDs into a separated collection named ‘selected”.

SM might train to provide more than one answer (more than one output node).
However, CSIP-select provides selection algorithms that check performance on a
single output only.

CSIP-select service is called when the training phase of a collection of SMs
is over and every SM has been validated against the validation dataset. Figure
35 shows the interactive behaviour of the CSIP-select service through a sequence
diagram.

In addition to the application specific database name, the JSON payload contains
four fields required to set up the selection mechanism: the output variable to check

SM performance of, the mechanism type, the threshold value, and the error type
(Listing 3.23).

Listing 3.23: Template JSON payload of CSIP-select service.

"metainfo": {},
"parameter" : [
{

"name": "annName",
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"value": "db_name"
by
{
"name": "variable",
"value": "out_var"
}I
{
"name": "mechanism",
"value": "percentile"
b
{
"name": "threshold",
"value": 95
}I
{
"name": "error",
"value": "nashSutcliffe"

Here, the modeler may want to select all the available SMs or pick the utmost
performant ones to create the ensemble of SMs.
Consequently, CSIP-select service provides three selection mechanisms:

1. error mechanism loops over user-choice statistical error of each trained SM
and stores valid SMs and their IDs, which performances are above a user
defined threshold, into two lists;

2. percentile mechanism (1) computes the probability distribution of user-choice
statistical error of valid SMs, (2) identifies error threshold for user provided
percentile, (3) loops over user-choice statistical error of each trained SM and
stores valid SMs and their 1Ds, which performances are above the threshold,
into two lists;

3. number mechanism simply selects the n-utmost performant SMs depending
on the user chosen statistical error and stores valid SMs and their IDs into
two lists.

CSIP-select selection mechanism identifies valid SMs by checking if values_id
in each SM metadata (Figure 32) is identical to values_id in “raw” collection

metadata (Figure 23): if values_id are identical, the SM has been trained on last
provided dataset and is marked as selectable consequently; if values_id differs,

Client ModelServices
GET http://<host>/m/train/1.0

MongoDB

FI

I
0 o

JSON Parameter Template

POST http://<host>/m/train/1.0 M Sorted metadata, SMs

Execute user-choice selection algorithm
(synclasync)

JSON Model Results || Selected IDs

Client ModelServices

Figure 35: Sequence diagram of CSIP-select service.

MongoDB
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Figure 36: UML of implemented selection mechanism.

the SM has been trained on a older and thus partial dataset and is marked as
unselectable consequently.

CSIP-select selection mechanism retrieves already sorted SMs and their meta-
data, from the most to the less performant one. This is achieved by pushing to
the database a sorting algorithm properly tuned depending on positive or negative
trend of user-choice statistical error to process. This architectural choice has four
advantages:

1. speeds up the sorting process by leveraging MongoDB native algorithms;

2. avoids the burden of designing effective sorting algorithm service-side and
attempts to delegate as many operations as possible database-side;

3. shortens selection loop since SMs that perform worse than user-choice
threshold are the last in the processing list and never checked consequently;

4. invokes one single sorted information transfer from database to running
service.

Selection mechanism is designed implementing the Simple Factory principle
through a static method. Additional selection mechanism are easily implemented
by extending SelectionMechanism abstract class and overriding the select
method (Figure 306).

The ensemble of SMs is created once the utmost performant SMs are selected.
To attempt to estimate ensemble accuracy, CSIP-select runs the ensemble of SMs
against available dataset, which is:

A. common validation dataset if available;

B. 'V dataset otherwise,

uncertainty quantifies ensemble estimate, and compute percentage of original
model results between quartiles and min-max.

This is not an optimal design choice since it doesn't properly describe the
ensemble of SMs accuracy. More investigation is required.

Finally the IDs of the selected SMs are stored into “selected” collection along
with ensemble metadata.

MongoDB: formal structure

Figure 37 shows the formal structure of the “selected” collection. In addition to
_id and timestamp, which are provided by default, selected id contains the array
of selected SM IDs, while percentage_btw_quartiles and percentage_btw_min-max
store information of ensemble of SMs accuracy.
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selected

—" ] _id: Objectid("5bd49f94b248dd0001462c2f")
— " timestamp: 2018-10-27 17:25:40.598Z
—h percentage_btw_quartiles: 39.0

—h percentage_btw_min-max: 78.0
—E;| selected_id

—"]101: Objectid("5b98838890460b0001628e6a")

— " ][11: Objectld("5b9973865f0a110001e70c18")

Figure 37: Formal structure of MongoDB ‘selected” collection.

3.3.2.5.5 Service 5: eSM run

The fifth service runs the ensemble of selected SMs against user provided data.
Figure 38 shows the interactive behaviour of the CSIP-run service through a
sequence diagram.

Client ModelServices

GET http://<host>/m/train/1.0

MongoDB

Get required parameters

JSON Parameter Template

POST http://<host>/m/train/1.0

€SM run + uncertainty quantified
results

-

!
0 o

JSON Model Results

Client ModelServices

Figure 38: Sequence diagram of CSIP-run service.

MongoDB

CSIP-run service is the only exposed service to on-the-field personnel. It just
requires the input snapshot to provide uncertainty quantified result. Consequently,
the JSON payload is a simplified version of CSIP-collect payload (Listing 3.12): no
output parameters need to be provided and input parameters require no description
since their required metadata are stored in the database already (Listing 3.24).

Listing 3.24: Template JSON payload of CSIP-run service.

"metainfo": {},

"parameter": [
{
"name": "annName",
"value": "db_name"
} 4
{
"name": "in_varl",

"value": 0.1
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"name": "in_var2",
"value": 19

"name": "in_ var3",
"value": 5

}!

{
"name": "in_var4d",

"value": 0

"name": "in_varb5",
"value": 75

After parsing the JSON payload, CSIP-run service retrieves metadata from
‘normalized” collection to normalize user-provided snapshot, retrieves and run the
ensemble of SMs, and returns denormalized uncertainty quantified results (min,
first quartile, median, third quartile, and max). The JSON response may look like
Listing 3.25.

Listing 3.25: Generic JSON response of CSIP-run service.

"metainfo": {
"status": "Finished",
"suid": "221c7df8-dale-11e8-8b41-0£54b71099b1",
"cloud_node": "10.43.0.16",
"request_ip": "129.82.52.206",
"service_url": "http:\/\/csip.engr.colostate.edu:8088" +

"\ /csip-ann\/m\/run\/1.0",
"tstamp": "2018-10-27 11:31:27",

"cpu_time": 35,
"expiration_date": "2018-10-27 11:31:57"
}I
"parameter": [
{
"name": "annName",
"value": "8088-r2_bv_ch cl wr 53 _110_he"
}!
{
"name": "slope",

"value": 14

"name": "length",
"value": 80

}l

{
"name": "stir",

"value": 110

"name": "contour",
"value": 0

"name": "kffact",
"value": 0.37
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"name": "sand",
"value": 5

}V

{
"name": "silt",
"value": 63

by

{
"name": "clay",
"value": 32

}I

{
"name": "biomass",
"value": 105.187140718212

b

{
"name": "r_factor",
"value": 140.549

}

"result": [{
"name": "erosion",

"value": 18.717869790589237,
"min": 18.210253820784978,
"lg": 18.54484936734709,
"3g": 18.94649079819633,
"max": 19.21732651235383,

"percentage btw quartiles": 23,
"percentage btw min-max": 55,
"vals": [

19.087608233884957,
18.936707790276103,
19.21732651235383,
18.64971025814681,
18.52709377865761,
18.786029323031663,
18.210253820784978,
18.59811613341554,
18.523385448879388,
18.949751800836403
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3.4 CASE STUDIES

This section introduces to actual applications of the FeNS methodology. To
demonstrate its goodness, the following experiments are carried out on real test
cases.

The entire experiment suite is focused on dimensionality reduction. In order to
facilitate as much as possible the access to original model knowledge, the number of
input resources required for an eSM run was kept as lowest as possible. Scientist
expertise allowed for selecting only the indispensable parameters or estimate
weighted averaged values representative of a specific phenomenon.

Every experiment carried out followed this structure:

1. Data collection: NEAT-based SM is data driven. This means that the SM
learns the mathematical model behaviour from the analysis of a large variety
of input/output snapshots. In order to generate the training/testing dataset
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for each specific experiment, the actual mathematical model run several times
under different scenarios. The model involved in this suite of experiments is
hosted as CSIP services at CSU super-computing environment.

2. Experiment run: this step involves the chain of FeNS services for creating
and running the ensemble of surrogate models. The suite of experiments
allowed for debugging and refining web-services pipeline.

3. Result analysis: boxplots are generated out of uncertainty quantified results
from eSM run against testing dataset. Further error analysis is performed.

4. Following DoE: in order to generalize the SM behaviour by emulating
a broader variety of scenarios, more complex DoE are designed and only
indispensable additional parameters are selected.

3-4.1 RUSLE2

Version 2 of the Revised Universal Soil Loss Equation (RUSLE2) is a mathe-
matical model that allows for estimating soil loss, sediment yield, and sediment
characteristics as a result of rill and interrill erosion phenomena generated by
rainfall and related runoff (Foster (2005)). RUSLEZ can be applied to large scale
analysis for erosion rate inventory, or “fleld” scale geographic areas to estimate po-
tential erosion rates for guiding conservation and erosion control planning. RUSLE?2
is usually applied on a large variety of land use: cropland, pastureland, rangeland,
disturbed forestland, construction sites, mined land, reclaimed land, landfills, military
lands (Foster (2005)).

DoE for to the creation of SMs for RUSLEZ2 are mainly focused on emulating the
soil erosion as a results of land management for crop rotation corn and soybeans
in lowa.

The main reason relates to the importance of corn: at a global scale, it is the
most valuable grain crop (used for human food, livestock feed, and biofuel) and the
USA itself produces over 36% (Green et al. (2018a)). This crop is mainly grown
within the Midwest Corn Belt, which includes 12 Midwest states (from East to
West, Figure 39): Ohio, Kentucky, Michigan, Indiana, Illinots, Wisconsin, Missourt,
lowa, Minnesota, Kansas, Nebraska, and South Dakota.

This DoE focuses on scenarios in lowa because it is the main producer of corn
along with Illinois and Minnesota. Thus, consultant and planning agencies like
USDA-NRCS are really focused and interested in SMs able to emulate RUSLEZ
behaviour for lowa scenarios.

3-4.1.1  DoE 1

The first experiment aimed to test the capability of FeNS system to recognize
and emulate the hidden nonlinear function that describes RUSLEZ behaviour with
respect to predicted soil erosion.

Additionally, the first experiment served as a guinea pig to test that selected input
parameters were actually adequate to describe model behaviour for a simplified
scenario.

3.41.1.1 DoE 1 - Step 1

The first step of the DoE was focused on generating the training/testing dataset
for the following scenario:
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Figure 39: Geographic distribution of the Corn Belt, credit (Green et al. (2018a)).

Location: Cherokee county (IA). In this area (Northwest lowa), Loess is
the predominant silt-sized sediment. Galva-Primghar are the major soil
components. Slopes are mostly gentle (or nearly level), but can get very
steep bordering stream valleys. This is a great first test case in order to vary
from low to high steepness which returns low and high soil erosion values
(Figure 40);

Field length: constant (100 m);
Field steepness: varying by 0.1% in between admissible soil optimal range;
Field contouring: simulation runs with contoured fields or not;

Land management: 8 types of soil managements. In order to reduce the list
of operations and management practices to a single value per type, the soil
tillage intensity rate (STIR) of each land operation have been summed into a
single value;

Soil: 4 types of soils of the same Galva family. Every soil is described by
a number of parameters which result from surveys collected into SSURGO
database. Three parameters were selected to represent soil behaviour: KF
Factor (soil erodibility), Silt percentage, and Component percentage (the
percentage of that type of soil in a soil sample).

R2:8088 v2.1 CSIP-service was concurrently hit around 500 times, properly
permuting previously listed parameters. This process was automated by developing

a proper Python3 script leveraging to:
1. read in an input JSON template payload;
2. replace standard parameters with properly permuted values;
3. run the CSIP-service;

4. parse the output json payload and store erosion results.
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Fottawattamie Cass Adair Madison | Warren Maron | Mahaska | Keowk | Washingion

Louisa

Mils | Monigomery | Adams Urion Clarke Lucas Movoe | Wapelo | Jeflerson
Henty | Des Moines

Lee

Figure 40: Cherokee county in lowa.

3.41.1.2 DoE 1 - Step 2

The second step started by shuffling collected data and splitting it into go% TV
dataset and 10% testing. The TV dataset was uploaded onto a new MongoDB
database hosted on erams1o server. After normalization process, only one surrogate
model was created for the sake of testing. The final structure of the artificial neural
network had 6 input nodes (Figure 41):

o Steepness

Contouring (yes, 1, or no, o)

STIR value

KF factor

o Silt percentage

o Component percentage

The only output node was the erosion rate.

Steepness O
Contouring Q
STIR O \
\ NEAT —_— O Erosion rate
KF factor O —_
Silt percentage O 7
Component percentage O

Figure 41: Generic SM input/output structure for DoE 1.

The surrogate model was generated using default parameters:
o Initial population = 1 0oo
o Connection density = 1

o Final training error = 104
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e Training data set = go%

o Validation data set = 10%

"

e Splitting mechanism = "Same Distribution’

34113 DoE 1 - Step 3

Consequently, the testing dataset run against the surrogate model. SM results
are plot against R2 original model results and analyzed.

Plot in Figure 42 and Figure 43 illustrate results comparison. Figure 42 shows
the actual comparison between observed (origin model runs are represented with
a black circle) and simulated (SM estimated results are represented with a red
cross) values. Preliminary results show that the single ANN was able to learn and
accurately replicate RUSLEZ behaviour.

RMSE: 0.247564309224066

20

> R2
R2 ANN

15

erosion [tons per acre]
10

0 10 20 30 40
#sample

Figure 42: Red crosses represents SM estimates, while black dots represents original
RUSLEZ runs.

Figure 43 illustrates the scatter-plot of observed vs simulated. Here, most of the
erosion values lay on the 1:1 line or are really close, which means that accurate
results are predicted for low and high erosion values. Even if high erosion values
are rarely generated from model runs, the SM is generally capable of emulating
the original model behaviour.

To conclude this preliminary test, the SM is able to understand and learn RUSLE?2
behaviour. Selected input parameters sufficiently replicate/describe original model
behaviour and drive SM learning to accurately predict erosion rates. However,
component percentage employed in this experiment is not a real soil parameter and
can potentially mislead the learning process.

3.41.1.4 DoE 1 - Step 4

This introductory test case supported development and validation of the FeNS
methodology. It was an important step to assess applicability of NEAT algorithms
to surrogate modeling practices. Furthermore, this introductory test case resulted
in first exercise of NEAT capabilities applied to an environmental topic, which is
relevant since it has never done before. This was an important test case to start
debugging the entire FeNS pipeline, since the dataset was easy to generate and
manage.
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Erosion - R2 vs ANN NEAT - RMSE: 0.247564309224066

15 20

ANN NEAT erosion [tons per acre]
10

0 5 10 15 20
Rusle2 erosion [tons per acre]

Figure 43: Scatterplot of SM estimates against RUSLE2 results.

Nevertheless, this first DoE was a simple example. DoE 2 was driven by the need
of increasing the range of values of input parameters. 2 additional soil managements
and 15 soil types from different soil families were included in the dataset generation.
Furthermore, the study area was expanded from a single county to two counties to
account for different weather conditions.

3.4.1.2 DoE 2

The second experiment aimed to confirm NEAT capabilities to recognize, learn
and emulate the hidden nonlinear function that describes RUSLEZ behaviour with
respect to predicted soil erosion.

Compared to DoE 1, a larger range of values of relevant input parameters was
used. 15 additional soil types and 2 more soil managements became part of the
dataset to generate a broader variety of RUSLEZ runs.

This experiment was conducted excluding component percentage, a previously
used input parameter, since it doesn't really describe any actual soil characteristic
and might potentially mislead training process and SM emulation capabilities.
Opposingly, clay and sand percentages became part of the learning dataset to
comprehensively describe soil properties. To account for different weather conditions,
the study area was extended from one to two counties in the State of lowa.

In order to fasten the training process, the dataset was split into two separate
data clusters based upon STIR value (input parameter):

e Cluster1 : STIR 5 —53

e Cluster2 : STIR 53 =110

where STIR = 53 is the overlapping boundary.

The final overall SM structure result in a modular neural network: the input
domain is split into multiple sub-domains, each sub-domain is assigned to a
responsible expert module. Eventually, a complex mapping problem is decomposed
into several simpler ones.
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As a result, two separate ensemble of SMs with identical structure but different
responsibility were generated.

Summarizing, one input node was removed (component percentage) and three new
input nodes were added (clay percentage, sand percentage, and weather condition)
to the final structure of the SM.

3.41.21 DoE 2 - Step 1

The first step of the DoE was focused on generating the training/testing dataset
for the following scenario:

o Location: Buena Vista and Clay counties (IA). This area is still northwest
lowa. Here, loess with silt-sized sediment and glacial till with unsorted glacial
sediment are the predominant soils. Slopes are nearly level to moderately
sloping. This test case allows for taking into account two different weather
conditions (Figure 44);

o Field length: constant (100 m);
o Field steepness: varying by 0.1% in between admissible soil optimal range;
o Field contouring: simulation runs with contoured fields or not;

e Land management: 10 types of soil managements. In order to reduce the
list of operations and management practices to a single value per type, the
soil tillage intensity rate (STIR) of each land operation have been summed
into a single value;

e Soil: 19 types of soils from different families. Every soil is described by
a number of parameters which result from surveys collected into SSURGO
database. Four parameters were selected to represent soil behaviour: KF
Factor (soil erodibility), Silt, Clay, and Sand percentage.

Kossuth

Piymouth

Pottawattamie Cass Adain Madison | Warren Maron | Mahaska | Keokuk | Washingion

Figure 44: Buena Vista and Clay counties in lowa.

R2:8088 v2.1 CSIP-service was concurrently hit about 5000 time, properly per-
muting previously listed parameters. This process was automated by developing a
proper Python3 script leveraging to:

1. read in an input JSON template payload;
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2. replace standard parameters with properly permuted values;
3. run the CSIP-service;

4. parse the output json payload and store erosion results.

3.41.22 DoE 2 - Step 2

The second step started by shuffling collected data and splitting it into go% TV
dataset and 10% testing. The TV dataset was uploaded onto a new MongoDB
database hosted on erams1o server. After normalization process, 10 SM were
collected to generate an eSM per cluster. The final structure of each SM had 8
input nodes (Figure 45):

o R factor (weather condition)
o Steepness
e Contouring (yes, 1, or no, o)
e STIR value
o KF factor
o Silt percentage
e Sand percentage
o Clay percentage
The only output node was the erosion rate.

R factor

Steepness Q
Contouring Q \

STIR

/.

00
AN

NEAT _— Q Erosion rate

KF factor

Silt percentage
Sand percentage

Clay percentage

Figure 45: Generic SM input/output structure for DoE2.

The overall structure of the clustered eSM is shown in Figure 46. Here, the
expert module returns original model emulated results based upon user-provided
input parameters. If STIR value is less than 53, the first expert module returns
uncertainty quantified results off of eSM cluster 1. If STIR value is greater than 53,
the second expert module returns uncertainty quantified results off of eSM cluster
2.

If user question lays right on the cluster boundary (STIR value equal to 53),
both expert modules answer the question. Consequently, FeNS system computes
uncertainty quantified results off of the 20 collected answers: eSM cluster 1 and
eSM cluster 2 together.

Each SM was generated using the following hyper parameters:

e Initial population = 5000
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Expert module STIR <= 53

R factor

Sleepness
Contouring O \
STIR \
O NEAT - O Erosion rate
KF factor O —

Silt percentage O

No
sand percontage (@)
Clay percentage .

STIR > 53

R factor Expert module STIR >= 53

Sleepness
Yes Contouring O \
STIR \
O NEAT — O Erosion rate
KF factor O —

Silt percentage O /’
Sand percentage . /
Clay percentage .

Figure 46: Expert modules design for DoE2.

Connection density = 0.1

o Final training error = 104

Training dataset = go%

Validation dataset = 10%

e Splitting mechanism = “Same Distribution”

34123 DoE 2 - Step 3

Consequently, the testing dataset run against the clustered eSM. SM estimate
are plotted against RUSLEZ2 original model results and analyzed.

Figure 47 and Figure 48 show performance of first eSM cluster. Figure 47 shows
the actual comparison between observed (original model runs are represented with
a red cross) and eSM emulated uncertainty quantified (boxplots represent eSM
runs) values. eSM estimates are pretty accurate since NS efficiency is above 0.qq,
RMSE is 0.13 t/acre and BIAS is only slightly negative -0.006qg. The accuracy is
mirrored in the scatterplot estimated vs original model erosion laying on a 1:1 line.

Figure 49 and Figure 50 show performance of second eSM cluster. Figure 49
shows the actual comparison between observed (original model runs are represented
with a red cross) and eSM emulated uncertainty quantified (boxplots represent eSM
runs) values. eSM estimates are pretty accurate since NS is above 0.98, RMSE is
0.3 t/acre and BIAS is only slightly positive 0.021. The accuracy is mirrored in the
scatterplot estimated vs original model erosion laying on a 1:1 line.

3.41.2.4 DoE 2 - Step 4

Dok 2 confirmed goodness of NEAT methodology for surrogate modeling purposes.
NEAT is still capable of learning and emulating original model behaviour even
with enlarged dataset. FeNS system coupled to input data clustering allow for
accurately answer user specific questions.

Nevertheless, DoE 2 still doesn’t account for different field lengths. Additionally,
a variety of crop yields need to be considered, since RUSLEZ provides erosion
estimates based off of user-selected crop yield.

As a result, DoE 3 has been designed by including a larger study area, different
field lengths, and varying crop yield.
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Figure 47: Cluster 1. Boxplots represents the ensemble of SMs estimates against RUSLE2

erosion runs (red crosses).
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Figure 48: Cluster 1. Scatterplot of SM estimates (computed on the median of each boxplot)

and RUSLE?2 simulated values.
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Figure 49: Cluster 2. Boxplots represents the ensemble of SMs estimates against RUSLE2

erosion runs (red crosses).
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Figure 50: Cluster 2. Scatterplot of SM estimates (computed on the median of each boxplot)

and RUSLE?2 simulated values.
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3-4.1.3 DoE 3

The third experiment aimed to account for a larger input space by adding two
more input parameters, and by strategizing input space clustering in order to
accurately estimate high erosion values.

The entire simulation results in a larger range of selected input parameters
compared to DoE 2. 17 more soil types were used to generate a broad variety
of RUSLEZ runs. Field length and weighted average crop rotation biomass were
added in order to comprehensively describe field geometry and forecasted crop
growth respectively. In order to account for different weather conditions, study area
was expand from two to four different counties.

In addition to DoE 2 input data clustering on STIR value equal 53, dataset for
STIR value greater than 53 was clustered on erosion value. Here, high erosion rates
result from combination of high field steepness, heavily impacting soil management
practices, and easily erodible soil. However, high erosion rates are rarely generated
from RUSLEZ runs. Consequently, a dedicated cluster allows for properly emulating
this localized specific model behaviour. As a result, the entire dataset was properly
split into three clusters:

e Cluster1 : STIR 5 —53
e Cluster2 : STIR 53 —110 and erosion < 11 tons/acre

e Cluster3 : STIR 53 —110 and erosion > 10 tons/acre

The three clusters have overlapping training dataset on STIR 53. The two clusters
for 53 < STIR < 110 have overlapping training dataset for erosion between 10
and 11 tons/acre. This makes both expert module able to answer question when
the gate neural network foresees erosion bigger than 10 tons/acre and smaller than
11 tons/acre.

The final overall SM structure result in a modular neural network: the input
domain is split into multiple sub-domains, each sub-domain is assigned to a
responsible expert module. Eventually, a complex mapping problem is decomposed
into several simpler ones.

As a result, three separate ensemble of SMs with identical structure but different
responsibility were generated.

Summarizing, two new input nodes were added (field length, and weighted
average of yield per crop) to the final structure of the SM.

34131 DoE 3 - Step 1

The first step of the DoE was focused on generating the training/testing dataset
for the following scenario:

e Location: Buena Vista, Cherokee, Clay, and Wright counties (IA). This area
is still northwest lowa. Four families of soil characterize the region involved:
Northwest lowa Loess, Tazewell Glacial Till, Loamy Wisconsin Glacial Till,
and Clayey Lake Deposits. Here, loess with silt-sized erosional sediments,
loamy glacial till, glacial outwash, and local alluvium are the predominant
soils. Minor areas are covered in silty and clayey glacial lacustrine sediments
overlying calcareous loamy glacial till. Slopes are nearly level to moderately
sloping. Minor areas consist of broad, plane and convex ridges, long, convex
side slopes, and concave drainageway. This test case allows for taking into
account four different weather conditions (Figure 51);
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o Field length: varying in between admissible steepness range;
o Field steepness: varying by 0.1% in between admissible soil optimal range;
o Field contouring: simulation runs with contoured fields or not;

e Land management: 10 types of soil managements. In order to reduce the
list of operations and management practices to a single value per type, the
soil tillage intensity rate (STIR) of each land operation have been summed
into a single value;

o Biomass: weighted average of yield per crop. This parameter results from
an average of crop characteristics in order to account for different corn and
soybeans yields;

e Soil: 36 types of soils from different families. Every soil is described by
a number of parameters which result from surveys collected into SSURGO
database. Four parameters were selected to represent soil behaviour: KF
Factor (soil erodibility), Silt, Clay, and Sand percentage.

Kossuth

Piymouth

Hartison Sheby | Audubon | Guttrie Dallas Polk Jasper Poweshiek | lowa Jonnson

Figure 51: Buena Vista, Cherokee, Clay and Wrigth counties in lowa.

R2:8088 v2.1 CSIP-service was concurrently hit about 180000 time, properly
permuting previously listed parameters. This process was automated by developing
a proper Python3 script to:

1. read in an input JSON template payload;
2. replace standard parameters with properly permuted values;
3. run the CSIP-service;

4. parse the output json payload and store erosion results.

3.41.3.2 DoE 3 - Step 2

The second step started by splitting the entire dataset in three subsets: A)
STIR = 53, B) STIR < 53, and C) STIR > 53. Afterwords collected data are
shuffled and split it into go% TV dataset and 10% testing. The TV dataset per
cluster was uploaded in a new MongoDB database hosted on erams1o server. After
normalization process, 10 surrogate models were collected to generate an eSM per
cluster. The final structure of each artificial neural network had 10 input nodes
(Figure 52):
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R factor (weather condition)
Steepness

Contouring (yes, 1, or no, o)
STIR value

KF factor

Silt percentage

Sand percentage

Clay percentage

Biomass

The only output node was the erosion rate.

Biomass
Length
R factor

Steepness

Contouring

NEAT —_— Q Erosion rate

KF factor

Silt percentage

Sand percentage

000000000e

Clay percentage

Figure 52: Generic SM input/output structure for DoE3.

The overall structure of the clustered eSM is shown in Figure 53. Here, the expert
module returns original model emulated results based upon user-provided input
parameters. If STIR value is less than 53, the first expert module returns uncertainty
quantified results off of eSM cluster 1. If STIR value is greater than 53, the ANN
gate is responsible of enabling the second or third expert module depending on its
forecast of high or low erosion value. The ANN gate is a NEAT-generated ANN
trained to forecast high or low erosion value based off of user provided input data.
If the gate forecasts low erosion rate, the eSM cluster 2 is enabled. If the gate
forecasts high erosion rate, the eSM cluster 3 is enabled (Figure 53).

Each
[ ]
[ ]

SM was generated using the following hyper parameters:
Initial population = 5000
Connection density = 0.1
Final training error = 10~*
Training dataset = go%

Validation dataset = 10%

Splitting mechanism = "Same Distribution”

Consequently, three ensembles of ANNs and a gating network were trained.
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GATE
/ NEAT
ENSEMBLE NEAT

EROSION > 10

~—< Erosion

Figure 53: Expert modules design for DoE3.

34133 DoE 3 - Step 3

Consequently, the testing dataset run against the clustered eSM. SM estimate
are plotted against RUSLEZ2 original model results and analyzed.

Cluster STIR < 53

Figure 54 and Figure 55 show performance of first eSM cluster. Figure 54 shows
the actual comparison between observed (original model runs are represented with
a red cross) and eSM emulated uncertainty quantified (boxplots represent eSM
runs) values. eSM estimates are pretty accurate since NS efficiency is above 0.g5,
RMSE is 0.32g7 and BIAS 0.0033. The accuracy is mirrored in the scatterplot
where estimated vs original model erosion values lay on a 1:1 line.

Erosion rate - RUSLE2 - cluster 1

N
-
Prediction estimators
NSE=0.9593
RMSE= 0.3297
S A X BIAS= 0.0033
n
T U
12} 4
5 © - % § Q
= . H
.g = Q
o ¥ X
& = =
X = &
o
= : =] == y é% =
= S X o XTw = B
= == = = ==7 = K o=
o = T ax= . = o= =X x =
X4151" 'X4156  'X4161" 'Xale6 X171  'X4l76  'Xalsl' 'X41se X419l 'Xalds
# sample

Figure 54: Cluster 1. Boxplots represents the ensemble of SMs estimates against RUSLE2
erosion runs (red crosses).

Cluster STIR > 53 and erosion < 11 tons/acre

Figure 56 and Figure 57 show performance of second eSM cluster. Figure 56
shows the actual comparison between observed (original model runs are represented
with a red cross) and eSM emulated uncertainty quantified (boxplots represent
eSM runs) values. eSM estimates are pretty accurate since NS efficiency is above
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Scatterplot - RUSLE2 - cluster 1
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Figure 55: Cluster 1. Scatterplot of SM estimates (computed on the median of each boxplot)
and RUSLEZ simulated values.

0.97, RMSE is 0.32 and BIAS is 0.0116. The accuracy is mirrored in estimated vs
original model erosion values laying on a 41:1 line in the scatterplot.
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Figure 56: Cluster 2. Boxplots represents the ensemble of SMs estimates against RUSLE2
erosion runs (red crosses).

Cluster STIR > 53 and erosion > 11 tons/acre

Figure 58 and Figure 59 show performance of third eSM cluster. Figure 58
shows the actual comparison between observed (original model runs are represented
with a red cross) and eSM emulated uncertainty quantified (boxplots represent
eSM runs) values. eSM estimates are pretty accurate since NS efficiency is above
0.98, RMSE s 0.37 and BIAS =0.0683. The accuracy is mirrored in estimated vs
original model erosion values laying on a 1:1 line in the scatterplot.
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Figure 57: Cluster 2. Scatterplot of SM estimates (computed on the median of each boxplot)
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Figure 58: Cluster 3. Boxplots represents the ensemble of SMs estimates against RUSLE2

erosion runs (red crosses).
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Scatterplot - RUSLE2 - cluster 3
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Figure 59: Cluster 3. Scatterplot of SM estimates (computed on the median of each boxplot)
and RUSLEZ simulated values.

One single gate ANN was trained to forecast erosion rate higher or lower than
10.5 tons/acre based off of identical eSM input data structure. When run against
the testing dataset, the gate ANN was wrong 14 times only over g 754 samples.

3.41.3.4 DoE 3 - Step 4

Dok 3 demonstrates the goodness of FeNS methodology even by enlarging input
space dimensions by adding field length and crop yield. Despite reduced number of
input parameters compared to original model input, FeNS is capable of emulating
original model behaviour with respect to erosion rate.

Analyzing the identical input snapshot fed to eSM, the gate ANN has proved
to be capable of accurately forecasting high or low erosion rate. However, one
single gate ANN was trained instead of a ensemble gates and one single gating
strategy has been developed. Clustering the input space is surely a useful technique.
It allows for fastening eSM training by reducing TV dataset size, and improve
estimate accuracy by splitting modeling behaviour responsibility between different
cooperating eSMs.

Next DoE has to be designed on a larger study area and broader variety of soil
properties, management and crops. Different gating strategies has to be developed
to evaluate differences between options and pick the most accurate one. Clustering
technique is surely important stage of data preprocessing but it is still a trial and
error process without any sort of automation.

3-4.1.4 Conclusions

Despite reduced number of input parameters compared to original model entries,
FeNS is capable of emulating original RUSLE2 behaviour with respect to erosion
rate. Every DoE developed demonstrates goodness of FeNS methodology. These
DoEs were milestones in supporting FeNS design, development, and testing.
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However, DoEs can be improved by retrieving more homogeneous and better
distributed model snapshots over the entire domain space and investigating into
data clustering methodologies.

Data clustering is a useful technique since it allows for fastening eSM training by
reducing TV dataset size, and improve estimate accuracy by splitting responsibility
of modeling behaviour emulation between different cooperating eSMs. Consequently,
the design of automated data clustering algorithm as part of FeNS pipeline is a
fundamental improvement.

3.4.2 Agricultural Ecosystem Services (AgES)

AgES is a modular, Java-based, fully distributed watershed model (Ascough Il
et al. (2015b), Ascough Il et al. (2015a), Green et al. (2014), Green et al. (2015)).
It implements hydrologic/water quality modeling components for simulating daily
water budget per hydrological response unit (HRU), in addition to plant, soil and
nutrient processes interactions.

Even if it is less computational expensive that a full 3D physically based model
(Green et al. (2014)), AgES still requires long computational time and a large
input dataset to perform a simulation run. Five categories of input data are
identified: spatial structure (described with topology, HRU attributes, channel
reach and routing files); management (described with management, crop rotation,
landuse, fertilizer, and till files); parameters (described with crop types, soil horizons
properties, groundwater properties files); and climate data (precip, relative or
absolute humidity, temperature, solar radiation, and wind speed files).

Dok for generating SMs of AgES are mainly focused on emulating daily runoff
as a result of rainfall distribution in space and time, soil characteristic and topology
of the modelled watershed, and groundwater storage capacity.

South Fork lowa River SFIR is a watershed located in central lowa, which covers
an area of 581 km? across Wright, Franklin, Hamilton, and Hardin counties (Green
et al. (2018b)) (Figure 60). The average annual precipitation is about 850 mm,
while the average annual air temperature is 70.5°C.
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Figure 60: SFIR watershed across Wright, Franklin, Hamilton, and Hardin counties, credit
Green et al. (2018b).

SFIR is of particular interest for United Stated Department of Agriculture (USDA)
Conservation Effects Assessment Program (https://www.ars.usda.gov/
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anrds/ceap/iowa-southfork/) since it is used as a benchmark water-
shed in the Corn Belt for monitoring environmental impact of intensive livestock
management and usage of agro-chemicals to grow rainfed crops (Tomer et al. (2008)).

The Southfork Watershed Alliance (SWA) (http://www.
southforkwatershed.org/) demonstrates the actual regional interest
in preserving SFIR environmental integrity. The SWA is an advisory team that
works in close contact with stakeholders to encourage agricultural management
and conservation practices.

Consequently, service delivery organization such as USDA-NRCS and potentially
SWA are interested in SMs capable of emulating AgES behaviour for SFIR water
quantity/quality scenarios to support stakeholder decisions on the field.

This DoE is the first attempt to exercise FeNS methodology on a fully distributed
watershed model. Consequently, further investigation on expanding FeNS-AgES
capabilities on nitrogen prediction becomes of great importance to monitor stream
water quality.

3.4.2.1  DoE

This experiment aimed to test the capability of FeNS system to recognize and
emulate the hidden nonlinear function that describes AgES behaviour with respect
to predicted daily runoff at the outlet of the SFIR watershed.

34211 DoE - Step 1

AgES was properly calibrated to estimate streamflow and nitrogen quantity at
catchment outlet as a result of cropland management practices (Green et al. (2018b)).
The entire watershed was divided into 3015 HRUSs, and since SFIR watershed is
characterized by photole depressions, 1 948 HRUs were modelled including tile
drainage AgES module (74% of the SFIR watershed). gg% of the cultivated area
produced corn and soybean. AgES simulations run daily from Saturday 1°! January,
2000 until Thursday 1°t January, 2015. Further details are thoroughly described in
Green et al. (2018b).

3.4.21.2 DoE - Step 2

To emulate AGES behaviour with respect to current day runoff Q(t), only the
most sensitive parameters were selected. A total of 7 fully lumped input parameters
were identified and following listed:

e Precipitation - P(t);

o Leaf Area Index - LAI(t);

Potential Evapotranspiration - PotE T (t);

Variation of snow depth - ASD(t,t —1);

Groundwater level - GW(t —1);

Soil Saturation - SSat(t—1);

Runoff - Q(t —1).

These parameters result from the arithmetic mean of actual model input values
computed on the centroid of each HRU. The only exception is Runoff - Q(t —1)
which is estimated at the watershed outlet.
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As a result, current watershed runoff was expressed as:

O(t) = F(P(t), LAI(t),PotET(t), ASD(t, t — 1),

GW(t—1),SSat(t—1),0(t—1)), (34)

where P(t) is the current meteorological forcing; LA/(t) and PotET(t) char-
acterize current state of plant/crop canopy; ASD(t,t — 1) represent the variation
of snow storage between current and previous day; GW(t —1), SSat(t—1), and
Q(t —1) identify the actual state of the watershed and ideally provide an estimate
of stored water. Since the response time of the watershed is about 1 day, no
information older than previous day have been taken into account. Figure 61 shows
the final eSM setup.

P(t)

LA (1)
PotET ()
DSD(t t-1) AgtsS - eSM — Q@)
GWr (t-1)
SSat (t-1)
Q1)

Figure 61: Generic SM input/output structure for DoE1.

The collected AgES snapshots were split into go% TV dataset (Saturday 1°
January, 2000 - Sunday 31° March, 2013) and 10% testing (Monday 1%t April, 2013
- Monday 16™ June, 2014). Each SM was generated using the following hyper
parameters:

e Initial population = 5000
e Connection density = 0.1

o Final training error = 10~4

Training dataset = go%

Validation dataset = 10%

Splitting mechanism = "Same Distribution”

34213 DoE - Step 3

Figure 62, Figure 64, and Figure 66 show FeNS - eSM performance for runoff
Q(t) estimates. These plot illustrate eSM emulation of four peak runoff discharges
out of the entire testing dataset (the entire testing set is 442 timestamps). Prediction
estimators are computed on the entire testing set, instead.

In Figure 62, Figure 64, and Figure 66, red crosses indicate original AgES runoff
computation, while boxplots indicates FeNS-eSM uncertainty quantified results.
Prediction performance of the eSM are evaluated on the median of each boxplot.

FeNS-eSM is capable of emulating AgES model behaviour on the testing dataset.
NS is above 0.97, RMSE is slightly below 2.25, and finally the BIAS is slightly
negative -0.0794.

The AgES-eSM was built with 16 SMs with totally different structures: the
smallest SM has 4 hidden nodes and 27 links, while the structure of the biggest
SM consists of g hidden nodes and 52 connections.

101



102 | SURROGATE MODELING

Despite spatially lumped reduced number of input entries compared to original
model parameters, FeNS is overall capable of emulating original AgES behaviour.
However, it sometimes shows inaccuracy in reproducing the rising (Figure 62)
and decreasing limb of the hydrogram (Figure 60). Further DoEs will investigate
techniques for improving estimate accuracy.
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Figure 62: Boxplots represents the ensemble of SMs estimates against AGES runoff compu-
tations (red squares).
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Figure 63: Scatterplot of SM estimates (computed on the median of each boxplot) and AgES
simulated values.
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Figure 64: Boxplots represents the ensemble of SMs estimates against AGES runoff compu-

tations (red squares).
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Figure 66: Boxplots represents the ensemble of SMs estimates against AGES runoff compu-
tations (red squares).
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Figure 67: Scatterplot of SM estimates (computed on the median of each boxplot) and AgES
simulated values.

3.4.2.2 Conclusions

Despite spatially lumped reduced number of input entries compared to original
model parameters, FeNS is overall capable of emulating original AgES behaviour
with respect to predicted daily runoff at the outlet of SFIR watershed.

However, with the purpose of supporting service delivery organizations such as
USDA-NRCS and SWA on the field, capabilities of eSM for AgES model need to
be expanded. Here, the eSM has to be trained to emulate AgES response with
respect to nitrogen load, since monitoring the environmental impact of intensive
livestock management and usage of agro-chemicals to grow rainfed crops is a big
concern in the Corn Belt.
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Additionally, since AgES computes runoff and nitrogen load per HRU, FeNS can
potentially scale down and generate eSM for each HRU. This improves decision
making process support by providing service delivery organizations with estimates
of runoff and nitrogen load on a field scale.

3.5 SUMMARY

This chapter introduces to design and implementation of Framework enabled
NEAT-based Surrogate modeling (FeNS) approach.

Literature review illustrates motivations behind the choice of building the FeNS
system on top of ANN data-driven empirical surrogates, instead of leveraging
projection based or multifidelity methods. Literature review also identifies drawbacks
of ANN surrogate methodologies but underline previous research that values this
approach for decision support and integrate modeling.

Afterwards, research questions identify the milestones that drive the development
of FeNS.

Research design and methods describe methodological and technical approaches
utilized to achieve the automated generation of SMs at a framework level. This
section introduces to NeuroEvolution of Augmenting Topology (NEAT) and Feature
Selective NEAT (FS-NEAT) and analyzes the genetic evolutionary algorithm that
allows for automatically emerge SM from provided original model input/output
snapshots. To take full advantage of the stochasticity involved in the evolutionary
algorithm, a cross validation-like procedure is specifically designed and analyzed.
This allows for emerging an ensemble of surrogate models and uncertainty quan-
tifying eSM results. Finally, these methodologies are actually integrated at a
framework level. FeNS concept allows for identifying the protocol that rules the
merging of previously described methodologies into framework workflow without
changing user approach to standard simulation model workflow. FeNS architectural
design illustrates the software elements that facilitate the integration of evolutionary
algorithm and ensemble of ANN in the modeling framework, and automatically
emerge the eSM. The technical approach describes MongoDB features, microser-
vice architecture and RESTful API, Cloud Service Integration Platform (CSIP) AP,
Encog ML library, and finally CSIP-services the FeNS system is build upon.

Doks for emulating RUSLEZ and AgES demonstrate goodness of FeNS method-
ology and allows for identifying future developments and improvements.

Next chapter describes the integration of NET3 approach into OMS3 to facilitate
research model maintenance, development and application. Literature review and
research questions determine starting point of the study and path that guides
through the research respectively. Research methodologies and case studies
describe methods employed to carry out the integration of graph theory applied to
a graph modeling structure into OMS3 and consequent application to actual test
cases.
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4.1 INTRODUCTION

The problem statement of this dissertation highlights constraints and limitations
research scientists face while dealing with environmental simulation model code base.
Here, the term "operational use” applies to model maintenance and development,
and state-of-art consultancy applications.

The integration of last enhancements in terms of conceptual model design,
numerical integrations, physical processes descriptions, GIS capabilities, and other
tools to already existing code base is fundamental part of research efforts and
advancements. This improves environmental models results accuracy in simulating
natural phenomena.

However, further integration of innovative engineering design practices or physical
processes descriptions become cumbersome and counterproductive due to increas-
ing software code base complexity and lacking of proper software architectural
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design. Additionally, these aspects complicates the application of simulation models
itself since they increase requirements of IT computational infrastructure man-
agement, data preparation proficiency, and difficulty in understanding code base
implementation of modelled processes.

Summarizing, operational use of environmental simulation models is not a smooth
and straightforward process due to inner complexity of model code base. As a
consequence, further research enhancements get slowed down.

The adoption of EMFs facilitated both environmental simulation model main-
tenance and development, and their application. EMFs were originally designed
and promoted to foster separation of software architectural design from scientific
content. A framework enables a sort of software “plug-ins” system: each conceptu-
al/physical process is encapsulated into a single stand alone software application
and the framework manages interconnection of modeling applications as part of a
whole modeling solution. The system plug-in design simplifies the creation of new
modeling solution by allowing for easily swapping out a model component from the
original modeling solution for a different one.

This software architectural concept helps transitioning modeler creativity from
mathematical equations into component implementations and model creations.

By the time EMFs were released, modelling an entire watershed by swapping out
components to tests different modeling approaches was a very innovative research
methodology. However, this constraints scientists to model a watershed as an
homogeneous entity. To account for watershed heterogeneity and allow for further
modeler creativity, EMFs features need to be expanded.

OMS3 is state-of-art in terms of EMFs, and motivations behind this statement
are subjects of further deep investigation in subsubsection 4.4.2.1, Object Modeling
System v3 (OMS3). To improve and expand OMS modeling flexibility, a directed
acyclic graph (DAG) modeling structure (NET3) (Serafin et al. (2017, 2018a)) is
implemented and fully integrated into the OMS core. This allows for connecting
interrelated OMS modeling solutions and run them as a whole, more complex system.
The initial prototype has been developed upon the semi-distributed hydrological
system GEOframe. Thus, implementation and main features derive from modeler
creativity needs in terms of hydrological modeling.

However, further examples demonstrate NET3 flexibility of modeling any complex
network based applications.

JSWMM is a Java component based redesign of Storm Water Management Model
(SWMM), which allows for both designing and verifying a storm sewer network.
JSWMM architectural design takes advantage of the benefits of OMS3-NET3
capabilities of avoiding code duplication and implicitly parallelize independent
mathematical computations. JSWMM has been developed as part of the Urban
Hydrology module of the GEOframe environment.

System of Systems of Models (SSoM) is a software application developed for
Framework for Integrating the Complexity of Uncertain Systems (FICUS) project.
SSoM makes use of OMS3-NET3 capabilities of encapsulating completely different
OMS modeling solutions in different nodes of the graph modeling structure, and
interconnecting them as whole system. Furthermore, SSoM specifically leverages
OMS multi-language interoperability of connecting Java, Python, and R OMS
compliant components (Serafin et al. (2018c)).



4.1 INTRODUCTION |

4.1.1  River network - graph structure analogy

The requirement of improving EMFs modeling flexibility with graph modeling
structure capabilities derives from river networks - graph structure modeling analogy
(Figure 68).

Figure 68: Representation of the river network - graph structure analogy, credit Banchert
(2017)

A river network subdivides a catchment in interconnected units. Here, each unit
fosters a large variety of natural phenomena. From modeling perspective, each
natural process can be conceptualized into a model component. Consequently,
a modeling solution happens to connect model components to reproduce natural
phenomena interactions at unit scale.

Finally, a graph modeling structure orchestrates modeling solution interconnec-
tions, which reproduces natural interaction of interrelated units following river
network topology.

The landscape of a watershed landforms with valleys and a dendritic river network
(Howard (1994)). Hillslopes are identified by convex to linear topography while
the river network is identified by interconnected channels delimited by river banks
(Montgomery and Dietrich (1989); Montgomery and Foufoula-Georgiou (1993);
Howard (1994); Hooshyar et al. (2010)). Proper modeling of an heterogeneous
drainage basin involves the analysis of size/scale of slopes and related valley net-
works (Ehlschlaeger (1989); Montgomery and Foufoula-Georgiou (1993); Demir and
Szczepanek (2017)). Thus, accurate analysis of watershed hydrological behaviour
begins by splitting the entire study area in homogeneous units.

Several studies have been carried out to investigate different strategies to
identify channels head (Montgomery and Dietrich (1988); Montgomery and Foufoula-
Georgiou (1993)), delineate the river network and subdivide an entire watershed
in subwatersheds and interwatersheds starting from DEMs (Ehlschlaeger (1989);
Montgomery and Foufoula-Georgiou (1993); Hooshyar et al. (2016); Demir and
Szczepanek (2017)). Older algorithms require channel initiation thresholds (slope-
area (Dietrich et al. (1993); ljjasz-Vasquez and Bras (1995)), Strahler's order
(Peckham (1995)), contributing area (Band (1986); Tarboton et al. (1991))). Innovative
methods take advantage of the benefits recent availability of DEMs with resolution
lower than 3m (high resolution DEMSs) to more accurately estimate geomorphologic
and hydrologic features. Here, openness (Sofia et al. (2011)), slope direction
(Lashermes et al. (2007)), curvature (Sofia et al. (2011); Pelletier (2013)), and
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curvature with k-means clustering (Hooshyar et al. (20106)) are the main topographic
attributes used.

These hydro-geomorphic analysis can be automated and several Open Source
GIS software applications have been developed, e.g. JGrasstools and the Spatial
Toolbox in uDIG (Abera et al. (2014); Formetta et al. (2014a)), LandSerf (Wood
(2009)), Geospatial Analysis Tools (Lindsay (2005)), TauDEM (Tarboton (1997)),
GRASS GIS (Jasiewicz and Metz (2011)), and GeoNet (Passalacqua et al. (2010b,a)).

These methods and software applications allow for accurately characterizing
river network and subwatersheds with minimal human impacts (Hooshyar et al.
(2016)). Subwatersheds, or analogous entities such as hillslope or HRU, can be
considered independent and interconnected by hydrodynamical networks (surface
flow, interflow, and groundwater flow) (Griibsch and David (2001)).

From a modeling perspective, it is possible to bundle the modeling behaviour of a
subcatchment and related channel into a single and independent entity (mass/energy
storage compartments) which shares fluxes (mass, energy fluxes and exchanges)
with connected entities (Phillips et al. (2015)). Consequently, the natural river
network is conceptualized into a tree-like structure of interconnected entities.

However, human infrastructures have a relevant impact on current river network
topologies. Since derivations, hydropower, and other artifacts are heavily dissemi-
nated over a watershed and its subwatersheds consequently, a tree-like structure
doesn't provide enough modeling flexibility.

A graph-like structure enables a further layer of modeling adaptability to con-
ceptualize natural river network as well as human infrastructures into a complex
modeling solution.

Here, the mathematical standpoint hinges to graph theory, which allows for
describing and analyzing any network and its properties (Heckmann et al. (2015)).
Graph theory in environmental applications is an emerging field of research (Phillips
et al. (2015)).

The actual programming implementation comes down to graph data structure, its
traversing, and parallel computation of independent nodes.

When a graph data structure is implemented into a modeling framework such as
OMS3, each node is enabled to handle modeling solutions instead of data only.

The next section reviews scientific literature with respect to applications of graph
data structure to environmental modeling problems. The Research Questions section
highlights the main points this dissertation tries to answer to. The Research design
introduces to the methodologies used to pursue the objectives of this research:
the methodological approach summarizes directed acyclic graph data structure,
environmental modeling frameworks, and implicit parallelism from a theoretical
standpoint; the technical approach deeps down to the motivations of expanding
OMS3 computational capabilities and NET3 actual implementation.

4.2 LITERATURE REVIEW

The application of graph theory and related computational algorithms in hydro-
logical modeling and engineering network problems is a long-studied concept.

One of the first applications dates back to Apostolopoulos and Georgakakos
(1997).

Here, the authors design a parallel algorithm built upon a tree-like topology
of the drainage network to speed up the computation of streamflow predictions
with distributed hydrologic models. At that time, parallel computers and distributed
computing environments were recent technological enhancements and parallel
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algorithms were innovative methodologies to satisfy computation needs of real-time
forecasting of floods and flash floods events.

Following publications focused on improving parallel algorithms in order to
achieve higher efficiency and computational performance.

For the sake of distributed modeling, Gribsch and David (2001) propose a
heuristic divide and conquer algorithm to deal with computational challenge of
subdividing water catchments into (theoretically) unlimited number of subareas.
Here the goal is to make use of graph theory, and more precisely tree-like topology,
to properly distribute the computational load among networked multiprocessors
computer clusters. The authors develop a graph partitioning algorithm to group
set of subareas and assign them to specific processors, consequently limiting
interprocessor-communication overhead.

Vivont et al. (2005) parallelizes a fully distributed hydrological model by lever-
aging graph-based domain decomposition of a water catchment into interconnected
subbasins. He proposes a message passing interface (MPI)-based version of
triangulated irreqular network (TIN)-based Real-time Integrated Basin Simulator
(tRIBS) and demonstrates performance and efficiency compared to a sequential
version.

Afterwords, several publications propose MPI-based parallelization of hydrologi-
cal models based on spatial domain decomposition of a watershed into interrelated
subcatchements.

Wang et al. (2011) proposes the mapping of a drainage network into specifically
designed binary-tree structure: when three or more upstream sub-basins flow into
the same stream reach, a virtual node with no topological features works as joint
of two upstream sub-basin and then merges with the remaining sub-basin. Here,
the actual implementation is based on a MP| master-slave architecture with a
centralized database that works as system data center.

Li et al. (2011) discusses another MP| master-slave computational approach
based on dynamic decomposition of a drainage network to better control load
balance.

Liu et al. (2016) proposes a two-level parallelization method for improving
fully-distributed model computational scalability by leveraging MPI API.

However, every contribution is completely focused on improving parallel algorithms
efficiency, computing time, and speedup ratio. There is no mention on modeling
flexibility, code reusability, operating system interoperability, and the concept of
separating software architectural aspects (e.g. implicit parallelization) from scientific
contents is not a concern. Actually, Li et al. (2011) states that

[...] since the parallel programs and simulation models are blended,
neither the frameworks [MPI] nor the codes for parallelization can be
reused by other models.

In conclusion, to take advantage of previously described parallel computational
frameworks or algorithms, a research scientist needs to develop dedicated program-
ming proficiency.

4.3 RESEARCH QUESTIONS

This section introduces to the research questions investigated by this dissertation.
Each research question is briefly analyzed. Two research subquestions (RQ3.a and
RQ3.b) are also proposed but not investigated and remain open questions for future
research work.
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RQ1: What is the best strateqgy to simplify development and run of conceptu-
al/physical model?

Environmental modeling frameworks introduced three main revolutionary concepts
in the scientific modeling community: (1) software encapsulation, (2) plug-in system,
and (3) code duplication avoidance. The main goal of this dissertation is to elevate
these concepts to a further layer of flexibility and abstraction.

The introduction to this chapter states that graph theory, and its actual implemen-
tation, can be applied to improve hydrological modeling at basin scale. Watersheds
with minimal human impact are easily mapped to tree structures where nodes
are mass/energy storage compartments and links are mass/energy fluxes. Various
applications/frameworks in the past implemented this structure already (Griibsch et
al. 2001, Li et al. 2010, Zaliapin et al. 2010, Cui et al. 2011, Wang et al. 2011,
Demir et al. 2017).

However several contributions highlight how engineering works affect stream
network and watershed modeling consequently (Gregory 2006, Whol 2006). Dam
construction, diversion, culvert or draining systems, and mini-hydro power plants
involve changes in flux directions and require dedicated modeling (Gregory 2006,
Whol 2006). For example, modeling a run-of-river mini-hydro power plant necessi-
tates of accurate design. Here, the modeler may want to simulate different scenarios
to estimate the amount of:

1. electric power generated during the working hours of the turbines in the
powerhouse while monitoring the impact of water diversion on physical and
ecological conditions along the diverted reach;

2. sediment flowing into the de-silting box;

3. electric power generated based off of the amount of water diverted into
the penstock, which depends itself on the hydrodynamic conditions of the
downstream reach.

A tree data structure is not suited for modeling these processes because it doesn't
allow a node (downstream reach) to have out-connection to more than one node
(two in this specific example: run-of-river mini-hydro power plant and diverted
stream reach, Figure 69).

Additionally, a tree-like structure limits modeler creativity when it comes to
model HRUs instead of subwatersheds. An HRU might have several other HRUs
flowing in and it might flow out to more than one HRU and stream reach.

This research identifies with a directed acyclic graph (DAG) data structure, the
most suitable tool for elevating EMFs modeling flexibility. A DAG allows for:

1. potentially encapsulating a different modeling solution in each node of a
whole modeling structure;

2. easily plug in and out nodes in the entire graph modeling structure;

3. avoiding code duplication by re-using the same packaged source code for
identical modeling solutions used in different nodes of the graph structure;

4. managing n-inputs and n-outputs for each node.

RQ2: What is the most suitable EMF core to expand and make more flexible?
Object Modeling System v3 (OMS3) David et al. (2013) has been identified as
state-of-art in terms of environmental modeling frameworks.

OMS3 design is based off of the following notable software engineering ap-
proaches David et al. (2013):
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Figure 69: Generic schematization of a hydropower plant. Part of the stored water flows
through the penstock from the dam, while the remaining flow through the diversion
reach. Credit, Palen Lab blog.

e non-invasive lightweight framework design (modelers don't have to import
and learn complex APls);

o component-based model development;

o graceful adaptation/integration of legacy models or already existing code
base;

e automated generation of model documentation by leveraging component
metadata;

o implicit parallel computation of independent model components;

e modeling solution setup through user-friendly, flexible, groovy-based Domain
Specific Language (DSL);

o integration with cloud-based platform CSIP (Lloyd et al. (2012); David et al.
(2014a)) to enable computational scalability.

The design of OMS3 has been driven by the following concept:

Environmental model development needs to be creative, i.e., new
approaches have to be explored that go beyond the boundaries of
given programming lanquages, data structures, algorithms, and existing
architectures. EMFs should foster creativity, and not constrain the
modeler to the framework developer's view.

- David et al. (2013) -

Several scientific publications demonstrate the effectiveness of modeling with
OMS-compliant components (Abera et al. (2017a,b); Ascough Il et al. (2012);
Bancheri (2017); Bancheri et al. (2018a,b); Dalla Torre et al. (2018); Formetta
(2013); Formetta et al. (2013b,a, 2014a,b, 2016a,c); Green et al. (2015)). As a result,
OMS3 is the most suitable EMF for hosting the development of NET3.


https://palenlab.wordpress.com/2017/10/11/run-of-river-hydropower-and-salmonids-potential-effects-and-perspective-on-future-research/
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RQ3: What is the most effective strategy to fasten computational time of com-
plex simulation models without requiring researchers to develop any specific
parallel software development skill?

The parallelization of several hydrological models is implemented upon a master-
slave computing approach with MPI APIs (Hluchy et al. (2001); Rao (2005); Cui
et al. (2011); Wang et al. (2011)). Fine development of MPIl-compliant algorithms
requires programming proficiencies and deep knowledge on shared memory and
computational workload management. Exclusively accurate design allows for prop-
erly scaling across computer clusters and exploiting their entire computational
power (Tran and Hluchy (2004)). Furthermore, MPI-based software application has
to compile on each hosting operating system and hardware, constraining software
portability.

More recent applications implement against Graphics Processing Unit (GPU),
innovative hardware solutions that allow for highly parallel computation (Kalyanapu
et al. (2011)). Once again, running GPU-compliant software requires NVIDIA™
graphic cards, limiting software portability.

In terms of software implementation, developing against MP| or CUDA® APls
necessitates of dedicated programming knowledge and hardware.

OMS3 is a Java-based framework. As a result, any kind of portability issue is
resolved since the Java Virtual Machine (JVM) runs on top of any operating system.
Java parallelization entry level is multi-threading, which allows for parallelizing
software applications on one single computer by leveraging multi-core Central
Processing Unit (CPU)s (David et al. (2013)). Parallel computation in hydrological
models is hardly achievable because of their complexity. OMS3 enables implicit
parallelism of independent components in a modeling solution. OMS3 manages
creation and intercommunication of computational threads: independent components
are executed by different threads while threads communicate through data flow
between connected components. Encapsulating each conceptual/physical process
of the hydrologic cycle into a single component is the only model developer's
responsibility. Then, the model user describes component connections through the
modeling simulation file. Eventually, OMS3 automatically parallelizes the run of
independent processes (or OMS-compliant components), thus requiring no parallel
programming skills to model developers.

OMS3 takes advantage of the inherent indepence of conceptual/physical processes
of a modeling solution to implicitly parallelize simulation run. NET3 enables a
further layer of implicit parallelization by leveraging the graph structure topology
to concurrently run modeling solutions of independent nodes.

RQ3.a: Can this further layer of implicit parallelism effectively speed up the
computation of both small and large scale modeling solutions?

This dissertation won't be able to investigate this research question. It remains
an interesting open question which requires dedicated work to properly demonstrate
if this further layer of implicit parallelism speeds up the computation of smaller and
larger complex modeling solutions.

RQ3.b: What is the proper trade off between graph topology and component
connections related parallelizations?

This dissertation won't be able to investigate this research question. It remains
an interesting open question which requires purposeful work to properly define the
most effective trade off between the number of computational threads to dedicate
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to component-connections parallelism and the number of computational threads to
dedicate to graph topology parallelism.

4.4 RESEARCH DESIGN AND METHODS

This research aims to accommodate modelers and researchers requirements of
facilitating environmental model development and use. To achieve this goal, EMFs
capabilities are extended by implementing a fully integrated Graph Modeling
Structure (GMS).

The GMS originates from a standard DAG where each node runs a modeling
solution. Afterwords, the GMS connects modeling solution results into a complex
topology-driven modeling solution.

Thus, this research has been driven by the need of:

e Simplifying
— the development of complex modeling solutions;

— the runs of complex modeling solutions;

e Improving the flexibility of actual EMFs to accommodate modelers creativity
and talent;

e Reducing computational time by enabling a further layer of implicit paral-
lelization.

Subsection Methodological approach introduces to three main methodologies
this research is built upon:

1. Directed Acyclic Graph data structure (DAG) is the data structure that
manages interconnected OMS3 simulation files in topological order;

2. Environmental Modeling Framework are modeling software that allow for
completely decoupling model code development from framework architectural
infrastructure and design;

3. Implicit parallelism is a framework functionality that tacitly parallelizes the
computation of independent modeling components.

Subsection Technical approach and implementation comprehensively introduce to
the architectural design of the Object Modeling System v3 (OMS3) environmental
modeling framework. This preamble allows for deeply describing the implementation
of the Graph Modeling Structure (GMS) NET3.

4.4.1  Methodological approach

4.4.1.1  Directed Acyclic Graph data structure (DAG)

This section introduces to basic notions of graph theory from discrete math
and basic requirements to implement a directed acyclic graph data structure from
computer science related field.

The paragraph Graph theory review highlights reviews basic (e.g. node, edge,
and path) and formal definitions (e.g. directed graph and undirected graph). The
main sources are McCreary and Reed (1993), Griibsch and David (2001), and Cut
et al. (2011).

In paragraph DiGraph APl and traversing algorithms, discrete math definitions
are translated into software design concepts. Here, the scope of this dissertation
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is narrowed down to directed graph since directed hydrological fluxes connect
mass/energy storage compartments. Thus, brief introduction on digraph standard
API, its representations and implementations are summarized and following utilized
in NET3 technical approach. Concepts derives from chapter 4 of Sedgewick and
Wayne (2011), and Cut et al. (2011).

4.41.1.1 Graph theory review

A graph G is a mathematical structure that consists of individual objects and links
between those objects. It allows for modeling the pairwise connections between
those objects (Sedgewick and Wayne (2011)).

Formally, a graph is an ordered pair G = (N, E) where a finite set of nodes N(G)
(or vertices) are connected through a finite set of edges (or arcs) £ C NxN. Every
edge e € E(G) defines a relation between a unique pair of nodes u,v € N(G). A
null graph is the smallest graph possible which has one single node with no edges.

A path of length n from vy to v, in a graph G is a finite sequence of connected
nodes vo, v, ..., vy where (v, viy1) € E(G),i €8 |0 < i< n—1. The number of
edges between vy and v, defines the length of the path. vy is the start node of the
path while v, is the end node. The set of every path in G is Pg. A cycle in G is a
path p = (vo,v1,...,vn) where v; = v, | 0 < i < k < n that connects a node to
itself. A simple path in G connects two vertices without revisiting any vertices or
edges. A simple cycle in G connects a node to itself without revisiting any nodes
or edges except for the starting or ending node. A graph is acyclic if Pg doesn't
contain any cycle.

A graph G is connected if and only if 3p € P | p = (u,...,v)Vu,v € N, thus
the set of path Pg contains a path for any pair of different nodes u, v.

A directed graph (or digraph) is a particular class of graphs where the edge set
E(G) is ordered and every edge e € E(G) defines a binary relation between two
nodes (u,v) | u,v € N(G). Node u is called parent, tail or immediate predecessor
of v, while v is called child, head or immediate successor of u. The set of nodes S
where each s € S has no immediate predecessors is called source of G.

S=seG|(vs)&E(G) Ve NG). (4.1)

The set of nodes M where each m € M has no immediate successor is called
sink of G.

M=meG| (mv)¢E(G) Vv e N(G). (4.2)

In a digraph, a node v is reachable from a node v if and only if 3p € P | p =
(u,...,v). In a digraph, it is possible to the define the outdegree of a node u as
the number of out-edges, that is the number of edges pointing from the node u.
Conversely, the indegree of a node u quantifies the number of edges pointing to
the node u, namely in-edges.

A directed acyclic graph (DAG) G does not contain any cycle in the set Pg.

A tree is a DAG where there is only one sink node m (called also root) and it
exists a path p = (u,...,m) that connects every node u # m to the root. Sources
of a tree are called ledfs.

An undirected graph is characterized by an edge set £ of unordered pair of
nodes: each edge e € E links two distinct nodes u,v € N in both directions.
u # v because self-loops are forbidden. Formally, if G = (N, E) is a directed
graph, an undirected graph G’ is created from G by extending £ with its inverse
relation E~': G’ = (N, E U E~"). This allows for considering each edge in £ and
its backward edge.
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4.41.1.2 DiGraph API and traversing algorithms

The API of a directed graph (DiGraph) is built on top of the data structure
implemented. A DiGraph has three different possible representations:

e Adjacency matrix: it is @ NxN array of binary bits. The entry x;; is 1 if
there is an edge between node i and j, o otherwise. The memory required
to store this data structure is O(N?). The time required to access, add or
remove an edge is O(1). However, the entire matrix has to be reallocated
and copied over if a node is added or removed. This operation is a O(N?)
algorithm. This data structure is very useful when it comes to storing dense
graphs.

e Array of edges: it is an array of length £E. Each element of the array
describes the edge by storing the ordered pair of vertices, starting and ending
points of the edge. Here the data structure is stored in O(E) memory, which
linearly grows with the number of edges of the graph. Accessing or removing
an edge is an O(E) algorithm: edge IDs are not stored, thus the entire
arrays is parsed to select the proper pair of vertices connected by the edge
involved. A new edge is added with O(1) effort.

e Adjacency list: it is an array of length N. Each element of the array contains
one vertex and the sequence of its outedges. The memory usage is O(N + E),
which can get to O(N?) in case of a dense or fully connected graph. Thus,
this data structure is better suited for sparse graphs rather than dense ones
where an adjacency matrix is more performant. Access, insertion or deletion
of a vertex require O(1) to O(N) effort, depending upon the data structure
used to store the array.

The fundamental methods exposed by a DiGraph APl are briefly explained in table
2.

Table 2: Standard API exposed by a generic public class DiGraph.
RETURNED DT [ METHOD SIGNATURE [ DESCRIPTION

‘ DiGraph () Default constructor

Reads in and builds the
DiGraph from topology file

DiGraph (Topology topology)

int ‘ getN () ‘ number of vertices
int ‘ getE () ‘ number of edges
void | addEdge (int startNode, add edge from startNode
int endNode) to endNode
void | deleteEdge (int startNode, delete edge from startN-
int endNode) ode to endNode
boolean | edgeExists (int startNode, check if an edge exists
int endNode) between startNode and
endNode
void | addNode (int newNode) add newNode to the Di-
Graph
void | deleteNode (int node) delete node from the Di-
Graph
boolean | nodeExists (int node) check if node is part of the
DiGraph

Iterable<Integer>

getChildren (int node)

children nodes of node

(... continue to next page)
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RETURNED DT \ METHOD SIGNATURE \ DESCRIPTION

DiGraph | reverse () returns a reversed Di-
Graph (edges are reversed)

String ‘ toString () ‘ @override

There are many more methods that can potentially be implemented to extend
DiGraph APl capabilities. However, they are mainly application specific and proper
algorithms need to be accurately designed.

Next step is definition and implementation of searching algorithms and respective
APIs (table 3).

Table 3: Standard API exposed by a generic public class SearchAlgo.

RETURNED DT ‘ METHOD SIGNATURE ‘ DESCRIPTION
void | compute (String direction, Search for subbranches in
Integer source, the graph
DiGraph graph)
Boolean | hasPathTo (Integer vertex) Search if vertex is con-

nected to source

Iterator<Integer> | pathTo (Integer vertex) Return the path from vertex
to source

Although properties of nodes and edges are easily accessed through the DiGraph
AP, properties related to the overall DiGraph result from the analysis of each and
every vertex and related connections. Consequently, traversing the structure of
edges and nodes becomes key in application-specific problems.

Searching algorithms usually have dedicated APIs as a consequence of decoupling
data representation from processing components. These APIs are designed on
composition (HAS-A relationship) to reference to an object by using instance
variables. In other words, a fully built DiGraph is passed as argument to the
searching algorithm constructor. Then, the algorithm queries the DiGraph to
systematically examine nodes and edges properties, and move along node to node
connections. The two most important algorithms are depth-first and breadth-first
search.

The depth-first search (DFS) solves the source reachability (or connectivity)
problem:

e single-source reachability: it checks if a path between a source node s and
a target node u exists in the given DiGraph;

e multiple-source reachability: it checks if a path between a source node s
in a set of source nodes S and a target node u exists in the given DiGraph.

Furthermore, it solves the single-source paths problem by identifying the path
that connects a source node s and a target node u. Paths discovered by DFS
depends on the data structure used to store the DiGraph and the type of recursive
search algorithm implemented.

The breadth-first search (BFS) solves the single-source shortest paths problem
by checking if a path between a source node s and a target node u exists and
identifying the shortest one.

The difference between DFS and BFS algorithms sits in rule used to extract
the next node to process from the storing data structure: DFS retrieves the most
recently added node by leveraging a stack type data structure, while BFS retrieves
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the least recently added node by leveraging a queue type data structure. As a result,
BFS deeply analyzes all the connections closer to the source node first before
moving to further connections. Opposingly, DFS looks at the furthest connection
from the source node first, moving to a layer closer connection only when finds
dead ends.

DiGraph are widely applied to scheduling problems where a set of tasks are
to be completed under precedence constraints: certain tasks must await previous
tasks to complete before starting their run. Here, tasks are nodes of the DiGraph
and directed edges schedule precedence constraints (or topological order).

In precedence-constrained type of problems, a DiGraph can’t contain a directed
cycle because it would end up in a infinite loop with no feasible solution. Conse-
quently, the DiGraph becomes a Directed Acyclic Graph (DAG).

4.4.1.2 Environmental Modeling Framework

This section introduces to definition, architectural aspects and design of generic
frameworks. It following focuses on EMFs and their additional design concepts.

A framework is a software library that simplifies the development of domain specific
applications by providing reusable design (Gamma (1995); Lloyd et al. (2011)). It
implicitly defines a set of rules for building each domain specific application, which
results in applications with similar code structure and classes/objects partitioning
(Gamma (1995)). It differs from a software library because it controls the overall
program (set of applications) execution flow by applying the inversion of control
design pattern.

A software framework elevates the concept of separation of concerns (SoC) by
dealing with several complicated software architectural aspects like high performance
computing and thread control, infrastructure constraints, programming language
specifications, hosting environment constraints (operating systems and underlying
platforms), etc. (David et al. (2013)). It abstracts these aspects to a level that is
appealing for non-specialists. As a result, application development is streamlined
and application designers can specifically focus on application domain functionalities
(Gamma (1995)).

Development goal of software frameworks is design reuse over code reuse.
However, the addition of accurate design of framework compliant components avoid
code duplication and consequent drawbacks.

Software frameworks are being developed for supporting code development in
different fields like financial modeling (Birrer and Eggenschwiler (1993)), decision
support systems (Gachet (2003)), compilers for programming languages on specific
hardware (Johnson et al. (1992)), graphical editors for music composition or me-
chanical CAD (Vlissides and Linton (1990); Johnson (1992)), and environmental
modeling (Bernholdt et al. (2003); Hill et al. (2004); Blind and Gregersen (2005);
Collins et al. (2005); Gregersen et al. (2007); Moore et al. (2007); Peckham et al.
(2013); David et al. (2013)).

This dissertation focuses on EMFs, which are designed to facilitate environmental
research scientists in developing and maintaining mathematical models.

The development of a conceptual/physical model requires the understanding of
physical description of natural phenomena and software development skills. EMFs
facilitate separation of these concerns by providing the research scientist with
tailored libraries that abstract software architecture design from model implementa-
tion. In addition to previously listed framework generic capabilities, EMFs features
include seamless access to data, encapsulation of conceptual/physical processes into
functional units (o model components), management of components interconnection
and intercommunication, conversion of physical units between connected components,
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handling of temporal and spatial stepping, simulation data analysis by visualizing
plot results (David et al. (2013)). Furthermore, EMFs provide tools for managing
interoperability between different programming languages (Serafin et al. (2018c);
David et al. (2013); Dahlgren et al. (2004)). This smooths the learning curve to
approach an EMF by allowing research scientist to use their favorite language.
The adoption of EMFs as a standard practice has several advantages like:

e reducing model development cost and time by facilitating the integration of
legacy models with new models and maintaining existing modeling practices;

o elevating model component reuse in different modeling solutions by avoiding
code duplication and consequent error prone software maintenance and
debugging;

e introduction of combination of QA/QC into model component lifecycle to
prevent model bugs, errors or defects and improve software runtime quality
and error traceability;

e repurposing model solutions for new business needs;

e promoting the concept of reproducible research by providing consistent and
verifiable model results (Bancheri et al. (2018b)).

As pointed out in Rizzoli et al. (2008), the modeler should experience an immediate
return on investment by adopting a framework designed to increase modeling
productivity.

Eventually, EMFs elevate modeler creativity as well by leveraging the plug-in
system of model components to facilitate the creation of different modeling solutions
scenarios (David et al. (2013); Peckham et al. (2013)).

In conclusion, software frameworks facilitate domain specific application design
by elevating the concept of separation of concerns: the management of software
architectural design aspects such as high performance computing and hosting
environment constraints are delegated to the modeling framework, while application
developers focus on domain specific application design.

4-4.1.3 Implicit parallelism

This section briefly introduces to the concept of explicit and implicit parallelism.
Formal definitions are provided since are used in section Technical approach and
implementation.

State-of-art in terms of CPU is multi-core processor, which means that two or
more autonomous processor cores (or processing units) are placed on a single chip
package (Ovatman et al. (2011)).

These types of CPUs are installed on a large variety of devices starting from per-
sonal computers and smartphones. As a result, parallel programming in application
software is a fundamental methodology that allows for speeding up the computa-
tional effort while fully taking advantage of the underlying hardware (Ovatman
et al. (2011)).

The design of software application that integrates parallelized algorithms and
management of thread execution is called explicit parallelism. This requires pro-
gramming proficiency since the software developer masters the concurrent execution
of parallel tasks, their synchronization and communication, and related memory
management.
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Explicit parallelism is not standard practice when it comes to design framework-
compliant components. The framework actually manages these software architectural
aspects. Consequently, research scientists or components developers are responsible
for component implementation and can plan for proper software system decomposition
and granularity (David et al. (2013); Peckham et al. (2013)).

This contrapposes to the previously mentioned methodology and it is called
implicit parallelism. Here the framework identifies each component as a potential
parallel task and schedules its execution based off of component interconnection.
This methodology might not result in a optimal parallel efficiency since component
developer has no control on the overall program execution, not even the single
task consequently. However, programmer doesn’t have to worry about processes
communication and management and can improve parallelization effectiveness by
finely tuning system granularity.

In summary, implicit parallelism is a software architectural aspect most modeling
frameworks implements to allow model developer for taking advantage of state-of-art
computational processing unit without requiring parallel programming proficiency.
Implicit parallelism is a notable feature of OMS3 and is furtherly extended by
NET3 to provide for a further layer of computational speed up.

4.4.2 Technical approach and implementation

The Technical approach and implementation section describes the technical
methodologies that are part of this dissertation.

In the first sub section, the Object Modeling System v3 (David et al. (2013))
is introduced. OMS3 is an open source framework released under MIT licence.
OMS3 has been designed and developed by Dr Olaf David at Colorado State
University (Fort Collins, CO). The development of this EMF has been supported
by USDA-NRCS and USDA-ARS. The Object Modeling System v3 (OMS3) sub
section introduces to the software engineering design and notable functionalities
that make OMS3 state-of-art in terms of EMFs. The author of this dissertation
DOESN'T take any credit with respect to OMS3 framework code base in general,
OMS3 architectural design, and OMS3 implementation. Dr David is the sole author
of OMS3 (David et al. (2013)).

The second subsection “Graph Modeling Structure: NET3" introduces to the
actual contribution of this dissertation. NET3 has been developed to expand OMS3
modeling capabilities. NET3 is released as part of OMS3 modeling framework.
Consequently, NET3 is Open Source project released under MIT licence.

4.4.2.1  Object Modeling System v3 (OMS3)

The Object Modeling System v3 is a Java based integrated environmental modeling
framework, which supports a workflow to develop and deliver environmental models
to user organizations.

OMS3 allows for consistently and efficiently building science components, which
are fundamental functional units to disaggregate a complex environmental model in
(Lloyd et al. (2011); David et al. (2013)). It also supports modules calibration and
testing for facilitating model component development, modification or adjustment as
science advances, and repurposing for emerging customer requirements.

This section focuses on describing OMS3 unique features and providing an
overall workflow example by stepping through code base details. The paragraph
Overview introduces to the foundations of the OMS3 architecture and its most
important architectural design aspects. The paragraph Framework invasiveness
describes the use of Java annotations to enable OMS3 architectural design aspects
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and make OMS3 a lightweight framework. Furthermore, this subsection illustrates
the model developer standpoint of leveraging OMS3 annotations to transform a
Plain Old Java Object (POJO) into an OMS-compliant component. The paragraph
Simulation DSL describes the actual interface between modeler and framework
workflow: the Groovy-based DSL flexibility is demonstrated by analyzing the DSL
functionalities and their mapping into OMS3 internal code base. The paragraph
Modeling concept (model) - oms3.ds1.Model. java describes the core part
of the OMS3 modeling solution. DSL concepts are illustrated as well as their
mapping into OMS3 internal classe. Finally, paragraph Simulation run provides
an overall workflow of the OMS3 internals for a modeling solution run.

4.421.1 Overview

OMS3 is a lightweight integrated environmental modeling framework. It sup-
ports the modeling process by streamlining model code development, providing for
seamless model access to data, and data analysis and visualization.

OMS3 results from a complete redesign of OMS2. It minimizes model invasiveness,
improves portability, adaptability and infrastructure integration (David et al. (2013)).
Additionally, it simplifies component integration, emphasizes implicit auto-scaling
of simulation models in multi-core and multi-processor environments, provides
for modeling simulation traceability and integrity, and is capable of generating
auto-documentation of models and simulations (David et al. (2013)). The framework
addresses agencies traceability requirements with program tracking and financial
management responsibilities. Agencies running simulation models can utilize the
benefits of OMS3 to create auditable simulation trails based on Secure Hash
Algorithms, which is a Federal Information Processing (FIP) Standard. A further
relevant feature is the capability to auto-document a model and simulation structure
into an open document standard such as Docbook5+.

Figure 70 illustrates the four foundations of the OMS3 principle architecture:
(1) modeling resources, (2) system knowledge base, (3) development tools, and (4)
modeling/simulation products. An overall introduction to the framework workflow is
following summarized.

Modeling resources are databases, services, version control systems, or other
repositories (David et al. (2013)). Knowledge base and development tools are
part of the OMS3 core. The OMS3 system derives information out of the con-
nected resources and transforms it into framework knowledge bases. The OMS3
development tools use this generated knowledge bases to create modeling and
simulation products (David et al. (2013)). Modeling and simulation products are
model applications (science components), simulations supporting calibration and op-
timization procedures as well as parameter sensitivity analysis, results visualization
and statistical analysis, audit trails for reproducible research and legal purposes,
and documentation.

The main architectural design aspects of the OMS3 framework are:

1. runtime introspection for parsing class structure, fields, methods, and their
values, which allows the framework to hook into component entry points;

2. annotation of relevant class information, methods, and fields;

3. reflection as a methodology for accessing object fields and invoking object
methods.
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Figure 70: Schematization of OMS3 architectural design, credit David et al. (2013).

4.4.21.2 Framework invasiveness

This section introduces to generic framework invasiveness concept. Definitions of
tight and loose coupling architectural design as well as heavyweight and lightweight
framework are provided. Knowledge of these notions allow for understanding and
appreciating OMS3 characteristics that make it a lightweight non invasive framework.
An example of POJO annotation is provided. Additionally, Appendix B illustrates
the adaptation of R and Python scripts into OMS-compliant components (Serafin
et al. (2018¢)).

Framework invasiveness is code coupling aspect that quantifies the level of
dependencies a framework imposes to a compliant component (Lloyd et al. (2011)).
Framework invasiveness correlates inversely with quality of modeling code (Lloyd
et al. (2011)).

The definition of framework invasiveness resembles object-oriented coupling,
which is the degree of dependencies between two software components (Gamma
(1995)). Two classes are tightly coupled when they strongly depend on each other,
and are hardly reusable in isolation consequently (Gamma (1995)). Opposingly,
loosely coupled design allows classes to properly interact without deep knowledge of
each other implementation (Freeman et al. (2004)). This design principle facilitates
independent reusability and portability of two classes while elevating modifiability,
extensibility, and overall maintainability (Gamma (1995)). Previous research on the
topic showed an inverse correlation between object-oriented coupling and software
fault proneness (Briand et al. (2000, 1999)).

Richardson (2006) provides definitions for heavyweight and lightweight frame-
works, which essentially differ in the size of exposed API.

A heavyweight framework AP| has normally a considerable size. Consequently,
familiarizing with this API requires time and expertise. It additionally generates
extensive dependency with the application code.

Differently, a lightweight framework replaces massive APls with alternative
methodologies. This approach restrains the use of framework dedicated data types,
interfaces, classes and it bounds the amount of boilerplate code in domain specific
components.

Lloyd et al. (2011) thoroughly summarized the comparison between heavyweight
and lightweight framework design, which resulted in table 4.
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Table 4: Comparison between heavyweight (traditional) and lightweight frameworks, credit
Lloyd et al. (2011).

Traditional framework ‘ Lightweight framework

Components under the framework | Components under the framework
are: are:

e bound statically at compile e bound dynamically at run

time time by use of language anno-
tations/dependency injection
techniques (inversion of con-
trol software design pattern)

e ightly coupled to the frame-
work by extension of frame-
work classes, implementation
of framework interfaces, use e loosely coupled and largely
of framework specific data independent of the framework
types/classes, and use of

e . e convention over configuration:
framework specific function- 9

developers only specify un-

s/methods ' ="
conventional details in code
e framework provides special- as defaults are otherwise as-
ized versions of native lan- sumed

guage data types '
e framework uses native lan-

e framework has a ‘large” pro- guage data types

gramming interface (API)
e framework has a “small” pro-

e framework use may depend gramming interface (API)
on many libraries

With respect to OMS3, its lightweight non invasive approach is following de-
scribed.

OMS3 introduces programming language annotations as innovative methodology
for describing component metadata. Instead of developing against traditional
framework APls, a component developer accommodates OMS3 annotations on
component elements (e.g. classes, methods, fields) that are relevant for building
the modeling solution. The framework captures component annotations through
runtime introspection, and interprets related information for properly building model
metadata. This simple and effective design fully adheres to the Inversion of Control
principle (Fowler (2004)): as a result of model metadata, the framework drives
simulation execution and data flow. This approach allows for annotating any POJOs
and legacy software applications, which can be used from within the framework
consequently.

This is a lightweight non-invasive approach since no framework specific data
types need to be used and no framework interfaces or abstract classes need to be
implemented or extended from within the model component.

Richardson (2006) demonstrated the effectiveness of this approach on other
domain specific applications such as web application and enterprise frameworks.

Each and every OMS3 annotation start with the <at> symbol (@). To summarize
the main functionalities, three different groups are identified (David et al. (2013)):

1. Mandatory annotations - These annotations are mandatory for executing a
modeling component. @Execute is accommodated above the method signa-
ture that rules the component execution and is invoked by the framework at
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runtime. @In and @Out are located above each input/output field declaration
respectively. Annotated fields identify the incoming and outcoming flow of
data in and to a component and they must be declared public to be accessed
by the framework. OMS3 is in charge of handling the data transfer protocol
between components. It exchanges any data type independently from data
semantic or structure.

. Supportiving annotations - These annotations are optional. However they

facilitate and bound model execution by introducing additional information
such as @QUnit to describe the physical unit of a model parameter, or @Range
to constrain the admissible value of a model parameter.

. Documentation annotations - Although these annotations are optional as well,

they provide useful metadata which facilitate model component readability
and maintainability consequently. This information are also parsed by the
framework to automatically generate model documentation (Description,
@Author, @Version).

Listing 4.1 shows a simple example of an annotated OMS-compliant component.

Listing 4.1: Example of a POJO class turned into OMS-compliant component by accommo-

dating OMS3 annotations.

package example;
import oms3.annotations.x;

@Description ("Compute cylinder volume")
@QAuthor (name = "Francesco Serafin",

contact = "francesco.serafin.3@gmail.com")

@Keywords ("cylinder volume")
@Bibliography ("David, 0., Ascough II, J. C., Lloyd, W.,

Green, T. R., Rojas, K. W., Leavesley,

G. H., & Ahuja, L. R. (2013).

A software engineering perspective on environmental modeling
framework design: The Object Modeling System.

Environmental Modelling & Software, 39, 201-213.")

@VersionInfo ("0.1")
@Status (Status.TESTED)
public class CylinderVolume {

@Description ("Radius of cylinder base")
QRole (Role.PARAMETER+Role.VARIABLE)
QUnit ("meters")

@In

public double radius;

@In
public double height;

@out
public double volume;

@Execute
public void compute () {
volume = circleArea(radius) =* height;

System.out.println('‘The volume is: ‘‘

private double circleArea (double radius)
return Math.pow(radius, 2) % Math.PI;

+ volume) ;

{
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Line 3 of Listing 4.1 shows the only dependency between framework and OMS-
compliant component: import oms3.annotations.* is required to make use
of all the available OMS3 annotations.

OMS3 supports the Initialize/Run/Finalize cycle by providing two further annota-
tlons @Initialize and @Finalize along with @Execute to rule the model
execution flow. This allows for tagging two extra methods within a Java class that
are invoked before (@Initialize) and after (€Finalize) the main method
tagged with @Execute (Figure 71).

Execution phases
(Initialize Run Finalize)

I I I
I I 1
I I 1
1 1 1
U U 1

'
\,\,

Component A,
1 Component
-y >

Input data ‘ Output data
—> \

Component

Figure 71: Execution phases, and data flow of OMS3 modeling solution, credit David et al.
(2013)

In conclusion, definitions of framework invasiveness and code coupling are provided
to introduce to the concept of Java annotations, which make OMS3 a lightweight
non-invasive framework. Listing 4.1 shows the adaptation of a POJO test case into
OMS-compliant component. Multi-language operability is exercised in Appendix B.

4.4.21.3 Simulation DSL

This subsection introduces to generic DSL definition and actual application to
environmental modeling solutions. OMS3 DSL and its mapping into OMS3 code
base are thoroughly analyzed. OMS3 DSL formal structure and the concept of
simulation file are provided. Afterwords, each of the seven main DSL elements
of an OMS3 simulation file are individually described. Simulation, Resources,
Analysis, Summary Output, Model Efficiencies, and Simulation Output Strategy are
introduced as independent subsections. Model element requires a different section
since it is the DSL core concept.

A domain specific language is a programming language (usually declarative)
designed to simplify the solution of domain-specific problems through dedicated
notations and abstractions (Van Deursen et al. (2000)). A DSL is a very expressive
and powerful but small language which works on top of a General Purpose Pro-
gramming Language (GPL) with the main goal of narrowing GPL scope (Fowler
(2010); Van Deursen et al. (2000)).

Regarding EMFs specific applications, a DSL interposes between the collection
of model components and the modeling framework. It simplifies the definition of a
set of framework instructions which are required to properly execute a modeling
solution.
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Traditionally, properly balanced mix of DSL and GPL facilitate modelers work
and improve software application effectiveness (David et al. (2012)). Furthermore, a

DSL is more flexible and powerful option to complex Graphical User Interface (GUI).

OMS3 provides a flexible and user-friendly DSL to facilitate modelers work of
setting up the modeling simulation. Through the DSL, a user generates a runtime
system of rules (protocol) to:

1. select the type of OMS3 simulation to run;
2. identify and list the model components required to build the modeling solution;

3. specify the mandatory input data entry points to initially feed the modeling
solution pipeline;

4. describe modeling components interconnections.

OMS3 provides several DSL concepts for various purposes, which facilitate the
transitioning of modeler creativity and ideas to lower level framework implementation
of a modeling solution. Some examples of DSL concepts are basic model simulation,
parameter calibration, sensitivity analysis, and ensemble streamflow prediction
(ESP) (David et al. (2012)).

OMS3 leverages Groovy language and its provided DSL builder design pattern

to set up a runtime simulation (Gamma (1995); Dearle (2010); David et al. (2013)).

After this brief introduction to DSL definition and the generic OMS3 usage, full
description of OMS3 DSL is provided. Thus, following simulation DSL always
refers to specific OMS3 application.

Independently of the simulation type, a simulation DSL file is expected to have
*.sim, x.luca, ~.esp, . fast, or x.ps extension and adhere to the formal
structure in Listing 4.2.

Listing 4.2: OMS3 modeling solution formal structure.

// comment
<root element> (<key:value>, <key:value>, ...) {

<element> (<properties like above>) {
// more subelements..

}

<element> (<properties like above>) ({
// more sublements or just elements with value
<element> <value>

}
<element> (<properties like above>)

<element> {
<element ..

}

// more subelements

Comments can be singled lined ('// ...") or can span multiple lines ('/* ...*/")
such as in C++4, Java, or Groovy. There is only one root element, which is usually
the identified simulation type. Every element might have properties, provided in
parenthesis after the element name (parenthesis can be omitted if there are no
properties), and sub elements within curly brackets (curly brackets can be omitted
if there are no sub elements). This hierarchical structure (element, sub element) is
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similar to XML style but (1) results in less verbose statements, (2) can potentially
contain GPL constructs (because of the Groovy language), and (3) is executable
through the OMS3 runtime. Properties are a list of comma separated tuple of
<key>:<value> pairs.

A basic simulation (x.sim) is the standard methodology to setup and run a
modeling solution. Listing 4.3 shows a typical simulation DSL (Rigon et al. (2016);
Banchert (2017)).

Listing 4.3: Example of OMS3 modeling solution, credit Rigon et al. (2016) and Banchert
(2017).

import static oms3.SimBuilder.instance as OMS3
def home = oms_prj
def startDate= "1994-01-01 00:00"
def endDate= "1995-01-01 00:00"
OMS3.sim(name:"TT_integrator") ({

resource "$Soms_prij/lib"

build(targets:"all")

model (while:"reader_data_Qtt.doProcess") {

components {

"reader_data_Qtt" "org.[...].OmsTimeSeriesIteratorReader"
"integrator" "integrator.InjectionTimeIntegration"
"writer_Qint" "org.[...].OmsTimeSeriesIteratorWriter"

parameter

"reader_data_Qtt.file" "${home}/data/Qtt.csv"
"reader_data_Qtt.idfield" "ID"
"reader_data_Qtt.tStart" "S{startDate}"
"reader_data_Qtt.tEnd" "${endDate}"
"reader_data_OQtt.tTimestep" 60
"reader_data_Qtt.fileNovalue" "-9999"
"integrator.ID" 209

"integrator.tStartDate" "S${startDate}"
"integrator.tEndDate" "S{endDate}"

"writer_Qint.file" "${home}/output/Qtt_int.csv"
"writer_Qint.tStart" "${startDate}"
"writer_Qint.tTimestep" 60
"writer_Qint.fileNovalue" "-9999"

connect {

"reader_data_Qtt.outData" "integrator.inQoutvalues"
"integrator.outHMQ" "writer_Qint.inData"

Groovy runtime (GroovyShell. java class) is the actual engine that parses
the DSL and creates the sim element of the SimBuilder. java class (Listing
4.3 - line 5).

The GroovyShell.java class is instantiated from within the
SimBuilder.java class and, through a cascade of nested building pro-
cesses, initializes the Sim. java object. During the nested building processes,
GroovyShell. java object populates Resource, Build, and Model (Listing
4.3 - line 6:8) fields declared in the Sim object.
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AbstractSimulation
Package::oms3.dsl|
{@author Olaf David}
- model: Model
- res: Resource
- out: List<Output>
- analysis: Chart
- build: Exec
- sysprops: KVPContainer
+ run(): Object
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Sim Esp Luca Fast DDS
Package::oms3.dsl| Package::oms3.dsl.esp Package::oms3.dsl.cosu Package::oms3.dsl.cosu

{@author Olaf David} {@author Olaf David} {@author Olaf David} {@author Olaf David} {@author Olaf David}

Package::oms3.dsl.cosu

- eff: List<Efficiency> - hist_years: String - calib_start: Date - params: Params

- sum: List<Summary> - esp_dates: String - rounds: int - ofs: List<ObjFunc>
+ run(): Object - timing: boolean - start‘_rime: Date - sample_s: int

+ run(): Object - endTime: Date X - terms: int

- startMonthOfYear: int - sens_start: Date

- summary: SummaryWriter | |- sens_end: Date

- traceFileName: String - startMonthOfYear: int

- params: Params

- ofs: List<ObjFunc>

- samples: int

- terms: int

- sens_start: Date

- send_end: Date

- startMonthOfYear: int

ParticleSwarm
Package::oms3.dsl.cosu
{@author Olaf David}
@author Giuseppe Formetta

- model_stdout: boolean + run(): Object

+ : Object
- model_stderr: boolean run(): Objec

- c: CollectOutput
+ run(): Object

Figure 72: UML of OMS3 available modeling simulation types.

Sim DSL root element allows for setting up six contemporary ele-
ments: model{}, outputstrategy{}, efficiency{},
summary{}, and analysis{}. This elements correspond to framework Java Ob-
jects, and are built by the Groovy runtime. Listing 4.3 exercises only resource({},
build{}, and model{}. Nevertheless, a brief introduction to every element
is provided as well. model{} element is deeply investigated in the Modeling
concepts section.

resource({},

Simulation (sim) - oms3.dsl.Sim. java

Sim DSL root element is mapped into Sim. java class, which extends the
abstract class AbstractSimulation. java. OMS3 provides six different types
of actual implemented simulations through subclassing: Sim, Esp, Luca, Fast,
DDS, and ParticleSwarm (Figure 72).

They all expose a similar API due to the subclassing behaviour but have different
simulation targets. However, thanks to a thorough and effective architectural design,
core parts of the framework implementation such as implicit parallelization are
reused. Consequently, this dissertation describes and step through Sim class only.

Resources (resource) - oms3.dsl.Resource. java

Every simulation manages resources such as a model executable, DLLs, parameter
files, climate data input, documentation, etc. The resource element allows for listing
of those resources. Three different usage options of the resource listings are
available:

e All jar files listed in a resource element are added to the classpath for JAVA
model execution. Jar files can be referenced as local files or URLs, if the
model is loaded from a remote location. If no Jar files are listed, the framework
looks for model applications int the default classpath.

e All files regardless of which type are used for digest computation to ensure
comprehensive hashing of all simulation resources.

- kmax: int

- check_after: int

- check_last: int

- check_min: int

- check_delta: double
- verbose: int

- num_part: int

- params: Params

- of: ObjFunc

+ run(): Object
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o Other tools for remote execution within a cluster can use the resource listing
to copy those files to other machines.

A resource section of a modeling simulation might look like Listing 4.4.

Listing 4.4: Example of resource section in OMS3 modeling simulation with list of single
resources.
import static oms3.SimBuilder.instance as OMS3
def home = oms_prj
def startDate= "1994-01-01 00:00"
def endDate= "1995-01-01 00:00"
OMS3.sim(name:"TT_integrator") ({
resource "\$oms_prj/lib/jgt-grass-0.7.7-SNAPSHOT. jar"
resource "\$oms_prj/lib/TT.jar"
resource "\Soms_prj/data/ETtt.csv"

The resource values always follow the resource keyword. It also shows the use
of string replacement in order to reference a common root directory (\ $oms_pr j).
Alternatively the files above can be provided as a list of Strings to one resource
element (Note the required brackets and parentheses - Listing 4.5). Both notations
do have the same semantics.

Listing 4.5: Example of resource section in OMS3 modeling simulation with array of re-
sources.

import static oms3.SimBuilder.instance as OMS3

def home = oms_prj

def startDate= "1994-01-01 00:00"

def endDate= "1995-01-01 00:00"

OMS3.sim(name:"TT_integrator") ({

resource (["$oms_prij/lib/jgt—-grass—0.7.7-SNAPSHOT. jar",

"S$Soms_pr3j/lib/TT.jar",
"Soms_prj/data/ETtt.csv"])

Analysis (analysis) - oms3.dsl.analysis.Chart. java

An analysis elements provides for post run analysis by means of plotting/graphing
features. It is an optional step of a modeling simulation. OMS3 provides the
following types of analysis plots:

o Time series plots;
o Flow duration plots;
e Scatter plots.

The following type is specifically developed for Ensemble Streamflow Prediction
(ESP):

e Esp trace analysis plots.

An analysis element can potentially contain any number of previously defined
plot objects as sub-elements (Listing 4.6).

Listing 4.6: Example of available options in the OMS3 plot sub-element.

import static oms3.SimBuilder.instance as OMS3
OMS3.sim(name:"Efcarson") ({
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\dots
analysis(title:"Simulation Output") {
timeseries (title:"East Fork Carson") {

x(file:"%last/outl.csv", column:"date")
y(file:"%last/outl.csv", column:"basin_cfs")
y(file:"%last/outl.csv", column:"runoff[0]")
}
timeseries (title:"Error") {
x(file:"%last/outl.csv", column:"date")
calc(eqg:"sim - obs") ({
sim(file:"%last/outl.csv", column:"basin_cfs")
obs(file:"%last/outl.csv", column:"runoff[0]")
}
calc(eqg:"sim - obs", acc:true) {
sim(file:"%last/outl.csv", column:"basin_cfs")
obs (file:"%$last/outl.csv", column:"runoff[0]")

flowduration {
y(file:"%last/outl.csv", column:"basin_cfs")
y(file:"%last/outl.csv", column:"runoff[0]")
}
scatter {
x(file:"%last/outl.csv", column:"basin_cfs")
y(file:"%last/outl.csv", column:"runoff[0]")

\dots

Every plot object reads in datasets that are stored as CSV tabular data. A column
of the CSV file is identified by (i) file name, (ii) table name, and (iii) column name
(Listing 4.7). However, the analysis element can handle some shortcuts in context
of the simulation. There are some examples:

Listing 4.7: OMS3 plot element.

x(file:"Soms_prj/SIM/0003/outl.csv", table"efc", column:"runoff")

A column is fully referenced with file, table, and column name. The file name is
accessed with the absolute path (Listing 4.8).

Listing 4.8: OMS3 plot element.

x(file:"Soms_prj/SIM/%$last/outl.csv", table"efc", column:"runoff"

A column is fully referenced with file, table, and column name. The file name is
accessed with the absolute path but refers to the last simulation run. The meaning
of 'last’ depends on the chosen output strateqy (Listing 4.9).

Listing 4.9: OMS3 plot element.

x(file:"%last/outl.csv", table"efc", column:"runoff"

In Listing 4.10, the file reference is in the simulation context. It points to a file in
the last output folder for the running simulation.

Listing 4.10: OMS3 plot element.

x(file:"%last/outl.csv", column:"runoff"
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If the table name is not provided, analysis element assumes a table with the
simulation name (Listing 4.10). This option provides the highest flexibility in terms
of independent data path referencing.

In case of n-simulation context run, OMS3 provides three predefined variables to
access CSV data files.

e $first - The first simulation output in the run sequence. (For numbered
outputs is the folder with the lowest number, for timed output the oldest
simulation time);

e $previous - The previous simulation output in the run sequence. (For
numbered output this is the folder with the highest number - 1, for timed
output the second recent simulation time);

e %last - The last simulation output in the sequence (For numbered output
this is the folder with the highest number, for timed output the most recent
simulation time).

In case of a SIMPLE output strategy, $first, $previous, and $last refer
to the same output folder.

Implementing those variables in a modeling simulation file has several benefits.
Once a generic analysis configuration is created using $last variable, it always
refers to the most recent output of each simulation run.

Additionally, user can always compare last and previous output runs and analyse
the impact of model parameter changes.

In a further scenario, a modeler can compare the output of the last simulation run
against a baseline dataset. The latter is referenced with a full qualified absolute
path name.

$firstl, $previous, and $1last variables facilitate modeler's workflow by
avoiding manual changes of hard coded absolute paths to analysis file at each
simulation run.

Summary Output (summary) - oms3.dsl.Summary. java

The summary element provides ad-hoc statistics for selected model (state) vari-
ables. Statistical moments are computed over a selected aggregation period of
time. Five aggregation periods are provided: daily, weekly, monthly, yearly, or the
entire simulation. The summary of only one variable at a time can be analyzed,
and the identified variable has to be tagged as model component output with @Out
annotation.

Listing 4.11 shows a usage example of the summary element within the
SimpleModel simulation.

Listing 4.11: Example of OMS3 summary element with single statistic.

sim(name:"SimpleModel") {

// define the model
model (classname:"tw.Thornthwaite") {

}

summary (time:"time", var:"basin_ro", statistics:MAX, file:stats.txt)
}

Here, the maximum value of the output variable basin_ro is computed over
the total simulation time, and stored in the file stats.txt. The latter is automatically
saved in the simulation output folder.
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Listing 4.12: Example of OMS3 summary element with multiple statistics on a specified
period of time.

sim(name:"SimpleModel") {

// define the model

model (classname: "tw.Thornthwaite") ({
\dots

}

summary (time:"time", var:"runoff[4]",
statistics:MEAN+MIN+LAGl, period:YEARLY)

Listing 4.12 shows a more complex usage example: element 4 of the runoff
array is aggregated over one year time and its minimum, mean and autocorrelation
consequently redirected to the console standard output.

Table 5 shows the list of OMS3 provided statistical moments.

Table 5: List of OMS3 provided statistical moments.
Moment | Description

MEAN | MEAN = %ZL X;
MAX | MAX = maxi(x)
MIN | MIN = min;(x;)
COUNT | COUNT = count(x;)
RANGE | RANGE = maxi(x;) — min;(x;)
YiN+1) /2 if N ia odd,

MEDIAN | MED = 1 1
Z(YN/Z + Yiiny2), U N is even.

1
STDDEV | SD = NZIL(X[—W

1
VAR | VAR = NZ[L(X[ —x)2

1
MEANDEV | MD = NZZ\L»](X[ —x)?

SUM | SUM =Y N x
PROD | PROD =[x
Q1 | First quartile
Q2 | Second quartile
Q3 | Third quartile

LAG1T | LAG-1 autocorrelation
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Model Efficiencies (efficiency) - oms3.dsl.Efficiency. java

Model efficiencies are commonly used to quantify prediction performance of a
simulation model by computing parameter aggregation based on observed and
simulated values of the same model property. OMS3 provides several model
efficiencies. A comprehensive list is provided in Table 6.

Table 6: List of OMS3 provided model efficiencies.

Moment | Description ‘ Equation
ABSDIF | Absolute difference > 11010 — Oisl
ABSDIFLOG | Absolute difference | Y 7 4 [ln Qo —n Oy, s
Log
AVE | Absolute Volume Er-| |Y 74 Qs — Qi
ror
IOA | Index of Agreement - = Lizt |go — Qis| —
z:(:1|Ch5 _'(?o|*‘|Chp _'C%|
n 0. )2
IOA2 | Index of Agreement | 1— — 2’21(701'; Qus) —
(POW 2) 21:1 (Qi,s - Qo) + (Qi,o - Qo)
n —0:.)?
NS | Nash-Sutcliffe 1— Z‘f (Qio %)2
Zi:1 (Qi,o - QO)
NSLOG | Log of Nash-Sutcliffe | 1 — Z‘f 11 = i
Zi:1 |Qio — Qo
7_1(In Qo — In Qys)?
NS2LOG | Log of Nash-Sutcliffe | 1 — Z‘n’]( nQio—ln gs)z
(Pow 2) 2 i=1(In Qo = InQy)
BIAS | Bias Li=1(00 = Q)
)_i=1 Qio
1, 5
RMSE | Root Mean Square EZ":](QS — Q)
Error

Listing 4.13 illustrates a usage example of efficiency element in a modeling
solution. OMS3 allows for computing multiple efficiencies simultaneously by
combining different performance coefficients with + operator.

Listing 4.13: Example of OMS3 efficiency implementing multiple methods.

sim(name:"Efcarson") {
// define the model
model (classname: "model .PrmsDdJh") {
// ... parameter here
}
efficiency (obs:"runoff[0]", sim:"basin_cfs",
methods :NS+NS2+ABSDIF+TRMSE)

0 N O U AW N =
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Additional table output for requested efficiencies is produced by executing a
modeling simulation (Listing 4.14).

Listing 4.14: Results of OMS3 efficiency.

Efficiencies nsl ns2 absdif trmse
runoff/basin_cfs 0.66512 0.82971 764.30044 2.44043
Simulation Output Strategy (outputstrateqy) -

oms3.dsl.OutputDescriptor. java

Modeling solutions results are usually stored in output files such as times
series predicted runoff, sediment yield, etc. The outputstrategy element of a
modeling simulation provides different strategies for storing modeling outputs. These
strategies are consistent methodology when dealing with subsequent simulations
only.

The types of supported output strategy schemes are:

e SIMPLE: The simulation creates a folder to hold the model output files. Each
new simulation run will overwrite existing files with the same name. The
simulation output folder is: <output dir>/<sim name>.

e NUMBERED: The simulation creates a new folder for each simu-
latton run. A new simulation will not overwrite the output from
the previous one.  The last simulation always names the output
folder with the highest number.  The simulation output folder is:
<output dir>/<sim name>/<simulation run number>.

e TIME: The simulation creates a new folder for each simulation
run. A new simulation will not overwrite the output from the pre-
vious one. The last simulation always names the output folder
with the simulation start time. The simulation output folder is:
<output dir>/<sim name>/<simulation start time>

Listing 4.15 shows a usage example of an output strategy for a simple modeling
solution.

Listing 4.15: Example of output strategy provided in a OMS3 modeling simulation.

sim(name:"SimpleModel") {
outputstrategy (dir:"$oms_prj/out", scheme:NUMBERED)
// define the model

model (classname:"tw.Thornthwaite") {
// add parameter

O N O OB W N =

o
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parameter {
climateFile "S$oms_prj/data/tw/climate.cst"

}

4.4.21.4 Modeling concept (model) - oms3.dsl.Model. java

This subsection introduces to OMS3 modeling concept. This is the core part
of each modeling solutions. As a result, DSL and actual mapping into framework
objects are presented. An OMS3 model element provides four different sub elements.
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Components, parameter, connection, and logging sub elements are independently
analyzed.

The model element is the core part of every simulation type. It describes the
model components to be used in the modeling solution, how to manage them, and
how to feed them with proper input data and components input/output connections.

An OMS-compliant component can be any Class that contains a method tagged
with @Execute annotation, which indicates the component execution entry point.

Listing 4.10 is extracted from Listing 4.3 (Travel Time analysis from Rigon et al.
(2016)) and highlights three of the most important model sub elements.

The model element can manage five sub elements total: component{},
parameter{}, connect{}, resource, and logging{}. Listing 4.16 il-
lustrates a usage case for components{}, parameter{}, and connect{}
only. Nevertheless, except for resource previously described, a brief introduction to
the logging sub element is performed as well.

Listing 4.16: Example of OMS3 model element extracted from Listing 4.3, credit Rigon et al.
(2016) and Bancheri (2017).

model (while:"reader_data_Qtt.doProcess") {
components {

"reader_data_Qtt" "org.[...].OmsTimeSeriesIteratorReader"
"integrator" "integrator.InjectionTimeIntegration"
"writer_Qint" "org.[...].OmsTimeSeriesIteratorWriter"

parameter

"reader_data_Qtt.file" "${home}/data/Qtt.csv"
"reader_data_Qtt.idfield" "ID"
"reader_data_Qtt.tStart" "S{startDate}"
"reader_data_Qtt.tEnd" "S{endDate}"
"reader_data_OQtt.tTimestep" 60
"reader_data_Qtt.fileNovalue" "-9999"
"integrator.ID" 209

"integrator.tStartDate" "S${startDate}"
"integrator.tEndDate" "${endDate}"

"writer_Qint.file" "${home}/output/Qtt_int.csv"
"writer_Qint.tStart" "${startDate}"
"writer_Qint.tTimestep" 60
"writer_Qint.fileNovalue" "-9999"

connect {

"reader_data_Qtt.outData" "integrator.inQoutvalues"
"integrator.outHMQ" "writer_Qint.inData"

Modeling components (components)

The modeling components sub element allows for listing all the OMS-compliant
components involved in the modeling solution and assigning them a component ID.
This sub element adheres to the formal structure in Listing 4.17.
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Listing 4.17: OMS3 component sub-element formal structure.

model (while:"reader_data_Qtt.doProcess") {
components {

// list of every component involved in the modeling solution
<cID> <package + classname>

}

The component <cID> name is a user defined unique component ID
which points to the actual component name preceded by the entire package
name <package + classname> The <cID> is used across the entire
model element to refer to that specific model component. Both <cID> and
<package + classname> are String objects and are space separated.
Listing 4.18 shows the component sub element for modeling solution in Listing 4.16.

Listing 4.18: Example of OMS3 component sub-element.

model (while:"reader_data_Qtt.doProcess") {
components {

"reader_data_Qtt" "org.[...].OmsTimeSeriesIteratorReader"
"integrator" "integrator.InjectionTimeIntegration"
"writer_Qint" "org.[...].OmsTimeSeriesIteratorWriter"

}

The Groovy runtime parses the components sub element during the building pro-
cess of the modeling solution, and stores <cID> and <package + classname>
into a list of <key:value> pairs in the Model. java object.

Parameters (parameter)

The model parameter sub element allows the specification of input values, which
are the entry points to initially feed a model simulation pipeline. Listing 4.19
illustrates the parameter sub element formal structure.

Listing 4.19: OMS3 parameter subelement formal structure.
parameter (<key:value>, <key:value>, ...) {

// list of input parameters
<cID>.<paramName> <value>

}

<cID> is the component ID of modeling component that contains <paramName>.
<paramName> matches the Class field tagged with @In OMS annotation.

This subsection can reference an external file that contains a list of model
parameters (e.g. Listing 4.21) and additionally specify extra parameters between
curly brackets (Listing 4.20).

Listing 4.20: Example of OMS3 parameter subelement.

model (while:"reader_data_Qtt.doProcess") {
// parameter
parameter (file:"params.csd") {
climateFile "c:/projects/ngmf.models/src/tw/climate.cst"
outputFile "output.csv"

runoffFactor 0.5
latitude 35.0
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smcap 200.0

Listing 4.21: Example of OMS3 parameter file.

@S, Parameter,
created by, Dr. Bancheri,
created at,Thu Jun 25 13:44:42 MDT 2017,

Qp, alfa_r,1.131
@pP, alfa_s,0.455
@P, meltingTemperature,2.0298
@P, combinedMeltingFactor,0.160
@p, freezingFactor, 0.0035
@P, radiationFactor,8.52502271122546E-5
@P,alfa_1,0.4106
@QP, kc_canopy_out,0.21
@P, s_RootZoneMax,144.98

The parameter £ile key takes a file name as paired value (params.csd)
(Listing 4.20 - line 3). File name can be referenced with absolute or relative file
path, that relates to the base directory of the OMS project.

The  parameter sub element can also contains a list of
<cID>.<paramName> <value> pairs (see Listing 4.20). Values are
space separated from their keys and have valid Java/Groovy data types such as
Strings, Numbers, Files, etc. Those data types have to match the data type of the
corresponding @In field in the model component. However, OMS3 SPI system
attempts to convert the values into the proper original component field data type, if
the value is specified as generic String. For example, the climateFile value (Listing
4.20 - line 4) is provided as String input parameter. Since climateFile original data
type is a File object, OMS3 SPI converts converts the String input and instantiate
a new File. Figure 73 illustrates the actual implementation of the parameter DSL
principle.

class B {
@artn
public double in_val;

in_val
3.145 2} b:B

Figure 73: Usage example of @In annotation, credit David et al. (2013).

If file property and parameter values are provided and specify the same parameter,
the sub element will overwrite the parameter values specified in the file property
(Listing 4.20).
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Listing 4.22 shows an additional use of the parameter element. Multiple parameter
elements can help splitting parameter sets in groups and allow for redefinition.

Listing 4.22: Usage example of parameter subelement in OMS3 modeling simulation.

model (classname: "my.model") {
// parameter defintion
parameter (file:"params.csv") // parameterfile only
parameter (file:"params-dates.csv") // parameterfile only
parameter (file:"params-files.csv") { // parameterfiletexplicit

testdir "/tmp/test"
}
parameter { // only explicit parameter
coeff 2.34
}
}

More generally, parameter value reading and setting order works as follow: a
parameter at a higher line number in the sim file overwrites the same one at a
lower line number. It is not relevant if it comes from a file or is explicitly specified.

The Groovy runtime parses the parameter sub element during the building
process, and stores <cID>.<paramName> and <value> into a Param Object.
Eventually, a list of Param Objects gets created as a field of the main Model
object.

Component connections (connect)

The connect sub element is a required section to define connections of several
modeling components into a modeling solution. It adheres to the formal structure in
Listing 4.23.

Listing 4.23: OMS3 connect subelement formal structure.

connect

// QOut —-> @In
<cID_a>.<outVar> <cID_b>.<inVar>
<cID_a>.<outVar> <cID_c>.<inVar>

}

<outVar> and <inVar> match the original model component Class fields
tagged with @Out and @In OMS annotations respectively. They are specified
as space separated <key> <value> pair and are fields of different component
Classes (<cID_a> and <cID_b> accordingly). Figure 74 illustrates the actual
implementation of the component connection DSL principle.

A Class field can be contemporary tagged with both @In and @Out OMS
annotations. Input/output fields can be any type of Java Object. Proper connection
happens when Output to Input field Objects match. If they don’t match, OMS3 SPI
system attempts to convert the Output Object into the required Input Object. If the
conversion fails, an error message is thrown.

An actual example is shown in Listing 4.24 and extracted from Listing 4.3
(parameter section omitted for sake of brevity).

Listing 4.24: Example of OMS3 connect subelement derived from Listing 4.3.

model (while:"reader_data_Qtt.doProcess") {
components {

"reader_data_OQtt" "org.[...].OmsTimeSeriesIteratorReader"
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class A { class B {
@0ut @lr
oublic double out_val; public double in_val;
1 i
out_val in_val

a:h .‘ 4@ bB

Figure 74: Usage example of @Out to @In component fields connection, credit David et al.

(2013).
"integrator" "integrator.InjectionTimeIntegration"
"writer_Qint" "org.[...].OmsTimeSeriesIteratorWriter"

connect {

"reader_data_Ott.outData" "integrator.inQoutvalues"
"integrator.outHMQ" "writer_Qint.inData"

}

Here, outData of the component reader_data_Qtt feeds the input variable
inQoutvalues required by integrator component. outHMQ of integrator then
feeds inData variable and solves the dependency with writer_Qint component.

The Groovy runtime parses the connect sub element during the building pro-
cess, and stores <cID_a>.<outVal> and <cID_b>.<inVal> into a list
of <key:value> pairs Objects. This is the out2in field of the main
Model. java object for component <cID_a>.

Component connections happen at runtime: when <cID_a> simulation concludes
the OMS controller transfers Object reference pointing to <outval> memory
space to <inVal> of component <cID_b>.

Logging (logging)

The logging sub-element is an optional part of a model element. It controls the
logging levels for single components or for the whole model. In order to use the
logging feature, components have to obtain and use OMS3 logger accordingly.

A logger is an object that allows output handling based on logging levels. Such
levels usually indicate the severeness of a message. The Java logging infrastructure
supports 7 logging levels by default, ranging from FINEST (the lowest priority or
importance) to SEVERE (the highest importance). In addition, OMS3 provides level
OFF to completely turn off every logging message. If a logging level is provided,
every logging message of identical or higher priority are sent and printed to console
standard output.

Listing 4.25 illustrates logging usage example. Here, the logging element is part
of the model element. It lists the component class names and associates them with
dedicated log levels for a simulation run.

Listing 4.25: Example of OMS3 logging subelement with logging level per component.

model (classname:"my.model") {
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// logging definition

logging {
"StreamFlow" "INFO"
"GwEFlow" "CONFIG"

}

The component St reamFlow in my .model is assigned the logging level INFO,
the GwFlow component is assigned a finer grained CONFIG logging level. The
default logging level for every other mode component is set to WARNING by default.

Listing 4.26: Example of OMS3 logging subelement with one dedicated component logging
in addition to generic logging level.
model (classname: "my.model") {
// logging definition
logging (all:"INFO") {
"StreamFlow" "FINEST"
}
}

Listing 4.26 shows that the default logging level for each model component is
set to INFO, while StreamFlow is assigned the most verbose logging level.

Listing 4.27: Example of OMS3 logging subelement with generic logging level.

model (classname: "my.model") {
// logging definition
logging (all:"OFF")

}

The logging element in Listing 4.27 turns off the logging system for the whole
model. Completely disabling the logging system means that even severe problems
within modeling components are not reported.

The modeling component has to be properly setup to accommodate OMS3 logging
functionalities (Listing 4.28). This allows for leveraging the previously described
logging features within a modeling solution. The modeling component has to import

Java logging utility and implement static reference of a logger object in Class
fleld declaration (Listing 4.28 - line 6).

Listing 4.28: Implementation of Logging class in OMS-compliant component.

import java.util.logging.x; // 1.
public class Ddsolrad ({

static final Logger log =
Logger.getLogger ("oms3.model." +

this.class.getSimpleName()); //2.
@Execute
public void exec() {
if (log.isLoggable (Level.INFO)) { // 3.
log.info("Solrad " + basin_potsw); // 4.

}

}

Summarizing, to implement the Logging feature, four main steps are followed
(Listing 4.28):
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1. Import the logging classes from the java.util package.

2. Obtain a logger instance using the Logger.getLogger () call. De-
clare this reference static to share it across all instances of this class
and final to make it a constant. The argument must start with the String
oms3.model. and must end with the component’s simple class name. Use
getSimpleName () as shown in Listing 4.28 to obtain this name from the
class itself, rather than hard typing it to the logger as a String.

3. The logger can be used at any location within the component methods. Listing
4.28 shows a guarded logging as recommended practice. This pattern checks
if a logging statement results in a logging output before it gets executed. This
reduces memory fragmentation and reduces garbage collection by avoiding
creation of unnecessary strings if logging levels are disabled. Statement in
Listing 4.28 checks if logging system enables INFO and higher levels.

4. The statement issues the logging message at the INFO level. Use the methods
severe (), warning (), info (), config (), fine (), finer (), and
finest () accordingly.

The use of Logging system in modeling components provides for high flexibility
of diagnostics and messaging, and is efficiently configurable from within a modeling
simulation.

4.4.21.5 Simulation run

This subsection introduces to framework workflow and analyzes a sample exercise
of a model simulation run.

As previously stated, Groovy runtime parses the entire *.sim file and builds
every object required by the modeling solution. The final simulation Object is then
ready for starting the overall computation.

Through a reflective call, OMS3 SimBuilder invokes the run () method
implemented in the AbstractSimulation. java class (Figure 72) and conse-
quently overridden in every Class that extends it. This dissertation describes the
run method of a Sim. java Object.

Listing 4.29: OMS3 invoke method in modeling simulation.

/ * %
* Invokes a simulation method. (run | doc | analysis | ...)
*
* @author Olaf David
* @param target the target simulation object
x @param name the name of the method (e.g. run())

* @throws Exception generic exception
*/
private static Object invoke (Object target,
String name) throws Exception ({
return target.getClass () .getMethod (name) .invoke (target) ;
}

Initially, the super. run () method is called to initialize the simulation run by
setting up system properties if provided, and checking if the Model Object has
been created.
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Listing 4.30: OMS3 run method.
/ x %

*
* @author Olaf David
*/
protected void initRun() {
setSystemProperties () ;
if (getModelElement () == null) {
throw new ComponentException("missing ’‘model’ element.");

/ * %
*
* @author Olaf David
x/
public Object run() throws Exception {
initRun () ;
return null;

}

Then, the model component is retrieved from the Model Object and the methods
tagged with @Initialize OMS3 annotation are invoked through a reflective
call.

Listing 4.31: OMS3 initialize reflective call.

// Qauthor Olaf David
ComponentAccess.callAnnotated (comp, Initialize.class, true);

This initializes the model components and executes algorithms implemented in
component methods tagged with @Initialize.

The modeling simulation pipeline is fed with input parameters before invoking
the @Execution method.

Listing 4.32: OMS3 input parameter read in and set up.

// Qauthor Olaf David

// setting the input data;

UnifiedParams parameter = model.getParameter () ;
boolean success = parameter.setInputData (comp, log);

The most important step in a simulation run is the execution of the core part of
the entire modeling solution. This is achieved by invoking the methods tagged with
@Execute annotation.

Listing 4.33: OMS3 execute reflective call.
// Qauthor Olaf David

ComponentAccess.callAnnotated (comp, Execute.class, false);

When the core computation is over, methods tagged with the @Finalize
annotation are invoked to conclude the modeling solution run.

Listing 4.34: OMS3 finalize reflective call.
// @author Olaf David

ComponentAccess.callAnnotated (comp, Finalize.class, true);

The ComponentAccess class manages reflective accesses to components
internals. As a result, it allows for final component integration into a modeling
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solution. More specifically speaking, the callAnnotated method extracts the
method of interest with a reflective call and invokes it.

Listing 4.35: OMS3 generic implementation of callAnnotated method.

1 / **

2 * Call an method by Annotation.

3 *

4 * @author Olaf David

5 * @param o the object to call.

6 * @param ann the annotation

7 x (@param lazy if true, the a missing annotation is OK. if false the
8 * annotation has to be present or a Runtime exception is thrown.

9 */

10 public static void callAnnotated(Object o,

M Class<? extends Annotation> ann, boolean lazy) {
12 try {

13 getMethodOfInterest (o, ann).invoke (0);

14 } catch (IllegalAccessException ex) {

15 throw new RuntimeException (ex);

16 } catch (InvocationTargetException ex) {

17 throw new RuntimeException (ex.getCause());

18 } catch (IllegalArgumentException ex) {

19 if (!lazy) {

20 throw new RuntimeException (ex.getMessage());
21 }

2 }

23 }

The overall execution of the entire modeling solution is managed by the
Controller. java class. The next subsection introduces to OMS3 While con-
ditional implemented in simulation in Listing 4.3 line 8 and the internalExec ()
method of the Controller. java class. internalExec () method is of spe-
cific importance since it fires up, executes, and shuts down Java concurrent threads
implicitly required by the modeling solution.

4.421.6 Controller Class and Implicit parallelism

This subsection describes the core part of OMS3 model simulation run and
introduces to OMS3 implicit parallelism.

The While conditional Class works as an OMS compliant component since its
execute () method is tagged with the @Execute annotation.

Listing 4.36: OMS3 while conditional execution.
1 /%%
2 x While Component.
3 *
4 * @author Olaf David
5 *
6 */
7 public class While extends Conditional {
8
9 @Override
10 @Execute
i public void execute () throws ComponentException {
12 check () ;
13 while (cond.alive) {
14 internalExec () ;

RGN
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This OMS component is bundled into the modeling solution when the Groovy
runtime parses the model element of the *.sim file.

This component repeatedly calls the internalExec () method while the
condition is true (or alive) cond.alive.

The internalExec () method is the most relevant method of the
Controller. java class. It retrieves the collection of modeling components
comps and initializes the counter of the number of threads to comps.size ().

Listing 4.37: OMS3 implicit parallelization.
/ * %

*

* Qauthor Olaf David

*

*/
protected void internalExec () throws ComponentException ({
Collection<ComponentAccess> comps = oMap.values|();
[...]
latch.load(comps.size());
final ExecutorService executor = getExecutorService();
if (rc == null) ({
rc = new Runnable[comps.size()];
int 1 = 0;
for (final ComponentAccess co : comps) {
rc[i++] = new Runnable () {
@Override
public void run() {
try {
co.exec();

latch.countDown () ;
} catch (ComponentException ce) {
synchronized (lock) {
if (E == null) {
E = ce;

}
latch.open();
Threads.shutdownAndAwaitTermination (executor) ;

if (E == null) {
for (Runnable r : rc) {
executor.submit (r) ;

try {
latch.await () ;
} catch (InterruptedException IE) ({
// nothing to do here.
}
[oool
}

Then, a vector of Runnable of length comps.size () is allocated and initial-
ized, so each component has its own Runnable Object. During the initialization
phase, the run () method of the Runnable interface is implemented to be executed
by its dedicated thread. The run () method simply calls the component execution
and decreases the latch counter when the simulation is over. The implementation
of the Latch class is available at Listing 4.38.
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Listing 4.38: OMS3 implicit parallelization.

1 /xx

2 *

3 * @author Olaf David

4 *

5 x/

6 static private class Latch {
7

8 private int count;

9 private final Lock lock = new ReentrantLock();
10 private Condition condition = lock.newCondition();
"

12 void load (int count) {

13 this.count = count;

14 }

15

16 void open() {

17 lock.lock () ;

18 try {

19 count = 0;

20 condition.signal () ;
21 } finally {

22 lock.unlock () ;

23 }

24 }

25

26 void countDown () {

27 lock.lock () ;

28 try {

29 if (--count <= 0) {
30 condition.signal () ;
31 }

32 } finally {

33 lock.unlock () ;

34 }

35 }

36

37 void await () throws InterruptedException {
38 lock.lock () ;

39 try {

40 while (count > 0) {
41 condition.await () ;
42 }

43 } finally {

44 lock.unlock () ;

45 }

46 }

47}

After initialization, the Runnable tasks are submitted by the
ExecutorService for execution. The ExecutorService manages
the scheduling of component execution. Threads communicates through component
interconnection: a simulation component starts when required inputs (@In
annotated fields) are satisfied; component outputs (@Out annotated fields)
become following connected component inputs, which executes only when every
input is satisfied. This implementation is based off of data flow multi-process
synchronization, and is a common application of the producer-consumer design
pattern.
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4.4.2.2 Graph Modeling Structure: NET3

NET3 is graph modeling structure implemented as additional simulation type to
the already large variety provided by OMS3.

Figure 75 illustrates NET3 conceptual design. Here, a modeling framework
is represented by a red rounded rectangle. In the left side of Figure 75, OMS3
orchestrates the workflow of a single modeling solution (credit Banchert (2017)).
In the right side, OMS3+NET3 enable each node of the graph data structure to
manage a modeling solution, and orchestrate modeling solutions interconnected

workflow.
[/ )

\ OMS3 + NET3 j

Figure 75: NET3 conceptual design. From a single OMS3 modeling solution to intercon-
nected and intercommunicating modeling solutions.

k OMS3 /

Intake structure for
/ water splitting

—Stream

—Groundwater

Figure 76: NET3 conceptual design. Every node of the graph modeling structure runs a
different modeling solution to better fit physical processes description. Inter-
communication between modeling solutions happens with unlimited number of
variables.

This section is organized as follow. Paragraph DiGraph APl -
oms3.ds.graph.DiGraph. java introduces to NET3 graph data structure
implementation and API. Paragraph Searching algorithms describes architectural
design principles that drove the implementation of traversing algorithms and re-
quired data structures. Finally, paragraph Graph simulation delineates the actual
integration of NET3 graph data structure and search algorithms into OMS3 work-
flow, by describing NET3 DSL, and its management of parallel modeling solution
runs and their interconnection.
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4.4.2.21 DiGraph API - oms3.ds.graph.DiGraph. java

The DiGraph Java class implements the graph modeling structure and exposes
required APl only.

UML in Figure 77 illustrates public methods exposed by DiGraph API, private
methods, and the structure of private class Family. No public fields are exposes
by DiGraph API to avoid uncontrolled changes in their state.

DiGraph
Package::oms3.ds.graph
{@author Francesco Serafin}
- vertices: Map<Integer, Object>
- edges: Map<Integer, Family>
# DiGraph API
+ get(Integer index): Object
+ addVertex(Integer key, Object value): void
+ addConnection(Integer parent, Integer child): void Family
+ _outDegree(Integer vertex): Integer {@author Francesco Serafin}
+ inDegree(Integer vertex): Integer parents: Set<Integer>

+ reverse(): DiGraph _chi .
+ getChildren(Integer vertex): Set<Integer> . gg(l)lgrsg(.)lizrlntege»

+ getParents(Integer vertex): Set<Integer> e n -

+ getVertecesIndeces(): Set<Integer> O + addChild(Integer child): void
+ sebTreePostOrder(int vertex): List<Integer> + addParent(Integer parent): void
+ hasLeafs(): boolean - childrenNumber(): Integer

- tsN : Int
# Observer pattern parentsNumber(): Integer

+ parentNotice(Integer vertex): void

+ readyForSim(Integer vertex): boolean

+ initialize(): void

+ initialize(Set<Integer> path): void

- ordering(Family family, List<Integer> vertices): void
- addVertices(Map<Integer, Object> vertices): void

- addParent(Integer parent, Integer child): void

- addChild(Integer parent, Integer child): void

- precondition(): void

Figure 77: UML of NET3 DiGraph class.

The modeling structure is built upon two private fields declared as Java Map classes
(Listing 4.39).

Listing 4.39: NET3 declaration of vertices and edges data structures.

Map<Integer, Object> vertices;
Map<Integer, Family> edges;

Vertices and edges are instantiated as a ConcurrentHashMap from the
DiGraph constructor (Listing 4.40).

Listing 4.40: NET3 instantiation of vertices and edges.

public DiGraph () {
vertices = new ConcurrentHashMap<> () ;
edges = new ConcurrentHashMap<> () ;

}

Here, ConcurrentHashMap has been identified as most suitable data structure
since it is a concurrent collection, and the DiGraph is designed to work under
heavily threaded environment. The reason that motivated this choice is following
briefly summarized.

A concurrent collection differs from synchronized collections such as Vector
and Hashtable (which are available since first version of Java Development
Kit (JDK)), or Collections.synchronizedXxx factory methods (which are
available since JDK 1.2) (Goetz and Peierls (2006)). For the sake of example,
Collections.synchronizedMap in Listing 441 is the factory method that
allocates a synchronized wrapper class of the original HashMap.

Listing 4.41: Example of Java synchronized wrapper class.
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1
2 Map<Inter, Object> tmpMap =
3 Collections.synchronizedMap (new HashMap<Integer, Object>();

The difference between synchronized and concurrent collections sits in the type
of synchronization policy implemented (Goetz and Peierls (2006)):

A. synchronized collections have their state encapsulated and each and every
public method is synchronized. As a result, access to the collection is
serialized, namely allowed to a single thread at once;

B. concurrent collections allow multiple threads to access the collection state
simultaneously. The synchronization policy is based on a completely different
locking mechanism: for instance, locking striping is implemented to make
ConcurrentHashMap thread safe. This mechanism is based off of a fine-
grain partition locking. User can define a set of locks (by default 16), each of
which controls one segment of the hash buckets. As a consequence, concurrent
reading threads are always quaranteed map access, also while writing threads
are performing stored data modifications. Simultaneous writing threads are
actually constrained to the number of quard locks defined.

Synchronization policy B definitely allows for a far higher throughput in heavily
threaded environments compared to synchronization policy A. It dramatically im-
proves scalability especially in systems with many multi-core processors (Coetz
and Peierls (2006)).

Keys of the vertices map are the indices of each node of the modeling structure.
The corresponding Object is used for the implicit parallelization and deeply described
in subparagraph NET3 implicit parallelization.

The edges map stores the indices of each node of the modeling structure and
corresponding Family connections. The Family private class simply stores rela-
tlonships to and from the subject node. Figure 78 illustrates the concept of NET3
Family.

children

Q parents

Figure 78: NET3 family concept.

Here, parents are indices of the nodes connected with outcoming edges from the
subject node, children are indices of the nodes connected with incoming connections
to the subject node (Figure 4.42).
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Listing 4.42: NET3 Family private class.

private class Family {

private final Set<Integer> parents;
private final Set<Integer> children;
private boolean root = false;

public Family () {
parents = new HashSet<>();
children = new HashSet<>();

public void addChild(Integer child) {
children.add(child);
}

public void addParent (Integer parent) {
if (parent == 0) {
root = true;
return;

}

parents.add (parent) ;

private Integer childrenNumber () {
return children.size();

}

private Integer parentsNumber () {
return parents.size();

}

The DiGraph API can be split in two groups of public methods: standard
directed graph APl methods and observer pattern related methods (Listing 4.42).
The latter are deeply described in paragraph Graph simulation since the observer
pattern is fundamental architectural design aspect of the overall graph implicit
parallel simulation run.

Standard directed graph API methods allow for building the DiGraph and
exposing DiGraph characteristics for searching algorithms.

The DiGraph is built by Groowy runtime by parsing a
topology file. The latter is a text file of space separated
<from_index_node> <to_index_node> tuple. The entire graph is
built by using two methods only: addConnection (parent, child), and
addVertex (child, new HashMap<>()) (Listing 4.43).

Listing 4.43: NET3 Family private class.

while ((currentlLine = topology.readLine()) != null) {
String[] family = currentLine.split ( ‘\\s+’’);
[...]

int parent = Integer.parselnt (family[1l]);
int child = Integer.parselnt (family[0]);

digraph.addConnection (parent, child);
digraph.addVertex (child, new HashMap<>());
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The method addvertex simply adds the key of the node and an empty
HashMap for later use to the vertices map (Listing 4.44).

Listing 4.44: NET3 vertex initialization.

public void addVertex (Integer key, Object value) {
if (key != 0) {
vertices.putIfAbsent (key, value);

}

The method addConnection builds the families of both parent and child: it
adds parent to the child's family, and child to the parent's family (Listing 4.45).

Listing 4.45: NET3 family initialization.
public void addConnection (Integer parent, Integer child) {

addParent (parent, child);
addChild (parent, child);

private void addParent (Integer parent, Integer child) {
Family family =
(edges.containsKey (child)) ? edges.get (child) : new Family () ;
family.addParent (parent) ;
edges.put (child, family);

private void addChild(Integer parent, Integer child) {
if (parent == 0) {
return;
}
Family family =
(edges.containsKey (parent)) ? edges.get (parent) : new Family();
family.addChild (child);
edges.put (parent, family);
}

Other methods provided by the API such as outDegree and inDegree
return the number of connections outcoming from and incoming to the source node
respectively. getChildren and getParents return the set of nodes connected
to the source node.

subTreePostOrder and reverse have been implemented for later use and
are part of the architectural design aspects for implementing automatic parallel
multi-site calibration (Listing 4.46 and Listing 4.47).

Listing 4.46: NET3 post ordering.

public List<Integer> subTreePostOrder (int vertex) {
List<Integer> vertices = new ArrayList<>();
Family fam = edges.get (vertex);
ordering (fam, vertices);
vertices.add (vertex);
return vertices;

private void ordering(Family family, List<Integer> vertices) ({
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for (Integer child : family.children) {

Family childFamily = edges.get (child);
ordering (childFamily, vertices);
vertices.add(child) ;

}

Listing 4.47: NET3 DiGraph reversing.

public DiGraph reverse () {

}

precondition () ;
DiGraph reversedDiGraph = new DiGraph();
edges.keySet () . forEach (vertex —> {

Set<Integer> formerChildren = edges.get (vertex) .children;
formerChildren. forEach ( (newParent) -> {
reversedDiGraph.addConnection (newParent, vertex);
1)
b

reversedDiGraph.addVerteces (vertices) ;
return reversedDiGraph;

reverse method simply reverses the connection orders thus transforming parents
in children and vice versa. It is an exact copy of the original graph with reversed
connections (Listing 4.47).

4.4.2.2.2 Searching algorithms

Searching algorithms are the core part of a graph data structure. As a result,
the oms3.ds.graph.traversers package has been accurately designed in
order to allow for future development and capabilities expansion.

The architectural design principles of the searching algorithms implementation are:

1. decoupling data representation from processing components: this allows

for decoupling actual algorithm implementations from the representation of the
data structure (Sedgewick and Wayne (2011)). Consequently, each algorithm
is implemented in its own class, which allows for easier maintenance and
development. DiGraph. java is the data structure representation, deeply
analyzed in the previous section, while the collection of classes in pack-
age oms3.ds.graph.traversers encapsulate search and traversing
algorithms;

. algorithm encapsulation: it results from (1) analysis of a family of algorithms,

(2) identification of common implementation parts between applications, (3)
separation of parts that vary in each algorithm from parts that remain identical
across applications, (4) encapsulation of varying behaviours in dedicated
classes (Gamma (1995); Freeman et al. (2004)). The design principle is
summarized in “Identify the aspects of your application that vary and separate
them from what stays the same” (Freeman et al. (2004)).

. polymorphism & dynamic binding: polymorphic objects match same inter-

face or abstract class but behave differently and are implemented on a IS-A
relationship (Gamma (1995)). “By programming to an interface and not an
implementation”, the inherited interface (or extended abstract class) allows
programmer for declaring or implementing against common behaviour of poly-
morphic objects at compile time and instantiating or committing to behaviour
of the actual object at runtime (Gamma (1995); Freeman et al. (2004)).
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4. composition: complex functionalities are obtained by composing objects
with HAS-A relationship (Gamma (1995); Freeman et al. (2004)). “Favor
composition over inheritance” doesn't break software encapsulation (Gamma
(1995)).

5. dependency inversion principle: dependencies between abstract high-level
classes and concrete low-level classes have to be minimized (Freeman et al.
(2004)). “Depend upon abstractions. Do not depend upon concrete classes”
(Freeman et al. (2004)).

Two algorithms are implemented: breadth first and depth first searches. However,
the flexible design allows for easily expand the searching APl with additional
custom algorithms.

BFS and DFS have been introduced in paragraph DiGraph APl and traversing
algorithms already. Additionally, this APl implements downstream and upstream
search directions for both algorithms.

Data representations of BFS and DFS are decoupled from actual algorithm
implementations. Subparagraph Data structures: Strateqy Pattern -
oms3.ds.graph.traversers.AlgorithmDS. java shows data represen-
tation of BFS and DFS, which take advantage of the benefit of First-In-First-
Out (FIFO) andLast-In-First-Out (LIFO) data structures respectively to expose one
single common API. Subparagraph Abstract implementation of searching algorithms:
Factory Method Pattern -
oms3.ds.graph.traversers.GraphSearchAlgo. java describes the
lightweight and flexible abstract implementation of searching algorithms as a
result of proper data structure choice.

Data structures: Strategy Pattern -
oms3.ds.graph.traversers.AlgorithmDS. java

In order to avoid code duplication, improve code reuse, facilitate encapsulation
and separation of concerns, the main difference between BFS and DFS has been
identified in their data representation. As a result, proper design of Strateqy Pattern
allows for encapsulating the different data representation in dedicated Java class
but exposing one common identical API.

The UML in Figure 79 illustrates the Strateqy Pattern implemented.

AlgorithmDS APl exposes three methods: add(Integer vertex),
delete (), isEmpty (). Independently from the underneath data structure,
the client interacts with:

1. add (Integer vertex): a new node is added to the data structure;
2. delete (): a node is retrieved and removed from the data structure;

3. isEmpty () : always returns the state of the data structure.

The difference between instantiating a BFPalgoDS and a DFPalgoDS sits in
the type of data structure implemented: the first class implements a FIFO data
structure, the second class implements a LIFO data structure.

The BFPalgoDS data structure is a Queue, which supports the FIFO policy:
the @Override implementation of the add (Integer vertex) method adds
the vertex at the end of the queue data structure; the @Override implementation
of the delete () methods removes and returns the least recently inserted vertex.
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AlgorithmDS
Package::oms3.ds.graph.traversers
{@author Francesco Serafin}

# add(Integer vertex): void
# delete(): Integer
# isEmpty(): Boolean

BFPalgoDS
Package::oms3.ds.graph.traversers
{@author Francesco Serafin}

- queue: Queue<Integer>

# add(Integer vertex): void
# delete(): Integer
# isEmpty(): Boolean

DFPalgoDS
Package::oms.ds.graph.traversers
{@author Francesco Serafin}

- stack: Stack<Integer>

# add(Integer vertex): void
# delete(): Integer
# isEmpty(): Boolean

Figure 79: UML of search algorithm data structures.

Listing 4.48: Breadth first path data structure implementation.

/ x*

*
* @author Francesco Serafin
*/

Queue<Integer> queue;

protected BFPalgoDS () {

queue = new PriorityQueue<>();

}

@QOverride

protected void add(Integer vertex)

queue.add (vertex) ;

}

@QOverride
protected Integer delete() {
return queue.remove () ;

}

@Override
protected Boolean isEmpty ()
return queue.isEmpty () ;

}

The DFPalgoDS data structure is a Stack, which supports the LIFO policy: the
@Override implementation of the add (Integer vertex) method pushes the
vertex at the begging of the stack data structure; the @QOverride implementation
of the delete () methods removes and returns (pops) the most recently inserted
vertex.

class BFPalgoDS extends AlgorithmDS {

{

{

Listing 4.49: Depth first path data structure implementation.
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/ * %
*
* @author Francesco Serafin
*/
class DFPalgoDS extends AlgorithmDS {

Stack<Integer> stack;

protected DFPalgoDS () {
stack = new Stack<>();

}

@Override
protected void add(Integer vertex) {
stack.push (vertex);

}

QOverride
protected Integer delete() {
return stack.pop();

}

QOverride
protected Boolean isEmpty () {
return stack.isEmpty();

}

The DiGraph is a directed graph. Thus, a client application might want to
search for paths starting from the source node in two directions: upstream and
downstream (Figure 80).

Upstream

Downstream

Figure 80: Concept of search upstream or downstream.

The SearchDirection abstract class implements Strategy Pattern to encap-
sulate the common behaviour of searching towards upstream and downstream direc-
tions. It enhances flexibility by composing its data structure with AlgorithmDS
abstract class (Figure 81).

SearchDirection implements against AlgorithmDS APIl: isDone () re-
turns if the AlgorithmDS is empty, delete () deletes a vertex from the data
structure, while add (Integer vertex) adds a vertex to the data structure.

SearchDirection has the additional field path, which is implemented as an
ArrayDeque of Integer Objects. This field stores the path from the source
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SearchDirection
Package::oms3.ds.graph.traversers
{@author Francesco Serafin} “Algorithms

# algoDS: AlgorithmDS ds.graph.traver:

# path: ArrayDeque<integer> {@author Francesco Serafin}

# getNeighbourhood(integer vertex, DiGraph graph): Set<integer> # add(Integer vertex): void

# addToPath(integer vertex): void # delete(): Integer

# isDone(): Boolean # isEmpty(): Boolean

# delete(): Integer

# add(Integer vertex): void

# allocatePath(): void

# getPath(): Iterable<Integer>

BFPalgoDS DFPalgoDs
P ds.graph.traversers P <oms.ds.graph.traverser:
{@author Francesco Serafin} {@author Francesco Serafin}
- queue: Queue<integer> ~ stack: Stack<Integer>
Downstream Upstream # add(Integer vertex): void # add(integer vertex): void
Package::oms3.ds.graph.traversers Package::oms3.ds.graph.traversers # delete(): Integer # delete(): Integer
{@author Francesco Serafin} {@author Francesco Serafin} # iSEmpty(): Boolean # iSEmpty(): Boolean

# getNeighbourhood(Integer vertex, DiGraph graph): Set<Integer> # getNeighbourhood(Integer vertex, DiGraph graph):
# addToPath(Integer vertex): void # addToPath(Integer vertex): void

Figure 81: UML of OMS3 available modeling simulation types.

node to the end node, which results from the searching algorithm analysis. The
getPath () method returns the path when the searching algorithm is done.

Listing 4.50: Depth first path data structure implementation.

1 abstract class SearchDirection {

2

3 protected AlgorithmDS algoDS;

4 protected ArrayDeque<Integer> path = null;
5

6 abstract protected Set<Integer> getNeighbourhood (Integer vertex,
7 DiGraph graph) ;
8

9 abstract protected void addToPath (Integer vertex);
10

" protected Boolean isDone () {

12 return algoDS.isEmpty () ;

13 }

14

15 protected Integer delete() {

16 return algoDS.delete();

17 }

18

19 protected void add(Integer vertex) {

20 algoDS.add (vertex) ;

21 }

22

23 protected void allocatePath() {

24 if (path != null)

25 throw new IllegalStateException();

26

27 path = new ArrayDeque<>();

28 }

29

30 protected Iterable<Integer> getPath() {

31 if (path == null)

32 throw new IllegalStateException();

33

34 return path;

35 }

36

37}

The two abstract methods getNeighbourhood and addToPath defines the
actual behaviour of SearchDirection extended classes: Upstream looks for
neighbours in vertex's children while Downstream in vertex's parents; Ustream
adds the vertex to the end of the dequeue while Downstream to the front of the
dequeue.
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Listing 4.51: Upstream searching algorithm implementation.

class Upstream extends SearchDirection {

protected Upstream(AlgorithmDS algoDS) {
this.algoDS = algoDS;
}

@Override
protected Set<Integer> getNeighbourhood(Integer vertex,
DiGraph graph) {
return graph.getChildren (vertex) ;

@Override

protected void addToPath (Integer vertex) {
path.add (vertex) ;

}

Listing 4.52: Downstrean searching algorithm implementation.

class Downstream extends SearchDirection {

protected Downstream(AlgorithmDS algoDS) {
this.algoDS = algoDS;
}

@Override
protected Set<Integer> getNeighbourhood(Integer vertex,
DiGraph graph) {
return graph.getParents (vertex) ;

@Override

protected void addToPath (Integer vertex) {
path.push (vertex) ;

}

Abstract implementation of searching algorithms: Factory Method Pattern -
oms3.ds.graph.traversers.GraphSearchAlgo. java

The implemented Strategy Pattern for both AlgorithmDS and
SearchDirection in addition to composition of SearchDirection
with AlgorithmDS provide for four different searching options: depth first
upstream and downstream, and breadth first upstream and downstream.

The Java classes described so far still miss the actual searching algorithm
implementation. In order to keep on designing a flexible and expandable digraph
traversing framework, the processing algorithm has to be encapsulated into a single
abstract class, and decoupled from concrete instantiations of:

A. DiGraph representation;
B. Searching algorithm type;
c. Searching direction.

This architectural design allows each and every object relationship within the

framework to be described and managed through abstract classes (Gamma (1995)).

Eventually, the choice of the algorithm to instantiate is deferred to subclasses
outside the framework (Gamma (1995)).
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This class creational pattern is the behaviour of a Factory Method Pattern: an
interface rules the object creation, but actual class instantiation is deferred to
subclasses (Gamma (1995)). Figure 82 illustrates the generic UML of a Factory
Method Pattern.

rod Creator
VAN

FactoryMethod() O 77777777777 product = FactoryMethod()
AnOperation()

,,,,,,,,,,, ConcreteCreator
[ conereteprouct [< {@author Gamma 1995)

Q return new ConcreteProduc?

FactoryMethod()

Figure 82: Generic factory method design pattern, credit Gamma (1995).

The Creator interface delegates the responsibility of object instantiation to the
actual ConcreteCreator class, which manufactures the ConcreteProduct
in the FactoryMethod () implementation. The Creator interface becomes an
abstract class when it contains implementation of operational methods as well.
Figure 83 shows the UML of the pattern actually implemented.

Here, abstract class GraphSearchAlgo. java is the Creator interface. It
delegates the responsibility of object instantiations to DepthFirstPaths. java
and BreadthFirstPaths. java. Listing 453 shows the source code of
GraphSearchAlgo.

Listing 4.53: NET3 graph search algorithm implementation.

1 public abstract class GraphSearchAlgo {

2

3 private Map<Integer, Integer> edgeTo;

4 private Map<Integer, Boolean> marked;

5 private SearchDirection searchDir;

6 private Integer source;

7

8 public void compute (String direction,

9 Integer source, DiGraph graph) {
10 initialize (graph, source);

1M searchDir = buildAlgo (direction);

12

13 marked.put (source, Boolean.TRUE) ;

14 searchDir.add (source) ;

15 while (!searchDir.isDone()) {

16 Integer vertex = searchDir.delete();

17 searchDir.getNeighbourhood (vertex, graph)
18 .forEach (neighbour -> {

19 if (!marked.get (neighbour)) {

20 edgeTo.put (neighbour, vertex);

21 marked.put (neighbour, Boolean.TRUE) ;
22 searchDir.add (neighbour) ;

23 }

24 1)

25 }

26 }

27

28 private void initialize (DiGraph graph, Integer source) {
29 this.source = source;

30 this.edgeTo = new ConcurrentHashMap<> () ;
31 this.marked = new ConcurrentHashMap<> () ;
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graph.getVertecesIndeces () . forEach (index -> {
this.marked.put (index, Boolean.FALSE);
1)

public Boolean hasPathTo (Integer vertex) {
return marked.get (vertex) ;

public Iterator<Integer> pathTo(Integer vertex) {
if (!hasPathTo (vertex)) {
return null;

searchDir.allocatePath();

for (int i = vertex; 1 != source; i = edgeTo.get(i)) {
searchDir.addToPath (i) ;

}

searchDir.addToPath (source) ;
return searchDir.getPath () .iterator();

protected SearchDirection buildAlgo (AlgorithmDS algoDS,
String direction) {
if (direction.equals ("upstream")) {
return new Upstream(algoDS) ;
} else if (direction.equals ("downstream")) {
return new Downstream(algoDS) ;
} else {
// Add msg
throw new UnsupportedOperationException();

abstract protected SearchDirection buildAlgo (String direction);

From a Factory Method Pattern standpoint, the implementation
of abstract buildAlgo method in DepthFirstPaths.java and
BreadthFirstPaths.java is a simple call to super.buildAlgo
with a new instantiation of the appropriate data structure and the search direction
(see Listing 454 a) and b)).

Listing 4.54: NET3 encapsulation of depth first and breadth first.

public class DepthFirstPaths extends GraphSearchAlgo {

@QOverride
protected SearchDirection buildAlgo (String direction) {
return super.buildAlgo (new DFPalgoDS (), direction);

public class BreadthFirstPaths extends GraphSearchAlgo {

@Override
protected SearchDirection buildAlgo (String direction) {
return super.buildAlgo (new BFPalgoDS (), direction);

GraphSearchAlgo APl doesn't expose any Factory Method. It exposes the
method compute, which (1) initializes the required data structures, (2) instantiates
the SearchDirection, (3) computes the actual searching from the source node;
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and the method pathTo, which returns the path to a target node. Additionally, it
exposes a hasPathTo method, which allows for checking if a path exists between
source and target nodes.

4.4.2.2.3 Graph simulation

This section describes the integration of NET3 data structures and searching
algorithms into OMS3 core.

Subparagraph NET3 DSL describes the interface between user and NET3
framework capabilities. Subparagraph NET3 implicit parallelization introduces
to architectural design of NET3 implicit parallelization of independent modeling
solutions run. Finally, the interconnection of modeling solutions is analyzed in
subparagraph NET3 memory management.

NET3 DSL

In order to simplify NET3 user experience and fully integrate NET3 capabilities
into OMS3 modeling framework, the available DSL has been expanded.

One main simulation file allows for setting up NET3 input entries and rules the
workflow execution.

The graph simulation DSL file is expected to have a * . sim extension and adhere
to the identical formal structure of a standard Sim file.

Listing 4.55 shows a typical graph simulation DSL. The initial testing of NET3
was carried out through Dr Bancheri’s applications. As a result, the following DSLs
are extracted from Bancheri (2017) and Bancheri et al. (2018a).

Listing 4.55: Net3 DSL sim file.

import static oms3.SimBuilder.instance as OMS3

OMS3.graph (path: "./data/Basento/topoBasento_106.csv",
simpath: "./simulation_basento/simulation_calibrazione/") {

build()

graph (traverser: "downstream.all") {
parameter (file: "Soms_prj/data/Basento/mixed_params.csv")

}

NET3 is invoked by using OMS3.graph () at Line 8 Listing 4.55, which is the
identical call to OMS3. sim simulation.

As a matter of fact, the AbstractSimulation. java class is now extended
by SimGraph as well, the new simulation DSL which resembles the behaviour
of the standard Sim DSL, but rules the overall execution of one simulation file in
each node of the graph modeling structure (Figure 84).

To maintain the analogy with a standard OMS3 modeling solution, the graph
section at Line 13 Listing 4.55 is identical to the model section of an OMS3 sim
file.

The path variable at Line 8 Listing 4.55 is mandatory to build the Graph model
first, and DiGraph data structure secondly. That variable points to NET3 topology
file, which is text file that describes the modeling solution interconnections: it lists
space separated <child> <parent> relationships (child and parent are two
integers), it must have at least one root (parent with index o), and it cannot contain
any loop.
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AbstractSimulation
Package::oms3.ds!
{@author Olaf David}
~model: Model
- res: Resource
- out: List<Output>
- analysis: Chart
- build: Exec
- sysprops: KVPContainer
+ run(): Object

SimGraph
Package:: ds|

DDS ParticleSwarm

l.cosu

Fast
dsl.cosu

Luca
3.dsl.cosu

Sim Esp
dsl.esp dsl.cosu

{@author Olaf David}
{@author Francesco Serafin}|

+ run(): Object

Pac| 3.dsl
{@author Olaf David}

Pacl Pac| Pac Pacl = acl
{@author Olaf David} {@author Olaf David} {@author Olaf David} {@author Olaf David} {@author Olaf David}

~eff: List<Efficiency>
- sum: List<Summary>

{@author Giuseppe Formetta}
~kmax: int

- params: Params
- ofs: List<ObjFunc>

~params: Params

~hist_years: String
- ofs: List<ObjFunc>

- esp_dates: String

~calib_start: Date
- rounds: int

+ run(): Object

- check_after: int
- check last: int

- startTime: Date
- endTime: Date

- samples: int
- terms: int

- samples: int

- timing: boolean
- terms: int

+ : Object
run0: Objec - check_min: int

- check_delta: double
- verbose: int

- num_part: int

- params: Params

- of: ObjFunc

+ run(): Object

- startMonthOfYear: int

- summary: SummaryWriter
- traceFileName: String

- model_stdout: boolean

- sens_start: Date
- sens_end: Date
- startMonthOfYear: int

+ run(): Object

- sens_start: Date
- send_end: Date
- startMonthOfYear: int

+ run(): Object

- model_stderr: boolean
- c: CollectOutput
+ run(): Object

Figure 84: UML of OMS3 available modeling simulation types including NET3.
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Each node index listed in the topology file corresponds to a simulation file that
rules the node dedicated modeling solution such as Figure 1. That simulation file
is name <node_index>.sim

The traverser of the Graph model (Line 13 Listing 4.55) is the NET3 parameter
that rules DiGraph data structure traversing: it allows for analyzing the entire
network topology or extracting and analyzing a sub-branch only.

The traverser parameter adheres to the following formal
<searchDirection>.<algorithm>. Listing 455 illustrates the most com-
mon application: the entire network topology is analyzed by following natural
connections (downstream) between each node of the structure (all).

Beta functionalities (still under development and not fully tested yet) allow for
parsing one subbranch of the structure only. The traverser might be coupled to a
foreach parameter to adhere to the following formal structure:

structure:

Listing 4.56: Formal structure of NET3 search direction DSL.

graph (traverser: "<seachDirection>.<algorithm>",

foreach: "from_node -> to_node") {

foool

Here, searchDirection can be downstream or upstream, algorithm
can be breadthfirst or depthfirst. With respect to foreach parameter,
from_node and to_node are two indices in the network topology. If the two
nodes are connected, the subbranch is extracted and analyzed, otherwise an error
message is thrown.

A NET3 subbranch analysis example is shown in Listing 4.57.

Listing 4.57: Usage example of NET3 search direction DSL.

graph (traverser: "downstream.breadthfirst",
foreach: "10 -> 4") {
foool

Once again, this functionality has not been fully tested yet and is currently under
development. However, it is fundamental architectural aspect and initial step for
furtherly designing automated parallel multi-site calibrations.
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The parameter sub element in Listing 455 resembles the behaviour of parameter
sub element in subparagraph Parameters (parameter). User can specify a file as
well as a list of parameters which are then used to overwrite parameters defined in
every modeling simulation which runs in each node of the modeling structure.

When the Groovy runtime parses NET3 sim file, a SimGraph simulation is
instantiated. Successively, a Graph model is instantiated, which in turn instantiates
and manages the DiGraph data structure.

NET3 implicit parallelization

When the entire graph simulation has been built and instantiated by Groovy
runtime, the run method in SimGraph class is invoked (Listing 4.58).

Listing 4.58: NET3 run method.

@Override
public Object run() throws Exception ({
super.run () ;

Toool

if (setpath == null) ({
setpath = graph.newModelComponent () ;
}

int availProc = (numCores != null) ?
numCores : Runtime.getRuntime () .availableProcessors();

ExecutorService executor =
Executors.newFixedThreadPool (availProc) ;

RunSimulations sim =

new RunSimulations (setpath, executor, availProc);
sim.run () ;
executor.shutdown () ;

return comp;

}

Here, the Graph model returns the ConcurrentLinkedDeque<Integer>
object, which contains the indices selected by the searching algorithm during the
Groovy build runtime process. In the most generic case, the dequeue with every
single node in the graph modeling structure is returned.

Afterwords, a new ExecutorService with the number of available processors
is instantiated. The private class RunSimulations manages the entire graph
model run.

Depending on the number of available processors, the number of con-
current simulation threads are submitted. Each thread goes through the
ConcurrentLinkedDeque looking for a node of the network topology ready
to run.

This algorithm works on a Observer Pattern-like design. The logic behind
this architectural design is following described (each available processing thread
performs this algorithm):

1. the index of a node of the network topology to be processed is extracted from
the ConcurrentLinkedDeque;

2. the thread holding the extracted index checks its availability to run (all its
upstream nodes have already run);
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3. if the node is not ready to run the next index in the
ConcurrentLinkedDeque is extracted and the algorithm starts
from point 1 again;

4. if the node is ready to run, input requirements get satisfied (see Subparagraph
NET3 memory management) and the modeling solution named with the node
index is executed;

5. once the modeling solution execution is over, its outputs are pushed to a
memory buffer (see Subparagraph NET3 memory management);

6. finally, node's parents get notified that simulation of this children is done.

This logic resembles the one-to-many dependency behaviour of an Observer
pattern. In this pattern there are two actors involved: a subject (or publisher) and
an observer (or subscriber). The observer is interested in getting notified when
the subject changes its state. Consequently, it subscribes to receive notifications.
Any number of observers can subscribe to receive information from one subject,
and an observer can subscribe to any number of subjects. Each subject doesn't
know anything about who subscribed to get its notifications, it simply publishes
the change of its state. The observer queries the subject state to update the
synchronization (Gamma (1995)).

NET3 resembles this behaviour since parents subscribe to receive notification of
their children status. When the DiGraph is instantiated by the Groovy runtime,
the initialize method (Figure 81) creates an HashMap<Integer, Boolean>
for each node in the vertices data structure.

Listing 4.59: NET3 observer initialization.

public void initialize() {
vertices.keySet () .forEach ((vertex) -> {
Family fam = edges.get (vertex);
HashMap<Integer, Boolean> hm = (HashMap) vertices.get (vertex);
if (fam.childrenNumber () != 0) {

for (Integer child : fam.children) {
hm.put (child, Boolean.FALSE);
}
} else {
hm.put (0, Boolean.TRUE);
}

vertices.replace (vertex, hm);
b
}

This HashMap is initialized with value Boolean.FALSE for each key, which
is the child index. Boolean.FALSE means that the simulation of that child is not
done yet. When the simulation of the child is over, the Graph model notifies the
parent that child computation is done by calling the parentNotice method.

This notifies each child's parent that child state changed and replaces
Boolean.FALSE with Boolean.TRUE.

Listing 4.60: NET3 observer notification.

public void parentNotice (Integer vertex) {
edges.get (vertex) .parents.forEach (parent -> {
HashMap<Integer, Boolean> hm =
(HashMap<Integer, Boolean>) vertices.get (parent);
hm.replace (vertex, Boolean.TRUE) ;
vertices.replace (parent, hm);
1)
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The readyForSim method is queried by each thread with the node index
each thread is holding (step 2 of the RunSimulation algorithm). This method
returns true only if node’s children have value Boolean.TRUE in the hashmap
corresponding.

Listing 4.61: NET3 ready for simulation check.

public boolean readyForSim(Integer vertex) {
return ! ((HashMap<Integer, Boolean>)
vertices.get (vertex)) .containsValue (false) ;

NET3 memory management

Communication between interconnected nodes happens through a thread safe
memory buffer. This buffer is a common memory space where each node of the
graph modeling solution pushes its output to when the simulation run is over.

Before starting a model run, each node satisfies input requirements by pulling
input data from the memory buffer. The previously described observer-like modeling
run makes sure that a node accesses to pull methods when its children have pushed
their output already.

Node inputs/outputs have to be identified from within the proper model component.

In order to keep the lightweight invasiveness of OMS3, the annotation functionalities
have been expended by adding two new annotations: @ InNode (incoming variable)
and @OutNode(outcoming variable).

Listing 4.62: Example of a POJO class turned into OMS/NET3-compliant component by
accommodating OMS3 and NET3 annotations.

package example;
import oms3.annotations.x;
public class CylinderVolume {

@InNode
public double radius;

@In
public double height;

@OutNode
public double volume;

@Execute

public void compute () {
volume = circleArea(radius) =* height;
System.out.println("The volume is: " + volume);

}

private double circleArea (double radius) {
return Math.pow(radius, 2) * Math.PI;
}

OMS3 requires that components connections are specified in the x . sim file (see
Subparagraph Component connections (connect)). A similar policy is required to
connect modeling solutions. The model element of a sim file has been enriched with
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two additional sub elements: inFluxes and outFluxes. Listing 4.63 shows an
usage example.

Listing 4.63: inFluxes/outFluxes DSL usage example.

1 /*
2 * Hello ’'world’ example.
3 * A component printing a greeting.
4 */
5 import static oms3.SimBuilder.instance as OMS3
6
7 OMS3.sim() {
8
9 // build()
10
" model (while: "c.goon") {
12
13 components {
14 "inl" "ex0.Inl"
15 "c" "ex(0.Component"
16 "outl" "ex0.Outl"
17 }
18
19 parameter {
20 "c.val" 14.0
21 "c.other_wval" 1.0
22 }
23
24 inFluxes {
25 "15.outvall" "inl.invall"
26 "15.out_other_vall" "inl.in_other_wvall"
27 }
28
29 outFluxes {
30 "outl.outvall" "
31 "outl.out_other_wvall" "
32 }
33
34 connect {
35 "inl.outval" "c.inval"
36 "c.outval" "outl.inval"
37 "inl.out_other_val" "c.in_other_val"
38 "c.out_other_wval" "outl.in_other_val"
39 }
40 }
41}
inFluxes sub element adheres to the following formal structure:
Listing 4.64: inFluxes formal structure.
1 inFluxes {
2 <child _node_A>.<variable> <cID_1>.<variable>
3 <child_node_B>.<variable> <cID_2>.<variable>
4}

The parent node needs to specify which child to pull specific information from.
outFluxes sub element adheres to the following formal structure:

Listing 4.65: outFluxes formal structure.

outFluxes {
<cID_1>.<variable> ""
<cID_2>.<variable> ""

B W N =
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Here, the output variables have to be simply listed and associated to an empty
String.

4.5 CASE STUDIES

As previously stated, Dr. Bancheri continuously tested every new NET3 im-
provement and asked for implementation of some functionalities like parameter
overwriting and first requirements for multi-site calibration development. As a result,
45.1 is the first application following introduced (Bancheri (2017); Bancherti et al.
(2017a, 2018a)). The author of this dissertation doesn’t take any credit with respect
to 4.5.1 application development. This application is described in this dissertation
since it leverages NET3 functionalities.

Additionally, two further applications have been developed to exercise and
demonstrate NET3 capabilities applied to generic complex networks problems.

JSWMM is a Java-based redesigned version of Storm Water Management Model
(SWMM), urban hydrology model part of the GEOframe system. The innovative
architectural design of JSWMM utilizes the benefits of OMS3-NET3 capabilities to
(1) split monolithic code base into conceptual/physical processes and encapsulate
them into modeling components, and (2) avoid code duplication by reusing identical
modeling solutions to model run off and routing in each node of a complex sewer
network. This application is Mr. Dalla Torres's master’s project (Dalla Torre et al.
(2018)). The author of this dissertation directly supervised Mr. Dalla Torre along
architectural design and software development of his master’s project. Mr. Dalla
Torre holds the authorship of software engineering design and source code of
JSWMM.

System of systems of models (SSoM) is a multi-languages multi-models appli-
cation developed for the Framework for Integrating the Complexity of Uncertain
Systems (FICUS) (Burkhalter et al. (2018); Ehlschlaeger et al. (2014b,a, 2018b,c,a);
Westervelt et al. (2017)). This application is built upon NET3 capabilities of
encapsulating independent modeling solutions in separated nodes, and connecting
interoperable nodes based off of input/output relationships. Here, modeling solutions
run different models, which are also implemented in different programming languages
(Serafin et al. (2018c)). The author of this dissertation doesn’t take any credit with
respect to code base of models included in the SSoM application (Transims and
HISA) and set up of their input files. The author of this dissertation designed
the graph modeling solution, developed required NET3 capabilities, developed
OMS3 R and Python bindings (Serafin et al. (2018c)), developed OMS-compliant
Python wrappers to run Transims components, and implemented highly parallelized
OMS-compliant R plotting components.

These two additional applications are part of this dissertation because each
one of them required development of specific NET3 features, which are following
described.

Each subsection is organized with an Application paragraph to introduce to
the application itself, and a NET3 additional features paragraph to summarize
dedicated NET3 features developed.
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4.5.1 GEOframe: Monitoring hydrological extremes

4.5.1.1  Application

This application is a Decision Support System (Decision Support System (DSS))
developed with the final goal of monitoring and forecasting hydrological extreme
events in Basilicata region, ltaly (Grasso et al. (2017); Bancheri et al. (2018a)).

The DSS has been implemented on front/back ends software engineering design.
The separation of concerns principle has been elevated to split the representation
layer (front end: WebGlIS Figure 85) from the computational modeling layer (back
end: GEOframe)(Bancherti et al. (2018a)).

WebGis =

= cuscorro

Figure 85: Webgis front-end, credit Bancheri et al. (2018a).

Here, the back end is a graph modeling solution developed on GEOframe
semi-distributed physically based hydrological system and OMS3-NET3 software
framework.

To simulate hydrological and hydraulic variables in near-real time, the entire
Basilicata region was divided into about 160 interconnected HRUs (Bancheri et al.
(2018a)) (Figure 86).

Legend
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Figure 86: HRUs, credit Bancherti et al. (2018a).

This infrastructure results in a complex network that perfectly fits NET3 modeling
capabilities. Figure 1 at the beginning of this dissertation shows the runoff modeling
solution computed in each node of graph modeling structure.

4.5.1.2 NET3 additional features

This application, along with Bancheri (2017), is the main unit test the development
of NET3 has been based on.
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In addition to main features (e.g. implicit parallelization, integration of NET3 with
LUCA calibration), two supplementary capabilities have been specifically designed
for this application:

1. parameterization per HRU;

2. multi-site calibration.

45.1.21 Parameterization per HRU
This feature allows for setting up a dedicated set of parameters per HRU. The

parameters can be easily tuned from within modeling solution of each node of the
GMS. Additionally, the main graph simulation file allows for:

1. defining a set of parameters that are potentially common to several modeling
solution in the parameter sub element of the graph element (Section NET3
DSL Listing 4.60). The additional flag element list which node to overwrite
parameters to;

2. defining an extra paramFile element that lists space separated node
number and parameter files to read parameters from.

Listing 4.66: NET3 flags and paramfiles extensions.
import static oms3.SimBuilder.instance as OMS3
OMS3.graph (path: "$oms_prj/.../topoBradano_SanGiuliano.csv",
simpath: "./simulation_Bradano/sim[...]e_SanGiuliano/") {

build()

graph (traverser: "downstream.all") {

parameter (file: "Soms_prj/data/Bradano/mixed_params_SG.csv")

}
flags {

"l" "{overwrite}l"

"2" "{overwrite}"

"3" "{overwrite}"

[...]

"35" "{overwrite}"

"36" "{overwrite}"

"37" "{overwrite}"

}

paramfiles {

"1" "Soms_prj/data/Bradano/mixed_params_SG.csv"
"28" "Soms_prj/data/Bradano/mixed_params_SG.csv"
"37" "Soms_prj/data/Bradano/mixed_params_SG.csv"

}

4.5.1.2.2 Multi-site calibration

This feature is of fundamental importance when it comes to calibrating modeling
parameters per group of HRUs against internal monitoring sites within the main
catchment.

Figure 87 facilitates the description of this functionality. Two monitoring site are
available in this catchment of Basilicata region: Ponte La Marmora and Agri SS106.
In order to make use of important available data, a first calibration procedure is
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Figure 87: Multi-site calibration, credit Bancheri et al. (2018a).

set up on HRU 6. Then, calibrated parameters remain constant in HRU 6 during
calibration procedure against monitoring site in Agri SS106.

NET3 allows for defining which node of the graph modeling simulation to calibrate
from the element flags.

Listing 4.67: NET3 flags calibrate extension.

1 import static oms3.SimBuilder.instance as OMS3

2

3 / *

4 * Luca calibration.

5 x/

6 OMS3.luca (name: "EFC-luca_Agri_Ponte_70",

7 path: "S$Soms_prj/data/Agri/topoAgri_Ponte.csv",

8 simpath: "./simulation_Agri/sim_calib_Ponte/") {

9

10 graph (traverser: "downstream.all") {

" parameter (file: "$oms_prj/data/Agri/mixed_params_Ponte.csv")
12 }

13 flags {

14 "1l" "{calibrate}"

15 "2" "{calibrate}"

16 "3" "{calibrate}"

17 "4" "{calibrate}"

18 "5" "{calibrate}" // 6 is missing, won’t be calibrated
19 "7" "{calibrate}"

20 Locoll

21 }

22

23 run_start "2013-12-15"

24 calibration_start "2013-12-15"

25 run_end "2014-12-15"

26 rounds 2

27

28 // step definitions

29 step {

30 parameter {

31

32 [...]

33 alfa_1 (lower:0.3, upper:0.9,calib_strategy:MEAN)
34

35 kc_canopy_out (lower:0.1, upper:2,calib_strategy:MEAN)
36 focol



38
39
40
4
42
43
44
45
46
47
48

}
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objfunc (method:KGE, timestep:RAW, invalidDataValue:-9999) ({
sim(file:"$oms_prj/output/Agri/Calib/Idrogramma_6_Agr.csv",
table:"table", column:"value_6")
obs (file:"$oms_prj/data/Agri/Agri_PonteLaMarmora.csv",
table:"table", column:"value_6")
}

max_exec 200

Figure 88 and Figure 89 show calibration results at Ponte La Marmora and Agri
SS106.
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Figure 88: GEOframe validation at Ponte La Marmora, credit Bancheri et al. (2018a)
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Figure 89: GEOframe validation at Agri SS106, credit Bancheri et al. (2018a)

4.5.2 GEOframe: ]SWMM

4.5.2.1  Application

This application results from a Java-based software architectural redesign of

SWMM (Storm Water Management Model), in addition to major computational
modules reimplementation.

SWMM is a computational model for estimating quantity and quality of urban

runoff. Its application ranges from modeling of single event to long-term simulations.
It is broadly used especially for stormwater and sanitary sewer design, analysis of
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pollutant transport, treatment strategies of point and nonpoint sources, and urban
planning (Gironas et al. (2010)).

Here, the main goals of JSWMM exercise are to: (1) redesign runoff and
routing original SWMM modules as component-based OMS-compliant software,
thus creating a flexible and expandable infrastructure for accommodating future
developments; (2) add a design component to original SWMM workflow for actually
designing the storm sewer network and not just verifying it (Dalla Torre et al.
(2018); Dalla Torre (2019)). This goals are achieved without impacting on user
experience, namely original SWMM input/output file format don't change.

JSWMM runoff, pipe design, and routing computational methods are encapsulated
into independent components.

Instead of computing runoff, routing, and pipe design in a single modeling com-
ponent per drainage area (standard modeling approach), runoff and routing/design
components for each drainage area are bundled into separated nodes of the network
topology. This approach allows for leveraging high computational scalability of
NET3 implicit parallelization (Figure 90) (Dalla Torre et al. (2018); Dalla Torre
(2019)).

Figure 90: NET3-JSWMM component granularity, credit Dalla Torre et al. (2018);
Dalla Torre (2019).

JSWMM has been tested and validated on Fossolo Network sample dataset.
Figure 91 illustrates JSWMM results compared to original SWMM run out of a
drainage area and overall urban network outlet.

4.5.2.2 NET3 additional features

Two supplementary NET3 features have been specifically designed to accommo-
date modeling requirements from this application:

1. allowing runoff, pipe design, and routing components to access a single data
structure to resemble original SWMM workflow;

2. providing pipe design component with access to node indices of its upstream
subnetwork for adjusting the depth of each upstream pipe.

These features are currently not flexibly implemented and require additional
architectural design.
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45.2.21 Access to common data structure

Listing 4.68 shows NET3 DSL that enables the main simulation file to push an
empty data structure to the memory buffer before starting the computation on the
urban network.

Listing 4.68: NET3-JSWMM access to common data structure, credit Dalla Torre et al.
(2018); Dalla Torre (2019).

import static oms3.SimBuilder.instance as OMS3
import org.altervista.growworkinghard.jswmm.dataStructure.SWMMobject

OMS3.graph (path: "./data/topo_small.csv",
simpath: "./simulation_test/") {

resource "Soms_prj/lib"

build()

graph (traverser: "downstream.all") {
}

model () |

components {
"c" "ex0.0utT"

}

outFluxes {
"c.datastructure" ""

}

Consequently, every component from each node of the graph data structure can
access this common memory location and push/pull data resembling SWMM original
behaviour.

4.5.2.2.2 Access to upstream sub-branch

NET3 provides a hidden variable to JSWMM pipe design component with a list
of indices of upstream nodes. This allows ][SWMM to adjust the depth of upstream
pipes when the current pipe has been designed.

4.5.3 FICUS: System of systems of models

4.5.3.1  Application

This application allows for analyzing people’s access to facilities such as water,
fuel, etc. before and after amenity disruptions (Burkhalter et al. (2018); Ehlschlaeger
et al. (2018c,a); Lu et al. (2018); Westervelt et al. (2017); Xie et al. (2019)).

Here, NET3 has been utilized as a result of the need for interconnecting different
models, Transims (Smith et al. (1995)) and HISA, with different iterative loops (see
node 9 and node 11 in Figure 92). NET3 allows for encapsulating completely
different modeling solutions in different nodes of the modeling structure, and
interconnecting them regardless.

Additionally, this application exercises OMS3-NET3 multi language interoper-
ability by enabling seamless communication between Java, Python, and R OMS-
compliant components (Serafin et al. (2018c)).
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Figure 92: FICUS SSoM conceptual design.

Figure 92 illustrates an SSoM modeling solution: each node of the graph
modeling structure encapsulates different types of modeling solutions. Here, orange
rectangles indicates Java components (e.g. node 10), green rectangles represents
Python components (e.g. node 6), and light blue rectangles indicates R components
(e.g. node 15).

Figure 93 shows two screenshots of the FICUS-UI for visualization and analysis
of uncertainty quantified geographically spatialized raster/vectorial data (credit
Olaf David and David Patterson).

Figure 93: SSoM results displayed from the FICUS-ULI.
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4.5.3.2 NET3 additional features

Since both Transims and HISA models implement stochastic algorithms, the
identical complex modeling solution in Figure 92 has to run several times to allow
for generating different realizations out of the same scenario.

NET3 provides the graph of graphs feature where each node of the graph modeling
structure is enabled to run an inner graph modeling structure.

Figure 94: NET3 Graph of Graphs conceptual design.

Figure 94 illustrates the graph of graphs modeling solution. Here, node 100, node
ith, and node Nth run one SSoM (Figure 92). Eventually, uncertainty quantification
of water, fuel, and facility access are evaluated (node 20, 21, and 22 Figure 94).

Nodes in the graph of graphs modeling solution have to run sequentially because
of design constraints in the current graph memory management.

4.6 SUMMARY

This chapter introduces to design and implementation of NET3 graph modeling
structure approach.

Literature review illustrates previous applications of graph data structure in
environmental modeling and identifies lack of flexibility and portability across
different operating systems in addition to programming proficiency requirements for
fully taking advantage of developed platforms.

Research questions identify milestones that drive analysis, design and implemen-
tation of NET3 (graph modeling structure).

Research design and methods describe methodological and technical approaches
utilized to achieve flexible implementation of complex network like modeling solu-
tions. Introduction to graph theory and its related algorithm implementation are
proposed, as well as description of environmental modeling frameworks and the
concept of implicit parallelism. Since EMFs is the hosting platform for fostering
NET3 implementation, detailed description and analysis of OMS3 is provided.
Finally, NET3 design and implementation are thoroughly examined.

Three applications exercise NET3 features. The hydrological model GEOframe is
expanded and utilized as back-end for a DSS in Basilicata region, and additionally
illustrates the river network - graph structure analogy. A NET3 based redesign of
SWMM (JSWMM) demonstrates how a finely tuned model component granularity
allows for leveraging higher level of implicit parallelization. System of Systems
model exercise NET3 flexibility in a complex urban modeling environment.

Next chapter describes conclusions and future developments for FeNS and NET3.
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Following the structure of this dissertation, conclusion and future development
for Framework-enabled NEAT based Surrogate modeling (FeNS) and NET3 are
separately described.

5.1 FENS: CONCLUSION AND FUTURE DEVELOP-
MENT

A long-known discrepancy managing physical based models exists to fully
comprehend, correctly parameterize, performantly execute, and flexibly deploy them
in research and service delivery environments. Research organizations fund the
development of the models, but do not fund their integration into service delivery
organization systems and workflows. Service delivery organizations fund integrating
models into their systems and workflows, but usually find this a very difficult,
inefficient, and time-consuming task, often failing because the research model has
become unwieldy and too burdensome to use. For widespread frequent use, service
delivery organizations need the model to compute results quickly with limited set-up,
reduced data entry, taking advantage of existing organization-wide data resources.

To bridge this gap, this dissertation aims to address and alleviate research
model application complexity with respect to data and parameter setup, runtime
requirements, and proper model infrastructure setup. This dissertation proposes
a data driven based surrogate modeling approach aiming to capture the intrinsic
knowledge of a physical model into an ensemble system of artificial neural networks.
This methodology accommodates application needs to get quick and “accurate
enough” model results with limited input entries and limited a-priori knowledge
of internal processes involved in conceptual/physical models. Here, the data-
driven methodology was used as an inexact emulator of any deterministic computer
simulation model.

FeNS system enables modeling framework to interact with machine learning
libraries to emerge model surrogates any modelling solution. This facilitates the
transitioning of mathematical models from research to field by automating the
process of generation of ensemble of surrogate models. CSIP/OMS was extended
and utilized to harvest data and derive the surrogate model at the modeling
framework Llevel.

FeNS demonstrates an opportunity for service delivery organizations to consoli-
date and streamline model delivery and application.

Recent advancements in machine learning techniques have proven to be suited
for creating surrogate models of conceptual/physical models: surrogate models are
capable of accurately emulate original research model behaviours by using relevant
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input entries only. Preliminary design of experiments show Nash-Sutcliffe accuracy
above 0.g5.

Surrogote models are homogeneous in their implementation and use, whereas
conceptual/physical models are heterogenous in development, setup, and deployment.
This provides service delivery organizations with a simplified access to mathematical
models knowledge without requiring for dedicated modeling expertise and complex
IT deployment infrastructure setup and management.

Surrogame models allow for more consistent deployment on server, desktop, and
mobile while being platform and operating system independent, potentially run
on-the-field with no internet coverage, and can be subject to dataset-like lifecycle.

Ensemble of surrogate models improves estimate accuracy by training several
artifical neural networks on slightly different datasets, while uncertainty quantifica-
tion of ensemble of surrogate models runs smooths the overall eSM behavioural
emulation capability.

FeNS combines presented methodologies and approaches to allow for auto-
matically emerging surrogate models from any modelling solution in a controlled
environment, utilizing maximal computation resources for training, and delivering
and applying ensemble of surrogate models within consultancy organizations requir-
ing for minimal computational resources. Additionally, surrogate models necessitate
of basic or no IT infrastructure management and provide uncertainty quantified
answer with minimal response times. FeNS-R2 eSM with 10 artificial neural
networks is about 8o KB in size and provides erosion rate estimate in around 100
ms. Opposingly, CSIP-R2 web service system is about 300 GB in size (database
dependencies included) and returns erosion rate in around 10 s.

FeNS methodology and design is at early stage of development. Consequently,
this dissertation identifies steps required to strengthen FeNS pipeline and facilitate
its usage.

Design of Experiments demonstrate necessity of dataset clustering to fasten eSM
generation and divide original modeling emulation responsibility. Currently, FeNS
management of clustered data and eSMs is delegated to user manual set up. On
contrary, this process has to be automated by designing an additional FeNS-service
which takes care of creating required clustered data MongoDB collections.

Furthermore, discovering clusters in dataset resulting from determinist model
behaviour is a trial-and-error process. Two different approaches will be investigated
to attempt the automation of this delicate and important process:

A. Stanley and Miikkulainen (2002) states that continuous state spaces facilitate
NEAT learning and elevate its effectiveness. Discontinuity curves from
scattered data can be detected and recovered (Bozzini and Rossint (2013)).
As a result, proper cluster on data discontinuities might elevate NEAT features.

B. DoE 3 has proven FeNS capability of emulating RUSLEZ behaviour on the
few high erosion data available by developing a dedicated eSM cluster. The
analysis of the distribution of original model responses might allows for
identifying areas with scarce data. As a result, dedicated clusters might be
able to improve overall eSMs accuracy by learning model behaviour off of
rare/scarce data.

Finally, different gating strategy has to be tested since only one basic approach
has been exercised in DoE 3.

Razavi et al. (2012a) underlines model conformability issue of ANN-based SM.
Two different approaches will be investigated to automatically avoid this relevant
ANN-based SM methodology issue:



5.2 NET3: CONCLUSION AND FUTURE DEVELOPMENT \

A. Integrate Halton Sequence generator as part of FeNS pipeline to automati-
cally harvest homogeneously distributed original model responses.

B. Implement Bayesian Reqularization as a part of NEAT genome performance
evaluation Razavi et al. (2012a).

With respect to NEAT algorithm implemented in the Encog library (Heaton
(2015)) and part of the FeNS system, three code base developments are identified:

A. Encog is currently a multithreaded library efficiently designed and imple-
mented. However, computational scalability on available nodes in a computer
cluster needs to be implemented to properly take advantage of CSIP/OMS
cloud computing environment potential.

B. Wang et al. (2013) demonstrates that NEAT learning process can be fasten by
more accurately numbering ANN nodes. Encog currently implement standard
NEAT node numbering by Stanley and Miikkulainen (2002).

c. Feature Deselective NEAT (FD-NEAT) (Tan et al. (2009)) is an alternative
feature selection algorithm that has proven to be a promising methodology
for classification tasks (Tan et al. (2009)). This methodology might be helpful
for developing new gating strategies and should be tested against FS-NEAT.
However, this neuroevolutionary algorithm is not part of Encog capabilities
yet.

5.2 NET3: CONCLUSION AND FUTURE DEVELOP-
MENT

Lack of proper software architecture design and application of good programming
principles at early stage of model layout obstruct and slow down research model
maintenance and development.

Additionally, the need of accounting for more simultaneous physical processes,
describing and studying natural phenomena at different scales or introducing inno-
vative engineering design practices drives model development into more capable as
well as complex software application. Here, the lack of input/output standard formats,
poor documentation and deficient scientific algorithm implementation complicate
user approach to a new model, make model learning curve rather steep, and impede
user to translate her/his modeling creativity into simulation results eventually.

The introduction of environmental modeling frameworks (EMF)s overall alleviates
these issues. However, research community is still reluctant in adopting EMFs as
standard model development workflow. Furthermore, actual applications demonstrate
that current EMFs modeling capabilities limit modeler creativity anyway.

To overcome these relevant modeling constraints, this dissertation confirms the
need of introducing EMFs in standard workflow and support their widespread use
by describing the successful case of JGrass-NewAGE/GEOframe system.

Most importantly this dissertation aims to address and alleviate complex research
modeling solutions maintenance, development, and application and proposes the
extension of EMFs flexibility by integrating a graph modeling structure to elevate
the concept of modeling encapsulation and software reusability.

NET3 is graph modeling structure fully integrated in the core of OMS3 and
expands OMS3 capabilities by interconnecting different modeling solutions that
share common input/output variables. Every modeling solution is encapsulated
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into a node of the graph modeling structure, and same modeling components can
be reused in different nodes avoiding code duplication, error-prone maintenance
and development, and thus facilitating composition of complex innovative modeling
solution.

NET3 demonstrates an opportunity for research model developers and users to
streamline complex modeling solution maintenance and development and to wide
open modeler creativity.

NET3 makes use of the river network - graph structure analogy to facilitate
composition of network based modeling solution (see Subsection 4.5.1). It allows
for setting up different modeling solutions to properly describe physical processes
in mountain, hill, and plain subcatchments and connecting them. It allows for finely
tuning model input parameters per subcatchment, provides multi-site calibration
capabilities.

NET3 enables a further layer of implicit parallelization based on network topology
to speed up the overall simulation run-time. Thoroughly setting up modeling solution
granularity allows for higher level of computational scalability (see Subsection
45.2).

NET3 is a flexible graph modeling structure that can be applied to any network
based modeling solution and allows for different iterative loops (temporal or conver-
gence) in each node of the modeling structure. It additionally allows for running a
inner graph modeling structure from within each node of a graph modeling structure
(see Subsection 4.5.3).

NET3 strictly follows OMS3 design principles (and EMFs more generally) and
fully decouples software architectural aspects from scientific concepts. Leveraging
NET3 features doesn't require any additional programming proficiency compared
to OMS3 requirements.

However this dissertation doesn't investigate every research question proposed
and additionally identifies several areas of NET3 improvements.

Since application of graph theory is a very active field of research, the following
two questions are soon to be studied:

1. Can NET3 layer of implicit parallelism effectively speed up the computation
of both small and large scale modeling solutions?

2. What is the proper trade off between graph topology (NET3) and component
connections (OMS3) related parallelizations?

Before investigating these research questions, NET3 has to be redesigned to
properly scale on available nodes of a computer cluster network. NET3 imple-
mentation is currently based off of multithreading computation. This architectural
aspect doesn't allow for deeply leveraging super computing environments.

A “scalable” NET3 will allow for properly implementing automated parallel
multi-site calibration procedures; finely designing memory management to overcome
current limitations when it comes to modeling with Graph of Graphs feature; addi-
tionally implementing automated management of enabled/disabled computational
branches.
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In Section Issues related to the use of mathematical models on the field, an
in-depth analysis of limits and constraints of operational use of mathematical models
in consultancy and research environments has been performed. To support the
reasons that motivate this research, a further analysis on model complexity with
respect to user learning curve is conducted. As expected, mathematical models
develops and evolves over time. This might have positively or negatively affected
issues related to operational use just described. Surely, software and code base
became more and more complex. The evaluation of this increasing complexity along
with analysis of positive or negative impact of software usability is an important
contribution to this research.

Leveraging available model documentation and open source environmental simu-
lation models, two type of measurements are performed:

1. Number of model input parameters;
2. Software Engineering (SE) metrics.

The number of model input parameters relates to model user’s efforts in preparing
and preprocessing input model data to properly reflect the study area. It is a means
for evaluating model user experience.

SE metrics is a set of measurements and indices to support software engineers
evaluation of code base aspects: from software quality, to cost estimate of the
entire project, to size/complexity of a software package in order to properly plan
future maintenance (Boughton (2011)). As a consequence, software metrics returns
objective, reproducible, and quantifiable values of software quality, complexity, and
maintainability (Boughton (2011)).

Some of most common software metrics are following listed and briefly described
(Wikipedia (2004)):

e Code coverage: (or test coverage) estimates the percentage of source code
executed during test suite runs. In order to systematically test each portion of
the code, input data varies between the range of all possible and significant
combinations (Miller and Maloney (1963)). The higher the code coverage the
lower the possibility of unexpected software bugs.

e Cohesion: is the ‘“degree to which the elements inside a module belong
together” (Yourdon and Constantine (1979); Stevens et al. (1974)). A class or
module highly cohesive (and consequently loosely coupled) has important
attributes like robustness, reusability, readability, and reliability.
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o Coupling: measures how strongly two modules or classes are interconnected.
A loosely coupled software (and consequently highly cohesive) usually indi-
cates good software architecture and design.

e Cyclomatic complexity: (or McCabe's complexity) evaluates ‘the number of
linearly independent paths within a section of source code”. Control flow
graph is the ideal representation: ‘the nodes of the graph correspond to
invisible groups of commands of a program, and a directed edge connects two
nodes if the second command might be executed immediately after the first
command”,

e Number of Lines of Code (LOC): counting the number of lines in the source
code, it provides a measure of the size of a computer program. Physical LOC
accounts for the pure lines of code without comment lines, while logical LOC
(or LLOC) tries to estimate the number of executable statements.

The software cloc Danial (2018) has been used to carry out the following metric
analysis. cloc is able to estimate blank lines, comment lines, and physical lines
of source code. It is also able to evaluate differences between previously listed
features when two versions of the same software are provided.

Two environmental models were analyzed with respect to their evolution in source
code, comments, and number of model parameters to support the hypothesis of an
increasing complexity over time. Those models were selected since they have been
developed for more than a decade and have an established user and developer
community. Additionally, model source code of early/previous versions was made
available for this study by the original model developer or group. Every model is
briefly introduced, user and software metrics are obtained and discussed.

A1 SWAT

Soil and Water Assessment Tool (SWAT) is a semi-distributed, watershed (river
basin) scale, physically based model. Its development started in the early 19qos
at USDA-ARS in Temple, Texas, led by Dr. J. G. Arnold, and it's an ongoing
process still (Devia et al. (2015)). It addresses environmental issues that relate
to the evaluation of management practices effects on water resources, sediments
transport and nonpoint-source pollution (e.g. agricultural chemical yields) (Arnold
et al. (2012)).

SWAT originates from the merging of two models: Simulator of Water Resources
in Rural Basin (SWRBB) (Williams et al. (1985); Arnold et al. (1990)) and Routing
Outputs to Outlet (ROTO) (Arnold et al. (1995)). SWRBB was a water quality
assessment tool. Its applicability constraints were watersheds size (up to few
hundred square kilometers) and number (up to 10 subbasins). These constraints
became a real modeling issue in the late 1g8os, when the Bureau of Indian
Affairs required a monitoring tool for evaluating water quality within american
native reservations. The targets were Arizona and New Mexico reservation lands
which cover a total area of several thousands square kilometers. ROTO was then
implemented to handle and connect several outputs from SWRBB runs and properly
route them through channels and reservoirs. This temporary solution worked more
like a prototype for the proposed problem. SWAT is the final product, a completely
redesigned and reimplemented software built from the previous experience of
combining SWRBB and ROTO capabilities.
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Even without diving into each detail of initial hydrological processes implemented
in SWAT, it is recognizable how the merging of two models results into a big core
simulation software. The merging process additionally allows for coupling previously
independent features (e.g. routing (ROTO) of water quality results estimated in
independent watershed (SWRBB)) which originate a more capable as well as
complex software code base.

Since the initial merging phase in the early 1ggos, significant improvements
expanded SWAT capabilities. The most noteworthy functionalities are well described
in Williams et al. (2008), and following briefly summarized:

e Addition of management of multiple HRUs;

e Crop managements area adding auto-fertilization and auto-irrigation manage-
ment options, adding C O, evaluation during crop growth for climatic change,
improving grazing manure applications;

e Hydrological processes area adding canopy storage, adding Penman-Monteith
potential evapotranspiration, improving snow melt routines, adding Green &
Ampt infiltration module, adding Muskingum routing method, adding weather
forecast scenarios;

e Water quality processes area improving in-stream nutrient water quality
equations, in-stream pesticide routing, nutrient cycling routines, adding
reservoir/pond/wetland nutrient removal by settling, adding routing of metals,
adding bacteria transport algorithms.

To evaluate the potential impact of these new functionalities on modeling code
base growth and consequent user experience, source code of four consequential of-
ficially released versions of SWAT are analyzed. Downloaded software is available
online at https://swat.tamu.edu/software/swat—-executables/
and classified as follow: SWAT2000, SWAT2005, SWAT2009, and SWAT2012
(Latest release).

A.1.1  User experience

From a user standpoint, SWAT is a well documented software. Every release is
provided with detailed user documentation and some releases (2005 and 2009) are
accompanied by two files actually: theory and input/output documentations.

Although available documentation facilitates user approach to the model by
providing usage references and requirement descriptions to begin with, learning
how to get started with the simulation software might not be a quick and easy task.
Considering 1/0O documentation only, which is common to every software release,
the number of pages goes from about 450 in the first release till 650 in the latest.

Furthermore, from a brief analysis of available documentation, user has to deal
with an important number of input files: from 33 for v2000 to 37 for v2ooq and
v2012 (see Figure 95).

The number of input parameters is an important metric that allows for estimating
amount of user’s data and work required for setting up a modeling simulation.
Although model set up (and consequent input parameter requirements) is built
upon computational modules enabled for a specific type of modeling simulation, an
overall evaluation of number of model input parameters between versions returns
an important increment between first two versions (v2000, v2005) (from 540 input
parameters to 612) and constant trend over the other version (v2005, v2009, v2012)
(see Figure 96).
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Figure 95: Trend of number of input files required for running a SWAT simulation over
official releases.
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Figure 96: Trend of number of input parameters to setup for running a SWAT simulation
over official releases.
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Users’ Documentation of each model version states that some parameters in
several input files are derived using the SWAT GIS tool. Consequently, a model
user doesn't really have to provide data or information for each and every input
parameter. Additionally, some input files and related parameters are optional and
not required for a simple standard SWAT run.

In conclusion, SWAT is a thoroughly documented, heavily tested and validated
modeling software. Its development lasts for over two decades and it is an ongoing
process still. Several modeling modules and wide range of modeling capabilities
are made available and this reflects to important documentation size, input files
and input parameters number. Although this last two metrics haven't increased
much over software versions, learning how to accurately and correctly make use this
sort of model requires study and dedicated knowledge. User approach to SWAT
begins with a user manual of about 650 pages and more than 600 available input
parameters.

A.1.2 Software metrics

SWAT is Fortran code base. Fortran is a notable general-purpose imperative
programming language, which is usually codified into monolithic software applica-
tions. This is a drawback when it comes to software maintenance and development.
Monoliths are notably close to modifications since their structure is resistant to
accommodate new features (Martin (2009); David et al. (2013); Newman (2015);
Nadareishvilt et al. (2016)). This analysis, however, doesn't investigate complexity
with respect to software maintenance and development and narrows its scope to
physical lines of source code and comments. cloc facilitated the estimate of these
two metrics.

Estimated metrics (Figure 97) shows a growing trend for both number of lines of
code and comments across available software versions.

SWAT: LOC over versions

— code o
—— comments /

g/°
/./

o

v2000 v2005 v2009 v2012

LocC
25000 30000 35000
1 1 1

20000
1

15000
1

SWAT versions

Figure 97: Trend of number of lines of source code (blue line) and comments (red line) in
SWAT code base over official releases.

The first SWAT version analyzed (v2000) shows a 1:1 relationship between
number of lines of code and comments. This is a positive aspect since means that
source code, algorithms, and routines APIs are described.
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The positive trend of lines of code and comments over SWAT versions indicates
model developer dedications in documenting newly added modules and computing
capabilities.

The overall increment of number of lines of code from v2000 to v2012 is more
than 100% (Figure 98 and Table 7): the initial computational core was about 16 300
lines and ended up being about 34100 lines.

SWAT: # of files over versions
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Figure 98: Trend of number of lines of files of the SWAT code base over official releases.

The biggest improvement was between v2o000 and v2oos. The initial core jumped
from 16 300 to 27 000 lines of code with a total increment of around 80% (Figure
97 and Figure 99, Table 8). The number of files increased of 50% (Figure 98) going
from 215 to 305. Number of file in the following versions (v200q, v2012) remained
almost constant.

Table 7: Number of file, lines of code, and comments of SWAT over official releases.
‘ SWAT2000 | SWAT2005 | SWAT200q9 | SWAT2012

files 215 305 301 308
loc (code) 160 308 27068 31114 34113
loc (comment) 18199 22311 25819 27 452

Around 38% of lines of code (6174) was added between v2005 and v200g, while
13.4% only (1 173) between v2ooq and v2o012 (Figure 99 and Table 8). Between
these three software versions the amount of modified lines of code is almost constant
and around 8% (Figure 99 and Table 8). The negative trend of added lines of code
opposes to a positive trend of unaltered lines of code: between v2005 and v2ooq
68.3% of software code base stays the same while this amount rises up to 88%
between v2o00q and v2o12 (Figure 99 and Table 8).

This analysis demonstrates that number of lines of code added to SWAT code
base actually reflects the amount of innovative features listed by Williams et al.
(2008). The overall computational core duplicated in size between the first and the
last release.

However, a negative trend of added lines of code between versions opposes to a
positive trend of unchanged lines of code (Figure 99). This drive to two conclusions:
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SWAT: LOC comparison between versions
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Figure 99: Percentage of number of added, modified, removed, and unchanged lines of
code between SWAT consecutive officially released versions. Percentages are
computed on the older version.

1. the inner complexity of the simulation model keeps on increasing since new
lines of code (and new functionalities consequently) are always added over
software releases;

2. SWAT software core base is getting to a point of consolidated robustness
and stability since the amount of unmodified lines of code is rising over 88%.

Summarizing, SWAT is a complex software which every release is enriched of
new functionalities with. This reflects into an increasing number of lines of code and
intrinsic complexity in model maintenance and development consequently. However,
the addition rate of new features over releases slows down in favor of robust and
consolidated software core.

Table 8: Percentage of identical, modified, removed, and added number of lines of code
between SWAT versions (percentage computed on the older version).

V2000-vV2005 | V2005-vV200Q9 V200Q9-v2012

same 10355 63.5% | 184093 683% | 27436 882%
modified | 3588  22% | 2401  89% | 2505 8%

removed 236 145% | 10220 228% | 4172 3.8%

removed | 13125 8os% | 6174 37.8% | 1173  13.4%

A2 SWMM

Storm Water Management Model (SWMM) is a computational model for estimat-
ing quantity and quality of urban runoff. Its application ranges from modeling of
single event to long-term simulations. It is broadly used especially for stormwater
and sanitary sewer design, analysis of pollutant transport, treatment strategies of
point and nonpoint sources, and urban planning (Gironds et al. (2010)).
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Two main modules constitute the whole software: the runoff component and the
routing component. The first one operates on a subcatchment scale: precipitation
falling on each subcatchment generates runoff and pollutant load. The second
component routes the generated runoff throughout a network of pipes, channels and
several type of facilities and instruments like storage/treatment devices, pumps, and
requlators.

The development history of this notable software started in 1971 (Rossman (2010)).
SWMM | is the first software release and was developed by Metcalf & Eddy, Inc,
Water Resources Engineers, and University of Florida. Since then, four more
official major version have been released: SWMM Il (1975, contributor University
of Florida) which is the actual first widely distributed release; SWMM 3 (1981,
contributors University of Florida, and Camp Dresser & McKee) where full dynamic
wave flow algorithm, Green-Ampt infiltration, snow melt and continuous simulation
were added; SWMM 3.3 (1983, contributor US EPA) which is the first PC version
ever released (previous versions are paper only); and SWMM 4 (1988, contributors
Oregon State University and Camp Dresser & McKee) where groundwater, RDII,
and irreqular channel cross-sections were introduced.

SWMM 5 is the latest stable version. Initially released in 2005, it has been
actively developed, supported and released on a reqular bases in the last 14 years.
US EPA and CDM-Smith are the main contributors. Several new features were
added throughout its development. However, the most important advancements
relate to complete translation and refactoring of the core engine from Fortran
language to C lanquage and the addition of a graphical user interface.

The analysis of SWMM development history includes SWMMs5 only. The source
code of previous versions is not available online. However, SWMM5 accounts for
24 official releases over 15 years. The analyzed source code was downloaded from
openswmm website and USEPA website.

A.2.1  User experience

User documentation contains detailed and exhaustive explanations for preparing
a SWMM modeling solution.

A comprehensive and well developed GUI smooths user’s very first approach to
SWMM. 1t also facilitates input data and parameters management and set up.

However, user has to recursively edit the project file to design the sewer system.
This is an acceptable workflow when limited number of sewer pipes, facilities, and
instruments are involved. The process becomes complicated and overwhelming in
case of larger project files stored in CAD or GIS formats. Here, user might have to
manually set up input parameters for each modeling object such as network nodes
or links.

Software modeling input objects and parameters are following briefly summarized.

SWMM allows for modeling processes of four water management related cate-
gories: hydrology, hydraulics, water quality, and treatment. The overall number of
modeling objects is 20. Every modeling object can be finely tuned from within the
project file, which is split into 44 different sections.

111 generic modeling simulation parameters are provided. The other parameters
are dedicated to describe the modeling behaviour of each element of the sewer
network: 8 parameters describe rain gauge behaviour; 67 characterize sub catchment
while 8 represent subareas responses; 19 parameters are required for LID design;
14 characterize an aquifer; 6 a junction, additional 6 an outfall; 11 parameters
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represent the divider behaviour; 13 for a storage; g for a conduit; 7 for a pump; 8
for an orifice; 12 for a weir; 8 for an outlet; 1g for a cross-section; 6 head-loss; 31
pollutant; 27 per node.

The overall number of input parameters is 382 accounting for a network with one
element per category (Rossman (2010)).

These numbers surely express high level of software flexibility and adaptability
to modeler requirements. They intrinsically indicate important amount of study and
work to (1) understand how model operates, and (2) actually provide and set up
input parameters for a modeling simulation run.

Additional analysis and comparison of modeling objects and input parameters
between software version are not since only one user manual is provided and
generically refers to SWMMs,.

In conclusion, SWMM is a flexible and highly tunable modeling software that
makes available a large number of modeling objects and input parameters. This
indicates a steeper learning curve to finely set up and exercise a modeling simulation.
Furthermore, the addition of innovative engineering solutions to water management
problems will intrinsically reflect into an increasing number of modeling object and
input parameters consequently.

A.2.2 Software metrics

SWMMs, previously coded in Fortran, was completely redesigned for the 2005
release and is currently C code base. C is a notable general-purpose impera-
tive programming language, which is usually codified into monolithic software
applications.
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Figure 100: Trend of number of lines of source code (blue line) and comments (red line)
in SWMM code base over officially released versions. Left Y axis shows the
magnitude of the number of lines of code, right Y axis shows the magnitude of
the number of lines of comments.

Analysis over time of number of lines of code and comments in the SWMMs5 official
releases illustrates positive and similar trends (Figure 100). This demonstrates
developers dedication in reqgularly commenting newly added modeling capabilities
and algorithms.

The total number of lines of code goes from 19570 for version v5.0.003 to 27 461
for version v5.1.012 (Figure 100 and Table 9). This is a reasonable development
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over 14 years (+40%). It indicates software maturity and stability as well as
consistent implementation of new modeling features to accommodate innovative
water management related engineering methodologies. As a matter of fact, Figure
101 shows only percentages of added, modified and removed number of lines of
code since go% of software core doesn't change in between released versions.

SWMM: LOC comparison between versions

“|LL “
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Figure 101: Percentage of number of added, modified, and removed lines of code between
SWMM consecutive officially released versions.

Trend in Figure 101 mostly shows little adjustments and improvements of software
modeling capabilities and performance in between software releases such as (1)
management of lateral groundwater flow to groundwater module; (2) encapsulation
of algorithms for solving the momentum equation of dynamic wave flow routing in
sewer pipes to improve computational parallelization; (3) addition of routines to
evaluate conduit water evaporation and infiltration rate; (4) addition of routines
for estimating LID hydrologic performance; (5) code refactoring and application of
software design principles.

In conclusion, SWMM is a well developed and maintained modeling software.
The overall source code grew up of 40% in about 14 years. This is a plausible
development rate, which demonstrates a regular implementation of new engineering
modeling practices and software release consequently. The increasing number of
lines of source code (and modeling features consequently) intrinsically reflects into
a growing complexity in model maintenance, development, and usage.

Table 9: Number of file and lines of code of SWMM code base over official releases.
SWMM version ‘ Loc (code) ‘ Loc (comment)

v5.0.003 19570 8223
V5.0.007 19 451 8665
v5.0.008 19852 9115
V5.0.00Q 19878 9179
V5.0.011 20 866 8608
V5.0.012 21434 8921
V5.0.013 21 464 8935
V5.0.014 22081 9288
V5.0.015 22257 9394

(... continue to next page)



SWMM version ‘ Loc (code) ‘ Loc (comment)

v5.0.016
V5.0.017
v5.0.018
V5.0.022
V5.1.001
V5.1.002
V5.1.003
V5.1.005
v5.1.000
V5.1.007
v5.1.008
V5.1.00Q
V5.1.010
V5.1.011
V5.1.012

22310
22421
22508
24273
255713
25515
25515
25518
25524
26023
26973
26985
27171
27 440
27 461

9436
9531
9574
10558
10503
10500
10508
10519
10523
10774
11 662
11704
11 884
12171
12282
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Table 10: Percentage of modified, removed, and added number of lines of code between
SWMM versions (percentage computed on the older version).

SWMM versions ‘ modified added ‘ removed
V5.0.003-vV5.0.007 | 734 38% | 1518 78% | 1637 83%
V5.0.007-V5.0.008 | 190 1% 478 2.4% 77  04%
V5.0.008-v5.0.00Q 13 0.1% 36 0.18% 10  01%
V5.0.000-V5.0.011 | 2341 11.8% | 1168 509% | 180 0.0%
V5.0.011-v5.0.012 | 326  1.6% | 1545 7.4% | 977  4.7%
V5.0.012-v5.0.013 | 130  0.6% 79 0.4% 49  02%
V5.0.013-V5.0014 | 443  21% 847  3.9% 230  1.1%
V5.0.014-V5.0.015 | 311 14% | 260  1.2% 84 04%
V5.0.015-V5.0.016 21 0.1% 72 0.3% 19  01%
v5.0.010-v5.0.017 | 69 0.3% 153 07% 42 02%
V5.0.017-v5.0.018 | 83 0.4% 123 05% 36 02%
V5.0.018-v5.0.022 39 1.8% | 2087  9.3% 322 1.4%
V5.0.022-v5.1.001 | 2272 9.4% | 2911 12% | 1671 6.9%
V5.1.001-V5.1.002 6 0.1% 3 0% 1 0%
V5.1.002-V5.1.003 12 0.1% o 0% o) 0%
V5.1.003-V5.1.005 | 13 0.1% 11 0% 8 0%
V5.1.005-V5.1.000 | 5g 0.2% 8 0% 2 0%
v5.1.000-v5.1.007 | 240  09% | 645 25% | 146  06%
V5.1.007-v5.1.008 | 815  31% | 1422 55% 472 1.9%
V5.1.008-v5.1.009 | 12 0.1% 13 0.1% 1 0%
V5.1.000-V5.1.010 | 117  04% | 294 1.1% | 108  04%
V5.1.010-v5.1.011 | 276 1% 393 1.4% 124  05%
V5.1.011-v5.1.012 | 61 0.2% 62 0.2% 41 0.2%
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OMS3 s an environmental modeling framework designed to support and simplify
the development of scientific environmental models. It is implemented in Java, a
programming language that allows the framework to be flexible and non-invasive.
Consequently, Java is the native language for developing OMS-compliant compo-
nents. However, OMS3 aims to ensure the longevity of old model implementations
by providing C/C++ and Fortran bindings that allow for connecting slightly mod-
ified legacy environmental software to newly developed Java components. In the
recent years, three scientific programming languages drew the modeling community's
attention: R, Python, and NetlLogo. They have a flat learning curve, numerous
scientific libraries, and duck typing makes them an attractive solution for fast script-
ing. Furthermore, they have an active developer community that keep releasing
and improving open source scientific packages. This is a relevant aspect when it
comes to facilitating and speeding up the implementation of scientific algorithms.
Therefore, OMS3 integration capabilities have recently been enhanced to provide
R, Python, and NetLogo bindings. As a result, multi-language modeling solutions
can be tailored to meet the scientific community’s needs. Thanks to the framework’s
non-invasiveness, R, Python and NetlLogo scripts must only be slightly modified
with source code annotations to become OMS-compliant components. The resulting
components are nevertheless still executable from within the original environments.
This contribution shows two actual applications of the implemented R and Python
bindings, the NetlLogo implementation is not addressed in this paper. The Regional
Urban Growth (RUC) is implemented in R and the TRansportation ANalysis SIMula-
tion System (TRANSIMS) models require the Python Run Time Environment (RTE)
module to run. The RUG model is a landscape model capable of evaluating impacts
of new regional urban development on surrounding environment and projecting
long-term growth-management plans. TRANSIMS is a software suite based on a
cellular automata microsimulator which performs regional transportation system
analyses. Both model suites are among OMS enabled models for the FICUS project,
the “Framework for Integrating the Complexity of Uncertain Systems”. Furthermore,
the model application flexibility was enhanced by introducing Docker containers in
the workflow to alleviate the burden of complex software management and setup.
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B.1 INTRODUCTION

OMS3 is a flexible and non-invasive environmental modeling framework (David
et al. (2013); Lloyd et al. (2011)). Its main objective is to simplify environmental model
development by streamlining the translation of physical processes into programming
algorithms. It allows for encapsulating each algorithm into a standalone component
ensuring the single responsibility principle. It lowers the development effort related
to data reading and writing, data analysis and visualization, component interaction,
temporal-spatial stepping and multi-threading/multi-processor computations. As a
result scientists can focus on scientific understanding of environmental phenomena
rather than software development.

OMS3 is Java-based, and therefore Java components are natively supported. In
order to maintain compatibility with legacy Fortran and C/C++ software, OMS3
makes use of native shared libraries and provides Fortran and C/C++ bindings.
However, the modeling community’s use of scripting/programming languages like
R, Python and Netlogo is rapidly taking off. These languages are easy to learn
and use because of their friendly syntax and semantics. They rely on user and
developer communities, which share on-line implementation and problems solutions,
generic information and most importantly well designed scientific packages. Some
notable Python examples are NumPy (Oliphant (2006)) and SciPy (Jones et al.
(2014)). Some notable R examples are gstat (Pebesma and Wesseling (1998)),
raster (Hijmans et al. (2015)) and randomForest (Liaw et al. (2002)).

Scientists and engineers solely want to focus on solving their research questions
and problems. These scripting languages are consequently very attractive and
proper OMS3 bindings have become necessary. The main concern while developing
OMS bindings was to keep the user experience in setting up Python and R OMS-
compliant components as close as possible to OMS Java component development.
Section B.2 is focused on describing the user approach in modifying Python and R
scripts into OMS-compliant components. Section B.3 describes actual framework
side implementation of both bindings while section B.4 introduces the process of
bundling OMS3 into a Docker image. Section B.5 shows two actual applications:
the R-based Regional Urban Growth (RUG) model (Westervelt et al. (2011)) and
the Python wrapped TRansportation ANalysis SIMulation System (TRANSIMS)
model (Smith et al. (1995)). Section B.6 provides concluding remarks and identifies
current constraints and needs for future development.

Moreover, OMS3 was recently bundled into a Docker (Merkel (2014)) image
to further simplify user experience: once Docker is installed on the machine, no
further software installation and library linking are required to run OMS3. A user
needs to provide only a properly set up OMS3 project. The Docker container then
takes care of building the project and running the modeling solution, automatically
connecting every type of component.

B.2 USER EXPERIENCE

An OMS component is basically a plain Java class with framework metadata
annotations. Input/output variables are listed as fields and annotated with @In
and @out OMS annotations. The one mandatory method with an @Execute
annotation encapsulates the main algorithm and calls related methods or objects.
Two more methods can be annotated with @Initialize and @Finalize and



O N O OB W N =

B.2 USER EXPERIENCE

are respectively executed before and after the entire simulation. They are optional
methods, though. A user may also add further optional annotations to capture
comments and component design ideas into metadata for generating documentation
later or perform tests.

These basic concepts were used in the design of both Python and R bindings.
Accordingly, two main development steps were identified to seamlessly adapt Python
or R scripts into OMS-compliant components:

1. Determine the function encapsulating the main algorithm if the script is
already split into functions, otherwise wrap the entire script into one main
function;

2. Identify input and output variables and list them at the very beginning of the
script.

Then, suitable annotations have to be accomodated. Listing B.1 and Listing
B.2 ease the understanding of this simple but crucial step: Listing B.1 shows the
annotated code snippet of the R component AttractorAnalysis.R, which is
part of the RUG model; Listing B.2 illustrates the annotated code snippet of the
Python component TransimsObj.py, which is the Python wrapper for executing
and connecting TRANSIMS executables.

A couple of similarities can be underlined in Listing B.1 and Listing B.2: annota-
tions are hidden in comments; Java data types are explicitly specified right after
@In and @Out annotations.

The first aspect allows for maintaining compatibility of scripts with their original
interpreters. To execute the OMS-compliant scripts from within their original
environments, user is asked to: (1) assign input values to each input variable and
null values to each output variable (or just comment them to avoid parsing errors);
(2) call the main function to execute the script.

The second aspect takes into account the absence of declared data types in both
Python and R. Thus, Java equivalent types must be defined between parentheses
right after the annotation to allow for proper conversions when R or Python
components are connected to Java or Fortran or C/C++ components.

Listing B.1 shows how a stack of raster maps (masterRaster, line 5), a list of
raster maps (interconnectMaps, line 8) and a list of strings (instructions,
line 11) are fed to the AttractorAnalysis.R component. After the proper
computation, the raster map describing the attractiveness of strategic locations in
the study area (attractorMap, line 14) is returned. Listing B.2 shows how the
path to the directory gathering TRANSIMS modules (BINDIR, line 6), the path
to the working directory (PROJECT, line 8), the name of the TRANSIMS module
(executable, line 10) and name of the related file of input data and parameters
(controlFile, line 12) are inputs to the TransimsObj.py component. When
the run is over, the component returns the proper message (simDone, line 14).

Listing B.1: R OMS-compliant version of the AttractorAnalysis.R
library (raster)

library (doParallel)

# @In("CoverageStack")
masterRaster

# QIn("List<GridCoverage2D>")
interconnectMaps
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# @In("List<String>")
instructions

# @Out ("GridCoverage2D")
attractorMap

# @Execute

main <- function () {
# RUG attractor analysis
#

attractorMap <<- calcAttractorMap ()
}

Listing B.2: Python OMS-compliant version of the TransimsObj.py

import os
import sys
from TransimsRTE import x

# QIn("String")
BINDIR

# @In("String")
PROJECT

# @In("String")
executable

# @In("String")
controlFile

# QOut ("String")
simDone

# QExecute
def execute():
# Transims OMS object

#
global simDone
simDone = "Transims obj processed"

Currently, only standard data type matching is available’. The R binding
temporarily provides an inner matching of Raster, List of Raster and
CoverageStack between the raster R package and the Geotools Java library.
However, a plug-in system of data type conversions is under development. The
purpose is to allow each user to implement the proper conversion between data
types, and sharing it with the entire community. Nevertheless, two connected R or
Python components can share generic Object data type which does not require any
matching (see Table 11 for available data types conversions).

One design aspect relates to both bindings: in order to actually fill output
variables and avoid declaring local function variables, a user must make use of
specific operators. In R scripts, output variables must be assigned using the double
arrow assignment operator <<— which allows for modifying variables in a parent
level (e.g. attractorMap in line 20, Listing B.1). In Python scripts, output
variables must be declared global at the very beginning of the main function to
allow for modifying variables at parent level (e.g. simDone at line 20, Listing B.2).
Output variables have to be declared outside the main function as well (e.g. line
14, Listing B.1 and Listing B.2). In this way, OMS3 can access their content and
perform proper connections with other components.

With respect to framework invasiveness, no specific OMS3 or other APls have to
be imported or extended.

Python binding makes use of jarray instead of Numpy data structures because jarray makes data transfer
faster and more efficient for the back-end Jep.
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Table 11: R and Python available data types.

Java data type ‘ R data type ‘ Python data type

int int int

double double double

String String String

int] ] vector of int jarray(... JINT_ID,...),

from jep import jarray, JINT_ID

double] ] vector of double | jarray(... JDOUBLE_ID,...),
from jep import jarray, JDOU-
BLE_ID

String[ ] vector of String | jarray(... JSTRING_ID....),
from jep import jarray,
JSTRING_ID

GridCoverage2D raster

CoverageStack RasterStack

List<GridCoverage2D> | list( ) of Raster
Object Object Object
List<Integer> []
List<Double> [
List<String> []
List<Object> (]

Map< Object, Object> dictionary

B.3 TECHNICAL APPROACH AND IMPLEMENTA-
TION

To provide for a smooth user experience the actual implementation burden is
moved into the framework. Python and R are both cross-platform, interpreted, high-
level scripting and programming lanqguages. Thus, they both require interpreters to
parse and execute a script. Simple access through shared libraries like Fortran or
C/C++ through JNI (Gordon (1998)) does not work. Consequently, OMS3 needs to
directly intercommunicate to R and Python interpreters.

The common approach implies the generation of a Java OMS component aiming
to wrap a single R or Python script while building the OMS3 project. Eventually
OMS3 calls only Java classes. When it is time to run the Java wrapper, this starts
a connection to R or Python environment, sends the script to get parsed by the
proper interpreter, sends input data and retrieves output information. It provides
also for properly converting input/output standard data types or data structures
between languages. Obviously, R and Python environments have to be already
installed on the machine and correctly linked to OMS3.
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B.3.1 R back-end: Rserve

Rserve is a TCP/IP server developed by Urbanek (2003) to take advantage of
benefits of R functionalities from within different programming lanquages. It was
developed following three important design principles: separation of the R system
from the application, flexibility for leveraging most R facilities and speed to have a
performant client-server communication. However, the most interesting feature is the
management of multiple clients simultaneously. Rserve creates a different data space
and working directory for each new connection. Because each R OMS-compliant
component opens a new independent connection to the R environment, multiple R
OMS-compliant components can be executed in parallel without interference. This
allows for leveraging OMS3 implicit multithreading computation.

Rserve requires installation of an R interpreter and the Rserve package on a
local computer to properly work with OMS3.

B.3.2 Python back-end: Jep

Jep is an open source Python package (https://github.com/ninia/jep)
that utilizes both JNI and CPython API to run a Python interpreter from within the
JVM. Its main feature is that of creating a different sandboxed sub-interpreter for
each new Jep instance. In this way concurrent sub-interpreters don't share imported
modules or global variables, thus avoiding conflicts.

To properly exercise Jep from within OMS3, the Jep package has to be installed
in addition to the proper Python interpreter. This is not trivial on Windows OS
which requires an additional installation of a dedicated build tool. Furthermore, Jep
shared libraries have to be accurately linked to the correct environment variable (e.q.
LD_LIBRARY_PATH) to be accessible by the Java process. Switching between
Python2 and Python3 might be confusing and error prone as well.

B.4 DOCKER IMAGE BUNDLE

As explained in subsections R back-end: Rserve and Python back-end: Jep,
Rserve and Jep require installation of a proper R or Python environment and
accurate linking of involved libraries, Jep especially. But this means that a user is
expected to take care of software installation and required libraries, which are both
OS specific and require some OS proficiencies. This is diametral to the OMS3
principle of simplifying user experience by separating responsibilities between
users and software developers. To overcome this constraint a recently released
technology has been leveraged and OMS3 has been bundled into a Docker image.

Docker is a software system that packages a software application and its depen-
dencies into an image. It then runs that image as a virtual container on top of a
host OS. It is similar to a virtual machine (VM) since it isolates the running process
of bundled applications from interfering with running processes of the host OS.
However, container virtualization is more lightweight than a Hypervisor based VM.
It virtualizes at operating-system-level without the needs of a hypervisor, which
is an additional software on top of the host OS to create, run and manage virtual
machines(Merkel (2014)). Docker images are platform independent. Consequently,
the same Docker containers run on every OS once Docker is properly installed.
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A Docker image results from a build process that starts off from a Dockerfile.
The latter contains instructions required to install and setup applications along
with dependencies. It also contains instructions for proper library linking and
environment variables set up. The latter don't interfere with environment variable
of the host operating system because Docker isolates the bundled application from
the hosting OS. To correctly exercise an OMS modeling solution the OMS project
is mounted into the running Docker container. The OMS3 image is made available
at https://hub.docker.com/r/omslab/oms/ and Dockerfiles are made
available at https://github.com/sidereus3/oms—docker.

Both, R and Python rely on hundreds of packages which cannot be included
into a Docker image for the sake of size limits and the impossibility of continuous
updates when new packages are released. To overcome this constraint two slightly
different approaches have been implemented.

B.4.1  OMS R packages management

User scripts normally import standard and locally installed R packages through
the library () command. The Docker image manages linking of bundled R
environment to the additional R1ibs/build/ folder.

The OMS Docker image provides a feature that allows for automatically down-
loading and building R packages required by R scripts in the OMS project. This is
a one-time process which is enabled during OMS project build. When specific R
packages are required, the user is asked to create a Rlibs folder inside the main
OMS project. The user has to provide a file named package.txt with a list of names
of required packages, located in R1ibs. During the building step, the Docker
container looks for R1ibs folder. If it exists and contains the file package .t xt,
the container reads all the listed packages and builds the dependency tree. Then it
starts downloading source code of each package into R1ibs/source/ creating
a local R package repository. As a final step, the Docker image goes through the
repository, and builds and installs each package into R1ibs/build/.

Because Docker is platform independent the OMS project can be zipped and
moved to a different machine. If the version of the Docker image does not change,
the transferred OMS projects can be directly executed.

B.4.2 OMS Python packages management

The OMS Docker image does not currently provide any tool for automatically
downloading required python packages and related dependencies. However, if the
user provides Python packages within the folder Pylibs/ in the main project
directory, the OMS Docker image automatically makes new modules and packages
available for standard import.

B.5 APPLICATIONS

The development of both R and Python binding has been continuously tested
with two actual models in order to gain experience and drive the development
direction from the very beginning. The R binding was tested using the RUG model,
while the Python binding was tested with the TRANSIMS model.
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B.5.1 RUG model

The Regional Urban Growth (RUG) model evaluates the attractiveness of a specific
location with respect to urban growth. It is a raster based model: input data is a
landscape raster map which allows for estimating development attraction on each
location depending on proximity to development attractors (roads, highways, etc.)
(Westervelt et al. (2011)). The RUG model was a stand-alone, well implemented R
software that takes advantage of availability of R packages like raster (Hijmans
et al. (2015)), doParallel (Calaway et al. (2015)), randomForest (Liaw et al. (2002))
and gdistance (Van Etten (2012)). To make this model OMS-compliant, it was split
into three different components: Travel Time Analysis, Development Analysis and
Attractor Analysis. This partitioning made possible to identify functions containing
the main algorithms and input/output data.

The RUG model performs a raster based analysis, and thus two Java components
for raster reading and writing were implemented leveraging Geotools APls. Proper
mappings for Raster, List of Rasters and CoverageStack data struc-
tures between Java and R (and vice versa) were included in the R binding. The
final modeling solution is illustrated in Figure 102.

TravelTimeAnalysis

@Out

@

InstructionParser

RasterReader

developmentinstructions &

outputStack ©

O Instructions

Q mapsFolderPath

( AttractorAnalysis RasterTransferOutput
@n @out @n
o

masterRaster

RasterReader CoverageStackWriter

DevelopmentAnalysis

@in @Out
instructions developmentMap

@n @Out
instructions outputStack

@n
inCS

mapsFolderPath masterRaster

Figure 102: RUG modeling solution: Java components in light orange, R OMS-compliant
components in light blue.

B.5.2 TRANSIMS model

The TRansportation ANalysis and SIMulation System (TRANSIMS) model eval-
uates integrated regional transportation systems. Regional population of individual
travelers and freight loads with travel activities and travel plans are core of mod-
eling computation (Smith et al. (1995)). TRANSIMS is more a set of tools than a
homogeneous model. Each module is a stand-alone C++ program, which builds
into a separate, statically linked executable.

A Python Module for encapsulating TRANSIMS executables has been recently
released. TRANSIMS RTE improves scripting flexibility providing for easy modeling
solution design. It allows for setting up TRANSIMS keywords, e.g. @NEW and
@OLD, and running a proper executable and related control file from within a
Python script. Because a TRANSIMS modeling solution is a sequence of calls
to different modules, a generic TRANSIMS-OMS component has been abstracted
from a Python script. A simple Java class reads a csv file with a list of executable
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names and related control files and the feeds the TRANSIMS-OMS component
while the list is empty. A sample modeling solution is shown in Figure 103.

£ )

MicroSim.txt Input TransimsObj

PlanSelect, MicroSim.PlanSelect.ctl
Router, MicroSim.Router.ctl

PlanPrep,MicroSim.PlanMerge.ctl @h @Out @In
PlanPrep,MicroSim.PlanSort.cti pathtofile e BINDIR
Microsimulator,MicroSim.Msim.ctl

ctl executable

controlFile

Figure 103: TRANSIMS sample modeling solution: Java component in light orange, Python
OMS-compliant component in light green.

B.O CONCLUSIONS

This paper shows how two of the most notable and widely used programming
languages in the scientific community have been integrated into OMS3. It can be
concluded that the process of Python/R scripts adaptation into OMS-compliant
components is straightforward and doesn’t require user specific proficiency in
understanding mixed language programming. This opens a future perspective for
easily creating multi-language modeling solutions, that implement againts already
available scientific packages and avoid code duplication.

Thank to the innovative technology of Docker containers, a user does not ex-
perience the burden of connecting OMS3 with Python and R interpreters. An
automated process for R package retrieval and building is provided in the Docker
image. The two presented applications demonstrate the applicability and relevance.
The implementation aims for design consistency with existing annotation based
representation of components.

However, some limitations still exist and will be addressed in future developments:
a fully flexible mapping of R/Python into Java data structures is not yet available;
automated process for Python packages retrieval is not provided; and only the latest
version of a deployed R package is retrieved, user cannot automatically download
a specific package version.
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Conceptual and physically based environmental simulation models as products of
research environments efforts became complex software over time in order to allow
describing the behaviour of natural phenomena more accurately.

Results from these models are considered accurate but often require to operate an entire
system of modeling resources with dedicated knowledge, an extensive set up, and
sometimes significant computational time. Model complexity limits wide model adaptation
among consultants because of lower available technical resources and capabilities.
However, models should be ubiquitous to use in both research and consulting
environments.

This dissertation aims to address and alleviate two aspects of research model
complexity: 1) for researchers, the model design complexity with respect to its internal
software structure and 2) for consultants, the model application complexity with respect
to data and parameter setup, runtime requirements, and proper model infrastructure
setup. The first contribution provides modeling design and implementation support by
managing interacting modeling solutions as “Directed Acyclic Graph”, while the second
one helps to create surrogate models of complex physical models as a streamlined
process.

Both contributions are implemented within the Object Modeling System/Cloud Service
Integration Platform modeling framework and infrastructure and were applied in various
studies.
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