
PhD Dissertation

International Doctorate School in Information and

Communication Technologies

DISI - University of Trento

Novel Methods for Change Detection in

Multitemporal Remote Sensing Images

Manuel Bertoluzza

Advisor:

Prof. Lorenzo Bruzzone
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Abstract

The scope of this dissertation is to present and discuss novel paradigms and techniques

for the extraction of information from long time series of remotely sensed images.

Many images are acquired everyday at high spatial and temporal resolution. The

unprecedented availability of images is increasing due to the number of acquiring sensors.

Nowadays, many satellites have been launched in orbit around our planet and more

launches are planned in the future. Notable examples of currently operating remote

sensing missions are the Landsat and Sentinel programs run by space agencies. This trend

is speeding up every year with the launch of many other commercial satellites. Initiatives

like cubesats propose a new paradigm to continuously monitor Earth’s surface. The larger

availability of remotely sensed data does not only involve space-borne platforms. In the

recent years, new platforms, such as airborne unmanned vehicles, gained popularity

also thanks to the reduction of costs of these instruments. Overall, all these phenomena

are fueling the so-called Big Data revolution in remote sensing. The unprecedented

number of images enables a large number of applications related to the monitoring of the

environment on a global and regional scale. A non-exhaustive list of applications contains

climate change assessment, disaster monitoring and urban planning.

In this thesis, novel paradigms and techniques are proposed for the automatic ex-

ploitation of the information acquired by the growing number of remote sensing data

sources, either multispectral or Synthetic Aperture Radar (SAR) sensors. There is a need

of new processing strategies being able to reliably and automatically extract information

from the ever growing amount of images. In this context, this thesis focuses on Change

Detection (CD) techniques capable of identifying areas within remote sensing images

where the land-cover/land-use changed. Indeed, CD is one of the first steps needed to

understand Earth’s surface dynamics and its evolution. Images from such long and dense

time series have redundant information. So, the information extracted from one image or

a single image pair in the time series is correlated to other images or image pairs. This

thesis explores mechanisms to exploit the temporal correlation within long image time

series for an improved information extraction. This concept is general and can be applied

to any information extraction process.
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The thesis provides three main novel contributions to the state of the art.

The first contribution consists in a novel framework for CD in image time series. The

binary change variable is modeled as a conservative field. Then, it is used to improve the

bi-temporal CD map computed between a target pair of images extracted from a time

series. This framework takes advantage of the correlation of changes detected between

pairs of images extracted from long time series.

The second contribution presents an iterative approach that aims at improving the

global CD performance for any possible pair of images defined within a time series. The

results obtained by any bi-temporal technique, either binary or multiclass, are automati-

cally validated against each other. By means of an iterative mechanism, the consistency of

changes is tested and enforced for any pair of images.

The third contribution consists in the detection of clouds in long time series of multi-

spectral images and in the restoration of pixels covered by clouds. The presence of clouds

may strongly affect the automatic analysis of images and the performance of change detec-

tion techniques (or other processes for the extraction of information). In this contribution,

the temporal information of long optical image time series is exploited to improve the

identification of pixels covered by clouds and their restoration with respect to standard

monotemporal approaches.

The effectiveness of the proposed approaches is proved on experiments on synthetic

and real multispectral and SAR images. Experimental results are accompanied by compre-

hensive qualitative and quantitative analysis.

Keywords: Remote sensing, multitemporal images, multispectral images, Synthetic Aper-

ture Radar, time series, change detection, data archives, time correlation.
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Chapter 1

Introduction

This chapter presents an overview of the research work performed during the PhD. Basic

concepts and definitions are illustrated for understanding the aim, motivations and novel

contributions of this work. The context in which this work has been developed is briefly

introduced. Then, the objectives and novel contributions of the thesis are presented. Finally,

a summary of the structure of the document is reported.

1.1 Background and Motivations

Nowadays, it is possible to continuously collect remotely sensed images of the same area

on the ground using several imaging sensors. From decades, spaceborne constellations

of multispectral scanners like Landsat acquire images around the globe. In support

with this mission, Sentinel-2 recently started operating and collecting images. Together,

these constellations can acquire images of the same investigation area at 10-30 meters

of geometrical resolution with a short revisit time of a few days (in absence of cloud

cover). Not only optical sensors, but also active Synthetic Aperture Radar (SAR) sensors

can be employed to acquire images during the night in an uninterrupted way. The trend

is clear and in the future longer image time series will be acquired and available for use.

More recently, commercial companies, such as Planet Labs [2, 85], provide daily imaging

services and produce images even if with lower quality and spectral resolutions. Moreover,

startup companies like EarthNow [1] promise that in the future real-time acquisitions

from satellite platforms at high spatial resolution will be possible.

For all these reasons, a large number of images of the same area can be collected

regularly. In addition, many historical acquisitions of a given investigation area are already

stored in large archives freely open to the public. A notable example is the Landsat

archive providing images acquired since 1980s. Major space agencies are now following
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similar open data policies like ESA with its Sentinels [32]. The resulting image time

series have high geometrical and temporal resolution but are characterized by time-

varying quality. They can revolutionize many applications and enable new ones, to cite a

few, precision agriculture, smart government, geohazard prevention and fast emergency

response [131, 12, 153, 83]. However, in a few years we may be drowning in data collected

by all these eyes in the sky employed in RS without proper tools to extract information

from these large amount of images in an automatic and reliable way.

Considering the importance of information extraction from this large quantity of

images, this work is focused on Change Detection (CD) techniques. CD is a process that

distinguishes between changed and no changed pixels within a pair or a set of images

acquired over the same geographical area. CD is an important topic since it is one of the

first steps that can be automatically applied to pairs of images from a long time series to

understand the processes occurring within the large amount of images. In this framework,

CD can be used to improve the maintainability and usability of large spatial databases.

In order to apply advanced CD techniques to long image time series acquired by optical

sensors, cloud masking is a mandatory step that can benefit from the higher availability of

images over an area of interest.

The next section will present in details the objectives and novel contributions pre-

sented in this dissertation.

1.2 Objectives and Novel Contributions

The rise of new technologies, the improvement and miniaturization of current ones, the

higher accessibility of data, the growth of the space sector and the opening of image

archives are making a large number of images available.

The manual analysis of data coming at a rate never before tough possible cannot

be performed by human operators. New ways to process long image time series and to

efficiently extract information from them need to be found. New challenges arise such as

the automatic, robust and effective processing of such amount of data. Definition of novel

CD approaches is needed to replace techniques that were effective on previous generation

of images but not on last generation ones. Other challenges consist in the definition of

techniques robust to input data with quality varying over time.

Images from these long and dense time series have redundant information. So, it is

plausible that change maps detected between pairs of images extracted from a image

time series are correlated with each other. This thesis explores mechanisms to exploit

the temporal correlation of images for improving the extraction of information from long
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image time series. Novel techniques are proposed to improve the CD results obtained for

a pair of images using CD maps related to other images pairs. In this context, the cloud

masking and restoration of pixels covered by clouds in long image time series acquired by

optical sensors is needed. In the literature, solutions to this problem often do not exploit

the availability of a large number of images available for the area of study but are based

only on the monotemporal discrimination of clouds. This calls for the development of

new paradigms and novel techniques able to fully exploit all these data and efficiently

process long image time series.

RS can collect information in a more cost-effective way than field surveys [132, 126].

However, the dependency of any technique to ground truth samples will become a much

more serious limitation in the coming year. The collection of ground truth data is a time

consuming and financially expensive operation. So, it can be used only to collect sparse

samples. In addition, the timely update of these samples is not even remotely feasible

at a global scale. In this framework, the implementation of automatic methods for the

unsupervised analysis of remotely sensed images is mandatory.

The main goals of this work are the development of automatic CD techniques and the

study of unsupervised mechanisms for the assessment and improvement of CD results

that exploit long image time series. To enable such automatic CD techniques on a large

number of multispectral images, the reliable cloud screening and restoration of cloudy

pixels is required. Accordingly, the aim of this PhD thesis is the development of novel

approaches for the detection of changes and clouds that are based on a large number of

remotely sensed acquisitions extracted from long image time series.

The thesis investigates multitemporal approaches able to fully exploit the information

acquired on that scene. In particular, the objectives and novel contributions of the thesis

are:

1. the proposal of a new paradigm for the extraction of information from long image

time series. Its goal is the improvement of any task applied to elements of the image

time series. To this end, the framework is based on intrinsic properties of image

time series, i.e., conservative property, map of transitions between pixel status and

flow of information along permitted image pairs. The paradigm is general and has

relevant implications in the data mining of large spatial databases. In this context,

approaches are proposed to exploit the conservative property of the multitemporal

change variable within a time series of images. Their goal is to automatically improve

unsupervised CD results computed pair-wise.

2. the definition of an unsupervised mechanism that validates changes detected be-

tween pairs of images using other changes detected between other pairs across the
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time series. A graph is used to model an image time-series and to detect changes be-

tween pairs of images. The conservative property of the multi-class change variable

is used to evaluate and enforce the consistency of changes detected pair-wise be-

tween images extracted from the time series. The proposed approach is an effective

and efficient way to perform advanced multitemporal analysis of changes occurred

within the time series.

3. the development of multitemporal cloud detection and restoration approaches

capable of efficiently processing and exploiting the large amount of multispectral

images. The proposed technique makes use of long image time series by comparing

a multitemporal profile at pixel level with a set of its similar temporal profiles.

Then, for each multispectral image, the likelihood of each pixel of being clouds

is computed. This approach is also useful for the restoration of pixels covered

by clouds. Experimental results were obtained on a multi-year image time series

acquired by Sentinel-2, known to provide cloud masks with serious quality problems.

1.3 Thesis Organization

The thesis is organized in six chapters.

Chapter 1 illustrates the motivations of this research work. The objectives and main

novel contributions of the thesis are given in the current chapter.

Chapter 2 provides a description of the state-of-the-art change detection techniques.

The review of the literature is focused on unsupervised techniques developed for the most

common RS products, i.e., multispectral optical and SAR images.

Chapter 3 presents the circular framework for binary change detection. Here, the

binary change detection problem between pairs of images is redefined in the wider context

of image time series. The framework exploits the conservative property of the binary

change variable extracted from change detection maps computed pair-wise within the

time series. This property is evaluated along closed circular paths in time. The rationale

of the framework is that, in absence of change detection errors, for each change within

a closed circular path, the opposite change should be detected in any successive pair of

images. In this way, the initial pixel status is maintained at the end of the closed circular

path. In this framework, possible CD errors for a target image pair can be identified by

non-conservative paths, i.e., the ones containing the target CD map with an odd number

of changes. Two different approaches are defined within the circular CD framework, based

on a single or multiple closed circular paths.



1.4 Notation 5

Chapter 4 presents an iterative technique that extends the circular CD framework to

the multi-class CD problem. The multiclass change variable is defined in order to evaluate

the consistency of changes within an image time series in an automatic and unsupervised

way. The proposed method allows the validation and improvement of any multi-class

CD map computed pair-wise within a long image time series. The conservative property

is evaluated in an iterative approach using a graph that models the image time series.

Each node corresponds to different acquisition times and edges represent change labels

detected by any CD technique that can be found in the literature. The presence of changes

is then evaluated by tracking consistent changes stored along edges in the graph.

Chapter 5 presents a multitemporal approach for cloud detection and image restora-

tion in long time series of multispectral images. The advanced analysis of changes based

on optical images on a large area of interest (e.g., regional scale) requires an effective cloud

screening. Unlike mainstream approaches proposed in the literature, the proposed CD

technique leverages the presence of a large number of remotely sensed images over the

same geographical area. The approach compares the pixel-wise multitemporal profile

with a set of its similar temporal profiles. Based on this comparison, the likelihood of each

sample of the target profile of being a cloud pixel is computed. This operation is repeated

for each pixel coordinate of the scene. The result is a cloud mask score that indicates for

each pixel of an image within the image time series the likelihood of being a cloud pixel.

Finally, a cloudy pixel is restored based on the similar profiles.

Finally, the last chapter draws the conclusions of this work. Future developments of

the research activities are also proposed and discussed.

1.4 Notation

Table 1.1 presents the notation used in the whole dissertation.

Table 1.1 Notation used in this thesis.

Symbol Description

T Satellite Image Time Series (SITS) of N images acquired on the same

scene at different times

I n Image in T acquired at tn (n = [1, N ]) of size X ×Y ×B , i.e., number

of rows, columns, channels

p j Time Series (TS) or temporal profile of the values of i -th pixel in T ,

where i ∈ [1,L] and L = X ·Y

Continued on next page
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Table 1.1 – Continued from previous page

Symbol Description

f (I q , I r ) Pair-wise CD technique applied to two images I q and I r

∆q,r CD map between images I q and I r computed by f

∆
r e f
q,r Reference map of changes occurred between (I q , I r )

ωn Class of no-change

ωc Class of change

K Number of classes of change

Iα Pre-event image in a target pair

Iβ Post-event image in a target pair

Cm Closed circular paths containing Iα and Iβ in the single-path and

multi-path circular approaches, m ∈ [1, M ]

Cλ Set of closed circular path Cm of length λ

λ Length of the closed circular paths in Cλ corresponding to the number

of different images in the paths

M Number of the closed circular paths in Cλ

Bm Binary change variable in closed circular path Cm , i.e., ordered se-

quences of changes for a fixed pixel along images in path Cm . Example:

Bm = 〈ωc ,ωn ,ωc〉
Bλ Set of binary change variables Bm

Pm Open path between Iα and Iβ
Om Inconsistency map indicating odd number of changes occurred along

Cm in the circular multi-path approach

U Unreliability map that contains for each pixel in the scene the number

of closed circular paths characterized by an odd number of changes in

the circular multi-path approach

τ Threshold on U used by the multi-path circular CD technique to define

unreliable changes in the target pair

τopt Optimum value of threshold τ used by the circular multi-path ap-

proach

∆∗
α,β Binary change detection map betweenIα and Iβ improved by rejection

or correction of inconsistent change labels in the single-path and

multi-path circular CD technique

Di , j Spectral Change Vector (SCV) or change index computed as difference

vector of the multispectral images in CVA

Continued on next page
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Table 1.1 – Continued from previous page

Symbol Description

ρ Magnitude of Di , j

ρt Threshold on ρ used to compute a CD map using an unsupervised

CVA-based technique

∆m
q,r Pair-wise CD map computed by the iterative circular CD technique at

iteration m

Gp (V ,E ,W ) Graph modeling the pixel-wise p change variable in the iterative circu-

lar CD technique with N vertices, M edges and W adjacency matrix.

C Cycle in graph Gp equivalent to a closed circular path. Example: C =
〈e1,2,e2,3,e3,1〉 corresponding to closed circular path 〈I1,2, I2,3, I3,1〉

µ(C ) Circular path integral or path integral along cycle C in graph Gp . Cycle

is consistent if changes are coherent and µ(C ) = 0

Iα Target image to cloud mask and restore

L (pn
j ) Cloud mask confidence of j th pixel in I n

C Mα Cloud mask for image Iα
Îα Restored target image





Chapter 2

Change Detection in Multitemporal

Remote Sensing Images: State-of-the-Art

This section aims at providing a critical survey of existing works related to the change-

detection (CD) problem in remote sensing. In particular, a brief overview of this problem is

given. Then, the focus is moved to the review of literature of CD using a pair of RS images

(bitemporal CD) or more than two images (multitemporal CD). Focus on change detection

(CD) methods for the extraction of rich semantic content from the data to improve the

maintainability and usability of large spatial databases.

explores mechanisms to exploit the temporal correlation of images for improving the

extraction of information from long image TS

development of new paradigms and novel techniques able to fully exploit all these

data and efficiently process long image time series

Implementation of automatic methods for the unsupervised analysis of remotely

sensed images is mandatory.

2.1 Change-Detection

A change detection technique identifies the set of pixels that are significantly different

between two or more multitemporal images [9, 147]. According to another definition,

remote sensing and other spatial based technologies detect changes when spatial objects

(pixel groups or polygons) become "totally different; expand or shrink; shift positions;

fragment or coalesce" [94]. Change detection has also been defined as "the process of

identifying differences in the state of an object or phenomenon by observing it at different

times" [9, 51].
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In remote sensing, applications of change detection include [118]:

• analysis of land-use and land-cover dynamics;

• environmental change monitoring;

• surveillance;

• agriculture;

• disaster prevention and management;

• urban planning and management.

In remote sensing, usually the focus is on changes induced by a transition in the land-

cover/land-use on the information collected by sensors and then stored in images. The

goal of change detection is to detect "significant" changes while rejecting "unimportant"

ones [147]. The latter may be due to the use of different acquisition systems, to different

atmospheric and environmental conditions or sensor’s noise. For these reasons, a number

of operations are usually performed to avoid the detection of changes that are not of

interest for the current application. To reduce the influence of these factors on the images

with respect to the target changes for the current application, typically before applying

CD on Earth observation data in an operational settings images are supposed to be [34]:

• geometrically corrected and have sub-pixel co-registration [57, 52, 163, 28, 56, 22];

• atmospherically corrected to top-of-atmosphere reflectance or better to surface

reflectance in the case of optical images [150, 53, 73]. Analogously, in the case of

SAR images, they are supposed to be radiometrically calibrated or better terrain

flattened (or topographically corrected).

Such a pre-processing enables the reliable quantitative and consistent analysis of

changes. If possible, it is desirable to have additional requirements on the pre-processing

applied to the image time series. Accordingly, pre-processed images should be:

• acquired by the same sensor. If this is not possible, sensors should be compatible

and have same spectral bands or similar spectral bands for which look-up-tables for

inter-calibration exists;

• acquired during the same season;

• acquired at the same time of day from orbits with same field of view and look angle;
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• cloud-free or in acquisition dates with unchanged soil moisture content.

These requirements can reduce false alarms that could represent a distraction for changes

relevant to the application. Change detection can involve three types of changes [166]:

1. abrupt categorical changes, that represent a steep transition between different land

cover classes. Examples of these inter-class types of changes are wildfires, floods,

deforestation and urbanization;

2. seasonal changes, related to plant phenology with annual life cycles or other periodic

phenomena;

3. gradual changes, slow transitions representing intra-class variability. A typical

example is when the spectral or backscattering signature changes over time but

the land-use/land-cover remains the same. These changes may be due to slow

transitions in land management or due to inter-annual climate variability.

Changes can also be classified based on their temporal behavior. They can be either

permanent or periodical. They can also be defined based on their cause, i.e., natural or

human-induced phenomena [138].

Change detection is a recurring topic in the remote-sensing literature. Many authors

published papers on this topic and as many surveys and reviews were published through

out the years [53, 147, 117, 35, 25, 20]. Definitely, this vast literature can be seen from

many point of views. In remote sensing, CD techniques can be classified in many ways:

1. pixel or object-based CD techniques: depending on the elements on which they

operate. In object-based CD, pixels are grouped in regions with homogeneous

spectral or texture information.

2. CD techniques for active or passive sensors: depending on the nature of the input

data.

3. single-scale or multi-scale CD techniques: depending on the scale on which changes

are analyzed.

4. supervised or unsupervised CD techniques: depending on whether they use or not

use any ground truth data on changes occurred on the ground, on the type of

changes and information when they occurred.

Supervised change detection is based on the prior knowledge of either changes or

the land-use for the single images. This ground truth information is used to train a

classifier that is then able to detect changes but also identify class transitions. These
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CD methods are more robust to the pre-processing of data and do not suffer of

sensor differences or poor atmospheric corrections. The drawback is the need of

reference data that has to be collected by means of costly in-situ campaign or by

photo-interpretation. The collection of reference samples cannot be implemented

on long image time series in a practical way. More importantly, they cannot be timely

updated on a global scale. The supervised CD techniques typically involve the post-

classification comparison of the classification results. Other types of supervised

approaches are based on direct multi-date classification where the multitemporal

stack of images is classified directly in static and dynamic land covers [78, 103, 134,

58, 161].

At the opposite, unsupervised CD techniques use only the information present

in multitemporal images. Usually the information on the kind of change is not

explicitly available and must be recovered on prior information on the type of

sensor and on the area of study.

In this thesis we will focus on unsupervised CD techniques. As explained in the

previous chapter, this family of techniques is more indicated for processing long image

time series. Let an image time series T be an unordered set of N multitemporal images

defined as T = {
I n | n ∈ [1, N ]

}
with N ≥ 2 and where I n are images acquired on the same

scene at different times tn . Each image I n has size n ×d , where n is the number of pixels

and d the number of image channels.

In the next sections, we will distinguish unsupervised CD techniques between:

1. Bitemporal CD techniques: based on the comparison of two images acquired at

two different time instants. These CD techniques are more appropriate for the

detection of abrupt categorical changes.

2. Multitemporal CD techniques: enabled by the increasing availability of image time

series, these techniques can process a large number of co-registered images (N ≫ 2)

acquired at different times, or Satellite Image Time Series (SITS).

2.2 Bitemporal CD

Bitemporal CD techniques address the CD problem by evaluating a pair of images (I q , I r ) ∈
T where q ̸= r . Images are supposed to be already pre-processed, co-registered and

acquired on the same area at different times (tq , tr ). Since tq < tr , I q is called the pre-

event image and I r is called the post-event image. A broad number of approaches can be

employed to detect changes between a pair of images acquired on the same scene. In this
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section, a review of the most important bitemporal CD techniques is proposed based on a

general block scheme based on three steps (see Figure 2.1):

Image
Comparison

Change
Analysis

Bi-temporal
CD Map

∆𝑞𝑞,𝑟𝑟

Ω = 𝜔𝜔𝑛𝑛,𝜔𝜔𝑐𝑐1,𝜔𝜔𝑐𝑐2 ,𝜔𝜔𝑐𝑐3

𝜔𝜔𝑛𝑛𝜔𝜔𝑐𝑐1𝜔𝜔𝑐𝑐2𝜔𝜔𝑐𝑐3

𝑫𝑫𝑞𝑞,𝑟𝑟
Image 𝑰𝑰𝑞𝑞

Image 𝑰𝑰𝑟𝑟

Feature
Extraction

Feature
Extraction

𝑭𝑭𝑞𝑞

𝑭𝑭𝑟𝑟

Fig. 2.1 General block scheme of unsupervised bitemporal CD techniques taking two
images as inputs and based on three steps: feature extraction, image comparison and
change analysis.

1. Feature extraction: features are extracted to highlight multitemporal information

between image I q and I r and stored in F q and F r , respectively.

2. Comparison: features are compared to measure changes. Features are compared

using mathematical operators to generate a change index, D q,r = d(F q ,F r ), that

measures in the feature space changes that are present in the spectral signature or

in the backscattering coefficient, in optical and SAR images respectively [20].

3. Change analysis: the change information extracted in D q,r is analyzed to produce a

change map∆q,r = f (D q,r ). Changes can be identified by means of the change index

at a pixel/object level, at spatial-context level, or at single or multi-scale level. Labels

in the final change map ∆q,r are assigned to a class in Ω = {ωn ,ωc1 ,ωc2 , . . . ,ωcK }

where in the general multi-class case (K > 1) ωn is the no-change class and ωck is

the k-th class. In binary techniques (K = 1), pixels in ∆q,r can be part of one of two

labels, i.e., change (ωc ) or no-change (ωn) class.

The block scheme is proposed with the goal of being as simple as possible but also to be

general and suitable for a large number of CD techniques. It represents a unified context

where state-of-the-art approaches are presented and compared. Due to the vastness of

scientific literature published on the unsupervised bitemporal CD problem, hybrid or
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more esoteric methods exist that may partially fit in the proposed architecture. They will

not be considered by this review. However, many of these techniques can be lead back to

the proposed general block scheme or to an equivalent formulation that is compatible

with it. In particular, thanks to its flexibility, the proposed general general block scheme is

also suitable to techniques that:

(i) do not perform any feature extraction and apply a comparison operator directly on

the original images, i.e., F n = I n ;

(ii) avoid the computation of any change-index but perform the change analysis directly

on the input images or on their respective features, i.e., ∆q,r = f (I q , I r ) or ∆q,r =
f (F q ,F r ).

In the following subsections, a non-exhaustive list of the main approaches proposed in

the literature will be provided considering each of the three steps. The state-of-the-art

techniques will be briefly described considering the types of images most typically used,

i.e., the ones acquired by optical and SAR sensors.

1) Feature extraction

One or more channels of the input images are usually directly used in the CD process. In

this case, feature extraction consists in the selection of the most suitable spectral bands or

backscattering polarization combinations for the application, for optical and SAR images,

respectively. Other times, image channels are transformed to better extract information

on changes occurred between the two images. Here, Vegetation Index Difference (VID)

or similar indices and band ratios are a popular choice, e.g., Normalized Difference

Vegetation Index (NDVI) or Normalized Burn Ratio (NBR) [47, 92].

More complex linear combinations of all the image channels are proposed for the

data reduction and to reduce the correlation between different image channels. These

combinations better highlight changes between the two images. Examples of these trans-

formations are the Principal Component Analysis (PCA) [60, 174, 139], Kauth-Thomas

(KT) or Tasselled Cap transformation [54], Multivariate Alteration Detection (MAD) [135],

the Iteratively Reweighted MAD (IR-MAD) [48] and Independent Component Analysis

(ICA) [121, 110]. In general, CD techniques based on linear transformations are more

robust since they are less sensitive to image pre-processing than techniques based directly

on pixel radiometry without applying any linear transformation on the data. Thus, they

are more robust to suboptimal radiometric correction. However, the automatic analysis of

changes in the new components or variates is more complicated since the subsequent
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change analysis becomes data dependent and there is no general way to identify changed

pixels.

A typical operation performed before feature extraction is image filtering. Due to the

differences between optical and SAR sensors, image filters are different in the two cases. In

particular, optical and SAR sensors have a different noise distribution: additive gaussian

noise for passive optical images and multiplicative noise for active SAR acquisitions [55].

SAR images are characterized by speckle noise that strongly limits the success of any

CD approach. For this reason, SAR intensity is multilooked [13] and spatial filters are

typically applied to reduce speckle noise. Some examples of these filters used before the

change detection are: Frost filter [64], Lee filter [100], Lopez and Touzi enhanced SAR

filter [115], Hagg edge preserving optimized speckle filter [71], Touzi speckle filtering [162],

gamma-MAP filter [130] and nonlocal mean (NLM) filter [174].

In the case of SAR images, the active nature of the sensor can be exploited and other

features can be extracted for CD purposes. The first way is represented by coherent SAR

CD that models different decorrelation source in the context of SAR interferometry. The

coherence decorrelation caused by target changes is extracted between two complex SAR

images [88]. Another way to extract features from the polarimetric SAR coherency matrix

are polarimetric SAR decompositions, e.g., Pauli, Cloude-Pottier (or H-α decomposition)

and Freeman-Durden decomposition [45, 46, 62, 63]. These popular decompositions have

been used to develop unsupervised classifiers and CD techniques [102, 101, 154].

Features can also be computed at context level or by means of multi-scale approaches.

In general, spatial-contextual information can be extracted locally or globally [66]. Typi-

cally, in RS, spatial-contextual CD techniques are local-based and compute features in

sliding windows or using segmentation techniques [79]. In this context, spatial informa-

tion can be extracted such as textural information and morphology [74, 168]. On the other

hand, multiscale approaches evaluate image features at different resolutions by means of

wavelet decomposition or multiresolution mechanisms [26, 37]. Recently, Deep Neural

Networks (DNN) have been proposed for the unsupervised and automatic extraction of

features for the solution of the bitemporal CD problem [68].

2) Image Comparison

The image comparison step aims at highlighting changes occurred between the two images

and at increasing the discriminability of changed pixels against noise and unwanted

changes. Several mathematical operators can be adopted to perform image comparison

to extract change information. The most popular are the difference and ratio image, for

optical and SAR images, respectively.
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Difference image can be computed using a single image channel (Univariate Image

Difference, UID) [65, 9]. The extension of UID to multivariate data is provided by Change

Vector Analysis (CVA). CVA is one of the most popular CD approach for multispectral

optical images. It operates at pixel-level and extends image differencing to process mul-

tiple spectral bands [120, 41, 13, 17, 19, 172, 151, 112, 176]. In this technique the change

index is called Spectral Change Vector (or SCV) computed as: D q,r = I r − I q . Typically,

CVA exploits only the magnitude of SCV to measure the intensity of changes in several

multitemporal spectral bands using the Euclidean distance. The magnitude and direction

of SCV has been successfully analyzed in the polar domain [19, 176] and exploited for the

detection of multiple types of changes [22, 111]. In other approaches, the SCV is exploited

by Spectral Angle Mapper (SAM) [175], Spectral Correlation Mapper (SCM) [36] or Spectral

Gradient Difference (SGD) [42].

Image ratioing can be used to compare two images by computing the ratio of image

channels instead of the difference [144, 149]. It is better suited to statistics of SAR images

affected by speckle noise [20, 13]. In particular, log ratio is very popular for unsupervised

CD with intensity SAR images [67, 130, 23, 39, 13]. Accordingly, the change index is

computed as: Dq,r = log(Ir /Iq ).

Image regression exploits the temporal relationship between the pre-event and post-

event images to develop a regression function used to estimated I r using I q . Change

is detected by the size of the regression residual. This technique is not sensitive to the

impact of sub-optimal atmospheric correction and image calibration but it is not very

practical since it requires accurate regression functions: D q,r = I r − Î r , where Î r = r (I q )

represents the results of the regression function r ().

Other comparison operators are similarity measures such as the Kullback–Leibler (KL)

divergence [79, 127], Normalized Information Distance (NID), Normalized Compression

Distance (NCD) and the correlation coefficient. Other statistical similarity measures are

Mutual Information (MI), Variational Information and Mixed Information [20].

The data transformations presented in the previous subsection can also be applied af-

ter image comparison on the change index D q,r . An example is PCA that has been applied

to the original images separately or stacked together but also on the difference or log-ratio

image [20, 174]. Another example is the curvelet tranform borrowed from image compres-

sion. This image decomposition was used for noise reduction and CD in polarimetric SAR

data and applied to the log-ratio image for disaster and flood monitoring [155, 24].
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3) Change analysis

The change analysis is the most important step and at the core of the CD process. At this

final stage, an appropriate unsupervised analysis of the change information stored in

the change index analysis D q,r is needed to compute the map of changes ∆q,r between

images (I q , I r ).

The unsupervised decision between changed and unchanged pixels can be performed

in an automatic way in the context of signal detection theory. Traditionally, the decision

can be performed in two ways: using a thresholding-based approach or a clustering-based

approach.

Thresholding-based CD approaches apply a proper threshold to the change index

image D q,r to distinguish between change and no-change classes. Standard histogram

thresholding techniques include quantile-based algorithms. They are based on the as-

sumption that changed pixels are on the tails of the change-index histogram. Other classic

thresholding techniques are Kapur’s method to maximize total entropy histogram thresh-

olding [91], Otsu’s method histogram thresholding method [140], Kittler-Illingworth (K-I)

histogram thresholding for minimum error [95], improved K&I algorithm [178] and Huang

and Wang’s thresholding by minimizing the measures of fuzziness [76]. Other approaches

are based on tree structures [157]. A better thresholding can be obtained using statistical

models like test hypothesis. Typically, for multispectral images, gaussian fitting of the

histogram can be performed followed by thresholding based on means and standard

deviations [123, 148]. For SAR data, a generalized gaussian distribution is preferred along

with connectivity methods exploiting the spatial neighborhood to be more robust to

speckle noise. Generalized gaussian is usually used for SAR intensity log-ratio [39, 13],

sometimes a bivariate gamma distribution [40]. In this case, given the assumption of

known probability density function of clutter, Constant False Alarm Rate (CFAR) detector

implements an adaptive thresholding that enables to fix the desired false alarm probability

[146]. Another example involves the test statistic for equality of two complex matrixes

following a complex Wishart distribution [48].

Improved results can be obtained by formulating the CD problem in the bayesian

framework. Several bayesian approaches have been proposed for minimum error, min-

imum cost and the Neyman-Pearson criterion. In this context, Markov Random Fields

(MRF) implements the Bayesian rule for minimum error to model the spatial-contextual

information [30, 129]. The estimation of model parameters can be performed using the

maximum likelihood estimation. In many cases, the distribution of change/no-change

classes can be estimated with incomplete data using the iterative Expectation Maximiza-

tion (EM) [29, 176] or by means of the Reduced Parzen Estimation (RPE) technique [30].
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Another possible approach to solve automatically the change analysis in unsuper-

vised CD techniques involves clustering-based CD techniques. They are distribution-free

approaches and perform an unsupervised clustering operation on the change-index im-

age [38]. Other approaches, use the Scale-Invariant Feature Transform (SIFT) keypoints

segmentation that has been proved useful for CD on the log-ratio image [171]. Another

example of segmentation for unsupervised CD is the use of two-dimension entropic

segmentation [82].

Finally, as an alternative, machine learning approaches have been used in unsuper-

vised CD approaches. SVM-based techniques have been exploited to apply a nonlinear

mapping of the pair of images based on kernels or the change-index to higher dimensional

feature space [169]. Another solution consists in the pseudo-training of a SVM classifier.

Training is selected by thresholding the magnitude of CVA using any automatic technique

and then used to train a SVM that will classify pixels in changed and unchanged [21].

Recently, methods based on Deep Neural Networks (DNN) have been proposed based on

2D spatial topology-preserving image analysis. They perform CD directly on the pair of

images without any explicit image comparison. They use an unsupervised pre-training

strategy to train the deep network [68, 179, 109, 93, 108, 177, 90].

2.3 Multitemporal CD

Data policies providing access to satellite images at no-cost for the final user and the

increasingly availability of RS missions and Earth observation images enable new classes

of CD techniques using long image time series where the number of images N ≫ 2 [34].

In this framework, unsupervised CD techniques operate on Satellite Image Time Series

(SITS) that consist of a set of images of the same scene acquired at different times by one or

more sensors. The multitemporal CD techniques can be classified depending on whether

the images of the time-series are ordered based on their acquisition time [143]. Some

techniques use the temporal information of SITS only to distinguish different images of

the series. These methods use all the available images but do not consider their temporal

order, so the multitemporal information is not fully exploited. In other words, these

techniques do not check any consistency of the temporal information within the image

time series [143]. Other techniques use the time dimension of SITS to totally order the

set of images. These approaches are more complex but fully analyze the SITS’ temporal

behavior. Accordingly, these techniques are able to extract temporal patterns [142] and to

perform a frequency analysis of the series [119].
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Most of the techniques for processing SITS extract a temporal profile (TS) for each

pixel of the area of study and perform a multitemporal analysis of the behavior of the

reflectance or backscattering values.

In the case of TS acquired by optical sensors, techniques have been proposed for

processing medium spatial resolutions of the order 300-500m. A typical example is TS

acquired by MODIS. This is due to the availability of an higher number of images at the

expense of a lower geometrical resolution. The most popular approach for the detection

and characterization of breakpoints in trends of temporal profiles is Breaks For Additive

Seasonal and Trend (BFAST) [166]. BFAST integrates the iterative decomposition of time

series into trend, seasonal and noise components with methods for detecting changes,

without the need to select a reference period, set a threshold, or define a change trajectory.

Its main objective is:

1. the detection of multiple abrupt changes in the seasonal and trend components of

the time series; and

2. the characterization of gradual and abrupt ecosystem changes by deriving the time,

magnitude, and direction of change within the trend component of the time series.

In order to detect all the three types of changes (i.e., abrupt, seasonal and gradual),

other methods based on BFAST have been proposed:

1. Detecting Breakpoints and Estimating Segments in Trend (DBEST) [81];

2. Sub-Annual Change Detection (SCD) [33];

3. Time Series Segmentation and Residual Trend analysis (TSS-RESTREND) [31].

In the literature, seasonal or inter-annual time series analysis exists mainly at medium

resolution (e.g., 300m) because of the higher data availability. Since these techniques are

designed for TS with a coarse spectral and spatial resolution, they cannot properly analyze

small changes captured by high-resolution acquisitions. Indeed, thanks to the launch of

RS missions acquiring images at higher revisit time, new approaches have been proposed

to deal with the recently available SITS with an improved trade-off between spatial and

temporal resolutions [158, 159, 27].

Other unsupervised CD techniques for TS acquired by optical sensors are based on the

sequential analysis and prediction of the temporal profiles. They are designed to perform

online or near real-time CD with a short detection delay at a fixed value of the false alarm

rate. Remotely sensed 1D-TS are difficult to predict since they are highly non-stationary

with seasonal oscillations and inter-annual variations. However, several techniques have
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been proposed in the RS literature to solve this challenging problem, in particular in the

context of land cover time series analysis. In this type of techniques, change is detected

whenever the observations differ significantly from the forecast performed using time

series historical data. A typical assumption is the stationarity of the TS [128, 6]. A notable

example of techniques relying on this hypothesis is CUSUM [141]. However, in the general

case, the stationarity is lost due to land-cover dynamics [96]; to overcome this problem, a

transformation of the time series into approximately stationary in the case of no change

can be performed. Other approaches assume only that TS is cyclo-stationary [70] or

assume the structure or the trend and periodicity is known [167]. Finally, unsupervised

CD techniques for SITS have been implemented by modeling the background image

[177, 51, 147].

In the case of TS acquired by SAR sensors, classic time series analysis is based on trend

monitoring of the TS intensity in dB scale [137]. Other popular techniques are based

in the simultaneous test of hypotheses of homogeneity of SAR images. The omnibus

test statistics has been applied to a polarimetric SAR time series composed of Sentinel-1

terrain-corrected detected data [50, 113, 49]. This test statistics computes a difference

image using all the images of the time series. Alternative CD approaches are based on

Binary Partition Tree (BPT) for the analysis of changes in polarimetric SAR time series

[152, 4, 5].

SAR image time series were the focus of more advanced multitemporal CD techniques,

far before similar studies were possible using multispectral images. Indeed, this type of

images are the most suitable for CD purposes thanks to their almost independence to

weather conditions. Their use is also very appealing because of the particular active nature

of SAR sensors and the properties of the microwave backscattering coefficient over time.

Many works have taken advantage of the temporal stability of the polarimetric stack of SAR

images for CD in urban scenes to predict the reflectivity of future SAR image acquisitions

with a ray tracing analysis [11, 43, 122]. Other works explored the possible patterns of

changes detected by means of likelihood ratio tests along an image time series of SAR

intensity images [114]. The active nature of the SAR signal enabled novel approaches

based on the exploitation of its unique coherent properties. For example, [79] used a

symmetrical version of KL divergence as a similarity measure that can produce a change

image from multi-temporal SAR data based on the evolution of the local statistics using the

Kullback–Leibler divergence. Moreover, thanks to the large number of images that were

acquired many years before the same was feasible with optical sensors, novel approaches

were proposed for the advanced analysis of changes detected within the multitemporal

SAR images. In particular, methods based on the analysis of the temporal similarity
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matrices built in each pixel across the multitemporal stack of SAR images were proposed

to enforce the coherence of the CD results obtained on pairs of images. A global framework

called NORmalized Cut on chAnge criterion MAtrix (NORCAMA) was proposed for the

classification of step changes along multi-temporal SAR time series [160]. This technique

is based on the likelihood ratio test applied to pairs of SAR images after applying a nonlocal

denoising step. It can detect different types of changes in order to help the interpretation

of changes within the stack of SAR images. The multitemporal analysis of changes within

the image time series is performed by means of the Change Criterion Matrix (CCM) that

describes the temporal behavior of the pixel-level time series considering the results of a

change criterion applied to all the possible pairs of time instants. By means of the CCM,

different changes can be identified at different spatial positions. A similar mechanism was

proposed at image or sub-image level [10].

Finally, recent studies proposed the use multisensor SAR and optical time series for

the time series point change detection [58] and suggested the use of neural network

autoencoders for CD in SITS [90].

2.4 Problems and Challenges

The review was focused on unsupervised change detection techniques for optical and

SAR images. In particular, techniques proposed in the literature were divided in two types:

bitemporal and multitemporal unsupervised CD techniques.

The review highlighted that state-of-the-art CD approaches are mainly based:

• on just a pair of images or,

• on the trend analysis performed by time series using images in chronological order.

Few CD techniques in the literature are based on both the above-mentioned ap-

proaches where the multitemporal step consists in the analysis of the pair-wise change

results, e.g., [99]. None of them are based on the evaluation of the pair-wise CD results

on closed circular paths, i.e., sequences of images where the first and last acquisitions

coincide. These closed circular paths defined within an image time series corresponds to

closed loops in time and are characterized by interesting properties, one of them being the

conservative property of changes. The conservative property of changes takes advantage

of the huge amount of information content contained in dense image time series. The

exploitation of correlated change maps computed pair-wise along closed circular paths

opens the possibility of improving the CD results and reduce the effects of noise. More-

over, the conservative property of the change variable represents an additional source of
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information for the development of intrinsically more robust approaches that are based

on the simultaneous analysis of more than a pair of images. Techniques that enable the

consistency of changes have been proposed for SAR data but they are not general and

cannot be applied to any kind of image.

Another open problem in the multitemporal analysis of earth observation data is the

consistency of change detection or classification results obtained at different points in

time. In this context, the use of the conservative properly can be helpful in the extraction

of meaningful and temporally consistent change results.

The results obtained in these research directions during the PhD will be presented and

discussed in the next chapters of the thesis.



Chapter 3

A Novel Circular Framework for

Improving Binary Change Detection

Maps in Image Time Series

This chapter1 presents a novel framework where the binary change detection problem

between pairs of images is redefined in the wider context of image time series. The final goal

of the novel framework is to improve the results of any pair-wise binary change detection

technique by introducing and exploiting the conservative property of the binary change

variable. The closed circular path framework considers binary change detection maps

computed pair-wise within the time series along closed circular paths. The latter are

considered consistent if the conservative property of the pixel-wise binary change variable

is valid: in absence of change detection errors, for each change within a closed circular

path, the opposite change should be detected in any successive pair of images. In this

way, the initial pixel state is maintained at the end of the loop. A non-conservative path

is inconsistent and points out an anomaly in a change map. Related samples are thus

considered unreliable, then either rejected or corrected. Due to noise, the use of a single

circular path is particularly sensitive to the presence of detection errors between pairs of

1Part of this chapter appears in:

M. Bertoluzza, L. Bruzzone, F. Bovolo, “Circular Change Detection in Image Time Series Inspired by Two-
Dimensional Phase Unwrapping,” 2017 IEEE 9th International Workshop on the Analysis of Multitemporal Re-
mote Sensing Images (MultiTemp), Bruges, Belgium, 27-29 June 2017. doi:10.1109/Multi-Temp.2017.8035253

M. Bertoluzza, L. Bruzzone, F. Bovolo, “A Novel Framework for Bi-Temporal Change Detection in Image Time
Series,” 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS ‘17), Fort Worth, TX,
USA, 23-28 July 2017. doi:10.1109/IGARSS.2017.8127145

M. Bertoluzza, L. Bruzzone, F. Bovolo, “A Novel Circular Framework for Improving Binary Change Detection
Maps in Image Time Series,” IEEE Transactions on Geoscience and Remote Sensing, Submitted.

http://dx.doi.org/10.1109/Multi-Temp.2017.8035253
http://dx.doi.org/10.1109/IGARSS.2017.8127145
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images along the path. The use of multiple paths allows the identification and correction

of unreliable changes in a target pair of images. Experimental results obtained on both

synthetic and real image time series confirm the validity and the effectiveness of the proposed

framework.

3.1 Introduction

Remote sensing technology is becoming more and more pervasive and operational for

addressing many different problems related to monitoring and mapping the Earth. One

key feature of satellite remote sensing data is related to the capability of polar orbiting

satellites to revisit a given area regularly. This enables the possibility to use satellite

images for detecting, analyzing and monitoring dynamically the processes occurring on

the Earth surface [89, 98, 105, 87]. These phenomena are of fundamental importance

in a large number of application domains (e.g., risk assessment, emergency response,

damage assessment, monitoring anthropogenic activities, climate changes) [106, 34]. In

this context, the importance of Change Detection (CD) between a pair of images acquired

on the same geographical area at different times has been recognized in the past decades,

with a significant growing interest in the last ten years. This is due to many reasons. On the

one hand, a large number of satellites are currently operating with different acquisition

systems on-board having different capabilities (e.g., optical and synthetic aperture radar

systems) and properties (e.g., geometric, spectral, radiometric resolutions). Furthermore,

thanks to the evolution of satellite technology, it is possible to deploy constellations of

satellites allowing a tremendous increase of the temporal resolution and decrease of the

revisit time of the acquisitions. As a consequence, a large amount of remotely sensed

data over the same area can be acquired every day. On the other hand, the open data

policies implemented by major space agencies generates a growing interest in the use

of multitemporal data and image time series. Indeed, the Landsat archive and the data

acquired by the new Sentinel constellation are provided free-of-charge to the users [173, 8].

For example, in the case of the Sentinel-2 constellation, the same area of the Earth surface

can be imaged with a revisit time of a few days at a geometric resolution up to 10 meters.

The increased data availability requires the definition of novel techniques for the auto-

matic information extraction in large-scale image time series. The high data availability

represents a new scenario that significantly changes the perspective with respect to the

formulation of traditional problems. In the past it was common to use only a pair of

images from which detecting any abrupt change occurred in a given area. This pair-wise

binary CD problem has been deeply studied in the literature. State-of-the-art approaches



3.1 Introduction 25

are either based on just a pair of images or on the trend analysis performed by time series

change point detection using images in chronological order [147].

Nowadays, in the context of CD, it is possible to assume that long time series are

available. Thus, when one addresses problems of CD finalized to detect abrupt changes

between two acquisitions, it may be convenient to exploit more than one pair of images

by defining novel strategies based on a large number of images in the considered time

series. In this way a larger amount of information acquired on the target area is taken into

account in the solution of the CD problem, i.e., the detection process accounts for the

temporal correlation of changes over more than two images. In this chapter, we present a

new framework for the detection of abrupt changes between pairs of images that relies

on more than just a pair of images extracted from the time series. In this framework, the

binary change detection problem between a target pair of images is redefined including

more images from the time series in order to increase the reliability and accuracy of

the binary change detection map. CD results are improved by exploiting the temporal

correlation of changes detected across the time series. The two proposed approaches

that operate within this framework reformulates the binary change detection problem

on the target pair by considering that the random variable along time associated with the

change decision should be conservative over every possible closed circular path within

the considered time series. If a change occurred between spatially corresponding pixels of

two images in a closed circular path in time, consistency implies that there is an equal

and opposite change between another image pair composing the same temporal closed

circular path. If not, an anomaly occurred in the change detection process in any pair of

images along the path. In this way, the conservative property can be used to extend the

change detection operator between a pair of images to a larger number of acquisitions

in the time series. In greater detail, a conservative binary variable is defined that models

the abrupt changes along closed circular paths in the time series. Any anomaly against

the conservative property represents an inconsistency along the circular path and points

out possible errors in the change detection maps computed by considering only pairs of

images. So, this principle can be used to validate the change detection results on any pair

of images within the time series. Moreover, it can be used to design novel strategies for the

correction of any detected error according to proper information theory strategies. This

is made possible by the binary nature of the change variable, for which a reliable error

detection implies also possible correction.

The proposed framework is general and can be applied to change detection maps

obtained by any possible binary CD technique present in the literature. Therefore it

can be useful to analyze time series describing phenomena not only related to remote
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sensing (e.g., risk assessment, emergency response, damage assessment, monitoring

anthropogenic activities, climate changes [106, 34]), but also from a large number of ap-

plication domains (e.g., biomedical images, computer vision, video surveillance, code

theory [170, 147, 104]). The framework is also valid for any type of sensor since it can be

applied to CD maps obtained by analyzing images acquired by either passive or active

systems. It operates in post-detection, thus, it can be potentially applied to CD maps orig-

inated from both passive and active images given that an adequate binary CD technique

is selected such that these maps are sensitive to the same types of change.

We validated the effectiveness of the proposed approaches by considering four datasets

composed of series of multispectral and Synthetic Aperture Radar (SAR) images. To

support general conclusions, experiments are based on heterogeneous datasets: they

were acquired by different types of sensors over different areas of study with varying

topographies and characterized by different kinds of changes. Moreover, they contain

different numbers of images having varying size. The first dataset is a synthetic time series

generated by adding pseudorandom Gaussian noise to a pair of images characterized

by an abrupt change. The second and third datasets were acquired by multispectral

sensors: on an area located in California, U.S., and on an area in Sardinia Island (Italy)

by the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) sensors of the

Landsat 8 mission and the Multispectral Instrument (MSI) of the Sentinel-2 constellation,

respectively. Regions of study are areas where forest wildfires destroyed a large region

of vegetation. The fourth dataset was acquired by Sentinel-1, a SAR constellation, and

contains images of an area near Houston, Texas, U.S., frequently characterized by flooding

events. Different pair-wise binary CD techniques were applied to these datasets to deal

with their specific characteristics for deriving the binary CD maps that are the input

to the proposed circular framework. This to emphasize the fact that the framework is

independent on the change detection technique used for deriving the binary maps and

that any CD technique can be used.

The rest of the chapter is organized as follows. The next section introduces the main

basic concepts of the proposed circular change detection framework. Section 3.3 presents

and discusses two novel change detection approaches that exploit the conservative prop-

erty of the binary change variable within closed circular paths in the image time series.

Section 3.4 presents the four datasets while section 3.5 presents the pair-wise CD tech-

niques used during the experiments. Section 3.6 presents and discusses the experimental

setup and the results. Finally, Section 3.7 draws the conclusions of the chapter.
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3.2 Proposed Multitemporal CD Framework

The goal of the circular change detection framework is to detect abrupt changes occurred

between a target pair of images taken from an image time series with the highest possible

accuracy by exploiting other images of the time series. In particular, the framework

improves the CD results obtained by state-of-the-art pair-wise binary CD techniques by

evaluating if binary changes detected within an image time series are consistent with each

other. The proposed framework rests on a number of definitions and hypotheses related

to an image time series that describe its main components. These definitions will be used

in Section 3.3 to formulate the two proposed change detection approaches.

Definition 1. Time series: Let an image time series T be an unordered set of N images

defined as:

T = {
I n | n ∈ [1, N ]

}
, (3.1)

with N ≥ 3 and where I n are images acquired on the same scene at different times tn . In

(3.1), I n are assumed to be co-registered and co-calibrated and having size X ×Y ×B ,

where X , Y and B indicate the number of rows, columns and channels, respectively.

For instance, B = 1 for gray-valued images and B = 3 for RGB images. The proposed

framework can be used either with long and sparse image time series and with short and

dense time series. The framework only requires time series containing more than two

images to improve the change detection performance obtained on the target pair. It also

does not require a regular time sampling.

Let p be the variable denoting the generic spatial coordinates of pixels within images

I n , thus p = 1, . . . ,P ×Q. Accordingly, the multitemporal set of values associated to spatial

position p is indicated with Tp . The latter is a set having the same size as T , but its

elements are B-dimensional vectors I n,p that contain values assumed by I n at the same

fixed spatial position p in different instants in time.

Definition 2. Target image pair: Let Iα and Iβ be a couple of images taken from the time

series T (Iα, Iβ ∈ T | tα < tβ). Let us assume that an abrupt change occurred between

them, i.e., a sudden and step change that clearly indicates a different value encoded in the

changed image. The framework requires that the time of the transition is shorter than the

temporal frequency of the image time series. Iα, Iβ are referred to as the target image pair

since the goal of the framework is to detect any abrupt change occurred between them.

The two images are called pre-event and post-event images since tα strictly precedes tβ.

Definition 3. Target binary change detection map: Let∆α,β be the binary change detection

map representing the abrupt changes occurred in the target pair Iα and Iβ. The change
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detection map can be obtained by any pair-wise binary and binary change detection

method from the literature. A non-comprehensive list is given in [97, 69, 145, 107, 176],

but any other CD method can be considered since the proposed framework does not

imposes any constraint and work only on binary change detection maps. Pixels in ∆α,β

may assume one among two labels, namely change (ωc ) or no-change (ωn). By convention,

two numerical values are assigned to the two classes: ωn = 0 and ωc = 1. Let L = {ωn ,ωc }

be the set of labels and P the set of pixel positions p. A binary change detection technique

is a mapping f : P 7→L stating that a pixel p ∈P is assigned to a label f (p) ∈L . Let us

denote f (p) as fp for short. Therefore, a pair-wise binary change detection task applied

to the target pair of images Iα and Iβ can be represented as a mapping fp (Iα, Iβ) =∆α,β

that takes only the two images as input and returns as output a binary map of size P ×Q.

Similarly, the pair-wise binary change map for a generic pair of images I i and I j (i , j ∈
[1, N ]) is denoted by the operator ∆i , j .

day

year 

d1 d366

y1

y2

y3

d365d2

IIα β

C1

C2

C3

Fig. 3.1 Grid representation of an image time series where each image coordinate cor-
responds to the year and day of the year of its acquisition. Examples of closed circular
paths of length λ= 3 (C1), λ= 4 (C2) and λ= 5 (C3) appears in yellow, blue and green color,
respectively.

Definition 4. Closed circular path: Let us define a closed circular path in time as an

ordered sequence of images extracted from a subset of T that contains the target pair Iα
and Iβ defined as:

Cm = 〈ci 〉λ+1
i=1 = 〈Iα, Iβ, I n . . . , Iα | I n ∈T ∧n ̸=α,β〉, (3.2)

where m ∈ [1, M ] and λ ∈ [3, N ]. The set Cλ = {Cm} contains the closed circular paths of

length λ and has cardinality equal to M . The length λ of the closed circular paths is equal
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to the number of different elements in the sequence while the value M , which is related

to the number of possible permutations of images I n within T , whose upper-bound is

given by:

M≤ (N −2) !

(N −λ) !
=
λ−1∏
k=1

(N −k). (3.3)

Figure 3.1 gives a pictorial representation of T in which some illustrative closed circular

paths of lengths λ= {3,4,5} are shown in yellow, blue and green color, respectively.

The proposed framework relies on a partial temporal ordering of the images extracted

from the time series because it does not require to totally order images in T , but it is based

on the notion of closed circular path where only the order of successive images along paths

is important. Moreover, the use of closed circular paths in time gives a clear advantage

with respect to state-of-the-art multitemporal techniques that use a sequence of images

in chronological order to capture long time temporal information. At the opposite, the

proposed framework is based on many sequences of images that are combined in several

permutations of image pairs for CD purposes.

Under the proposed multitemporal change detection framework, we can reformulate

the change detection task of Definition 3 as an improved mapping f ∗
p (Iα, Iβ,Cλ) =∆∗

α,β

that computes the changes occurred in the target pair considering all the image pairs

(I i , I j ), and corresponding pair-wise binary change maps ∆i , j , inside the set Cλ of closed

circular paths.

The presented framework is the theoretical foundation of the two novel multitemporal

change detection approaches that will be described in the next section.

3.3 Proposed Circular CD Approaches

The proposed approaches developed within the multitemporal CD framework improve

the results of the binary CD maps generated by any pair-wise binary method by evaluating

the temporal consistency of the binary change variable within closed circular paths that

contain the images of the target pair. Improved CD performance is obtained by using the

temporal correlation of sequences of binary change maps detected within pair of images

from the time series. The latter can be exploited thanks to the conservative property of

the binary change variable valid under the hypotheses of the circular framework.

Definition 5. Binary change variable: The binary change variable in the time domain

is defined at pixel level as the ordered sequence of changes detected along any closed

circular path:

Bm = 〈δi 〉λi=1, δi = fp (ci ,ci+1) ∀ci ∈Cm . (3.4)
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A binary change variable is constructed for each closed circular path Cm by applying

sequentially any pair-wise binary change detection technique fp to all the pairs of subse-

quent images in that path. As done in the previous section, the sequences are added to a

set denoted as Bλ = {Bm}.

The notion of binary change variable allows one to check the consistency of changes

detected between the target pair. In other words, changes in ∆α,β can be tested against

changes among other pairs of images in the time series instead of being considered as

the last outcome of the detection process only. In this way, other images are used in

a circular way to validate change detection results of the target pair. In the latter, it is

possible to identify pixel-by-pixel change detection errors. In particular, the binary change

variable represents the random variable associated with the change decision and should

be conservative over every possible closed circular path defined within the considered

time series under the assumptions of the framework presented in Section 3.2.

Definition 6. Conservative property: The conservative property of the binary change

variable defined in time along closed circular paths is valid when (i) focusing on abrupt

changes and (ii) within the time series characterized by a temporal frequency lower than

the transition time related to changes occurred in the target pair. The conservative prop-

erty of the binary change variable derives from the fact that, under the above mentioned

hypotheses and in absence of change detection errors along the closed circular path, the

change of interest occurred during the target time period must be detected once again in

the opposite direction along any of the considered temporal closed-loop within the time

series. Accordingly, additional changes occurred in other pairs of the temporal closed-

loops, but not in the target pair, will be followed by their complementary change. As a

result, the number of changes detected along any closed circular path in the time series

must be even because a change should be followed in the path by its complementary

change. This property enables the analysis of the consistency of changes in binary change

variables Bm .

This property can be justified by the physical nature of the values encoded in Tp , i.e.,

reflectance or SAR backscattering coefficient over time. In fact, these quantities can be

modeled as a conservative field along any closed circular path because the initial and final

value of a specific pixel coincide. Under the hypotheses of the proposed framework and in

absence of CD errors, the binary change variable can be modeled as a conservative field

in time as well. In other words, the initial status of a pixel must be consistent with results

obtained by integrating changes detected along any temporal closed-loop. So, changes

within any closed circular path must be followed later in the loop in time by their opposite

change so that the initial pixel state is guaranteed at the end of the closed circular path.
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Within the circular framework, an anomaly generated by any binary change detection

technique applied to pairs along a circular path can be found whenever the conservative

property of the binary change variable is not verified. This occurs when the number of

changes detected in a binary change variable is odd. Unfortunately, the disparity of the

number of changes along temporal loops is only a sufficient condition for the possible

presence of change detection errors within pairs of images in a closed circular path. In

fact, due to the binary nature of the change variable, the presence of an even number of

change detection errors along the path cannot be identified by the proposed approaches.

Nevertheless, the circular paths characterized by anomalies are tagged as inconsistent

and the respective pixels in the change detection maps along the closed circular path are

considered unreliable.

This mechanism can be better explained by the example shown in Figure 3.2 that

consists of a short time series with four single-band multispectral images. Following the

notation used in Section 3.2, T = {
I1, I2, I3, I4

}
, N = 4 and B = 1. In this example the

target pair is composed of I1 and I2 images (α= 1,β= 2). For the sake of simplicity let us

consider a single closed circular path of length λ= 4. According to (3.3), there are only two

possible closed circular paths that include the target pair and the remaining two images

I3 and I4 (i.e., M = 2). Following (3.2), C1 = 〈I1, I2, I3, I4〉 and C2 = 〈I1, I2, I4, I3〉. Figure 3.2

shows the closed circular path C1 where for simplicity we focused on a given pixel only.

To apply our approaches we need to perform the following four change detection tasks:

∆1,2, ∆2,3, ∆3,4 and ∆4,1. In this example, I1 and I4 are light gray pixels, while I2 and

I3 are darker, in analogy with a time series containing pixels with low and high values.

As a consequence, in absence of CD errors within the time series, ∆1,2 = ∆3,4 = ωc and

∆2,3 = ∆4,1 =ωn . Case 3.2a is the ideal case where no change detection error is present

along the path. The number of changes in the closed circular path is even and every

change along the circular path can be considered reliable. Next, cases 3.2b and 3.2c have

a single CD error (connections with a red cross) and the number of changes (continuous

yellow lines) in the circular path is odd. Thus, an unreliable change in the circular path

is pointed out by the proposed circular mechanism. Finally, case 3.2d represents a case

where the mechanism is unable to detect unreliable changes since the closed circular path

contains two CD errors, even if the number of changes along the path is even. Due to

symmetry, the same holds true for the number of no-change labels.

Following this mechanism, the proposed approach can identify anomalies against

the conservative property of closed circular paths that are caused mainly by two types of

change detection errors. The first type is due to the assignment of a wrong change class for

a certain amount of pixels of the scene due to the erroneous decisions performed by the
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Fig. 3.2 Example of a closed circular path of length λ= 4 at a fixed pixel. I1 and I4 are light
gray pixels, I2 and I3 are darker pixels. The figure shows four possible configurations of
changes which can be encountered by the circular change detection approaches. Yellow
lines show the result of the pair-wise binary change detection between the pixels: solid line
indicates a change (ωc ), dashed none (ωn). A red cross indicates an error in the pair-wise
binary change detection.

pair-wise binary change detection method. Please note that any CD method is likely to

induce detection errors, even the most advanced ones. The second type of errors is caused

by gradual changes that are not detected for an even number of times along the input

paths. Since these fuzzy changes can be assigned along the paths either to the no-change

or change class, the conservative property of the related binary change variables does not

hold anymore.

The use of closed circular paths in time allows an improved exploitation of temporal

correlation within pair-wise CD maps extracted from the time series. The proposed

framework focuses on a target pair of images by using several closed circular paths within

the time series containing the selected target pair. To better understand the novelty

introduced by the concept of closed circular path, let us consider the definition (3.2) as

sequences where the first element has been removed:

Pm = 〈ci 〉λ+1
i=2 = 〈Iβ, I n . . . , Iα | n ̸=α,β〉. (3.5)

In other words, a closed circular path can be generated by concatenating the target pair

followed by any of the open paths Pm . As a consequence, the binary change variable of

(3.4) can be obtained by concatenating change/no-change labels in the target pair with

labels detected along open paths Pm :

Bm =∆α,β∪〈δi 〉λ−1
i=1 , δi = fp (ci ,ci+1) ∀ci ∈ Pm , (3.6)

where ∆α,β is concatenated to change detection maps computed along successive pairs in

Pm . The concatenation of subsequent change labels along paths Pm (i.e., not considering

the target pair itself) can be considered as other CD results obtained by a pair-wise binary
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technique on the target pair. In the framework of decision fusion, each individual path Pm

can be considered as an additional output to be combined to take a final decision. These

additional instances of CD results for the target pair of images have been obtained in the

circular framework by using other pairs of images extracted from the time series instead

of computing them on the target pair. Changes among them are combined because of

the circular framework definition in such way that they are strictly related to changes

occurred in the target pair. This is because of the conservative property of the binary

change variable.

As outlined above, the circular CD framework exploits the conservative property of the

binary change variable along temporal loops to identify anomalies in the unsupervised

pair-wise binary CD results along closed circular paths. However, it cannot identify in

which CD maps along an inconsistent closed circular path CD errors occur. For this reason,

this chapter proposes two different approaches for the exploitation of this property in

order to improve the CD results for the target pair. The two approaches differentiate on

the number of closed circular paths they use to exploit the conservative property of the

binary change variable:

i) the single-path circular approach uses only a single closed circular path (i.e., M = 1).

In this approach, pixels in the target CD map where the conservative property is

broken are rejected in the attempt of retaining in the target CD map only the most

reliable pixels at the expense of avoiding a decision on critical pixels. Unfortunately,

the use of only one closed circular path does not allow the discrimination of the

specific change detection map(s) that breaks the conservative property of the bi-

nary change variable along closed circular paths characterized by anomalies, i.e.,

inconsistent paths. This is due to the fact that the presence of inconsistencies along

a path can be tested only by accumulating changes detected between successive

maps along that path. For this reason, the single-path circular approach is designed

only to reject pixels in the target pair where the conservative property of the binary

change variable is broken. Any decision on these pixels in the target change map is

avoided at the risk of rejecting some correct change labels.

ii) the multi-path circular approach combines the information of a set of closed cir-

cular paths (i.e., M > 1) containing the target pair in order to improve its change

detection statistics. By combining several closed circular paths, the multi-path

circular approach can compute an unreliability index of the pixels in the change

detection map of the target pair. The use of more than one path enables the identifi-

cation of the most unreliable pixels in the target images that have a high probability

to be mislabeled. Here, the reliability of the process of identification of CD errors is
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expected to be higher than in the previous approach because of the combined use

of several paths. Therefore, the label of these pixels can be corrected.

Target
Image
Pair  

Standard
Binary CD

Improved Target
Bi-temporal CD

Binary CD Map Circular CD Map

Construction of
Closed Loops for

Target Pair ( α , β)

Definition of the
Binary Change Variable

Consistency
Analysis

,i j∆

αI βI

iI

jI

= ,

Fig. 3.3 Block scheme common to the two proposed circular CD approaches.

The first circular change detection approach aims at selecting pixels where CD results

are reliable by rejecting unreliable decisions in the CD map of the target pair. The second

one, based on more circular paths, selects those change/no-change pixels with high

probability to be mislabeled in the target images and corrects them.

Let us analyze the block scheme (Figure 3.3) common to the two circular change

detection approaches and their expected properties and behaviors. The input to the

system is a time series T containing N images. Both the approaches define the binary

change variable for the target pair (Iα, Iβ) using other images in the time series and check

its consistency. They differ on how they improve the pair-wise binary CD map for the

target pair ∆α,β. First, both approaches define the set Cλ of M closed circular paths Cm

of length λ containing the pair of images Iα and Iβ. Then, paths are translated at pixel

level into binary change variables Bm and added to set Bλ. The consistency of the closed
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circular paths is evaluated by counting pixel-by-pixel changes along them. According to

Definition 6, a closed circular path Cm is considered inconsistent whether the number of

changes is odd:

Om =

1 when
∑λ

i=1δi ∀δi ∈ Bm is odd,

0 otherwise.
(3.7)

As a result, Om is a binary image that indicates pixels in path Cm that are inconsistent

because the associated binary change variables Bm shows an odd number of changes.

This computation is performed for any item in Cλ in order to compute pixel-wise the

number of closed circular paths with an odd number of changes:

U =
M∑

m=1
Om . (3.8)

U represents a measure of the unreliability of the binary CD maps along the closed

circular paths. Finally, by means of the proper mechanisms, this information is exploited

to improve the change detection map of the target pair (∆α,β).

According to the number of closed circular paths (i.e., M) where the conservative

property is evaluated and tested for inconsistencies, the circular mechanism can be

implemented in two different ways: the single-path or multi-path circular approach. In

the next subsections, the analysis of the two approaches is given with the identification of

their most important theoretical properties.

3.3.1 Single-path Circular Approach

In this approach, a single closed circular path is taken into account (i.e., M = 1). The

consistency of its binary change variable is evaluated and anomalies along CD maps along

it are identified pixel-wise if an odd number of errors is present. This means that an error

cannot be detected if and only if an even number of errors occurred along that path. Let

Per r be the overall error probability given by the sum of the probability of missed or false

alarms for each pixel in any of the CD maps between a pair of subsequent images in

the closed circular path. Under the hypotheses of the proposed framework, for each of

the considered pair of images within the time series, the error probability after applying

the single-path circular approach is the probability of having unidentified unreliable

change/no-change labels along the path. This corresponds to the probability of even
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number of errors along the closed circular path:

P SP
er r =

⌊λ/2⌋∑
k=1

(
λ

2k

)
P 2k

er r (1−Per r )λ−2k , (3.9)

where λ is the length of the closed circular path. The equation holds under the assumption

of independent errors between different pairs of images.

3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.02

0.04

0.06

Fig. 3.4 Single-path error probability P SP
er r versus the length λ of the closed circular path

for different pair-wise binary change detection error probabilities Per r = {0.01,0.02,0.04}.

Figure 3.4 shows the behavior of P SP
er r versus λ for the single path length as defined

in (3.9). The theoretical error probability obtained by using the single-path approach

has been computed assuming three different values of the initial error probability Per r

on any pair of images in the time series. The three values of the error probability Per r

of the pair-wise binary CD technique that the circular approach aims at improving are

represented in different colors and plotted as horizontal dashed lines. The probability

of having unidentified unreliable CD labels P SP
er r increases (i.e., the capability of error

reduction decreases) as the length of the closed circular path increases until a point

where too long paths do not allow any identification of anomalies in the change detection

results for the target pair. This is because the probability to have CD errors along the

path increases with the number of images and thus pairs in the path. For each value of

Per r we can identify the critical path length (λmax) above which the single-path circular

approach is no longer useful. For the given values of Per r = {0.01,0.02,0.04}, the critical

path length varies and it is equal to λmax = {15,11,8}, respectively. The plot shows that,

irrespective of the binary change detection technique and of the CD accuracy within the

time series, a short single closed circular path can identify change detection anomalies

in the target pair and reduce the error probability of the change detection. Moreover,
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this plot demonstrates that in the circular approach the use of very long paths is not

convenient, due to the proliferation of errors which occur as the circular paths become

longer. This is further verified by the asymptotic convergent behavior of P SP
er r :

lim
λ→+∞

P SP
er r = 0.5. (3.10)

The theoretical behavior of the error probability is a lower-bound of the behavior

obtained in practice on real data by the circular approach. It points out that the single-

path circular approach works at best with short paths. As mentioned above the single-path

option does not allow to establish whether the detected error occurred in the target pair

(Iα, Iβ) or another pair within the closed circular path. Else said the approach is sensitive

to anomalies occurring in either the target pair or in another one along the circular path.

This information can be used to increase the CD reliability by discarding all the pixels for

which anomalies are identified at the cost of rejecting the decision also for some correct

pixels. Moreover, if we focus on the behavior of P SP
er r at a fixed path length λ, one can note

that the capability of the circular approach to identify CD errors increases when Per r is

lower. Indeed, we expect that the proposed mechanism works better if CD errors within

the time series are rare.

3.3.2 Multi-path Circular Approach

If the number of considered closed circular paths is greater than one (i.e., M > 1), we can

combine the information about the unreliability of changes in the set of closed circular

paths containing the target pair and use it to estimate the reliability of only the changes

occurred in the target pair. This can be achieved by means of a statistical approach based

on a user defined threshold τ on the variable U . Here we propose a correction mechanism

for the unreliable samples in ∆α,β. Thanks to the binary nature of the change variable,

unreliable pixels can be corrected by swapping labels and thus improving the change

detection accuracy. The correction rule is defined as:

∆∗
α,β =


1, when U > τ∧∆α,β = 0,

0, when U > τ∧∆α,β = 1,

∆α,β otherwise.

(3.11)

Threshold τ can assume values in the range [0, M ] and its value tunes the sensitivity of

the proposed mechanism to unreliable samples. A small value (e.g., τ= 0) makes pixels

unreliable even with a odd number of changes in few closed circular paths. The result is
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an increase of the false alarms in the detection of unreliable pixels in the target CD map. A

large value of τ makes the process of identification of unreliable pixels less sensitive to

the errors in the change detection maps within the time series. Therefore, as τ becomes

large (e.g., τ= M) less unreliable change detection results are detected. In this way, the

tuning of the threshold τ modulates the trade-off between the amount of correction to

perform and the sensitivity to the unreliable change detection results. Other strategies for

the combination of the CD map along closed circular paths can be derived based on the

illustrated multi-path approach.

3.4 Datasets Description

This section presents the four datasets used in the experiments performed with the single-

and multi-path circular change detection approaches. We used a synthetic dataset that

allows tuning the experimental setup in a controlled way. We also carried out experiments

on three image time series composed of multispectral and SAR images. In these time series,

the target pair of images are characterized by abrupt changes caused by wildfires and

flood events. The datasets are accompanied by a reference map of the changes occurred

in the target pair (∆r e f
α,β ) that has been obtained by means of photo-interpretation and

used for validation purposes only.

(a) (b) (c)

Changed
Legend:

Unchanged

Fig. 3.5 Target pair of images (a) I 1 and (b) I 2 of the synthetic dataset characterized by an

abrupt change. (c) Reference map of the changes ∆r e f
1,2 shows changed areas in black.

1. Synthetic Dataset: The synthetic time series is composed of 100 multispectral images

of size 1000×1500 pixels with 2 spectral channels. They were generated starting from



3.4 Datasets Description 39

a pair of real multispectral images characterized by an abrupt change. An abrupt

change was artificially created between the first and the successive acquisitions. The

spectral signatures of burned areas extracted from another image were inserted into

the first image [59]. This simulates an abrupt change with precise reference data

on the changed pixels. Successively, uncorrelated pseudo-random White Gaussian

noise characterized by a tunable SNR was added to each simulated image. To

have a realistic simulation, each image has a different noise realization [112, 3].

Experiments with different values of SNR were conducted to test the performance

of the proposed approach under the presence of a varying number of errors in the

change detection maps between the pairs of images within the time series. The

values SNR = {15,18,20} dB were used in the conducted experiments, but due to

space constraints only the results related to SNR = 18 dB will be illustrated. The

other options lead to similar results. Figure 3.5 shows the first two images (I 1 and

I 2) of the synthetic dataset that form the target pair of images to which the circular

CD approach is applied and the reference change map ∆r e f
1,2 . All the other images

are very a similar to I 2, but with different values of SNR, thus they are not displayed.

The scene includes 1 180 000 unchanged and 320 000 changed pixels, the 78.7% and

the 21.3%, respectively.

(a) (b) (c)

Changed
Legend:

Unchanged

Fig. 3.6 False color representation of the (a) pre- and (b) post-event images of the target pair
for the experimental dataset acquired by Landsat 8 (RGB=SWIR2,NIR,Blue). (c) Reference

map of the changes (∆r e f
8,9 ) that shows the areas burned by a forest fire in black color.

2. Landsat 8 Dataset: The dataset is composed of 9 multispectral images acquired by

the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) multispec-
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tral sensors of the Landsat 8 satellite at a spatial resolution of 30m. The images of

size 400×600 pixels correspond to an area of 216 sq. Km and were co-registered and

radiometrically corrected in top-of-atmosphere reflectance. They are represented in

false colors in Figure 3.9. The time series represents a forest located near Clearlake,

Lake County, California. Images were acquired between 2013 and 2015 at dates in

Table 3.1.

The change event corresponds to the areas burned by two forest fires (Rocky &

Jerusalem Fires) occurred during August 2015 that destroyed approximately 7 122

hectares of forest. The target pair used as input of the circular change detection

approaches is composed of images I 8 and I 9. The target pair is shown in false colors

in Figure 3.6 along with the reference change map. In the scene 165 469 unchanged

and 74 531 changed pixels are present, the 68.9% and the 31.1% of the entire scene,

respectively. In the experiments, the red and the near-infrared were used since they

demonstrated to be highly sensitive to the presence of the vegetation, thus widely

used in many vegetation indexes, and among the most significant multispectral

bands characterized by the highest contrast for the change of interest. This is a

simplifying choice widely used in the literature. Note that the choice of spectral

bands used by the pair-wise binary CD technique does not affect the objectivity of

our experiments.

3. Sentinel-2 Dataset:

(a) (b) (c)

Changed
Legend:

Unchanged

Fig. 3.7 False color representation of the (a) pre- and (b) post-event images of the target pair
for the experimental dataset acquired by Sentinel-2 (RGB=NIR,Green,Blue). (c) Ground

truth of the changes (∆r e f
8,9 ) that shows the areas burned by a forest fire in black color.
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The dataset is composed of 9 multispectral images acquired by the Multispectral

Instrument (MSI) of the Sentinel-2 satellite at a spatial resolution of 10m. Images

are of size 1000×1500 pixels and correspond to a study area of 150 sq. Km. They

were co-registered and radiometrically corrected in top-of-atmosphere reflectance.

They are represented in false colors in Figure 3.10. The study area is close to the city

of Sedilo located in Sardinia, Italy. Images were acquired between 2015 and 2016 at

the dates reported in Table 3.1.

The change event corresponds to the areas burned by a wildfire occurred on July

2nd, 2016 with an extension approximately of 2 312 of hectares. As a consequence,

the target pair corresponds to I 8 and I 9. The target pair is shown in false colors in

Figure 3.7 along with the reference change map where 1 263 482 unchanged and

236518 changed pixels are present (84.2% and the 15.8% of the entire scene). As in

the previous dataset, the multispectral bands used are the red and the near-infrared.

(a) (b) (c)

Changed
Legend:

Unchanged

Fig. 3.8 Target pair of images (a) I 87 (24-Aug-17) and (b) I 88 (30-Aug-17) of the Sentinel-1
dataset characterized by an abrupt change (RGB=C11,C22,C11/C22). (c) Reference map of

the changes ∆r e f
87,88 shows flooded areas in black.

4. Sentinel-1 Dataset:

This dataset includes a time series of 115 images collected by both Sentinel-1A

and Sentinel-1B. They are of size 1000×1000 pixels and cover have a total area of

298 sq. Km. The Sentinel-1 SAR instrument operates at the C-band in the Inter-

ferometric Wide Swath (IWS) mode. The single-look complex acquisitions were

pre-processed into dual-polarization covariance matrices by means of a series of

standard steps applied to both VV and VH polarizations [16, 133]: co-registration,

calibration, composition and de-bursting of the three sub-swaths acquired in the

Terrain Observation with Progressive Scans (TOPS) acquisition mode. Subsequently,

Intensity-Driven Adaptive-Neighborhood (IDAN) speckle filter [165] and multi-look
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Table 3.1 Acquisition dates of images in the experimental datasets (mm/dd format)

Dataset Year Acquisition Dates

Landsat 8
(California,
forest fire)

2013 8/13, 8/29, 9/7

2014 6/6, 7/24, 8/25

2015 7/18, 7/27, 9/4

Sentinel-2
(Sardinia,
wildfire)

2015 8/3, 8/13, 8/26, 9/12, 12/11

2016 5/22, 6/11, 6/28, 7/18

Sentinel-1
(Houston,
flood)

2015 7/18, 7/30, 8/11, 8/23, 9/04, 9/16, 9/28, 10/10, 10/22,
11/03, 11/15, 11/27, 12/09, 12/21

2016 1/14, 1/26, 2/07, 2/19, 3/02, 3/14, 3/26, 4/07, 4/19,
5/01, 5/13, 5/25, 6/06, 6/30, 7/12, 7/24, 9/10, 9/22, 9/28,
10/04, 10/10, 10/16, 10/22, 10/28, 11/03, 11/09, 11/15,
11/27, 12/03, 12/09, 12/15, 12/21, 12/27

2017 1/02, 1/08, 1/14, 1/20, 1/26, 2/01, 2/07, 2/13, 2/19, 2/25,
3/03, 3/09, 3/15, 3/21, 3/27, 4/02, 4/08, 4/14, 4/20, 4/26,
5/02, 5/08, 5/14, 5/20, 5/26, 6/01, 6/07, 6/13, 6/19, 6/25,
7/01, 7/07, 7/13, 7/19, 7/25, 7/31, 8/06, 8/12, 8/18, 8/24,
8/30, 9/05, 9/11, 9/17, 9/23, 9/29, 10/05, 10/11, 10/17,
10/23, 10/29, 11/04, 11/10, 11/16, 11/22, 11/28, 12/04,
12/10, 12/16, 12/22, 12/28

2018 1/03, 1/09, 1/15, 1/21, 1/27, 2/02, 2/08

operator (using a 4×1 window in range/azimuth) were applied to obtain a covari-

ance matrix in the SLC geometry for each acquisition. Each co-variance matrix is a

2×2 square matrix of the form:

C =
〈C11〉 〈C12〉
〈C21〉 〈C22〉

=
〈SV V S∗

V V 〉 〈SV V S∗
V H 〉

〈SV H S∗
V V 〉 〈SV H S∗

V H 〉

 , (3.12)

where Sr t denotes the complex scattering amplitude for received and transmitted

polarizations (r, t ∈ {H ,V }), ∗ represents the complex conjugate and 〈·〉 represents

the spatial averaging performed to have a meaningful representation of the backscat-

tered SAR signal from a group of resolution cells. Figure 3.11 shows a subset of the
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image time series in false colors. These images were acquired over the same test area

in Houston, Texas, U.S.. Table 3.1 shows the acquisition dates of the 115 Sentinel-1

images, acquired from 2015 to 2018. Figure 3.8 shows the target pair of images for

this dataset. The change of interest is the flooding event caused by Hurricane Harvey

during the end of August 2017. The extent of the flooded areas is approximately of

46 sq. Km (300 230 pixels).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3.9 The Landsat 8 dataset is composed of 9 images denoted as I 1 − I 9 (a-i)
that were acquired in California by Landsat 8. They are represented in false colors
(RGB=SWIR2,NIR,Blue).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3.10 The Sentinel-2 dataset is composed of 9 images denoted as I 1 − I 9 (a-i)
that were acquired in Sardinia by Sentinel-2. They are represented in false colors
(RGB=NIR,Green,Blue).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3.11 Sentinel-1 dataset: 9 out of 115 images acquired in Houston on (a) 18-Jul-15, (b)
14-Jan-16, (c) 24-Jul-16, (d) 09-Dec-16, (e) 03-Mar-17, (f) 26-May-17, (g) 24-Aug-17, (h)
16-Nov-17, (i) 08-Feb-18. They are represented in false colors (RGB=C11,C22,C11/C22).
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3.5 Generation of the Pair-wise CD Maps

This section describes the techniques applied to the data sets presented in Section 3.4.

hese CD methods generated binary CD maps given as input to the approaches defined

within the proposed circular framework. In the experiments, different pair-wise binary CD

techniques fp (I q , I r ) are used to detect changes occurred between image pairs. Depend-

ing on the nature of the sensor that acquired the dataset, a different noise distribution is

present in the images, thus different pair-wise binary CD techniques are used.

Note that simple techniques widely used in the remote sensing literature have been

selected because our goal is not to optimize each single CD map, yet to illustrate how the

proposed circular framework can improve the binary CD maps independently on the way

in which they are generated. The considered unsupervised CD techniques are as follow:

i) Change Vector Analysis (CVA) is used for image pairs of the synthetic, the Landsat 8

and the Sentinel-2 datasets [120];

ii) the automatic CD technique based on the complex Wishart change statistics is used

for image pairs extracted from the Sentinel-1 dataset [48].

Given two multispectral images I q and I r acquired at different times tq and tr , the CD

technique based on CVA applied to a pair of images (I q , I r ) computes the change index or

Spectral Change Vector (SCV) as the difference vector of the two multiband images:

D q,r = I q − I r . (3.13)

This measure of change is then thresholded by an unsupervised technique that automati-

cally discriminates changed (class ωc ) and unchanged (class ωn) pixels. To reach this goal,

the distribution of the magnitude ρ = |D q,r | is usually statistically modeled as a mixture of

two gaussian densities representing the ωc and ωn classes respectively. This is justified

because images acquired by passive sensors have spectral bands that can be modeled

using a normal distribution, as justified by the central limit theorem [136]. As a result, the

posterior probability of the random variable that describes the magnitude of SCV (i.e., ρ)

can be rewritten as:

p(ρ) = P (ωn)p(ρ|ωn)+P (ωn)p(ρ|ωn). (3.14)

Finally, the decision between changed and unchanged class is performed by thresholding

ρ. The threshold to apply to ρ can be defined in several ways, but by using the Bayesian de-

cision theory it is possible to compute the optimal threshold which minimizes the overall
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Fig. 3.12 Pair-wise binary CD technique based on CVA: Rayleigh (red/left curve) and Rice
(green/right curve) distributions superimposed on the histogram of ρ of the target pair in
the (a) synthetic, (b) Landsat 8 and (c) Sentinel-2 datasets. (d-f) Corresponding CD maps
obtained using the Bayesian minimum-error threshold (changed areas in black).

error probability in the change-detection process [29, 13] as the solution of Equation 3.15:

P (ωc )/P (ωn) = p(ρt |ωn)/p(ρt |ωc ). (3.15)

Under the assumption of spatial independence of pixels (valid for medium spatial res-

olutions, e.g. 20m) and co-registered and radiometrically corrected images, it has been

proven that the distribution of the magnitude ρ can be better modeled as the sum of a

Rayleigh and a Rice distributions for the no-change (ωn) and change (ωc ) classes [19, 176].

In the experiments, the estimation of the bimodal distributions is performed automatically

and in an unsupervised way by means of a Expectation-Maximization (EM) algorithm

according to [176]. Figure 3.12 shows the CD maps computed by the pair-wise binary CD
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technique on target pairs for the minimum error case of the synthetic and experimental

datasets acquired by Landsat 8 and Sentinel-2. The pair-wise binary CD maps ∆α,β were

obtained by applying the Bayesian decision rule for minimum error to magnitude of

the difference image ρ modeled as a mixture of a Rayleigh and a Rice distribution for

the no-change (ωn) and change (ωc ) classes, respectively. The Bayesian thresholds were

computed intersecting the mixture of two distributions that models the histograms of

the CVA-based change index ρ. The results are shown in the figure superimposed to the

histogram of ρ for the three target pairs of multispectral images chosen in the available

datasets. It is worth noting that the second target pair (Figure 3.12b) presents a lower

number of unchanged pixels than the target pair of the third dataset (Figure 3.12c), the

69% versus the 84%. This results in an higher peak close to the origin of the histogram for

the latter pair of images. Then, a threshold ρt is applied to ρ to compute CD map ∆α,β.

(a)

0
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(b) (c)

Changed
Legend:

Unchanged

Fig. 3.13 Pair-wise binary CD technique based on the complex Wishart distributed test
statistics used for the target pair of Sentinel-1 dataset: (a) −2lnQ test statistics, (b) binary
CD map at p = 1% and (c) reference change map (changes and no-changes in black and
white colors, respectively).

The CD technique based on the test statistics for equality of the two complex Wishart

distributed covariance matrices exploits all the complex dual-polarimetric information

acquired by the SAR sensor. Given the value of Equivalent Number of Looks (ENL) of

two complex images I q and I r , the test statistics Q is derived according to [48]. The

distribution of −2lnQ under the assumption of no-change is approximately χ2. This

approximation is usually used even though better approximations can be found in [50].

Finally, CD map ∆q,r can be computed at a given significance level p. Figure 3.13 shows

this CD technique applied to the target pair of the Sentinel-1 dataset.

The three cases used in the circular framework setup described in Section 3.4 allow

us to test the capabilities of our framework for identifying unreliable changes under the

presence of a different occurrence of false and missed alarms in the target pair. Table 3.2
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Table 3.2 Values of the parameters used in the computation of the pair-wise binary target
CD maps in the four datasets for the (a) minimum-error, (b) commission-error bias and
(c) omission-error bias cases.

Case

Synthetic Landsat 8 Sentinel-2 Sentinel-1

ρt ρt ρt p ENL

(a) 0.095 0.052 0.039 1% 16

(b) 0.050 0.040 0.025 10% 20

(c) 0.150 0.060 0.120 0.1% 12

presents the different values assumed by the target threshold ρt used in the synthetic and

two experimental datasets acquired by Landsat 8 and Sentinel-2 and by the parameters (p,

ENL) of the Sentinel-1 dataset. CD maps different from the target pair are computed using

minimum-error parameters. For the target pairs of the synthetic, Landsat 8 and Sentinel-2

datasets, the minimum-error ρt values were selected following the Bayesian decision

theory using the estimated distributions for the change and no-change classes. At the

opposite, for the Sentinel-1 dataset, p values for the minimum-error case were computed

by using the reference change map available for the target pair of this dataset. ENL=16 for

the minimum-error case was estimated by using a standard literature technique [7].

3.6 Circular Framework Setup and Experimental Results

In this section, the performance of the single- and multi-path circular change detection

approaches in improving the CD accuracy and Cohen’s kappa coefficient on the target

pair of images is tested. For each formulation, experiments were conducted to understand

their behavior in terms of CD accuracy obtained by applying the circular CD strategy by

varying the value of the length of the circular path λ.

In the first experiment, the circular single-path approach was applied to closed tem-

poral loops with increasing length λ varying from 3 to N , where N corresponds to the

number of images in the time-series. Depending on the value λ different permutations

of the images are possible and, as defined in (3.3), more than a closed circular path can

be defined for a given target pair of images. For the shorter image time series (Sentinel-2

and Landsat 8), all of the available paths were evaluated in the circular mechanism. For

the longer synthetic and Sentinel-1 time series, due to their length, a reduced number
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M of randomly generated closed circular paths are considered, i.e., at most 1000 and

200 paths were tested for inconsistencies, respectively. For each path, CD accuracy has

been computed after the rejection of the corresponding pixels associated with inconsis-

tencies. Accuracies obtained with different λ values are made comparable thanks to a

normalization in percentages.

In the second experiment, accuracies obtained after applying the multi-path circular

approach were computed and plotted against τ, the threshold on the number of incon-

sistent paths of length λ= 3. As a consequence, the value M of closed circular paths for

the synthetic, Landsat 8, Sentinel-2 and Sentinel-1 datasets is equal to 98, 7, 7 and 113,

respectively.

The performance analysis of the proposed circular approaches is conducted by evalu-

ating three cases that involve different values of the free-parameters used to compute the

target CD map:

(a) the minimum-error case, in which the free-parameters assume values that minimize

change detection errors offering a good trade-off between false and missed alarms;

(b) the commission-error bias case that simulates an higher number of false alarms in

the pair-wise binary CD map of the target pair than the minimum-error case;

(c) the omission-error bias case that simulates an higher number of missed alarms in

the target pair than the minimum-error case.

Table 3.2 in Section 3.5 contains the values of the free-parameters assumed in each case for

the four datasets used in the experiments. The occurrence of any of the above-mentioned

case cannot be verified in an unsupervised environment where no reference data are

available for validation with different values assumed by the free-parameters. The post-

detection validation of the CD maps performed in the circular framework can be used

to effectively fine-tune these parameters in an unsupervised way. Indeed, in a real case,

free-parameters used by any pair-wise binary CD technique can be over/under-estimated

due to errors, e.g., due to to the presence of noise, wrong assumptions or estimation of

statistical distributions to name a few. The proposed framework allows mitigating the

effects of non-optimal values of parameters used in the computation of the target pair

using CD maps computed between the other images in the time series.

Details on the pair-wise binary CD techniques have been given in the previous section.

However, note that the approaches defined within the circular framework can be ap-

plied to binary CD maps obtained with any other technique from the scientific literature.

Experimental results are presented and discussed in the following subsections.
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3.6.1 Single-path Approach

The overall accuracies obtained by the single-path approach for the four datasets are

shown in Figure 3.14. Plots show the behavior of the overall change detection accuracy

after the rejection of unreliable pixels versus λ on the different datasets. In this figure,

average accuracy are shown with dotted lines while the standard deviation of accuracy

over all the considered closed circular paths at a given length λ are shown as shaded

bound. Each color refers to one case used to compute the pair-wise binary CD map of the

target pair.

By analyzing the figure, one can observe that the single-path circular approach on

average is able to outperform the pair-wise binary change detection technique for any

value of λ. This is true regardless to the case and dataset under analysis. Indeed, the

single-path circular CD accuracy (dotted lines) is always larger than the accuracy of the

pair-wise binary CD technique (dashed lines). As expected, the behavior of the overall

accuracy of the proposed approach decreases as the theoretical single-path error P SP
er r

increases (Figure 3.4). However, the decreasing behavior of CD accuracy obtained using

longer closed single paths comes with a higher number of rejected pixels in the target CD

map (Figure 3.15). Asymptotically, using large λ values, half of the pixels in the region

of interest are rejected. As expected, the use of longer paths decreases the benefits of

using the circular mechanism and increases the number of pixels left undecided. This

significantly impairs the use of the rejection-based approach on long closed singular paths.

Since the single-path circular approach obtains better results using the shortest possible

length of the paths, i.e. λ= 3, we will use this value for all the subsequent experiments.

This choice keeps low the computational complexity required by the proposed approach

and points out that the single-path circular approach can be useful even with few images

and thus low M values.

3.6.2 Multi-path Approach

Figure 3.16 shows the overall accuracy of the target binary CD map ∆∗
α,β obtained by the

multi-path approach after the correction of unreliable pixels in ∆α,β. The behavior of

the accuracy is shown at different values of the threshold τ applied to the number of

inconsistent closed circular paths for the four image time series. Dotted lines show the

overall accuracy obtained by the multi-path circular approach versus the threshold τ on

the unreliability index that corresponds to the number of inconsistent closed circular

paths containing the target pair (Iα, Iβ).
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In all the experiments, for all datasets and cases, the multi-path circular approach

improves the binary CD accuracy on the target pair. This occurs when τ assumes values

close to the mean M/2. Accordingly, the multi-path CD accuracies (i.e., dotted lines) are

higher than the initial CD accuracy (i.e., dashed lines). As expected, if τ is too small, the

CD accuracy decreases because too many reliable change/no-change labels are inverted.

At the opposite, if τ is too large, the proposed strategy does not identify any wrong label

and the accuracy tends to the one provided by the pair-wise binary change detection. This

indicates that the multi-path circular approach is effective in identifying change detection

errors in the target pair for time series with heterogeneous length, data types and with

a variable number M of closed circular paths. Indeed, the correction applied to those

pixels always improves the overall change detection accuracy. The significance of the

improvement depends on the initial accuracy provided by the pair-wise binary approach

that is mainly affected by the prior probabilities of changed and unchanged pixels different

in the four datasets. The optimum value τopt differs in the experiments under analysis.

These values are indicated in Figure 3.16 as square markers. As one can see, around the

optimal value there is a large range of possible τ that guarantees better performance

with respect to the pair-wise binary approaches. Further, the optimal values of τ come

close to the one indicated by the majority rule (i.e., τ= M/2). Thus, the proposed circular

approach is robust to the choice of τ.

Table 3.3 shows a quantitative comparison of the accuracy obtained by the multi-path

circular change detection using the optimum threshold value τopt with respect to the

pair-wise binary technique. The table highlights that the multi-path circular approach

can significantly increase the CD accuracy of the target maps. The average increment on

the four datasets is of 6.1%. The improvement depends on the initial pair-wise binary

CD results on the target pair that stands as the starting point from which the multi-path

circular approach corrects unreliable changes.

Finally, Figure 3.17 shows the change detection maps after correction for the commission-

error bias case in the Sentinel-2 dataset using the optimum circular threshold τopt = 4.

The pair-wise binary CD map obtained with an underestimated decision threshold (Fig-

ure 3.17a) is characterized by many false alarms. The correction applied by the proposed

approach on the most unreliable pixels (orange-red colors in Figure 3.17c) generates a

binary CD map (Figure 3.17d) that is closer to the reference CD map (Figure 3.17b). Simi-

lar results were obtained for the omission-error bias case in the Sentinel-1 dataset. The

multi-path circular approach correctly identified missed alarms in the pair-wise binary

CD map using τopt = 64. As one can see in Figure 3.17g, the most unreliable pixels shown

in orange-red colors are largely located in the flooded areas.
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Table 3.3 Pair-wise binary versus the proposed multi-path circular change detection accu-
racies and Cohen’s kappas obtained on the four datasets (synthetic, Landsat 8, Sentinel-2
and Sentinel-1) under the (a) minimum-error, (b) commission-error bias and (c) omission-
error bias case with path length λ= 3.

Dataset Case
Pair-wise CD Circular CD

OA% k OA% k

Synthetic

(a) 95.0% 0.86 97.7% 0.93

(b) 72.5% 0.44 97.7% 0.93

(c) 94.5% 0.82 97.8% 0.93

Landsat 8

(a) 91.9% 0.82 91.9% 0.82

(b) 84.1% 0.67 92.0% 0.82

(c) 92.0% 0.81 92.7% 0.82

Sentinel-2

(a) 95.4% 0.84 97.5% 0.91

(b) 85.8% 0.61 97.5% 0.91

(c) 96.1% 0.84 98.0% 0.92

Sentinel-1

(a) 92.8 % 0.78 94.5 % 0.85

(b) 86.3 % 0.67 94.6 % 0.85

(c) 86.9 % 0.53 94.7 % 0.85

Experimental results obtained with λ> 3 are omitted due to space constraints. How-

ever, they are consistent with the experimental results obtained by the single-path ap-

proach and confirm that best results are achieved by the multi-path approach with shorter

paths (λ= 3).

3.6.3 Computational Complexity Analysis

The proposed circular framework assumes that CD maps are available. They can be

generated by any binary CD technique applied pair-wise to images of the time series.

This step may require a high computational complexity whose execution time is dataset-

dependent. Since the proposed framework is based on several pair-wise CD maps, the

total time is affected by the efficiency of the baseline pair-wise CD technique. However,
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Table 3.4 Average execution time of the pair-wise binary and multi-path circular CD
approaches.

Execution Time

Circular

Dataset Configuration Pair-wise Maps Gen. Multi-path

Landsat 8 λ= 3, M = 7 23.6sec 5min 26sec 4.3sec

Sentinel-1 λ= 3, M = 113 1.8sec 4min 2sec 9.8sec

CD maps between image pairs in the time series can be computed before the circular

framework is applied.

Once the binary CD maps are generated, the proposed approaches do not require high

computational load. Their implementation is relatively fast since it operates on binary

images. Disparity can be efficiently computed using modulo-2 additions equivalent to

bit-wise XOR operations.

Table 3.4 shows the average execution time taken in our experiments by both the pair-

wise binary CD techniques and the proposed multi-path circular approach. Comparability

is ensured by using the same software and hardware configuration on a standard PC. As ex-

pected, execution time of the circular approach is higher than the pair-wise CD technique

since our framework is defined on the top (at processing level) of the multiple execution

of binary CD techniques applied to several image pairs. However, the execution time is

mostly spent on the generation of the pair-wise CD maps (fourth column of Table 3.4),

whereas the multi-path approach only requires a relatively small time allocation (last

column of Table 3.4). Moreover, computational complexity of the proposed approaches

can be controlled in several ways. In the first place, an upper bound to N and M values

can be imposed. Experimental results show that change detection accuracy improves with

short image time series and that the use of a temporal window for the definition of closed

circular paths is a viable option in many applications. As described in (3.3), the number

of possible closed circular paths (i.e., M) increases with a factorial rate as N increases.

In addition, experimental results indicate that better CD performance can be achieved

with a partial set of closed circular paths containing the target pair. In other words, an

incomplete search in the exponentially growing solution space is sufficient without los-

ing detection and correction capabilities with respect to unreliable change/no-change

pixels. The table also enables the scalability assessment of the proposed approach and
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its expected behavior on long image time series. Another way to control computational

time and scalability is to optimize the algorithmic implementation of the proposed ap-

proaches. Intermediate results of Om shared among multiple closed circular paths can be

re-used using a tree structure for the generation of the possible permutations. In addition,

the processing workflow can be parallelized by means of a split-based approach [18, 23].

More advanced strategies can be employed to reduce the number of times the storage

is accessed, e.g., by addressing the broad number of permutations of images in closed

circular paths containing a target pair in long datasets by parallelization and pruning

strategies [75]. However, the analysis of the strategies is outside the scope of this chapter.

3.7 Discussion and Conclusion

This chapter has presented a novel multitemporal CD framework for the detection of

abrupt changes between two target images acquired on the same scene at different times.

This framework takes advantage of the correlation of changes detected within a series

of images representing that scene at times different from the target pair. The proposed

approaches developed within this framework aim at improving the accuracy and robust-

ness of the CD process by evaluating the consistency in time of changes along temporal

closed-loops containing the target pair.

The proposed circular CD approaches improve detection performance of any pair-wise

binary CD technique applied to a pair of images by exploiting the conservative property of

the binary change variable in the time domain across closed circular paths within the time

series. The validity of the conservative property along closed circular paths is based on the

assumption of abrupt changes within the time series and in the target pair. For this reason

we considered datasets characterized by a revisit time longer than the transition time of the

changes of interest. The temporal closed-loops with an odd number of changes are labeled

as inconsistent because the conservative property has been broken by change detection

errors in any of the CD maps along the inconsistent path. Accordingly, corresponding

pixels of the CD maps in the inconsistent path are labeled as unreliable. Unfortunately,

the disparity of the number of changes along a closed circular path is a sufficient, but

not necessary condition for the presence of possible change detection errors. As a result,

unreliable paths characterized by an even number of change detection errors along them

cannot be identified. Moreover, the position of the identified CD errors along inconsistent

paths cannot be located since inconsistencies in the conservative property can be tested

only by combining the number of changes occurred in the successive CD maps along the

paths. For this reason, the circular approach has been formulated in two ways that exploit
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the conservative property differently. These two approaches combine the information

of several inconsistent closed circular paths defined for the target pair to improve their

change detection performance.

In the single-path circular change detection approach, the conservative property is

tested on only a closed circular path. The unreliable pixels of the target CD map are then

rejected in the attempt of retaining only the most reliable pixels in the target CD map at

the expense of avoiding a decision for a certain amount of pixels. On the contrary, the

multi-path circular change detection approach combines several closed circular paths

to estimate in an unsupervised way how much unreliable pixels in the target change

detection map are. It is designed to locate CD pixels in the target pair that have the highest

probability of being mislabeled. The change/no-change pixels that have a high probability

to be wrongly labeled are corrected by swapping their binary labels in order to improve

the change detection accuracy.

Extensive experiments on the proposed approaches have been performed on four

different datasets: a synthetic, two multispectral image time series acquired by Landsat 8

and Sentinel-2 and a SAR dataset acquired by Sentinel-1. Experimental results confirmed

the effectiveness and robustness of the multi-path circular change detection approach. It

exhibited a higher discrimination capability in identifying unreliable pixels in CD maps

than the single-path approach. The multi-path approach can significantly outperform

pair-wise binary CD techniques especially in the presence of a significant amount of CD

errors.

This chapter introduced the theoretical definition of the conservative property and of

the related circular framework implemented in two different approaches. The proposed

multitemporal approaches require by definition a longer execution time than pair-wise

binary techniques. However, since the framework is defined on pair-wise binary CD maps,

it can be implemented with an acceptable computational complexity.

Further improvements can evolve this proof-of-concept into an optimized implemen-

tation suitable for analyzing entire archives of images. The proposed framework can have

a huge impact on the strategies for processing time series in remote sensing mission

archives, creating a new perspective of integration of a large number of images in the

validation/optimization of change detection maps that can fully exploit the conservative

property of binary CD maps in time series. Moreover, we are going to study an unsuper-

vised mechanism to estimate the threshold τopt used in the multi-path circular approach

to further improve the CD performance that can be obtained by using a value equal to

M/2.



58 Circular CD Framework

Finally, we plan to enhance the proposed approach from a binary change detection

problem to a multi-class problem by extending the conservative property of the change

variable to enforce the temporal consistency of changes. Indeed, it could be possible to

define a circular validation strategy based on the additional images of the time series

that automatically validates and improves land cover maps computed for a particular

acquisition date. This extended approach not only could overcome the limitations of

the binary change variable in the presence of an even number of CD errors and further

improve the discrimination capability obtained by the proposed framework, but could

also prove the usefulness of the circular strategy in applications different than change

detection.
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Fig. 3.14 Overall change detection accuracy versus the path length λ obtained by the
single-path circular approach with rejection of unreliable pixels applied to target pairs of
the (a) synthetic, (b) Landsat 8, (c) Sentinel-2 and (b) Sentinel-1 datasets. Red, blue and
green lines stands for the (a) minimum-error, (b) commission-error bias and (c) omission-
error bias case, respectively. Shaded bounds show standard deviation of accuracy over all
the considered closed circular paths of the considered length λ. Dashed constant lines
represent the accuracy of the pair-wise binary CD technique applied to the target pair.



60 Circular CD Framework

3 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

R
ej

ec
te

d 
Pi

xe
ls

 [%
]

(a)

3 4 5 6 7
0

10

20

30

40

50

R
ej

ec
te

d 
Pi

xe
ls

 [%
]

(b)

3 4 5 6 7
0

10

20

30

40

50

R
ej

ec
te

d 
Pi

xe
ls

 [%
]

(c)

3 10 20 30 40 50 60 70 80 90 100 110
0

10

20

30

40

50

R
ej

ec
te

d 
Pi

xe
ls

 [%
]

(d)

Fig. 3.15 Percentage of unreliable pixels rejected by the single-path circular approach
versus the path length λ in the target pairs of (a) the synthetic, (b) Landsat 8, (c) Sentinel-2
and (d) Sentinel-1 datasets. Red, blue and green lines stand for (a) minimum-error, (b)
commission-error bias and (c) omission-error bias case, respectively.
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Fig. 3.16 Overall change detection accuracy versus the threshold τ on the number of
inconsistent closed circular paths obtained by the multi-path circular approach applied
to (a) the synthetic, (b) Landsat 8, (c) Sentinel-2 and (d) Sentinel-1 datasets. The dashed
constant lines represent the accuracy of the pair-wise binary change detection technique
applied to the target pair. Red, blue and green lines stand for (a) minimum-error, (b)
commission-error bias and (c) omission-error bias case, respectively.
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Fig. 3.17 Multi-path circular change detection results on the Sentinel-2 dataset in the
commission-error bias case: (a) pair-wise binary CD map ∆α,β obtained using ρt = 0.025,

(b) reference change map ∆r e f
α,β , (c) unreliability map U and (d) multi-path circular CD

map ∆∗
α,β obtained with λ= 3. Similarly, (e-h) omission-error bias case of the target pair

in the Sentinel-1 dataset.



Chapter 4

An Iterative Circular Approach to

Multi-Class Change Detection in Image

Time Series

In this chapter1, a novel approach to validate and improve multi-class Change Detection

(CD) is proposed. It automatically validates CD results of any bi-temporal technique applied

to any pair of images using all the information of an image time series. The proposed

method aims at improving CD performance globally within the time series by exploiting the

temporal consistency of each pixel status. This is achieved by analyzing the coherency of

pixel values in successive time instants. The multitemporal change variable derived pixel-

wise is analyzed as a conservative variable since along any closed circular path in time a

change must be followed by its opposite change in order to obtain the initial pixel status. The

presence of any change between different time instants can be verified by tracking consistent

changes occurred between pairs along any sequence of images related to the considered

time period. This is due to the path-independence of line integrals that is strictly related

the conservative property of the multitemporal change variable. An iterative algorithm

is proposed to enforce the temporal consistency of changes. It models the time-series and

pair-wise changes as a graph. It can identify pairs of images where the conservative property

is verified (or not) and validate CD results within the time series in an automatic and

1Part of this chapter appears in:

M. Bertoluzza, L. Bruzzone, F. Bovolo, “A Circular Approach to Multi-Class Change Detection in Multitempo-
ral Sentinel-1 SAR Image Time Series,” 2018 IEEE International Geoscience and Remote Sensing Symposium
(IGARSS ‘18), Valencia, Spain, 22-27 July 2018. doi:10.1109/IGARSS.2018.8517801

M. Bertoluzza, L. Bruzzone, F. Bovolo, “An Iterative Circular Approach to Multi-Class Change Detection in
Image Time Series,” IEEE Transactions on Geoscience and Remote Sensing, Submitted.

http://dx.doi.org/10.1109/IGARSS.2018.8517801
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unsupervised way. Experimental results obtained on synthetic and real remotely-sensed

image time-series confirm the validity and the effectiveness of the proposed CD approach.

4.1 Introduction

CD techniques in RS aim at identifying changed and unchanged pixels in a sequence of

images. They allow the characterization of the dynamics of the Earth’s surface captured

by the considered multitemporal images. This information can support many different

applications, e.g., disaster management, urban growth, deforestation, climate change [147,

125, 84, 35]. CD techniques can be either supervised or unsupervised depending whether

they use ground truth labels or not. The collection of this prior information cannot be

always performed due to the inherent cost in terms of time and economic implications

of this operation. From the operational point of view, the collection of a sufficiently

large number of ground samples at a large-scale is in contrast with the very nature of

RS technology that enables the analysis of the environment at regional or global scale.

Moreover, the timely update of these labels is not compatible with the temporal velocity

of the increasingly longer and denser image time series that are available nowadays for a

given area of study. For these reasons, at operational level, unsupervised CD techniques

are preferred over supervised ones. In this context, both the computation of CD maps and

their validation should be done in the most possible automatic and unsupervised way

without the presence of any human operator.

In this chapter, we address these issues by proposing a data-driven approach to change

detection based on the conservative circular property of the multitemporal change vari-

able, a property inherently applicable to any image time series. We present a novel

technique for CD in image time series that exploits the temporal consistency of the mul-

titemporal change variable to detect and correct CD errors between any pair of images

within the time series. Basically, the pixel status in successive time instants must be

coherent with each other. In the context of image time series, this can be translated in

terms of conservative property of the multitemporal change variable [15]. This property

states that, under the hypotheses of error-free CD results and presence of abrupt changes,

the same CD results must be obtained by combining changes occurred between pairs

of images along any path in time within the image time series. In other words, due to

the temporal coupling and inter-dependency of images within the time series, changes

occurred between two time instants can be retrieved by integrating any change occurred

along any arbitrary sequence of images acquired between the two given time instants.

Only the first and the last images are relevant to the final CD result regardless to the
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other images along the temporal path connecting the two time instant. Through the

definition of the conservative property of the multitemporal change variable, it is possible

to explicitly account for the temporal consistency of changes detected within the time

series. Thus, the CD results can be validated against each other by checking if the property

of conservation of states is satisfied over time. In this chapter, the proposed approach

consists in the automatic post-detection validation of the changes detected within the

image time series. It performs a joint optimization of the CD results by making sure that

they are temporally consistent using a property that is inherently valid in any image time

series. This approach can be applied to long and dense image time series and represents

a completely novel way to solve the CD problem, which is substantially different and

complementary to conventional approaches typically used in the scientific literature.

The formulation of the conservative property assumes that abrupt changes are present

within the time series. In other words, the proposed methodology considers only step

changes, i.e., the ones having the largest impact on the pixel intensity or color or spectral

information, to build temporally consistent change maps.

This chapter is organized as follows: section 4.2 gives an introduction to the multi-

class circular conservative property. Section 4.3 presents and discusses the proposed

CD approach. Section 4.4 describes the datasets and the experimental results. Finally,

section 4.5 draws the conclusions of this work.

4.2 Circular Conservative Property

The circular conservative property was presented in the previous chapter. Fig. 4.2 de-

scribes its origin and its validity in the context of CD in image time series. The figure

represents the temporal behavior of values that the same pixel assumes along an illustra-

tive image time series. For simplicity’s sake, the pixel value is defined as a scalar function

continuous in time, i.e., Ip (t ). One of the many possible closed circular paths composed

of four different time instants 〈t1, t2, t3, t4〉 is represented superimposed on the tempo-

ral profile of the values assumed by the pixel. The time variable is expressed using two

coordinates, years and day of year: Ip (t) = Ip (y,d). This formulation emphasizes that a

closed circular path in time can involve time instants distant from each other coming

from different years and seasons. However, this choice is arbitrary and other choices can

be done and leading to the same conclusions. Let us now define the discrete gradient

of the pixel value over time as ∇Ip (y,d) = [∂Ip

∂y ,
∂Ip

∂d

]′. By definition, the gradient is a con-

servative vector field in time since the pixel time series is its scalar potential function.

The gradient theorem is always verified because: i) line integral is path independent
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∫
P ∇Ip (t )d t = ∫ t2

t1
∇I (t )d t , or equivalently, ii) the line integral over a closed path in time C

is equal to zero
∮

C ∇Ip (t )d t = 0. Therefore, the conservative property of the pixel value is

always verified. This rationale holds true for real image time series where the continuous

function Ip (t ) of the calibrated pixel values is sampled on a set of time instants {t1, . . . , tN }.

In this case, the discrete gradient becomes the operation of finite difference and the inte-

gration along closed circular paths becomes a summation. This reasoning is general and

holds true for vector pixel values that in the context of image time series are used to store

reflectance, backscattering values, or else.

The algorithm proposed in this chapter exploits the conservative property that as

explained in the previous paragraph is always true at the level of pixel values. The proposed

technique aims at maintaining this property verified also at the level of change maps.

Indeed, a bi-date CD technique assigns to every pixel p of a pair of images (I q , I r ) a

change label fp (I q , I r ) ∈ΩwhereΩ= {
ωn ,ωc1 , . . . ,ωcK

}
is the set of change labels. Usually,

the CD process involves a comparison operator Dp based on gradient-like operations

(e.g., differentiation or ratioing) applied to the pair of pixel values I q (p) and I r (p). Later,

a thresholding operation is applied to this dissimilarity measure Dp in order to decide

whether a change occurred between the two pixel values and, if any, to establish the type

of change. The proposed technique makes sure that the temporal consistency of changes

at the level of change maps ∆q,r (p) is still verified after any thresholding operation is

applied to Dp .

Fig. 4.3 shows how the conservative property of the binary change variable can be

derived from the conservative property of the pixel value over time. Ip (t) is a step-like

function in time (Fig. 4.3a). Along a closed circular path defined as C = 〈t1, t2, t3, t4〉, the

change index based on the difference operator Dp (tq , tr ) = Ip (tr )− Ip (tq ) is a conservative

operation since we have that
∮

C fq (t)d t = [Ip (t2)− Ip (t1)]+ [Ip (t3)− Ip (t2)]+ [Ip (t4)−
Ip (t3)]+ [Ip (t1)− Ip (t4)] = 0 (Fig. 4.3b). The conservative property holds true since values

in fp along C verify the consistency criterion for K = 1, i.e. change/no-change labels occur

in pairs since two ωn and two ωc1 labels are present (Fig. 4.3c).

The next section provides a detailed description and formulation of the proposed

iterative CD approach based on the circular conservative property of the multitemporal

change variable.

4.3 Proposed Iterative Circular CD Approach

The proposed multitemporal CD technique is implemented by an iterative algorithm

consisting of the two steps shown in the block scheme of Fig. 4.1.
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Fig. 4.1 General block scheme of the proposed iterative circular CD approach based on
two steps.

The input to the system is any co-registered time series T = {
I n

}
(n ∈ [1, N ]) of N

co-calibrated images acquired by any sensor, e.g., multi-spectral or SAR. All images are

acquired at different times tn , n ∈ [1, N ] over the same geographical area. Let I n(p) be

the radiometric/backscattering value assumed by the image I n at pixel location p that

in the context of the post-detection comparison can be assumed to represent one of S

possible discrete pixel status. The outputs are pair-wise CD maps∆m
q,r , where (q,r ∈ [1, N ]),

containing only temporally consistent changes computed between pair of images I q and

I r after m-th iterations.

The proposed approach derives the multitemporal change variable by applying any bi-

temporal CD technique to pairs of images extracted from the time series. Since it leverages

and builds upon the results obtained by any CD technique, the proposed approach can

be applied to image time series acquired by any kind of sensor, e.g., multispectral or SAR.

The multitemporal change variable so derived is modeled pixel-wise as a conservative

quantity within the graph theory. This allows the proposed technique to automatically

check the temporal consistency of changes detected within the image time series. Then,

the consistency of changes can be enforced when it is not verified within the series. In this
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Fig. 4.2 (a) Illustration of a 1-D pixel time series represented as a function in time defined
in the 2-D domain year vs. day of the year. A closed circular path in time/temporal cycle is
defined using four different time instants t1, t2, t3, t4. (b) Contour plot and gradient field
of the time series in the 2-D time domain.

way, the proposed technique implements an automatic and unsupervised cross-validation

of CD results obtained by any automatic bi-date method.

The first step of the approach operates at bi-date level where the computation of

CD maps ∆q,r is performed. CD maps are computed by any multi-class CD technique

f (I q , I r ) = ∆q,r . For each pair of images (I q , I r ) extracted from the time-series, the

resulting CD map is denoted as ∆q,r where each pixel of the area of interest is assigned to

either the no-change class ωn or one of the K change classes ωi , j between S pixel status,

where K = S · (S −1) andΩ=ωn ∪
{
ωi , j , i ̸= j ∈ [1,S]

}
. An arbitrary number K of change

classes are considered since the proposed approach is general. In the context of the post-

detection comparison, each change label ωi , j can be thought of as the transition between

two unknown pixel status si and s j , the prior and successive pixel state, respectively. In
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other words, change classes are considered to be linked semantically by using a-priori

information on the type of changes.

This notation is used to define vector weights w representing transitions of pixel

status later used to describe how the proposed approach can characterize the temporal

consistency of changes. The definition of the vector weights encodes a-priori information

on the changes that can be detected by the unsupervised bi-date CD technique. If the

CD technique can detect K = 2 changes (Fig. 4.4a), the binary change variable can only

assume a changed (ωc ) and unchanged (ωn) label. In the case K = 3 (Fig. 4.4b), changed

pixels can be further separated into ωc1 and in ωc2 indicating the transition from pixel

status 0 to 1 and vice versa, respectively. The definition of change vectors w is general

and can be easily extended to any arbitrary value of S and K . Fig. 4.4 illustrates possible

ways to define transitions of the pixel status from time time s1 to a successive one s2 for

a given bi-date multi-class CD technique. Since S = 2, pixel can assume two status, i.e.,{
0,1

}
indicated on the x and y axis.

The second step works at multi-date level where the circular analysis of changes is

performed. An iterative procedure performs the post-detection comparison of the bi-date

CD maps to automatically enforce the temporal consistency of changes. This is enabled

by an unsupervised criterion based on the conservative property of the multitemporal

change variable.

For each pixel p of the scene, a undirected graph Gp (V ,E ,W ) is initialized by using

the bi-date unsupervised CD results obtained for any pairs of images (I q , I r ), q,r ∈ [1, N ].

Graph Gp represents the multitemporal pixel-wise change variable and comprises a set

V of N vertices and a set E of M edges where W is the adjacency matrix. Each vertex

vi ∈ V represents a sample of the image In(p). Each edge eq,r ∈ E connects vertices q and

r with a vector weight wq,r = (si , s j ) representing the change label stored in ∆q,r (p) and

indicating the transition between different pixel status. The conservative property of the

change variable is tested iteratively along M random cycles in the set of graphs Gp . A cycle

is defined within the graph theory as a closed simple path in which head and tail vertices

coincide: C = 〈ei , j ,e j ,k , . . .el ,i 〉. For any cycle in Gp , let the path integral vector sum of

pair-wise weight difference along cycle C be defined as:

µ(C ) = (w2 −w1)+ (w3 −w2)+·· ·+ (w1 −wλ), (4.1)

where λ= |C |. The temporal consistency of the pixel status implies that in absence of CD

errors along the cycle, a change must be followed later by the same change in the opposite

direction in order to reach the initial pixel status. The conservative property of the change

variable in a cycle C can be verified by testing if the cycle’s consistency criterion holds true.
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This is equivalent to the circular path integral being null:

µ(C ) = 0. (4.2)

As a consequence, the concatenation of changes occurred along any open path in Gp must

depend only on the initial and final vertex (i.e., path independence due to the conservative

property). Edges that cause inconsistencies can be identified as the most recurring edges

within inconsistent cycles. These are considered possible CD errors and corrected. With

new iterations, an increasing number of edges are corrected in Gp . The algorithm can be

stopped when convergence is reached and the consistency criterion is verified for any

cycle in Gp and graphs for all pixel positions p of the scene are connected. Finally, changes

occurred between any pair (I q , I r ) can be detected by integrating changes along any path

connecting nodes vq and vr in the resulting connected graphs Gp for all pixels p. The

use of an iterative approach has the advantage to make the results obtained for a pair

of images unbiased with respect to the presence of errors in other pairs within the time

series, as may be the case in [15]. Indeed, the consistency criterion as formulated in (4.2)

is biased due to the fact that more than a single CD error may be present along the same

closed circular path.

Fig. 4.5 shows an example of how the proposed multitemporal CD approach works

on an image time series of 6 images at the same pixel location. For simplicity, pixels

can assume only two gray-level values (a light and a dark tone). The aim of the iterative

algorithm is to remove all inconsistent changes. In this example, edges e1,2 and e4,5 are

temporally inconsistent since they do not verify the cycle’s consistency criterion. Indeed,

the discrete path integral along cycles
〈

e1,2,e2,3,e3,1
〉

and 〈e1,2,e2,6,e6,1〉 is different from

zero (Fig. 4.5a). In this example, the CD error can be easily located since it is common to

both the inconsistent cycles, i.e., e1,2. A similar reasoning applies to edge e4,5 (Fig. 4.5b).

The iterative process is then repeated until a connected graph containing only temporally

consistent cycles is obtained (Fig. 4.5c). At this point, every change within the graph

follows the conservative property. As a consequence, in the desired final graph topology,

the integration of changes along any path will lead to the same pixel change status, either

changed or unchanged with respect to the initial vertex of the path. This enables the

detection of any change between a pair of vertices by using any path connecting the two

vertices. For example, the change occurred between vertices (v3, v6) can be derived by

integrating changes along path 〈e3,1,e1,6〉 and path 〈e3,2,e2,6〉, i.e., ωc1 . Since the graph

always verifies the conservative property, path independence holds true. Thus, the result

must be equal to the CD label stored on edge e3,6.
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Fig. 4.3 Illustration of how the conservative property of the change variable can be derived
by the conservative property of the pixel value over time. This example shows: (a) the
multitemporal pixel value Ip (t ) is a scalar function and fq is the difference operator. (b)
the dissimilarity measure D(tq , tr ) used for CD and applied to Ip (t ). (c) the conservative
property of the multitemporal binary change variable holds true on a set of five a closed
circular paths in time C .
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Fig. 4.4 Possible pixel status transitions from one time s1 to a successive time s2 where (a)
S = 2,K = 2 and (b) S = 2,K = 3.
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Fig. 4.5 Illustration of different cases in which the proposed multitemporal CD approach
operates for a fixed pixel where edges represent bi-date CD labels: (a) initial graph with two
CD errors; (b) identified CD errors highlighted in yellow; (c) final temporally consistent
graph of change labels after the removal of inconsistent change labels. For simplicity,
pixels can assume only two gray-level values (a light and a dark tone).
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(a) (b) (c) (d) (e)

Fig. 4.6 Five Sentinel-2 images used to generate the synthetic dataset representing distinct
thematic classes: (a) sea, (b) ice, (c) desert, (d) forest and (e) urban scene.

4.4 Description of Datasets and Experimental Results

We carried out two experiments on a synthetic data set and two different real datasets

composed of several multispectral and SAR images acquired on the same scene at different

times. As seen in the previous chapter, the use of closed circular paths of length λ> 3 does

not lead to better results. Moreover, an upperbound on value M is needed to limit the

computational complexity of the proposed technique. For this reason, in the experimental

setup values of M = 100 and λ= 3 were chosen.

4.4.1 Experiments on the Synthetic Dataset

In these experiments, we considered a synthetic dataset that contains 20 multispectral

synthetic images of size 500×1000 pixels with four spectral bands. They were generated

starting from a set of 5 real multispectral images, each representing a different land cover.

These five spatially homogeneous classes correspond to sea, ice, desert, forest and urban

scene (Fig. 4.6). The 4-bands (i.e., Blue, Green, Red, NIR) images were acquired at 10m

of spatial resolution by Sentinel-2 and pre-processed in Level-2A surface reflectance by

Sen2Cor 2.5.5. These images were arranged and combined in order to create a synthetic

dataset characterized by abrupt changes between successive images.

The experiment considers three different realizations (T1, T2 and T3) of the synthetic

dataset (see Fig. 4.7). Each version of the synthetic dataset contains the same number of

images, i.e., N = 20, but they are characterized by a different frequency of changes: T1
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has a higher number of changes than T2 and T3 that are increasingly more stationary

with respect to T1. Uncorrelated pseudo-random White Gaussian noise characterized by

a tunable SNR was added to each simulated image. To have a realistic simulation, each

image has a different noise realization [112, 3].

A bi-date CD technique is used in this experiment to compute a change detection

map ∆q,r for image pair (I r , I q ). It is based on k-means clustering with k = 2 applied to

the multi-dimensional change vector defined as: |CV | = I r − I q . The bi-date CD map

∆q,r is composed of two classes Ω = {ωn ,ωc }. Pixels of the cluster closest to the origin

are assigned to the no-change label ωn , whereas all the other pixels are assigned to the

change class ωc . This basic yet effective bi-date CD technique takes into account all the 4

multispectral bands acquired by Sentinel-2.

The definition of the synthetic time series based on five distinct thematic classes

makes the characterization of reference change maps (∆r e f
q,r ) for any pair of images I q and

I r straightforward. The assessment of the results obtained by the proposed technique can

be performed systematically for all the pairs of images and all the pixels of the scene. With

this information, it is possible to compute the CD performance for the overall image time

series, considering all pixels and all pairs of images within it. This experimental setup

aims at understanding the capability of the proposed approach to identify the location

of CD errors within the time series. The three versions of the synthetic dataset are used

to understand the capabilities of the proposed algorithm to identify inconsistencies and

correct them with a varying change frequency across the image time series.

Table 4.1 presents the global CD performance obtained by evaluating every pair of

images of the time series at the end of the 100-th iteration. The mean overall accuracy

increases significantly for the three datasets T1, T2 and T3. In general, all the CD per-

formance metrics improve as the iterative algorithm proceeds to correct inconsistencies

found in the CD maps computed within the image time series. Overall accuracy, F-score,

precision and recall sharply increase by using the proposed approach. This is mainly due

to the correction of many false alarms and partly due to the removal of missed alarms.

The highest improvements occur in dataset T1, which is characterized by the the presence

of a higher number of changes than T2 and T3.

Fig. 4.8 gives an insight of how the proposed algorithm behaves when the iteration

number increases. The figure presents the mean overall CD accuracy for every pair of

the time series represented as adjacency matrices. The results are presented on two

rows for synthetic image time series T1 followed by T3. Since ∆q,r = ∆r,q , matrices are

symmetric. No data is present on the diagonal since the CD problem is not defined for

a single image. As the iterative algorithm evolves, more and more inconsistencies are
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Table 4.1 Mean overall CD performance (overall accuracy, F-score, False/Missed Alarm
Rate, Precision and Recall) obtained by the bi-date and the proposed multitemporal
approach applied to the three synthetic datasets considering all pixels and image pairs.

Dataset

Bi-Date Approach

OA% F-score FA% MA% Precision Recall

T1 69.4% 0.72 17.9% 12.7% 0.76 0.57

T2 62.5% 0.69 21.8% 15.7% 0.75 0.52

T3 59.6% 0.64 28.2% 12.2% 0.63 0.47

Dataset

Proposed Approach

OA% F-score FA% MA% Precision Recall

T1 78.6% 0.80 9.63% 11.8% 0.85 0.66

T2 75.3% 0.77 9.84% 14.9% 0.86 0.65

T3 65.3% 0.69 22.4% 12.2% 0.69 0.53

found and corrected. As expected, as the number of iteration increases (i.e., increasing m

values), CD accuracy increases for all considered synthetic time series. Improvements are

obtained in the two cases characterized by a different change frequency. Similar results are

obtained for T2 and on CD performance metrics different than the overall accuracy, but

are omitted due to space constraints. The proposed iterative approach can obtain better

CD results than standard bi-temporal CD techniques. Best CD performance are reached

after m = 10÷20 iterations. After this point, only slight improvements are noticeable.

The iterative search reaches a local maxima and CD performance remain stationary. In

this phase, only few pixels in several CD maps are changed back and forth without any

meaningful improvement of CD results.

Details of results obtained on single CD maps are presented in Table 4.2. Results related

to the three most interesting CD maps belonging to synthetic time series T1 are shown.

This time series was selected because it is characterized by the highest change frequency

and contains the most diverse change patterns. Each row in Table 4.2 is equivalent of

sampling a single pixel in the adjacency matrices of Fig. 4.8. Errors are corrected and

noticeable better CD results are obtained in all three examples:

(i) In the first example, most of the CD errors are corrected by the proposed approach

at iteration m = 12 at the price of a slight increase of missed alarms in the top part

of the scene. In this case, the overall accuracy increases from 59.1% to 71.2%.
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Table 4.2 CD results obtained by the proposed circular iterative CD technique on single
image pairs at different iterations (denoted by m) using synthetic dataset T1: CD perfor-
mance at the beginning of the algorithm as computed by the bi-temporal CD technique
(i.e., iteration m = 0) and after m = (30,14,4) iterations.

Image Pair

Bi-Date Approach

OA% F-score FA% MA% Precision Recall

(I 17, I 18) 59.1% 0.54 9.2% 31.7% 0.72 0.43

(I 8, I 14) 70.4% 0.69 1.14% 28.5% 0.97 0.53

(I 3, I 5) 50.0% 0.67 50.0% 0.00% 0.50 1.00

Image Pair

Proposed Approach

OA% F-score FA% MA% Precision Recall

(I 17, I 18) 71.2% 0.68 2.6% 26.2% 0.92 0.54

(I 8, I 14) 72.1% 0.68 3.2% 24.8% 0.91 0.55

(I 3, I 5) 82.7% 0.91 17.3% 0.2% 0.83 1.00

(ii) The second example has a change pattern similar to the first example. Here, ini-

tial CD results were already satisfactory and good results are maintained after the

correction performed by the proposed CD technique. Only a slight improvement is

obtained and overall accuracy increases from 70.4% to 72.1%.

(iii) In the third example, the initial CD results are both not accurate and noisy (Fig. 4.2g).

This is due to the selected bi-temporal change detection approach based on the

k-means clustering. The two input images are very similar and differ only because

they were generated using a different noise realization. The initial CD results were

very poor, i.e., 50.0%, but after the correction applied by the proposed approach an

overall accuracy of 82.7% was obtained.
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Fig. 4.7 Synthetic time series with N = 20 images (a-t) I 1−I 20 for three different realizations
T1, T2 and T3.
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Fig. 4.8 Mean overall CD accuracy obtained for any pair I q and I r of the synthetic dataset
(a-f) T1 and (g-l) T3 represented as adjacency matrices: (a, g) bi-temporal CD technique
results obtained at the first iteration, proposed CD technique at (b, h) 5th, (c, i) 10th, (d, j)
15th, (e, k) 25th and (f, l) 100th iterations. Colors show the overall accuracy for each image
pair in the range 50%−100%.
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Table 4.3 Multitemporal SAR dataset collected by Sentinel-1 (mm/dd format).

Year Acquisition Dates

2015 7/18, 7/30, 8/11, 8/23, 9/04, 9/16, 9/28, 10/10, 10/22,
11/03, 11/15, 11/27, 12/09, 12/21

2016 1/14, 2/07, 2/19, 3/02, 3/14, 3/26, 4/07, 4/19, 5/01,
5/13, 5/25, 6/06, 6/30, 7/12, 7/24, 9/10, 9/22, 9/28,
10/04, 10/10, 10/16, 10/22, 10/28, 11/03, 11/09,
11/15, 11/27, 12/03, 12/09, 12/15, 12/21, 12/27

2017 1/02, 1/08, 1/14, 1/20, 1/26, 2/01, 2/07, 2/13, 2/19,
2/25, 3/03, 3/09, 3/15, 3/21, 3/27, 4/02, 4/08, 4/14,
4/20, 4/26, 5/02, 5/08, 5/14, 5/20, 5/26, 6/01, 6/07,
6/13, 6/19, 6/25, 7/01, 7/07, 7/13, 7/19, 7/25, 7/31,
8/06, 8/12, 8/18, 8/24, 8/30, 9/05, 9/11, 9/17, 9/23,
9/29, 10/05, 10/11, 10/17, 10/23, 10/29, 11/04, 11/10,
11/16, 11/22, 11/28, 12/04, 12/10, 12/16, 12/22,
12/28

2018 1/03, 1/09, 1/15, 1/21, 1/27, 2/02, 2/08, 2/14, 2/20,
2/26, 3/04, 3/10, 3/16, 3/28, 4/03, 4/09, 4/15, 4/21,
4/27, 5/03, 5/09, 5/15

4.4.2 Experiments on the Sentinel-1 Dataset

These experiments consider a dataset that consists of a multitemporal C-band dual-

polarization SAR image time series. The SAR dataset includes 129 SLC (Single Look

Complex) images acquired by the Sentinel-1 constellation. ESA’s space-borne SARs were

operating in Interferometric Wide swath (IW) acquisition mode from 2015 to 2018 (see

Table 4.3). Images were collected in the same descending orbit with an incident angle

with an approximate value at the center of the scene equal to 35.8°.

The area of study is located in the suburbs surrounding Houston, TX, USA. It is a

heterogeneous test site of approximately 1268 square kilometers of urban and rural ar-

eas crossed by a river and surrounded by riverine and forested wetlands and riparian

zones (Fig. 4.9). Each SLC dual-polarization acquisition was pre-processed in VV and

VH backscattering coefficient γ0 accounting for radiometric calibration, thermal noise

removal, TOPSAR deburst, multi looking (5 looks in range, 1 in azimuth direction). Mul-

titemporal speckle Lee filter is applied on stacks of 15 temporally adjacent images. The

result is a stack of co-registered multilooked backscattered intensity images in VV and

VH channel. The final pixel spacing in the SAR geometry is about 15m. The final image
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Fig. 4.9 Map of the study area in geographic coordinated located in Houston, TX, U.S.:
residential area in the north, central part around the lake characterized by flooding events
in 3 zones, 100-year floodplain with an estimated base flood elevation (AE), 100-year
floodplain (A), zone protected by leeve with low risk of flood (X).

is equal to 1000×1000 pixels. Layover and shadow pixels were detected by means of a

DEM-based SAR simulation and treated as invalid data in the next steps. Due to the plain

topography of the area of study, very few pixels were not valid. Color composites of 10

dual-pol SAR images can be seen in Fig. 4.10.

The validation of the CD results was based on two change events caused by floods

occurred during May-June 2016 and in August 28-30, 2017 (Fig. 4.11) during heavy rainfalls

and hurricane Harvey, respectively. The extent maps of the floods were created using

flood data maps and damage assessment reports. Flood extents have also been validated

against cloud-free VHR optical aerial images acquired by NOAA after the events of interest

and good correlation with FEMA floodplains and drainage infrastructure was found. The

datasets contained also reference maps of changes occurred in several target pair that have

been obtained by means of photo-interpretation and used only for validation purposed.

The analysis of this dataset is important since damaged areas may be inaccessible

to optical imaging due to clouds and cloud shadows and the active nature of this sensor

allow day-and-night operations. The multitemporal analysis and improvement of CD

maps can be quite useful for the reduction of radar image distortions. Indeed, SAR sensors
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Table 4.4 Assessment of overall CD performance (overall accuracy, F-score, False/Missed
Alarm Rate, Precision and Recall) obtained by the bi-date and proposed multitemporal
approach applied to the Sentinel-1 dataset.

Dataset

Bi-Date Approach

OA% F-score FA% MA% Precision Recall

Flood 2016 91.2% 0.95 1.3% 7.5% 0.98 0.91

Flood 2017 81.3% 0.88 0.8% 17.9% 0.99 0.80

Event

Proposed Approach

OA% F-score FA% MA% Precision Recall

Flood 2016 91.3% 0.95 1.8% 6.9% 0.98 0.92

Flood 2017 86.4% 0.91 2.7% 10.8% 0.99 0.80

are the main remote-sensing source for monitoring flood events. It is well-known that

water bodies are characterized by low SAR returns since they are specular reflectors of

microwave pulses regardless of the used band or polarization. Previous studies pointed

out that in the Sentinel-1 case, VV polarization achieves a better performance in flood

CD [44]. Thus we used only the VV polarization in our study. This choice is further

justified by the use of this polarization in several near real-time automated flood mapping

algorithms based on Sentinel-1 data [164]. This is consistent with Fig. 4.12 that shows the

behavior of the VV and VH SAR backscattering over a rural area in the region of study that

typically experiences floods.

The bi-date CD technique used in these experiments is based on the VV channel,

where thresholds have been automatically identified fitting a mixture of generalized

Gaussians [13]. Reference maps of the changes occurred between the two pairs of images

have been derived from the flood extent maps. The reference change maps describe the

three change classes, namely no-change and change with positive or negative direction.

In the experiment, the accuracy is assessed on the two pairs of images. The analysis

of the results is based on the improvement of CD error rate metrics such as the overall

accuracy, F-score, false/missed alarm rate, precision and recall for two pairs of images

extracted from the time series. Table 4.4 presents the overall CD accuracy obtained by

the bi-temporal and proposed CD technique. Even though the bi-temporal CD technique

is multiclass, the assessment of the performance considers only the number of changed

and unchanged pixels without any distinction between ω+
c and ω−

c classes. This allows
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us to provide the same CD metrics as in Table 4.2. The proposed technique is capable

of identifying inconsistent changes that are corrected to improve the overall accuracy

obtained by the bi-temporal CD technique. This can be observed in Fig. 4.13 where the CD

maps for the two target events are compared. A slight improvement is obtained in the first

target pair (Fig. 4.13a-c) where changes caused by a flood in 2016 can be observed. A lower

number of missed alarms is present (−0.6%) at the cost of an increase in false alarm rate

of 0.5%. This two types of errors compensate each other and this leads to constant overall

accuracy and F-score values. Better improvements have been obtained for the second pair

of images (Fig. 4.13d-f). The overall accuracy increases from 81.3% to 86.4% mainly due to

the reduction of missed alarms (from 17.9% to 10.8%). On both CD maps, the correction

performed by the proposed CD technique involves a better identification of areas where

the backscattering increased. These areas were totally ignored by the bi-temporal CD

technique. This is due to the overestimation of the threshold that defines the change class

ω+
c . The probable cause is the presence of a large area of the flood that biases the fitting of

the generalized gaussians to give more importance to negative values of the log-ratio. This

phenomenon is highly visible in the second pair of images: the proposed CD technique

recovers large missed alarms related to wind-induced increase of SAR backscattering

located over the lake on the right side of the scene.

A different experiment considered CD maps obtained by the proposed iterative CD

technique applied to a subset of the SAR dataset containing only 20 images. This experi-

ment involves a binary CD technique and not multi-class as in the previous experiment.

On this shorter version of the dataset the proposed iterative technique is able to perform

multiple corrections of the same CD map because the number of images is reduced. More-

over, this experiment highlight the fact that the proposed iterative circular CD approach

can be used with any bitemporal CD technique. A different bi-temporal CD technique

was used that is based on the complex Wishart test statistics [48]. This technique uses

the full complex dual-polarization SAR data acquired by Sentinel-1. Since this technique

needs complex data, multitemporal speckle filtering could not be applied on this shorter

version of the SAR dataset.

Fig. 4.14 contains the Sankey diagram representing the transitions between true CD

hits and CD errors at different iterations of the proposed algorithm applied to a pair of

images where changes caused by the flood occurred during 2017 are visible. The width

of the links in the diagram is directly proportional to the amount of pixels transitioning

from one node to the next one. From left to right, the iteration number increases. The

initial overall accuracy of 78.4% improves to 82.5% after three corrections applied to

inconsistencies found by the proposed CD technique at iterations m = 3, m = 22 and
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m = 38. In line with results obtained on the synthetic image time series, most of the

improvements involves missed alarms and only in part the false alarm rate. The diagram

shows that most of the improvements are obtained by the first correction applied at

iteration m = 3. In particular, true positives increase thanks to the correction of missed

alarms while true negatives increase by reducing the presence of false alarms. In the next

iterations, only slight improvements are obtained and a number of true change/no-change

pixels are wrongly corrected. However, a larger number of wrong pixels present in the CD

map are corrected and a noticeable gain in CD performance is reached.
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Fig. 4.10 False-color composites of 10 out of 129 images extracted from the terrain-
corrected Sentinel-1 SAR time series. The images were acquired on (a) 18-Jul-2015 I1, (b)
14-Jan-2016 I15, (c) 24-Jul-2016 I29, (d) 15-Dec-2016 I44, (e) 09-Mar-2017 I58, (f) 01-Jun-
2017 I72, (g) 24-Aug-2017 I86, (h) 22-Nov-2017 I101, (i) 14-Feb-2018 I115, (j) 15-May-2018
I129. RGB=σV V

0 , σV H
0 , (σV V

0 )/(σV H
0 ).
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Fig. 4.11 Gray-scale γV V
0 image of SAR acquisition (a) I16, (b) I26, (d) I86 and (e) I88 in dB

scale; (c) bi-temporal RGB composite (RGB=VV88,VV86,VV86). Flooded area is visible in
blue color.
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Fig. 4.12 Multitemporal behavior of the SAR backscattering over the same rural area:
histogram VH in green, VV in purple. The two downward spikes are located at the time of
the two flood events analyzed in the experiment.



86 Iterative Multi-Class Circular CD
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Fig. 4.13 Ternary CD maps of the flood events occurred in 2016 and 2017 extracted from
the Sentinel-1 dataset computed by the (a, d) bi-date and (b, e) multi-date CD technique.
(c, f) Reference change maps: white color represents no-change class, red and blue shows
increase and decrease of backscattering change classes, respectively.
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Fig. 4.14 Sankey diagram of the transition between true positive (TP), missed alarms
(MA), true negatives (TN) and false alarms (FA) at different iterations of the proposed CD
techniques. Four different iterations are shown (m = 0, m = 3, m = 22 and m = 38) for a
pair of images where changes of the flood occurred in 2017 are visible.
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4.5 Discussion and Conclusion

In this chapter, we presented a novel approach to the improvement of change detection

results between pairs of images in large archives. The proposed approach addressed the

problem of estimating the temporal consistency of changes detected between images

extracted from a time series for their subsequent correction.

A novel mechanism based on the exploitation of the temporal consistency of change

labels within the time series was introduced. The pixel-level multitemporal and multiclass

change variable was formally defined. The approach treats this quantity as a conservative

variable: inconsistencies in CD maps where the conservative property is not satisfied

indicate probable CD errors. The most inconsistent change labels are assumed to be CD

errors and corrected exploiting the path-independence of line integrals. So, CD maps

computed between any image pairs extracted from the time series can be corrected using

other changes detected within the image time series. This mechanism is implemented

for each pixel of the scene using a graph where nodes correspond to images acquired at

different instants in time. For each pixel of the scene, change labels detected by any bi-

temporal CD technique are used to populate edges of a graph. Edge weights are assigned

following relations between change classes defined beforehand depending on the chosen

bi-temporal CD technique. Within the graph, the conservative property of changes can be

tested by counting the number of changes along closed circular paths or cycles. In this

chapter, an iterative algorithm was proposed to correct inconsistent pixels in CD maps.

At each iteration, the proposed technique progressively identifies and corrects CD errors

until no more inconsistent change labels are found. By means of this iterative mechanism,

the correction of a given CD map is unbiased with respect to the presence of errors in

other CD maps computed between other pairs of images extracted from the image time

series. Experiments were performed on a synthetic and a real SAR image time series. The

proposed technique outperformed state-of-the-art CD techniques. On both the datasets,

it was proven to be able to better correct missed alarms than false alarms due to the higher

presence of the first type of CD errors in the experimental datasets.

In the future, we plan to perform more experiments on images acquired by different

sensors like optical images. We aim to study the behavior of the proposed iterative tech-

nique to different random initializations of the search of inconsistent change labels within

the graph. It would also be interesting to perform the minimization of inconsistencies by

applying optimization such as evolutionary algorithms. Furthermore, we plan to extend

the proposed approach to verify the temporal consistency of classification results obtained

on any image of a image time series.





Chapter 5

A Multitemporal Technique for Cloud

Detection and Restoration in Image Time

Series

The accurate detection of clouds is mandatory for any type of optical satellite image analysis.

Although several methods in the literature proved their effectiveness on Landsat multispec-

tral data, they achieve poor cloud detection accuracy in Sentinel-2 images due to the missing

availability of thermal bands. To solve this problem, this chapter presents an unsupervised

cloud detection approach that relies on the multitemporal information provided by dense

time series of images. In particular, the proposed method: (i) generates dense image time

series by fusing Landsat 8 and Sentinel-2 images, (ii) exploits the multitemporal informa-

tion to accurately detect cloud-free pixels having similar spectral values in the target image,

(iii) estimates how likely a pixel is affected by clouds by comparing its spectral behavior

with the most similar temporal profiles, and (iv) restores the radiometric value of pixels

covered by clouds by using cloud-free pixels with a similar temporal behavior. Experimental

results obtained on the Trentino Region, Italy, demonstrate the effectiveness of the proposed

method, which achieves higher cloud detection accuracy compared to the standard cloud

detection Sen2Cor.

5.1 Introduction

Nowadays, sensors such as Sentinel-2 or Landsat 8 are generating unprecedented volumes

of data at high spatial, spectral and temporal resolutions with a worldwide coverage.

This leads to dense Satellite Image Time Series (SITS) of optical images which increases
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the opportunity to monitor dynamic phenomena, thus enabling a wide range of new

possibilities in the field of multitemporal applications [86, 14]. However, to exploit optical

images it is mandatory to apply an accurate pre-processing for detecting the presence

of clouds. Indeed, undetected clouds generate unreliable multitemporal trends, thus

hampering the possibility of generating reliable Earth observation products [180].

In the literature, a large effort has been devoted to solve the cloud detection problem.

In particular, the proposed cloud detection methods can be grouped into two main

categories: monotemporal and multitemporal approaches. Monotemporal methods rely

only on the information derived from a given target image to build the cloud mask. Several

approaches identify the presence of clouds by thresholding meaningful physical features

(e.g., reflectance or temperature of the processed image) where clouds are more visible

[80]. However, better results can be obtained using supervised classification methods

[77], at the cost of requiring a representative set of manually labeled samples to train the

classification algorithm.

Multitemporal approaches exploit the information provided by the other images

present in the SITS that includes the target image to accurately detect clouds in an unsu-

pervised way [181, 124]. Typically, a cloud free reference data is compared to the target

image to identify the presence of changes introduced by the cloud coverage. The quality

of the free cloud reference data strongly affects the performances of the cloud detection.

While in Landsat images it is possible to automatically detect a free cloud image, this is

more complex in Sentinel-2 data. Although these data provide a band that allows the iden-

tification of thin cirrus clouds, the lack of a thermal band affects the capability to detect

low altitude clouds results in a confusion between bright land surfaces (i.e., buildings)

and clouds [61].

Once clouds are reliably detected, they can be masked and missing information of the

covered pixels can be recovered using the available dense SITS. Thus, an unobstructed

view of the ground can be recovered and used for the subsequent extraction of useful

information. If this operation is ignored, clouds will be identified as the predominant

change that would mask any other change occurred within the image time series. Many

techniques have been proposed in the literature for the restoration of missing information

[156]. The main drawback of mainstream techniques however is the reconstruction of a

target image using pixels extracted from cloud-free images acquired at a different date.

This operation introduces a bias in the statistics of the reconstructed images that may

profoundly impair the analysis of changes in the restored image time series.

This chapter describes an unsupervised multitemporal technique to the simultaneous

accurate detection of clouds and restoration in Sentinel-2 images. Differently from the
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Fig. 5.1 Workflow of the proposed unsupervised multitemporal cloud detection and image
restoration technique.

multitemporal methods present in the literature, the proposed technique does not require

any cloud free image, but relies only on the analysis of temporal profiles. In greater detail,

the proposed method first generates a dense SITS by integrating the data acquired by

Sentinel-2 and Landsat 8. Then, for each pixel of a target image, it identifies the most

similar pixels present in the scene by analyzing their temporal profiles. Now, the likelihood

that a pixel is covered by a cloud can be evaluated in a target image by comparing for each

of its pixels their temporal profile with the most similar temporal profiles. Finally, cloudy

pixels can be restored using the most similar temporal profile.

5.2 Proposed Cloud Detection and Restoration Method

Figure 5.1 shows the workflow of the proposed unsupervised multitemporal cloud de-

tection and image restoration method. The method is based on four main steps: (i) the

pre-processing which integrates Landsat 8 and Sentinel-2 images, (ii) the detection of

similar temporal profile, (iii) the unsupervised detection of clouds, and (iv) the restoration

of cloudy pixels in the target Sentinel-2 image.

5.2.1 Pre-Processing

The first step of the proposed method seeks to generate a dense SITS by integrating

Landsat 8 and Sentinel-2 images. First, all the images are atmospherically corrected by
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Fig. 5.2 Example of similar temporal profiles: (a) temporal profile of the j th pixel, (b) its
two most similar profiles.

using the Sen2Cor tool and the Multi-Sensor Atmospheric Correction and Cloud Screening

(MACCS) method for the Sentinel-2 and the Landsat 8 images, respectively [116, 72]. Then

Sentinel-2 images are rescaled at the spatial resolution of Landsat 8. It is worth mentioning

that due to the integration of the images acquired by the two optical sensors, we are in

the condition of generating a dense SITS which increases the confidence of having clear

pixels also in areas frequently affected by cloud cover (e.g., mountain tops).

5.2.2 Detection of Similar Temporal Profiles

In this step, the proposed method aims at identifying a pool of similar temporal profiles for

each pixel of the image where clouds have to be detected and cloudy pixels restored, i.e.,

the target image Iα. Let I n be the multispectral image of size X ×Y ×B acquired at time

tn , where n ∈ [1, N ] and N is the number of images in the SITS. Let T = {I 1, I 2, · · · , I N } be

set of images in the whole SITS. For notational convenience, T can be represented as a

cube T ′ ∈RL×N×B , with L = X ·Y , where each column corresponds to an acquisition time

of the SITS containing the lexicographically ordered pixels of that time. Each row in T ′

represents the multitemporal trend of the corresponding pixel present in the scene (i.e.,

temporal profile).
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The multispectral temporal profile of the j th pixel of the images can be represented as

p j = [I 1(p j ), I 2(p j ), · · · , I N (p j )], where I n(p j ) represents the reflectance value of the j th

pixel acquired at time tn and with j ∈ [1,L]. For notational convenience, in the following

the symbol for the j th temporal profile p j will be defines as p j = [p1
j , p2

j , · · · , p N
j ]. To

reduce the computational complexity of the next steps, noisy samples in the temporal

profiles are rejected. Accordingly, samples having values higher than the 70th percentile of

the reflectances in the temporal profile are masked. This conservative removal of outliers

consists in a first masking of cloudy pixels: since similar temporal profiles are used for

image restoration, this first cloud masking is applied to guarantee that the most similar

temporal profiles belonging to cloud-free pixels in the target image are detected. Hence,

the j th profile p j is compared to all the masked temporal profiles pi ∈ T ′ by using the

Euclidean distance, i.e.:

d(p j ,pi ) =
√∥∥∥p1

j −p1
i

∥∥∥+∥∥∥p2
j −p2

i

∥∥∥+·· ·+
∥∥∥p N

j −p N
i

∥∥∥
with i = [1,L] and i ̸= j

(5.1)

At the end of this step, for each pixel j we obtain the most similar profiles to p j in a

set {pk j ,1
,pk j ,2

, . . . ,pk j ,S
} by selecting the S profiles with the smallest distance value, as

computed in Equation 5.1. Note that if the j th pixel is covered by a cloud in the target

image Iα, the detection of its similar pixels relies completely on the information provided

by the SITS (see Fig. 5.2). Accordingly, the considered dense image time series allows

us to accurately detect the target pixels most similar to the analyzed one. Indeed, when

considering image time series or bi-temporal images, the detection of pixels similar to

the target pixel can be critical due to possible rapid land-cover changes (e.g., crop or

vegetation phenology). Hence, pixels having strong similarity at time t1 may be very

different at time tα.

5.2.3 Unsupervised Cloud Detection

The third step of the proposed approach generates the cloud confidence mask for the con-

sidered target image Iα in an unsupervised way. The method compares target reflectance

pα
j of the generic pixel j in Iα with the reflectance of the similar pixels

{
pα

k j ,1
, pα

k j ,2
, · · · , pα

k j ,S

}
.

Due to the conservative masking process applied before the similarity detection, it is rea-

sonable to assume that the most similar profiles: (i) are not covered by any cloud, and (ii)

present spectral values very similar to pα
j if the pixel is not covered by clouds. Accordingly,

the confidence that the j th pixel of the target image is cloudy can be estimated as the
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median value of the absolute differences between pα
j and

{
pn

k j ,1
, pn

k j ,2
, · · · , pn

k j ,S

}
as follows:

L (pα
j ) = Med

{∥∥∥∥pα
j −pα

k j ,1

∥∥∥∥ ,

∥∥∥∥pα
j −pα

k j ,2

∥∥∥∥ , · · · ,

∥∥∥∥pα
j −pα

k j ,S

∥∥∥∥
}

(5.2)

By analyzing the statistical behavior of L (pα
j ) in the whole target image Iα, it is possi-

ble to select an adaptive threshold cth (e.g., 90th percentile of L (pα
j ) with j ∈ [1,L]) to

automatically generate the final cloud mask image for Iα, i.e.,:

C Mα
j =

{
cloud if L (pα

j ) > cth

no cloud otherwise
(5.3)

It is worth noting that the proposed approach is fully automatic and can be easily paral-

lelized by processing small tiles of the image time series at the same time.

5.2.4 Image Restoration

The last step of the proposed approach performs the restoration of cloudy pixels in the

target image Iα. The restored target image Îα can be computed pixel-wise by using the

cloud mask and the most similar temporal profiles found in the previous steps:

Îα(p j ) =
{ pα

k j ,1
if C Mα

j = cloud

Iα(p j ) otherwise
(5.4)

5.3 Dataset Description

The experimental dataset contains 134 multispectral images acquired by Sentinel-2 (S2)

and Landsat 8 (L8). Among the 134 images, 56 were acquired by Landsat 8 and the other 78

by Sentinel-2 (see Fig. 5.4 and Table 5.1). The dataset contains all the images acquired from

2015 to 2018 that were characterized by a cloud cover lower than 90%. The cloud cover

was estimated for the area of interest using standard cloud masks derived by Sen2Cor’s

scene classification and Landsat quality assurance bands.

Figure 5.3 shows some images extracted from the multisensor time series in true

natural colors. The area of study is heterogeneous and located in the city of Trento, in

northern Italy. The city can be seen at the center of the scene surrounded by forested

mountains usually covered by show, in particular during the cold seasons. The area,

crossed from north to south by a river, covers approximately 192 sq. Km. In the southern

part of the scene, different types of crops can be seen. Due to its composition, this
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Fig. 5.3 True-color composites of 10 out of 134 images. Images were acquired on (a) 13-
Jan-15∗ I1, (b) 20-Mar-16† I15, (c) 6-Oct-16† I32, (d) 13-Feb-17† I45, (e) 03-Jul-17† I60, (f)
30-Aug-17∗ I75, (g) 25-Dec-17† I90, (h) 24-Apr-18† I104, (i) 02-Aug-18† I119, (l) 21-Nov-18∗

I134.† and ∗ indicate images acquired by Sentinel-2 and Landsat 8, respectively.

study area is particularly interesting from the multitemporal point of view. It allows

us to understand the capabilities of the proposed technique to detect clouds covering

different land covers with a distinct multitemporal spectral signature. Moreover, this area

was selected since standard cloud masking techniques tend to confuse clouds and snow

and have worse performance in the presence of shadows typically present in the alpine

environment.

The multi-spectral images acquired in the same geographic coordinate system were

converted in surface reflectance for 4 spectral bands (i.e., red, green, blue and NIR).

Then, the spectral bands were resampled at the same spatial resolution (i.e., 30m) and

co-registered. Finally, L8 and S2 surface reflectance values were normalized in the range

[0,0.2] to create an analysis ready data cube with an image size of 447×478 pixels.

5.4 Experimental Results

The preliminary experimental results shown in this chapter were obtained using only the

blue band because it is the most sensitive to the presence of clouds. Please note standard

cloud masks derived by Sen2Cor’s scene classification or CF-masks quality assurance

bands are used only for validation purposes and are not needed by the proposed approach

solely based on the analysis of the behavior of the surface reflectance over time.
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Table 5.1 Multitemporal dataset (dd-mm format). ∗ indicates Landsat 8, † indicates
Sentinel-2.

Year Acquisition Dates and Sensor

2015 13-1∗, 18-3∗, 3-4∗, 19-4∗, 5-5∗, 6-6∗, 8-7∗, 9-8∗, 25-8∗, 10-9∗, 26-9∗,
12-10∗, 13-11∗

2016 16-1∗, 20-3∗, 5-4∗, 21-4∗, 7-5∗, 24-6∗, 10-7∗, 18-7†, 26-7∗, 7-8†, 11-8∗,
17-8†, 27-8∗, 27-8†, 6-9†, 12-9∗, 26-9†, 28-9∗, 6-10†, 16-10†, 30-10∗,
15-11∗, 15-11†, 1-12∗, 5-12†, 15-12†, 17-12∗, 25-12†

2017 02-1∗, 18-1∗, 24-1†, 13-2†, 19-2∗, 5-3†, 7-3∗, 25-3†, 8-4∗, 14-4†, 10-5∗,
14-5†, 24-5†, 26-5∗, 3-6†, 11-6∗, 13-6†, 23-6†, 3-7†, 8-7†, 13-7∗, 13-7†,
18-7†, 23-7†, 28-7†, 29-7∗, 2-8†, 7-8†, 12-8†, 14-8∗, 17-8†, 22-8†, 27-
8†, 30-8∗, 21-9†, 26-9†, 6-10†, 11-10†, 16-10†, 26-10†, 31-10†, 15-11†,
18-11∗, 20-11†, 4-12∗, 5-12†, 20-12∗, 20-12†, 25-12†

2018 09-1†, 19-1†, 21-1∗, 24-1†, 29-1†, 13-2†, 18-2†, 28-2†, 20-3†, 25-3†, 26-
3∗, 14-4†, 19-4†, 24-4†, 13-5∗, 29-5∗, 29-5†, 8-6†, 14-6∗, 18-6†, 23-6†,
30-6∗, 3-7†, 13-7†, 18-7†, 23-7†, 28-7†, 1-8∗, 2-8†, 7-8†, 12-8†, 17-8∗, 17-
8†, 22-8†, 27-8†, 6-9†, 11-9†, 16-9†, 18-9∗, 21-9†, 26-9†, 4-10∗, 20-10∗,
21-11∗

Table 5.2 Assessment of the classification performance obtained by cloud masks of the
standard (Sen2Cor) and proposed multitemporal approach (Overall Accuracy, Cohen’s
kappa, F-score, commission/omission errors).

OA% κ F-score FA MA

Standard 92.6% 0.66 0.70 2558 13634

Proposed 95.6% 0.80 0.83 208 9188

In the considered experiment we employed as target the Sentinel-2 image acquired on

24th May, which is characterized by the presence of cirrus clouds, shadows and some thin

clouds. Figure 5.5 compares the cloud detection results obtained by Sen2Cor (Fig. 5.5d)

and the proposed method (Fig. 5.5e). The latter was derived by thresholding the cloud

mask confidence (Fig. 5.5b) at the 50-th quantile. As expected, many false alarms located

in the urban area are present in the Sen2Cor mask due to the missed availability of the

thermal band. In contrast, these pixels are correctly detected as no-clouds by the proposed

method due to the extensive analysis of the multitemporal information provided by the

dense TS of images. Thus, the comparison with S = 250 similar temporal profiles allows

the method to discriminate between pixels representing bright surface objects and clouds.
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Fig. 5.4 Acquisition dates of images acquired by Landsat 8 (in red squares) and Sentinel-2
(in green triangles). Dates are shown by year (y-axis) and day of year (x-axis).

The qualitative evaluation is confirmed by the quantitative results reported in Table 5.2,

which shows the cloud detection performance obtained by the standard and proposed

techniques in terms of Overall Accuracy, Cohen’s kappa, F-score, commission/omission

errors. A sharp reduction of omission and commission errors is obtained compared to

the standard reference method. Many false alarms located in the urban area present in

Sen2Cor’s scene classification are correctly detected as non-cloud pixels by the proposed

technique.

Figure 5.6 shows the restored image Î 54. The qualitative analysis of the restoration

results shows good results with very few stitching artifacts. Some omission errors are

present in the northern part of the cloud mask. They cause a missing restoration of cloudy

pixels in the urban area covered by clouds. This also occurs in the top-left corner of the

image where residual missing restoration of cloudy pixels is also visible. Shadows are still

present in the restored image however the proposed approach can be easily extended to

estimate a shadow mask and perform the restoration also of that area.

5.5 Conclusions

In this chapter, an unsupervised multitemporal cloud detection method for Sentinel-2

optical images has been presented. The method generates dense image time series by

integrating Sentinel-2 and Landsat 8 data acquired over the same geographical area. By

exploiting the multitemporal information provided by the dense SITS, the method is able

to accurately identify cloudy pixels in the target image without the need of any cloud free

reference data. In particular, for each pixel of the target image the method first detects the

most similar temporal profiles using the multitemporal information. Then, it compares
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(a) (b)

(c) (d) (e)

Cloud
No Cloud

Fig. 5.5 Results obtained by the proposed technique on (a) image I54 (24-May-17) and its
(b) cloud mask confidence image. Large values shown in orange/red colors indicate a high
confidence of being a cloud. Comparison of cloud masks: (c) ground truth, (c) Sen2Cor
and (d) proposed cloud masks. Cloud in black color, no-cloud in white color.

the reflectance value of the analyzed pixel with the most similar ones to identify the

presence of clouds. Finally, cloudy pixels can be restored using other pixels in the target

image we aim at restoring that shows a similar multitemporal behavior.

The proposed technique has the advantage of reconstructing cloudy pixels in the

target image using cloud-free pixels extracted from the same image. Such restoration of

pixels covered by clouds maintains intact the radiometry of the target image and does not

introduce biases in the statistics of the reconstructed target image. Thus, the subsequent

analysis of the multitemporal changes in the restored image time series is simpler since it

does not require taking into account any distortion in the image statistics.

The proposed cloud masking technique outperformed state-of-the-art techniques.

Experimental results demonstrated that the proposed method achieves accurate cloud

detections outperforming the standard Sen2Cor tool. The image restoration also provided

qualitatively good experimental results. These preliminary results were achieved solely by

using the multitemporal information of the pixel-wise temporal profile of one spectral

channel, i.e., blue. As future work, we plan to extend the experimental analysis to a larger

dataset of Sentinel-2 images acquired in different geographical areas. Moreover, we plan

to extend the analysis on other test areas with different land covers. As another outlook
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(a) (b)

Fig. 5.6 Results obtained by the proposed technique on (a) original image I54 (24-May-17)
and (b) restored image Î54 .

of this work, we intend to improve thin cloud detection and define a mechanism for the

detection of cloud shadows. To reach this goal, the use of other image channels or spectral

indices can increase the discrimination capability of the proposed technique. In addition,

the use of hash coding techniques with search trees can greatly improve the computational

complexity required for the comparison of temporal profiles and the discovery of the most

similar ones that are required for the restoration of missing information in the image time

series.





Chapter 6

Conclusions

This chapter draws the conclusions of the research activities carried out during the PhD and

presented in this thesis. It summarizes the results and describes future developments of the

work.

Summary and Discussion

This dissertation focused on the exploitation of long image time series acquired by remote

sensing sensors, in particular optical multispectral and active SAR data. Nowadays, the

trend is clear for which an ever increasing availability of images is present. For this reason,

the thesis was focused on the development of new paradigms and novel techniques that

fully exploit all the available data and efficiently process images extracted from long

time series. In this context, change detection techniques were studied in order to extract

useful information from the large number of images. Attention has also been devoted to

techniques for the pre-processing of optical multispectral images in order to successively

perform an automatic analysis of the changes. In particular, the study was focused on

the problems of cloud screening and accurate restoration of pixels covered by clouds. In

greater details, the thesis was focused on the (i) development of automatic CD techniques

and unsupervised mechanisms for the assessment and improvement of CD results that

exploit the availability of long image time series; (ii) screening of clouds and restoration

of cloudy pixels in optical images, to reduce their impact on subsequent processing and

multitemporal change analysis. The proposed approaches take advantage of the large

number of images acquired over the same geographical area.

Chapter 2 provided a comprehensive analysis of the state-of-the-art automatic and

unsupervised techniques for change detection. In particular, this chapter conducted an

analysis of techniques that take as input a pair of images or a full satellite image time
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series, i.e., bitemporal or multitemporal CD techniques, respectively. Limitations and

challenges of state-of-the-art techniques have been analyzed and discussed. In particular,

a gap exists in the literature involving the definition of unsupervised and automatic CD

techniques based on all the temporal information of long image time series. No technique

exploits the temporal correlation of change maps computed pair-wise within image time

series. Moreover, few techniques deal explicitly with the temporal consistency of changes.

Three main contributions to the state-of-the-art have been presented in the disserta-

tion:

1. In the first contribution (Chapter 3), the circular CD framework was defined for the

exploitation of the temporal correlation in long image time series for an improved

extraction of information. The framework is based on the definition of the binary

change variable that is a conservative quantity in absence of CD errors and under

the assumption of abrupt changes within the image time series. Thus, a possible CD

error along a closed circular path can be detected whenever the conservative prop-

erty is not verified along that path. Two CD techniques were proposed within this

framework: the single-path and multi-path circular CD techniques. Experiments

were performed using synthetic and real time series of optical and SAR images. In

the experimental setup, three different cases have been considered by varying the

free-parameters of the unsupervised bi-temporal CD techniques for the generation

of the target pair: the minimum-error case, commission- and omission-error bias

case. Experimental results confirmed the effectiveness of the proposed methods in

identifying CD errors when the target pair has worse CD performance than other

CD maps within the image time series, i.e., in the commission- and omission-error

bias cases. In other words, in these two cases, the cause of inconsistencies of the

multitemporal change variable can be correctly located in the target pair and cor-

rected accordingly. In the minimum-error case, CD errors are scattered across CD

maps between images extracted from the long time series. In this case, the proposed

approaches are not able to properly locate CD errors causing inconsistencies in the

multitemporal change variable and average CD results do not improve or worsen.

2. In the second contribution (Chapter 4), an iterative approach is defined to extend

the circular framework to multiclass changes and to correct errors in CD maps

for any image pair in the timeseries, not only a target image pair. To avoid the

correction of all the possible pair-wise CD maps that can be defined within the

image time series, a graph is used to model the time series and consistent changes.

The graph can be used to detect changes between any pair of images by tracking

consistent changes along any path connecting the two nodes in the graph. This
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mechanism allow us to overcome the limitation of the single and multipath circular

CD approaches. These techniques cannot significantly improve CD performance in

the minimum-error case. For this reason, the proposed approach iteratively corrects

inconsistencies to the conservative property of the multitemporal change variable.

Hence, the identification of CD errors is performed globally within the image time

series. The correction mechanism is also improved since it works in a general case

and not only when a target pair with significantly lower CD performance than other

CD maps is present in the image time series. Experimental results were obtained

by applying the proposed methods on a synthetic and SAR image time series and

proved the effectiveness of the proposed approach.

3. The third contribution (Chapter 5) consists in a multitemporal approach for the

detection of clouds and restoration of cloudy pixels. This operation is required for

the subsequent automatic analysis of changes occurred within dense image time

series on a large geographical area in operational setting, e.g., at regional scale. In

the proposed approach, all the images of the time series are used unlike mainstream

techniques found in the literature. The advantage of the proposed approach consists

in the restoration of a target image based only on cloud-free pixels extracted from

the target image, and thus without introducing biases and distortions in the image

radiometry. Preliminary results were presented on an optical image time series

acquired by Landsat 8 and Sentinel-2. A good detection rate was obtained on cirrus

clouds but also on thin clouds. The quantitative analysis showed a better cloud

detection capability then standard monotemporal cloud masks provided by ESA’s

Sen2Cor tool. More testing is required and an exhaustive comparison of the results

with other state-of-the-art techniques for cloud detection and image restoration is

planned.

Future Developments

In order to extend the research activities carried out in the thesis, studies can be conducted

to solve some remaining open issues and investigate interesting topics raised during the

PhD.

The study of the circular CD framework can be extended to define maps of transitions

between different pixel status and flow of information along permitted paths in the con-

text of land cover map updates. Accordingly, the unsupervised detection of temporally

consistent changes can enable the automatic and efficient update of land cover maps by

exploiting the large number of images acquired over the area of study. In other words,
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consistent changes in the graph used by the iterative circular CD technique allow the

update of a land cover map from an acquisition time to another one. Since edges in this

graph map consistent transitions between different pixel status, a better update of the

land cover labels is expected with respect to traditional techniques.

Other future developments of the work consist in the improvement of the computa-

tional efficiency of the proposed CD approaches. This is an important aspect to consider

towards the processing of real image time series over a large area of study in an automatic

way. In this direction, the screening of clouds and the restoration of pixels covered by

clouds can be improved. Future developments involving the multitemporal cloud screen-

ing and image restoration are the monitoring of a larger number of spectral bands in order

to better discriminate clouds and cloud shadows against other changes.
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