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Introduction

Linear Time-Invariant (LTI) systems are probably one of the most well-established areas
in control, and more than eighty years of extensive studies produced a wide range of tech-
niques for stabilization, regulation, inversion, identification, and model reduction. Thanks
to all these powerful tools, LTI models are popular and frequently used in practice, even
when they provide just a rough approximation of the physical system under consideration.
For many applications, linear models are accurate enough, and nonlinearities are treated
as disturbances or model imperfections, and compensated with robust or adaptive control
techniques. However, this is not always possible, and some nonlinearities that are frequent
in technologically relevant applications cannot be approximated as linear ones; a few exam-
ples are relays, saturation, dead-zones, and quantization. All these phenomena can create
several undesired behaviors that largely deviate from a linear behavior.

The possible behaviors of LTI systems are fairly well understood. Uniform asymptotic
stability is exponential, equilibrium sets are linear subspaces, and solutions are sums and
products of sinusoidal, exponential and polynomial functions. Nevertheless, the presence
of even a single nonlinear element destroys all the nice properties cited above, and can
drastically alter the response of the system.

In order to study what happens when nonlinearity is inserted within a linear loop, one
of the simplest setups that we can consider is a Single-Input Single-Output (SISO) linear
system, feedback interconnected with a static nonlinearity. This problem is known in the
literature as Lure problem, and it has been studied in the absolute stability framework
starting from the 1940s. Typically the nonlinearity satisfies a sector condition and is in
negative feedback with the linear part of the loop. Using the special structure of Lure
systems and the sector condition, it is possible to obtain sharper stability results compared
to fully nonlinear approaches.

In this thesis we follow this spirit, and we study three problems arising from considering
the feedback interconnection of a linear block with an isolated nonlinearity. The nonlin-
earity can be part of the plant, or part of the controller. When the nonlinearity belongs
to the plant, it is used to capture a nonlinear behavior of the physical system, while when
it is part of the controller, it is usually introduced to improve a specific performance. In
contrast to the classical Lure problem, the nonlinearities considered in this thesis can have
a memory, they can be discontinuous, or even hybrid (they introduce a state reset into the
loop).

The first nonlinearity that we consider is the play operator (also known as backlash).
The play operator is a simple example of hysteresis that frequently appears in mechanical
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systems. Numerous mechanical actuators and sensors possess this hysteretic characteristic,
and consequently many real control loops contain a backlash-like nonlinearity. Failure
to compensate for the backlash may lead to limit cycles, poor tracking performance or
even instability. From a dynamical point of view, the play operator is a nonlinearity with
memory, and requires an internal state to be properly described. The extra state associated
to the play operator creates a compact set of equilibria, and in Chapter 2 we characterize
the stability properties of this set. In the main result we prove that global exponential
stability, uniform global asymptotic stability, and global pointwise asymptotic stability are
all equivalent for this class of systems. We also provide a necessary and sufficient eigenvalue
test to check whenever the above-mentioned stability properties hold. Finally, we show that
stability is robust with respect to properly defined perturbations of the system dynamics.

The second loop that we consider contains a hybrid mechanism that is a combination
of a switch and of a reset (i.e., a discontinuous change of the system state). This switching-
reset mechanism is triggered by an external signal, which is mainly unknown, and which
satisfies only mild regularity properties (a direct and a reverse dwell-time condition). Be-
cause the reset action introduces a discontinuity in the system state, a proper formalism
and notion of solution must be used. In contrast to classical smooth ordinary differential
equations with absolutely continuous solutions, here we need a notion that allows for dis-
continuities that we informally call “jumps”. The simultaneous action of switches and resets
greatly enriches the range of behaviors of this dynamical system, opening the possibility
of using resets and switches to shape the response of the closed-loop system. These addi-
tional degrees of freedom are used to overcome the classical trade-off between rising time
and overshoot, typical of linear control systems. The loop switches between two different
linear controllers, and the resets are designed to keep the solutions well behaved during
transients. The final result is a cooperation between switches and reset that achieves global
exponential stability to the origin under a large class of switching signals.

The third loop involves an adaptive dead-zone, which is placed at the output injection of
a Luenberger observer. This dead-zone filters out the high-frequency noise that affects the
measurements and improves the observer noise sensitivity. The adaptation mechanism is
designed to ensure uniform global asymptotic stability of the estimation error in the absence
of noise, and input-to-state stability from the noise input. As compared to a classical
Luenberger observer, we show through simulations that these “dead-zone observers” have
better noise rejection properties. Moreover,we show that these observers are not restrictive
for LTI systems, and that they can be designed solving a Linear Matrix Inequality (LMI).
Finally, we provide a nonlinear extension for nonlinear systems in strict feedback form.

The study of the stability properties of these three loops is the main theoretical con-
tribution of the thesis, which, however, is not limited to this. In a separate second part
the switching-hybrid mechanism and the dead-zone observer are applied to automotive
applications, showing the relevance of the theoretical results previously obtained.
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The switching-reset mechanism is used to design a non-overshooting set-point pressure
regulator for a wet clutch. For this specific application, the overshoot and the rise time are
critical parameters, and the simultaneous optimization of both is a challenging problem.
For this reason, we use the switching-reset mechanism to overcome the limitation between
rising time and overshoot typical of linear control systems.

The adaptive dead-zone mechanism is instead used to improve the performance of the
Farrelly and Wellstead kinematic observer. This observer is widely used in the automotive
industry to estimate the side-slip angle of cars. The idea that we propose is to add the
adaptive dead-zone at the output injection term. This augmentation results in a better
noise rejection capability, and preserves the desirable features of the classical kinematic
observer. Moreover, the improved noise rejection performance allows for more aggressive
observer gains, which robustify the observer against accelerator biases.

Since the range of possible behaviors of these nonlinear loops is broad (discontinuous
changes of the state, compact sets of equilibria, state constraints), we cast the problems
into the hybrid systems framework that has been recently proposed in the literature. The
generality of this framework easily accommodates for all these possible behaviors, and
provides a unified language to develop stability and robustness results. Fundamental results
as direct, converse Lyapunov theorem, and the invariance principle are available, and allow
for a rigorous stability analysis.

The thesis starts with Chapter 1, where the hybrid system formalism is briefly recalled.
The fundamental notions of hybrid inclusions, hybrid time domains, and the most common
stability definitions are detailed in this chapter. All the material contained in this overview
will be used throughout the rest of the thesis.

After the preliminary chapter the thesis is organized in three main blocks; 1) theoretical
results, 2) applications, and 3) conclusions. The first block, named “theoretical results”,
contains the main theoretical stability results. The second block, named “applications”,
contains the non-overshooting pressure control for the wet clutch, and the kinematic Far-
relly and Wellstead observer. Finally, the third block, named “conclusions” summarizes
the results and outlines possible future developments and future research directions.

3
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Résumé

Les systèmes linéaires à temps invariant (LTI) sont probablement l’un des domaines de con-
trôle les mieux établis, et plus de quatre-vingts années d’études approfondies ont produit un
large éventail de techniques pour la stabilisation, la régulation, l’inversion, l’identification
et la réduction de modèle. Grâce à tous ces outils puissants, les modèles LTI sont très pop-
ulaires et fréquemment utilisés dans la pratique, même lorsqu’ils ne fournissent qu’une ap-
proximation du système physique considéré. Pour de nombreuses applications, les modèles
linéaires sont suffisamment précis et les non-linéarités sont traitées comme des perturba-
tions ou des imperfections du modèle et compensées par des techniques de contrôle robustes
ou adaptatives. Cependant, ce n’est pas toujours possible et certaines non-linéarités qui
sont fréquentes dans des applications technologiquement pertinentes ne peuvent être ap-
proximées an des fonctions linéaires : quelques exemples sont les relais, la saturation, les
zones mortes et la quantification. Tout cela peut créer plusieurs comportements indésir-
ables qui s’écartent largement d’un comportement linéaire.

Les comportements possibles des systèmes de LTI sont assez bien compris. La stabilité
asymptotique uniforme est exponentielle, les ensembles d’équilibre sont des sous-espaces
linéaires et les solutions sont des sommes et des produits de fonctions sinusoïdales, expo-
nentielles et polynomiales. Néanmoins, la présence d’un seul élément non linéaire détruit
toutes les belles propriétés citées ci-dessus, et peut modifier radicalement la réponse du
système.

Afin d’étudier ce qui se passe lorsque la non-linéarité est insérée à l’intérieur d’une
boucle linéaire, l’une des configurations les plus simples que l’on puisse envisager est un
système linéaire SISO (Single-Input Single-Output), avec un retour interconnecté avec
une non-linéarité statique. Ce problème est connu dans la littérature sous le nom de
problème de Lure, et il a été étudié dans le cadre de la stabilité absolue à partir des années
1940. Normalement, la non-linéarité satisfait une condition de secteur et est en rétroaction
négative avec la partie linéaire de la boucle. En utilisant la structure spéciale des systèmes
Lure et la condition de secteur, il est possible d’obtenir des résultats de stabilité plus nets
par rapport aux systèmes entièrement non linéaires.

Dans cette thèse, nous suivons cet esprit, et nous étudions trois problèmes qui se posent
an système en considérant l’interconnexion par rétroaction d’un bloc linéaire avec une non-
linéarité isolée. La non-linéarité peut faire partie de l’installation ou du régulateur. Lorsque
la non-linéarité appartient elle est utilisé pour capturer un comportement non-linéaire du
système physique, alors que lorsqu’elle fait partie du contrôleur est généralement introduite
pour améliorer une performance spécifique. Contrairement au problème classique de Lure,
les non-linéarités considérées dans cette thèse peuvent avoir une mémoire, elles peuvent

5



être discontinues, voire hybrides (elles introduisent une réinitialisation d’état dans la boucle
de commande).

La première non-linéarité que nous considérons est l’opérateur de jeu (aussi connu
sous le nom de jeu). L’opérateur de jeu est un exemple simple d’hystérésis qui apparaît
fréquemment dans les systèmes mécaniques. De nombreux actionneurs et capteurs mé-
caniques possèdent cette caractéristique hystérétique et, par conséquent, de nombreuses
boucles de régulation réelles contiennent une non-linéarité de type backlash. L’absence
de compensation du jeu peut entraîner une limitation des cycles, des performances de
suivi médiocres ou même de l’instabilité. D’un point de vue dynamique, l’opérateur de
jeu est une non-linéarité avec mémoire, et nécessite un état interne pour être correcte-
ment décrit. L’état supplémentaire associé à l’opérateur de jeu crée un ensemble compact
d’équilibres, et dans le Chapitre 2 nous caractérisons les propriétés de stabilité de cet en-
semble. Dans le résultat principal, nous prouvons que la stabilité exponentielle globale, la
stabilité asymptotique globale uniforme et la stabilité asymptotique globale par points sont
toutes équivalentes pour cette classe de systèmes. Nous fournissons également un test de
valeur propre nécessaire et suffisant pour vérifier chaque fois que les propriétés de stabilité
mentionnées ci-dessus se maintiennent. Enfin, nous montrons que la stabilité est robuste
par rapport à une perturbation bien définie de la dynamique du système.

La deuxième boucle que nous considérons contient un mécanisme hybride qui est une
combinaison d’un commutateur et d’un reset (c’est-à-dire un changement discontinu de
l’état du système). Ce mécanisme de remise à zéro est déclenché par un signal externe,
principalement inconnu, qui ne satisfait que de faibles propriétés de régularité (une con-
dition de temporisation directe et une condition de temporisation inverse). Parce que
l’action de réinitialisation introduit une discontinuité dans l’état du système, un formalisme
et une notion de solution appropriés doivent être utilisés. Contrairement aux équations
différentielles ordinaires lisses classiques avec des solutions absolument continues, nous
avons besoin ici d’une notion qui autorise les discontinuités que nous appelons de façon
informelle des "sauts". L’action simultanée des interrupteurs et des réenclenchements enri-
chit considérablement l’éventail des comportements de ce système dynamique, ouvrant la
possibilité d’utiliser des réenclenchements et de commuter pour façonner la réponse du sys-
tème en boucle fermée. Ces degrés de liberté supplémentaires sont utilisés pour surmonter
le compromis classique entre le temps ascendant et le dépassement typique des systèmes
de contrôle linéaire. La boucle commute entre deux régulateurs linéaires différents, et
les réinitialisations sont conçues pour conserver les solutions que nous proposons. Le ré-
sultat final est une coopération entre les commutateurs et la réinitialisation qui permet
d’atteindre une stabilité exponentielle globale à l’origine sous une grande classe de signaux
de commutation.

La troisième boucle implique une zone morte adaptative, qui est placée à la sortie
de l’injection d’un observateur de Luenberger. Cette zone morte filtre le bruit à haute
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fréquence qui affecte les mesures et améliore la sensibilité au bruit de l’observateur. Le
mécanisme d’adaptation est conçu pour assurer une stabilité asymptotique globale uniforme
de l’erreur d’estimation en l’absence de bruit, et pour contribuer à la stabilité de l’état en
présence de celui-ci. Comparé à l’observateur classique de Luenberger, nous montrons par
des simulations que ces "observateurs avec zones mortes" ont de meilleures propriétés de
rejet du bruit. De plus, nous montrons que ces observateurs ne sont pas restrictifs pour les
systèmes LTI, et qu’ils peuvent être conçus à partir de la résolution d’ une inégalité ma-
tricielle linéaire (LMI). Enfin, nous fournissons une extension pour une classe particuliere
de systèmes non-linéaires.

L’étude des propriétés de stabilité de ces trois boucles est la principale contribution
théorique de la thèse, qui n’est cependant pas limitée à cela. Dans une deuxième partie
séparée, le mécanisme hybride de commutation et l’observateur de zone morte sont éval-
ués dans le contexte des applications automobiles, montrant la pertinence des résultats
théoriques précédemment obtenus aussi, le mécanisme de remise à zéro est utilisé pour la
conception d’un régulateur de pression de point de consigne sans dépassement pour un
embrayage à bain d’huile. Pour cette application spécifique, le dépassement et le temps de
montée étaient des paramètres très critiques, et l’optimisation simultanée des deux était
un problème difficile. L’utilisation du mécanisme de remise à zéro a permis de surmonter
la limitation entre le temps de montée et le dépassement typique des systèmes de con-
trôle linéaire. Le mécanisme adaptatif des zones mortes est quant-à lui plutôt utilisé pour
améliorer la performance de l’observateur cinématique de Farrelly et Wellstead. Cet obser-
vateur est largement utilisé dans l’industrie automobile pour estimer l’angle de dérapage
latéral dans les voitures. L’idée que nous proposons est d’ajouter la zone morte adaptative
au terme d’injection de sortie. Ce changement permet d’obtenir une meilleure capacité de
rejet du bruit et préserve toutes les bonnes caractéristiques de l’observateur cinématique
classique. De plus, l’amélioration des performances de rejet du bruit permet des gains plus
agressifs pour l’observateur, ce qui le protège contre les distorsions de l’accélérateur.

Il est egalement important de saliguer que ètant donnè que l’éventail des comporte-
ments possibles de ces boucles non linéaires est très large (changements discontinus d’état,
ensembles compacts d’équilibres, contraintes d’état), nous avons abordè les problèmes dans
le cadre des systèmes hybrides qui a été récemment proposé dans la littérature. La grande
généralité de ce framework s’adapte facilement à tous ces comportements possibles, et
fournit un langage unifié pour développer la stabilité et la robustesse du résultat. Des
résultats fondamentaux comme le théorème de Lyapunov direct et inverse, et le principe
d’invariance, sont disponibles, et permettent une analyse rigoureuse de la stabilité.

L’organisation du manuscrit de thése est la suivante. La thèse commence par Chapter 1,
où le formalisme des systèmes dynamiques hybrides est brièvement rappelé. Les notions
fondamentales d’inclusion différentielle hybride, de domaine temporel hybride et les défini-
tions de stabilité les plus utilisées sont détaillées dans ce chapitre. Tout le matériel contenu
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dans ce chapitre sera utilisé tout au long de la thèse. Après le chapitre préliminaire, la
thèse est organisée en trois blocs principaux : 1) résultats théoriques, 2) applications et 3)
conclusions. Le premier bloc, appelé "Résultats théoriques", contient les principaux résul-
tats théoriques de stabilité. Le deuxième bloc, appelé "Applications", contient le contrôle
de la pression sans dépassement pour l’embrayage humide et l’observateur cinématique de
Farrelly et Wellstead. Enfin, le troisième bloc, intitulé "Conclusions", résume les résultats
et décrit les développements futurs possibles et les orientations futures de recherche.
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Chapter 1

Preliminaries on Hybrid Systems

Hybrid systems are mathematical models describing a large variety of physical and en-
gineering systems, such as mechanical systems with impacts, analog and digital circuits,
biological systems, and finite-state machines. In hybrid systems, the state evolves continu-
ously in time or experiences instantaneous changes. Mathematically, these two possibilities
are obtained through a combination of a differential equation, which is active on a special
set called flow set, and of a difference equation, which is active on another set called jump
set (differential and difference inclusions are also possible). This combination provides a
new mathematical object (a hybrid system) with a powerful descriptive capability. State
constraints have been used intensively in the context of viability theory, but it has been
only recently that the viability constraints have been recognized as a useful tool to model
hybrid dynamical systems. This intuition opened a completely new direction of research
in the hybrid systems community, allowing for the extension of classical stability results
(such as Lyapunov theorems and the invariance principle) to hybrid dynamical systems.

In this thesis, we exploit many results from this new hybrid systems framework to obtain
new results for a few special nonlinear loops. In this chapter we present the hybrid systems
formalism, we fix some terminology, and we recall the most relevant stability notions.

1.1 The Hybrid Systems Framework

Hybrid systems can be represented using a variety of different formalisms. In this chapter
we use constrained differential and difference inclusions as a modeling tool [58]. The
inclusions are constrained in the sense that they are active only on some special sets of the
overall state space as will be clear soon. Formally a hybrid system is a 4-tuple (C,D, F,G),
where C and D are closed subsets of Rn and F : dom F ⇒ Rn and G : dom G ⇒ Rn are
set-valued maps. The hybrid system H is represented in the following form

H :=

x ∈ C ẋ ∈ F (x)
x ∈ D x+ ∈ G(x),

(1.1)
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where x ∈ C ∪D is the state. The ordering suggests that when x ∈ C, the state obeys the
differential inclusion ẋ ∈ F (x), while when x ∈ D, the state obeys the difference inclusion
x+ ∈ G(x). The symbol x+ is used to denote the value of x after an instantaneous change.
It may happen that x ∈ C ∩D; in this case, the state can evolve both according to F or
G. To highlight that the differential inclusion is responsible for the continuous change of
the state we name F flow map, and the set C where it is active flow set. Similarly, the
difference inclusion is responsible for instantaneous (discontinuous) changes in the state; for
this reason we name G jump map, and the set D where it is active jump set. It must hold
that C ⊂ dom F and D ⊂ dom G, otherwise one can restrict C and D in such a way that
those conditions are met. Solutions to hybrid systems of the form (1.1) experience both
flows and jumps. A convenient time parametrization that keeps track of both is provided
by a generalized notion of time. We denote by t ∈ R≥0 the ordinary continuous time and by
j ∈ N≥0 the number of jumps or discrete steps. The discrete time j can be interpreted as a
counter that keeps track of the number of jumps that occurred. Because continuous-time
solutions are defined over real intervals, and discrete recurrence are defined over integer
sequences, it is quite natural to consider hybrid time domains as a subset of R≥0×N≥0. In
general, not all subsets of R≥0 × N≥0 are compatible with the evolution of (1.1). For this
reason, we say that the solutions itself build its own hybrid time domain.

Definition 1.1 (Hybrid time domain)
A subset E ⊂ R≥0 × N≥0 is a compact hybrid time domain if

E =
J−1⋃
j=0

(Ij, j), (1.2)

where Ij = [tj, tj+1], for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ . It is a
hybrid time domain if for all (T, J) ∈ E, E ∩ ([0, T ] × {0, 1, . . . , J}) is a compact hybrid
time domain.

Informally, E is a compact hybrid time domain if E is the union of a finite sequence
of intervals [tj, tj+1] × {j}, while E is a hybrid time domain if it is a union of a finite or
infinite sequence of intervals [tj, tj+1] × {j}, with the last interval (if existent) possibly
being of the form [tj, T ) with T finite or T =∞. For each hybrid time domain, there is a
lexicographical order; given (t1, j1), (t2, j2) ∈ E, (t1, j1) ≤ (t2, j2) if t1 < t2, or t1 = t2 and
j1 ≤ j2. Equivalently, as long as the points are taken from the same hybrid time domain
E, (t1, j1) ≤ (t2, j2) if and only if t1 + j1 ≤ t2 + j2. Points belonging to different hybrid
time domains do not need to be comparable. Given a hybrid time domain E, we define

10



the following operators,

sup
t
E := sup {t ∈ R≥0 : ∃j ∈ N≥0 such that (t, j) ∈ E} , (1.3a)

sup
j
E := sup {j ∈ N≥0 : ∃t ∈ R≥0 such that (t, j) ∈ E} . (1.3b)

The operators supt and supj on a hybrid time domain E return the supremum of the t
and j coordinates respectively. Furthermore, supE := (suptE, supj E) and length E :=
suptE + supj E.

Hybrid time domains allow for a precise definition of solution of (1.1). In the literature,
there are many different solution notions for hybrid systems and sometimes they are called
with different names such as execution and trajectory. The notion that we use in this
manuscript is taken from [59].

Definition 1.2 (Hybrid arc)
A function φ : E → Rn is a hybrid arc if E is a hybrid time domain and if for each j ∈ N≥0,
the function t 7→ φ(t, j) is locally absolutely continuous on the interval Ij := {t : (t, j) ∈ E}.

It is worth to notice that a hybrid arc φ is differentiable almost everywhere on Ij. To
compact the notation we denote by φ̇ := φ̇(t, j) := dφ(t, j)/ dt, the standard derivative of
φ with respect to t (whenever it exists), and by φ+ := φ+(t, j) := φ(t, j + 1) the value of
φ at (t, j + 1), i.e. after a jump. Given a hybrid arc φ, the notation dom φ represents its
domain, which is a hybrid time domain. It is interesting to notice that the hybrid arc itself
can be thought of as a multivalued map, φ : R2 ⇒ Rn that is single-valued on its domain
dom φ. The domain of a hybrid arc φ is a hybrid time domain, and is then the subset
of R≥0 × N≥0 where φ(t, j) 6= ∅. This highlights the fact that solutions define their own
hybrid time domains, and not vice-versa. This fact is especially true for hybrid systems
where the relationship between solutions and time domains is more complicated than for
ordinary differential equations or difference equations. According to the type of hybrid
time-domains possessed by a solution, we can distinguish the following cases.

Definition 1.3 (Types of hybrid arcs)
A hybrid arc φ is called: (1) nontrivial if dom φ contains at least two points, (2) complete if
dom φ is unbounded i.e., if length E =∞, (3) Zeno if it is complete and supt dom φ <∞,
(4) eventually discrete if T = supt dom φ <∞ and dom φ∩ ({T}×N≥0) contains at least
two points, (5) discrete if it is nontrivial and dom φ ⊂ {0}×N, (6) eventually continuous if
J = supj dom φ <∞ and dom φ∩ (R≥0×{J}) contains at least two points, (7) continuous
if it is nontrivial and dom φ ⊂ R≥0 × {0}, (8) compact if dom φ is compact.
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1.2 Hybrid Solutions and Their Properties

Informally given a hybrid system H, its solutions are hybrid arcs φ that satisfy the flow
map when x ∈ C, and the jump map when x ∈ D.

Definition 1.4 (Solution to a hybrid system)
A hybrid arc φ is a solution to the hybrid system H if φ(0, 0) ∈ C ∪D, and

• for all j ∈ N≥0 such that Ij := {t : (t, j) ∈ dom φ} has nonempty interior φ(t, j) ∈ C
for all t ∈ int Ij, and φ̇(t, j) ∈ F (φ(t, j)) for almost all t ∈ Ij,

• for all (t, j) ∈ dom φ such that (t, j + 1) ∈ dom φ, φ(t, j) ∈ D, and φ(t, j + 1) ∈
G(φ(t, j)).

The definition is quite broad. It does not require that φ(t, j) ∈ C at the endpoints of Ij,
nor does it insist that φ(t, j) /∈ D when t ∈ int Ij. Moreover, we do not require complete-
ness or uniqueness of the solutions. This should not be surprising, because nonuniqueness
and non completeness are already possible behaviours of ordinary differential equations.
For example, continuity of the vector field ensures existence of the solutions, but unique-
ness requires additional properties, such as Lipschitz right hand sides. The multitude of
solutions is even more accentuated in hybrid systems of the form (1.1), where it may be
due to the multivalued nature of the vector fields, or to an overlap of the flow and jump
sets.

Definition 1.5 (Complete solution)
A solution φ to H is (forward) complete if dom φ is unbounded.

Definition 1.6 (Maximal solution)
A solution φ1 to H is maximal if there does not exist another solution φ2 to H such that
dom φ1 is a proper subset of dom φ2 and φ1(t, j) = φ2(t, j) for all (t, j) ∈ dom φ1.

Clearly, complete solutions are maximal, but the converse statement is not true. We
denote by SH(S) the set of all maximal solutions φ to H with φ(0, 0) ∈ S. If the set S
is not mentioned, φ ∈ SH means that φ is a maximal solution to H, or in other words,
SH := SH(C ∪D).

1.3 Stability for Hybrid Systems
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The classical Lyapunov theory deals with stability of a single equilibrium for continuous-
time or discrete-time systems. In hybrid systems of the form (1.1) stability concepts need
to be generalized or interpreted from a different perspective. The state of hybrid systems
often contains logic variables or timers that keep changing and do not converge to any
special value. Those variables are used for modeling purposes, but they are unimportant
for the goal of stability analysis. Then, it is necessary to study the stability of only a part
of the state, or in other words we do not care about the value assumed by certain variables
in the overall state of the hybrid system. An elegant approach is then to generalize stability
from points to sets considering a distance function of the form

|x|A := dist(x,A) := inf
y∈A
|x− y|. (1.4)

Here we assume that A is a closed subset of Rn. Another conceptual difficulty comes
from considering solutions that are constrained in the sets C and D. Because of these
constraints, solutions to (1.1) do not need to be complete and the notion of Lyapunov
stability needs to be correctly interpreted. We believe that completeness and stability are
rather different properties and they should not depend on each other. According with this
interpretation the definition of Lyapunov stability that we employ here does not require
completeness of solutions. This definition includes trajectories that may look unstable, but
that are instead Lyapunov stable because their domain is bounded (they are not complete).

Definition 1.7 (Lyapunov stability)
Let A ⊂ Rn be closed. We say that A is Lyapunov stable if for each ε > 0, there exists
δ > 0 such that |x(0, 0)|A ≤ δ implies |x(t, j)|A ≤ ε for all (t, j) ∈ dom φ.

Remark 1.1
Notice that Lyapunov stability of A is a local concept. Solutions stay close to A only if
they start in a proper neighborhood of A. Once again we stress that, in general, existence,
uniqueness or completeness of the solutions are not required for Lyapunov stability. y

Definition 1.8 (Basin of attraction)
The basin of attraction BA ⊂ Rn for the set A ⊂ Rn is the set of initial conditions from
which there are no finite escape times, and all complete solutions φ ∈ SH(BA) satisfy
limt+j→∞ |φ(t, j)|A = 0 for (t, j) ∈ dom φ.

Remark 1.2
Points outside C ∪D are in the basin of attraction of A because the arising solutions do
not exhibit finite escape time and are not complete. Moreover, under the hybrid basic
conditions discussed in Definition 1.19, the basin of attraction BA of a compact attractor
A that is locally asymptotically stable is an open set. y

Definition 1.9 (Local attractivity)
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Let A ⊂ Rn be closed. The set A is said to be attractive if there exists ε > 0 such that
A+ εB ⊂ BA.

In other words a set A is locally attractive if the basin of attraction contains an inflation
of A; if the basin of attraction of A coincides with Rn, we say that A is globally attractive.

Definition 1.10 (Global attractivity)
Let A be closed. The set A is globally attractive if BA = Rn.

Global attractivity is a desirable and strong property, but alone does not guarantee
robustness with respect to perturbations and unmodeled dynamics. What is missing is
a uniform speed of convergence with respect to compact sets of initial conditions. The
addition of this uniformity property makes the attractivity robust and thus provides a
more desirable property that we define as uniform attractivity.

Definition 1.11 (Uniform Global Attractivity)
Let A ⊂ Rn be closed. The set A is Uniformly Globally Attractive for H if for each ε > 0
and r > 0, there exists T > 0 such that, for any solution φ to H with |φ(0, 0)|A ≤ r,
(t, j) ∈ dom φ and t+ j ≥ T imply |φ(t, j)| ≤ ε. The property is local if it holds for small
enough values of r.

Definition 1.12 (Uniform Local Asymptotic Stability)
Let A ⊂ Rn be closed. We way that A is Uniformly Locally Asymptotically Stable (ULAS)
if it is Lyapunov stable and uniformly locally attractive.

Definition 1.13 (Uniform Global Asymptotic Stability)
Let A ⊂ Rn be closed. We way that A is Uniformly Globally Asymptotically Stable (UGAS)
if it is Lyapunov stable and uniformly globally attractive.

The definitions above involve δ − ε arguments, but from an operative point of view, it
is often convenient to work with comparison functions.

Definition 1.14 (Class-K∞ function)
A function α : R≥0 → R≥0 is class K∞ function, also written α ∈ K∞, if α is zero at zero,
continuous, strictly increasing, and unbounded.

It is worth to notice that a class K∞ function does not need to be differentiable.

Definition 1.15 (Uniform Global Stability)
A closed set A is Uniformly Globally Stable (UGS) for H, if there exists a class K∞ function
α such that any solution φ to H satisfies |φ(t, j)|A ≤ α(|φ(0, 0)|A) for all (t, j) ∈ dom φ.
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It is worth to notice that Definition 1.15 ensures that all solutions remain contained in
a ball of radius α(|φ(0, 0)|A), and that the radius of the ball increases continuously with
|φ(0, 0)|A. The notion of Uniform Global Asymptotic Stability can be captured also using
a class-KL function as follows.

Definition 1.16 (Class-KL functions)
A function β : R≥0×R≥0 → R≥0 is a class-KL function, also written β ∈ KL, if it is non-
decreasing in its first argument, non-increasing in its second argument, limr→0+ β(r, s) = 0
for each s ∈ R≥0, and lims→∞ β(r, s) = 0 for each r ∈ R≥0.

The notion of class-KL function can be used to conveniently combine global stability
and uniform global attractivity into a convenient single bound.

Theorem 1.1 (Equivalence of UGAS and class-KL bound)
Let H be a hybrid system and A ⊂ Rn be closed. The following statements are equivalent:

• The set A is UGAS for H.

• There exists a class-KL function β such that any solution φ to H satisfies

|φ(t, j)|A ≤ β(|φ(0, 0)|A, t+ j), ∀(t, j) ∈ dom φ.

We can also think of the class−KL function β as the product between a suitable K∞
function and an exponentially decaying function measuring t+ j. This implies that when
the distance to the set A is viewed through an appropriate function, the convergence rate
toward the attractor appears to be exponential. This idea is due to Massera and Sontag
(see [110, Proposition 7], and Section 12 of [83]) and it is formalized in the following lemma.

Lemma 1.1 (Massera-Sontag Lemma on class-KL functions.)
For each class-KL function β and each λ ∈ R>0 there exists a class-K∞ functions α1, α2
such that, for all r, s ∈ R≥0, α1(β(r, s)) ≤ α2(r)e−λs.

Using the Massera-Sontag Lemma 1.1 we can easily provide an alternative representa-
tion for UGAS stability in terms only of K∞ functions.

Theorem 1.2 (UGAS stability with K∞ functions)
Let H be a hybrid system and A ⊂ Rn be closed. The following statements are equivalent:

• The set A is UGAS for H.

• For each λ ∈ R>0 there exist K∞ functions α1 and α2 such that any solution φ to H
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satisfies
α1(|φ(t, j)|A) ≤ α2(|φ(0, 0)|A)e−λ(t+j) ∀(t, j) ∈ dom φ.

Further details about equivalent characterizations of uniform global asymptotic stability
for hybrid systems can be found in [58, pag. 68].

A special case of uniform global stability for hybrid systems is when the convergence
happens to be exponential, and the “overshoot” grows linearly with the distance of the
initial condition with respect to the attractor A, we call this property Global Exponential
Stability (GES). For hybrid systems the notion of GES has been introduced in [117].

Definition 1.17 (Global Exponential Stability)
Let A be compact. The set A is globally exponentially stable (GES) for H, if there exist
m > 0, λ > 0 such that all solutions satisfy |φ(t, j)|A ≤ m exp(−λ(t+ j))|x(0, 0)|A, for all
(t, j) ∈ dom(φ).

Neither Uniform Global Asymptotic Stability nor Global Exponential Stability imply
that the solutions converge to a specific point in A. Both only establish convergence in
terms of distance; hence oscillations and curling phenomena are possible while approaching
A. These possibilities are ruled out by a related, but stronger property called Global
Pointwise Asymptotic Stability (GPAS) that has been introduced in the present form in
[94].

Definition 1.18 (Global Pointwise Asymptotic Stability)
A compact attractor A is Globally Pointwise Asymptotically Stable (GPAS) for H if:

• every a ∈ A is Lyapunov stable, that is, for every ε > 0 there exists δ > 0 such
that every solution φ to H with |φ(0, 0) − a| ≤ δ satisfies |φ(t, j) − a| ≤ ε, for all
(t, j) ∈ dom φ,

• for every solution φ to H, there exists a ∈ A such that limt+j→+∞ φ(t, j) = a.

It is important to mention that in general asymptotic stability in the usual set sense,
and Lyapunov stability of every point of the attractor are not sufficient to conclude global
pointwise asymptotic stability [16].

In this thesis, we always assume that the hybrid systems under consideration satisfy
some regularity properties called hybrid basic conditions. The hybrid basic conditions guar-
antee the existence of solutions, but more importantly, they enable proving the converse
Lyapunov theorems, which imply robustness of uniform global/local stability. Because hy-
brid systems are more complicated than ordinary continuous or discrete time systems, also
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the robustness concept requires some attention. Robustness for a compact set of equilibria
is considered with respect to properly defined perturbations of the flow/jump maps and
flow/jump sets. For more details we refer the reader to [58, Ch. 6].

Definition 1.19 (Hybrid basic conditions (HBCs))
We say that H satisfies the hybrid basic conditions if:

• C and D are closed subsets of Rn,

• F : dom F ⇒ Rn is outer semicontinuous and locally bounded relative to C, C ⊂
dom F , and F (x) is convex for every x ∈ C,

• G : dom G ⇒ Rn is outer semicontinuous and locally bounded relative to D, and
D ⊂ dom G.

One way to obtain the above properties is to use the Krasovskii regularization, for more
details see [58].

In order to investigate the robustness properties of compact sets, we consider a per-
turbed version of the hybrid system presented in (1.1). The perturbation is set-valued, and
produces a ρ-inflated version of (1.1) defined as follows [58, Chapter 7].

Definition 1.20
Given a hybrid system H and a continuous function ρ : Rn → R≥0, the ρ-perturbation of
H, denoted by Hρ is the hybrid system

Hρ :=

x ∈ Cρ ẋ ∈ Fρ(x)
x ∈ Dρ x+ ∈ Gρ(x),

(1.5)

where

Cρ := {x ∈ Rn : (x+ ρ(x)B) ∩ C 6= ∅},
Fρ(x) := co F ((x+ ρ(x)B) ∩ C) + ρ(x)B, ∀x ∈ Cρ,
Dρ := {x ∈ Rn : (x+ ρ(x)B) ∩D 6= ∅},

Gρ(x) := {v ∈ Rn : v ∈ g + ρ(x)B, g ∈ G((x+ ρ(x)B) ∩D)}, ∀x ∈ Dρ.

The notion of inflated hybrid system can be conveniently used to study the robustness
properties of compact sets. Below we report the definition of robust uniform global asymp-
totic stability, uniform global pointwise asymptotic stability and robust global exponential
stability.
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Definition 1.21 (Robustness)
A compact attractor A is robustly uniformly globally asymptotically stable, (resp. robustly
globally pointwise asymptotically state, resp. robustly exponentially stable) for H, if there
exists a continuous function ρ : Rn → R≥0 that is positive on Rn\A and such that A is
globally asymptotically stable (resp. robustly globally pointwise asymptotically state, resp.
robustly exponentially stable) for Hρ.

In many applications, it is interesting to study how a dynamical system behaves when
affected by external signals, for this reason, a relevant class of dynamical systems is the
hybrid systems with inputs. Consider a hybrid system Hu with state x and input (or
disturbance) u as follows

Hu :=

(x, u) ∈ C × Cu ẋ ∈ F (x, u)
(x, u) ∈ D ×Du x+ ∈ G(x, u),

(1.6)

where Cu and Du are proper subsets of the input space Rm. Given any hybrid input
u : dom u 7→ Rm, let (t1, j1) ∈ dom u and (t2, j2) ∈ dom u satisfy(t1, j1) � (t2, j2) and
define

||u||[(t1,j1),(t2,j2)] := max
{
ess sup

(t,j)∈dom u\Θ(u), (t1,j1)�(t,j)�(t2,j2)
, sup

(t,j)∈Θ(u), (t1,j1)�(t,j)�(t2,j2)
|u(t, j)|

}
,

where Θ(u) denotes the set of all (t, j) ∈ dom u such that (t, j + 1) ∈ dom (u). To
shorten the notation we define ||u||[(0,0),(t2,j2)] as ||u||(t2,j2). We denote by Su(x) the set of
all maximal solution pairs (φ, u) to Hu with φ(0, 0) = x ∈ C ∪D and finite ||u||(sup dom u).

Definition 1.22 (Input-to-State stability (ISS) [28])
System Hu is Input-to-state stable (ISS) with respect to a compact set A if there exist a
class KL function β and a class K function γ such that, for each x ∈ C ∪D each solution
pair (φ, u) ∈ Su(x) satisfies

|φ(t, j)|A ≤ β(|φ(0, 0)|A, t+ j) + γ(||u||(t,j)), ∀(t, j) ∈ dom φ.

The definition above resembles the standard notion of ISS for continuous and discrete
time systems, however, a distinguishing feature of ISS for hybrid systems is that solutions
are not guaranteed to be complete.
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Chapter 2

Stability Results for SISO Linear
Systems Feedback with Play and

Stop Operators

In this chapter we study the feedback interconnection of a strictly proper linear system
with two simple nonlinear elements with memory, play and stop. This setup frequently
arises in mechanics, aerodynamics, and electromagnetic applications, where play and stop
can be used as elementary blocks to build complex hysteresis models. The presence of play
and stop may produce a richness of nonlinear behaviors, ranging from stable limit cycles to
continuum sets of equilibria (multistability). We focus on the characterization of multiple
attracting equilibria in single-input, single-output systems feedback with play/stop. We
assume that disregarding the presence of play/stop, the feedback loop is globally exponen-
tially stable, and we show that assuming the existence of a common quadratic Lyapunov
function between a special matrix pair, the presence of these nonlinearities creates a com-
pact set of equilibria. We propose a simple necessary and sufficient LMI condition testing
the existence of a common Lyapunov function, and we show that, in case of an affirma-
tive answer, the set of equilibria is globally exponentially stable. Additionaly we prove
the equivalence between robust global exponential stability and robust global pointwise
asymptotic stability for the class of systems under investigation. We formulate play and
stop as constrained differential inclusions and we link our formulation with other models
in the literature. Finally, we illustrate our findings through a few examples. The results
presented in this chapter are adapted from [37] and [38].

2.1 Introduction

The study of the stability properties of linear systems in feedback loop with an isolated
nonlinearity is a classical topic that dates back to the seminal work of Lure [81]. Common
(static) nonlinearities are saturation, dead-zone, and quantization, which often occur in
real applications, and for this reason Lure systems are still an active area of research [23,
24]. To study the stability of these loops many tools have been developed; a few examples
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are sector conditions, circle criteria, passivity and integral quadratic constraints. All these
tools can be effectively formulated as convex problems [22], making the stability analysis
numerically tractable. Although Lure systems are a fairly general class of systems, many
relevant physical phenomena show a path dependent behavior that is generically called
hysteresis. Hysteresis cannot be described using a static nonlinearity but requires a memory
effect that can be obtained by introducing additional memory. For example, hysteresis
can be obtained through properly formulated operators [27], [39], discontinuous differential
equations [13], variational inequalities [123] or differential inclusions.

One of the simplest example of hysteresis is the play, also known in mechanical engineer-
ing as backlash. Despite its simplicity, the play has an important role in the description of
numerous physical phenomena, such as plasticity, friction, and magnetization [123]. Well
studied examples are gear train systems, shape memory actuators, and electric transform-
ers. Play is often associated to a degradation of performance and with a reduction of
controllability, and this is the reason why much effort has been devoted to designing con-
trol laws that are able to compensate these undesired side effects [112, 127, 43, 92, 95, 69].
It is well known that the presence of play in the actuator and the lack of a proper com-
pensation strategy can result in persistent oscillations and poor tracking performance [92].
For these reasons we believe that it is important to understand the behavior of dynamical
systems in the presence of hysteretic elements.

In this chapter we focus on the analysis of a simple system with great practical relevance.
We consider a Lure like setup, where a linear single-input single-output system is feedback
interconnected with play/stop. For this interconnection we establish the equivalence be-
tween robust global exponential stability, and robust global pointwise asymptotic stability,
providing a numerically tractable LMIs test. We hope that the precise characterization of
this simple setup may lead to interesting extensions in the future.

2.1.1 Literature review

In this work the play is formulated using a constrained differential inclusion, that turns out
to be equivalent to a discontinuous differential equation. Existence and regularity of solu-
tions for these types of formulations can be deduced from general results for discontinuous
differential equations [63] or differential inclusions [42]. A more specific result has been
obtained in [77], where the authors consider the feedback interconnection of a nonlinear
differential equation with a play operator. Stability results appeared for the first time in
[124], where different types of hysteresis elements are considered. Building up from these
results, further developments are scattered in different areas of systems and control such as
absolute stability, passivity and operator theory [14], [78], [61]. More recently the problem
of providing a numerically tractable outer approximations of the omega-limit set for linear
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systems in feedback with hysteresis operators has been addressed in [113] and [114] using
an LMI-based formulation.

2.1.2 Contributions

The contributions of the work presented in this chapter are threefold. First, we explicitly
characterize the compact set of equilibria created by the play. Therefore, as compared to
[113] and [114], we do not aim at establishing conservative bounds, but we provide an exact
characterization.

Second, we re-interpret the results in [124] providing a simple algebraic condition that
ensure robust global exponential stability of the equilibrium set. In contrast to [124, Theo-
rems 3, 4], which establishes exponential convergence under a Hurwitz stability assumption
plus an additional frequency-domain condition, we replace the frequency-condition with a
state space formulation that can be easily tested numerically. We also refine upon [124,
Theorem 5], which establishes convergence for the special case of a single integrator plant.
In particular, we show that for the single integrator case the convergence is not exponential,
see also Example 2.5.1.

Third, we show that the equilibrium set is made of robustly Lyapunov stable equilibria
and that all trajectories converge exactly to one point inside the set. We call this property
global pointwise asymptotic stability. Finally, for the class of systems under investigation,
we show that robust global exponential stability and robust global pointwise asymptotic
stability are equivalent.

2.1.3 Chapter organization

The chapter is organized as follows: Section 2.2 presents the problem formulation and the
main result. Models for play and stop are formulated in Section 2.3. In Section 2.3 we
discuss existence, uniqueness and continuous dependence on initial data of the solutions.
We also relate our play and stop models with others in the literature and, under mild
regularity assumptions, we show their equivalence. Section 2.4 contains the proof of the
main result and two lemmas of independent interest. Finally Section 2.5 presents two
examples to show the effectiveness of the theoretical findings. Conclusions and future
research directions are offered in Section 2.6.

2.2 Problem formulation and main result
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We consider the feedback interconnection of a single-input single-output (SISO) linear
system with the play and stop operators. The two representations are complementary
because of the following identity1, see [123],

P + S = I , (2.1)

where P is the play, S is the stop and I is the identity operator. A pictorial represen-
tation of the two systems under investigation is shown in (2.2) and (2.3), and using (2.1)
we deduce that A1 := A+BK.

ξ̇ = Aξ +Bu

y = Kξ,

+1

−1

−1

+1

left line

right line

dead band

y

u = P[y] (2.2)

ξ̇ = A1ξ −Bv
y = Kξ,

+1

−1

upper line

lower line

y

v = S [y] (2.3)

In (2.2) and (2.3), ξ ∈ Rm is the state associated to the linear part of the system, while
u ∈ R and v ∈ R are additional states keeping memory of the play and the stop output.
We use square brackets to stress that play and stop operators depend on the entire history
of y and not only by its instantaneous value 2.

The qualitative behavior of play and stop is as follows. The output of the play remains
constant whenever the pair (y, u) belongs to the region between the left and the right line,
it positively increases as u̇ = ẏ ≥ 0 when (y, u) belongs to the right line and negatively
decreases as u̇ = ẏ ≤ 0 when (y, u) belongs to the left line. Similarly the output of
the stop changes as v̇ = ẏ whenever (y, v) is between the upper/lower line, and remains
constant when (y, v) belongs to the upper/lower line. From this description we can already

1Play and stop operators can be thought of as transformations with an internal memory. Their output
not only depends on the instantaneous value of y, but on its whole history plus an initial condition. Notice
also that identity (2.1) requires proper initial conditions to hold.

2Initial conditions for play and stop are not free, but must be consistent. In the case of play (y(0), u(0))
must belong to the strip between the right and the left line, while in the case of stop (y(0), v(0)) must
belong to strip between the upper and the lower line.
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understand that this response can be well described using a discontinuous differential
equation, whose vector field changes across the lines pictured in (2.2) and (2.3). To simplify
the presentation we will assume that play and stop have a specific shape, however the results
presented in this chapter apply to more general play and stop operators 3.

Assumption 2.1
Play has unitary slope, the dead-band is centered in zero and has width equal to 2.

Assumption 2.1 ensures that the stop is centered around the zero of the vertical line
and that v ∈ [−1, 1]. Using Assumption 2.1 and (2.1) we define an attractor A of candidate
equilibrium points. With a slight abuse of notation we denote byA both the set of equilibria
for (2.2) and for (2.3). Geometrically the set of points is the same, but is parametrized
using two different sets of coordinates.

A : = {(ξ, u) ∈ Rm × R : Kξ − 1 ≤ u ≤ Kξ + 1 and 0 = Aξ +Bu}
= {(ξ, v) ∈ Rm × [−1, 1] : 0 = A1ξ −Bv} .

(2.4)

Assumption 2.2
The matrix A1 is Hurwitz, and shares with A2 := (I − A−1

1 BK)A1 a Common Quadratic
Lyapunov Function (CQLF).

The matrix A2 posses a particular structure, and it can be seen as the matrix A under
the change of coordinates A1, indeed the following Lemma holds.

Lemma 2.1
If A1 is Hurwitz, then eig(A2) = eig(A).

Proof. Recalling that A1 := A + BK, and using a few manipulations, we get A2 = (I −
A−1

1 BK)A1 = A−1
1 (A1 − BK)A1 = A−1

1 AA1, which shows that A2 coincides with A under
the change of coordinates A1 (which is nonsingular by assumption).

Moreover, if the pair (A,B) is controllable and A1 is Hurwitz, then also (A1, B) is
controllable. To show this we can apply the Popov-Belevitch-Hautus test [64] to obtain

rank [A1 − λI,B] = rank
(

[A+BK − λI,B]
[
I 0
−K 1

])
= rank [A− λI,B] = n,

3 The only restriction required in (2.1) is that the slopes of the right (respectively upper) and left
(respectively lower) lines coincide, otherwise the play (respectively the stop) degenerates into a different
hysteresis operator.
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for all λ ∈ C, which shows that (A1, B) is controllable as well. Another interesting ob-
servation is that A1 and A2 differ for a rank one perturbation, indeed rank (A1 − A2) =
rank (A−1

1 BKA1) ≥ 1, and rank (A−1
1 BKA1) ≤ min{rank (A−1

1 BK), rank (A1)} = 1.
This observation can be used in combination with the following Lemma [108], [74], to
reformulate Assumption 2.2 in a different manner.

Lemma 2.2
Let A1, A2 be two Hurwitz matrices in Rm×m with rank (A1 − A2) = 1. A necessary and
sufficient condition for the existence of a common quadratic Lyapunov function (CQLF)
for A1, A2 is that the matrix pencil A−1

1 + γA2 is non-singular for all γ ∈ [0,+∞).

We are now ready to state the main result of this chapter, which provides a character-
ization of many equivalent stability properties for A.

Theorem 2.1
If Assumptions 2.1 and 2.2 hold true, then the attractor A is Globally Expontially Stable
and the following statements are equivalent:

(i) A is Globally Exponentially Stable (GES),

(ii) A is Robustly Exponentially Stable (RGES),

(iii) A is Global Pointwise Asymptotically Stable (GPAS),

(iv) A is Robustly Global Pointwise Asymptotically Stable (RGPAS).

Theorem 2.1 provides many desirable and equivalent stability properties for the attrac-
tor A, which can arise frequently in many relevant applications. For example, the block
diagram in (2.2) may represent a linear mechanical system to be controlled through an
actuator subject to backlash. In this scenario, the play is interpreted as the mechanical
backlash of the actuator and it is standard to assume that (A,B) is controllable (or sta-
bilizable) so that it is possible to find a vector K such that A + BK := A1 is Hurwitz.

2.3 Differential models for play and stop

In this section we propose models for play and stop operators. These models are for-
mulated as constrained differential equations with discontinuous right-hand side, but to
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ensure existence and regularity of solutions we consider a regularized version according to
Krasovskii, yielding constrained differential inclusions.

According to the qualitative description in Section 2.2 the play dynamics can be for-
mulated using the following constrained differential equation,

(y − u) ∈ [−1, 1] u̇ = Pd(y − u, ẏ) :=


ẏ −max{ẏ, 0} if y − u = −1
0 if y − u ∈ (−1, 1)
ẏ −min{ẏ, 0} if y − u = 1

, (2.5)

where the vector field Pd is discontinuous. Similarly, the stop dynamics yields

v ∈ [−1, 1] v̇ = Sd(v, ẏ) :=


max{ẏ, 0} if v = −1
ẏ if v ∈ (−1, 1)
min{ẏ, 0} if v = 1

, (2.6)

where the vector field Sd is again discontinuous. Because of the discontinuity, standard
existence results do not apply, one can consider the Krasovskii regularization of (2.5)
providing

(y − u) ∈ [−1, 1] u̇ ∈ P (y − u, ẏ) :=


ẏ − co {ẏ,max{ẏ, 0}} if y − u = −1
0 if y − u ∈ (−1, 1)
ẏ − co {ẏ,min{ẏ, 0}} if y − u = +1

, (2.7)

and similarly for (2.6) yields

v ∈ [−1, 1], v̇ ∈ S(v, ẏ) :=


co {ẏ,max{ẏ, 0}} if v = −1
ẏ if v ∈ (−1, 1)
co {ẏ,min{ẏ, 0}} if v = 1

. (2.8)

The Krasovskii regularization does nothing but make the graph of Sd and Pd closed at
the edges of [−1, 1]. This operation does not introduce additional solutions because v and
(y− u) are constrained in the set [−1, 1]. It is easy to check that v̇ ∈ S(v, ẏ)∩ T[−1,1](v) =
Sd(v, ẏ), and u̇ ∈ P (y − u, ẏ) ∩ T[−1,1](y − u) = Pd(y − u, ẏ), where T[−1,1](v) denotes the
tangent cone to the set [−1, 1] at point v.

From now on we will focus on the stop representation because it is more convenient
for stability analysis, however all the following derivations can be obtained also using the
play representation, but with more involved calculations. For shortness of presentation let
us define an aggregate state z := (z1, z2) = (ξ, v) ∈ Rn, n := m + 1, and consider the
interconnection of (2.3) with (2.8). The resulting loop can be represented as a constrained
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differential inclusion as follows

z ∈ C := Rm × [−1, 1] ż ∈ G(z) :=
[

A1z1 −Bz2
S(z2, KA1z1 −KBz2)

]
. (2.9)

Here C is nonempty and closed; and the set-valued mapping G : dom(G) ⇒ Rn, with
dom(G) := {z ∈ Rn | G(z) 6= ∅} = C, is outer semicontinuous and locally bounded 4,
and such that for every z ∈ C, G(z) is closed and convex. Additionally, one can verify
that for every z ∈ C, G(z) ∩ TC(z) 6= ∅, where TC(z) is the tangent cone to C at z, given
in this case by TC((z1, z2)) = Rm × [0,∞) if z2 = −1, TC((z1, z2)) = Rn if z2 ∈ (−1, 1),
and TC((z1, z2)) = Rm × (−∞, 0] if z2 = 1. Because G(z) ∩ TC(z) 6= ∅, local existence of
solutions follows from a standard viability theory result [11]. Uniqueness of solutions, and
completeness of maximal ones is formalized in the next proposition whose proof directly
follows from a one-sided Lipschitz condition

〈z1 − z2, g1 − g2〉 ≤ L|z1 − z2|2, ∀gi ∈ G(zi) ∩ TC(zi), i = 1, 2,

that is satisfied for L = max
{
σmax

[
A1 −B
0 0

]
, σmax

[
A1 −B
KA1 −KB

]}
, where σmax is the maximum

singular value.

Proposition 2.1
For every initial condition in C a forward complete solution to (2.9) exists, is unique, and
depends continuously on the initial condition.

Proof. Existence and continuous dependence on initial conditions follow combining the
regularity properties of the set-valued map G (outer semi-continuity, local boundedness
and convexity) with the fact that G(z) ∩ TC(z) 6= ∅. The one-sided Lipschitz condition
ensures forward uniqueness.

Alternatively (2.9) can be seen as a special case of projected dynamical systems [89].
Let ProjTC(z)(g) be the projection of g onto TC(z), then (2.9) is the same as

ż = ProjTC(z) (Mz) , (2.10)

where matrix M is defined as follows

M :=
[
A1 −B
KA1 −KB

]
.

4Outer semi-continuity of G means that for every zi ∈ C, every gi ∈ G(z), if zi → z and gi → g, then
g ∈ G(z). Local boundedness of F means that for every x ∈ C there exists a neighborhood U of z such
that the set

⋃
z∈U G(z) is bounded.
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For (2.10) existence of local solutions established in Proposition 2.1 above follows from [63]
and [89]. In this representation the state constraint z ∈ C is implicitly included because
TC(z) = ∅ if z 6∈ C. Another possibility is to consider the following differential inclusion

ż ∈Mz −NC(z), (2.11)

whereNC(z) is the normal cone to C at z. This representation fits in the broader framework
of sweeping processes [86, 71], where the set C depends on the state z and possibly can
be controlled [40]. Sweeping processes model non-smooth mechanical systems and other
dynamical systems subject to unilateral constraints, of which play and stop are special,
one-dimensional, cases. The constraint z ∈ C, again, is implicit, and the right-hand side
of (2.11) has unbounded values whenever z = (z1, z2) with z2 = ±1. Still, solutions to
(2.11) exist, are unique, depend continuously on initial conditions (this follows from the
one-sided Lipschitz condition) and are the slow/lazy solutions when ż(t) exists (where
ż(t) is the element of minimal norm of the right-hand side of (2.11), and are the same
as solutions to (2.10), see [42]. Furthermore, note that NC(z) = ∂IC(z), where IC is the
indicator function of the convex set C, given by IC(z) = 0 if z ∈ C, IC(z) = ∞ if z 6∈ C,
and where ∂IC represents the sub-differential, in the sense of convex analysis, of the convex
function IC . Thus (2.11) is of the form ż ∈Mx−∂h(z), with a convex function h. Similar,
and/or more general systems of this form are studied in the literature as generalization
of Lure systems, see [24] and [23]. Under some assumptions, such dynamics convert to
differential equations with a maximal monotone right-hand side, and existence, uniqueness,
etc. of solutions follows. The assumptions here are different, and the discussion above is
independent of any monotonicity properties. Representation (2.9) has also connections
with the literature of differential inequalities [123, 26], but we do not discuss this topic
here. The interested reader can explore the connection between various formulations such
as projected dynamics, differential inclusions, normal cones, complementarity systems in
[25] and [12].

To summarize all the presented models admit a constant solution, so that the one sided
Lipschitz condition implies that all solutions are bounded, and one can conclude existence
of forward complete solutions. Moreover solutions are unique and depend continuously on
the initial condition in an appropriate set sense.

2.4 Proof

We develop the proof of Theorem 2.1 following a few steps. A graphical representation
of the relationships among the definitions and the lemmas used in the proof is shown in
Figure 2.1 reported below. As a first step we consider the following coordinates transfor-
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A is Hurwitz

(i) GES

(ii) RGES(iii) GPAS

(iv) RGPAS
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Figure 2.1: Road-map of the proof of Theorem 2.1.

mation
(x1, x2) := (z1 − A−1

1 Bz2, z2), (2.12)

which simplifies the expression of the attractor A. Indeed, plugging (2.12) into (2.4) yields

A = {(x1, x2) ∈ Rm × [−1, 1] : x1 = 0} , (2.13)

so that |x|A reduces to |(x1, x2)|A = |x1|. Moreover noticing that ẏ = KA1x1, we can
rewrite (2.3) using (2.12) as follows

x ∈ C := Rm × [−1, 1] ẋ ∈ F (x) :=
[
A1x1 − A−1

1 BS(x2, KA1x1)
S(x2, KA1x1)

]
, (2.14)

where F : dom(F ) ⇒ Rn is again a set-valued map outer semicontinuous and locally
bounded. At this point it is important to notice that the restriction of the multi-valued
map F to the tangent cone TC(x), results in F (x) ∩ TC(x) := Fd(x), where Fd(x) is a
discontinuous vector field whose explicit expression is reported below

Fd(x) =



A1 0
0 0

x1

x2

 , if
KA1 0

0 1

x1

x2

 ≤
 0
−1

 or
KA1 0

0 1

x1

x2

 ≥
0

1

 ,
 A2 0
KA1 0

x1

x2

 , otherwise,

(2.15)
whereA2 := (I −A−1

1 BK)A1 ∈ Rm×m := A−1
1 AA1. We can now prove that the attractor A

is GES. Equation (2.15) shows that the evolution of x1 is ruled by the pair of matrices A1
and A2, and because |x|A = |x1|, we can study GES of A just looking at the x1 dynamics.
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By Assumption 2.2 the matrices A1 and A2 share a common quadratic Lyapunov function,
i.e., there exists a symmetric positive definite matrix Q = Q> ∈ Rm×m such that:

A>1 Q+QA1 < 0, (2.16a)
A>2 Q+QA2 < 0. (2.16b)

Picking V (x) := x>diag(Q, 0)x as a candidate Lyapunov function for (2.14), the following
bounds hold λmin(Q)|x|2A ≤ V (x) ≤ λmax(Q)|x|2A, ∀x ∈ C. Moreover for c > 0 sufficiently
small we have 〈∇V (x), f〉 ≤ −cV (x), ∀x ∈ C, f ∈ F (x) ∩ TC(x), establishing GES of the
attractor A.

Now that we have established GES we use the following Lemma 2.3 to prove that for
(2.9) GES can be strengthened to RGES, showing the implication (i)⇒ (ii) of Theorem 2.1
(see 2.1).

Lemma 2.3
Given a compact attractor A suppose that there exists a function V : Rn → R that satisfies
the following conditions:

A.1) c1|x|2A ≤ V (x) ≤ c2|x|2A,

A.2) 〈∇V (x), f〉 ≤ −c3|x|2A, ∀f ∈ F (x),

A.3) |∇V (x1)−∇V (x2)| ≤ c4|x1 − x2|A,

A.4) |f | ≤ c5|x|A, ∀f ∈ F (x),

for all x1, x2 ∈ Rn, and for some positive constants ci, i = 1, . . . 5, then the set A is RGES.

Proof. PluggingA.1) intoA.2) we obtain 〈V (x), f〉 ≤ −(c3/c2)V (x), which implies V (x(t)) ≤
exp(−c3t/c2)V (x(0)) for all t ∈ dom(x). Using the lower bound of A.1) we obtain |x(t)|A ≤√
c2/c1 exp(−c3t/(2c2))|x(0)|A ≤ m exp(−αt)|x(0)|A, for appropriate m, α which shows

GES. To prove RGES pick a small enough r > 0 and let ρ(x) = r|x|A. For x1 ∈ x+ ρ(x)B,
one has (1 − r)|x|A ≤ |x1|A ≤ (1 + r)|x|A and |x1 − x| ≤ r|x|A. Then, for x ∈ Cρ,
x1 ∈ x+ ρ(x)B, and f 1 ∈ F (x1) we have

〈∇V (x), f 1〉 = 〈∇V (x1), f 1〉+ 〈∇V (x)−∇V (x1), f 1〉
≤ −c3|x1|2A + |∇V (x)−∇V (x1)||f 1|
≤ −c3|x1|2A + c4c5|x− x1|A|x1|A
≤ −c3(1− r)2|x|2A + c4c5r(1 + r)|x|2A.
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For x1 ∈ Cρ and f 1 ∈ Fρ(x1) yields5,

〈∇V (x1), f 1〉 ≤ −c3(1− r)2|x1|2A + c4c5r(1 + r)|x1|2A + |∇V (x1)|ρ(x1)
≤ −c3(1− r)2|x1|2A + c4c5r(1 + r)|x1|2A + c4r|x1|2A
≤ −c3|x1|2A/2,

for a non zero r sufficiently small, and this completes the proof.

Lemma 2.3 can be directly applied to (2.9) using the Lyapunov function V (x) :=
x>diag(Q, 0)x and selecting c1 = λmin(Q), c2 = λmax(Q), c3 sufficiently small, c4 = |Q| and
c5 = max{|A1|, |A2|}, establishing RGES for A. The reverse implication (ii)⇒ (i) follows
trivially by Definition 1.21. We now prove that GES plus a proper grow condition for the
vector field implies GPAS, showing the implication (i)⇒ (iii) of Figure 2.1.

Lemma 2.4
Assume that A is GES and that there exists c > 0 such that |f | ≤ c|x|A for all x ∈ C, f ∈
F (x), then A is GPAS.

Proof. Pick any a ∈ A and ε > 0, from GES there exist m > 0, α > 0 such that all
solutions satisfy |x(t)|A ≤ m exp(−αt)|x(0)|A. Let δ > 0 be such that (1 + α−1cm)δ < ε

and pick an initial condition such that |x(0)|A ≤ |x(0)− a| ≤ δ. Then, by GES, |x(t)|A ≤
m exp(−αt)|x(0)|A ≤ mδ for all t ∈ dom(x). Moreover by assumption we have |ẋ(t)| ≤
c|x(t)|A ≤ cm exp(−αt)δ and so,

|x(t)− x(0)| =
∣∣∣∣∫ t

0
ẋ(τ) dτ

∣∣∣∣ ≤ ∫ t

0
|ẋ(τ)| dτ ≤ mc|x(0)|A

∫ t

0
e−ατ dτ ≤ α−1cmδ.

Consequently, ẋ is absolutely integrable on R≥0 and x(t) converges as t→∞. Furthermore
we have |x(t)− a| ≤ |x(t)− x(0)|+ |x(0)− a| ≤ (1 + α−1cm)δ < ε, which shows Lyapunov
stability of the generic point a ∈ A. Combining convergence of x and pointwise Lyapunov
stability of A we obtain the desired result.

Lemma 2.4 applies to (2.9) selecting c = max
{
σmax(A1), σmax

[
(A>2 , A>1 K)

]}
, showing

that GES implies GPAS. Moreover Lemma 2.4 can be also applied to the ρ-inflation of
(2.9) proving that the chain of implications (ii)⇒ (iv)⇒ (iii) holds taking a perturbation
ρ = r|x|A with r > 0 sufficiently small. Therefore from RGES we deduce that A is PAS for
the ρ-inflated system, or in other words A is RPAS. To complete the proof of Theorem 2.1
according to Figure 2.1, we show (iii)⇒ (i) using the following Lemma 2.5.

5One can pass the inequality above through the convex hull and the closure operation.
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Lemma 2.5
If attractor A is GPAS for (2.9), then the matrix A is Hurwitz.

Proof. By GPAS of A solutions to (2.9) starting from an initial condition |x(0)|A ≤ δ, with
δ small enough, are solutions to the linear system

ẋ =
[
A2 0
KA1 0

]
x, (2.17)

for all t ∈ R≥0. From the structure of (2.17) we notice that the one-dimensional subspace
span{(0, 1)} that contains A is associated to a zero eigenvalue. A necessary condition for
this subspace to be PAS is that all the other directions must be associated to converging
and stable dynamics, we conclude that due to the very structure of (2.17) necessarily A2
must be Hurwitz. Thus A2 is Hurwitz and by Lemma 2.1 so is A.

2.5 Examples

In this section, we present two examples. The first one is a parametric scalar linear system
in feedback with the play. Depending on the value of the parameter a ∈ R, different
behaviors can be obtained. We solve this scalar example analytically. The second example
comprises instead a known second order linear system in feedback with play. For this more
complicated example, we numerically show that each system trajectory converges toward
a point contained in the attractor A defined in (2.4).

2.5.1 A scalar example

Let us consider the following linear scalar systems feedback with play and stop,ξ̇ = aξ + P[y]
y = −2ξ,

(2.18)

ξ̇ = a1ξ −S [y]
y = −2ξ.

(2.19)

Here a takes values in the set {−1, 0, 1} which is designed to show possible different sce-
narios. The pair (a, 1) is controllable and a1 := (a − 2) < 0 for all a ∈ {−1, 0, 1}.
Assume that play and stop satisfy Assumption 2.1, then A := {0} × [−1, 1]. Let us con-
sider the stop state v ∈ [−1, 1], and consider the change of coordinates (2.12) that results
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x = (x1, x2) := (ξ − a−1
1 v, v) ∈ R2. According to the representation in (2.15) we obtain

[
ẋ1
ẋ2

]
=



a1 0
0 0

 x1

x2

 if
x1

x2

 ≤
 0
−1

 or
x1

x2

 ≥
0

1


 a 0
−2a1 0

x1

x2

 otherwise.
(2.20)

For a = −1 the hypotheses of Theorem 2.1 are fulfilled and A is GES, RGES, GPAS and
RGPAS. We check these properties by directly computing the analytical solutions. Depend-
ing on the initial conditions different scenarios may arise. To simplify the presentation it is
useful to partition the state space as C := C1∪C2∪C3, where C1 := {(x1, x2) ∈ R×[−1, 1] :
−1 ≤ 6x1 + x2 ≤ 1}, C2 := (R≥0×{1})∪ (R≤0×{−1}) and C3 := R× [−1, 1] \ (C1 ∪C2).
For any x(0) := (x1(0), x2(0)) ∈ C1 a direct integration of (2.20) provides

x(t) =
[

e−t 0
6(1− e−t) 1

]
x(0),

for all t ∈ R≥0, and the solution exponentially converges to (0, 6x1(0) + x2(0)) ∈ A. For
x(0) ∈ C2 a direct integration of (2.20) yields

x(t) =
[
e−3t 0

0 1

]
x(0),

for all t ∈ R≥0 and the solution converges to (0, x2(0)) ∈ A. Finally for x(0) ∈ C3 the
solution is piecewise-defined and yields

x(t) =



 e−t 0
6(1− e−t) 1

x(0) for 0 ≤ t ≤ t?

e−3(t−t?) 0
0 1

x(t?) for t > t?

where time t? = ln(6x1(0)/(6x1(0) − sgn(x1(0)) + x2(0))) is positive and bounded for all
x(0) ∈ C3. We conclude that the solution converges to (0, sgn(x1(0))) ∈ A. Summarizing,
A is GES and GPAS because for all x(0) ∈ C solutions converge exponentially to one point
of the attractor.

Now, let us consider a = 0, then the set A is stable and globally attractive, however
the converge is not exponential. Let C := C1∪C2 where C1 := (R≤0×{1})∪ (R≤0×{−1})
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and C2 := (R× [−1, 1]) \ C1. For x(0) ∈ C1 the solution yields

x(t) =
[
e−2t 0

0 1

]
x(0),

for all t ∈ R≥0 and the solution converges exponentially to (0, x2(0)) ∈ A, however for
x(0) ∈ C2 the solution is piecewise-defined and corresponds to

x(t) =



 1 0
4t 1

x(0) for 0 ≤ t ≤ t?,

e−2(t−t?) 0
1 0

x(t?) for t > t?

where t? := (sgn(x1(0)) − x2(0))/(4x1(0)). This shows that the convergence is not expo-
nential because t? can be made arbitrarily large by selecting x1(0) sufficiently small. Still
solutions converge to A after a sufficiently long time. Finally for a = 1 the set A is not
Lyapunov stable but globally attractive. Let C := C1 ∪ C2 as in the previous case. For
any initial condition x(0) ∈ C1 we have

x(t) =
[
e−t 0
0 1

]
x(0)

for all t ∈ R≥0 and the solution exponentially converges to (0, x2(0)) ∈ A. For x(0) ∈ C2
the solution is piecewise-defined and corresponds to

x(t) =



 et 0
2(et − 1) 1

x(0) for 0 ≤ t ≤ t?

e−(t−t?) 0
0 1

x(t?) for t > t?,

where t? = ln((2x1(0)+sgn(x1(0))−x2(0))/(2x1(0))). We can observe that in this case setA
is not Lyapunov stable because trajectories escape from it, however it is globally attractive
because trajectories approach one of the two points x = (0,±1). Again, the convergence
toward A is not exponential because t? can be made arbitrarily large by selecting x1(0)
sufficiently small. Figure 2.2 shows the possible scenarios associated to a ∈ {−1, 0, 1} for
a few randomly generated initial conditions.

2.5.2 A bi-dimensional example

35



−2 −1 0 1 2

−1

−0.5

0

0.5

1

x1 (a = −1)

x2

−2 −1 0 1 2

x1 (a = 0)

(x1, x2)
A

−2 −1 0 1 2

x1 (a = 1)

Figure 2.2: Integral curves for random initial conditions and different values of a.

Now let us consider a bi-dimensional single-input single-output linear system in feedback
interconnection with a play operator that satisfies Assumption 2.1. Matrices (A,B,K) are
reported below [

A B

K

]
=

 −1 3 1
−3 −1 −2
1 1

 .
Matrices A and A1 := A + BK are Hurwitz and the pair (A,B) is controllable, so that
Theorem 2.1 applies. The set A := {(x1, x2) ∈ R2 × [−1, 1] : x2 = 0} is GES, RGES, GPAS
and RGPAS. A number of trajectories for randomly generated initial conditions are shown
in Figure 2.3. According to Theorem 2.1 all the trajectories approach A with exponential
convergence rate and finally stop in one point.

2.6 Conclusion

We studied a general class of linear single-input single-output systems in feedback with
play and stop operators. For these systems, we showed that there exists a compact set
of equilibria, and under the hypothesis of the existence of a common quadratic Lyapunov
function between a special matrix pair, we show that the set is globally exponentially stable.
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Figure 2.3: Orbits and distance to the attractor A for a few random initial conditions.
.

We also prove the equivalence between global exponential stability and global pointwise
asymptotic stability. Determining the existence of a common Lyapunov function can be
formulated as an LMI problem and solved numerically. Our result generalize those in [124]
reinterpreting the frequency based condition and adding robustness. We hope that this
sharp result can serve as a starting point for future investigations involving multiple-inputs
multiple-outputs systems, and more general types of hysteresis operators.
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Chapter 3

Hybrid Dual Stage Control

In this chapter we propose a novel hybrid controller for linear single-input single-output
plants. The controller combines two linear controllers that can be tuned independently
and a mechanism to switch between them. This architecture is motivated by the necessity
of having different performances in different operating conditions, a situation that often
arises in practice. For example, the first controller can be used to shape the transient per-
formance, while the second to adjust the steady-state. The study of the stability properties
of this scheme requires some carefulness because the switch between the two controllers
may cause destabilizing transients. For this reason, the switch happens with the help of
a bumpless filter and a carefully designed reset rule. The simultaneous action of these
two mechanisms ensures stability under a large class of switching signals. For robustness
reasons, both controllers are equipped with an integral action. The second embeds an
internal model, while the first uses the internal state of the first controller to set the initial
condition for an external model, see [126], [106], [30]. In this way the first controller can be
calibrated to be aggressive, although not very precise, while the second one may be slower,
but with better steady-state performance. The main result of the chapter is proved using
modern hybrid systems tools, in particular a hybrid reduction theorem. These tools are
necessary due to the discontinuous nature of the controller state. The results presented in
this chapter are adapted from [46] and [36]. An experimental validation of the theoretical
results reported in this chapter is presented in Chapter 5.

3.1 Introduction

Linear control is a well-developed subject and a variety of synthesis techniques are avail-
able both in the frequency and state space domain. Some well known examples are the
Ziegler–Nichols tuning method, the root locus diagram, the pole placement algorithm and
the Linear Quadratic Regulator (LQR). On the contrary, control techniques for nonlin-
ear systems are less systematic and often more complicated from a mathematical point of
view. For these reasons, a widely used industrial approach to control nonlinear plants is
to linearize them around a set of different operating conditions and then use linear con-
trollers. Obviously each controller is suitable for a specific region of the state space and
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in principle, by switching among them, one can achieve better performance as compared
to a single controller designed for the overall control task. This switching operation allows
overcoming the intrinsic limitations of linear control, allowing to satisfy simultaneously
conflicting requirements [21]. A classical example is the trade-off between the rising time
and percentage of overshoot [48]. Similar results can be obtained with the use of resets, i.e.
discontinuities of the controller state designed to obtain specific behaviors. However, while
the design of individual controllers is simplified by their local nature, the control law that
determines the switching between them can be complicated. In practice, dwell-time condi-
tions are often used, sometimes unconsciously. These conditions ensure that if the switches
are not too frequent, then the stability of the loop between the plant and the controller is
preserved. More conservative approaches enforce stability under arbitrary switching using
Lie algebraic conditions [73], or using in a smart way the Youla–Kucera parametrization
[65, 17].

As compared to these works, an important feature of the results presented here is that
they address regulation in addition to stabilization. In this chapter, we propose a scheme
that embeds a bumpless filter [125], two different controllers and an observer. The scheme
is also equipped with a properly designed reset rule that ensures the stability of the plant-
controller loop under a large family of switching signals. The advantage of the proposed
scheme is that one can freely switch between the two controllers, without fear of causing
instability. Due to the presence of resets in the controller state, a systematic treatment
requires a Lyapunov theory for hybrid differential equations, also known as hybrid systems
[58].

3.2 Problem formulation

We consider a linear time invariant, single-input single-output plant of the following form

Hp :=

ẋp = Axp +Bu+Gw

ep = Cxp +Qw
(3.1)

where xp ∈ Rnp is the state, u ∈ R is the input, w ∈ R is a disturbance/reference to be
rejected/tracked and ep ∈ R is the tracking error. For plant (3.1) we propose an error
feedback hybrid controller Hc of the following form:

Hc :=

 ẋc = Ac(q)xc +Bc(q)ep
x+
c = Ec(q)xc,

(3.2)
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where xc ∈ Rnc is the controller state, and q ∈ Q := {1, 2} is a logic variable selecting
what mode of the controller is currently active. The two logic states q = 1 and q = 2
correspond to the two modes available for the controller, i.e., transient mode and steady-
state mode. The logic variable q and the controller state xc are updated synchronously
during jumps. This point will be better clarified in the proof of Theorem 3.1. Controller
(3.2) is interconnected to (3.1) through the following output equation:

u = Cc(q)xc, (3.3)

so that the closed-loop system between (3.1) and (3.2) through (3.3) yields,

H :=



[
ẋp
ẋc

]
=
[

A BCc(q)
Bc(q)C Ac(q)

] [
xp
xc

]
+
[

G

Bc(q)Q

]
w[

x+
p
x+
c

]
=
[
I 0
0 Ec(q)

] [
xp
xc

]

ep =
[
C 0

] [xp
xc

]
+Qw

(3.4)

It is important to stress that (3.4) represents a fully hybrid system with linear flow and
jump maps. Indeed, controller (3.2) includes a reset mechanism, namely a discontinuity of
the state xc. We report below the explicit structure of the hybrid controller (3.2) for the
logic value q = 1 corresponding to the “transient mode”, and for q = 2 corresponding to
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the “steady-state mode”:

 Ac(1) Bc(1)
Cc(1)
Ec(1)

 : =



A+ LC +BK1 B 0 0 −L
0 0 0 0 0

B(K2 −K1) −B A+BK2 BKi 0
0 0 C 0 I

K1 I 0 0
I 0 0 0

K2 −K1 0 K2 −K1 Ki
0 0 I 0
0 0 0 I



(3.5a)

 Ac(2) Bc(2)
Cc(2)
Ec(2)

 : =



A+ LC +BK2 0 B(K2 −K1) BKi −L
0 0 0 0 0
0 0 A+BK1 0 0
0 0 C 0 I

K2 0 K2 −K1 Ki

I 0 0 0
K2 −K1 0 K2 −K1 Ki

0 0 I 0
0 0 0 I



. (3.5b)

Although the structure of Equation (3.5) may seem complicated, there is a rather intuitive
motivation for each block. Looking at (3.5) we can split the controller state into 4 different
sub-states as follows xc = (xc1, xc2, xc3, xc4) ∈ Rnp × R × Rnp × R. The individual role of
each component of the controller state is clarified below:

1. The state xc1 is associated to a Luenberger observer that provides an estimate of the
state xp in (3.1);

2. The state xc2 introduces a constant input bias that plays the role of an integral action
updated only during jumps (external model);

3. The state xc3 corresponds to a bumpless filter, inspired by [125], which guarantees
stability under a large class of switching signals;

4. xc4 implements the integral action of the steady-state controller (q = 2) (internal
model).

The gain L ∈ Rnp is the observer gain, while K1 and K2 ∈ R1×np are the “proportional”
gains, finally Ki ∈ R is the integral gain. The reset mechanism for (3.2) is specified by the
matrix Ec(q). The combination of resets and switches is designed to keep the solutions well
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behaved across jumps and, in particular ensures that q can switch almost freely between the
two modes without destabilizing the closed-loop. The only restriction that we assume for
the switching signal q is that it satisfies a mild dwell-time and reverse dwell-time condition.
Denoting by tj, j ∈ N≥1 the toggle times, i.e. the times when the logic variable q changes
from q = 1 to q+ = 2 or vice-versa, we assume the following.

Assumption 3.1
There exist two positive numbers τmin, τmax ∈ R>0, such that τmin ≤ |tj+1 − tj| ≤ τmax,
∀j ∈ N≥1.

Remark 3.1
We remark that no constraints on τmin and τmax are imposed, and that these values are not
used in the controller synthesis. Thus Assumption 3.1 virtually allows for all the possible
switching sequences that are relevant from a practical viewpoint. y

Finally it is interesting to notice that when switching from q = 2 to q+ = 1, the reset
exploits the information provided by xc3, xc4 to update the bias generated through xc2 and
asymptotically recovers zero steady-state error also in transient mode (q = 1).

Now let us assume that plant (3.1) satisfies the following assumptions

Assumption 3.2
Matrix A is Hurwitz and the triple (C,A,B) is minimal.

Moreover, because we are interested in set-point regulation, we restrict the class of
possible reference and disturbance signals to constant ones.

Assumption 3.3
The signal w is constant.

Thanks to Assumption 3.3 we have that ẇ = 0 and we can consider the change of
coordinates

x := T (q)
[
xp
xc

]
(3.6)

where matrices T (q) ∈ Rn×n, n := np + nc and its inverse T (q)−1 are reported below

T (q) :=


(2− q)I 0 0 (1− q)I 0

0 0 I 0 0
I 0 0 I 0
0 0 0 0 I

−I I 0 0 0

 , T (q)−1 =


I 0 (q − 1)I 0 0
I 0 (q − 1)I 0 I

0 I 0 0 0
−I 0 (2− q)I 0 0
0 0 0 I 0

 .
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Notice that T (q) is full rank for all q ∈ Q so that (3.6) is always well-defined. Thanks to
(3.6) the closed-loop (3.4) takes the simplified expression

H :=

 ẋ = Acl(q)x+Gcl(q)w
x+ = Ecl(q)x

(3.7)

where Acl(q) ∈ Rn×n, Gcl(q) ∈ Rn, and Ecl(q) ∈ Rn×n are reported below. Similarly, the
tracking error ep yields

ep = Ccl(q)x+Dclw, (3.8)

where again Ccl(q) ∈ R1×n, Dcl(q) ∈ R are defined next

 Acl(q) Gcl(q)
Ecl(q)
Ccl(q) Dcl(q)

 :=



A+BK1 (2− q)B 0 0 (2− q)BK1 (2− q)G
0 0 0 0 0 0
0 0 A+BK2 BKi BK2 G

0 0 C 0 0 Q

0 0 0 0 A+ LC −G− LQ
I 0 (2q − 3)I 0 0
0 0 K2 −K1 Ki K2 −K1
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I

C 0 (q − 1)C 0 0 Q


(3.9)

It is worth to notice that (3.9) has a desirable cascade structure and thus a necessary
condition for stability is to ensure that the diagonal sub-blocks

[A+BK1],
[
A+BK2 BKi

C 0

]
, [A+ LC] (3.10)

are Hurwitz. This is not restrictive in our setup, since the triple (C,A,B) is minimal from
Assumption 3.2. Then it is always possible to find a set of parameters K1, K2, Ki, L such
that the matrices in (3.10) are Hurwitz. We are now ready to state the main result of the
chapter.

Theorem 3.1 (Main result)
Assume that the gains K1, K2, Ki, L have been designed so that the matrices in (3.10) are
Hurwitz. If Assumptions 3.2, 3.3, and 3.1 hold true, then (3.7) has the following properties:

1. For w = 0 the origin of (3.7) is Globally Exponentially Stable (GES) for all switching
sequences.

2. For any constant w the solutions to (3.7) are globally bounded and ensure asymptotic
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convergence to zero of ep.

Theorem 3.1 provides a strong and desirable result because it establishes asymptotic
tracking and exponential convergence for any switching signal q satisfying the mild require-
ments in Assumption 3.1.

Proof. To properly describe the class of switching signals defined in Assumption 3.1 we use
the hybrid systems framework presented in [58] and we include as a part of the state also the
logic variable q and a timer τ . The arising representation is inspired by the construction in
[29, page 747] and can be shown to generate all and no more than the switching sequences
characterized in Assumption 3.1, see [29, Prop. 1.1]. The resulting hybrid system has then
the following structure:

xq
τ

 ∈
 Rn

Q
[0, τmax]

 ,
ẋq̇
τ̇

 =

Acl(q)x+Gcl(q)w
0
1


xq
τ

 ∈
 Rn

Q
[τmin, τmax]

 ,
x

+

q+

τ+

 =

Ecl(q)x
3− q

0

 .
(3.11)

Using the above representation, we proceed to proving the two items of the theorem. Proof
of item (1). Because we are interested in studying the stability properties of the origin
of (3.7) and in (3.11) there are additional states (q, τ) we consider the compact attrac-
tor A := {0} × Q × [0, τmax] and the distance function |x|A := infa∈A(|x − a|), so that
|(x, q, τ)|A = |x|, and we equivalently study the stability property of A. According to the
representation in (3.9) we split the state x = (x1, . . . , x5) ∈ Rnp ×R×Rnp ×R×Rnp and
we apply the recursive reduction theorem reported in [82, Thm 4] with the following sets:
Γ4 := {(x, q, τ) : x5 = 0}, Γ3 := {(x, q, τ) ∈ Γ4 : (x3, x4) = 0}, Γ2 := {(x, q, τ) ∈ Γ3 : x2 =
0}, Γ1 := {(x, q, τ) ∈ Γ2 : x1 = 0} = A. To apply [82, Thm 4] we first observe that for the
case w = 0 (addressed in item 1), the following holds:
1) Γ4 is asymptotically stable because the flow dynamics of x5 is independent of the other
states and governed by a Hurwitz linear time-invariant flow matrix A + LC, see (3.10),
while the jump matrix is the identity. Asymptotic stability of Γ4 then follows from the
persistent flowing results of [58, Prop. 3.27] ensured by the fact that jumps are inhibited
in (3.11) until τ ≥ τmin. The same argument can be repeated to prove that Γi is asymptot-

ically stable relative to Γi+1, for i = 3, 1, because both
[
A+BK2 BKi

C 0

]
and A+BK1 are

Hurwitz by assumption, see (3.10). To prove that Γ2 is asymptotically stable relative to Γ3,
we first project the dynamics on a reduced state space where x1 = 0 (this is possible due
to the upper triangular structure of Acl and Ecl). Then we observe that this projection of
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Γ2 is forward invariant and globally uniformly attractive (because the persistently flowing
solutions from Γ3 converge to zero after the first jump in at most τmax ordinary time).
Using the fact that the projection of Γ2 on the x1 = 0 hyperplane is compact, GAS of Γ2
relative to Γ3 follows from1 [58, Prop. 7.5].
2) All solutions are bounded. Indeed, pick an arbitrary initial condition and note that a)
state x5 is bounded because it does not change across jumps and converges to zero following
a linear exponentially convergent transient during flows; b) state (x3, x4) follows analogous
dynamics, also being perturbed by a bounded input during flows, which cannot drive the
state unbounded from Bounded Input Bounded State (BIBS) stability properties of linear
exponentially stable continuous-time dynamics; c) boundedness of x2 follows from the fact
that it remains constant along flows and jumps to some linear combinations of bounded
quantities (x3, x4, x5) across jumps; d) state x1 is then bounded by a straightforward ap-
plication of [93, Lemma 1], because the linear time-invariant dynamics is governed by an
exponentially stable LTI dynamics along (persistent) flows (see the assumption on A+BK1
in (3.10)) and by the identity map across jumps, whereas the forcing inputs acting along
flows and across jumps come as linear combinations of bounded variables (x1, x2, x3). The
above properties (1) and (2) imply that we can invoke [82, Thm 4] and global asymptotic
stability of A follows. Proof of item (2). We start proving that there exists a q-dependent
vector Π(q) ∈ Rn that satisfies the following conditions[

Acl(q) Gcl(q)
Ccl(q) Dcl

] [
Π(q)
I

]
= 0, ∀q ∈ Q (3.12a)

Π(q+)− Ecl(q)Π(q) = 0, ∀q ∈ Q, (3.12b)

which are a generalization of the classical regulator equations [52]. The conditions in (3.12)
can be intuitively derived noticing that x(∞) := Π(q)w(∞), and e(∞) := Ccl(q)x(∞) +
Dclw(∞), so that the flow properties (ẋ(∞), e(∞)) = (0, 0) can be derived by imposing
Π(q+)w(∞) = x(∞)+ = Ecl(q)x(∞), and where we used the notation (∞) to denote the
asymptotic value.

In order to prove feasibility of (3.12) we split the subspace Π(q) according to the
partitioning in (3.9) as follows Π(q) := (Π1(q),Π2,Π3,Π4,Π5), and considering (3.12a) we
obtain the following set of equalities

0 = (A+BK1)Π1(q) + (2− q) (BΠ2 +BK1Π5 +G) (3.13a)
0 = (A+BK2)Π3 +BKiΠ4 +BK2Π5 +G (3.13b)
0 = CΠ3 +Q (3.13c)
0 = (A+ LC)Π5 −G− LQ, (3.13d)

1The statement in [58, Prop. 7.5] is only local but a global version of it trivially follows from picking
increasingly large values of the scalar µ therein characterized.
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where we omitted equations that are trivially satisfied. By the internal model principle
[52] we know that (3.13b), (3.13c) and (3.13d) are automatically satisfied. Now, we can
easily verify that, with the selection

Π1(q) = (2− q)Π3

Π2 = KiΠ4 + (K2 −K1)(Π3 + Π5),
(3.14)

equation (3.13a) reduces to (3.13b) and it is automatically satisfied by the internal model
principle. It is not hard to check that with the selection (3.14) also (3.12b) is satisfied.
Finally, plugging the change of coordinates x̃ = x − Π(q)w into (3.11), and using (3.12),
we obtain a hybrid system equivalent to (3.11) where w has been set to zero and whose
stability has already been proved, which concludes the proof.

3.3 Conclusion

In this chapter we presented a hybrid controller that combines a reset and a switching
mechanism. The proposed structure allows to simultaneously combine two controllers with
almost no restriction on the switching between the two (thanks to the bumpless filter). For
robustness reasons the scheme is equipped with an internal model and an external model.
The external model is updated only at jumps using the information collected by the internal
model and the observer during the flow. An experimental application showing satisfactory
performance in controlling a wet clutch is reported in Chapter 5.
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Chapter 4

Dead-zone observers

In this chapter we propose an adaptive dead-zone mechanism to robustify observers against
high-frequency noise. The construction applies to Luenberger observers and high-gain ob-
servers for plants in strict feedback form. The dead-zone improves performances by trim-
ming a portion of the output injection term and trapping the high frequency noise in the
dead band. The dead-zone levels are dynamically adapted obtaining global convergence,
establishing a trade-off between speed of convergence and noise sensitivity. We show that
the observer gain and the adaptation parameters can be obtained by solving a linear ma-
trix inequality, whose feasibility only requires detectability of the plant. The parameters
obtained through this optimization ensure (in the absence of noise) global exponential
stability of the estimation error dynamics, and input-to-state stability (ISS) from the mea-
surement noise to the estimation error. The results presented in this chapter are extracted
from the conference paper [35] and the journal paper [34].

4.1 Introduction

Robustly reconstructing the state of a plant from input-output measurements is one of the
most fundamental problems in control theory. The first milestone has been obtained by
David Luenberger in [80] and [79], where the problem of state estimation for linear plants
has been solved by means of a dynamic filter, today called Luenberger observer. The
need for robust observation laws motivated nonlinear extensions of the linear loop transfer
recovery approach [47] leading to high-gain solutions that appeared in the early nineties
[55], [50], and later became popular tools solving nonlinear control problems ranging from
output stabilization to tracking and regulation. This great impact was also possible thanks
to the output stabilization techniques developed in [116] and to the semiglobal separation
principle obtained in [115, 10]. These results allow designing feedback laws as if the state
were available and then use an estimate provided by a sufficiently fast observer. The prices
to pay for this flexibility are essentially twofold: first, peaking phenomena, and second high
sensitivity to measurements noise. The latter was already well known in the framework
of linear observers [72] and entails the classical trade-off between bandwidth and noise
rejection.
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Despite this high sensitivity, high-gain observers are ISS from the measurement noise
to the estimation error [122, 101, 9]. To reduce peaking and noise sensitivity, observation
schemes with improved rejection may comprise a bank of different observers (a multi-
observer) as in [84], where each observer has a different sensitivity to noise and convergence
speed. Then, a supervisor chooses which observer is providing the best estimate at any
given time. See also [33] where robustness with respect to an uncertain plant is studied
(each observer is designed for a different value of the uncertain parameter). Alternatively,
one may use an aggressive observer gain for transient estimation and a more relaxed one
for steady-state performance [1]. However, there are many design challenges in using this
approach, e.g., it is hard to properly select the switching time/mechanism (like trigger or
threshold based mechanism) and the intrinsic discontinuous behavior of the observer is
dangerous when combined with phenomena as peaking. A similar, but simpler, approach
has been also proposed in [100] where a piecewise linear gain function is used. The limiting
case of arbitrarily fast switching among different observers or different gains can be thought
of as continuous adaptation, as in [103, 2, 18], where the observer gain is dynamically
adapted according to the difference (ŷ − y).

Nonlinear, time-varying or adaptive output injection/correction terms can also be con-
sidered, as in [5, 4, 6], to obtain superior performance or to deal with nonlinear plants
that do not have special normal forms or do not satisfy Lipschitz-like conditions. Fi-
nally, recently the so-called low-power approach has been proposed [7, 8], which increases
the dimension of the observer state but reduces the sensitivity to noise and the peaking
phenomena.

In this chapter we propose here to apply an artificial dead-zone to the output injection
term (ŷ−y). The resulting “dead-zonated” observer better rejects high-frequency noise by
cutting the part of it falling inside the dead-band. The dead-band amplitude is dynamically
adapted according to the noise level, providing another useful information.

The dead-zone has a destabilizing effect on the estimation error dynamics, indeed in
a ball around the zero estimation error the observer runs in open loop. However if the
adaptation mechanism is carefully designed, the dead-zone rapidly converges to the identity
function and in the absence of noise retrieves the classical output injection term (ŷ−y). We
show here that both the synthesis of the observer gain and of the adaptation mechanism
can be cast as Linear Matrix Inequality (LMI), whose feasibility only requires detectability
of the plant.

The use of the dead-zone is motivated by results developed for linear systems subject
to sector bounded nonlinearities, such as global and local sector conditions [44, 67]. These
tools have been extensively used in combination with LMIs in the context of anti-windup
design, but rarely employed for observers, even if there are a few remarkable exceptions
[118, 3, 6]. Our solution is indeed somewhat inspired by [3], where similar adaptations
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are adopted to preserve stability in the presence of a saturated (rather than dead-zonated)
output injection term, geared towards efficiently dealing with measurement outliers.

4.2 LTI problem formulation

In this work we consider a continuous-time LTI system (“the plant”) of the following form,ẋ = Ax+Bu

y = Cx+Du+ v,
(4.1)

where x ∈ Rn is the state, u ∈ Rm is the input, y ∈ Rp is the measured output and
v ∈ Rp is a measurement noise. Following the preliminary work in [35], for dealing with
high-frequency noise affecting the plant output, we introduce a Luenberger observer whose
output injection is “dead-zonated” as follows ˙̂x = Ax̂+Bu+ Ldz√σ(ŷ − y)

ŷ = Cx̂+Du,
(4.2)

where x̂ ∈ Rn is the estimated state, ŷ ∈ Rp is the estimated output and σ ∈ Rp
≥0 is a

vector whose entries are non-negative and define the amplitude of the dead-zone on the
corresponding output channel. Matrix L ∈ Rn×p is the classical observer gain. Function
dz√σ : Rp → Rp is a decentralized vector-valued dead-zone defined as follows

dz√σ(y) :=

dz
√
σ1(y1)
. . .

dz√σp(yp)

 , (4.3)

where
√
σ :=

(√
σ1, . . . ,

√
σp
)
∈ Rp is a component-wise square root. For σ we propose

the following adaptation law

σ̇ = −Λσ +


(ŷ − y)>R1(ŷ − y)

...
(ŷ − y)>Rp(ŷ − y)

 , σ ∈ Rp
≥0 (4.4)

where Λ ∈ Diagp>0 is a diagonal positive definite matrix, and R1, . . . , Rp ∈ Symp
≥0 are

symmetric positive semi-definite matrices. The constraint σ ∈ Rp
≥0 means that σ belongs

to the closed p-dimensional positive orthant, which is an invariant set for (4.4). It is worth
to notice that non-negativity of σ makes the square root

√
σ always well defined.

The idea behind observer (4.2) is that the dead-zone provides a zero output correction
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term around (ŷ−y) = 0 so that high frequency noise is filtered out. However, the dead-zone
also has a destabilizing effect on the error dynamics so that a fast enough adaptation of σ
is necessary to ensure convergence to zero. Indeed, for a fixed dead-zone amplitude

√
σ,

signals ŷ and y which are close enough would never synchronize. The adaptive mechanism
(4.4) is designed to weigh two antagonistic effects: first, the “adaptation speed” selected by
Λ, and second, the “filtering action” tuned by R1, . . . , Rp. Intuitively speaking, selecting
Λ large enough, and R1, . . . , Rp sufficiently small we can recover a classical Luenberger
observer. On the other hand, setting Λ small and R1, . . . , Rp large we slow down the
convergence rate while increasing the filtering capability.

Remark 4.1
The initial condition σ(0) for (4.4) can be taken small or zero if we expect measurement
with a low noise level. On the contrary, if large amplitude noise is expected, then larger
values of σ(0) may lead to improved transient responses. y

4.3 Main results

In this section we prove a few good properties for the dead-zone observers in (4.2). We
show that for a detectable plant, the parameters Λ and Ri, can always be designed to
obtain GES of the error dynamics in the absence of measurement noise, and ISS from the
measurement noise to the estimation error.

4.3.1 Global Exponential Stability (GES)

Given (4.2) and the adaptation law (4.4) we cast the synthesis of the parameters L, Λ,
R1, . . . , Rp as an LMI problem. In the absence of noise, this tuning procedure ensures
GES of the estimation error dynamics and of the adaptive dynamics σ. To this end,
define the estimation error as e = x̂ − x and the vector-valued saturation function as
sat√σ(y) := y−dz√σ(y), where the vector-valued dead-zone is defined in (4.3). Then, after
few manipulations, we obtain the following representation for the error arising from (4.2),
(4.4), 

ė = (A+ LC)e− Lv − Lsat√σ(Ce− v)

σ̇ = −Λσ +


(Ce− v)>R1(Ce− v)

...
(Ce− v)>Rp(Ce− v)

 σ ∈ Rp
≥0.

(4.5)

Equation (4.5) represents the error dynamics of a classical Luenberger observer plus a
perturbation term whose amplitude is ruled by

√
σ. What follows is the main result of this
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paper for the LTI case, namely for the class of systems (4.1).

Theorem 4.1
Consider the following LMI in the optimization variables P ∈ Symn

>0, X ∈ Rn×p, Λ ∈
Diagp>0, R ∈ Symp

≥0, U ∈ Diagp≥0,

He
[
PA+XC + C>RC −X

UC −U − Λ

]
< 0. (4.6)

Any feasible solution to (4.6), together with the choice

L := P−1X, R :=
p∑
j=1

Rj, (4.7)

makes (4.5) globally exponentially stable to the origin for v = 0 and ISS from v to (e,
√
σ).

Remark 4.2
The adaptation law in (4.4) allows for a completely decentralized form where the amplitude
of each dead-zone is adapted independently. This can be done by solving (4.6) for a diagonal
R and then associating each diagonal element rii to the corresponding σi dynamics. The
resulting adaptation law yields σ̇i = −λiiσi + rii(ŷi − yi)2. y

Proof. Strict negativity of (4.6) implies that there exists a sufficiently small c0 ∈ R>0 such
that,

H := He
[
PA+XC + C>RC −X

UC (c0 − 1)Λ− U

]
≤ −2c0I (4.8)

Then, let us consider the candidate Lyapunov function V (e, σ) := e>Pe + 21>σ, where
P ∈ Symn

>0. The function V (e, σ) is positive definite and radially unbounded on Rn×Rp
≥0

and satisfies the following bounds,

α1

∣∣∣(e,√σ)
∣∣∣2 ≤ V (e, σ) ≤ α2

∣∣∣(e,√σ)
∣∣∣2 , (4.9)

where α1 := min{λmin(P ), 2}, and α2 := max{λmax(P ), 2}, so that the Lie derivative along
the flow of (4.5) yields

V̇ (e, σ) = e>(A+ LC)>Pe+ e>P (A+ LC)e
− 2e>PLsat√σ(Ce− v)− 2v>L>Pe− 21>Λσ

+ 2
p∑
j=1

(Ce− v)>Rj(Ce− v) (4.10)

To enforce (strict) negativity of (4.10) we first consider a global sector condition for cone
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bounded nonlinearities [44] and then use the fact that the saturation levels are proportional
to
√
σ and thus sat>√σ(Ce)sat√σ(Ce) never exceeds 1>σ. These observations translate into

the following inequalities

sat>√σ(Ce− v)U(Ce− v − sat√σ(Ce− v)) ≥ 0, (4.11a)
1>Λσ − sat>√σ(Ce− v)Λsat√σ(Ce− v) ≥ 0, (4.11b)

for any matrices U ∈ Diagp≥0, Λ ∈ Diagp>0. Multiplying (4.11a) by two and (4.11b) by
2(1 − c0), and adding them to (4.10), we obtain the following upper-bound, which uses
X = PL and R := ∑p

j=1Rj,

V̇ (e, σ) ≤
[

e

sat√σ(Ce− v)

]>
H

[
e

sat√σ(Ce− v)

]
− 2c01>Λσ − 2v>L>Pe+ 2v>Rv
− 4v>RCe− 2sat>√σ(Ce− v)Uv.

(4.12)

To prove GES in the absence of disturbances, let us set v = 0 and plug (4.8) into (4.12) to
obtain the following inequality

V̇ (e, σ) ≤ −2c0|(e, sat√σ(Ce))|2 − 2c01>Λσ

≤ −2c1

∣∣∣(e,√σ)
∣∣∣2 ≤ −2c1

α2
V (e, σ),

where we used the rightmost bound in (4.9) and c1 := c0 min{1, λmin(Λ)}. Applying the
comparison lemma and using the leftmost bound in (4.9) we immediately obtain |(e,

√
σ)| ≤√

α2/α1 exp(−c1/α2)
∣∣∣(e0,
√
σ0)

∣∣∣, which proves global exponential stability for (e,
√
σ). The

exponential bound can then be easily extended to (e, σ), see [3].

To prove the ISS statement, let us define c2 := |R|, c3 :=
∣∣∣PL+ 2C>R

∣∣∣, c4 := |U |, so
that (4.12) can be compactly rewritten as

V̇ (e, σ) ≤ −2c1

∣∣∣(e,√σ)
∣∣∣2 + 2c2 |v|2 + 2c3 |e| |v|+ 2c4

∣∣∣√σ∣∣∣ |v|
≤ −c1

∣∣∣(e,√σ)
∣∣∣2 + c−1

1 (2c1c2 + c2
3 + c2

4) |v|2

≤ −c1

∣∣∣(e,√σ)
∣∣∣2 < 0,

(4.13)

which holds for all |(e,
√
σ)|2 > c−2

1 (2c1c2 + c2
4 + c2

3) |v|2 := c2
5 |v|

2 and we conclude that
(4.5) is ISS from v to (e,

√
σ) with an ISS gain proportional to c5. In (4.13) we used the

Young inequalities 2 |e| |v| ≤ c1
c3
|e|2 + c3

c1
|v|2 and 2 |v| |

√
σ| ≤ c1

c4
|
√
σ|2 + c4

c1
|v|2.

Theorem 4.1 ensures exponential convergence of the estimation error in the absence
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of disturbances, and its boundedness in the presence of bounded disturbances. This is
desirable for nonlinear observers, because in a nonlinear setting diverging solutions may
arise with arbitrarily small measurement noise [107]. Moreover the ISS property ensures
graceful performance degradation, another desirable property for (4.5).

4.3.2 Feasibility

Theorem 4.1 provides only a sufficient condition to enforce GES, however feasibility of
(4.6) can be exactly characterized.

Proposition 4.1
The LMI (4.6) is feasible if and only if pair (C,A) is detectable.

Proof. Necessity follows from standard detectability results. Indeed, if pair (C,A) is not
detectable, no asymptotic observer exists and thus (4.6) must be infeasible from Theo-
rem 4.1. To prove sufficiency we use [64, Thm 16.6] to get that detectability of (C,A)
implies the existence of a matrix P ∈ Symn

>0 satisfying

A>P + PA− C>C < 0. (4.14)

Consider (4.6) and select X = −3C>, Λ = U = I and R = I/2. Pre/post multiplying by
the congruence transformation matrix[
I C>

0 I

] [
PA+ A>P − 5C>C 4C>

4C −4I

] [
I 0
C I

]
=
[
A>P + PA− C>C 0

0 −4I

]
< 0, (4.15)

it follows that (4.15) is feasible thanks to (4.14).

Remark 4.3
Under the detectability assumption, condition (4.6) is always feasible even when a stabiliz-
ing gain L is a priori fixed. In this case we can think of (4.2) as a dead-zone augmentation,
i.e., an adaptive output injection mechanism enhancing the performance of a pre-designed
observer. The LMI in (4.6) can still be used as a design tool fixing a stabilizing L (i.e.,
such that (A+LC) is Hurwitz) and replacing X by PL. The arising LMI is always feasible
and provides a convenient way to design the adaptation parameters Λ and R. y
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4.4 High-gain dead-zone observers for nonlinear plants

In this section we extend the dead-zone design to multi-input, single-output nonlinear plant
in the following strict feedback form

ẋ1 = x2 + f1(x1, u)
...

ẋn−1 = xn + fn−1(x1...n−1, u)
ẋn = fn(x1...n, u)
y = x1 + v,

(4.16)

where x := (x1, . . . , xn) ∈ Rn is the state, u ∈ Rm is the input, y ∈ R is the output.
We use the shorthand notation x1...i := (x1, . . . , xi) ∈ Ri to stress that fi depends only
on the first i components of the state vector x. The functions fi are assumed to be
continuous. Conditions for the existence of a local or global diffeomorphism that maps a
generic nonlinear system into the strict feedback form (4.16) are analyzed in [56, Thm 4.1]
and are related to the existence of uniform full relative degree. For the sake of compactness
we rewrite (4.16) as follows ẋ = Ax+ f(x, u)

y = Cx+ v,
(4.17)

where pair (C,A) is in prime form, therefore observable, and f : Rn × Rm → Rn is a
continuous vector-valued map obtained stacking the functions fi for i = 1, . . . , n. Following
the construction of Section 4.2 consider the following high-gain dead-zone observer for
(4.17) 

˙̂x = Ax̂+ f̂(x̂, u) + E −1(ε)Ldz√σ(ŷ − y)
ŷ = Cx̂

εσ̇ = −Λσ +R(ŷ − y)2,

(4.18)

where x̂ ∈ Rn is the estimated state, ŷ ∈ R is the estimated output, and f̂i are some
approximations of functions fi. The vector L ∈ Rn is the observer gain and matrix E (ε) :=
diag(ε, . . . , εn) ∈ Rn×n contains the powers of the high-gain parameter ε ∈ R(0,1), which is
assumed to be small. For the analysis that follows it is convenient to define a re-scaled
version of the error coordinates as follows

e = ε−1E (ε)(x̂− x), (4.19)
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so that combining (4.18) and (4.17) the error dynamics results

εė = (A+ LC)e+ E (ε)(f̂(x̂, u)− f(x, u))
− Lv − Lsat√σ(Ce− v)

εσ̇ = −Λσ +R(Ce− v)2.

(4.20)

From the upper-triangular structure of f̂−f , we may select ε sufficiently small to dominate
this mismatch and also speed up the observer dynamics. We ensure global convergence of
the error by assuming the following [70].

Assumption 4.1
The difference f̂i − fi satisfies globally the Lipschitz-like condition

|f̂i(x̂1...i, u)− fi(x1...i, u)| ≤ µ◦i + µi
i∑

j=1
|x̂j − xj|, (4.21)

for all x1...i ∈ Ri with µ◦i , µi independent of u.

From the structure of (4.21) and (4.19), follows that

|E (ε)(f̂(x̂, u)− f(x, u))| ≤ ε
n∑
i=1

εi−1(µ◦i + µi
i∑

j=1
ε1−j|ej|)

≤ ε
n∑
i=1

εi−1µ◦i + ε
n∑
i=1

µi|e|

≤ εµ◦ + εµ|e|, (4.22)

where we defined µ◦ := ∑n
i=1 µ

◦
i and µ := ∑n

i=1 µi and we used the fact that ε ∈ R(0,1).
This upper bound will be useful in the proof of Theorem 4.2.

Remark 4.4
As usually done in the high-gain observers literature, the global Lipschitz property in
Assumption 4.1 can be relaxed to local Liscphitzness if we assume that the state of the
plant evolves inside a known compact set. If this is the case, we can saturate functions f̂i
outside such a compact set, and still obtain a globally convergent observer. y

Remark 4.5
Global observers for nonlinear systems that do not satisfy global Lipschitz conditions can
be still constructed using homogenization tools, see for example [5], [15]. y

Theorem 4.2
Suppose that L, Λ, R have been designed according to (4.6) and that Assumption 4.1 holds,
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then (4.20) is ISS from (v, µ◦) to (e,
√
σ) and for µ◦ = 0, v = 0 the origin is GES for

(4.20).

Proof. We follow similar steps as in Theorem 4.1. Consider a scaled candidate Lyapunov
function V (e, σ) := εe>Pe+ 2εσ so that the Lie derivative along the flow of (4.20) yields,

V̇ (e, σ) ≤− c1|(e,
√
σ)|2 + c5|v|2 + 2e>PE (ε)(f̂(x̂, u)− f(x, u))

≤− c1|(e,
√
σ)|2 + c5|v|2 + 2|e||P ||E (ε)(f̂(x̂, u)− f(x, u))|,

(4.23)

where c1 and c5 are defined in the proof of Theorem 4.1. Plugging (4.19) into (4.21) and
using (4.22) we can upper-bound equation (4.23) as follows

V̇ (e, σ) ≤− c1|(e,
√
σ)|2 + c5|v|2 + 2εµ◦|P ||e|+ 2εµ|P ||e|2

≤− (c1 − 2εµ|P |)|(e,
√
σ)|2 + c5|v|2 + 2εµ◦|P ||e|

≤ − (c1 − 2εµ|P | − εc1)|(e,
√
σ)|2 + c5|v|2 + εc−1

1 |P |2(µ◦)2

so that, for ε sufficiently small, system (4.20) is ISS in the sense defined in Theorem 4.2
and for µ◦ = 0, v = 0, GES.

4.5 An academic example

We propose an example that compares a high-gain observer with and without the dead-
zone mechanism proposed in Section 4.4. We show through simulations that the dead-zone
mechanism successfully improves the noise rejection capability. Let us consider the Van
der Pol oscillator, 

ẋ1 = x2

ẋ2 = −x1 + γ(1− x2
1)x2 + u

y = x1 + v,

(4.24)

where γ = 5. Equation (4.24) is in strict feedback form, but does not satisfy Assumption 4.1.
However, assuming u bounded the solutions to (4.24) evolve in a compact set and according
to Remark 4.4 we can saturate the nonlinear part of the observer obtaining global practical
convergence. We propose the following dead-zonated high-gain observer

˙̂x1 = x̂2 + ε−1`1dz√σ(x̂1 − y)
˙̂x2 = satM

(
−x̂1 + γ̂(1− x̂2

1)x̂2 + u
)

+ ε−2`2dz√σ(x̂1 − y)
εσ̇ = −Λσ +R(x̂1 − y)2,
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R 1.9 3.0 4.1 5.3 6.4 7.5
ENR High-gain 32.6 32.6 32.6 32.6 32.6 32.6
ENR Dead-zone 19.2 16.1 13.7 11.8 10.2 8.9

Table 4.1

where γ̂ = 7 and M = 20. Parameters L := [`1, `2]> ∈ R2, Λ ∈ R>0, R ∈ R≥0 have been
designed according to the following convex optimization problem that maximizes the effect
of the noise on the adaptation dynamics σ,

sup
P,X,Λ,R

tr(R) subject to:

He
[
PA+XC + C>RC −X

UC −U − Λ

]
< 0

He
[
PA+XC + αminP

]
< 0

He
[
PA+XC + αmaxP

]
> 0

0 < Λ ≤ Λmax, R = R> ≥ 0, P = P> > I.

(4.25)

In addition to the LMI condition (4.6) we impose an interval for the possible convergence
rates, so that −αmax ≤ Re(λk(A + LC)) ≤ −αmin where αmin = 1, αmax = 100 ∈ R>0 for
this specific example. Finally, we select Λmax = 10 ∈ R>0, to avoid an excessive time scale
separation among the observer and the adaptation dynamics. Solving (4.25) we obtain
the following values L =

[
−68.36 −68.06

]>
, Λ = 9.98, and R = 7.51. The high-gain

parameter has been selected as ε = 0.1.

Numerous simulations have been performed for the values of R reported in Table 4.1,
a sinusoidal input u(t) = 3 sin(2t), initial condition x(0) = [0, 0]> for the plant, x̂(0) =
[5,−5]> for the observer and σ(0) = 5 for the adaptation dynamics. The output measure-
ment y is corrupted by noise generated by the Simulink block Uniform Random Number
with sampling time and output range equal to ts = 0.001s, and ±1. During the simulation,
the noise starts at time tstart = 10 and ends at tend = 20.

A comparison among the true and the estimated state for the two observers (R = 7.5)
is shown in Figure 4.1. Figure 4.2 shows the estimation error, where the benefit of the
dead-zone mechanism can be better appreciated, and the adaptation of the dead-zone level√
σ. To compare the two observers we propose a tracking Error to Noise Ratio (ENR)

which is inspired by the classical concept of Signal to Noise Ratio (SNR). The ENR is
formally defined as ENR := E{e>e}

E{v>v} , where E{·} denotes the expectation operator. The
value of the expectations has been obtained simply computing the average of the signals
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Figure 4.1: Estimated (black) and true (red) state with the bare high-gain observer (above)
and the dead-zonated high-gain Observer (below) (R = 7.5). Notice the significant esti-
mation error reduction in the lower trace.
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Figure 4.2: Estimation error for the high-gain observer (top), dead-zonated high-gain ob-
server (middle) (R = 7.5), and adaptation of the σ level (bottom).
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over the interval [tstart, tend]. The ENRs for the two observers, and for different values of
R, are reported in the Table 4.1. We can notice that the dead-zone mechanism reduces
the tracking error to noise ratio (ENR) and that this reduction is more consistent when
the value of R is large.

4.6 Conclusion

We proposed a dead-zonated output injection term that robustifies Luenberger and high-
gain observers against high frequency noise. We proved that the resulting dead-zone ob-
servers are not restrictive for LTI plants and can always be designed under standard (and
necessary) detectability assumption. Numerical studies within the nonlinear high-gain
setting clearly reveal potential to reduce the ISS from the measurement noise and the esti-
mation error. The quantitative characterization of this ISS gain appears to be a nontrivial
task due to the convoluted nonlinear effect of the dynamic dead-zone, and it is seen as a
future work.
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Chapter 5

Hybrid Non-overshooting Set-point
Pressure Regulation for a Wet Clutch

In this chapter we present a technological application of the hybrid controller presented
in Chapter 3. We consider the problem of precisely controlling the oil pressure inside
a wet clutch without overshoot. To achieve this objective we propose a control-oriented
Wiener model for wet-clutches in filled conditions and we discuss the associated identifica-
tion technique. We adapt the hybrid controller presented in Chapter 3, so that it ensures
zero steady-state error and a fast non-overshooting response. We show that the controller
parameters can be conveniently obtained by solving a set of Linear Matrix Inequalities
(LMIs). Finally, we test the proposed control strategy on the Hydromechanical Variable
Transmission (HVT) developed by Dana-Rexroth Transmission Systems (DRTS). The ex-
periments show good performance and robustness with respect to modeling errors and
noise. The material presented in this chapter is adapted from the conference paper [46]
and the journal paper [36].

5.1 Introduction

The main goals for the next generation of transmission systems are an improved fuel
economy and a better productivity. Toward these goals the automotive industry has de-
veloped numerous solutions, such as automatic and dual clutch transmissions, which can
automatically shift among different drive ranges, thus improving both vehicle drivability
and fuel economy. These technologies are now mature enough to be employed also in the
off-highway, agricultural and working machines industry. However, it is particularly chal-
lenging to adapt these technologies for the off-highway market due to the rather different
requirements. For example, mechanical Continuous Variable Transmissions (CVTs) are
efficient, but they operate in a too narrow power range. This problem can be partially
solved using Hydrostatic Transmissions (HTs), but their efficiency is low. Ideally, the best
solution should combine the efficiency of the mechanical CVT and the power range of a HT.
This marriage between the hydrostatic and the mechanical world is the Hydromechanical
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Figure 5.1: The Hydromechanical Variable Transmission (HVT).

Variable Transmission (HVT) that has been introduced by Dana-Rexroth Transmission
Systems (DRTS) in [88] and references therein.

In the HVT architecture, see Figure 5.1, the engine power is split into two different
pathways: the first one is mechanical and is highly efficient, while the second one is hy-
drostatic and preserves the continuous variable transmission characteristic. The powers
coming from each pathway are then combined by means of a planetary gear. Moreover, in
order to extend the range of possible speeds, the HVT can also shift among several drive
ranges. This shift is performed by coordinating several wet-clutches, suitably actuated by
electro-proportional valves. Ideally, during a clutch shift, the transmitted torque should
remain constant to ensure a comfortable and smooth transition. Clutch control is an active
area of research, and numerous control techniques have been proposed in the literature. In
[66, 62] the authors propose a combination of differential flatness and feedback lineariza-
tion, while in [109] a robust sliding-mode controller is presented. These approaches are
rather elegant, but they are usually hard to implement in a digital form due to discretiza-
tion issues or poorly known dynamics. This is especially true in our setup, where the
actuation system of the HVT is difficult to identify precisely, due to non-linear effects, hys-
teresis and dependence on the oil temperature. Consequently, complex controllers may fail
to work properly. Moreover, in contrast to [66] and [62], we do not assume the knowledge
of the piston position, because for wet clutches it is technologically hard to place sensors
inside a chamber with a rotating shaft soaked into oil. For this reason, the only available
measurement for feedback is the oil pressure. A similar setup has been already considered
in [60], where the authors propose a linear model for a twin-clutch transmission and they
design a pressure feedback controller inducing a desirable clutch shift.
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In this work we follow a similar spirit, but compared to [60], we consider a more complete
model and we propose a novel hybrid controller. The main differences are highlighted
below. First, in our setup the clutch shows a non-constant DC gain and a small variable
delay in the actuation. We include these effects by adding a non-linear invertible map
and considering a non-minimum phase approximation of the delay. The resulting model
is the cascade of a non-minimum phase Single-Input Single-Output (SISO) Linear Time
Invariant (LTI) system and an invertible non-linear output map, a so-called Wiener model.

Second, since a large amount of power is transmitted by the HVT, the closed-loop
specifications are tight and somehow conflicting. The step response of the pressure in the
chamber must be fast, non-overshooting, and with zero steady-state error. However, it
is well-known that using linear controllers, non-overshoot and zero steady-state error are
conflicting goals, and (in general) they cannot be simultaneously achieved. To overcome
this limitation, we propose a novel hybrid controller that combines a switching and a
resetting mechanism, thus providing the desired response. The controller synthesis is
conveniently formulated as a Linear Matrix Inequality (LMI) problem, which is an efficient
and systematic way to tune controllers.

Moreover, we study the robustness properties of the proposed solution considering
constant (or slowly varying) disturbances acting on the model. Finally, we provide new and
more convincing experimental results, showing the advantages of the proposed controller.
For reasons of confidentiality all the units of measure are normalized and the technological
details are omitted.

5.2 Setup description and goals

In the HVT architecture, wet-clutches are actuated by the hydraulic circuit sketched in
Figure 5.2. The current in the valve regulates the oil pressure inside the clutch chamber,
and controls in an indirect way the piston movement. Through this mechanism we can
open and close the clutch, and by increasing or decreasing the contact force we modulate
the transmitted torque. The standard actuation sequence is the following one: first, the
current in the valve increases opening the orifice between the clutch chamber and the
supply high pressure line. The oil flows pushing the clutch piston towards the end of the
stroke, causing the transmission of a small torque due to drag effects. This phase is known
as Filling Phase (FP), and it is usually performed in an open-loop fashion. During the FP,
the pressure measurements are not reliable due to the pressure gradient associated to the
flow. Secondly, when the piston reaches the end of the stroke, the gap between the clutch
plates is zero and the flow stops. At this pressure, known as (mechanical) Kiss Point (KP)
[49], the piston remains in equilibrium, thanks to the balancing of forces coming from the oil
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Figure 5.2: Hydraulic actuation scheme.

pressure and the return spring. Thirdly, when the KP is overcome, the plates push against
each other and they transmit a considerable amount of torque. This operative condition is
known as Modulation Range (MR), and is characterized by an affine relationship between
the oil pressure and the transferred torque.

In order to obtain a smooth clutch shift, the Filling Phase (FP), the Kiss Point (KP),
and the Modulation Range (MR), need to be properly controlled and synchronized. This
translates into three key ingredients: 1) a correct timing and synchronization of the
clutches, 2) a well prepared on-coming clutch (filled with oil and ready to engage), 3)
a precise oil pressure control during the MR. A correct timing and synchronization can be
obtained through a properly designed high level control and a time-scheduling algorithm,
while the preparation of the clutch is performed in the FP. All these aspects are highly
relevant, but in this work we focus on controlling the oil pressure in the MR. Because in
the MR there is an affine relationship between the oil pressure and the transmitted torque,
the task of controlling the torque is indeed equivalent to controlling the pressure. Here we
assume that the electrical dynamics of the valve is negligible, i.e., much faster than the
mechanical one, because a high performance current control has been implemented [41].

Even under the above simplifying assumptions, precisely controlling the oil pressure
is a challenging task. The nonlinear interaction between the valve and the oil, and the
viscosity that changes with the temperature, make the task non trivial.

For this application it is also fundamental that the closed-loop satisfies the following
tight performance goals, whose motivations are discussed next.
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Problem 5.1 (Control problem)
Design an oil pressure controller for the HVT such that the closed-loop response satisfies
the following conditions:

1. Non-overshooting step response.

2. Small rise time.

3. Zero steady-state error for constant reference signals.

The precise value of the rise time is not specified for confidentiality reasons. These
goals are all equally important to achieve a smooth clutch-shift because items 2) and
3) are key to ensuring that the driver does not experience any perturbation during the
shift operation. Moreover, among all, the non-overshooting constraint is especially critical.
Because, overshoot in the pressure response causes an excess of dissipated power that could
burn the clutch friction discs. Problem 5.1 is difficult because requirements 1) and 3) are
conflicting, and 2) imposes to use an aggressive controller.

In addition to the goals defined in Problem 5.1, it is desirable that the controller
is robust w.r.t. 1) small delays in the loop, 2) possible slow unmodeled dynamics, 3)
variations of the oil temperature and clutch aging. Moreover, due to the limited electronic
hardware in the automotive industry, the proposed controller must be “easy enough” to be
implemented with a limited computational power.

5.3 Modeling and identification

5.3.1 Model selection

In this section we discuss a control-oriented model for wet clutches in the MR. A good
model must be accurate enough to capture the interplay among the different elements of
the clutch, i.e., the valve, the line and the piston, but at the same time should be “simple”,
so that consolidated control techniques can be used. We consider as input the current in
the valve, and as output the oil pressure inside the clutch chamber.

We performed a series of experiments, using a staircase like input current, as shown in
Figure 5.3. The response at the first step differs from the others due to the presence of
flowing oil (the clutch is still in the FP). When the clutch reaches the MR, the oscillating
behavior recalls a second-order linear system with complex conjugate poles, however, a
closer look reveals some nonlinear effects.
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First, the DC gain is not constant, and second there is a small variable input-output
delay, probably associated to a non-constant computational time. We capture the non-
constant DC gain through a static output nonlinearity φ, for which we assume the following
property.

Assumption 5.1
The output non-linearity φ is a continuous strictly increasing function on R≥0 := [0,+∞).

For the input delay d, we introduced a non-minimum phase behavior in the response,
which approximates the delay by way of a small undershoot. This is not surprising since
the first-order Padé approximation of delay d yields,

e−iωd ≈ 1− iωd/2
1 + iωd/2 ∀ω � 1/d, (5.1)

where i is the imaginary unit and ω ∈ R the pulsation. This approximation shows that for
a large range of frequencies, (1/d is large), a small time delay is equivalent to a zero in the
open right-half plane plus a pole in the open left-half. We can disregard the pole, because
it is much faster than the clutch dynamics, and we keep the zero. With slight abuse of
notation, we mix time and Laplace domain. Given a signal u(·) defined for t ∈ R≥0, we
denote by u(t) ∈ R the value at time t, and by u(s) ∈ C the value of its Laplace transform
at s ∈ C. Based on the considerations above, we propose a Wiener model [76], of the
following form

y(s) :=
( 1 + a3s

1 + a1s+ a2s2

)
u(s) = H(s)u(s) (5.2a)

z(t) := φ(y(t)), (5.2b)

where u ∈ R is the input, z ∈ R is the measured output, y ∈ R is an equivalent “linear
output” and φ : R≥0 → R≥0 an invertible nonlinear map.

The transfer function H(s) ∈ C is strictly proper and non-minimum phase due to the
delay approximation in (5.1).

Remark 5.1
Without loss of generality we assume that the DC gain of (5.2a) is unitary, lims→0H(s) = 1.
Indeed, a different DC gain can be easily absorbed into the nonlinearity φ. y
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5.3.2 Model identification

The identification technique that we propose for (5.2) comprises two steps. First we identify
the output nonlinearity φ, and secondly we estimate the coefficients a := (a1, a2, a3) ∈ R3.

For the first step, let us consider a sufficiently large set of steady-state input-output
pairs {(ui, zi)}Ni=1 ⊂ R2 (where N � 1). Because the transfer function (5.2a) has unitary
DC gain, the pairs (ui, zi) are related through φ, and the identification of the output nonlin-
earity reduces to an interpolation problem. Experimental data are reported in Figure 5.4,
where we can observe that a second order polynomial of the form

zi = φ(ui) := p0 + p1u
i + p2(ui)2 + εi, i = 1, . . . , N, (5.3)

provides good fitting results. The coefficients p0, p1, p2 ∈ R can be easily obtained by
solving a standard Least Squares (LS) problem.

In general, a quadratic function is not globally invertible, as required in Assumption 5.1.
However (5.3) is invertible with the identified parameters when the domain is restricted to
R≥0.

Once φ is known, Assumption 5.1 ensures that we can virtually access the linear output
y as y = φ−1(z). Then any standard identification techniques for linear systems can be
applied, see for example [76].

5.3.3 Balanced realization

In Section 5.5 we will describe an LMI-based procedure for the controller synthesis, and
because LMIs are naturally formulated in state space, we consider a minimal realization
of (5.2a) as follows

Hp :=


ẋp = Axp +Bu+Gw

y = Cxp +Qw

z = φ(y),
(5.4)

where xp ∈ R2 is the state, and w ∈ R is a disturbance. Matrices G and Q cannot be
directly obtained from (5.2a), but can be freely designed to “shape” the effect of the distur-
bance w on the measurement and the state. For (5.4), we used a balanced realization [85],
which guarantees that equally “important” states have similar magnitude. This improves
numerical stability and makes the LMIs in Section 5.4 better conditioned from a numerical
viewpoint. The balanced realizations provides also a few advantage from an implemen-
tation point of view, e.g., since the Control Unit (CU) works at a fixed-point precision,
having balanced internal states of the controller helps in working out the correct numerical
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bounds to use in the integration process. According to Remark 5.1, we assume that (5.4)
satisfies the following:

Assumption 5.2
Matrix A is Hurwitz, the triple (C,A,B) is minimal, balanced and satisfies −CA−1B = 1.

According to the goal of set-point regulation defined in Problem 5.1, we restrict the
class of possible reference and disturbance signals to constant ones.

Assumption 5.3
The signals r and w are constant.

Remark 5.2
Assumptions 5.2, 5.3 are not restrictive for the experimental system under consideration,
and the presence of the output nonlinearity φ adds no conceptual difficulties, because
thanks to Assumption 5.1 we can always access y through φ−1. It is important to stress
that an imperfect knowledge of the output non-linearity φ produces a constant steady-state
error that can be thought of as part of w. Therefore, from this point over, and especially
in Section 5.4, we consider to have full access to signal y. y

5.4 Hybrid controller

In this section, we adapt the hybrid controller presented in Chapter 3 in order to satisfy
the objectives defined in Problem 5.1. The central idea is to switch among the two different
modes of the hybrid controller. The first mode corresponds to a “transient mode” that
shapes the transient providing a fast non-overshooting step response. The second mode is
a “steady-state mode” that activates an integral action able to zeroing out the steady-state
error.

As already discussed in Chapter 3, switching has been recognized as an effective way
to overcome intrinsic limitations of linear control and obtain superior performance [87].
However, it is well-known that the transients caused by switching may result in instability
of the closed loop. To overcome the problem of destabilizing transients we equip our
controller with a bumpless filter [125], and because of the presence of a feed-forward action
we also re-design the reset rule. The interplay between the bumpless dynamics and the
resets guarantees stability under a large class of switching signals. This strong property
leaves complete freedom in the design of the high-level switching logic.

A graphical representation of model (5.2) in feedback interconnection with the hybrid
controller is shown in Figure 5.5. We may notice that controllerHc now requires two inputs:
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 Ac(1) Bc(1)
Cc(1) Dc(1)
Ec(1) Fc(1)

 : =



A+ LC +BK1 B 0 0 −L 0
0 0 0 0 0 0

B(K2 −K1) −B A+BK2 BKi 0 −(A+BK2)A−1B
0 0 C 0 I I
K1 I 0 0 0 I
I 0 0 0 0 0

K2 −K1 0 K2 −K1 Ki 0 (K1 −K2)A−1B
0 0 I 0 0 −A−1B
0 0 0 I 0 0


(5.5a)

 Ac(2) Bc(2)
Cc(2) Dc(2)
Ec(2) Fc(2)

 : =



A+ LC +BK2 0 B(K2 −K1) BKi −L 0
0 0 0 0 0 0
0 0 A+BK1 0 0 0
0 0 C 0 I 0
K2 0 K2 −K1 Ki 0 I
I 0 0 0 0 0

K2 −K1 0 K2 −K1 Ki 0 0
0 0 I 0 0 A−1B
0 0 0 I 0 0


(5.5b)

H(s) +

φ φ−1

+
Hc

Hp

φ−1

u z y

QwGw

e

uff r
−uc

Figure 5.5: Block diagram of the model-controller loop. Please notice the presence of φ−1

and the error feedback hybrid controller.
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the “tracking error” e ∈ R and the “feed-forward” control uff ∈ R. The “feed-forward”
control uff is obtained by inverting the Wiener non-linearity φ as follows

uff := φ−1(r), (5.6)

where r is the reference signal for z. Because by Assumption 5.2 the DC gain of (5.2a) is
unitary, uff can be interpreted also as a reference signal for y and it makes sense to define
the tracking error e as

e := y − uff. (5.7)

We notice that thanks to Assumption 5.1, the non-overshooting requirement for (z − r)
can be equivalently considered on e. The proposed hybrid controller Hc has the following
structure:

Hc :=

 ẋc = Ac(q)xc +Bc(q)uc
x+
c = Ec(q)xc + Fc(q)uc

(5.8)

where xc ∈ R6 is the controller state, uc := (e, uff) ∈ R2 is the controller input, and
q ∈ Q := {1, 2} is a logic variable selecting what mode is currently active. Moreover,
controller (5.8) is interconnected to (5.4) through the following output equation:

u = Cc(q)xc +Dc(q)uc. (5.9)

The logic value q = 1 is associated to the “transient mode”, while q = 2 is associated to
the “steady-state mode”. Explicit expressions for the matrices in (5.8), (5.9) for each mode
are reported in (5.5).

Remark 5.3
Notice that (5.8) includes a reset mechanism, namely a discontinuity of the controller state
xc. This discontinuity is imposed when the logic variable q toggles between values 1 and 2,
and it is designed to keep the solutions well behaved across jumps. In particular, it ensures
that the feed-forward signal uff enters only in the sub-block of the controller relative to the
active mode. y

As already discussed in Chapter 3 the properties of the hybrid loop arising from the
interconnection between (5.4) and (5.8) through (5.9) and (5.7), are more evident in a
different set of coordinates. Thanks to Assumption 5.3 we have that u̇ff = 0 and we can
consider the change of coordinates

x := T (q)(xp, xc) + U(q)uff, (5.10)
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where matrices T (q) ∈ R8×8 and U(q) ∈ R8×1 are reported below

(T (q), U(q)) :=
(2− q)I 0 0 (1− q)I 0 (2− q)A−1B

0 0 I 0 0 0
I 0 0 I 0 (q − 1)A−1B

0 0 0 0 I 0
−I I 0 0 0 −A−1B

 .

Notice that T (q), U(q) are full rank for all q ∈ Q so that (5.10) is always well-defined.
Thanks to (5.10) the closed-loop takes the simplified expression

H :=

 ẋ = Acl(q)x+Gcl(q)w
x+ = Ecl(q)x,

(5.11)

where Acl(q) ∈ R8×8, Gcl(q) ∈ R8×1, and Ecl(q) ∈ R8×8 are fully reported in Equa-
tion (5.14). Similarly, the tracking error e yields

e = Ccl(q)x+Dclw, (5.12)

where again Ccl(q) ∈ R1×8, Dcl ∈ R1×1 are defined in Equation (5.14). Equation (5.14) has
a desirable cascade structure and a necessary condition for stability is to ensure that the
diagonal sub-blocks

[A+BK1],
[
A+BK2 BKi

C 0

]
, [A+ LC] (5.13)

are Hurwitz. This is not restrictive in our setup, since the triple (C,A,B) is minimal from
Assumption 5.2. Then it is always possible to find a set of parameters K1, K2, Ki, L
such that the matrices in (5.13) are Hurwitz. We illustrate a possible design procedure
in Sections 5.5.1, 5.5.2 and 5.5.3. Under a direct and a reverse dwell-time condition, see
Assumption 3.1, a result similar to Theorem 3.1 holds also for this controller. A formal
statement is reported below.

Theorem 5.1 (Main result)
Assume that the gains K1, K2, Ki, L have been designed so that the matrices in (5.13)
are Hurwitz. If Assumptions 5.1, 5.2, 5.3, and 3.1 hold true, then (5.11) has the following
properties:

1. For w = 0 the origin of (5.11) is Globally Exponentially Stable (GES) for all switching
sequences defined in Assumption 3.1.
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 Acl(q) Gcl(q)
Ecl(q)
Ccl(q) Dcl(q)

 :=



A+BK1 (2− q)B 0 0 (2− q)BK1 (2− q)G
0 0 0 0 0 0
0 0 A+BK2 BKi BK2 G
0 0 C 0 0 Q
0 0 0 0 A+ LC −G− LQ
I 0 (2q − 3)I 0 0
0 0 K2 −K1 Ki K2 −K1
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I
C 0 (q − 1)C 0 0 Q


(5.14)

2. For any constant w the solutions to (5.11) are globally bounded and ensure asymptotic
convergence to zero of e.

Proof. The proof follows the same steps reported in the proof of Theorem 3.1.

5.5 Controller tuning

In this section we propose an LMI-based technique to tune the controller parameters K1,
K2, Ki, and L. These procedures are designed to meet the tight requirements defined in
Problem 5.1. We remark that, due to the special cascaded structure of (5.11), all these
parameters can be tuned independently.

5.5.1 Transient mode tuning

We propose to choose K1 following a two-step procedure generalizing the results of [46]. As
a first step we characterize the maximum achievable convergence rate α ∈ R>0 by imposing
constraints on the aggressiveness of the feedback gain K1 (a bound on its norm) and on
the closed-loop damping factor. Specifically, we aim at solving the following optimization
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problem:

max
W,X,α

α subject to:

W = W> ≥ I (5.15a)
M +M> ≤ −2αW (5.15b)[

(M +M>) sin θ (M −M>) cos θ
(M> −M) cos θ (M +M>) sin θ

]
≤ 0 (5.15c)[

W X>

X Iκ2

]
≥ 0, (5.15d)

where M := AW +BX ∈ R2×2 and θ ∈ [0, π/2].

It is worth to notice that the optimization problem (5.15) is non convex due to the
product αW , however it can still be solved efficiently because it is a so-called (quasi-
convex) generalized eigenvalue problem, see [22]. The next proposition establishes a few
useful properties for (5.15).

Proposition 5.1
Under Assumption 5.2, for any value of κ ∈ R>0, there exists a large enough θ ∈ [0, π/2]
such that (5.15) is feasible. Moreover, for any feasible solution to (5.15) together with the
choice K1 = XW−1, the following properties hold: i) the norm |K1| ≤ κ, ii) the closed-loop
matrix (A+BK1) has eigenvalues with real part less than −α, iii) the damping factors of
the poles is larger than cos θ.

Proof. Feasibility follows from the fact that, with θ = π/2, constraint (5.15c) reduces to
M + M> ≤ 0. Then the assumption that A be Hurwitz implies that X = 0 is a feasible
solution for any non-negative value of κ. To show that |K1| ≤ κ we perform a Schur
complement on (5.15d) and we use X = K1W and (5.15a) to obtain

Iκ2 ≥ XW−1X> = K1WK>1 ≥ K1K
>
1 ,

which implies |K1| ≤ κ. The eigenvalues of (A + BK1) having real part less than −α is
a straightforward consequence of (5.15b), and the damping factor greater than cos θ is a
direct application of the results in [32, Equation (13)].

The optimization problem (5.15) provides a convenient way to trade-off between speed
of convergence, imposed by α, and level of aggressiveness of the arising controller, tuned
by κ.

The second step of the proposed synthesis procedure consists in reducing the overshoot
associated to the gain selection obtained with (5.15). Toward this goal we heuristically im-
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pose the non-overshooting condition by forcing a small constant of proportionality between
the derivative of the tracking error ė and the partial state x1, when e = 0. This condition
captures the intuitive idea that a nice non-overshooting response must be flat in a neigh-
borhood of the set-point. We formalize this idea by imposing the following conservative
bound

e = 0 ⇒ |ė| ≤ ρ |x1| , (5.16)

and we minimize ρ ∈ R>0. Since x1 is the only non-zero element of the state x whenever
e = 0, Equation (5.16) can be equivalently re-written in the following way

|C(A+BK1)x1| ≤ ρ |x1| , ∀x1 : Cx1 = 0. (5.17)

Equation (5.17) can be formulated in an LMI form and included in the following opti-
mization problem with the goal of providing reduced values of ρ.

min
W,S,X,ρ2

ρ2 subject to:

M +M> ≤ −η−1αW (5.18a)
M +M> ≥ −ηαW (5.18b)2W MC> I

CM ρ2I 0
I 0 I + C>SC

 > 0 (5.18c)

S = S> > 0 (5.18d)
(5.15a), (5.15c), (5.15d),

with M := AW +BX.

Remark 5.4
Constraints (5.18a), (5.18b) and (5.15c) correspond to imposing that the closed-loop poles
belong to a conic region in the left half plane, represented by the shaded gray area in
Figure 5.6. We can observe that the shape of this region depends on the parameters η and
α. y

Proposition 5.2
Under Assumption 5.2, assume that α, θ, κ are parameters for which (5.15) is feasible;
then there exists a large enough η ∈ R≥1 such that (5.18) is feasible as well.

Moreover, for any feasible solution to (5.18), selecting K1 = XW−1 the following prop-
erties hold: i) the norm |K1| ≤ κ, ii) the closed-loop matrix (A + BK1) has eigenvalues
with real part less than −αη−1, iii) the damping factors of the poles is greater than cos θ,
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Figure 5.6: The shaded conic region represents the region in the complex plane where the
closed-loop poles are constrained.

iv) the relation in (5.16) holds.

Proof. Feasibility follows from the fact that there exists η sufficiently large such that the
shaded region in Figure 5.6 contains the positions of the poles obtained by the feasible
solution for (5.15), assumed in Proposition 5.2. Then that solution is also a feasible solution
for (5.18) as long as ρ2 is selected sufficiently large. Properties i)–iii) are a straightforward
consequence of constraints (5.15a), (5.15c), (5.15d), which imply the stated properties
from Proposition 5.1. We finish the proof by showing property iv). Performing a Schur
complement on (5.18c), and using (5.18d), we obtain:[

2W − (I + C>SC)−1 M>C>

CM ρ2I

]
> 0, (5.19)

where I + C>SC is clearly invertible. Consider now the following inequality

(W − (I + C>SC)−1)>(I + C>SC)(W − (I + C>SC)−1) ≥ 0,

which implies 2W − (I+C>SC)−1 ≤ W (I+C>SC)W . From (5.19), pre/post multiplying
by diag(W−1, I) and using M = (A+BK1)W , we obtain[

I + C>SC (A+BK1)>C>
C(A+BK1) ρ2I

]
> 0,
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Figure 5.7: Simulated step responses for increasing values of κ. The time scale is normal-
ized.

which, after being multiplied by ρ2 and after a Schur complement, implies:

|C(A+BK1)x1|2 < ρ2 |x1|2 + ρ2
∣∣∣√SCx1

∣∣∣2 .
Finally, when Cx1 = 0, we apply the square root and we retrieve (5.17).

The properties established in Propositions 5.1 and 5.2 suggest that the feedback gain
K1 be selected as follows: first a set of different levels of aggressiveness are fixed, spanning
an experimentally reasonable range. Then for each one of them we solve the optimization
problem in (5.15), possibly adjusting the parameter θ if the LMIs are infeasible (feasibility
is guaranteed by Proposition 5.1 for a large enough θ). This first step provides a number
of values for α, each of them corresponding to a different selection of κ. As a second
step, optimization (5.18) is solved for each one of the (κ, α) pairs with the same value of
θ, possibly adjusting parameter η (feasibility is guaranteed by Proposition 5.2 for a large
enough η).

For the model identified in this work, the values of κ are shown in Figure 5.7 with the
resulting step responses. The corresponding values for α have been obtained by applying
optimization (5.15) after fixing θ = π/4 and η = 5.
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Figure 5.8: Trade-off curve between β and γ. The curves have been obtained by solving
the optimization problem (5.21) for model (5.4), considering increasing values of β.

5.5.2 Steady-state mode tuning

In this section we provide the details of the synthesis of the controller gains K2 and Ki. In
practice we tuned these gains, associated with the dynamics of the second matrix in (5.13),
in such a way that its convergence rate is larger than the convergence rate α obtained by
the optimization problem (5.18). In this way, when switching from the transient mode
to the steady-state mode, the integral action associated to state xc4 is already almost
constant. We also remark that, for the steady-state dynamics, no special non-overshooting
requirements are imposed. Indeed, from (5.5) we can observe that these gains have no
effect during the transient mode. Consequently, the convergence rate of this dynamics can
be made arbitrarily large without affecting the transient performance.

5.5.3 Observer design

In this section we tune the observer gain L as a convenient trade-off between convergence
rate of the estimation error and noise rejection capability. For the estimation error dynam-
ics

ẋ5 = (A+ LC)x5 −Gw − LQw, (5.20)

which emerges from (5.14), we propose to optimize the observer gain L in order to reduce
the effect of disturbance w on the estimation error in the L2 sense. Following the well-known
Lyapunov formulations of the bounded real lemma (see, e.g, [22]), we select L according
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to the following LMI-based convex optimization problem, parametrized by β ∈ R>0,

min
P,Y,γ

γ subject to:

P = P> > 0 (5.21a)

He

PA+ Y C −Y Q− PG 0
0 −γI/2 0
I 0 −γI/2

 < 0 (5.21b)

He
[
PA+ Y C

]
≤ −2βP. (5.21c)

Proposition 5.3
Given any β ∈ R>0, the set of LMIs (5.21) is feasible under Assumption 5.2. Moreover,
for any feasible solution to (5.21), selecting L := P−1Y the following properties hold: i)
the L2 gain from w to x5 for (5.20) is smaller than γ, ii) matrix A+ LC has eigenvalues
with real part smaller than or equal to −β.

Proof. Feasibility of (5.21c) follows from standard pole placement theory combined with
minimality, see Assumption 5.2. The remaining part of the proof is a standard application
of the bounded real lemma and the use of quadratic Lyapunov functions. In particular,
defining V (x5) := x>5 Px5, where P = P> > 0 by constraint (5.21a), performing a Schur
complement on (5.21b), left-right-multiplying by (x5, w) and substituting Y = PL, we
obtain 〈∇V (x5), ẋ5〉+ 1

γ
x>5 x5 − γw>w < 0.

Integrating both sides, we obtain the desired bound on the L2 gain from w to x5 (or
equivalently on the H∞ norm). Regarding the speed of convergence β, this follows from
noticing that (5.21c) implies He [P (A+ LC + βI)] < 0, which only holds with a positive
definite P if A+ LC has convergence abscissa smaller than −β.

Proposition 5.3 emphasizes that the LMI-based design tool corresponding to (5.21) can
be an effective means for performing the design of L, while establishing a trade-off between
the guaranteed speed of convergence of the observer dynamics (corresponding to β) and the
level of disturbance rejection γ from the noise w to the estimation error x5. The suggested
use of this tool is to fix increasing values of β and then determine the trade-off curve
reported in Figure 5.8. This curve provides a range of optimal selections of the observer
gain L. For our specific identified model, Figure 5.8 reports the selected operating point,
corresponding to a black dot. Such a selection is performed by fixing a sufficiently large
convergence rate β once the state feedback gains have been designed.
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Figure 5.9: Open-loop vs. closed-loop step response. In green open-loop, in red closed-loop
and in black the reference. On the left a sequence of increasing amplitude steps and on
the right a zoom of the fourth step.

5.6 Experimental validation

All the experiments have been conducted on the testing facilities provided by DRTS. The
hybrid controller (5.8) has been implemented using TargetLink R©on an Electronic Control
Unit provided by Bosch R©, and controller (5.8) has been discretized using Tustin’s method.

Tests have been conducted over a range of clutches that differ in dimensions, transmissi-
ble torque, stiffness and hydraulic properties. For each one of these clutches, we performed
the identification procedure described in Section 5.3 and the controller tuning procedure
reported in Section 5.5.

Several experimental tests have been performed, providing excellent results for a large
variety of working conditions. Figure 5.9 shows the comparison between the closed-loop
(in red), and the open loop (in green). The controller successfully removes the overshoot
and ensures a zero steady-state error. The switch among controller 1 and 2 is ruled by the
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Figure 5.11: Step responses for different tswitch. In the graph above the pressure response,
below the logic variable q.

logic variable q reported in Figure 5.9 as well.

The value of q toggles according to a timer that is reset to zero at each rising/falling
of the reference signal. Therefore after a time tswitch ∈ R>0 from the last reference change,
the variable q toggles from 1 to 2 and the controller switches from the transient mode to
the steady-state one. The time tswitch can be easily calibrated experimentally through a
bisection procedure. In Figure 5.10 we show the set of responses obtained by varying tswitch
between 0 and the settling time of the closed-loop. We can observe that, for a reasonable
range of values around the optimum, the closed-loop response remains sufficiently non-
overshooting.

It is important to stress that the variable q toggles according to a timer, but in princi-
ple more complicated strategies are possible, thanks to the stability properties proved in
Theorem 5.1.

Finally, we tested the robustness of the proposed controller against large perturbations
of the nonlinear map φ, such as those due to oil aging and temperature variations. Those
perturbations are reported on the left in Figure 5.11, while on the right the corresponding
step responses are reported.

We notice that for large variations of φ, the non-overshooting property is no longer
preserved, but the integral action is still able to zero out the steady-state error.
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Those perturbation are large, compared to the ones experienced in practice (roughly
three times larger), and it is important to stress that the degradation of performance is
graceful. This shows a desirable level of robustness.

We conclude that the experimental tests have proved the validity of the proposed con-
trol technique for achieving a non-overshooting and fast pressure response. Moreover, we
experimentally tested robustness with respect to perturbations of the nonlinear map φ and
of the switching time tswitch.

5.7 Conclusions

In this chapter we addressed the problem of set-point regulation of the oil pressure in
wet clutches. We developed a control-oriented model for a filled clutch in the modulation
range and we proposed a novel hybrid controller. The controller can operate in two modes,
a transient mode and a steady-state mode, and may freely switch among these modes
without compromising stability. The transient mode provides a nice non-overshooting re-
sponse, while the steady-state mode compensates for constant disturbances and unmodeled
dynamics. The controller synthesis is conveniently formulated as an LMI problem.

We implemented and tested the proposed hybrid controller on the HVT developed
by DRTS. Experiments show excellent performance and good robustness with respect to
modeling errors and noise. Future research directions will involve the design of a high-level
switching strategy and the control of the oil pressure in conditions of clutch only partially
filled.
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Chapter 6

The Kinematic Dead-zone Observer

In this chapter we apply the adaptive dead-zone mechanism presented in Chapter 4 to the
Farrelly and Wellstead kinematic observer. We extend the result in Theorem 4.1 to cover
a special class of linear parameter varying systems. As already presented in Chapter 4 the
dead-zone mechanism maintains the structure of the kinematic observer, but inserts an
adaptive dead-zone at the output injection term. This dead-zone partially “cuts” the noise
and increases the noise rejection performance allowing for the selection of a larger observer
gain. We use this degree of freedom to increase the observer gain to attenuate constant
bias errors in the acceleration measurements. The proposed solution is easy to implement
and requires only measurements acquired from standard on-board sensors. Once again, the
adaptation parameters are selected by solving a suitable Linear Matrix Inequality (LMI).
We show the effectiveness of the proposed solution through numerical simulations. This
chapter is adapted from the conference paper [45].

6.1 Introduction

Control of vehicle dynamics is a firmly established field in the automotive industry. The
possibility to change the dynamical behavior of a vehicle using an electronic control unit
(ECU) leads to tremendous improvement in passengers safety and comfort. Remarkable
examples are the Traction Control (TC), the Longitudinal Slip Control (LSC) [105], and
the Electronic Stability Control (ESC) [102].

In the latter the side-slip angle plays a crucial role, because it is a direct measure of the
instability of the vehicle. The side-slip angle identifies the orientation of the vehicle with
respect to the longitudinal direction and is representative of the lateral velocity component.

An accurate measurement of the lateral velocity requires expensive devices such as
optical sensors [111], two-antenna GPS [57] or lateral tire forces sensors [90]. Those sensors
are usually not available on commercial cars and for this reason, many techniques have
been proposed to reconstruct the lateral velocity based on measurements provided by
accelerometers, gyroscopes and wheel encoders. Two approaches are popular in the
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literature: the first one employs an observer based on a “physical” linearized model of the
vehicle, while the second one is an observer based on a purely kinematic model [120].

Observers based on physical models have good robustness properties; they reject sensor
noise and biases, but require a precise knowledge of the parameters of the vehicle. The
most critical parameter is the cornering stiffness, whose value may largely vary with time,
thus making its prediction hard during fast maneuvers. To fix this issue a vast number
of solutions have been proposed, see for example [75], [19], and [20, 121] just to cite a few.
The performance of physically based observers can be further improved using non-linear
models for the tire-road contact forces [68, 31, 98], but once again a good knowledge of the
parameters is necessary.

Observers built upon the kinematic model are instead more appealing, because they do
not depend on the physical parameters [97, 51, 96]. However, they provide reliable esti-
mates only for high yaw-rates and in the absence of biases on the acceleration measurements
(e.g. when the vehicle travels on a flat road). Because acceleration biases are frequent,
numerous techniques have been proposed, see for example the road angle approach [119,
99], or the disturbance observer technique [54, 53, 91]. Robustness to acceleration bias
can also be improved by increasing the observer gain, but with the drawback of increasing
sensitivity to high-frequency noise. To reduce this sensitivity, we propose a modified ver-
sion of the well-known kinematic observer [51], where we introduce the adaptive dead-zone
mechanism presented in Chapter 4.

The noise reduction attained with the dead-zone mechanism allows for a selection of a
larger observer gain, which attenuates the deterioration of the estimate caused by the bias
on the acceleration measurements. The effectiveness of the proposed observer is shown by
means of numerical simulations on a eight degrees of freedom non-linear vehicle model.

6.1.1 The Farrelly and Wellstead kinematic observer

One of the simplest models that we can consider to relate longitudinal and lateral velocities
with measured accelerations is the kinematic model. The kinematic model is a Linear
Parameter Varying (LPV) system of the formẋ = A(r)x+ u

y = Cx,
(6.1)

where u = (ax, ay) ∈ R2 is the acceleration vector, x = (vx, vy) ∈ R2 is the vector of
longitudinal and lateral velocities, and r ∈ R is a time varying parameter representing
the yaw-rate. We assume that the vector u is available, since directly sensed by the
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accelerometers mounted on the chassis.

It is worth to notice that in this model the velocity vector is the state, the acceleration
is the input and y = vx ∈ R is the measured output. The explicit expression for matrices
in (6.1) is given below:

A(r) :=
[

0 r

−r 0

]
, C :=

[
1 0

]
.

It is important to remark that the pair (C,A(r)) is detectable if and only if r is dif-
ferent from zero. For the kinematic model (6.1) Farrelly and Wellstead [51] proposed a
Luenberger-like observer of the following form, ˙̂x = A(r)x̂+ u+ L(r)(ŷ − y)

ŷ = Cx̂,
(6.2)

where the yaw-dependent observer gain is defined as L(r) := [−2α|r|, (1 − α2)r]>, with
α ∈ R>0 being a tunable parameter that assigns the observer speed of converge. Indeed,
for a constant yaw-rate, the two eigenvalues associated to (A(r) +L(r)C) are both located
at −α|r|.

Remark 6.1
The observer (6.2) is a Linear Parameter Varying (LPV) system, therefore eigenvalues with
negative real part do not imply stability nor convergence. y

In [51] it is shown that through a suitable Lyapunov function, Uniform Global Asymp-
totic Stability is guaranteed for all uniformly non-zero evolutions of r.

Since its proposal, the kinematic-observer has been widely used [97], [120], and many
tests have been made to evaluate its performance. It turns out that, despite its simplicity,
the kinematic-observer provides good estimates even during driving conditions where the
vehicle dynamics is far from being linear. However, as pointed out in [96], the selection
of the parameter α is especially critical, as it entails the well-known trade-off between
bandwidth (speed of converge of the error dynamics) and sensitivity to noise. For example
a bank angle ϑ ∈ R introduces a lateral acceleration bias ay ∈ R in the input measurement
as follows

∆ay = −g sin (ϑ), (6.3)

with g ∈ R being the gravitational constant. With constant yaw-rate the presence of this
bias introduces a steady-state estimation error e := (x̂− x) of

e = (A(r) + L(r)C)−1
[

0
∆ay

]
= −1

r

[
α−2

2α−1sign(r)

]
∆ay. (6.4)
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As expected, larger values of α and r lead to smaller estimation errors, and this is consistent
with the intuition that when r approaches zero, the kinematic model (6.1) is increasingly
less observable.

By increasing α we improve robustness to bias and noise at the input, but we also
deteriorate the rejection of high-frequency affecting the measurement output y, and for
this reason, in the following section, we propose a dead-zone modification of observer
(6.2).

6.2 The Dead-zone Kinematic Observer

We propose to augment the kinematic observer (6.2) with the dead-zone mechanism illus-
trated in Chapter 4. The resulting dead-zone kinematic observer has the following form ˙̂x = A(r)x̂+ u+ L(r)dz√σ(ŷ − y)

ŷ = Cx̂.
(6.5)

For this observer, the matrix A(r) and the observer gain L(r) are parameter varying, and
the results presented in Chapter 4 cannot be immediately applied. Moreover, for small
values of |r| the observer gain L(r) is small as well, and the observer (6.5) is already less
sensitive to measurement noise. For this reason, we propose to scale the adaptation
dynamics σ according to |r| ∈ R≥0 as follows

σ̇ = −λ|r|σ + γ|r|(ŷ − y)2, σ ∈ R≥0 (6.6)

Defining the estimation error as e := x̂− x, and using (6.6), we obtain the following LPV
system with adaptive dead-zone ė = ACL(r)e− L(r)sat√σ(Ce)

σ̇ = −λ|r|σ + γ|r|(Ce)2 σ ∈ R≥0.
(6.7)

Here, for simplicity of notation, we defined the closed-loop matrix ACL(r) := A(r)+L(r)C,
whose explicit expression is reported below

[
ACL(r) L(r)

]
:=
[
−2α|r| r −2α|r|
−α2r 0 (1− α2)r

]
. (6.8)

To retrieve the LMI-based tuning procedure presented in Chapter 4, we assume that the
yaw rate is uniformly bounded away from zero, i.e., that |r(t)| ≥ ε for all t ∈ R≥0 where
ε ∈ R>0 is not necessarily known. This is restrictive, but in practice it is not possible to
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obtain reliable estimates of the lateral velocity when the yaw rate is too small, due the
very nature of the kinematic model (6.1). We are now ready to state the main result of
the chapter.

Theorem 6.1
Consider the observer (6.7). Assume that the following LMI in the optimization variables
0 < P = P> ∈ R2×2, γ ∈ R≥0, λ, µ ∈ R>0 is feasible:

He
[
PACL(1) + γC>C −PL(1)

µC −µ− λ

]
< 0. (6.9)

Then for any ε ∈ R>0 and for any value of r ∈ (−∞,−ε], or r ∈ [ε,∞), the error dynamics
(6.7) is Globally Asymptotically Stable (GAS) to the origin.

Proof. The proof is carried out in two steps. First we show that (6.9) implies GAS of the
origin for (6.7) as long as r ∈ [ε,∞). Second, we show that the GAS property holds also
when r ∈ (−∞,−ε]. Let us start considering the following candidate Lyapunov function
V (e, σ) := e>Pe + 2σ. We remark that P = P> > 0 and that σ ∈ R≥0 so that V (e, σ) is
proper and positive definite. Differentiating with respect to time yields

V̇ (e, σ) = e>ACL(r)>Pe+e>PACL(r)e−2e>PL(r)sat√σ(Ce)−2λ|r|σ+2γ|r|(Ce)2. (6.10)

Let us consider the following inequalities

2µ|r|sat√σ(Ce)(Ce− sat√σ(Ce)) ≥ 0 (6.11a)
2λ|r|(σ − sat2√

σ(Ce)) ≥ 0, (6.11b)

where (6.11a) is a global sector condition for the saturation function and (6.11b) simply
states that σ is always greater than the square of a saturation function whose amplitude
is
√
σ. Summing up (6.11) to (6.10) we obtain the following upper-bound

V̇ (e, σ) ≤
[

e

sat√σ(Ce)

]> [He(PACL(r)) + 2γ|r|C>C −PL(r) + µ|r|C>
−L(r)>P + µ|r|C −2|r|(µ+ λ)

] [
e

sat√σ(Ce)

]
≤ 0,

(6.12)
for all (e, σ) 6= 0. Equation (6.12) can be strengthened and conveniently re-written in a
strict LMI like form as follows

He
[
PACL(r) + γ|r|C>C −PL(r)

µ|r|C −|r|(µ+ λ)

]
< 0, (6.13)

where r ranges in the interval [ε,∞). It is important to notice that inequality (6.13) does
not imply asymptotic convergence, but only stability; however we can represent the LPV
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model as a differential inclusion and invoke the invariance principle presented in [104] to
conclude that if (6.13) holds for all r ∈ [ε,∞), then (6.7) is Globally Asymptotically Stable
(GAS).

Now recalling that r ∈ [ε,∞) notice that the entries of (6.8) are homogeneous of
degree one with respect to r, so that ACL(r) = rACL(1) and L(r) = rL(1). Collecting a
scaling factor |r| from Equation (6.13), this last one reduces to (6.9), showing GAS for
uniformly positive yaw-rates. We conclude the proof by showing that any feasible solution
to (6.13) with r = r? ∈ [ε,∞) is also a feasible solution to (6.13) with r = −r? ∈ (−∞, ε].
This idea is formally stated in Lemma 6.1 below, which concludes the proof of the case
r ∈ (−∞,−ε].

Lemma 6.1
Assume that (P ?, γ?, µ?, λ?) is a feasible solution to (6.13) associated to a positive yaw-rate
r = r? ∈ [ε,∞), and consider the non-singular diagonal matrix T := diag(1,−1) ∈ R2×2.
Then (TP ?T, γ?, µ?, λ?) is a feasible solution to (6.13) with r = −r? ∈ (−∞,−ε].

Proof. First we notice that feasibility of the LMI (6.13) is not affected by congruence
transformations. We pre/post-multiply (6.13) by diag(T, 1) ∈ R3×3 and we obtain the
equivalent condition

He
[
TPACL(r)T + γ|r|TC>CT −TPL(r)

µ|r|CT −|r|(µ+ λ)

]
< 0. (6.14)

Using the expression in (6.8) it is easy to verify that the following equalities hold

ACL(r)T = TACL(−r) (6.15a)
TC>CT = C>C (6.15b)

L(r) = TL(−r). (6.15c)

Plugging (6.15) into (6.14) we retrieve (6.13) with parameters (TP ?T, γ?, µ?, λ?) and fol-
lowing the same steps as in the proof of Theorem 6.1 we conclude GAS for r ∈ (−∞, ε].
It is interesting to notice that matrix TP ?T ∈ R2×2 has the same elements as P but with
a sign inversion of the off-diagonal terms, namely

P ? :=
[
p11 p12
p12 p22

]
⇔ TP ?T :=

[
p11 −p12
−p12 p22

]
,

where we remark that TP ?T > 0 if and only if P ? > 0.

The combination of Theorem 6.1 and Lemma 6.1 provides a desirable unified design
strategy, which is independent of the sign of r, and provides guarantees for any value
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of r uniformly bounded away from zero. We do not include the defective point r = 0
(where we know that the system is not detectable), even if Theorem 6.1 suggests that the
same observer can also be used for cases where r keeps changing sign and spends little time
around zero. However a rigorous stability analysis for that scenario is not carried out in this
preliminary work. We also remark that LMI (6.9) is always feasible because pair (C,A(1))
is detectable: the proof of this fact follows similar steps to those reported in Chapter 4.
As a consequence, we can think of the dead-zone mechanism as an augmentation of the
original observer (6.2), which improves its performance.

6.3 Optimization and simulations

In this section we use the LMI constraint (6.9) to formulate an optimization problem similar
to the one presented in Section 4.5, with the goal to optimize the noise rejection capability
of the dead-zone observer (6.5).

In general there are infinitely many solutions to (6.9) and we propose to choose the one
that maximizes the effect of noise on the adaptation dynamics. A good idea is to select
the largest possible value of γ, once an upper bound λmax ∈ R>0 has been fixed for the
σ-adaptation speed λ. The resulting optimization problem can be cast as follows

sup
γ,λ,µ,P

γ, subject to:

He
[
PACL(1) + γC>C −PL(1)

µC −µ− λ

]
< 0

P = P> > 0, λmax ≥ λ > 0
µ ≥ 0, γ ≥ 0.

(6.16)

The upper-bound λmax ∈ R>0 avoids an excessive mismatch between the plant and the
dead-band adaptation dynamics.

What follows is a comparison, based on simulations, between the standard Farrelly
and Wellstead observer reported in (6.2), and the modified version with the adaptive
dead-zone presented in this chapter, see (6.5). Simulations have been performed adding
a high frequency noise ν at the measurement, i.e., y = Cx + ν. We show that the dead-
zone observer allows for a selection of larger values of α, without increased sensitivity to
measurement noise. We quantify sensitivity using two indicators: the Signal to Noise Ratio
(SNR) and the Normalized Root Mean Squared Error (NRMSE). The SNR is defined as

SNRdB := 10 log
(
E{x̂>x̂}
E{ν>ν}

)
,
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while the NRMSE is defined as

NRMSE := 1− ‖ x− x̂ ‖
‖ x− E{x} ‖

.

For NRMSE = 1 we have a perfect match between the estimate x̂ and the real value x.
Our simulations show that for a similar value of the SNR the parameter α for the dead-
zone observer is roughly twice the one without dead-zone. Numerical simulations have
been performed with a double track model setting a longitudinal speed of vx = 13.9 m/s,
and a step-like steering angle at the front wheels. The output measurement y = vx + ν is
corrupted by a uniform high-frequency noise (500 Hz) with amplitude ±0.034 m/s. At time
t = 10 s the vehicle encounters a banked road with inclination ϑ = 1.4◦, which introduces a
lateral acceleration bias, see (6.3). The parameters for the dead-zone adaptation have been
obtained by solving the convex optimization problem (6.16), with the selection λmax = 300.
The obtained parameters are γ = 225.37 and λ = 299.9 and thanks to Lemma 6.1, those
are valid design parameters also for negative yaw rates. The simulations are are reported

Starting point banked road

Figure 6.1: Comparison between the simulated (dashed line) and the estimated lateral
velocity with the kinematic observer (green solid line) and the dead-zone observer (red
solid line) during a step-like steering maneuver on the double track model.
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Figure 6.2: Dead-zone “tube” overlapped to the output injection term (top) and filtering
action of the dead-zone (bottom).

α SNR NRMSE
Kinematic Observer 10 42.5 dB 75.50 %
Dead-zone Observer 20 40.3 dB 86.93 %

Table 6.1: Parameter α and performance indicator for the sinusoidal steering test on the
double track model.

in Fig. 6.1. We can observe that for t ≤ 10 s, both observers provide roughly the same
estimate. At time t = 10 s the vehicle encounters the banked road, and the estimates start
to deteriorate. However, since the dead-zone observer has a larger α, it provides a better
estimate. This intuition is also supported by the values of the NRMSE reported in Table
6.1. In Figure 6.2 we can visually interpret the action of the dead-zone mechanism. The
output injection term (gray line in the top plot) is trapped inside the dead-band (blue lines
in the top plot) and the resulting dead-zonated output injection is reported in orange in
the bottom plot.
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6.4 Conclusion

In this chapter we presented an application of the adaptive dead-zone mechanism discussed
in Chapter 4, to the Farrelly and Wellstead kinematic observer. The adaptive dead-zone
reduces the sensitivity to high frequency noise and allows for larger values of the observer
gain. We have shown that the stability of the resulting LPV error dynamics can be cast
as an LMI problem and we have shown its feasibility, under the necessary detectability
condition for the linearized plant. We characterized the effectiveness of the proposed
solution for positive and negative yaw rates. Finally, we tested the effectiveness of our
approach by means of numerical simulations on a non-linear double-track vehicle model.
The implementation of the proposed estimation scheme on an experimental setup will be
the subject of future investigations.
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Chapter 7

Conclusions and perspectives

In this dissertation we studied problems involving linear time-invariant systems in feed-
back with three different types of nonlinearities; a play/stop operator, a switching-reset
mechanism, and an adaptive dead-zone. From a control point of view the arising nonlinear
loops show a few interesting behaviors, e.g., compact sets of equilibria, state constraints,
discontinuities of the vector field, resets of the state, and adaptation mechanisms. To
consider all these possibilities within a unique framework we adopted the hybrid systems
formalism, which easily allows for the integration of all these phenomena. In the first part
of the thesis, we studied the stability properties of these loops mainly through Lyapunov
techniques, while in the second part these properties are exploited to solve real problems
arising in mechatronic applications (in particular related to the automotive world). We
paid particular attention to the numerical tractability of the results, making them broadly
applicable to real world applications. Many designs and stability conditions have been
formulated as linear matrix inequalities, which can be efficiently solved through convex
optimization techniques, and this has been useful to optimize the performance of the ap-
plications presented in the second part of the thesis.

In Chapter 2 we studied a linear single-input single-output system in feedback with a
play/stop operator. We have shown that this operator creates a compact set of equilibria
(an attractor) that can be explicitly characterized. Global exponential stability and global
pointwise asymptotic stability have been proved under the hypothesis of the existence of a
common quadratic Lyapunov function. We also established the equivalence between global
exponential stability, global pointwise asymptotic stability, and their robust counterparts
for this class of systems. We believe that these results open many interesting research
directions. First, it would be interesting to complete the analysis of the single-input single-
output case including the cases of purely imaginary and unstable poles. Simulations suggest
that for this scenario, a nonlinear oscillating regime is reached by the loop. Secondly, the
extension of the current results to the multiple-input multiple-output case also deserves
attention. However, this direction seems to be quite challenging because the equilibrium set
is more complicated, and the existence of a quadratic Lyapunov is a way more restrictive
condition in this case. With high probability, only sufficient conditions can be obtained,
and the equilibrium set can only be approximated. Nonetheless, from a practical viewpoint,
it might still be desirable to provide numerically tractable sufficient stability conditions.
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In Chapter 3 we proposed a reset-switching controller to improve the transient and the
steady-state performance of linear plants. The resulting loop is a full hybrid system, where
a differential equation with a discontinuous right-hand side is coupled with a state reset
law. Roughly speaking, the proposed hybrid mechanism switches between two different
linear controllers, and the reset action keeps the transients between the two well behaved.
Indeed the controller achieves set-point regulation under a large class of switching signals
(essentially all those that satisfy a direct and reverse dwell-time condition), and the two
linear controllers can be designed to meet different performance and activated when needed.
For this hybrid control scheme, many different extensions are possible. Firstly, it would be
interesting to consider more complicated references and disturbances, casting the problem
in the output regulation framework and modeling these signals as the output of a neutrally
stable exosystem. In this scenario, the steady-state response would be a nontrivial function
of the exosystem output, and of the switching signal, making if necessary to use a set of
generalized regulation equations. Linear output regulation for hybrid systems is already
a promising research direction, but to the best of the authors’ knowledge, currently only
periodic switching signals are considered, and the proposed direction appears to be new.
Secondly, it would be interesting to explore the potential of discontinuous control laws
coupled with reset mechanisms.

In Chapter 4 we studied an adaptive dead-zone mechanism that improves the noise re-
jection capability of classical Luenberger and high-gain observers, leading to what we called
dead-zone observers. The adaptation parameter is constrained to the positive orthant, and
using this property we have been able to prove stability using a Lyapunov function that is
positive definite only on a restricted subset of the overall state space. For these dead-zone
observers, it would be interesting to remove the full relative degree assumption and consider
a larger class of nonlinear plants. Nonlinear systems with a uniform relative degree are
good candidates because they can be transformed (with a proper change of coordinates)
into the upper-triangular form used by the standard high-gain construction. Another in-
teresting direction would be to consider other nonlinear functions as output correction
terms. Saturation has already been used in the literature to mitigate the effect of out-
liers at the measured output, but different functions could be used to optimize different
performances. Dead-zone observers could also be combined with the recently proposed
low-power observers to obtain an improved noise rejection capability.

To conclude, we want to say that all the presented results have potentially interesting
applications and in the future, we hope to have the possibility to test their performance in
more realistic scenarios.
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Abstract — In this thesis we study linear time-invariant systems feedback intercon-
nected with three specific nonlinear blocks; a play/stop operator, a switching-reset mech-
anism, and an adaptive dead-zone. This setup resembles the Lure problem studied in the
absolute stability framework, but the types of nonlinearities considered here do not satisfy
(in general) a sector condition. These nonlinear blocks give rise to a whole range of inter-
esting phenomena, such as compact sets of equilibria, hybrid omega-limit sets, and state
constraints. Throughout the thesis, we use the hybrid systems formalism to describe these
phenomena and to analyze these loops. We obtain sharp stability conditions that can be
formulated as linear matrix inequalities, thus verifiable with numerically efficient solvers.
Finally, we apply the theoretical findings to two automotive applications.

Keywords: Hybrid systems, reset control, Lure systems, play/stop operator, adap-
tive systems, pointwise asymptotic stability, linear matrix inequalities.

Résumé — Dans cette thèse, nous étudions la rétroaction de systèmes linéaires
invariants dans le temps reliés entre eux par trois blocs non linéaires spécifiques : un
opérateur de lecture/arrêt, un mécanisme de réinitialisation de commutation et une zone
morte adaptative. Cette configuration ressemble au problème de Lure étudié dans le cadre
de stabilité absolue, mais les types de non-linéarités considérés ici ne satisfont pas (en
général) une condition sectorielle. Ces blocs non linéaires donnent lieu à toute une série
de phénomènes intéressants, tels que des ensembles compacts d’équilibres, des ensembles
hybrides oméga-limites et des contraintes d’état. Tout au long de la thèse, nous utilisons
le formalisme des systèmes hybrides pour décrire ces phénomènes et analyser ces boucles.
Nous obtenons des conditions de stabilité très précises qui peuvent être formulées sous forme
d’inégalités matricielles linéaires, donc vérifiables avec des solveurs numériques efficaces.
Enfin, nous appliquons les résultats théoriques à deux applications automobiles.

Mots clés : Systèmes hybrides, contrôle de remise à zéro, systèmes Lure, opérateur
de jeu/arrêt, systèmes adaptatifs, stabilité asymptotique ponctuelle, inégalités de matrice
linéaire.
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