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A B S T R A C T

Hybrid dynamical systems are dynamical systems in which continuous and
discrete evolutions coexist and interact. Their twofold nature makes them
particularly powerful for both describing and synthesizing complex dynamical
behaviors. In this work we exploit this capability for designing innovative
control and estimation algorithms that cope with challenges in aerospace
applications. In particular, (i) we propose different impulsive control strategies
for the problem of close-range rendezvous between two spacecrafts in elliptic
orbits; (ii) we design a robust time-sub-optimal controller for a class of linear
systems emerging in aerospace applications where the control input is limited
in magnitude; (iii) we synthesize an observer to estimate the speed of rotary
systems providing angular measurements that evolve on the unit circle. To this
end, we make use of a recent formalism tailored to hybrid dynamical systems
for both modeling and proving desirable properties of the proposed algorithms,
which are as well confirmed by simulative and experimental validations.

S O M M A R I O

I sistemi dinamici ibridi sono sistemi dinamici nei quali evoluzioni a tempo
continuo ed a tempo discreto coesistono ed interagiscono. La loro duplice
natura li rende uno strumento particolarmente potente sia per descrivere
sia per progettare comportamenti dinamici complessi. In questo lavoro si
sfrutta questa loro potenzialità per progettare algoritmi di controllo e stima per
affrontare problemi che emergono in applicazioni aerospaziali. Nello specifico,
(i) si propongono diverse strategie di controllo impulsivo per il problema del
close-range rendezvous tra due veicoli spaziali in orbita ellittica; (ii) si progetta
un controllore robusto a tempo quasi minimo per una famiglia di sistemi lineari
con ingresso limitato in ampiezza che emergono in applicazioni aerospaziali;
(iii) si sintetizza un osservatore per la stima della velocità di un sistema rotante
che fornisce misure angolari che evolvono sul cerchio unitario. A questo scopo,
si fa uso di un recente formalismo ibrido sia per modellare sia per dimostrare
proprietà desiderabili degli algoritmi proposti, le quali sono anche validate
tramite strumenti simulativi e sperimentali.
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1 I N T R O D U C T I O N

1.1 general introduction

Recently, hybrid dynamical systems have gained increasing interest and pop-
ularity in the control community due to their ability to cover with a single
mathematical tool both continuous and discrete dynamics, which can be in-
tertwined. The coexistence of both continuous and discrete dynamics in a
comprehensive modeling and synthesis framework allows to design with ease
complex dynamical behaviors, such as hysteresis mechanisms, impulsive con-
trols, non-smooth dynamics, linear temporal logic, hybrid automata, et cetera.
The availability of such a tool has indeed unlocked the possibility of designing
innovative solutions with enhanced performance for longstanding problems
in control practice. Among the many engineering and technological fields in
which hybrid dynamical systems have brought about innovative solutions, con-
trol of aerospace systems is one of the areas that have benefited the most from
them. As a first example, consider the problem of controlling the attitude of a
satellite in the earth orbit and servicing, e.g., for telecommunication, science,
defense, or weather forecasting. This problem corresponds to controlling the
attitude of a rigid body in the 3D rotation group called SO(3). It is well known
that there does not exist a continuous state-feedback algorithm able to globally
stabilizing any equilibrium point in SO(3) [15] due to topological obstructions.
This topic has been the subject of many studies, and represents a challenge
both from the viewpoint of modeling (SO(3) parametrization) and control
(e.g., the “unwinding phenomenon” [15, Sec. 3]). A recent remarkable work
[71] proposed a hybrid controller capable of overcoming this structural limit,
introducing a feedback algorithm capable of globally stabilize any equilibrium
point of SO(3) by exploiting the twofold nature of hybrid dynamical systems
at the small cost of introducing a hysteresis band around the desired attitude.
Other examples are the novel trends in spacecraft applications benefiting from
hybrid systems approaches. For instance, the invited session “A Spacecraft
Benchmark Problem for Analysis & Control of Hybrid Systems” at the 2016

IEEE Conference on Decision and Control considered the application of hybrid
tools to rendezvous, docking, and estimation problems, see for example [53],
[69], and [62]. Regarding estimation algorithms, the community proposed in the
last years hybrid solutions to enhance the performance of classical estimation
schemes, consider for example [8] and [32]. More specifically for aerospace,
estimation on the 3D rotation space SO(3) has particularly benefited from
hybrid systems [13] [14]. As for vertical-take-off-and-landing unmanned-aerial-
vehicles, hybrid systems led to developing interesting algorithms for trajectory
tracking, for example [73]. Many of the above cited studies make use of the
modern and exhaustive hybrid dynamical system framework presented in [45].

1



2 introduction

In that valuable work, Rafal Goebel, Ricardo G. Sanfelice, and Andrew R. Teel
introduce a new formalism for hybrid systems, together with a set of analysis
tools for establishing different versions of stability properties with an intrinsic
degree of robustness in-the-small.

This thesis adopts this formalism as well, and fits within the above described
recent trend, facing control engineering problems in aerospace applications
where the hybrid formalism [45] can indeed provide significant advantages.

In the first part of this manuscript, we focus on the problem of satellite
rendezvous between two spacecraft in elliptic orbits. Using a linearized model
of the relative dynamics, we first propose a periodic similarity transformation
based on Floquet-Lyapunov theory [18, Sec. 1.2], leading to a set of coordinates
under which the free motion is linear time-invariant. Then the impulsive con-
trol of satellite rendezvous corresponds naturally to the discrete-time part of
a hybrid dynamical system, and we show that the arising elegant representa-
tion enables designing hybrid impulsive control laws with different trade-offs
between computational complexity and fuel consumption. The hybrid formal-
ism allows us to prove suitable stability properties induced by the proposed
controllers as well.

The second part addresses the stabilization of a class of linear systems in
the presence of input saturation, which is intrinsic in every control problem
involving electromechanical actuators. The considered class of linear systems
shares the common feature to be polynomially unstable, which represents a
frequent situation in aerospace applications, and take into account dynamical
processes with up to three poles at the origin. From the late 60’s with the work
of Fuller [42], it is well known that no saturated linear controller is able to
globally stabilize a system with 3 poles at the origin, leaving the door open for
modern approaches to solve this problem, see for example [99]. We cope with
this problem exploiting hybrid dynamical systems to design a discontinuous
hysteretic feedback, which adopts a robust time-optimal like solution.

The third part of this manuscript focuses on the synthesis of a hybrid
velocity estimation algorithm for rotational systems when only noisy position
measurements evolving on the unit circle S1 are available. There exist many
sensors that supply angular measurements evolving in S1, such as rotary
displacement potentiometer sensors, rotary displacement capacitive sensors,
and Hall-effect based encoders. The considered problem is relevant when
estimating the rotational velocity of a propeller in the case of a propeller-
actuated experimental setup. The peculiarity of measurements evolving in S1
is that they exhibit unpredictable jumps, since the angular parametrization
of S1 evolves in a compact set [−π π]. One more time we exploit the hybrid
dynamical systems formalism for coping with discontinuous behaviors.

More specific introductions to the considered problem will be given at the
beginning of each of the three parts of this manuscript.

The three parts composing this work are organized as follows. The first
part consists of two chapters. In Chapter 2 we specifically introduce and
illustrate the derivation of a convenient model for the problem of close-range
rendezvous between two spacecraft in elliptic orbits, while Chapter 3 focuses on
the controller design. The second part contains three chapters. In Chapter 4 we
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introduce the problem of controlling a class of saturated linear system and we
design an innovative robust time sub-optimal (RTSO) controller. In Chapter 5

we derive an accurate Benchmark model of the Quanser’s 3 DOF Helicopter,
which is used in Chapter 6 as validation tool of the RTSO controller in a
real-world application together with another experimental setup. Finally, the
third part of this manuscript is dedicated to the design of the above mentioned
estimation algorithm for rotational processes evolving on the unit circle.

1.2 scientific production

The research activity carried out as a Ph.D. candidate has resulted in the
following publications, based on which this thesis is built:

in preparation or under review
[22] M. Brentari, P. Bosetti, I. Queinnec, and L. Zaccarian. “Bench-

mark model of Quanser’s 3 DOF Helicopter.” Under review in
the IEEE/ASME Transactions on Mechatronics. 2018. url: https:
//hal.laas.fr/hal-01711135

journal
[24] M. Brentari, S. Urbina, D. Arzelier, C. Louembet, and L. Zaccarian.

“A hybrid control framework for impulsive control of satellite
rendezvous.” In: IEEE Transactions on Control Systems Technology 99

(2018), pp. 1–15

[23] M. Brentari, P. Bosetti, and L. Zaccarian. “A class of hybrid velocity
observers for angular measurements with jumps.” In: IEEE Control
Systems Letters 2.4 (2018), pp. 617–622

peer-reviewed conference
[20] M. Brentari, D. Arzelier, C. Louembet, L.S. Urbina, and L. Zaccarian.

“A hybrid control framework for impulsive control of satellite
rendezvous.” In: American Control Conference (ACC). Boston (MA),
USA, 2016

[21] M. Brentari, P. Bosetti, R. Goebel, and L. Zaccarian. “Robust time-
sub-optimal control of the saturated double integrator applied to
attitude stabilization.” In: IEEE Conference on Decision and Control
(CDC). Melbourne (Australia), 2017, pp. 5487–5492

The material of the above publications is included in the three parts of this
thesis, together with some original unpublished work, as follows

part i : [24], [20]
part ii : [21], [22]
part iii : [23]

https://hal.laas.fr/hal-01711135
https://hal.laas.fr/hal-01711135
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1.3 notation

In this dissertation, the following notation will be used.

• For x1 ∈ Rα1 , . . . , xn ∈ Rαn , we represent with (x1, . . . , xn) the column-
stacking operation [x>1 , . . . , x>n ]>.

• With Br(a) we refer to the n-dimensional closed ball of radius r centered
at a, that is Br(a) := {x ∈ Rn | |x− a| ≤ r}.

• In is the identity matrix of dimension n. When the subscript n is omitted,
an identity matrix with a suitable dimension is considered.

• S denotes the closure of a set S .
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1.4 a brief introduction to the hybrid dynamical systems framework

In this section, the reader will be briefly introduced to the hybrid dynamical
systems framework [45], which is the main tool used in this manuscript to cope
with hybrid dynamics. We report here a brief introduction on the modeling
and analysis tools that will be used along the manuscript, based on an extract
of [44, 45, 94].

The general model of a hybrid dynamical system can be represented as

H :

{
ẋ ∈ F(x) , x ∈ C

x+ ∈ G(x) , x ∈ D ,
(1.1)

in which we refer to

• the set C ⊂ Rn as “the flow set”,

• the set-valued mapping 1 F : Rn ⇒ Rn as “the flow map”,

• the set D ⊂ Rn as “the jump set”,

• the set-valued mapping G : Rn ⇒ Rn as “the jump map”.

In H, ẋ indicates the continuous-time derivative of the state x, while x+ indi-
cates the value of x after a discrete time update. The collection of the elements
C, F, D, and G is called the data of hybrid system H. For the sake of concise-
ness, we will refer to these data of the hybrid system H as H = (C , F,D, G). A
simpler and less general version of system H in (1.1) is obtained by replacing
the set-valued mappings F and G with standard differential and difference
equations involving functions f : Rn → Rn and g : Rn → Rn:

H :

{
ẋ = f (x) , x ∈ C

x+ = g(x) , x ∈ D
(1.2)

A pictorial representation of hybrid system H in equation (1.2) is given
in Figure 1.1. Intuitively, the state x ∈ Rn of hybrid system H can evolve
continuously, i.e., it can “flow”, according to the differential inclusion ẋ ∈ F(x)
or the differential equation ẋ = f (x) when x ∈ C; it can also evolve discretely,
i.e., it can “jump”, according to the difference inclusion x+ ∈ G(x) or the
difference equation x+ = g(x) when x ∈ D. It intuitively follows that state x
can evolve in many different ways according to hybrid systemH. The possibility
of having multiple solutions is due to the presence of set-valued mappings
in (1.1) and to the fact that the intersection between the flow set and the jump
set C ∩ D can be non empty, and in this intersection there is no prescribed
evolution, but both flowing and jumping are possible.

When working with hybrid dynamical systems of the presented framework,
it is typical to ask for some regularity conditions of the hybrid data (C , F,D, G)

in order to guarantee the well-posedness of the system. These conditions are
denoted as “hybrid basic conditions” or “hybrid basic assumptions”. We need
to introduce as well the concept of domain of a set-valued mapping as follow.

1 For a definition of set-valued mapping the reader can refer to [45, Sec. 2.1].
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C

D

x

f (x)

x
g(x)

Figure 1.1: Data appearing in hybrid system H in equation (1.2). The flow set
C is depicted in light blue, while the jump set D is in light red. For
some x’s, the flow map is represented by blue arrows, while the
jump map corresponds to dashed red arcs.

Definition 1.1 (Domain of a set-valued mapping [45, Def. 2.1]). Given a set-
valued mapping M : Rm ⇒ Rn, the domain of M is the set

dom M = {x ∈ Rm |M(x) 6= ∅} (1.3)

Assumption 1.1 (Hybrid basic conditions [45, Ass. 6.5]). With “hybrid basic
conditions” we refer to the three following requirements on the data (C , F,D, G) of H
in (1.1):

1. C and D are closed subsets of Rn;

2. F : Rn ⇒ Rn is outer semicontinuous and locally bounded 2 relative to C,
C ⊂ dom F, and F(x) is convex for every x ∈ C;

3. G : Rn ⇒ Rn is outer semicontinuous and locally bounded relative to D,
D ⊂ dom G.

Outer semicontinuity in the above assumption is equivalent to the following
property.

Lemma 1.1 (Outer semicontinuity and closed graph [45, Lem. 5.10]). A set-
valued mapping M : Rn ⇒ Rn is outer semicontinuous if and only if its graph
gphM := {(x, y) ∈ Rn ×Rn|y ∈ M(x)} is closed. More generally, given a set
S ⊂ Rm, a set valued mapping M : Rn ⇒ Rn is outer semicontinuous relative to S
if and only if the set {(x, y) ∈ Rn ×Rn|x ∈ S , y ∈ M(x)} is closed.

In the following chapters, all the data of all the designed hybrid systems
satisfy these hybrid basic conditions. These conditions do not represent the
minimum necessary requirements for obtaining a reasonably good behavior of
a hybrid dynamical system (see for a reference the “nominal well-posedness”

2 Local boundedness of F implies that the image of any bounded set is itself bounded.
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and “well-posedness” in [45, Chap. 6]), but, differently from less restrictive
properties, they have the advantage to be easy enough to be checked, therefore
representing a good modeling principle with which it is reasonable to comply.

A first context where the hybrid basic conditions are useful is the definition
of solutions given below, which is simpler than the one in [45, Chap. 2] although
equivalent under these conditions. Before defining the concept of solution of
a hybrid system, it is fundamental to introduce the concept of “hybrid time
domain”. Given the twofold nature of a hybrid system, the classical notion of
time needs to be extended, because, neither the concept of continuous time
t ∈ R≥0 nor the one of discrete time j ∈ Z≥0 can suitably parametrize the
solution of a hybrid system. We therefore report here the definition of “hybrid
time domain” given in [45].

Definition 1.2 (Hybrid time domain [45, Def. 2.3]). A subset E of R≥0 ×Z≥0 is
a compact hybrid time domain if

E =
J−1⋃

j=0
[tj , tj+1]× {j} (1.4)

for some finite sequence of times 0 = t0 ≤ t1 ≤ · · · ≤ tJ . E is a hybrid time domain if
for all (T, J) ∈ E, E ∩ ([0, T]× {0, 1, . . . , J}) is a compact hybrid time domain.

t0 t1 t2 = t3 t4
0

1

2

3

4

T

J

t

j

Figure 1.2: A hybrid time domain E.

Figure 1.2 gives a graphical representation of a hybrid time domain. More-
over, we can define the operations supt and supj on a hybrid time domain E
as:

suptE := sup{t ∈ R≥0 | ∃ j ∈ Z≥0 such that (t, j) ∈ E} , (1.5a)

supjE := sup{j ∈ Z≥0 | ∃ t ∈ R≥0 such that (t, j) ∈ E} , (1.5b)

which return, respectively, the supremum value of the continuous time t and
the discrete time j on the hybrid time domain E.

We now introduce the concept of solution of a hybrid system based on
the concept of hybrid time domain given in Definition 1.2. To this end, we
introduce the concept of “hybrid arc”, i.e., of a candidate solution.
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Definition 1.3 (Hybrid arc [45, Def. 2.4] and domain). A function φ : E→ Rn is a
hybrid arc if E is a hybrid time domain and if for each j ∈ Z≥0, the function t 7→ φ(t, j)
is locally absolutely continuous on the nonempty interval I j = {t : (t, j) ∈ E}.
Moreover, the hybrid time domain of a hybrid arc is denoted by dom φ.

We can now define what a solution to the hybrid dynamical system (1.1)
is. As mentioned before, the following definition simplifies [45, Def. 2.6] by
exploiting the fact that we assume the hybrid basic conditions.

Definition 1.4 (Solution to a hybrid system under the hybrid basic conditions
[45, Sec. 6.2.1]). A hybrid arc φ is a solution to the hybrid dynamical system H =

(C , F,D, G) in (1.1) satisfying the hybrid basic conditions if

1. φ(0, 0) ∈ C ∪D;

2. for all j ∈ Z≥0 such that I j := {t : (t, j) ∈ dom φ} has a nonempty interior,

φ(t, j) ∈ C , for almost all t ∈ I j , (1.6a)

φ̇(t, j) ∈ F(φ(t, j)) , for almost all t ∈ I j ; (1.6b)

3. for all (t, j) ∈ dom φ such that (t, j + 1) ∈ dom φ,

φ(t, j) ∈ D , (1.6c)

φ(t, j + 1) ∈ G(φ(t, j)). (1.6d)

From this definition it follows that, when φ(t, j) ∈ C ∩D, the solution φ(t, j)
is forced neither to flow nor to jump. The definition asks that if the solution
flows, it does it according to the flow map as in (1.6b), and if it jumps, it does
it according to the jump map as in (1.6d).

There exist solutions with different peculiarities, but some of them are of
particular importance and deserve to be defined precisely as follows.

Definition 1.5 (Types of solutions [45, Def. 2.5, Def. 2.7]). A solution φ to a
hybrid system H = (C , F,D, G) is

• nontrivial if dom φ contains at least two points;

• complete if dom φ is unbounded, that is, supt dom φ + supj dom φ = +∞;

• Zeno if it is complete and supt dom φ < +∞

• maximal if there does not exist another solution ψ to H such that dom φ is a
proper subset of dom ψ and φ(t, j) = ψ(t, j) for all (t, j) ∈ dom φ.

We introduce now briefly some concepts about the stability of hybrid systems
that will be used later in the manuscript. When working with hybrid dynamical
systems, one is often interested in studying the stability properties of a set
rather than a single equilibrium point, as motivated in [44, p. 58]. This is true
as well in what we develop in the subsequent chapters. In order to properly
analyze the behavior of solutions with respect to sets, we define the concept of
distance to a closed set.
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Definition 1.6 (Distance to a closed set [45, Def. 3.5]). Given a vector x ∈ Rn

and a closed set A ⊂ Rn, the distance of x to A is defined as

|x|A := inf
y∈A
|x− y|. (1.7)

In the case of compact sets, as the ones considered in the following, the inf
in (1.7) can be replaced by the min.

We can then introduce the concept of asymptotic stability of a compact set
for a hybrid dynamical system.

Definition 1.7 (Asymptotic stability of a compact set [44, p. 49]). For H =

(C , F,D, G) in (1.1), a compact set A ⊂ Rn is

stable if for each scalar ε > 0 there exists a scalar δ > 0 such that |φ(0, 0)|A ≤ δ

implies |φ(t, j)|A ≤ ε for all solutions φ to H and all (t, j) ∈ dom φ,

attractive if there exists a neighborhood of A from which each solution φ to H
is bounded and complete solutions converge to A, that is, |φ(t, j)|A → 0 as
t + j→ ∞ with (t, j) ∈ dom φ,

asymptotically stable if it is stable and attractive,

globally asymptotically stable if it is stable, attractive, and the largest neigh-
borhood of A for which A is attractive can be taken as Rn.

Establishing if a compact set is (globally) asymptotically stable for a hybrid
system H is not a trivial task. In order to give formal stability certificates in this
manuscript we follow an indirect approach based on Lyapunov methods which
allow establishing stability properties without computing solutions. Standard
Lyapunov tools in the hybrid context [45, Sec. 3.2, Thm. 3.18, Def. 7.29] require
to find a candidate Lyapunov function that is continuously differentiable in
a neighborhood of the flow set C, and which is bounded by a pair of class-
K∞ functions of the distance to the attractor (i.e., continuous functions that
are zero at zero, strictly increasing and unbounded). Moreover, in order to
establish global asymptotic stability of a closed set, classical Lyapunov tools
require the candidate Lyapunov function to strictly decrease along solutions
both while flowing and while jumping. Although all these conditions play a
role in order to establish global asymptotic stability, finding a function that
fulfills all these conditions is usually challenging. Relaxed versions of classical
Lyapunov theorems have been therefore developed, which have the advantage
to impose milder conditions, therefore easier to be satisfied. We report here the
result presented in [94], which relaxes the requirement of strict decrease along
solutions with a non-increase requirement by imposing instead an invariance
type of argument, and take into consideration non-smooth Lyapunov functions.

Definition 1.8 (Non-smooth Lyapunov function candidate). A function V :
dom V → R is said to be a non-smooth Lyapunov function candidate for a hybrid
system H = (C , F,D, G) if

1. (C ∪ D) ⊂ dom V and V is continuous in C ∪ D and locally Lipschitz 3 in a
neighborhood of C,

3 According to [30], a function is said to be locally Lipschitz near a point if there exists a
neighborhood of that point where the function is Lipschitz.
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2. V is positive definite with respect to A in C ∪ D (i.e., V(x) = 0 for all x ∈ A
and V(x) > 0 for all x ∈ (C ∪ D) \ A), and radially unbounded relative to
C ∪ D (i.e., V(x)→ ∞ as |x|A → ∞ for all x ∈ C ∪D).

Obviously, if V is continuously differentiable in a neighborhood of C, it is
still a non-smooth Lyapunov function candidate.

Theorem 1.1 (A relaxed non-smooth Lyapunov-like theorem [94, Thm. 1]).
Consider a compact set A and a hybrid system H = (C , F,D, G) satisfying Assump-
tion 1.1 and G(A ∩ D) ⊂ A. Assume that there exists a non-smooth Lyapunov
function candidate V such that

V̇(x) := max
v∈∂V(x), f∈F(x)

〈v, f 〉 ≤ 0, ∀ x ∈ C \ A (1.8a)

∆V(x) := max
g∈G(x)∩(C∪D)

V(g)−V(x) ≤ 0, ∀ x ∈ D \A (1.8b)

where ∂V(x) is the Clarke generalized gradient of V at x (also called Clarke sub-
differential, as defined in [30, Sec. 2.1]). Assume also that no complete solution
keeps V constant and nonzero, namely no complete solution φ exists satisfying
V(φ(t, j)) = V(φ(0, 0)) 6= 0, for all (t, j) ∈ dom φ. Then set A is globally asymp-
totically stable (GAS) for H.

This theorem represents a powerful tool for proving GAS of a compact set A
for a hybrid system H satisfying the hybrid basic conditions. If the Lyapunov
function candidate V is continuously differentiable in a neighborhood of C, we
can simplify Theorem 1.1 in the following corollary.

Corollary 1.1 (A relaxed smooth Lyapunov-like theorem). Consider a compact set
A and a hybrid systemH = (C , F,D, G) satisfying Assumption 1.1 and G(A∩D) ⊂
A. Assume that there exists a non-smooth Lyapunov function candidate V that is
additionally continuously differentiable in a neighborhood of C, such that

V̇(x) := max
f∈F(x)

〈∇V(x), f 〉 ≤ 0, ∀ x ∈ C \ A (1.9a)

∆V(x) := max
g∈G(x)∩(C∪D)

V(g)−V(x) ≤ 0, ∀ x ∈ D \A (1.9b)

where ∇V(x) is the gradient of V at x. Assume also that no complete solution keeps V
constant and nonzero, namely no complete solution φ exists satisfying V(φ(t, j)) =
V(φ(0, 0)) 6= 0, for all (t, j) ∈ dom φ. Then set A is globally asymptotically stable
(GAS) for H.

Theorem 1.1 and its smooth version in Corollary 1.1 are the tools that will be
used the most in the following chapters for giving formal certificates of global
asymptotic stability of compact attractors.

We conclude here the brief introduction to the hybrid dynamical system
framework of [45]. The reader is referred to [44, 45] for a description of more
advanced concepts that have been omitted here for the sake of conciseness and
because their are not used in this thesis.

Other
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2 I N T R O D U C I N G A N D
M O D E L I N G T H E C LO S E
R A N G E R E N D E Z V O U S

In this chapter we first introduce the problem of the rendezvous between
spacecraft in elliptic orbits for then illustrating the derivation of a convenient
representation of the relative dynamics between the follower spacecraft F and
the leader spacecraft L in the phase of proximity operations. The proposed
model has deep roots in the existing literature, making use of the well known
Tschauner-Hempel (TH) equations [101] and the Yamanaka-Ankersen solu-
tion [104], but it also introduces a novel change of coordinate to simplify the
relative dynamics. This chapter is based on the published work [24] and its
preliminary version [20].

2.1 an introduction to the rendezvous problem

Considering the increasing need for satellites servicing in space, the capability
of operating an active spacecraft, the follower denoted by F, in close proximity
of a satellite, the leader denoted by L, will be crucial for fulfilling complex
safe space missions objectives comprising inspection, repairing, refueling, or
monitoring [38]. The whole relative spacecraft maneuvering process composes
what is known as the rendezvous and proximity operations, which mainly
consists in getting the follower from one orbit to a box near the leader (close
range rendezvous) [66], [33] and then in beginning the proximity operations
required by the mission objectives. When dealing with the preliminary planning
phase of space missions, it is customary to approximate actual finite-thrust
powered phases of finite duration by impulsive maneuvers. The impulsive
approximation for the thrust means that instantaneous velocity jumps are
applied to the chaser when firing, whereas its position is continuous. This
assumption, made in this work, has proved to be very useful in reducing the
complexity of guidance and control design and has been widely used in the
literature dedicated to rendezvous (see [38], [34], [33] and references therein).

In this work, we are mainly interested in the proximity maneuver for which
it is highly recommended to design safe impulsive maneuvers guiding the
follower, from one point to a specified tolerance region in the proximity of the
leader where the relative motion of the follower will be periodic and bounded.
To this end, consider the Keplerian assumptions, that are: 1. the interacting
bodies are spherically symmetric and can be treated as point masses, 2. the only
forces acting on the interacting bodies are their mutual gravitational forces, 3.
the orbiting body has insignificant mass with respect to the central body. Under

13
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these assumptions, the relative nonlinear motion between spacecraft is globally
bounded [46] while the linearized relative motion equations include a secular
term leading the chaser to drift away from the follower. Different conditions for
the periodicity of the linearized equations of the nonlinear relative motion have
been given in the literature. For instance, the authors of [4] state that the identity
of the semi-major axis of the spacecraft orbits is a necessary and sufficient
condition for periodicity, while Inalhan in [50] proposed a periodicity condition
at perigee, for the linearized relative motion and for arbitrary eccentricity
in a Cartesian and local framework. It is important to notice that different
parametrizations (Cartesian coordinates, orbital elements) of the relative motion
have been used in these previous developments.

Here we consider the parametric expression for the relative motion proposed
in [34] and used to characterize in a simple way box-constrained periodic
relative motions [35]. Using that parametric expression, any relative periodic
trajectory is defined, in a linearized context, by 5 constant parameters. In
particular, building on the result presented in [34], the contribution of the
present work is twofold. First, we propose a new coordinate transformation
which leads to a simplified characterization of periodic trajectories when
applied to the Tschauner-Hempel equations of the elliptic linearized relative
motion. The Tschauner-Hempel equations, developed in the 60’s, are solutions
to the linearized satellites relative dynamics with a particularly useful form.
Second, three different hybrid feedback-control laws are designed by taking
advantage of the particular formulation of the rendezvous problem. The use of
the hybrid framework [45] for representing nonlinear hybrid dynamical systems
(whose solutions exhibit continuous evolution and impulsive behavior) allows
us to state and prove suitable stability properties of the proposed impulsive
control laws (including, e.g., the one originally presented in [33]) when applied
to the linear time-varying dynamics of the closed-loop system.

Along this first part of the manuscript, we will refer with a, e, ν and T
to, respectively, the semi-major orbit axis, the orbit eccentricity, the orbit true
anomaly, and the orbital period of the leader’s orbit, as illustrated in Figure 2.1.
With µg = 398600.4415× 109 m3/s2 we refer to the standard gravitational
parameter for the Earth, i.e. the constant that relates the gravitational force
acting on the orbiting body with the central body mass (i.e. the Earth) and
the relative distance. Given a generic function ν 7→ g(ν), g′(ν) represents the
differentiation of the function g(ν) with respect to the true anomaly ν.

2.2 lti state-space for the linearized relative equations of motion

2.2.1 Hybrid form of the linearized relative equations of motion

The proximity operations between two spacecraft are characterized by the use of
relative navigation since the separation between spacecraft is sufficiently small
In this framework, the relative motion of the follower is described in the Local-
Vertical-Local-Horizontal (LVLH) frame attached to the leader [66]. The origin
of the coordinate frame is located at the center of mass of the leader and the
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space is spanned by (x, y, z) where the z axis is in the radial direction (R-bar)
oriented towards the center of the Earth, the y axis is perpendicular to the leader
orbital plane and pointing in the opposite direction of the angular momentum
(h-bar) while the x axis is chosen such that x = y× z (see Figure 2.2).

r

ν

perigeeapogee

a(1− e)

2a

Figure 2.1: Orbital data used along the manuscript.

Under Keplerian assumptions (no orbital perturbations are considered) and
an elliptic reference orbit, the equations of motion for the relative motion in
the LVLH frame may be linearized for close separation between the leader and
the follower [5, Chapter 5, Section 5.6.1]:

Ẋ = A(t)X free motion

X+ = X +

[
03×3

I3

] t+∫

t−

f (τ)
mF

dτ
when applying

impulsive thrusts,
(2.1)

where state X = (x, y, z, dx/dt, dy/dt, dz/dt) represents positions and velocities
in the three fundamental axes of the LVLH frame, f (t) is the thrust vector, X+

is the state vector right after the impulsive thrust, mF, the mass of the follower,
is assumed constant, and matrix A(t) is a suitable periodic function of time t
given by:

A(t) :=




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

ν̇2 + 2k4ρ3(ν) 0 ν̈ 0 0 2ν̇
0 ν̇2 − k4ρ3(ν) 0 0 0 0
−ν̈ 0 −k4ρ3(ν) −2ν̇ 0 0




, (2.2)
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Figure 2.2: LVLH frame for relative spacecraft dynamics.

where we recall that:

ν̇ :=
dν

dt
=

n
(1− e2)3/2 (1 + e cos ν︸ ︷︷ ︸

:=ρ(ν)

)2 =: k2ρ(ν)2, (2.3)

where n =

√
µg

a3 = 2π/T is the mean motion of the leader orbit, satisfying for

any fixed ν0, t0,

ν− ν0 = 2π ⇒ n(t− t0) = 2π. (2.4)

We may define the impulsive control input (essentially equivalent to velocity
jumps in the three axes) as:

∆v(tk) :=

t+k∫

t−k

1
mF




fx(t)
fy(t)
fz(t)


 dt, (2.5)

which is directly associated to the fuel consumption and where tk is a generic
firing time.

In order to simplify the linearized equations (2.1) and (2.2), classical deriva-
tions dating back to the seminal publications of Lawden [60, Chapter 5] and
Tschauner-Hempel [101] correspond to first applying a change of independent
variable from time t to true anomaly ν, and then introducing the following
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coordinate change which is indeed useful for simplifying the expression of the
dynamics:

T(ν) :=
[

ρ(ν)I3 03×3
ρ(ν)′ I3 ρ(ν)I3

]
, (2.6)

where ρ(ν)′ := dρ(ν)/dν. This leads to the following hybrid representation
of the so-called Tschauner-Hempel (TH) equations with a new state X̃(ν)

replacing X(t):

X̃′ = Ã(ν)X̃ during free motion,

X̃+ = X̃ +
1

k4ρ(ν)3

[
03×3

I3

]

︸ ︷︷ ︸
=:B̃(ν)

u when applying impulsive thrusts, (2.7)

where u = ∆v represents the applied impulse, state X̃ = (x̃, ỹ, z̃, dx̃/dν, dỹ/dν, dz̃/dν)

represents positions and velocities with respect to ν, and

Ã(ν) :=




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 2
0 −1 0 0 0 0
0 0 3

ρ(ν)
−2 0 0




. (2.8)

2.2.2 A new fundamental solution to the TH equations

In this chapter, we propose the two following additional transformations, the
first one arising from similar observations to those in [33], and the second one
arising from a Floquet-Lyapunov derivation. Although the state-space equation
(2.7) is linear time-varying, Ã(ν) is simple enough to allow for the derivation of
the autonomous solution of (2.7) via the computation of a fundamental matrix
ϕν0 (ν) and a transition matrix Φ̃(ν, ν0). For instance, the so-called Yamanaka-
Ankersen form of this transition matrix has been proposed in [104]. Here, a
new fundamental matrix is proposed, corresponding to

ϕν0 (ν) :=




0 0 ρ2 −c
(

1+ 1
ρ

)
s
(

1+ 1
ρ

)
ρ2 J

c
ρ

s
ρ 0 0 0 0

0 0 −e s s c 2
3 −esJ

0 0 −2 e s 2s 2c−e 1−2esJ
− s

ρ
c
ρ 0 0 0 0

0 0 −e s′ s′ c′ −e
(

s′ J+ s
ρ2

)




(2.9)

where the following shortcuts are used (with a slight abuse of notation):

ρ = ρ(ν), s = sin(ν)ρ(ν), c = cos(ν)ρ(ν), (2.10)

J = J(ν, ν0) :=
∫ ν

ν0

1
ρ(u)2 du =

n
(1− e2)3/2 (t− t0). (2.11)
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The 6 columns of ϕν0 (ν) form a basis spanning the 6-dimensional vector space
of autonomous solutions of (2.7), since each column is indeed a solution of the
autonomous equation (2.7), and

det(ϕν0 (ν)) =
e2 − 1

3
6= 0 , ∀ e ∈ [0, 1) . (2.12)

These solutions are periodic except for the secular drift term J(ν, ν0), which
zeroes-out only when ν = ν0. For this special case, we may appreciate the
usefulness of the fundamental matrix in (2.9), which leads to defining the
change of coordinates in (2.15), inducing the simplified free motion dynamics
in (2.17). The state transition matrix of the LTV free motion in (2.7) is then
easily obtained as

Φ̃(ν, ν0) := ϕν0 (ν)ϕν0 (ν0)
−1. (2.13)

The particular interest of considering the fundamental matrix ϕν0 (ν) instead
of the one used in the reference [104] appears clearly in the following, when
trying to obtain the simplest possible LTI expression for the relative dynamical
equations (2.7) via a Floquet-Lyapunov similarity transformation.

2.2.3 A periodic similarity transformation

Our first objective is to characterize the periodic autonomous solutions asso-
ciated to (2.9) by transforming Ã(ν) into a convenient sparse dynamic matrix
via a well chosen similarity transformation as proposed in [34]. The similarity
transformation used in this chapter is slightly different from the one used in
[34] and is given by:

ξ̄(ν) := (ξ̄1(ν), . . . , ξ̄6(ν))
:= C(ν) X̃(ν),

(2.14)

where C(ν) := ϕν(ν)−1 can be computed explicitly and corresponds to

C(ν) =



0 cν 0 0 −sν 0
0 sν 0 0 cν 0
1 0 − 3esν(1+ρ)

ρ(e2−1)
esν(1+ρ)

e2−1 0 ρ2−ecν−3
e2−1

e 0 −3sν sν(1 + ρ) 0 cνρ

0 0 3(cν+e)
e2−1 − cν(1+ρ)+e

e2−1 0 sνρ
e2−1

0 0 − 3(3ecν+e2+2)
e2−1

3ρ2

e2−1 0 − 3esνρ
e2−1




, (2.15)

where we used cν := cos(ν) and sν := sin(ν). We emphasize that the state in
(2.14) is one among the infinitely many possible combinations of the constants
appearing in the analytical solutions of [60, Chapter 5] and [101]. Alternative
combinations have appeared in the literature, including those in [34] and those
in [93]. For instance, we get the following linear relation between the set of
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constants used in the reference [93] (and therein denoted by the symbol c) and
the vector of constants ξ̄ used herein.

ξ̄ =




0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 3J/(e2 − 1) 1 0 0
0 −1 0 e 0 0
−1 0 0 0 0 0
0 0 3/(e2 − 1) 0 0 0







c1
c2
c3
c4
c5
c6




(2.16)

Note that, based on the results of [93] and the developments in [92], relation
(2.16) may then be used to give the expression of the vector of differential
orbital elements (δa, δe, δi, δΩ, δω, δM0) as a function of ξ̄. Applying the
periodic similarity transformation in (2.15) to the dynamic matrix Ã(ν), we get:

Ā(ν) :=
[
C′(ν)C−1(ν) + C(ν)Ã(ν)C−1(ν)

]
,

=




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 ρ(ν)−2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




.
(2.17)

Note that the structure of C(ν) preserves the decoupling between the motion
in the leader’s orbital plane (x, z) and the out-of-plane motion along y illus-
trated by the partitioning indicated in (2.17). Periodic autonomous solutions
associated to (2.9) are characterized by constant solutions of ξ̄ ′ = Ā(ν)ξ̄. From
Ā(ν), it is then possible to deduce that the states ξ̄1, ξ̄2, ξ̄4, ξ̄5, and ξ̄6 are
constant solutions, while ξ̄3(ν) is a constant solution if and only if ξ̄6(ν) = 0.
This appears more clearly when computing the new state transition matrix
associated to Ā(ν) as:

Φ̄(ν, ν0) := C(ν)Φ̃(ν, ν0)C(ν0)
−1

=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 J(ν, ν0)
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




. (2.18)

2.2.4 A Floquet-Lyapunov similarity transformation

Before illustrating how a Floquet-Lyapunov similarity transformation is syn-
thesized to further develop and suitably simplify the ξ̄ dynamic in (2.17), in
this section we give some notions about this tool based on [18, Chap. 1.2]. The
notation used here is scoped just for this illustration.

Floquet-Lyapunov overview

Consider an LTV dynamic with state x ∈ Rn:

ẋ(t) = A(t)x(t) (2.19)
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in which A(t) is periodic with period T, that is:

A(t + T) = A(t) , ∀t ≥ 0 . (2.20)

The Floquet-Lyapunov transformation theory can be summarized as fol-
lows. If S(t) is an invertible and periodic (of period T) similarity trans-
formation matrix such that

x̂(t) = S(t)x(t) , (2.21)

then, the dynamic matrix in the new coordinates is given by

Â(t) = S(t)A(t)S(t)−1 + Ṡ(t)S(t)−1 , (2.22)

assuming that S(t) and S(t)−1 are continuously differentiable. The Flo-
quet problem consist in finding S(t) (if any) such that the dynamics
matrix in the new coordinates is constant, i.e., Â(t) = Â. Plugging
the condition Â(t) = Â into equation (2.22), we obtain the following
matrix differential equation

Ṡ(t) = ÂS(t)− S(t)A(t) . (2.23)

Considering now t0 as initial time and S(t0) as initial condition, the
solution to (2.23) is given by

S(t) = eÂ(t−t0)S(t0)Φ(t0, t) , (2.24)

in which Φ(t0, t) is the state transition matrix of the dynamics (2.19).
Taking now t = t0 + T and imposing the periodicity condition S(t0 +

T) = S(t0) to the solution (2.24) permits us to derive the following
relation

S(t0) = S(t0 + T) = eÂTS(t0)Φ(t0 + T, t0)︸ ︷︷ ︸
:=Ψ(t0)

−1

= eÂTS(t0)Ψ(t0)
−1 .

(2.25)

in which we have defined the matrix Ψ(t0), known as the “monodromy
matrix”, that is the state transition matrix over a period. The Floquet
problem reduces in finding a pair of matrices (Â, S(t0)) solution to
equations (2.24)-(2.25).

Since the dynamic matrix Ā(ν) is periodic of period 2π, the next step
consists in the application of Floquet-Lyapunov theory following the steps
described above, as in [34] and [95], and in looking for a periodic similarity
transformation matrix S(ν), transforming the original LTV dynamical system
into an equivalent LTI dynamical system, namely:

ξ̂(ν) := S(ν)ξ̄(ν) , (2.26)

such that

ξ̂ ′(ν) = Â ξ̂(ν) , (2.27)
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and where Â is a matrix independent of ν. We know that, given S(ν), Â is
given by:

Â := S′(ν)S−1(ν) + S(ν)Ā(ν)S−1(ν) . (2.28)

Via a right multiplication of (2.28) by S(ν), we obtain the differential equation:

S′(ν) = ÂS(ν)− S(ν)Ā(ν) . (2.29)

Equation (2.29) represents a matrix differential equation whose solution is
given in the following equation and comes from Floquet Theory [18]. Therefore,

S(ν) = eÂ(ν−ν f )S(ν f )Φ̄(ν f , ν) , (2.30)

where ν f ∈ [0, 2π] ( f stands for Floquet) is an arbitrary parameter. Imposing
the periodicity condition on S(ν) with ν = ν f + 2π in (2.30) gives:

S(ν f + 2π) = S(ν f ) = e2πÂS(ν f )Φ̄(ν f , ν f + 2π). (2.31)

From (2.31) we get:

S(ν f ) = e2πÂS(ν f )Ψ̄(ν f )
−1 , (2.32)

where Ψ̄(ν f ) = Φ̄(ν f + 2π, ν f ) is the monodromy matrix (state transition
matrix over one period) of Ā(ν). Denoting by T the leader’s orbital period, we
have:

J(ν f + 2π, ν f ) =
n

(1− e2)3/2 T =
2π

(1− e2)3/2 . (2.33)

Using (2.11) and (2.18), the monodromy matrix Ψ̄(ν f ) is therefore given by:

Ψ̄(ν f ) =




1 0 0 0 0 0
0 1 0 0 0 0

0 0 1 0 0
2π

(1− e2)3/2

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




. (2.34)

In solving (2.30) under constraint (2.32), we look for a solution having the same
structure as Ā(ν) in (2.17), namely satisfying Â2 = 0, which gives:

eÂν =
∞

∑
k=1

νk

k!
Âk = I + νÂ. (2.35)

Equation (2.32) becomes:

S(ν f )Ψ̄(ν f ) = (I + 2πÂ)S(ν f ) , (2.36)

or equivalently:

2πÂ = S(ν f )Ψ̄(ν f )S(ν f )
−1 − I , (2.37)
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where S(ν f ) is an arbitrary matrix parameter. Here we select S(ν f ) as the
identity matrix, to get

Â =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 (1− e2)−3/2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




. (2.38)

The Floquet-Lyapunov similarity transformation is finally computed from
equation (2.30) as:

S(ν) =
(

I + (ν− ν f )Â
)

S(ν f )Φ̄(ν f , ν)

=




1 0 0 0 0 0
0 1 0 0 0 0

0 0 1 0 0
σ(ν)

(1− e2)3/2

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




, (2.39)

where we introduced the function:

σ(ν) :=(ν− ν̃)− n(t− t̃)

=(ν− ν̃)− (M− M̃)

=∆ν− ∆M, (2.40)

based on an arbitrary true anomaly value ν̃ (in our simulations we select ν̃ = 0)
corresponding to a specific time value t̃ (in our simulations we select t̃ = 0).
Function σ in (2.40) is clearly periodic and bounded, due to the geometric
dependence of ν and M when the leader follows a Keplerian elliptic motion.

The following result establishes a first contribution of this work, showing
that dynamics (2.7) can be transformed to a convenient linear time-invariant
form by exploiting transformations (2.6), (2.15), and (2.39). The proof of the
lemma is omitted as it follows from the mathematical derivations discussed
above, and from periodicity of matrices C and S.

Lemma 2.1. Consider matrices in (2.15) and (2.39). Then the following operation:

ξ̂ := R(ν)X̃ := S(ν)C(ν)X̃ , (2.41)

is a linear time-varying coordinate change, namely R(ν) is invertible for all ν and R
and R−1 are uniformly bounded. Moreover, R is periodic and transforms Ã(ν) into
the following time-invariant form:

Â := R′(ν)R−1(ν) + R(ν)Ã(ν)R−1(ν)

=




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 (1− e2)−3/2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




. (2.42)
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From the peculiar structure (quasi Jordan form) of the dynamic matrix Â,
the following result, that was already noticed for a similar coordinate changes
in [33], can be proven.

Lemma 2.2. A solution of the original dynamics (2.1) is periodic during free motion
if and only if it is transformed into a constant state ξ̂ with the last component being
zero.

Proof. If the last component of ξ̂ is zero, then matrix Â in (2.42) clearly implies that
ξ̂ remains constant during flow (free motion). As a consequence, the free motion in
the original coordinates X of (2.1) is a linear combination of the first five columns of
the periodic transformation R(ν) followed by the periodic time-scale change from ν to
t.

Conversely, assume that the last component of ξ̂ is nonzero. Then during free mo-
tion that component remains constant (the last row of Â is zero) and the third compo-
nent of ξ̂ ramps up to infinity due to the off diagonal term (1− e2)−3/2 6= 0 appearing
in Â. As a consequence |ξ̂| diverges and so does also X̃ because R(ν) is bounded and
has bounded inverse (from Lemma 2.1). Also X must then diverge as t → ∞ because
the time-scale change is periodic. �

Based on Lemma 2.2, it is convenient to represent the system in terms of the
error with respect to a desired motion ξ̂ re f :

ξ̂ re f := [ξ̂
re f

1 ξ̂
re f

2 ξ̂
re f

3 ξ̂
re f

4 ξ̂
re f

5 0]> , (2.43)

so that one may analyze the dynamics of the mismatch vector:

ε̂ := ξ̂ − ξ̂ re f (2.44)

between the coordinate ξ̂ in (2.41) and a constant reference value in (2.43),
representing a desired target periodic motion.

Moreover, according to the coordinate change given in (2.41), and to the
results of Lemma 2.1, matrix B̂(ν) = R(ν)B̃(ν) is a periodic function of ν

arising from combining the similarity transformation in (2.41) with the input
matrix in (2.7), and corresponds to the following matrix.

B̂(ν) = R(ν)B̃(ν) =
1

k2ρ2(1− e2)



0 −(1− e2)ρsν 0

0 (1− e2)ρcν 0

−e(1 + ρ)ρsν −
3σρ3

(1− e2)3/2 0
3σeρ2sν

(1− e2)3/2 − ρ3 + ρ2 + 2ρ

(1− e2)(1 + ρ)ρsν 0 (1− e2)ρ2cν

(1 + ρ)ρcν + eρ 0 −ρ2sν

−3ρ3 0 3eρ2sν




(2.45)





3 C O N T R O L L E R D E S I G N

In this chapter we propose a hybrid representation of the dynamics subject to
impulsive thrusts in order to develop three different control laws for the sta-
bilization of a desired periodic orbit. The proposed controllers performance is
tested with several simulation studies also involving nonlinearities neglected
in the design phase. This chapter is based on the published work [24] and its
preliminary version [20].

3.1 impulsive control of the relative dynamics

The coordinate transformation presented in Lemma 2.1 of the previous section
is a useful means for suitably designing an impulsive control law assigning the
firing times νk in (2.7) and also the corresponding selections of u at time νk to
stabilize the periodic motions characterized in Lemma 2.2.

Problem 3.1. Given plant (2.1) and its equivalent form (2.7), design a state feedback
impulsive control law selecting the firing instants νk, k ∈ N and the corresponding
inputs u(νk) such that for any selection of reference (2.43), a suitable set exists wherein
ξ̂ = ξ̂ re f is globally asymptotically stable for the closed-loop dynamics.

To solve Problem 3.1, in this section we will propose hybrid control laws
relying on the presence of a timer τ in charge of the sequencing of the impulsive
control actions. Then, using the hybrid systems notation in [45] and state
ε̂ := ξ̂ − ξ̂ re f , we may write the following general dynamic description of
the closed loop, enjoying the desirable property that timers ν and τ evolve in
the compact set [0, 2π] and that the flow equation for ε̂ is ε̂ ′ = Â ε̂, because
Â ξ̂ re f = 0:





ε̂ ′ = Â ε̂,
ν′ = 1,
τ′ = −1,

(ε̂, ν, τ) ∈ C , (3.1a)





ε̂+ = ε̂,
ν+ = 0,
τ+ = τ,

(ε̂, ν, τ) ∈ Dν , (3.1b)





ε̂+ = ε̂ + B̂(ν)γu (ε̂, ν) ,
ν+ = ν,
τ+ = γτ (ε̂, ν) ,

(ε̂, ν, τ) ∈ Du. (3.1c)

In equation (3.1), the impulsive control law has been selected as a feedback
controller:

u = γu(ε̂, ν), τ+ = γτ(ε̂, ν). (3.2)

25
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Equation (3.1) is a compact representation of the impulsive feedback control
action as a set of dynamical constraints that solutions should satisfy for their
correct evolution. In particular, using an overall state ζ = (ε̂, ν, τ), this dynamics
falls into the general class of systems studied in [45]:

ζ ∈ C , ζ̇ = F(ζ),
ζ ∈ D, ζ+ ∈ G(ζ).

(3.3)

It is worth to point out that, due to notation reasons, in this case capital F
represents a single valued mapping and not a set valued mapping, in contrast
to what presented in the hybrid framework introduction of Section 1.4,. For
our model, the following selections are made:

Dν := R6 × {2π} × [0, 2π], (3.4a)

Du := R6 × [0, 2π]× {0}, (3.4b)

D := Dν ∪Du , (3.4c)

C := (R6 × [0, 2π]× [0, 2π]) \ D, (3.4d)

which, due to (3.4c), is a choice that prioritizes jumps. In particular, based on
(3.1), functions F and G in (3.3) are selected as:

F(ζ) =




Â ξ̂
1
−1


 ; G(ζ) =

⋃

i∈{u,ν} s.t. ζ∈Di

Gi(ζ); (3.5a)

Gν(ζ) =




ε̂
0
τ


 ; Gu(ζ) =




ε̂ + B̂(ν)γu (ε̂, ν)
ν

γτ (ε̂, ν)


 , (3.5b)

in which, differently from what has been presented in Chapter 1 and for
consistency of the notation of the proposed model, F represents a function
instead of a set-valued map. The proposed hybrid model (3.1), (3.4) (or its
equivalent compact form in (3.3), (3.4), (3.5)), corresponds to the following
intuitive behavior of our solutions.

• Timer ν is used as an additional state to keep track of the periodic time-
varying nature of the dynamics. Using the jump set in (3.4a) ensures that
the timer is reset to zero each time it reaches the value 2π, thereby being
confined 1 to the compact set [0, 2π].

• Thrusters are fired according to (3.1c) whenever ζ ∈ Du, namely when
the timer τ crosses zero (see (3.4b)). Then, at each time during the
evolution of the dynamics, state τ captures the information about how
long we need to wait until the next impulsive control action.

• Each time an impulsive control action is triggered, the associated control
law corresponds to the value of the two functions

γu : R6 × [0, 2π]→ R3,
γτ : R6 × [0, 2π]→ [0, 2π],

(3.6)

1 To avoid situations where arbitrarily small noise may cause solutions to stop because
they exit C ∪ D, it may be useful to replace {2π} by [2π, 2π + δ] for any positive δ in
(3.4a).



3.2 control laws 27

the first one assigning the current selection of the impulsive input û
(based on (3.2)), and the second one preassigning the time to wait until
the next impulsive input should be applied. Note that the range of γτ is
bounded so that solutions will only take values of τ in the bounded set
[0, 2π].

Within the proposed hybrid context, the stability goal formulated in Problem
1 is well characterized in terms of the stability properties of the bounded
attractor

A := {0} × [0, 2π]× [0, 2π], (3.7)

which may be analyzed using the tools of [45, Chapter 7], because selections
(3.4), (3.5) satisfy the hybrid basic conditions of [45, Assumption 6.5].

3.2 control laws

In this section, we propose three different selections for the impulsive control
law (3.2) solving Problem 1. They are comparatively illustrated on the example
studies of Section 3.3.

3.2.1 Periodic norm-minimizing control law

We will refer to the controller developed in this section as Controller A. While
formulation (3.1), (3.2) is general enough to allow for aperiodic optimized
sampling, the simplest possible selection of function γτ in (3.2) is given by
periodic thrusters firing, corresponding to a certain period ν ∈ [0, 2π] fixed a
priori. For instance,

γτ(ε̂, ν) = ν, (3.8)

encodes the fact that each pair of consecutive jumps has a fixed angular distance
of ν.

Regarding the selection of the stabilizer γu, to be evaluated periodically, we
make here a conservative selection leading to the useful feature that after each
impulse, the state ε̂6 = ξ̂6 is driven to zero. Then, in light of Lemma 2.2, in the
absence of noise the spacecraft evolves through periodic (therefore bounded)
motions. In particular, the following optimal selection is chosen:

u? = argmin
u∈R3

|ε̂+|2, subject to:

ε̂ + = ε̂ + B̂(ν)u, ε̂ +
6 = 0. (3.9)

Due to the specific structure of matrix function B̂(ν) in (2.45) at the top
of page 23, we may provide an explicit form of the minimizer in (3.9) after
defining the following quantities:

b̂6(ν) :=
1
k2



− 3ρ

1−e2

0
3e sin(ν)

1−e2


 , B̂⊥6 (ν) :=




e sin(ν) 0
0 1

ρ(ν) 0


 , (3.10a)
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which clearly satisfy b̂6(ν)
> B̂⊥6 (ν) = 0 because matrix B̂⊥6 (ν) generates the

orthogonal complement of b̂6(ν).
With these definitions in place, we may write the explicit expression of the

proposed control law as:

γu(ε̂, ν) = u6 − B̂⊥6 (ν)(B̂(ν)B̂⊥6 (ν))−L(ε̂ + B̂(ν) u6)

with u6 := − b̂6(ν)

|b̂6(ν)|2
ε̂6, (3.10b)

where M−L = (M>M)−1 M> denotes the left pseudo-inverse of matrix M. The
effectiveness of selection (3.10b) is stated in the next proposition.

Proposition 3.1. For any value of ν, the inverses in function (3.10) always exist and
selection (3.10) coincides with the minimizer in (3.9), namely γu(ε̂, ν) = u?.

Proof. The existence of the inverses easily follows from the fact that

det
(
(B̂(ν)B̂⊥6 (ν))>(B̂(ν)B̂⊥6 (ν))

)
(3.11)

= (1− e)2 + 2e(1 + cos(ν)) > 0 (3.12)

|b̂6(ν)|2 =
9ρ4(ρ2 + e2 sin(ν)2)

(1− e2)2 > 0, (3.13)

which clearly indicates that the left inverse in the first line of (3.10b) and u6 in
the second line of (3.10b) can be evaluated. To show that (3.10) coincides with the
minimizer in (3.9), first notice that constraint ε̂ +

6 = 0 is automatically ensured by
b̂6(ν)

> B̂⊥6 (ν) = 0, which implies ε̂ +
6 = b̂>6 (ν)u6 = 0. Therefore, noting that B̂⊥6 (ν)

is the orthogonal complement of b̂6(ν), all possible inputs guaranteeing that ε̂ +
6 = 0

are parametrized by v̂? in:

u = u6 + B̂⊥6 (ν) v?. (3.14)

Therefore, the solution to (3.9) corresponds to (3.14) with v̂? being the solution to the
following unconstrained least squares problem:

v? = argmin
v̂
|ε̂ + B̂(ν)u6 + B̂(ν)B̂⊥6 (ν) v|2. (3.15)

Then, as is well known (see, e.g., [12, Ex.1 pg 92]), the minimizer v? is given by:

v? = −(B̂(ν)B̂⊥6 (ν))−L(ε̂ + B̂(ν) u6), (3.16)

which, substituted in (3.14), gives (3.10b), as to be proven. �

Remark 3.1. Based on Proposition 3.1, a desirable property of control law (3.8), (3.10)
is that, in light of Lemma 2.2, it instantaneously minimizes the norm of ε̂ constrained
to the fact that the subsequent motion be periodic. Since the norm of b̂6 in (3.10a)
is never zero, then clearly, equation (3.10b) is always well-posed and ensures that
ε̂ +

6 = 0. In addition to this, instantaneously minimizing the norm of ε̂ also ensures
the best possible decrease at the specific fixed instant of time enforced by the periodic
selection. With this logic in place, we can guarantee stability of the closed-loop but not
convergence. Indeed, we can guarantee non-increase of |ε̂| across jumps but there is no
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guarantee of obtaining a strict decrease. As a result, we anticipate a slow convergence
(if any) in our simulation section when using this controller. Despite this fact, the
choice (3.8), (3.10) is still an interesting one because it ensures that approaching
between the two satellites is performed through periodic (bounded) motions, leading
to some degree of fault tolerance (in case of malfunctioning, the satellite is on a stable
relative orbit). y

The following theorem certifies that the proposed controller solves part of
Problem 3.1.

Theorem 3.1. Given control law (3.8), (3.10), the attractor A in (3.7) is uniformly
globally stable for the arising closed-loop dynamics with plant (3.1).

Proof. First notice that |(ε̂, ν, τ)|A = |ε̂|. Recall that a generic solution (µ, j) 7→
ε̂(µ, j) to the hybrid dynamics has a domain dom ε̂ parametrized by a flowing direction
and by a jumping direction j (see [45, Chap. 2] for details). Here the flowing direction
is represented by the amount µ of true anomaly elapsed since the initial condition, as
opposed to continuous time t for a classical hybrid systems representation. We first
realize that before the first impulse, all solutions evolve in free motion along the LTI
flow dynamics in (3.1), leading to:

|ε̂(µ, 0)| ≤ |e2πÂ||ε̂(0, 0)|. (3.17)

Notice now that Proposition 3.1 ensures that γu(ε̂, ν) = u?. In particular, after
the first jump the state ε̂6 remains at zero for all (hybrid) times. Then during all
subsequent flows, the state ε̂ remains constant due to the structure of Â. Moreover,
across jumps, the control law is the minimizer of (3.9), clearly satisfying |ε̂ +| ≤ |ε̂|.
As a consequence, we get:

|ε̂(µ, j)| ≤ | exp(2πÂ)||ε̂(0, 0)|, (3.18)

for all (µ, j) ∈ dom ε̂, which establishes uniform global stability. �

3.2.2 Two-step finite-time control law

We will refer to the controller developed in this section as Controller B. A
second selection that we propose for the controller in (3.2) is once again periodic,
thereby corresponding to selection (3.8) for γτ . However, it corresponds to a
wiser selection of γu (in terms of envisioned fuel consumption), performed in
similar ways to what is proposed in [33], by focusing on the overall effect on
the state ε̂ of two impulses performed at a distance of ν from one another. In
particular, using straightforward computations, if two consecutive impulses u1
and u2 happen at times µ1 and µ2 = µ1 + ν, we obtain, along the corresponding
solution:

Φ̂(−ν)ε̂(µ2, j2 + 1) = (3.19)

ε̂(µ1, j1) +
[
B̂(ν1) Φ̂(−ν)B̂(ν1 + ν)

]
︸ ︷︷ ︸

:=M(ν1 ,ν)

[
u1
u2

]
,



30 controller design

where (µ1, j1) and (µ2, j2) denote the hybrid times before each one of the
impulses, and

Φ̂(µ) = eÂµ =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 µ(1− e2)−3/2

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




is the state transition matrix of the (LTI) flow dynamics in (3.1), and ν1 =

ν(µ1, j1).
Based on relation (3.19), and to the end of selecting u1, u2 in such a way

that ε̂(µ2, j2 + 1) be zero, it is important to study the invertibility properties
of matrix M(ν, ν), which is done in the following conjecture. The result of the
conjecture restricts the set of possible selections of ν in (3.8).

Conjecture 3.1. For any value of ν ∈ [0, 2π], matrix M(ν, ν) in (3.19) is invertible
if and only if ν 6= kπ, k ∈ Z.
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Figure 3.1: Determinant of matrix M(ν, ν) with e = 0.4.

In support of the conjecture, we report in Figure 3.1 the value of the determi-
nant of M(ν, ν) for different values of ν (represented by the color code) and ν

(represented by the horizontal axis). The plot corresponds to the value e = 0.4
and similar plots are experienced for any value of e < 1. Proving Conjecture 3.1
is challenging from a mathematical viewpoint, but is of little interest in light of
the improved results reported in Section 3.2.3.

If Conjecture 3.1 holds, for any selection ν ∈ (0, 2π) \ {π}, Equation (3.19)
can be inverted to compute the unique pair of inputs u?

1 , u?
2 ensuring ε̂(µ2, j2 +

1) = 0 (namely that the state ε̂ is driven to zero after two impulses separated
by ν times). Following a receding horizon type of paradigm, we may apply
the first impulse and re-evaluate the control law at the next impulse time. The
above control design paradigm leads to the following selection:

γu(ε̂, ν) := − [ I 0 ] M(ν, ν)−1 ε̂, γτ(ε̂, ν) = ν. (3.20)
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The overall control strategy (3.8), (3.20) guarantees convergence to zero of the
error ε̂ after two impulses, as established next.

Lemma 3.1. If M(ν, ν) is invertible for all ν ∈ [0, 2π], then selection (3.8), (3.20)
guarantees that all solutions to (3.1) have the ε̂ component equal to zero after at most
two jumps.

Proof. Consider two subsequent impulses associated to the control selections uj =

[ I 0 ]
[

uj,1
uj,2

]
= uj,1 and uj+1 = [ I 0 ]

[
uj+1,1
uj+1,2

]
= uj+1,1. Then, due to the property that

[
uj,1
uj,2

]
brings the state to zero after two impulses, it follows that selection

[
uj+1,1
uj+1,2

]
=

[
uj,2
0

]
is a feasible one for the second impulse. As a consequence of uniqueness, arising

from relation (3.19), this is the only possible solution and we must have ε̂ + = 0 after
the second impulse. �

Based on Lemma 3.1 we can now prove that our second control law solves
Problem 1 as established in the next theorem.

Theorem 3.2. Given ν ∈ (0, 2π) \ {π}, assume that matrix M(ν, ν) is invertible
for any value of ν ∈ [0, 2π].

Then, control law (3.8), (3.20) ensures that attractor A in (3.7) is uniformly glob-
ally asymptotically stable along the arising closed-loop dynamics with (3.1).

Proof. The proof is carried out by exploiting the following global version of [45, Prop.
7.5] (its proof is straightforward, taking µ→ ∞ in the semiglobal version of [45, Prop.
7.5], and is actually therein implicitly used for establishing the result in [45, Ex. 7.6]).

Proposition 3.2. Given a nominally well-posed hybrid system H, suppose that the
compact set A in (3.7) is strongly forward invariant and globally uniformly attractive
for H. Then, it is uniformly globally asymptotically stable for H.

To apply Proposition 3.2 to our case, we first notice that the data of hybrid sys-
tem (3.1), (3.8), (3.20) satisfy the hybrid basic conditions in [45, As. 6.5], therefore,
from [45, Thm 6.8], it is nominally well-posed. Concerning forward invariance of A
(namely, all solutions starting in A remain in A for all times), it follows from the
fact that the flow dynamics of ε̂ is linear (so the origin is an equilibrium) and the
jumps guarantee non-increase of ε̂ (see the proof of Theorem 3.1). Finally, global uni-
form convergence is a straightforward consequence of the stronger property of uniform
finite-time convergence established in Lemma 3.1. �

Remark 3.2. A desirable feature of the established global asymptotic stability of set
A can be obtained by the robustness characterization given in [45, Ch. 7], which
holds under the mild assumption that the hybrid dynamics satisfy the hybrid basic
conditions (these are easily checked for dynamics (3.1), (3.8), (3.20)) and that the
attractor is compact (this is easy to verify as well for set A in (3.7)). Robustness
of asymptotic stability (established in [45, Thm 7.21]) allows to conclude that there
exists a sufficiently small, but nonzero perturbation of the dynamics, for which the
established nominal asymptotic stability is not destroyed. As a consequence, we expect
our control law to perform well also under the presence of uncertainties, such as
unmodeled dynamics, or external perturbations, as long as they are sufficiently small,
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and they are zero when the state belongs to the attractor (see, [45, Ch 7] for details). For
more general settings, another useful feature arising from these robustness properties
is that for stronger perturbations we have a semiglobal practical robust stability result,
established in [45, Thm 7.20]. This result ensures that perturbations not vanishing in
A lead to a gradual deterioration of the convergence properties, which is what one
should expect when persistent disturbances, such as atmospheric drag or high solar
activities or also measurement noise coming from the GNC devices affect the closed-
loop dynamics. All these desirable properties are confirmed by our simulation results
of Section 3.3. y

3.2.3 Three-step finite-time control law

We will refer to the controller developed in this section as Controller C. The
two controllers presented in the previous sections have the following features:

• Controller A is desirable because it forces the chaser to evolve along
periodic (therefore bounded) motions, but does not lead to a convergence
guarantee;

• Controller B is desirable because it guarantees finite time convergence,
but these maneuvers are fragile since the chaser evolves on divergent
trajectory until it reaches its goal. This can be unsafe in case of actuators
failure.

In this section we combine the desirable features of the two above laws in
a single enhanced control law following again a receding horizon paradigm,
arising from the observation that we can separate our control design in two
completely decoupled problems corresponding to the following partitions of
vectors u and ε̂:

u =




0
uy
0


+




1 0
0 0
0 1


 uxz , uy ∈ R, uxz ∈ R2, (3.21a)

ε̂ =




ε̂y
ε̂xz
ε̂6


 , ε̂y ∈ R2, ε̂xz ∈ R3, ε̂6 ∈ R. (3.21b)

With this partition in mind, we may write the hybrid dynamics of state compo-
nent ε̂ in (3.1) as follows:





ε̂y
′ = 0

ε̂xz
′ = (1− e)3/2

[ 1
0
0

]
ε̂6

ε̂6
′ = 0

(ε̂, ν, τ) ∈ C , (3.22a)





ε̂+y = ε̂y + B̂y(ν)uy[
ε̂+xz
ε̂+6

]
=

[
ε̂xz
ε̂6

]
+ B̂xz(ν)uxz

(ε̂, ν, τ) ∈ Du , (3.22b)
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where

B̂y(ν) :=
1

k2ρ

[
−sν

cν

]
,

B̂xz(ν) :=
1

k2ρ(1− e2)




−e(1 + ρ)sν − 3σρ2

(1−e2)3/2
3σeρsν

(1−e2)3/2 − ρ2 + ρ + 2

(1− e2)(1 + ρ)sν (1− e2)ρcν

(1 + ρ)cν + e −ρsν

−3ρ2 3eρsν


 .

(3.23)

Once the dynamics has been separated in two components, we may perform
similar computations to (3.19) and obtain:

ε̂y(µ2, j2 + 1) = (3.24)

ε̂y(µ1, j1) +
[
B̂y(ν1) B̂y(ν1 + ν)

]
︸ ︷︷ ︸

My(ν1 ,ν):=

[
uy(µ1, j1)
uy(µ2, j2)

]
,

which is simpler than (3.19) because ε̂y remains constant along flowing solu-
tions. The following result then parallels Conjecture 3.1 and Lemma 3.1.

Lemma 3.2. Given any value of ν 6= hπ, h ∈ Z, matrix My(ν, ν) is nonsingular
for all ν ∈ [0, 2π]. Moreover, for any such value of ν, selection:

uy := − [ 1 0 ] My(ν, ν)−1 ε̂y , γτ(ε̂y , ν) = ν, (3.25)

guarantees that all solutions to (3.1), (3.21), (3.22) have the ε̂y component equal to
zero after at most two jumps.

Proof. Let us first compute:

det(My(ν, ν)) =
1
k2

(
sin(ν) cos(ν + ν)

ρ(ν)ρ(ν + ν)
+

sin(ν + ν) cos(ν)
ρ(ν)ρ(ν + ν)

)

=
sin(ν)

k2ρ(ν)ρ(ν + ν)
,

which proves invertibility of My(ν, ν) for all ν 6= hπ, and all ν. The proof of finite-
time convergence follows similar steps to the proof of Lemma 3.1, based on unique-
ness of the solution of ε̂y(µ2, j2 + 1) = 0 in (3.24) and based on the fact that for
any solution ε̂y with two consecutive impulses at (µ1, j1) and (µ2, j2), we have
ε̂y(µ2, j2) = ε̂y(µ1, j1 + 1), due to the trivial flow dynamics in (3.22a). �

Consider now state
[

ε̂xz
ε̂6

]
and input uxz. To obtain periodic motion, from the

structure of (3.22a) and because of Lemma 2.2, we want to select uxz in such
a way that any impulse brings the last component ε̂6 of ε̂ to zero. To this end,
paralleling (3.10a), and with reference to B̂xz in (3.23), define:

b̂4(ν) :=
3

k2(1− e2)

[
−ρ
esν

]
, B̂⊥4 (ν) :=

[ esν

ρ
1

]
, (3.26a)
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and notice that we may obtain ε̂+6 = 0 with selection:

uxz := − b̂4(ν)

|b̂4(ν)|2
ε̂6 + B̂⊥4 (ν)vxz , (3.26b)

which mimics selection (3.10b), (3.14). The difference, as compared to before, is
that we will now select vxz in (3.26) following the receding horizon paradigm,
which is here simplified because after any impulse, we obtain ε̂+6 = 0 and the
solution ε̂xz remains constant along flows (see (3.22a)). Let us then introduce
the reduced input matrix:

B̂r
xz(ν) := [ I3 0 ] B̂xz(ν)B̂⊥4 (ν) (3.27)

=
1

k2ρ2

[
2 + ecν 2e + cν(1 + e2) −sν

]> , (3.28)

and notice that we need at least three impulses to drive ε̂xz to zero. Let us
use ε̂+6 = 0 and the arising zero right-hand side of (3.22a) to obtain that three
consecutive impulses with selection (3.26) lead to (compare to (3.24)):

ε̂xz(µ3, j3 + 1) = ε̂xz(µ1, j1)+ (3.29)

[
B̂r

xz(ν1) B̂r
xz(ν1 + ν1) B̂r

xz(ν1 + ν1 + ν2)
]

︸ ︷︷ ︸
Mxz(ν1 ,ν1 ,ν2):=




vxz(µ1, j1)
vxz(µ2, j2)
vxz(µ3, j3)


 ,

where ν1 = ν(µ2, j2) − ν(µ1, j1) and ν2 = ν(µ3, j3) − ν(µ2, j2) are the free
motions durations between each pair of consecutive impulses. The following
result then parallels Lemma 3.2.

Lemma 3.3. Given any values of ν1, ν2 such that

ν1 6= 2hπ, ν2 6= 2hπ, ν1 + ν2 6= 2hπ, ∀h ∈ Z, (3.30)

matrix Mxz(ν, ν1, ν2) is nonsingular for all ν ∈ [0, 2π]. Moreover, selecting any
value of ν1 = ν2 = ν, selection:

vxz := − [ 1 0 0 ] Mxz(ν, ν, ν)−1 ε̂xz , γτ(ε̂xz , ν) = ν, (3.31)

guarantees that all solutions to (3.1), (3.21), (3.22), (3.26) have the ε̂xz, ε̂6 components
equal to zero after at most three jumps.

Proof. First consider the following expression that emerges from direct computation:

dM : = det(Mxz(ν, ν1, ν2))

= 2
sin(ν1) + sin(ν2)− sin(ν1 + ν2)

ρ(ν)2ρ(ν + ν1)2ρ(ν + ν1 + ν2)2 .
(3.32)

since ρ never vanishes we may study the invertibility of Mxz by only focusing on the
numerator, which satisfies:

dn
M = sin(ν1) + sin(ν2)− sin(ν1 + ν2)

= sin(ν1)(1− cos(ν2)) + sin(ν2)(1− cos(ν1))

= 4 sin
(

ν1
2

)
sin
(

ν2
2

)
sin
(

ν1
2

+
ν2
2

) (3.33)
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Figure 3.2: Level sets for det(Mxz(ν, ν1, ν2)) with e = 0.

and which clearly does not vanish if and only if (3.30) holds, regardless the value of
ν.

The fact that with controller (3.31) all solutions have ε̂xz, ε̂6 converge to zero in
finite time follows similar steps to the proof of Lemma 3.2, from uniqueness of vxz in
(3.31). �

The following result can be established by similar derivations to those in
the proof of Theorem 3.2, relying on the uniform finite-time convergence
established in Lemmas 3.2 and 3.3. Its proof is omitted due to this similarity to
that of Theorem 3.2.

Theorem 3.3. Control law (3.21), (3.25), (3.26b), (3.31) ensures that attractor A in
(3.7) is uniformly globally asymptotically stable along the closed-loop dynamics with
(3.1).

Figure 3.2 shows the level sets of det(Mxz(ν, ν1, ν2)) for a circular orbit,
i.e. e = 0, which clearly indicates that the determinant is maximized with
ν1 ≈ ν2 ≈ 120◦. Due to this fact and to reduce consumption, we select this
value for ν1 = ν2 in our simulation section.

Remark 3.3. The three control laws proposed in this chapter require estimates of rela-
tive positions and velocities of the follower. During proximity operations, far range and
close range rendezvous operations, relative measurements of positions and velocities
between the leader and the follower may be provided either by passive or active sensors
data processed by the navigation system of the follower (e.g. vision-based relative pose
estimation, filtered Carrier-phase Differential GPS) [38]. Note that the impact of the
sensors noise and the robustness of the hybrid schemes are analyzed numerically in the
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simulation section and are expected to be non-damageful for the asymptotically stable
closed loops in light of the robustness results highlighted in Remark 3.2. y

3.3 simulations

In this section, we present the simulation results obtained with the control
laws designed in Section 3.2 and system (3.1) (equivalently (3.3)–(3.5)) using
a nonlinear simulator and comparing the results with a linearized model in
Matlab-Simulink for the PRISMA mission [19].

3.3.1 Simulated context and performance metrics

The simulator is composed by two main blocks: the controller and the dynamics.
The controller recovers the current state in LVLH coordinates and transforms it
into state ξ̂ to compute the mismatch (2.44). Afterwards, the control input u is
computed, to be applied to the dynamics block.

For a given orbital rendezvous scenario, the output of the nonlinear simulator
is the history of the relative position and velocity between the two spacecrafts,
obtained by simulating their inertial trajectories in the Earth-centered frame
via the integration of the Gauss equations. The simulator accounts for the
disturbances provoked by the Earth’s oblatness (so-called J2-effect) and the
atmospheric drag. Moreover, uncertainties that originate from GNC devices
(measurement noise and chemical thrusters limitations) are also simulated. For
instance, the measured relative state is affected by a white noise characterised
by the following standard deviation on the relative position and velocity:
dp = 10−2 m, dv = 10−5 m/s (see Remark 3.3). Then, the applied control u is
obtained from the computed control u∗ through the thrusters saturation and
dead-zone filter along each axis independently:

ui =





u∗i if u∗i ∈ [−∆vmax − ∆vmin] ∪ [∆vmin ∆vmax],

0 if u∗i ∈ [−∆vmin ∆vmin],

u∗i∣∣u∗i
∣∣∆vmax if u∗i ∈ (−∞ − ∆vmax] ∪ [∆vmax ∞),

(3.34)

with ∆vmax = 0.5 m/s and ∆vmin = 5 · 10−4 m/s. This simulation set-up is a
simple way to check the robustness properties of hybrid schemes mentioned in
Remark 3.2. Aside, a linearized dynamics with no environment disturbances
nor devices uncertainties is also propagated along with the different controllers
for the sake of comparison.

Within the PRISMA mission, the leader vehicle evolves on a given orbit with
a semi-major axis of 7011 km, an eccentricity of e = 0.004 and an inclination of
i = 98 deg. The performed simulations are run from the initial true anomaly
ν0 = 0 up to a final true anomaly ν f = ν0 + 20π, namely ten orbital periods
later. The chaser satellite begins the rendezvous maneuver at initial state X0 at
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ν0 = 0. The simulations aim at stabilizing the chaser in a periodic trajectory
specified by a suitable selection of ξ̂ re f in (2.43):

ξ̂ re f = (7.68, 17.68, 87.78, 33.04, −15.77, 0) (3.35)

where we emphasize that the last element is zero (a necessary and sufficient
condition for periodic motion, as established in Lemma 2.2). The reference
periodic trajectory ξ̂ re f is free to evolve inside a tolerance box B, centered at
point XB = (100, 0, 0)m (expressed in the target’s position frame used in (2.1))
and has positive and negative widths Xtol = (50, 25, 25)m in the three LVLH
directions.The different control thrusts are separated by an angular distance
ν = 120◦ from one to another along the whole duration of the rendezvous. This
value of ν has been selected in order to maximize the norm of the determinant
of matrix M either from (3.19) or (3.29) depending on the selected control law
(see Figures 3.1 and 3.2). Doing this, the consumption is expected to be reduced
as the control input is computed through the inversion of M.

For each one of the three control laws in Section 3.2, four different initial
conditions X0i, i ∈ {1, · · · , 4} for state X(t) in (2.1) have been used, which are
chosen at four different distances from the target satellite located at the origin
of the LVLH frame:

|X01| ≈ 500, m |X02| ≈ 750, m

|X03| ≈ 2000, m |X04| ≈ 5200 m.

The first to initial conditions X01 and X02 correspond to a close range ren-
dezvous scenario, while the last to X03 and X04 to a far range rendezvous
scenario.

The initial conditions are selected as:

X01 = (400, 300, −40, 0, 0, 0),

X02 = (600, 400, 200, 0, 0, 0),

X03 = (−1500, 1300, 150, 0, 0, 0),

X04 = (5000, 1300, 500, 0, 0, 0),

(3.36)

where the first three components are meters and the last three are meters per
second. Let us denote by ξ̂0i the image of the initial states X0i through R(ν)
defined in (2.41). The initial relative velocity has been selected to be zero to
account for the fact that the starting point of our trajectory may be a holding
point arising from a previous station keeping along the space mission.

Two performance indexes are considered: the fuel consumption J, and the
convergence time Tc, both described next.

The fuel consumption is characterized in [89], when firing is achieved by 6

identical thrusters rigidly mounted to the satellite, and corresponds to the cost
function:

J := ∑
νk∈V
‖u(νk)‖1, (3.37)

where u = ∆ν has been introduced in (2.5), (2.7), V is the set of firing instants,
and | · |1 denotes the 1-norm, so that ‖∆v(νk)‖1 = |∆vx(νk)| + |∆vy(νk)| +
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|∆vz(νk)|. The convergence is evaluated by means of the mismatch ratio η

given by

η(ν) =
‖ε̂(ν)‖2
‖ε̂(ν0)‖2

=
‖ξ̂(ν)− ξ̂ re f ‖2

‖ξ̂(ν0)− ξ̂ re f ‖2
(3.38)

The convergence time Tc is defined as the smallest time after which the solution
remains in the δ vicinity of the reference point, namely:

η(ν) ≤ δ, ∀ ν ≥ Tc (3.39)

where δ is set to 5%.

3.3.2 Comparative simulation results

Different simulations have been performed for each one of the three control
laws in Section 3.2, and for each one of the initial conditions in (3.36). The
trajectories concerning the initial condition X01 for the three controllers are
represented in Figure 3.3 at page 41. The corresponding applied impulses and
the corresponding convergence profile are represented in Figure 3.4 at page 42.
The trajectories from the other initial conditions have not been included for
sake of brevity, while in Figure 3.5 at page 43 we reported the applied impulses
and the convergence profile in the case of the initial condition X04, the one
with the largest initial error.

In the following study, we first address the results of the linear simulations
in order to analyze the nominal behavior of the different controllers. Then, we
focus on the nonlinear simulation to assess their robustness with respect to
modeling errors, navigation uncertainties and input saturation. Finally, for the
sake of comparison, we report on the simulation results obtained with the MPC
controller proposed in [9], whose results are depicted in Figure 3.6 at page 44.

linear simulations Figures 3.4a, 3.4b and 3.4c reveal how the different
control strategies steer the chaser to the tolerance box along different paths in
a linear environment. Controller A makes the chaser inch to the tolerance box
while controllers B and C have more “straight” paths. These facts are corrobo-
rated by the impulsive control plan on the upper graphs of Figures 3.4a, 3.4b
and 3.4c. Controllers B and C concentrate most of their consumption on the
two first controls while the 7 first controls have a relative importance for
Controller A.

The differences among the control strategies can also be observed on the
evolution of η the mismatch ratio (lower graphs of Figures 3.4a, 3.4b and 3.4c).
Thanks to the safe orbit transfer philosophy (maintaining ξ̂6 to zero which
ensures, by Lemma 2.2, intermediate periodic motions), the Controllers A and C
make the tracking trajectory jump from a periodic orbit to another so that ξ̂

and ε̂ remain constant between control impulses. On the contrary, Controller C
allows to follow a path possibly with a high divergence coefficient ξ̂6, so that the
error norm can possibly evolve fast (either diverging or converging) between
successive firing times. Indeed, in the linear simulation, Controller B provides
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faster convergence time, compared to Controllers A and C, with an equivalent
consumption. In fact, in an ideal context, only two impulses are needed to
bring the chaser to the steady state, while Controllers A and C need at least
three impulsive controls. On the other hand, if Controller A is the slowest in
the linear simulator, it is generally the less demanding in terms of consumption
among the hybrid controllers, as expected.

nonlinear simulations Addressing the nonlinear simulations, two
cases can be distinguished depending on how close to the target relative
orbit the chaser starts. For the close range control maneuvers (starting from
initial conditions X01) illustrated in Figures 3.3 and 3.4, the difference between
the linear and nonlinear simulations are slight: the consumption and the
convergence time are equivalent, as one can notice from the first rows of
Tables 3.1 and 3.2. It can also be observed on Figure 3.4 that no controls are
saturated: the feedback control is properly executed in close range in the
nonlinear simulation. However, the trajectories have small differences that can
be imputed to the dynamics linearization process and navigation uncertainties.
Analyzing the simulations starting from the initial states X02, the same kind
of conclusions can be drawn. Note that for Controllers A and C, the control
inputs are slightly saturated but not enough to degrade the performances in
terms of convergence time.

On the contrary the simulations from the initial states X03 and X04 expose
different behaviors. Due to the larger distance from the target box, every
controllers demand for a first large impulsive control action. However, it can be
observed on Figure 3.5 that all the first impulses are saturated in the nonlinear
simulator. Each controller reacts in a different manner to such a drawback.
Controller B fails to stabilize the chaser in the presence of saturations for
initial states X03 and X04. In fact, the size of input u = ∆v (see (2.5) and
(2.7)) demanded by the controller is largely beyond the thrusters capabilities,
while such an amount is supposed to steer the chaser to the box after two
impulses. Instead, since the impulsive controls are truncated, the chaser is
brought on a random orbit with no particular interest and obviously divergent
(see Figure 3.5b). On the contrary, for Controllers A and C, a part of the control
is dedicated to guiding the chaser to the set of periodic orbits. Thus, even if this
control is truncated, the chaser is steered to states with gradually decreasing
divergence parameter ξ̂6. This fact can be observed on Figures 3.5a and 3.5c,
where the slope of the error norm decreases after each impulsive control and
tends to zero. Both controllers expose two phases: first stabilizing ξ̂6 and then
steering states ξ1 to ξ5 to ξre f . The consequence is that the convergence time
is degraded for both controllers. Naturally, the presence of saturation limits
the consumption for both controllers, as compared to the linear simulations.
Indeed Controllers A and C show some robustness abilities with respect to
saturation at the price of a slower convergence time.

comparison with mpc strategy Parallel simulations have been per-
formed with the MPC-based method recently presented in [9], which directly
addresses the minimization of J and accounts for saturation. This controller has
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been benchmarked using the nonlinear simulator. For the sake of comparison,
we report on the controlled trajectory for the initial condition X01, shown in
Figure 3.6a, and the applied impulses as well as the profile of η, shown in
Figures 3.6b and 3.6c for the initial conditions X01 and X04. Note that in the
MPC framework η refers to the relative distance from the set of the relative
periodic orbits included in the tolerance box (see [35] for a rigorous description
of this set) including the relative orbit ξre f .

For the close range initial conditions (X01 and X02), the hybrid controllers
ensure faster convergence of the chaser as compared to the MPC controller. This
can be explained by two facts. First, it has been mentioned earlier that, for those
initial conditions, the behavior of the hybrid controllers is equivalent between
the nonlinear and the linear simulator, probably due to the fact that saturation
does not play a dominant role. Second, the convergence and stability properties
of the hybrid controllers probably justifies the faster convergence as compared
to the MPC controller from [9], which lacks a guarantee of asymptotic stability.

For the far range initial conditions X03 and X04, the performance of the
hybrid controllers are degraded probably because of the saturations. Con-
versely the MPC controller, which explicitly takes into account the presence of
saturations, exhibits a better behavior for far range initial conditions. Finally,
the MPC controller leads to smaller consumption at the price of a significantly
higher numerical complexity (a numerical optimization must be solved at each
firing instant).

Initial Control A Control B Control C MPC
condition LIN NL LIN NL LIN NL NL

X01 1.00 1.10 0.86 1.10 0.93 1.02 0.57

X02 1.92 1.92 2.18 2.19 2.85 2.40 1.37

X03 4.50 3.77 4.44 ××× 4.00 4.12 2.17

X04 9.05 8.96 9.23 ××× 9.35 8.16 7.11

Table 3.1: Consumption J
[m

s
]
.

Initial Control A Control B Control C MPC
condition LIN NL LIN NL LIN NL NL

X01 2.91 2.86 0.34 0.34 0.98 0.97 1.63

X02 2.59 2.59 0.34 0.34 0.98 0.98 1.34

X03 3.55 2.91 0.34 ××× 0.98 1.94 1.64

X04 3.87 5.48 0.33 ××× 0.98 4.20 2.97

Table 3.2: Convergence time Tc [numer of orbits].
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Figure 3.3: Trajectories for Controllers A, B, and C when starting from X01.
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Figure 3.4: Impulses and convergence from X01 for Controllers A, B, and C.
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Figure 3.6: Comparative simulations using the MPC controller of [9]
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This chapter illustrates a novel Robust Time-Sub-Optimal (RTSO) control
framework for a class of linear SISO systems with saturated input, based
on a hybrid blend of a local and a global controller. The scheme makes use
of two hysteresis mechanisms in order to provide robustness to unmodelled
dynamics and measurement noise. Rigorous certificates of the stability of the
proposed controller are given for the saturated double integrator, by exploit-
ing the properties of hybrid dynamical systems established in [44], [45], and
other recent related work by Rafal Goebel, Ricardo G. Sanfelice, and An-
drew R. Teel. This chapter is based on the published work [21] and on some
more recent advancements.

4.1 introduction: motivation and approach

Chains of integrators with saturated input are fundamental dynamical pro-
cesses. The control of them is widely investigated by the control community,
see, for example, [99] and [77]. Among many control strategies, time-optimal
controllers are capable of achieving finite time stabilization of such plants in
minimum time, see for example [40], [16].

Time-optimal control with bounded controls is well-known to yield bang-
bang and hence discontinuous open-loop and feedback controls [10]. A classical
example of this is the second-order integrator ẋ1 = u, ẋ2 = x1, with u ∈ [−1, 1],
which is one of the most fundamental systems in control applications, and
has many mechatronic applications [25] [57]. There, the time-optimal feedback
that drives the states to the origin takes on the value −1 above the curve
x2 = sign(x1) x2

1/2, and the value 1 below that curve, and is thus discontinuous
along that curve. Open-loop controls switch from one value of the control to
its negative upon reaching this “switching curve”. The computation of the
curve, thanks to the Pontryagin Maximum Principle, boils down to backward
integration of the optimal dynamics, and the same idea applies to higher-order
integrators. More advanced methods, for example Groebner bases, have been
tested in computation of the switching surfaces for the third-order integrator
[102] and can be used for more involved linear dynamics [79].

The discontinuity of the time-optimal feedback raises the issue of its robust-
ness. Essentially, the discontinuity, measurement error and/or unmodelled
dynamics may lead to frequent switching/chattering and loss of performance.
One early proposal to deal with this [75], for the second-order integrator, in-

47
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volves smoothing of the bang-bang behavior along the switching curve and
linear control near the origin, resulting in sub-optimal behavior. Similarly,
replacing the switching curve and the two regions, above and below it, by three
regions has been considered in discrete-time [57] and applied to disk-drive
control. Similar ideas are followed for the third-order integrator in [77], [78].
Alternatively, some robustness can be introduced through hysteresis [47], thus
suggesting a hybrid formulation of the feedback. For a related discussion of
robustness aspects of time-optimal and other stabilizing controllers for the
second-order integrator, see [87].

This work builds on the ideas considered before, like hysteresis implementa-
tion of the switching surface and use of linear feedback near the origin, and, for
a class of linear systems, formulates a sub-time-optimal feedback in the hybrid
dynamical systems framework of [45]. The use of hybrid controllers for improv-
ing performances of continuous time plants has been already investigated for
example in [65] and, for reset control systems, in [74]. One advantage of using
this framework is that it easily allows for modeling of hysteresis-type switching
of various controllers, for example a local (in this case, linear) and a global one;
see [45] and, for example, [82]. The resulting model is, in fact, simpler than one
resulting from continuous interpolation of the original discontinuous feedback.
Another advantage is that robustness of asymptotic stability follows from the
general results in [45], if the data meets the mild regularity conditions (the
functions modeling the feedback are continuous, and the set where different
functions apply are closed) already introduced in Assumption 1.1.

4.2 time optimal switching surfaces

The class of SISO LTI processes with bounded input for which the robust
time-sub-optimal controller is developed can be parametrized by the following
dynamics with state z = (z1, z2, . . . , zn) ∈ Rn

ż =




ż1
ż2
...

żn


 =




−az1 + q
z1
...

zn−1


 =: Ā z + b̄ q , (4.1a)

for a suitable state matrix Ā ∈ Rn×n and input vector b̄ ∈ Rn, together with
bounded input q:

q ∈ [−1, 1] , (4.1b)

and parameter

a ∈ R≥0 . (4.1c)

This system represents a chain of n integrators if a = 0, while if a > 0 the
first element of the chain has a real negative eigenvalue. In both cases we
consider n ∈ {1, 2, 3}. In this work, we do not consider dynamical systems
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Figure 4.1: Block diagram representation of the systems generated by (4.1).

with order higher than 3 due to the lack of easy-to-compute and closed-form
time optimal switching surface for such higher order systems. Never the less,
considering dynamical order up to 3 covers many of the technological scenarios.
In Figure 4.1 the systems generated from equation (4.1) are depicted in a block
diagram representation.

Remark 4.1. Matrix Ā in (4.1) has n eigenvalues in {−a, 0, . . . , 0}, therefore it
has only real and non-positive eigenvalues. y

In order to develop the RTSO controller, the time-optimal control law for
the class of systems described by (4.1) has to be studied. In particular, from
general optimal control theory, the following theorem can be stated:

Theorem 4.1. From [58, Theorem 5.4], system (4.1) has a unique time-optimal con-
trol, which is bang-bang (i.e., it takes only the extreme values) and switches at most
(n− 1) times.

Remark 4.2. Theorem 4.1 holds because system (4.1) is an LTI system whose dynam-
ics matrix Ā has only real and non positive eigenvalues. y

For the computation of the time-optimal controller, we rely on an auxiliary
state x arising from a similarity transformation

x := Sz , (4.2a)

which transforms system (4.1) to

ẋ = Ax + bq (4.2b)

with

A := SĀS−1 ,

b := Sb̄ .
(4.2c)
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For the auxiliary system (4.2) with, n ∈ {1, 2, 3}, it is possible to express the
time-optimal controller as a feedback law trough a function ϕn depending from
the auxiliary state x. This function will be called time-optimal switching func-
tion or time-optimal switching surface, since the set {x|ϕn(x) = 0} represents
a hypersurface in the x state space.

The process of computing such a time-optimal switching function is well
known, and is covered in classical optimal control books such as [10] and [58].
It is essentially based on integrating backward in time the dynamics, taking
into account a control q that toggles (n− 1) times between the extreme values
(see Theorem 4.1).

The above mentioned set {x|ϕn(x) = 0} has the peculiarity of splitting the
state space in two halves, to which we will refer as set U+ and set U−, where
the time-optimal control law is perfectly known. In particular consider the
following Proposition.

Proposition 4.1. Let us define the following sets:

U+ := {x|ϕn(x) > 0}
U− := {x|ϕn(x) < 0}

(4.3a)

Then, given a generic initial condition x0 for system (4.2), x0 ∈ U+ (respectively,
x0 ∈ U−) implies that the time-optimal control takes the value q = −1 (respectively,
q = 1) for an initial time interval of non zero length. Moreover, it holds that U+ ∩
U− = ∅ and

U+ ∪ U− = Rn (4.3b)

We now start covering the illustration of the switching functions for the
considered class of systems described by (4.1).

4.2.1 Poles at the origin

In this case, we take the auxiliary state x in (4.2) to be the original state z, that
is, we consider a trivial similarity transformation.

x = z . (4.4)

Moreover, for the case of poles in the origin, a = 0 holds.

single integrator Start considering system (4.2) (or, equivalently in
this case, (4.1)) with n = 1. The trivial time-optimal switching surface for the
first order case corresponds to

ϕ1(x) := x1 . (4.5)

double integrator Consider now system (4.1) with n = 2, a = 0. This
system is known as “saturated double integrator”, and its time-optimal control
with saturated input is well known and studied, see, among others, [10, 58, 86].
Nevertheless, for this case and for the sake of illustration, we report here the
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procedure followed for computing the time-optimal switching surface, which
is the same followed for the other covered cases. Consider therefore the double
integrator dynamics deriving from (4.1) with n = 2, a = 0:

ẋ1 = q ,

ẋ2 = x1 .
(4.6)

As mentioned before, the procedure for deriving the time-optimal switching
surface is based on integrating backward in time the dynamics, taking into
account a control q that toggles (n− 1) times (one time for the analyzed case)
between the extreme values. We therefore proceed in backward integrating the
dynamics for a time t = t1 ≥ 0 (that will correspond to the toggling time of q):

x(t1) =





(
−t1, t2

1
2

)
if q = 1

(
t1, − t2

1
2

)
if q = −1

(4.7)

Exploiting the fact that t1 ≥ 0, we can re-parameterizing this trajectories in
terms of the state x as follows for deriving the time optimal switching curve:

ϕ2(x) =





x2 − x2
1

2 if x1 ≥ 0

x2 +
x2

1
2 if x1 ≤ 0 .

(4.8)

We recognize that the just derived switching surface ϕ2(x) depends by the
lower order switching surface ϕ1(x) = x1 as follows

ϕ2(x) := x2 + sign (ϕ1(x1))
x2

1
2

. (4.9)

This last equation represents the time-optimal switching surface for the satu-
rated double integrator. The following switching surfaces are derived following
the same presented procedure.

triple integrator Consider finally system (4.1) with n = 3. This case
is the most involved one, but the explicit representation of its time-optimal
switching surface is still known, see for example [37] and [77], and may be
written as:

ϕ3(x) :=x3 +
x3

1
3
+

+ sign (ϕ2([
x1
x2 ]))


x1x2 +

(
x2

1
2

+ sign (ϕ2([
x1
x2 ])) x2

) 3
2

 .

(4.10)

It is interesting to observe how the presented time-optimal switching functions
exhibit a nested structure. Indeed the n-th order surface can be written as a
function of the (n− 1)-th order surface.We will see that this peculiarity arises
for the case with a > 0 as well.
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4.2.2 One negative pole plus poles at the origin

Consider now the case of system (4.1) with a > 0. To compute the switching
surfaces in this case a non trivial similarity transformation S in (4.2a) arising
from a Jordan normal form decomposition and a dynamic rescaling will be
used.

first order In the case of system (4.1) with n = 1, a > 0, we select a
trivial similarity transformation S = 1 in (4.2) leading to, similar to the case
with a = 0,

ϕ1(x) := x1 . (4.11)

Note that in this case the time-optimal switching function coincides with the
case of a = 0, n = 1.

second order In the second order case, i.e. system (4.1) with n = 2, a >

0, we rely on the following similarity transformation S:

S =

[
a 0
a a2

]
(4.12a)

which leads to, following equation (4.2)

A =

[
−a 0
0 0

]
, b =

[
a
a

]
. (4.12b)

The arising dynamics leads to

ϕ2(x) := x2 − sign (ϕ1(x1)) log(1 + sign (ϕ1(x1)) x1) , (4.12c)

where ϕ1(x1) is the first order time-optimal switching function for the case
with a > 0, reported in (4.11). Moreover, equation (4.12c) represents a different
parametrization of the time-optimal switching surface presented in [10, Chap
7.4, subsystem (1)-(2)]. Our parametrization preserves a nested structure with
the lower and higher order time-optimal switching function.

third order In the case of system (4.1) with n = 3, a > 0, the similarity
transformation that we use is

S =




a 0 0
a a2 0
−a 0 a3


 , (4.13)

which leads to, following equation (4.2),

A =



−a 0 0
0 0 0
0 a 0


 , b =




a
a
−a


 . (4.14)

The transformed dynamics allows computing the following time-optimal
switching function

ϕ3(x) := x3 + x2 + sign (ϕ2([
x1
x2 ]))×(

x2
2

2
− log2

(
1 +

√
1− (1 + sign (ϕ2([

x1
x2 ])) x1)e

−sign(ϕ2([ x1
x2 ]))x2

))
,

(4.15)
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where ϕ2([
x1
x2 ]) is the second order time-optimal switching function for the

case with a > 0, reported in (4.12c).
Once again, in (4.15) we present a different parametrization of the time-

optimal switching surface as compared to the one reported in [10, Chap 7.4]
and [90] for the same plant, because the proposed parametrization allows
preserving the nested structure with the lower order case.

Moreover, it is interesting to notice that the time-optimal switching functions
in the cases with a > 0 do not depend on the parameter a, but the dependence
on this parameter appears only in the transformation matrix S.

Based on these switching functions and on Proposition 4.1, we will now
proceed in illustrating the developed hybrid framework for Robust Time-Sub-
Optimal control.

4.3 hybrid framework for robust time-sub-optimal control

In this section we exploit Proposition 4.1 and the switching surfaces illustrated
in Sections 4.2.2 and 4.2.1 to design an ε-modification of the time-optimal
feedback law ensuring global convergence to an ε-small neighborhood of the
origin.

Rather then treating q in (4.2) as an input, we perform this by choosing an
overall state:

ξ := col(x, q) ∈ Rn × {−1, 1} (4.16)

and noting that x ∈ U+ and q = 1 (respectively, x ∈ U− and q = −1) implies
that q should toggle. Consequently, we represent our hybrid stabilizer in terms
of the set D0 from which q should toggle between +1 and −1 via the trivial
jump map q+ = −q. In particular, based on Proposition 4.1, one notices that
both in U+ and in U−, the product qϕn(x) must be negative during flow.
Therefore set D0 could be selected as:

D0 = {ξ| ϕn(x)q > 0} , (4.17)

which is not a closed set. Since we are interested in robust stabilizers, and
[45] shows that closed jump/flow sets ensure robustness of stability (see the
hybrid basic conditions of Assumption 1.1), rather than selecting D0 in (4.17),
we prefer to introduce a hysteresis mechanism related to the choice of a (small)
scalar ε > 0 and the following ε-dependent closed loop:

ξ̇ =Ac ξ ξ ∈ C
ξ+ =Ad ξ ξ ∈ D
C := {ξ| ϕn(x)q ≤ ε}
D := {ξ| ϕn(x)q ≥ ε}

(4.18a)
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where, with In being the n× n identity matrix,

Ac :=
[

A b
0 0

]
∈ R(n+1)×(n+1)

Ad :=
[

In 0
0 −1

]
∈ R(n+1)×(n+1) .

(4.18b)

In system (4.18), matrix Ac simply encodes equation (4.2b), while Ad encodes
the toggling mechanism of q. Finally, as commented above, set D encodes the
fact that a switch should happen whenever qϕn(x) > 0 (because this means
that x ∈ U− ∪ U+ and q has the wrong sign), possibly allowing for some
“erroneous” feedback when |ϕn(x)| ≤ ε.

Remark 4.3. The advantage of this ε-modified law is to introduce a hysteresis zone
around {x|ϕn(x) = 0}, the set where characterizing the time-optimal feedback could
require extra care. Indeed, the selection of a positive ε gives several advantages. It
allows synthesizing a time-sub-optimal control law based on the knowledge of only
the two sets U+ and U−. Moreover, it prevents the possibility of Zeno solutions (such
as solutions with persistent simultaneous jumps) [45, Definition 2.5], corresponding
to having a control q that switches infinitely fast, causing chattering phenomena and
possibly damaging of the actuators. Moreover, this ε-inflation makes the controller
robust to unmodeled dynamics or sufficiently small measurement noise. The smaller
is the hysteresis amplitude ε, the closer the input is to the optimal one, but the less
robust is the control scheme. Therefore, the parameter ε represents a controller tuning
parameter, acting as a trade-off between optimality and robustness. y

Stability properties will be established for sets where the input q is “don’t
care” and the state x belongs to some compact neighborhood Axn of the origin.
In particular we will focus on compact sets of the form

An := Axn × {−1, 1} . (4.19)

Since non-smooth Lyapunov functions will be used for stability certificates, and
exploiting the structure of (4.19) and the fact that x remains constant across
jumps, we will rely on the following corollary of Theorem 1.1 in Chapter 1 for
giving stability certificates of attractor An in (4.19).

Corollary 4.1. If there exists a Lipschitz function x 7→ V(x) such that:

1. V is positive definite with respect to Axn and radially unbounded;

2. using ξ = (x, q) and the Clarke subdifferential ∂V(x) of V,

V̇(ξ) := max
v∈∂V(x)

〈v, Acξ〉 ≤ 0 ∀ξ ∈ C \ An ; (4.20)

3. no complete solution exists that keeps V constant and non zero;

then An in (4.19) is uniformly globally asymptotically stable for (4.18).

Proof. Since V depends on x only, and x remains constant across jumps, then the
condition G(A∩D) ⊂ A in Theorem 1.1 is trivially satisfied, and V(x+)−V(x) ≤
0 for all ξ ∈ D. The remaining assumptions of Theorem 1.1 are guaranteed by the
hypotheses of Corollary 4.1. �
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Remark 4.4. Rigorous stability certificates will be given for the case of a = 0, n ∈
{1, 2} and a > 0, n = 1 for system (4.18). The proof of stability for the other cases
is still an open problem and object of research which in this thesis will be treated as a
conjecture. y

4.3.1 The first order case

The first order case (i.e. n = 1) is the only case that can be studied in a general
way, both for a = 0 and a > 0, that is with a ≥ 0. We therefore specialize system
(4.18) with n = 1 and a ≥ 0, making use of the switching function ϕ1(x) in
equation (4.5) and (4.11).

For clarity, the phase portrait of such a system is depicted in Figure 4.2.

−ε ε−1

1C

C

D

D

x

q

Figure 4.2: Flow set C and jump set D on the phase portrait of system (4.18)
with n = 1, a ≥ 0.

Figure 4.2 shows that the hysteresis introduced by parameter ε > 0 turns
into allowing flows with any value of q when x1 ∈ [−ε, ε]. The solutions
exhibit a steady-state limit cycle. Inspecting that limit cycle we may define the
following bounded attractor:

A1 :=Ax1 × {−1, 1} = [−ε, ε]× {−1, 1}
={x| dzε (ϕ0(x)) = 0} × {−1, 1} ,

(4.21a)

where the deadzone function dzε (·) is defined as:

dzε (x) :=





0 if − ε ≤ x ≤ ε

x− ε if x ≥ ε

x + ε if x ≤ −ε

(4.21b)

The following statement establishes its useful properties in terms of pratical
stabilization of the origin of (4.1a) (equivalently of (4.2b)).

Theorem 4.2. Attractor (4.21a) is uniformly globally asymptotically stable (UGAS)
for (4.18) with n = 1 and a ≥ 0.

Proof. Consider the differentiable candidate Lyapunov function V1 : R→ R defined
as

V1(x) :=
1
2

dz2
ε (ϕ1(x)) . (4.22)
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In other words, V1(x) is the square of the distance of x from [−ε, ε], and, trivially,
V1(x) = 0 ∀x ∈ A1x = [−ε, ε], V1(x) > 0 ∀x ∈ R \ A1x, and it is radially
unbounded, thus satisfying item 1 of Proposition 4.1. Also,

V̇1(ξ) = 〈∇V1(x), Acξ〉 = dzε (ϕ1(x)) ẋ1 =

= dzε (ϕ1(x)) (q− ax1) = qdzε (ϕ1(x))− ax1dzε (ϕ1(x)) .
(4.23a)

Thanks to the flow set definition in (4.18), during flows it holds that ϕ0(x)q ≤ ε.
Moreover, ξ ∈ C \ A1 implies |ϕ1(x)| > ε, therefore

ϕ1(x)q < −ε (4.23b)

implying

qdzε (ϕ1(x)) < 0 ∀ ξ ∈ C \ A1 . (4.23c)

The fact that

−ax1dzε (ϕ1(x)) ≤ 0 ∀ ξ ∈ C \ A1 (4.23d)

is trivial since a ≥ 0 and ϕ1(x) = x1, and therefore (4.22) implies

V̇1(ξ) < 0 ∀ ξ ∈ C \ A1 , (4.23e)

which implies item 2 of Proposition 4.1 and also implies item 3 because any (complete)
solution is such that after any jump ξ+ ∈ C \ D, and some flow must occur, which
will cause a decrease of V1 (if non zero) from (4.23e). Proposition 4.1 finishes the proof.

�

Remark 4.5. The convergence to attractor A1 is a finite-time type of convergence. y

4.3.2 The Double Integrator

We now specialize system (4.18) with n = 2 and a = 0, i.e., for the double
integrator, making use of the switching function ϕ2(x) in equation (4.5). For
clarity, the phase portrait of this system is depicted in Figure 4.3.

Observe that also in this case the hysteresis introduced by the parameter
ε > 0 introduces a neighborhood of {x|ϕn(x) = 0} where solutions can flow for
any of the two values of q. The solutions exhibit an “eye-shaped” steady-state
limit cycle whose orbit can be described by:

λ2 := {x| v(x) = ε} (4.24)

where v(x) is the following scalar function:

v(x) :=





x2
1

2
+ x2 if x2 ≥ 0

x2
1

2
− x2 if x2 ≤ 0

, (4.25)

Let us now define the following bounded attractor, also depicted in green in
Figure 4.3:

A2 := A2x × {−1, 1} := {x| v(x) ≤ ε} × {−1, 1} . (4.26)

The next theorem parallels Theorem 4.2 for the case n = 2.
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Figure 4.3: Flow set C and jump set D on the phase portrait of system (4.18)
with n = 2 and a = 0.
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Figure 4.4: Lyapunov function V2 in (4.27) and attractor A2x in (4.26).

Theorem 4.3. Attractor (4.26) is UGAS for (4.18) with n = 2 and a = 0.

Proof. Consider the candidate Lyapunov function V2 : R2 → R defined as:

V2(x) :=
1
2

dz2
ε (v(x)) (4.27)

where v is defined in (4.25). It holds that V2(x) = 0 ∀ x ∈ A2x, V2(x) > 0 ∀ x ∈
R2 \A2x, and V2 is radially unbounded, thus proving item 1 of Proposition 4.1. Items
2 and 3 are proven below. The Clarke subdifferential ∂V2 of V2, is, at points where V2
is not differentiable, the convex hull of gradients of V2 at nearby points where V2 is
differentiable [30, Theorem 2.5.1]. Hence

∂V2(x) =
⋃

s∈SGN(x2)

{
dzε (v(x))

[
x1
s

]}
(4.28)



58 robust time-sub-optimal control for a class of saturated linear plants

where SGN(·) is the regularized sign function defined as:

SGN(s) :=





−1 if s < 0

1 if s > 0

[−1, 1] if s = 0 .

(4.29)

Based on (4.28) and structure of Ac in (4.18b)

V̇2(ξ) = max
δ∈∂V2(x)

〈δ, Ax + bq〉 = max
s∈SGN(x2)

x1dzε (v(x)) (q + s) . (4.30)

Notice that from (4.25) dzε (v(x)) > 0 ∀ x ∈ R2 \ A2x.
Let us now evaluate V̇2(ξ) in three separate cases.
Let x2 > 0, i.e., s = 1 in (4.30). If q = −1, then V̇2(ξ) = 0, whereas with

q = 1 we exploit the fact that for proving item 2 of Proposition 4.1 the analysis has
to be carried out in C \ A2, which (from trivial computations) implies that x1 < 0
(see Figure 4.3 for an intuition), and then V̇2(ξ) < 0. Parallel reasonings holds for
x2 < 0.

Consider now the case x2 = 0. By recalling that SGN(0) = [−1, 1] in (4.30),
V̇2(ξ) reduces to:

V̇2(ξ) = dzε

(
x2

1
2

)
max

s∈[−1, 1]
x1(q + s) . (4.31)

If q = 1 (q = −1, respectively), using again ξ ∈ C \ A2, basic computations yield
x1 < 0 (x1 > 0, respectively), and therefore we can conclude that V̇2(ξ) = 0.

Thus, we have that V̇2(ξ) ≤ 0 ∀ξ ∈ C \ A2, which implies item 2 of Proposi-
tion 4.1.

It remains to show Item 3 of Proposition 4.1. The dynamics is such that every
flowing solution not starting in A2 will make x enter the open second or fourth
quadrant, namely the set where x1x2 < 0. In these quadrants, the dynamics makes x1
increase in norm, and x2 decrease in norm, thus the solution will enter the jump set.
The jump dynamics then maps the solution into the set where x1q < 0. Combining
x1x2 < 0 with x1q < 0, we obtain x1(q + s) < 0, which guarantees V̇2(ξ) < 0,
as noticeable from (4.30). Therefore all solution initially flowing, eventually lead to a
decrease of V2. Consider now solutions initially jumping. Since the image D+ of the
jump set D trough the jump dynamics is in the interior of the flow set C (from (4.18)),
i.e., D+ = {ξ|ϕ1(x)q ≤ −ε} ⊂ int(C), then any such solution will start flowing
after the jump, and the previous analysis proves decrease of V2.

Therefore, Proposition 4.1 establishes UGAS of A2. �

4.3.3 The remaining cases

As mentioned in Remark 4.4, the problem of giving rigorous stability certificates
for system (4.18) in the case of a = 0, n = 3 and a > 0, n ∈ {2, 3} is a non-
trivial problem which is still open. We therefore continue this manuscript
formulating the following conjecture.
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Conjecture 4.1. There exists some compact neighborhood Axn of the origin of system
(4.2) such that the attractor defined in (4.19) is UGAS for (4.18) in the cases of
a = 0, n = 3 and a > 0, n ∈ {2, 3}.

In support of Conjecture 4.1, we report some numerical analysis in the cases
of a = 0, n = 3 and a > 0, n ∈ {2, 3}.

case n = 2, a > 0 In Figure 4.5 we report three simulations of sys-
tem (4.18) in the case of n = 2, a = 1 showing both the evolution in the phase
space and the time history of states x and q. Parameter ε was set to ε = 0.13.
The simulation starts from three different initial conditions for the state x:

x01 := (−1.0, −1.5) blue curve in Figure 4.5

x02 := (−1.0, 1.5) red curve in Figure 4.5

x03 := (1.7, −1.7) green curve in Figure 4.5

(4.32)

The initial condition for q was chosen in such a way to obtain solutions starting
with a flow phase. It is possible to observe that similarly to the case n = 1, a = 0
the solutions end up in a steady-state limit cicle at the border of an “eye-shaped”
set containing the origin, corroborating Conjecture 4.1. Indeed, this suggests
that there exist a neighborhood of the originAxn in (4.19) to which system (4.18)
with n = 2, a > 0 is UGAS.

case n = 3, a = 0 In Figure 4.6 two simulations of system (4.18) with
n = 3, a = 0 are depicted. For the sake of clarity, we reported the simulations
in the phase space of state x, while state q is represented by a color code, i.e., in
red the parts of the trajectory with q = 1, while in blue the ones with q = −1.
Parameter ε was set to ε = 0.1. The initial conditions for state x are reported
below in equation (4.33), while the initial condition for state q was selected to
have solutions starting with flow.

x01 := (0.0, 1.0, 1.0)

x02 := (0.5, −1.0, −1.0)
(4.33)

Two representations of the switching function ϕ3(x) in (4.10) are depicted, in
particular, the set {x|ϕ3(x) = −ε} is in orange and the set {x|ϕ3(x) = ε} is
in green. It is possible to observe that the solutions exhibit one more time a
steady-state “eye-shaped” limit cycle around the origin, depicted with a dashed
white curve in Figure 4.6. This observation therefore supports Conjecture 4.1,
suggesting that there exist a neighborhood of the origin Axn in (4.19) to which
system (4.18) with n = 3, a = 0 is UGAS.

case n = 3, a > 0 Finally, we present some numerical evidence for the
case of system (4.18) with n = 3, a = 1. In Figure 4.7 two simulations are
depicted in a similar fashion as the previous case of Figure 4.6. The initial
conditions for state x are reported below in equation (4.34), and like previously
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Figure 4.5: Flow set C and jump set D on the phase portrait of system (4.18)
with n = 2, a = 1 together with three simulations starting from
initial conditions for state x in (4.32).

the initial condition for state q was selected to have solutions starting with flow.

x01 := (−0.5, 1.0, 0.0)

x02 := (1.0, −0.7, −0.7)
(4.34)

Conjecture 4.1 is once more supported by these simulations, showing that
the trajectories end up evolving in a limit cycle around the origin, depicted
in dashed white in Figure 4.7. These numerical results therefore suggest the
existence of a neighborhood of the origin Axn in (4.19) for which system (4.18)
with n = 3, a > 0 is UGAS.
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Figure 4.6: Solutions to (4.18) with n = 3, a = 0. The red and blue part of the
trajectory correspond respectively to state q = 1 and q = −1.

4.4 blend with a local linear feedback

In this section, the blending of the controller developed in Section 4.3 with a
local linear feedback is addressed. The local controller is chosen as a linear a
state feedback kx inducing the following closed loop:

ẋ = Acl x := (A + b k>)x , (4.35)

where k ∈ Rn is a suitable gain vector such that matrix Acl is Hurwitz. For
example, vector k can be selected as an LQR gain or by means of any other
state feedback design procedure.

This controller can be incorporated in hybrid system (4.18) by modifying the
matrix Ac previously defined in (4.18b) as follows:

Ac =

[
A + (1− |q|)b k> b

0 0

]
∈ R(n+1)×(n+1) . (4.36)

With the latter, the local controller is activated whenever the logic variable
q is set to zero. In particular, the new dynamics evolves in the set ξ ∈ Rn ×
{−1, 0, 1}, extending the previous set ξ ∈ Rn × {−1, 1} in (4.18).

A strategy for choosing whether the local controller or the global controller
of Section 4.3 has to be applied is needed. For this purpose, the uniting global
and local controller strategy presented in [45, Example 1.7] and [82] is adopted,
where we use q as a supervisor variable. In particular, when |q| = 1 the global
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Figure 4.7: Solutions to (4.18) with n = 3, a = 1. The red and blue part of the
trajectory correspond respectively to state q = 1 and q = −1.

controller is active, whereas when q = 0 the local controller is activated by
virtue of (4.36).

Following [45, Example 1.7], given scalars 0 < ρ < 1 and ` ∈ R+ to
be chosen later, if P = P> > 0 is any matrix solving the continuous-time
Lyapunov equation

(A + bk>)
>

P + P(A + bk>) < 0, (4.37)

we define the set where we would like to switch from the local to the global
controller as:

Dl :=
{

ξ
∣∣∣q = 0, x>Px ≥ `

}
. (4.38a)

Also, we define the set where we would like to switch from the global to the
local controller as:

Dg :=
{

ξ
∣∣∣|q| = 1, x>Px ≤ ρ`

}
. (4.38b)

The overall jump dynamics turns out to be the following one:

ξ+ ∈ G(ξ) , ξ ∈ Du := Dl ∪Dg ∪D , (4.39a)
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where the jump map G(ξ) corresponds to:

G(ξ) =

=












x

±(1− |q|)








if ξ ∈ (Dl ∪Dg) \ D



x

−q


 if ξ ∈ D \ (Dl ∪Dg)








x

±(1− |q|)







∪








x

−q








if ξ ∈ D ∩ (Dl ∪Dg) ,

(4.39b)

with
{[

x
±(1− |q|)

]}
:=
{[

x
(1− |q|)

]}
∪
{[

x
−(1− |q|)

]}
. (4.39c)

The overall flow equation is enabled on the closed complement of Du, and
from (4.18) corresponds to:

ξ̇ = Ac ξ , ξ ∈ Cu := Rn × {−1, 0, 1} \ Du , (4.39d)

with Ac defined in equation (4.36).
The proposed scheme is completed by a suitable selection of the scalars `

and ρ in (4.38) ensuring that the local feedback k>x has smaller norm than
1 (i.e., it is below the saturation level) as long as x>Px ≤ `. This property is
established in the next lemma.

Lemma 4.1. Given P = P> > 0 and a gain k ∈ Rn, if ` = (k>P−1k)−1, then

x>Px ≤ `⇒ |k>x| ≤ 1. (4.40)

Proof. As in [54, Example 8.8], the following holds:

min
|k>x|≥1

x>Px = min
|k>x|=1

x>Px = (k>P−1k)−1 = ` . (4.41)

Therefore, we have (4.40) by contradiction, because, from (4.41), no x exists such that
x>Px ≤ ` and |k>x| > 1. �

Based on Lemma 4.1, we can prove the following statement, which requires
that set An is sufficiently small (ε is sufficiently small) or scalar ` is sufficiently
large (k is sufficiently small).

Theorem 4.4. Given P and k satisfying (4.37) and ` = (k>P−1k)−1, if ρ ∈ (0, 1)
and ε are such that An ⊂ int(Dg) and An is UGAS for system (4.18), then A0 :=
{0} × {−1, 0, 1} is UGAS for system (4.39).

Proof. UGAS of An together with An being in the interior of Dg implies uniform
finite-time convergence to the interior of Dg. Since the local controller is activated
(from (4.39b)) before leaving the boundary of Dg, and Dg is forward invariant and
contractive for the arising closed-loop (see (4.37)), then UGAS of A0 follows from
forward invariance and uniform global attractivity of A0 [45, Prop. 7.5]. �
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The condition An ⊂ int(Dg) could be hard to check in general, but becomes
trivial for the case n = 1, both for a = 0 and a > 0. For the cases with n > 1,
as a general approach, even if possibly conservatively, we propose to rely on
an auxiliary bounding box B of the attractor An (such that An ⊂ B) for which
B ⊂ int(Dg) is easier to check. In particular, for the case n = 2, a = 0 according
to Figure 4.8, we suggest the selection

B := {ξ||x1| <
√

2ε, |x2| < ε} . (4.42)

Corollary 4.2. Given P and k satisfying (4.37) and ` = (k>P−1k)−1, if

max{α>Pα, β>Pβ} < ρ` (4.43)

with α = [
√

2ε, ε]> and β = [
√

2ε, −ε]> (i.e., the two vertices of the box B), then
A0 is UGAS for system (4.39).

Proof. Property (4.43) implies that the four vertices xi , i = 1, ..., 4 of B satisfy
x>i Pxi < ρ`. Since B is convex,

max
x∈B

x>Px < ρ` , (4.44)

which clearly implies B ⊂ int(Dg). Theorem 4.3 then establishes UGAS ofA2, which,
together with Theorem 4.4 proves UGAS of A0. �

A2

B

α = (
√

2ε, ε)

β = (
√

2ε, −ε)

Dg

x1

x2

Figure 4.8: Bounding box B, attractor A2 and jump set Dg in the case n =

2, a > 0.

Similar conditions to Corollary 4.43 can be checked for the other cases as
well. For the case n = 3, a = 0 this approach leads to the computation of a
bounding box B containing the limit-cycle arising from (4.18) as illustrated
in Section 4.3.3 computing the maximum amplitudes of the limit-cycle for
each state. In particular, it is possible to describe this bounding box B as a
box centered in the origin with positive and negative widths equivalent to the
components of α defined as follows

α :=

(
α1,

α2
1

2
,

α3
1

3

)
=

(√
2ε1/3, ε2/3,

2
√

2
3

ε

)
, (4.45)

that is

B :=

{
ξ | |x1| <

√
2ε1/3, |x2| < ε2/3, |x3| <

2
√

2
3

ε

}
. (4.46)
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Figure 4.9: Bounding box B, and limit cycle of system (4.18) with n = 3, a = 0.

For the case n = 2, a > 0, the bounding box containing the arising limit
cycle illustrated in Section 4.3.3 has positive and negative widths equivalent to
the components of α defined as follows

α := (α1, atanh(α1)) =

(√
e2ε − 1

eε
, atanh

(√
e2ε − 1

eε

))
, (4.47)

where x 7→ atanh(x) is the inverse hyperbolic tangent function defined on the
open set (−1, 1). Note that limε→∞ α1 = 1.

For the case with n = 3, a > 0, the computation of a bounding box containing
the limit cycle induced by (4.18) leads to finding the solution of transcendent
equations, therefore requiring a numerical approach.

In the following two chapters, the application of the developed RTSO con-
troller to two real-scenario cases will be illustrated by means of two different
experimental setups. In particular, the case of n = 3, a > 0 will prove to be of a
particular technological interest, since it well represents the common scenario
of a second order system such as a free inertia controlled by an actuator with a
quasi-first-order dynamical behavior.





5 B E N C H M A R K M O D E L O F
Q U A N S E R ’ S 3 D O F
H E L I C O P T E R

This chapter proposes a software benchmark tool for the three degrees-of-
freedom experiment “3 DOF Helicopter” by Quanser, based on a multi-body
model of the experimental setup. Along with this software-in-the-loop tool,
a novel reduced complexity non-linear model for the Quanser “3 DOF He-
licopter” is derived, with the scope of being used in the control synthesis
phase. A feedback linearizing control law is as well proposed, based on the
reduced complexity model. This benchmark tool will be then used in Chap-
ter 6 for validate the RTSO controller developed in Chapter 4 in a real-world
scenario. This chapter is based on the work currently under revision [22].

5.1 introduction: literature review and problem statement

Propeller-actuated aerial vehicles and unmanned aerial vehicles (UAVs) are
gaining increasing popularity (they are de-facto a standard) due to their sim-
plicity and the availability of increasingly cheaper and lightweight control
and sensing electronics. Nevertheless, due to their under-actuated nature, they
represent an interesting and challenging control application. Many different
architectures of propeller-actuated aerial vehicles have been proposed and
studied, frequently in the VTOL (Vertical Take Off and Landing) configuration.
Among these, consider the widespread quadrotors drones [49], ducted-fan
configurations [81], and helicopter-like configurations [52].

The use of a benchmark platform both for research and educational purposes
is a well established practice in these days. Quanser [84] is a Canada-based
company that supplies a vast range of didactic platforms for control, robotics
and mechatronics applications. Among these, a relevant propeller-based plat-
form comprising many of the challenges of the VTOL configuration is the three
degrees-of-freedom (DOF) experiment “3 DOF Helicopter”, because not only it
is actuated by the nowadays vastly used propeller actuation, but it is underac-
tuated and embeds a multi-body dynamics. It is composed by three rotational
joints, with the end bar carrying a pair of propellers actuated by DC-motors.
Measurements of the joints angles are supplied by incremental encoders and
two power amplifiers are in charge of actuating the DC-motor/propeller assem-
blies. Both angular measurements and control voltages are then made available
in MATLAB-Simulink environment.

For these reasons, Quanser’s “3 DOF Helicopter” is considered a challenging
application and a good benchmark example. Indeed, many works focusing

67
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on the control of this platform have appeared in the last years, proposing a
variety of control strategies and focusing on different aspects. Among them,
robust schemes are widely investigated. For example, [88] proposes two robust
controllers based on sliding mode techniques, while [64] proposes a robust
hierarchical controller. The authors of [106] focus on the regulation of two of
the three helicopter’s degrees-of-freedom thanks to a robust attitude control
algorithm and an exogenous system in charge of generating the reference sig-
nals. In [63], a decentralized robust second-order consensus tracking controller
is proposed for a bench of 3-DOF helicopters. Adaptive control seems to be
another well investigated control strategy. Indeed, [29] makes use of the “3
DOF Helicopter” for experimentally validating an adaptive attitude controller
based on the super-twisting algorithm, while in [41] the adaptive paradigm
is addressed based on passivity and Implicit Reference Model techniques.
In [80] a linear matrix inequality (LMI) procedure is proposed which allows
designing simple adaptive control laws, while [61] focuses on an adaptive
parameter identification algorithm. In [59], an adaptive controller is proposed
which considers adaptation to parametric uncertainty, unmodeled dynamics,
and actuator characteristics, while in [51] a nonlinear adaptive controller is
considered, which includes a parameter identification scheme in the closed
loop. In [85] a nonlinear model using a tree structure notation is developed,
whose parameters are identified with an inverse dynamic model, while [56]
deals with the trajectory tracking problem considering both state and input
constraints in order to accomplish aggressive maneuvers. In [43], a data-driven
controller is synthesized for an experimental setup similar to the Quanser’s
3-DOF Helicopter, and in [67] an optimal output regulation problem is faced
for the same experimental setup. In [27], combining a continuous differentiator
with an adaptive super twisting design, a controller is proposed, capable of
accurate tracking while reducing the control effort.

Finally, in [103] a nonlinear multivariable predictive controller is proposed,
based on a each-sample-linearization of a neural network model of the nonlin-
ear plant.

All of the above mentioned works are based on various reduced complexity
models of the full helicopter dynamics. In this chapter, instead, we propose
the derivation of a full dynamical model of the Quanser “3 DOF Helicopter”
experiment, based on a multi-body representation of the physical setup. A
motivation for developing a multi-body model of the experimental setup is that
a rigid body model cannot well represent the corresponding complex coupled
dynamics. Based on this multi-body representation, we develop a software-in-
the-loop platform in the MATLAB-Simulink environment based on the Simscape
package, which takes into account a number of implementation features. We
provide a downloadable version of this simulator as well, available at (https:
//github.com/mrkrb/3dof_helicopter_benchmark), in order to make it usable
by everyone for testing and validating control algorithms, thereby obtaining
reliable results before running actual experiments. This benchmark can be
useful both for teaching and for research purposes. Indeed, to the best of
our knowledge, no reliable simulation model is available in the literature
for this widespread experimental setup. In addition to the above, based on

https://github.com/mrkrb/3dof_helicopter_benchmark
https://github.com/mrkrb/3dof_helicopter_benchmark
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Figure 5.1: Picture of the Quanser “3 DOF Helicopter”.

the Lagrangian representation of the full dynamical model, a novel reduced
complexity model is also derived, with the objective of supplying a tool to be
used for control design. Differently from past works, the proposed reduced
complexity model is derived with a strong link to the full dynamical model.
Both the full model and the control model are identified using experimental
data, and a comparison is performed with existing models from the literature. A
feedback-linearizing controller has been finally developed based on the reduced
complexity model, and has been then tested both on the simulation tool and on
the real experiment, obtaining consistently desirable results, once more proving
that the proposed control model catches the most relevant dynamical behavior
of the experimental setup.

5.2 the experimental setup and mechanical model

The experimental setup considered in this work is the Quanser “3 DOF He-
licopter” and we will refer to it as “the helicopter”. In particular, the used
specimen is the one present at the LAAS-CNRS in Toulouse (FR).

It is composed by a base on which an arm is connected by means of 2

revolute joints, one allowing the arm to rotate around the vertical axis (the
“travel” motion), and one allowing the arm to tilt around the horizontal axis
(the “elevation” motion). The helicopter body is mounted on one of the two
extremities and it is allowed to tilt around the axis aligned with the arm (the
“pitch” motion). It carries two propellers actuated by two DC-motors, which
can generate a force that depends on the applied voltage. On the other arm
extremity, a counterweight is mounted. The three “degrees-of-freedom” (dof ),
(i.e. the travel, the elevation and the pitch) are measured by three encoders with
a resolution of 0.0015 rad. A picture of the helicopter is reported in Figure 5.1.

In order to study the helicopter motion, we now proceed with the illus-
tration of a mechanical dynamical model (the “mechanical model” in the
following) that fully describes the helicopter mechanical dynamics. This model
is a lumped-mass model, with the mass concentrated in four points, two rep-
resenting the counterweight and the arm, and the other two representing the
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two motor-propeller assemblies. In Figure 5.2, a representation of the model is
depicted.

Some simplifying assumptions are exploited when deriving the mechanical
model: the gyroscopic torques developed by the spinning motor-propeller
assemblies are neglected, as well as the aerodynamic effects acting on the
helicopter. The structure is considered as non deformable.
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Figure 5.2: Mechanical model of the helicopter.

In the following description we will refer to some physical quantities, such
as the lumped masses m1, m2, and m3 represented by spheres in Figure 5.2,
and lengths l1, l2, and d1 of the helicopter arm, and l3, d2 of the helicopter
body.

Let us start by defining an inertial Reference Frame (RF) {X-Y-Z} whose
origin corresponds to the point where the arm is connected to the base by
means of the two revolute joints. We will refer to this reference frame as the
“inertial RF”. We consider the gravity acting along the negative Z direction with
magnitude g. A second RF {X′-Y′-Z′} (represented in light red in Figure 5.2) is
obtained by applying to the inertial RF a Z-Y rotation sequence, corresponding
respectively to a rotation of an angle λ(t) (travel angle) and a subsequent
rotation of an angle −ε(t) (elevation angle). The arm of the helicopter lays along
the X′-axis: for this reason we call the {X′-Y′-Z′} frame the “arm RF”. The arm
mass is concentrated at its extremities, therefore we place a first mass m1 at
(−l1, 0, −d1) and a second mass m2 at (l2, 0, 0), both in the arm RF. A third RF
{X′′-Y′′-Z′′} (represented in light blue in Figure 5.2) is obtained starting from
the arm RF and applying a translation of l2 along the X′-axis and a rotation of
an angle θ(t) (pitch angle) around the same axis. The helicopter body lays in this
third RF, for this reason we refer to {X′′-Y′′-Z′′} as the “helicopter body RF”.
As mentioned before, the helicopter body mass m3 is split in two halves, each
one concentrated at one extremity of the helicopter body. Therefore, the two
masses representing the motors-propellers assemblies are placed respectively
at (0, l3, −d2) (front motor-propeller assembly) and at (0, −l3, −d2) (rear
motor-propeller assembly), both coordinates being expressed in the helicopter
body RF. Moreover, two lumped forces parallel to the Z′′-axis are placed in
correspondence to the two motor-propeller assemblies, respectively f1 for
the front and f2 for the rear. These forces represent the forces generated by
the spinning propellers. Finally, two torques γ1 and γ2 are applied at the
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same positions, representing the aerodynamics drag torques exerted by the
propellers.

Without loss of generality, a constraint equation is added to the mechanical
model, and it is such that the elevation equilibrium position corresponds to
zero. This is done by selecting m1 = l2

l1
(m2 + m3).

The friction at the joints has to be taken into account as well. While complex
friction models, such as Coulomb friction, could be considered and imple-
mented in the mechanical model, those highly nonlinear effect do not seem to
be dominant in the experimental responses. Therefore, to reduce the model
complexity we consider only linear viscous friction acting at each joint. Similar
assumptions have been made in past works focusing on this experiment, for
example in [41], [29], and in [80].

As the common practice, we assume that both the thrust forces f1 and
f2 as well as the drag torques γ1 and γ2 exerted by the propeller have a
quadratic relationship with the angular speed of the propellers themselves (see
for example [26] and [39]). This leads to a linear relation between the thrust
force and the drag torque (see for example [72]):

γi = kγ f fi i ∈ {1, 2}. (5.1)

For the helicopter, the propellers are both right-handed, therefore kγ f < 0.
The mechanical model introduced in this section fully describes the dy-

namics of the helicopter experiment, and can be used in order to validate a
reduced complexity model designed for control purposes. Moreover, it can
be straightforwardly implemented in numerical physical simulation softwares
such as MathWorks Simscape in order to simulate the helicopter dynamics and
using it as a model-in-the-loop test platform for control strategies. Indeed, a
MathWorks Simscape implementation of the proposed model is provided here
(https://github.com/mrkrb/3dof_helicopter_benchmark), which embeds as
well the identified parameters thanks to the procedure discussed further in the
chapter in Section 5.4.

5.3 reduced complexity mathematical model

The aim of this section is to build a reduced complexity mathematical model of
the helicopter that, in spite of its simplicity, captures the most relevant dynamic
behavior of the real experiment. This model is useful in order to synthesize
control laws, and we will refer to it as the “control model”. The control model is
constructed based on the mechanical model described in Section 5.2, depicted
in Figure 5.2.

5.3.1 Standard Lagrangian derivation

The Lagrangian approach is widely used in order to compute the equations of
motion of multi-body systems as the one of the helicopter (see, for example,
[96, Chapter 7]).

https://github.com/mrkrb/3dof_helicopter_benchmark
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The equations of motion of the system are obtained from the Lagrange
equation:

d
dt

(
∂L
∂q̇

)
− ∂L

∂q
= ξ (5.2)

where L = K−U is the Lagrangian function defined as the difference between
the kinetic K and potential U energies, q ∈ Rn is the vector of the generalized
coordinates, and ξ ∈ Rn is the vector of the generalized forces associated to
q. In the case of our mechanical model, we select q(t) = (λ(t), ε(t), θ(t)) (see
Figure 5.2).

In general, for a mechanical system equation (5.2) can be written in the
following standard form [96, Section 7.1.3]:

M(q)q̈ + C(q, q̇)q̇ + Rq̇ + g(q) = S(q)τ (5.3)

where M(q) is a symmetric uniformly positive definite and uniformly bounded
matrix representing the inertia of the system, C(q, q̇) is a matrix associated to
the Coriolis and centrifugal terms. R is a diagonal matrix of viscous friction
coefficients, g(q) represents the gravitational term, S(q) is an n×m actuation
matrix that maps the real input forces of the system τ ∈ Rm into the generalized
forces ξ.

In our case, we choose as τ as a combination of the input forces f1 and f2
exerted by the propellers (see Figure 5.2):

τ :=
[

fs
fd

]
:=
[

f1 + f2
f1 − f2

]
. (5.4a)

This choice allows us to obtain a more compact input matrix S(q) and, as
clarified in the following, it is more convenient during the control synthesis.

For the sake of conciseness, we report here only the terms R, g(q), and S(q),
since the full M(q) and C(q, q̇) are very complex and not necessary for the
derivation below:

R :=




rλ 0 0
0 rε 0
0 0 rθ


 , (5.4b)

g(q) :=




0
g
l1

sin(ε)(d1l2(m2 + m3) + d2l1m3 cos(θ))

gd2m3sin(θ) cos(ε)


 , (5.4c)

S(q) :=



−l2 cos(ε) sin(θ) 0

l2 cos(θ) 0
0 l3




︸ ︷︷ ︸
:=S1(q)

+

+




kγ f cos(ε) cos(θ) l3 sin(ε)
kγ f sin(θ) 0

0 0




︸ ︷︷ ︸
:=S2(q)

,

(5.4d)
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where we emphasize the peculiar structure of the two terms S1 and S2 in the
expression of S(q) := S1(q) + S2(q) in (5.4d). This structure is motivated by the
fact that we will consider S2(q) acting on the system as a bounded-time-varying
disturbance, which will be neglected in the reduced complexity model. This
results into having a decoupled input action on the λ-ε and on the θ dynamics.
Even if the derivation described here follows a standard approach, the peculiar
form of the entries in equation (5.3), (5.4) is somewhat new and reveals the
dynamical structure of the considered setup, in particular the peculiar structure
of the input matrix S(q).

5.3.2 Model reduction

The novel control model that we are going to introduce is a simplified version
of the full equations of motion (5.3), (5.4) of the mechanical model presented
in Section 5.2, where some terms are neglected after some assumptions. In
particular, the following assumptions are made.

Assumption 5.1. The inertial coupling effects are neglected, and the diagonal part
of M(q) is constant or slowly varying. Moreover, the Coriolis and centrifugal term
C(q, q̇)q̇ is neglected.

We make this assumption because the terms M(q) and C(q, q̇) are the most
convoluted ones and their contribution is not fundamental for reproducing the
relevant part of the dynamical behavior of the helicopter, as confirmed later in
the chapter. Assumption 5.1 turns into having a diagonal and constant inertia
matrix M and not having the C(q, q̇)q̇ into the control model. Based on these
assumptions, the following control model is obtained:

q̈ = M−1 (−g(q)− Rq̇ + S1(q)τ) (5.5a)

where

M :=




jλ 0 0
0 jε 0
0 0 jθ


 , (5.5b)

and ji , i ∈ q are constant parameters to be identified.
As one can notice, the control model (5.4), (5.5) preserves the full gravita-

tional term g(q) and a part of the input matrix S(q) of the mechanical model,
at the cost of neglecting the complex terms of the inertial coupling between the
different dof , the fictitious forces contained in the C(q, q̇) term, and a part of the
input matrix, which is considered to act on the system as a limited-time-varying
disturbance. Even with these simplifications, in the following sections it will be
shown that the relevant dynamical behavior of the helicopter is retained.

Model (5.4), (5.5) will be tuned with a system identification procedure in
order to reproduce as well as possible the helicopter dynamics.
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Hereafter, we rearrange the equations of the control model (5.4), (5.5) col-
lecting the physical parameters into a set of non-redundant parameters to be
identified.

q̈ = −g(q)− Rq̇ + S1(q)τ (5.6a)

where

g(q) := M−1g(q) =




0
sin(ε)(aε1 + aε2 cos(θ))

aθ cos(ε) sin(θ)


 , (5.6b)

R := M−1R =




cλ 0 0
0 cε 0
0 0 cθ


 , (5.6c)

S1(q) : = M−1S1(q) =



−bλ cos(ε) sin(θ) 0

bε cos(θ) 0
0 bθ


 =

=



−bλ cos(ε) 0 0

0 bε 0
0 0 bθ




︸ ︷︷ ︸
:=T(ε)




sin(θ) 0
cos(θ) 0

0 1




︸ ︷︷ ︸
:=B(θ)

.
(5.6d)

The factorization of the input matrix S1(q) = T(ε)B(θ) will be useful for the
synthesis of the control law proposed in the following.

We thus obtain the following equations of motion:

λ̈ = −cλλ̇− bλ cos(ε) sin(θ) fs

ε̈ = −aε1 sin(ε)− aε2 sin(ε) cos(θ)− cε ε̇ + bε cos(θ) fs

θ̈ = −aθ cos(ε) sin(θ)− cθ θ̇ + bθ fd

(5.6e)

whose state is q = (λ, ε, θ) with q̇, and whose input is τ = ( fs , fd). It is worth
to point out that the factorization of the parameters of model (5.4), (5.5) into
the redundant parameters of (5.6) is not a reversible relationship, but it makes
sense in a system identification procedure viewpoint as it will be commented
in Section 5.4.

5.4 identification

In this section we describe the identification procedure followed in order to
estimate the models parameters. A “gray-box model estimation” paradigm has
been followed, in which the goal is the estimation of the model parameters of
a known model. As outlined in Section 5.2, in the experimental setup the input
forces are generated by applying a voltage to each motor-propeller assembly.
In the following subsection, the relation between the applied voltages and the
exerted forces will be identified.



5.4 identification 75

5.4.1 Input nonlinearity

Consider a τ in (5.4a) such that fd = 0 and consider that the two motor-
propeller assemblies are equal. Under these conditions, we can state that

fs = h(vs) (5.7)

where vs = v1 + v2 is the total voltage applied to the motors, and h is an
unknown function that maps the total voltage vs into the thrust fs. Consider
now the elevation dynamics in equation (5.6) at some equilibrium, with θ = 0,
and with a constant input fs = h(vs):

−aε1 sin(εss) + bεh(vs) = 0 (5.8)

By applying n different voltages vs,k k ∈ {1 . . . n} spanning the allowed range
[−10, 10]V ([−5, 5]V for each motor), it is possible to take n samples of a scaled
version h̃ of function h (and therefore a scaled version f̃s of the thrust fs) by
observing the resulting steady state condition εss,k:

f̃s := h̃(vs) := c fs = c h(vs) = sin(εss) (5.9)

The voltage to be applied to a motor in order to exert a desired scaled force f̃i
can be then computed as:

vi =
1
2

h̃−1( f̃i) , (5.10)

with i ∈ {1, 2}. Since we are identifying a scaled version of the thrust, we
include as well a normalization procedure, such that the maximum applicable
scaled force f̃i , i ∈ {1, 2} corresponds to 1. Based on some experimental
evidences and intuitions, h̃(vs) has been selected to be a locally quadratic and
globally linear function based on the following piecewise description:

h̃(vs) :=





p−2 vs + p−3 if vs ≤ vsn

p−1 v2
s if vsn ≤ vs ≤ 0

p+1 v2
s if 0 ≤ vs ≤ vsp

p+2 vs + p+3 if vsp ≤ vs

, (5.11)

where vsn and vsp represents threshold values specified below. This particular
choice can be justified observing that the transfer function of a DC-motor is
such that in steady state conditions the rotational speed depends linearly on
the applied voltage and on the applied load torque. Then for a DC-motor with
a propeller connected on its shaft, since both the thrust ad the aerodynamic
load torque exerted by the propeller depend quadratically on the rotational
speed, a linear relation between the voltage applied to the DC-motor and the
thrust exerted by the propeller is expected. Nevertheless, at slow rotational
speed the aerodynamic load torque is negligible, and a quadratic dependence
between the thrust and the voltage emerges.

A least square procedure has been then applied to identify the parameters
of function (5.11), in order to best fit the experimental samples. C1 continuity
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constraints of function (5.11) have been imposed during the optimization
procedure. The threshold values vsn and vsp have been manually selected
based on the measured points. The numerical values are reported in Table 5.1.
In Figure 5.3 both the experimental samples and the fitted function are depicted.
Note that the function is non symmetric due to the propellers shape.

−10 −5 0 5 10
−0.23

0

0.5

1

vs[V]

f̃ s

exp. samples
fit

Figure 5.3: Input nonlinearity relation within the domain [−10, 10]V of the
voltage input vs.

Due to the fact that a scaled version of the forces f̃s has been identified, we
introduce the scaled input τ̃ acting on model (5.6) defined as:

τ̃ = cτ. (5.12)

Due to this scaling, we will identify a scaled version of the input parameters
of the control model bλ , bε , bθ , taking into account the scaling factor, i.e. b̃λ =

bλ/c, b̃ε = bε/c, b̃θ = bθ/c.

5.4.2 Identification of the models parameters

Once the relation between the scaled version of the forces exerted by the two
motor-propeller assemblies has been identified, the estimation of the model
parameters can be faced. The identification procedure is based on a “gray-box”
paradigm, both for the mechanical model and the control model, as detailed
next.

5.4.2.1 Identification of the control model

For the control model the “gray-box” identification has been carried out us-
ing MATLAB idnlgrey and pem tools, due to their suitability for identifying
nonlinear systems. Firstly, the free motion of the ε-θ dynamics has been identi-
fied. This permits to have an estimate for the parameters of the autonomous
part of the ε-θ dynamics in equation (5.6), i.e. aε1, aε2, cε , aθ , cθ . To this end,
experiments with initial elevation and pitch angle different form zero and no
voltages applied to the motors have been carried out. The parameters estima-
tion resulting from this first identification procedure has then been used as a
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parameter cλ b̃λ aε1 aε2 cε b̃ε

value 0.274 0.257 2.356 0.799 0.053 0.565

unit 1
s

1
s2

1
s2

1
s2

1
s

1
s2

parameter aθ cθ b̃θ p−1 p−2 p−3
value 0.858 0.048 7.340 -0.012 0.024 0.012

unit 1
s2

1
s

1
s2

1
V2

1
V -

parameter p+1 p+2 p+3 vsn vsp
value 0.028 0.111 -0.111 -1 2

unit 1
V2

1
V - V V

Table 5.1: Control model identified parameters.

warm-start for the identification of the full motion. Forced experiments have
been performed with input voltages consisting in a combination of steps in f̃s
and f̃d applied to the helicopter. The resulting parameters estimation for the
control model are reported in Table 5.1.

5.4.2.2 Identification of the mechanical model

The identification of the mechanical model is more delicate than the one of
the control model. First of all, there are more parameters to be identified. In
addition to the lengths, masses and friction coefficients, there are the constant
kγ f in equation (5.1) generating the aerodynamic drag torques, and the con-
stant c in equation (5.12) needed to generate the real forces starting from the
scaled forces. Secondly, the mechanical model is computationally heavier to be
simulated. Moreover, there exist more than one realization of the mechanical
model that produce the same responses of the experimental setup. Indeed, the
same inertia properties can be achieved with infinitely many combinations of
lengths and masses. For this reason, and in order to remove some degrees-of-
freedom during the identification process, the length parameters l1, l2 and l3
have been constrained to be similar to the ones of the real experiment. The
experimental data used to tune the mechanical model are the same used to
identify the control model. An initial manual tuning has been performed in
order to fit as close as possible the free motion. Then, starting from this first
tuning, an optimization procedure has been launched in order to refine the
parameters with the aim of minimizing the root mean square (RMS) of the
difference between the responses of the mechanical model with respect to the
experimental responses. To this end, the MATLAB functions lsqnonlin and ga

have been used, due to their flexibility and the good exploration properties of
the genetic algorithm. The resulting parameters estimation for the mechanical
model are reported in Table 5.2.

Figures 5.4 and 5.5 at page 79 and 80 compare experimental data (real
flight, solid gray) with simulation runs of the identified control model (dashed
red) and of the identified mechanical model (dash-dotted blue). In particular,
Figure 5.4 shows experiments and simulations with the input signal used
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parameter l1 l2 l3 d1 d2 m2
value 0.520 0.650 0.180 0.192 0.003 1.00

unit m m m m m kg
parameter m3 rλ rε rθ kγ f c

value 0.771 0.250 0.050 0.003 -0.067 1.272

unit kg Nms Nms Nms m Nm

Table 5.2: Mechanical model identified parameters.

for the two identifications. Figure 5.5 shows the corresponding curves with
validation input signal not used for the identification.

Below each plot, a table reports the RMS of the difference between the experi-
mental data and the models responses. From these tables it is possible to notice
that in the case of the identification set, the mechanical model performs better
than the control model, as expected. Except for the λ dof , this trend is present
in the validation set as well. With regard to the λ dof , some observation can be
done to justify the mismatch in the responses. Consider firstly the λ responses
after 20s. Except for a rigid translation, here the trend of both the control
model and the mechanical model are similar to the real one, with more detail
fidelity produced by the mechanical model. The big difference is in the motion
accumulated during the responses before 20s. This mismatch can be justified by
considering that the λ dynamics is such that a non constant solution can only
be experienced with a nonzero input. This makes the identification procedure
of the λ dof harder and even a slight presence of dry friction can influence the
response. Nevertheless, it will be shown that the closed-loop responses are
such that this mismatch is compensated by the stabilizing controller.

5.5 experimental validation and comparison

This section focuses on the comparison between the reduced complexity model
introduced in equation (5.6) and other control oriented models from the litera-
ture dealing with the Quanser experimental system considered here [83]. From
the vast literature on this experimental setup, we chose for our comparisons a
selection of models used in some of the most cited references.

Indeed, despite the presence of many reduced complexity models of the 3-
DOF helicopter in the literature (for example [64], [29], [80], [56], and [106]), the
control model (5.6) is somewhat new and better justified than the existing ones,
while preserving their core structure. In particular, in the reduced complexity
model proposed in [64], the authors take into account a Coriolis contribution
in the ε dof , while in [80] a variant of the input matrix is considered. In [29]
and [56] slightly different input and gravitational effects are considered, while
in [106] another different version of reduced-complexity model is taken into
account. As a result, the reduced complexity models of the above works are
simpler than the one proposed here but there is no clear link between the
standard Lagrangian model discussed in Section 5.3.1 and those reduced
models. Conversely, the control model (5.6) is more justifiable due to its clear
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Figure 5.4: Identification result of the mechanical and control model.

and strong link with the Lagrangian representation of the equation of motion
of the helicopter’s mechanical model (5.3), (5.4).

We now proceed in comparing our model with the open-loop behaviors
of the control-oriented models of [64], [29], [80], [56], and [106], using the
experimental responses coming from real flights as ground truth reference.
Each one of the considered control oriented models has been rewritten in
order to match with the dof and actuation convention adopted here, and has
undergone a gray-box parameter identification procedure, as described in
Section 5.4. The same identification and validation datasets as those considered
in Section 5.4 have been used. We will refer to the model in [64] as “Liu2014”,
to the one in [29] as “Chriette2016”, to the one in [80] as “Peaucelle2011”, to
the one in [56] as “Kiefer2010”, and to the one in [106] as “Zheng2011”.

In Table 5.3, similar to the tables below Figures 5.4 and 5.5, we report the
RMS of the difference between the experimental data and the responses of the
five analyzed models from the literature, together with the one proposed in
this work, when using the validation dataset. In Figure 5.6 at page 81, a plot of
the compared responses is depicted, where the black dotted curves represent
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Figure 5.5: Validation result of the mechanical and control model identification.

the experimental response, and the other curves follow the color code reported
above the figure.

The last column in Table 5.3 reveals that our model is overall the most
accurate one, even if there are some models that perform better if focusing only
on the ε dof . This is probably due to the fact that that models are ε-focused.
The overall better performances of our model may be explained by the clear
physical link we followed (explained in Section 5.3.2), taking more fairly into
account all dof , whereas some of the other models have not been derived with
the same spirit. Furthermore, it is worth to point out that the control models
“Chriette2016” and “Zheng2011” do not involve terms allowing to represent
the oscillation phenomena of the θ-dof in the open loop response (see bottom
plot of Figure 5.6).
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model λ-dof ε-dof θ-dof mean
this work 14.704◦ 0.897◦ 5.947◦ 7.183◦

Liu2014 35.997◦ 0.525◦ 9.117◦ 15.213◦
Chriette2016 132.406◦ 1.648◦ 36.782◦ 56.945◦

Peaucelle2011 15.272◦ 0.521◦ 9.106◦ 8.300◦
Kiefer2010 30.544◦ 0.652◦ 7.688◦ 12.961◦
Zheng2011 47.300◦ 1.543◦ 36.021◦ 28.288◦

Table 5.3: Literature control models performances comparison, RMS of the
difference between the model responses and the experimental data.
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Figure 5.6: Comparison result of the control model here proposed, experimen-
tal response (real flight), and former reduced complexity model
present in literature.

5.6 feedback linearization control design

In this section, a standard feedback linearization based control algorithm will
be developed for the Quanser “3 DOF Helicopter”. The synthesis of such a
control law for the underactuated plant (5.6) is based on a time scale separation
paradigm, where the travel λ and the elevation ε are treated as the slow dy-
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namics, the pitch θ as faster than the latter two dof , and the neglected propeller
dynamics between the commanded thrust (requested by the controller) and the
exerted control input τ as the fastest quantity.

The controlled dof are the travel λ and the elevation ε, to which we will refer
as qc := (λ, ε). The corresponding reference qcr := (λr , εr) is constant.

Firstly, we derive a feedback linearization control which relies on a virtual
input ν ∈ R3. Then, a reference value θr for the pitch angle and the input τ are
selected in such a way to match the virtual input.

5.6.1 Feedback linearization

Considering qcr as the constant reference for the controlled dof qc = (λ, ε), we
define the tracking error as:

q̃ :=
[

qc − qcr
θ − θr

]
(5.13)

Following a feedback linearization paradigm, we would like the dynamics of
the mismatch q̃ to behave like three decentralized damped oscillators, therefore
we impose the following dynamics:

¨̃q = q̈ = −Ξ ˙̃q−Ω2q̃ = −Ξq̇−Ω2q̃ (5.14a)

where

Ω := diag(ωλ , ωε , ωθ) , (5.14b)

Ξ := 2 diag(ζλωλ , ζεωε , ζθωθ) , (5.14c)

and ζi > 0, ωi > 0, i ∈ {λ, ε, θ} are tuning parameters and represent re-
spectively the damping terms ζi and the natural frequency ωi of the artificial
damped oscillator dynamics. We now proceed in substituting equation (5.14a)
into the underactuated plant dynamics (5.6a), which for the sake of clarity is
here recalled

q̈ + g(q) + Rq̇ = T(ε)B(θ)τ (5.15)

Substituting equation (5.14a) in (5.15) it is possible to compute the virtual
control action ν needed in place of B(θ)τ in order to make the mismatch
dynamics behave as specified in (5.14a):

ν := T−1(ε)
(

g(q)−Ω2q̃− (Ξ− R)q̇
)
+ νff , (5.16)

noting that T(ε) defined in (5.6d) is diagonal and invertible thanks to the fact
that cos(ε) > 0 due to the constraint on the elevation dof in the real experiment:
ε ∈ [−15◦ , 15◦]. In (5.16) we introduced a feedforward term νff := (νλff, 0, 0)
as a constant steady-state compensation acting on the first component of ν.
This term improves the steady state tracking performance of the λ dof by
compensating for the disturbance produced by the (1,1)-element of matrix
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S2(q) in equation (5.4d). Note that the cos(ε) term present in the (1,1)-element
of matrix S2(q) is matches with the same term in the matrix T(ε) that multiplies
the virtual input ν.

With the above equation, we introduced the idea of using ν as a virtual input
in order to make the underactuated system behave as a linear system. We now
proceed in manipulating the virtual input in order to obtain the real input. We
will compute an input τ and a reference value for the pitch dynamics θr in
such a way that the real applied input produces an effect as close as possible
to the desired one.

5.6.2 The virtual input

We would like B(θ)τ to be as close as possible to the computed virtual input
ν = (νλ , νε , νθ) in equation (5.16). Considering the slow dynamics as constant,
we define the mismatch between the desired virtual input and the applied
virtual input:

η := ν− B(θ)τ , (5.17)

and the following objective function:

J(θ, τ) := ‖η‖2 = ‖ν− B(θ)τ‖2

=ν>ν− 2ν>B(θ)τ + τ>τ
(5.18)

where we used that B>(θ)B(θ) = I. Consider therefore the following minimiza-
tion problem:

argmin
θ,τ

J(θ, τ) . (5.19)

The fact that the two optimization variables θ and τ belong to two different
time scales suggests to solve the optimization problem (5.19) in two different
steps: first, a desired value for the pitch (the slow quantity) is computed:

θ∗ := argmin
θ

J(θ, τ) = arctan
(

νλ

νε

)
, (5.20)

then, the optimal value for τ for a general θ = θ̄ is derived:

τ∗ := argmin
τ

J(θ̄, τ) = B>(θ̄)ν =

=

[
νλ sin(θ̄) + νε cos(θ̄)

νθ

]
.

(5.21)

The resulting τ∗ comes from basic computations, being J(θ, τ) convex in τ.
The result θ∗ is as well simply derived and it is unique modulo 2π if τ1 6= 0.
Otherwise every value of θ zeroes out J(θ, τ). We select the reference setpoint
θr and the input τ as the optimal ones:

θr = θ∗ , τ = τ∗ . (5.22)
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As one can notice, θ∗ (and thus θr) depends on νλ and νε. Therefore, the
control scheme can be applied as follows. Firstly, the first two component
of (5.16) are computed in order to get νλ and νε (note that (5.16) represents 3

independent equations). Secondly, θr is computed thanks to (5.20), which allows
us to compute νθ with the third component of (5.16). Finally, τ is computed
from (5.21).

5.6.3 State estimation

The feedback linearization control law proposed in equation (5.16) relies on the
knowledge of both the dof position q and on the dof velocity q̇. As discussed
in Section 5.2, the experimental setup is equipped with an encoder at each
one of the three joints, which supplies a quantized measure with a resolution
of 0.0015 rad. Therefore only piecewise constant position measurements are
available. In this work, we follow an indirect approach where q̇ has been
estimated using the high-gain observation law proposed in [76] (see also [28]
for the use of high-gain observers to estimate time derivatives). In particular, if
we denote by x the collection of q and q̇

x := (q, q̇) ∈ R6 (5.23)

and if with x̂ we refer to the estimate of x

x̂ :=
(

q̂, ̂̇q
)
∈ R6 , (5.24)

the estimator dynamics is given by

˙̂x =

[
0 I
0 0

]
x̂ +

[
kpE−1

kvE−2

]
(q− q̂) , (5.25)

where matrix E ∈ R3×3 is a positive definite diagonal matrix containing the
three decoupled high-gain scaling factors

E = diag(ελ , εε , εθ) , (5.26)

and kp kv are two positive scalars such that the characteristic equation s2 + kvs+
kp = 0 has roots with negative real part. The three high-gain scaling factors
εi , i ∈ q are design parameters that can be conveniently adjusted in order to
obtain a trade-off between smoothening action and reduction of the time lag
of the estimator. Moreover, the smoothing action of the proposed approach
mitigates the effect of the quantized position measurements. For these reasons,
the control loop is in feedback from the estimated state x̂.

5.7 closed-loop experiments

In this section we discuss and compare the results obtained interconnecting a
realization of the control scheme proposed in Section 5.6 to both the simulation
platform and the experimental setup. Simulation results are obtained thanks to
the mechanical model discussed in Section 5.2.
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parameter ωλ ωε ωθ ζλ ζε ζθ

value 0.37 1.60 2.80 0.80 0.60 0.90
parameter ελ εε εθ νλff

value 0.10 0.10 0.05 -0.08

Table 5.4: Controller and state estimator tuning.

A tuning process of the controller parameters has been carried out in order
to obtain desirable evolutions. In particular, the natural frequencies in Ω have
been chosen in such a way to respect the time scale separation discussed before,
and in order to not reach the actuator limits in standard transient, while the
damping parameters in Ξ have been chosen in such a way to obtain desirable
transients with a slightly overshooting behavior. The presented results have
been obtained using the same controller settings in both the experiment and
the simulation. The used settings are reported in Table 5.4.

The testing scenarios consist of a reference for the λ dof composed by a
sequence of steps between −90◦, 0◦, and 90◦, to be performed at a fixed
constant reference for the ε dof . In particular, two experiments are presented,
the first with εr = 10◦, and the second one with εr = 10◦. The results are
reported in Figure 5.7.

Let us start discussing the case with εr = 10◦, depicted in Figure 5.7a.
Observing the responses, we can claim that the proposed control algorithm
succeeds in the stabilization and set-point regulation of the helicopter, produc-
ing a graceful evolution to the desired set-point. The step response of the λ dof
exhibits the typical response of an over-critically damped oscillator, showing a
non-overshooting behavior. A good tracking performance is present in the θ

dof as well, while ε seems to be the most problematic dof . This is probably due
to the disturbances produced by the term S2(q) in equation (5.4d), which has
been neglected in the control model.

Moving to the experimental test with εr = 13◦, depicted in Figure 5.7b,
similar considerations can be made. Observing the figure, it is possible to note
that due to a larger value of εr in the fourth plot, the θr evolution in the fifth
plots is in general smaller than in the two other cases. This is due to the fact
that a larger νε is needed to track a larger εr. This turns into having a smaller
argument in the arctangent function in equation (5.20). Nevertheless, a larger νε

produces a larger f̃s, which amplifies the disturbance effect due to the neglected
term S2(q) in equation (5.4d) (in particular due to the (1,2)-element). Indeed a
larger tracking error of the ε dof is present in this case. Moreover, looking at
the two upper plots it is possible to notice that a larger value of f̃s turns into
larger mean values of the two forces f̃1 and f̃2 than in the other cases, but the
smaller θr in the fourth plot is such that smaller peaks are present.

As an overall comment, it is possible to see that in general the simulation
response matches well the experimental response, confirming that the pro-
posed mechanical model is a good software-in-the-loop platform for testing
and synthesizing control algorithms for the Quanser “3 DOF Helicopter” exper-
iment. The most problematic degree-of-freedom is the ε-dof , where the largest
deviations between the experimental and the simulated responses are present.
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These deviations are probably caused by aerodynamics disturbances induced
by tables and walls nearby the experimental setup, and by the actuators dy-
namics (DC-motor/propeller assemblies), which have not been included in
our model. Still, the proposed mechanical model shows to capture the most
important dynamical behavior of the Quanser “3 DOF Helicopter”.
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Figure 5.7: Experimental and simulation result in closed loop. Dotted curves:
references. Blue dashed curves: simulation with the mechanical
model. Red dot-dot-dashed curves: experiment (real flight).



6 VA L I DAT I O N O F T H E R T S O
C O N T R O L L E R : T W O C A S E
S T U D I E S

This chapter focuses on validating the RTSO controller developed in Chap-
ter 4 by means of its application to two case studies. Firstly, the RTSO
controller will be validated on a real-time implementation on an experi-
mental scenario with a propeller-actuated tilting arm. Secondly, the RTSO
controller will be used for controlling the travel degree of freedom of the
Quanser’s 3 DOF Helicopter by means of the benchmark platform developed
in Chapter 5.

6.1 the arm experiment

Figure 6.1: Picture of the arm experiment.

The first case study presented in this chapter is dubbed as “the arm exper-
iment” and is depicted in Figure 6.1. It is essentially composed by a tilting
arm that carries two motor-actuated propellers, realized with low-cost limited-
performances hardware. The arm can tilt around the axis on which its center
of gravity lies (even if not perfectly balanced), and the angle of the arm is
measured by an AMS AS5048 Hall-effect absolute encoder. The propellers are
actuated by a couple of brushless DC motors, which are driven by two Elec-
tronic Speed Controllers (ESC) that regulate the rotational speed of each motor
shaft. The motors rotate in such a way that the propellers produce only upward
thrusts. Two other AMS AS5048 encoders are mounted below each motor to
read out the angular position of the motor’s shafts. The experimental setup

87
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is controlled via an embedded platform programmed via Target-Simulink,
running a Simulink model at the frequency of 200Hz. The arm experiment
input corresponds to the propellers rotational velocity reference, while the
experiment output is the absolute angle of the arm around its tilting axis
and the absolute angle of the motors shaft. Three real time realizations of the
observer proposed in Chapter 7 are used in order to estimate the rotational
velocity of the arm inclination and the propellers rotational velocities.

6.1.1 Mechanical model of the arm experiment

We now introduce a mathematical model representing the arm experiment.
Figure 6.2 shows a schematic representation of the model. Since the arm

J

θ

ω2 ω1

f1

f2

ll
y

x

Figure 6.2: Schematic drawing of the arm experiment.

experiment is constrained to the x− y plane, we only consider the motion
in this plane. The arm is modeled as a rigid body with inertia J and length
2l that can rotate of an angle θ around the axis passing trough its center of
mass, therefore assuming perfect balancing. The propellers are modeled as
two bodies with no inertia, spinning at ω1 > 0 and ω2 > 0 respectively, and
exerting on the arm ends two upward forces f1 > 0 and f2 > 0. The thrust
forces f1 and f2 exerted by the propeller can be modeled with a good level of
accuracy as a quantity depending quadratically on the angular speed of the
propellers themselves (see for example [26], [39], and Chapter 5), that is,

fi = k f ω2
i , i ∈ {1, 2} . (6.1)

The equation of motion of the arm can therefore be written as

θ̈ =
l
J
( f1 − f2) =

lk f

J
(ω2

1 −ω2
2) . (6.2)

We now define a few auxiliary variables, which correspond to the sum and
difference of the propeller velocities squared:

Ωs := ω2
1 + ω2

2 ,

Ωd := ω2
1 −ω2

2 ,
(6.3)
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from which the propeller rotational speeds can be retrieved as

ω1 =

√
1
2
(Ωs + Ωd) ,

ω2 =

√
1
2
(Ωs −Ωd) .

(6.4)

For practical convenience, the ωi unit of measurement is selected to be kilo-
revolutions-per-minute ([krpm]), and the Ωd unit is consequently [krpm2]. In
order to guarantee that ωi > 0, Ωs must always be larger than the absolute
value of Ωd. In light of definitions (6.3), model (6.2) can be rewritten as

θ̈ =
lk f

J
Ωd =: bΩd (6.5)

where Ωd plays the role of the actuator, being proportional to the torque ap-
plied to the arm, and parameter b is defined as the combination of physical
parameters. A gray-box identification procedure leads to finding an approxi-
mate value of b ≈ 0.9 rad

s2krpm2 . It is worth to point out that in this experiment we

only have availability of an estimated value of the actuator value Ωd, since it is
a function of the estimated propellers rotational velocity. The role of Ωs, even if
not appearing in the arm dynamics, is to set the average propellers rotational
speed.

We now proceed to analyzing the dynamical behavior of the actuator Ωd.

6.1.2 Actuator modeling

We are interested in developing a simple actuator model. To this end, let γ be
the desired value to be exerted by the actuator Ωd. Figure 6.3 reports some
experiments in which the initial Ωd is zero (solid curve), γ is zero before zero
time, and assumes different constant values afterwards (dotted curves). During
the experiment, a value of Ωs = 10 has been used. Observing the dynamical
link between γ and Ωd, we can see that, after a pure time delay, Ωd converges
to γ with a non oscillating, non overshooting transient, and the static gain
is approximately one. It is as well clear that, the larger the reference γ, the
longer is the rising time of Ωd. Nevertheless, since we are interested in a simple
actuator model, we consider an average rising time of approximately 0.3 s. The
proposed model consists then of a single real negative pole with rising time of
0.3 s, that is,

Ω̇d = a(γ−Ωd) (6.6a)

with

a =
5

0.3
≈ 16.6

1
s

. (6.6b)

For the sake of comparison, in Figure 6.3 we reported the simulated actuator
response generated by model (6.6) with a dashed line. In the following sections,
we will see that, even if the considered actuator model is simplistic, this will be
enough to get desirable responses for the interconnection between the RTSO
controller and the arm experiment.
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Figure 6.3: Dynamical behavior of the actuator Ωd. Solid curves: Ωd, dotted
curves: desired value γ, dashed curves: simulated Ωd response via
model (6.6).

6.1.3 The whole dynamics and RTSO controller

We now propose a state space representation of the full arm experiment model,
which comprises equation (6.5) together with (6.6). By defining the state z
as z := (Ωd , θ̇, θ), we can rewrite the full arm dynamics by means of the
following state space model:

ż =



−a 0 0
b 0 0
0 1 0


 z +




a
0
0


 γ =: Āz + B̄γ . (6.7a)

Due to safety reasons, we would like that the control input γ is not larger in
magnitude than a fixed tunable value γ̄, that is:

γ ∈ [−γ̄, γ̄] . (6.7b)

Thanks to the structure of system (6.7), we select a realization of the RTSO
controller (4.39) discussed in Chapter 4 for the case of equation (4.1a) with
n = 3, a > 0, to which we will refer as “RTSO3T” controller. To this end,
we rely on the auxiliary state x, arising from a similarity transformation, in
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order to write system (6.7) as the standard RTSO parametrization for the case
n = 3, a > 0 reported in equation (4.14):

x := Qz :=
1
γ̄




1 0 0
1

a
b

0

−1 0
a2

b


 z , (6.8a)

which transforms the dynamics to

ẋ =



−a 0 0
0 0 0
0 a 0


 x +




a
a
−a


 u, u ∈ [−1, 1] . (6.8b)

State x can now be used to evaluate the time-optimal switching function ϕ3
in (4.15). The real input γ is then retrieved from the RTSO controller (4.39) in
Chapter 4 by

γ = γ̄((1− |q|)kx + q), (6.9)

where k is a stabilizing gain for the local linear controller working in the
proximity of the origin. In particular, it will be selected as

k = [0 kd kp]Q−1 , (6.10)

where Q is defined in (6.8a).

6.1.4 Closed-loop experiments and comparison

Among all the closed-loop experiments that we carried out to test the RTSO
controller, we decide to show here a limited set of them for the sake of clarity.
We report experiments in which the goal is to reach the configuration θ =

0, θ̇ = 0 starting from an i-th initial condition for θ θ0i ∈ {−40, −20, 20, 40}
together with an initial velocity θ̇ = 0. The experiments are carried out with
a maximum control magnitude γ̄ = 1 and with a value of Ωs = 10. The local
controller is tuned with kd = 8 and kp = 15, and the RTSO controller parameter
ρ is set to ρ = 0.8. The RTSO tuning parameter ε is set to different values, as
discussed below, for comparative purposes. For a better understanding of these
parameters, the reader is referred to Chapter 4. For the sake of comparison, two
other controllers are implemented and tested in the same scenarios described
above:

• a RTSO realization with n = 2, a = 0 (labeled as “RTSO2”) that neglects
the actuator dynamics, that is, for a system in the form ż =

[ 0 0
1 0
]

z +[
b
0
]

γ via an auxiliary state x := 1
bγ̄ I2z, with I2 the 2× 2 identity matrix,

• a saturated proportional-derivative controller (labeled ad “PDsat”) such
as γ = satγ̄(kpθ + kd θ̇).

Let us first analyze the closed-loop responses obtained with the RTSO3T
controller. Figure 6.4 reports the results of these experiments. In particular, the
time histories of different signals are plotted, that is, in the upper graph the time
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(a) Hysteresis parameter ε = 2.
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Figure 6.4: Closed-loop experimental response for the arm experiment with
the RTSO3T controller. Solid curves: real values, dotted curves:
references.

history of θ, in the middle graph the one of θ̇, and in the bottom graph the one
of Ωd (solid curves) and the one of γ (dotted curves). In Figure 6.4a the RTSO
hysteresis parameter ε is set equal to 2 as previously discussed, while in 6.4b
ε was set to 0. From Figure 6.4a, we can immediately notice that the RTSO3T
controller produces a nice and desirable transient with a non overshooting
behavior. Indeed, the θ reference is reached without going past it and without
evident oscillations. An indicator of the good performances obtained with this
controller are the obtained profiles of velocity θ̇, which essentially correspond
to triangular profiles with just a small tail, which indicates a time-optimal
like evolution. The control variable γ (and the actuator Ωd correspondingly)
suggests as well a time-optimal kind of transient, exhibiting a bang-bang
behavior with at most 2 switches (recall that the order of the considered
plant is 3) and a chattering free response. The absence of chattering is due
to the selection of an hysteresis parameter ε > 0. Indeed, Figure 6.4b shows
that removing the hysteresis mechanism in the global stabilizer of the RTSO
controller induces undesirable chattering of the control variable γ, which
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degrades the controller performance, in addition to potentially damaging the
actuators. Indeed, removing the hysteresis makes the RTSO controller fragile to
unmodelled dynamics and noisy measurements. Finally, is worth to point out
that the slight asymmetry between the evolutions starting from a positive and
a negative θ initial condition is probably due to unmodeled dynamics such as
a non perfect balance of the inertia in the experimental setup.

As for the comparison, we firstly analyze which performance we would
have achieved if we had neglected the actuator dynamics, that is, with the
RTSO2 controller. In this case the hysteresis parameter ε is set to zero, and the
reason why the control γ does still not chatter will be clear when discussing
the state trajectories in the phase plane. Figure 6.5 shows the experimental
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Figure 6.5: Closed-loop experimental response for the arm experiment with
the RTSO2 controller. Solid curves: real values, dotted curves: refer-
ences.

responses obtained with this controller. It can be seen that disregarding the
actuator dynamics leads to performance deterioration, turning into overshoot-
ing responses. The reason becomes clear observing the state space trajectories
depicted in Figure 6.5b. Indeed, when a switch of the control variable γ occurs,
that is when crossing the switching set {x|ϕ2(x) = 0}, the trajectory does not
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slide along the switching surface due to the finite actuator Ωd band which does
not push the trajectory promptly to follow the time-optimal trajectory. This fact
is also responsible of the absence of chatter even if the parameter ε was set to
zero.

Finally, we compare the RTSO3T performances withe the simple PDsat
controller. In Figure 6.6 we depicted a comparison of the θ evolution obtained
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θ0 = 40◦ θ0 = 20◦ θ0 = −20◦ θ0 = −40◦

RTSO3T 1.830s 1.460s 1.565s 1.835s
PDsat 2.325s 1.965s 1.975s 2.535s

Figure 6.6: Closed-loop comparison: RTSO3T (solid curves) vs. PDsat controller
(dashed curves). The table shows the settling times.

with the two controllers, with a zoomed axis in the bottom plot. The PDsat
gains kp and kd are tuned in such a way to prevent harsh oscillations in the
presence of the saturation. We can notice that the RTSO3T controller produces
faster responses, as expected, since it globally behaves time-sub-optimally,
while the PDsat has to be tuned with gentle gains to prevent oscillations due
to the presence of the saturation. This is clear if we look at the settling time in
the lower part of Figure 6.6. The settling time is defined as the smallest time
such that the condition |θ| < 1◦ holds.

These experiments have shown the effectiveness of the RTSO controller
designed and discussed in Chapter 4 when implemented in real applications,
even in the case of a low-cost setup with limited performance. The RTSO
controller is synthesized for a family of dynamical processes, but the case
designed for a plant with a real negative pole and two poles in the origin is
particularly meaningful for mechatronic applications. The RTSO controller is
able to produce non-overshooting, clean and desirable evolutions, taking into
account limitations of the actuators with saturations and reduced bandwidth
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and preventing chattering of the control variable, thanks to the hysteresis
mechanism both around the switching surface and when uniting the global
and the local strategies.
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6.2 the helicopter travel dynamics

In this section, we address the second case study for the validation of the RTSO
controller, represented by the travel dynamics of Quanser’s 3 DOF Helicopter.
This validation relies on the software benchmark tool developed in Chapter 5,
which is instrumental to understanding this section.

The proposed RTSO implementation still relies on the virtual input ν and
the control strategy developed in Section 5.6, which indeed will be used to
compute the virtual input (νε , νθ), while the virtual input νλ will be obtained
by a realization of the RTSO controller. Then, the algorithm introduced in
Section 5.6.2 will be used to derive the real control input starting from the
virtual one. Computing νλ from the RTSO controller allows us to introduce an
artificial saturation on this virtual input and to deal with it in a time-optimal
fashion. The introduction of an artificial saturation on νλ allows us to limit
the maximum magnitude of reference θr of the θ-dof generated by (5.20) (since
typically νε will be quasi-constant due to constant references εr) and therefore
avoid the situation where a large λr reference will bring the experiment to a
large and potentially unsafe θr. To this end, we constrain the input νλ to reside
in the following compact set

νλ ∈ [−ν̄λ , ν̄λ] (6.11)

with ν̄λ representing the maximum admissible magnitude of νλ.
From (5.6e), the λ-dof dynamical model is

λ̈ = −cλλ̇− bλ cos(ε) sin(θ) fs . (6.12)

Substituting the term sin(θ) fs, coming from the product B(θ)τ, with the virtual
input νλ and applying the approximation cos(ε) ≈ 1 (which is reasonable
since ε ∈ [−15◦ , 15◦], as mentioned in Section 5.6), the λ-dof dynamics can be
rewritten as:

λ̈ = −bλνλ . (6.13)

in which we also neglected the friction coefficient cλ since its experimental
value is very small. Equation (6.13) together with (6.11) represents a chain
of two integrators with saturated input and input gain −bλ. A straightfor-
ward selection would therefore be to use a RTSO controller for the case of
equation (4.1a) in Chapter 4 with n = 2, a = 0. Nevertheless, as discussed in
Section 5.6.2, we have to keep in mind that the virtual input νλ represents a
desired value, while the applied virtual input B(θ)τ has its own dynamical
behavior depending on the θ-dof dynamics. We therefore could extend dynam-
ics (6.13) in order to include a simple actuator model capturing the typical time
constant of the real virtual input ν̃λ := sin(θ) fs dynamics (coming from B(θ)τ)
and use a RTSO controller for the case of equation (4.1a) in Chapter 4 with
n = 3, a > 0. We proceed in illustrating both of these possibilities.
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6.2.1 RTSO controller neglecting the input dynamics

If the νλ actuator dynamic is neglected, we can define the state z := (λ̇, λ) and
write the λ dynamics in (6.13) by the following state space representation:

ż =

[
0 0
1 0

]
z +

[
−bλ

0

]
νλ . (6.14)

In order to transform systems (6.14) to the standard RTSO parametrization
illustrated in Section 4.2.1 for the case n = 2, a = 0, we rely on an auxiliary
state x arising from a similarity transformation. In particular, consider

x := Qz :=
1

−bλ ν̄λ
I2z (6.15a)

with I2 representing the 2× 2 identity matrix, which transforms the dynamics
to

ẋ =

[
0 0
1 0

]
x +

[
1
0

]
u, u ∈ [−1, 1] . (6.15b)

State x can be now used to evaluate the time-optimal switching function ϕ2
in equation (4.9) of Chapter 4. The virtual input νλ is then retrieved from the
RTSO controller (4.39) in Chapter 4 by

νλ = ν̄λ((1− |q|)kx + q), (6.16)

where k is a stabilizing gain for the local linear controller and q is the logic
state of the RTSO controller. The stabilizing gain k is selected in such a way to
have the same local behavior as the controller developed in Section 5.6, that is,

k = [2ζλωλ ω2
λ]Q

−1 . (6.17)

6.2.2 RTSO controller considering the input dynamics

As mentioned above, a better choice for applying the RTSO controller to the
helicopter’s λ dynamics, would be to take into account a simple dynamical
model representing the real virtual input ν̃λ dynamics. To this end, we now
proceed to extending dynamics (6.13) by means of state z := (ν̃λ , λ̇, λ), where
the real virtual input ν̃λ has been promoted to a new state component. The
proposed extended state-space model is

ż =



−a 0 0
−bλ 0 0

0 1 0


 z +




a
0
0


 νλ (6.18)

where 1/a > 0 represents the typical time constant of the ν̃λ = sin(θ) fs
dynamics. As in the previous case, we rely on an auxiliary state x in order to
transform system (6.18) to the standard RTSO parametrization illustrated in
Section 4.2.2 for the case n = 3, a > 0:

x := Qz :=
1
ν̄λ




1 0 0
1

a
−bλ

0

−1 0
a2

−bλ


 z , (6.19a)
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which transforms the dynamics to

ẋ =



−a 0 0
0 0 0
0 a 0


 x +




a
a
−a


 u, u ∈ [−1, 1] . (6.19b)

State x can be now used to evaluate the time-optimal switching function ϕ3
in equation (4.15) of Chapter 4. The virtual input reference value νλ is then
retrieved form the RTSO controller (4.39) in Chapter 4 by

νλ = ν̄λ((1− |q|)kx + q), (6.20)

where k is a stabilizing gain for the local linear controller and q is again the
logical state of the RTSO controller. The stabilizing gain k is selected in such a
way that a similar local behavior to the controller developed in Section 5.6 is
obtained, that is

k = (kνλ , 2ζλωλ , ω2
λ)Q

−1 . (6.21)

6.2.3 Simulative comparison

In this section, we illustrate some comparative results between the two different
realization of the RTSO controller discussed in Section 6.2.1 (to which we will
refer with RTSO2) and 6.2.2 (to which we will refer with RTSO3T), and a
saturated version of the λ component of (5.16) developed in 5.6 (to which we
will refer with λ-(5.16)). The simulations will be carried out using the software
benchmark tool developed in Chapter 5. The parameter bλ was identified in
Section 5.4.2, while a = 1.26 is selected in such a way to capture the θ-dof
rising time. The same maximum value for the virtual input ν̄λ = 0.5 is used
for each one of the three controllers. The illustrated simulations start from an
initial condition λ0 taking value in λ0i := {180◦, 270◦ , 360◦}, together with an
initial velocity λ̇ equal to zero. A constant reference position λr = 0◦ has to
be reached while tracking a constant elevation reference εr = 10◦. The RTSO
controller parameters are set to ε = 0.1, ρ = 0.5. For a better understanding of
these parameters, please refer to Chapter 4.

In the following figures we show the evolution of the λ-dof (solid curves)
and the reference λr (black dotted curve) in the upper plot, the virtual input
νλ (dotted curves) and the real virtual input ν̃λ (solid curves) in the lower
plot. We start by analyzing the case of the RTSO2 controller. It is possible to
notice from the response of the λ-dof depicted in Figure 6.7a, that neglecting
the input dynamics turns into a significant performance degradation. To have
a better insight of this behavior, let us look at the state space of system (6.14)
depicted in Figure 6.7b. From here, it is possible to notice that, when a switch
of the control occurs, the trajectories deviate from the switching set due to
the unmodeled dynamics. This behavior is increasingly pronounced as the
actuator and the plant have similar dynamic band. On the contrary, the RTSO3T
controller, whose responses are depicted in Figure 6.8, produces a nice and
non overshooting behavior with a time-optimal like type of convergence. This
confirms that considering even a simple first order model for the actuator, and
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Figure 6.7: Response of the λ-dof with the RTSO2 controller. Dotted curves:
references, solid curves: actual signals.

taking it into account during the controller design, permits to represent well
the plant dynamics and obtain desirable responses. Moreover, the hysteresis
mechanism of the RTSO controller allows obtaining chattering free responses,
even if the considered dynamics is a simplified version of the real one. In the
third plot of Figure 6.8, we report the reference θr produced by the algorithm
Section 5.6.2 and the evolution of the θ-dof , to illustrate how a bang-bang
virtual input νλ essentially turns to a bang-bang reference θr.

Finally, in Figure 6.9, we compare the responses obtained with the RTSO3T
(solid curves) and the λ-(5.16) controller (dashed curves). It is possible to notice
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Figure 6.8: Response of the λ-dof with the RTSO3T controller. Dotted curves:
references, solid curves: actual signals.

that the RTSO3T controller produces a faster transient and a more aggressive
virtual input νλ. In the table at the bottom of Figure 6.9, we report the settling
time for both controllers and for the three different initial conditions, intended
as the minimum time such that the condition |λ| < 1◦ holds. The RTSO3T
controller is confirmed to produce faster convergence to the desired reference.

The RTSO controller therefore results to be well suited in situations where
input saturation, whether it be real or artificial and introduced for safety
reasons, is at stake, and convergence time plays an important role. The RTSO
controller then allows us to take into account different technological aspects,
such as actuators with limited bandwidth.
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Part III

S P E E D E S T I M ATO R





7 A C L A S S O F H Y B R I D
V E LO C I T Y O B S E R V E R S F O R
A N G U L A R M E A S U R E M E N T S
W I T H J U M P S

In this chapter we propose a hybrid nonlinear high-gain observer to estimate
the speed of rotary systems equipped with potentiometer-based, capacitive or
Hall-effect rotary sensors or providing angular measurements evolving in
S1, exhibiting unpredictable jumps of 2π. These sensors comprise rotary
displacement potentiometer sensors, rotary displacement capacitive sensors,
and Hall-effect based encoders. A hybrid measurement model is proposed,
based on which a hybrid high-gain observer is synthesized, which does not
require the knowledge of the jump times. Asymptotic tracking of the proposed
observer is proven. A sampled-data approximation of the proposed observer
is developed as well, based on which an experimental validation shows suit-
ability for real-time applications. The proposed observer has been exploited in
the experimental setup of Chapter 6. This chapter is based on the published
work [23].

7.1 introduction

Observers are fundamental building blocks in control when facing output feed-
back problems. Many strategies have been proposed in order to estimate the
plant state starting from its output, such as Luenberger observers [7], passivity-
based observers [2], and high-gain observers [55]. Among these, high-gain
observers are a well established tool when the process to be observed contains
some unmodelled dynamics. They are also used in order to estimate the time
derivative of the plant’s output, making use of the high-gain scaling parameter
as a tuning parameter allowing one to trade off between responsiveness and
noise sensitivity of the observer [76], [28]. Recently, the hybrid dynamical sys-
tem framework of [45] has been exploited in order to enhance the performance
or extend the use of classical continuous-time observers, both in the high-gain
scheme [8], [32], and in cases where hybrid dynamical systems are at stake (see
[17] and references therein).

Systems that evolve on the unit circle are well studied under different
filtering and synchronization points of view. See the filtering problem analyzed
in [31], [105], and [48], the consensus problem studied in [91], the optimization
problem faced in [98], or the filtering problem on the more general special
orthogonal group SO(3) considered in [68].

105
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In this chapter, we address state estimation for a rotational displacement
process whose position evolves on S1 starting from angular measurements that
evolve in the compact set [0◦ , 360◦], whose model is developed in Section 7.2. In
technological applications, many rotary displacement sensors exist exhibiting
this feature, such as potentiometric, capacitive, or Hall-effect based rotational
sensors. For example, [70] proposes the use of a low cost Hall-effect rotary
displacement sensor for controlling a synchronous reluctance machine, while
[6] develops a new capacitive sensor capable of measuring both translational
and rotational displacements, the latter one evolving on S1. In [1], [36], and
[97], Hall-effect sensors are exploited for either estimating or controlling the
rotor position of permanent-magnet motors, while in [100], a capacitive angular
speed sensor is proposed, along with a technological approach for estimating
the rotational velocity from measurements affected by unpredictable 2π jumps.

Our solution adopts the hybrid formalism of [45] in order to synthesize a
class of hybrid high-gain observers with nonlinear injection, that estimates
the speed (and a filtered version of the angular position) of a rotational dis-
placement system evolving on the unit circle. An important feature of the
proposed approach is that it is independent of the jump times. Both a hybrid
continuous-discrete solution (developed in Section 7.3) and a sampled-data
solution (presented in Section 7.5) are presented, each of them with stabil-
ity guarantees. Simulation and experimental results using a Hall-effect-based
sensor validate the proposed designs.

7.2 hybrid measurements model

Consider a rotational system, with angular position x1 and angular velocity x2,
following the hybrid dynamics





ẋ = Ax + d, |y| ∈ [0, π̂]

x+ = h1(x), y ∈ J1

y = Cx + w = x1 + w ,

(7.1a)

where x = (x1, x2) ∈ X :=
[
− 3

2 π, 3
2 π
]
×R is the plant state and y = x1 + w

is the plant output. Moreover,

A :=
[

0 1
0 0

]
, C :=

[
1 0

]
(7.1b)

h1(x) :=
[

x1 − 2πsign (x1)
x2

]
, (7.1c)

J1 := [− 3
2 π, −π̂] ∪ [π̂, 3

2 π] , (7.1d)

w ∈ [−ρ, ρ] represents bounded measurement noise, π̂ := π + δπ with δπ >

0, and d ∈ R2 is an unknown process disturbance, which may arise from
unmodelled dynamics. In particular, the data of the hybrid measurement
model encodes the integrating structure of the rotational system and the 2π

jump mechanism affecting the measurement. The (typically small) positive
scalar δπ prevents persistent ineffective jumps of 2π (Zeno solutions) and the



7.3 a family of high gain hybrid observers 107

specific selection of δπ > 0 does not affect the velocity estimation because it
simply produces 2π shifts of the angular estimate. Similarly, selecting X =[
− 3

2 π, 3
2 π
]

enables measurement jumps in a larger set than just [−π, π] so
that measurement noise cannot push the state outside flow and jump sets
thereby prematurely terminating solutions.

We assume that in the nominal case, i.e., w = 0 and d = 0, the hybrid
measurement model in (7.1) is such that its state x evolves in a compact set
K ⊂ X , that is at constant velocity x2 ranging in a compact set K2 as follows:

x ∈ K := [− 3
2 π, 3

2 π]×K2 ⊂ X . (7.2)

In the next section we propose an observer estimating x2 without knowledge
of the measurement jump times.

7.3 a family of high gain hybrid observers

7.3.1 Observer Dynamics

Consider the following hybrid high-gain observer with state x̂ := (x̂1, x̂2) ∈ X ,
input ϕ and output ŷ:

Hϕ :=





˙̂x = Ax̂ + Lϕ(ey), (ŷ, y) ∈ Ĉ
x̂+ = h1(x̂), ŷ ∈ J1

x̂+ = h2(x̂, y) y− ŷ ∈ J2

ŷ = Cx̂ = x̂1

(7.3a)

h2(x̂, y) := (y, x̂2)

J2 := [−π − δπ , −π + δπ ] ∪ [π − δπ , π + δπ ]

Ĉ := {(ŷ, y) | ŷ ∈ [− 3
2 π, 3

2 π] \ J1,

y− ŷ ∈ [−3π, 3π] \ J2}

(7.3b)

where matrix A, the jump dynamics h1, and the jump set J1 are defined in (7.1),
ϕ : R 7→ R is a nonlinear output injection function depending on the output
estimate error ey := y− ŷ, L is a matrix of positive gains, and h2 together with
J2 provides faster transients when the output error is very large.

Assumption 7.1. The nonlinear output injection function ey 7→ ϕ(ey) is such that:

1. ϕ is continuous in Bπ−δπ
(0),

2. ey ϕ(ey) > 0 for all ey ∈ (−π, π) \ {0},
3. ϕ(ey) = ϕ(ey + 2kπ) for all k ∈ {−1, 0, 1} and all ey ∈ Bπ−δπ

(0),

4. dϕ(ey)
dey

∣∣∣
ey=0

= 1.

In Assumption 7.1, item 1 ensures continuity of the right hand side during
flow; item 2 represents a sector condition needed for a stabilizing output



108 hybrid observers for angular measurements with jumps

injection, and ensures ϕ(ey) = 0 if and only if ey = 0; item 3 represents a
periodicity condition so that the same output injection term is applied across
jumps of ±2π of ey. Without loss of generality, item 4 implies that locally the
high gain observer (7.3) behaves as a classical linear high-gain observer with
gain L for every selection of ϕ. This assumption is nonrestrictive but it is useful
for the tuning of gain L, and it simplifies the analysis and the generalization of
Section 7.5.

Remark 7.1. Items 1, 2, and 3 of Assumption 7.1 imply that ϕ(e1) = 0 if and only
if e1 ∈ {2kπ, k ∈ {−1, 0, 1}}. y

Matrix L in (7.3a) is designed based on a pair of positive scalar gains k1
and k2 and a positive high-gain scaling factor ε as follows: L := (`1, `2) :=(
k1/ε, k2/ε2). The selection of k1 and k2 has to be such that the characteristic

equation s2 + kvs + kp = 0 has roots with negative real part, and the high-gain
scaling factor ε represents a design parameter that can be conveniently adjusted
in order to obtain a trade-off between smoothing action (larger ε) and reduction
of the time lag of the estimator (smaller ε) [76]. The high-gain structure also
allows rejecting process noise when ε is small enough.

In this work, we are interested in studying the stability properties of the
interconnection between the measurement model (7.1) and the observer (7.3)
with respect to the compact attractor A ⊂ K×X defined as:

A :=
{
(x, x̂) | x ∈ K, x̂ = x +

[
2kπ

0
]

, k ∈ {−1, 0, 1}
}

(7.4)

based on Assumption 7.1. The particular selection of A encodes the fact that
we are interested in having an estimate of the position modulo 2π rotations.
The following is our main result, whose proof is reported in Section 7.3.4.

Theorem 7.1. Under Assumption 7.1, attractor A in (7.4) is uniformly globally
asymptotically stable (UGAS) for the interconnection dynamics between system (7.1)
and (7.3).

7.3.2 The interconnected system

To the end of proving Theorem 7.1, we start the analysis of the interconnection
between the measurement model (7.1) and the observer (7.3) by defining the
estimation error e as the mismatch between the measurement model state x
and the estimated state x̂:

e := (e1, e2) := x− x̂ ∈ E := [−3π, 3π]×R . (7.5)

Since an autonomous representation of the tracking error dynamics e cannot
be written, we study the stability of A in (7.4) by writing the interconnec-
tion between plant (7.1) with zero inputs and observer (7.3) in their original
coordinates (x, x̂) ∈ K ×X , corresponding to:

{
(ẋ, ˙̂x) =

[ A 0
0 A
]
(x, x̂) +

[ 0
L
]

ϕ(e1) (x, x̂) ∈ C
(x+, x̂+) ∈ G(x, x̂) (x, x̂) ∈ D

(7.6a)



7.3 a family of high gain hybrid observers 109

π

-π

- 3
2 π

3
2 π

π
-π- 3

2 π 3
2 π

D1

D2

D3 A

e1

x1

x̂1

Figure 7.1: Projection of the jump sets and the attractor on the (x1, x̂1) plane.

where

D :=
⋃

j∈{1,2,3}
Dj , C := K×X \ D (7.6b)

D1 := J1 ×K2 ×X , D2 := K×J1 ×R

D3 := {(x, x̂)|x1 − x̂1 ∈ J2}
(7.6c)

G(x, x̂) :=
⋃

j∈{1,2,3}|(x,x̂)∈Dj

gj(x, x̂) (7.6d)

g1(x, x̂) := (h1(x), x̂), g2(x, x̂) := (x, h1(x̂))

g3(x, x̂) := (x, h2(x̂, x1)).
(7.6e)

In (7.6), by construction, G is a set-valued mapping (multiple jumping condi-
tions may be active at the same time) that possesses the useful property of
having a closed graph because its graph is the union of the (closed) graphs of
gi. Since the elements of the jump set D impose jump conditions only based
on x1 and x̂1, in Figure 7.1 we have projected these elements on the (x1, x̂1)

plane, in order to provide a graphical representation and intuition of the shape
of these sets, together with the attractor A.
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Figure 7.2: Prototype of the potential function ψ(e1).

7.3.3 Lyapunov function and its properties

Consider the following differentiable function:

ψ(e1) :=





∫ e1
−2π ϕ(v)dv, if e1 ∈ Bπ−δπ

(−2π)
∫ e1

0 ϕ(v)dv, if e1 ∈ Bπ−δπ
(0)

∫ e1
2π ϕ(v)dv, if e1 ∈ Bπ−δπ

(2π)

ψp(e1), otherwise ,

(7.7)

where ψp : [−3π, 3π] \ {Bπ−δπ
(−2π) ∪Bπ−δπ

(0) ∪Bπ−δπ
(2π)} 7→ R>0 rep-

resents a positive smooth continuation [11, Lem. 1.4.2] of the three selections of
ψ in the complement of the three disjoint sets at the right of (7.7). A prototype
of ψ is depicted in Figure 7.2. Note that from items 2 and 3 of Assumption 7.1,
ψ is positive definite with respect to the set {−2π, 0, 2π}.

To study the stability properties of the compact attractor A in (7.4) for the
interconnected system (7.6), we construct a Lyapunov function V : K×X 7→ R

composed by a “potential” term represented by the function ψ in equation (7.7)
depending on the position error e1, and a “kinetic” term proportional to the
square of the speed error e2 as per (7.5):

V(x, x̂) := ψ(x1 − x̂1) +
(x2 − x̂2)

2

2`2
= ψ(e1) +

e2
2

2`2
, (7.8)

Lemma 7.1. Under Assumption 7.1, given V in (7.8) and considering the intercon-
nected system (7.6), it holds that:

V̇(x, x̂) = −`1 ϕ2(e1) ≤ 0 ∀ (x, x̂) ∈ C ,

∆V(x, x̂) ≤ 0 ∀ (x, x̂) ∈ D .
(7.9)

Proof. The gradient of V with respect to (x, x̂) is

∇V(x, x̂) =
(

ϕ(x1 − x̂1),
x2−x̂2
`2

, −ϕ(x1 − x̂1), − x2−x̂2
`2

)

and then, after scalar product with the flow dynamics (7.6),

V̇(x, x̂) = 〈∇V(x, x̂), (ẋ, ˙̂x)〉 = −`1 ϕ2(x1 − x̂1)

= −`1 ϕ2(e1) ≤ 0 ,
(7.10)



7.4 simulations 111

which is zero if e ∈
{[

2kπ
s
]
| k ∈ {−1, 0, 1}, s ∈ R

}
and negative otherwise (thanks

to the observation in Remark 7.1).
With regard to ∆V(x, x̂), the jump map G in (7.6d) is such that either e1 experi-

ences jumps of ±2π due to its elements g1 and g2 in (7.6e), leading to V(x+, x̂+) =

V(x, x̂) (thanks to the 2π periodicity of the potential term ψ(e1) in (7.7)), or |e1| >
|e+

1 | = 0 due to its element g3 in (7.6e), resulting in zeroing out the potential term of
V, thus giving V(x+, x̂+) < V(x, x̂) because (x, x̂) ∈ D3 ⇒ ψ(e1) > 0. �

7.3.4 Proof of Theorem 7.1

To the end of proving Theorem 7.1, we will rely on the smooth candidate
Lyapunov function in (7.8) toghether with Corollary 1.1 in Chapter 1. It holds
that V(x, x̂) = 0 , ∀ (x, x̂) ∈ A. Indeed, both the potential and the kinetic
term zero out when (x, x̂) ∈ A, that is when e1 = 2kπ, k ∈ {−1, 0, 1} and
e2 = 0. Moreover, from item 2 of Assumption 7.1 it is immediate to see that
V(x, x̂) > 0, ∀ (x, x̂) ∈ (K ×X ) \ A. Furthermore, V is radially unbounded.
Indeed, the kinetic term tends to infinity as the distance from the attractor
tends to infinity (recall that x2 ∈ K2, which is bounded), whereas the potential
term has an argument evolving on a compact set, because both x1 and x̂1
evolve in a compact set. From Lemma 7.1, V̇(x, x̂) = −`1 ϕ2(e1) ≤ 0 and
∆V(x, x̂) ≤ 0 for (7.6) under Assumption 7.1. Since we do not have strict
decrease of the Lyapunov function in equation (7.8), we conclude the proof
by recalling the invariance argument of Corollary 1.1. Consider any solution
ζ to (7.6) such that V(ζ(0, 0)) 6= 0. If ζ(0, 0) ∈ C, either ϕ(e1(0, 0)) 6= 0, and
then V̇(ζ(0, 0)) < 0 thanks to Lemma 7.1, or ϕ(e1(0, 0)) = 0. In the latter case,
the flow dynamics of interconnection (7.6) leads to ė1 = e2, which implies that
there exists an arbitrary small time τ such that ϕ(e1(τ, 0)) 6= 0, leading to
decreasing of the Lyapunov function. Consider now the case of ζ(0, 0) ∈ D.
Jumps due to g3 in (7.6e) lead to decreasing of V, as discussed in the proof of
Lemma 7.1. If ζ(0, 0) ∈ D1 \ D2, either ζ(0, 1) ∈ C or ζ(0, 1) ∈ D3, leading in
both cases to a decrease of V. A similar reasoning holds if ζ(0, 0) ∈ D2 \ D1.
If ζ(0, 0) ∈ D1 ∩D2, a jump forces the solution to evolve in one of the above
analyzed cases. Therefore, there is no complete solution ζ of (7.6) such that
V(ζ(t, j)) = V(ζ(0, 0)) 6= 0, ∀(t, j) ∈ dom(ζ), that is V cannot be constant
(and nonzero), completing the proof. �

7.4 simulations

In this section we illustrate the performance of the proposed hybrid observer
with four different selections of the output injection nonlinearity ϕ, all satisfying
Assumption 7.1. In particular, the following case studies are analyzed:

1. ϕ(ey) = sin(ey) [blue curves]

2. ϕ(ey) = 2 tan( ey
2 ) [red curves]

3. ϕ(ey) = saw(ey) [green curves]

4. ϕ(ey) = satM(saw(ey)) [purple curves]
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π
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M
π

ey

ϕ(ey)

Figure 7.3: The four selections of ϕ proposed in Section 7.4.

where with saw : R 7→ R we refer to the following piecewise linear function (a
sawtooth selection) saw(s) := mod (s + π, 2π)− π, and with satM : R 7→ R

to the classical saturation function satM(s) := max(−M, min(s, M)). The shape
of the function is reported in Figure 7.3, which reveals similar small signal
behaviors but different behaviors with larger errors. It easy to check that all
the four case studies respect the four items of Assumption 7.1. In the following
simulations, the same gains kp = 5, kv = 6, the same high-gain scaling factor ε,
and the same initial state x̂0 = (0, 0) are used on all of the case studies. Scalar
δπ is set to 5◦.

The first simulation, depicted in Figure 7.4, is a noise free simulation (w = 0),
where the measurement model’s initial condition is x = (0, 10). The initial
angular velocity of x2 = 10 rad

sec. is sustained for the first 2 sec.. Then the
process disturbance d quickly pushes it to x2 = −20 rad

sec. . In this simulation
ε = 0.7 and parameter M of function satM is 1. It is possible to notice from
the first 2 sec. of simulation that when the output tracking error ey is small
with respect to the current selection of ε, all the considered output-injection
functions ϕ produce similar responses. This is expected, since they share the
same local behavior thanks to item 4 of Assumption 7.1 (see also Figure 7.3). In
the second part of the simulation, the sudden variation of the angular speed x2
produces a larger tracking error, resulting in different responses for the different
selections. In particular, the best performances are the ones produced by the
“tan” and “saw” output injection functions, with a slight advantage for the “tan”
selection. This can be explained by the fact that the “tan” selection represents
a barrier-like function with respect to the jump set D3, that is, this selection
prevents the output error ey to become larger than π − δπ in magnitude. It is
not surprising that the worst response is the one produced by the “sin” and
“sat” output injection functions, due to their limited action for large output
errors ey. Moreover, looking at the bottom plot of Figure 7.4, it is possible to
observe the decrease of the Lyapunov function after jumps from D3, i.e., when
e1 approaches ±π.

The second simulation, depicted in Figure 7.5, takes into account a noise
signal w ∈ [−15◦ , 15◦], a scaling factor ε = 0.1 and the saturation level of
function satM selected as M = 0.03. Conclusions similar to those of the first
simulation can be drawn.
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Figure 7.4: Continuous-time simulation without measurement noise using the
four injection functions of Section 7.4 and ε = 0.7.

7.5 sampled-data approximation and experimental results

For real-time implementation, in this section we propose a discretized version
of the observer introduced in equation (7.3) with periodic sampling time T > 0.

7.5.1 An equivalent sampled-data system

Introduce a timer τ triggering the T-periodic sampling, and sampled versions
x̄ and ¯̂x of the measurement state x and the observer state x̂, resulting in
the following extended version of dynamics (7.6), where we denote ξ :=
(x, x̂, x̄, ¯̂x, τ), and where trivial jumps (namely jumps leaving the corresponding
states unchanged) are omitted for conciseness:

(ẋ, ˙̂x) =
[ A 0

0 A
]
(x, x̂) +

[ 0
L
]

ϕ(e1)

( ˙̄x, ˙̂̄x, τ̇) = (0, 0, 1)
ξ ∈ Cξ

ξ+ ∈ Gξ(ξ) ξ ∈ Dξ .
(7.11a)
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Figure 7.5: Continuous-time simulation with measurement noise using the
four injection functions of Section 7.4 and ε = 0.1.

Above, the jump set is the union Dξ := Dξ
1 ∪ D

ξ
T , and the jump map Gξ

is selected, similarly to (7.6d), as the outer semicontinuous hull Gξ(ξ) :=
⋃

j∈{1,T}|ξ∈Dξ
j

gξ
j (ξ) of the measurement jump rule 1 inherited from (7.6c),

x+ = h1(x), ξ ∈ Dξ
1 := {ξ : x ∈ D1}, (7.11b)

and the sampling-related jump, resetting the timer to zero, implementing the
jumps of x̂ from (7.6c), and updating the sampled states (x̄, ¯̂x),

¯̂x+ = x̂+ ∈ h̄1(h̄2(x̂, y)),
(x̄, τ)+ = (x, 0),

ξ ∈ Dξ
T := {ξ : τ = T}. (7.11c)

where h̄1 and h̄2 are the following outer semicontinuous extensions of function
h1 and h2 in (7.1c) and (7.3b):

h̄1(x) :=





h1(x), if x1 ∈ J1 \ ∂J1

x, if x1 /∈ J1

{x} ∪ {h1(x)}, if x1 ∈ ∂J1.

(7.11d)

1 For compact notation, we don’t define explicitly maps gξ
j (ξ), j = 1, T, we only report in

(7.11b)-(7.11c) the quantities that perform nontrivial jumps.
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h̄2(x̂, y) :=





h2(x̂, y), if y− x̂1 ∈ J2 \ ∂J2

x̂, if y− x̂1 /∈ J2

{x̂} ∪ {h2(x̂, y)}, if y− x̂1 ∈ ∂J2.

(7.11e)

The model is completed by the selection of the flow set:

Cξ := {ξ : (x, x̂) ∈ (K×X ) \ D1, τ ∈ [0, T]}, (7.11f)

which enforces flowing in the interior of the sampling interval τ ∈ (0, T) unless
the measurement model jumps (from Dξ

1). The following proposition is a key
step towards our sampled-data implementation of the next section.

Proposition 7.1. There exists a small enough T∗ such that for any T ∈ (0, T∗], the
following compact set

Aξ := {ξ : τ ∈ [0, T], x− x̂ ∈ P , x̄− ¯̂x ∈ P ,

x− (I + Aτ)x̄ ∈ P}, (7.12)

(where P := {
[

2kπ
0
]
| k ∈ {−1, 0, 1}} represents the 2π shifted origin) is UGAS

for system (7.11).

Proof. First note that after at most T ordinary time instants, any solution jumps
from Dξ

T and then evolves forever in the forward invariant manifold M := {ξ :
x− (I + Aτ)x̄ ∈ P}. From this manifold, since the flow dynamics of (7.11) coincide
with those of (7.6) the Lyapunov flow condition established in the proof of Theorem 7.1
still holds. Similar to the proof of Theorem 7.1, jumps from both Dξ

1 and Dξ
T cause no

increase of the Lyapunov function and the result is implied by persistent flowing and
the invariance principle. �

7.5.2 Approximated sampled-data system

Let us consider a solution of the sampled-data model (7.11) and denote by
(tj , j− 1) any jump time such that τ(tj , j− 1) = T and τ(tj , j) = 0. Exploiting
the specific structure of matrix A, we have for all t before the next jump,

x(t, j) = (I + Aτ(t, j))x̄(t, j) = (I + Aτ(t, j))x̄(tj , j). (7.13)

Then we may write an autonomous version of the dynamics of x̄ and of a
sampled version ȳ of output y = Cx, by replacing the update of x̄ in (7.11c) by

x̄+ = (I + AT)x̄, ȳ := Cx̄+ = C(I + AT)x̄, (7.14)

where we emphasize that output y at sampling times depends on the current
continuous state x, which is the future sample x̄+ of the sampled state x̄.
Inspired by (7.14) we propose the following sampled-data approximation of
the jumps of ¯̂x in (7.11c)

¯̂x+ = h1

(
h̄2
(
(I + AT) ¯̂x + TLϕ(ȳ− ¯̂y), ȳ

))

¯̂y := C(I + AT) ¯̂x,
(7.15)

which enjoys the property in the next theorem.
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Figure 7.6: Sampled-data simulation using the four injection functions. ε = 0.7.

Theorem 7.2. For any Lipschitz function ϕ satisfying Assumption 7.1 and some
bounded set of initial conditions ¯̂x(0, 0), the sampled-data observer (7.15), (7.14)
guarantees practical estimation of the sampled version x̄ of state x with respect to
parameter T.

Proof. The UGAS of (7.12) established in Proposition 7.1 is semiglobally practically
robust in the sense of [45, Lemma 7.20]. We may then consider a perturbed version of
dynamics (7.11) where the upper equation in (7.11a) is replaced by

(ẋ, ˙̂x) =
[ A 0

0 A
]
(x, x̂) +

[ 0
L
]

ϕ(C(I + AT)(x̄− ¯̂x)), (7.16)

which we denote by ((7.11)←(7.16)) for simplicity of notation. We may well interpret
((7.11)←(7.16))) as a perturbed version of (7.11) where the right hand side of (7.11a)
is affected by disturbance

Ld := L(ϕ(C(I + AT)(x̄− ¯̂x))− ϕ(C(x− x̂))). (7.17)

For the ensuing system, intersecting the flow and jump sets with any arbitrarily
large set {x̂2 ∈ [−x̂2M , x̂2M]}, we obtain the uniform bound (where Lϕ represents a
Lipschitz bound and ϕM represents a global bound for ϕ(·)):

|d| ≤ |ϕ(C(I + AT)(x̄− ¯̂x))− ϕ(C(x̄− ¯̂x))|
+ |ϕ(C(x̄− ¯̂x))− ϕ(C(x− x̂))|

≤ Lϕ(T(x2M + x̂2M) + T|x1 − x̄1|+ T|x̂1 − ¯̂x1|),

which shrinks to zero as T is reduced because | ˙̂x1| ≤ x̂2M + `1 ϕM and |ẋ1| ≤ x2,
which belongs to compact set K2. The possibility of shrinking d to zero by reducing
T enables applying [45, Lemma 7.20] and establishing semiglobal practical UGAS of
Aξ in (7.12).

The proof is then completed by noticing that the term ϕ(C(I + AT)(x̄− ¯̂x)) forcing
the right hand side of (7.16) is constant and equal to ϕ(ȳ− ¯̂y). Therefore the value of
¯̂x+ in (7.15) coincides with that of ¯̂x+ in (7.11c). Practical convergence of ¯̂x to x̄ then
follows from practical UGAS of Aξ in (7.12) and the fact that ¯̂x = x̄ in Aξ . �

In Figure 7.6, we illustrate a 100 Hz sampled-data simulation of the proposed
law, showing similar behavior to the continuous-time counterpart.
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7.5.3 Real-time implementation and experiments

Algorithme 1 : Real-time implementation of (7.15).
Input : y . sampled angle measurement

Parameters : `1, `2, δπ , T
1 while true do
2 y = y . update the angular measurement

3 ¯̂x ← (I + AT) ¯̂x + TLϕ(y− ( ¯̂x1 + T ¯̂x2)) . (7.15) to x̂

4 if ||y− ¯̂x1| − π| ≤ δπ then . check if y− ¯̂x1 ∈ J2

5 ¯̂x1 ← y . apply jump map h̄2( ¯̂x, y)

6 end
7 if | ¯̂x1| ≥ π + δπ then . check if ¯̂x ∈ J1

8 ¯̂x1 ← ¯̂x1 − 2πsign ( ¯̂x1) . apply jump map h̄1( ¯̂x)

9 end
10 end

A ready-to-code algorithm implementing the sampled-data observer (7.15)
can be found in Algorithm 1. Four realizations of Algorithm 1 have been coded
in C++ in a 32 bit 120 MHz ARM Cortex-M4 microprocessor. Each one of the
four realization represents one of the case studies of output injection function
ϕ presented in Section 7.4. The microprocessor reads out the angular measure-
ments via an I2C bus from an Hall-effect AMS AS5048 encoder, which is an
easy-to-use 14 bit resolution absolute angular sensor for industrial applications.
In our experiments the encoder measures the angular displacement of the
shaft of a small DC brushed motor that is open-loop voltage controlled. The
algorithms run in real time at 100 Hz and the observer parameters kp and kv
are set as in the simulations to respectively 5 and 6, while δπ = 0.0873 rad, and
M = 1. The results of one of the experiments are depicted in Figure 7.7. In
the plots relative to the angular velocity estimation we added in light gray a
dirty derivative of a rectified version of the sampled measurement y, which
was computed off-line. The DC motor is supplied with a voltage inducing a
rotation with approximate speed of 150 rad

s . In the acceleration phase the motor
reaches the steady state in about 2s, and the high-gain scaling factor ε is such
that all the case studies behave similarly, confirming the simulation results.
Similar behaviors are produced at the steady state as well, where the dirty
derivative curve confirms that the angular velocity estimated by the real-time
observer implementation is correct and well filtered. In the deceleration phase
the motor slows down more promptly, making the differences among the four
considered case studies more evident. The experimental results confirm that
the increased aggressiveness of the “tan” and “saw” output injection functions
produce a faster transient, while the limited forcing actions of the “sin” and
“sat” selections produce a slower transient.
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Figure 7.7: Experimental results using the four injection functions. ε = 0.1.



8 C O N C L U S I O N S A N D F U T U R E
P E R S P E C T I V E S

In this manuscript, we faced different problems of technological interest in
aerospace, for which we proposed innovative solutions that take advantage
of hybrid dynamical systems and, in particular, of the comprehensive hybrid
dynamical system framework [45]. For the proposed algorithms, we gave
formal stability certificates proving desirable properties thanks to the tools
made available in [45] and some recent extensions.

In particular, each part of the thesis leads to its own conclusion and future
perspectives.

part i In this part of the thesis, a new model of the relative dynamics between
two spacecrafts in elliptic orbit is developed based on Floquet-Lyapunov
theory in order to obtain a linear time-invariant free motion representa-
tion of the rendezvous problem. This problem is then recast as a stabi-
lization problem for a periodic trajectory in a hybrid dynamical systems
framework. Two new control laws have been proposed and compared
to a control scheme given in [33], which is re-interpreted in this hybrid
context. The new controllers take advantage from steering the satellite
motion along periodic (therefore bounded) transient relative orbits. The
use of the hybrid formalism has allowed us to prove asymptotic stability
of the desired motion, in addition to robustness to perturbations. Such a
robustness is confirmed by suitable simulation results showing desirable
responses also in the presence of unmodeled nonlinear phenomena and
external disturbances affecting the satellite motion.

Future perspective may lead to synthesizing hybrid impulsive control
strategy making use of the framework developed here but taking into
account saturation limits of the thrusters and minimization the fuel
consumption.

part ii In this part, we proposed a robust hybrid time-sub-optimal controller
for a class of linear SISO plants with saturated input with up to three
poles at the origin. Input saturation can be both a technological limit
of the actuators, or an artificial constraint introduced for safety reasons.
First, an analysis of the switching sets for the time-optimal control of the
considered dynamics has been carried out by means of suitable switching
functions. Based on this description, an implicit hybrid framework for ro-
bust time-sub-optimal control has been introduced. A hybrid blend with
a local linear feedback has been then developed, which ensures global
asymptotic stability of the origin. Then, its effectiveness has been illus-
trated both in a simulated and real implementation scenario. In particular,
the benchmark model of Quanser’s 3 DOF Helicopter developed in Chap-
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ter 5 has been used as a simulative tool, while a propeller-actuated arm
experiment served as a real experimental benchmark. Both these valida-
tion tools have shown the effectiveness of the proposed scheme, in the
presence of unmodelled dynamics, measurement noise and limited per-
formance hardware. In particular, the hysteresis mechanism in the global
controller and in the uniting global and local strategy has been shown to
prevent chattering effects, producing clean and desirable evolutions.

Future interesting research directions may consider the extension of
the scheme to reject constant disturbances, and further illustrating the
technological advantages of the proposed stabilizers.

part iii In this last part, we proposed a nonlinear hybrid speed observer struc-
ture for angular measurements evolving on S1 and affected by jumps.
Stability properties of the proposed observer have been established with
a Lyapunov-based argument under some natural assumptions on the
nonlinear injection function representing the external innovation forcing
action. After showing some continuous-time simulations, a sampled-data
approximated version of the proposed observer was developed for real
time implementation. Experimental results of the discretized observer
have been reported, showing that the proposed algorithm is suitable for
mechatronic applications. Indeed, this algorithm has been successfully
exploited with real-time implementations in order to estimate the pro-
peller rotational velocities of the experimental setup used to validate the
RTSO controller of Chapter 4, as discussed in Chapter 6.

Future advancements may be in the direction of studying the input-
to-state stability properties of the proposed scheme. Motivated by the
approach in [3], further investigations may be towards embedding an
adaption mechanism of the saturation level when using a saturation
function in the output injection, in order to bring together both the
advantage of having a limited control effort when the estimation error is
small, and the fast convergence of the saw function when the estimation
error is large.

Broadly speaking, this manuscript confirmed the effectiveness of the re-
cent trend of exploiting hybrid dynamics for designing innovative estimation
and control algorithm with enhanced performance. Moreover, in the wake
of the technological experience carried out while performing the activities
illustrated in this manuscript, the author believes that the hybrid dynamical
systems framework could bring benefit to many industrial applications as
well, especially in situations where complex dynamical behaviors are needed.
Nevertheless, the author feels that there is still lack of a hybrid counterpart of
some useful classical analysis tools. For example, an extension to the hybrid
context of the linear approximation method for studying stability properties of
equilibria of non-linear systems would be useful, as much as the possibility of
studying the stability of the interconnection between many different hybrid
systems, through input-output properties, without the need of writing a single
hybrid system.
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