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Abstract

Quantum computing theory posits that a computer exploiting quantum me-

chanics can be strictly more powerful than classical models. Several quan-

tum computing devices are under development, but current technology is

limited by noise sensitivity. Quantum Annealing is an alternative approach

that uses a noisy quantum system to solve a particular optimization prob-

lem. Problems such as SAT and MaxSAT need to be encoded to make use

of quantum annealers. Encoding SAT and MaxSAT problems while respect-

ing the constraints and limitations of current hardware is a difficult task.

This thesis presents an approach to encoding SAT and MaxSAT problems

that is able to encode bigger and more interesting problems for quantum

annealing. A software implementation and preliminary evaluation of the

method are described.
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Chapter 1

Introduction

Disclaimer: The research work described in this PhD Dissertation is joint

work with Dr. Zhengbing Bian, Dr.Fabian Chudak, Dr.William Macready,

Dr.Aidan Roy from D-Wave System Inc. and with my advisor Prof.Roberto

Sebastiani from Università di Trento. Most of the scientific content pre-

sented here can be found in the papers:

• Zhengbing Bian, Fabian Chudak, William Macready, Aidan Roy,

Roberto Sebastiani, and Stefano Varotti. Solving SAT and MaxSAT

with a quantum annealer: Foundations and a preliminary report. In

The 11th International Symposium on Frontiers of Combining Sys-

tems, FroCoS’17, volume 10483 of LNCS. Springer, 2017.

• Zhengbing Bian, Fabián A. Chudak, William G. Macready, Aidan Roy,

Roberto Sebastiani, and Stefano Varotti. Solving SAT and MaxSAT

with a quantum annealer: Foundations, encodings, and preliminary

results. 2018. https://arxiv.org/abs/1811.02524 . Under submis-

sion for journal publication.

The development of quantum computing theory has been one of the

most intense area of research in complexity theoretical computer science

in recent years. Many ways have been devised to exploit quantum weird-

1



1.1. THE PROBLEM CHAPTER 1. INTRODUCTION

ness to obtain computational speedups, but the development of quantum

computing hardware has been stuck by the high susceptibility to noise.

While noise tolerant quantum circuits are slowly improving over time, the

currently available hardware shows a behavior that is typical of quantum

systems but provides limited computational flexibility. Quantum anneal-

ers accept some level of noise and decoherence to allow for large quantum

systems.

1.1 The Problem

Quantum annealers are able to solve a specific subset of a single optimiza-

tion problem. Whereas this problem is NP-hard, and thus it is theoretically

possible to convert any NP problem instance into such problem, in practice

the process of encoding is difficult due to several limitations.

The thesis will focus on SAT problems, as alternative tools able to tackle

worst-case instances would be critically useful. Whereas the hardware is

able to solve several NP-hard problems it is not particularly suited to solve

SAT problems. To demonstrate the capabilities of quantum annealing,

SAT problems that are considerably hard for state-of-the-art SAT solvers

are preferred. Encoding such a problem into a quantum annealing problem

would provide a convincing evaluation for the approach.

1.2 The Solution

In this thesis, a method is proposed to encode SAT and MaxSAT problems

into quantum annealing problems. First, a method to generate optimal en-

codings for Boolean functions is outlined. This method uses SMT solvers

and requires knowing the models and counter-models of the Boolean func-

tion, and thus it is not applicable to solve large SAT problems. SMT

2



CHAPTER 1. INTRODUCTION 1.3. STRUCTURE OF THE THESIS

solving is instead used to build a library of efficiently encoded gates.

The second part of the solution consists in a multi-step process where

the input Boolean formula is broken into multiple components from the pre-

encoded library and these elements are re-composed into a final quantum

annealing problem. This part uses a heuristic approach to shape the input

formula into an encoding that respects the hardware constraints.

This approach provides an effective and efficient method for SAT prob-

lem encoding. It is thought for SAT solving of generic Boolean circuits,

while the state of the art is focused either on optimization problem or in

specific constraint satisfaction problems.

1.3 Structure of the Thesis

The first half of the thesis, containing Chapter 2 to 4, will provide the

context and background for the thesis. The second chapter will outline

the motivations behind this area of research and the goals of this thesis,

why quantum computing can be useful and what are the current limits.

The third chapter will provide a comprehensive background on quantum

computing, quantum annealing and other aspects of quantum computation,

and then it will introduce various logic problems such as SAT, MaxSAT,

SMT and OMT. The fourth chapter will survey related work on the same

problem and highlight differences and limitations.

The second half of the thesis, from Chapter 5 to 9, will show the novel

contributions. The fifth chapter will lay the theoretical foundations for

the rest of the work, stating concepts such as penalty functions, variable

placement, and embedding. The sixth chapter will explain how to use

SMT and OMT solvers to find the optimal encoding of a Boolean function

and possibly a placement. The seventh chapter will provide a framework

for encoding large SAT problems using functions pre-encoded with the

3



1.3. STRUCTURE OF THE THESIS CHAPTER 1. INTRODUCTION

techniques explained in the previous chapter. Each of the steps will be

explained in details. The eighth chapter will describe an implementation

of the work, describing details and usage of several Python libraries. The

basic file formats, encoding tasks and command line interfaces will be de-

scribed. Finally, The ninth chapter will provide an experimental evaluation

of the techniques on SAT and MaxSAT problems, with details on the choice

of the benchmark problem.

4
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Motivations, Background,

State-of-the-art





Chapter 2

Motivations and Goals

Quantum computing research has been thriving over the last decades since

its inception. This chapter is dedicated to explaining the reason for this

interest, what is its potential advantage over currently available computers,

and what are the obstacles that need to be overcome. First it will introduce

the context of quantum computation and computational complexity. Then

it will outline the computational advantages of quantum computing, and

its practical limits. Finally, the chapter will focus on the particular branch

that the thesis will contribute to and on which are the main obstacles to

be overcome.

To understand the interest in quantum computing we need to consider

its context in the field of complexity theory. Complexity theory is con-

cerned with the asymptotic resource requirements necessary to solve a

problem. One of the most important results in complexity theory is NP-

completeness and NP-hardness. These concepts are fundamental and re-

quired for understanding quantum computing. In the last 20-30 years there

has been a development of the theory of quantum computing complexity.

This theory has important implications in computer science and physics

and opens new possibilities in computing.

Whereas the research on quantum computer technology still has not

7



2.1. INTRACTABLE PROBLEMS CHAPTER 2. MOTIVATIONS

reached the goal of manufacturing reliable large-scale devices, limited alter-

native models have proven to be feasible. In particular, quantum annealing

has shown an advantage over the classical version, simulated annealing. We

will see how quantum annealing differs from gate-model quantum comput-

ers and what are the limits of this approach.

2.1 Intractable problems and NP-Hardness

Two of the most important concepts in complexity theory are nondeter-

ministic polynomial complexity and NP-hardness. The Nondeterminis-

tic Polynomial (NP) class of problems consists in all the problems that

have an algorithm that, given a solution, are able to check it in polynomial

time. If no better algorithm is available, in the worst case every possible

solution has to be checked. A NP-hard problem is a problem such that an

instance of any problem in the NP class can be converted into an instance

of the NP-hard problem. Thus, an efficient solver for any single NP-Hard

problem would be capable to solve all NP problems as well. For this reason

NP and NP-hard problems are considered to be intractable, i.e. they do not

have an efficient algorithm. The proof of intractability of NP problems (the

so-called P vs. NP problem) is still an open problem, but intractability

is strongly believed due to various weaker theorems [46]. All NP-complete

and NP-hard problems known so far have no efficient algorithm, and any

algorithm found would solve efficiently all the other problems. When we

encounter NP-hard algorithms in the real world, we rely on heuristics and

approximations, and we are not guaranteed to reach the solution of our

problem in a reasonable time.

Intractability is a problem because many real-world useful problems are

NP-Hard, from optimization, planning and artificial intelligence in general,

system analysis and many others. Almost all cryptography techniques rely

8



CHAPTER 2. MOTIVATIONS 2.2. QUANTUM EFFICIENT PROBLEMS
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Figure 2.1: Venn diagrams for complexity classes, if P 6= NP or if P = NP . c©Behnam

Esfahbod, under CC-BY-SA license.

on the intractability of various NP algorithms. As an example that will

be useful later, Public Key Cryptography relies on the hardness of

the factorization problem. Factorization is in NP and no polynomial time

algorithm is known, but it is not believed to be NP-hard. The abstract

nature of the NP-hardness definition implies that problem complexity and

intractability is independent of the hardware used, as long as it follows

the deterministic turing machine model. This was the case for all known

computer architectures until the development of quantum computing the-

ory. The non-determinism of quantum mechanics happens to allow a more

powerful model of computation.

2.2 Quantum efficient problems

The most surprising characteristic of the quantum mechanics theory is

the intrinsic non-determinism that it suggests. The laws of physics are

generally formulated in order to gain more knowledge about the world,

but quantum mechanics posits that there are some details of reality that

9



2.2. QUANTUM EFFICIENT PROBLEMS CHAPTER 2. MOTIVATIONS

are intrinsically unknowable. It is an inherently probabilistic theory, un-

like statistical mechanics. In the classical statistical mechanics view of the

world, probability distribution is caused by the uncertainty of the observer.

In quantum mechanics we have superposition of states instead. Different

world histories interfere with each other. This leads to all kinds of counter-

intuitive phenomena: entanglement, tunneling. A notable example is the

Einstein-Podoslky-Rosen paradox, an experiment that disproves any hid-

den variable theory [86].

Quantum computing is a model of computation that relies on the weird-

ness of quantum mechanics. We expect a computer to strictly follow a

specific sequence of instructions and acts on it internal state to reach a so-

lution. This is the deterministic model of computation. Non-deterministic

automata instructions instead are partially defined, and succeed when there

exists a sequence of legal instructions that solve the problem.

As a quantum system is a superposition of classical states, a quan-

tum computer is in a superposition of states. While the evolution of a

quantum system is completely determined by its Hamiltonian function,

Bell’s theorem provides an example of a quantum system which behavior

cannot be described by a deterministic local state (a local hidden vari-

able). The behavior of quantum computers lie in between deterministic

and non-deterministic machines, more powerful than deterministic, but

bound by quantum-mechanic laws to less than the vast possibilities of

non-deterministic automata. The implications of this will be explored fur-

ther in the next chapter. The class of problems that are efficiently solvable

by quantum computers is called bounded-error quantum polynomial

time (BQP). Various problems have been shown to have efficient quan-

tum algorithms. The performance of a quantum algorithm relative to the

best classical alternative is called quantum speedup. It is not necessarily

the case that the quantum algorithm is asymptotically better, but quantum

10



CHAPTER 2. MOTIVATIONS 2.2. QUANTUM EFFICIENT PROBLEMS

Problem
Classical

complexity

Quantum

complexity
Quantum speedup

Factorization O(e(n logn)1/3) O(n2 log n) exponential

Unstructured search O(2n) 2
√
n quadratic

Deutsch–Jozsa algorithm O(2n) 1 exponential

Table 2.1: Complexity comparison between various algorithms, quantum speedups [56].

computing subsumes classical computing so it can only improve.

The most famous problem that is sped up by quantum computers is fac-

torization, which hardness underlies all public key cryptography schemes

used nowadays on the Internet. In 1994, Peter Shor showed that there is a

quantum algorithm that solves efficiently factorization[87]. Thus the abil-

ity to manufacture a scalable quantum computer would compromise most

current internet security standard. As research makes quantum computing

more and more feasible, there is large interest for quantum-proof encryp-

tion, and work for standardization is underway[11, 26]. On the upside,

another important problem in BQP is simulation of quantum systems[40].

Quantum supremacy obviously implies that quantum systems are not ef-

ficiently simulable by classical computers. We would like to predict and

analyze the behavior of quantum systems, and classical computer can do so

with limited accuracy. An efficient quantum simulation would be extremely

useful in science, especially material science.

Still, a quantum computer is not as powerful as a generic non-deterministic

Turing machine. Grover’s algorithm [51] provides a brute-force search

that improves worst case complexity from O(2n) to O(2
√
n), and subse-

quent work has proved that this is the best possible quantum algorithm

for unstructured search[10]. In this case then the best result we can get

is only a quadratic speedup, which is still worse than a non-deterministic

Turing machine that is exponentially faster.

The optimality of Grover’s algorithm implies that exponential speedup

11



2.3. NOISE & QUANTUM COMPUTING CHAPTER 2. MOTIVATIONS

can be obtained only when the problem has an underlying structure that

can be exploited. For example, factorization can be sped up because it

is a special case of the so-called hidden-subgroup problem. The hidden-

subgroup problem consists in finding an algebraic group hidden in a bigger

algebraic structure, and quantum computers can solve it efficiently in the

case of finite Abelian groups. Table 2.1 shows a sample of algorithms and

their best-known complexities on classical and quantum computers.

2.3 Noise and decoherence in quantum computing

Whereas quantum computing theory has grown considerably and presented

many useful novel algorithms, the construction of an actual quantum com-

puter has proved to be a challenge. As we will see later, quantum comput-

ing assumes a noiseless computing hardware, and by itself has no provision

for noise tolerance. Thus, quantum computers are really sensitive to noise,

as any interaction with environment causes decoherence. A system that

fully loses coherence becomes equivalent to a non-quantum system in a

random state. Indeed a topic of great interest in quantum computing and

quantum communication is error resilience. Some solutions are quantum

error correction or topological quantum computing.

E C

G

|φ〉

|0〉

|0〉

|φ〉L

Figure 2.2: An example of quantum circuit, where the input is encoded. Each logical

qubit is represented as group of three physical qubits (on the right), and is error corrected

after the operation.

Quantum error correction subsumes standard error correction schemes

12



CHAPTER 2. MOTIVATIONS 2.3. NOISE & QUANTUM COMPUTING

in order to be able to cope with corruption of quantum states. A system of

multiple qubits is used to resiliently store a single logical qubit. An illus-

tration of a circuit with a simple error correction mechanism is available

in Figure 2.2. Before the computation happens, a single logical qubit is

encoded into multiple qubits and after computation any error or change

is corrected. If the error level in the underlying system is below a certain

threshold, one can build a error correction system with arbitrarily low error

rate[47]. It is estimated that thousands of qubits are necessary for error-

correcting a single logical qubit[27]. Whereas the technology is bound to

improve, error-free quantum computation needs to attain significant man-

ufacturing improvements before being possibly realizable.

Currently available quantum computing hardware is still too noisy to

perform significant error-corrected quantum computation. An alternative

approach is instead to focus on exploiting quantum systems that are noisy

and decohere quickly: a way to do that is using a process called Quantum

Annealing. Quantum annealing is the quantum analogue of simulated an-

nealing, a standard algorithm in optimization. Simulated annealing mimics

the annealing process in physics in order to optimize a desired function. It

is often effective because it provides a simple compromise between exploita-

tion and exploration, but of course it is likely to get stuck on sub-optimal

solutions on hard problems. Quantum annealing is essentially a quantum

system that undertakes an annealing process. it is less likely to get stuck in

higher-energy states due to the tunneling effect even if the system loses

coherence before the end of the process.

13



2.4. AQC AND ANNEALING CHAPTER 2. MOTIVATIONS

2.4 Adiabatic Quantum Computing and Quantum An-

nealing

Quantum annealing is closely related with the theory of adiabatic quantum

computing. Adiabatic quantum computing is an alternative model of

quantum computing that exploits the quantum adiabatic theorem. This

theorem ensures that a quantum system that evolves sufficiently slowly in

time will stay in the lowest energy state, called ground state. An adi-

abatic quantum computer works by slowly transitioning a cold quantum

system from a standard initial state into a desired final state. The user

programs the computer by engineering the system in such a way that its

final ground state encodes the solution to the specified problem. The time

necessary to perform this transition is determined using the quantum adi-

abatic theorem, and depends on the lowest energy gap between the ground

state and the second lowest energy state during the transition.

The minimum transition time represents the time required by an adia-

batic quantum computer to solve a problem. Because of this its estimation

and asymptotic growth has been the focus of researchers. Initially it was

thought to be more powerful than traditional quantum computing, but a

careful analysis proved worse performance when the annealing speed is as-

sumed to be constant, and equivalent with an adaptive annealing speed [3].

Furthermore, a traditional quantum computer can be simulated with an

adiabatic one and vice versa, so they truly are two different interpretations

of the same computing model. Adiabatic quantum computing though has

an advantage considering that it takes noise in consideration: the minimum

energy gap separates the noiseless ground state from noise-excited states,

and thus ensures that there is no interaction with noise below a certain

level. Thus, compared to the gate model the adiabatic model includes a

form of noise resilience in its model. On the other hand, there is no known

14
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error correction threshold theorem for AQC.

Adiabatic quantum computing assumes that the system never leaves the

ground state. This happens only when the system is at absolute zero and

perfectly isolated, or at least when it is isolated up to noise lower than the

minimum gap. In real systems though the temperature can never reach

absolute zero, and noise cannot be eliminated completely. Thus with the

current technology we cannot reliably ensure the adiabatic condition. In

fact, current hardware still faces significant problems in managing noise

and large scale systems tend to lose coherence very fast.

We can still exploit the fact that when the adiabatic condition is re-

moved the system still tends toward the lowest energy state in a process

called annealing. A quantum annealer still shows the presence of quantum

effects but loses coherence during the run. Quantum annealing accepts a

loss of coherence that is too big to perform adiabatic quantum computing,

but still manages to exploit partial coherence to perform tunneling. While

simulated annealing perform a stochastic search of the lowest energy state,

a quantum annealer tries to exploit coherence to explore a larger state

space at the same time [4].

Quantum annealers, compared to the quantum gates model, have also

a benefit in their affinity to the simulated annealing algorithm. While

quantum algorithm like Shor’s algorithm have no counterpart in classical

computing, simulated annealing is a widely used and established algorithm

in stochastic optimization. Thus simulated annealing can provide a clear

reference for evaluating performance and results of quantum annealers.

2.5 Quantum Annealers and D-Wave

D-Wave Systems has built several quantum annealers. These machines

consist in Josephson junctions with tunable interactions. This kind of
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circuit requires to be cooled to close to 0 degrees Kelvin, and are heavily

shielded against EM radiation.
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Figure 2.3: D-Wave’s Quantum annealer. A picture of the refrigerator/shielding with

a detail on the chip and on the schema of a Josephson junction. Courtesy of D-Wave

Systems Inc.
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The energy model of a D-Wave quantum annealer can be represented

by a second degree real polynomial in where qubit states can be either -1

or 1. Such type of models is widely studied in Physics, and it is known

as Ising model. The formula for this model is shown in equation 2.1. In

this model, zi are variables in {−1, 1} and represent the state of a qubit.

The parameters θ that influence the system’s behavior are divided in three

types: θ0 is called offset, the θi are called biases and the θij are called

couplings.

P (z)
def

= θ0 +
∑
i

θizi +
∑
i,j

θijzizj (2.1)

The problem of finding the ground state given of an Ising model is a

particular case of the so called quadratic unconstrained binary opti-

mization (QUBO) problem.1It is easy to show that QUBO is a NP-hard

problem by reducing CIRCUIT-SAT (satisfiability of a Boolean circuit), a

NP-complete problem, into QUBO. We can translate each gate of a cir-

cuit into a simple sub-problem and then compose them in a consistent way

(we will see later how). Table 2.2 shows simple translations for basic logic

gates.

Gate Formula QUBO polynomial

AND x3 = x1 ∧ x2 3− x3 − x2 + 2x1 + x3x2 − 2x3x1 − 2x2x1

XOR x3 = x1 ⊕ x2
5 + x3 + a2 − a3+

+x1a1 − x1a2 − x1a3 − x2a1 − x2a2 − x2a3 + x3a2 − x3a3

NOT x2 = ¬x1 1 + x1x2

Table 2.2: QUBO encoding of the basic logic gates. The QUBO polynomial is at its

minimum value when the relation between variables is true. Notice how implementing

the XOR gate requires adding two ancillary variables.

1Usually QUBO problems are stated on variables in {0, 1} rather than {−1, 1}, which is an equivalent

formulation
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D-Wave’s machine has been demonstrated to have better performance

than simulated annealing for certain random QUBO problems [59], and

has been used for solving traffic optimization [73] and quantum simula-

tion of material properties [57]. Using the naive conversion from SAT to

QUBO instead yields QUBO problems that are not suited to the annealer

architecture, thus so far naively-encoded circuits are too large or are very

simple for a traditional SAT solver.

Figure 2.4: D-Wave annealers growth over the years. Courtesy of D-Wave Systems Inc.

The number of available qubits in D-Wave’s quantum annealers is grow-

ing in a Moore-like fashion. Figure 2.4 shows the history of D-Wave ma-

chine in the last years and illustrates the phenomenon. This suggest an

explosive growth of computing power considering that the number of qubits

grows exponentially. In the latest years D-Wave put effort into improving

the architecture rather than just increase the number of qubits. The result

is a newer, better-connected architecture called Pegasus. We will see in the

following chapters the implications of having this improved architecture.
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2.6 Issues in Encoding for Quantum Annealers

Quantum annealers are still hard to build and operate at large scale. While

naive conversion from circuit to QUBO is straightforward, the result is

cannot be passed to the quantum annealer directly. This is because so far:

• The number of available qubits is limited.

• The number of couplings is limited.

• Noise and control precision limit the chances of success.

The number of available qubits is limited. Even with 2000+ qubits, the size

of problems that can be solved is still small. This is because the majority of

qubits in quantum annealing has to be used to encode the problem, unlike

circuit models where the number of qubits represent the input width and

the circuit size are two different metrics for complexity. Consider a boolean

circuit that we want to check for satisfiability. In Grover search we need

enough gate to set up a superposition and run the circuit reversibly, and

while this is costly we can reuse qubits for intermediate values. When

using quantum annealing we need to encode the full circuit into a Ising

model. Thus a deep circuit using many levels with relatively few bits at a

time (for example, a cryptography primitive with a limited internal state

and many computation rounds) will require less qubits (ignoring the space

requirements of gates).

The number of couplings is limited. For a complete graph, the number of

possible couplings grows to the square of the number of qubits. While

difficult problems are not necessarily dense, a few qubits tend to have high

degree. In practice, each qubit can be coupled to a fixed low number of

neighbors, and the number of available couplings scales with the square
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root of the number of qubits. The problem encoding process then has to

accommodate for the couplings that are available. In general, there is a

measure that correlates directly with problem complexity[39], called tree-

width. It is a measure of similarity to trees and will play an important

role in the encoding process. In Chimera and Pegasus, tree-width grows

linearly with the number of qubits.

Figure 2.5: A small Chimera annealer with missing qubits. A 3-by-3 grid of Chimera

tiles, where the top-left and middle-right tiles have a damaged/unusable qubit.
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Noise and control precision limit the chances of success. Whereas the D-

wave machine is close to 0 K and heavily shielded, noise can still cause

performance degradation. In annealing the ground state of the annealer

encodes the best solution of our problem while higher energy states are

less useful. Thus we wish to have energy gaps between solution and non-

solutions that are as large as possible. Furthermore, obviously there are

range bounds and precision limits on the biases and couplings.

2.7 Goals

The concept of intrinsic greater power of quantum computers is generally

called quantum supremacy. Proving quantum supremacy with a real

device is a major goal of quantum computing research. To test for it we

need problems that are impossible for standard computers and easy for

quantum ones. CSP and SAT problems are very general problems, and

tend to become very hard even for small sizes. SAT problems have the

potential to be small enough to fit in the hardware but are still very hard

for traditional computers.

D-Wave’s quantum annealers have proven their strength for certain ran-

dom QUBO problems that match their architecture. Exploiting the an-

nealer for generic problems is less straightforward due to the need of en-

coding. Quantum annealing hardware is expected to grow in a Moore-like

fashion, so it will eventually reduce the overhead, but we want to exploit in

the best way the hardware we have now or in the near future, and possibly

to solve interesting problems with it. My research goal is to pick a NP-hard

problem and convert into an Ising problem in an effective and efficient way.

Effective means that the encoding process is capable to produce encod-

ings that fit in the available hardware, even when the input problem is
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considerably big/difficult.

Efficient means that the encoding process is reasonably fast to perform,

at least it has to be faster than actually trying to solve the problem with

a standard computer.

First we will lay down a theoretical framework to approach the encoding

problem. We will frame it as a logic problem. This framework will become

the basis for the use of SMT solving techniques. We will then outline the

encoding strategy and describe in details each step. Then I will discuss

how to decompose the encoding process and how to perform each step

in software. After the process to encode a problem into a single quantum

annealing problem, we need to consider how to exploit quantum annealing.

In practice we need to decompose our problem into sub-problems that are

solvable by the hardware and reasonably hard for traditional computers.

In later chapters we will see how it can be done. Finally we will perform

some preliminary evaluation to test the consistency of the approach.
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Chapter 3

Background

3.1 Quantum computing

We will start with a quick survey on quantum computing. Whereas the en-

coding process can consider the actual computation as a black box process,

the theory behind quantum computation is useful to justify the context of

the thesis and it can provide useful tools to interpret the results. As the

survey will be lacking in depth, the reader is invited to refer to Quantum

Computation and Quantum Information[74] for further details.

3.1.1 Quantum mechanics

The theory of quantum mechanics is based on the theory of complex linear

algebra. In this survey a basic knowledge of linear algebra will be neces-

sary, but most of the concepts will be explained as they appear. For the

purpose of the thesis the survey will assume only the finite dimensional

spaces, as they represent quantum system with discrete states. General-

izing results from finite-dimensional to infinite-dimensional spaces is not

trivial, but most of the assertions in this survey are equally valid in the

infinite-dimensional case.

The theory of quantum mechanics can be stated with a series of four
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basic postulates. These postulates will serve as a framework to write and

reason about quantum phenomena. The first postulate defines the state of

a quantum system:

Postulate 1. Associated to any isolated physical system is a complex vector

space with inner product (that is, a Hilbert space) known as the state space

of the system. The system is completely described by its state vector, which

is a unit vector in the system’s state space.

The basis of the Hilbert space will represent the set of possible out-

comes, i.e. the post-measurement classical states that we can observe. For

example, a system with two possible states (i.e. a qubit), the state of the

system will be represented as a two dimensional vector with two basis vec-

tor that we will call, using the ket-notation, |0〉 and |1〉. We call a pure

state a unit vector (or, equivalently, a ray) in the Hilbert space that rep-

resents a possible state of the system. We consider only unit vectors as

states as possible outcomes depend only on the relative amplitudes and

phases between vector components.

A pure state represents a perfectly known system; We can model uncer-

tainty over the quantum state with the so-called mixed states. A mixed

state is a distribution over superposition of states. It can be represented

simply as a density operator, a convex combination of multiple projective

operators. Thus, given possible states |Ψi〉 with probabilities pi, the mixed

state ρ of the system is:

ρ =
∑
i

pi |Ψi〉 〈Ψi| (3.1)

Two observations can be done on this formula. First, the density matrix

for a pure state is simply its projection operator |Ψ〉 〈Ψ|. Then, in the same

way that
∑

i pi = 1, we have that the trace of the density operator tr(ρ) is

1.
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The second postulate describes how a quantum system evolves over time:

Postulate 2. The time evolution of the state of a closed quantum system

is described by the Schrödinger equation,

i
d |Ψ〉
dt

= H |Ψ〉 (3.2)

H is a fixed Hermitian operator known as the Hamiltonian of the closed

system. Then, the evolution of a closed quantum system is described by a

unitary transformation. That is, the state |Ψ1〉 of the system at time t1 is

related to the state |Ψ2〉 of the system at time t2 by a unitary operator U

which depends only on the times t1 and t2.

|Ψ2〉 = U |Ψ1〉 (3.3)

Recall that an Hermitian operator is an operator H that is its own dual

(H = H†) and always has a spectral decomposition (H =
∑

i ei |Ei〉 〈Ei| , ei ∈
R), while a unitary operator is a operator U such that U †U = I. The

spectral decomposition of the Hermitian matrix in Schrödinger equation

has an important interpretation. The eigenstates |Ei〉 are called station-

ary states, and the eigenstate with lowest eigenvalue e0 is called ground

state. A direct consequence of the spectral decomposition is that quantum

states evolve using unitary matrixes. If the quantum state is a unit vector,

a quantum computer instruction is a unitary operator.

We can easily generalize system evolution on a mixed state ρ given the

unitary operator U :

ρ′ = UρU † (3.4)

Notice how the postulate refers to an isolated system and a Hamiltonian

fixed in time. We generally want to interact with a system and vary its
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Hamiltonian. For many such systems we can write a time-varying Hamil-

tonian, where the effect of the environment on the system is represented

with a changing Hamiltonian H(t):

i
d |Ψ〉
dt

= H(t) |Ψ〉 (3.5)

The third postulate describes how the quantum world interacts with the

classical world, i.e. how measurements are made.

Postulate 3. Quantum measurements are described by a collection {Mm}
of measurement operators such that:

∑
m

M †
mMm = I (3.6)

These are operators acting on the state space of the system being mea-

sured. The index m refers to the measurement outcomes that may occur

in the experiment. If the state of the quantum system is |Ψ〉 immediately

before the measurement then the probability that result m occurs and the

state of the system after the measurement are given by:

p(m) = 〈Ψ|M †
mMm |Ψ〉 (3.7)

|Ψm〉 = Mm|Ψ〉√
p(m)

(3.8)

The postulate is the most general specification of measurement. In the

simplest case, called projective measurement, the Mm operators can

be mapped into projective operators for a particular basis of the Hilbert

space:

M †
mMm = Pm = |φm〉 〈φm| (3.9)

In the case that the measurement outcomes m are real-valued, we can

represent the measurement with a single matrix M , called observable.
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This form allows us to represent concisely the expected value of the mea-

surement EΨ [M ].:

M =
∑

mm |φm〉 〈φm| (3.10)

EΨ [M ] = 〈Ψ|MΨ〉 (3.11)

We can generalize the measurement of a mixed state ρ and get its prob-

ability and post-measurement state:

p(m) = tr(M †
mMmρ) (3.12)

ρm =
M †

mρMm

p(m)
(3.13)

Notice how we have non-determinism in measurement. Even in a fully-

known pure state the outcome of a measurement can be random. Fur-

thermore, measurement is a destructive operation, as the original state is

modified, and only projective measurements are repeatable, i.e. applying

the same measurement twice yields the same result.

The last postulate describes the composition of quantum states:

Postulate 4. The state space of a composite physical system is the tensor

product of the state spaces of the component physical systems. Moreover,

if we have systems numbered 1 through n, and system number i is prepared

in the state |Ψi〉, then the joint state of the total system is |Ψ1〉 ⊗ |Ψ2〉 ⊗
...⊕ |Ψn〉.

For example the composition of two one-qubit systems labeled a and b,

each using the base |0〉 , |1〉, is a Hilbert space with basis:
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|0a〉 ⊗ |0b〉 = |00〉

|0a〉 ⊗ |1b〉 = |01〉

|1a〉 ⊗ |0b〉 = |10〉

|1a〉 ⊗ |1b〉 = |11〉

It follows then that the number dimensions of a discrete Hilbert space

doubles for each added qubit. Thus, the representation of a quantum state

in a classical computer needs an amount of space that is exponential to the

number of qubits. This is one of the reasons for distinction from quantum

and classical computing, and what makes many-body matter simulations

hard to simulate and predict.

Another important consequence is that a two-qubit system can be put

in entangled state |Ψ〉 = |00〉 + |11〉. This state is peculiar because the

system cannot be expressed anymore as the composition of two single-

qubit systems: this is an entangled state.

3.1.2 Qubits, quantum gates, adiabatic computing

The basic unit of quantum information is a qubit, a discrete quantum

system with two possible states usually called |0〉 and |1〉. While a bit is

an element that can be in one of two states, a qubit is in a superposition of

these two states. A qubit state can be represented as a point on the Bloch

sphere. A pure state is a point on the surface while a mixed state as a

point inside its volume. Notice that this representation fails to generalize

to multiple qubits.

Within the Bloch representation, unitary transformations are repre-

sented by 3d rotations and reflections of the sphere. Thus, while the only

single-bit functions are identity and negation, we are able to perform sev-

eral several quantum operations on a single qubit. The simplest example
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|1〉
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2
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Figure 3.1: Representation of the state of a single qubit as a Bloch sphere. Any point

on the surface of the sphere represents a pure state, and any point inside the sphere

represents a mixed state.

is negation (Equation 3.14), other important operations are the Hadamard

gate (Equation 3.15) and the π/8 half-phase gate (Equation 3.16).

X =

[
0 1

1 0

]
(3.14)

H =

√
2

2

[
1 1

1 −1

]
(3.15)

T =

[
1 0

0 eiπ/4

]
(3.16)

The most important multiple qubit operation is the controlled-not gate

(CNOT) where the second bit is negated if the first is 1. The CNOT,

Hadamard and π/8 half-phase gate are a universal set of gates [74]. This

means that we can approximate any quantum transformation on an ar-

bitrary number of qubits using only these gates. Figure 3.2 shows the

canonical representations for these common gates. These gates are funda-
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mental for quantum computing theory, and by virtue of their universality

they can represent any computation done by quantum systems, but as we

will focus on quantum annealing, they will be of limited use.

X H T

Figure 3.2: Standard representation for the basic quantum gates (from left to right:

negation, Hadamard, half-phase and controlled not).

3.2 Adiabatic Quantum Computing and quantum an-

nealing

3.2.1 Adiabatic Quantum Computing

The adiabatic quantum computing approach relies on the adiabatic quan-

tum theorem. It is a direct consequence of the time-dependent Shrödinger

equation. The adiabatic theorem states that when the Hamiltonian changes

slowly enough over time, a quantum system that starts in the initial ground

state ends in the final ground state.

Theorem 1. Given a quantum system at ground state
∣∣Ψi

0

〉
and the time-

varying Hamiltonian H(t) = Hi(T −t)+Hf t, given large enough transition

time T the system will stay in the ground state up to the final state
∣∣∣Ψf

0

〉
.

As stated above, the theorem does not specify any explicit bound on

T . In general, if gmin is the minimum energy gap between the ground

state |Ψ0(t)〉 and the other stationary states the required time will be

proportional to the inverse of the square of gmin, but there are more rigorous

bounds on the transition time. AQC can efficiently simulate quantum gates

and vice versa: A quantum circuit can be encoded as the ground state of

a Hamiltonian, and the AQC Hamiltonian can be integrated to a unitary
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operator that can be approximated by quantum gates. The reader that is

interested in a thorough exposition is suggested to consult [3].

The quantum adiabatic theorem holds for a system that is already at the

ground state. If we switch point of view to thermodynamics, this state is at

the absolute zero temperature. In theory, in an adiabatic quantum system

the quantized energy gaps theoretically ensures that a higher temperature

requires a discrete amount of energy. In thermodynamics when the tem-

perature is not zero we have a process called annealing. Both in classical

and quantum annealing the probability of a certain state is governed by

Boltzmann statistics, stated in Theorem 2.

Theorem 2. A thermodynamic system at equilibrium can be found in the

state x with the following probability:

p(x) =
1

Z
e

E(x)
kT (3.17)

where T is the temperature of the system, and Z is the partition function:

Z =
∑

x e
E(x)
kT

The Boltzmann distribution is used widely to calculate properties of

thermodynamics systems. The most relevant observation for the thesis is

that when the temperature is high every state is equi-probable while when

the temperature is small low energy states are more probable. Simulated

annealing consists essentially in simulating a system moving toward equi-

librium while lowering the temperature. A low energy state consists in a

solution with a low cost according to the problem constraints.

Boltzmann statistics are valid for classical Ising model and quantum

systems at high temperature and low concentrations, and so are limited in

explaining quantum annealer, but are conceptually important when con-

sidering open quantum systems that tend toward an equilibrium state [5].

33



3.2. AQC AND QA CHAPTER 3. BACKGROUND

3.2.2 Ising models

So far the Hamiltonian function that represent the energy landscape has

been not yet defined. The quantum annealers that will be used in this

thesis will have an Ising energy model. The Ising model is one of the most

important models in statistical physics. It has been used to study various

phenomena in matter, like magnetization.

In the Ising model the particles/elements can be only in two states, −1

or 1. The Hamiltonian is defined as a second degree real polynomial on

binary variables (Equation 3.18). In this polynomial θi represent biases of

a single element, while θij represent the effect of interaction between pairs

of elements.

H(z) =
∑
i

θizi +
∑
ij

θijzizj (3.18)

The problem of finding the minimum of a polynomial over binary vari-

ables is called quadratic unbounded binary optimization (QUBO).

A QUBO problem ask, given a quadratic polynomial with binary variables

what is its minimum value assignment. In the QUBO literature it is usually

assumed that variables takes values in {0, 1} while Ising model variables

take values in {−1, 1}, but the two representations are equivalent and con-

version is trivial. If the state of the system is expressed as a binary vector

z ∈ {0, 1}n, the QUBO problem derived by an Ising model can be expressed

also as a quadratic form (Equation 3.19). In this case the parameters are

represented with a single matrix Θ.

H(z) = zTΘz (3.19)
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3.2.3 Induced graphs and their properties

Ising models are generally classified by the topology of the interaction.

Given a second degree polynomial we can define an induced graph where

vertices are variables/qubits, edges are non-zero second degree terms or

available couplings. The properties of the induced graph are important

in terms of complexity of the problem and useful for encoding. Given a

graph G, a graph minor is a graph where an edge or a vertex is removed,

or two vertices are merged. When G is an induced graph, setting the value

of a variable or forcing equivalence between two variables is equivalent to

removing or merging vertices.

The shape of the induced graph of a QUBO problem affects its hardness.

We have seen that QUBO is a NP-hard problem in the general case, but

it is not trivial that an Ising model with a certain topology is NP-Hard as

well, and indeed a planar graph with no biases are tractable [7]. Later we

will see various method to reduce general QUBO problems into problems

that have the induced graph of the quantum annealer hardware.

In later chapters we will make use of symmetries in induced graphs. A

permutation σ : V → V is an automorphism of a graph G if relabeling

its vertices with σ produces the same graph: σ(G) = G. Automorphisms

form a group (where the identity function is the identity and function

composition is the operator), called Aut(G). When the group is associated

with an action φ(σ, x) : (Aut(G), X)− > X (see [43]) the group orbit of x

is the set of elements of X that can be reached from x: G × x = {∀g ∈
Aut(G) : φ(g, x)}. Group orbits form a partition of X, and thus form an

equivalence relation on it.

Another important graph property is tree-width. The tree-width en-

codes the smallest node clustering that yields a tree. Given a graph

G = (VG, EG) a tree decomposition is a tree T composed of nodes X1, ..., Xn
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such that:

• X1, ..., Xn are subsets of VG, and
⋃
Xi = VG.

• All the Xi that contains a vertex v form a connected subtree of T .

• For every edge (v, w) ∈ EG there exists a Xi that contains both v and

w.

The width of the decomposition is the maximum size of the Xi minus

1, and the tree-width of a graph is the minimum width for all possible

decompositions of a graph. Figure 3.3 illustrates a simple tree decomposi-

tion of width 2. Tree-width is an important property in computer science:

the complexity of a dynamic programming depends on the tree-width of

the problem dependencies, and CIRCUIT-SAT complexity is linear for a

circuit of fixed tree-width. Tree-width is NP-Hard to compute but is easy

to approximate using heuristics methods.

3.2.4 D-Wave machine

The quantum annealer that is assumed to be used during this thesis is pro-

duced by D-Wave Systems. The basic unit of their machine is the Super-

conducting QUantum Interference Device (SQUID). The SQUID consists

in a electrical circuit containing Josephson junctions, a circuit component

that exhibits known quantum effects when exposed to a transversal mag-

netic field. At low enough temperatures, the current in the circuit flows

in a superposition of clockwise and counterclockwise direction. These two

states form a qubit. Figure 3.4 shows a simple schema of the device. The

user sets the desired Ising Hamiltonian by controlling the external mag-

netic field. To perform an anneal run, the Hamiltonian is slowly turned

in a adiabatic fashion from a standard initial value to the desired desired

energy landscape.
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Figure 3.3: Tree decomposition of a graph with tree-width 2. A dynamic programming

task that depends only on local interactions/edges can traverse the tree decomposition to

choose sub-graphs for partial computations. The tree-width is a measure of how many

nodes are shared between sub-graphs.
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Figure 3.4: Illustration of a SQUID qubit. The user sets the various biases hi and couplings

Jij by tuning the various magnetic fields Φ.. Courtesy of D-Wave Systems Inc.

The latest annealer is called D-Wave 2000Q, announced in 2017. Since

October 2018 is available to the public through a cloud service.1 The

D-Wave 2000Q machine has 2048 qubits and 5600 couplers in a regular

pattern called Chimera topology. This topology consists in groups of

8 tightly connected qubits in a bipartite graph called cell, and a grid of

cells where 4 qubits have vertical parallel connections and 4 qubits have

horizontal parallel connections. Figure 3.5 shows the induced graph of a

D-Wave 2000Q Chimera chip.

The Chimera topology is a bipartite graph, thus there are no cliques.

This topology contains as a minor complete graphs and complete bipar-

tite graphs, we will see then how to encode complete graphs into chimera

topology. Thanks to the cell separation encoded problems often have a

clear cut distinction between functional units, where complex relationship

are expressed using the dense connection within the chip and couplings

between cells are used to transfer information.

While all the published work so far has been on the Chimera topol-

1available at https://cloud.dwavesys.com/leap/
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ogy, in 2018 D-Wave divulged details about a newer topology, the so called

Pegasus topology. This topology is more complex and more densely con-

nected, paving the way for more efficient encodings. Figure 3.6 illustrates

a small example of a Pegasus 4, containing the equivalent of a square of 4

by 4 tiles. In this newer topology there is no more a clear decomposition

into tiles, rather than that clusters of qubit are connected in a more inter-

leaved fashion. Furthermore, the Pegasus architecture adds a new kind of

connection between two horizontal or vertical qubits. This allows the new

architecture to have 3 and 4 cliques, that were absent from Chimera.
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Figure 3.5: 16× 16 Chimera topology with a detail on a single tile, circled in blue.
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Figure 3.6: Small pegasus topology, with focus on a single 4-clique. circled in blue.
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3.3 SAT, MaxSAT, SMT and OMT

3.3.1 Basics

In the following we recall the main concepts of the basic syntax, semantics

and properties of Boolean and first-order logic and theories. We refer the

reader to [19, 65, 62, 9, 84] for more details.

Boolean logic deals with formulas over Boolean variables, variables that

can assume the value true (>) or false (⊥). Given some finite set of Boolean

variables, or Boolean atoms, x the language of Boolean logic (B) is the

set of formulas containing the atoms in x and closed under the standard

propositional connectives {¬,∧,∨,→,↔,⊕} (respectively called: NOT,

AND, OR, IMPLY, IFF, XOR).

The AND (∧) operation is also called conjunction, OR (∨) is also

called disjunction and NOT (¬) is also called negation. All other con-

nectives can be defined in terms of disjunction, conjunction and negation.

The meaning of these connectives, i.e. the value of the formula given the

value of its variables, can be defined using truth tables. A literal is an

atom, x (positive literal) or its negation ¬x (negative literal). We implic-

itly remove double negations: e.g., if l is the negative literal ¬xi, then by

¬l we mean xi rather than ¬¬xi.
A formula is in negative normal form (NNF) if only AND and OR

are used, and negation appears only in negative literals. Every formula can

be converted into NNF using deMorgan’s theorems. A clause is a disjunc-

tion of literals. A formula is in conjunctive normal form (CNF) if it

is written as a conjunction of clauses. Conversely, a cube is a disjunction

of literals and a formula is in disjunctive normal form (DNF) if it is

written as a disjunction of cubes.

An assignment x satisfies F (x) iff it makes it evaluate to true. If so,

x is called a model for F (x). A formula F (x) is satisfiable iff at least
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one truth assignment satisfies it, unsatisfiable otherwise. F (x) is valid

iff all truth assignments satisfy it. F1(x), F2(x) are equivalent iff they are

satisfied by exactly the same truth assignments.

A formula F (x) which is not a conjunction can always be decomposed

into a conjunction of smaller formulas F ∗(x,y) by means of Tseitin’s

transformation [94], as in Equation 3.20, where the Fis are simple sub-

formulas which decompose the original formula F (x), and the yis are fresh

Boolean variables each labeling the corresponding Fi.

F (x) = Fm(Fm−1(...(F1(x))))

F ∗(x,y)
def

=
∧m−1
i=1 (yi ↔ Fi(x

i,yi)) ∧ Fm(xm,ym) (3.20)

Tseitin’s transformation guarantees that F (x) is satisfiable if and only

if F ∗(x,y) is satisfiable, and that if x,y is a model for F ∗(x,y), then x is

a model for F (x). For this reason it is used recursively for efficient CNF

conversion of formulas [94].

A quantified Boolean formula (QBF) is an extension over the afore-

mentioned Boolean formulas. It is defined inductively as follows: a Boolean

formula is a QBF; if F (x) is a QBF, then ∀xiF (x) and ∃xiF (x) are QBFs.

QBFs can be converted to Boolean formula through Shannon’s expan-

sion: ∀xiF (x) is equivalent to (F (x)xi=>∧F (x)xi=⊥) and ∃xiF (x) is equiv-

alent to (F (x)xi=> ∨ F (x)xi=⊥).

3.3.2 And-Inverter Graphs

Any Boolean function can be represented as an And-Inverter graph.

An AIG, as the name suggests, is composed by 2-input AND gates and

negations. More precisely, an AIG for F (x) is a directed acyclic graph

(DAG) D on vertex set z = x ∪ g = (x1, . . . , xn, g1, . . . , gm) with the

following properties:
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1. Each xi has no incoming edges and each gk has 2 incoming edges, and

there is a unique go with no outgoing arcs (the primary output).

2. Each edge z → g is labelled with a sign + or − indicating whether or

not z should be negated as an input to g; define a literal li(z) = z for

an edge with sign + and li(z) = ¬z for an edge with sign −.

3. For each node gk with edges incoming from z1 and z2, there is an AND

function Ak(gk, z1, z2) = gk ↔ lk(z1) ∧ lk(z2), such that

F (x)↔
m∧
k=1

Ak(z) ∧ (go = >). (3.21)

If is F (x) is in CNF form, we can trivially construct an AIG by rewriting

each OR clause as an AND function using De Morgan’s Law, and then

rewriting each AND function with more than 2 inputs as a sequence of

2-input AND functions.

Example 1. The function

F (x) = x1 ∧ x2 ∧ ¬x3

is represented by both of the And-Inverter Graphs in Figure 3.7.

x1

a1

x2

a2

x3

ao

+

+

+
-

+

+

x1

a1

x2

x3

ao

+

+

+
-

Figure 3.7: Two And-Inverter Graphs representing the function F (x) = x1 ∧ x2 ∧ ¬x3.

Let G be an AIG with a node z. A cut C of z is a subset of vertices of

G such that every directed path from an input xi to z must pass through

C. The sub-graph of G composed by all vertices that are crossed by any
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path from C to z is effectively a AIG representation of z as a function

of C, since the Boolean value of z is determined completely by C. The

equivalent function is the Boolean function of z represented by C.

Cut C is k-feasible if |C| ≤ k and non-trivial if C 6= {z}. For fixed k,

there is a simple linear-time algorithm to enumerate all k-feasible cuts in

an AIG. Starting from the inputs x to the primary output, we can traverse

the graph to list the k-feasible cuts of node ai by combining k-feasible cuts

of ai’s two inputs.

3.3.3 SAT

Propositional Satisfiability (SAT) is the problem of establishing whether

an input Boolean formula is satisfiable or not. SAT is a NP-complete prob-

lem [37]. Not all SAT problem instances are hard: some restricted versions,

such as 2-SAT and HORN-SAT, are tractable.

Whereas it is implausible to find an algorithm that solves SAT prob-

lems beyond a certain size in the worst case, a large amount of effort and

ingenuity has been put into speeding up resolution in the average case. Ev-

ery year a competition between the state-of-the-art solvers is held [1]. In

this competition newer techniques and approaches are held in comparison.

Efficient SAT solvers are publicly available, most notably those based on

Conflict-driven clause-learning (CDCL) [65] and on stochastic local

search [64]. Most solvers require the input formula to be in CNF, imple-

menting a CNF pre-conversion based on Tseitin’s transformation (Equa-

tion 3.20) when this is not the case. See [19] for a survey of SAT-related

problems and techniques.

The most effective SAT solvers are based on CDCL. CDCL solvers are

able to prove the unsatisfiability of a formula, thus they are complete

solvers. CDCL solvers try partial assignments until a solution is found or

when a clause becomes unsatisfiable. In the latter case, a conflict analysis is
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performed after which a new clause is learned. This learned clause reflects

the latest decision done by the solver that is responsible for the conflict.

With this clause the solvers avoids future visit to the same unsuccessful

solution sub-space.

A different approach is to perform a random walk in the solution space.

This is the stochastic local search approach. This approach is very suc-

cessful on large random SAT problems but is not complete and thus it

cannot prove the unsatisfiability of a formula. SLS solvers start from a

random assignment and try to minimize the number of unsatisfied clauses.

Various techniques are employed to maximize state exploration and to

avoid loops. SLS techniques are closely related to simulated annealing

approaches, though the latter are much more general.

3.3.4 MaxSAT

MaxSAT is an extension of SAT, where we ask what model satisfies the

maximum amount of clauses of a CNF formula F (that is typically unsatis-

fiable, though a satisfiying model is a valid solution for a MaxSAT problem

instance). It is generally more useful to consider extensions of MaxSAT,

such as weighted MaxSAT and partial weighted MaxSAT. Weighted MaxSAT

{〈Fk, ck〉}k is an version of MaxSat such that each clauese Fk of F is given

a positive penalty ck ∈ R+ if Fk is not satisfied, and an assignment mini-

mizing the sum of the penalties is sought. Partial Weighted MaxSAT

is a further extension of Weighted MaxSAT such that some clauses, called

hard constraints, must be satisfied, so they have penalty +∞.

MaxSAT solvers rely heavily on SAT solution techniques. Efficient

MaxSAT solvers are publicly available (see, e.g., [62, 92]). MaxSAT solver

can use CDCL SAT techniques by using core-guided search: when the

SAT solver identifies a UNSAT core (i.e subset of clauses), the MaxSAT

solver bounds the upper cost of the search. SLS solvers can be extended
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to Weighted MaxSAT by keeping account of the clause penalty during the

optimization search. SLS-based MaxSAT solver are penalized for Partial

weighted MaxSAT, as optimal model search cannot be trivially confined

to models that satisfy the hard constraints.

3.3.5 SMT and OMT

Satisfiability Modulo Theories (SMT) is another extension of SAT

and a limited version of a first-order logic reasoning. It consists in checking

the satisfiability of first order formulas in a background theory T or in a

combinations of particular theories. SMT solving is focused on specific

theories of interest, that generally have a specific decision algorithm.

For example, given x as in the previous section and some finite set

of rational-valued variables v, the language of the theory of Linear Ra-

tional Arithmetic (LRA) extends that of Boolean logics with LRA-

atoms in the form (
∑

i civi ./ c), ci being rational values, vi ∈ v and

./ ∈ {=, 6=, <,>,≤,≥}, forming linear algebraic expressions on the real

numbers.

In the theory of linear rational-integer arithmetic with uninter-

preted functions symbols (LRIA∪UF) the LRA language is extended

by adding integer-valued variables to v (LRIA) and uninterpreted func-

tion symbols. A n-ary function symbol f() is said to be uninterpreted

if its interpretations have no constraint, except that of being a function

(congruence): if t1 = s1, ..., tn = sn then f(t1, ..., tn) = f(s1, ..., sn). For

example, (xi → (3v1 + f(2v2) ≤ f(v3))) is a LRIA ∪ UF formula. No-

tice that the notions of literal, assignment, clause and CNF, satisfiability,

equivalence and validity, Tseitin’s transformation, quantified formulas and

so on extend trivially to LRA and LRIA∪UF . Satisfiability Modulo

LRIA ∪ UF (SMT(LRIA ∪ UF)) [9] is the problem of deciding the

satisfiability of arbitrary formulas on LRIA ∪ UF . It is one of the most
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important combination of theories and is extensively studied. Efficient

SMT(LRIA ∪ UF) tools are available, including MathSAT5 [36].

SMT solvers rely on decision algorithms, one for each theory, and the-

ory combination techniques to ensure the consistency of the model. Most

modern SMT solver use lazy CDCL solving. During the CDCL search on

the Boolean skeleton of the SMT formula, assertions on each theory are

checked for consistency, and the theory solvers contribute to the conflict

analysis.

Optimization Modulo LRIA ∪ UF (OMT (LRIA ∪ UF)) [84] is

yet another extension of SMT(LRIA∪UF). In OMT the goal is to search

solutions which optimize some LRIA objective(s). While in MaxSAT

each clause has attached a particular penalty cost, in OMT the cost is

represented as a real-valued variable c. The focus on finding the minimal

model makes the problem more complex but enables further optimizations.

It is possible furthermore to have multiple cost variables ci. In this case,

generally a Pareto-efficient solution is wanted. A solution is Pareto-

efficient if no single ci can be improved without worsening other cj costs.

Efficient OMT(LRA) solvers, like OptiMathSAT [85], are available on

the Internet.
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Related Work

In this chapter we will provide a brief overview of the literature pertaining

quantum annealing and D-Wave’s machines. Most of the literature is tan-

gential to the SATtoIsing problem but provides a useful comparison. First

the chapter will outline how different problems have been encoded into

Ising problems, then describe different techniques to specifically make use

of D-Wave hardware and finally will show some result reports on quantum

annealing experiments.

4.1 Combinatorial Problems and CSP Encoding

There have been various previous efforts to map constraint satisfaction

problems to Ising models [95, 80, 42, 77, 79, 75, 98, 17, 55]. Most of those

mappings have been for specific constraints types, but some were more

systematic.

The core theoretical framework used in this thesis appeared in [13], ap-

plied generic discrete optimization problems. The paper introduces the

concepts that will be outlined in the next chapters. In particular it intro-

duces the definition of penalty functions, the use of SMT solvers and the

variable elimination reformulation, and problem embedding. It is focused

on encoding specific constraints, in particular it provides a specific exam-
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Figure 4.1: Encoding of an 1-in-8 CSP constraint found with a SMT solver, from [13].

ple, a parity check problem. Figure 4.1 shows the constraint used in the

example, where exactly one out of 8 variables is >.

A later paper by Bian et al. [14] applies the same approach to fault

analysis of Boolean circuits. This problem consists in the following: given

a Boolean circuit and a input-output pair, find the minimum number of

gates that are faulty. Again, the paper uses an approach very similar to the

one outlined in this thesis. Boolean circuits are encoded similarly but the

goal of fault analysis is different. Thus the paper introduces an alternative

definition of penalty function that is more suited to the task. Rather than

just finding a satisfiable solution, there is an interest in fair sampling of

possible solutions.

A paper by Lucas [63] (see also [34]) provides encoding of various NP-

hard problems into Ising, among these is an encoding of the 3SAT problem.

Given a graph G, the maximal independent set (MIS) problem consists

in finding the greatest setX of vertices such that no edge (i, j) inG contains

both ends in X: i 6∈ X ∨ j 6∈ X. The paper provides the following Ising

model encoding for the MIS problem, where xi = 1 iff xi ∈ X.
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H =
∑
i∈VG

−xi +
∑

(i,j)∈EG

2xixj

Furthermore, it reports a trivial encoding of 3SAT to MIS: for each 3-

clause, add a 3-clique to G, where each node represents a literal. Then,

for each node representing literal l add an edge to each node representing

¬l. If a solution exists where at least one literal per clause is in the MIS

X, set that literal to >; Otherwise, no satisfying assignment exists. This

encoding of 3SAT suffers from low effectiveness: three qubits are used

for each clause, plus a large amount of edges for each variable are added.

The result of the encoding then is usually large and hard to embed in the

hardware.

A paper by Chancellor et al. [29] provides an encoding for the Max-k-

SAT and low-density parity check problems. Two encodings are provided

for two specific classes of constraints, disjunctions and parity checks. Using

these two constraints the paper proposes an encoding for the Low Density

parity problem, used in efficient turbo codes. While heavily tuned and

effective for the problem at hand, the two constraints are not extremely

suited for generic SAT and maxSAT problems in general. The two encoding

can be seen in Figure 4.2.

Pakin in [76] provides a macro language to work with constraint sat-

isfaction problems. It implements a format to express Ising models and

libraries of penalty functions, and a software tool to handle them. The

software relies on D-Wave software libraries to perform the final embed-

ding step.
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Figure 4.2: Induced graph for the encodings for the Max-4-SAT clause ((x1∨x2∨x3∨x4))
and parity check ((x1 ⊕ x2 ⊕ x3 ⊕ x4)) from [29].

4.2 Placement and Routing

There are have been several approaches to map large Boolean functions or

more generally large discrete optimization problems to fit D-Wave hard-

ware.

Most of these efforts have used global embedding (described in the next

chapters) [25], or otherwise, as in Trummer et al. [93], Chancellor et al. [29],

Zaribafiyan et al. [97], and Andriyash et al. [6], used a ad-hoc placement

approach optimized for the specific constraints at hand.

Su et al. [90] instead used a different place-and-route approach, based

on simulated annealing of gate positions. The paper goal is to provide

an encoding for Boolean satisfiability problems. It uses a simple QUBO

encoding, with a short list of encoded two-input gates, and uses simulated

annealing for placement and routing. Table 4.1 shows final results for

embedding various functions on a 100 × 100 Chimera hardware graph,

with a decisive under-usage of resources.
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Table 4.1: Table of encoding results from [90]. The columns contain, respectively: Name

of the encoded problem, total number of qubits used for wires/chains, percentage of

hardware cells/qubits used, and the run-time of the algoritm.

4.3 Performance Benchmarks

Regarding D-Wave hardware performance, there have been several publi-

cations benchmarking the performance compared to software solvers.

McGeoch et al. [66] and Santra et al. [83] looked at (weighted) Max2SAT

problems, comparing the state-of-the art with quantum annealers. It is

straightforward to convert Ising problem to Max2SAT problems; Each term

of a QUBO problem can be interpreted as a clause where the θ parameter

is the clause weight. Figure 4.3 plots the relative performance between

the quantum annealer and various software algorithms.Another paper, by

King et al. [58], found similar results for a class of constraint satisfaction

problems.
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Figure 4.3: Plotted success rates with a 491ms second threshold for various solvers on

various Max2SAT problems, from [66]. . The graph compares the performance of various

solvers (tabu,akmax,cplex) for the timescale of a quantum annealing process on a D-Wave

machine (qa) and various software solvers. Larger problems require increasing amount of

computation, while the quantum annealer finds optimal solutions for all problems in a

single run (with 1000 samples returned per run).

Douglass et al. [41] and Pudenz et al. [78] looked at ALLSAT problems.

The goal in these papers is to sample multiple diverse solutions of a Boolean

formula, in particular for the construction of SAT filters. SAT filters are,

similarly to Bloom filters, used to perform probabilistic membership queries

on large sets. Each element of a large set is mapped to a set of clauses for a

SAT problem. One or more solutions of this SAT problem will function as

filter. To query the filter for an element, we check if the previous solutions

satisfy the mapped clauses. If not, the filter query returns a negative result.

Thus, building a SAT filter requires finding a large number of solutions of

a particular SAT problem. Figure 4.4 shows the relative performance of
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D-Wave annealer vs. various SAT solvers in SAT filter construction.

Figure 4.4: Comparison of SAT filter performance of quantum annealing vs. various

ALLSAT solvers from [41]. For comparison, the theoretical efficiency value for a Bloom

Filter (0.69) is indicated (red line). For each solver, the graph shows performance for

both off-line (upper, dashed lines) and on-line (lower, no lines) filters.

For a more theoretical approach Farhi et al. [45] and Hen and Young [52]

studied the performance of adiabatic quantum computing on several SAT

and other intractable problems, using simulations to determine experimen-

tally what are the run-times for reaching a solution. Both paper found that

when the adiabatic quantum computer interpolates linearly between ini-

tial and final state the required time increased exponentially, even if with

a lower coefficient than classical annealers.
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Chapter 5

Theoretical foundations

In this chapter we will lay out the theoretical foundations of the encod-

ing problem. We will follow the structure of the paper ”Solving SAT and

MaxSAT with a Quantum Annealer: Foundations, Encodings, and Prelim-

inary Results” [18].

5.1 Problem statement

First, let’s focus on the problem. Let F (x) be a Boolean function on a

set of n Boolean variables x
def

= {x1, ..., xn}. Ising models are defined on

binary variables, so we represent Boolean value ⊥ with −1 and > with +1,

we can then assume that xi ∈ {−1, 1}. Suppose that we have a quantum

annealer with n qubits defined on a hardware graph G = (V,E) ( usually

a sub-graph of a Chimera or a Pegasus graph of Figures 3.5 and 3.6 if not

otherwise specified). As stated before we assume that the state of each

qubit zi corresponds to the value of variable xi, i = 1, . . . , n = |V |. One

way to use the quantum annealer to determine whether F (x) is satisfiable

is to find an energy function as in Equation 3.18 whose ground states z

correspond to the satisfying assignments x of F (x).
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Example 2. Suppose that F is defined as follows:

F (x)
def

= x1 ⊕ x2

Since F (x) = > if and only if x1 + x2 = 0, the Ising model in a graph

will contain 2 qubits z1, z2 joined by an edge (1, 2) ∈ E such that θ12 = 1

and will have two ground states (+1,−1) and (−1,+1), which correspond

to the satisfying assignments of F , and two excited states (+1,+1) and

(−1,−1), corresponding to the non-satisfying ones.

In reality the number of functions F (x) that can be solved with this

approach is very limited. This is because the energy H(z) in (3.18) is re-

stricted to second-degree polynomials and because the graph G is typically

sparse. To deal with this problem we can use a larger quantum annealer

with a number h of additional qubits representing ancillary Boolean

variables (or ancillas for short) a
def

= {a1, ..., ah}, so that |V | = n + h. A

variable placement is a mapping of the n+h input and ancillary variables

into vertices of the hardware graph G. Since G is not a complete graph,

the energy function will have different properties with different variable

placements. We call Ising encoding the vector of values provided to the

annealer for the θ parameters in (3.18) together with a variable placement.

The gap gmin ≥ 0 of an Ising encoding is the minimum energy difference

(min ∆H(z)) between a ground state (i.e., satisfying assignments) and the

other excited states (i.e., non-satisfying assignments). As we have seen, the

stability of an adiabatic quantum system transition depends on the min-

imum gap and in practice larger gaps lead to higher success rates during

the annealing process [13]. Thus, we define the encoding problem for

F (x) as the problem of finding an Ising encoding with the maximum gap.

Recall that the encoding problem is typically over-constrained. The

Ising model of Equation 3.18 has to discriminate between m satisfying

assignments and k non-satisfying assignments, with m + k = 2n, whereas
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the number of degrees of freedom is given by the number of the θi and θij

parameters, which grows linearly in Chimera and Pegasus architectures.

Thus the number of ancillas that are needed in order to have a solution

(h) can grow exponentially with the number of x variables of the Boolean

formula (n).

In the rest of this chapter, we will assume that a Boolean formula F (x)

is provided and that a sufficient number h of qubits is used for ancillary

variables a.

5.2 Penalty Functions

In the initial phases we will assume that a variable placement chosen by

the user is given along with the Boolean formula, placing x ∪ a into the

sub-graph G. Thus, for now we can identify from the beginning each binary

variable zj with the jth vertex in V and with either an original Boolean

variable xk ∈ x or as an ancilla variable a` ∈ a, and we will write that

z = x ∪ a.

Definition 1. A penalty function PF (x, a|θ) is an quadratic polynomial

PF (x, a|θ)
def

= θ0 +
∑
i∈V

θizi +
∑

(i,j)∈E

θijzizj (5.1)

with the property that for some gmin > 0,

∀x min{a}PF (x, a|θ)

= 0 if F (x) = >

≥ gmin if F (x) = ⊥
(5.2)

where zi, zj ∈ z, while θ0 ∈ (−∞,+∞) (“offset”), θi ∈ [−2, 2] (“biases”)

and θij ∈ [−1, 1] (“couplers”) and gmin are rational-valued parameters. Op-

eration ranges of biases and couplers are bounded by current hardware lim-

itations and can be subject to change. The largest gmin such that PF (x, a|θ)

satisfies (5.2) is called the gap of PF (x, a|θ).
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The offset value θ0, absent in the original Ising model definition, is added

to set the value of PF (x, a|θ) to zero when F (x) = >, so in practice −θ0

corresponds to the energy of the ground states of (3.18). To simplify the

notation we assume that θij = 0 when (i, j) 6∈ E, and use PF (x|θ) when

a = ∅.
For clarification, we follow with several examples of penalty functions.

Example 3. Consider the equivalence between two variables, F (x)
def

= (x1 ↔
x2), can be encoded without ancillas with a single coupling between two con-

nected vertices, with zero biases:

PF (x|θ)
def

= 1− x1x2

In fact, PF (x|θ) = 0 if x1, x2 have the same value; PF (x|θ) = 2 other-

wise. This penalty function has gmin = 2.

Penalty PF (x|θ) in Example 3 is also called a (equivalence) chain

connecting x1, x2, as it forces them to have the same value. The following

two examples show that ancillary variables are necessary for encoding some

Boolean function F (x), even when F (x) is a small formula or when G is a

complete graph.

Example 4. Consider the AND function, F (x)
def

= x3 ↔ (x1 ∧ x2). If G

is a complete 3-clique, then F (x) can be encoded without ancillas with gap

gmin = 2 by setting:

PF (x|θ) =
3

2
− 1

2
x1 −

1

2
x2 + x3 +

1

2
x1x2 − x1x3 − x2x3

With this, it is easy to see that PF (x|θ) = 0 if x1, x2, x3 verify F (x),

PF (x|θ) = 6 if x1 = x2 = −1 and x3 = 1, PF (x|θ) = 2 otherwise.

Since the Chimera graph is bipartite and has no 3-cliques, for such a

graph the above AND function needs (at least) one ancilla a, becoming:

62



CHAPTER 5. FOUNDATIONS 5.2. PENALTY FUNCTIONS

(a) x3 ↔ (x1 ∧ x2)

with one ancilla.

(b) x3 ↔ (x1 ⊕ x2)

with three ancillas.

(c) x4 ↔ (x3 ∧ (x1 ⊕ x2)) obtained by combining

5.1(b) and 5.1(a).

Figure 5.1: Example of mappings within the Chimera cell. Penalty functions use only

colored edges. 5.1(c) combines 5.1(a) and 5.1(b) using chained proxy variables y, y′. The

penalty function of the composition is obtained by rewriting x4 ↔ (x3 ∧ (x1 ⊕ x2)) into

its equisatisfiable formula (x4 ↔ (x3 ∧ y′)) ∧ (y ↔ (x1 ⊕ x2)) ∧ (y′ ↔ y).

PF (x, a|θ) =
5

2
− 1

2
x1 −

1

2
x2 + x3 +

1

2
x1x2 − x1x3 − x2a− x3a

This version still has gap gmin = 2 and can be embedded on Chimera, as

in Figure 5.1(a).

Example 5. Consider the XOR function F (x)
def

= x3 ↔ (x1 ⊕ x2). Even

considering a complete graph, F (x) has no ancilla-free encoding. Within

the Chimera graph though, F (x) can be encoded with three ancillas a1, a2, a3

as:

PF (x, a|θ) = 5+x3+a2−a3+x1a1−x1a2−x1a3−x2a1−x2a2−x2a3+x3a2−x3a3

This has gap gmin = 2 and is embedded, as in Figure 5.1(b).

We can make a few observations on Definition 1. First, a penalty func-

tion is an Ising model that separates satisfying assignments from non-

satisfying ones by a energy gap of at least gmin. Thus, the following fact is

a straightforward consequence of Definition 1.

Proposition 1. Let PF (x, a|θ) be a penalty function of F (x) as in Defi-

nition 1. Then:
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• If x,a is such that PF (x, a|θ) = 0, then F (x) is satisfiable and x

satisfies it.

• If x,a minimizes PF (x, a|θ) and PF (x, a|θ) ≥ gmin, then F (x) is un-

satisfiable.

The consequence of Proposition 1 is that we can use the QA hardware as

a satisfiability checker for F (x) by minimizing the Ising model defined by

penalty function PF (x, a|θ). A ground state such that PF (x, a|θ) = 0 im-

plies that it is an assignment satisfies F (x). Conversely, if the QA hardware

were to guarantee minimality, then a returned value of PF (x, a|θ) ≥ gmin

would imply that F (x) is unsatisfiable. However, since quantum annealer

do not guarantee minimality (as seen in Chapter 3), if PF (x, a|θ) ≥ gmin

then there is still a chance that that the quantum annealer reached an

excited state and thus F (x) is satisfiable. Nevertheless, the larger gmin is,

the less likely this false negative case occurs [13].

The magnitude of the gap is directly related to the bounds on the pa-

rameters. A penalty function PF (x, a|θ) is normal if |θi| = 2 for at least

one θi or |θij| = 1 for at least one θij. In order to maximize gmin, penalty

functions fed to the QA hardware should be normal so that to exploit the

full range of the θ parameters. Any penalty function PF (x, a|θ) can be

normalized by multiplying all its coefficients by a normalization factor:

c
def

= min

{
min
i

(
2

|θi|

)
,min
〈ij〉

(
1

|θij|

)}
. (5.3)

Note that if PF (x, a|θ) is a valid penalty function but non-normal, then

c > 1, so that the gap can be increased with normalization. c · gmin >
gmin. Normalization also works in scale down a PF (x, a|θ) that is not valid

because its θ’s do not fit into the allowable ranges (in which case c < 1).

Hereafter we assume without loss of generality that all penalty functions

are normal.
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5.3 Properties of Penalty Functions and Problem De-

composition

As will be shown in the next chapter, finding the values for θ given a

variable assignment requires solving an SMT formula composed by a set

of linear equations for every model of F (x) plus a set of linear inequalities

for each counter-model of F (x). Thus, the number of linear constraints

grows exponentially in n. Since the θ’s grow proportionally to (n+ h) the

number of ancillas required to satisfy (5.2) grows very rapidly with the size

of the formula. This makes a direct search based on (5.1)-(5.2) intractable

beyond a certain size. We address this issue by building penalty functions

by composition, at the expense of a larger final Ising model size.

We assert some properties of penalty functions:

Property 1. Let PF (x, a|θ) be a penalty function for F (x) and let F ∗(x) ≡
F (x) be a logically equivalent formula. Then PF (x, a|θ) is a penalty func-

tion for F ∗(x) as well, and with the same gap gmin.

Property 1 simply states that a penalty function PF (x, a|θ) does not

depend on the syntactic structure of F (x) but only on its semantics, i.e.

on its truth table.

Property 2. Let F ∗(x)
def

= F (x1, ..., xr−1,¬xr, xr+1, ..., xn) for some index

r. Assume PF (x, a|θ) is a penalty function for F (x) with gap gmin and with

variable placement of x into V . Then PF ∗(x, a|θ) = PF (x, a|θ∗), where θ∗

is defined as follows for every zi, zj ∈ x, a:

θ∗i =

{
−θi if zi = xr

θi otherwise;
θ∗ij =

{
−θij if zi = xr or zj = xr

θij otherwise.

Notice that since the previously defined bounds over θ (namely θi ∈ [−2, 2]

and θij ∈ [−1, 1]) are symmetric with respect to 0, if θ is in range then θ∗

is as well.
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Property 2 states that negating a xi variable of a Boolean function

is equivalent to flipping the value a xi variable in the QUBO problem.

Furthermore, if σ is a permutation over variables and σF = F (σx), the

penalty function of σF (assuming a complete hardware graph or at least a

permutation that is an automorphism for it) is:

PσF (x|θ) = PF (σx|θ)

Two Boolean functions that become logically equivalent by these per-

mutations or negations of their variables are called NPN-equivalent [38].

Given the penalty function for a Boolean formula assuming a complete

graph, any other NPN equivalent formula can be encoded trivially by ap-

plying Property 2. Notice that checking NPN equivalence is an intractable

problem in theory, but in practice it takes a negligible time for small n (i.e.,

n ≤ 16) [53]. The process of negating a single variable when referring to an

Ising model as in Property 2 is also known as a spin-reversal transform.

Let’s consider an example.

Example 6. Consider the OR function F (x)
def

= x3 ↔ (x1∨x2). We notice

that, as it can be rewritten as F (x) = ¬x3 ↔ (¬x1 ∧ ¬x2), it is NPN-

equivalent to the function of Example 4. Thus, by Property 2 a penalty

function for F (x) can be defined by taking the PF (x, a|θ) in Example 4

and toggling the signs of the coefficients of the xi’s:

PF (x, a|θ) =
5

2
+

1

2
x1 +

1

2
x2 − x3 +

1

2
x1x2 − x1x3 + x2a+ x3a

It can be placed as in Figure 5.1(a) and has the same gap gmin = 2.

Property 3. Let F (x) =
∧K
k=1 Fk(x

k) be a Boolean formula on Boolean

variables x = ∪kxk, where the xks may be non-disjoint. Suppose that each

sub-formula Fk has a penalty function PFk
(xk, ak|θk) with minimum gap

gkmin, where the aks are all disjoint. Given a list wk of positive rational
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values such that, for every zi, zj ∈ x ∪
⋃K
k=1 ak:

θi
def

=
K∑
k=1

wkθ
k
i ∈ [−2, 2], θij

def

=
K∑
k=1

wkθ
k
ij ∈ [−1, 1], (5.4)

then we can build a penalty function for F (x) in the following way:

PF (x, a1...aK |θ) =
K∑
k=1

wkPFk
(xk, ak|θk). (5.5)

The gap for PF is gmin ≥ minKk=1wkg
k
min.

Property 3 states that a penalty function for a conjunction of sub-

formulas can be obtained as a sum of the penalty functions of the sub-

formulas. The choice of the values of weights wk is not unique in general.

Also, note that gmin may be greater than minKk=1wkg
k
min, as it might happen

that gmin = wkg
k
min for some unique k and no truth assignment violating

Fk with cost wkg
k
min satisfies all other Fi’s.

The composition is performed using weights wk because penalty func-

tions of formulas can share variables that sum up biases or couplings,

possibly resulting into out-of-range values (5.4), effectively requiring re-

normalization. If the wk’s are smaller than 1, then the gap gmin of the final

penalty function may become smaller. Furthermore, Property 3 requires

placing variables into qubits that are shared among conjunct subformu-

las, ignoring constraints given by the hardware graph. This may limit the

chances of finding valid placements for the variables in the graph.

An alternative way of composing subformula while avoiding this problem

is to map shared variables into multiple distinct qubits that are forced to

be equal by chains of equivalences. Consider F (x) =
∧K
k=1 Fk(x

k) as in

Property 3. We can replace all the occurrences of xi in any Fk with a fresh

variable xi
k∗. This gives us the formula

∧K
k=1 Fk(x

k∗), with xk
∗

all disjoint.

Let us define F ∗(x∗) in the following way:
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F ∗(x∗)
def

=
K∧
k=1

Fk(x
k∗) ∧

∧
〈xik∗,xik′

∗〉∈Eq(xi)

(xi
k∗ ↔ xi

k′∗) (5.6)

where x∗ = ∪kxk
∗
, and Eq(xi) is a set of pairs 〈xik

∗
, xi

k′∗〉 of variables

replacing xi such that (5.6) states that for every k all the xki are equivalent.

By construction, F (x) is satisfiable if and only if F ∗(x∗) is satisfiable, and

from every model x∗ for F ∗(x∗) we have a model x for F (x) by assigning

to each xi the value of all of the corresponding xi
k∗s.

Now assume we have a penalty function PFk
(xk

∗
, ak|θk) for each Fk with

disjoint ak. We have seen in Example 3 that (1 − xi
k∗xi

k′∗) are penalty

functions of gap 2 for the (xi
k∗ ↔ xi

k′∗) chain clauses in (5.6). Thus we can

apply Property 3 and write a penalty function for F ∗(x∗) in the following

way:

PF ∗(x
∗, a|θ) =

K∑
k=1

PFk
(xk

∗
, ak|θk) +

∑
〈xik∗,xik′

∗〉∈Eq(xi)

(1− xik
∗
xi
k′∗). (5.7)

Note that all the θ’s remain in the valid range because the xk
∗
s and aks are

all disjoint and the biases of the (1− xik
∗
xi
k′∗) terms are zero, so distinct

sub-penalty functions PFk
in (5.7) involve disjoint groups of biases and

couplings. Thus we can state the following:

Property 4. PF ∗(x
∗, a|θ) in (5.7) is a penalty function for F ∗(x∗) in (5.6).

The gap of PF ∗(x
∗, a|θ) is gmin ≥ min(minKk=1 g

k
min, 2).

With this method we can represent a single variable xi with a series of

qubits connected by a chain of strong couplings (1−xix′i) (For xi ↔ ¬x′i, we

simply use (1+xix
′
i)). Notice that it is not necessary to explicitly force ev-

ery pair of copies 〈xki , xk
′

i 〉 to be equivalent; rather it suffices that the equiv-

alences form a connected graph. Moreover, we can introduce additional
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copies of xi as necessary to facilitate variable placement on the hardware

graph G. A set of qubits representing the same variable in this way is called

a chain and is the subject of Section 5.5. Thus, PF ∗(x
∗, a|θ) can be imple-

mented in (5.7) by placing the distinct penalty functions PFk
(xk

∗
, ak|θk)

into separate sub-graphs of G and then connecting them with chains.

In Section 3.3.1 we have seen that we can always decompose a formula

F (x) into a conjunction of smaller formulas F ∗(x,y) with Tseitin’s trans-

formation (3.20). Combined with Properties 3 and 4, this means that

we can decompose F (x) into multiple and smaller conjuncts, encode these

separately and then reconstruct the final penalty function. With this ap-

proach we only need to encode a set of Boolean functions (yi ↔ Fi(x
i,yi)),

each small enough to allow a search for an efficient penalty function. Their

reduced size allows us to search for penalty function with good gaps, and

then their combination keeps the gap of the penalty function for the orig-

inal function essentially as large as possible. Let us make an example.

Example 7. Consider the function:

F (x)
def

= x4 ↔ (x3 ∧ (x1 ⊕ x2))

.

Applying (3.20) and (5.6) this can be rewritten as

F∗(x, y, y′) = (x4 ↔ (x3 ∧ y′)) ∧ (y ↔ (x1 ⊕ x2)) ∧ (y′ ↔ y)

The penalty functions of the three conjuncts can be produced as seen in
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Examples 4, 5 and 3, and can be conjoined as in Property 4:

PF ∗(x, y, y
′, a|θ)

=
5

2
− 1

2
x3 −

1

2
y′ + x4 +

1

2
x3y

′ − x3x4 − y′a4 − x4a4

+ 5 + y + a2 − a3 + x1a1 − x1a2 − x1a3 − x2a1 − x2a2 − x2a3 + ya2 − ya3

+ 1− yy′

=
17

2
− 1

2
x3 + x4 + y − 1

2
y′ + a2 − a3 + x1a1 − x1a2 − x1a3 − x2a1 − x2a2

−x2a3 − x3x4 +
1

2
x3y

′ − x4a4 + ya2 − ya3 − yy′ − y′a4

As previously stated, there is no interaction between the biases and cou-

plings of the three components, only the offset is summed up. The resulting

gap is min{2, 2, 2} = 2. On a Chimera hardware graph, they can be placed

as in Figure 5.1(c).

Taking these properties in consideration we can build a “divide-and-

conquer” approach for the SATtoIsing problem:

(i) Use Tseitin’s decomposition on the input formula, and rewrite every

conjunct F (x) which is not small enough into an equivalently-satisfiable

one F ∗(x,y) as in (3.20) until penalty functions for all its conjuncts can

be easily computed;

(ii) rename shared variables and compute the global penalty functions as

in Property 4;

(iii) place the sub-penalty functions into subgraphs of the hardware graph

and connect using chains equivalent qubits, representing shared vari-

ables between conjuncts.

5.4 Exact Penalty Functions and MaxSAT

If we want to encode a MaxSAT problem into a QUBO problem we require

a stronger version of the penalty function in Definition 1: we need an
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exact penalty function. An exact penalty function separates satisfying

assignments from all non-satisfying ones by exactly the same gap gmin.

Definition 2. A penalty function PF (x, a|θ) is exact if for all counter-

models x, F (x) = ⊥,

min
{a}

PF (x, a|θ) = gmin.

The following is a simple example of an exact penalty function.

Example 8. The penalty function of F (x)
def

= (x1 ↔ x2) in Example 3 is

exact, whereas those of F (x)
def

= x3 ↔ (x1 ∧ x2) and F (x)
def

= x3 ↔ (x1⊕ x2)

in Examples 4 and 5 are not exact.

As a consequence of Property 3 and Definition 2, Exact penalty func-

tions allow us to encode weighted MaxSAT problems, with some restric-

tions.

Proposition 2. Let

F (x) =
K∧
k=1

Fk(x
k)

be a Boolean formula s.t. x = ∪kxk, and

PF (x, a|θ)
def

=
K∑
k=1

PFk
(xk, ak|θk),

where a
def

= ∪kak s.t. the ak are all disjoint, each PFk
(xk, ak|θk) is an

exact penalty function for Fk of gap gk. Let x,a be a variable assignment

which minimizes PF (x, a|θ). Then x is a solution for the weighted MaxSAT

problem {〈Fk, gk〉}k.

We can use Proposition 2 to encode a generic weighted MaxSAT problem

{〈Fk, ck〉}k by setting PF (x, a|θ)
def

=
∑K

k=1wkPFk
(xk, ak|θk) where wk

def

= ck
gk
·c
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and c is a normalization factor (5.3). Penalty functions in Proposition 2

PFk
(xk, ak|θk) were not exact then a solution x,a that minimizes PF (x, a|θ)

might not be optimal for MaxSAT as it could prefer to violate some addi-

tional Fk to reach a lower final energy state. Since exact penalty functions

are more difficult to obtain than regular penalty functions, in principle one

could use non-exact penalty functions to produce sub-optimal but useful

solutions.

In the previous section on SATtoIsing we outlined a “divide-and-conquer”

approach based on the idea of mapping single variables into multiple dis-

tinct qubits which are then connected by chains of equivalences. Apply-

ing the same approach to MaxSAT is not as straightforward, because the

penalty function recomposition of Property 4 cannot always be combined

with exact penalty functions in a useful way. Suppose we want to use

Equation 5.7 to solve a MaxSAT problem {〈Fk, gk〉}k using Proposition 2.

As the following example shows, there may be minimum-energy solutions

of Equation 5.7 which violate some equivalence (xi
k∗ ↔ xi

k′∗) in (5.6). This

can happen if the solution avoids violating one or more of the Fk’s whose

sum of gaps is greater than 2. Such QUBO solution would not be not a

solution of the MaxSAT problem, because it would contain different truth

values to distinct instances of the same variable in the original problem.

Example 9. Consider the trivial MaxSAT problem {〈Fi(x), c〉}4
i=1 for some

penalty value c > 0 where F1(x) = F2(x)
def

= x, and F3(x) = F4(x)
def

= ¬x.

The two possible solutions x = > and x = ⊥ are both optimum with penalty

2c and falsify F3, F4 and F1, F2 respectively. We have the following normal

and exact penalty functions, each of gap gi = 4:

PF1
(x) = PF2

(x) = 2− 2x

PF3
(x) = PF4

(x) = 2 + 2x

Suppose we want to encode the problem in such a way to fit into a linear
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chain of 4 qubits adopting the encoding in Property 4. We introduce four

copies of x, namely x1, x2, x3, x4, and obtain:

F ∗(x1, x2, x3, x4) = x1 ∧ x2 ∧ ¬x3 ∧ ¬x4 ∧ (x1 ↔ x2) ∧ (x2 ↔ x3) ∧ (x3 ↔ x4)

PF ∗(x
1, x2, x3, x4) = (2− 2x1) + (2− 2x2) + (2 + 2x3) + (2 + 2x4) +

(1− x1x2) + (1− x2x3) + (1− x3x4)

= 11− 2x1 − 2x2 + 2x3 + 2x4 − x1x2 − x2x3 − x3x4.

The minimum-energy solution to PF ∗ is x1 = x2 = 1 and x3 = x4 = −1

with PF ∗(x) = 2, which violates the equivalence (x2 ↔ x3). The correct

MaxSAT solutions x1 = x2 = x3 = x4 = 1 and x1 = x2 = x3 = x4 = −1

both have PF ∗(x) = 8.

In general, the problem arises when it is energetically cheaper to violate

some chain equivalence (xki
∗ ↔ xk

′

i

∗
) in Equation 5.6 rather than to violate

all the penalty functions {Fk(xk) : xi ∈ xk} on one side of the equivalence.

One solution to this problem is to scale down the PFk
’s with sufficiently

small weights wk < 1, at the cost reducing the gaps gk.

Let I = {k : xi ∈ xk}, and suppose that all chains form a tree on the

hardware graph. An equivalence (xki
∗ ↔ xk

′

i

∗
) splits the chain into two

subchains, and splits I into two subsets Ik and Ik′. Assume we have a

desired gap gdesired > 0 between Ising solutions with broken chains from

solutions that can be applied to the original MaxSAT problem. Then a

sufficiently large gap for the equivalence (xki
∗ ↔ xk

′

i

∗
) is:

g(k,k′) = min

∑
j∈Ik

gj,
∑
j∈Ik′

gj

+ gdesired

This gap ensures that it is gdesired cheaper to violate all the constraints in

Ik or Ik′ rather than to violate (xki
∗ ↔ xk

′

i

∗
). To ensure that all equivalence

constraints are not violated, a sufficient gap for the entire chain is
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gchain = max
(xki
∗
,xk
′

i

∗
)∈Eq(xi)

g(k,k′). (5.8)

Recall from Equation 5.6 that Eq(xi) is the set of variable pairs (xki
∗
, xk

′

i

∗
)

that form equivalences (xki
∗ ↔ xk

′

i

∗
) in the chain of xi. Furthermore, each

equivalence has gap 2, thus we update the weight definition in Proposition 2

for each k ∈ I:1

wk =
2 · ck

gk · gchain
(5.9)

As a chain may connect a large number of constraints, the necessary

chain gap may be much larger than the gaps of the original penalty func-

tions, resulting in a small final gmin after normalization. A paper by

Choi [33] provides an alternative bound on gchain. In the paper, the au-

thor focuses on converting QUBO problems with different graph topologies

(this problem will be explained in details in Section 5.5). A bound for the

chain strength is provided in order to ensure that all minima of an embed-

ded QUBO problem can be mapped to a minimum of the original QUBO

problem. Let θ∗i =
∑

k wkθi be the bias value obtained by sharing the xi

variable as in Property 3. Assume that it is necessary to replace xi with

a chain with li leaves (i.e. vertices of the tree graph of degree 1). In this

case, QUBO minima are preserved if the chain gap is the following:

gchain ≥ 2
li − 1

li

 ∑
(i,j)∈E

|θ∗ij| − |θ∗i |

+ gdesired (5.10)

This alternative bound is sometimes lower than (5.8), especially when

|θ∗i | is high. Note that, as the original paper explains, if the bound value

is negative then PF ∗ is monotonic on xi. If that is the case, then xi =

−sgn(θ∗i ) always minimizes PF ∗, so the minimum value of xi is trivial and

the variable can be simplified away.

1Note that the normalization factor c here is 1 as chains are normal.

74



CHAPTER 5. FOUNDATIONS 5.5. QA EMBEDDING

In general, neither (5.8) nor (5.10) are typically very tight bounds on

required chain gap, and the smallest viable chain gap depends heavily on

the characteristic of the original MaxSAT problem instance. In practice

gchain is often determined empirically; this is discussed further in the ex-

perimental chapter.

Furthermore it is difficult to directly encode hard constraints for partial

weighted MaxSAT. We can simulate hard constraint using very high costs

for hard clauses at a very high cost in gap size. Overall, the MaxSATtoIsing

problem requires the usage of exact penalty functions for its sub-formulas,

which are more difficult to obtain, and the high required gaps on chains

typically results in smaller gaps after normalization.

5.5 Embedding into a QA Architecture

The process of representing a single variable xi by a collection of qubits

connected in chains of strong couplings is known as embedding, in refer-

ence to the minor embedding problem of graph theory [33, 35]. Let PF (z|θ)

be a penalty function whose interactions define an induced graph GF (i.e.

xi and xj are adjacent iff θij 6= 0) and let GH be a QA hardware graph.

A minor embedding of GF in GH is a function from vertices of the in-

duced graph to set of vertices of the hardware graph Φ : VGF
→ 2VGH . The

image Φ(xi) of a GF -vertex is a chain, and the edges of GH that connect

these qubits are used to force them to be equivalent. Φ has the following

properties:

• for each GF -vertex xi, the subgraph induced by Φ(xi) (i.e the chain

for xi) is connected;

• for all distinct GF -vertices xi and xj, Φ(xi) and Φ(xj) are disjoint;
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• for each edge (xi, xj) in GF , there is at least one edge between Φ(xi)

and Φ(xj).

Embedding generic graphs is a computationally difficult problem [2],

although certain structured problem graphs may be easily embedded in

the Chimera graph [20, 97] and heuristic algorithms may also be used [25].

A reasonable goal in embedding is to minimize the sizes of the chains, as

quantum annealing becomes less effective as more qubits are included in

chains [61].

In our “divide-and-conquer” approach, we can tackle the problem of

embedding in two different ways. The one that will be used in this thesis

is placement and routing, in reference to the simpler problem of posi-

tioning and connection of components in a integrated circuit [12]. With

this approach each sub-problem PF ∗ is encoded in order to fit a sub-graph

of the hardware graph. During the embedding phase, each PF ∗ is assigned

to a separate subgraph of the hardware, and then chains that respect the

previously mentioned properties are sought.

First, the placement part decides a position for each component in such

a way to minimize the average chain length. Usually heuristic methods are

used, such as simulated annealing [91], continuous optimization [28], and

recursive min-cut partitioning [82]. These algorithms need to be slightly

adapted to be used on graph embedding, as they make different assump-

tions. For example, some algorithms allow an expansion of the available

planar area when necessary, or assume that some space is always available

for routing (in which case if Boolean functions are packed too tightly there

will be no space for routing).

The routing steps consist in building the chains connecting variable

instances, using as few qubits as possible. The problem can be formalized

as follows. Assume a single variable xi has been assigned to a set of vertices

Ti ⊆ V , called its terminals, during the previous placement step. Let
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Ci be the chain of qubits for variable xi. If the following conditions are

respected, we have a valid routing solution:

• all chains are disjunct: Ci ∩ Cj = ∅;

• every chain contains all its terminals: Ti ⊆ Ci;

• Ci induces a connected sub-graph on the hardware graph.

Finding a single Ci with the minimum number of vertices is an instance

of the Steiner tree problem [24], then Ci is a Steiner tree. Among

routing solutions, we try to minimize the total number of vertices of G

used or the size of the largest chain.

Routing to minimize the total number of vertices used is NP-hard, but

polynomial-time approximation algorithms exist [50]. In practice, heuristic

routing algorithms scale to problem sizes much larger than current QA

architectures [96, 81, 31, 32, 30].

A different approach to finding models for F (x), global embedding, is

based on first finding a penalty function on a complete graph GF on n+ h

variables, and after that embedding GF into a hardware graph GH using

chains (e.g., using [20]). In this way chains can be used also for qubits

contained in a single PF ∗ and for ancillary variables, allowing greater flexi-

bility. Thus, global embeddings usually need fewer qubits than placement

and routing [13]; however, due to issues similar to the ones encountered

in the previous MaxSAT section, the final gap of the penalty function ob-

tained in this way is generally smaller and difficult to compute exactly.

This thesis will focus on the former approach.
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Chapter 6

SMT and OMT for Small Boolean

Formulas

This chapter will focus on the process of using SMT and OMT solvers to

find effective encodings of small Boolean formulas. As we will see, in this

step we can choose the formula that will be encoded, and we prioritize

effectiveness over efficiency. We want encodings with very few ancillary

qubits, and we want to find a solution within a reasonable timeframe.

6.1 Penalty Functions Search via SMT/OMT(LRA).

We can take the definitions stated in the previous chapter on theoreti-

cal foundations to create a SMT formula. Having x
def

= {x1, ..., xn}, a
def

=

{a1, ..., ah}, a Boolean function F (x), a variable placement z = x ∪ a and

some gap gmin > 0 with the same definitions of Section 5.1, the prob-

lem of finding a penalty function PF (x, a|θ) as in (5.1) corresponds to the

following quantified SMT problem:
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∧
i,j

θi ∈ [−2, 2], θij ∈ [−1, 1]

∧ ∀x.

 ( F (x)→ ∃a.(PF (x, a|θ) = 0)) ∧
( F (x)→ ∀a.(PF (x, a|θ) ≥ 0)) ∧
(¬F (x)→ ∀a.(PF (x, a|θ) ≥ gmin))

 (6.1)

We can apply Shannon’s expansion to the previous formula (6.1) to get

the following quantifier-free SMT(LRA) problem:

Φ(θ)
def

=
∧

zi∈x,a
(−2 ≤ θi) ∧ (θi ≤ 2) ∧

∧
zi,zj∈x,a
i<j

(−1 ≤ θij) ∧ (θij ≤ 1)(6.2)

∧
∧

{x∈{−1,1}n|F (x)=>}

∨
a∈{−1,1}h

(PF (x, a|θ) = 0) (6.3)

∧
∧

{x∈{−1,1}n|F (x)=>}

∧
a∈{−1,1}h

(PF (x, a|θ) ≥ 0) (6.4)

∧
∧

{x∈{−1,1}n|F (x)=⊥}

∧
a∈{−1,1}h

(PF (x, a|θ) ≥ gmin). (6.5)

Then, the same formula Φ(θ) can be used for the optimization version

of the encoding problem. In particular, the problem of finding the penalty

function PF (x, a|θ) that maximizes the gap gmin is the OMT(LRA) max-

imization problem 〈Φ(θ), gmin〉. Notice that, since a maximum gmin is

sought, the OMT solver implicitly normalizes PF (x, a|θ). Furthermore, if

a = ∅, then the OMT(LRA) maximization problem 〈Φ(θ), gmin〉 reduces

to a linear program because the disjunctions in (6.3) disappear.

To force PF (x, a|θ) to be an exact penalty function, we add another

conjunct in the quantified part of (6.1):

(¬F (x)→ ∃a.(PF (x, a|θ) = gmin)), (6.6)
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This conjunct forces PF (x, a|θ) to be exactly equal to gmin on all counter-

models for at least one a. The quantifier-free version of (6.6) can be then

trivially obtained by adding the relevant constraints to the Shannon’s ex-

pansion in (6.2)-(6.5):

(6.2)-(6.5) ∧
∧

{x∈{−1,1}n|F (x)=⊥}

∨
a∈{−1,1}h

(PF (x, a|θ) = gmin). (6.7)

6.2 Improving SMT Encoding using Variable Elimi-

nation

Disclaimer: The contents of this section is not a contribution of this thesis;

rather, this was already proposed in [13]. We report it here to make the

narration self-contained, since the techniques described here have been

actually implemented and used in our work.

In the previous SMT/OMT(LRA) formulation (6.2)-(6.5), Φ(θ) grows

exponentially with the number h of hidden variables. For practical pur-

poses, this typically implies that Φ(θ) becomes impractical to solve when

the number of ancillas exceeds about 10. By using a more efficient for-

mulation we can reduce the issue. Here we describe an alternative SMT

formulation whose size grows slower when increasing h. This formulation

grows as O(h2tw), where tw is the tree-width (as defined in Section 3.2.3)

of the subgraph of G induced by the ancillary variables in the variable

assignment, Ga. For Chimera graphs, this means that even when h is as

large as 32, tw is at most 8 and therefore still of tractable size.

The reformulation is based on the use of the variable elimination

technique [39] on Ga to solve an Ising problem. This method is a form of

dynamic programming, which involves storing tables in memory describ-

ing all possible outcomes of a sub-problem. Rather than using numerical
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tables, our formulation replaces each of its entries with a LRA variable

constrained by linear inequalities. Each ancilla is processed in a specific

order, called variable elimination order. When the tree-width is tw, there

exists a variable elimination order guaranteeing that each table contains

at most O(2tw) entries. In principle, we need to solve an Ising problem

for each x ∈ {−1, 1}n, thus generating O(2nh2tw) continuous variables.

However many of these continuous variables are equal thanks to the local

nature of the variable elimination process. This leads to a reduction of as

much as an order of magnitude of the SMT formulation.

We can reformulate equations (6.4)-(6.5) by introducing witness binary

variables β(x) : {−1, 1}n → {−1, 1}h that will represent ground states for

ancillary variables. The equality constraints of (6.3) are then modified

into the form PF (x,β(x)|θ) = 0. Thus, we can rewrite Φ(θ) as the SMT

problem Φ(θ,β) in the following way:

Φ(θ,β)
def

= (6.2) ∧ (6.4) ∧ (6.5)

∧
∧

{x∈{−1,1}n|F (x)=>}

∨
a∈{−1,1}h

(
(β(x) ≡ a) ∧ (PF (x, a|θ) = 0)

)
.

At first, consider the case of a penalty function with no ancilla-ancilla

interaction, thus the graph Ga has no edges. If, for i = 1, . . . , h, we define

fi(ai|x) as the contribution of ancilla ai to the penalty function in the

following way:

fi(ai|x) = θiai + ai
∑
j:ij∈E

θij xj,

Then, conversely, we can rewrite the penalty function in the following

way:
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PF (x, a|θ) = c(x) +
h∑
i=1

fi(ai|x),

Here c(x) does not depend on the ancillary variables. Thus we have the

following property:

min
a
PF (x, a|θ) = c(x) +

h∑
i=1

min
ai∈{−1,1}

fi(ai|x). (6.8)

When θ is known solving (6.8) is straightforward. However, since in the

encoding θ is a variable, we express the contribution minai∈{−1,1} fi(ai|x)

as a function of θ, for each i = 1, . . . , h. Each of these minima will be

represented as a continuous variable mi(∅|x) referred to as a message

variable. To define message variables mi(∅|x) in the SMT problem we

can impose the following constraints:

mi(∅|x) ≤ fi(−1|x) ∧ mi(∅|x) ≤ fi(1|x). (6.9)

When F (x) = ⊥ the message variables are lower bounds on the true

minima of (6.8). Thus, to enforce the constraints of (6.5) we need simply

add the equivalent constraint:

c(x) +
h∑
i=1

mi(∅|x) ≥ gmin. (6.10)

When F (x) = > instead we need to ensure that the message variables

take the minima of (6.8). To do this we can make use of the witness

variables β(x). To relate the values of β(x) and the message variables

m(∅|x) we add the following SMT constraints:

βi(x)⇒
(
mi(∅|x) = fi(1|x)

)
,

¬βi(x)⇒
(
mi(∅|x) = fi(−1|x)

)
.
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Here variable βi(x) identifies the value of the ancillary variable i that

achieves the minimum in (6.8). Finally, to impose (6.3) and (6.4), we

require the following condition:

c(x) +
h∑
i=1

mi(∅|x) = 0.

Message variables require defining a LRA variable for each assignment

of x. Since G is usually sparse though, it is likely that two binary states

x and x′ agree on the bits adjacent to a fixed ancillary variable i. In this

case, it is clear that mi(∅|x) = mi(∅|x′), and we can use a single message

variable for both states. This observation holds even when Ga has edges

and will allow us to reduce the size of the SMT problem formulation.

Next we will consider the general case, when |E(Ga)| > 0. In what

follows, c(x) and fi(ai|x) are defined as above. Given x, we want to solve

the Ising model mina PF (x, a|θ). Variable elimination proceeds in order,

replacing one ancillary variable at a time with its message variable. Sup-

pose that ancillary variables are eliminated in the order h, h − 1, . . . , 1.

Each ancillary variable i is associated with a set Fi of factors, which are

functions that depend on ancillary variable i and on a set of ancillary vari-

ables that will be eliminated after i, thus with a lesser index. The sets

of factors Fi are called buckets. For convenience from now on we will

represent each edge as an ordered pair of vertices (i, k) with k < i.

Initially, each Fi consists of simple factors that contains the terms of

ancilla-ancilla edges: fi,k(ai, ak) = θik aiak for ik ∈ E(Ga), k < i. Let Vi
denote the set of ancillary variables involved in the factors of bucket Fi
other than variable i itself , and let aU denote {ai : i ∈ U} where U is a

subset of ancilla and a is a fixed ancilla assignment.

Variable h is eliminated first. Note that once variables in Vh are instan-

tiated to aVh, the ground value of variable h is the following:
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gh(aVh,x) = min
ah

fh(ah|x) +
∑

fi,k∈Fh

fi,k(aVh, ah). (6.11)

Here we abuse notation and write fi,k(ai, ah) as fi,k(aVh, ah). aVh has 2|Vh|

possible values,. These values define a new factor gh, function of variables

aVh. gh is then added to the bucket Fi of variable i with largest index in

Vh. As in the case when Ga had no edges, a message variable mh(aVh|x)

will correspond with (a lower bound on) the minimum of (6.11). For each

instantiation of aVh we define the message mh(aVh|x) as gh(aVh).

In this way we proceed in eliminating the next variable in the order

h − 1, and so on iteratively. Eliminating variable i is accomplished by

generating the following new factor for each setting of aVi:

gi(aVi|x) = min
ai

fi(ai|x) +
∑
f∈Fi

f(aVi, ai) (6.12)

Then, for each one of the 2|Vi| possible values of gi we can define the

message variable mi(aVi|x) as gi(aVi). As above, factor gi is then added to

bucket Fk where k is the largest index in Vi. When Vi = ∅, Equation 6.12

takes the following form:

gi(aVi|x) = min
ai

fi(ai|x) +
∑
f∈Fi

f(ai) (6.13)

gi determines the optimal value of ai; the corresponding message is

mi(∅|x). At termination one or more variables will have Vi = ∅ and the

final formulation of the Ising problem mina PF (x, a|θ) is the following:

c(x) +
∑
i:Vi=∅

mi(∅|x).

Notice that the number of additional messages is O(
∑

i 2
|Vi|). When

Ga has tree-width t, there is an elimination order for which each |Vi| ≤ t,
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which, considering Chimera and Pegasus topologies, will be much smaller

than 2h.

As θ are LRA variables, the messages can be defined as LRA expres-

sions. Since these message variable represent minimums, we can upper

bound the message variables adding the following constraints:

mi(aVi|x) ≤ fi(−1|x) +
∑
f∈Fi

f(aVi,−1)

mi(aVi|x) ≤ fi(1|x) +
∑
f∈Fi

f(aVi, 1).

As before, when F (x) = ⊥ the constraint (6.5) can be replaced with the

following:

c(x) +
∑
i:Vi=∅

mi(∅|x) ≥ gmin, (6.14)

When F (x) = > instead we must ensure that all the message variables

are tightly defined. Let βU(x) be defined in a way similar to aU : βU(x) =

{βi(x) : i ∈ U}. Thus, we must add the following constraints for all aVi:

[
βVi

(x) ≡ aVi ∧ βi(x)
]
⇒

[
mi(aVi|x) = fi(1|x) +

∑
f∈Fi

f(aVi, 1)
]

[
βVi

(x) ≡ aVi ∧ ¬βi(x)
]
⇒

[
mi(aVi|x) = fi(−1|x) +

∑
f∈Fi

f(aVi − 1)
]
.

Thus, the final re-formulation of the constraints in equation (6.3) and

(6.4) will be the following:

c(x) +
∑
i:Vi=∅

mi(∅|x) = 0. (6.15)

As noted previously, some message variables will be equivalent to each

other. In fact, identifying message variables that have to be the same across
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many states x can accomplish a significant additional model reduction.

Because G is often sparse, the number of message variables can typically

be reduced by an order of magnitude or more.

The variable elimination lower bounds of Equation 6.14 can be relaxed

using weaker lower bounds from a linear programming relaxation of the

corresponding Ising problem, that requires O(|V | + |E|) continuous vari-

ables and inequalities per x, F (x) = ⊥. Consider the following formulation

of a QUBO problem:

min
yi∈{0,1}

∑
i∈V

ciyi +
∑

e={i,j}∈E

qe yiyj ,

Here variables have been slightly renamed and we use {0, 1} for binary

variables. We can get express it as an integer linear programming problem,

and its relaxation is the following:

Minimize
∑
i∈V

ciyi +
∑
e∈E

qe ze (6.16)

subject to

ze − yi − yj ≥ −1 for each e = ij ∈ E, i < j (λe)

(6.17)

−ze + yi ≥ 0 for each e = ij ∈ E,i < j (λhe,i)

(6.18)

−ze + yj ≥ 0 for each e = ij ∈ E,i < j (λte,j)

(6.19)

−yi ≥ −1 for each i ∈ V (αi)

(6.20)

yi, ze ≥ 0 (6.21)
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Its linear programming dual is given by

Maximize −
∑
e∈E

λe −
∑
i∈V

αi (6.22)

subject to

λe − λhe,i − λte,j ≤ qe for each e = ij ∈ E,i < j

(6.23)

−
∑
e:i∈e

λe +
∑

e=ik∈E,i<k

λhe,i +
∑

e=ki∈E,k<i

λte,i − αi ≤ ci for each i ∈ V

(6.24)

λe, λ
h
e,i, λ

t
e,i, αi ≥ 0 (6.25)

Notice that if c and q (that can be trivially written as linear expressions

of θ) are LRA variables, the dual problem is still composed by LRA
assertions. Thus, we can impose bounds on the minimum value of the

QUBO gmin with the following set of linear inequalities:

−
∑
e∈E

λe −
∑
i∈V

αi ≥ gmin (6.26)

(6.23), (6.24), (6.25) (6.27)

This upper bound can help the SMT solver to restrict the search space.

Note that we can always take

(−
∑
e:i∈e

λe +
∑

e=ik∈E,i<k

λhe,i +
∑

e=ki∈E,k<i

λte,i − ci)+ = αi.

6.3 Inequivalent Variable Placements

So far we have assumed that a variable placement has been provided by the

user. The formula Φ(θ) in (6.2)-(6.7) can be built only knowing where each
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zi ∈ x ∪ a has been placed. In general there will be many possible place-

ments, but by exploiting the symmetries of G encoded in its automorphism

group Aut(G), we can reduce the effective number of placements that have

to be tested.

Let v
def

= (v1, ..., vn+h) denote a variable placement, so vi is the vertex

of V onto which qubit zi is placed. Two variable placements v and v′
def

=

(v′1, ..., v
′
n+h) are equivalent if there is a graph automorphism φ ∈ Aut(G)

that maps v to v′; that is, vi = φ(v′i) for all i ≤ n. If v and v′ are equivalent,

then a penalty function for v can be transformed into a penalty function for

v′ by applying φ, and as φ ∈ Aut(G) all architectural constraints remain

unchanged. Therefore it is sufficient to enumerate all inequivalent place-

ments in order to search for a penalty function of maximal gap among all

placements.

Example 10. Suppose we want to encode a penalty function with n+h = 8

variables into an 8-qubit Chimera tile. There exist 8! = 40320 possible

variable placements. However, the Chimera tile graph is highly symmetric:

any permutation of v that either flips horizontal qubits with vertical qubits

or reorders horizontal and/or vertical qubits is an automorphism. Each

placement is in a class of |Aut(G)| equivalent placements, and the order of

Aut(G) is 2× 4!× 4! = 1152. Since all placements are partitioned in sets

of cardinality |Aut(G)|, there are at most 8!/|Aut(G)| = 35 inequivalent

placements to consider.

This equivalence relation is dependent only on the hardware graph and

assumes no symmetries on the penalty function. In general though, an-

cillary qubits are interchangeable and many Boolean functions are highly

symmetric. The notion of variable placement equivalence can be extended

by taking advantage of NPN-equivalence. We define variables x1 and x2 in

a Boolean function F to be NPN-symmetric if an equivalent formula can

be produced by swapping the two variables and negating any of the two
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variables. These symmetries, similarly to automorphism groups in graphs,

define an equivalence relation between variables of F : for any xi and xj

in the same equivalence class, there is a permutation-and-negation that

maintains F and maps xi to xj while keeping other variables the same. We

say that two variable placements v and v′ are equivalent up to NPN-

symmetry if there is a graph isomorphism φ of G and a NPN-symmetry

permutation σ of F such that v = σ(φ(v′)). That is, for all i ≤ n, there

exists a j ≤ n such that xi and xj are NPN-symmetric and vi = φ(v′j).

Example 11. Consider the following function:

AND(x1, . . . , x4) = x1 ∧ x2 ∧ x3 ∧ x4

The variables x1, . . . , x4 in AND are all NPN-symmetric. Suppose we have

a penalty function with h = 4 auxiliary variables with a placement on the

8-qubit Chimera tile. Just considering graph automorphisms, it suffices to

consider 35 variable placements. Adding NPN-symmetry into considera-

tion we notice that any two variable placements v and v′ that map the

same number of xi’s to horizontal qubits are equivalent, since there is a

NPN-symmetry that will map the xi’s in v to the xi’s in v′. Moreover, a

placement mapping k ≤ 4 of the xi’s to horizontal qubits is equivalent to

one mapping 4 − k of the xi’s to horizontal qubits, by swapping horizon-

tal and vertical qubits. As a result, there are only 3 inequivalent variable

placements up to NPN-symmetry to consider, in which 0, 1 or 2 of the xi’s

are mapped to horizontal qubits.

We can use vertex-coloured graph isomorphisms to check for equivalent

variable placements. Recall that a vertex coloring c is a function on vertices

of the graph. Two vertex-coloured graphs (G, c) and (G′, c′) are vertex-

coloured graph-isomorphic if there is an isomorphism φ mapping V (G)

to V (G′) in such a way that every vertex of G is mapped to a vertex of the

same colour in G′ (∀v ∈ V , c′(φ(v)) = c(v)). Using a variable placement
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v and NPN-symmetry, we can define a vertex-coloring c of the hardware

graph G as follows:

c(g) =

s if vi = g and xi is in the s-th equivalence class of NPN-symmetry,

0 if g is not in {v1, . . . , vn}.

In practice we use the software package Nauty [67] to compute a canon-

ical form for each vertex-colored graph and check if two variable assign-

ment have the same canonical form. Nauty is based on vertex-coloured

canonical forms and uses them natively as part of its graph isomorphism

algorithm. It is very efficient and is able to compute canonical forms for

graphs with thousands of vertices.

6.4 Placing Variables & Computing Penalty Func-

tions via SMT/OMT(LRIA ∪ UF).

The formula Φ(θ) in (6.2)-(6.7) can be built only after a variable placement

is chosen, so that each variable zj ∈ x ∪ a has been previously placed in

some vertex vj ∈ V . The variable elimination technique also requires a

specific variable placement to define its constraints. As an alternative to

enumerating equivalent variable placements, we can encode the constraints

for a variable placement by means of SMT/OMT(LRIA ∪ UF)(i.e., the

combined theories of linear arithmetic over rationals and integers plus un-

interpreted function symbols, as seen in Section 3.3.5). This allows us to

use the SMT solver to search a penalty function over all legal variable

placements, instead of having to enumerate all possible placements and

calling multiple times the solver on each placement.

Suppose that we want to find the penalty function of a Boolean function

F that is relatively small. We represent the n+ h vertices of the hardware

graph as indices V
def

= {1, ..., n+ h}, and we introduce a list of n + h vari-

91



6.4. SMT(LRIA ∪ UF) PLACEMENT CHAPTER 6. SMT ENCODING

ables v
def

= {v1, ..., vn+h} such that vi ∈ V . vi will represent the vertex into

which zj is placed. We can guarantee that no vertices is mapped to mul-

tiple qubits with the standard SMT constraint Distinct(v1, ..., vn+h). Then

we rewrite the encoding formula (6.1) replacing the θi and θij for biases

and couplings, with a more complex construct. We introduce the uninter-

preted function symbols b : V 7−→ Q (“bias map”) and c : V ×V 7−→ Q
(“coupling map”). Each bias θj will change to b(vj) and each coupling θij

to c(vi, vj) s.t vi, vj ∈ [1, .., n+ h].

Conversely, the SMT(LRA) problem (6.2)-(6.5) can be rewritten into

the SMT (LRIA ∪ UF) problem (6.28)-(6.38) shown in Listing 1. In this

formula the constraint (6.34) is necessary because we could have c(vi, vj)

s.t. vi > vj. We can create placements for exact penalty function as well,

by adding Equation 6.39 to the SMT problem:

∧
{x∈{−1,1}n|F (x)=⊥}

∨
a∈{−1,1}h

(PF (x, a|θ0, b, c,v) = gmin) (6.39)

Furthermore, notice that the solution to the OMT(LRA∪UF) problem

〈Φ(θ0, b, c,v), gmin〉 provides the optimal values of biases b and couplings

c, but for all possible variable placements.

We follow with an example of this SMT encoding technique.

Example 12. Consider the Boolean function:

F (x)
def

= (x3 ↔ (x1 ∧ x2))

with x
def

= {x1, x2, x3} and a
def

= {a1}, on a Chimera tile subgraph with 2 hori-

zontal and 2 vertical qubits, so V
def

= {1, 2, 3, 4} and E
def

= {(1, 3), (1, 4), (2, 3), (2, 4)}.
Finally, z1, z2, z3 and z4 will denote x1, x2, x3 and a1 respectively ( as

z = x ∪ a ), and v
def

= {v1, v2, v3, v4} denotes the variable placement. In
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1 2

4

3

1 2

4

3

1 2

4

3

x1

a1

x2

x3

x3x1

a1

x2

x1

x2

a1

x3

Figure 6.1: 3 possible placements of z
def
= {x1, x2, x3}∪{a1} into a 4-qubit Chimera half-tile.

All 4! = 24 placements are equivalent to one of these.

(6.28)-(6.38) we will have the following:

PF (x, a|θ0, b, c,v)
def

= θ0 + b(v1)x1 + b(v2)x2 + b(v3)x3 + b(v4)a1 +

c(v1, v2)x1x2 + c(v1, v3)x1x3 + c(v1, v4)x1a1 +

c(v2, v3)x2x3 + c(v2, v4)x2a1 + c(v3, v4)x3a1

Graph()
def

= c(1, 2) = 0 ∧ c(2, 1) = 0 ∧ c(3, 4) = 0 ∧ c(4, 3) = 0

A possible solution is given below. The variable placement can be seen in

Figure 6.1 (center).

g v1 v2 v3 v4

2 1 3 2 4

θ0 b(v1) b(v2) b(v3) b(v4)

b(1) b(3) b(2) b(4)

5/2 −1/2 −1/2 1 0

c(v1, v2) c(v1, v3) c(v1, v4) c(v2, v3) c(v2, v4) c(v3, v4)

c(1, 3) c(1, 2) c(1, 4) c(3, 2) c(3, 4) c(2, 4)

1/2 0 −1 −1 0 −1

When using an SMT/OMT solver to search for penalty functions across

all variable placements as in (6.28)-(6.38), we may restrict the search space

by considering only one variable placement from each equivalence class
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under the automorphisms of G. We can extend the previous examples in

the following way.

Example 13. In Example 10, we reduced the number of variable place-

ments under consideration for a Chimera tile from 8! = 40320 to
(

7
3

)
= 35

using automorphisms. The simplest way to force the SMT/OMT solver to

restrict the search is adding as a constraint the disjunction of the following

35 cubes, each representing one placement.

(

subset of {v1,...,v8}
mapped to horizontal qubits︷ ︸︸ ︷

v1 = 1 ∧ v2 = 2 ∧ v3 = 3 ∧ v4 = 4∧

complementary subset
mapped to vertical qubits︷ ︸︸ ︷

v5 = 5 ∧ v6 = 6 ∧ v7 = 7 ∧ v8 = 8) ∨

(v1 = 1 ∧ v2 = 2 ∧ v3 = 3 ∧ v5 = 4 ∧ v4 = 5 ∧ v6 = 6 ∧ v7 = 7 ∧ v8 = 8) ∨

...

(v1 = 1 ∧ v6 = 2 ∧ v7 = 3 ∧ v8 = 4 ∧ v2 = 5 ∧ v3 = 6 ∧ v4 = 7 ∧ v5 = 8).

Note that if we add this constraint, the first conjunction in (6.32) can be

dropped.

Example 14. Picking the problem of Example 12, we have 4! = 24 possible

placements on a half-tile. Considering symmetries as above, there are only

3 inequivalent placements, which are shown in Figure 6.1. We can then

add the following disjunction:

(v1 = 1 ∧ v2 = 2 ∧ v3 = 3 ∧ v4 = 4) ∨

(v1 = 1 ∧ v3 = 2 ∧ v2 = 3 ∧ v4 = 4) ∨

(v1 = 1 ∧ v4 = 2 ∧ v2 = 3 ∧ v3 = 4).
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Φ(θ0, b, c,v)
def
= Range(θ0, b, c,v) ∧ Distinct(v) ∧ Graph() (6.28)

∧
∧

{x∈{−1,1}n|F (x)=>}

∧
a∈{−1,1}h

(PF (x, a|θ0, b, c,v) ≥ 0) (6.29)

∧
∧

{x∈{−1,1}n|F (x)=>}

∨
a∈{−1,1}h

(PF (x, a|θ0, b, c,v) = 0) (6.30)

∧
∧

{x∈{−1,1}n|F (x)=⊥}

∧
a∈{−1,1}h

(PF (x, a|θ0, b, c,v) ≥ gmin) (6.31)

where:

Range(θ0, b, c,v)
def
=

∧
1≤j≤n+h

(1 ≤ vj) ∧ (vj ≤ n+ h) (6.32)

∧
∧

1≤j≤n+h

(−2 ≤ b(j)) ∧ (b(j) ≤ 2) (6.33)

∧
∧

1≤j≤n+h

(c(j, j) = 0) ∧
∧

1≤i<j≤n+h

(c(i, j) = c(j, i)) (6.34)

∧
∧

1≤i<j≤n+h

(−1 ≤ c(i, j)) ∧ (c(i, j) ≤ 1) (6.35)

Distinct(v1, ..., vn+h)
def
=

∧
1≤i<j≤n+h

¬(vi = vj) (6.36)

Graph()
def
= ∧

∧
1≤i<j≤n+h
〈i,j〉6∈E

(c(i, j) = 0) (6.37)

PF (x, a|θ0, b, c,v)
def
= θ0 +

∑
1≤j≤n+h

b(vj) · zj +
∑

1≤i<j≤n+h

c(vi, vj) · zi · zj. (6.38)

Listing 1: Complete formulation of SMT (LRIA ∪ UF) encoding with automatic place-

ment.
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Chapter 7

Encoding Larger formulas

7.1 Introduction

In Section 5.1 we pointed out that large Boolean functions cannot be en-

coded using the SMT technique described in the previous chapter, as the

number of constraints and variables in the model grows exponentially with

the number of variables n of the Boolean function. Thus in this chapter

we will describe the complete “divide-and-conquer” approach that will be

used on complex SAT or maxSAT problems

This approach consists in pre-computing a library of encoded Boolean

functions using the techniques of the previous chapter, and rewriting an

input Boolean function F (x) as a conjunction of pre-encoded components∧K
k=1 Fk(x

k). The pre-computed penalty functions PFk
(xk, ak|θk) for these

components may then be combined using chains as described in Section 5.5.

In terms of effectiveness, this method has been shown to outperform other

encoding methods when encoding Boolean circuits (see also [13, 14, 90]).

The general schema of this approach is shown in Figure 7.1.

Again, we closely follow the steps of [16]. Each stage will be described

in the next sections.

97



7.2. PRE-ENCODING CHAPTER 7. LARGE ENCODING

Offline process

On-the-fly process

Standard cell
mapping

Library

Preprocessing
SAT

problem

Pre-encodingBoolean
functions

Placement
and routing

Ising
model

D-Wave
QA Solution

Figure 7.1: Schema of the divide-and-conquer encoding process.

7.2 Pre-encoding

Pre-encoding is performed ahead-of-time on a collection of small selected

Boolean functions. The goal of this phase is to generate a database of

efficient encodings for Boolean functions that appear commonly in input

functions. The AND gate is sufficient to encode all possible boolean func-

tions (see section 3.3.2), and we can add several gates, such as all 2,3 or

4 input basic gates, half and full adders and many others. Finding these

encodings can be computationally expensive, but it needs only to be per-

formed once for each NPN-inequivalent Boolean function.

There may exist many different penalty functions for any Boolean func-

tion with different trade-offs. Penalty functions with more ancilla have

larger gaps, but can result in longer chains, so choosing the best option

is not trivial. A reasonable heuristic is to choose the smallest penalty

functions with the same gap of a chain gmin = 2.

We can improve encoding results using knowledge of the target hardware

graph. For example, a natural choice of pre-computed gates for Chimera

graphs is the set of Boolean functions that can fit in single 8-qubit tile. In

particular, all 3-input, 1-output gates (all 3-feasible cuts) can be inserted

in one tile.
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7.3 Preprocessing

Preprocessing, or Boolean formula minimization, consists of simplifying

the input formula F (x) to reduce its size or complexity. While not strictly

necessary, it not only improves QA performance by reducing the size of

PF (x, a|θ) but also reduces the computational expense of the encoding

process.

In Section 3.3.2 we introduced the and-inverter graph representation of

circuits. Most of the state-of-the-art in preprocessing uses AIGs as data

structure to handle Boolean formulas (see Section 3.3.2). Preprocessing is

a well-studied problem, and mature algorithms are available [69, 71]. For

our purposes we will use DAG-aware minimization as implemented by

the logic optimizer ABC [21].

DAG-aware minimization attempts to find an AIG equivalent to the

original with a minimal number of nodes by repeatedly identifying small

sub-graphs that can be replaced with a smaller sub-graph without affect-

ing the output. DAG-aware minimization identifies a 4-feasible cut C for a

node and replaces the subgraph induced by C with the smallest subgraph

representing the same Boolean function. There are 222 NPN-inequivalent

4-input Boolean functions, a small enough number to be checked exhaus-

tively. See [44] for more details.

7.4 Standard cell mapping

The goal of the standard cell mapping phase is to decompose the previously-

simplified function F (x) into component functions
∧K
k=1 Fk(x

k) where Fk is

taken from the library of pre-encoded functions. The simplest method is to

build the library out of the gates used in the desired formula, so to ensure

each Fk(x
k) is found in the library possibly decomposing missing function
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into simpler components. However, there are more advanced techniques

that have been devised for digital logic synthesis. Technology mapping

is the process of mapping a Boolean circuit to a network physical gates

that can be placed in a digital circuit [44, 70].

A technology mapping algorithm takes as input the library gates Fk(x
k),

each with an associated cost, creates a Boolean gate network that is equiv-

alent to F (x) and attempts to minimize the total cost of the components

in
∧K
k=1 Fk(x

k). When applied to digital circuits, technology mapping is

often used to reduce issues such as chip are a used, circuit delay and load,

and takes them into account in the cost calculation. Delay and load do not

play a role in the context of QAs, while area minimization implies mini-

mization of qubits used in the encoding, and is thus important to increase

effectiveness and simplify the subsequent placement and routing phase. We

define the cost of a gate Fk to be the number of qubits used by the penalty

model PFk
, so that the total cost F (x) =

∧K
k=1 Fk(x

k) is the number of

qubits used to represent F (x) before adding chains.

Here, we apply the technology mapping algorithm outlined in [44]. The

technique relies on the definition of k-feasible cuts outlined in Section 3.3.2.

Let be F (x) a Boolean formula in AIG form D. A mapping M of an AIG

D is a function that maps every node ai of D to a k-feasible cut M(ai).

We say ai is active when M(ai) is not trivial and inactive otherwise. A

mapping M is proper if:

1. every output ao of D is active;

2. if ai is active, then every aj ∈M(ai) is active;

3. if aj is not an output and aj 6∈M(ai), then aj is inactive.

4. for each active node ak there is a Boolean function Fk(z
k) represented

by the cut M(ak) such that Fx(z
k)(or a NPN-equivalent) appears in

the pre-computed library.
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Each active node aj will become the output of a gate in our library, while

M(aj) will become its inputs. Thus, a successful mapping decomposes the

original Boolean function F (x) in the following way (as in Section3.3.1)

F (x)↔
K∧
k=1

Fk(z
k) ∧ (ao = >).

The simplest proper mapping is the trivial mapping, in which each ai is

mapped to the cut consisting of its two input nodes. The trivial mapping

is equivalent to a naive encoding of the function F (x) using AND gates

(Example 4 shows it can be trivially assumed that AND is in the pre-

computed library).

The algorithm in [44] iteratively improves mapping M in the following

way. Each node ai is associated with a list L(ai) of k-feasible cuts, ordered

by cost. Traverse the graph from inputs x to primary output ao. For each

node ai, recalculate the costs of the cuts in L(ai) based on the costs of its

children. Next, if ai is active and the current cut M(ai) is not the cut in

L(ai) of lowest cost, update M(ai). To do this, first inactivate ai (which

recursively inactivates nodes in M(ai) if they are no longer necessary) and

then reactivate ai (which reactivates nodes in M(ai), also recursively). The

cost of a cut is calculated using the area-flow heuristic. It is calculated

by summing the cost of using a particular gate, plus the best estimate cost

of activating all the nodes in the cut M(ai).

Finally, standard cell mapping algorithms typically take advantage of

NPN-equivalence of Boolean functions [70], so the library of available

Boolean functions need only contain one representative from each NPN-

equivalence class. [68]. This is done in a way similar to the one described

in Section 5.1.
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7.5 Placement and routing

After the technology mapping phase F (x) is decomposed into smaller func-

tions
∧K
k=1 Fk(x

k), each with known penalty functions PFk
(xk, ak|θk). The

last encoding step provides the final variable placement necessary to em-

bed the formula onto the QA hardware as seen in Equation 5.7. In Section

5.5 we outlined various methods to perform embedding. Here we will use

the placement and routing technique. This process has two parts: place-

ment, in which each PFk
(xk, ak|θk) is assigned to a disjoint subgraph of

the QA hardware graph; and routing, in which chains are built in order

to ensure that distinct qubits xi and x′i representing the same variable take

consistent values (using equivalence constraints with penalty functions of

the form 1 − xix′i). Both placement and routing are very well-studied in

design of digital circuits [12]. This stage is a computational bottleneck for

encoding large Boolean functions. Some placement and routing approaches

have been outlined in Section 4.2.

In Section 4.2 we have seen several approaches for placement and rout-

ing, where the placement and routing stages of embedding are typically

performed separately. However, given the currently available Chimera and

Pegasus architectures with limited qubits a combined place-and-route al-

gorithm can be more effective [14]. The approach chosen here is using

a modified Bonn-routing with a custom heuristic for placement. As the

placement heuristic relies on routing, the latter algorithm will be described

first.

First, routing in the context of embedding differs from the one in dig-

ital circuit design, mainly because that vertices (qubits) are the sparse

resource that variables compete for, rather than edges. As a result, vertex-

weighted Steiner tree algorithms should be used rather than edge-weighted

ones and vertex-weighted Steiner is harder to approximate [23, 60]. In
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practice, simple algorithms for edge-weighted Steiner trees can be adapted

to the vertex-weighted problem. This section describes a modification of

the routing algorithm BonnRoute [50] for vertex-weighted Steiner trees.

The first step is solve a continuous relaxation of the routing problem,

called min-max resource allocation. Given a set of vertices C ⊆ V ,

the characteristic vector of C is the vector χ(C) ∈ {0, 1}|V | such that

χ(C)v = 1 if v ∈ C and 0 otherwise. Let Hi be the convex hull of all char-

acteristic vectors of Steiner trees of Ti in G. Then the min-max resource

allocation problem for terminals T1, . . . , Tn is to minimize, over all zi ∈ Hi,

i ∈ {1, . . . , n},

λ(z1, . . . , zn)
def

= max
v∈V

n∑
i=1

(zi)v.

The vertices v are the resources, which are allocated to customers

(z1, . . . , zn) To recover the routing problem, note that if each zi is a char-

acteristic vector of a single Steiner tree, then
∑n

i=1(zi)v the number of times

vertex v is used in a Steiner tree. In that case, λ(x) ≤ 1 if and only if the

Steiner trees are a solution to the routing problem.

To solve the min-max resource allocation, first a weighted-Steiner tree

approximation algorithm is used multiple times to approximate the convex

hull. After each Steiner tree is generated, the weights of the vertices in that

Steiner tree are increased to discourage future Steiner trees from reusing

them (see Listing 2 for details). The generated trees form a probability

distribution over the Steiner trees for each xi.

The BonnRoute algorithm produces good approximate solutions in rea-

sonable time. More precisely, if vertex-weighted Steiner tree approxima-

tions are approximated within a factor σ of optimal, for any ω > 0 Listing

2 computes a σ(1 + ω)-approximate solution to min-max resource alloca-

tion problem using O((log |V |)(n+ |V |)(ω−2 +log log |V |)) tree approxima-
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Require: Graph G, Steiner tree terminals {T1, . . . , Tn}, number of iterations t, weight

penalty α > 1

Ensure: For each i, a probability distribution pi,Si
over all Steiner trees Si for terminals

Ti

function BonnRoute(G,{T1, . . . , Tn})
for each v ∈ V (G) do

wv ← 1

end for

for each Steiner tree Si for terminals Ti, i ∈ [n] do

zi,Si
← 0

end for

for j from 1 to t do

for each i ∈ [n] do

Find a Steiner tree Si for terminals Ti with vertex-weights wv

zi,Si
← zi,Si

+ 1

wv ← wv ∗ α for all v ∈ Si

end for

end for

Return pi,Si
← zi,Si

/t

end function

Listing 2: BonnRoute Resource Sharing Algorithm [50].

tions [72].

Once a solution to the min-max resource allocation has been found, a so-

lution to the original routing problem is recovered by randomized rounding

on the probability distributions.

When applying routing to graphs with a Chimera or Pegasus topology

we can exploit the symmetry within each unit tile. In these cases it is

convenient to work with a reduced graph in which the horizontal qubits

in each unit tile are identified as a single qubit, and similarly for the vertical

qubits. As a result the scale of the routing problem is reduced by a factor

of 4. This necessitates the use of vertex capacities within the routing
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algorithm (each reduced vertex has a capacity of 4), and variables are

assigned to individual qubits within a tile during a secondary, detailed

routing phase.

Given a partial embedding, it is possible to estimate the cost of placing a

new Fk in a particular position, by checking the shortest distance that each

new chain would have to traverse. Together with an estimation of which

sub-problem contribute the most to a particular embedding, this allows

us to improve a placement using a rip-and-reroute technique [14]. In

rip-and-reroute, a constraint (usually the most expensive) is removed from

the embedding and moved into the best available spot. We can also make

use of tabu list to avoid repeating movements on a cluster of badly-placed

gates.

For placement we use an iterative approach based on rip-and-reroute.

The graph of Fk components is traversed breadth-first; Each element is

placed using the previously mentioned heuristic. For each new element

placed, we try to improve the placement early by performing a single rip-

and-reroute step. The choice of the first component to be placed can be

random, or a metric can be chosen. In the libraries of Chapter 8 the Fk

with the highest betweenness [48] is used so that at the beginning, the

most “central” sub-problem is placed in a “central” spot in the hardware.
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Chapter 8

Implementation

8.1 Introduction

All the steps outlined in the previous chapters have been implemented as

various Python programs and libraries. A first implementation targeted

Python version 2, then all the code has been ported to support Python 3

as well. Some of the tasks can be computing intensive, so it is advisable

to use the PyPy implementation of Python as interpreter. As the most

computationally intensive step, placement and routing, is critical for over-

all speed, the author wrote a high performance version of the algorithm

in C++ using the Boost libraries. Notice that the Boost Python library

does not allow linking with PyPy, thus it currently works with the stan-

dard CPython interpreter only. All code is released under MIT license and

available at https://bitbucket.org/StefanoVt/.

This chapter describes each library and explains their implementation

details. First the basic file formats are described, together with the relative

handling libraries. Then the implementation of each step of Chapter 7 is

described.
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8.2 Basic libraries

8.2.1 SMT-lib

SMT-lib is the standard format for interacting with SMT (and OMT)

solvers. It uses S-expressions, a structured data format inherited from

lisp. S-expressions consists of atoms that can be symbols or numbers or of

lists of sub-S-expressions separated by a space and surrounded by paren-

theses. SMT-lib semantics are specified by the official standard [8].

(set-logic QF_UF)

(declare-fun p () Bool)

(assert (and p (not p)))

(check-sat)

Listing 3: Examples of S-expressions from a SMT-lib file.

The most complete Python library for SMT-lib is pySMT, but it is not

suited for our goal because it does not support OMT and interaction with

SMT solvers is hard to customize. Rather than using pySMT I wrote a

simpler library, called smtutils, that allows to transform python expres-

sions into SMT-lib S-expressions and present a simple wrapper to call a

SMT solver as an external process. Listing 3 shows a small example of using

smtutils for producing SMT-lib formulas and calling a solver. Python ex-

pression are automatically converted to S-expressions, and a simple wrap-

per spawn a SMT solver subprocess, sends the formula to it and waits for

the solution.

8.2.2 RBC library

Another fundamental task is to store and manipulate Boolean formulas and

circuits. To handle that, I wrote a library called pyrbc. The main two ways
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to represent Boolean circuits are as a network of functions (represented as

truth tables) and as and-inverter graphs. Boolean networks are directed

acyclic graphs (DAGs) where nodes are Boolean functions, and inputs

and outputs are connected through edges. As we have seen, and-inverter

graphs can be considered Boolean networks as well, but they have a single

node type and edges can be negated. In section 7.3 we have seen that

the state-of-the-art of circuit simplification uses and-inverter graphs. For

reference, Figure 3.7 shows a simple AIG.

Another important representation of Boolean circuits is as a reduced

boolean circuit (RBC). These are similar to AIGs, but use two types

of nodes, XOR and AND. The characteristic of RBC is not a particular

encoding format, but their circuit simplification technique. While a RBC

is being constructed, nodes are stored in a hash table, so that identical

sub-graphs can be de-duplicated. This technique is simple and does not

detect functionally-equivalent nodes but is fast and effective. The pyrbc

library handles AIGs using this reduction technique.

As a file format for Boolean networks the code will use the BLIF for-

mat [22], while AIGs are usually stored using the AIGER standard for-

mat [54]. The BLIF format is a simple text format generally used in digi-

tal circuit specification. It allows the definition of function networks, both

from a standard function library and as truth tables. The AIGER format

encodes and-inverter graphs, either as binary (more concise and useful for

larger circuits) or text (clearer for humans to understand). Listings 5 and 6

compare the same circuit under the same format.

The main components of pyrbc are the main nodes implementation,

the node database for RBC reduction and the import-export libraries for

AIGER files and external graph libraries. The main nodes are implemented

with the goal of easy initialization and manipulation. The database inter-

face allows a straightforward creation of graphs. It is possible convert the
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circuit into a networkx graph in order to run graph algorithms, and read

and write AIGER files. Listing 7 shows an example of using pyrbc to read

an AIGER file and traverse its nodes.

8.2.3 GENLIB format

Prepared gates are saved in a text file in GENLIB format. GENLIB is

the main format used by ABC for storing the gates library for technology

mapping. GENLIB file contain a text-base list of gates, with information

such as name, formula representation, area used, pin maximum load and

pin delays.

The format is tought for technology mapping of digital circuits, as it

contains information about electrical loads and delays that have no used

for SATtoIsing encoding. In the same way the format does not contain info

about the penalty function of a gate. In order to maintain interoperabil-

ity with ABC, the pre-encoding step produces a slightly modified format,

where the penalty function of a gate is stored in JSON format in a GEN-

LIB comment next to the description, and pin load/delay information is

set to 0. Such a GENLIB file can be directly used to perform technology

mapping using ABC without need to modify the software. Listing 8 shows

an example of such a format.

8.2.4 Graph Algorithms

Some graph algorithms are used in several contexts during the encoding

process. k-feasible cut (in short, k-cut) enumeration is an important step

in technology mapping. The algorithm for k-cut enumeration has been

outlined in Section 3.3.2. This algorithm has been implemented in the kcut

Python library, relying on the networkx graph library. It uses dynamic

programming to avoid re-calculating cuts for the same nodes and it is
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fairly efficient.

Graph isomorphism is useful for symmetry reduction in SMT pre-encoding

and during technology mapping. As hinted in Section 6.3, the main tool for

checking Graph isomorphism is the Nauty library, with a custom wrapper

for ease of use with networkx classes.

8.3 Pre-encoding

8.3.1 SMT encoding

Given a Boolean relation as a Python function a penalty function can be

sought using the pfencoding Python library. pfencoding provides some

utilities to express penalty functions and their constraints as Python and

SMT-lib expression. It provides a PenaltyFunction and a

MovablePenaltyFunction to organize the variables used in Equations 6.2

and 6.38. Furthermore a set of classes represents constraints, such as

RangeConstraint or ArchitectureConstraint. A class

ExpansionGapConstraint provides the constraints on the penalty function

obtained by Shannon expansion, while VariableEliminationConstraint

provides an implementation of Section 6.2.

A utility module, called search pf aggregates these classes to provide

several procedures, such as search pf that check if a penalty function

exists, or search pf smallest that searches for the penalty function with

the smallest number of ancillas. Listing 9 shows an example of usage for

the library.

8.3.2 Gate selection

The gate that are chosen for addition generally depend on the problem

domain that is meant to be tackled. In general it is relatively simple to
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enumerate small functions with up to 4 inputs [38], and that provides

several gate when limiting oneself to functions fitting to a single Chimera

tile.

Alternatively the library gatecollector exploits k-cut enumeration to

collect the most frequent gates in a dataset of functions of AIG format.

The list of k-input function is put in a directory, ordered by decreasing

frequency. Listing 10 provides a simple example of using the library for

generating a list of gates out of a set of circuits..

8.4 Simplification and technology mapping

The most mature freely-available software for performing technology map-

ping is ABC. The software has a command line interface that allows the

user to perform several operations on circuits. Listing 11 shows an example

of using ABC to perform simplification first and then technology mapping.

ABC loads AIGER files for circuits and GENLIB files for pre-encoded gate

library.

However, ABC is is not tailored for penalty functions so I coded an alter-

native Python library to perform tech mapping, aptly named techmapping.

The libraries parses the genlib text databases, and replicates the basic al-

gorithm used by ABC for technology mapping. This implementation is

less effective than ABC in technology mapping, and thus the use of ABC

is recommended.

The algorithm relies on k-cut enumeration and boolean matching. Given

two Boolean functions, the check for NPN-equivalence is called Boolean

matching. It is possible to perform Boolean mapping by reframing NPN-

symmetry as graph isomorphism. This allows the use of Nauty to check

for NPN-equivalence and furthermore it allows the creation of a NPN-

canonical Boolean function. This NPN-canonical function allows for an
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efficient Boolean matching of pre-encoded libraries.

8.5 Placement and Routing

The placement and routing process as described in Section 7.5 has been

implemented in another Python library called placeandroute. As this

step is the most computationally expensive, the core algorithm has been re-

implemented in C++. The library implements Bonn routing as described

in the same section. It has been implemented both in Python and C++.

The library works by setting an initial placement, finding the routing

and then applying different strategies for improving the placement in turn.

First several round of rip-and-reroute are applied, where badly-placed ele-

ments are moved. When a certain number of round yield no improvement,

a global rerouting step is performed where all chains are removed and an

alternative routing is sought. The effort placed by the algorithm in finding

a better encoding is tuneable by the user. This effort includes precision in

approximating Steiner Trees during Bonn routing and number of rip and

reroute attempts.

8.5.1 Simplified Graphs and Detailed Routing

In order to exploit symmetries in Chimera and Pegasus graphs placement

and routing are performed on simplified graphs. In Chimera a tile is com-

pressed on two nodes, each of capacity 4, while in Pegasus two adjacent

nodes are paired in a single node of capacity 2. To join a set of nodes into

a single node it is necessary that the nodes compressed together are per-

fectly interchangeable. Possible placements are defined according on what

class of hardware topology is used and how single constraints are defined.

In this implementation, a placement is defined as a tile on Chimera and a

4-clique on Pegasus. In this way constraints are placed in two nodes and
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a edge of the simplified graph.

This graph simplification is possible because a solution on the simplified

graph can be easily converted into a solution on the hardware graph (this

is possible when not considering missing qubits, but again merged nodes

must be perfectly interchangeable while missing qubits always break sym-

metries of the hardware graph). The problem of finding a routing from the

simplified graph is called detailed routing. It is possible to show that for

Pegasus and Chimera the detailed routing problem is equivalent to interval

graph coloring. Thus if the simplified solution assigns to each simplified

vertex a number of variables that is lower than its capacity then a solution

exists.

This property can be shown in the following way. Consider a solution

on the simplified graph where a variable xj is mapped to nodes a and b

that are connected by an edge Suppose that a and b represent merged

nodes A and B respectively . An issue in detailed routing arises only

if there is no way to pick qubits from za ∈ A and zb ∈ B such that a

chain can be created. When A ∪ B is a complete bipartite graph we have

no issues. A ∪ B is not bipartite only along the vertical and horizontal

couplings between different tiles. Such connections form linear paths in

the simplified graphs of Chimera and Pegasus topologies. The detailed

routing problem limited to these paths is equivalence to the graph coloring

problem on an interval graph. Interval graph coloring is straightforward

(using a greedy algorithm) and is guaranteed to find a solution with the

maximum capacity.

This method can provide detailed routing when no qubits are missing

in the hardware. If missing qubits are few enough not to break symmetries

in the hardware graph (i.e. at most one for each row/column), they can be

modeled as single-qubit chains, otherwise the greedy detailed routing can

fail.
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8.5.2 Placement Heuristics

The library allows many options for deciding an initial placement. The

most straightforward option is random initial placement; every gate is

placed in a random position and the task of finding a viable solution is

left to the placement improvement strategies.

The library provides an alternative initial placement procedure that

reuses Bonn routing and rip-and-reroute. Gates are selected using breadth-

first search on the Boolean network, starting with the most ”central”. Each

selected element is placed in turn using the heuristic of rip-and-reroute to

find the best candidate spot. Furthermore, each time that a new constraint

is added, the worst connected gate is moved using rip-and-reroute. This

heuristic is quite good in finding a placement but multiple round of rip-

and-reroute can significantly improve the placement.

8.6 CLI scripts

To use the libraries above, several scripts are available. Furthermore, two

scripts allow for generation of a pre-computed library in GENLIB format,

and one scripts perform a divide-and-conquer encoding of an AIG.

For preparing the pre-encoded library, the preencode.py script file ac-

cepts as arguments the directory containing candidate gates as AIGER

files, and a output filename. It uses the gatecollector and pfencoded

library, essentially as shown in Listing 10. The script produces a GEN-

LIB file containing the pre-encoded library. Listing 12 shows the usage

documentation.

Regarding the divide-and-conquer encoding, the encode.py script per-

form the complete process. The script requires the input formula, the pre-

encoded GENLIB library, and the target hardware. First ABC is called to

perform preprocessing and technology mapping, then the result is parsed

115



8.6. CLI SCRIPTS CHAPTER 8. IMPLEMENTATION

and placed on the selected hardware. The encoded problem is returned as

an array of biases and couplings that is ready to be sent to the hardware

using D-Wave API libraries. Listing 13 shows the usage documentation for

the script.
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from smtutils.process import Solver, get_msat_path

from smtutils.formula import SmtFormula, Symbol

from smtutils.parsing import SmtResponseParser

# Create a new formula

formula = SmtFormula()

# Declare variables

a = Symbol("Int", "a")

b = Symbol("Int", "b")

# Add assertions

formula.assert_(a+b == 5)

formula.assert_(a < 100)

# Check satisfiability, retrieve model for a and b

formula.check_sat()

formula.get_values(a, b)

# Print final SMT-lib formula to screen

print(str(formula))

# Run the solver

solver = Solver(get_msat_path("optimathsat"))

result = solver.run_formula(f)

# Parse the SMT solver response

p = SmtResponseParser(res)

print(p.result, p.model)

Listing 4: Example usage of the smtutils library.
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.model 74283.isc

.inputs W1 W2 W3 W4 W5 W6 W7 W8 W9

.outputs W32 W36 W37 W38 W39

.gate gate10 B=W9 C=W8 D=W7 A=n15

.gate gate10 B=n15 C=W6 D=W5 A=n16

.gate gate10 B=n16 C=W4 D=W3 A=n17

.gate gate10 B=n17 C=W2 D=W1 A=W32

.gate gate14 B=n17 C=W2 D=W1 A=W36

.gate gate14 B=n16 C=W4 D=W3 A=W37

.gate gate14 B=n15 C=W6 D=W5 A=W38

.gate gate14 B=W9 C=W8 D=W7 A=W39

.end

Listing 5: Circuit representation in BLIF format. Here gate are specified in a separate

file (see Listing 8)
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c comment lines start with a c

c 74283.aig

aag 41 9 0 5 32

c list of inputs

2

c [...]

18

c list of outputs

50

c [...]

82

c list of gates

20 5 3

22 4 2

24 9 7

c [...]

82 81 79

Listing 6: Circuit representation in ASCII AIGER format.Gates are indexed by number

2n while 2n+ 1 represent the negated nth gate.
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from pyrbc.aiger import parse_aig

from pyrbc.graph import build_graph

import networkx

import matplotlib.pyplot as plt

with open("example.aig", "rb") as f:

outputs = parse_aig(f)

# Traverse the DAG, print all the nodes, avoid duplicates

visited = set()

for output in outputs:

for node in output.iter_nodes(visited):

print(node)

# Display the AIG using networkx

graph = build_graph(outputs)

networkx.draw(graph)

plt.show()

Listing 7: Example of usage for the pyrbc library.

# GATE gate_name gate_area gate_formula;# json_penalty_function

# PIN unused_pin_delay_information

GATE gate10 6.000 A = (C + D) * (B + D) * (B + C);# {"(bias ...

PIN * INV 0 0 0 0 0 0

GATE gate14 8.000 A = (B + C + D) * (D + !B + !C) * (C + !B +...

PIN * INV 0 0 0 0 0 0

Listing 8: Gate specification in GENLIB format, with extra data in JSON format.
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from pfencoding.searchpf import search_pf_smallest

from pfencoding.utils import print_pf

from networkx import complete_bipartite_graph

graph = complete_bipartite_graph(4,4)

nx = 4

na = 4

def and3(x):

return x[0] == (x[1] and x[2] and x[3])

model, pf = search_pf_smallest(nx, na, graph, and3, gap=2)

print(model)

if model:

print_pf(pf, model, and3)

Listing 9: Searching the smallest penalty function for the function x0 = (x1 ∧ x2 ∧ x3)
that fits inside a Chimera tile using pfencoding.
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from glob import glob

from os.path import dirname

from gatecollector.encodeintiles import encode_aig,describe_aig

from gatecollector import database

from json import dumps

db = database.DelayedFunctionDatabase()

ngates = 100

for fn in glob(dirname(__file__)+ "/dataset/*.aig"):

#read all gates from file

with open(fn, "rb") as f:

db.read_function(f, 6)

# save to a file the most common gates

for i, gate in enumerate(db.most_common(ngates)):

(size, func, inputs), count = gate

model = encode_aig(func)

desc = describe_aig(func)

if model:

jsondata = {k: float(v) for k, v in model.items()}

print ("""GATE gate{} {}.00 {};#{}

PIN * INV 0 0 0 0 0 0

""".format(i,

model["ancilla_used"] + 1 + len(inputs),

desc,

dumps(jsondata)))

Listing 10: Example of extracting the most common gates out of a dataset using

gatecollector.
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UC Berkeley, ABC 1.01 (compiled Jan 27 2019 18:13:48)

abc 01> read ../datasets/74x/74283.isc.aig

abc 02> read ../datasets/generated.genlib

Entered genlib library with 34 gates from file "generated.genlib".

abc 02> source ../datasets/simplify.abc

74283.isc: i/o = 9/5 lat = 0 and = 32 lev = 9

abc 211> source ../datasets/convert.abc

[...] area = 56.00 lev = 4

abc 212> write 74283.blif

Listing 11: Example of usage of ABC for technology mapping(edited for clarity).

usage: preencode.py [-h] [--output OUTPUT] [--numgates NUMGATES]

[--cell {chimera,pegasus}]

input_dir

Build a library of pre-encoded gates

positional arguments:

input_dir directory containing circuits to be

analyzed

optional arguments:

-h, --help show this help message and exit

--output OUTPUT, -o OUTPUT

GENLIB output file

--numgates NUMGATES, -n NUMGATES

Number of gates to get (default: all)

--cell {chimera,pegasus}, -c {chimera,pegasus}

type of cell (default: chimera tile)

Listing 12: Usage documentation of preencode.py.

123



8.6. CLI SCRIPTS CHAPTER 8. IMPLEMENTATION

usage: encode.py [-h]

[--hardware {chimera8,chimera12,chimera16,

pegasus6,pegasus8,pegasus12}]

input library

Encode a SAT problem into a QA model.

positional arguments:

input input SAT problem as AIG file

library pre-encoded library as GENLIB file

optional arguments:

-h, --help show this help message and exit

--hardware {chimera8,chimera12,chimera16,

pegasus6,pegasus8,pegasus12}

-g {chimera8,chimera12,chimera16,

pegasus6,pegasus8,pegasus12}

QA hardware (default: chimera16)

Listing 13: Usage documentation of encode.py.
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Chapter 9

Experimental evaluation

Using the software described in Chapter 8, the chapter provides a prelimi-

nary empirical validation of the proposed methods for SATtoIsing encoding

and SAT solving by evaluating the performance of D-Wave’s 2000Q quan-

tum annealer in solving certain hard SAT problems (Section 9.1); a similar

evaluation is performed on MaxSAT problems as well (Section 9.2).

Currently the most time-onerous step in the on-the-fly part of the pro-

cess outlined in Chapter 7 is the placement and routing step. Encoding the

problems in the following evaluation requires approximately 20 minutes on

an Intel i7-5600U CPU. However software heuristics are heavily tunable in

order to trade off efficiency and effectiveness of the place-and-route pro-

cess. As long as the encoding process does not become untractable, we can

focus on the time taken by the quantum annealer to reach the final solution

state. Furthermore, in certain contexts (e.g. fault diagnosis [14]), hard-

ware embeddings are reusable and therefore can be thought as a one-time

cost.

This evaluation has a number of requirements. First, we require in-

stances that can be entirely encoded in the qubits of a currently available

quantum annealer, i.e. a Chimera graph of around 2000 qubits (although

algorithms for solving larger CSP with QA have been proposed [13, 14]).
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Furthermore, SAT solvers are already quite effective on average case prob-

lems, thus we need concrete problems that can get state-of-the-art solvers

stuck. Another important consideration in solving [Max]SAT instances is

that the QA hardware cannot reason on the input or produce proofs. Thus

unsatisfiable SAT instances are not suitable for evaluation.

QA hardware behaves more like an SLS solver than a CDCL-based one:

for this reason we solved the same problems with the state-of-the-art UBC-

SAT SLS SAT solver using the best performing algorithm, namely SAPS

[92]. UBCSAT was run on a computer using a 8-core Intel R© Xeon R© E5-

2407 CPU, at 2.20GHz.

The results reported in this section are not intended as a performance

comparison between D-Wave’s 2000Q system and UBCSAT, or any other

classic computing tool. There are issues in comparing specialized vs. off-

the-shelf hardware and different timing mechanisms and timing granular-

ities. Rather than that the aim is to provide an experimental assessment

of the potential use of quantum annealing for [Max]SAT solving.

Experimental data, problem files, translation files, demonstration source

code and supplementary material can be accessed from a publicly avail-

able website.1 A D-Wave 2000Q machine is publicly accessible through

D-Wave’s Leap cloud service.2

9.1 SAT Experiments

9.1.1 Choosing the benchmark problems

Due to previously mentioned limitations in size and connectivity of cur-

rent QA systems, we require SAT problems which have a small number of

variables but are hard for standard SAT solvers in general.

1 https://bitbucket.org/aqcsat/aqcsat.
2 https://cloud.dwavesys.com/leap/.
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Figure 9.1: Median times vs. problem size for the best-performing SLS algorithm, on two

variants of the sgen problem on UBCSAT (SAPS). Timeout is at 1000 seconds. The

figure report times on a 8-core Intel R© Xeon R© E5-2407 CPU, at 2.20GHz.

To this end the chosen benchmarks are created with the tool sgen [88]

with some modifications. sgen is the current state of the art for generating

the small unsolvable problems in recent SAT competitions. Furthermore,

the problems have a structure that is suited for problem embedding, as

they are composed of a single type of constraint that can be embedded very

efficiently, and problems with few hundreds of variables are considerably

hard. The sgen family of generators received many improvements over the

years, but satisfiable instances are generated in the same way [49, 89]. sgen

creates problems by setting cardinality constraints over different partitions

of the set of variables. The tool requires as an input the desired problem

size for the output (and a random number generator). Given this, the

generator operates as follows:

1. A satisfying assignment is decided at random.

2. The tool partitions the variable set into sets of 5 elements in such a

127



9.1. SAT EXPERIMENTS CHAPTER 9. EXPERIMENTAL EVALUATION

way that each subset contains exactly one true variable for the desired

solution.

3. For each subset we guarantee that at most one variable is true (10

2-CNF clauses).

4. The partition is shuffled into a new one. The tool ensures that each

new subset contain exactly one true variable, and minimizes the sim-

ilarity with the previous partition.

5. For each partition subset we ensure that at least one variable is true

(a single CNF clause).

6. The previous two steps are repeated one more time, to further restrict

the solution space.

In Figure 9.1, the red dots represent median resolution times for UBC-

SAT SAPS on random sgen problems. Notice that with > 300 variables

the solver reaches the timeout of 1000 seconds for all problems.

In our validation experiments, we modify the tool to better suit the

annealer hardware. We use exactly-2-in-4 constraints on partitions with

sets of size 4 instead of size 5 partitions, with exactly two true variables per

subset. This constraint has a very efficient embedding and furthermore the

modified problems are slightly harder with the same number of variables

(see the blue dots on Figure 9.1, where UBCSAT SAPS reaches timeout

with > 270 variables).

9.1.2 Experiments and Results

We generated several problem instances with multiple problem sizes. 100

different problems are generated per size, with size ranging from 32 vari-

ables to 80, the biggest size on which embedding has been successfully
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performed. Furthermore problems have been generated in the original ver-

sion (with at-least-one-in-five and at-most-one-in-five) and a two-in-four

version (using exactly-two-in-four constraints). These SAT instances are

encoded and embedded using the divide-and-conquer method.

For the experiment, a fixed number of samples/instance (5, 10, 20) is

drawn from the quantum annealer. Annealing was executed at a rate of

10 µs per sample, for a total of 50 µs, [resp. 100 µs and 200 µs] of anneal

time per instance respectively. Total time used by the D-Wave proces-

sor includes programming and readout; this amounts to about 150 µs per

sample, plus a constant 10 ms of overhead. Table 9.1(a) shows the results

using the D-Wave 2000Q annealer. The quantum annealer solves almost

all problems with 5 samples (i.e. within 50 µs of total anneal time), and

all of them are solved with 20 samples (i.e. within 200 µs of total anneal

time). In order to contextualize the results, the same problems are solved

with the UBCSAT SLS SAT solver, using SAPS [92]. These computations

were performed using an 8-core Intel R© Xeon R© E5-2407 CPU, at 2.20GHz.

Table 9.1(b) shows that the problems are nontrivial despite the small num-

ber of variables, and the run-times increase significantly with the size of

the problem. (See also Figure 9.1.)

9.2 MaxSAT experiments

Exact penalty functions (Section 5.1) allow for the encoding of weighted

MaxSAT problems, with some restrictions. To demonstrate the perfor-

mance of the QA hardware in this regime, we generated weighted MaxSAT

instances that have many distinct optimal solutions.
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9.2.1 Choosing the benchmarks

The weighted MaxSAT problems were generated from the previous 2-in-4-

SAT instances by removing part of the constraint, turning into unsatisfi-

able instances and then adding constraints on single variables with smaller

weight. More precisely:

1. Start with the 2-in-4-SAT instances of the previous section.

2. Remove one of the partitions of the variable set, and change one 2-in-4

constraint to 1-in-4. This makes the SAT problem unsatisfiable: for

an n variable problem, the first partition demands exactly n/2 true

variables, while the second demands exactly n/2− 1.

3. Each constraint is assigned a soft weight of 3 and for each variable

single literal constraint with random polarity is created and assigned

weight 1.

4. Multiple MaxSAT instances of this form are generated until an in-

stance has the optimal solution with exactly one violated clause of

weight 3 and at least n/3 violated clauses of weight 1, and with at

least 200 distinct optimal solutions.

9.2.2 Experiments and Results

The problems are encoded with the same divide-and-conquer method, using

exact penalty functions. As discussed, finding analytically the smallest

approprate chain gap for encoding is unfeasible. Chain gaps that are too

small result in a large number of broken chains, while high gaps reduce

excessively the relative constraint below the noise level. For this experiment

the optimal gaps have been found experimentally by sweeping over a range

of values and choosing the best. The chosen chain gap was always in the
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range gchain ∈ [2, 6], relative to normal exact penalty functions (Section

5.1).

The D-Wave processor is used to generate a single optimal MaxSAT

solution and Table 9.2 summarizes the results. Annealing was executed at

a rate of 10 µs per sample, for a total of 1 ms of anneal time per instance.

Again, the run-times for various high-performing SLS MaxSAT solvers are

added. Classical computations were performed on an Intel i7 2.90GHz ×
4 processor. The solvers gw2sat, rots, and novelty are as implemented in

UBCSAT [92]. The QA hardware solves almost all problems with 100

samples/instance (i.e. within 1 ms of anneal time).

Table 9.3 considers instead the performance in generating distinct op-

timal solutions. For each solver and problem size, the table indicates the

number of distinct solutions found in 1 second, averaged across 100 problem

instances of that size. For the smallest problems, 1 second is sufficient for

all solvers to generate all solutions, while the diversity of solutions found

varies widely as problem size increases. The D-Wave processor returns less

optimal solutions for MaxSAT instances compared to the SAT instances,

but it is still effective in providing distinct optimal solutions due to the

rapid sampling rate.

9.3 SGEN Problems on Pegasus

All the previous experiments have been performed on the currently avail-

able hardware, that uses the Chimera topology. Whereas it is not yet

possible to run the same experiments on the improved Pegasus topology,

we can analyze the impact of the new architecture by checking the maxi-

mum size that would fit for the same problem class.

Table 9.4 shows the maximum problem size that can be encoded for

Pegasus chips of different sizes. For reference the previous experiment
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were run on a 16× 16 Chimera grid with 2048 qubits. We can notice that

the new architecture allows to encode bigger problem with fewer qubits, in

particular a 6× 6 Pegasus hardware with 720 qubits can contain problems

of size roughly equal to the D-Wave 2000Q hardware. Furthermore, larger

future Pegasus chips 12 × 12 and 16 × 16 can hold problems that require

hundreds of seconds and more to be solved by UBCSAT (Figure 9.1).
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(a)

D-Wave 2000Q

Problem size
# solved

5 samples

# solved

10 samples

# solved

20 samples

% optimal

samples

32 vars 100 100 100 97.4

36 vars 100 100 100 96.4

40 vars 100 100 100 94.8

44 vars 100 100 100 93.8

48 vars 100 100 100 91.4

52 vars 100 100 100 93.4

56 vars 100 100 100 91.4

60 vars 100 100 100 88.2

64 vars 100 100 100 84.6

68 vars 100 100 100 84.4

72 vars 98 100 100 84.6

76 vars 99 99 100 86.6

80 vars 100 100 100 86.0

(b)

UBCSAT (SAPS)

Problem size Avg time (ms)

32 vars 0.1502

36 vars 0.2157

40 vars 0.3555

44 vars 0.5399

48 vars 0.8183

52 vars 1.1916

56 vars 1.4788

60 vars 2.2542

64 vars 3.1066

68 vars 4.8058

72 vars 6.2484

76 vars 8.2986

80 vars 12.4141

Table 9.1: (a) Number of SATtoIsing problem instances (out of 100) solved by the QA

hardware using 5 samples [resp. 10 and 20] and average fraction of samples from the QA

hardware that are optimal solutions.

(b) Run-times in ms for SAT instances solved by UBCSAT using SAPS, averaged over

100 instances of each problem size.
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(a)

D-Wave 2000Q

Problem size # solved
% optimal

samples

32 vars 100 78.7

36 vars 100 69.0

40 vars 100 60.2

44 vars 100 49.9

48 vars 100 40.4

52 vars 100 35.2

56 vars 100 24.3

60 vars 100 22.3

64 vars 99 17.6

68 vars 99 13.0

72 vars 98 9.6

76 vars 94 6.6

80 vars 93 4.3

(b)

MaxSAT solvers: avg time (ms)

Problem size g2wsat rots maxwalksat novelty

32 vars 0.020 0.018 0.034 0.039

36 vars 0.025 0.022 0.043 0.060

40 vars 0.039 0.029 0.056 0.119

44 vars 0.049 0.043 0.070 0.187

48 vars 0.069 0.054 0.093 0.311

52 vars 0.122 0.075 0.115 0.687

56 vars 0.181 0.112 0.156 1.319

60 vars 0.261 0.130 0.167 1.884

64 vars 0.527 0.159 0.207 4.272

68 vars 0.652 0.210 0.270 8.739

72 vars 0.838 0.287 0.312 14.118

76 vars 1.223 0.382 0.396 18.916

80 vars 1.426 0.485 0.430 95.057

Table 9.2: (a) Number of MaxSATtoIsing problem instances (out of 100) solved by the

QA hardware and average fraction of samples that are optimal.

(b) Average time in ms taken to find an optimal solution by various inexact weighted

MaxSAT solvers. 134
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(a)

D-Wave 2000Q

Size wall-clock anneal only

32 vars 448.5 443.9

36 vars 607.0 579.9

40 vars 1007.9 922.0

44 vars 1322.6 1066.6

48 vars 1555.4 1111.8

52 vars 3229.0 1512.5

56 vars 2418.9 1147.4

60 vars 4015.3 1359.3

64 vars 6692.6 1339.1

68 vars 6504.2 1097.1

72 vars 3707.6 731.7

76 vars 2490.3 474.2

80 vars 1439.4 332.7

(b)

MaxSAT solvers

Size g2wsat rots maxwalksat novelty

32 vars 448.5 448.5 448.5 448.5

36 vars 607.0 606.9 606.9 606.8

40 vars 1007.7 1006.3 1005.3 1005.0

44 vars 1313.8 1307.1 1311.7 1255.5

48 vars 1515.4 1510.7 1504.9 1320.5

52 vars 2707.5 2813.0 2854.6 1616.2

56 vars 2021.9 2106.2 2186.6 969.8

60 vars 2845.6 3061.7 3289.0 904.4

64 vars 3100.0 4171.0 4770.0 570.6

68 vars 2742.2 3823.3 4592.4 354.8

72 vars 1841.1 2400.2 2943.4 212.6

76 vars 1262.5 1716.0 2059.2 116.4

80 vars 772.2 1111.1 1363.9 66.7

Table 9.3: Distinct optimal solutions found in 1 second by various MaxSAT solvers,

averaged across 100 instances. “anneal only” accounts for only the 10 µs per sample

anneal, while “wall-clock” accounts for the full time, including programming and readout.

(b) Classical computations were performed as in Table 9.2(b).
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Pegasus # qubits sgen size # constrs

4x4 288 44 33

6x6 720 88 66

8x8 1344 128 96

12x12 3168 212 159

16x16 5760 320 240

Table 9.4: Maximum size of encoded sgen problems on Pegasus topologies. In compari-

son, on a Chimera 16x16 having 2048 qubits, the maximum sgen size is 80.
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Chapter 10

Conclusions

In this thesis a method for encoding SAT and MaxSAT problems into

Quantum Annealing problems has been presented. It employs several new

techniques to improve effectiveness, and it shows promise in encoding prob-

lems that challenge state-of-the-art SAT solvers.

The described approach has still some limitations. First, the online

phase is currently quite slow in producing an encoding, taking several min-

utes to hours. This is due to the necessity of searching a very efficient

encoding for problems that are as big as possible. SMT optimal encoding

of Boolean function becomes harder on the newer hardware topology, while

the pre-encoded library approach benefits from having pre-encoded gates

that are as big as possible. Finally, currently either the SAT problem en-

coding result fits into the hardware or the process fails, thus still showing

a certain lack of flexibility.

These limitations provides cues for further research. Progresses in tech-

nology mapping and placement and routing could directly provide more ef-

fective encodings. It is also interesting to consider alternative approaches

in SMT solving for pre-encoding. Finally, a problem decomposition ap-

proach tuned to SAT could increase flexibility by allowing encoding of

large problems.
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