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Abstract 
The human microbiome represents the community of archaea, bacteria, micro-eukaryotes, 
and viruses present in and on the human body. Metagenomics is the most recent and 
advanced tool that allows the study of the microbiome at high resolution by sequencing the 
whole genetic content of a biological sample. The computational side of the metagenomic 
pipeline is recognized as the most challenging one as it needs to process large amounts of 
data coming from next-generation sequencing technologies to obtain accurate profiles of the 
microbiomes. Among all the analyses that can be performed, phylogenetics allows 
researchers to study microbial evolution, resolve strain-level relationships between 
microbes, and also taxonomically place and characterize novel and unknown microbial 
genomes. This thesis presents a novel computational phylogenetic approach implemented 
during my doctoral studies. The aims of the work range from the high-quality visualization of 
large phylogenies to the reconstruction of phylogenetic trees at unprecedented scale and 
resolution. Large-scale and accurate phylogeny reconstruction is crucial in tracking species 
at strain-level resolution across samples and phylogenetically characterizing unknown 
microbes by placing their genomes reconstructed via metagenomic assembly into a large 
reference phylogeny. The proposed computational phylogenetic framework has been used in 
several different metagenomic analyses, improving our understanding of the complexity of 
microbial communities. It proved, for example, to be crucial in the detection of vertical 
transmission events from mothers to infants and for the placement of thousands of unknown 
metagenome-reconstructed genomes leading to the definition of many new candidate 
species. This poses the basis for large-scale and more accurate analysis of the microbiome. 
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1. Introduction 
In this first chapter, I will review the main biological field (section 1.1 The human 
microbiome) and the two computational topics (in sections 1.2 A primer on Computational 
metagenomics and 1.3 A primer on computational phylogenetics) that are the basis of 
the work presented in this thesis. The aims of the thesis and the structure of the following 
chapters are reported in the last section, 1.4 Aims and main contributions of the thesis. 

1.1 The human microbiome 
The microbiome is the totality of bacteria, archaea, viruses, and micro-eukaryotes that 
inhabit a specific environment. Microbiomes have been studied in several different ecological 
niches, which range from the ocean (Sunagawa et al., 2015), to soil (Brown et al., 2015), 
permafrost (Mackelprang et al., 2011), alpine lakes (Monchamp et al., 2016), but also 
urbanized environments like hospitals (Shin et al., 2015) and metro (Mason et al., 2016). 
Microbiome studies looked also at the microbial communities present in the food chain, with 
the aim of improving food quality and safety (De Filippis et al., 2018). Even microbiomes 
associated with living hosts, including plants, animals like cattle (Wallace et al., 2015), 
poultry (Yeoman et al., 2012), and mice (Xiao et al., 2015) have been studied. Particular 
focus has been reserved for the microbiomes associated with the human body; as humans, 
we are carrying several different and at the same time specific microbiomes in and on our 
bodies. Two of the largest microbiome initiatives ‐ the Human Microbiome Project in the US 
(HMP et al., 2012) and MetaHIT in Europe (Qin et al., 2010) ‐ paved the way toward 
understanding the diversity of the human microbiome, by producing a large set of publicly 
available human microbiome data from many different body sites, like nasal passages, oral 
cavity, skin, gastrointestinal tract, and the urogenital tract. 

One of the main interests about the human microbiome was the characterization of the 
microbial composition in different body locations, such as the oral cavity (Donati et al., 2016; 
HMP et al., 2012), the airways (HMP et al., 2012), the skin (Grice and Segre, 2011; HMP et 
al., 2012; Tett et al., 2017), and the urogenital (Aagaard et al., 2012; HMP et al., 2012) and 
gastrointestinal tracts (HMP et al., 2012; Qin et al., 2010). The latter is arguably one of the 
most studied human microbiomes. The human gut microbiome has been extensively studied 
in the last decade and, in particular, it has been shown to be associated with geography, 
age, diet, and health and disease. 

It is particularly difficult to define what a healthy microbiome is, given the high variability of 
the microbial composition we can observe even in a cohort of only healthy individuals. 
However, we know that if we want to modify the microbial composition of an individual, the 
diet can play a pivotal role (Carmody et al., 2015; David et al., 2014). To give an example, it 
has been shown that a low-gluten diet shows enrichment of Bacteroidaceae family, 
compared to a high-gluten diet that shows an increase of Lachnospiraceae family (Hansen 
et al., 2018). Another aspect extensively studied and related to the diet is the effect of 
probiotics intake on the oral and gut microbiome (Suez et al., 2018; Zmora et al., 2018). 
Given this interesting link between microbiome and diet, to date, there is an increasing 
interest in personalized nutrition based on the microbiome (Zeevi et al., 2015), not only by 
the scientific community but also from private companies. Microbiome studies so far were 
geographically limited to a number of highly-sampled countries, especially the US, Europe, 
and China (HMP et al., 2012; Qin et al., 2010, 2014), which are representatives of limited 
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dietary habits. Recent works have focused on the study of rural cohorts (Brito et al., 2016; 
Obregon-Tito et al., 2015; Rampelli et al., 2015), with the goal of characterizing the 
microbiome of non-Westernized communities that were not subjected to urbanization and 
have more traditional lifestyles and diets. The survey of non-Westernized microbiomes has 
shown an increase in microbial richness when compared to microbiomes of people living in 
urbanized areas (De Filippo et al., 2010; Yatsunenko et al., 2012) and is leading to the 
discovery of novel and previously not-characterized microbial species (Pasolli et al., 2019). 

Other than diet and geography, another recently studied microbiome association is with age, 
and in particular the debate on the onset of the infant gut microbiome (Dominguez-Bello et 
al., 2010; La Rosa et al., 2014; Palmer et al., 2007). There are studies that support the 
existence of the placenta microbiome (Aagaard et al., 2014), and others instead that are 
supporting the concept of a sterile placenta (Leiby et al., 2018; Perez-Muñoz et al., 2017). 
Some other studies focused instead on the perinatal period, trying to understand if there are 
differences in the microbiome development of vaginally and Cesarean-section delivered 
babies, and whether these can have an impact on their future health (Azad et al., 2013; 
Dominguez-Bello et al., 2010). Other groups have focused on identifying microbial species 
vertically transmitted from mothers to infants by longitudinal microbiome sampling of mothers 
and infants (Asnicar et al., 2017; Duranti et al., 2017; Ferretti et al., 2018; Jost et al., 2014; 
Milani et al., 2015; Yassour et al., 2018). Understanding how the infant gut colonization 
starts and how it leads to the development of a more complex adult-like microbial 
composition is crucial also in relation to the future health of the babies. Looking not only at 
the taxonomic composition but also at the transcriptional patterns as in (Asnicar et al., 2017) 
allows to study also the activity of vertically transmitted strains in the infant's gut. The 
identification of a panel of species that are vertically transmitted from mothers to infants 
opens new venues in understanding how the microbiome is spread and maintained within a 
population. 

In recent years, the human microbiome has been convincingly associated with a number of 
diseases in humans. Specific biomedical efforts then explicitly focused on using the 
microbiome as a therapeutic target. The set of diseases that have been investigated in 
connection with the microbiome is now relatively large and includes: irritable bowel 
syndrome (Durbán et al., 2013; Saulnier et al., 2011) and inflammatory bowel disease 
(Franzosa et al., 2019; Greenblum et al., 2012; Morgan et al., 2012; Nielsen et al., 2014), 
type 1 (Heintz-Buschart et al., 2016) and type 2 diabetes (Forslund et al., 2015; Karlsson et 
al., 2013; Qin et al., 2012), Crohn's disease (Erickson et al., 2012; Gevers et al., 2014; Lewis 
et al., 2015; Quince et al., 2015), colorectal cancer (Feng et al., 2015; Vogtmann et al., 
2016; Yu et al., 2017; Zeller et al., 2014), rheumatoid arthritis (Scher et al., 2013; Zhang et 
al., 2015), and necrotizing enterocolitis (Claud et al., 2013; Ward et al., 2016), just to name a 
few. This field of research is very promising because the microbiome can be used as a non-
invasive diagnostic marker (Yang et al., 2012; Yu et al., 2017). 

An increasing amount of work is trying to elucidate the fundamental properties of microbial 
communities and characterize the role of the microbiome in the conditions and settings 
described above. Advances in the field are driven by improvements in sequencing 
technologies, development of accurate analysis techniques, adoption of appropriate study 
design and sample sizes, and availability of publicly available annotated data that can be 
reused in large meta-analyses. Still, a lot has to be uncovered. Among the aspects that are 
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receiving more attention, there is the description of the microbiome at the level of it single 
constitutive strains (rather than species) (Quince et al., 2017; Segata, 2018) and the 
identification of species without any available isolate data (Pasolli et al., 2019). 

Within the human microbiome research, I will now introduce the two fields of computational 
metagenomics and computational phylogenetics, as they will be the basis of this thesis work. 

1.2 A primer on Computational Metagenomics 
Metagenomics is the study of microbial communities associated with a given environment by 
sequencing the whole genetic content of a sample and without the need for cultivation. This 
allows the study not only of well-characterized microbes but also of species that are 
recalcitrant to isolation. High-throughput sequencing technologies were and are key to the 
development of the field, with increasing sequencing depths enabling the study of a growing 
fraction of microbiome members. A shotgun metagenomic study includes as first steps 
sample collection, storage, and sequencing. For these first steps, we can rely on well-
established protocols that have been used for years. The analysis of the sequenced data, 
instead, is still posing challenges as we aim at higher resolution analyses of the microbiome 
and have to deal with the increasing amount of data. Computational analyses of 
metagenomics data are today essential for elucidating and characterizing the microbiome 
members and their interactions. We can further split the computational approaches into two 
categories, as suggested in (Quince et al., 2017): the sequence analysis that deals with the 
first taxonomic and functional characterization, and post-processing analysis that aims at 
applying statistical and machine learning approaches to interpret the results and link them 
back to biological aspects. 

While performing sequence analysis, there are two main questions that we can ask with 
respect to a microbiome sample: “who is there?” and “what can they (potentially) do?”. To 
answer the first question “who is there?”, we need to uncover the microbial diversity by 
figuring out which species are present and at what relative abundance. In the literature, there 
are several software tools that deal with this “taxonomic profiling” challenge. Some of them 
utilize a reference-based approach, while others use a k-mer based approach. Reference-
based methods determine microbial species by exploiting publicly available genomic 
databases in different ways. Genomes deposited in publicly available databases can be 
either used to identify species by directly mapping the metagenomic reads against the whole 
genomes or to pre-compute species-specific markers, which are smaller than the whole 
genome making the mapping step faster. A whole-genome reference-based approach like 
SLIMM (Dadi et al., 2017) that produces taxonomic profiles based on reads mapping 
classification, can be more sensitive to low abundant species but it is likely not 
computationally feasible given the always increasing number of genomes deposited in public 
databases. Marker-based approaches instead select a maximally-informative fraction of the 
available genomic information, hence result in a much faster computation. Marker-based 
approaches are generally very accurate with a low false-positive rate (Freitas et al., 2015; 
Sczyrba et al., 2017; Truong et al., 2015), with the downside that it is not possible to profile 
species for which markers cannot be extracted - which in most cases means that their 
genomic data is not available - or for low-abundant species for which there is not enough 
reads data when mapping their markers. K-mer based approaches instead exploit statistics 
(like frequency) computed on all substrings of a certain length k (Lu et al., 2017; Popic et al., 
2018; Wood and Salzberg, 2014). The upside in using a k-mer based taxonomic profile is 
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that it can profile very-low abundant species. A downside of the same approach is that to 
increase sensitivity we should consider large values for k, but this will result in a memory-
intensive computation. Other than reference and k-mer based methods, another approach 
for taxonomic profiling exploits instead a reference phylogenetic tree. Taxonomic profilers 
that exploit a reference phylogeny, place the metagenomic reads into the reference 
phylogeny and infer the taxonomic profile according to their placement into the tree (Nguyen 
et al., 2014). To answer the “who is there?” question, many taxonomic profilers have been 
proposed and are available in the literature, with many of them exploiting complementary 
approaches. As there is no a clear winner, the choice today seems to tend to marker-based 
profilers as they are able to accurately profile in a quick way the increasing amount of data 
that we are able to generate with current high-throughput sequencing technologies.  

The second question ‐ “what can they potentially do?” ‐ focuses on the ability to retrieve the 
overall gene repertoire and thus the functional potential of a microbiome directly from 
metagenomics data. This is generally referred to as functional potential analysis when done 
on metagenomics data, whereas in the presence of paired metagenomes and 
metatranscriptomes (sequencing of the RNA content of a community) it can be referred to as 
functional expression analysis. There are a number of tools that are dealing with the 
functional analysis from metagenomics and metatranscriptomics data like HUMAnN1 
(Abubucker et al., 2012), HUMAnN2 (Franzosa et al., 2018), COGNIZER (Bose et al., 2015), 
MEGAN (Huson et al., 2016), and ShotMAP (Nayfach et al., 2015). 

Other than on the two classical questions discussed above, computational metagenomics 
has recently focused its efforts on the accurate genome reconstruction from metagenomics 
data, to study and characterize previously unseen microbial diversity. Accurate genome 
reconstruction from metagenomic data starts with metagenomic assembly, whose goal is to 
reconstruct longer consensus DNA stretches, named contigs, by assembling together short 
reads. For example, metaSPAdes (Nurk et al., 2017) and MEGAHIT (Li et al., 2015) are two 
metagenomic assemblers that are routinely used for contigs reconstruction. The computed 
contigs from the assembly analysis can be further organized into genome bins by using 
contig binners like METABAT2 (Kang et al., 2015). A bin of contigs represents the 
sequences of a specific microbial genome present in the microbiome. This allows to retrieve 
bacterial genomes of uncultivable species and new genetic variants (strains) of known 
species and thus shedding new light on microbial diversity. 

All the computational metagenomics tools presented so far directly analyze the raw shotgun 
metagenomic sample and aim at extracting higher-level profiles like its taxonomic 
composition, its functional potential profile with its set of genes, or the possibility to recover 
quasi-complete microbial genomes. Such microbiome profiles are typically further processed 
by the application of statistical and machine learning approaches that allow interpreting the 
results, even from a biological point of view. Post-processing is very wide and is not a 
methodological focus of the present thesis, so we refer elsewhere (Quince et al., 2017) for 
an introduction on this part. 

1.3 A primer on Computational Phylogenetics 
Phylogenetics is the study of the relationships between organisms that allows us to 
understand the evolutionary patterns of organisms. These relationships are generally 
inferred starting from genomic data, either genes or proteins, and are derived according to 
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evolutionary models. With the increased availability of large sets of microbial genomes from 
isolate sequencing, the last decade witnessed a dramatic increase of phylogenetic analyses 
applied to microbial organisms. Phylogenetic analysis was indeed extensively used in 
different contexts (Aanensen et al., 2016; Anzai et al., 1997; Holt et al., 2015; Khan et al., 
2008; Manara et al., 2018; Musser and Kapur, 1992), considering different microbial species 
studied in isolation like Pseudomonas aeruginosa, Escherichia coli, and Klebsiella 
pneumoniae. Most of these results were obtained thank to computational advances that 
allowed scaling phylogenetic profiling to many genes or genomic regions. However, 
phylogenetic methods are still struggling to cope with the increased availability of microbial 
genomes, need advanced computational skills to be correctly used, and have been only 
scarcely applied so far in shotgun metagenomics. My thesis aims at filling these gaps. 

Similarly to isolate sequencing datasets, phylogenetics can provide many crucial insights in 
metagenomics. For example, it can help understanding how new genomes reconstructed via 
metagenomic assembly are related with the known and characterized microbial reference 
genomes deposited in publicly available databases. Also, taxonomic assignments of 
genomes from metagenomes can be based on their phylogenetic placement. Moreover, 
phylogenetic differences in strains within the same microbial species in different 
microbiomes can pinpoint important bio-geographical associations of phenotypic traits (e.g. 
resistance to antibiotics) in large microbial communities. Through phylogenetic analysis, we 
can also study and characterize the within diversity of a microbial organism and hence how 
its strains evolved in time.  

The basic concept in phylogenetics is a tree, which is the main output of a phylogenetic 
analysis. A tree structure is used to organize and represent the inferred relationships 
between organisms, where the leaves of the tree represent the genomes and the internal 
nodes are the branching point that represents a split in the evolution of the organism, where 
new lineages start diverging. The sum of the length of the branches between two leaf nodes 
in a phylogenetic tree represents their phylogenetic distance. 

Phylogenetics can be subdivided into two main approaches: phenetic and cladistics. A 
phenetic approach computes a tree (called dendrogram) based on a concept of distance. On 
the other hand, a cladistic approach computes a tree (named cladogram) considering many 
different evolutionary pathways, and then choosing one based either on parsimony or a 
likelihood strategy. A classical phylogenomic analysis focuses on the whole genome of very 
few species to reconstruct their phylogenetic tree; with phylogenetics, instead, we are 
exploiting a single gene for inferring the phylogenetic signal. The latter approach is often 
applied in the bacterial world, where the ubiquitously conserved 16S rRNA gene (or one of 
its nine variable regions) is used for building even very large phylogenies (DeSantis et al., 
2006; Parks et al., 2018; Quast et al., 2013). However, thanks to the increasing amount of 
publicly available data, the improvement of software analysis tools, and the novel genomes 
reconstructed from metagenomes (Brown et al., 2015; Hildebrand et al., 2019; Parks et al., 
2017; Pasolli et al., 2019), we can now deepen the study of previously unexplored 
microbiome members. To be able to discriminate this uninvestigated microbial diversity, 
though, we cannot use a single gene, but we need to exploit larger sets of genes to maintain 
a high resolution. This requires to deal with a very large number of genomes and with quasi-
complete genome sequences, or a large number of genes. Computational phylogenetics 
deals with this increasing amount of data and the need to use larger sets of genes for 
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accurate phylogeny reconstruction thanks to computational advances and the ability to 
reduce and speed up the multiple-sequence alignment step. Indeed, computational 
phylogenetics is now fundamental to unravel the within-species diversity and for the 
characterization of unknown species. 

Common steps in computational phylogenetics are the identification of the genes from the 
inputs, the multiple-sequence alignment of the extracted sequences, and then the inference 
of the phylogeny. The identification of the genes or proteins from the genomes of interest is 
done by searching or aligning, using BLAST (Altschul et al., 1990), USEARCH (Edgar, 
2010), or Diamond (Buchfink et al., 2015), for instance, the reference gene sequences 
against the inputs. The identified sequences of each gene extracted from the genomes are 
then all aligned together using a multiple-sequence aligner like MUSCLE (Edgar, 2004), 
PASTA (Mirarab et al., 2015), MAFFT (Katoh and Standley, 2013), T-coffee (Notredame et 
al., 2000), OPAL (Wheeler and Kececioglu, 2007), SATé-II (Liu et al., 2012), CLUSTAL W 
(Thompson et al., 1994) to produce what is called a multiple-sequence alignment (or MSA). 
After having computed the MSAs of the extracted sequence of each marker gene, there are 
two schools of thought in computational phylogenetics: the first one is the so-called 
supermatrix (or concatenation) approach and the second one is the supertree (or gene 
trees) approach. A supermatrix approach (or concatenation) concatenates one after the 
other all the MSAs marker gene sequences of each input genome into one long MSA 
sequence. The concatenated MSA is then provided as input for the phylogenetic 
reconstruction step, using software tools like RAxML (Stamatakis, 2014), IQ-TREE (Nguyen 
et al., 2015a), or FastTree (Price et al., 2009, 2010). A supertree (or gene trees) approach 
instead independently reconstructs a phylogenetic tree for each of the multiple-sequence 
aligned marker genes, using the same software tools as just described in the concatenation 
approach, and then exploits summary approaches like ASTRAL (Mirarab et al., 2014), 
ASTRAL-II (Mirarab and Warnow, 2015), ASTRAL-III (Zhang et al., 2018), or ASTRID 
(Vachaspati and Warnow, 2015) to infer a consensus phylogenetic tree that reflects the 
phylogenies of each single marker gene computed. 

Challenges in computational phylogenetics today are many and are mainly related to the 
difficulty of accurately reconstructing very large phylogenies. When dealing with tens of 
thousands of input genomes, the required computational time for the phylogeny inference 
step can increase exponentially. This is largely due to the fact that there are tens of 
thousands of genomes and for each of them an MSA up to hundreds of thousands of 
positions. Removing genomes can be one solution that can help in building very large 
phylogenies, with the drawback of losing the removed genomes from the inferred phylogeny. 
The other way to tackle this problem is by reducing in length the MSA. There are several 
approaches that aim at reducing in length the MSA trying to reduce at minimum the loss of 
the phylogenetic signal, to make possible the reconstruction of very large phylogenies 
(Capella-Gutiérrez et al., 2009; Castresana, 2000; Chang et al., 2014; Dress et al., 2008; 
Edgar, 2009; Penn et al., 2010; Sela et al., 2015; Talavera and Castresana, 2007; Valdar, 
2002; Webb et al., 2017). More details about these approaches are reported and discussed 
in Chapter 3. 
 
Giving the increasing availability of data, we can now analyze at the same time hundreds of 
thousands of genomes. This is pushing the community to ask for a phylogenetic framework 
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able to analyze this amount of data in a reasonable time while keeping the highest possible 
accuracy. 

1.4 Aims and main contributions of the thesis 
The works presented in this thesis aim to tackle the challenges arising in both the 
computational metagenomics and computational phylogenetics fields introduced above. The 
main contribution of this thesis to the computational metagenomics and computational 
phylogenetics fields are described in Chapter 2, 3 and 4, and their respective aims are: 

● the visualization of large-scale hierarchical and phylogenetic trees; 
● the development of a novel phylogenetic framework for the analysis of microbiome 

data from metagenomics; 
● the use of phylogenetics in metagenomics to solve the “vertical transmission” 

problem. 

Several applications of the developed tools are then presented and motivated in Chapter 5. 
Other than the contributions presented in this thesis, I report below other computational 
contributions I made into several software tools I developed and/or maintained: 

● I developed GraPhlAn1, presented in Chapter 2; 
● I developed export2graphlan2, a framework that integrates results coming from other 

analysis tools and provides GraPhlAn-like input files, to ease and automatize the use 
of GraPhlAn; 

● I maintained and improved the first version of PhyloPhlAn3 and I implemented 
PhyloPhlAn 2 presented in Chapter 3; 

● I maintained and added features to MetaPhlAn24, a marker-based taxonomic profiler 
for shotgun metagenomics data, and I developed the q2-metaphlan2 QIIME 2 plugin 
for MetaPhlAn2; 

● I maintained hclust25 that is used for the visualization of taxonomic and functional 
profiles as heatmaps with clustering possibilities; 

● I developed the metagenomics pre-processing pipeline6 used for the quality-control 
screening of the raw sequence data and to generate the “cleaned” metagenomes to 
be used for downstream analysis; 

● I wrote the recipes that allow the packaging of the tools listed above to be integrated 
into Conda7 and Bioconda8; 

                                                
1 GraPhlAn repository: https://bitbucket.org/nsegata/graphlan 
2 export2graphlan repository: https://bitbucket.org/CibioCM/export2graphlan 
3 PhyloPhlAn repository: https://bitbucket.org/nsegata/phylophlan, PhyloPhlAn 2 is available in the 
“dev” branch of the PhyloPhlAn repository 
4 MetaPhlAn2 repository: https://bitbucket.org/biobakery/metaphlan2, and q2-metaphlan2 repository: 
https://bitbucket.org/biobakery/metaphlan2-install 
5 hclust2 repository: https://bitbucket.org/nsegata/hclust2 
6 Preprocessing repository: https://bitbucket.org/CibioCM/preprocessing 
7 My Anaconda personal page containing packages and environments: https://anaconda.org/fasnicar 
8 Packages available on Bioconda: 
GraPhlAn https://bioconda.github.io/recipes/graphlan/README.html,  
export2graphlan https://bioconda.github.io/recipes/export2graphlan/README.html,  
MetaPhlAn2 https://bioconda.github.io/recipes/metaphlan2/README.html, and  
hclust2 https://bioconda.github.io/recipes/hclust2/README.html 
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● I implemented the PC++ algorithm9 that is the core algorithm of NESRA, NES2RA, 

and the OneGenE algorithms; 
● I developed and implemented the gene@home project, NESRA, NES2RA, and 

OneGenE algorithms, and the post-processing pipeline10, all presented in Chapter 6. 

Most of the following chapters are based on published articles that are fully reported in 
Chapter 2, 4, and 6, while only the main parts are reported in Chapter 5. 

More specifically, Chapter 2 will present GraPhlAn (Asnicar et al., 2015a), a Python 
package software specifically developed for the high-quality visualization of large-scale 
hierarchical and phylogenetic trees, with the possibility of visualizing associated metadata in 
and on the tree for explorative analysis. 

Then, in Chapter 3 I will discuss PhyloPhlAn 2, the new and improved implementation of 
PhyloPhlAn that allows to accurately phylogenetically analyze microbes derived from 
microbial communities. In this chapter, I’ll present the details of the implementation showing 
several examples that will support and demonstrate the PhyloPhlAn 2 capabilities. 

Chapter 4 will present a recent work focused on the study of microbial species vertically 
transmitted from the mother to the infant (Asnicar et al., 2017). Even though the cohort used 
in this work is small (five mother-infant couples), we were able to perform an extensive panel 
of analyses, ranging from the taxonomic profiling to several strain-level analysis, concluding 
with the study of functional potential and expression, thanks to the availability of 
metatranscriptomic data for two of the five couples. 

Then, Chapter 5 expands the set of analyses where PhyloPhlAn 2 played a pivotal role in 
the reconstruction of large phylogenies at multiple distinct diversity levels, from strain-level to 
tree-of-life size phylogenies (Donati et al., 2016; Ferretti et al., 2018; Pasolli et al., 2019; Tett 
et al., 2017). This chapter contains portions of several published and recently submitted 
works that comprise a larger cohort for studying the vertical microbiome transmission from 
mothers to infants, and the phylogenetic characterization of unknown reconstructed 
genomes with an extreme genetic diversity. 

In addition to the contributions to the computational metagenomics and phylogenetics fields, 
in Chapter 6 I’ll present the second line of research I carried on during my doctoral studies, 
as a continuation of a course project started during the last year of my M.Sc. in Computer 
Science with Prof. Enrico Blanzieri. This chapter is reporting the two initial works done on the 
gene network expansion problem (Asnicar et al., 2015b, 2015c) and reports at the end only 
the abstracts of two more recent works (Asnicar et al., 2016, 2019). 

Finally, in the Conclusions (Chapter 7) I summarize the overall results of each chapter, 
presenting also future application and potential developments of PhyloPhlAn. 
  

                                                
9 PC++, BOINC (Anderson, 2004) implementation of the PC algorithm (Spirtes and Glymour, 1991): 
https://bitbucket.org/francesco-asnicar/pc-boinc 
10 Repository containing the scripts and code running in the gene@home BOINC project and for the 
post-processing pipeline: https://bitbucket.org/francesco-asnicar/gene_network_expansion 

https://paperpile.com/c/E1Jhss/FOAp
https://paperpile.com/c/E1Jhss/gDYA
https://paperpile.com/c/E1Jhss/w2kL+XN87+k5um+7KH3
https://paperpile.com/c/E1Jhss/w2kL+XN87+k5um+7KH3
https://paperpile.com/c/E1Jhss/cuI3+2f3v
https://paperpile.com/c/E1Jhss/whA3+MdSd
https://paperpile.com/c/E1Jhss/X2ir
https://paperpile.com/c/E1Jhss/ISu9
https://bitbucket.org/francesco-asnicar/pc-boinc
https://bitbucket.org/francesco-asnicar/gene_network_expansion
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2. Compact graphical representation of phylogenetic data and 
metadata with GraPhlAn 
This chapter introduces GraPhlAn, a novel framework I developed and implemented during 
the first part of my doctoral work for the integrated and compact visualization of phylogenetic 
tree structures and relevant quantitative non-phylogenetic data. Although several software 
packages are available for the visualization of phylogenies, none of them can incorporate 
metadata with a variety of visualization choices or can be produced programmatically. 
GraPhlAn indeed allows also to display in and on the tree several metadata of different 
types, ranging from heatmaps to bar plots to external markers to highlight specific features, 
aiding explorative analysis through data visualization. GraPhlAn is a visualization Python 
package that directly allows the generation of high-quality figures form metagenomic 
analysis tools like MetaPhlAn2, HUMAnN2, LEfSe, and a combination of them. This 
integration is made possible through the export2graphlan package I developed, which allows 
the additional integration with the BIOM (BIological Observation Matrix) file format 
(McDonald et al., 2012), generally used in the 16S/QIIME analysis framework. GraPhlAn is 
becoming a popular tool for the visualization of phylogenetic and microbiome data, with more 
than 150 citations since its publication. I am maintaining and regularly updating GraPhlAn 
and I am committed to further developing and supporting the software. 

This chapter is reporting the following article: 

Asnicar F, Weingart G, Tickle TL, Huttenhower C, and Segata N 
Compact graphical representation of phylogenetic data and metadata with GraPhlAn 
PeerJ (2015) 

Abstract 

The increased availability of genomic and metagenomic data poses challenges at multiple 
analysis levels, including visualization of very large-scale microbial and microbial community 
data paired with rich metadata. We developed GraPhlAn (Graphical Phylogenetic Analysis), 
a computational tool that produces high-quality, compact visualizations of microbial genomes 
and metagenomes. This includes phylogenies spanning up to thousands of taxa, annotated 
with metadata ranging from microbial community abundances to microbial physiology or host 
and environmental phenotypes. GraPhlAn has been developed as an open-source 
command-driven tool in order to be easily integrated into complex, publication-quality 
bioinformatics pipelines. It can be executed either locally or through an online Galaxy web 
application. We present several examples including taxonomic and phylogenetic 
visualization of microbial communities, metabolic functions, and biomarker discovery that 
illustrate GraPhlAn’s potential for modern microbial and community genomics. 

2.1 Introduction 

Modern high-throughput sequencing technologies provide comprehensive, large-scale 
datasets that have enabled a variety of novel genomic and metagenomic studies. A large 
number of statistical and computational tools have been developed specifically to tackle the 
complexity and high-dimensionality of such datasets and to provide robust and interpretable 
results. Visualizing data including thousands of microbial genomes or metagenomes, 

https://paperpile.com/c/E1Jhss/gkdm
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however, remains a challenging task that is often crucial to driving exploratory data mining 
and to compactly summarizing quantitative conclusions. 

In the specific context of microbial genomics and metagenomics, next-generation 
sequencing in particular produces datasets of unprecedented size, including thousands of 
newly sequenced microbial genomes per month and a tremendous increase in genetic 
diversity sampled by isolates or culture-free assays. Displaying phylogenies with thousands 
of microbial taxa in hundreds of samples is infeasible with most available tools. This is 
especially true when sequencing profiles need to be placed in the context of sample 
metadata (e.g. clinical information). Among recently developed tools, iTOL (Letunic and 
Bork, 2007, 2011) targets interactive analyses of large-scale phylogenies with a moderate 
amount of overlaid metadata, whereas ETE (Huerta-Cepas et al., 2010) is a Python 
programming toolkit focusing on tree exploration and visualization that is targeted for 
scientific programmers, and Krona (Ondov et al., 2011) emphasizes hierarchical quantitative 
information typically derived from metagenomic taxonomic profiles. Neither of these tools 
provides an automatable environment for non-computationally expert users in which very 
large phylogenies can be combined with high-dimensional metadata such as microbial 
community abundances, host or environmental phenotypes, or microbial physiological 
properties. 

In particular, a successful high-throughput genomic visualization environment for modern 
microbial informatics must satisfy two criteria. First, software releases must be free and 
open-source to allow other researchers to verify and to adapt the software to their specific 
needs and to cope with the quick evolution of data types and datasets size. Second, 
visualization tools must be command-driven in order to be embedded in computational 
pipelines. This allows for a higher degree of analysis reproducibility, but the software must 
correspondingly be available for local installation and callable through a convenient interface 
(e.g. API or general scripting language). Local installations have also the advantage of 
avoiding the transfer of large or sensitive data to remote servers, preventing potential issues 
with the confidentiality of unpublished biological data. Neither of these criteria, of course, 
prevent tools from also being embeddable in web-based interfaces in order to facilitate use 
by users with limited computational expertise (Blankenberg et al., 2010; Giardine et al., 
2005; Goecks et al., 2010; Oinn et al., 2004) and all such tools must regardless produce 
informative, clear, detailed, and publication-ready visualizations. 

2.2 Materials & Methods 

GraPhlAn is a new tool for compact and publication-quality representation of circular 
taxonomic and phylogenetic trees with potentially rich sets of associated metadata. It was 
developed primarily for microbial genomic and microbiome-related studies in which the 
complex phylogenetic/taxonomic structure of microbial communities needs to be 
complemented with quantitative and qualitative sample-associated metadata. GraPhlAn is 
available at http://cibiocm.bitbucket.org/tools/graphlan.html.  

2.2.1 Implementation strategy 
GraPhlAn is composed of two Python modules: one for drawing the image and one for 
adding annotations to the tree. GraPhlAn exploits the annotation file to highlight and 
personalize the appearance of the tree and of the associated information. The annotation file 

https://paperpile.com/c/E1Jhss/7sP1+UNbA
https://paperpile.com/c/E1Jhss/7sP1+UNbA
https://paperpile.com/c/E1Jhss/Hpck
https://paperpile.com/c/E1Jhss/JQl8
https://paperpile.com/c/E1Jhss/jz3C+vEUg+eRFJ+6p28
https://paperpile.com/c/E1Jhss/jz3C+vEUg+eRFJ+6p28
http://cibiocm.bitbucket.org/tools/graphlan.html
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does not perform any modifications to the structure of the tree, but it just changes the way in 
which nodes and branches are displayed. Internally, GraPhlAn uses the matplotlib library 
(Hunter, 2007) to perform the drawing functions. 

2.2.2 The export2graphlan module 

Export2graphlan is a framework to easily integrate GraPhlAn into already existing 
bioinformatics pipelines. Export2graphlan makes use of two external libraries: the pandas 
python library (McKinney, 2012) and the BIOM library, only when BIOM files are given as 
input. 

Export2graphlan can take as input two files: the result of the analysis of MetaPhlAn (either 
version 1 or 2) or HUMAnN, and the result of the analysis of LEfSe. At least one of these two 
input files is mandatory. Export2graphlan will then produce a tree file and an annotation file 
that can be used with GraPhlAn. In addition, export2graphlan can take as input a BIOM file 
(either version 1 or 2). 

Export2graphlan performs an analysis on the abundance values and, if present, on the LDA 
score assigned by LEfSe, to annotate and highlight the most abundant clades and the ones 
found to be biomarkers. Through a number of parameters the user can control the 
annotations produced by export2graphlan. 

2.3 Results and Discussion 

2.3.1 Plotting taxonomic trees with clade annotations 

The simplest structures visualizable by GraPhlAn include taxonomic trees (i.e. those without 
variable branch lengths) with simple clade or taxon nomenclature labels. These can be 
combined with quantitative information such as taxon abundances, phenotypes, or genomic 
properties. GraPhlAn provides separate visualization options for trees (thus potentially 
unannotated) and their annotations, the latter of which (the annotation module) attaches 
metadata properties using the PhyloXML format (Han and Zmasek, 2009). This annotation 
and subsequent metadata visualization process (Fig. 1) can be repeatedly applied to the 
same tree.  

https://paperpile.com/c/E1Jhss/OLTY
https://paperpile.com/c/E1Jhss/bxRQ
https://paperpile.com/c/E1Jhss/wKjm
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Figure 1: Schematic and simplified example of GraPhlAn visualization of annotated 
phylogenies and taxonomies. 
The software can start from a tree in Newick, Nexus, PhyloXML, or plain text formats. The 
“default plot” (A) produces a basic visualization of the tree’s hierarchical structure. Through 
an annotation file, it is possible to configure a number of options that affect the appearance 
of the tree. For instance, some global parameters will affect the whole tree structure, such as 
the color and thickness of branches (“set global options,” B). The same annotation file can 
act on specific nodes, customizing their shape, size, and color (“set node options,” C). 
Labels and background colors for specific branches in the tree can also be configured (“set 
label options,” D). External to the circular area of the tree, the annotation file can include 
directives for plotting different shapes, heatmap colors, or bar-plots representing quantitative 
taxon traits (“set external ring options,” E). 
 
The GraPhlAn tree visualization (plotting module) takes as input a tree represented in any 
one of the most common data formats: Newick, Nexus (Maddison et al., 1997), PhyloXML 
(Han and Zmasek, 2009), or plain text. Without annotations, the plotting module generates a 
simple version of the tree (Fig. 1A), but the process can then continue by adding a diverse 
set of visualization annotations. Annotations can affect the appearance of the tree at 
different levels, including its global appearance (“global options” e.g. the size of the image, 
Fig. 1B), the properties of subsets of nodes and branches (“node options” e.g. the color of a 
taxon, Fig. 1C), and the background features used to highlight sub-trees (“label options” e.g. 
the name of a species containing multiple taxa, Fig. 1D). A subset of the available 
configurable options includes the thickness of tree branches, their colors, highlighting 
background colors and labels of specific sub-trees, and the sizes and shapes of individual 
nodes. Wild cards are supported to share graphical and annotation details among sub-trees 
by affecting all the descendants of a clade or its terminal nodes only. These features in 
combination aim to conveniently highlight specific sub-trees and metadata patterns of 
interest. 

https://paperpile.com/c/E1Jhss/X0FS
https://paperpile.com/c/E1Jhss/wKjm
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Additional taxon-specific features can be plotted as so-called external rings when not directly 
embedded into the tree. External rings are drawn just outside the area of the tree and can be 
used to display specific information about leaf taxa, such as abundances of each species in 
different conditions/environments or their genome sizes. The shapes and forms of these 
rings are also configurable; for example, in Fig. 1E (“set external ring options”), the elements 
of the innermost external ring are triangular, indicating the directional sign of a genomic 
property. The second, third, and fourth external rings show leaf-specific features, using a 
heatmap gradient from blank to full color. Finally, the last external ring is a bar-plot 
representing a continuous property of leaf nodes of the tree. 

2.3.2 Compact representations of phylogenetic trees with associated metadata 

Visualizing phylogenetic structures and their relation to external metadata is particularly 
challenging when the dimension of the internal structure is large. Mainly as a consequence 
of the low cost of sequencing, current research in microbial genomics and metagenomics 
needs indeed to visualize a considerable amount of phylogenetic data. GraPhlAn can easily 
handle such cases, as illustrated here in an example of a large phylogenetic tree (3,737 
taxa, provided as a PhyloXML file in the software repository, see Availability section) with 
multiple types of associated metadata (Fig. 2). 



 
 
 
 
A phylogenetic framework for large-scale analysis of microbial communities  34 

 

 
Figure 2: A large, 3,737 genome phylogeny annotated with functional genomic 
properties. 
We used the phylogenetic tree built using PhyloPhlAn (Segata et al., 2013) on all available 
microbial genomes as of 2013 and annotated the presence of ATP synthesis and Fatty Acid 
metabolism functional modules (as annotated in KEGG) and the genome length for all 
genomes. Colors and background annotation highlight bacterial phyla, and the functional 
information is reported in external rings. ATP synthesis rings visualize the presence (or 
absence) of each module, while Fatty Acid metabolism capability is represented with a 
gradient color. Data used in this image are available as indicated in the “Datasets used” 
paragraph, under “Materials and Methods” section. 
 
Specifically, we used GraPhlAn to display the microbial tree of life as inferred by PhyloPhlAn 
(Segata et al., 2013), annotating this evolutionary information with genome-specific 
metadata (Fig. 2). In particular, we annotated the genome contents related to seven 
functional modules from the KEGG database (Kanehisa et al., 2012), specifically two 
different ATP synthesis machineries (M00157: F-type ATPase and M00159: V/A-type 
ATPase) and five modules for bacterial fatty acid metabolism (M00082: Fatty acid 

https://paperpile.com/c/E1Jhss/kwsw
https://paperpile.com/c/E1Jhss/kwsw
https://paperpile.com/c/E1Jhss/J892


 
 
 
 
A phylogenetic framework for large-scale analysis of microbial communities  35 

 
biosynthesis, initiation, M00083: Fatty acid biosynthesis elongation, M00086: acyl-CoA 
synthesis, M00087: beta-Oxidation, and M00088: Ketone body biosynthesis). We then also 
annotated genome size as an external circular bar plot. 

As expected, it is immediately visually apparent that the two types of ATPase are almost 
mutually exclusive within available genome annotations, with the V/A-type ATPase (module 
M00159) present mainly in Archaea and the F-type ATPase (module M000157) mostly 
characterizing Bacteria. Some exceptions are easily identifiable: Thermi and Clamydophilia, 
for instance, completely lack the F-type ATPase, presenting only the typically archaea-
specific V/A-type ATPase. As previously discussed in the literature (Cross and Müller, 2004; 
Mulkidjanian et al., 2007), this may due to the acquisition of V/A-type ATPase by horizontal 
gene transfer and the subsequent loss of the F-type ATPase capability. Interestingly, some 
species such as those in the Streptococcus genus and some Clostridia still show both 
ATPase systems in their genomes. 

With respect to fatty acid metabolism, some clades - including organisms such as 
Mycoplasmas - completely lack any of the targeted pathways. Indeed, Mycoplasmas are the 
smallest living cells yet discovered, lacking a cell wall (Razin, 1992) and demonstrating an 
obligate parasitic lifestyle. Since they primarily exploit host molecular capabilities, 
Mycoplasmas do not need to be able to fulfill all typical cell functions, and this is also 
indicated by the plotted very short genome sizes. Escherichia, on the other hand, has a 
much longer genome, and all the considered fatty acid metabolism capabilities are present. 
These evolutionary aspects are well known in the literature, GraPhlAn permits them and 
other phylogeny-wide genomic patterns to be easily visualized for further hypothesis 
generation. 

2.3.3 Visualizing microbiome biomarkers 

GraPhlAn provides a means for displaying either phylogenetic (trees with branch lengths) or 
taxonomic (trees without branch length) data generated by other metagenomic analysis 
tools. For instance, we show here examples of GraPhlAn plots for taxonomic profiles (Fig. 
3), functional profiles (Fig. 4), and specific features identified as biomarkers (Fig. 3 and 4). 
In these plots, GraPhlAn highlights microbial sub-trees that are found to be significantly 
differentially abundant by LEfSe (Segata et al., 2011), along with their effect sizes as 
estimated by linear discriminant analysis (LDA). To enhance biomarker visualization, we 
annotated them in the tree with a shaded background color and with clade names as labels, 
with decreasing font sizes for internal levels. To represent the effect size, we scaled the 
node color from black (low LDA score) to full color (high LDA score). 

https://paperpile.com/c/E1Jhss/cQrh+kEOU
https://paperpile.com/c/E1Jhss/cQrh+kEOU
https://paperpile.com/c/E1Jhss/VELM
https://paperpile.com/c/E1Jhss/tFV6
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Figure 3: Taxonomic comparison between HMP and MetaHIT stool samples. 
The taxonomic cladogram shows a comparison between the MetaHIT and HMP studies 
limited to samples from the gut (for the latter) and from healthy subjects (for the former). This 
image has been generated by GraPhlAn using input files from the supporting 
“export2graphlan” script (see “Materials and Methods”) applied on the output of MetaPhlAn2 
(Segata et al., 2012a) and LEfSe (Segata et al., 2011). Colors distinguish between HMP 
(green) and MetaHIT (blue), while the intensity reflects the LDA score, an indicator of the 
effect sizes of the significant differences. The size of the nodes correlates with their relative 
and logarithmically scaled abundances. Data used for this image is available as indicated 
under “Datasets used” paragraph in the “Materials and Methods” section. 

https://paperpile.com/c/E1Jhss/uv5E
https://paperpile.com/c/E1Jhss/tFV6
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Figure 4: Comparison of microbial community metabolic pathway abundances 
between HMP and MetaHIT. 
Comparison of functional pathway abundances from the HMP (green) and MetaHIT (blue). 
This is the functional counterpart of the plot in Fig. 3 and was obtained applying GraPhlAn 
on HUMAnN (Abubucker et al., 2012) metabolic profiling. The intensity of the color 
represents the LDA score, and the sizes of the nodes are proportional to the pathway 
relative abundance estimated by HUMAnN. Three major groups are automatically 
highlighted by specifying them to the export2graphlan script: Environmental Information 
Processing, Genetic Information Processing, and Metabolism. Data used for this image is 
available as indicated under “Datasets used” paragraph in “Materials and Methods” section. 
 
Fig. 3 shows the taxonomic tree of biomarkers (significantly differential clades) resulting 
from a contrast gut metagenome profiles from the Human Microbiome Project (HMP) (HMP 
et al., 2012) and MetaHIT samples (Qin et al., 2010). Only samples from healthy individuals 
in the latter cohort were included. The filtered dataset was analyzed using LEfSe (Segata et 
al., 2011) and the cladogram obtained using the export2graphlan script provided with 
GraPhlAn and discussed in the following section. As expected, the image highlights that 
Firmicutes and Bacteroides are the two most abundant taxa in the healthy gut microbiome 
(David et al., 2014; Wu et al., 2011). The Bacteroidetes phylum contains many clades 
enriched in the HMP dataset, while Firmicutes show higher abundances for MetaHIT 
samples. GraPhlAn can thus serve as a visual tool for inspecting specific significant 
differences between conditions or cohorts. 

Functional ontologies can be represented by GraPhlAn in a similar way and provide 
complementary features to the types of taxonomic analyses shown above. Metabolic profiles 
quantified by HUMAnN (Abubucker et al., 2012) using KEGG (Kanehisa et al., 2014) from 

https://paperpile.com/c/E1Jhss/GL6A
https://paperpile.com/c/E1Jhss/kWro
https://paperpile.com/c/E1Jhss/kWro
https://paperpile.com/c/E1Jhss/cEsr
https://paperpile.com/c/E1Jhss/tFV6
https://paperpile.com/c/E1Jhss/tFV6
https://paperpile.com/c/E1Jhss/OllG+gbZ7
https://paperpile.com/c/E1Jhss/GL6A
https://paperpile.com/c/E1Jhss/LfQr
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the same set of HMP and MetaHIT samples are again contrasted on multiple functional 
levels in Fig. 4. The tree highlights three different broad sets of metabolic pathways: 
Environmental Information Processing, Genetic Information Processing, and Metabolism, 
with the last being the largest subtree. More specific metabolic functions are specifically 
enriched in the HMP cohort, such as Glycolysis and the Citrate cycle, or in the MetaHIT 
cohort, such as Sulfur Metabolism and Vitamin B6 Metabolism. This illustrates GraPhlAn's 
use with different types of data, such as functional trees in addition to taxonomies or 
phylogenies. By properly configuring input parameters of export2graphlan, we automatically 
obtained both Fig. 3 and Fig. 4 (bash scripts used for these operations are available in the 
GraPhlAn software repository). 

2.3.4 Reproducible integration with existing analysis tools and pipelines 

Graphical representations are usually a near-final step in the complex computational and 
metagenomic pipelines, and automating their production is crucial for convenient but 
reproducible analyses. To this end, GraPhlAn has been developed with command-driven 
automation in mind, as well as flexibility in the input “annotation file” so as to be easily 
generated by automated scripts. Depending on the specific analysis, these scripts can focus 
on a diverse set of commands to highlight the features of interest. Despite this flexibility, we 
further tried to ease the integration of GraPhlAn by providing automatic offline conversions 
for some of the available metagenomic pipelines and by embedding it into the well-
established Galaxy web framework (Blankenberg et al., 2010; Giardine et al., 2005; Goecks 
et al., 2010). 

In order to automatically generate GraPhlAn plots from a subset of available shotgun 
metagenomic tools comprising MetaPhlAn (for taxonomic profiling), HUMAnN (for metabolic 
profiling), and LEfSe (for biomarker discovery), we developed a script named 
“export2graphlan” able to convert the outputs of these tools into GraPhlAn input files as 
schematized in Fig. 5. This conversion software is also meant to help biologists by providing 
initial, automated input files for GraPhlAn that can then be manually tweaked for specific 
needs such as highlighting clades of particular interest. The export2graphlan framework can 
further accept the widely adopted BIOM format, both versions 1 and 2 (McDonald et al., 
2012). This makes it possible to readily produce GraPhlAn outputs from other frameworks 
such as QIIME (Caporaso et al., 2010) and mothur (Schloss et al., 2009) for 16S rRNA 
sequencing studies. 

https://paperpile.com/c/E1Jhss/jz3C+vEUg+eRFJ
https://paperpile.com/c/E1Jhss/jz3C+vEUg+eRFJ
https://paperpile.com/c/E1Jhss/gkdm
https://paperpile.com/c/E1Jhss/gkdm
https://paperpile.com/c/E1Jhss/RWEG
https://paperpile.com/c/E1Jhss/j32J
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Figure 5: Integration of GraPhlAn into existing analyses pipelines. 
We developed a conversion framework called “export2graphlan” that can deal with several 
output formats from different analysis pipelines, generating the necessary input files for 
GraPhlAn. Export2graphlan directly supports MetaPhlAn2, LEfSe, and HUMAnN output files. 
In addition, it can also accept BIOM files (both version 1 and 2), making GraPhlAn available 
for tools supporting this format including the QIIME and mothur systems. The tools can be 
ran on local machine as well as through the Galaxy web system using the modules reported 
in green boxes. 
 
A web-based deployment of the GraPhlAn application is available to the public via Galaxy at 
http://huttenhower.sph.harvard.edu/galaxy/. The Galaxy interface of GraPhlAn consists of 
four processing modules: (1) Upload file, that manages the upload of the input data into 
Galaxy; (2) GraPhlAn Annotate Tree, which allows the user to specify the annotations that 
will be applied to the final image; (3) Add Rings to tree, an optional step to select an already 
uploaded file in Galaxy that will be used as an annotation file for the external rings; and (4) 
Plot tree, that sets some image parameters such as the size, the resolution, and the output 
format. 

2.4 Conclusions 

We present GraPhlAn, a new method for generating high-quality circular phylogenies 
potentially integrated with diverse, high-dimensional metadata. We provided several 

http://huttenhower.sph.harvard.edu/galaxy/
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examples showing the application of GraPhlAn to phylogenetic, functional, and taxonomic 
summaries. The system has already been used for a variety of additional visualization tasks, 
including highlighting the taxonomic origins of metagenomic biomarkers (Segata et al., 2011, 
2012b; Shogan et al., 2014; Xu et al., 2014), exposing specific microbiome metabolic 
enrichments within a functional ontology (Abubucker et al., 2012; Sczesnak et al., 2011), and 
representing 16S rRNA sequencing results (Ramirez et al., 2014). GraPhlAn is, however, not 
limited to microbiome data and has additionally been applied to animal and plant taxonomies 
(The Tree of Sex Consortium, 2014) and to large prokaryotic phylogenies built using 
reference genomes (Baldini et al., 2014; Chai et al., 2014; Langille et al., 2013; Segata et al., 
2013). 

Compared to the other existing state-of-the-art approaches such as Krona (Ondov et al., 
2011) and iTOL (Letunic and Bork, 2007, 2011), GraPhlAn provides greater flexibility, 
configuration, customization, and automation for publication reproducibility. It is both easily 
integrable into automated computational pipelines and can be used conveniently online 
through the Galaxy-based web interface. The software is available open-source, and the 
features highlighted here illustrate a number of ways in which its visualization capabilities 
can be integrated into microbial and community genomics to display large tree structures 
and corresponding metadata. 

2.5 Data and software availability 

2.5.1 Description of the datasets and figure generation 

The data of the taxonomic trees presented in Fig. 1 is available in the guide folder, inside the 
examples directory of the GraPhlAn repository (https://bitbucket.org/nsegata/graphlan). This 
same image is thoroughly described under the “A step-by-step example” section, in the 
GraPhlAn wiki included in the repository. 

The genomic data used for the Tree of Life in Fig. 2 was obtained from the Integrated 
Microbial Genomes (IMG) data management system of the U.S. Department of Energy Joint 
Genome Institute (DOE JGI) 2.0 dataset (http://jgi.doe.gov/news_12_1_06/). From the 
KEGG database (Kanehisa and Goto, 2000; Kanehisa et al., 2014) we focused on the 
following modules: M00082, M00083, M00086, M00087, M00088, M00157, and M00159. 
The input data for drawing Fig. 2 is available in the PhyloPhlAn folder under the examples 
directory of the GraPhlAn repository. 

In Fig. 3, to comprehensively characterize the asymptomatic human gut microbiota, we 
combined 224 fecal samples (>17 million reads) from the Human Microbiome Project (HMP) 
(HMP et al., 2012; Human Microbiome Project Consortium, 2012) and the MetaHIT (Qin et 
al., 2010) projects, two of the largest gut metagenomic collections available. The taxonomic 
profiles were obtained by applying MetaPhlAn2. The 139 fecal samples from the HMP can 
be accessed at http://hmpdacc.org/HMASM/, whereas the 85 fecal samples from MetaHIT 
were downloaded from the European Nucleotide Archive (http://www.ebi.ac.uk/ena/, study 
accession number ERP000108). The input files for obtaining this image with GraPhlAn are 
present into the examples folder of the repository, inside the hmp_metahit directory. The two 
input files represent the merge result of the MetaPhlAn analysis (hmp_metahit.txt) and the 
LEfSe result on the first file (hmp_metahit.lefse.txt). The bash script provided exploits the 
export2graphlan capabilities to generate the annotation file. 

https://paperpile.com/c/E1Jhss/p6mv+tFV6+iFi0+7ill
https://paperpile.com/c/E1Jhss/p6mv+tFV6+iFi0+7ill
https://paperpile.com/c/E1Jhss/GL6A+5VrR
https://paperpile.com/c/E1Jhss/5KRT
https://paperpile.com/c/E1Jhss/hdIp
https://paperpile.com/c/E1Jhss/DEXn+6EkP+Y6jw+kwsw
https://paperpile.com/c/E1Jhss/DEXn+6EkP+Y6jw+kwsw
https://paperpile.com/c/E1Jhss/JQl8
https://paperpile.com/c/E1Jhss/JQl8
https://paperpile.com/c/E1Jhss/7sP1+UNbA
https://bitbucket.org/nsegata/graphlan
http://jgi.doe.gov/news_12_1_06/
https://paperpile.com/c/E1Jhss/vgV0+LfQr
https://paperpile.com/c/E1Jhss/5KFU+kWro
https://paperpile.com/c/E1Jhss/cEsr
https://paperpile.com/c/E1Jhss/cEsr
http://hmpdacc.org/HMASM/
http://www.ebi.ac.uk/ena/
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The functional profiles used in Fig. 4 are the reconstruction of the metabolic activities of 
microbiome communities. The HUMAnN pipeline (Abubucker et al., 2012)infers community 
function directly from short metagenomic reads, using the KEGG ortholog (KO) groups. 
HUMAnN was run on the same samples of Fig. 3. The dataset is available on-line at 
http://www.hmpdacc.org/HMMRC/. As for the previous figure, the input files for obtaining 
Fig. 4 are uploaded in the hmp_metahit_functional folder, inside the examples directory of 
the repository. The two files (hmp_metahit_functional.txt and 
hmp_metahit_functional.lefse.txt) represent the result of HUMAnN on the HMP and MetaHIT 
datasets and the result of LEfSe executed on the former file. The bash script provided 
executes export2graphlan for generating the annotation file and then invoking GraPhlAn for 
plotting the functional tree. 

The dataset of supplementary Fig. S1 refers to a 16S rRNA amplicon experiment. 
Specifically, it consists of 454 FLX Titanium sequences spanning the V3 to V5 variable 
regions, obtained from 24 healthy samples (12 male and 12 female) for a total of 301 
samples. Detailed protocols used for enrollment, sampling, DNA extraction, 16S 
amplification and sequencing are available on the Human Microbiome Project Data Analysis 
and Coordination Center website HMP Data Analysis and Coordination Center 
(http://www.hmpdacc.org/tools_protocols/tools_protocols.php). This data are pilot samples 
from the HMP project (Segata et al., 2011). The input files for obtaining this image is 
available in the examples folder of the export2graphlan repository 
(https://bitbucket.org/CibioCM/export2graphlan), inside the hmp_aerobiosis directory. The 
two files represent the taxonomic tree of the HMP project and the results of LEfSe executed 
on the same data. 

In the supplementary Fig. S2 we used the saliva microbiome profiles obtained by 16S rRNA 
sequencing on the IonTorrent platform (amplifying the hypervariable region V3). The dataset 
comprises a total of 13 saliva samples from healthy subjects as described in (Dassi et al., 
2014) and it is available in the NCBI Short Read Archive (http://www.ncbi.nlm.nih.gov/sra). 
The input BIOM file for drawing this image is available in the saliva_microbiome directory 
inside the examples folder of the GraPhlAn repository. 

For the supplementary Fig. S3 data represent the temporal dynamics of the human vaginal 
microbiota, and were taken from the study of (Gajer et al., 2012). Data were obtained by 16S 
rRNA using the 454 pyrosequencing technology (sequencing the V1 and V2 hypervariable 
regions). The dataset is composed of samples from 32 women that self-collected samples 
twice a week for 16 weeks. The input file, provided in BIOM format, is present in the 
vaginal_microbiota folder inside the examples directory of the GraPhlAn repository. 

2.5.2 Software repository, dependences, and user support 

GraPhlAn is freely available (http://cibiocm.bitbucket.org/tools/graphlan.html) and released 
open-source in Bitbucket (https://bitbucket.org/nsegata/graphlan) with a set of working 
examples and a complete tutorial that guides users throughout its functionality. GraPhlAn 
uses the matplotlib library (Hunter, 2007). GraPhlAn is also available via a public Galaxy 
instance at http://huttenhower.sph.harvard.edu/galaxy/. 

Export2graphlan is freely available and released open-source in Bitbucket 
(https://bitbucket.org/CibioCM/export2graphlan) along with a number of examples helpful for 

https://paperpile.com/c/E1Jhss/GL6A
http://www.hmpdacc.org/HMMRC/
http://www.hmpdacc.org/tools_protocols/tools_protocols.php
https://paperpile.com/c/E1Jhss/tFV6
https://paperpile.com/c/E1Jhss/pFgk
https://paperpile.com/c/E1Jhss/pFgk
http://www.ncbi.nlm.nih.gov/sra
https://paperpile.com/c/E1Jhss/P8Ti
http://cibiocm.bitbucket.org/tools/graphlan.html
https://bitbucket.org/nsegata/graphlan
https://paperpile.com/c/E1Jhss/OLTY
http://huttenhower.sph.harvard.edu/galaxy/
https://bitbucket.org/CibioCM/export2graphlan
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testing if everything is correctly configured and installed. The export2graphlan repository is 
also present as a sub-repository inside the GraPhlAn repository. The export2graphlan 
module exploits the pandas library (McKinney, 2012) and the BIOM library (McDonald et al., 
2012). 

Both GraPhlAn and export2graphlan are supported through the Google group “GraPhlAn-
users” (https://groups.google.com/forum/#!forum/graphlan-users), available also as a mailing 
list at: graphlan-users@googlegroups.com. 
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Supplemental Information 

 
Figure S1: Aerobiosis analysis under aerobic, anaerobic, and microaerobic conditions 
The cladogram shows the aerobiosis analysis of the HMP data in three O2-dependent 
classes: aerobic (red), anaerobic (blue), and microaerobic (green). The node size reflects 
the abundance level of each clade, colors are assigned accordingly to one of the three 
classes, while the lightness intensity of colors respect the LDA score assigned by LEfSe to 
biomarkers. Data used for this image is available as indicated under “Datasets used” 
paragraph in “Materials and Methods” section. 
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Figure S2: Characterization of the saliva microbiome 
This image shows the taxonomic enrichment of the first saliva microbiome sequenced using 
IonTorrent PGM technology. We exploit export2graphlan capability of handle BIOM files to 
generate the annotation and tree files for GraPhlAn. Data used for this image is available as 
indicated under “Datasets used” paragraph in “Materials and Methods” section. 
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Figure S3: Characterization of temporal dynamics of the human vaginal microbiota 
We take the data as a BIOM file from the (Gajer et al., 2012) study. We use export2graphlan 
to generate the needed files for plotting the circular tree with GraPhlAn. Data used for this 
image is available as indicated under “Datasets used” paragraph in “Materials and Methods” 
section. 
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3. Precise phylogenetic placement of microbial isolates and partial 
genomes from metagenomes using PhyloPhlAn 2 
In this chapter, I present PhyloPhlAn 2 that is a novel phylogenetic framework able to 
accurately reconstruct from strain-level to tree-of-life size phylogenies. PhyloPhlAn 2 has 
been designed and developed to be easy-to-use, fast, modular, and flexible, and represents 
a step towards filling the gap for the use of large-scale phylogenetic analysis in 
metagenomics and microbial genomics. In the chapter, we will illustrate how the automatic 
strain-level phylogeny reconstruction with PhyloPhlAn 2 can be as accurate as other 
customs phylogenetic analysis that requires manual supervision and deep knowledge of the 
problem at hand. Importantly, PhyloPhlAn 2 implements an efficient pipeline to automatically 
retrieve from publicly available resources both reference genomes and species-specific sets 
of phylogenetically informative proteins. This eases both the integration of reference 
genomes with genomes of a known species to study and the possibility of using a species-
specific set of markers for extracting the phylogenetic signal to resolve strain-level 
phylogenies. In addition, PhyloPhlAn 2 can find the closest species-level genome bin (SGB) 
to phylogenetically characterize genomes reconstructed from metagenomes. Finally, the 
ability of scaling-up to tens of thousands genomes allows PhyloPhlAn 2 to reliably 
reconstruct tree of life phylogenies in a reasonable amount of time. This work is not 
published yet, but we are submitting it for consideration for publication in a scientific journal. 

Asnicar F, Beghini F, Bolzan M, Cumbo F, Manara S, Pasolli E, Knight R, Mirarab S, 
Huttenhower C, Segata N 
Precise phylogenetic placement of microbial isolates and partial genomes from 
metagenomes using PhyloPhlAn 2 
In preparation 

Abstract 
The continuously increasing availability of genomic data for microbes and microbiomes 
provides new opportunities to unravel new microbial diversity. Phylogenetic analysis for 
novel and available microbial genomes is crucial to organize such sequence diversity, and 
recapitulating all available microbial genomics in an updated tree-of-life phylogeny is key for 
elucidating evolutionary patterns and relationships between species. However, these tasks 
are currently hampered by the lack of comprehensive phylogenetic frameworks able to 
automatically reconstruct phylogenies from isolate genomes and to characterize genomes 
from metagenomics data. In this work, we propose PhyloPhlAn 2 that is a phylogenetic 
software framework providing an easy-to-use, fast, modular, customizable, and flexible 
pipeline for accurate large-scale phylogenetic analysis at multiple resolution levels. 
PhyloPhlAn 2 allows to automatically retrieve reference genomes to help in elucidating 
phylogenetic relationships of newly reconstructed and not-yet-characterized genomes and 
automatically retrieves the maximally phylogenetically informative protein families to be used 
for accurate reconstruction of strain-level phylogenies. The new framework is also 
specifically tailored at profiling genomes reconstructed from metagenomes, by using the 
recently developed catalog of species-level genome bin to first assess the novelty of input 
genome bins and then place the new genomes into the phylogenetic context of existing 
genomes and species. Several real-world examples demonstrate the ability of PhyloPhlAn 2 
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to perform such tasks enabling deeper and more accessible investigations in microbial 
genomics. 

3.1 Introduction 
Genomes from both isolate sequencing and metagenomic assembly are continuously 
generated and made available through public resources. This increasing amount of microbial 
data is filling gaps into the overall characterization of the microbial diversity in the human 
body and on earth. Phylogenetic analysis is crucial in this context to both evaluate the 
degree of novelty of new microbial sequences and to characterize genomes that are 
obtained without phenotypic information. Moreover, reconstructing a complete microbial tree-
of-life is fundamental in understanding evolutionary relations at very large scale, and in 
metagenomics, this can provide crucial insights about the relations between members of the 
microbiome. To date, however, there are no scalable and automatic phylogenetic methods 
that can tackle these challenges. 

In the literature, there are few pipelines implementing a full phylogenetic analysis, including 
the first implementation of PhyloPhlAn (Segata et al., 2013), PhyloSift (Darling et al., 2014), 
ezTree (Wu, 2018), and GToTree (Lee, 2019). However, these pipelines are limited in terms 
of modularity of the phylogenetic analysis, of flexibility in the choice of the computational 
approaches for each module, and of the selection of the sequence markers to use to extract 
the phylogenetic signal. None of the above tools, for instance, are flexible with respect to the 
set of markers used in the analysis, making it difficult to adapt the phylogeny estimation to 
the input (i.e., strain-level or tree-of-life). Only recently proposed ones like GToTree are 
trying to automatically retrieve reference genomes from public resources, but none of them 
allows to automatically retrieve species-specific sets of core genes to be used for accurate 
strain-level phylogeny inference. 

Several successful tools are available that implement single specific steps of a phylogenetic 
pipeline. These include the steps for the multiple-sequence alignment estimation (MUSCLE 
(Edgar, 2004), MAFFT (Katoh and Standley, 2013), T-Coffee (Notredame et al., 2000), 
OPAL (Wheeler and Kececioglu, 2007), PASTA (Mirarab et al., 2015), and UPP (Nguyen et 
al., 2015b)) or the phylogeny reconstruction (FastTree (Price et al., 2009, 2010), RAxML 
(Stamatakis, 2014), ASTRAL (Mirarab and Warnow, 2015; Mirarab et al., 2014; Zhang et al., 
2018), ASTRID (Vachaspati and Warnow, 2015), and IQ-TREE (Nguyen et al., 2015a)). 
However, none of them can be used automatically, and linking them in a manner that is 
appropriate for the specific phylogenetic tasks is not simple and require substantial expertise 
in computational phylogenetics. 

Finally, another key aspect is the computational efficiency of phylogenetic pipelines, 
especially when dealing with tens of thousands of genomes. Multi-locus sequence type 
(MLST) typing, for instance, can be an alternative and quick way to assign a sequence type 
to a genome based on the SNPs profile of as few as five to ten loci for each species. 
However, strain-level resolved phylogenies integrating thousands of reference genomes 
result in a more accurate characterization of species subtypes and their characteristics, at a 
higher resolution than MLST profiling. Whole genome large-scale microbial phylogenies are 
thus an open computational challenge. 
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Here we present PhyloPhlAn 2, a fully automatic and complete phylogenetic pipeline that 
retrieves and integrates thousands of reference genomes from public resources. PhyloPhlAn 
2 automatically retrieves species-specific sets of core proteins from UniRef90 to build 
accurate strain-level phylogenies and is able to scale-up to tens of thousands of genomes 
for the inference of tree-of-life size phylogenies. Additionally, PhyloPhlAn 2 phylogenetically 
places both known or yet-to-be-characterized species reconstructed from metagenomes. 

3.2 Results 

3.2.1 Fully automated, precise phylogenetic placement of genomes and metagenomes 
PhyloPhlAn 2 has been designed to provide an easy-to-use and fully automatic pipeline for 
accurate phylogenetic analysis (Figure 1). Key features in PhyloPhlAn 2 are the automatic 
retrieval of thousands of reference genomes from public resources and of species-specific 
sets of UniRef90 proteins to allow for accurate reconstruction of strain-level phylogenies. In 
PhyloPhlAn 2, the complete, accessible and automatic phylogenetic pipeline is achieved 
through configuration files (described in the Methods, Figure 1). Additionally, PhyloPhlAn 2 
has been designed to build very large phylogenies, scaling up to tens of thousands of input 
genomes thanks to the implementation of several approaches that allow to reduce in size the 
multiple-sequence alignments (MSAs) without losing the phylogenetic signal (see Methods). 
Further details of the internal steps of PhyloPhlAn 2, such as the automatic download of 
reference genomes and core sets of proteins families, the phylogenetic analysis steps, and 
the choice between a concatenation or a gene tree summary approach, are detailed in the 
Methods section. PhyloPhlAn 2 provides as outputs the reconstructed phylogeny and the 
generated MSA. Optionally, it can also provide a table of the estimated mutation rates for the 
inputs (Figure 1). Both the MSA and the estimated mutation rates can be used for 
downstream analysis like a phylogenetic bootstrapping analysis (see Methods). 
 

 
Figure 1. PhyloPhlAn 2 pipeline overview. The overview of the PhyloPhlAn 2 pipeline, 
showing the different input types accepted (unannotated genomes, proteomes, and 
metagenome-reconstructed genomes), the configuration file that contains the details for 
running the needed external tools and also specify whether to run a concatenation or a gene 
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trees analysis, the possibility to include information like the closest SGB assignment, the 
automatic retrieval of reference genomes from Genbank, and the automatic download of 
species-specific sets of core proteins from the UniRef90 database. The output panel is 
showing the three different outputs of PhyloPhlAn 2: the phylogenetic tree, the concatenated 
MSA, and, if specified, the estimated mutation rates for the input genomes that can be used 
for downstream evaluations. 
 

3.2.2 PhyloPhlAn 2 on automating and facilitating phylogenetic analysis of new isolate 
genomes from extant species 
The ease with which microbial isolate genomes can be sequenced and assembled is not 
paralleled by the analysis part. Newly sequenced genomes usually require some standard 
operations to phylogenetically characterize them in the context of available reference 
genomes deposited in public databases like NCBI and ENA. PhyloPhlAn 2 has been 
developed to completely automate this task. The pipeline starts from the newly sequenced 
genomes and uses pre-computed UniRef90 core genes for the species of interest and builds 
a whole-genome phylogenetic tree. In the process, PhyloPhlAn 2 can integrate all (or a 
specified number) of the available reference genomes present in NCBI for the species of 
interest, facilitating the downstream analysis, without the need to manually search and 
retrieve the genomes.  

To illustrate the automatic pipeline for this tasks, we applied PhyloPhlAn 2 on a set of 
Staphylococcus aureus isolates genomes we analyzed elsewhere (Manara et al., 2018)  and 
present the resulting strain-level phylogeny of the 135 S. aureus genomes based on the 
identified core set of 2,128 (of which 1,658 met the requirement to be present in at least 99% 
of the inputs) UniRef90 (Figure 2A). In the original work of (Manara et al., 2018) the whole-
genome phylogeny has been built by computing first the set of core genes (1,464 core genes 
with a coreness of at least 99%) using Roary (Page et al., 2015). To directly compare the 
two S. aureus phylogenies we computed the normalized patristic distances of the two trees 
and report them as a scatterplot in Figure 2B. It is immediately clear that the two different 
phylogenetic approaches are retrieving the same phylogenetic structure, with the advantage 
that in PhyloPhlAn 2 there is no need to compute the pangenome (that can be incomplete if 
there are not enough genomes from that species) to identify the right set of core genes to be 
used, but that is instead automatic. Still in a fully automated way, PhyloPhlAn 2 can also 
retrieve and analyze other publicly available genomes, and to illustrate this we present an 
ordination plot (Figure 2C) of the normalized patristic distances of the 135 S. aureus isolates 
integrated with a 1,000 reference genomes automatically retrieved from the Genbank public 
database, Supplementary Figure S1 shows the unrooted phylogeny. It can be appreciated 
how the phylogenetic differences in the large strain-level phylogeny of 1,135 genomes 
resemble the sequence type as assigned by the MLST11,12 profiling and their clonal complex. 
We thus showed how PhyloPhlAn 2 can automate the full phylogenetic analysis pipeline for 
isolate genomes, only taking as input the raw genomes, and that the generated phylogeny is 
at least as accurate as the one resulting from ad hoc pipelines that required expert 
supervision and weeks of computational resources. 
                                                
11 Seemann T, mlst, https://github.com/tseemann/mlst 
12 This publication made use of the PubMLST website (https://pubmlst.org/) developed by Keith Jolley 
(Jolley and Maiden, 2010) and sited at the University of Oxford. The development of that website was 
funded by the Wellcome Trust. 
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Figure 2. Accurate automatic reconstruction of Staphylococcus aureus strain-level 
phylogeny. (A) Phylogenetic tree of our 135 S. aureus strains reconstructed by PhyloPhlAn 
2 using the pre-identified and automatically retrieved species-specific core genes, and 
displayed with GraPhlAn using the same annotations as in Figure 1 of (Manara et al., 2018). 
(B) Scatterplot of the normalized patristic distances in the PhyloPhlAn-reconstructed tree 
and in the original phylogeny in (Manara et al., 2018). (C) Ordination plot of the 
phylogenomic distances of the phylogenetic tree built integrating the 135 S. aureus isolates 
with 1,000 reference genomes (Supplementary Figure 1), coloring the ten most prevalent 
STs and highlighting the 135 isolate genomes. 
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Supplementary Figure 1. Unrooted phylogeny of Staphylococcus aureus including the 
135 isolates and a 1,000 reference genomes. Highlighted in red the 135 isolates we 
previously identified in (Manara et al., 2018). The phylogeny reconstructed with PhyloPhlAn 
2 and based on 1,658 core UniRef90 proteins, is showing how the 135 S. aureus isolate 
genomes are representing a good species diversity, being well distributed and placed in the 
phylogeny along with the 1,000 reference genomes. 

3.2.3 Robust phylogenetic and taxonomic placement for known and unknown metagenome-
assembled genomes 
A different task that can be performed by PhyloPhlAn 2 is the assignment of a putative 
taxonomic label and the phylogenetic placement of genomes reconstructed from 
metagenomes. In this setting, it is not known a priori to what species the reconstructed 
genomes belong to. To taxonomically label these reconstructed genomes, PhyloPhlAn 2 
takes as input a set of genomes reconstructed from metagenomes and finds their closest 
species-level genome bin (SGB) (Pasolli et al., 2019) based on the Mash distance (Ondov et 
al., 2016) as an approximation of the ANI distance. The default threshold is 5% on the Mash 
distance, as suggested elsewhere (Bowers et al., 2017; Jain et al., 2018) to be a good 
compromise for defining bacterial species. The result here can have two outputs where the 
closest SGB is either a known SGB (kSGB) or an unknown SGB (uSGB). In the first case, 
the putative taxonomic label can be assigned directly, given that a subset of the input 
reconstructed genomes is at most 5% genetically distant from a reference genome. In the 
latter case, where the closest SGB is a uSGB, the putative taxonomic label can be assigned 
at different levels, depending on whether the uSGB falls into a bin that has been assigned a 

https://paperpile.com/c/E1Jhss/Ahgd
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taxonomy at the genus level (GGB), at the family level (FGB). If neither a GGB or an FGB 
have been assigned to the uSGB, the taxonomy is assigned at the phylum level. 

Regardless of the level of known taxonomy associated with the genomes, PhyloPhlAn 2 
further characterizes the input genomes by phylogenetically analyze them in the context of 
an automatically downloaded set of closest reference genomes. To this end, the software 
retrieves the n isolates or previously metagenomically assembled genomes and builds a 
phylogeny merging them with the input genomes. In Figure 3A, we analyzed 369 genomes 
reconstructed from 50 metagenomes of the Ethiopian cohort using the 5% Mash distance 
threshold. The top heatmap in the Figure 3A is showing the presence/absence profile of the 
20 most prevalent SGBs in the Ethiopian cohort for each of the 50 metagenomes, while the 
bottom heatmap is reporting the total number of uSGBs and kSGBs found in each sample. 

We then decided to focus on the typical human gut colonizer Escherichia coli (kSGB ID 
10068) and two very prevalent uSGBs, which were assigned to the Chlamydiae phylum (IDs 
19435 and 19436) to illustrate the second-tier phylogeny construction for these input MAGs. 
For the E. coli, we reconstructed eight genomes from the Ethiopia metagenomes, and we 
used PhyloPhlAn 2 to automatically download the set of core UniRef90 proteins (13,838 in 
total of which 6,220 were retained for the phylogenetic) and 200 reference genomes. We 
then reconstructed the phylogeny and annotated it with the E.coli phylotypes, annotated 
using the Python package EzClermont (Waters et al., 2018). We show the ordination based 
on the patristic distances in Figure 3B which is showing good clustering according to the 
phylotypes and where the eight metagenome-reconstructed genomes are placed. 

We reconstructed ten genome bins falling into the two uSGBs IDs 19435 and 19436, and we 
used PhyloPhlAn 2 for downloading up to two reference genomes for each species in the 
Chlamydiae phylum. We also downloaded two reference genomes for the two most 
abundant species in the Actinobacteria phylum: Mycobacterium abscessus (with 1,385 
reference genomes) and Mycobacterium tuberculosis (with 3,988 reference genomes). 
Actinobacteria is the closest phylum to Chlamydiae, according to the tree-of-life phylogeny in 
Figure 4, and the four Actinobacteria reference genomes are used as the outgroup to root 
the phylogeny. Since the lowest taxonomic rank is at the phylum level, the phylogeny shown 
in Figure 3C has been built using the 400 universal marker genes proposed in (Segata et 
al., 2013). 
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Figure 3. Metagenomic analysis of the Ethiopian cohort using PhyloPhlAn 2. (A) 
Heatmap of the 20 SGBs most prevalent in the 50 Ethiopian metagenomes. The top part 
reports the presence/absence of each of the top 20 SGBs, displayed with their identifier and 
the closest assigned taxonomic label. The bottom part summarizes the total number of 
uSGBs and kSGBs found in each metagenome. (B) Ordination of the patristic distances of 
the E. coli phylogeny built using the core set of UniRef90 of E.coli (6,220 proteins) and 
including the eight Ethiopian bins falling into the E. coli kSGB (ID 10068) integrated with a 
1,000 E. coli reference genomes. (C) Phylogenetic tree of the ten Ethiopian bins 
phylogenetically close to two uSGBs (IDs 19435 and 19436) and assigned to the 
Chlamydiae phylum. The phylogeny has been integrated with up to two reference genomes 
for each Chlamydiae species and two genomes for the two most prevalent Actinobacteria 
species used to root the phylogeny. In this analysis, we used the 400 PhyloPhlAn universal 
markers. 

3.2.4 PhyloPhlAn 2 reconstruction of the largest available tree-of-life 
The increasing availability of microbial genomes as well as of publicly available shotgun 
metagenomics datasets allows for always more accurate genomes reconstruction through 
computational approaches and is driving the need to put these large amounts of genomic 
data into phylogenetic relationships. Tree-of-life phylogenies are fundamental to place and 
characterize both genomes for which a reference is available and novel organisms that are 
too genetically distant from all known organisms. In this context, we retrieved genomes from 
the largest set of microbial species currently available, considering all the microbial genomes 
in NCBI and the additional 154,000 genomes from our recent work (Pasolli et al., 2019). The 
resulting set of 19,607 genomes (after dereplication at the species level) is the largest 
dataset available and no methods have ever been applied to such a large genome set. In 
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Figure 4 we present a novel microbial tree of life built with PhyloPhlAn 2 applied on the 
19,607 genomes. The number of genomes in the phylogeny has been reduced to 17,672 
after discarding those that did not meet the requirements of the quality control filters 
implemented in PhyloPhlAn 2, such as the minimum number of universal markers that have 
to be present in each genome. Genomes, when possible, have been colored according to 
their phylum label. The accuracy of the phylogeny built using the 400 PhyloPhlAn universal 
markers proposed in (Segata et al., 2013) is supported by the concordance between the 
phylogenetic placement of the genomes and their phylum label assigned independently from 
PhyloPhlAn 2 (Figure 5). The reconstruction of this large microbial tree of life took in total 
ten days and 15 hours using 100 CPUs, of which five days and three hours were used by IQ-
TREE (Nguyen et al., 2015a) for inferring the phylogeny. This very-large phylogenetic 
analysis is based on the 400 PhyloPhlAn universal markers for which we retained in the final 
MSA a different number of significant positions for each marker, according to its 
conservation. The concatenated MSA contains 4,522 amino acids aligned positions for a 
total of 17,672 genomes. This is showing that PhyloPhlAn 2 is able to reconstruct in a 
reasonable amount of time very-large phylogenies, scaling up to tens of thousands of input 
genomes and it is promising also for future phylogenetic analysis, with a potentially larger 
number of available genomes. 
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Figure 4. Microbial tree of life built with 17,672 genomes. Maximum-likelihood phylogeny 
representing the known microbial tree of life built with a starting set of nearly 20,000 
genomes, including the SGB representatives from our recent proposed set of genomes 
reconstructed from metagenomes (Pasolli et al., 2019) and the representatives of the almost 
8,000 genomes reconstructed from environmental metagenomes by (Parks et al., 2017). The 
phylogeny, based on the 400 PhyloPhlAn markers, counts 4,522 amino acids aligned 
positions for each of the 17,672 genomes and it has been built in 10 days and 15 hours in 
total. 

3.3 Conclusions 
We presented PhyloPhlAn 2 and show that it is an effective tool to automatically build 
accurate strain-level whole-genome phylogenies. These strain-level phylogenies can be 
automatically enriched including as many reference genomes as available in public 
databases, and this allows to put newly sequenced isolate genomes into a phylogenetic 
context. Moreover, a unique feature present in PhyloPhlAn 2 is the assignment of a 
taxonomic label and phylogenetically characterize novel genomes reconstructed from 
metagenomes based on their closest species-level genome bin assignment. Finally, we 
show how PhyloPhlAn 2 is able to manage very-large sets of genomes to build tree-of-life 
size phylogenies. We believe that PhyloPhlAn 2 can serve as an instrument to recapitulate 
present and future microbial diversity for both single isolate genomes and metagenomes. 

3.4 Methods 

3.4.1 Configuration files 
The new version of PhyloPhlAn 2 has been designed to work with configuration files that 
specify both the type of phylogenetic pipeline that will be executed (concatenation or gene 
trees) and also which external tools and parameters to use. With PhyloPhlAn 2 we also 
distribute a script named “phylophlan_write_default_configs.sh” that exploits the 
“phylophlan_write_config_file.py” script for correctly generating four default configuration 
files, two for the concatenation pipeline and two for the gene trees pipeline. For each 
pipeline, the two configuration files are needed to distinguish the type of markers database 
that will be used: a gene markers database needs a configuration file for dealing with 
nucleotides, while a protein markers database needs one for dealing with amino acids. 

3.4.2 Automatic download of reference genomes and core UniRef90 as markers database 
In PhyloPhlAn 2, we provide two scripts able to automatically retrieve from public resources 
both reference genomes and species-specific core sets of UniRef90 proteins, for easing the 
phylogenetic placement. The script “phylophlan_get_reference.py” lists and downloads the 
available species: at the time of writing we count 647 archaea species with 828 reference 
genomes, 16,960 bacterial species with 86,192 reference genomes, and 14 eukaryotic 
species relevant for the human microbiome analysis with 153 reference genomes. Using the 
value “all” for the “--get” parameter, the user can download a specified number of reference 
genomes for all the available species (regulated by the parameter “--how_many”, set to four 
by default). This allows to build microbial tree-of-life phylogenies in an easy way. The 
“phylophlan_setup_database.py” script, instead, allows to either format (on multiple files or in 
a multi-fasta file) a given set of genes to be readable by PhyloPhlAn or to automatically 
download a pre-identified set of core UniRef90 proteins for a specific species. The latter 

https://paperpile.com/c/E1Jhss/7KH3
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option allows to build strain-level resolution phylogenies without the need to compute the 
pangenome and identify the set of core genes for a given species, which can be 
computationally intensive otherwise. 

3.4.3 Metagenomic pipeline 
A novel addition in PhyloPhlAn 2 is the assignment of the closest species-level genome bins 
(SGBs), a concept and framework we recently introduced (Pasolli et al., 2019), to the set of 
genome bins from metagenomic assemblies provided as input. This is achieved by using the 
“phylophlan_metagenomic.py” script that groups the bins based on their closest assigned 
SGB (configurable using the “--threshold” param, set to 0.05 by default). The user can then 
decide to select subsets of inputs and use the “phylophlan_get_reference.py” script to 
download the needed reference genomes, and “phylophlan_setup_database.py” script in the 
case of a known SGB (kSGB)  to download the core set of UniRef90. 

3.4.4 Phylogenetic inference pipeline 
A standard computational phylogenetics pipeline can be divided into four main steps: marker 
genes identification, multiple sequence alignment, concatenation or gene trees inference, 
and phylogeny reconstruction. 

The marker genes identification step requires a mapping of the database of markers against 
the input genomes to extract their homologous to be aligned. Since both markers and inputs 
can be a mix of genes (genomes) and proteins (proteomes), this step requires a tool able to 
perform a search in a translated sequence space. PhyloPhlAn 2 currently supports blast 
(Altschul et al., 1990), USEARCH (Edgar, 2010), and Diamond (Buchfink et al., 2015). 
Depending on the type of markers, PhyloPhlAn 2 will continue the phylogenetic analysis on 
the nucleotide space if both markers and inputs are nucleotides, whereas it will proceed on 
the amino acid space if markers are proteins and inputs a mix of genomes and proteomes. 
The result of this part in PhyloPhlAn 2 is the set of marker genes containing the unaligned 
sequences found in the inputs. 

At this point, each multi-fasta of each marker is aligned using one of the MSA software 
available. In PhyloPhlAn 2 we included and tested the following tools: MUSCLE (Edgar, 
2004), MAFFT (Katoh and Standley, 2013), Opal (Wheeler and Kececioglu, 2007), UPP 
(Nguyen et al., 2015b), and PASTA (Mirarab et al., 2015). However, PhyloPhlAn 2 is not 
limited to the software listed above, as the settings for other MSA tools can be manually 
inserted into the configuration file. The results from this step are the multiple-sequence 
alignment for the set of markers. 

3.4.5 Choice of concatenation versus gene trees approach 
This is the crucial point where a concatenation- or a gene trees-based phylogenetic analysis 
will be performed. For the concatenation pipeline, all the computed MSAs are concatenated 
into one large MSA that will be used for the final phylogeny reconstruction. For the gene 
trees pipeline, instead, each single MSA is used to compute one phylogeny and, through a 
summary method, all the generated phylogenies are used to derive the final phylogeny. 

3.4.6 Large-scale phylogenies 
The main challenge when building very large phylogenies is to limit the length of the MSA 
that will be provided to the inference phylogeny tool. To reduce the length of an MSA, a 
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number of methods (Capella-Gutiérrez et al., 2009; Castresana, 2000; Dress et al., 2008; 
Sela et al., 2015; Webb et al., 2017) or ways of scoring each position in the MSA (Chang et 
al., 2014; Edgar, 2009; Penn et al., 2010; Talavera and Castresana, 2007; Valdar, 2002) 
have been proposed and a recent comparison work (Tan et al., 2015) suggests that Noisy 
and trimAl are the best approaches. However, when comparing the execution time, trimAl is 
faster (seconds compared to hours required by Noisy) and for this reason is the one we 
decided to use as default in PhyloPhlAn 2. 

Other approaches for shortening the MSA are the removal of gappy regions (determined 
based on gaps distribution) or the removal of single gaps, the removal of the conserved 
regions with a limited phylogenetic signal, and the removal of extremely variable positions, 
probably representing lowly-conserved or noisy regions. Several different scoring measures 
have been proposed for evaluating MSA quality. In PhyloPhlAn 2 we exploit a scoring 
measure to retain a limited number of phylogenetically-relevant positions. 

In PhyloPhlAn 2 it is possible to use a combination of the above approaches. For instance, 
as default settings for the reconstruction of very-large phylogenies (parameters: “--diversity 
high --fast”), PhyloPhlAn 2 applies trimAl ((Capella-Gutiérrez et al., 2009) with “-gappyout” 
param) for the removal of gappy regions, then the removal of conserved regions by 
considering all position that do not vary more than 95% (param “--not_variant_threshold 
0.95”, set automatically by the previous params). Finally, to avoid wrongly placed genomes 
in the phylogeny due to too many missing positions, a final check on the aligned sequence 
for each genome removes the regions that are still more than 65% gaps (“--
fragmentary_threshold 0.65” param, set automatically by the first two params). 

Moreover, in PhyloPhlAn 2 we implemented three different scoring functions (“trident”, 
“muscle”, and “random”) that assign a phylogenetic score to each position in the MSA and, in 
combination with a subsample function, retain only a certain number of positions. The 
“random” function simply assigns a random number to each column of the MSA. The 
“trident” score, as proposed in (Valdar, 2002), is a weighted combination of three different 
measures: symbol diversity, stereochemical diversity, and gaps frequency. Gaps frequency 
counts the number of gaps in each column. Symbol diversity measures the entropy of the 
column by weighting the frequency of the different occurring symbols. Stereochemical 
diversity, instead, is a score based on a substitution matrix. In PhyloPhlAn 2 we provide four 
substitution matrices: MIQS (Yamada and Tomii, 2014), PFASUM60 (Keul et al., 2017), 
VTML200 (Edgar, 2009), and VTML240 as implemented in MUSCLE (Edgar, 2004), along 
with scripts for generating custom ones. The “muscle” scoring function re-implements the 
scoring function available in MUSCLE ((Edgar, 2004), using the “-scorefile” param). After 
having scored each position of each MSA, PhyloPhlAn uses one of the implemented 
subsample functions: "phylophlan", “onethousand", “sevenhundred", “fivehundred", 
“threehundred", “onehundred", “fifty", “twentyfive", “tenpercent", “twentyfivepercent", and 
"fiftypercent", to retain only a certain number of positions. While it is clear how many 
positions will be retained for each MSA using one of the following subsamples functions: 
“onethousand", “sevenhundred", “fivehundred", “threehundred", “onehundred", “fifty", 
“twentyfive", “tenpercent", “twentyfivepercent", and "fiftypercent", the “phylophlan” one is 
instead based on the formula in (Segata et al., 2013) and it is specific for the set of 400 
universal markers proposed in the same work. 
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3.4.7 Phylogeny post-processing 
PhyloPhlAn 2 provides as output the reconstructed phylogeny, its MSA, and if specified the 
estimated mutation rates. The phylogenetic tree can be further use in downstream analysis. 
One evaluates the phylogenetic distances distribution to detect if a clade is an outlier with 
respect to the other clades in the phylogeny. Tools like TreeShrink (Mai and Mirarab, 2017) 
directly analyze the phylogeny to identify outlier branches. Additionally, PhyloPhlAn 2 can 
estimate a sequence-based similarity measure based on the MSAs between all input 
genomes. This can be an alternative approach in detecting outlier clades in the phylogeny. 
Finally, the availability of the MSA and the reconstructed phylogenetic tree can be used for 
further phylogenetic analysis like bootstrapping. 

3.4.8 Software and Data availability 
PhyloPhlAn 2 is released open-source and available in Bitbucket at 
https://bitbucket.org/nsegata/phylophlan, currently, the new implementation is present in the 
“dev” branch of the repository. The Ethiopian cohort is not yet fully available, as right now 
only the raw sequencing data for five of the 50 Ethiopian metagenomes are available in 
NCBI-SRA under the BioProject PRJNA504891. 
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4. Studying vertical microbiome transmission from mothers to 
infants by strain-level metagenomic profiling 
In this chapter, I expand the phylogenetic framework introduced in Chapter 3 to the task of 
identifying the presence of the same microbial strains across microbiome samples, i.e. strain 
tracking. This is an important task as it can open new venues for performing epidemiology 
and population genomics of microorganisms directly from metagenomics. In this chapter, the 
strain-tracking approach I developed was applied to the problem of inferring vertical 
transmission of microbial organisms from mothers to their infants during the first few months 
of life. Characterizing the vertical mother-to-infant transmission phenomenon is crucial in 
microbiome research to shed light on the dynamics of microbiome colonization and 
development in the infant. In the study presented in this chapter, we sampled five mother-
infant couples, with two couples having a longitudinal sampling up to one year after birth. 
The final goal of the study was to demonstrate that the strain-level analysis of microbial 
species from shotgun metagenomic data is feasible and potentially informative. This goal 
was indeed achieved and this paper is referred to as the methodological foundation for more 
recent and larger cohorts vertical transmission studies (Cabral et al., 2017; Davenport et al., 
2017; Ferretti et al., 2018; Korpela and de Vos, 2018; Miyoshi et al., 2017; Vatanen et al., 
2018; Wampach et al., 2017, 2018; Ximenez and Torres, 2017; Yassour et al., 2018). In this 
chapter, I also dig into the biological problem and interacted closely with the colleagues 
responsible for sampling, DNA extraction, library preparation, and sequencing in order to 
consider any potential problem of false positive or false negatives and model the 
experimental noise in the analysis pipeline. Importantly, a novel ‐ and still unique ‐ addition 
of this work to the vertical microbiome transmission literature is the availability of 
metatranscriptomics data that allowed to investigate the functional expression of the 
members of the microbiome that were transmitted from the mother to the infant. 

The chapter is based on the following article: 

Asnicar F*, Manara S*, Zolfo M, Truong DT, Scholz M, Armanini F, Ferretti P, Gorfer V, 
Pedrotti A, Tett A, and Segata N (* equal contribution) 
Studying vertical microbiome transmission from mothers to infants by strain-level 
metagenomic profiling 
mSystems (2017) 

Abstract 

The gut microbiome becomes shaped in the first days of life and continues to increase its 
diversity during the first months. Links between the configuration of the infant gut 
microbiome and infant health are being shown, but a comprehensive strain-level assessment 
of microbes vertically transmitted from mother to infant is still missing. We collected fecal 
and breast milk samples from multiple mother-infant pairs during the first year of life and 
applied shotgun metagenomic sequencing followed by computational strain-level profiling. 
We observed that several specific strains, including those of Bifidobacterium bifidum, 
Coprococcus comes, and Ruminococcus bromii, were present in samples from the same 
mother-infant pair, while being clearly distinct from those carried by other pairs, which is 
indicative of vertical transmission. We further applied metatranscriptomics to study the in 
vivo gene expression of vertically transmitted microbes and found that transmitted strains of 
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Bacteroides and Bifidobacterium species were transcriptionally active in the guts of both 
adult and infant. By combining longitudinal microbiome sampling and newly developed 
computational tools for strain-level microbiome analysis, we demonstrated that it is possible 
to track the vertical transmission of microbial strains from mother to infants and to 
characterize their transcriptional activity. Our work provides the foundation for larger-scale 
surveys to identify the routes of vertical microbial transmission and its influence on 
postinfancy microbiome development. 

Importance 
Early infant exposure is important in the acquisition and ultimate development of a healthy 
infant microbiome. There is increasing support for the idea that the maternal microbial 
reservoir is a key route of microbial transmission, and yet much is inferred from the 
observation of shared species in mother and infant. The presence of common species, per 
se, does not necessarily equate to vertical transmission, as species exhibit considerable 
strain heterogeneity. It is therefore imperative to assess whether shared microbes belong to 
the same genetic variant (i.e., strain) to support the hypothesis of vertical transmission. Here 
we demonstrate the potential of shotgun metagenomics and strain-level profiling to identify 
vertical transmission events. Combining these data with metatranscriptomics, we show that it 
is possible not only to identify and track the fate of microbes in the early infant microbiome 
but also to investigate the actively transcribing members of the community. These 
approaches will ultimately provide important insights into the acquisition, development, and 
community dynamics of the infant microbiome. 

4.1 Introduction 
The community of microorganisms that dwell in the human gut has been shown to play an 
integral role in human health (Clemente et al., 2012; HMP et al., 2012; Qin et al., 2010; 
Tamburini et al., 2016), facilitating, for instance, the harvesting of nutrients that would 
otherwise be inaccessible (Bäckhed et al., 2005), modulating the host metabolism and 
immune system (Palm et al., 2015), and preventing infections by occupying the ecological 
niches that could otherwise be exploited by pathogens (Stecher and Hardt, 2011). The 
essential role of the intestinal microbiome is probably best exemplified by the successful 
treatment of dysbiotic states, such as chronic life-threatening Clostridium difficile infections, 
using microbiome transplantation therapies (Britton and Young, 2014; Fuentes et al., 2014; 
Khoruts et al., 2010). 

The gut microbiome is a dynamic community shaped by multiple factors throughout an 
individual’s life, possibly including prebirth microbial exposure. The early development of the 
infant microbiome has been proposed to be particularly crucial for longer-term health 
(Bäckhed et al., 2015; Palmer et al., 2007; Yatsunenko et al., 2012), and a few studies have 
investigated the factors that are important in defining its early structure (Azad et al., 2013; 
Dominguez-Bello et al., 2010; La Rosa et al., 2014; Milani et al., 2015). In particular, 
gestational age at birth (La Rosa et al., 2014), mode of delivery (Azad et al., 2013; 
Dominguez-Bello et al., 2010), and early antibiotic treatments (Greenwood et al., 2014) have 
all been shown to influence the gut microbial composition in the short term and the pace of 
its development in the longer term. 
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Vertical transmission of bacteria from the body and breast milk of the mother to her infant 
has gained attention as an important source of microbial colonization (Aagaard et al., 2012; 
Cabrera-Rubio et al., 2012; Dominguez-Bello et al., 2010; Hunt et al., 2011) in addition to the 
microbial organisms obtained from the wider environment (Flores et al., 2014; Song et al., 
2013), including the delivery room (Shin et al., 2015). Results from early cultivation-based 
and cultivation-free methods (16S rRNA community profiling and a single metagenomic 
study) have indeed suggested that the mother could transfer microbes to the infant by 
breastfeeding (Jost et al., 2014) and that a vaginal delivery has the potential of seeding the 
infant gut with members of the mother’s vaginal community (Bäckhed et al., 2015; Biasucci 
et al., 2010; Dominguez-Bello et al., 2010, 2016) that would not be available via caesarean 
section. However, a more in-depth analysis is required to elucidate the role of vertical 
transmission in the acquisition and development of the infant gut microbiome. 

Current knowledge of the vertical transmission of microbes from mothers to infants has 
hitherto focused on the cultivable fraction of the community (Makino et al., 2011) or lacked 
strain-level resolution (Bäckhed et al., 2015). Many microbial species are common among 
unrelated individuals (Lozupone et al., 2012); therefore, in instances where a species is 
identified in both mother and infant (Palmer et al., 2007; Turnbaugh et al., 2009), it remains 
inconclusive if this is due to vertical transmission. Strain-level analysis has shown that 
different individuals are associated with different strains of common species (Schloissnig et 
al., 2013; Scholz et al., 2016), and it is therefore crucial to profile microbes at the strain level 
to ascertain the most probable route of transfer. This has been performed only for specific 
microbes by cultivation methods (Makino et al., 2011; Milani et al., 2015), but many vertically 
transmitted microorganisms remain hard to cultivate (Milani et al., 2015); thus, the true 
extent of microbial transmission remains unknown. A further crucial aspect, still largely 
unexplored, is the fate of vertically acquired strains: if they are transcriptionally active rather 
than merely transient, that may suggest possible colonization of the infant intestine. Although 
studies have described the transcriptional activity of intestinal microbes under different 
conditions (Bao et al., 2015; Gosalbes et al., 2012; Maurice et al., 2013; Turnbaugh et al., 
2010), no studies have applied metatranscriptomics to characterize the activity of vertically 
transmitted microbes in vivo. 

In this work, we present and validate a shotgun metagenomic pipeline to track mother-to-
infant vertical transmission of microbes by applying strain-level profiling to members of the 
mother and infant microbiomes. Moreover, we assessed the transcriptional activity of 
vertically transmitted microbes to elucidate if transferred strains are not only present but also 
transcriptionally active in the infant gut. 

4.2 Results and Discussion 
We analyzed the vertical transmission of microbes from mother to infant by enrolling 5 
mother-infant pairs and collecting fecal samples and breast milk (see Materials and 
Methods) when each infant was 3 months of age (time point 1). Two mother-infant pairs (pair 
4 and pair 5) were additionally sampled at 10 months postbirth (time point 2), and one pair 
(pair 5) was sampled at 16 months postbirth (time point 3; see Fig. S1 in the supplemental 
material). We applied shotgun metagenomic sequencing to all 24 microbiome samples (8 
mother fecal samples, 8 infant fecal samples, and 8 milk samples), generating 1.2 G reads 
(average, 39.6 M reads/sample; standard deviation [SD], 28.7 M reads/sample) (see Table 
S1 in the supplemental material). Metatranscriptomics (average, 90.55 M reads/sample; SD, 
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46.86 M reads/sample) was also applied on fecal samples of two pairs (pair 4 at time point 2 
and pair 5 at time point 3) to investigate the differential expression profiles of the bacterial 
strains in the gut of mothers and their infants. 

Shared mother-infant microbial species. In our cohort, the infant intestinal microbiome 
was dominated by Escherichia coli and Bifidobacterium spp., such as B. longum, B. breve, 
and B. bifidum (Fig. 1A and S2). These species in some cases reached abundances higher 
than 75% (e.g., E. coli at 85.2% in infant pair 3 at time point 1 and B. breve at 78.8% in 
infant pair 5 at time point 1), which is consistent with previous observations (Koenig et al., 
2011; Kurokawa et al., 2007; Yatsunenko et al., 2012). As expected, the intestines of the 
mothers had a greater microbial diversity than those of the infants, with high abundances of 
Prevotella copri, Clostridiales (e.g., Coprococcus spp. and Faecalibacterium prausnitzii), and 
Bacteroidales (e.g., Parabacteroides merdae and Alistipes putredinis). Interestingly, the 
postweaning microbiome of infant of pair 5 (time point 3, 16 months postbirth) had already 
shifted toward a more “mother-like” composition (Fig. 1B), with an increase in diversity and 
the appearance of Parabacteroides merdae, Coprococcus spp., and Faecalibacterium 
prausnitzii (Koenig et al., 2011; Palmer et al., 2007). Nevertheless, this 16-month-old infant 
still retained some infant microbiome signatures, such as a high abundance of bifidobacteria 
that were present at only low levels in the mothers’ samples (Fig. 1A and C). 

 
Fig 1. Microbial composition of mother and infant samples and shared bacteria within 
mother-infant pairs. (A) Quantitative microbial taxonomic composition of the metagenomic 
samples from milk and fecal samples of mothers and infants as estimated by MetaPhlAn2 
analysis (Truong et al., 2015) (only the 20 most abundant species are indicated). Milk 
samples present low microbial richness compared to fecal samples. (B) Ordination plot of 
microbiome composition showing clustering of the three different sample types: mother 
feces, infant feces, and breast milk samples. The two infant samples close to the cluster of 
mother feces and in between the clusters of mothers and infants are from later time points, 
denoting the convergence of the infant microbiome toward an adult-like one. (C) The 
abundances of the 10 microbial species detected (>0.1% abundance) in at least one infant 
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and the respective mother (shared species have been identified on the basis of samples 
from time point 1 [T1] only). 
 
We extracted and successfully sequenced microbial DNA from 7 of 8 milk samples. Microbial 
profiling of milk samples was hindered by a high abundance of interfering molecules 
(proteins, fats, proteases—e.g., plasmin—and calcium ions) (Bickley et al., 1996; Cremonesi 
et al., 2006; Schrader et al., 2012) that affected the efficiency of the extraction and 
amplification steps. Even so, we obtained an average of 3.08 Gb (SD, 1.5 Gb) per sample, 
of which 26 Mb (SD, 56 Mb) were from nonhuman reads (a level higher than that seen in the 
only other metagenomic study) (Ward et al., 2013) (see Table S1). 

Milk samples had limited microbial diversity at the first sampling time (time point 1, 3 months 
postbirth) and included skin-associated bacteria such as Corynebacterium kroppenstedtii 
and Staphylococcus epidermidis. Cutaneous taxa, however, were observed in only low 
abundances in the gut microbiome of infants, confirming that skin microbes are not 
colonizers of the human gut (Fig. 1A). At later time points, the milk samples were enriched in 
B. breve and in bacteria usually found in the oral cavity, such as Streptococcus and 
Veillonella spp. The presence of oral taxa in milk has been previously observed by 16S 
rRNA sequencing (Cabrera-Rubio et al., 2012; Dominguez-Bello et al., 2010; Hunt et al., 
2011; Jost et al., 2014) and shotgun metagenomics (Ward et al., 2013). This could be 
caused by retrograde flux into the mammary gland during breastfeeding (Ramsay et al., 
2004) whereby cutaneous microbes of the breast and from the infant oral cavity are 
transmitted to the breast glands (Jeurink et al., 2013). However, this remains a hypothesis 
because no oral samples were collected in this study. These observations are summarized 
in the ordination analysis (Fig. 1B), in which the different samples (infant feces, mother 
feces, and milk) clustered by type, with weaning representing a key factor in the shift from an 
infant to an adult-like microbiome structure (Costello et al., 2012; Koenig et al., 2011; Palmer 
et al., 2007). 

Comparing the species present in both the mother and infant pairs (Fig. 1C), we observed 
that many shared species (e.g., Escherichia, Bifidobacterium, and Veillonella spp.) occurred 
at a much higher abundance in the infant than in the mother, possibly due to the lower level 
of species diversity and therefore to competition in the gut. Bacteroides vulgatus was found 
at relatively high abundance (average, 16.3%; SD, 13%) in both the infant and the mother of 
pair 4 at both time point 1 and time point 2. The presence of shared species in mother-infant 
pairs observed here and elsewhere (Dominguez-Bello et al., 2010; Faith et al., 2013; Jost et 
al., 2014; La Rosa et al., 2014; Milani et al., 2015) confirms that mothers are a potential 
reservoir of microbes vertically transmissible to infants, but it remains unproven whether the 
same strain is transmitted to the infant from the mother or if an alternative transmission route 
is involved. 

Strains shared between mothers and infants are indicative of vertical transmission. 
While different individuals have a core of shared microbial species, it has been shown that 
these common species consist of distinct strains (Schloissnig et al., 2013; Scholz et al., 
2016). To analyze microbial transmission, it is therefore crucial to assess whether a mother 
and her infant harbor the same strain. To this end, we further analyzed the metagenomic 
samples at a finer strain-level resolution. This was achieved by applying a recent strain-
specific pangenome-based method called PanPhlAn (Scholz et al., 2016), as well as a 
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genetics-based method called StrainPhlAn (D. T. Truong, A. Tett, E. Pasolli, C. 
Huttenhower, and N. Segata, submitted for publication) (see Materials and Methods), which 
identifies single-nucleotide variants (SNVs) in species-specific marker genes. 

Using the SNV-based analysis, we observed considerable strain-level heterogeneity in the 
species present in the intestines of the mothers also with respect to available reference 
genomes (Fig. 2; see also Fig. S3 in the supplemental material). This heterogeneity was not 
observed within the mother-infant pairings, as in the case of Bifidobacterium spp., 
Ruminococcus bromii, and Coprococcus comes. The infant of pair 4 at time point 2, for 
example, harbored a strain of B. bifidum that matched his mother’s at 99.96% sequence 
identity and yet was clearly distinct from the B. bifidum strains of other infants in the cohort 
(Fig. 2A), which differed by at least 0.6% of the nucleotides. The observation that the B. 
bifidum strains from the mother and the infant of pair 4 were too similar to be consistent with 
the observed strain-level variation across subjects in the cohorts was highly statistically 
significant (P value, 4.7e−40) (see Fig. S4). This was also true for the C. comes (P value, 
1.9e−3) (99.87% intrapair similarity and 1.6% and 1.61% divergence compared to the 
closest strain and the average value, respectively) (Fig. 2B) and R. bromii (P value, 4.9e−8) 
(99.93% similarity and 1.53% and 2.63% diversity—same as described above) (Fig. 2C) 
strains that were shared by pair 5. Mother-infant sharing of the same strain was also 
confirmed by strain-level pangenome analysis (Scholz et al., 2016) that showed that the 
strains from the same pair carried the same unique gene repertoire (see Fig. S5). It is 
accepted that, while the possibility of independent acquisition of strains from a shared 
environmental source cannot be excluded, the finding that mother-infant pairs have shared 
strains represents strong evidence of vertical microbiome transmission. On average, we 
could reconstruct and observe vertical transmission from mother to infant for 14% of the 
species found to be shared within mother and infant pairings. 
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Fig 2. Strain-level phylogenetic trees for microbes present in both the mother and 
infant. Phylogenetic trees were built by the StrainPhlAn method using species-specific 
markers confirming the presence of the same strain in the mother and infant intestinal 
microbiomes, thus suggesting vertical transmission. Available reference genomes were 
included in the phylogenetic trees. Here we report three bacterial species, namely, (A) 
Bifidobacterium bifidum, (B) Coprococcus comes, and (C) Ruminococcus bromii, and the 
most abundant viral species found in pair 4, (D) pepper mild mottle virus. Other species-
specific phylogenetic trees (B. adolescentis, B. breve, and B. longum) are reported in Fig. 
S3. 
 
Strain transmission does not, however, exclude later replacement of the vertically acquired 
organisms, as we highlighted by looking at the postweaning time point in our cohort (pair 5 at 
time point 3) which harbored the highest number of shared species, with 70.4% present in 
the infant and mother (at a relative abundance of >0.1%, according to the MetaPhlAn2 
profiles). A proportion (11%) of these common species were shown to be the same strain 
(Fig. 2; see also Fig. S3 in the supplemental material), according to both PanPhlAn and 
StrainPhlAn analyses (see, for example, the data from B. adolescentis and C. comes) (Fig. 
2; see also Fig. S3 and S5). However, some strains that were shared at earlier time points 
were replaced at time point 3. Of note, the R. bromii strain found in an infant at time point 3 
was different from that found at time point 2, and both strains were distinct from the strain 
observed in the mother at both time points (Fig. 2C). This was also observed for the latter 
infant time point for B. breve (see Fig. S3B) and B. longum (see Fig. S3C). Although it is not 
possible to generalize these results because of the small sample size, these replacement 
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events suggest that originally acquired maternal strains can subsequently be replaced 
(Morowitz et al., 2011; Sharon et al., 2013). 

We then extended our analysis to the viral organisms detectable from metagenomes and 
metatranscriptomes, as viruses have the potential to be vertically transmitted also. The DNA 
viruses identified from our metagenome samples largely consisted of bacteriophages of the 
Caudovirales order, a common order of tailed bacteriophages found in the intestine (Ogilvie 
and Jones, 2015; Tamburini et al., 2016). We identified Enterobacter and Shigella phages as 
the most prevalent phages among the tested samples, in agreement with the high 
prevalence of members of the Enterobacteriaceae family and particularly of members of the 
Escherichia genus (see Fig. 1A and Table S3). We also identified crAssphage at high 
breadth of coverage (Dutilh et al., 2014) and provided further evidence for the hypothesis 
that the Bacteroides genus is the host for this virus (Dutilh et al., 2014), as the microbiome of 
crAssphage-positive mothers was enriched in B. vulgatus (see Fig. 1A and Table S3). 
However, the low breadth of coverage for many of the DNA viruses made it difficult to 
identify pair-specific phage variants (see Table S3). Analysis of the RNA viruses from the 
metatranscriptomic samples identified instead the presence of an abundant pepper mild 
mottle virus (PMMoV), a single-stranded positive-sense RNA virus of the genus 
Tobamovirus, in all of the four metatranscriptomes from pairs 4 and 5. Surprisingly, 
transcripts from the PMMoV were found in greater abundance than all the other microbial 
transcripts found for the mother of pair 4. PMMoV has already been reported in the gut 
microbiome (Reyes et al., 2010; Victoria et al., 2009; Zhang et al., 2006), and other related 
viruses of the same family have been shown to be able to enter and persist in eukaryotic 
cells (Balique et al., 2013; de Medeiros et al., 2005). The high abundance of PMMoV in 
mother-infant pair 4 allowed us to reconstruct its full genome (99.9%) and to perform a 
phylogenetic analysis demonstrating that the mother and the infant shared identical PMMoV 
strains, which were clearly distinct from the PMMoV reference genomes (27 SNVs in total; 
Fig. 2D). Although the coverage was lower, the same evidence of a shared PMMoV strain 
was observed within pair 5. The analysis of PMMoV polymorphisms within each sample also 
suggests the coexistence of different PMMoV haplotypes in the same host (Fig. S6). 
Although vertical transmission of RNA viruses and PMMoV specifically would be intriguing, 
because of the age and dietary habits of the infants (see Table S1) this finding could be 
related to the exposure to a common food source (Colson et al., 2010). Our analysis of the 
virome characterized directly from shotgun metagenomics thus highlighted that viruses can 
be tracked across mother-infant microbiomes also and that experimental virome enrichment 
protocols (Reyes et al., 2012; Thurber et al., 2009) have the potential to provide an even 
clearer snapshot of viral vertical transmission. 

Differences in the overall levels of functional potential and expression in mothers and 
infants. The physiology of the mammary gland (milk) as well as the adult and infant intestine 
is reflected by niche-specific microbial communities as reported above and in previous 
studies (Azad et al., 2013; Bäckhed et al., 2015; Cabrera-Rubio et al., 2012; Costello et al., 
2012; Hunt et al., 2011; Jeurink et al., 2013; Palmer et al., 2007). To characterize the overall 
functional potential of the microbial communities inhabiting these niches, we complemented 
the taxonomic analysis above by employing HUMAnN2 (see Materials and Methods). As 
expected, there was considerable overlap in the functionality of the gut microbiomes of the 
mothers and infants (Fig. 3A), with 87% of pathways present in mother and infant, 50% of 
which were significantly different in abundance (at an alpha value of 0.05). Nevertheless, 
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there were notable differences. For instance, the microbiomes of the infants showed a higher 
potential for utilization of intestinal mucin as a carbon source (P value, 0.016) and for folate 
biosynthesis (P value, 1.8e−6) while displaying a lower potential for starch degradation (P 
value, 9.8e−6), consistent with previous observations (LeBlanc et al., 2013; Marcobal et al., 
2011; Tailford et al., 2015; Turroni et al., 2011a; Yatsunenko et al., 2012). Mucin utilization, 
specifically by infant gut microbial communities, is reflective of the higher abundance of 
mucin-degrading bifidobacteria observed from the taxonomic analyses described above 
(Marcobal et al., 2011; Tailford et al., 2015; Turroni et al., 2011a; Yatsunenko et al., 2012), 
whereas increased folate biosynthesis (LeBlanc et al., 2013; Marcobal et al., 2011; Tailford 
et al., 2015; Yatsunenko et al., 2012) and decreased starch degradation (Bäckhed et al., 
2005) have been purported to represent responses to the limited dietary intake in infants 
compared to adults. Interestingly, the intestinal samples from the postweaning infant of pair 
5 (16 months postbirth) clustered together with the adults’ intestinal samples (Fig. 3B), 
suggesting that the shift toward an adult-like microbiome observed in the taxonomic profiling 
(Fig. 1B) is also reflected by or is a consequence of a change in community functioning. 
Among the most prevalent pathways in the milk microbiomes that we observed were those 
involved in galactose and lactose degradation (Flint et al., 2012), as well as in biosynthesis 
of aromatic compounds (Fig. S7A). This was specifically true for production of chorismate, a 
key intermediate for the biosynthesis of essential amino acids and vitamins found in milk 
(LeBlanc et al., 2013) (Fig. 3C and S7A). 

 
Fig 3. Functional potential analyses. (A) HUMAnN2 heat map reporting the 25 most 
abundant pathways in the fecal samples of mothers and infants. Specific pathways of 
interest (sugars, mucin, and folate metabolism) are added at the bottom. The asterisk (*) 
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near the heat map highlights statistically significant pathways. (B) Multidimensional scaling 
(MDS) result from functional potential profiles, showing the differences between fecal 
samples of mothers and infants and milk samples. In particular, the infant feces point in the 
mother feces cluster corresponds to time point 3 of pair 5, showing a shift from the infant 
microbiome toward an adult-like microbiome. (C) HUMAnN2 results for the 25 most 
abundant pathways found only in the milk samples. TCA, tricarboxylic acid. 
 
To further evaluate the functional capacity of the gut-associated microbiomes and analyze 
the in vivo transcription, we performed metatranscriptomics analyses of the feces of two 
mother-infant pairs (see Materials and Methods). HUMAnN2 was used to identify differences 
in the transcriptional levels of pathways in the gut of the mothers and infants. The most 
notable global difference was that fermentation pathways were highly transcribed in the 
mother compared to that of the infant. This reflects the transition of the gut from an aerobic 
to an anaerobic state and the associated shift from facultative anaerobes to obligate 
anaerobes over the first few months of life (Houghteling and Walker, 2015; Turroni et al., 
2012). The same is true for pathways involved in starch degradation, which were not only 
poorly represented in the metagenomes but also negligibly expressed in the infants’ 
transcriptomes. What is evident is that the transcriptional patterns for different members 
differed considerably, as illustrated for pair 4 and pair 5 (Fig. 4A and S7B, respectively). For 
example, we observed in the infant of pair 4 that B. vulgatus was more transcriptionally 
active (average of 2.7 [SD, 2.5] normalized transcript abundance [NTA]; see Materials and 
Methods) than both E. coli (245-fold change [average, 0.4 SD and 0.6 NTA]) and 
Bifidobacterium spp. (6.6-fold change [average, 0.01 SD and 0.01 NTA]). Although these 
differences were statistically significant (P values were lower than 1e−50 in both cases), 
their physiological significance remains unclear. 
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Fig 4. Transcription levels of metabolic pathways and genes in mother and infant pair 4 at time 
point 2. (A) Scatterplots showing the transcription rates of metabolic pathways of shared and 
nonshared species and genera of interest for both the mother and infant of pair 4 at time point 2. (B) 
Comparison between transcription rates of gene families in mother and infant gut microbiomes. 
 
Strain-specific transcriptional differences in mothers and infants. To further explore the 
transcriptional activity of the intestinal microbiomes and, more specifically, to ascertain which 
individual microbial members are transcriptionally active in the gut, we employed the strain-
specific metatranscriptomic approach implemented in PanPhlAn (Scholz et al., 2016) (see 
Materials and Methods). Of particular interest is the transcriptional activity of the shared 
mother-infant strains that, based on our strain-level analyses, are likely to have been 
vertically acquired by the infant by the maternal route. Such transcriptional analyses can 
clarify whether these transmitted strains were not only present in the infant gut but also 
functioning, therefore suggesting that the transmitted strains could have potentially 
colonized. For three transmitted species in pair 4 (B. vulgatus, E. coli, and B. bifidum), we 
show that they were active in both the mother intestine and the infant intestine (Fig. 4B). Of 
note is that B. bifidum was more active in the infant than in the mother (2.5-fold change; Fig. 
4B), which was expected as this species is a known early colonizer of the infant gut (Koenig 
et al., 2011; Kurokawa et al., 2007; Yatsunenko et al., 2012). Interestingly, the B. bifidum 
strain of pair 5 showed the opposite behavior (Fig. S7C). We postulate that this was 
because the infant of pair 5 was of postweaning age (10% breast milk diet) compared to the 
infant of pair 4 (90% breast milk diet) and that the difference reflects the change in substrate 
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availability from breast milk to solid food, which might have a detrimental effect on the 
bifidobacterial population (Koenig et al., 2011; Turroni et al., 2011b, 2012). Moreover, in 
support of our metagenomics analyses indicating that the microbiome of infant of pair 5 was 
shifting toward a more adult-like structure (Fig. 1B), we observed high transcriptional activity 
for R. bromii, a species commonly associated with adults, which could be seen as a hallmark 
of this transition (Scott et al., 2015; Walker et al., 2011). 

It is well established that metatranscriptomic profiling provides a more accurate account of 
the actual community functioning than metagenomics alone. Here we show that the 
combination of the two approaches affords the exploration of which members not only are 
transmitted but also are actively participating in the community and therefore offers a more 
detailed account of the microbial community dynamics. 

Conclusions. Human-associated microbiomes are complex and dynamic communities that 
are continuously interacting with the host and are under the influence of environmental 
sources of microbial diversity. Identifying and understanding the transmission from these 
external sources are crucial to understanding how the infant gut is colonized and ultimately 
develops an adult-like composition. However, detecting direct transmission is not a trivial 
task: many species are ubiquitous in host-associated environments and in the wider 
environment alike, and yet they comprise a myriad of different strains and phenotypic 
capabilities. Therefore, detection of microbial transmission events requires the ability to 
characterize microbes at the strain level. The epidemiological tracking of pathogens by 
cultivation-based isolate sequencing has proven successful (Gardy et al., 2011; Loman et 
al., 2013), but it relies on time-consuming protocols and can focus on only a limited number 
of species. In contrast, while there have been some examples of strain-level tracking from 
metagenomic data (Li et al., 2016; Loman et al., 2013), this remains challenging. In this 
study, we developed methods for identifying the vertical flow of microorganisms from 
mothers to their infants and showed that mothers are sources of microbes that might be 
important in the development of the infant gut microbiome. 

We demonstrated that high-resolution computational methods applied to shotgun 
metagenomic and metatranscriptomic data enable the tracking of strains and strain-specific 
transcriptional patterns across mother-infant pairs. In our cohort of five mother-infant pairs, 
we detected several species with substantial genetic diversity between different pairs but 
identical genetic profiles in the mother and her infant, indicative of vertical transmission. 
These include some bifidobacteria typical of the infant gut (i.e., B. longum, B. breve, B. 
bifidum, and B. adolescentis) but also Clostridiales species usually found in the adult 
intestine (i.e., R. bromii and C. comes) and viral organisms. These results confirm that the 
infant receives a maternal microbial imprinting that might play an important role in the 
development of the gut microbiome in the first years of life. 

The strain-level investigation of vertically transmitted microbes was followed by 
characterization of the transcriptional activity of the transmitted strains in the mother and 
infant environments. We found that the transcriptional patterns of strains shared within the 
single pairs were different between mother and infant, suggesting successful adaptation of 
maternally transmitted microbes to the infant gut. 

Taking the results together, our work provides preliminary results and methodology to 
expand our knowledge of how microbial strains are transmitted across microbiomes. 
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Expanding the cohort size and considering other potential microbial sources of transmission, 
such as additional mother and infant body sites, as well as other family members (i.e., 
fathers and siblings) and environments (hospital and house surfaces), will likely shed light on 
the key determinants in early infant exposure and the seeding and development of the infant 
gut microbiome. 

4.3 Materials and methods 
Sample collection and storage. In total, five mother-infant pairs were enrolled. Fecal 
samples and breast milk were collected for all pairs at 3 months (time point 1); additional 
samples were collected for pair 4 and pair 5 at 10 months (time point 2) and for pair 5 only at 
16 months (time point 3) (see Table S1 and Fig. S1 in the supplemental material). All 
aspects of recruitment and sample and data processing were approved by the local ethics 
committee. Fecal samples were collected from mothers and infants in sterile feces tubes 
(Sarstedt, Nümbrecht, Germany) and immediately stored at −20°C. In those cases where 
metatranscriptomics was applied, a fecal aliquot was removed prior to freezing the remaining 
feces. This aliquot was stored at 4°C, and the RNA was extracted within 2 h of sampling to 
preserve RNA integrity. Milk was expressed and collected midflow by mothers into 15-ml 
centrifuge tubes (VWR, Milan, Italy) and immediately stored at −20°C. Within 48 h of 
collection, all milk samples and feces samples were moved to storage at −80°C until 
processed. 

Extraction of nucleic acids for metagenomic analysis. DNA was extracted from feces 
using a QIAamp DNA stool minikit (Qiagen, Netherlands). Milk DNA was extracted using a 
PowerFood microbial DNA isolation kit (Mo Bio, Inc., CA). Both procedures were performed 
according to the specifications of the manufacturers. Extracted DNA was purified using an 
Agencourt AMPure XP kit (Beckman Coulter, Inc., CA). Metagenomic libraries were 
constructed using a Nextera XT DNA library preparation kit (Illumina, CA, USA) according to 
manufacturer instructions and were sequenced on a HiSeq 2500 platform (Illumina, CA, 
USA) at an expected sequencing depth of 6 Gb/library. 

Extraction of nucleic acids for metatranscriptomic analysis. Fecal samples for 
metatranscriptomic profiling were pretreated as described previously (Giannoukos et al., 
2012). Briefly, 110 μl of lysis buffer (30 mM Tris·Cl, 1 mM EDTA [pH 8.0], 1.5 mg/ml of 
proteinase K, and 15 mg/ml of lysozyme) was added to 100 mg of feces and incubated at 
room temperature for 10 min. After pretreatment, samples were treated with 1,200 μl of 
Qiagen RLT Plus buffer (from an AllPrep DNA/RNA minikit [Qiagen, Netherlands]) containing 
1% (vol) beta-mercaptoethanol and were transferred into 2-ml sterile screw-cap tubes 
(Starstedt, Germany) filled with 1 ml of zirconia-silica beads (BioSpec Products, OK, USA) 
(<0.1 mm in diameter). Tubes were placed on a Vortex-Genie 2 mixer with a 13000-V1-24 
Vortex adapter (Mo Bio, Inc., CA) and shaken at maximum speed for 15 min. Lysed fecal 
samples were homogenized using QIAshredder spin columns (Qiagen, Netherlands), and 
homogenized sample lysates were then extracted with an AllPrep DNA/RNA minikit (Qiagen, 
Netherlands) according to the manufacturer’s specifications. Extracted RNA and DNA were 
purified using Agencourt RNAClean XP and Agencourt AMPure XP (Beckman Coulter, Inc., 
CA) kits, respectively. Total RNA samples were subjected to rRNA depletion, and 
metatranscriptomic libraries were prepared using a ScriptSeq Complete Gold kit 
(epidemiology)-low input (Illumina, CA, USA). Metagenomic libraries were prepared with a 
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Nextera XT DNA library preparation kit (Illumina, CA, USA). All libraries were sequenced on 
a HiSeq 2500 platform (Illumina, CA, USA) at an expected depth of 6 Gb/library. 

Sequencing data preprocessing. The metagenomes and metatranscriptomes were 
preprocessed by removing low-quality reads (mean quality value of less than 25), trimming 
low-quality positions (quality less than 15), and removing reads less than 90 nucleotides in 
length using FastqMcf (Aronesty, 2013). Further quality control steps involved the removal of 
human reads and the reads from the Illumina spike-in (bacteriophage Phi-X174) by mapping 
the reads against the corresponding genomes with Bowtie 2 (Langmead and Salzberg, 
2012). Metatranscriptomes were additionally processed to remove rRNA by mapping the 
reads against 16S and 23S rRNA gene databases (SILVA_119.1_SSURef_Nr99_tax_silva 
and SILVA_119_LSURef_tax_silva (Quast et al., 2013)) and to remove contaminant 
adapters using trim_galore (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) 
with the following parameters: -q 0, –nextera, and –stringency 5. The milk sample of mother-
infant pair 4 at time point 1 was discarded from further analyses because of the low number 
of microbial reads (less than 400,000 bp) obtained after the quality control steps (see Table 
S1). All metagenomes and metatranscriptomes have been deposited in and are available at 
the NCBI Sequence Read Archive. 

Taxonomic and strain-level analysis. Taxonomic profiling was performed with MetaPhlAn2 
(Truong et al., 2015) (with default parameters) on the 23 metagenomic samples that passed 
the quality control. MetaPhlAn2 uses clade-specific markers for taxonomically profiling 
shotgun metagenomic data and to quantify the clades present in the microbiome with 
species-level resolution. 

Strain-level profiling was performed with PanPhlAn (Scholz et al., 2016) and a novel strain-
level profiling method called StrainPhlAn (Truong et al., submitted). PanPhlAn is a 
pangenome-based approach that profiles the presence/absence pattern of species-specific 
genes in the metagenomes. The presence/absence profiles of the genes are then used to 
characterize the strain-specific gene repertoire of the members of the microbiome. PanPhlAn 
has been executed using the following parameters: --min_coverage 1, --left_max 1.70, and --
right_min 0.30. PanPhlAn is available with supporting documentation at 
http://segatalab.cibio.unitn.it/tools/panphlan. StrainPhlAn is a complementary method based 
on analysis of SNVs that reconstructs the genomic sequence of species-specific markers. 
StrainPhlAn builds the strain-level phylogeny of microbial species by reconstructing the 
consensus marker sequences of the dominant strain for each detected species. The 
extracted consensus sequences are multiply aligned using MUSCLE version v3.8.1551 
(Edgar, 2004) (default parameters), and the phylogeny is reconstructed using RAxML 
version 8.1.15 (Stamatakis, 2014) (parameters: -m GTRCAT and -p 1234). StrainPhlAn is 
available with supporting documentation at http://segatalab.cibio.unitn.it/tools/strainphlan. 

Functional profiling from metagenomes and metatranscriptomes. The functional 
potential and transcriptomic analyses were performed with both HUMAnN2 (Franzosa et al., 
2014) and PanPhlAn (Scholz et al., 2016). HUMAnN2 selects the most representative 
species from a metagenome and then builds a custom database of pathways and genes that 
is used as a mapping reference for the coupled metatranscriptomic sample to quantify 
transcript abundances. We computed the normalized transcript abundance (NTA), which we 
define as the average coverage of a genomic region in the metatranscriptomic versus that in 
the corresponding metagenomic sample normalized by the total number of reads in each 

https://paperpile.com/c/E1Jhss/92SW
https://paperpile.com/c/E1Jhss/646p
https://paperpile.com/c/E1Jhss/646p
https://paperpile.com/c/E1Jhss/e5kW
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://paperpile.com/c/E1Jhss/iHuD
https://paperpile.com/c/E1Jhss/MyOp
http://segatalab.cibio.unitn.it/tools/panphlan
https://paperpile.com/c/E1Jhss/kA0A
https://paperpile.com/c/E1Jhss/M6kT
http://segatalab.cibio.unitn.it/tools/strainphlan
https://paperpile.com/c/E1Jhss/i90q
https://paperpile.com/c/E1Jhss/i90q
https://paperpile.com/c/E1Jhss/MyOp


 
 
 
 
A phylogenetic framework for large-scale analysis of microbial communities  75 

 
sample. PanPhlAn infers the expression of the strain-specific gene families by extracting 
them from the metagenome and matching them in the metatranscriptome. PanPhlAn has 
been executed using the following parameters: --rna_norm_percentile 90 and --
rna_max_zeros 90. 

Profiling of DNA and RNA viruses. We investigated the presence of viral and phage 
genomes by mapping the reads present in the metagenomes and metatranscriptomes 
against 7,194 viral genomes available in RefSeq (release 77). The average coverage and 
average sequencing depth were computed with SAMtools (Li et al., 2009) and BEDTools 
(Quinlan and Hall, 2010). 

The presence of the pepper mild mottle virus (PMMoV) was confirmed by mapping the 
reference genome (NC_003630) against the metatranscriptomic samples from the mother 
and infant of pair 4 and pair 5. In the mother and infant of pair 4, 424,510 and 119 reads 
were mapped, respectively, while in the mother and infant of pair 5, 1,444 and 61 of the 
reads were mapped, respectively. In the two mothers (pair 4 and pair 5), the values for 
breadth of coverage were 0.99 and 0.98 and for average coverage were 6,562 and 22, 
respectively. In the two infants (pair 4 and pair 5), the values for breadth of coverage were 
0.6 and 0.5 and for average coverage were 1.81 and 0.95, respectively. Additionally, we 
extracted the shared fractions of the PMMoV genome present in both the mother and the 
infant of pair 4, together with the same regions of all the available reference genomes (n = 
13 [specifically, accession no. LC082100.1, KJ631123.1, AB550911.1, AY859497.1, 
KU312319.1, KP345899.1, NC_003630.1, M81413.1, KR108207.1, KR108206.1, 
AB276030.1, AB254821.1, and LC082099.1]). The resulting sequences were aligned using 
MUSCLE version v3.8.1551 (default parameters), and the resulting alignment was used to 
build a phylogenetic tree with RAxML v. 8.1.15 (parameters: -m GTRCAT and -p 1234). 

Statistical analyses and data visualization. The taxonomic and functional heat maps were 
generated using hclust2 (parameters: --f_dist_f Euclidean, --s_dist_f braycurtis, and -l) 
available at https://bitbucket.org/nsegata/hclust2. The multidimensional scaling plots were 
computed with the sklearn Python package (Pedregosa et al., 2011). 

Biomarker discovery (Fig. S7A) was performed by applying the linear discriminant analysis 
effect size (LEfSe) algorithm (Segata et al., 2011) (parameter: -l 3.0) on HUMAnN2 profiles. 
The two functional trees (Fig. S7A) have been automatically annotated with 
export2graphlan.py (GraPhlAn package) and displayed with GraPhlAn (Asnicar et al., 
2015a) using default parameters. 

Accession number(s). All metagenomes and metatranscriptomes have been deposited and 
are available at the NCBI Sequence Read Archive under BioProject accession number 
PRJNA339914. 
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Supplementary Material 

 
Fig S1. Study design. A schematic representation of the mother-infant pairs involved in the 
study, the sample types, and the time points considered is presented. Marked with the 
“RNA” label, the mother-infant pairs for which stool metatranscriptomes were produced are 
indicated. 
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Fig S2. Extensive taxonomic profiling of the top 100 species from MetaPhlAn2 
analysis and the five most highly represented niche-specific species. (A) The heat map 
shows differences in terms of species richness between mother, infant, and milk 
metagenomes. In particular, the milk samples have very low microbial diversity, especially at 
time point 1. The microbiomes of the mothers have instead higher diversity than both the 
milk microbiomes and the infant microbiomes. (B) We selected the five most highly 
represented species on average for each sample type (mother milk, mother stool, and infant 
stool) and plotted their average abundances in each niche. Each sample type is dominated 
by its five most highly represented species that are, in general, underrepresented in the 
other niches. 
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Fig S3. Strain-level analysis showing vertical transmission from mother to infant of 
bifidobacterium species. The phylogenetic trees were produced by applying StrainPhlAn 
for the following species: (A) Bifidobacterium adolescentis, (B) Bifidobacterium breve, and 
(C) Bifidobacterium longum. In each tree, a clade containing one (or more) samples of the 
mother and infant of the same pair is observed. This suggests that the strain is shared 
between mother and infant, hence suggesting vertical transmission. 
 

 
Fig S4. Distribution of SNV rates of Bifidobacterium bifidum. We computed the SNV 
rates of the strains of B. bifidum reconstructed with StrainPhlAn (the phylogenetic tree is 
presented in Fig. 2A). The two strains of the mother and the infant of pair 4 at time point 2 
have an SNV rate of 0.04. The first bin has a frequency of two because it comprises not only 
the SNV rate of pair 4 at time point 2 but also the SNV rate of the two reference genomes 
reported in the upper part of the phylogenetic tree in Fig. 2A. The two reference genomes 
have an SNV rate of 0, meaning that they are identical. 
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Fig S5. Strain-level analysis by applying PanPhlAn confirms vertical transmission. We 
applied PanPhlAn to validate the results obtained with StrainPhlAn (Fig. 2 and S3). The 
pangenome-based strain-level analysis shows the presence and absence (in red and yellow, 
respectively) of the species-specific gene families of the following species: B. bifidum, C. 
comes, R. bromii, B. adolescentis, B. breve, and B. longum. Samples are clustered 
according to hierarchical clustering based on the Euclidean distance of the samples’ 
pangenome profiles. 
 



 
 
 
 
A phylogenetic framework for large-scale analysis of microbial communities  80 

 

 
Fig S6. Read alignment of pepper mild mottle virus (PMMoV) for both pair 4 and pair 5. 
Alignments of mother and infant of both pair 4 and pair 5 against the PMMoV reference 
genome are presented, showing variations highlighted in red (mother) and blue (infant) for a 
window of 160 bp. Pair 4 data (from position 3216 to position 3376 in the PMMoV genome) 
show the agreement between the mother and infant variations, suggesting that they share 
the same strain of the PMMoV. Pair 5 data (from position 4450 to position 4610 in the 
PMMoV genome) show the presence of more than one viral strain in the mother. Variations 
in the infant data are coherent with data from the mother, with the former harboring only a 
subset of the mother’s strains. 
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Fig S7. Functional potential biomarker analysis and metabolic pathway expression in 
mother and infant of pair 5 at time point 3. (A) Degradation and biosynthesis pathways 
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revealed by HUMAnN2 results processed with LEfSe to investigate differentially expressed 
pathways and functions. Biomarkers for the three classes are reported in different colors as 
follows: green, infant feces; red, mother milk; blue, mother feces. The sizes of the clades 
represent the linear discriminant analysis (LDA) effect sizes assigned by LEfSe (see 
Materials and Methods). Infants were harboring mainly sugar degraders and showed a 
higher potential for degradation of aromatic compounds and biosynthesis of cofactors. The 
microbial communities from the mothers showed instead higher representation of pathways 
involved in the biosynthesis of carbohydrates and antibiotics and in the degradation of C1 
compounds and amino acids. (B and C) Metatranscriptomic analysis of samples from the 
mother and infant of pair 5 at time point 3 performed with both HUMAnN2 and PanPhlAn. (B) 
Scatterplots showing the transcription rates of metabolic pathways of different species and 
genera of interest obtained from HUMAnN2. (C) Comparison between transcription rates of 
gene families from PanPhlAn data. 
 
For the supplementary tables, I report below only their captions, the tables are available for 
download on the online version of the paper: https://doi.org/10.1128/MSYSTEMS.00164-16. 
 
Table S1. Sample metadata and raw data. The table reports the sample metadata, the 
efficiency of extraction, and information about the raw reads. 
 
Table S2. MetaPhlAn2 abundance profiles. The table reports relative abundances of 
different microbes in metagenomic samples, as profiled with MetaPhlAn2. 
 
Table S3. DNA virus abundance data. The table shows the breadth of coverage and the 
average depth of coverage for the DNA viruses found in the metagenomes. 
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5. Applications of GraPhlAn and PhyloPhlAn 2 in other works 
In this chapter, I present several applications of the phylogenetic framework from 
microbiome research that I introduced in the previous chapters. These applications were 
extracted from a number of works I have co-authored and for which I was responsible for the 
phylogenetic analysis. Each research article I consider here represents a different 
application and begins with a brief introduction that explains my role in the research. Then I 
report the abstract and the main parts related to my contributions. 

5.1. Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the 
Developing Infant Gut Microbiome 

The work by (Ferretti et al., 2018) has as its primary goal the study and characterization of 
the species that are vertically transmitted from mother to infant. This article can be seen as 
an extension of the work reported in Chapter 4 (Asnicar et al., 2017), supported by a larger 
cohort of 25 mother-infant couples followed in time up to 4 months postpartum. To be able to 
determine when a vertical transmission event from mother to infant happens, this work 
heavily relies on the ability to resolve at the strain-level resolution the relationships between 
microbial genomes. Other than the detectable species that we are able to retrieve using the 
standard metagenomics analysis tools, in the last part of this work we also used a 
metagenomic assembly strategy to reconstruct and recover potentially novel species that 
cannot be detected using reference-based profiling tools. We then used the new version of 
PhyloPhlAn 2 I developed to accurately place into the microbial tree of life the 
uncharacterized reconstructed genomes, and GraPhlAn for visualizing the tree with the 
annotation to highlight the assigned phylum and the eight additional mother-to-infant vertical 
transmission events we were able to discover through the phylogenetic analysis. 

Ferretti P, Pasolli E*, Tett A*, Asnicar F*, Gorfer V, Fedi S, Armanini F, Truong DT, Manara 
S, Zolfo M, Beghini F, Bertorelli R, De Sanctis V, Bariletti I, Canto R, Clementi R, Cologna M, 
Crifò T, Cusumano G, Gottardi S, Innamorati C, Masè C, Postai D, Savoi D, Duranti S, Lugli 
GA, Mancabelli L, Turroni F, Ferrario C, Milani C, Mangifesta M, Anzalone R, Viappiani A, 
Yassour M, Vlamakis H, Xavier R, Collado CM, Koren O, Tateo S, Soffiati M, Pedrotti A, 
Ventura M, Huttenhower C, Bork P, and Segata N (* equal contribution) 
Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the 
Developing Infant Gut Microbiome 
Cell Host & Microbe (2018) 

Abstract 
The acquisition and development of the infant microbiome are key to establishing a healthy 
host-microbiome symbiosis. The maternal microbial reservoir is thought to play a crucial role 
in this process. However, the source and transmission routes of the infant pioneering 
microbes are poorly understood. To address this, we longitudinally sampled the microbiome 
of 25 mother-infant pairs across multiple body sites from birth up to 4 months postpartum. 
Strain-level metagenomic profiling showed a rapid influx of microbes at birth followed by 
strong selection during the first few days of life. Maternal skin and vaginal strains colonize 
only transiently, and the infant continues to acquire microbes from distinct maternal sources 
after birth. Maternal gut strains proved more persistent in the infant gut and ecologically 
better adapted than those acquired from other sources. Together, these data describe the 
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mother-to-infant microbiome transmission routes that are integral in the development of the 
infant microbiome. 

5.1.1 Vertically Transmitted Microbes Are More Likely to Be Stable Colonizers 
Vertical microbial transmission from the mother to the infant can either be transient or lead to 
longer-lasting colonization of the infant gut (Korpela et al., 2018). Of the vertically transferred 
strains, 17 were identified at more than one time point in the infant (Figures 4A and S6). In 
12 of these 17 cases, after the first occurrence of the maternally acquired strain we found no 
subsequent replacement by another conspecific strain, i.e., 70.5% of the strains were 
retained and 29.5% replaced. In contrast, the 163 strains present in the infant at more than 
one time point, but without evidence that the mother was the source, were found to be 
replaced in 119 cases (73% replacement) and retained in 44 (27% retention). Vertically 
transmitted strains therefore seem to have a better fitness for colonization than strains 
without evidence of acquisition from the mother (70.5% versus 27% stable colonization, 
Fisher test, p < 0.001). This supports the intriguing hypothesis that maternal strains are likely 
to be more ecologically adaptable in the infant compared with non-maternal strains. 

5.1.2 Conspecific Strain Diversity within Fecal Species Is Higher in the Infant Than in the 
Mother 
We next investigated the total strain heterogeneity for each species in the microbiome of the 
infants compared with that of the mothers. To estimate conspecies strain heterogeneity and 
dominance, we analyzed the number of polymorphic nucleotide positions in the single-copy 
marker genes of each detected strain, as well as the average frequency of the dominant 
allelic variant in polymorphic positions. The analysis of maternal gut samples confirmed that 
the adult human gut tends to harbor only one strain of a given species (Truong et al., 2017), 
with an average fraction of polymorphic sites of 0.31% (Figure 4B). The infant gut 
microbiome at day 1 (T1) instead has a very high conspecific strain heterogeneity with 6.1-
fold more polymorphisms than the mother (p = 1 × 10−7). As observed, the early infant 
microbiome at day 1 postpartum is characterized by a high species diversity (Figure 1B), 
which is thus also accompanied by a high strain diversity, further suggesting that the 
pioneering microbiome is a complex community of microbes shaped by the process of 
ecological selection over time. Correspondingly, at later time points there is a decrease in 
the intra-species polymorphic rates up to 1 month (T4), to levels comparable with those of 
the mothers (no significant difference at 1 month compared with the mother). 
Simultaneously, a higher relative frequency of the dominant strain is observed (Figure 4B). 
Samples collected from the infant at 4 months of age (T5) then suggest that the strain 
diversity is increasing and remains significantly higher than the diversity in the mothers (p = 
0.0014), potentially as a consequence of the increased exposure of the infant to other 
possible sources of microbial seeding from the environment. Comparing the conspecific 
strain diversity of the infant over time with the other maternal body sites (Figure 4B), we 
identified markedly different levels of heterogeneity (Table S4), with the maternal tongue 
dorsum significantly more strain diverse than the infant gut (p < 1 × 10−10 for all time points). 
The maternal skin and vaginal microbiomes have instead a strain diversity in line with that of 
the infant stool (Table S4). Interestingly, and in contrast to the stool, the maternal oral strain 
diversity compared with infants is significantly higher (p = 2 × 10−9 at T2, t test). 
Nevertheless, in the infant oral cavity, we identified the same pattern observed in the gut, 
namely a high species and conspecific strain diversity (Figures 1B and 4B) followed by a 
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rapid decline in species and strain heterogeneity due to selection, which is observed to start 
after a few days postpartum. 
 

 
Figure 4 Strain Persistence, Strain Replacement Events, and Strain Heterogeneity. (A) 
Map of the strain dynamics in longitudinal infant stool (FE) samples for selected species (for 
full map, see Figure S6). The tongue dorsum (TD) column shows the species for which at 
least one of the strains found in stool was also present on the tongue dorsum. Blue circles 
represent the first strain of the species identified in the infant, whereas orange and green 
circles denote the second and third longitudinally identified strain, respectively. Empty circles 
refer to species for which strain profiling was not possible in the specific sample. Missing 
samples and samples lacking the species are not reported. The total number of infant 
replacement events observed in each species is shown in parentheses. (B) Mean 
percentages of polymorphic sites and average frequency of the dominant alleles in 
polymorphic sites for each body site and time point (“M” indicates maternal samples). Color 
coding is as per Figure 1. p values are reported in Table S4. Error bars refer to 95% 
confidence intervals. 
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Figure S6. Related to Figure 4. Full list of strain replacement events in the infant body 
sites. Species with at least two pairs are shown. Empty circle present when only the 
identification at the species-level was available, i.e. the strain reconstruction was not 
possible (non-typable strain). Missing circle when the species is not present in the sample. In 
brackets, the number of replacement events per species (only infants stool samples are 
considered). In total, we identified 136 replacement events (on average 4.7 events per 
species and 5.4 per pair). 
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5.1.3 Strains Belonging to as yet Uncharacterized Species Are Also Vertically Transmitted 
To perform strain profiling for microbes belonging to poorly characterized species without 
available genomes, we expanded our analysis by performing metagenomic assembly (Nurk 
et al., 2017) on each sample followed by contig binning (Kang et al., 2015), phylogenetic 
profiling (Segata et al., 2013), and whole-genome strain identity inference (STAR Methods). 
Overall, we reconstructed 1,132 metagenome-assembled genomes (on average five per 
sample; Table S6A) with sufficient quality (≥50% completeness, ≤5% contamination) to be 
amenable for strain tracking. Of these, 763 genomes could be assigned to a known species 
by applying a 95% percent identity threshold on the whole sequence (STAR Methods) and 
were therefore not further processed because these strains were captured by the reference-
based methods already considered above. However, the remaining 369 genomes (Figure 6; 
Table S6A) did not belong to any of the 13,575 microbial species for which at least one 
reference genome is available (STAR Methods), including 36 that could not even be 
assigned below the level of family. The genera containing most of the unknown species were 
Streptococcus (32 genomes), Clostridium (31), and Prevotella (31). 

Next, we compared the 369 taxonomically uncharacterized genomes against each other to 
identify the presence of the same strain in different metagenomic samples. Using a strict 
threshold of 99.5% identity over the full length of the genomes, we identified eight vertical 
transmission events (Figure 6; Table S6B). In six cases the strain sharing was between the 
mother and infant gut microbiomes. Two of these strains belonged to uncharacterized 
species in the Akkermansia and Bacteroides genera (less than 89% identity with the closest 
available genomes over less than 75% of the length), while for the other four strains 
classification was even more challenging and we could only infer that they belonged to four 
different phyla (Verrucomicrobia, Proteobacteria, Bacteroidetes, and Firmicutes; Table S6B). 
In addition to the fecal transmission routes, two vertical transmission events were also 
observed from other body sites with an uncharacterized Clostridiales strain (99.9% of 
similarity) shared by the maternal vaginal community and the stool of the infant, and an 
unknown Leptospira strain (99.9% of similarity) shared by the skin microbiome of the mother 
and the saliva microbiome of the infant. There was only one case of a strain from an 
unknown species with 99.9% similarity within an unrelated mother-infant pair, strongly 
confirming the occurrence of vertical transmission for the eight genomes above (Fisher test, 
p < 1×10−9) and confirming that uncharacterized species have a role in the mother-to-infant 
microbial seeding. 
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Figure 6 Phylogenetic Placement of 1,132 Metagenomically Reconstructed Genomes 
and Mother-to-Infant Transmission of Taxonomically Uncharacterized Strains. (A) We 
used PhyloPhlAn2 (Segata et al., 2013) to place the genomes reconstructed with 
metaSPAdes (Nurk et al., 2017) and binned with MetaBAT2 (Kang et al., 2015) (STAR 
Methods) on the microbial ‘‘Tree of Life’’ (Ciccarelli et al., 2006; Segata et al., 2013), which 
encompasses 4,000 species with available reference genomes. Leaf nodes without circles 
refer to reference genomes from known species, white circles indicate reconstructed 
genomes that are close (>95% identity) to a known species, and red circles show 
reconstructed genomes that cannot be assigned (<95% identity) to known species. The eight 
events of mother-to-infant transmission of strains from species yet to be described are called 
out on the top right, and the external ring of the phylogeny reports the percent identity of 
each leaf node against the closest genomes from known species (values below 95% are 
shown in red). (B) The reconstructed genomes with completeness >50% from each body 
site are plotted with the corresponding completeness and genome size. 
  

https://paperpile.com/c/E1Jhss/kwsw
https://paperpile.com/c/E1Jhss/XNqD
https://paperpile.com/c/E1Jhss/ZEVC
https://paperpile.com/c/E1Jhss/Gn6N+kwsw
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5.2. A reference phylogeny of 10,575 genomes redefines major clades of bacteria 
and archaea 

Very-large phylogenies reconstruction is challenging because of the large number of 
genomes that constitute the tree and the number of positions in the concatenated MSA for 
building the phylogeny, in the case of a concatenation approach. The latter issue can be 
slightly ameliorated by employing a gene trees approach, where many phylogenies based on 
shorter MSAs can be inferred and the final tree can be built by using a summary method. In 
this work, the 400 marker genes of PhyloPhlAn have been validated with respect to the 
classical set of ribosomal proteins (Wu and Eisen, 2008; Wu and Scott, 2012) and used to 
build a tree of life phylogenies of 10,575 genomes using a gene trees approach. This is one 
of the results of my research period abroad I spent at the University of California, San Diego 
in the laboratory of Prof. Siavash Mirarab. The main focus of the Siavash lab is phylogeny 
reconstruction using gene trees and summary methods, and multiple sequence alignments. 
The main goals of my research visit period were the understanding and application of the 
gene trees approach to phylogenetic analysis in the bacterial domain. In the same campus, I 
collaborated also with the Knight lab lead by Prof. Rob Knight, which together with Prof. 
Siavash resulted in the work presented below. My contribution to this work was mainly in 
helping with retrieving the reference genomes using the RepoPhlAn13 tool, mapping the 400 
PhyloPhlAn marker genes against the identified set of 10,575 reference genomes, helping in 
performing the MSA for each marker, annotating with UniRef50 the 400 markers, and finally 
producing several version of the tree of life phylogeny proposed in this work by using the 
concatenation approach. This work is submitted and currently in review. 

Zhu Q*, Mai U*, Pfeiffer W, Janssen S, Asnicar F, Sanders JG, Belda-Ferre P, Al-Ghalith 
GA, Kopylova E, McDonald D, Kosciolek T, Yin JB, Huang S, Salam N, Jiao JY, Wu Z, Xu 
ZZ, Sayyari E, Morton JT, Podell S, Knights D, Li WJ, Huttenhower C, Segata N, Smarr L, 
Mirarab S, and Knight R (* equal contribution) 
A reference phylogeny of 10,575 genomes redefines major clades of bacteria and 
archaea 
In revision 

Abstract 
Rapid growth of genome data provides opportunities in updating microbial evolutionary 
relationships. This is challenged by the discordant evolution of individual genes. We built a 
reference phylogeny of 10,575 evenly-sampled bacterial and archaeal genomes, based on a 
comprehensive set of 381 markers, using a gene tree summary method alongside 
conventional strategies. High resolution was achieved for deep branches, recovering 
Archaea, the candidate phyla radiation (CPR), and non-CPR bacteria as three major clades. 
Our tree indicates remarkably closer evolutionary proximity between Archaea and Bacteria 
than previous estimates that were limited to fewer “core” genes. The estimated timeline 
suggests a continuous pattern of diversification after the Archaea-Bacteria split. We released 
the tree and genome catalog as a database that will benefit the microbial research 
community. 

                                                
13 The RepoPhlAn repository in Bitbucket: https://bitbucket.org/nsegata/repophlan 

https://paperpile.com/c/E1Jhss/rYYU+Y2nI
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5.2.1 Introduction 

In this work, we built a reference phylogeny (Fig. 1) of 10,575 bacterial and archaeal 
genomes. They were sampled from all 86,200 non-redundant genomes available from NCBI 
GenBank and RefSeq 13 as of March 7, 2017 (Fig. S1), using a purpose-built statistical 
approach which maximizes the covered biodiversity. Our phylogenetic reconstruction used 
381 marker genes, selected from whole genomes solely by sufficient sequence conservation 
to identify homology, without a priori assumptions on their functional roles. The whole 
dataset totals 1.16 trillion non-gap amino acids, making it among the largest single datasets 
upon which de novo phylogenetic trees have been built, and represents a remarkable 
expansion from previous efforts of the kind considering both taxon and gene sampling 
(Table S1). To account for the discrepancy among the evolutionary histories of individual 
genes, we used a summary approach that accounts for gene tree discrepancy to infer a 
species tree, and we compared this to the conventional gene alignment concatenation 
approach. The resulting species tree provides high resolution of the basal relationships 
among microbial clades, revealing a unified pattern of bacterial and archaeal evolution, in 
which the two domains are in closer proximity compared to previous estimations. It further 
enabled us to revisit timings of important evolutionary events and to make corrections to 
previously established taxonomic hierarchies. The whole workflow from genome sampling to 
tree building was fully automated, without the need for manual curation, enabling convenient 
future upgrades. We made the trees, the genome catalog, and the extended database files 
publicly available at: https://github.com/biocore/wol, under an open source license. 

5.2.2 Improved resolution of deep phylogeny achieved by gene tree summary 

The ASTRAL (Figs. 1 and S5) and CONCAT trees (Figs. S6 and S7) have high levels of 
overall congruence in topology when compared to trees derived from implicit (e.g., distance-
based) analyses (Fig. S4A). The congruence is higher at shallow branches, but generally 
decreases as phylogenetic depth increases (Fig. S8). Nevertheless, the trees are consistent 
in supporting multiple recently defined above-phylum taxonomic groups, including Asgard, 
TACK, Terrabacteria, FCB, PVC, Parcubacteria and Microgenomates (Castelle and Banfield, 
2018; Rinke et al., 2013), while revealing the para/polyphyletic properties of large but 
promiscuous taxonomic groups such as phyla Proteobacteria and Firmicutes. A detailed 
interpretation of the phylogenies in reference to taxonomy is provided in Supplementary 
Text 3. When considering branch support statistics, the ASTRAL tree has notably higher 
confidence than the CONCAT trees in untangling the relationships among the early 
branching clades (Fig. S9, also see Figs. S5-S7). This high resolution is directly related to 
the large number of gene trees used in the inference, as using fewer loci notably decreased 
the branch support of the species tree (Fig. S4B). These observations, in addition to the fact 
that ASTRAL trees use all the data but CONCAT is limited only to a selection of 100 sites 
per gene, motivated us to use the ASTRAL tree as our reference. 

https://paperpile.com/c/E1Jhss/VRPZ+G7ms
https://paperpile.com/c/E1Jhss/VRPZ+G7ms
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Fig. 1. A new view of the bacterial and archaeal tree of life. The tree contains 10,575 
evenly distributed bacterial and archaeal genomes, with topology reconstructed using 
ASTRAL based on individual trees of 381 globally sampled marker genes, and branch 
lengths estimated based on 100 most conserved sites per gene. Branches with effective 
number of genes (en) ≤ 5 and local posterior probability (lpp) ≤ 0.5 were collapsed into 
polytomies. Taxonomic labels at internal nodes and tips reflect the tax2tree curation result. 
Color codes were assigned to above-phylum groups and phyla with 100 or more 
representatives. To realistically display the tree in a page, it was collapsed to clades 
(sectors) representing phyla with at least one taxon (black), and classes with at least 10 taxa 
(grey). The radius of a sector indicates the median distance to all descending taxa of the 
clade, and the angle is proportional to the number of descendants. For polyphyletic 
taxonomic groups, minor clades with less than 5% descendants of that of the most specious 
clade were omitted, while the remaining clades were appended a numeric suffix sorted by 
the number of descendants from high to low. 

5.2.3 Archaea, CPR, and Eubacteria are three major clades 
Phylogenetic trees built by both strategies (Figs. 1, S5-S7) recapitulated clear separation 
between Archaea (669 taxa) and Bacteria (9,906 taxa) at the base. Meanwhile, the 
candidate phyla radiation (CPR), a recently discovered group of mainly uncultivated 
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microorganisms (Brown et al., 2015), forms a strict monophyletic group (1,445 taxa) located 
at the base of the bacterial lineage. We repurposed the classical term “Eubacteria” to 
describe its sister clade, which comprises all the remaining bacteria (8,461 taxa). The three 
basal clades, unlike in results from ribosomal proteins, show similar levels of evolutionary 
divergence both within each clade and with respect to their shared parental node (Figs. 2A, 
S10 and Table S3). 

The separation into these three clades is also evident in a Principal Coordinates Analysis 
(PCoA) of a simple measure of genome distance that solely uses marker gene presence / 
absence (Figs. 2B and S11), as well as the PERMANOVA test (p-value = 0.001 between 
each pair of clades), and the Random Forests classification (accuracy = 1.0 for correct 
predictions and 0.0 for incorrect ones) (Table S4). Consistent with recent studies on the 
distinct biological capacities of CPR (Meheust et al., 2018; Wrighton et al., 2012), our results 
further strengthen the view of CPR as a unique, early branching clade of microorganisms. 

5.2.4 Evolutionary proximity between Archaea and Bacteria 

ASTRAL and CONCAT trees both reveal a relatively short branch connecting the most 
recent common ancestors of Archaea and Bacteria (Figs. 1, 2A and S10). Its length is 
fractional comparing to the dimensions of both clades (appr. 0.13-0.14 by conserved sites, 
0.09-0.11 by random sites) (Table S3). This pattern is in contrast to previous trees built 
using fewer marker genes, all or most of which are ribosomal proteins which were 
considered to be effective markers for assessing global microbial evolution (Ramulu et al., 
2014) (e.g., (Castelle and Banfield, 2018; Ciccarelli et al., 2006; Yutin et al., 2012)). To test 
whether the choice of marker genes is the main reason for the differential inter-domain 
distance, we re-estimated branch lengths of the ASTRAL tree using 30 ribosomal proteins 
extracted from the genomes. Consistent with these studies, we observed an elongated 
branch connecting Bacteria and Archaea. Its length relative to clade dimensions is about 10-
fold as the estimate using the 381 global marker genes (Table S3). We also calculated the 
overall phylogenetic distance between taxa of the two domains, as relative to the intra-
domain distances. This relative distance based on the ribosomal proteins (4.5-5.0) is around 
three times that of the distance by the global marker genes (1.5-1.6) (Table S5). 

We tested whether the potential saturation of amino acid substitution could cause an 
underestimation of the domain separation. The ratio between phylogenetic distance and 
sequence distance is similar between pairs of taxa selected both from Bacteria, both from 
Archaea, or one from each domain (Fig. S12). This indicates that the relative length of the 
branch connecting the two domains compared to the intra-domain branches is not 
substantially impacted by saturation. 

We further evaluated how individual gene trees impact the observed proximity between 
Bacteria and Archaea. Except for a few outliers, which include several “core” genes like rpoC 
(RNA polymerase subunit β’, 18.27), tuf (elongation factor Tu, 12.18) and fusA1 (elongation 
factor G, 9.54), most gene trees have the relative Archaea-Bacteria distance between 1 and 
3 (mean: 2.00) (Figs. 2C, S13A and File S1), which is consistent with that of the species 
tree summarizing the global marker genes, and in contrast to that by only the ribosomal 
proteins (Fig. 2C and Table S5). 

https://paperpile.com/c/E1Jhss/PrLt
https://paperpile.com/c/E1Jhss/lzpD+Vm7v
https://paperpile.com/c/E1Jhss/lB9A
https://paperpile.com/c/E1Jhss/lB9A
https://paperpile.com/c/E1Jhss/G7ms+Gn6N+QVXg
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Fig. 2. Dimensions and separation of the three major clades: Archaea, CPR and 
Eubacteria. A. The unrooted, drawn-to-scale ASTRAL tree with branch lengths re-estimated 
using the 381 global marker genes (conserved site sampling) (left) or using the 30 ribosomal 
proteins (right). The Gaussian kernel density function of the depths by all descendants 
(sums of branch lengths from a tip to the lowest common ancestor (LCA) of the clade) was 
plotted; the height (length of the branch connecting the LCA to the parental node shared by 
all three clades) was marked as a vertical line. B. PCoA of the Jaccard distance matrix of the 
marker gene profiles in the sampled genomes. The proportion of variance explained was 
marked at each axis. Note that axis 1 which separates CPR from Eubacteria explains 2.6 
times as much variance as axis 2 does which separates Archaea from Bacteria. C. 
Distribution of relative Archaea-Bacteria distances of each of 161 gene trees containing at 
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least half of the taxa of both domains. A histogram with Gaussian kernel density function is 
plotted. The red and yellow lines indicate the values of the ASTRAL tree with branch lengths 
re-estimated using the global markers and the ribosomal proteins, respectively. 
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5.3. Combined metagenomic analysis of colorectal cancer datasets defines cross-
cohort microbial diagnostic signatures and a link with choline degradation 
In this work, we focused on a meta-analysis of colorectal cancer (CRC) cohorts and made 
publicly available two new CRC cohorts sampled in Italy. The goal of the paper is to 
determine through the use of a machine learning approach a microbial signature that can be 
used as a non-invasive diagnostic marker. Phylogenetic analysis in this work focused on 
identifying directly from metagenomic data new variants of the choline TMA-lyase (cutC) 
gene that we found relevant in a novel potential mechanism for carcinogenesis. These new 
cutC gene variants we reconstructed are partially belonging to known species, but are for the 
most part reconstructed from genomes of yet-to-be-characterized species we extracted 
directly from the metagenomes. We also identified differential abundances of the single-copy 
cutC gene in CRC-associated samples. Thanks to the phylogenetic analysis, we identified 
four variants associated with the phylogenetic structure, and some cutC variants that belong 
to Hungatella hathewayi, Clostridium asparagiforme, Klebsiella oxytoca, and Escherichia coli 
were significantly associated to CRC samples. 
 
Thomas AM*, Manghi P*, Asnicar F, Pasolli E, Armanini F, Zolfo M, Beghini F, Manara S, 
Karcher N, Pozzi C, Gandini S, Serrano D, Tarallo S, Francavilla A, Gallo G, Trompetto M, 
Ferrero G, Mizutani S, Shiroma H, Shiba S, Shibata T, Yachida S, Yamada T, Wirbel J, 
Schrotz-King P, Ulrich CM, Brenner H, Arumugam M, Bork P, Zeller G, Cordero F, Dias-Neto 
E, Setubal JC, Tett A, Pardini B, Rescigno M, Waldron L, Naccarati A, and Segata N (* equal 
contribution) 
Combined metagenomic analysis of colorectal cancer datasets defines cross-cohort 
microbial diagnostic signatures and a link with choline degradation 
Currently in revision at Nature Medicine 

Abstract 
Several studies have investigated links between the gut microbiome and colorectal cancer 
(CRC), but questions remain about existing and novel biomarkers and their validity across 
cohorts and populations. We performed a meta-analysis of 969 fecal metagenomes (413 
carcinomas, 143 adenomas, and 413 controls), including five publicly available datasets, two 
new cohorts, and two additional validation datasets. Unlike microbiome shifts associated 
with gastrointestinal syndromes, the gut microbiome in CRC showed reproducibly higher 
species and pathway richness than controls (P < 0.01), partially due to expansions of 
species typically from the oral cavity and of newly associated species such as Streptococcus 
tigurinus and Streptococcus dysgalactiae. Meta-analysis of the microbiome functional 
potential identified gluconeogenesis and the putrefaction and fermentation pathways to be 
associated with CRC, whereas the stachyose and starch degradation pathways were more 
abundant in healthy controls. Predictive microbiome signatures trained on multiple datasets 
showed consistently high accuracy in successively held-out and independent validation 
cohorts (average AUC 0.84, minimum 0.81). Pooled analysis of raw sequencing data 
showed that the choline trimethylamine-lyase (cutC) gene was over-abundant in CRC (P = 
0.001) with the strength of association differing between the four cutC variants we identified 
and the variation confirmed in independent validations (P < 1e-6) as well as at transcriptional 
level (P = 0.035). The combined analysis of heterogeneous CRC cohorts and independent 
validation cohorts thus identify reproducible microbiome biomarkers and high-accuracy 
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predictive models, that can be the basis for clinical prognostic tests and hypothesis-driven 
mechanistic studies. 

5.3.1 Increased abundance of choline TMA-lyase enzymes in CRC 
Microbiome-derived metabolites have been implicated in carcinogenesis (Di Martino et al., 
2013; Ou et al., 2012). We chose to focus on trimethylamine (TMA), an amine produced by 
bacteria from choline and carnitine, because it has been recently shown to play a role in 
complex diseases such as atherosclerosis and primary sclerosing cholangitis (Jie et al., 
2017; Kummen et al., 2017). Since dietary components have been shown to be linked with 
CRC risk (Huxley et al., 2009; Johnson et al., 2013; Wei et al., 2004), we hypothesized that 
the TMA-producing potential of the human gut microbiome could also be associated to CRC 
(Oellgaard et al., 2017). To test this hypothesis, we built a database of genes belonging to 
the main TMA-synthesis pathways and used it to reconstruct and quantify the presence of 
such genes in the 764 CRC-associated metagenomes considered here. The main genes 
associated with TMA-synthesis are those encoding the choline TMA-lyase (cutC), the L-
carnitine dioxygenase (yeaW) and the L-carnitine/gamma-butyrobetaine antiporter (caiT) and 
we identified them in 923, 5,185 and 5,709 available bacterial genomes, respectively. 
Putative cutC sequences belonged mainly to Proteobacteria (mostly Gamma- and a few 
Deltaproteobacteria) and Firmicutes (mainly from Clostridia and a few Bacilli), with few 
Actinobacteria as reported previously (Rath et al., 2017). 

Screening the 7 CRC-associated metagenomic datasets, we found that only one of them 
had a significant increase of caiT in CRC samples compared to controls, whereas no 
significant differences were detected for yeaW (Suppl. Fig. 21). However, we found 
increased abundance of cutC in CRC samples compared to controls in all seven datasets (P 
< 0.05 by Wilcoxon Rank Sum test on RPKM abundances for five datasets, Figure 4A). 
Meta-analytical synthesis indicated an overall strong association with no evidence of 
heterogeneity (P = 0.001, μ = 0.27, 95% CI [0.1, 0.42], I2 = 4.2%, Q-test = 0.65, Figure 4B). 
We also analyzed the abundance of the activating choline trimethylamine-lyase enzyme 
(cutD), finding a significant increase in CRC (meta analysis results P = 0.001, μ = 0.32, 95% 
CI [0.16, 0.47], I2 = 0%, Q-test = 0.96, Suppl. Fig. 22). These results indicate that TMA 
production might happen preferentially via choline degradation, and not via carnitine, and 
could substantially affect the amounts of TMA and trimethylamine oxide (TMAO) in an 
individual (Kalnins et al., 2015). Intermediate levels of cutC in adenomas (Figure 4A) is 
further suggestive of a TMA action along the adenoma-carcinoma axis. We validated the 
increased cutC gene abundance in CRC by qPCR (Rath et al., 2017) on a subset of samples 
from Cohort1 with enough DNA left after sequencing, and found that the metagenomic 
findings were confirmed (one-tailed Wilcoxon signed rank test P = 0.024, Figure 4D). 
Further quantification of cutC transcript abundance from the co-extracted RNA in the same 
dataset also pointed to an over-expression of this gene in CRC (P = 0.035, Figure 4E). 

We further explored the role of cutC in the gut microbiome by reconstructing sample-specific 
sequence variants using a reference-aided targeted assembly approach (see Methods). We 
found a large sequence divergence for the gene encoding this enzyme that is known to 
occur in single copies in the genomes (Rath et al., 2017) and we identified four main 
sequence variants that are associated with the taxonomic structure (Figure 4B, Suppl. Figs. 
23-24). Interestingly, the most prevalent (46.5%) cutC sequence type belonged to an 
unknown uncultured Eubacterium species with only 95% sequence identity to the closest 

https://paperpile.com/c/E1Jhss/2FQD+sECn
https://paperpile.com/c/E1Jhss/2FQD+sECn
https://paperpile.com/c/E1Jhss/sVWb+QuCJ
https://paperpile.com/c/E1Jhss/sVWb+QuCJ
https://paperpile.com/c/E1Jhss/oY0u+ortU+Sghg
https://paperpile.com/c/E1Jhss/pgGO
https://paperpile.com/c/E1Jhss/CpLv
https://paperpile.com/c/E1Jhss/tICw
https://paperpile.com/c/E1Jhss/CpLv
https://paperpile.com/c/E1Jhss/CpLv
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known and taxonomically characterized variant. This cutC variant was associated with non-
CRC samples (OR 0.38, 95% CI [0.25, 0.57], P = 0.0001, Fisher Test), whereas cutC 
sequence types mostly belonging to Hungatella hathewayi and Clostridium asparagiforme 
(Firmicutes) were significantly CRC-associated (OR 2.14, 95% CI [1.29, 3.56], P = 0.004, 
Fisher test), as were sequence types belonging to Klebsiella oxytoca and Escherichia coli 
(OR 1.85, 95% CI [1.13, 3], P = 0.02, Fisher Test - Figure 4B). Altogether, these novel 
findings highlight that sequence variants of this enzyme can be strongly associated with 
disease, potentially because of corresponding differences in the efficacy of choline 
degradation and TMA production (Jameson et al., 2016; Romano et al., 2015). 
 

 
Figure 4. Choline TMA-lyase cutC and its genetic variants are strong biomarkers for 
CRC-associated stool samples. (A) Boxplots showing the log of reads per kilobase million 
(RKPM) abundances obtained using ShortBRED for the choline TMA-lyase enzyme cutC. P-
values were computed by Wilcoxon Signed-Rank tests comparing values between controls 
and carcinomas for each dataset. (B) Forest plot reporting effect sizes calculated using a 
meta-analysis of standardized mean differences and a random effects model on cutC RPKM 
abundances between carcinomas and controls. (C) Phylogenetic tree of sample-specific 
cutC sequence variants identified four main sequence variants. Tips with no circles 
represent cutC sequence variants from genomes absent from the datasets. Taxonomy was 
assigned based on mapping against existing cutC sequences (criteria of 80% coverage, 
>97% identity and minimum 2,000nt alignment length). (D) qPCR validation of cutC gene 

https://paperpile.com/c/E1Jhss/er2K+M4wy
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abundance and (E) cutC transcript abundance (normalized by total 16S rRNA 
gene/transcript abundance) on a subset of DNA samples from Cohort1. qPCR validation P-
values are obtained by 1-tail Wilcoxon Signed-Rank test. 
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5.4. Unexplored diversity and strain-level structure of the skin microbiome associated 
with psoriasis 

The skin microbiome is a difficult human body site to study because of the low microbial 
biomass (Byrd et al., 2018; Kong et al., 2017). There is a panel of species that have been 
defined as typically present in a skin sample like Staphylococcus epidermidis, 
Propionibacterium acnes, and S. caprae/S. capitis. However, the role that the skin 
microbiome plays in health or disease state is not yet elucidated. The goal of the following 
work is to study and characterize the skin microbiome members in the presence of psoriatic 
lesions compared to unaffected locations. In the last section, we focused on the phylogenetic 
characterization of unknown assemblies coming from the Malassezia spp., the 
Anaerococcus spp. of the Peptostreptococcaceae family, and novel unknown members 
placed between the Chromobacteriaceae and Neisseriaceae families. In this work, I thus 
expanded the phylogenetic framework I developed to the study of micro-Eukaryotic 
organisms, specifically from the genus Malassezia. 

Tett A, Pasolli E, Farina S, Truong DT, Asnicar F, Zolfo M, Beghini F, Armanini F, Jousson 
O, De Sanctis V, Bertorelli R, Girolomoni G, Cristofolini M, and Segata N 
Unexplored diversity and strain-level structure of the skin microbiome associated 
with psoriasis 
Nature Biofilms and Microbiomes (2017) 

Abstract 
Psoriasis is an immune-mediated inflammatory skin disease that has been associated with 
cutaneous microbial dysbiosis by culture-dependent investigations and rRNA community 
profiling. We applied, for the first time, high-resolution shotgun metagenomics to 
characterise the microbiome of psoriatic and unaffected skin from 28 individuals. We 
demonstrate psoriatic ear sites have a decreased diversity and psoriasis is associated with 
an increase in Staphylococcus, but overall the microbiomes of psoriatic and unaffected sites 
display few discriminative features at the species level. Finer strain-level analysis reveals 
strain heterogeneity colonisation and functional variability providing the intriguing hypothesis 
of psoriatic niche-specific strain adaptation or selection. Furthermore, we accessed the 
poorly characterised, but abundant, clades with limited sequence information in public 
databases, including uncharacterised Malassezia spp. These results highlight the skins 
hidden diversity and suggests strain-level variations could be key determinants of the 
psoriatic microbiome. This illustrates the need for high-resolution analyses, particularly when 
identifying therapeutic targets. This work provides a baseline for microbiome studies in 
relation to the pathogenesis of psoriasis. 

5.4.1 Psoriatic microbial niches comprise a large proportion of unknown microbes 
The skin is inhabited by diverse taxa and intra-species variability that is poorly characterised. 
This “dark matter” includes species, genera, or higher-level taxonomic ranks with either no or 
only a few representative references genomes. By employing an assembly-based genome 
reconstruction approach for each skin metagenome (see Methods), we identified contig 
clusters with little or no homology to the reference data sets (Fig. 4), which, therefore, 
represent taxa without any closely related sequenced strains. To explore these “unknowns” 
further, we first compared the assemblies to the closest available references based on 

https://paperpile.com/c/E1Jhss/UhPk+bGyz
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sensitive mapping capturing even at low sequence similarities. This enabled us to identify a 
number of uncharacterised but abundant eukaryotic and bacterial organisms from the 
cutaneous microbiomes. A common, eukaryotic inhabitant of the skin microbial community is 
the fungus Malassezia globosa (Gaitanis et al., 2012). Where sufficient coverage permitted, 
we identified 18 “unknown” clusters with either weak or divergent genome content compared 
to M. globosa. Their reconstructed genomes averaged in length 4.4 Mb (s.d. 2.8 Mb), which 
means a large fraction of the genome was reconstructed given the draft genomes obtained 
from pure culture of M. globosa CBS 796653 and M. restricta CBS 8742 are 8.96 and 7.26-
Mb long, respectively (Wu et al., 2015). Recently, representative genomes for all 14 
accepted species of the Malassezia genus have been sequenced (Wu et al., 2015), whereby 
the authors report phylogenetically the Malassezia genus supports three main clusters. 
Phylogenetic comparison of our Malassezia reconstructed genomes (Fig. 5a) finds most fit 
in cluster 2 and are closest to M. globosa and M. restricta, the two most common Malassezia 
spp. found on human skin (Wu et al., 2015). 

Unexplored diversity is still, however, present within the metagenomically retrieved 
Malassezia genomes in cluster 2 (Fig. 5a). Only four of the reconstructed genomes are 
placed close enough (Average Nucleotide Identity (ANI, (Goris et al., 2007)) > 97.5%) to M. 
globosa (patient 19 and one strain from patient 102) or M. restricta (Patients 105 and 106) to 
be confidently assigned to these two species. For the other Malassezia genomes, e.g., the 
highest ANI of the strains from Patient 9 compared to the most phylogenetically related M. 
restricta 8742 is 92.84% (s.d. 2.52%), which is suggestive that they may represent a distinct 
and unsequenced species. More strikingly, patient 16’s ear is instead inhabited by a more 
distantly related strain, which cannot be assigned to any of the three clusters, and therefore 
could be an unknown more ancestral Malassezia spp. (Fig. 5a); intriguingly, this ear was 
diseased and may therefore be colonised by a hitherto uncharacterised fungal species, 
which may be of relevance to psoriatic disease. 

Focusing on unknown bacterial clusters, we detected a cluster in Patient 9 that likely 
represents an uncharacterised Anaerococcus spp. (Fig. 5b) as its closest reference is 
Anaerococcus spp. 9402080, but the two genomes only share an ANI value of 80.6% (s.d. 
5.28%). Both ears of Patient 9 are also inhabited by an unknown bacterial taxon that is 
related but cannot be placed in either the Chromobacteriaceae or Neisseriaceae families 
(Fig. 5c). What emerges from the analysis of the “microbial dark matter” is that the skin 
microbiome, both unaffected and in relation to disease, is much more complex and diverse 
than taxonomic profiling based on references genomes alone permits. Thus, such hidden 
diversity highlights limitations in our reference data sets and the potential role of these 
unknown taxa in skin health and disease could be overlooked. 

https://paperpile.com/c/E1Jhss/ZHdo
https://paperpile.com/c/E1Jhss/2ofC
https://paperpile.com/c/E1Jhss/2ofC
https://paperpile.com/c/E1Jhss/2ofC
https://paperpile.com/c/E1Jhss/AlV5
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Fig. 5 Phylogenetic analysis of taxonomically uncharacterised metagenomic 
assemblies (unknowns) compared to the closest representative reference genomes. a 
Phylogenetic tree of “unknown” eukaryotic assemblies compared to reference Malassezia 
genomes. The inclusion of the Malassezia spp. and Ustilago maydis available reference 
genomes in the tree shows that unaffected and diseased skin is colonised by 
uncharacterised Malassezia and Malassezia spp. Marked with asterisk indicate the two 
Malassezia genomes reconstructed from the patient’s 102 left ear. Malassezia clusters, 1–3, 
are congruent with those reported previously (Wu et al., 2015), with most of the Malassezia 
reconstructed genomes falling within cluster 2. b Phylogenetic tree of “unknown” bacterial 
assemblies in the Peptostreptococcaceae family. Anaerococcus spp. and Finegoldia magna 
reveal a novel Anaerococcus spp. on the ear of patient 9. c Phylogenetic tree of members of 
the Chromobacteriaceae (23 species) and Neisseriaceae (47 species) and “unknown” 
assemblies from Patients 9 and 101 are unable to be placed in either family. 

https://paperpile.com/c/E1Jhss/2ofC
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5.5. Uncovering oral Neisseria tropism and persistence using metagenomic 
sequencing 

This work focuses on the identification and characterization of Neisseriaceae strains from 
oral metagenomics samples. We included in the phylogenetic analysis the information about 
the eight DNA uptake sequences (DUSs) dialects, which are short DNA sequences highly 
repeated in the genome of species in this family. From the visualization of the DUSs copy 
numbers on resulting phylogenetic tree, it is immediately clear the association of the DUSs 
with the Neisseria subclades. In this work, I focused on the phylogenetic reconstruction and 
visualization of the Neisseriaceae family genomes used then as reference for the 
metagenomic analysis. 

Donati C, Zolfo M, Albanese D, Truong DT, Asnicar F, Iebba V, Cavalieri D, Jousson O, De 
Filippo C, Huttenhower C, and Segata N 
Uncovering oral Neisseria tropism and persistence using metagenomic sequencing 
Nature Microbiology (2016) 

Abstract 
Microbial epidemiology and population genomics have previously been carried out near-
exclusively for organisms grown in vitro. Metagenomics helps to overcome this limitation, but 
it is still challenging to achieve strain-level characterization of microorganisms from culture-
independent data with sufficient resolution for epidemiological modelling. Here, we have 
developed multiple complementary approaches that can be combined to profile and track 
individual microbial strains. To specifically profile highly recombinant neisseriae from oral 
metagenomes, we integrated four metagenomic analysis techniques: single nucleotide 
polymorphisms in the clade's core genome, DNA uptake sequence signatures, metagenomic 
multilocus sequence typing and strain-specific marker genes. We applied these tools to 520 
oral metagenomes from the Human Microbiome Project, finding evidence of site tropism and 
temporal intra-subject strain retention. Although the opportunistic pathogen Neisseria 
meningitidis is enriched for colonization in the throat, N. flavescens and N. subflava populate 
the tongue dorsum, and N. sicca, N. mucosa and N. elongata the gingival plaque. The 
buccal mucosa appeared as an intermediate ecological niche between the plaque and the 
tongue. The resulting approaches to metagenomic strain profiling are generalizable and can 
be extended to other organisms and microbiomes across environments. 

5.5.1 Genome-wide phylogenetic analysis of neisseriae identifies a group of closely related 
species that colonize humans. 
Several species of neisseriae are known to colonize the mucosa of the oropharynx of 
healthy individuals (Knapp and Hook, 1988). Although 16S rRNA-based taxonomy is unable 
to distinguish closely related species (Bennett et al., 2012), whole genome-based taxonomy 
has been shown to clearly classify the different species (Marri et al., 2010; Muzzi et al., 
2013). We retrieved all the 241 draft and final genomes belonging to the Neisseriaceae 
family (Supplementary Table 1) and reconstructed their phylogeny using a concatenated 
alignment of 400 conserved proteins (Segata et al., 2013). The resulting phylogeny (rooted 
using Chromobacterium violaceum, a microorganism in the Neisseriales order but not in the 
Neisseriaceae family, Fig. 1) shows the occurrence of three major clusters of closely related 
species that are common colonizers of the oral mucosae. 

https://paperpile.com/c/E1Jhss/0yHF
https://paperpile.com/c/E1Jhss/yTOx
https://paperpile.com/c/E1Jhss/SkgF+uB3s
https://paperpile.com/c/E1Jhss/SkgF+uB3s
https://paperpile.com/c/E1Jhss/kwsw
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The most basal cluster includes N. sicca, N. mucosa and N. macacae, the second cluster 
with intermediate branching includes N. flavescens and N. subflava, and the third most 
derived cluster includes N. cinerea, N. polysaccharea, N. lactamica and the opportunistic 
pathogen N. meningitidis. The latter cluster also includes N. Gonorrhoeae, which is known to 
be closely related to the meningococcus at the genomic level (Tinsley and Nassif, 1996). 
More basally branching is a monophyletic clade including N. elongata and N. bacilliformis, 
which are also known to colonize humans. Overall, our phylogeny is consistent with other 
studies (Muzzi et al., 2013), although the order of some rather deep branches can still be 
further investigated (Bennett et al., 2014). However, the tree’s most external clades (from N. 
sicca to N. meningitidis) have high statistical support and are highly consistent with other 
studies. For this reason, and because oral neisseriae are almost exclusively in this subtree, 
we restrict our metagenomic study to this set of strains (see Methods). 

Other species such as Kingella and Eikenella have been identified to be related to the 
human neisseriae at the genus or family level and can sporadically be found in humans. The 
genomes of these groups are characterized by specific forms of the DNA uptake sequences 
(DUSs), defined as 12 bp sequences that are repeated thousands of times in the genomes 
of neisseriae (Supplementary Table 2), with higher frequency in the core regions (Treangen 
et al., 2008), and that regulate the genomic integration of exogenous DNA by transformation 
(Frye et al., 2013) (Fig. 1). The available neisseriae spp. genomes and their reconstructed 
phylogeny constitute the base of our metagenomic strain-level investigation performed on 
the set of 520 shotgun metagenomic samples from the oral cavity sequenced by the Human 
Microbiome Project (HMP, (HMP et al., 2012; Human Microbiome Project Consortium, 
2012)) and its recent follow-up phase. 
 
 
 

https://paperpile.com/c/E1Jhss/rF08
https://paperpile.com/c/E1Jhss/SkgF
https://paperpile.com/c/E1Jhss/EST0
https://paperpile.com/c/E1Jhss/uNFE
https://paperpile.com/c/E1Jhss/uNFE
https://paperpile.com/c/E1Jhss/nnL6
https://paperpile.com/c/E1Jhss/kWro+5KFU
https://paperpile.com/c/E1Jhss/kWro+5KFU
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Figure 1 | The phylogenetic structure of the family Neisseriaceae identifies well-
defined subtrees of closely related species. The phylogeny is constructed using all 
available genomes (non-draft genomes only for N. meningitidis and N. gonorrhoeae) by 
concatenating and aligning 400 conserved proteins automatically identified in the considered 
genomes (Segata et al., 2013). Neisseria strains have been shown to encode in their 
genomes many copies of short genetic features (12mers called DUSs) that regulate genomic 
recombination and are subclade- or species-specific. The relative copy numbers of the eight 
previously identified (Frye et al., 2013) DUS dialects are reported as external circular bar 
plots, confirming the univocal association between them and specific subclades of this 
family. An ‘X’ in the node indicates a genome used for the core genome-based metagenomic 
analysis applied for the strain-level characterization. Single letters are used for species 
names that could not be overlaid to the tree because of lack of space. The rings represent 
the different DUSs detected. GraPhlAn was used to visualize the tree and associated 
information with a circular layout (Asnicar et al., 2015a). 
  

https://paperpile.com/c/E1Jhss/kwsw
https://paperpile.com/c/E1Jhss/nnL6
https://paperpile.com/c/E1Jhss/FOAp
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5.6. Large-scale metagenomic assembly reveals potential phylogeography and niche 
functional adaptations of Eubacterium rectale subspecies 
Eubacterium rectale is an anaerobic, spore-forming, and short-chain fatty acid producing 
bacterium of the Lachnospiraceae family, and is among the most prevalent commensal 
species in the human gut. Previous short-read mapping-based analyses have provided 
evidence that E. rectale exhibits distinct genetic clustering as well as biogeographic 
stratification, with one cluster being exclusive to Chinese individuals and two others being 
exclusive to European and North American cohorts. Here we present a large-scale 
metagenomic assembly and binning approach on more than 6,000 gut metagenomes to 
reconstruct more than 1,300 high-quality E. rectale genomes (<400 contigs, estimated 
completeness >90%, and contamination <5% according to CheckM (Parks et al., 2015), and 
CMSeq14 strain heterogeneity <0.3%). Importantly, we have added metagenomes from 
previously unobserved populations, mostly from non-Westernized cohorts from Oceania, 
Africa, and South America. In this work, I used PhyloPhlAn 2 to infer a large maximum 
likelihood phylogeny based on the specific set of core genes (1,071) of the 1,321 high-quality 
E. rectale genomes reconstructed from metagenomes. The resulting phylogeny was crucial 
for determining the biogeographic associations of the different E. rectale subtypes, 
highlighting the existence of a basal African subspecies and of an immotile European-
specific clade, which is the only one lacking motility operons, probably as an indirect 
consequence of a change in its ecological niche. This work is not published yet, but we are 
submitting it for consideration for publication in a scientific journal. 

Karcher N, Asnicar F, [..], Zeller G C, Segata N 
Large-scale metagenomic assembly reveals potential phylogeography and niche 
functional adaptations of Eubacterium rectale subspecies 
In preparation 

5.6.1 A large-scale phylogeny refines Eubacterium rectale population genetics and 
biogeography  
To study the global Eubacterium rectale population structure, we inferred a gene alignment 
of the 1,321 high-quality genomes we reconstructed from publicly available metagenomes, in 
combination with 8 publicly available isolate genomes and 3 additional isolates we 
sequenced for this work. The resulting concatenated alignment consists of 1,071 core genes 
for a total of 1.02M nucleotides. The maximum likelihood phylogeny based on a core gene 
alignment (Figure 2A) confirmed previous observations that E. rectale strains fall into 
genetically discrete groups (Costea et al., 2017; Scholz et al., 2016; Truong et al., 2017). 
Clustering using Partitioning Around Medoids on a random subset of samples with equal 
population densities (see Methods) supports the existence of four subspecies (Prediction 
Strength values of over 0.8 for k = 4, Figures 2B-C, Methods), one  of which was not 
identified before (Costea et al., 2017; Scholz et al., 2016; Truong et al., 2017). The three 
previously reported subspecies consist predominantly of Eurasian, European, and East 
Asian strains, which we henceforth call ErEurasia, ErEurope, and ErAsia. The fourth, 
previously unobserved subspecies comprises strains coming from predominantly sub-
Saharan African individuals (Madagascar, Tanzania, and Liberia) and was thus named 
ErAfrica (Figures 2A-D). All subspecies are monophyletic, except for one ErAsia strain in 
                                                
14 CMSeq repository: https://bitbucket.org/CibioCM/cmseq 

https://paperpile.com/c/E1Jhss/hm3D
https://paperpile.com/c/E1Jhss/MyOp+prN1+lKJ7
https://paperpile.com/c/E1Jhss/MyOp+prN1+lKJ7
https://bitbucket.org/CibioCM/cmseq
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ErAfrica and one ErEurasia genome in ErAsia. ErEurasia does not represent a well-defined 
phylogenetic clade, as there are seven ErEurasia strains within ErAfrica or ErAsia clades. 
ErEurope is instead an early-branching clade contained into the most recent common 
ancestor of the ErEurasia clade. The putative geographic origin of all isolate genomes, ten 
belonging to ErEurope or ErEurasia and one belonging to ErAsia, corresponds to their 
subspecies assignment. In summary, we are able to confirm and extend the notion about E. 
rectale geographic stratification using large-scale metagenomic assembly and binning. 

 
Figure 2: Eubacterium rectale can be divided into four geographically stratified 
subspecies. (A) Maximum-likelihood phylogenetic tree of all HQ genomes, built on a 
concatenated core gene alignment using PhyloPhlAn 2 (see Methods). The tree is rooted 
based on a phylogenetic tree built including E. rectale sister species (see Methods). (B)  
Subspecies assignment using Partitioning Around Medoids (PAM) clustering with k = 4 on 
data with equalized population densities (see Methods). Point colors correspond to leaf 
node colors in (A). Black points indicate genomes obtained from isolate sequencing. (C) 
Prediction Strength values for the different predesignated number of clusters (k, see 
Methods). (D) Subspecies composition with regards to country and continent. 
  



 
 
 
 
A phylogenetic framework for large-scale analysis of microbial communities  109 

 
5.7. Extensive unexplored human microbiome diversity revealed by over 150,000 
genomes from metagenomes spanning age, geography, and lifestyle 

In this work, we presented a very large-scale metagenomic assembly and binning approach 
to study unexplored microbial diversity in human microbiomes. By exploiting 9,428 publicly 
available metagenomes we were able to reconstruct 154,723 microbial genomes. All the 
reconstructed genomes were clustered together, at 5% average nucleotide identity, and 
recapitulated into 4,930 species-level genome bins (SGBs). We then divided the SGBs into 
two sets: 1,134 known SGBs (kSGBs) that are SGBs containing at least a reference 
genome, and 3,796 unknown SGBs (uSGBs) that do not contain any reference genome. My 
phylogenetic analysis pipeline has been extensively used in this work to place, characterize, 
and study the uSGBs with respect to the kSGBs for which we have a taxonomic label. We 
then focused on the most prevalent uSGB that we named “Candidatus Cibiobacter 
qucibialis” and contains 1,813 reconstructed genomes phylogenetically placed between 
Faecalibacterium and Ruminococcus genera. Phylogenetic analysis of this uSGB allowed us 
to observe geographical specificity of some strains, which were associated with the non-
Westernized lifestyle. We used a phylogenetic approach to study both a kSGB and two 
uSGBs. In the first case, we focused on a kSGB belonging to the phylum Succinatimonas, 
including the only available reference genome. In the latter case, we phylogenetically 
characterized two uSGBs enriched in non-Westernized populations and assigned to the 
phylum Elusimicrobia, including also the available reference genomes belonging to the same 
phylum. From these phylogenetic analyses, we were able to observe that the clustering 
approach used is phylogenetically consistent and also that in some cases, intra-SGB 
diversity is associated with the non-Westernized lifestyle. Finally, we employed a 
phylogenetic approach to compare and evaluate at the strain-level resolution the genomes 
reconstructed with our metagenomic assembly and binning approach with the co-assembly 
and co-binning approach proposed by other methods. This work thus again confirms that the 
phylogenetic framework I developed is highly relevant for present and future metagenomic 
analyses. 

Pasolli E, Asnicar F*, Manara S*, Zolfo M*, Karcher N, Armanini F, Beghini F, Manghi P, Tett 
A, Ghensi P, Collado MC, Rice BL, DuLong C, Morgan XC, Golden CD, Quince C, 
Huttenhower C, Segata N (* equal contribution) 
Extensive unexplored human microbiome diversity revealed by over 150,000 genomes 
from metagenomes spanning age, geography, and lifestyle 
Cell (2019) 

Abstract 
The body-wide human microbiome plays a role in health, but its full diversity remains 
uncharacterized, particularly outside of the gut and in international populations. We 
leveraged 9,428 metagenomes to reconstruct 154,723 microbial genomes (45% of high 
quality) spanning body sites, ages, countries, and lifestyles. We recapitulated 4,930 species-
level genome bins (SGBs), 77% without genomes in public repositories (unknown SGBs 
[uSGBs]). uSGBs are prevalent (in 93% of well-assembled samples), expand 
underrepresented phyla, and are enriched in non-Westernized populations (40% of the total 
SGBs). We annotated 2.85 M genes in SGBs, many associated with conditions including 
infant development (94,000) or Westernization (106,000). SGBs and uSGBs permit deeper 



 
 
 
 
A phylogenetic framework for large-scale analysis of microbial communities  110 

 
microbiome analyses and increase the average mappability of metagenomic reads from 
67.76% to 87.51% in the gut (median 94.26%) and 65.14% to 82.34% in the mouth. We thus 
identify thousands of microbial genomes from yet-to-be-named species, expand the 
pangenomes of human-associated microbes, and allow better exploitation of metagenomic 
technologies. 

5.7.1 Human Microbiome Genomes Belong to ∼5,000 Functionally Annotated SGBs 
To organize the 154,723 genomes into species-level genome bins (SGBs), we employed an 
all-versus-all genetic distance quantification followed by clustering and identification of 
genome bins spanning a 5% genetic diversity, which is consistent with the definition of 
known species (see STAR Methods) and with other reports (Jain et al., 2018). We obtained 
4,930 SGBs from 22 known phyla (Figure 1A; Table S4). This is likely an underestimate of 
the total phylum-level diversity, because some SGBs are very divergent from all previously 
available reference genomes and cannot be confidently assigned to a taxonomic family 
(Table S4): 345 SGBs (58% of which with HQ or multiple reconstructed genomes) display 
more than 30% Mash-estimated genetic distance (Ondov et al., 2016) from the closest 
isolate with a phylum assignment (Figure S2A). The SGB genomic catalog spans on 
average 3.0%, SD 1.8% intra-SGB nucleotide genetic variability, and each SGB contains up 
to 3,457 genomes from different individuals (average 31.4, SD 147.6; Figures 1C and S2B). 
 

 
Figure 1. 4,930 species-level genome bins (SGBs) assembled from 9,428 meta-
analyzed body-wide metagenomes. (A) A human-associated microbial phylogeny of 
representative genomes from each SGB. Figure S3A reports the same phylogeny but 
including isolate genomes not found in the human-associated metagenomes. (B) Overlap of 

https://paperpile.com/c/E1Jhss/qkLl
https://paperpile.com/c/E1Jhss/pEut
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SGBs containing both existing microbial genomes (including other metagenomic assemblies) 
and genomes reconstructed here (kSGBs), SGBs with only genomes reconstructed here and 
without existing isolate or metagenomically-assembled genomes (uSGBs), and SGBs with 
only existing genomes and no genomes from our metagenomic assembly of human 
microbiomes (non-human SGBs). (C) Many SGBs contain no genomes from sequenced 
isolates or publicly available metagenomic assemblies (uSGBs). Only SGBs containing >10 
genomes are shown. (D) Fraction of uSGBs and kSGBs as a function of the size of the 
SGBs (i.e. number of genomes in the SGB). (E) Distribution of the fraction of uSGBs in each 
sample by age category, body site, and lifestyle. (F) Distribution of the fraction of uSGBs in 
each study. 

5.7.2 The Reconstructed Genomes and SGBs Increase the Diversity and Mappability of the 
Human Microbiome 
We identified 3,796 SGBs (i.e., 77.0% of the total) covering unexplored microbial diversity as 
they represent species without any publicly available genomes from isolate sequencing or 
previous metagenomic assemblies (Figures 1B and S3A). These SGBs, that we named 
unknown SGBs (uSGBs), include on average 9.0, SD 45.4 reconstructed genomes, and 
1,693 of them (45%) had at least one HQ genome. Recursive clustering of SGBs’ 
representatives at genus- and family-level genetic divergence (see STAR Methods) 
provided taxonomic context for 75.2% of the uSGBs with 1,472 assignments to genera and 
1,383 more to families (Table S4). The 941 uSGBs that were left unplaced at family level 
remained unassigned for limitations of whole-genome similarity estimates, but we report the 
similarity and taxonomy of the closest matching strain (Table S4). 
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Figure S3. Related to Figure 1. Phylogenetic trees for all SGBs and reference 
genomes, and subtrees of Saccharibacteria and Archaea. (A) Phylogenetic tree that 
includes the representatives of the SGBs presented in Figure 1A together with all the non-
human bins (represented in white in the external rings), for a total of 16,332 genomes 
(15,299 after the internal quality control in PhyloPhlAn). (B) Phylogenetic tree of the 337 
reconstructed genomes taxonomically assigned to the candidate phylum Saccharibacteria 
present in the 108 SGBs, including available reference genomes (publicly available 
reference genomes are labelled with the “GCA” prefix). (C) Phylogenetic tree of the 675 
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archaeal genomes reconstructed in this study. 487 genomes belong to the 
Methanobrevibacter smithii kSGB (ID 714). 

5.7.3 Several Prevalent Uncharacterized Intestinal Clostridiales Clades Occur 
Phylogenetically between Ruminococcus and Faecalibacterium 
Some of the uSGBs with the largest number of reconstructed genomes are also highly 
abundant in the gut microbiome, with 1,153 uSGBs totaling >13,000 genomes each present 
in the sample where it has been reconstructed at an average abundance >1% (and 172 
uSGBs at >5% average abundance). Among them, uSGB ID 15286, that we named 
“Candidatus Cibiobacter qucibialis”, is the most prevalent uSGB, comprising 1,813 
reconstructed genomes. This species is phylogenetically placed between Faecalibacterium 
and Ruminococcus (Figures 3A and S5A), key members of the gut microbiome that are 
typically present at comparably lower abundances (1.84% Faecalibacterium kSGB and 
1.29% Ruminococcus kSBG in contrast to 2.47% Ca. Cibiobacter qucibialis). Six other 
prevalent (1,563 total genomes) and abundant (1.14% average abundance) SGBs occurred 
monophyletically in the same subtree between faecalibacteria and ruminococci (Figure 3A). 
Only one of these seven total SGBs contains an isolate genome, which is the recently 
sequenced Gemmiger formicilis genome (Gossling and Moore, 1975) included in kSGB ID 
15300 (1,212 genomes, Figures 3A and 3B). A genome from the Subdoligranulum variabile 
species, itself not found in any of the study’s assemblies, was the only other reference 
phylogenetically close to this clade, explaining the previous identification of an unknown 
Subdoligranulum (“Subdoligranulum unclassified”) as the most prevalent single taxon in 
reference-based profiles of the gut microbiome (Pasolli et al., 2017). This prevalent 7-SGBs 
clade comprising 3,370 reconstructed genomes that can be very abundant (>5% relative 
abundance in >200 samples) is thus an important but so far neglected genus-level lineage in 
the human microbiome. 

https://paperpile.com/c/E1Jhss/M5BM
https://paperpile.com/c/E1Jhss/VpTK
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Figure 3. Several prevalent intestinal uSGBs are found within the Clostridiales order 
related to Ruminococcus and Faecalibacterium. (A) All SGBs in the assembled 
phylogeny (Figure 1A) placed between reference genomes for Ruminococcus and 
Faecalibacterium species that are reported as collapsed trees. A maximum of 25 HQ 
genomes from each SGB are displayed, and SGBs with less than 3 genomes are left black. 
(B) The monophyletic clade with the 6 uSGBs and the kSGB containing Gemmiger formicilis 
represent clearly divergent species with inter-species genetic distance typical of genus-level 
divergence (average 16.6 s.d. 3.1 nucleotide distance). (C) A whole-genome phylogeny for 
the 1,806 genomes in Ca. Cibiobacter qucibialis (STAR Methods). Some subtrees associate 
with geography and non-Westernized populations, while others seem to be geography- and 
lifestyle-independent (see text). (D) Multidimensional scaling of genetic distances among 
genomes of Ca. Cibiobacter qucibialis highlights the divergence of strains carried by non-
Westernized populations, with Chinese populations subclustering within the large cluster of 
Westernized populations. (E) Madagascar-associated strains of Ca. Cibiobacter qucibialis 
(uSGB 15286) uniquely possess the trp operon for tryptophan metabolism (Table S7). Other 
functional clusters in Westernized strains from geographically heterogeneous populations 
include vitamin B12 and fatty acid biosynthesis, and galactose metabolism. The KEGG 
functions present in >80% or in <20% of the samples were discarded except for significant 
associations with lifestyle. 
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In an estimated maximum-likelihood whole-genome phylogeny of the 1,813 genomes 
belonging to Ca. Cibiobacter qucibialis (Figure 3C), genomes of non-Westernized 
populations were placed together in a monophyletic subtree (Figure 3C). This subtree 
included 26 strains from the Madagascar microbiomes we sequenced in this work, in 
addition to strains from three other populations with traditional lifestyles but differing 
geographic locations (Figure 3D). Although the non-Westernized subtree includes few 
genomes (2% of the total), this is a consequence of limited sampling from these population 
types because the prevalence of this SGB in Westernized populations is comparable (23% 
against 15% in non-Westernized populations). No clear internal clustering was evident for 
Westernized samples (Figure 3C), except for a large set of 222 samples retrieved from the 
seven Chinese cohorts that are monophyletically placed in the same subtree despite widely 
different pre-sequencing protocols (Table S6) and resemble non-Westernized genomes 
(Figures 3C and 3D). This suggests a complex process of gut microbial ecological 
establishment in which both host lifestyle and biogeography play roles with comparable 
effect sizes. 

 
Figure S5. Related to Figure 3 and 5. Phylogenetic trees for SGBs placed between 
Ruminococcus and Faecalibacterium, Succinatimonas kSGB (ID 3677), and two 
Elusimicrobia uSGBs. (A) Phylogenetic tree of SGBs placed between reference genomes 
for Ruminococcus and Faecalibacterium species in Figure 1A (highlighted in red), as 
already reported in Figure 3A but without collapsed branches and including the two 
reference genomes GCA_000238635 and GCA_000437915 (also highlighted), originally 
labelled as Subdoligranulum sp. 4_3_54A2FAA and Subdoligranulum sp. CAG:314, 
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respectively. (B) Phylogenetic tree of the Succinatimonas kSGB (ID 3677) including the only 
available reference genome. (C) Phylogenetic tree of the two Elusimicrobia uSGBs enriched 
in non-Westernized populations and of all the available Elusimicrobia reference genomes. 

5.7.4 Discussion 
This work expands the collection of microbial genomes associated with the human 
microbiome by more than doubling the current collections with over 150,000 newly 
reconstructed genomes, in the process recovering hidden functional and phylogenetic 
diversity associated with global populations (particularly those that are undersampled from 
non-Western lifestyles and non-gut areas, Figure 1E). More than 94% of metagenomic 
reads can now be mapped to the expanded genome catalog for half of the gut microbiomes, 
enabling a much more comprehensive profiling of these communities. The metagenomic-
assembly strategies employed here (Li et al., 2015; Nurk et al., 2017) represent a scalable 
methodology for very large-scale integration of metagenomes (Figure 6) that we extensively 
validated (STAR Methods; Figures 7 and S7) and could be fruitfully applied to additional or 
non-human-associated metagenomes. The methods are also compatible with emerging 
technologies such as synthetic (Kuleshov et al., 2016) or single-molecule (Brown et al., 
2017) long-read sequencing, which will further add to the diversity of microbial genomes. 
Finally, the study’s results themselves emphasize the phylogenetic and functional diversity 
that remains to be captured from rare organisms, especially for sample types other than 
stool, global human populations, and varied lifestyles for the human microbiome. 
 

 
Figure 7. Quality of the single-sample assembled genomes against multiple 
alternative genome reconstruction approaches. (A) Percentage identity between 
genomes from isolates (I) and genomes we reconstructed from metagenomes (M) for 5 

https://paperpile.com/c/E1Jhss/e6Kb+XNqD
https://paperpile.com/c/E1Jhss/G4fJ
https://paperpile.com/c/E1Jhss/Wt3V
https://paperpile.com/c/E1Jhss/Wt3V
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Bifidobacterium species from the FerrettiP_2018 dataset (Ferretti et al., 2018). We mark 
isolates and metagenomes coming from the same specimen (big filled circles), and coming 
from specimens of the same mother-infant pair (small filled circles). In all cases, our 
automatic pipeline reconstructs genomes from metagenomes that are almost identical to the 
genomes of the expected isolated strains. (B) The strains of S. aureus and P. aeruginosa 
isolated from three patients are almost perfectly matching the genomes reconstructed from 
sputum metagenomes sequenced at multiple time points. In the only case in which an S. 
aureus genome from a metagenome is not matching the strain isolated from a previous time 
point in the same patient, we verified with MLST typing that a clinical event of strain-
replacement from ST45 to ST273 occurred. (C) In the dataset by (Nielsen et al., 2014), we 
successfully recover at >99.5% identity the strain of a B. animalis subspecies lactis present 
in a commercial probiotic product that was consumed by the enrolled subjects, even if the 
probiotic strain was at low relative abundance in the stool microbiome (<0.3% on average 
(Nielsen et al., 2014)). (D) Comparison of the 46 manually curated genomes (using anvi’o) 
with automatically assembled (using metaSPAdes) and binned (using MetaBAT2) genomes. 
(E) Example comparison between the set of single-sample assembled genomes and co-
assembled genomes for a time series (n=5) of gut metagenomes from a newborn. Several 
genomes reconstructed with the two approaches have the same phylogenetic placement, 
with single-sample assembly retrieving the same (or a very closely related) genome at 
multiple timepoints, and both methods retrieving some unique genomes. This is an example 
of the comprehensive comparison performed in the STAR Methods and reported in Table 
S2 and Figure S7B. 
 

https://paperpile.com/c/E1Jhss/k5um
https://paperpile.com/c/E1Jhss/vCs0
https://paperpile.com/c/E1Jhss/vCs0
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Figure S7. Related to Figure 7. Comparison between MEGAHIT and metaSPAdes 
assemblies and between assembly and co-assembly. (A) Comparison between 
metaSPAdes and MEGAHIT assemblers across all the considered datasets confirms that 
metaSPAdes performs consistently better especially in recovering long contigs. Stars 
indicate statistically significance (t-test, p-value <0.05). (B) Phylogenetic tree built on the 
genomes of gut adult metagenomes from 25 women from the FerrettiP_2018 dataset 
showing comparison between the set of single-sample assembled genomes (in green) and 
co-assembled genomes (in red). Several genomes reconstructed with the two approaches 
have the same phylogenetic placement, with single-sample assembly retrieving a total of 
605 genomes spanning 257 SGBs, while co-assembly retrieved 172 genomes. 
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6. Other computational biology research 
This chapter briefly introduces a slightly different panel of bioinformatics works, related to the 
gene network analysis that I started during my master and continued during my doctoral 
studies, supervised by Prof. Enrico Blanzieri at the Department of Engineering and 
Computer Science of the University of Trento. 

The focus of this chapter is on the ability to identify novel putative interactions between 
genes belonging to a gene network and on the set-up of the computational infrastructure that 
exploits the distributed volunteer computing. 

This chapter is organized as follow: I fully report two articles, the first one discusses the 
computational infrastructure for distributed volunteer-based computing (Asnicar et al., 
2015b) and the second introduces a first gene network expansion algorithm (named 
NESRA) we proposed (Asnicar et al., 2015c). The last part of the chapter reports only the 
abstract of two other works (Asnicar et al., 2016, 2019) that are an extension of the NESRA 
(Asnicar et al., 2015c) algorithm. 

6.1. TN-Grid and gene@home project: Volunteer Computing for Bioinformatics 
This article introduces the TN-Grid BOINC platform. TN-Grid exploits the BOINC (Berkeley 
Open Infrastructure for Network Computing) framework for distributing the computations to 
the volunteers. The actual only BOINC project running in TN-Grid to date is named 
gene@home and its goal is a very large-scale gene network expansion analysis. 

The section is based on the following article: 

Asnicar F, Sella N, Masera L, Morettin P, Tolio T, Semeniuta S, Moser C, Blanzieri E, and 
Cavecchia V 
TN-Grid and gene@home project: Volunteer Computing for Bioinformatics 
BOINC:FAST 2015 (2015) 

Abstract 
The ability to reconstruct and find genes that belong or are connected to a gene regulatory 
network is of essential importance in biology, in order to understand how the biological 
processes of an organism work. The main limitation in performing gene network expansion is 
related to the huge amount of computations needed to discover new candidate genes. Given 
these premises we decided to adopt the BOINC platform that allows us to use the very 
powerful computational resources of the volunteers. We set up a BOINC server in which we 
developed a specific work generator that implements our gene network expansion algorithm. 
Furthermore, we developed an ad hoc version of the PC algorithm (PC++) able to run in the 
BOINC environment, on the client computers. We present and discuss some statistics and 
preliminary scientific results of the gene@home BOINC project, the first one hosted by the 
TN-Grid infrastructure. 

https://paperpile.com/c/E1Jhss/cuI3
https://paperpile.com/c/E1Jhss/cuI3
https://paperpile.com/c/E1Jhss/2f3v
https://paperpile.com/c/E1Jhss/whA3+MdSd
https://paperpile.com/c/E1Jhss/2f3v
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6.1.1 Introduction 
TN-Grid15 has been thought and developed as a service platform, as a way to give to local 
research groups, in search of powerful computing infrastructures, a guided access to the 
power of the world-wide, volunteers based, distributed BOINC computing network. The idea 
was to use TN-Grid for informing people (researcher, technicians, and students) about 
BOINC, uncovering its strengths and weaknesses, discussing about integrating their own 
algorithms and their scientific pipelines into the BOINC framework, and eventually to help 
them doing this task. Providing access to such a big computational power may also help 
scientists to broaden their investigation outlooks, going to areas that would have been 
unfeasible to approach without it. 
TN-Grid is the result of a joint effort made by two institutions of the Italian National Research 
Council (CNR), namely the Institute of Materials for Electronics and Magnetism (IMEM) and 
the Institute of Cognitive Sciences and Technologies (ISTC), both having local branches in 
Trento, Italy. 
TN-Grid is a so-called umbrella project, which means that it is open to host different scientific 
projects even belonging to distant scientific areas. The first scientific project that we hosted 
is gene@home, that is a collaboration with Edmund Mach Foundation (FEM) and the 
Department of Information Engineering and Computer Science (DISI) of the University of 
Trento. We plan to add other projects to the system in the near future. 
At the time of writing TN-Grid is the only public, BOINC based, active project in Italy. 

6.1.2 Gene@home 
The gene@home project is the first one hosted by the TN-Grid infrastructure. The project 
was born in the fall of 2013 with the collaboration of the students of the Laboratory of 
Biological Data Mining course. The gene@home project is multi-disciplinary that spans 
different disciplines: Computer Science, Biology, Statistics, and Data Analysis and can be 
also defined as a distributed computational biology project. The final goal is the creation of 
an automatic system for performing Gene Network Expansion in such a way that could be 
easily used by biologists through a web interface. 
As described in the following Section 2.1, network expansion is a complex task aimed to 
discover relations among genes involved in a particular biological process. In our study, the 
task is performed by the PC-Iterative Method (PC-IM), using the PC algorithm (Spirtes et al., 
2002) for inferring causal relations among genes. The biological species we studied so far 
are Arabidopsis thaliana and Escherichia coli, and we expanded 2 different local gene 
networks for the former and 13 for the latter. 

6.1.2.1 Gene Network Expansion 

Gene Network Expansion (GNE) is a research topic in Computational Systems Biology that 
deals with the discovery of functional dependencies within genes of a species, and genes 
that take part in the specific biological process to be studied. In biological processes, genes 
can act as enhancers or inhibitors of the activity of other genes, through a process named 
Regulation of Gene Expression. Regulation processes are represented by Biological 
pathways. Nowadays, we have an incomplete knowledge about pathways: discovering new 
genes is hence important for completing biological pathways, and therefore for gene-specific 
medical studies, fostering novel methods for pharmaceutical treatment (Arroyo et al., 2015). 

                                                
15 http://gene.disi.unitn.it/test/ 
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Inputs of the network expansion algorithm are Omics data16. GNE differentiates from the 
most commonly used Network Inference (NI). NI reconstructs the complete set of gene 
interactions without the restriction of finding the ones that take part in a specific process, but 
with a not completely satisfying accuracy and sensitivity when analyzing single biological 
pathways. Our method for GNE, on the other hand, improves NI’s results returning a ranked 
set of genes interacting with the local gene network of interest. 

6.1.2.2 PC Algorithm 

The PC algorithm (Spirtes et al., 2002) is a causal structure discovery method, that can be 
applied to find causal relations among variables of a system, when an input quantity data 
matrix representing the system entities is available. As scale-free networks, biological 
networks are characterized by a power law function on the degree of the nodes (Albert, 
2005), and PC algorithm showed to be a valid method to test causal relations in sparse 
networks, as the biological ones (Maathuis et al., 2010). 
A pseudo-code of the essential part of the PC algorithm is reported in Algorithm 1. At first, 
the PC algorithm creates a complete graph, assuming that all the variables are correlated 
with each other. Nodes of the graph correspond to data matrix variables, hence genes. Once 
created the complete graph, the algorithm tests the direct correlation between each pair of 
variables, removing non-correlating edges that do not present a statistically significant 
correlation, computed using Pearson’s correlation coefficient. Then, the algorithm starts to 
condition all couples of variables 𝑋𝑋𝑖𝑖, 𝑋𝑋𝑗𝑗, with 𝑖𝑖 ≠ 𝑗𝑗 to all the sets 𝑆𝑆 of neighbors of 𝑋𝑋𝑖𝑖, such 
that 𝑆𝑆 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ(𝑋𝑋𝑖𝑖) and |𝑆𝑆| = 𝑙𝑙, removing non-correlated edges when conditioned to the set 
𝑆𝑆. This part is inserted in a loop, where the cardinality of 𝑆𝑆, called level 𝑙𝑙, increases at each 
cycle, up to |𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ(𝑋𝑋𝑖𝑖)|. This conditioning cycle is the most computationally expensive part 
of the algorithm. The number of sets of 𝑛𝑛 elements, over a set of 𝑘𝑘 elements (𝑘𝑘-Subset) is 
given by the binomial formula 𝑛𝑛

𝑘𝑘
, that gives a factorial complexity to the algorithm. 

Because the removal of edges depends on both input data and variables order (see Section 
2.4), it is not possible to know in advance at which level the algorithm will halt: this means 
that it is not possible to exactly predict the execution time. In our experiments, however, it 
has never taken more than a few hours run-time on an ordinary laptop. 
 
Data: T, Set of transcripts, E expression data 
Input: Significance level α 
Result: An undirected graph with causal relationship between transcripts Graph 
G ← complete undirected graph with nodes in T; 
l ← −1; 
while l < |G| do 
    l ← l + 1; 
    foreach ∃u, v ∈ G s.t. |AdjG(u) \ {v}| ≥ l do // AdjG(u) adjacent nodes of u in G 
        if v∈AdjG(u) then 
            foreach A ⊆ AdjG(u) \ {v} s.t. |A| = l do 
                if u,v are conditionally independent given A w.r.t. E with significance level 
α then 
                    remove edge {u, v} from G; 
                end 
            end 

                                                
16 Omics refers to many fields in Biology: Genomics, Transcriptomics, Metagenomics, Proteomics, 
Metabolomics. Omics aims at the collective characterization and quantification of pools of biological 
molecules that translate into the structure, function, and dynamics of an organism or organisms. 

https://paperpile.com/c/E1Jhss/SWlh
https://paperpile.com/c/E1Jhss/HoXJ
https://paperpile.com/c/E1Jhss/HoXJ
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        end 
    end 
end 
return G; 

Algorithm 1: PC Algorithm: skeleton procedure (Kalisch and Buhlmann, 2007). 

6.1.2.3 PC-IM Algorithm 

The PC algorithm is just the core part of the method we used to discover candidate genes 
for expanding a gene regulatory network. The GNE task is performed by the PC-IM 
algorithm, which requires as input an already characterized Local Gene Network (LGN) and 
gene expression data (Coller, 2013). The PC-IM algorithm is said to be iterative because the 
analysis of the whole set of genes is computed multiple times, a parameter that we refer to 
as iterations. Each iteration is performed over a random permutation of the input variables, 
mitigating in this way the order-dependency issue of the PC algorithm. 
Given a LGN, an observation data set, and the size of the graphs into which divide the set of 
genes of the organism, the PC-IM algorithm generates non- overlapping blocks of extra-LGN 
genes. To each of these extra blocks, the LGN genes are added. An additional extra block 
with partially overlapping genes may be added in the case that the data set is not a multiple 
of graph size minus the number of gene in the LGN. At this point, a single PC algorithm is 
executed for each block. This process is repeated for the number of iterations. The final 
output of this process is an ordered list of candidate genes found to be connected with the 
input LGN. 

6.1.2.4 PC* Algorithm 

The PC algorithm analyzes pairs of variables following the arbitrary order of the variables, in 
our case genes or microarray probes. If the variables are permuted, the output will change 
because when an edge in the graph is removed, its absence affects the future conditioning 
sets. In fact, when the execution removes an edge with conditioning sets of dimension 𝑙𝑙, it 
cuts away some conditional dependency to check with conditioning sets of the same 
dimension. 
The PC* algorithm solves the order-dependent problem of the input, postponing the edge 
removal at the end of each loop, just before increasing the size of the conditioning sets. In 
more detail, at each level 𝑙𝑙 edges are not removed from the graph, but instead they are 
marked as “to remove”. This allows the algorithm to check a larger space of possible 
conditional dependencies for a given size of the conditional set 𝑆𝑆. Since PC* algorithm 
checks many more conditions, its execution time takes much longer than a single PC run. 
From the tests we did, PC* returns a subset of the union set of outputs of multiple PCs. 

6.1.3. BOINC 
An execution of PC-IM requires, depending on the parameters, up to thousands of runs of 
the PC algorithm on input data of relevant size. This setting is particularly suitable for a 
BOINC project, for this reason we decided to implement the PC-IM method using the BOINC 
infrastructure (Anderson, 2004). 

6.1.3.1 PC++ Algorithm, BOINC Version 

Starting from the R implementation of the PC algorithm, included in the “pcalg” package 
(Hauser and Bühlmann, 2012; Kalisch et al., 2012), we implemented a C++ version of the 

https://paperpile.com/c/E1Jhss/WMt8
https://paperpile.com/c/E1Jhss/1XCP
https://paperpile.com/c/E1Jhss/X2ir
https://paperpile.com/c/E1Jhss/CQ99+WOJu
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“skeleton” procedure of the PC algorithm, since we did not need the final DAG (Direct 
Acyclic Graph) estimation phase. We chose C++ because we needed high computational 
performances. 
Our implementation showed an impressive speed-up of 240 in execution time, and 
conversely reducing the RAM consumption of about 10 times. We carefully optimized the 
most CPU demanding subroutines, i.e. the creation of all the 𝑛𝑛

𝑘𝑘
 subsets and the evolution of 

the causal dependency-testing formula, when the conditioning set is big. To solve these 
problems, we used more efficient data structures and switched from recursion to dynamic 
programming. 

6.1.3.2 BOINC Server 

The BOINC server is the part of the BOINC infrastructure that performs distribution 
management, data maintenance and project information visualization. Our BOINC server is 
running on a Virtual machine with 2 GB of RAM and two cores AMD OpteronTM Processor 
6276. The basic components included in a BOINC server are: 

● a database server (MySQL); 
● the BOINC daemons (to name few of them: scheduler, feeder, work generator, 

transitioner, validator, assimilator, and file deleter); 
● a web server (Apache). 

The MySQL database stores the data related to the BOINC part of the project (e.g. users, 
computers, workunits, statistics). We made use of MySQL also to store the data regarding 
the dispatch and management of all PC-IM executions. This allows us to keep track of which 
workunits, input observation data and relative output files are related to a specific GNE task. 
Among all the BOINC daemons, the only one that we modified is the work generator. All the 
other daemons that are running on our BOINC server have not been modified. 

6.1.3.3 Work Generator 

The work generator generates the workunits. To easily manage and keep track of the PC-IM 
executions, we first designed and implemented a database (we will refer to it from now on as 
the gene database) using the already running MySQL daemon for BOINC. We also use the 
gene database to manage the input data, users, notifications, and it will be also the middle 
layer between the work generator and the future web-interface where biologists will schedule 
new PC-IM executions. 
The work generator was implemented using the Python programming language, that allowed 
us a fast and high-level coding. We collected some measures about the performance of the 
work generator, such as the single workunit creation time and the overall workunits creation 
time necessary to complete a single PC-IM. Since we did not find any bottlenecks, we 
decided to not implement the work generator using more efficient languages. The work 
generator exploits our gene database to know and keep track of the work that will be 
generated or that has been generated, as well as the possibility to notify the user that 
submits the specific PC-IM when it is almost finished. 
Since BOINC APIs are accessible only through C++ functions and not Python scripts 
directly, we built two simple C++ programs that wrap all the necessary BOINC functions for 
the work generator. 
Since there is not a direct relation between the execution time of a single PC and the 
dimension of the input, PC time execution can largely vary. So, it’s hard for the work 
generator to exactly estimate a workunit time execution. To overcome this issue, we are 
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planning to build a complete benchmark machine that will execute a few instances of PCs, 
eventually with different parameters, and use it to estimate the running time of the workunits. 

6.1.3.4 Post Processing 

The processing of the partial results of a PC-IM in order to get the candidate lists starts in 
the client application, as soon as a single workunit finishes. Indeed, since each workunit 
cannot contain a PC execution of a different PC-IM, we were able to insert a first partial 
counting of the arcs found by the PC executions of that workunit, reducing also in this way 
the size of the output file that the volunteers return back to the server. 
The gene@home project has two issues that, in general, creates difficulties related to the 
BOINC distribution of work. The size of our input data files is generally in the order of one 
hundred MBs, and the size of our results averages a dozen MBs. Thanks to the developers 
of BOINC we got an update of the BOINC server that now implements the distribution and 
receiving of workunits and results in a gzip compressed format. 
Since a single run of PC-IM can produce a very large number of workunits, we developed an 
ad hoc program that is in charge of moving the results of the workunits of a PC-IM, when all 
of them are returned. The script that moves the results exploits the gene database, where for 
every PC-IM executed by the work generator, we store the number of workunits that has 
been produced. 
On the server, a validation step of the returned workunits is performed, and then the 
canonical result is moved on a dedicated server, that has a large store capacity. Currently 
we are using a double validation method, that consists in sending each workunit to two 
diverse volunteers in order to be able to validate the results later. The returned results then 
must be equal bitwise. Because of the nature of our project, we have not find a way to 
internally validate a result of a single workunit, without requiring the double validation phase. 
Externally to the TN-Grid infrastructure, we have a pipeline of Python programs that 
complete the processing of the partial results of each PC-IM. 

6.1.4. Educational and Social Aspects 
The gene@home project was born from a conversation between Prof. Enrico Blanzieri 
(University of Trento), Dr. Valter Cavecchia (CNR), and Dr. Claudio Moser (FEM). Its 
realization and running involved students and BOINC volunteers. 

6.1.4.1 Gene@home as a Course Project 

In the first semester of academic year 2013-2014, the project was proposed to the students 
of the Biological Data Mining Laboratory course held in the master Computer Science 
program of the University of Trento. Claudio Moser and his collaborators at Foundation 
Edmund Mach provided biological annotated data and a preliminary version of the method 
implemented in R. Claudio Moser also covered the relevant biological topics during the 
course. The initial ambitious goal set was to systematically expand networks of interest of 
Arabidopsis thaliana. The attendance of the course increased steadily and eventually 22 
students formed four groups devoted respectively to: 1) write the BOINC application; 2) 
manage the BOINC server; 3) preprocess the input data and post-process the results and 4) 
take care of communication and of the web site. 
Students, now the first five authors of this paper, developed a C++ application for directly 
communicating with the BOINC client through the provided BOINC API. The executables 
were built for different operating systems and architectures, Windows (both 32 and 64 bit), 
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Linux (both 32 and 64 bit), and Mac OS X. After having a first version of the server and the 
client applications, the students tested the whole system, finally concluding the pre-alpha 
stage. The same students continued, in the form of a Research Project the activity in the 
second semester and gained extra academic credits. 
The continuation of the BOINC project was proposed also during the first semester of the 
academic year 2014-2015 and one student, Stanislau Semeiuta, with the CUDA 
implementation of PC* while others worked on the application of gene@home to E. coli. 
Overall, the class reached almost all the technical goals, with a large part of the students 
really engaged and who expressed a positive evaluation of the course with the exception of 
a small minority. Introducing BOINC in the teaching activity involved the students on several 
topics of distributed systems and it proved to be a good way of gaining technical and 
collaborative competences in a medium-size software project. Moreover, the students 
shared the general research goals and many of them worked beyond expectation. 

6.1.4.2 BOINC Community 

We contacted the administrators of the largest Italian BOINC users community 
(BOINC.Italy17) announcing the second, alpha phase of our project and asking them and 
their users to join us using the BOINC invitation code mechanism. This procedure implies 
registering the user on the projects web page before attaching the client to the project, also 
passing through CAPTCHA verification. This will filter the server from spammers and bots, 
minimizing the burden of the maintenance tasks. 
After some time, some of the most active users in the BOINC world contacted us asking 
information about our project. We decided then to send the invitation code to anyone 
interested, explicit allowing them to re-distribute the invitation code to other people, but not 
to publishing it in public posts. Until today this rule was fully respected. Some statistics sites, 
e.g., BOINCstats18 and Free-DC19 also requested permission to collect and manage 
statistics data from our server. So, by providing a continuous flow of workunits, we started to 
see an increasing number of participants (see Figure 1A). 
The computational power provided by the volunteers increased, reaching a peak of 1.5 
gigaflops during December 2014 (see Figure 1B). 
However, the credit per day, which is a good estimate of the “instant” power of the system, is 
recently (at mid February 2015) decreasing (see Figure 1C). From this chart, we may also 
notice that the average power (recent average credit, averaged over a week period, RAC) is 
also decreasing. There are many possible reasons for this: 

● Most of the users are power users, that are users which provide high computational 
power. However, power users also like to frequently switch their computational power 
to different projects, pursuing their own interests, challenges, credit milestones, and 
badges. At the time of writing we count 175 registered users and 821 registered 
computers, with an average of 4.7 computers per user, with powerful machines 
running 24/7; 

● We were not very informative about the status of our project and also news were 
issued rarely, losing our own appeal. Now, we need to keep the interest high, 
providing more frequent status updates and general information about our 
progresses. 

                                                
17 http://www.boincitaly.org 
18 http://boincstats.com 
19 http://stats.free-dc.org 
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In the forthcoming future, we will move to a new phase, switching to a semi-public stage, 
posting the invitation code to the project’s home page. We are also designing credit badges, 
that can attract volunteers interested in collecting achievements. 
 

 
Figure 1: Snapshots were taken on February 10th (source BOINCstats). (A) Total number of 
users on gene@home during the last 60 days. (B) Total credit production (cumulative) on 
gene@home during the last 60 days. The credit trend depicted above is proportional to the 
flops values (1 gigaflop machine, running 24 hours a day, produces 200 units of credit in 1 
day). (C) Amount of assigned credits per day on gene@home during the last 60 days. 

6.1.5. Results 
During the execution of the gene@home project we collected two types of data: statistical 
data about the performance of the BOINC server and application, and scientific results 
obtained after having analyzed the results of the workunits computed by the volunteers. 
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6.1.5.1 BOINC Results 

After running the server for some months, we were able to collect some statistics about the 
reliability of the gene@home application, i.e. the ratio between valid and invalid results. This 
impacts both the scientific quality and the user experience of our project. Users really dislike 
running an application who ends up producing errors, thus not getting credits for the work 
done and wasting time and electric power: they could leave the project. 
Statistics are automatically prepared by the BOINC server every day (see Figure 2), the 
data are taken as snapshots of the BOINC workunits database. In the summary Table 1, 
errors count includes only the computational errors: compute errors, validated errors, and 
invalid results. Results returned after the deadline or aborted by users, or download errors 
were not considered as errors. 
 
Table 1: BOINC statistics of the gene@home project taken on four different days during the 
year 2014 (reference period: the previous seven days). Total number of returned results 
(#Over), successfully computed (Success), validated (Valid), pending validation (#Initial), 
and faulty (#Errors). 

Date #Over Success (%) Valid (%) #Initial #Errors 
22 April 15543 15392 (99.0%) 15340 (98.7%) 19 85 
20 May 69536 68621 (98.7%) 67096 (97.7%) 1450 89 
16 December 33232 31798 (96.2%) 29525 (88.8%) 2147 38 
24 December 91315 89536 (98.1%) 87584 (95.9%) 1716 61 
 
Results presented in Table 1 prove that our application is very reliable, although we still 
have some validation issues. We are still having, although rarely, validation problems (see 
Figure 2). Computers running the same task may return different results due to incorrect 
client software configuration. Otherwise, the problem could arise from a small bug inside the 
application checkpoint mechanism linked to a stop-and-restart after the very first seconds of 
running. We still need to further investigate this issue. 
We are distributing executables built for various operating systems and architectures; 
namely Windows (both 32 and 64 bit), Linux (both 32 and 64 bit), and Mac OSX. We need to 
build statically linked executable for Linux for users running very old Linux kernels. 
Handling of so-called leftovers. We distribute work in “batches”, i.e. sets of workunits 
belonging to the same sub-problem (a single run of a PC-IM). Sometimes it happens that 
almost all the workunits of the same set are returned and very few of them are not 
processed and waiting for timeouts before being re-distributed. We would like to find a way 
to compute this kind of workunits on a dedicated server in order to reduce the time needed 
to complete a PC-IM. One possible solution would be to use BOINC 
restrict_wu_to_user() mechanism to send all such workunits to a reliable, dedicated, 
and active user. 
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Figure 2: Summary of the server statistics of the TN-Grid infrastructure running the 
gene@home project. Seven days snapshot, taken December 24th, 2014. 

6.1.5.2 Preliminary Report on the Scientific Results 

The experiments in Figure 3 were conducted using the Flower Organ Specification Gene 
Regulatory Network (FOS) of the model plant A. thaliana, composed of 15 genes connected 
with 54 edges (Espinosa-Soto et al., 2004; Sánchez-Corrales et al., 2010). The data is 
composed of gene expression values available in the PLEXdb database (Dash et al., 2012) 
and consists of 393 hybridizations of 22,810 microarray probes20. Plots in Figure 3 
represent the trend of the precision of several PC-IM executions, ran with different values of 
tile size, and 𝛼𝛼 = 0.05. The precision is computed by comparison with a manually curated 
classification of the probes of A. thaliana. The comparison between the two plots permits to 
appreciate the change in precision by varying the iteration parameter 𝑖𝑖. The two plots show 
also, as a comparison reference, the precision computed on the results of the three major 
competitors: PC, PC*, and ARACNE (Margolin et al., 2006a, 2006b) (using the default 
parameters), the complete scientific results are in the process of being published. 
 

                                                
20 Probe is a general term for a piece of DNA or RNA that corresponds to a gene or a sequence of 
interest that has been labelled by biologists. 

https://paperpile.com/c/E1Jhss/QMsn+WbHA
https://paperpile.com/c/E1Jhss/MxMf
https://paperpile.com/c/E1Jhss/LhbH+oFM1
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Figure 3: Precision comparison of A. thaliana on FOS network. PC (average and variance), 
PC*, ARACNE, and PC-IMs with different tile size with a fixed 𝛼𝛼 = 0.05. We considered the 
first 55 genes of the result lists of each experiment and for each result lists we computed 55 
precision values by considering an increasing list that initially contains the first gene found. 
All PC-IMs in Figure 3a have a number of iterations 𝑖𝑖 = 20, in Figure 3b the number of 
iterations 𝑖𝑖 = 2000. 

6.1.6. Ongoing Developments 
PC-IM performs a lot of computation, and even if our C++ implementation of the PC 
algorithm is really fast, we tried to achieve even better performances. For this reason we 
tried also solutions exploiting multithreading and Graphics processing unit (GPU) computing. 

6.1.6.1 From Multithreading to GPU Computing 

One of the goals is the performance improvement of a single PC run: this would help the PC-
IM to be runnable on standard local machines. We opted for code parallelization. After some 
analysis, we concluded that the skeleton procedure is not trivially parallelizable, due to the 
edge removal-associated consequences that require complicated synchronization strategies 
to create a parallel version equivalent to the single threaded one. Instead, PC* is trivially 
parallelizable. 
Initially, we introduced multithreaded processing using the Intel Threading Blocks (TBB) 
library21 to parallelize PC*. In our implementation, we launch a number of threads, each 
taking as input one gene and the separation set size, that search among all genes for those 
ones that are conditionally independent given a size-specific separation set. Once checked 
all the pairs for one gene, it goes to the next unprocessed one. As edge removal is 
postponed, there is no synchronization between processing parts of threads. The only place 
that needs synchronization is the mutually exclusive list of unprocessed genes, whose 
access time is negligible with respect to the time to process gene expression data. 

                                                
21 https://www.threadingbuildingblocks.org 

https://www.threadingbuildingblocks.org/
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Table 2: Time (reported in milliseconds) to process one level of PC*. Columns marked with 
CPU report timings of 4-threads execution of the algorithm. Organisms: At stand for 
Arabidopsis thaliana and Ec for Escherichia coli, respectively. 

 CPU GPU CPU GPU CPU GPU CPU GPU 
Tile size 1000 1000 2000 2000 100 100 200 200 
Organism At At At At Ec Ec Ec Ec 
Separation set size         

0 47 5 300 9 <1 <1 <1 <1 
1 2940 600 18000 1350 <1 <1 80 3 
2 1180 3100 9000 8000 90 40 890 320 
3 68 100 600 220 320 100 2950 980 
4 10 44 100 90 580 190 5330 1630 
5 15 44 15 100 500 220 5515 2380 
6 10 44 15 74 490 290 4437 3170 
7   10 74 390 390 3690 4975 
8   10 74 230 490 2500 6630 
9     93 430 1800 8380 

10       650 7020 
11       230 5840 
12       80 3950 
13       15 2260 

 
The final implementation produces exactly the same results as the single threaded PC*, but 
much faster. In our experiments, we have observed that it take less time by a factor of 𝑇𝑇 to 
get the results, where 𝑇𝑇 is a number of processing threads. 
Then we decided to move to GPU computing, choosing to use NVIDIA CUDA for its better 
development tools with respect to OpenCL. The algorithm is conceptually the same as the 
TBB-based, but it has to take into account the need of transfer data between CPU and GPU 
memories, the differences in computation models of GPUs and CPUs, and the fact that 
single GPU threads are slower than single CPU ones. 
Our NVIDIA GPU-based implementation showed to be coherent with the previous ones, so 
we evaluated its pros and cons. The most important timings are presented in Table 2. It can 
be seen from both tables that the GPU version significantly outperforms the CPU one on 
small sizes of separations sets. As we were using the parallel implementation of PC* on a 4 
core machine, that gives approximately a speed-up of 50 for separation set size of 0 and 1 
with respect to the initial single core version. We also observe that the performance boost 
depends on the nature of data being processed. Table 2 shows that, for this particular data, 
it is beneficial to run the GPU version up to a separation set size of 4-6, while it is not the 
case with the other data that we have tested. 

6.1.7 Conclusion 
The first project hosted on the TN-Grid infrastructure is gene@home that, involving volunteer 
computing, implements a gene network expansion algorithm. We presented our project from 
different points of view: the technical side in which we described the implementation and 
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setup of the BOINC platform, the educational aspect that involved students of the University 
of Trento, and the social part that involves the relationship with the BOINC community of 
volunteers participating in our project. 
We gave some details of the way we setup our BOINC server, the server software, and the 
features of the client application that we developed. The gene@home project started during 
the Laboratory of Biological Data Mining course in 2013-2014 at the University of Trento and 
engaged a group of students to what is now a long-term project. The social aspect of the 
participation in the gene@home project by BOINC users is important, and we discussed in 
particular the trend of the points assigned to the volunteers. In fact, gene@home initially was 
very attractive thanks also to the novelty of the problem, now we realized that we need to 
communicate the results in a steadier way in the near future. 
The empirical data on gene@home comprises both statistical results of the BOINC 
performance that we obtained during the last year of executions, and a preliminary report of 
the scientific result that shows the effectiveness of the method. 
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6.2. Discovering Candidates for Gene Network Expansion by Distributed Volunteer 
Computing 
We have now introduced the gene@home BOINC project hosted inside the TN-Grid 
infrastructure. One of the algorithms for the gene network expansion that are distributed and 
runs on the volunteers’ computers is named NESRA and has been presented in the 
following article. 

The section is based on the following article: 

Asnicar F, Erculiani L, Galante F, Gallo C, Masera L, Morettin P, Sella N, Semeniuta S, Tolio 
T, Malacarne G, Engelen K, Argentini A, Cavecchia V, Moser C, and Blanzieri E 
Discovering Candidates for Gene Network Expansion by Distributed Volunteer 
Computing 
2015 IEEE Trustcom/BigDataSE/ISPA. Vol. 3. IEEE (2015) 

Abstract 
Our group has recently developed gene@home, a BOINC project that permits to search for 
candidate genes for the expansion of a gene regulatory network using gene expression 
data. The gene@home project adopts intensive variable-subsetting strategies enabled by 
the computational power provided by the volunteers who have joined the project by means 
of the BOINC client. Our project exploits the PC algorithm (Spirtes and Glymour, 1991) in an 
iterative way, for discovering putative causal relationships within each subset of variables. 
This paper presents our infrastructure, called TN-Grid, that is hosting the gene@home 
project. Gene@home implements a novel method for Network Expansion by Subsetting and 
Ranking Aggregation (NESRA), producing a list of genes that are candidates for the gene 
network expansion task. NESRA is an algorithm that has: 1) a ranking procedure that 
systematically subsets the variables; the subsetting is iterated several times and a ranked 
list of candidates is produced by counting the number of times a relationship is found; 2) 
several ranking steps are executed with different values of the dimension of the subsets and 
with different number of iterations producing several ranked lists; 3) the ranked lists are 
aggregated by using a state-of-the-art ranking aggregator. In our experimental results, we 
show that NESRA outperforms both the PC algorithm and its order-independent version 
called PC*. Evaluations and experiments are done by means of the gene@home project on 
a real gene regulatory network of the model plant Arabidopsis thaliana. 

6.2.1 Introduction 
Gene expression data are accumulating at an increasing pace and also resources that 
integrate different data sources are now available, for example Colombos (Meysman et al., 
2014). The characterization of these causal relationships between the gene expression 
levels are not yet well known, even when considering model organisms. These information 
can be organized in gene regulatory networks (Hasty et al., 2001). In biological research, it is 
common to take into consideration prior knowledge about the phenomenon under 
consideration. In this scenario, methods that can guide the research suggesting candidate 
genes which could regulate, or could be regulated within a given gene network, are of 
essential importance. An expansion method can guide the discovery of candidate genes that 
could be causally connected to a priori known network. This is particularly important when 
considering a gene network that by knowledge or by hypothesis biologists assume to be 

https://paperpile.com/c/E1Jhss/Cdi2
https://paperpile.com/c/E1Jhss/Cdi2
https://paperpile.com/c/E1Jhss/jYaz
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relevant. For instance, we can consider the Genetic Network Expansion System (GENESYS 
(Tanay and Shamir, 2001)). 
The PC algorithm (Spirtes and Glymour, 1991), which name derives from the initials of its 
authors, is an algorithm that discovers causal relationships among variables. In particular, 
the PC algorithm is based on the systematic testing for conditional independence of 
variables given subsets of other variables. It has been comprehensively presented and 
evaluated by (Kalisch and Buhlmann, 2007) who proposed it also for gene network 
reconstruction purposes (Maathuis et al., 2010). For this task, some modifications of the 
original formulation of the PC were also proposed (Tan et al., 2008, 2011; Wang et al., 2010; 
Zhang et al., 2012). Other methods used for gene network reconstruction comprises: the 
Algorithm for the Reconstruction of Accurate Cellular NEtworks (ARACNE (Margolin et al., 
2006a, 2006b)), the Bayesian Network inference with Java Objects (BANJO (Hartemink, 
2005)), and Network Inference by Reverse-engineering (NIR (Gardner et al., 2003)). Allen 
and colleagues (Allen et al., 2012) have recently compared ARACNE with other competitors 
in the task of large scale networks reconstruction and ARACNE proved to be a state-of-the-
art method. 
The task of gene network expansion is different and somehow more computationally 
demanding than performing a pure gene network reconstruction (Marbach et al., 2012). A 
gene network reconstruction task should be performed genome-wide with a considerable 
accuracy. In this case, it will be in principle possible to use the same results for deriving the 
expansion of a given subnetwork. The available reconstruction methods, when applied to 
genome-wide data, are computationally demanding and, as we will see here, not accurate 
enough for using the results to perform an expansion task. The gene network expansion task 
start with a Local Gene Network (LGN) of an organism that is a subset of genes known to be 
causally connected. We can informally define the gene network expansion as: given a LGN, 
find other candidate genes that are causally connected with the LGN. 
In this paper, we explicitly define the task of finding candidates for gene network expansion 
and we propose a novel method that we called Network Expansion by Subsetting and 
Ranking Aggregation (NESRA). NESRA is based on the PC algorithm that we run on our 
gene@home project, developed on the BOINC platform (Anderson, 2004). We evaluate 
NESRA on real data of the model plant Arabidopsis thaliana. 
The paper is organized as follows: in Section II we detailed both the TN-Grid platform and 
the gene@home project based on volunteer distributed computing and then Section III 
introduces the main ideas of our approach. Section IV presents the NESRA algorithm, 
whose evaluation is described in Section V. Finally, Section VI draws some conclusions 
providing future insights for the gene@home project and the proposed methods. 

6.2.2 TN-Grid and the gene@home BOINC project 
TN-Grid22 is a BOINC server installation that has been thought and developed as an 
umbrella project, a service platform to give to local research groups a guided access to the 
power of the world-wide, volunteer-based, distributed BOINC (Anderson, 2004) computing 
network. TN-Grid is the result of a joint effort made by two institutions of the Italian National 
Research Council (CNR), namely the Institute of Materials for Electronics and Magnetism 
(IMEM) and the Institute of Cognitive Sciences and Technologies (ISTC), both having local 
branches in Trento, Italy. At the time of writing, TN-Grid is the only public, BOINC-based 
active project in Italy. 
                                                
22 http://gene.disi.unitn.it/test/ 

https://paperpile.com/c/E1Jhss/FOZg
https://paperpile.com/c/E1Jhss/ISu9
https://paperpile.com/c/E1Jhss/WMt8
https://paperpile.com/c/E1Jhss/3E84
https://paperpile.com/c/E1Jhss/NZIJ+qf8q+P7tB+8sQI
https://paperpile.com/c/E1Jhss/NZIJ+qf8q+P7tB+8sQI
https://paperpile.com/c/E1Jhss/LhbH+oFM1
https://paperpile.com/c/E1Jhss/LhbH+oFM1
https://paperpile.com/c/E1Jhss/i14M
https://paperpile.com/c/E1Jhss/i14M
https://paperpile.com/c/E1Jhss/nQrY
https://paperpile.com/c/E1Jhss/lNp3
https://paperpile.com/c/E1Jhss/FpXO
https://paperpile.com/c/E1Jhss/X2ir
https://paperpile.com/c/E1Jhss/X2ir
http://gene.disi.unitn.it/test/
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The gene@home project is the first one hosted in the TN-Grid framework. It started as a 
collaboration between the Edmund Mach Foundation (FEM) and the Department of 
Information Engineering and Computer Science (DISI) of the University of Trento, Italy. The 
actual development of the gene@home project began as a course project in the academic 
year 2013/2014 during the Laboratory of Biological Data Mining course at the University of 
Trento, Italy. Gene@home is a distributed computational biology project based on the 
computation of the PC algorithm for the Gene Network Expansion task. The final goal of the 
project is the possibility to automatically perform Gene Network Expansion tasks on demand. 
After having setup our BOINC server, we coded several scripts to customize it accordingly to 
the needs of our project. In particular, we designed and developed the work generator using 
Python. BOINC APIs however, are available only through C++ libraries. For this reason, we 
implemented two C++ programs that wrap the necessary BOINC functions for the work 
generator. Our work generator is also responsible for the creation of the workunits that are 
then distributed to the volunteers. Each workunit is a composition of several PC executions. 
Because of this, the work generator has to predict the duration of each workunit. The 
duration of a workunit is not related to the execution time of a single PC run, its input data, or 
its parameters. So far, we are using a function that we obtained from a regression analysis 
on several workunits. However, as soon as we change the organism, the LGN, or the input 
data, we should redo such analysis. To solve this issue we plan to develop a benchmarking 
system able to evaluate the duration of a workunit, making the estimates of the work 
generator more precise. 
One of the most relevant parts of our implementation is the client application. The client 
application has been developed to be portable on a number of different architectures (32 
and 64 bit) and operating systems (Linux, Windows, and Mac OS). Our client application is a 
C++ implementation of the skeleton function (Algorithm 1), functionally equivalent to the 
one present in the pcalg R package (Hauser and Bühlmann, 2012; Kalisch et al., 2012). The 
choice of implementing the PC algorithm in C++ led to a speed-up of 240 times in the 
execution, together with a reduced memory consumption of about 10 times, when compared 
to the original version present in the R package. During the implementation and testing of 
the initial version of the gene@home project, we had to face several issues, mainly related 
to the characteristics of our project. One of them, in particular, is the amount of data that 
needs to be exchanged between the server and the users. We solved this problem with the 
help of the BOINC core developers that implemented the possibility of compressing the data 
during the upload and download phases. Subsequently, we optimized our implementation to 
further reduce the amount of data exchanged. When using a volunteer distributed system, 
one should be concerned about the validity of the results returned by the volunteers. On the 
gene@home server, we perform a validation step on the returned workunits, available in all 
BOINC systems. Because of the nature of our project, we were not able to find a self-
validation method to confirm a result of a single workunit. For this reason, we are currently 
using a double validation method that consists of sending each workunit to two different 
volunteers. We then required the returned results to be equal bit-wise. 
A first step of the processing of the results is implemented in the client application. Just 
before a workunit finishes, a first aggregation of the results of the workunit is performed. This 
was also necessary in order to dramatically reduce the size of the output file that the 
volunteers need to upload in the gene@home server. The results collected with the 
gene@home project undergo further offline processing developed into a pipeline of Python 
and R scripts, that complete the analysis of the partial results of each workunit. 

https://paperpile.com/c/E1Jhss/WOJu+CQ99
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In Table I, we present some statistical results of the BOINC server collected in 5 different 
periods of time. It is worth to note the high percentage values of successfully computed 
workunits, as well as the very low number of workunits that reported an error. 
 
Table I: BOINC statistics of the gene@home project taken on four different days during the 
year 2014 and one time point in the year 2015 (reference period: the previous seven days). 
Date is represented as “dd/mm/yy”. Over: the total number of returned results, Success: 
successfully computed, Valid: validated results, Initial: pending validation, and Error: faulty 
results. The percentages are relative to the total number of returned results (column Over). 

Date Over Success Valid Initial Error 

22/04/14 15543 15392 (99.0%) 15340 (98.7%) 19 85 (0.005%) 

20/05/14 69536 68621 (98.7%) 67096 (97.7%) 1450 89 (0.001%) 

16/12/14 33232 31798 (96.2%) 29525 (88.8%) 2147 38 (0.001%) 

24/12/14 91315 89536 (98.1%) 87584 (95.9%) 1716 61 (0.0007%) 

27/03/15 32062 30598 (95.4%) 29525 (92.1%) 865 34 (0.001%) 

 
Algorithm 1: NESRA. 

Data: S set of candidate transcripts, SLGN set of LGN transcripts, E expression data 
Input: I set of values of number of iterations, D set of values of the subset dimension, A set of values 
of the significance level α, k maximum length of the lists 
Result: ordered list of candidate transcripts 
 
L ←  ∅;  // L set of ordered lists 
foreach α ∈ A do 
    foreach d ∈ D do 
        foreach i ∈ I do 
            L ← L ∪ RP(S, SLGN, E, i, d, α)  // call Algorithm 2 
L ← top(L, k)  // cut each list in L to the first k elements 
return Ranking_aggregation(L); 

6.2.3 Gene Network Expansion 
Given a set 𝑆𝑆 of gene transcripts whose level of expression has been measured 𝑝𝑝 times in 
different conditions, such that for each 𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆 there is a vector 𝑥𝑥𝑖𝑖 ∈ ℝ𝑝𝑝 of expression levels, 
and let us assume that there exists a golden truth directed graph 𝓖𝓖= (𝓢𝓢, 𝓑𝓑) with 𝓑𝓑⊂𝓢𝓢×𝓢𝓢 
that represents the real causal relationships between the gene transcripts, it is possible to 
define the following tasks. 

Task 1, Gene Network reconstruction. Given a subset of transcripts 𝑁𝑁 ⊆ 𝑆𝑆, find a 
(direct) graph 𝐺𝐺 = (𝑁𝑁, 𝐵𝐵) where 𝐵𝐵 ⊂ 𝑁𝑁 × 𝑁𝑁 is a relation between the elements of 𝑁𝑁, 
and 𝐺𝐺 approximates the subgraph in 𝓖𝓖 obtained considering just the transcripts in 𝑁𝑁. 
Task 2, Gene Network expansion. Given a graph 𝐺𝐺 = (𝑁𝑁, 𝐵𝐵) where 𝑁𝑁 ⊆ 𝑆𝑆and 𝐵𝐵 ⊂
𝑁𝑁 × 𝑁𝑁 is a causal relation between the elements of 𝑁𝑁, find a graph 𝐺𝐺ʹ = (𝑁𝑁ʹ, 𝐵𝐵ʹ) such 
that 𝑁𝑁ʹ is a superset of 𝑁𝑁, 𝐵𝐵ʹ is a superset of 𝐵𝐵, and 𝐺𝐺ʹ approximates the subgraph 𝓖𝓖 
obtained considering just 𝑁𝑁ʹ. 



 
 
 
 
A phylogenetic framework for large-scale analysis of microbial communities  137 

 
Task 3, Discovering candidate genes for Gene Network expansion. Given a graph 
𝐺𝐺 = (𝑁𝑁, 𝐵𝐵) where 𝑁𝑁 is a subset of the transcripts of 𝑆𝑆 and 𝐵𝐵 ⊂ 𝑁𝑁 × 𝑁𝑁 is a relation 
between the elements of 𝑁𝑁, find a ranked list of elements of 𝑆𝑆 ∖ 𝑁𝑁 such that the 
elements of the list are connected or very near to the elements of 𝑁𝑁 in 𝓖𝓖. 

In this paper, we will consider Task 3, motivated by the fact that in biological research the 
work is often guided by prior knowledge about the relevance of some genes. Moreover, a 
high-quality candidate short list would suffice because the actual validation of the possible 
interactions requires a complex mix of analytical and wet-lab techniques. It is worth to note 
that a perfect solution for Task 1 encompassing the whole genome would perfectly solve 
also Task 2 and Task 3, for all the possible networks. In the same way a perfect solution for 
Task 2 for a specific network would solve also Task 3. However, the state-of-the-art methods 
are far from perfect and a good solution for Task 3, in terms of precision of the candidate 
lists would be useful whenever the whole network and the interactions are still not known, 
and moreover Task 1 and Task 2 are not solved yet. 

6.2.4 NESRA 
The general approach used by NESRA is to systematically and iteratively apply subsetting 
on the whole dataset, in order to compute several ranked lists with varying iterated 
subsetting parameters. The lists are then aggregated by means of a ranking aggregator. The 
high-level structure of NESRA is described in Algorithm 1. NESRA calls the ranking 
procedure (RP, Algorithm 2) many times with different parameters producing several 
rankings that are then inputted to the ranking aggregation method for producing a final list. 
The ranking procedure has three steps, which respectively create the subsets (Step 1), 
execute several calls (Step 2) of the skeleton procedure of the PC algorithm (Algorithm 3) 
that processes the expression data of different subsets of the overall transcripts, and finally, 
compute the transcripts frequency that defines the order of each ranking (Step 3). The 
ranking procedure takes as parameters the number of iterations i and the dimension of the 
subset t as well as the significance level α for the PC algorithm. The computational cost of 
the PC algorithm is exponential in the number of nodes, but it behaves reasonably in the 
case of sparse networks (Maathuis et al., 2010). Is therefore important to use relatively small 
values of t. The ranking procedure is partially computed on the BOINC platform with the 
exception of the frequencies calculation and the rankings aggregation, which are executed 
outside BOINC. 

6.2.4.1 Variable Subsetting 

Subsetting is a computational practice that has been used in many domains including 
recently genomics (Peternelli and Rosa). It consists in the selection from the data available a 
subset of it, to be processed by the successive steps of the analysis. The idea in itself is not 
new and it can be found, with different names, in the very core of techniques, such as 
bootstrapping or subsampling like in bagging (Breiman, 1996) or singling-out features like in 
random forest (Breiman, 2001) or in feature selection itself. We prefer here to call it 
subsetting for the sake of clarity because we will specifically focus on variable subsetting, 
namely different subsets of the variables will be used for gene network reconstruction using 
the PC algorithm. We avoid to call it subsampling because subsampling does not affect the 
presence of a variable but select the samples of the variable. On the other hand, we do not 
call it feature selection because, in this setting the gene is not a feature that describes 

https://paperpile.com/c/E1Jhss/3E84
https://paperpile.com/c/E1Jhss/MnJ3
https://paperpile.com/c/E1Jhss/VuYr
https://paperpile.com/c/E1Jhss/Gy8E
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something, nor variable selection because we do not select variables in any way that is not 
purely random. 
In NESRA, subsetting is applied to genes that have to be selected for the application of the 
PC algorithm. The subsetting is iterated and systematic, controlled by two parameters 
(iterations and tile size) that vary. From the results of these executions we compute a ranked 
list of genes for each pair of parameters values. Finally, we provide as a final result the 
aggregation of the ranked lists. 

6.2.4.2 Aggregation of ranked lists 

The method that we propose as a solution for the problem formulated in Task 3, NESRA, 
exploits variable subsetting on top of ranking aggregation. 
We applied different ranking aggregation methods on the ranked lists. These methods are a 
simple technique, called the number of appearances, and less simple methods, namely 
Borda Count (Borda, 1781) and MC4 heuristic (Dwork et al., 2001; Lin, 2010). The baseline 
method that we considered is the number of appearances that counts how many rankings a 
certain gene is present in, i.e. the more a gene is present, the higher its position in the 
aggregated rank. The Borda Count method consists in constructing a matrix whose elements 
𝑏𝑏𝑖𝑖𝑖𝑖 are for each gene 𝑠𝑠𝑖𝑖 and ranking 𝑟𝑟𝑗𝑗 the rank of the gene 𝑠𝑠𝑖𝑖 in the ranking 𝑟𝑟𝑗𝑗. After that a 
statistic for every gene is computed on the rows of the matrix. The two statistical measures 
that we considered are the mean (BC-mean) and the minimum (BC-min) of the elements. 
MC4 heuristic is an aggregator based on Markov chains and it consists in computing a 
transition matrix such that the steady state of the chain assigns a higher probability to the 
elements with higher rank. MC4 has as parameter the significance level 𝛼𝛼𝑀𝑀𝑀𝑀4. 
 
Algorithm 2: NESRA ranking procedure (RP). 

Data: S set of candidate transcripts, SLGN set of LGN transcripts, E expression data 
Input: i≥1 number of iterations, t subset dimension, α significance level 
Result: l, ordered list of candidate transcripts 
 
N ← |S|; 
n ← |SLGN|; 
L ← ∅; 
foreach g ∈ S do 
    pg = i; 
    fg = 0; 
foreach j, 1 ≤ j ≤ i do  // Step 1: tiles creation 
    Stemp ← S; 
    foreach h, 1 ≤ h ≤ floor(N/t) do 
        while |Th,j| < t do 
            random select g ∈ Stemp; 
            Th,j ← Th,j ∪ {g}; 
            Stemp ← Stemp ∖ {g}; 
    if remainder(N/t) ≠ 0 then 
        h ← floor(N/t); 
        while Stemp ≠ ∅ do 
            random select g ∈ Stemp; 
            Th+1,j ← Th+1,j ∪ {g}; 
            Stemp ← Stemp ∖ {g}; 
        while |Th+1,j| < t do 

https://paperpile.com/c/E1Jhss/7NDQ
https://paperpile.com/c/E1Jhss/WeEd+H94p
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            random select g ∈ S ∖ Th+1,j; 
            Th+1,j ← Th+1,j ∪ {g}; 
            pg ← pg + 1; 
foreach j, 1 ≤ j ≤ i do  // Step 2: PC application 
    foreach h, 1 ≤ h ≤ ceil(N/t) do 
        Nh,j = PC(Th,j, E, α)  // call Algo 3 
foreach g ∈ S do  // Step 3: Transcripts frequency computation 
    foreach q ∈ SLGN do 
        foreach j, 1 ≤ j ≤ i do 
            foreach h, 1 ≤ h ≤ ceil(N/t) do 
                if g ∈ AdjNh,j(q) then  // adjacent nodes of q in Nh,j 
                    l ← l ∪ {g}; 
                    fg ← fg + 1; 
    f'g = fg / (pg * n)  // Normalized frequency 
} 
return l ordered w.r.t. f'g; 

6.2.4.3 The use of the gene@home project 

NESRA exploits the gene@home project for computing the first two steps of the Algorithm 
2. In details, the tiles creation (Step 1) is implemented in the work generator of the 
gene@home, while the application of the PC (Step 2) is implemented in the client 
application, running on the volunteer computers. A first aggregation of the results is then 
performed on the volunteer’s computers, just before the workunit finishes. The complete 
processing of the results is then performed offline and outside BOINC by means of Python 
and R scripts. 
 
Algorithm 3: PC Algorithm: skeleton procedure (Kalisch and Buhlmann, 2007). 

Data: T, Set of transcripts, E expression data 
Input: Significance level α 
Result: An undirected graph with causal relationship between transcripts Graph 
G ← complete undirected graph with nodes in T; 
l ← −1; 
while l < |G| do 
    l ← l + 1; 
    foreach ∃ u,v ∈ G s.t. |AdjG(u)\{v}| ≥ l do // AdjG(u) adjacent nodes of u in G 
        if v ∈ AdjG(u) then 
            foreach A ⊆ AdjG(u)\{v} s.t. |A| = l do 
                if u,v are conditionally independent given A w.r.t. E with significance level 
α then 
                    remove edge {u,v} from G; 
return G; 

6.2.5 Evaluation of NESRA on Arabidopsis thaliana 

In our evaluation of NESRA, we used the Flower Organ Specification Gene Regulatory 
Network (FOS) of the model plant Arabidopsis thaliana. The FOS gene network has been 
characterized and validated in vivo by the use of specific mutants (Espinosa-Soto et al., 
2004), and it encompasses 15 genes (AT3G02310.1, AT1G69120, AT5G61850, 
AT1G30950, AT1G65480, AT5G15800, AT5G-60910, AT5G20240, AT4G36920, 
AT3G54340, AT2G17950, AT1G24260, AT5G11530, AT4G18960, AT5G03840.1) linked by 
54 causal relationships (Sánchez-Corrales et al., 2010). Gene Expression Data for testing 

https://paperpile.com/c/E1Jhss/WMt8
https://paperpile.com/c/E1Jhss/QMsn
https://paperpile.com/c/E1Jhss/QMsn
https://paperpile.com/c/E1Jhss/WbHA
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the algorithms were selected from the A. thaliana microarray expression data publicly 
available in the Plex database (Dash et al., 2012). The dataset consists of 393 hybridization 
experiments of the GeneChip Arabidopsis ATH1 Genome Array that contains 22,810 probe 
sets. 
NESRA was run on the A. thaliana data as well as three competitors: PC, PC*, and 
ARACNE. The quality of the output list of NESRA and of the competitors was assessed by 
comparison with the available literature. A bibliographic search and classification of the 
genes provided in output by NESRA and by the competitors led to four classes: Class 1: 
genes reported to be biologically or functionally related to the LGN; Class 2: genes not 
reported to be directly related with the input network, but reported to be related with genes of 
Class 1; Class 3: genes described in literature, but reported not to be related with the input 
network or with the genes of Class 1; Class 4: genes not described in the available literature. 
A gene falling in Class 1 or Class 2 is considered to be a true positive and a gene in Class 3 
or Class 4 a false positive. Precision is defined as the ratio between the number of true 
positives and the sum of true positives and false positives. 
PC, PC*, and ARACNE solve the task of gene network reconstruction. For obtaining list of 
candidate genes for the expansion we considered all the genes that are connected to FOS 
genes in the resulting overall network. ARACNE was run with default parameters and the list 
was ranked according to the p-values that ARACNE itself provides. The PC algorithm was 
repeated 20 times shuffling the order of the input probe sets, given its dependency on the 
order. The results of the PC and PC* are reported in Table II, note that PC had a mean 
length of the list of 54.2 and so we took 55 as a cut-off for ARACNE and NESRA for sake of 
comparison. PC* found 44 genes, and since it is order independent we could not retrieve a 
result with 55 probes. We reported the result of ARACNE in Table IV because we used the 
p-values to evaluate the list at different cut-off values. 
For NESRA we tried five different ranking aggregators: one based on the number of 
appearances in the 55-long lists used as baseline, two based on Borda Counts, BC-mean 
and BC-min, and then two based on MC4 with two significance level values: 𝛼𝛼𝑀𝑀𝑀𝑀4 = 0.05 
and 𝛼𝛼𝑀𝑀𝑀𝑀4 = 0.01. 
The sets of parameters 𝐼𝐼, 𝐷𝐷, and 𝐴𝐴 (see Algorithm 1) used by NESRA for numbers of 
iterations, subset dimensions, and the significance level are: 𝐼𝐼 =
{100,250,500,1000,1500,2000}, 𝐷𝐷 = {50,100,250,500,750,1000,1250,1500,1750,2000}, 
and 𝐴𝐴 = {0.05}, respectively. An example of the output list of a run of NESRA is shown in 
Table III, where we aggregated 60 different rankings. In order to assess the stability of 
NESRA we selected 6 combination of parameters, and for each of them we repeated the 
procedure 30 times. Mean and standard deviations of the results are presented in Table IV. 
MC4 and BC-mean present in general very good results. BC-min instead, gives more 
variable outputs, sometimes showing better results (𝑘𝑘 = 5), but in other cases behaving as 
the baseline method (𝑘𝑘 = 20 or 𝑘𝑘 = 55). The results in Table IV show also that, regardless 
of the aggregation method used, NESRA find more correct genes (genes belonging to either 
Class 1 or Class 2) in the first 20 positions (𝑘𝑘 = 5,10,20) compared to ARACNE. ARACNE 
instead, finds an appreciable amount of correct genes only when considering a longer list 
(𝑘𝑘 = 55). We performed a t-test between the results of NESRA and the result of the PC, at 
𝑘𝑘 = 55. The results of the t-test suggest that NESRA have better performances almost for 
every aggregator considered. 
 

https://paperpile.com/c/E1Jhss/MxMf
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Table II: A. thaliana, FOS network. Lists length and precision of the competitors, PC and 
PC*. PC values are mean and standard deviation of the 20 runs. 

 Lists Length Precision 

PC, 20 runs 54.20 ± 1.28 0.39 ± 0.03 

PC* 44 0.43 

 
Table III: A. thaliana, FOS network. Example of output list of NESRA with ranking 
aggregation method MC4 with 𝛼𝛼𝑀𝑀𝑀𝑀4 = 0.01 with precision 0.90 with 𝑘𝑘 = 5 and 0.80 with 𝑘𝑘 =
10. 

Rank AffyID Gene Annotation Class 

1 259089_at AT3G04960 similar to unknown protein Class 1 (Lee et al., 
2005) 

2 255644_at AT4G00870 basic helix-loop-helix (bHLH) family 
protein 

Class 2 (Hu et al., 
2003) 

3 265441_at AT2G20870 cell wall protein precursor Class1 (Cai et al., 
2007) 

4 267528_at AT2G45650 AGL6 (AGAMOUS LIKE-6) Class 1 (Yoo et al., 
2011) 

5.5 245571_at AT4G14695 unknown protein Class 4 

5.5 249939_at AT5G22430 similar to unknown protein Class 1 (Zik and 
Irish, 2003) 

7 245842_at AT1G58430 RXF26 Class 1 (Shi et al., 
2011) 

8 248496_at AT5G50790 ATSWEET10 Class 3 (Chen et al., 
2012) 

9 264180_at AT1G02190 CER1 protein Class 1 (Gómez-
Mena et al., 2005) 

10 261375_at AT1G53160 SPL4 (SQUAMOSA PROMOTER 
BINDING PROTEIN-LIKE 4) 

Class 1 (Lal et al., 
2011) 

 
Table IV: A. thaliana, FOS network. NESRA precision (mean and standard deviation) on 30 
different runs with: values of iterations 𝐼𝐼ʹ = {100,500,2000} and subset dimensions 𝐷𝐷ʹ =
{1000,2000}. 

Aggregation Method k=5 k=10 k=20 k=55 

N of appearances 0.54 ± 0.054 0.54 ± 0.054 0.53 ± 0.060 0.42 ± 0.015 

BC-mean 0.90 ± 0.098 0.65 ± 0.049 0.63 ± 0.038 0.43 ± 0.016 

https://paperpile.com/c/E1Jhss/hF6k
https://paperpile.com/c/E1Jhss/hF6k
https://paperpile.com/c/E1Jhss/t1y7
https://paperpile.com/c/E1Jhss/t1y7
https://paperpile.com/c/E1Jhss/pYPp
https://paperpile.com/c/E1Jhss/pYPp
https://paperpile.com/c/E1Jhss/XWrr
https://paperpile.com/c/E1Jhss/XWrr
https://paperpile.com/c/E1Jhss/2lxF
https://paperpile.com/c/E1Jhss/2lxF
https://paperpile.com/c/E1Jhss/4kzg
https://paperpile.com/c/E1Jhss/4kzg
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BC-min 0.86 ± 0.098 0.68 ± 0.038 0.60 ± 0.053 0.43 ± 0.021 

MC4 (aMC4 = 0.05) 0.88 ± 0.098 0.65 ± 0.049 0.63 ± 0.038 0.42 ± 0.012 

MC4 (aMC4 = 0.01) 0.88 ± 0.098 0.65 ± 0.049 0.63 ± 0.038 0.42 ± 0.012 

ARACNE 0.20 0.30 0.35 0.45 

 

6.2.6 Conclusions 
We have presented the TN-Grid platform that hosts the gene@home BOINC project. In 
particular, the gene@home project has been developed with the idea of automatically 
perform the Gene Network Expansion task. The gene@home project, so far, is running only 
on the CPUs of the volunteers’ computers. As a future improvement of gene@home, we 
developed and tested a parallel version of PC* for execution on Graphics Processing Units 
(GPUs). The choice of implementing PC* instead of PC is due to its independence with 
respect to the order of the input. 
We also presented NESRA that is a new method that exploits variable subsetting and 
ranking aggregation to find candidate genes for the expansion of gene networks. The 
method relies on the BOINC platform for running the PC algorithm while all the post-
processing, ranking and aggregation analyses, are performed offline. The evaluation on the 
FOS gene network of the model plant Arabidopsis thaliana shows good results, and when 
the results are compared to the biological literature, NESRA outperforms the competitors. In 
general, NESRA can be used to find candidate variables that are causally connected to 
other variables and it has proved to work with more than 20,000 variables. We foresee the 
application of NESRA also in other biological domains. 
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6.3. NES2RA: Network expansion by stratified variable subsetting and ranking 
aggregation 
The NESRA algorithm is the first one we developed and we implemented on the 
gene@home BOINC project. Thanks also to the support of the volunteers, we were indeed 
able to derive other two gene network expansion algorithms, namely NES2RA (introduced in 
this section) and OneGenE (introduced in Section 6.4). The NES2RA algorithm is an 
improved version of the NESRA algorithm that includes some a priori information, 
specifically, it allows to model the degree of confidence of the user about the presence of 
each gene in the local gene network to be expanded. 

Asnicar F, Masera L, Coller E, Gallo C, Sella N, Tolio T, Morettin P, Erculiani L, Galante F, 
Semeniuta S, Malacarne G, Engelen K, Argentini A, Cavecchia V, Moser C, and Blanzieri E 
NES2RA: Network expansion by stratified variable subsetting and ranking aggregation 
The International Journal of High Performance Computing Applications, 32(3), 380-392 
(2016) 
 
Abstract ‐ Gene network expansion is a task of the foremost importance in computational 
biology. Gene network expansion aims at finding new genes to expand a given known gene 
network. To this end, we developed gene@home, a BOINC-based project that finds 
candidate genes that expand known local gene networks using NESRA. In this paper, we 
present NES2RA, a novel approach that extends and improves NESRA by modeling, using a 
probability vector, the confidence of the presence of the genes belonging to the local gene 
network. NES2RA adopts intensive variable-subsetting strategies, enabled by the 
computational power provided by gene@home volunteers. In particular, we use the skeleton 
procedure of the PC-algorithm to discover candidate causal relationships within each subset 
of variables. Finally, we use state-of-the-art aggregators to combine the results into a single 
ranked candidate genes list. The resulting ranking guides the discovery of unknown relations 
between genes and a priori known local gene networks. Our experimental results show that 
NES2RA outperforms the PC-algorithm and its order-independent PC-stable version, 
ARACNE, and our previous approach, NESRA. In this paper we extensively discuss the 
computational aspects of the NES2RA approach and we also present and validate 
expansions performed on the model plant Arabidopsis thaliana and the model bacteria 
Escherichia coli. 

6.4. OneGenE: Regulatory Gene Network Expansion via Distributed Volunteer 
Computing on BOINC 
The OneGenE expansion algorithm leverages the possibility of pre-computing all the single 
gene expansions of an organism by exploiting the large computational resources available 
through the gene@home BOINC project. The idea is that all the single gene expansions are 
dynamically aggregated off-line and at run-time, depending on the set of genes of interest by 
the user. 

Asnicar F*, Masera L*, Pistore D, Valentini S, Cavecchia V, and Blanzieri E (* equal 
contribution) 
OneGenE: Regulatory Gene Network Expansion via Distributed Volunteer Computing 
on BOINC 
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Accepted paper at 27th Euromicro International Conference on Parallel, Distributed and 
Network-Based Processing (2019) 
 
Abstract ‐ Gene regulatory network expansion is a task of the foremost importance in 
computational biology that aims at finding new genes to expand a given known gene 
regulatory network. To this end, we present OneGenE, a novel framework for gene 
regulatory network expansion that relies on the BOINC platform. OneGenE is an evolution of 
the NES2RA algorithm, with the aim to overcome its main criticality, i.e. long response time 
for the final user. To achieve this goal, candidate expansion lists are pre-computed for each 
gene in the organism and then aggregated at runtime to produce the final expansion list for a 
given known gene regulatory network. We validated OneGenE on the expression data of 
Pseudomonas aeruginosa, comparing its results with the one obtained by NES2RA and 
through a biological literature review. 
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7. Conclusions 
Reconstruction of very large-scale and strain-level phylogenies are of the foremost 
importance for characterizing previously unseen species. However, large-scale phylogeny 
reconstruction is now based on tens of thousands of genomes and requires to use hundreds 
of marker genes to retrieve accurate phylogenetic signal. These two dimensionality 
challenges are dictating the need for new computational phylogenetic approaches able to 
scale-up in dimensionality while maintaining high reconstruction precision. It is indeed more 
and more clear that microbial diversity has to be analyzed at the level of single strains, and it 
is thus necessary to maintain within-species diversity resolution when elucidating potential 
biological patterns in a phylogenetic analysis. 

To overcome these challenges and empower metagenomics with the methodologies 
developed for single isolate sequencing, in this thesis I presented and applied a novel 
framework for accurate large-scale phylogenetic analysis, able to deal with strain-level and 
tree-of-life size phylogenies, and with the aim of characterizing novel microbial genomes 
reconstructed form metagenomes. 

In the first part of this thesis, I focused on methodological advances to enable deeper 
phylogenetic analyses: 

1. GraPhlAn, presented in Chapter 2, is a tool for high-quality visualization of both 
hierarchical and phylogenetic trees that can guide explorative analysis through 
visualization thanks to the ability to display several relevant quantitative non-
phylogenetic data; 

2. PhyloPhlAn 2, presented in Chapter 3, is the automatic, customizable, and flexible 
pipeline for accurate large-scale phylogeny reconstruction that can be fundamental 
for the characterization of previously unseen genomes from metagenomic assembly;  

3. The approach for strain-tracking across microbiomes, presented in Chapter 4, is a 
methodological contribution on how phylogenetics on metagenomic data can be used 
to perform tasks of great biological relevance, such as the detection of microbial 
members vertically transmitted from mothers to their infants. 

In the second part of the thesis (Chapter 5), I presented several works where the tools from 
Chapter 2, 3, and 4 were applied and played an important role in the analysis. The panel of 
works ranges from the large-scale study of vertically transmitted novel species reconstructed 
from metagenomes (Section 5.1, (Ferretti et al., 2018)) to building the largest reference 
microbial phylogeny with the main aim to improve phylogeny-aware tools (Section 5.2). The 
phylogenetic analysis of microbiomes of colorectal cancer patients allowed the identification 
of four variants of the cutC gene, with some of its variant significantly associated with 
carcinoma samples (Section 5.3). A similar phylogenetic analysis allowed to characterize 
unknown metagenomically reconstructed skin-associated organisms in both unaffected and 
psoriatic lesions (Section 5.4, (Tett et al., 2017)). The reconstruction of the Neisseriaceae 
family phylogeny allowed to study the correlation of the Neisseriaceae species with short 
and highly-repeated DNA sequences (Section 5.5, (Donati et al., 2016)). We moreover 
uncovered the within-species diversity of Eubacterium rectale by phylogenetically 
characterizing over 1,300 newly metagenomically reconstructed genomes, detecting four 
subspecies strongly associated with geography (Section 5.6). Finally, with the phylogenetic 
characterization of the largest metagenomic assembly and binning effort to date (Section 

https://paperpile.com/c/E1Jhss/k5um
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5.7, (Pasolli et al., 2019)) we unraveled extensive unexplored human microbiome diversity 
and characterized known and unknown species. 

In Chapter 6 I introduced and presented a second line of research I started during my M.Sc. 
degree and continued during my doctoral studies, whose aim is the application of 
computational and statistical approaches for the discovery of novel gene interactions within 
known gene networks (Asnicar et al., 2015b, 2015c, 2016, 2019), based on the distributed 
and volunteer-based computational framework BOINC (Anderson, 2004). 

The work presented in this thesis represents a contribution to the computational 
metagenomics and computational phylogenetics fields, by proposing a novel phylogenetic 
framework that allows both the high-quality visualization and the reconstruction of large-
scale phylogenies. The framework has been extensively used in different contexts to fill the 
gap of the application of phylogenetic analysis to metagenomics. 

To increase the accuracy in building very large phylogenies, novel sets of phylogenetic 
marker genes able to capture the diversity at different taxonomic levels are needed. The 
continuously increasing sequencing of novel genomes and the reconstruction of genomes 
from metagenomes will allow the discovery of new and robust phylogenetic markers. This, in 
turn, will allow us to characterize an enormous previously unexplored microbial diversity and 
expand the catalog of known organisms.  

https://paperpile.com/c/E1Jhss/7KH3
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8. Appendix 

8.1 Other Works 
In this chapter, I report the other research works I was involved in during my doctoral studies 
and that I did not include in the main discussion of the thesis. For these works, I report the 
citation of the article and its abstract. 

Nigro E*, Mazzoni C*, Alvari G, Baldi G, Calia G, Cantore T, Ciciani M, Dalfovo D, Fabbri L, 
Flor S, Golzato D, Lattanzi C, Marangoni S, Marianini G, Minardi G, Piccinno R, Pirrotta S, 
Tebaldi M, Tonazzolli A, Vannuccini F, Manara S, Zolfo M, Karcher N, Asnicar F, Tett A^, 
Edoardo Pasolli E^, Segata N^ (* equal contribution, ^ co-senior authors) 
Draft genome sequence of the new species “Candidatus Cibiobacter qucibialis” 
metagenomically assembled from the human gut microbiome 
Currently in revision at Microbiology Resource Announcements 

Abstract ‐ We report the metagenomically-assembled draft genome of a human intestinal 
strain representing a previously unknown species we name “Candidatus Cibiobacter 
qucibialis”. The new species is phylogenetically placed between Ruminococcus and 
Faecalibacterium and it should be considered a relevant member of the human gut 
microbiome. 
 
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet C, Al-Ghalith GA, Alexander H, Alm 
EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Titus 
Brown C, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope E, Da Silva R, Dorrestein 
PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, 
Gauglitz JM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, 
Huttenhower C, Huttley G, Janssen S, Jarmusch AK, Jiang L, Kaehler B, Kang KB, Keefe 
CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley 
R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, 
Melnik AV, Metcalf JL, Morgan SC, Morton J, Naimey AT, Navas-Molina JA, Nothias LF, 
Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, 
Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, 
Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-
Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, 
Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, 
Zaneveld JR, Zhang Y, Zhu Q, Knight R, and Caporaso JG 
QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science 
Currently in revision at Nature Biotechnology, PeerJ Preprint available 

Abstract ‐ We present QIIME 2, an open-source microbiome data science platform 
accessible to users spanning the microbiome research ecosystem, from scientists and 
engineers to clinicians and policymakers. QIIME 2 provides new features that will drive the 
next generation of microbiome research. These include interactive spatial and temporal 
analysis and visualization tools, support for metabolomics and shotgun metagenomics 
analysis, and automated data provenance tracking to ensure reproducible, transparent 
microbiome data science. 
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Pedron R*, Esposito A*, Bianconi I, Pasolli E, Tett A, Asnicar F, Cristofolini M, Segata N, and 
Jousson O (* equal contribution) 
Genomic and metagenomic insights into the microbial community of a thermal spring 
Microbiome (2019) 

Abstract ‐ Background. Water springs provide important ecosystem services including 
drinking water supply, recreation, and balneotherapy, but their microbial communities remain 
largely unknown. In this study, we characterized the spring water microbiome of Comano 
Terme (Italy) at four sampling points of the thermal spa, including natural (spring and well) 
and human-built (storage tank, bathtubs) environments. We integrated large-scale culturing 
and metagenomic approaches, with the aim of comprehensively determining the spring 
water taxonomic composition and functional potential. Results. The groundwater feeding the 
spring hosted the most atypical microbiome, including many taxa known to be recalcitrant to 
cultivation. The core microbiome included the orders Sphingomonadales, Rhizobiales, and 
Caulobacterales, and the families Bradyrhizobiaceae and Moraxellaceae. A comparative 
genomic analysis of 72 isolates and 30 metagenome-assembled genomes (MAGs) revealed 
that most isolates and MAGs belonged to new species or higher taxonomic ranks widely 
distributed in the microbial tree of life. Average nucleotide identity (ANI) values calculated for 
each isolated or assembled genome showed that 10 genomes belonged to known bacterial 
species (> 95% ANI), 36 genomes (including 1 MAG) had ANI values ranging 85–92.5% and 
could be assigned as undescribed species belonging to known genera, while the remaining 
55 genomes had lower ANI values (< 85%). A number of functional features were 
significantly over- or underrepresented in genomes derived from the four sampling sites. 
Functional specialization was found between sites, with for example methanogenesis being 
unique to groundwater whereas methanotrophy was found in all samples. Conclusions. 
Current knowledge of aquatic microbiomes is essentially based on surface or human-
associated environments. We started uncovering the spring water microbiome, highlighting 
an unexpected diversity that should be further investigated. This study confirms that 
groundwater environments host highly adapted, stable microbial communities composed of 
many unknown taxa, even among the culturable fraction. 
 
Yassour M, Jason E, Hogstrom LJ, Arthur TD, Tripathi S, Siljander H, Selvenius J, Oikarinen 
S, Hyöty H, Virtanen SM, Ilonen J, Ferretti P, Pasolli E, Tett A, Asnicar F, Segata N, 
Vlamakis H, Lander ES, Huttenhower C, Knip M, and Xavier RJ 
Strain-Level Analysis of Mother-to-Child Bacterial Transmission during the First Few 
Months of Life 
Cell Host & Microbe (2018) 

Abstract ‐ Bacterial community acquisition in the infant gut impacts immune education and 
disease susceptibility. We compared bacterial strains across and within families in a 
prospective birth cohort of 44 infants and their mothers, sampled longitudinally in the first 
months of each child’s life. We identified mother-to-child bacterial transmission events and 
describe the incidence of family-specific antibiotic resistance genes. We observed two 
inheritance patterns across multiple species, where often the mother’s dominant strain is 
transmitted to the child, but occasionally her secondary strains colonize the infant gut. In 
families where the secondary strain of B. uniformis was inherited, a starch utilization gene 
cluster that was absent in the mother’s dominant strain was identified in the child, suggesting 
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the selective advantage of a mother’s secondary strain in the infant gut. Our findings reveal 
mother-to-child bacterial transmission events at high resolution and give insights into early 
colonization of the infant gut. 
 
Pinto F, Tett A, Armanini F, Asnicar F, Boscaini A, Pasolli E, Zolfo M, Donati C, Salmaso N, 
and Segata N 
Draft Genome Sequences of Novel Pseudomonas, Flavobacterium, and 
Sediminibacterium Species Strains from a Freshwater Ecosystem 
Genome Announcements (2018) 

Abstract ‐ Freshwater ecosystems represent 0.01% of the water on Earth, but they support 
6% of global biodiversity that is still mostly uncharacterized. Here, we describe the genome 
sequences of three strains belonging to novel species in the Pseudomonas, Flavobacterium, 
and Sediminibacterium genera recovered from a water sample of Lake Garda, Italy. 
 
Manara S*, Pasolli E*, Dolce D*, Ravenni N, Campana S, Armanini F, Asnicar F, Mengoni A, 
Galli L, Montagnani C, Venturini E, Rota-Stabelli O, Grandi G, Taccetti G, Segata N (* equal 
contribution) 
Whole-genome epidemiology, characterisation, and phylogenetic reconstruction of 
Staphylococcus aureus strains in a paediatric hospital 
Genome medicine (2018) 

Abstract ‐ Background. Staphylococcus aureus is an opportunistic pathogen and a leading 
cause of nosocomial infections. It can acquire resistance to all the antibiotics that entered 
the clinics to date, and the World Health Organization defined it as a high-priority pathogen 
for research and development of new antibiotics. A deeper understanding of the genetic 
variability of S. aureus in clinical settings would lead to a better comprehension of its 
pathogenic potential and improved strategies to contrast its virulence and resistance. 
However, the number of comprehensive studies addressing clinical cohorts of S. aureus 
infections by simultaneously looking at the epidemiology, phylogenetic reconstruction, 
genomic characterisation, and transmission pathways of infective clones is currently low, 
thus limiting global surveillance and epidemiological monitoring. Methods. We applied 
whole-genome shotgun sequencing (WGS) to 184 S. aureus isolates from 135 patients 
treated in different operative units of an Italian paediatric hospital over a timespan of 3 years, 
including both methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus 
(MSSA) from different infection types. We typed known and unknown clones from their 
genomes by multilocus sequence typing (MLST), Staphylococcal Cassette Chromosome 
mec (SCCmec), Staphylococcal protein A gene (spa), and Panton-Valentine Leukocidin 
(PVL), and we inferred their whole-genome phylogeny. We explored the prevalence of 
virulence and antibiotic resistance genes in our cohort, and the conservation of genes 
encoding vaccine candidates. We also performed a timed phylogenetic investigation for a 
potential outbreak of a newly emerging nosocomial clone. Results. The phylogeny of the 
135 single-patient S. aureus isolates showed a high level of diversity, including 80 different 
lineages, and co-presence of local, global, livestock-associated, and hypervirulent clones. 
Five of these clones do not have representative genomes in public databases. Variability in 
the epidemiology is mirrored by variability in the SCCmec cassettes, with some novel 
variants of the type IV cassette carrying extra antibiotic resistances. Virulence and 
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resistance genes were unevenly distributed across different clones and infection types, with 
highly resistant and lowly virulent clones showing strong association with chronic diseases, 
and highly virulent strains only reported in acute infections. Antigens included in vaccine 
formulations undergoing clinical trials were conserved at different levels in our cohort, with 
only a few highly prevalent genes fully conserved, potentially explaining the difficulty of 
developing a vaccine against S. aureus. We also found a recently diverged ST1-SCCmecIV-
t127 PVL− clone suspected to be hospital-specific, but time-resolved integrative 
phylogenetic analysis refuted this hypothesis and suggested that this quickly emerging 
lineage was acquired independently by patients. Conclusions. Whole genome sequencing 
allowed us to study the epidemiology and genomic repertoire of S. aureus in a clinical setting 
and provided evidence of its often underestimated complexity. Some virulence factors and 
clones are specific of disease types, but the variability and dispensability of many antigens 
considered for vaccine development together with the quickly changing epidemiology of S. 
aureus makes it very challenging to develop full-coverage therapies and vaccines. 
Expanding WGS-based surveillance of S. aureus to many more hospitals would allow the 
identification of specific strains representing the main burden of infection and therefore 
reassessing the efforts for the discovery of new treatments and clinical practices. 
 
Zolfo M, Asnicar F, Manghi P, Pasolli E, Tett A, Segata N 
Profiling microbial strains in urban environments using metagenomic sequencing 
data 
Biology direct (2018) 

Abstract ‐ Background. The microbial communities populating human and natural 
environments have been extensively characterized with shotgun metagenomics, which 
provides an in-depth representation of the microbial diversity within a sample. Microbes 
thriving in urban environments may be crucially important for human health, but have 
received less attention than those of other environments. Ongoing efforts started to target 
urban microbiomes at a large scale, but the most recent computational methods to profile 
these metagenomes have never been applied in this context. It is thus currently unclear 
whether such methods, that have proven successful at distinguishing even closely related 
strains in human microbiomes, are also effective in urban settings for tasks such as 
cultivation-free pathogen detection and microbial surveillance. Here, we aimed at a) testing 
the currently available metagenomic profiling tools on urban metagenomics; b) 
characterizing the organisms in urban environment at the resolution of single strain and c) 
discussing the biological insights that can be inferred from such methods. Results. We 
applied three complementary methods on the 1614 metagenomes of the CAMDA 2017 
challenge. With MetaMLST we identified 121 known sequence-types from 15 species of 
clinical relevance. For instance, we identified several Acinetobacter strains that were close to 
the nosocomial opportunistic pathogen A. nosocomialis. With StrainPhlAn, a generalized 
version of the MetaMLST approach, we inferred the phylogenetic structure of Pseudomonas 
stutzeri strains and suggested that the strain-level heterogeneity in environmental samples is 
higher than in the human microbiome. Finally, we also probed the functional potential of the 
different strains with PanPhlAn. We further showed that SNV-based and pangenome-based 
profiling provide complementary information that can be combined to investigate the 
evolutionary trajectories of microbes and to identify specific genetic determinants of 
virulence and antibiotic resistances within closely related strains. Conclusion. We show that 
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strain-level methods developed primarily for the analysis of human microbiomes can be 
effective for city-associated microbiomes. In fact, (opportunistic) pathogens can be tracked 
and monitored across many hundreds of urban metagenomes. However, while more effort is 
needed to profile strains of currently uncharacterized species, this work poses the basis for 
high-resolution analyses of microbiomes sampled in city and mass transportation 
environments. 
 
Malacarne G*, Pilati S*, Valentini S*, Asnicar F, Moretto M, Sonego P, Masera L, Cavecchia 
V, Blanzieri E, and Moser C (* equal contribution) 
Discovering causal relationships in grapevine expression data to expand gene 
networks. A case study: four networks related to climate change 
Frontiers in Plant Science (2018) 

Abstract ‐ In recent years the scientific community has been heavily engaged in studying 
the grapevine response to climate change. Final goal is the identification of key genetic traits 
to be used in grapevine breeding and the setting of agronomic practices to improve climatic 
resilience. The increasing availability of transcriptomic studies, describing gene expression 
in many tissues and developmental, or treatment conditions, have allowed the 
implementation of gene expression compendia, which enclose a huge amount of 
information. The mining of transcriptomic data represents an effective approach to expand a 
known local gene network (LGN) by finding new related genes. We recently published a 
pipeline based on the iterative application of the PC-algorithm, named NES2RA, to expand 
gene networks in Escherichia coli and Arabidopsis thaliana. Here, we propose the 
application of this method to the grapevine transcriptomic compendium Vespucci, in order to 
expand four LGNs related to the grapevine response to climate change. Two networks are 
related to the secondary metabolic pathways for anthocyanin and stilbenoid synthesis, 
involved in the response to solar radiation, whereas the other two are signaling networks, 
related to the hormones abscisic acid and ethylene, possibly involved in the regulation of cell 
water balance and cuticle transpiration. The expansion networks produced by NES2RA 
algorithm have been evaluated by comparison with experimental data and biological 
knowledge on the identified genes showing fairly good consistency of the results. In addition, 
the algorithm was effective in retaining only the most significant interactions among the 
genes providing a useful framework for experimental validation. The application of the 
NES2RA to Vitis vinifera expression data by means of the BOINC-based implementation is 
available upon request (valter.cavecchia@cnr.it). 
  
Pinto F, Tett A, Armanini F, Asnicar F, Boscaini A, Pasolli E, Zolfo M, Donati C, Salmaso N, 
and Segata N 
Draft Genome Sequence of the Planktic Cyanobacterium Tychonema bourrellyi, 
Isolated from Alpine Lentic Freshwater 
Genome Announcements (2017) 

Abstract ‐ We describe here the draft genome sequence of the cyanobacterium Tychonema 
bourrellyi, assembled from a metagenome of a nonaxenic culture. The strain (FEM_GT703) 
was isolated from a freshwater sample taken from Lake Garda, Italy. The draft genome 
sequence represents the first assembled T. bourrellyi strain. 
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Scholz M, Ward DV, Pasolli E, Tolio T, Zolfo M, Asnicar F, Truong DT, Tett A, Ardythe L 
Morrow, and Segata N 
Strain-level microbial epidemiology and population genomics from shotgun 
metagenomics 
Nature Methods (2016) 

Abstract ‐ Identifying microbial strains and characterizing their functional potential is 
essential for pathogen discovery, epidemiology and population genomics. We present 
pangenome-based phylogenomic analysis (PanPhlAn; 
http://segatalab.cibio.unitn.it/tools/panphlan), a tool that uses metagenomic data to achieve 
strain-level microbial profiling resolution. PanPhlAn recognized outbreak strains, produced 
the largest strain-level population genomic study of human-associated bacteria and, in 
combination with metatranscriptomics, profiled the transcriptional activity of strains in 
complex communities. 
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