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Abstract

This thesis deals with the theoretical and computational modelling of materials by
using a variety of multi-scale approaches to accurately predict the properties of realis-
tic structures. In particular, we analyse a number of known and novel carbon-based
materials, exploiting the unique versatility of carbon to bind into several bonding
configurations, with the aim of tailoring their electronic and mechanical characteris-
tics.

In this regard, the methods used to carry out electronic structure simulations de-
pend on the system size: from the Dirac-Hartree-Fock (DHF) approach to model
molecular properties, where systems are composed by few atoms only, to Density
Functional Theory (DFT) used for periodic solids, such as diamond and graphene-
related materials composed by a few to some hundred of atoms, to Density Func-
tional Tight Binding (DFTB) or plane Tight Binding (TB) to study nanowires or Bel-
trami pseudospheres, which are composed by some hundreds to a few millions atoms.
We have chosen to introduce the details of these methods where they are used, and
not to describe them in a separate introductory chapter.

The knowledge of the electronic structure is of paramount importance also for
describing the macroscopic response of materials, e.g. to external electromagnetic or
force fields. In this respect, a fundamental observable connecting the microscopic and
macroscopic scale is provided by the dielectric matrix of the material. The knowledge
of the energy and momentum dependent dielectric function gives access to a number
of transport properties in solids, which are analysed in this thesis from first-principles
and classical Monte Carlo approaches. Furthermore, the mechanical response of ma-
terials to external pressure fields is assessed in this thesis from the first-principles sim-
ulation of the electronic structure of the material, as well as several relevant derived
characteristics, such as the Young’s modulus, Poisson’s ratio, and the stress-strain
curves.
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The criterion used in this thesis to present these concepts is to organize the chap-
ters, with the exception of the last one, according to the increasing dimension of the
systems. More in details, the first chapter uses the DHF approach to simulate atoms
and molecules, such bromotrifluoromethane; the second chapter deals with periodic
systems characterized by unit cells with a relatively small number of atoms, such
as diamond and graphite; the third one discusses graphene and graphene–related
materials with lower density; the fourth one present a new computational and ex-
perimental model of silicon carbide nanowires coated with silicon dioxide shell; the
fifth chapter is focused on the study of sp2-hybridized carbon atoms, arranged on a
Beltrami surface. The shape of the latter system has a constant negative Gaussian cur-
vature and represents the counterpart of the fullerene, which has at variance a posi-
tive Gaussian curvature. To reproduce the architecture of the carbon pseudosphere in
the size range to compare our theoretical predictions with experiments, we devised
a method to scale up the structure up to millions of atomic centers, reaching the size
of hundreds of nanometers. The latter topic spans different research fields such as
geometrical topology (tessellation problem), physics (black-hole analogue) and me-
chanical engineering (stability of the structure). Finally, the last chapter is dedicated
to an on going work and thus only partial results will be shown. This topic deals
with the Non-Adiabatic Molecular Dynamics (NAMD) simulation of amorphous sil-
ica samples where we couple the nuclear dynamic of the system to the electronic
structure.
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Introduction

Computational science represents a tool of paramount importance for investigating
complex phenomena emerging at different scales in systems relevant to fundamental
physics and engineering. Indeed, computational methods have become nowadays
the standard approach to prototype novel ideas in several fields of science. In par-
ticular, a fundamental branch of computational science is the modeling and predic-
tion of material’s properties by first-principles (or ab-initio) methods, i.e. a body of
techniques that do not need the introduction of external parameters or information
derived from experiments. Ab initio methods can be completely derived by the basic
axioms of the quantum theory and they just involve several layers of approximation
to solve the basic equations that are completely under control.

Following the Moore’s trend of modern computers, whose computational power
increases linearly over the years in terms of number of operations delivered per sec-
ond, this research area is constantly under development. These advances are related
to both numerical accuracy and algorithms. However, the definitive answer to the
solution of the many-body problem, despite some novel approaches based on arti-
ficial intelligence, or the future advent of quantum computers which can possibly
deliver a more comprehensive view on this issue, is still hampered by two major fac-
tors, that are i) the complexity exponentially growing with the number of particles
basically due to the correlation, and ii) the dimensionality. In particular, the latter el-
ement affects dramatically the physical properties of materials owing to the different
way that Coulomb repulsion acts upon the electrons in three–dimensional (3D), two–
dimensional (2D), one–dimensional (1D), and molecular (0D) structures. Indeed, the
presence of constraints on the particle’s motion in one or more degrees of freedom
leads to remarkable consequences, such as quantum confinement, anisotropic char-
acteristics and new phases. These effects can completely modify the properties that
low-dimensional physical systems exhibit with respect to their bulk counterparts.
Additionally, quantum objects do interfere with one another, so that the quantum
state of a many-body system is the result of the interaction between its constituent
particles. This many-body potential depends on dimensionality and confinement,
and thus is much more then the simple sum of the interaction between its building
blocks. This concept was masterly described by Philip W. Anderson in his article
“More is different” [1], where he argues that “the behaviour of large and complex
aggregations of elementary particles, it turns out, is not to be understood in terms
of a simple extrapolation of the properties of a few particles. Instead at each level



2 Introduction

of complexity entirely new properties appear...". In this regard for example, while at
angstrom scale it is hard to differentiate between 0D point-like atomic species, such as
tantalum or niobium, nevertheless at 3D macroscale the former is a lustrous transition
metal while the latter undergoes a phase transition to a BCS-typeII superconductor
at 9.26 K. This means that at the time we reach the microscale, electrons of Nb pair
up in Cooper pairs and condensate, transforming the materials in a superconductor
characterized by zero-resistance conductivity.

On the other side, from the beginning of the 20th century several theoretical meth-
ods adopting different approximations were proposed to tackle the correlation prob-
lem, starting from the Thomas-Fermi model (1927) and the density functional theory
introduced by Hohenberg and Kohn in 1964. Based on these theoretical frameworks,
a variety of computational approaches have been developed to deal accurately with
the Coulomb repulsion in single atoms to molecular assembly and structures contain-
ing even millions of atoms. Using these approaches, the electronic structure equa-
tions and the nuclear (ionic) motion problem can be approximated, so that one can
nowadays safely predict many electronic and mechanical properties of materials.

In this thesis we deal mainly with the solution of the electronic structure problem
and related quantities for a variety of systems, most notably carbon-based materials.
Indeed, carbon is one of the most versatile chemical elements: its relatively small
atomic radius and the tetravalent character mean that carbon can easily form cova-
lent bonds with several chemical elements, including itself, also at room conditions
[2, 3, 4, 5]. This is the very reason why the number of known chemical compounds
constituted of carbon – which is only the fourth most abundant element in the uni-
verse by mass after hydrogen, helium, and oxygen, and only the 15th most abundant
in the Earth’s crust – is by far higher than the sum of all the others (in excess of 10 mil-
lion). For example, at odds, silicon is another element in group 14 of the periodic table
having also four valence electrons which can bind into both molecular and crystalline
compounds. However, due to its atomic radius 1.5 times larger than that of carbon,
Si is too big to fit together into as great a variety of molecules as carbon atoms can.
This remarkable ability of carbon to bind in different ways by sharing from one single
to four electrons may lead to the formation of single to triple bonds. This makes for
an enormous number of possible bond combinations forming straight chains, such
as polymers, rings, such as aromatic hydrocarbons, crystals, such as silicon carbide,
and also amorphous phases. The all-carbon materials that carbon can form by bind-
ing in different ways are called allotropes of carbon, be those naturally available or
man-made. The most common are graphite, diamond, fullerene, and amorphous
carbon. In this thesis, we will focus on the description of the physical properties of
carbon allotropes with the aim to show how the dimensionality leaves its signature
on the electronic, optical, and mechanical properties of these carbon-based materials.
For example, on the one side graphite is a quasi-two-dimensional material whose
distinctive treats are to be opaque, black, and sufficiently soft to be used in pencils.
Furthermore, graphite is a good electrical conductor. On the other side diamond is
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a 3D transparent, hard solid showing low electrical conductivity. Nevertheless, at
room conditions, 3D diamond, 1D carbon nanotubes, and 2D graphene have all large
thermal conductivities.

In this thesis we present several results obtained by using first-principles and mul-
tiscale simulations on the electronic, mechanical, and optical properties of carbon-
based materials at different level of aggregation. These results are generally com-
pared with experiments recorded in-house or available in the literature. We chose
not to present the theoretical and computational methods in one separate chapter,
but to thoroughly discuss their fundamentals and application when used, avoiding
unnecessary details.

In particular, in the first chapter we study a few molecules containing carbon rel-
evant in astrophysical scenarios (HMgNC, MgNCO, MgCN and MgNC) and in envi-
ronmental sciences (CF3Br). These systems are composed only by three to five atoms
and their electronic structure is assessed by solving the Dirac-Hartree-Fock (DHF)
equations to include relativistic effects. We use a Gaussian basis set (GBS), which
turns out to be useful for treating polycentric systems. This method, which will be
discussed in detail in chapter 1, can deal with non-spherical non-periodic systems
composed by a few atoms.

In the second and third chapters we investigate periodic carbon-based systems
with small unit cells. In particular, in the second chapter we calculate the dielectric
(ε(q, ω)) and energy loss (ELF = Im[− 1

ε(q,ω)
]) functions of diamond and graphite.

These are pure materials properties and can be derived from the electronic wave-
functions assessed by solving the many-electron problem. Dielectric functions are
key physical quantities as they are intimately related to the response of a system
perturbed via external probes, such as electron or photon beams. The dielectric and
energy loss functions of graphite and diamond were calculated within the framework
of DFT and then used as input for Monte Carlo (MC) simulations of the charge trans-
port in these solids to interpret the experimental spectra of back-scattered electrons
[6, 7, 8]. The specific goal of our analysis was to unravel the impact of different theo-
retical approaches for calculating the dielectric functions, comparing ab-initio meth-
ods with other semi-classical models, such as the Drude-Lorentz approach. We found
out that it is necessary to go beyond the optical limit (|q| → 0) in the calculation of
dielectric function of insulator systems, such as diamond, to accurately reproduce
energy loss spectra and that the widely used Random Phase Approximation (RPA)
can be used successfully only for metal or semi-metal, such as graphite.

In the third chapter we deal with novel bi-dimensional structures using graphene
geometry as a texture. Over the last decade graphene is arguably one of the most
investigated materials among all the existing carbon allotropic forms [9, 10, 11, 12,
13]. Nevertheless, the possibility to introduce new interesting features also in 2D
carbon-based materials without chemical functionalization, while keeping the desir-
able properties of graphene, such as its planar periodic structure and the sp2 bonding
network, might be very convenient to the existing technology. In this chapter thus
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we report an approach for finding novel energetically stable structures character-
ized by sp2-bonded carbon atoms of decreasing density using graphene as a frame
of reference. In particular, we aim to find planar structures with density lower than
graphene, possibly decreasing it up to the least dense form of carbon allotrope that
could ever be synthesized under the locally jammed packing condition, while dis-
playing almost unchanged specific mechanical characteristics with respect to graphene.
Then, we fully characterized these new 2D materials by computing i) the electronic
properties, such as band structure and Density Of States (DOS); ii) the mechanical
properties, such as the Young’s modulus and the Poisson’s ratio, derived from the
elastic coefficients of the stiffness matrix; iii) finally the stress-strain curves from
which we gain information on ultimate strength, fracture strain and toughness of
the systems. These calculations were performed again within the DFT framework,
and computational details are reported in this chapter.

In the fourth chapter we present a computational model of a SiC/SiOx core/shell
nanowire (NW), which we use to reproduce in-house acquired X-ray absorption ex-
perimental spectra. The relevance of SiC/SiOx core/shell NWs is related to the dis-
covery that this system, coated with light-absorbing organic molecules (so-called
photosensitizers), can be efficiently applied to anti-cancer therapies using X-ray ex-
citation [14] (photodynamic therapy). The work reported in this chapter is aimed at
the theoretical understanding of the phenomena underlying these processes. Unfor-
tunately, the simulation supercell of this NW is made by a few hundred of atoms.
Thus, we decided to use a combined DFT/Density Functional Tight Binding (DFTB)
approach to overcome the unfavourable scaling with system size of first-principles
methods. In particular, DFTB was used to build the atomistic model of the NW and
to study the NWs characterised by different radii and surface terminations, while by
DFT we computed the X-ray absorption spectra.

In the fifth chapter we study the physics of graphene arranged in the shape of
a Beltrami’s pseudosphere. This work stems from previous investigations on black-
hole analogue systems [15, 16, 17], where it is shown from analytical calculations that
a graphene sheet arranged in this particular form can be used to test the physics of
curved space-times with a singularity (event horizon), and in particular some specific
outcomes, such as the Hawking-Unruh effect. The latter states that the ground state
of an inertial observer is seen in thermodynamic equilibrium with a non-zero tem-
perature by a uniformly accelerating observer. Thus, a quantum field in a space–time
with an horizon should exhibit a thermal character. Our goal is to perform a com-
putational experiment to reproduce the theoretical prediction on a realistic Beltrami’s
geometry. To do so, we first build the geometrical model of the Beltrami’s pseu-
dosphere by tiling the hyperbolic surface with polygons, and second we derive the
electronic properties of the system, and in particular the local density of state (LDOS),
which is a quantity closely related to the Hawking-Unruh effect. In this respect, in
order to have a large wavelength of the electrons, able to feel the curvature, we had
to solve the difficult task of achieving a ratio between the pseudosphere radius Rp
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and the interatomic distance in graphene l (1.42 Å ) Rp
l >> 1. This means that the

structure must be extremely large. Typically, this results in structures containing mil-
lions of carbon atoms, which cannot be treated by standard, needless to say ab-initio,
approaches. Thus, in this chapter we discuss a multiscale method developed to scale
up the pseudosphere dimension, building structures with such an high number of
particles. Our method can be easily generalized, at least for graphenic structures. Fi-
nally, a second challenge is to simulate the LDOS of these enormous structures for
different radii of the pseudosphere. A suitable approach to deal with this issue is the
Tight Binding (TB) method, which has been used along with the Kernel Polynomial
Method (KPM) to expand the DOS in terms of Chebyshev polynomials [18]. These
two methods, thoroughly explained in this fifth chapter, made the electronic struc-
ture simulations a computationally feasible task. At the end of the chapter, we argue
in which sense the Beltrami’s pseudosphere can be considered a black-hole analogue.

Finally, the last chapter is dedicated to a work that is on going at the time of sub-
mitting this thesis. This work is about Non-Adiabatic Molecular Dynamics (NAMD)
simulations of amorphous silica samples. In particular, we are interested in the influ-
ence that electronic excitations could have on the nuclear dynamics of the SiO2 sam-
ple at room temperature. We are considering different kinds of amorphousness and
we will show the complexity of studying non-crystal systems by ab-initio methods.
Results of these simulations are only partial and currently we are trying to achieve
better outcomes.
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Chapter 1

A Dirac-Hartree-Fock approach
for atomic and molecular
electronic structure calculations

The relativistic extension of quantum mechanics for many-electron systems, such as
atoms to molecules and solids, represents the most fundamental theory of all molec-
ular sciences. Indeed, it combines the laws of special relativity, to which natural
systems must obey, with the realm of quantum mechanical concepts. In this chapter,
aiming at finding a numerical solution of the Dirac-Hartree-Fock (DHF) equations,
we describe our theoretical and computational approach to relativistic quantum me-
chanics using Gaussian basis sets. The description is kept as general as possible, so
to be able to deal with different types of interactions, not limited to the Coulomb po-
tential but including e.g. the Yukawa potential used in nuclear physics applications
(for which our work on beta-decay of medium to heavy nuclei was initially devised).
However, the application to nuclear physics, for which we refer the reader to our
publication for further details [1], goes beyond the scope of this thesis: thus, here
we report only the theory and relevant computational details with a few results on
molecules.
Here we stress that in order to describe the chemistry of the atomic bonds within
a molecule, a relativistic approach in principle is not necessary, as the valence shell
electrons can be described accurately also by Schrödinger equation adding ”by hand”
a spin-orbit coupling term to the equation. However, this ”phenomenological” ap-
proach fails when the molecular systems are characterized by the presence of heavy
atomic species. Indeed, in this case a rigorous bi-spinorial approach is mandatory as
the small or lower part of the bispinor cannot be neglected. Furthermore, this way
of proceeding can be easily extended to describe phenomena induced by forces other
than the Coulomb interaction, such the ElectroWeak force driving the beta-decay in
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atomic and molecular systems. Following this formalism the spin-orbit coupling and
fine structure properties are rigorously taken into account.
The methodological approach here described has been awarded the journal cover of
Advanced Theory & Simulations.

1.1 Wavefunction calculation within the mean field Dirac-
Hartree-Fock method

The time independent Dirac Hamiltonian of a many particles system can be written
as follows [2]:

∑
i

(
cαi · pi + βimc2 + Vi

)
+ ∑

i<j

(
1− αi · αj

)
gij

ψ (r1, · · · rN) = Eψ (r1, · · · rN) (1.1)

In the case of two different types of interactions, e.g. represented by scalar (gS)
and vector (gV) potentials, the Dirac equation reads:

∑
i

(
cαi · pi + βimc2 + Vi

)
+ ∑

i<j

[
βiβ jgS,ij +

(
1− αi · αj

)
gV,ij

]ψ (r1, · · · rN) = Eψ (r1, · · · rN)

(1.2)
which in second quantization can be written as follows:

H = ∑
s1s2

∫
dr ψ̂+

s1
(r)
[
−icαs1s2 ·∇+ βs1s2 mc2 + δs1s2 V(r)

]
ψ̂s2 (r)+

+
1
2 ∑

s1s2s′1s′2

∫
drdr′ ψ̂+

s1
(r)ψ̂+

s′1
(r′)

[
βs1s2 βs′1s′2 gS

(
r, r′
)
+
(

δs1s2 δs′1s′2 − αs1s2 · α′s′1s′2

)
gV
(
r, r′
)]

ψ̂s′2 (r
′)ψ̂s2 (r)

(1.3)

where s1, s2, s′1, s′2 index the two components of the bispinor. We notice that Equation
(1.3) is totally general as gS and gV may represent different types of scalar or vector
interactions respectively. The Hartree-Fock approximation of the Hamiltonian (1.3)
can be introduced by assuming that the average value of the field operator can be
factorized as follows:

〈
ψ̂+

s1
(r)ψ̂+

s′1
(r′)ψ̂s′2 (r

′)ψ̂s2 (r)
〉
=
〈
ψ̂+

s1
(r)ψ̂s2 (r)

〉 〈
ψ̂+

s′1
(r′)ψ̂s′2 (r

′)
〉
−
〈

ψ̂+
s1
(r)ψ̂s′2 (r

′)
〉 〈

ψ̂+
s′1
(r′)ψ̂s2 (r)

〉
(1.4)

By defining the 4× 4 density matrix at r, r′ as:
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ρs′2s1

(
r′, r
)
=
〈

ψ̂+
s1
(r)ψ̂s′2

(r′)
〉

(1.5)

the second quantized form of the Dirac-Hartree-Fock Hamiltonian can be written as:

HDHF = ∑
s1s2

∫
drψ̂+

s1
(r)
{
−αs1s2 · [ic∇+ AH (r)] + βs1s2

[
mc2 + VHS (r)

]
+ δs1s2 [V(r) + VH(r)]

}
ψ̂s2 (r)

−∑
s′1s2

∫
drdr′ψ̂+

s′1
(r′)

[
VFS,s′1s2

(
r′, r
)
− AF,s′1s2

(
r′, r
)
+ VF,s′1s2

(
r′, r
)]

ψ̂s2 (r)

(1.6)

where

AH (r) =
∫

dr′ ∑
s′1s′2

[
ρs′2s′1

(
r′, r′

)
αs′1s′2

]
gV
(
r, r′
)

VH (r) =
∫

dr′ ∑
s′1s′2

[
ρs′2s′1

(
r′, r′

)
δs′1s′2

]
gV
(
r, r′
)

VHS (r) =
∫

dr′ ∑
s′1s′2

[
ρs′2s′1

(
r′, r′

)
βs′1s′2

]
gS
(
r, r′
)

(1.7)

and

AF,s′1s2

(
r′, r
)
= ∑

s1s′2

αs1s2 · αs′1s′2 ρs′2s1

(
r, r′
)

gV
(
r, r′
)

VF,s′1s2

(
r′, r
)
= ∑

s1s′2

δs1s2 δs′1s′2 ρs′2s1

(
r, r′
)

gV
(
r, r′
)

VFS,s′1s2

(
r′, r
)
= ∑

s1s′2

βs1s2 βs′1s′2 ρs′2s1

(
r, r′
)

gS
(
r, r′
) (1.8)

In Equations (1.8) the sums on bi-spinorial indices s1 and s′2 can be treated as
matrix products. By writing the density matrix as a 2× 2 bloc matrix

ρ
(
r′, r
)
=

(
ρLL (r′, r) ρLS (r′, r)
ρSL (r′, r) ρSS (r′, r)

)
(1.9)

where L (S) label the ’large’ or up (smaller or down) part of the Dirac spinor we
obtain:

AF
(
r′, r
)
=

(
0 σ
σ 0

)
·
(

ρLL (r′, r) ρLS (r′, r)
ρSL (r′, r) ρSS (r′, r)

)
·
(

0 σ
σ 0

)
gV
(
r′, r
)

=

(
σ · ρSS (r′, r) · σ σ · ρLS (r′, r) · σ
σ · ρSL (r′, r) · σ σ · ρLL (r′, r) · σ

)
gV
(
r′, r
) (1.10)
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VFS
(
r′, r
)
=

(
ρLL (r′, r) ρSL (r′, r)
ρLS (r′, r) ρSS (r′, r)

)
gV
(
r′, r
)

(1.11)

VS
(
r′, r
)
=

(
1 0
0 −1

)
·
(

ρLL (r′, r) ρLS (r′, r)
ρSL (r′, r) ρSS (r′, r)

)
·
(

1 0
0 −1

)
gS
(
r′, r
)

=

(
ρLL (r′, r) −ρSL (r′, r)
−ρLS (r′, r) ρSS (r′, r)

)
gS
(
r′, r
) (1.12)

With these definitions, Equation (1.6) can be explicitly written as a generalized
Dirac equation of the following type:

(
mc2 + WV + WS + AP · σ − E −cσ · i∇− σ ·A + WPS
−cσ · i∇− σ ·A + WPS −mc2 + WV + AP · σ −WS − E

)(
ψL
ψS

)
= 0

(1.13)
where

• WS - scalar potential

• WV - vectorial potential

• WPS - pseudoscalar potential

• AP - pseudo-vectorial potential

1.2 Computational methods for the non-spherically sym-
metric systems

1.2.1 The Gaussian basis set

The implementation of the projection of the Dirac Hamiltonian on a functional space
can be achieved by using a Gaussian basis set. Gaussian functions are defined by a
coefficient α and a center R

g (α, R; r) =
(

2α

π

) 3
4

e−α(r−R)2
(1.14)

Non-normalized Gaussian functions are characterized by the following multipli-
cation property

g (α1, R1; r) g (α2, R2; r) = g
(

α1 + α2,
α1R1 + α2R2

α1 + α2
; r
)

e−
α1α2

α1+α2
(R1−R2) (1.15)



1.2. Computational methods for the non-spherically symmetric systems 15

which is again a Gaussian. Gaussian basis sets are not orthonormal, as Gaussians
functions cannot be orthogonalized, while their normalization condition is

〈g1|g2〉 =
(

2α1

π

) 3
4
(

2α2

π

) 3
4
(

π

α1 + α2

) 3
2

e−
α1α2

α1+α2
(R1−R2) =

(
2
√

α1α2

α1 + α2

) 3
2

e−
α1α2

α1+α2
(R1−R2)

This represents a very useful property particularly when dealing with poly-centric
systems.

1.2.2 Mono-electronic integrals

Using Gaussian functions one can analytically calculate mono-electronic integrals,
which for the Coulomb potential can be written as:

∫
dr g (α, R; r) =

(π

α

) 3
2
= 〈g〉∫

dr
1
r

g (α, R; r) =
(π

α

) 3
2 erf

(√
αR
)

R
=

〈
g

1
r

〉 (1.16)

The electron-electron interaction potential (or the nucleon-nucleon using a sim-
plified approach) can be modeled by a Yukawa potential with exponential coefficient
set equal to zero (while it can be set different from zero for the nucleon-nucleon case),
and thus it is important to find the matrix elements of this interaction potential us-
ing Gaussian functions. Mono-electronic integrals for the Yukawa potential can be
written as follows:

∫
dr

e−
r
ξ

r
g (α, R; r) =

〈
g

e−
r
ξ

r

〉
= 2π

∞∫
0

r2dr
[
e−α(r2−2rR+R2) − e−α(r2+2rR+R2)

] e−
r
ξ

r

=
1
2

(π

α

) 3
2

−erfc
(

1
2
√

αξ
+
√

αR
)

e

(
1

4αξ2 +
R
ξ

)
+ erfc

(
1

2
√

αξ
−
√

αR
)

e

(
1

4αξ2−
R
ξ

)
R

=
1
2

(π

α

) 3
2

[
−erfcx

(
1

2
√

αξ
+
√

αR
)
+ erfcx

(
1

2
√

αξ
−
√

αR
)]

e−αR2

R
(1.17)

where erfcx(x) = erfc(x)ex2
and
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erfc(x) =
2√
π

∞∫
x

e−u2
du , erfcx(x) =

2√
π

∞∫
x

ex2−u2
du

By Taylor expanding Equation (1.17) from erfcx(a + x) and observing that
d

dx erfcx(a + x)e−x2
= − 2√

π
e−x2

+ 2a erfcx(a + x)e−x2
and

d
dx erfcx(a− x)e−x2

= 2√
π

e−x2 − 2a erfcx(a− x)e−x2
, we obtain

〈
m

e−
r
ξ

r

〉
=

2π
3
2

α

[ 1√
π
− a erfcx(a) +

1
3

(
−2a3erfcx(a) +

2a2 − 1√
π

)
x2+

+
2

15

(
−4a5erfcx(a) +

4a4 − 2a2 + 3√
π

)
+ · · ·

]
where a = 1

2
√

αξ
and x =

√
αR.

1.2.3 Green’s function matrix elements

The Green’s function projected on Gaussian functions reads:〈
s1|

1
p2

0 +∇2
|s2

〉
(1.18)

where p0 ∈ C. The integral in Equation (1.18) can be more easily calculated in the
Fourier space as the kinetic operator ∇2 is diagonal:

〈
s1|

1
p2

0 +∇2
|s2

〉
=

(
2π√
α1α2

) 3
2 ∫

dp
e−

α1+α2
4α1α2

p2+ip·(R1−R2)

p2
0 − p2

=

(
2π√
α1α2

) 3
2

4π

∞∫
0

p2dp
p |R1 − R2|

e−
α1+α2
4α1α2

p2
sin (p |R1 − R2|)
p2

0 − p2

=

(
2π√
α1α2

) 3
2

2π

∞∫
−∞

pdp
|R1 − R2|

e−
α1+α2
4α1α2

p2+ip|R1−R2|

p2
0 − p2

These integrals can be reduced to integrals of the er f function in the complex
space by considering that w(z) = e−z2

erfc(−iz) and that
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∞∫
−∞

e−t2

z− t
dt =

{
−iπw(z) Imz > 0
−iπw(z)− 2e−z2

Imz < 0

1.2.4 The two-step recurrence relation of Gm(x)

The Yukawa potential matrix element can be calculated for Gaussians of any order
(s, p, d symmetry modified Gaussian functions) by a recurrence relation. To demon-
strate that, we define the following quantities:

Gm(x) =
(
− 1

2x
d

dx

)m ( α

π

) 3
2

〈
m

e−
r
ξ

r

〉
=

(
− 1

2x
d

dx

)m √α

2
[−erfcx (a + x) + erfcx (a− x)] e−x2

x
(1.19)

I0(a, x) = [−erfcx (a + x) + erfcx (a− x)] e−x2
(1.20)

I1(a, x) = [erfcx (a + x) + erfcx (a− x)] e−x2
(1.21)

Furthermore, we observe that dI0
dx = 4√

π
e−x2 − 2aI1 and dI1

dx = −2aI0.
The first element of the recurrence relation is

G0(x) =
√

α

2
I0(a, x)

x
(1.22)

while the second one can be obtained by:

G1(x) =
(

1
2x

d
dx

)
G0(x) =

√
α

4x2

{
− 4√

π
e−x2

+ 2aI1(a, x) +
I0(a, x)

x

}
=

1
x2

[
1
2

G0(x)−
√

α

π
e−x2

+

√
α

2
aI1(a, x)

]
(1.23)

Moreover the third, fourth and fifth elements can be written as follows

G2(x) =
(
− 1

2x
d

dx

)
G1(x) =

1
x2 G1(x)−

√
α

4x2

{
4√
π

e−x2
+ 2a2 I0(a, x)

x
− 1

2x
d

dx
I0(a, x)

x

}
=

3
2x2 G1(x)−

√
α√

πx2 e−x2
+

a2

x2 G0(x) =
1
x2

[
3
2

G1(x)−
√

α

π
e−x2

+ a2G0(x)
]

(1.24)
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G3(x) =
1
x2

[
G2(x) +

3
2

G2(x)−
√

α

π
e−x2

+ a2G1(x)
]
=

1
x2

[
5
2

G2(x)−
√

α

π
e−x2

+ a2G1(x)
]

(1.25)

G4(x) =
1
x2

[
G3(x) +

5
2

G3(x)−
√

α

π
e−x2

+ a2G2(x)
]
=

1
x2

[
7
2

G3(x)−
√

α

π
e−x2

+ a2G2(x)
]

(1.26)
Thus the recurrence relation can be generally written as:

Gm+2(x) =
1
x2

[(
m +

3
2

)
Gm+1(x)−

√
α

π
e−x2

+ a2Gm(x)
]

(1.27)

1.2.5 Bi-electronic integrals

Bi-electronic integrals using Gaussian functions read:

〈
s1s3|

e−
|r−r′ |

ξ

|r− r′| |s2s4

〉
=

(
2α1
π

) 3
4
(

2α2
π

) 3
4
(

2α3
π

) 3
4
(

2α4
π

) 3
4

·
∫

dr
∫

dr′e−α1(r−R1)
2
e−α2(r−R2)

2
e−α3(r′−R3)

2
e−α4(r′−R4)

2

=

[
2 (α1α2α3α4)

1
4

π

]3

e−
α1α2

α1+α2
(R1−R2)e−

α3α4
α3+α4

(R3−R4)

·
∫

dr
∫

dr′e−(α1+α2)(r−P12)
2
e−(α3+α4)(r′−P34)

2 e−
|r−r′ |

ξ

|r− r′|

(1.28)

where P12 = α1R1+α2R2
α1+α2

and P34 = α3R3+α4R4
α3+α4

. By defining s = r+r′
2 and q = r− r′ we

obtain:

∫
dr
∫

dr′e−(α1+α2)(r−P12)
2
e−(α3+α4)(r′−P34)

2 e−
|r−r′ |

ξ

|r− r′|

=
∫

ds
∫

dqe−(α1+α2)(s+ q
2−P12)

2
e−(α3+α4)(s− q

2−P34)
2 e−

q
ξ

q

=

(
π

α1 + α2 + α3 + α4

) 3
2 ∫

dqe−
(α1+α2)(α3+α4)

α1+α2+α3+α4
[q−(P12−P34)]

2 e−
q
ξ

q

which can be reduced to an integral of the type reported in Equation (1.17).
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Further details on the calculation of mono- and bi-electronic integrals using Gaus-
sian functions of different orders (modified Gaussian functions) can be found in the
reference [3].

1.3 Gaussian functions at work: application of the poly-
centric approach to the electronic structure calcula-
tion of molecules

To show the wide spectrum of applications that can be dealt with our relativistic ap-
proach, in this section we apply our method to investigate the electronic structure
properties of several molecular systems of interest in astrophysics and atmospheric
science.
In particular, we start our analysis by studying the bromotrifluoromethane (CF3Br)
molecule. This molecule is of paramount importance in environmental and climate
sciences. Indeed, to protect the stratospheric ozone layer the Montreal Protocol banned
ozone-depleting substances, such as chlorofluorocarbons (CFCs) as well as CF3Br,
present in the atmosphere due to their use in making foams for furniture and build-
ings, in aerosols and as refrigerants. The presence of these contaminants in our at-
mosphere declined steadily until 2013, when a sharp and mysterious rise in emis-
sions of a key ozone-destroying chemicals has been detected by scientists, despite its
production being banned around the world [4]. Ozone layer protects life on Earth
from damaging UV radiation, and thus these chemicals are potentially harmful for
mankind. Among the ozone-destroying molecules, responsible for both ozone deple-
tion and global warming, CF3Br (commercially known as Halon 1301, Freon 13B1) is
potentially particularly harmful, due its long photo-dissociation time (65 years) un-
der UV irradiation. This molecule can diffuse into our stratosphere, where enters the
catalytic cycle of ozone depletion. Moreover, it displays a great capacity to absorb
light between 8-12 µm, actively participating to climate change. Furthermore, due to
its unique chemical-physical properties CF3Br has been used as agent in fire extin-
guisher.

The atomic positions in CF3Br have been optimized using Density Functional The-
ory (DFT), by means of VASP program suite [5, 6, 7, 8]. To find the equilibrium struc-
ture of CF3Br we used a PBE-PAW pseudo-potential [9, 10] with a plane-wave cut-off
equal to 400 eV to deal with the ion- valence electron interaction, a Gaussian smear-
ing of the partial occupancies with a width of σ = 0.05 eV, using only the Γ point
and an orthorhombic calculation supercell with dimensions equal to 20 × 10 × 10.
The equilibrium structure of CF3Br is represented in the right hand side of Fig. (1.1).
CF3Br presents a tetrahedral molecular geometry, having Br to C equilibrium bond
distance equal to 1.95 Å, while C-F is equal to 1.34 Å.
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FIGURE 1.1: Optimized molecular structures of bromotrifluo-
romethane (CF3Br, right), HydroMagnesium isocyanide (HMgNC),
magnesium isocyanide isomers (MgCN and MgNC), and magnesium

fulminate radical (MgNCO)

The same parameters have been used for optimizing the atomic structure of the
other molecular systems under investigation, such as magnesium-bearing ([H,Mg,C,N,O])
compounds, whose atomic structures at equilibrium are reported in the left hand side
of Figure (1.1). We find that all the equilibrium structures of these compounds are lin-
ear and we report the equilibrium bond distances in Table (1.1).

Magnesium has a cosmic abundance comparable to Si and Fe, and thus is one of
the most abundant metals in space.

Furthermore, magnesium-bearing molecules in space, such as magnesium iso-
cyanide isomers, MgCN and MgNC [11], and hydro-magnesium isocyanide, HMgNC
[12, 13], are all relevant astrochemical molecules. MgCN isomers were identified by
radioastronomers in the circumstellar envelope of the IRC+10216 star in 1995 and
also observed in protoplanetary nebulae. More recently, in 2013, the discovery of
hydromagnesium isocyanide, HMgNC, in the carbon-rich evolved star IRC +10216
was reported after laboratory characterization. In this regard, it is important to study
the stability and the electronic structure of [Mg,C,N,O] compounds, such as MgNCO
[14], as plausible astronomical molecules. Indeed, this investigation could help their
laboratory or astronomical detection.

To calculate the relative stability of isomers we used our relativistic approach
based on the projection onto a functional space spanned by Gaussian functions (see
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TABLE 1.1: Equilibrium bond distances in Å for the compounds re-
ported in the first column

H-Mg Mg-N N-C C-O Mg-C C-N
HMgNC 1.69484 1.92995 1.18833 - - -
MgNCO - 1.90087 1.21114 1.19227 - -
MgCN - - - - 2.08919 1.1745
MgNC - 1.95322 1.18828 - - -

section 1.2). In particular aug-cc-PVTZ Gaussian basis sets were used to reach good
accuracy.

TABLE 1.2: Total energies calculated at mean-field level of theory for
the molecules reported in the first column. Second and third column
report the non relativistic values obtained by using aug-cc-PVTZ con-
tracted and uncontracted basis set. Last column reports the relativis-
tic values of the total energy for the aug-cc-PVTZ uncontracted basis

set

Total Energy [eV]
Contracted Uncontracted Uncontracted

Non Relativistic Non Relativistic Relativistic
CBrF3 - -2908.5838 -2928.3396

HMgNC -292.5525 -292.5530 -292.5601
MgNCO -349.3263 -349.4938 -349.4274
MgCN -291.8744 -291.8864 -291.8945
MgNC -291.8981 -291.8986 -291.9064

In Table (1.2) we report the Hartree-Fock (second and third columns) and the DHF
(last column) relative energies of all species corresponding to true minima on the
[Mg,C,N,O] compounds after the structural minimization. We notice that in our rel-
ativistic simulations the most stable isomer is MgNC (last row of Table (1.2)), being
MgCN located higher in energy of 0.324 eV, suggesting a slower rate for the isomer-
ization reaction.
We remind that in order to reach better accuracy on the total energy we need to
include in the basis set both ψ and Vψ to make sure that the projected potential
approach contains the eigenvalues corresponding to the true potential. We found
out empirically that this goal can be more effectively accomplished if the basis set
is made by uncontracted Gaussian functions. Thus, in Table (1.2) we report the re-
sults of our calculations using both contracted and uncontracted basis set as well
as the non-relativistic calculations for the same molecules. We notice that moving
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from non-relativistic contracted to non-relativistic uncontracted and finally to uncon-
tracted relativistic simulations the total energy decreases.

1.4 Conclusions

This chapter was focused on the development of a theoretical and computational
method for the solution of the Dirac–Hartree–Fock equations of a general system of
interacting fermions. In particular, this approach makes use of Gaussian basis sets
and is able to treat multicentric systems, such as molecules. In this regard, we dis-
cussed several applications of our method to molecular systems of interest in astro-
physical scenarios, such as the MgCN isomers, and in environmental science, such
as the CF3Br molecule. Only a few results were reported in this thesis, as our model
was used mainly to study beta-decay spectra in heavy atomic systems; nevertheless,
we decided to discuss it here as this method is very general and can be useful for
developing tailored electronic structure code.
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Chapter 2

Ab-initio simulations of
dielectric functions and
reflection electron energy loss
spectra of diamond and graphite

Moving up the “dimensional ladder”, in this chapter we study periodic systems with
a unit cell containing a relatively small number of electrons. Periodicity enables one
to use the Bloch’s theorem [1] to build the wavefunctions of the bound electrons. A
common framework in periodic simulations of condensed matter systems is Density
Functional Theory (DFT) in connection with plane–wave basis sets, which are com-
plete and orthonormal basis sets. At variance with the localised functions, such as
the position-dependent Gaussians that we used in the previous chapter 1 for deal-
ing with molecular systems, plane waves treat the space on the same foot, be it filled
with matter or empty. The next two chapters will use several plane–wave DFT code
suites to solve the electronic structure problem. In this chapter, in particular, the ELK
code was used [2], which is an all-electron full-potential linearised augmented-plane
wave (LAPW) program [3]. The LAPW approach takes into account also the core-
shell electrons in the self-consistent iterations. This approach is thus different from
the pseudopotential method, where the core-electron screening is not computed ex-
plicitly on-the-fly, rather it is added to the nuclear potential in tabulated external files.
Of course pseudopotential approaches are computationally faster and less memory-
intensive than LAPW methods, nevertheless the latter have the advantage to be more
transferable and, in principle, more accurate [3]. Before presenting the work on dia-
mond and graphite, we will give a brief review of the philosophy behind DFT, which
will be useful also in the next chapters.
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2.1 Density Functional Theory in a nutshell

Density Functional Theory became the state-of-the-art method in condensed mat-
ter physics calculations when, in 1964, Hohenberg and Kohn enunciated two fun-
damental theorems [4], stating that: i) there is a one-to-one correspondence between the
ground-state density ρ(r) of a many-electron system (atom, molecule, solid) and the external
potential Vext, ii) E[ρ] reaches its minimal value (equal to the ground-state total energy) for
the ground-state density corresponding to Vext. Indeed these powerful theorems enable
one to express the ground state energy as a functional of the electron density, which
depends on three degrees of freedom, instead of the wavefunctions which carries
much more information. In this way an exact framework was set to the many-body
electronic structure problem. Furthermore, in order to have a practical exploitation
of these fundamental theoretical concepts, in a follow-up work Kohn and Sham de-
livered a recipe to obtain the ground state electronic density [5] as the sum of the
square of single-particle wavefunctions of a ’fictitious’ system. In this thesis we use
this DFT formulation: here we sketch a short derivation (taken mostly from [6]) of the
self-consistent equations that one needs to solve to obtain the ground state properties
of our many-body systems.
For a fixed ionic configuration, the Hamiltonian for N electrons reads:

Ĥ = − h̄2

2

N

∑
i=1
∇2

ri
+

1
2 ∑

i 6=j

e2

|ri − rj|
+ ∑

i
vext(ri) = T̂ + V̂ee + V̂ext (2.1)

The ground state energy Egs can be found by minimizing 〈Ψ|Ĥ|Ψ〉 under the
constraint 〈Ψ|Ψ〉 = 1. However such minimization over the possible Ψ({r}) =
Ψ(r1, r2, ..., rN) can be practically done only when N is small enough. The idea of
Hohenberg and Kohn was to express Egs in terms of the density, which is defined as

n(r) = N
∫

dr2...drNΨ∗(r, r2, ..., rN)Ψ(r, r2, ..., rN) (2.2)

In particular, they introduced the energy functional

EHK[n] = F[n] +
∫

dr n(r) vext(r) (2.3)

where F[n] = min
Ψ→n
〈Ψ|T̂ + V̂ee|Ψ〉 is a universal and unique functional of the density

and where the energy functional EHK obeys a variational principle EHK ≥ Egs. In
the paper [5], the two authors proposed an approximation for the functional F[n] that
maps the problem of a system of interacting particles onto a system of independent
electrons with the same density n(r). This permits to express the energy E = 〈Ψ|Ĥ|Ψ〉
as

E[n] = Ts[n] + EH [n] + Exc[n] + Eext[n] (2.4)
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with
Exc = 〈Ψ|T̂|Ψ〉 − Ts[n] + 〈Ψ|V̂ee|Ψ〉 − EH [n] (2.5)

In this section we refer to Ψ as the wavefunction of the true many-body system
while to {φn} for the set of independent particle wavefunctions of the Kohn-Sham
’fictitious’ system. The functional Ts[n] is the kinetic energy of the fictitious single-
particle system for which the density is

n(r) = 2 ∑
iocc

|φi(r)|2 (2.6)

By introducing the Hartree potential

vH [n](r) =
∫

dr′
n(r′)
|r− r′| (2.7)

and the unknown µxc[n](r) energy density per particle, one can rewrite the energy as

E[n] = Ts[n] +
∫

dr n(r)
[1

2
vH [n](r) + µxc(r) + vext(r)

]
= Ts[n] +

∫
dr n(r) vKS[n](r) (2.8)

The ground state energy Egs can be found by minimizing Eq. (2.8) with respect to the
density n(r) or solving the Kohn Sham equations(

− h̄2

2
∇2 + vH [n](r) + vxc[n](r) + vext(r)

)
φn = εnφn (2.9)

where the exchange-correlation potential vxc[n](r) is defined as vxc[n](r) = δExc [n]
δn(r) .

These equations (2.9) must be solved self-consistently because the potentials depend
on the density and thus on the wavefunctions themselves. We notice that by follow-
ing this derivation all the unknown physics is hidden in the exchange and correlation
term.
Thus within the formalism of the Kohn-Sham DFT, the ground state energy Egs and
ground state density (2.6) can be calculated by solving a set of single particle Schrödinger
equations. However, the exchange-correlation potential vxc[n] in eq. (2.9) is unknown
and it is only at this point that some approximations must be introduced to model the
interaction between electrons. In [5], Kohn and Sham model the exchange-correlation
energy of their system using the exchange-correlation energy density of a homoge-
neous electron gas, which is called Local Density Approximation (LDA). After the
revolutionary paper [5], a lot of exchange-correlation functionals were introduced
trying to improve the LDA approximation, the most popular being the Generalized
Gradient Approximation (GGA) and in particular within this class the Perdew-Burke-
Ernzerhof (PBE) one [7]. A library of the implemented and free-to-use functionals can
be found at [8].
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2.2 Aim of the work

Naturally occurring allotropic forms of carbon, such as diamond, multi-layer graphene,
and graphite, along with its intercalation compounds, could be used as viable candi-
dates for an all-carbon electronics revolution. In particular, diamond was long con-
sidered an ideal candidate for enhancing the performances of electronic devices due
to its high thermal conductivity and charge mobility, wide band gap, optical isotropic
structure and robustness owing to its strong covalent sp3-hybridized structure. On
the other hand, graphite is the most stable carbon allotrope, arranged in the form of
a layered solid, showing both strong two-dimensional sp2-hybridized lattice bonds,
similar in strength to those found in diamond, and weak interplanar bonds that make
it soft and malleable as well as anisotropic to external perturbations. Furthermore,
graphite shows optimal heat and electrical conductivity retaining the highest natural
strength and stiffness even at temperatures in excess of 3000 ◦C.
In this respect, the work presented in this chapter is aimed at modelling the electron-
transport properties of diamond and graphite films by calculating a number of ob-
servables of paramount importance for designing novel optical and electronic de-
vices, such as inelastic mean free path, stopping power, plasmons and secondary elec-
tron spectra. The specific goal of our analysis is to unravel the impact that different
theoretical approaches for calculating the dielectric function, ranging from ab initio
calculations to the use of a parametrized models, such as Drude–Lorentz (DL), may
have on the assessment of the dielectric response of these two materials by comparing
our simulations with experimental reflection electron energy-loss spectra (REELS).
This study represents thus a step towards a better understanding of the basic proper-
ties characterizing both bulk and thin-film carbon materials as well as an important
contribution towards the development of an all-carbon electronics.
We notice that all the observables considered in our analysis are based on the accurate
assessment of the frequency-dependent dielectric function, which links microscopic
properties, such as the band structure of solids, to macroscopic features that are the
direct outcome of spectroscopic experiments, such as the absorption coefficient, the
surface impedance or the electron energy loss.
To compute the dielectric function dependence on the transferred momentum we
proceed along three different routes: i) first, we use a semi-classical approach, whereby
one assumes the knowledge of the long-wavelength or optical limit of the dielectric
function (q → 0 limit); this information is usually provided by experimental mea-
surements of optical absorption [9], transmission electron energy-loss experiments
[10, 11] or ab initio simulations [12]. To go beyond the optical limit, we extend the
dielectric response to finite momenta by using a DL model. In this approach, the di-
electric function is approximated by a number of damped harmonic oscillators with
frequencies equal to the plasmon frequencies obtained by fitting experimental data
[13, 14] and a friction-type force to simulate general dissipative processes; ii) second
approach uses ab initio simulations to calculate the dielectric response for vanishing
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momentum transfer, eventually extended to finite momenta by a DL model; iii) third,
we find the dispersion law of the dielectric function at finite momentum q, taken
along some specific symmetry directions, by using a full ab initio (AI) approach,
based on time-dependent density functional simulations [15] in the linear response
(LR-TDDFT) [16].
The combination of ab initio calculations with electron-gas models for calculating
physical observables such as the inelastic mean free path, has been previously stud-
ied also by Nguyen-Truong [17], Chantler et al. [18] and Sorini et al. [19]. In particu-
lar, the extension of the dielectric response at finite momenta with the Drude–Lorentz
approach turned out to be the most accurate semi-empirical model available, as re-
ported by Garcia-Molina et. al [20].
The so-derived dielectric functions are used as input for a Monte Carlo description of
the inelastic scattering probability to calculate the energy loss of electrons along their
path within the solid. The comparison between our simulated and recorded REELS
allows us to assess the impact that external tuneable parameters and semi-classical
assumptions might have on the accuracy of simulated spectral lineshapes.
Furthermore, we develop a new model for taking into account the anisotropy of
graphite, in which the ab initio calculation of the dielectric function in the optical
limit (ε(q → 0, W)) is performed also along the direction orthogonal to the plane
(identified by the c directional vector), which accounts for inter-planar interactions.
In this case we obtain two different ELFs, one along and the other perpendicular to
c, which represents the direction perpendicular to the graphite planes. Then, after
fitting these two dielectric functions in the optical limit by using DL functions, we
combine them via an “anisotropy parameter” tuned to obtain the best agreement
with in-house recorded REELS experimental data. Finally, we extend the fitted di-
electric functions to finite momenta by a quadratic dispersion law. In this way, the
energy losses in planar and inter-planar directions were both taken into account in
our Monte Carlo simulations.

2.3 Experimental details

Here we report some details about the experiments recorded in our laboratories which
were used to test numerical simulations.
A polycrystalline diamond film was deposited on a silicon substrate in a microwave
tubular reactor using a CH4-H2 gas mixture. After exposure to atmospheric pressure,
the film was inserted into an Ultra High Vacuum (UHV) system equipped with both
a sample preparation and an analysis chamber. Highly Oriented Pyrolytic Graphite
(HOPG) was cleaved ex-situ before inserting into the UHV system. The two samples
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were cleaned by annealing at 600 ◦C for 10 minutes in UHV. REEL spectra were ac-
quired in a PHI 545 system operating at a base pressure of ≈ 2× 10−10 mbar. The in-
strument is equipped with a double-pass cylindrical mirror analyzer (CMA), a coax-
ial electron gun, a non-monochromatic MgKα (hν = 1253.6 eV) X-ray source and a He
discharge lamp. In CMA, incoming electrons cross the surface at a fixed angle with
respect to the sample normal, while outgoing electrons cross the surface at a variable
angle dependent on the angle between the surface normal and the CMA axis (30◦),
the entrance angle to the analyser (42◦± 6◦) and the azimuth angle in a plane nor-
mal to the CMA axis. Spectra are taken at a constant energy resolution of 0.6 eV, as
measured on a Pd Fermi edge. The measured FWHM of the zero-loss peak (ZLP)
is 0.9 eV. The energy of incident electrons ranges from T = 250 eV to T = 2000 eV.
Once acquired, REEL spectra are corrected for the energy dependence (E−0.9) of the
analyser transmission function.

2.4 Computational details

2.4.1 Computed observables for charge transport simulations

The physical quantity relating the microscopic and macroscopic description of the
electron-beam interaction with matter is given by the dielectric response function. It
is important to distinguish between microscopic and macroscopic quantities, where
the latter are defined as averages over the unit cell of the former. In fact, the total
electric field induced by an external perturbing field can exhibit rapid oscillations
at the atomic level, while at larger scale the response function is homogeneous. For
periodic crystals (as we model diamond and graphite films periodic in the in-plane
direction), one can exploit the translational symmetry and the microscopic dielec-
tric function can be conveniently written in reciprocal space, i.e. εG,G′(q, W) =
ε(q + G, q + G′, W), where G and G′ are reciprocal lattice vectors, q is the trans-
ferred momentum contained in the first Brillouin zone (IBZ) and W is the transferred
energy. Using this notation εG,G′(q, W) is also often called dielectric matrix. It can
be shown [16] that the relation between the experimentally measurable macroscopic
dielectric function and the microscopic one is [21, 22]:

ε(q, W) =
[
ε−1

G=0,G′=0(q, W)
]−1

(2.10)

In particular, electron transport observables, such as the energy loss per unit path
or the inelastic scattering cross section, are proportional to the imaginary part of mi-
nus the inverse of the dielectric function [23], which is called energy loss function
(ELF):

ELF = Im
[
− 1

ε(q, W)

]
(2.11)
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In general, the momentum transferred by electrons upon collisions is neither neg-
ligible nor constant in different energy ranges. Thus one needs to evaluate the di-
electric function also out of the optical limit before calculating the expression in Eq.
(2.11). In this regard, the computation of the dielectric response for finite momentum
transfer is a major issue in the treatment of inelastic interactions, and has a dramatic
influence on energy-loss spectra and secondary-electron lineshapes. In the following
sections we describe two different approaches at different levels of accuracy to over-
come this issue, notably the DL and the full AI models.
We stress that the assumption behind the validity of Eq. (2.11) is the first order Born
approximation, which is reliable only for sufficiently fast charged particles that can
thus be considered point-like and weakly deflected in each collision by the potential
scattering. In general, the latter hypothesis means that the incident particle kinetic
energy T should exceed the energy of the target electrons. In our case, this request
means that T(eV) � 13.6Z2 ' 490 eV. However, calculations performed using Eq.
(2.11) can be considered reliable well below the above mentioned limit [24]. Indeed,
the latter value is referred to core-level electrons, while in our case only target valence
electrons, having much lower kinetic energy, enter the model.

2.4.2 Drude–Lorentz model

The DL model approximates the material dielectric response to an applied uniform
external field of frequency ω = W

h̄ , with W the perturbation energy and h̄ the re-
duced Planck constant, by considering the target screening electrons as harmonic
oscillators of frequency equal to the plasmon frequency ωn = En

h̄ , with En the plas-
mon energy. Charge oscillation is damped via a damping constant Γn, that takes
into account friction-like forces affecting the oscillatory harmonic motion. Further-
more, within this approach the ELF is extrapolated outside the optical domain, for
not-vanishing momentum, by using a quadratic dispersion law that resembles the
Random Phase Approximation (RPA) [24, 20, 25]. In the RPA, valence electrons in
the solid are approximated by a non-interacting homogeneous gas, and the plasmon
energy is expanded to second order in q as:

En(q 6= 0) = En(q = 0) +
h̄2q2

2m
(2.12)

The ELF can thus be expressed as a sum over all oscillators of q-dependent gener-
alized DL functions with a full-width-half-maximum Γn as follows [26, 27, 24]:

Im
[
− 1

ε(q, W)

]
= ∑

n

AnΓnW
(E2

n(q)−W2)2 − (ΓnW)2
(2.13)

where An is the oscillator strength of the nth-oscillator and can be obtained by fitting
procedures of optical data. Most importantly, it can be shown that the f -sum rule is
exactly satisfied by the Drude dielectric function.
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2.4.3 Ab initio simulations

Ab initio simulations of diamond and graphite dielectric functions have been car-
ried out using a TDDFT approach in the linear-response (LR) approximation [28].
TDDFT has shown great potential to replace computationally expensive many-body
perturbation methods for accessing excitation energies and spectra of solids in their
interaction with electromagnetic fields. The key quantity to perform LR-TDDFT sim-
ulation is the polarization function χ(r, t, r′, t′) describing the change of the density
δn at (r, t) due to a small deviation in the external perturbation δvext at (r′, t′):

δn(r, t) =
∫

dt′
∫

d3r′χ(r, t, r′, t′)δvext(r′, t′) (2.14)

The TDDFT many-body response function χ(r, t, r′, t′) is related to the independent-
particle polarizability χKS(r, t, x, τ) by a Dyson-type equation as follows:

χ(r, t, r′, t′) = χKS(r, t, r′, t′)
{ ∫

dτ
∫

d3x
∫

dτ′
∫

d3x′

χKS(r, t, x, τ)
[ δ(τ − τ′)
|x− x′| + fxc(x, τ, x′, τ′)

]
χ(x′, τ′, r′, t′)

}
(2.15)

where fxc(r, t, r′, t′) = δvxc(r,t)
δn(r′ ,t′)

∣∣∣
ngs(r,t)

is the energy-dependent exchange-correlation

kernel. The independent-particle response function χKS is calculated usually via a
mean-field approach, such as Kohn–Sham DFT. As in static DFT, the time-dependent
exchange-correlation potential is an unknown density functional and calculations
usually rely on the so-called adiabatic local-density approximation (ALDA) in which
the time-dependence of the functional is neglected [15]. However, in systems where
excitonic effects are expected to have a strong influence on spectral features due to
an ineffective electronic screening, e.g. in insulators such as diamond, the use of a
bootstrap kernel [29] that includes effects beyond the RPA is necessary.
Assuming translational invariance, the ELF can be computed inserting Eq. (2.10) into
Eq. (2.11). The inversion procedure can be cumbersome for large basis sets and large
k-point grids. Thus, one can calculate the so-called dielectric matrix without local-
field effects (LFE), in which the dielectric matrix off-diagonal elements (εG,G′(q, W),
G, G′ 6= 0) for different values of q are neglected [22]. In the latter case, the macro-
scopic dielectric matrix is obtained by simply inverting the head of the microscopic
dielectric matrix. However, in these off-diagonal terms the fluctuations on atomic
scale of the polarization are encoded. For highly inhomogeneous electron density
systems or highly locally polarizable atoms, such as in the case of diamond and
graphite, LFE can play a significant role in the description of the dielectric proper-
ties [30], particularly at small wavelengths, to the point of invalidating even qual-
itative results. Thus, in our analysis we include LFE in the dielectric properties of
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these carbon-based materials, where strong microscopic local fields can be created.
Including LFE, one can show that the dielectric function in reciprocal space is [31]:

ε−1
G,G′(q, W) = δG,G′ + νs

G,G′(q)χG,G′(q, W) (2.16)

where νs
G,G′(q) =

4πe2

|q+G||q+G′ | is the Fourier transform of the Coulomb potential, and
χG,G′(q, W) is the microscopic polarizability.
The computation of the dielectric and energy-loss functions within the TDDFT frame-
work has been carried out by using the ELK code, which is an all-electron full-potential
linearised augmented-plane-wave (FP-LAPW) program [2]. More specifically, the
electron-electron interaction in diamond crystals was described via the generalized
gradient approximation (GGA) [32] using a “bootstrap” exchange-correlation kernel
fxc [29], with the cut-off for the augmented plane waves set to 665 eV. Brillouin zone
sampling was performed using a 20 × 20 × 20 k-point grid along with an electron
occupancy Fermi smearing of 0.2 eV, which ensures convergence of the dielectric ob-
servables for the primary cell below chemical accuracy.
In the case of graphite, a local spin-density approximation (LSDA) [33] to the exchange-
correlation functional has been used together with an ALDA for the exchange-correlation
kernel fxc. The Brillouin zone was sampled using a 16× 16× 16 k-point grid, while
the other DFT parameters were kept the same as for diamond. This k-point grid is
sufficiently fine to obtain a converged ELF (a finer k-point mesh is instead needed
to converge the dielectric function). Indeed, calculations performed with a signifi-
cantly higher number of k-points (24× 24× 20) showed some negligible deviations
of the ELF, particularly below 30 eV, with a small increased or decreased peak height.
However, we remind that the ELF appears as an integrand in the calculation of the ob-
servables used in our MC simulations (that is, the Inelastic Scattering Probability and
the Inelastic Mean Free Path). Thus, in average, these small differences compensate
and the observables of interest for electronic charge transport are not significantly
affected. Thus, we decided to use the coarser grid.

2.4.4 Theory of Monte Carlo simulations

The transport of electrons within a material can be simulated by a classical MC ap-
proach, assuming that the non-relativistic electron beam wavelength is small with
respect to interatomic separation [24] and that the scattering cross sections for the
different processes occurring within materials are known.
At this level the target is assumed to be semi-infinite, homogeneous and amorphous,
the latter conditions supporting the assumption of incoherent scattering between dif-
ferent events. In our transport model, we consider a mono-energetic electron beam
with N electrons impacting on the target with kinetic energy T and angle of incidence
θ with respect to the surface normal.
Electrons can undergo elastic and inelastic scattering. The scattering is usually elastic
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when electrons scatter nuclei with far heavier mass, and only a trajectory change by
an angle θ is recorded. In this case, the elastic cross section σel is calculated by using
the Mott theory, which is based on the solution of the Dirac equation in a central field
[34]. In contrast, inelastic scattering processes resulting in both an energy loss W and
a directional change θ are mainly due to electron–electron interactions. In this occur-
rence, the inelastic cross section σinel is assessed via the dielectric model [23]. Within
this approach the differential inelastic cross section is calculated as follows:

dσinel
dW

=
1

ρπa0T

∫ q+

q−

dq
q

Im
[
− 1

ε(q, W)

]
(2.17)

where a0 is the Bohr radius, ρ the atomic density of the target material, q is the trans-
ferred momentum and the integration limits are q− =

√
2m(
√

T −
√

T −W) and
q+ =

√
2m(
√

T +
√

T −W).
The electron mean free path λ is given by [34]:

λ =
1

ρ(σel + σinel)
(2.18)

Furthermore, we assume that the path travelled by a test charge between two
subsequent collisions is Poisson–distributed, so that the cumulative probability that
the electron moves a distance ∆s before colliding is given by:

∆s = −λ · ln(r1) (2.19)

The random numbers r1, as well as all random numbers employed in our MC
simulations, are sampled in the range [0,1] with a uniform distribution. A second
random number r2 is compared with the elastic (pel =

λel
λel+λinel ) and inelastic (pinel =

1− pel) scattering probabilities to determine whether the scattering is elastic (r2 < pel)
or inelastic (r2 ≥ pel). The outcome of an elastic interaction is given by the trajectory
deflection of an angle θ′ with respect to the direction before the collision, which can
be computed by equalizing the following cumulative elastic probability with a third
random number r3:

Pel(θ
′, T) =

1
σel

2π
∫ θ′

0

dσel
dθ

dθ = r3 (2.20)

On the other hand, inelastic processes are dealt with by computing the inelastic scat-
tering probability as:

Pinel(W, T) =
1

σinel

∫ W

0

dσinel
dW ′

dW ′ = r4 (2.21)
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As customary in electronic transport MC calculations, the maximum energy loss cor-
responds to half of the kinetic energy of the incident electron. To determine the en-
ergy loss W, we generate a database of Pinel values for different W and T and we
equalize the integral in Eq. (2.21) to a random number r4.
The Monte Carlo routines used for performing these simulations are embedded in
the in-house developed suite SURPRISES [35, 36].

2.5 Results and discussion

2.5.1 Frequency-dependent dielectric function of diamond and graphite

The central quantity of our analysis is represented by the dielectric function, which
links the microscopic features of diamond and graphite, accessible from ab initio or
model simulations, to REELS experimental data. The real and imaginary part of the
frequency-dependent dielectric function of diamond and graphite from our ab initio
simulations are reported respectively in Figs. (2.1) and (2.2) for several transferred
momenta in the IBZ along the ΓL direction for diamond and along the ΓM direction
for graphite. We notice that both real and imaginary parts of ε are strongly dependent
on the transferred momentum, showing a high degree of anisotropy in the dielectric
response for both solids. Furthermore, we stress that the dielectric function real and
imaginary parts expected asymptotic behaviour (that is the real part goes to one,
while the imaginary part goes to zero for increasing energy transfer at any q) are
rigorously satisfied for both solids.

FIGURE 2.1: Real (left panel) and imaginary (right panel) parts of the
dielectric function, obtained from ab initio calculations, of diamond
vs. energy transfer (eV) for different momentum transfer q (Å −1)

along the ΓL direction.
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FIGURE 2.2: Real (left panel) and imaginary (right panel) parts of the
dielectric function,obtained from ab initio calculations, of graphite vs.
energy transfer (eV) for different momentum transfer q (Å −1) along

the ΓM direction.

2.5.2 Frequency-dependent energy-loss functions of diamond and
graphite

The ELF can be accurately computed via Eq. (2.11) within a full ab initio model once
the dielectric function appearing in Eq. (2.16) is known in a fine grid of q points.
A computationally less expensive approach could be used, in which the dielectric
function in the optical limit is computed from ab initio simulations or taken from
transmission electron energy-loss experimental data [10, 11] while the extension to
finite momentum transfer is obtained by applying a RPA-type dispersion law. In this
regard, to test the accuracy of different models, we calculated the ELF by three ap-
proaches.

Full ab initio (AI): Within this computational framework, the ELF was computed
via full AI approach both for q→ 0 and outside the optical limit. The ELF, plotted as a
function of energy and momentum transfer along the ΓL (ΓM) direction for diamond
(graphite), are shown in Figs. (2.3) and (2.4), respectively.

Drude–Lorentz from AI optical data (DL–AI): Within this approach, the dielectric
response in the optical domain was still obtained from AI simulations of the dielectric
function. The ELF was computed in the optical limit by using Eq. (2.11) and then
fitted via DL-functions as indicated by Eq. (2.13). The extension to finite transfer
momentum was finally achieved by using the dispersion law for plasmons reported
in Eq. (2.12).
In the case of diamond, four harmonic oscillators were sufficient to obtain an optimal
fit of the AI optical data, while for graphite only two harmonic oscillators were used.
In Fig. (2.5) we compare the AI dielectric response (red curve) for diamond (left
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FIGURE 2.3: ELF of diamond, obtained from ab initio simulations
vs. energy (eV) and momentum (Å −1) transfer along the IBZ ΓL

direction.

FIGURE 2.4: ELF of graphite, obtained from ab initio simulations vs.
energy (eV) and momentum (Å −1) transfer along the IBZ ΓM direc-

tion.

panel) and graphite (right panel) obtained in the optical limit with the DL fit (dashed
black line).

The fitting parameters En, Γn and An have a clear physical meaning, representing
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FIGURE 2.5: ELF in the optical limit (ω → 0) obtained from AI sim-
ulations (continuous red curve) along with the data fit (dashed black

line) for diamond (left panel) and graphite (right panel).

respectively, the plasmon peak energies, the damping constants characterizing the
finite life-time of the quasi-particle excitation, and the oscillator strengths. The pa-
rameters obtained from this fitting procedure are reported in Tab. (2.1) for diamond
and graphite, respectively.

n En (eV) Γn (eV) An(eV2)
Diamond

1 21.59 0.95 8.58
2 25.40 5.68 61.62
3 32.28 11.38 626.46
4 36.39 5.25 224.76

Graphite
1 6.75 1.17 6.38
2 27.76 8.68 573.09

TABLE 2.1: Fitting parameters obtained by fitting the AI ELF in the
optical limit with DL functions for diamond and graphite, respec-

tively.

We notice that our fit functions satisfy the f -sum rule [37], stating that the integral
of the ELF multiplied by the energy loss sums up to the number of effective-electrons
per atom [38], i.e. the valence electrons in our model.

Drude–Lorentz from experimental optical data (DL–E): The ELF in the optical domain
can be directly measured in transmission electron energy-loss experiments, fitted
with DL functions as reported by Garcia-Molina et al. [39] and extended out of the
optical limit by applying the dispersion law reported in Eq. (2.12).
In Fig. (2.6) we compare the ELF of diamond (left panel) and graphite (right panel)
obtained from our AI simulations with the experimental data from Refs. [10] and [11]
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and the fit model by Garcia-Molina et al. [39]. We notice that Garcia-Molina et al. used
a different number of oscillators, plasmon peak energies and FWHM to accurately fit
the experimental data with respect to our model derived from AI simulations.

FIGURE 2.6: Comparison between the ELF of diamond (left panel)
and graphite (right panel) in the optical limit obtained from AI sim-
ulations (continuous red curve), experimental data from Refs. [10]
and [11] (black triangles) and fit obtained with the model of Garcia-

Molina et al. [39] (dashed black line).

2.5.3 Inelastic Mean Free Path and Stopping Power

Using these different models of the ELF, we calculated a number of measurable phys-
ical quantities, such as the Inelastic Cross Section (ICS), the Inelastic Mean Free Path
(IMFP) and the Stopping Power (SP). These quantities will be used as input to our
Monte Carlo calculation of electron energy-loss spectra. We note that the IMFP (λinel),
ICS (σinel) and the SP (S(T)) are given by:

λinel =
1

ρσinel
, σinel =

∫ T+Eg
2

Eg

dσinel
dW

dW,

S(T) =
∫ T+Eg

2

Eg

λ−1
inel

dW
WdW

(2.22)

where ρ is the atomic density of the material. We notice that the upper and lower
integration limits are, conventionally, fixed to the energy gap Eg and one half of the
initial kinetic energy T plus the band gap energy Eg respectively. In Fig. (2.7) we plot
the IMFP of diamond (left) and graphite (right) calculated according to the three ap-
proaches mentioned above. Calculations performed using the Tanuma-Powell-Penn
(TPP) model [40] are also reported for reference: these results were obtained by in-
cluding the K-shell excitations.
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FIGURE 2.7: IMFP of diamond (left) and graphite (right). Data ob-
tained from AI simulations are reported in red (AI), DL-AI in blue
and with the DL-E in green. Black dashed lines correspond to the

same quantities obtained by Tanuma et al. [40].

The agreement between the different approaches and Tanuma’s data is remark-
ably good, for both diamond and graphite, at energy transfers higher than 100 eV.
However, for energies below 100 eV we find a significant discrepancy between the
IMFP obtained by full AI calculations and the IMFP obtained via the DL dispersion
law of Eq. (2.12) (about one order of magnitude in the case of diamond). The large
discrepancy will also affect our Monte Carlo simulations: an AI IMFP bigger by one
order of magnitude at low energy with respect to DL models means that electrons
have significantly lower probability to undergo inelastic scattering within the target
material. One can explain this substantial difference between the AI and DL models
as due to the application of the quadratic dispersion law of Eq. (2.12). In fact, this
dispersion law is obtained using an homogeneous electron gas model within a RPA
framework, which fails in the case of wide band-gap semiconductors or insulators,
such as diamond. On the other hand, this approximation works better for graphite,
which shows an almost semi-metallic behaviour along the in-plane direction.
Finally, the SP obtained by using the three different approaches is reported in Fig.
(2.8) for diamond (left panel) and graphite (right panel) and is compared with pre-
vious simulations by Shinotsuka et al. [41]. Differently from our approach, the SP
reported in Ref. [41] includes also K-shell excitations, similarly to the TTP calcula-
tions [40]. Discrepancies among the different approaches at energies below 100 eV
are evident also in this case.

2.6 Monte Carlo simulations

2.6.1 Diamond energy-loss spectra

To compare our experimental REELS data of diamond with the three different models
of ELF presented above, we performed Monte Carlo (MC) simulations following the
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FIGURE 2.8: Stopping power of diamond (left panel) and graphite
(right panel). Data obtained with the AI approach are reported in
red, DL-AI in blue, DL-E in green. Results from Shinotsuka et al. [41]

are sketched using a black dashed line.

scheme reported in section 2.4.4. In our MC simulations, diamond crystals are ap-
proximated by a homogeneous system with density 3.515 g/cm3 [39]. Consequently,
one assumes also that the ELF is almost similar in all directions and thus we can re-
tain our simulated ELF along the ΓL direction for calculating the energy-loss spectra.
The band gap of diamond was set equal to 4.16 eV, to be consistent with our DFT
ab initio calculations. The electron-beam direction is orthogonal to the target surface
and the initial kinetic energy ranges from 250 to 2000 eV. The number of impinging
electrons is 109.
In Fig. (2.9) spectra of backscattered electrons simulated in terms of the three different
models of the ELF are compared with our REELS experimental data. We notice that
we define as backscattered electrons those beam electrons reflected after both elastic
and inelastic collisions. Simulated and experimental spectra present the σ plasmon
peak at ∼ 35 eV, related to the four valence electrons of the equivalent covalently
bonded carbon atoms. This finding is in agreement with the ELF function of Fig.
(2.3), showing a maximum at about the same energy.

Furthermore, the two-plasmon excitation at higher energy (∼ 70 eV) in the exper-
imental spectrum is also present in our MC simulations. We observe that while the
MC simulations carried out using the dispersion law of Eq. (2.12) show a blue shift
with respect to experimental data, the use of a full AI approach results in a better
agreement with experiments. Incidentally, we notice that the DL approach seems to
describe more accurately the experimental data at ∼ 40 eV. We believe that this is
due to the fact that DL linewidth of the plasmon peak is broader than the AI curve.
The very same reason explains the poor description of the DL model of the exper-
imental minimum between 40 and 50 eV. We can conclude that at least in the case
of insulators, due to the strongly inhomogeneous electron density and, thus, to the
complexity of the dielectric response, the DL model is quantitatively less accurate
than a full AI approach in the prediction of the experimental REELS. This behaviour
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FIGURE 2.9: REELS of diamond: experimental data are reported
in black, while simulated results using the three different dielectric
models are sketched in red (AI), blue (DL-AI) and green (DL-E). Elec-
tron beam kinetic energy is 1000 eV. Data are normalized with respect

to the σ plasmon peak.

worsens at higher transferred momenta, where particle-hole excitations, rather than
collective plasma excitation, come into play. Single-particle excitations generally can-
not be well described by a simple RPA or by the DL model of the ELF, while TDDFT
AI simulations are also able to take into account these spectral features even if the
ALDA functional is the basic approximation one can do.
REEL experimental spectra and MC simulated spectra obtained using the full AI
method are compared in Fig. (2.10) for different kinetic energies of the primary beam.
The agreement between our MC and experimental data improves with increasing ki-
netic energy. This behaviour is indeed expected as the MC approach assumes that
electrons are classical point-like particles. Moreover, our simulated spectra do not in-
clude the surface plasmon contribution, whose importance decreases at higher elec-
tron beam kinetic energies.

2.6.2 Graphite energy-loss spectra

Graphite crystals were considered to have a density of 2.25 g/cm3 [39]. The band gap
was set equal to 0.06 eV according to our DFT calculations. MC simulations of REELS
were carried out using the three different approaches to the calculation of the ELF
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FIGURE 2.10: REELS of diamond obtained by calculating the ELF
with the full AI approach (red line) at different momentum transfer
compared to experimental data (black line) for several primary elec-
tron beam kinetic energies T. Data are normalized with respect to the

σ plasmon peak.

mentioned above, with a number of electrons in the beam equal to 109. Here, only
the in-plane component of the energy loss function was dealt with in the calculation
(i.e. we considered the component of the momentum transfer only along the single
graphite layers). In Fig. (2.11) we report the MC REELS simulations compared to our
experimental measurements (black line).

We notice that our MC simulations reproduce both the π (due to the collective
excitation of valence electrons in the π band) and the π + σ (due to collective exci-
tation of all valence electrons) plasmon peaks. These findings are in agreement with
the ELF function of Fig. (2.4), showing maxima at about same energies. While the re-
sults of the simulations show good agreement with experimental data independently
of the ELF model, nevertheless, using the ab initio calculated ELF at finite momen-
tum transfer, a third peak around 60 eV can be found. This peak corresponds to
two-plasmon excitation, and its presence is less apparent by adopting DL models.
Indeed, in DL models the RPA approximation describes the system as composed of
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FIGURE 2.11: REEL spectra of graphite: experimental data are re-
ported in black, while simulations using the 3 different models are
sketched in red (AI), blue (DL-AI) and green (DL-E). Electron beam
kinetic energy is 1000 eV. Data are normalized with respect to the

π + σ plasmon peak.

free electrons; in the case of graphite the electrons populating the π bands are delo-
calized and they behave as almost-free electrons. For this reason, the π plasmon peak
is prominent in all three spectra. However we conclude that in the case of semi-metal
such as graphite RPA works better and Drude-Lorentz simulations reproduce results
similar to first principles approaches.
REEL experimental spectra and MC simulated spectra obtained for graphite using
the full AI method are compared in Fig. (2.12) for different kinetic energies of the pri-
mary beam. The agreement between our MC and experimental data improves with
increasing kinetic energy, as for diamond, in Fig. (2.10).

2.6.3 Graphite energy-loss spectra taking into account a model of
anisotropy crystal directions

A further step for graphite was done by considering expression (2.22) as composed
by two independent components: one along the plane direction, as previously done,
and one orthogonal to the plane. In this way one can be able to treat the anisotropic
structure of graphite.
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FIGURE 2.12: REEL spectra of graphite obtained by calculating the
ELF with the full AI approach (red line) at different momentum trans-
fer compared to experimental data (black line) at different primary
electron beam kinetic energy T. Data are normalized with respect to

the π + σ plasmon peak.

The total IMFP λinel and energy loss W were determined by linearly combining at
each inelastic interaction the corresponding values along the two possible orthogonal
directions of the transferred momentum q as follows:

λinel = f cos2 θ λ|| + [(1− f ) + f sin2 θ] λ⊥ (2.23)

W = f cos2 θ W|| + [(1− f ) + f sin2 θ] W⊥ (2.24)
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where f is an anisotropy parameter in the range [0,1], and θ is the angle between c and
q . The f parameter has been introduced in this anisotropic model of the inelastic
observables to favour the electron motion in the planar direction, since HOPG shows
a higher conductivity along the plane (q⊥c). The value of f is determined to obtain
the best agreement between theoretical and experimental spectra and as can be seen
from Fig. (2.13), we choose a value f = 0.6 that give us the best accordance with
experimental data.
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FIGURE 2.13: REELs of HOPG for different values of the f parameter
(red lines). The kinetic energy of the primary beam is set to 1500
eV. MC calculations are compared with our experimental data (black
lines). The results are normalized at a common area of the elastic

peak.

The higher the value of f , the larger is the contribution of intra-planar excitations
(q ‖ c) to inelastic interactions. This effect can be noticed in the spectra of Fig. (2.13)
by the rise of a shoulder at an energy loss of 20 eV, which corresponds to an oscillation
in the ELF along the q ‖ c direction. This means physically that by considering e.g. a
scattering angle θ = 0 (that is, orthogonal to the graphite layers), the energy loss em-
beds 60% of collisions with a transferred momentum along the q ‖ c direction, while
40% of the spectrum is made by collisions along the q ⊥ c (in-plane) direction (see
Eqs. (2.23) and (2.24)). Of course, the directional change of the electrons inelastically
scattered by the target nuclei is taken into account, for fixed f , by the scattering an-
gle θ, which is modified by the interactions at each MC step. This anisotropic model
is consistent with the higher tendency of the electrons to move along the graphite
planes rather than across the planes.
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FIGURE 2.14: REELs of HOPG for several primary beam kinetic en-
ergies. Red lines show simulated spectra, while black curves report
our experimental data. The results are normalized at a common area

of the elastic peak.

As in the previous section, MC simulations were performed at several primary
beam kinetic energies and compared with the experimental data (normalized at a
common area of the elastic peak) in Fig. (2.14). We notice that the agreement between
calculated and experimental data is rather good and becomes progressively better
for increasing kinetic energies. This is due to the fact that experimental spectra report
also the contribution of surface plasmons, which is neglected in the MC calculations
and whose relative importance diminishes with respect to bulk plasmons at higher
values of the primary beam kinetic energy. It is worth noting that the normalization
of the data at a common area of the elastic peak keeps the correct intensity ratios
between the two main plasmon peaks.

2.7 Conclusions

In this work, we calculated the dielectric properties of diamond and graphite, in
particular the dielectric response and the energy-loss functions, using different ap-
proaches, from semiclassical Drude–Lorentz to time-dependent density functional
theory. We compare our computer simulations with REEL spectra recorded at sev-
eral energies. The major result of this work is to point out that an accurate treatment
of the electron-electron correlations beyond the random phase approximation of the
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homogeneous Fermi gas increases the overall accuracy of the model and provides a
better agreement with measurements of back-scattered electrons. This issue is par-
ticularly important in materials with highly inhomogeneous charge densities, such
as semiconductors and insulators, out of the optical region where collective plasmon
excitations mix with single particle-hole excitations. Semi-classical models, based on
the Drude-Lorentz extension to finite momentum transfer, are generally less accurate
in reproducing these quantum effects. Nevertheless, this finding turns out to be cor-
rect also for semimetals, such as graphite, even though in this case the accuracy of the
free-electron model (as the RPA) with respect to the energy-loss spectral observables
does not differ significantly from the ab initio model. Thus, the advantage of using
a full ab initio description of the electron scattering within the solid, particularly at
low energy (< 100 eV) where the classical Monte Carlo approach of the present work
is not rigorously applicable, clearly emerges from our computational analysis.
Furthermore, we notice that the approach used for including a dependence of the di-
electric properties on the target anisotropy clearly improves the agreement between
simulated and experimental REEL spectra. Finally, further developments of this work
will be sought for the inclusion of the electron-phonon interaction, which is relevant
at low energies, for the treatment of the surface plasmons and anisotropy effects in
2D carbon materials. Also, the performance of the semi-empirical optical data model
could be improved by adding exchange-correlation effects [42, 43].
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Chapter 3

Graphene allotropes with lower
densities

In this chapter we discuss an approach to produce novel two–dimensional carbon–
based materials using graphene topology as a texture, some of which are studied for
the first time to the best of our knowledge. We model the structures using periodic
simulation supercells as well as we make use of DFT to characterise their electronic
(band structures and DOS), mechanical (stress-strain characteristics and relevant elas-
tic observables) and dynamical stability properties. Nevertheless, here we use the
pseudopotential approach to deal with the ion-electron interaction implemented in
[1].

3.1 Aim of the work

The possibility to introduce new interesting features in bi-dimensional carbon-based
materials without chemical functionalization, while keeping the desirable properties
of graphene, such as its planar periodic structure and the sp2 bonding network, might
be very convenient to the existing technology. In this regard, one of the most striking
properties of graphene is its Young’s modulus to density ratio, probably the highest
achieved so far. Unfortunately, investigations on this topic have been rarely pursued
except for some notable exceptions [2, 3, 4, 5].

In this work we propose first a method based on the augmentation of regular and
semi-regular tessellations of the plane with three-connected vertices. We show in
particular the application of this approach for finding novel energetically stable sp2-
bonded carbon-based structures under the locally jammed packing condition, aiming
to find planar geometries with density lower than graphene. Our ultimate goal is to
possibly decrease the surface density up to the least dense form of carbon allotrope
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that could ever be synthesized, while displaying almost unchanged specific mechan-
ical characteristics with respect to graphene. Indeed, one of the possible routes to
increase the specific modulus with respect to graphene can be achieved via reducing
the surface density. Increasing the specific modulus by decreasing the mass density
is a typical request whereby the minimum structural weight can be achieved. This
challenge has far-reaching consequences in a variety of applications, most notably in
aerospace technologies where weight saving is a route to cost reduction. Furthermore
we show that this method can be extended to a larger class of planar tessellations,
such as the Cairo tiling. Using Density Functional Theory (DFT), the stability of these
parent and augmented carbon structures is probed by calculating the phonon dis-
persions, while their response to external deformation and electromagnetic fields is
characterized by assessing the stress–strain curves, including their specific mechani-
cal properties, and the electronic band structures.

Our analysis shows the capability of this approach to design novel lightweight
strong two-dimensional carbon allotropes, possibly extendable to three-dimensional
architectures, and we find that the mechanical rigidity of graphene is very much de-
pleted by decreasing the density, while other specific mechanical characteristics, such
as the strength and toughness, can be even bigger than graphene.

3.2 Methods and computational details

3.2.1 Augmentation method for lowering the structure density

The structure of graphene–like materials corresponding to the three-coordinated reg-
ular and semi–regular tessellations can be represented by the packing of congruent
discs touching each other exactly in three points. A two-dimensional packing can
be achieved by a collection of congruent discs in the plane under the following con-
straints:

• No discs overlap

• Each disc is in contact with at least another disc

• For any choice of two discs in the packing there is always a path connecting
them through mutual contacts.

In our approach to augmentation we impose three further constraints to restrict
the possible structural search. These are the three-coordination of atomic centers, the
maximum angle between two bonds, which must be below π rad, and the periodicity
in the plane. Indeed, angle strain in sp2 carbon allotropes increases noticeably when
far from the equilibrium configuration equal to 2π/3 rad. The angle choice lower
than π rad corresponds to a specific condition for packing, called local stability or lo-
cally jammed packing. For locally stable disc packing, contacts between circles should
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lie not all on the same hemicircle [6]. With such a constraint in place, one might won-
der whether packings of arbitrarily low density exist or, in case they do not, what the
least dense arrangement of discs in the plane would be. It is an interesting question
on its own, given that the question addressing the opposite problem− that of finding
the densest arrangement of discs in the plane − received much attention for a long
time [7, 8] and found a formal answer only in the last century [9]. In this regard, it
is worth noticing that if the packing is allowed to be non-periodic, then discs can in-
deed be packed into locally stable configurations with arbitrarily low density [10].

To decrease the structure density of three-coordinated regular and semi-regular
nets, our method proceeds first by substituting every disc of the parent structure with
three smaller congruent discs inscribed in the former whose centers are arranged in
an equilateral triangle, a process called augmentation when referred to nets [11]. The
inscribed discs, representing the daughter geometry, are designed so that they touch
each other to respect the locally jamming condition.

In the equivalent description, in which we place a carbon atom at the center of
each disc, a daughter net emerges which corresponds to design equilateral triangles
around every vertex of the parent net. The utility of the latter representation is due
to the fact that can be generalized to the case of non–regular polygons also contain-
ing n-coordinated vertices, where the daughter net is created via augmentation by
regular n-polygons. This extension consists in particular of a first step in which each
n-coordinated node is augmented by a polygon with the same number of vertices,
resulting in a three-coordinated net, followed by a second step in which the three-
coordinated net is further augmented by triangles only. This procedure stops after
reaching triangular nodes, as a further augmentation would fail the local jamming
conditions by producing angles equal to π rad. We notice that the class of possible
structures that can be augmented is in principle infinite, nevertheless the final density
is likely to present a lower bound strictly related to the initial parent structure. We
will show an application of this generalized tessellation which goes beyond regular
and semi-regular polygons to the Cairo pentagonal tiling in which two vertices of the
unit cell are four-coordinated.

3.2.2 Structure optimization

The optimization of the atomic positions, electronic and phonon band structure sim-
ulations, as well as the assessment of the mechanical properties of the proposed archi-
tectures were performed within the DFT framework using the QUANTUM ESPRESSO
(QE) suite [1]. QE is a plane-wave code based on the pseudopotential approach to
deal with the interaction between valence electrons and lattice ions. Optimization
of the atomic configurations was carried out by using Broyden–Fletcher–Goldfarb–
Shannon (BFGS) algorithm. The simulation cells in the orthogonal direction to the
plane of the structures was set to 20 Å, in order to avoid spurious interactions among
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periodic images. The optimized configurations of all the structures investigated in
this work can be found in the electronic supplementary material.

3.2.3 Phonon band structure simulations

To assess the stability of the parent and daughter structures we computed the phonon
bands using the ph.x utility of QE. We used the LDA (as advised in phonon dispersion
simulations [1]) ultrasoft pseudopotential C.pz-rrkjus.UPF, with a cut–off of 30 Ry for
wavefunctions and 240 Ry for the density, respectively. These cut-off values were
set-up after achieving a well-converged phonon band structure of graphene in com-
parison to experiments and previous simulations. The k-point grids used to carry out
phonon calculations depend on the simulation cell size and were chosen so to achieve
converged DFT values below chemical accuracy (< 0.01 eV for the total energy and
< 10−3 Ry/Å for the interatomic forces). Thus, depending on the simulation cell we
performed calculations on 2× 2× 1 up to 16× 16× 1 k-point grids for structural op-
timization, while increasing the k-point mesh to 48× 48× 1 for the calculation of the
band structures. Convergence of the integrals over the Brillouin zone was improved
by smearing the occupancy with a 0.136 eV width Gaussian function. Simulation cells
were carefully relaxed to achieve the minimum-energy configurations with respect
to this pseudopotential. The convergence threshold for the self-consistent electronic
structure simulations was set to 10−14 Ry and to 10−17 Ry for the phonon calcula-
tions. These small values of the thresholds were necessary to avoid the appearance
of spurious imaginary frequencies, not due to the structural arrangement.

3.2.4 Electronic band structure and DOS

To carry out DFT electronic band structure simulations we used a norm conserving
PBE pseudopotential (C.pbe-mt_gipaw.UPF) and an energy cut-off for the wavefun-
tions equal to 100 Ry. This large value of the plane-wave cut-off is due to obtaining
converged values of the stress tensor, an observable notoriously more difficult to con-
verge with respect to the total energy. The k-point grids used to calculate observables
in the momentum space are the same than those used in phonon band structure cal-
culations.

3.2.5 Mechanical properties

The mechanical properties were assessed by using the same parameters of the elec-
tronic band structure simulations (see section 3.2.4). For carrying out the calcula-
tion of the mechanical properties in linear regime we used 0.001-spaced points up to
0.01 strain and further 0.005-spaced points up to 0.05 strain. To deal with the elas-
tic deformations we used supercells containing two unit cells for the materials with
trigonal symmetry, i.e. the graphene and the flakene families. The C11 coefficient in
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these cases is related to the strain along the zig-zag direction. Upon deformation,
the atomic positions within the supercell were relaxed until interatomic forces were
smaller than 10−3 Ry/Å. In this regard, we stress that in our ab-initio simulations we
assess thus the “true stress”, so the simulation supercell is allowed to change in the
direction orthogonal to the loading to obtain atomic forces below 0.5 kbar, equivalent
to 0.5× 20/3.35 = 3 kbar. In fact, the calculation of the stress in the bi-dimensional
material relies on the choice of a conventional thickness, which was set to 3.35 Å for
the graphene monolayer, while 20 Å is the dimension of our simulation cell.

3.3 Results and discussion

3.3.1 Parent and augmented geometries with low density

In this section we discuss the application of our augmentation approach under the
locally-jammed constraints to generate novel sp2 carbon-based architectures. We start
from an initial parent topology and proceed to generate daughter architectures de-
rived by lowering the packing of congruent discs, whose arrangement can be alter-
natively used to represent regular and semi-regular bi-dimensional crystal systems,
under the condition of local stability.

Graphene and graphene daughter.

Consider the packing of discs associated with the structure of graphene. This ar-
rangement has density of π/(3

√
3) ∼ 0.6046, as shown in the middle-left panel of

figure (3.1a), and defines the structural net of graphene reproduced in the left hand
side of figure (3.1b). Now replacing each disc with three smaller discs (reducing thus
the disc radius by a factor 1

1+2/
√

3
with respect to the radius of graphene discs) leads

to a less dense packing π(7
√

3)− 12 ∼ 0.390675, as shown in the middle-right panel
of figure (3.1a). The resulting structure, which we name “graphene daughter” (gr11 in
[12]), corresponds to a semi-regular tessellation and is reproduced in the right hand
side of figure (3.1b). Unfortunately, the substitution cannot be pursued any further as
contacts between circles on the half-hemicircle would occur and spoil the local stabil-
ity condition. This applies to any packing, whose associated net (or tiling) contains
triangles.

Tilene parent and tilene.

By considering semi-regular tiling with polygons having four and eight sides, in the
middle-left panel of figure (3.1c) we show what is probably the simplest structure
after graphene, that is the packing associated with the well known square-octagon
tiling. This defines a net of carbon atoms that we label “tilene parent” (octagraphene in
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Graphene Graphene daughter Tilene parent Tilene Flakene parent Flakene

Pentagraphene Liskene Liskene daughter

a)

b) d)

c) e)

f )

g)

h)

i)

l)

FIGURE 3.1: First row: in the upper panel parent (left, red color)
and daughter (right, blue color) disc packing in the unit cells of a)
graphene, c) tilene, and e) flakene. The lines internal to the discs
connect the nearest neighbor discs. Bottom panel of the first row:
4 × 4 supercells of parent (left) and daughter (right) structures of
b) graphene, d) tilene, and f) flakene. Second row: g) from left to
right: pentagraphene structure; augmentation of the Cairo pentag-
onal tiling: liskene; further augmentation of the liskene geometry:
liskene daughter. h) from left to right: top and side view of a 3× 3
pentagraphene supercell, where the sp3-hybridized carbon atoms are
reported in green color, while in grey we find the sp2-hybridized car-
bon centers; 3× 3 supercell of liskene and liskene daughter after per-
forming DFT minimization. i) By relaxing the locally jammed pack-
ing constraint, the flakene structure can be made progressively less
dense by elongating the hexagonal super-ring side highlighted in the
picture. l) The low density structure obtained from flakene by dou-

bling the hexagonal super-ring side length.
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[12]), which is reported in the left hand side of figure (3.1d). Its packing factor is π(3−
2
√

2) ∼ 0.539012, which is lower than that of graphene. Its augmentation, carried out
under the previously described principles, leads to an even rarer packing, as shown
in the middle-right panel of figure (3.1c), where the packing factor is 3π/(2 +

√
2 +√

3)2 ∼ 0.355866. The resulting structure, reported in the right hand side of figure
(3.1d), is called within this paper “tilene”.

Flakene parent and flakene.

The semi-regular tiling of the plane by regular polygons with the largest rings is
the truncated trihexagonal tiling reported in the middle-left panel of figure (3.1e)
for which the packing factor before the geometry optimization is π(2/

√
3 − 1) ∼

0.486006. The resulting geometry is called “flakene parent” (C64 graphenylene in [12,
13, 14]) and is reported in the left hand side of figure (3.1f). Its augmentation, shown
in the middle-right panel of figure (3.1e), shows a tiling containing 24-sided polygons
whose density is 3

√
3π/(20 + 3

√
3 + 6

√
7 + 2

√
21) ∼ 0.324951. Although topologi-

cally equivalent, this packing differs from a previously reported example [11] as its
density is appreciably lower. The resulting structure, obtained by placing carbon
atoms at the disc centers, is reported in the right hand side of figure (3.1f) and we call
it “flakene”. It can be shown that it is one of the sp2 structures with lowest density
ever studied which agree to the locally–jammed packing and periodic conditions.

Beyond the regular and semi-regular tessellations: the Cairo pentagonal tiling.
Liskene and liskene daughter.

Other carbon structures can be designed by using a tiling conceptually different from
what we have seen so far. In particular, one may think to modify the carbon three-
coordination, and to allow also four-coordinated vertices. The Cairo pentagonal tiling
is known to be the planar projection of the pentagraphene structure [15] and it can-
not be packed using congruent discs as the previously proposed structures. In this
arrangement not all carbon atoms are three-coordinated and the resulting structure
is not planar. The unit cell of pentagraphene, whose 3×3 periodic arrangement is
reported in figure (3.1g), is made by 4 three-coordinated and 2 four-coordinated ver-
tices, characterized thus by sp2-sp3 and sp2-sp2 hybridization, respectively. This di-
versity of coordination leads the system to develop into the third dimension. This re-
flects the fact that one cannot tile the plane by regular pentagons. Top and side views
of the calculation supercell used in our simulation are reported in the left hand side of
figure (3.1h). To find the daughter structure, we apply our augmentation method also
to the Cairo pentagonal tiling, characterizing the pentagraphene cell. In this way, we
obtain a planar three-coordinated structure that we name “liskene”, which is shown
in the central panel of figure (3.1g). While we notice that this is a different case study
with respect to the other structures, we find that the daughter architecture is still a
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three-coordinated system with a density lower than the parent. In the central panel
of figure (3.1h) we show the DFT optimized geometry of this tiling. Furthermore, by
further augmenting the vertices not belonging to the triangular polygons of liskene,
we obtain the daughter architecture (see the right panel of figure (3.1g)) which repre-
sents the maximal limit of the planar packing of pentagraphene. Finally, in the right
panel of figure (3.1h) we report the DFT-optimized structure.

Relaxing the locally jammed packing constraint.

By relaxing the condition of having all the angles between two carbon bonds strictly
less than π, the flakene architecture can be used as a basis for building up structures
with arbitrary low density. This can be achieved by progressively elongating the sides
of the hexagonal super-ring highlighted in figure (3.1i), at fixed width. In particular, a
sketch of the structure derived by doubling the hexagonal super-ring sides is reported
in figure (3.1l). Concerning stability, by increasing the length of the hexagonal sides
to achieve an arbitrarily low density the energy-per-atom is 1.372 eV/atom higher
than graphene, which can be assumed to be the asymptotic value for area density
going to zero. Thus, while here we stress the fact that this work focus on all-sp2

carbon-based geometries with low density which satisfy the locally jammed packing
condition, nevertheless by relaxing this constraint one can achieve progressively low
density.

3.3.2 Structural optimization

Prior carrying out the mechanical and electronic characterization of these novel car-
bon nets, we perform the structural optimization (details on the DFT parameters were
given in section 3.2). In the second and third columns of Table 3.1 we report the en-
ergy per atom and the cohesive energies obtained upon optimization of the atomic
positions within the cell.

The cohesive energy of graphene (7.74 eV) well agrees with the experimental
value of 7.6 eV [16], and with previous DFT simulations [17] reporting a value of
7.828 eV. We notice that graphene is still the most energetically stable allotrope. In
general, with the notable exception of pentagraphene, we observe that lowering the
densities of the parent structures by using the previously introduced augmentation
method results in daughter architectures characterized by lesser energetic stability
and lower intra-molecular bond strengths. We rationalize the different finding in
the case of pentagraphene, for which the cohesive energy increases from parent to
daughter, by noticing that the augmentation starts from a non-planar sp2 − sp3 net
and ends up into a purely planar sp2 net. This atomic arrangement represents thus a
favourable solution from both the energetic and density points of view.

For the flakene parent we find almost the same energy difference (0.6395 eV vs.
0.64 eV) with respect to graphene (see third column of table 3.1) as in [18], where
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TABLE 3.1: First column: structure type. Second column: sur-
face density. Third and fourth columns report the total energy per
atom with respect to graphene and the cohesive energy per atom ob-
tained upon structural optimization, respectively. With the exception
of pentagraphene, all structures are planar and each carbon atom
is three-coordinated. In the table the following abbreviations were

used: p.=parent, d.=daughter, dir.=direct gap, indir.=indirect gap.

Structure Density Energy Cohesive energy Type Bandgap
(atoms/Å2) ([eV]/atom) ([eV]/atom) [eV]

Graphene 0.379 0 7.7404 Semi-met. 0 (dir.)
Graphene d. 0.256 0.9882 6.7523 Metal -
Tilene p. 0.336 0.5186 7.2219 Metal -
Tilene 0.233 1.0765 6.6640 Metal -

Flakene p. 0.301 0.6395 7.1009 Semi-met. 0.043 (dir.)
Flakene 0.212 1.1071 6.6334 Metal -

Pentagraphene 0.452 0.9044 6.8361 Semicond 2.23 (ind.)
Liskene 0.297 0.7789 6.9615 Semicond 0.36 (ind.)

Liskene d. 0.247 1.0506 6.6897 Semicond 0.46 (ind.)

this structure is labelled “graphenylene”. Also for the tilene parent we calculate an
energy difference with respect to graphene equal to 0.5186 eV, which is very similar
to the value of 0.53 eV reported in [2], where the structure was named T-graphene.
Finally, in the case of pentagraphene we find an energy-per-atom difference of 0.904
eV, which is very much comparable to the value of about 0.9 eV reported in [15].

While we notice that the loss of stability is not significant, as the total energy dif-
ference per atom between the less stable material (flakene) and graphene is of the
order of 1%, the density is almost two times lower than that one of graphene (see the
second column of table 3.1).

3.3.3 Phonon band structures

To test the dynamical stability of the novel structures proposed in this work we com-
puted the phonon dispersion curves. The phonon band structures, calculated with
the parameters described in section 2.3, are reported in figure (3.2) for the parent and
the daughter structures, respectively. We stress that we could not find the presence of
imaginary frequencies, which means that the structures are dynamically stable. Fur-
thermore, we notice the emergence of a phononic gap in the daughter architectures
above 800 cm−1, which is not present in the parent structures.



62 Chapter 3. Graphene allotropes with lower densities

 
 

a)

b)

c)

d)

FIGURE 3.2: Phonon band structures of the parent (left panel,
red lines) and daughter (right panel, blue lines) architectures of a)

graphene, b) tilene, c) flakene, and d) pentagraphene.

3.3.4 Electronic properties

In this section we report the band structures and relevant DOSs for the eight struc-
tural arrangements investigated in this work.

We begin with the well known electronic band structure of graphene reported in
the upper left panel of figure (3.3a) alongside the DOS (red filled curve in the lower
panel of figure (3.3a)), which we reproduce to test our choice of the DFT parameters.
The agreement with previous simulations [19] is excellent so we can move to the as-
sessment of the electronic structure of the other systems.
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FIGURE 3.3: Upper panels: band structure of the parent (left, red
lines) and daughter (right, blue lines) architectures of a) graphene,
b) tilene, c) flakene, and d) pentagraphene. Lower panels: relevant
DOS of the parent (red filled area) and daughter (blue filled area)
structures. Fermi level is shifted to zero and reported as an horizontal

(vertical) green line in the band structure (DOS).

In the right panel of figure (3.3a) we report the bands of the graphene daughter.
We observe that graphene loses its semi-metal characteristics and acquires a striking
metallic behaviour with a loss of the typical graphene features near the Fermi energy
(valence and conduction bands do not touch in Dirac points as well as the dispersion
around the Γ-point is not linear). This is due to the appearance of a narrow band
close to the Fermi level (reported as an horizontal (vertical) green line in the band
structure (DOS)), a feature that appears also in tilene and flakene, as can be seen in
the upper right panels of figures (3.3b) and (3.3c). This is of course reflected into the
DOS, characterized by a narrow peak close to the Fermi energy, as shown in the blue
filled curves reported in the lower panels of figure (3.3a), (3.3b), and (3.3c).

Tilene parent and flakene parent electronic band structures (see upper left panels
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TABLE 3.2: Elastic constants (C11, C12, C44), area Young’s modu-
lus (EA), Young’s modulus (E), Poisson’s ratio (ν) and area specific
Young’s modulus (EA/ρA) of the parent and daughter carbon struc-
tures. To evaluate the accuracy of our simulations, we report a com-
parison with data in the literature where available. In the table the

following abbreviations were used: p.=parent, d.=daughter.

C11 C12 C44 EA E ν EA/ρA
(N/m) (N/m) (N/m) (N/m) (TPa) (10−3 Nm kg−1)

Graphene 348 53.8 - 340 1.14 0.154 1.79
[12] 358 60 - 349 0.17

Graphene d. 149 94.0 - 89.6 0.30 0.631 0.70
[12] 152 98 - 92.6 0.64

Tilene p. 294 44.1 48.3 288 0.96 0.150 1.70
[20] 296 46 49 306 0.13

Tilene 124 75.5 11.3 78.6 0.26 0.607 0.67
Flakene p. 220 57.7 - 205 0.69 0.263 1.36

[12] 227 61 - 210 0.27
Flakene 87.0 64.9 - 38.6 0.13 0.746 0.36
Liskene 187 94.8 52.0 138 0.46 0.508 0.93

Liskene d. 127 65.6 19.4 93.1 0.31 0.517 0.75

in figures (3.3b) and (3.3c), respectively) are not dramatically changed by augmen-
tation, as the daughter structures stay metallic (see lower panel in figure (3.3b) for
tilene daughter) or increase their metallic character (see lower panel of figure (3.3c)
for flakene daughter).

At odds with the previous architectures, pentagraphene band structure (see upper
left panel of figure (3.3d)), which has the typical characteristics of a semiconductor
(in agreement with previous DFT calculations [15]), is heavily affected by augmen-
tation, as the daughter structure (see upper right panel of figure (3.3d)) presents an
almost semi-metallic behaviour characterized by a very narrow band gap. The rele-
vant DOSs of pentagraphene (filled red curve of figure (3.3d)) and liskene (filled blue
curve of figure (3.3d)) are typical of a semiconductor and semi-metal, respectively.

3.3.5 Elastic properties

To characterize the mechanical properties of the daughter architectures in comparison
to the parent structures we carried out first the ab-initio simulations of the elastic
stiffness tensor C. The matrix C provides in linear approximation the proportionality
or elastic constants relating the stress and the strain, σ = εC where ε is the six-
component strain vector, and σ is the stress tensor. The stiffness tensor is in principle
characterized by six independent terms in bi-dimensional materials, being Cij = Cji
for symmetry considerations. The elastic behaviour of orthotropic 2D materials can
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FIGURE 3.4: Specific biaxial elastic modulus versus area density. The
black line shows the trend reported in [12] for carbon allotropes.

be described thus by four elastic constants C11, C22, C12 and C44 [21]. For the square
lattice structures, such as tilene parent, tilene and liskene, the symmetry constraint
sets C11 = C22, so that one has only three independent elastic constants. Graphene,
graphene daughter, flakene parent and flakene at variance show isotropic hexagonal
symmetry, reducing the independent elastic constants to only two according to the
relations C11 = C22 and 2C44 = C11 − C12.

In harmonic approximation, the strain–energy density function F at 0 K can be
expressed as

F = F0 +
1
2

F(2)ε2 + o(ε3) (3.1)

where F0 and 1/2F(2)ε2 are the static energy of the system and the lattice vibrational
contribution, respectively. In our simulations we neglect the thermal electronic con-
tribution, which is expected to be low.

The elastic constants Cij can be then expressed as follows:

Cij =
∂2F

∂εi∂ε j
(3.2)

The Cijs can be derived by fitting the energy density of (3.1) with a second order
polynomial in the imposed strain. In particular, on the one side for isotropic materi-
als the fitting parameter F(2) can be identified with C11 for uniaxial deformation and
with 2(C11 + C12) under hydrostatic deformation, respectively. On the other side,
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in the case of orthotropic materials further calculations are needed in order to fully
characterize the stiffness matrix. In this case, the elastic constants C11, C22 can be
identified as the fitting parameters of the total energy under uniaxial strain, while
F(2) corresponds to C11 + C22 + 2C12 or 4C44 in the case of hydrostatic deformation
or shear deformation, respectively. From the knowledge of the elastic constants, the
Young’s modulus E, which measures material’s stiffness, and the Poisson’s ratio ν,
which measures the material’s tendency to expand in directions perpendicular to the
direction of compression, can be computed as E = (C2

11−C2
12)/C11 and ν = C12/C11,

respectively.
In table (3.2) we report the elastic constants, Young’s modulus and Poisson’s ratio

of all the 2D carbon allotropes studied in this work in comparison with the DFT val-
ues reported in the literature [12, 20], finding a remarkable agreement with previous
calculations and experiments. We remind that, at variance with a stable, isotropic,
linear elastic 3D material where the bounds on Poisson’s ratio are −1 < ν < 1/2, for
2D materials one has −1 < ν < 1 [22]. Therefore, it is not surprising to obtain values
of the Poisson’s ratios higher than 1/2 for our 2D architectures.

The Young’s modulus of graphene obtained from our DFT simulations is in good
agreement with the experimental value of 1±0.1 TPa (assuming a graphene thick-
ness equal to 0.335 nm), obtained by nanoindentation measurements on single-layer
graphene [23]. The analysis of the Poisson’s ratio of tilene, flakene and liskene shows
that these materials are almost incompressible. More precisely, the Poisson’s ratio
of tilene (as of graphene daughter, flakene, and liskene) is higher than the limit of
isotropic incompressible 3D materials (which is 0.5) while lower than the correspond-
ing upper bound on Poisson’s ratio for 2D materials (which is 1 [22]): this material
presents a hyper-restriction correspondent to a decrease of the area under tension.

Tilene presents an area Young’s modulus EA = 78.6 N/m and a Poisson’s ratio
ν = 0.607, which are similar to those of the graphene daughter. Flakene has an area
Young’s modulus EA = 38.6 N/m and a Poisson’s ratio ν = 0.746. Generally, we
notice that graphene has the highest Young’s modulus, and that moving from parent
to daughter structures the Young’s modulus decreases and the Poisson’s ratio conse-
quently increases.

Moreover, one of the most significant observables to be computed for low density
materials is of course the specific modulus, namely the Young’s modulus divided
by the mass density. Thus, we computed the Young’s modulus per mass density
EA/ρA = E/ρ, where ρA is the density in units of Kg/m2 and ρ the mass density
in Kg/m3. The outcome of our simulations concerning this quantity are reported in
the last column of table (3.2). We notice that graphene presents the biggest specific
modulus among the materials studied here. At odds flakene, while displaying the
lowest density among the investigated structures, shows a major drop in both the ab-
solute and specific elastic moduli, which are from 8 to 5 times lower than graphene.
Nevertheless, while we do not find a material outperforming the specific properties
of graphene in this respect and, thus, we do observe that the augmentation is only
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TABLE 3.3: Fracture strain (first column), strength (second col-
umn), strength×t (third column) and toughness×t (fourth column)
of the parent and daughter planar structures alongside the specific
strength and specific toughness (fifth and sixth columns). The con-
ventional thickness of the graphenic materials is considered to be
t = 3.35 Å. In the table the following abbreviations were used:

p.=parent, d.=daughter.

Loading Fracture Strength Strength Toughness Specific Specific

direction strain ×t ×t strength toughness

(%) (GPa) (N/m) (J m−2) (MNm kg−1) (MJ kg−1)

Graphene x > 35 112 37.5 > 9.83 49.7 > 13.0
y 26-28 102 34.2 6.51 45.2 8.61

Graphene d. x 18-20 29.3 9.81 0.83 19.2 1.62
y > 30 67.7 22.6 > 3.63 44.3 > 7.11

Tilene p. x,y 24-26 99.6 33.4 5.55 49.7 8.27
45◦ 32-34 79.1 26.5 5.68 39.5 8.47

Tilene x,y 20-22 44.8 15.0 1.66 32.3 3.57
45◦ 18-20 30.3 10.2 0.92 21.9 1.97

Flakene p. x 22-24 66.7 22.3 3.37 37.2 5.61
y 22-24 57.9 19.4 3.01 32.3 5.02

Flakene x 12-14 23.6 7.92 0.49 18.7 1.16
y 14-16 25.8 8.63 0.63 20.4 1.49

Liskene x,y 18-20 63.2 21.2 2.19 35.8 3.70
45◦ 14-16 43.8 14.7 1.27 24.7 2.14

Liskene d. x,y 12-14 27.8 9.32 0.59 18.5 1.20
45◦ 14-16 28.0 9.37 0.68 19.0 1.37
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FIGURE 3.5: Stress–strain curves of graphene and graphene daughter
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strain values and directions.

partially an advantageous route to follow in order to increase the specific modulus
of graphene-like materials, the difference in the specific Young’s modulus is less re-
markable than for the absolute values, with the exception of flakene.

The drop of flakene Young’s modulus suggests that there is a threshold to the
decrease of the density of these carbon-based planar materials, below which this me-
chanical characteristic is significantly depleted. In order to get further insights on this
issue, we report in figure (3.4) the specific modulus of our carbon allotropes versus
area density. In particular, we plot the specific biaxial modulus (Ebi = C11 + C22)
versus the area density, fitting the data reported in [12] by the formula Ebi = 1184.3×
ρA− 56.88 (N/m)/(atoms/Å2) (black curve in figure (3.4)). We notice that the specific
biaxial modulus of the structures studied in this work can be found in close proximity
to the model fit. These findings led us to the conclusion that the idea of decreasing
the density, retaining the specific mechanical characteristics, can be pursued only to
some extent at least as far as the Young’s modulus is concerned.
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3.3.6 Stress–strain curves

To gain further insight on the dependence of the mechanical properties of our struc-
tures on the density, we carried out the first-principles simulations of the stress–strain
curves from which several observables can be obtained, such as the fracture strain,
the tensile strength and the toughness. DFT calculations of the true stress tensor in re-
sponse to strain, from which one can develop constitutive equations to fit the ab-initio
data, were performed on the unit cell of the materials. We remind that all structures
were relaxed below 3 kbar in the direction orthogonal to loading, and we plot the
stress obtained by using the relaxed surface (true stress as opposed to engineering
stress).

In figure (3.5) we start from analysing the stress–strain curves of graphene and
graphene daughter to benchmark our results against the extensive number of com-
putational and theoretical studies carried out in this respect, along the Cartesian di-
rections x, y, which represents the zig-zag and armchair directions of graphene (or,



72 Chapter 3. Graphene allotropes with lower densities

better to say, of the zig-zag and armchair ribbon that can be obtained by cleaving
along the x, y directions), respectively. The stress–strain characteristics under uniaxial
tensile loading along the zigzag (x, empty red squares) and armchair (y, empty green
circles) directions, reported in figure (3.5), show the known anisotropic response of
graphene that results in nonlinear constitutive equations [24, 25]. The mechanical
response of graphene to uniaxial tension is almost linear until about 10% strain for
both the armchair and zigzag directions, with the curve slope progressively decreas-
ing with increasing strain. Beyond that value the stress–strain curves deviate signif-
icantly from linearity, keeping the isotropic behaviour up to 15% strain, where the
mechanical characteristics along the two loading directions fork. The anisotropy de-
velops at rather moderate strain with the zig-zag stiffness dramatically decreasing
with respect to the armchair direction. In figure (3.5) we sketch also the mechanical
response to loading along the x (empty blue squares) and y (empty violet circles) di-
rections of the graphene daughter. We notice that the absolute mechanical properties
deplete significantly from graphene to its daughter in all respect, with a strong decre-
ment in toughness and strengths (see also table (3.3), where we report the absolute
mechanical characteristics of these structures along with those of the other novel 2D
architectures proposed in this work, that is tilene, flakene and liskene). In this re-
spect, we notice that the architecture of the graphene daughter is largely dominated
by the presence of triangular shapes, at variance with graphene (see figure (3.1b)).
This feature is shared also by tilene (see figure (3.1d)). This seems the major reason
of the similar mechanical response to uniaxial strain along the x-direction between
the graphene daughter (see violet empty circles in figure (3.5)) and tilene (see blue
empty squares in figure (3.6) for a comparison). Along the y direction the mechanical
response of graphene daughter is similar to graphene (see violet empty circles in fig-
ure (3.5)), showing a high fracture strain at lower stress than graphene.

Tilene parent and tilene (see figure (3.1d)) belong to the dihedral group of sym-
metries (D4) and, thus, in figure (3.6) we reproduced the stress–strain characteristics
along the x (empty squares, a strain along the y direction would provide the same
results) and the diagonal (45◦, empty triangles) directions. Tilene parent displays a
behavior under mechanical loading similar to graphene along the x-direction (empty
red square in figure (3.6)) with comparable strength and proportional limit stress (see
table (3.3)). However, in the diagonal direction (see empty green triangles in fig-
ure (3.6)) the presence of sp2-carbon squares reduces the absolute mechanical perfor-
mances of the tilene parent, but with a significantly higher fracture point (see table
(3.3)). Nevertheless, the stress–strain characteristics do not overlap along the two dif-
ferent directions. Tilene shows a mechanical response to uniaxial strain comparable
to graphene daughter in both the x (blue empty squares of figure (3.6)) and diagonal
directions (violet empty triangles of figure (3.6)), being its structure characterized by
a similar occurrence of sp2 triangles.

Furthermore, in figure (3.7) we report the stress–strain curves of flakene parent
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and daughter along the orthogonal directions x (empty squares) and y (empty cir-
cles) as their lattices display hexagonal symmetry. The mechanical characteristics of
flakene parent are similar to those of graphene, showing a split between x (empty
red squares) and y (empty green circles) curves at about 13% strain, and an almost
linear regime up to 10% strain. However, the values of the strength are 60% lower
than in the case of graphene (see table (3.3)). Flakene daughter shows a behaviour
comparable to graphene daughter, being characterized by a similar large presence of
sp2-carbon triangular lattices, with lower absolute values of the strength (see table
(3.3)).

We notice that the augmentation procedure to obtain the liskene daughter archi-
tecture from liskene concerns only the carbon atoms that belong to the square shapes.
In figure (3.8) we report the stress–strain curves of liskene and liskene daughter along
the orthogonal x-(empty squares) and 45◦- directions (empty circles). Even in this
case we find the general trend previously observed of a decrease of the fracture strain
and tensile strength from the parent to the daughter structure.

In figure (3.9) we present the stress–strain characteristics along the x and y direc-
tions of our novel planar architecture named liskene, compared to tilene and flakene.
As previously noticed, within the linear steep the uniaxial x (blue empty squares)
and y (violet empty triangles) loading curves are overlapping, and at about 6% strain
they fork and deviate progressively from linearity up to the fracture strain at about
14% and 18% strain, respectively. The values of liskene mechanical characteristics are
slightly higher than the other proposed architectures (see table (3.3)). We notice that
after the disruption of the first set of bonds at 14% and 17% strain along the x and
y directions respectively (see the structures reported in the left and right hand sides
of figure (3.9)), liskene stress–strain curves in both directions bounce into a second
linear regime with different slope.

Finally, in figure (3.10) we notice that tilene parent (green line) and liskene (blue
line) basically present comparable stress–strain curves up to 10% strain. We rational-
ize this by noting that for both structures the stress–strain characteristics are initially
dominated by the deformation of sp2-carbon atom arranged in square forms. How-
ever, as the strain increases, the liskene stress–strain curve departs from that one of
tilene parent. This is due to the fact that the former architecture undergoes the frac-
ture of the bonds within the squares, and the stronger bounds of carbon triangles
come into play.

As a final remark, we point out that the picture so far described concerning the
absolute values slightly changes when we look at the specific properties reported in
the last two columns of table (3.3). Indeed, the strength of our novel 2D structures is
comparable to graphene, or even higher than the latter in the case of the tilene par-
ent. Nevertheless, the trend of the specific toughness, which measures the ability of
a material to absorb energy before fracture, is generally favourable to graphene with
respect to the other structures.
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3.4 Conclusions

To conclude, in this chapter we present a method for discovering all-sp2 carbon al-
lotropes belonging to the class of regular and semi-regular tilings, with the aim of
decreasing the density of graphene without depleting its unique mechanical proper-
ties. Within this set of tessellations, our method proceeds by lowering the packing
factors by increasing the number of congruent discs under the constraint of local sta-
bility. Moreover, we have shown how this approach can be also extended to deal with
non-regular tilings by augmenting the Cairo pentagonal tessellation.

While all the daughter structures that we generate display lower stability and
smaller cohesive energy than graphene, their density is considerably lower than graphene
up to 45%. In particular, we argue that flakene represents the least dense possible
structure among the families of all-sp2 generated carbon allotropic forms starting
from planar parent architectures under the local stability constraint. Nevertheless,
we propose that novel geometries could be obtained by initiating the augmentation
procedure from non-planar architectures, e.g. from pentagraphene. The relevant
atomic arrangement derived from pentagraphene, which is named liskene, displays
a high cohesive energy at a density lower than 22% with respect to graphene. In
passing, we stress the point that all our sp2 carbon structures are found dynamically
stable, and do not present imaginary frequencies.

Nevertheless, by comparing the specific Young’s modulus of these structures with
graphene, we notice that there is a threshold below which is not possible to reduce
further the density without a considerable depletion of this elastic property. In partic-
ular by lowering the density below that one of liskene results in a reduction of about
40% of the specific Young’s modulus. This can be clearly seen in the case of flakene,
which displays the lowest density among the proposed planar structures as well as
the smallest absolute and specific Young’s modulus. Thus, graphene presents one
of the highest specific modulus ever found and the quest for finding a better replace-
ment in mechanical engineering applications is still open. Based on these findings, we
argue that the focus on the search for materials with high specific Young’s modulus
should proceed among the high-density carbon allotropes. However, the area density
of graphene is close to the limit of maximal planar packing. Furthermore, the specific
Young’s modulus has an asymptotic limit for high density packing. We further note
that the structures with atomic density in the range of 0.25− 0.3 atoms/Å2 have per-
formances similar to that of graphene and a research focused in this range of densities
could be profitable in finding high specific modulus materials. Thus, a hypothetical
improvement of this quantity could be devised only by changing the paradigm of in-
teraction, for example by enhancing electrostatic and/or van der Waals interactions.

Our analysis of the mechanical properties concerned also the stress–strain curves
of these low-density materials. We find that while the absolute values of the me-
chanical characteristics, such as fracture strain, strength, and toughness, are gener-
ally lower than those of graphene with the exception of the tilene parent architecture,
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nevertheless their specific counterparts can approach those of graphene and even
surpass its specific strength for the case of tilene parent. In general, we notice that the
mechanical properties deplete moving from parent to daughter architectures by low-
ering the packing factors. Thus, depending on the application, our structures could
be used to replace graphene when weight decrease is an issue of paramount impor-
tance.

Finally, we assessed also the electronic properties of the novel structures gener-
ated by our augmentation algorithm and compared them with their relevant parent
networks. We find that a change in the packing factor results in the appearance of a
narrow band close to the Fermi level, a feature shared by all the parent-to-daughter
augmented structures. This is particularly evident in the case of the liskene archi-
tecture, which is a semi-metal, despite the parent structure of pentagraphene is a
semiconductor with a 2.3 eV band gap according to our DFT simulations.

Generally, we notice that the approach presented in this work could be extended
also to design novel lightweight strong one-dimensional and three-dimensional car-
bon allotropes [26]. This is the case for example of carbon nanotubes, which are
graphitic sheets rolled along given directions in the plane in hollow cylinders with
walls made by hexagonal carbon rings. In this regard, our method can be straight-
forwardly applied also to 1D structures. Moreover, the very same method can be
used also to augment 0D structures, such as fullerenes. Extensions to treat the three-
dimensional case are on-going.
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Chapter 4

A theoretical model of SiC/SiOx
core/shell nanowire

In this chapter we propose a realistic model of SiC/SiOx core/shell nanowire (NW)
using a combined first-principles and experimental approach. In particular, we present
a multiscale method, including molecular dynamics [1], density functional tight-
binding [2] and density functional [3] simulations, for creating this novel NW struc-
ture, which was eventually synthesised by a low-cost carbothermal method. More-
over, we present ab–initio calculations, using both DFTB and DFT simulations, of the
electronic structure of hydrogenated SiC and SiC/SiOx core/shell NWs, studying the
modification induced by several different substitutional defects and impurities into
both the surface and the interfacial region between the SiC core and the SiOx shell.
The NW chemical–physical analysis is accomplished by recording and simulating X-
ray absorption near-edge spectra. In this case the number of atoms in the unit cell is
significantly bigger than those in the systems discussed in the previous chapters, due
to the lower level of periodicity only along the tube axis.
We notice that in this one and in the next chapter the DOS that will be reported are
given in arbitrary units, as we are interested only to the shapes and to the relative
contributions to the TDOS (by different orbitals in the case of PDOS and by different
atoms in the case of LDOS).

4.1 State of the art and aim of the work

The synthesis of 1D SiC structures has attracted great interest due to the possibility
of combining the material unique physical/chemical characteristics with low dimen-
sionality [4, 5, 6]. The carbide mechanical properties are enhanced in NWs, showing
super-plasticity at low temperature [7] and higher strength so that they can be used
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for toughening composites materials [8]. Furthermore, SiC nanowires show efficient
electromagnetic wave absorption, [9, 10] and their electronic properties have been ex-
ploited to realize field effect transistors [11] and efficient field emission sources [12].
One common feature of Si-based NWs, regardless of the growth technique, is the
presence of an amorphous silicon oxide (SiOx) external layer coating the nanostruc-
ture [6]. By tuning the oxide layer thickness with respect to the SiC NW diameter in a
core/shell architecture [13, 14, 15] one can modify both the electron emission [16, 17]
and the optical [14, 18, 19] properties of these systems. In addition, the SiOx layer
offers facile strategies to anchor organic molecules on the NWs’ surface by chemi-
cal methods, paving the way for applications of functionalized SiC/SiOx core/shell
NWs in several fields, such as protective coatings, [20] biosensing [21] or as hybrid
nanosystems for biomedical applications [22].
In this regard, it has been shown that SiC/SiOx core/shell NWs coated with light-
absorbing organic molecules (so-called photosensitizers) can be efficiently applied in
anti-cancer therapy using X-ray excitation [22], since the energy absorbed by the X-
ray excited inorganic NWs can be efficiently transferred to the photosensitizer that
generates highly reactive oxygen species, which in turn have cytotoxic effects [23].
To exploit the intriguing and remarkable features offered by SiC/SiOx core/shell ar-
chitectures, one must characterize accurately their chemical-physical properties, in
particular by investigating both the SiOx outer shell and the SiC/SiOx buried inter-
face, typically populated by defects, e.g. carbonaceous contaminants, oxycarbides
related to the carbide oxidation process [24], and oxide impurities that can dramati-
cally modify and deteriorate the electrical properties of electronic and optoelectronic
devices [25, 26]. In this respect, a variety of experimental techniques have been rou-
tinely used to determine structural and also chemical properties of the SiC/SiO2 in-
terface, such as transmission electron microscopy (TEM) [27], photoemission elec-
tron spectroscopy (PES) [28, 29, 30] and X-ray absorption near-edge spectroscopy
(XANES) [31, 32]. The latter, in particular, revealed to be a powerful tool for in-
vestigating nanostructured materials and inner interfaces [33, 34]. However, state-
of-the-art computational investigations are limited to the crystalline phases of SiC
nanowires [35, 36, 37, 38, 39], while the SiC/SiOx interface is modeled only in the
case of geometries as slabs or nanodots [40, 41]. Furthermore, these models are not
enough accurate and realistic for shedding light on the many electronic and struc-
tural information enclosed in XANES spectra, and to explain the absorption peak
lineshape of several transitions arising from these structures. In order to obtain a reli-
able picture for linking structural features to absorption peaks, a full atomistic model
of SiC/SiOx core/shell NWs, including adventitious carbon, defects and contami-
nants still must be developed.
In this work, we thus analyse first the structural arrangements and composition of
SiC/SiOx core/shell NWs using multiscale modeling; second, we investigate the elec-
tronic and optical properties of these nanostructures characterized by various defects
and impurities by comparing ab-initio simulations of absorption spectra (XANES)
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with recorded experimental data on in-house grown NWs to characterize these sys-
tems and eventually validate our computational model. This analysis led us to devise
a realistic model of SiC/SiOx core/shell NWs that includes the interface region be-
tween the two different materials, that is the amorphous SiOx shell and the SiC core
nanowire. The synergic use of computational and experimental tools delivers a com-
prehensive and more accurate chemical-physical description of SiC/SiOx core/shell
NWs, paving the way towards their use in power electronics, nanomedicine, and
many other applications requiring high endurance.

4.2 Experimental details

The SiC/SiOx core/shell NWs were grown via a bottom-up carbothermal method,
based on the reaction between carbon monoxide and the native oxide on (001) Si sub-
strates, using iron oxide as a catalyst [18, 13]. The core/shell structure of a single
NW with diameter of ∼ 60 nm is represented in Fig. (4.7a), reporting the TEM axial
and cross-sectional views. As a reference for the SiC/SiOx interface (SiC core NWs
without shell), the SiOx was fully removed from the as-grown NWs by etching the
substrates in hydrofluoric acid (HF) (1 : 3) aqueous solution for an extended period
of 60 min. NWs without SiC core (denoted as SiOx NWs) were grown by omitting
the carbon monoxide precursor and are used as a reference for SiO2.
Synchrotron measurements were performed at the BEAR beamline (BL8.1L) of the
ELETTRA synchrotron facility (Italy) and at the Spherical Grating Monochromator
(SGM) beamline of the Canadian Light Source, University of Sasketchewan (Canada).
The BEAR beamline provides a photon energy range of 3− 1600 eV with a resolu-
tion of E /∆ E ∼ 3000 and an incident photon flux (i.f.) of ∼ 1 × 109 photons/s
for C K-edge studies, whereas the SGM beamline provides a photon energy range of
250− 2000 eV with the resolution of E/∆E ∼ 5000 for Si K-edge (i.f.∼ 1× 1011 pho-
tons/s) and O K-edge (i.f. ∼ 1 × 1012 photons/s) measurements. XANES spectra
were collected from all three types of NWs, i.e., as-grown SiC/SiOx core/shell, SiOx
and HF-etched SiC NW ensembles that were maintained on the planar substrates.
The spectra were collected in total electron yield (TEY) mode (i.e., drain current
mode) in the energy range 270 − 320 eV, 510 − 570 eV and 1830 − 1880 eV corre-
sponding to the C, O and Si K-edge, respectively. XANES data were normalized to
the corresponding spectrum acquired on a photodiode at the end of the beamline.
The energy scale of each single spectrum was re–calibrated taking into account the
energy fluctuations of characteristic absorption features measured on the refocusing
mirror and Au mesh, respectively.
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4.3 Computational details

4.3.1 Modeling of SiC and SiC/SiOx core/shell NWs

The steps performed to obtain a fully realistic model of SiC/SiOx core/shell NWs,
similar to the typical structure shown in Fig. (4.7a), are the following: generation of
the pristine SiC NW core, passivation of the SiC NW surface with different chemical
elements, and creation of the SiOx outer shell by embedding the SiC core.
These three steps are described one by one in the following sections.

Structure of the SiC core

The SiC nanowires (NWs) were obtained by cleaving a cylinder out of a 3C-SiC su-
percell along the [111] direction, which represents the growth axis in our synthesis
process. In particular, using a cubic cell with lattice parameter a = 4.348 Å for the
3C-SiC crystal structure, one obtains a simulation supercell for the NW with an axial
periodicity of a

√
3 = 7.5309 Å. The z direction identifies the cylindrical symmetry

axis of the NW (the cylindrical symmetry is removed by molecular adsorption). The
size of the calculation supercell was chosen equal to 50 Å in the transverse direction,
that is large enough to avoid spurious interactions between periodic images, even in
the case of the NWs with the largest diameter (26 Å). Pristine SiC NWs are forcefully
characterized by the presence of contaminants at the surface. The latter dramatically
modify the electronic and optical properties of these nanosystems [42, 43]. In the
following section we thus thoroughly assess these effects.

Surface passivation of the SiC core

Surface-related states have a large impact in systems at nanoscale and appear usually
as intra-gap states [37]. In particular, the terminations of the dangling bonds present
on the SiC NW surface can affect dramatically the electronic structure and, thus, must
be carefully investigated.
To perform the analysis of possible surface contaminants, we have saturated the dan-
gling bonds of C and Si superficial atomic centers by using different atomic species
and chemical compounds, notably −H atoms and hydroxyl groups (−OH). Indeed,
oxidized OH-SiC NWs can help our understanding of the SiC core/SiOx shell in-
terface in the HF-etched SiC NW samples, which consists of a thin layer of silicon
oxycarbides [18].

The optimized configurations of these saturated NWs were obtained by using the
Self-Consistent Charge Density Functional Tight Binding (SCC-DFTB) approach, im-
plemented in the DFTB+ code suite [2]. To perform the DFTB structural and electronic
relaxations we used the Slater-Koster parameter set matsci-0-3 [44] and we included
the d-orbitals in the local basis set of the silicon atoms, which are essential to achieve
accurate band gap and band structure. Electronic structure simulations were carried
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Band Gap (eV)
Radius (nm) −H sat. −OH sat.

0.6 3.30 2.55
0.9 2.79 2.10
1.3 2.52 2.05

TABLE 4.1: Band gap of the SiC core NW terminated with −H atoms
or −OH radicals as computed by DFTB.
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FIGURE 4.1: Total DOS of the three different diameter (d) SiC core
NWs saturated by−H atoms: a) d=1.2 nm ; b) d=1.8 nm; c) d=2.6 nm;

d) bulk system

out in the unit cell using a 1×1×4 k-point grid sampling. Forces among all atoms
within the supercell are relaxed below 0.05 eV/Å.
In agreement with previous ab-initio studies [37], we find that the −OH termination
is stable at the surface of the NW. This configuration is more stable than that one with
unsaturated oxygen atoms; moreover,−OH impurities are preferentially anchored to
the Si atom at the surface, presenting formation energies of 1.76 and 3.82 eV for the
C–OH and Si–OH configuration, respectively [37].
In the case of −H passivation the band gap decreases by increasing the size of the
radius, and tends asymptotically to the bulk value, which from our calculations is
2.3 eV (experimentally the band-gap of crystalline 3C-SiC is 2.36 eV [45]). Results of
Density of States, by which we deduce the band gap, for −H passivation with Fermi
level set to 0 eV are reported to Fig. (4.1).

We notice that the band gap for a 1.2 nm diameter NW is 3.3 eV (see Tab. (4.1)).
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FIGURE 4.2: Comparison of the total DOS between d=1.2 nm (a,d),
d=1.8 nm (b,e), and d=2.6 nm (c,f) SiC core NWs, saturated by H

atoms (a,b,c) and by −OH groups (d,e,f).

This value is rather different from the one obtained by using the full density func-
tional (DFT) approach, which is 2.7 eV, in agreement with previous DFT simulations
[37, 38]. Nevertheless, this difference is consistent with the value of the 3C-SiC Γ point
energy gap (which is larger than the fundamental band gap) found to be 1.41 eV from
full DFT calculations. DFTB band-gap (2.3 eV), possibly because of the Slater-Koster
parametrization, is very much close to the measured band gap (2.36 eV) with respect
to that obtained by DFT. These findings make us confident that DFTB can be safely
used to describe the chemical-physics of the SiC NWs. By passivating the superficial
dangling bonds of the SiC NW with −OH we find a similar behaviour of the band
gap, monotonically and asymptotically decreasing with the increasing diameter (see
Tab. (4.1) and Fig. (4.2)).

The major finding of our electronic band structure simulations, in Fig. (4.3) is that
both H–SiC and OH–SiC NWs turn into a direct band-gap semiconductor, with the
minimum distance between the valence band maximum (VBM) and the conduction
band minimum (CBM) at the Γ point. This change is basically due to electron quan-
tum confinement obtained by reducing the system dimensionality from 3D to 1D.

Nevertheless, the band-gap calculated for the two terminations is rather different
at the same radius (see Tab. (4.1)), that is consistently lower in the case of −OH ter-
mination.
This difference can be rationalized in terms of both chemical termination and quan-
tum confinement. Indeed, these two effects compete with each other and affect the
electronic behaviour of the nanosystem. Quantum confinement tends to increase the
band gap and largely influences systems mostly at the nanoscale, as asymptotically
the band gap must match the bulk value of 3C–SiC almost independently of the sur-
face termination. At small radius, we find that the Mulliken charge distribution of
the atoms close to the surface is rather homogeneous in the case of −H termination,
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FIGURE 4.3: Band structure of SiC core NWs with diameter equal to
1.2 nm for −H (left) and −OH (right) terminations.

while using −OH passivation the superficial atoms are partially deprived of their
charge due to the high electronegativity of oxygen atoms. Thus, surface states are
more likely to appear and to affect more significantly the −OH terminated SiC NW,
reducing the band gap with respect to the −H passivated NW. Furthermore, we find
that the band gap of the oxidized OH–SiC NWs is free from defective states and that
the OH–SiC NWs are non-magnetic systems.
To reinforce our conclusions on the effects induced by different passivations of the
NW surface, drawn on the basis of the Mulliken charge population analysis, we no-
tice that also the calculation of the HOMO and LUMO probability densities (square
modulus of the wavefunctions) of the H–SiC and OH–SiC NWs may shed some light
on the chemical-physical modifications leading to the measured XANES spectral line
shape. Thus in Figs. (4.4) and (4.5) we plot the VBM and CBM real-space probability
densities for the smallest radius NW. In particular, we notice that in the case of −H
terminated NWs both the VBM (left hand side of Fig. (4.4)) and the CBM (left hand
side of Fig. (4.5)) are localized in the core of the NW, while in the case of −OH termi-
nation the VBM (left hand side of Fig. (4.4)) is localized on the oxygen atoms and the
CBM (right hand side of Fig. (4.5)) remains mostly core-localized. This different spa-
tial distribution of the CBM and VBM can be attributed to the strong electronegativity
of the oxygen atomic species.

In the following simulations we decided to use the 0.6 nm radius SiC NW, due
to the high computational cost for treating larger wires. Furthermore, due to the fact
that XANES is a probe of the local environment, we expect that this model system is
sufficient to reproduce accurately XANES experimental data.

SiC/SiOx core/shell nanowire

The amorphous SiOx outer shell was built above the 0.6 nm radius SiC core by using
molecular dynamics (MD) with reactive potentials (ReaxFF [46]). In particular, the
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FIGURE 4.4: Left) Square modulus of the wave function of the VBM.
Right) Square modulus of the CBM wave function. The plots are both

referred to the 1.2 nm diameter −H-terminated SiC NW.

FIGURE 4.5: Left) Square modulus of the wave function of the VBM.
Right) Square modulus of the CBM wave function. The plots are both

referred to the 1.2 nm diameter −OH terminated SiC NW.
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FIGURE 4.6: Interfacial bond density reduction procedure. Left
panel: our strategy to reduce progressively the number of SiC core
surface bonds to that of silica shell can be divided into three steps.
First, we saturate all the surface dangling bonds (for example those
of atoms indicated by a and c) by oxygen atoms (labeled 1,2,3). Sec-
ond, a silicon atom (labeled 4) was placed in the proximity of these
oxygen atoms in such a way to be three-coordinated. Finally, a fur-
ther oxygen atom (labeled 5) was bound to silicon. Right panel: a

transverse view of the NW core showing the bonds at interface.

parametrization of the forces has been chosen [47] to reproduce SiOx and SiC struc-
tures at different stoichiometry. To perform these simulations we used the LAMMPS
code [1].
The interface between SiC and SiOx was created by saturating the C and Si dangling
bonds protruding from the surface of the SiC NW core with oxygen atoms, and by
adding Si–O groups in order to have Si tetrahedrally coordinated with oxygen atoms,
as shown in Fig. (4.6).

In this way the number of bonds at the interface is decreased by a factor 2.3 to
better match the density of stoichiometric SiO2. As a further step, the silica outer
shell was created on the top of the interfacial region by using molecular dynamics.
This procedure was accomplished by defining a 3 nm side periodic tetragonal cell
surrounding the SiC core and the interface. Moreover, silicon and oxygen atoms
were added to the simulation cell in 1:2 stoichiometric ratio to reach a density of
2.20 g/cm3. SiC and interfacial atomic regions were clamped down while annealing
the outer SiOx shell at 4000 K for 100 ps. Subsequently the temperature was decreased
to 10.0 K in 100 ps (using 1 fs timesteps). In the last step of our procedure both the
SiC core and the interfacial regions were released and the NW structure was further
optimized by DFTB to reach forces among atoms below 0.05 eV/Å.
Finally, the SiC/SiOx NW was obtained by deleting all the atoms that are distant from
the wire symmetry axis more then the desired radius. Dangling bonds at the shell
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FIGURE 4.7: (a) TEM images adapted from Refs. [48, 18] of a
SiC/SiOx core/shell NW in axial view (left panel) and cross-sectional
view (right panel). b) Computational model of a single SiC/SiOx
core/shell NW; left panel shows the NW unit cell side view (upper
part) and top view (lower panel); right panel shows a side view of the
NW supercell obtained by periodically repeating the unit cell along

the rotational symmetry axis direction.

surface and some other possibly left within the NW, were passivated by hydrogen
atoms.

The final structure of the model SiC/SiOx core/shell NW, reported in Fig. (4.7b),
has been further characterized with respect to bond lengths and relative angle distri-
butions.

Characterization of bond lengths and angles of the SiC/SiOx core/shell NW model

Geometry characterization of the SiC/SiOx core/shell NW model was achieved by
computing the following quantities:

1. the bond length of Si-O bonds (SiC core keeps its crystalline structure)

2. the bond angles forming O-Si-O atoms

In the left hand side of Fig. (4.8) we plot the distribution of a given radial distance
between Si and O atoms; on the right hand side the O-Si-O angles in the same sample.
The peaks compare well with those of silica [49, 50, 51].

4.3.2 Electronic structure simulations of the SiC/SiOx core/shell nanowire

The SiC/SiOx core/shell NW model has been characterized by computing the elec-
tronic band structure and the DOS using SCC-DFTB. In Fig. (4.9a) we report both the
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FIGURE 4.8: Characterization of SiOx sample: on the left hand side
we plot the distribution of a given radial distance between Si and O

atoms; on the right hand side the O-Si-O angles

total DOS and the local DOS (LDOS) obtained by projecting onto the atoms belong-
ing to different radial shells, which are represented in dark brown in Fig. (4.9b).
We notice that the LDOSs reproduce unambiguously the different NW building blocks.
Indeed, for R ≤ 0.4 nm, which means within the NW core, both the LDOS (red and
green curves in Fig. (4.9a)) and the band gap correspond to those of a SiC NW; for
R≥ 0.84 nm the LDOS and the band gap are related to those of amorphous SiOx (blue
curve in (4.9a)); finally for R in the range 0.4− 0.84 nm, corresponding to the inter-
face region, we find a shape of the LDOS (brown curve in Fig. (4.9a)) intermediate
between the SiC core and the SiOx shell (i.e. VBM reminds that of SiOx, whereas the
CBM resembles that of SiC).

Furthermore we studied also the Projected Density of States (PDOS) that will be
us useful for interpretation of XANES spectra later. The latter is reported in Fig. (4.10)
for the sample with d = 1.2 nm. We notice that p orbitals of oxygen atoms contribute
to the top of the valence band only in the −OH case, while the lower energy conduc-
tion states for both −H and −OH terminations are mainly composed by p− and d−
hybridized silicon orbitals. This reduces the band gap in −OH terminated NWs.

4.3.3 Simulations of XANES spectra

XANES experimental spectra were reproduced from ab-initio simulations using den-
sity functional theory. To perform these calculations we used the XSpectra computer
code [52], which relies on the QUANTUM ESPRESSO suite [3]. The input of the ap-
proach implemented in XSpectra is basically the ground state electron density. K-
edge absorption spectra are computed upon the knowledge of the electron density
via the continued fraction method and the Lanczos chain algorithm, tailored to be
used with pseudopotentials [52]. The convenience of using this approach is mainly
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(a)

R < 0.3 0.3 < R < 0.4

0.84 < R < 1.450.4 < R < 0.84

(b)

FIGURE 4.9: (a) DOS of our computational model of SiC/SiOx
core/shell NW; the upper panel (a) shows both the total Density of
States (black line) and the local DOS (LDOS) obtained by projecting
the DOS onto the atoms belonging to different radial shells; the three
middle panels report zooms of the top (bottom) region of the valence
band (conduction band); (b) NW radial shells (represented in dark

brown) on which the DOS projections are performed.

due to its low computational cost, as it is based on one only self-consistent DFT run
and does not require the explicit calculation of the empty states. The drawback of
this method is that one loses useful pieces of information (e.g. symmetry) on the final
transition states.
The absorption of X-ray photons results typically in a core-hole, while the electron is
promoted to an empty state. To enable the pseudopotential approach, in which core
electrons are typically frozen, to describe this mechanism, one needs to perform DFT
simulations with pseudopotentials carrying an inner hole, typically in the 1s state for
K-edge absorption spectroscopy. Ultra-soft core-hole pseudopotentials, used to per-
form XANES simulations, for treating the ionic core- valence electron interactions in
C, O, and Si atoms can be found in the QUANTUM ESPRESSO database [53]. The
all-electron wavefunction is then recovered via the projector augmented wave (PAW)
formalism [54]. In particular, for the C pseudopotential we used two projectors on
the s and p atomic states, while for Si and O we used two projectors for the s and
p states and one for the d state. DFT simulations have been carried out using a ki-
netic energy cut-off equal to 544 eV for wavefunctions and four times as much for the
electron density. A 1× 1× 2 k-point sampling of the Brillouin zone was sufficient to
obtain converged energy and DOS below chemical accuracy.

XANES spectra are calculated in the dipole approximation, thus due to symme-
try K-edge spectroscopy probes only the transitions from 1s to np or s/p-hybridized
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FIGURE 4.10: Total and Projected DOS of SiC core NWs with diame-
ter equal to 1.2 nm for both −H (left) and −OH (right) terminations

orbitals. Spectra simulations were performed using a 1× 1× 4 k-point grid for sam-
pling the Brillouin zone. Three different polarization vectors of the incident light
were considered, that is one along the NW symmetry axis (z-axis) and two perpen-
dicular to it (x and y directions). A dependence of the spectral signals on polarization
directions is expected in presence of radial anisotropy, e.g. for defected NWs. In all
XANES simulations spectral lineshapes have been broadened by a convolution with
a Lorentzian function having the half width at half maximum constant at all energies
and equal to 0.8 eV.

Numerical tests were carried out in the case of SiC crystals and of SiC NW with
−OH terminations. Good agreement of our calculations with experimental measure-
ments and similar computer simulations [35, 37] on these structures was found using
the above-mentioned computational parameters and reported in Fig. (4.11).

These encouraging results on SiC NW led us to use the model of SiC/SiOx core/shell
NW previously introduced to interpret our experimental absorption data.

4.4 Results and Discussion

4.4.1 Silicon K-edge XANES spectra

Before investigating the Si, O, and C K-edge absorption lineshape of the SiC/SiOx
core/shell NW, we start our analysis by simulating the electronic and optical proper-
ties of the OH-terminated SiC core. This configuration represents a simplified model
of the SiC core NW, which can be experimentally obtained by completely etching
away the silica outer shell (HF-etched SiC NWs).

In Fig. (4.12) we report the theoretical Si K-edge spectrum (black dashed line) in
comparison to our experimental data (red line). Furthermore, in this figure we re-
port the spectral contribution to the total lineshape of the light polarized along the
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FIGURE 4.11: Left: comparison between experimental (from Ref.
[35], red curve) and our theoretical C K-edge adsorption spectra of
bulk SiC crystal (blue curve). Right: comparison between the the-
oretical (red curve) C K-edge adsorption spectra of bulk SiC crystal

(from Ref. [35]) and our simulations (blue curve).

three orthogonal cartesian directions: the blue, khaki, and green curves show the
spectra originating from x-, y-, and z-polarized electric fields, respectively. The to-
tal spectrum is obtained by averaging along the three polarization directions. The
experimental lineshape of the Si K-edge exhibits five features A–E that are typically
observed for 3C-SiC thin films [55, 56, 57] and HF-etched 3C-SiC NWs [35, 58]. Differ-
ently to previous reports, we observe an additional feature B∗ at 1847 eV that becomes
only visible when the freshly etched sample was immediately inserted into the UHV
chamber. Longer exposure to air leads to the disappearance of this feature, suggesting
that it originates from the SiC/SiOx interface (i.e., before any re-oxidation appears).
We notice that the simulated spectra are in good agreement with experiments, and
they reproduce all the peaks denoted in Fig. (4.12). It is noteworthy that the shoulder
A (at 1841.5 eV in the experimental spectrum) strongly depends on the polarization
direction: it is well separated from the main peak B for x- and y-polarized electric
fields, whereas it decreases in intensity and appears as shoulder for z polarization di-
rection. Moreover, peak B∗ is more pronounced in the spectrum with the z-polarized
electric field. Overall, the theoretical spectral lineshape in the z polarization direction
agrees well with the experimental one.
The peaks denoted as B, D, and E in Fig. (4.12) correspond to transitions from the
Si1s orbital to hybridized states from both Si and C. In particular, the main resonance
(B peak at 1845 eV), and the peaks D and E at 1849 and 1867 eV, respectively, can
be attributed to the transition of Si1s electrons to orbitals that have lost their atomic
character and arise by mixing hybridized 2s and 2p orbitals of C and hybridized 3s,
3p, and 3d orbitals of Si [58]. This combination is due to the overlap between 3s, 3p,
and 3d orbitals from Si and 2s and 2p orbitals from C, which are degenerate as one
can clearly see in Fig. (4.10).
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FIGURE 4.12: Experimental Si K-edge XANES spectrum of HF-etched
SiC core nanowires (red), in comparison with theoretical XANES
spectra of (dashed line) an OH-terminated SiC core NW. Blue, khaki,
and green curves show the spectra originating from x-, y-, and z-

polarized electric fields, respectively.
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FIGURE 4.13: Experimental Si K-edge XANES spectrum of as-grown
SiC/SiOx core/shell NWs (red), in comparison with theoretical
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carbon defects). Sishell
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h represent the absorption spectra ob-

tained by creating a core-hole in a silicon atom within the SiOx shell
and the SiC core, respectively. Blue, khaki, and green curves show
the spectra originating from x-, y-, and z-polarized electric fields, re-

spectively.
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Theoretical interpretation of the Si K-edge absorption spectra has been carried out
by comparison with our experimental measurements also in the SiC/SiOx core/shell
NW. Both simulated and experimental Si K-edge spectra, along with the contribu-
tions resolved in the polarization directions of the incident electric field, are reported
in Fig. (4.13). Si atoms in different chemical environments are present in the SiC core
as well as in the SiOx outer shell. Thus, theoretical spectra were obtained by creating
core-holes in two different locations of the NW. In Fig. (4.13) the K-edge spectrum
obtained via photon absorption by Si atoms within the outer shell of the NW is la-
beled as Sishell

h (black dashed line in the upper part of the figure), while the spectrum
labeled as Sicore

h (black dashed line in the lower part of the figure) has been gener-
ated by creating the core-hole in the Si atoms within the NW SiC core. The Sishell

h
spectrum reports the features typical of silica, that is a single main peak C’ [52]. At
variance, the Sicore

h absorption spectrum is similar to that one obtained in the SiC+OH
NW (see Fig. (4.12)). The pre-edge peak labeled as A’ at 1842 eV in the experimental
spectrum in Fig. (4.13) can be unambiguously attributed to a contribution stemming
from the SiC core, since it cannot be found in the SiOx NWs without SiC core. In
general, the spectral lineshape can be rationalized as the convolution of the signals
obtained by creating the core-hole in different locations in the SiC core and in the
SiOx outer shell. Nevertheless, a much stronger contribution of the Sishell

h is visible.
Taking into account this feature, which can be understood by considering that the
TEY experimental technique probes mainly the sample’s surface, good agreement is
obtained between experimental (red line) and theoretical spectral lineshape. Similar
to Fig. (4.12), the shoulder B’ at 1845.5 eV is strongly dependent on the polariza-
tion direction (i.e., more pronounced for x- and z-polarized electric fields), and the
spectral lineshape of the experimental data is mainly dominated by the theoretical
one of the Sishell

h in z polarization direction. We notice that the main peak C’ in Fig.
(4.13) (at 1847 eV) is largely due to electron transitions from Si1s to a combination of
Si3p,3d orbitals, due to the selection rules (see Fig. (4.10) for a symmetry-resolved
representation of the DOS)

4.4.2 Oxygen K-edge XANES spectra

The comparison between the theoretical O K-edge XANES spectra (black dashed
lines) obtained in our SiC core+OH model NW and the experimental O K-edge XANES
spectrum of HF-etched SiC core NWs (red line) is reported in Fig. (4.14). In all sim-
ulated spectra blue, khaki, and green curves show the features originating from x-,
y-, and z-polarized electric fields, respectively. The two theoretical spectra (black
dashed lines) in the upper and middle parts of Fig. (4.14), labeled as −Si-OhH and
−C-OhH, correspond to spectral features originating from different locations of the
excited O atom on the NW surface: on the one hand, O binds to Si (−Si-OhH), and
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FIGURE 4.14: Experimental O K-edge XANES spectrum of HF-etched
SiC core nanowires (red line), in comparison with theoretical spectra
of an OH-terminated SiC core NW (black dashed lines). The three
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silicon atom (upper theoretical spectrum), to a carbon atom (middle
theoretical spectrum), and to unsaturated oxygen (lower theoretical

spectrum).
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on the other hand to C (−C-OhH). We notice that good agreement between experi-
mental and theoretical data is found, with the main features fully described by ab-
initio simulations using our NW model. In particular, the main peak 3 at 536 eV is
present in both simulated spectra −Si-OhH (x-polarization) and −C-OhH (x- and y-
polarization), whereas the shoulder 2 at 534 eV and the features 4, 5 and 6 (at 540, 544
and 557 eV) are only reproduced by the −Si-OhH simulated spectra (contributions
from y- and z-polarization).
Finally, in the lower part of Fig. (4.14) we report the spectrum, labeled as −C=Oh,
simulating the presence of unsaturated oxocarbons (carbonyl groups) on the SiC NW
surface. The lineshape, originating from O atoms that form double covalent bonds
with the adjacent carbon atom, explains the pre-edge peak at 530 eV denoted by 1
in the experimental spectrum (red line). The peaks in all spectra can be described
in terms of electron excitations from the O1s orbital to a mixing between hybridized
2s,2p orbitals of C or 3s,3p orbitals of Si and the 2s,2p orbitals of O.

In Fig. (4.15) we report the comparison between experimental (red line) and sim-
ulated (black dashed line) O K-edge XANES spectra of the SiC/SiOx core/shell NW.
In addition, the lower part of Fig. (4.15) shows the simulated spectra of −C=Oh car-
bonyl groups on the NWs’ silica surface. The main features 2′ − 6′ of the experimen-
tal spectrum are all clearly visible in the theoretical spectrum without carbon defects,
when the different polarization contributions are summed up (blue, khaki, and green
curves show the spectra originating from x-, y-, and z-polarized electric fields, re-
spectively). This finding further supports our computational model of the SiC/SiOx
core/shell NW. In particular, the main broad peak in the energy range 535-540 eV
is split into two separate contributions, namely into peak 2’ at 535 eV originating
from the y− (khaki line) and z− (green line) polarization directions of the incident
light, whereas peak 3′ at 537 eV originates from the x− (blue line) polarization di-
rection. Moreover, the shoulder 4′ visible at 541 eV is recovered by convolution of
features present in all the polarization directions x, y and z. The broad features 5′ and
6′ found in the experimental spectrum at 552.5 and 558 eV, respectively, are present
in all the three polarization directions of the simulated spectra, but its lineshape can
be mainly understood by looking at the lineshape of the y-polarization contribution
(khaki curve).

A similar experimental lineshape of the O K-edge XANES spectrum, i.e., a rela-
tively broad resonance between 535− 550 eV, but no pre-edge peak 1’ was previously
observed in a SiO2 thin film (4 nm) thermally oxidized on SiC [32] as well as in ther-
mally oxidized Si NWs [59]. At variance, our SiOx NWs (grown without SiC core)
exhibit the same pre-edge peak at 530 eV than the SiC/SiOx core/shell NWs. It is
noteworthy that a different view about the origin of the pre-edge peak 1/1′ in O K-
edge XANES spectra of SiOx-based materials exists in the literature. For instance, in
SiOx films grown on SiC it has been assumed that it originates from defect states such
as O vacancies at the SiOx/SiC interface [30]. Furthermore, a similar pre-edge peak
has been observed in quartz [60], which has been assigned to the transition from the
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FIGURE 4.15: Experimental O K-edge XANES spectrum of as-grown
SiC/SiOx core/shell NWs (red), in comparison with theoretical spec-
tra (black dashed line) of a SiC/SiOx core/shell NW (without car-
bon defects). In the lower panel we report again the spectral fea-
tures originating from unsaturated oxygen. Blue, khaki, and green
curves show the spectra originating from x-, y-, and z-polarized elec-

tric fields, respectively.
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FIGURE 4.16: Experimental O K-edge XANES spectra of bare SiOx
NWs grown without SiC core (red) collected with high incident pho-
ton flux (i.f.), as-grown SiC/SiOx core/shell NWs (blue) collected
with low i.f., and SiC/SiOx core/shell NWs functionalized with a
porphyrin molecule bearing carboxylic acid functional groups (red)

collected with low i.f..

O1s electron to the π∗ orbital states of O2 molecules that are induced by radiation
damage from the X-ray beam with high incident flux [61]. At odds with this theory,
we could observe the pre-edge peak even during acquisition at very low flux, thus,
we can exclude any effects caused by radiation damage. As in the case of O K-edge
spectrum of HF-etched SiC core NW (see Fig. (4.14)) the pre-edge peak 1’ located at
530 eV in Fig. (4.15) can be safely attributed to double bonded oxygen, e.g. belonging
to carbonyl groups (see simulated spectra of −C=Oh in the lower part of Fig. (4.15)).
To further confirm this theory, we measured the O K-edge XANES spectrum of NWs
after surface functionalization with an organic molecule containing carboxyl groups
(see Fig. (4.16)). Indeed, we found an increase of the pre-edge peak, supporting the
idea that it originates from carbon-containing (functional) groups such as carbonyl
and/or carboxyl groups [62].
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4.4.3 Carbon K-edge XANES spectra

The comparison between the C K-edge XANES simulated spectrum of OH-terminated
SiC core NW (black dashed line) and the experimental spectrum of HF-etched SiC
core NWs (red line) is reported in Fig. (4.17). The color code for the three orthogo-
nal polarization directions of the incident X-ray photon beam is the same as for the
previously discussed Si and O K-edge XANES spectra. To consider contributions
stemming from the SiC/SiOx interface, we simulated a typical carbon-related defect
(lower part of Fig. (4.17)). In principle, this structure is created when a Si atom in
SiOx is substituted by a C atom, and resembles a C atom in sp3 configuration corre-
sponding to SiOxCy species (i.e., silicon oxycarbides indicated as grey-shaded area in
the structure in Fig. (4.17)), which are typically resistant to HF etching. We notice that
the clusters represented in Figs. (4.17) and (4.18) were cut out of the full simulation
cell with the only aim of zooming the several chemically different local environments
in which carbon atoms can be found in their binding to others atoms. These real-
istic binding conditions of the carbon atoms within the different clusters, which are
embedded in the NW, are then used to disentangle the spectral contributions of the
single defects to the total lineshape. Nevertheless, XANES spectra are calculated on
the full simulation cell.

Our experimental lineshape of the C K-edge XANES spectrum is in good agree-
ment with previous reports for 3C-SiC thin films [63, 64, 65] and HF-etched 3C-SiC
NWs [35, 58]. Apart from the first feature I located at 284.5 eV, the theoretical spec-
trum (without defects) reproduces well the experimental shape. In our model of SiC
core NW with −OH termination, C atoms that are not on the surface form sp3 hy-
bridized orbitals bonding with Si atoms. We assign the spectral features in the near
edge region (energy range between 285 and 300 eV) to the dipole transitions from the
C1s orbitals to σ∗-character bands formed by the sp3-hybridized orbitals of C, tetra-
hedrally coordinated with four Si atoms [35]. At variance, the pre-edge peak I can
be attributed to the transition from the (sp3) C1s atoms at the SiOx/SiC interface (see
lower panel in Fig. (4.17)), where a layer of silicon oxycarbides is typically formed
due to the growth process and conditions and remains as residual thin (0.5− 2 nm)
layer around the SiC core [18].

It is noteworthy, that such a pre-edge peak I has been previously assigned in (HF-
etched) 3C-SiC NWs to graphite-like π∗ states of sp2 bonded carbon atoms [58]. Al-
though we cannot exclude any contributions from C atoms in sp2 configuration, our
recent findings strongly suggest that a strong contributions originates from the silicon
oxycarbides (in sp3 configuration) present at the SiOx/SiC interface.

Finally, in Fig. (4.18) we report the C K-edge XANES theoretical spectra of the
SiC/SiOx core/shell NW (black dashed lines) compared to our experimental data
(red line). Here we report four different simulated spectra corresponding to different
chemical environments, and thus different bonding, in which C atoms can be reason-
ably found [66]. Special emphasis was drawn to simulate C atoms not only in sp3
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FIGURE 4.17: Experimental C K-edge XANES spectrum of HF-etched
SiC core NWs (in red), in comparison with theoretical spectra (black
dashed line) of an OH-terminated SiC core NW. The simulated spec-
tra in the lower panel refer to residual silicon oxycarbides (grey-
shaded area in the structure) that remain as residuals at the SiC sur-
face after etching the SiOx shell. Blue, khaki, and green curves show
the spectra originating from x-, y-, and z-polarized electric fields, re-

spectively.
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FIGURE 4.18: Experimental C K-edge XANES spectrum of as-grown
SiC/SiOx core/shell NWs (red), compared to theoretical XANES
spectra (black dashed line) of SiC/SiOx core/shell NW. The four
spectra reported in this figure are obtained by including several dif-
ferent carbon defects in the shell, which are represented in the right
hand side. Spectra originating from x-, y-, and z-polarized electric

fields are reported in blue, khaki, and green respectively.
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FIGURE 4.19: Experimental C K-edge XANES spectrum of as-grown
SiC/SiOx core/shell NWs (red), in comparison with theoretical
XANES spectra from our SiC/SiOx core/shell NW model including

a carboxyl defect within the shell.

but also in sp2 configuration, since additional peaks in the C K-edge XANES spec-
trum of SiC/SiOx core/shell NWs have been associated to sp2 C defects present in or
on the silica shell, [35] similar to the SiC case. The different coordination bonds are
represented close to the corresponding XANES spectrum in Fig. (4.18).

The upper theoretical spectrum in Fig. (4.18) (a) is obtained when an oxygen atom
in the SiOx shell is substituted by a carbon atom, i.e., a sp3 configuration very sim-
ilar to that reported in Fig. (4.17) (upper panel) for the −OH terminated SiC NW.
The presence of additional different C defects corresponding to the three lower spec-
tra (b)-(d) in Fig. (4.18) could be explained by the carbothermal process used in the
present study to synthesize the SiC/SiOx core/shell NWs, which inevitably creates
C inclusions/contaminants in the SiOx shell. The additional defects studied in this
work can be divided in two classes, namely substitutional inclusions and surface
contaminants. Within the first class belongs the substitution of an oxygen atom in the
shell with a −CH group (sp2 configuration, see Fig. (4.18b)), the substitution of a Si
atom in the shell with two C atoms forming a double bond (sp2 configuration, see Fig.
(4.18c)), and the substitution of a silicon atom in the shell with a four coordinated car-
bon atom (sp3 configuration, see Fig. (4.18d)), similar to the case in Fig. (4.17, lower
panel). The second class of defects is characterized by the surface contamination of
carboxyl group and the relevant spectrum is reported in the Fig. (4.19).

As can be seen, the theoretical spectrum in Fig. (4.18a) mainly reproduces the
features II’-V’ of the experimental spectrum, whereas the shoulder 0’ at 283 eV and
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the main peak I’ at 285 eV, respectively, are not present.
However, the theoretical spectrum of the sp2 configuration (b) in Fig. (4.18) indeed

reproduces the shoulder 0′, whereas the sp2 configuration (c) in Fig. (4.18) contributes
to the main peak I’. The spectrum of the sp3 configuration in Fig. (4.18d) is once again
composed by a single main peak which gives a strong contribution to peak I’.

Our detailed theoretical analysis for different configurations of the SiC/SiOx core/shell
NWs, while not claiming to be exhaustive, demonstrates that the XANES experimen-
tal signals are due to a variety of defects and that spectral lineshapes crucially depend
on the local bonding environment of the excited atom, which must be carefully as-
sessed.

4.5 Conclusions

SiC/SiOx core/shell NWs are very promising systems in a variety of applications,
ranging from energy harvesting to developing novel methods for cancer therapy and
diagnosis. To optimize these procedures, an accurate characterization of the elec-
tronic and optical properties of these novel structures via a synergic experimental
and computational study is necessary. To the best of our knowledge this work is
aimed at developing for the first time a realistic model of SiC/SiOx core/shell NWs,
relying on information gained both at experimental and theoretical level.

SiC/SiOx core/shell NWs were synthesized via a low-cost carbothermal method.
Structural features of these NWs were investigated via the acquisition of XANES
spectra in TEY mode and their theoretical interpretation from ab-initio simulations.
Our NW model, including defected sites and interfacial boundaries between SiC and
SiOx, reproduces remarkably well the main features of C, Si, and O K-edge XANES
spectra of these structures arranged in several configurations and stoichiometry.

Both optical and electronic characteristics, such as the DOS, of these systems are
crucially affected by two counteracting effects, that is quantum confinement and sur-
face termination. Quantum confinement, induced by the reduced dimensionality of
the wire with respect to bulk SiC, results into the modification of the NWs band struc-
ture from indirect to direct band gap, with a VBM to CBM distance inversely depen-
dent on wire diameter. Surface passivation of the dangling bonds affects both the
NW boundaries and the interfacial region. We devised the presence of a variety of
defects, such as substitutional C, and different chemical coordination to obtain an
overall good agreement between simulated and experimental XANES spectral line-
shapes at the Si, O, and C absorption K-edge. This study demonstrates the crucial
importance of defective sites in affecting the electronic characteristics of SiC NWs,
so to avoid unintentional doping that hinders the development of high-performance
SiC-based field-effect transistors.



BIBLIOGRAPHY 105

Finally, the realistic model of SiC/SiOx core/shell NWs proposed in this com-
bined experimental and theoretical study, being able to deliver an accurate interpre-
tation of the recorded XANES spectra, demonstrates to be a valuable tool towards the
optimal design and application of these nanosystems in real devices.
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Chapter 5

Forging graphene
pseudospheres to mimic curved
space-times

5.1 A mathematical, physical and engineering problem

The honeycomb geometry of the graphene lattice enables the description of the elec-
tronic properties near Dirac’s points in terms of relativistic, massless pseudo–particles
[1]. This particular behaviour of low-energy excitations makes graphene suitable for
testing some of the fundamental laws of theoretical physics in condensed matter as
well as in high energy physics. For example, in principle, it can be shown [2, 3] that
a graphene sheet, arranged in the shape of a Beltrami’s pseudosphere, may lead to
realizing the Hawking-Unruh effect, that is one of the most important prediction of
quantum field theories in curved spacetimes. The latter effect leaves its signature in
the particular behaviour of the local density of states (LDOS) of the carbon pseudo-
sphere, which is similar to a Rindler thermal-like LDOS [2, 3]. In this chapter we
present a computational model to build realistic carbon pseudospheres, and further-
more we calculate the LDOS of this structure for several sizes using a in-house devel-
oped TB method to confirm via numerical simulations the analytical description of
the electronic properties obtained in a curved continuum.

The Beltrami’s pseudosphere, reported in Fig. (5.1b), is a surface characterized
by a constant negative Gaussian curvature κ = − 1

R2
p

where Rp is the pseudosphere

radius. It represents the counterpart of the sphere, plotted in Fig. (5.1a), which is
instead characterized by constant positive Gaussian curvature κ = 1

R2
s
, where Rs is

the sphere radius.
Basically the problem we are aiming to solve is to find the hexagonal tiling of

the Beltrami’s pseudosphere, obtained by using carbon atoms, which delivers the
minimal-energy structure. The related problem on the sphere is called the Thompson
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a) b)

FIGURE 5.1: Left: Sphere (surface of constant positive Gaussian cur-
vature). Right: Lower half part of the Beltrami pseudosphere (surface

with constant negative gaussian curvature)

problem [4], and originally aims at finding the minimal energy configuration on the
atomic sphere of a number of points interacting via a Coulomb potential. In the case
of carbon atoms the solution of this issue leads to the creation of the fullerene struc-
ture, which represents a mechanically stable allotrope of carbon [5, 6, 7, 8].
The Beltrami’s surface can be looked as a realization of two theorems in algebraic
topology: the Hilbert theorem, which states that there are no analytic complete sur-
faces of constant negative Gaussian curvature in the Euclidean R3, and addition-
ally the Gauss-Bonnet theorem, which connects differential geometry (curvature) and
topology (Euler characteristic) of manifolds by demonstrating that one cannot tile the
pseudosphere surface using hexagons only, such as in planar graphene. This is a ma-
jor consequence of the negative curvature.

A first insight for finding a minimal energy tiling of the Beltrami’s pseudosphere
was attempted in Ref. [9]. However, the latter study concerned model graphene
pseudospheres to determine their energetic stability. Nevertheless, in order to ob-
serve the coupling of the Dirac electronic field with the curvature, the radius of the
pseudosphere containing the geometrical model of sp2 carbon atoms must be in prin-
ciple the largest possible. The approach presented in this chapter aims first to go
beyond that one proposed by Taioli et al. [9]. In particular, we develop a tailored
dualization procedure to find energetically stable configurations containing millions
of carbon atoms. Second, we calculate the electronic structure of these carbon pseu-
dospheres using a multiscale approach. In this respect, indeed, due to the extended
size of the system we devise a tight binding approach, in conjunction with the Kernel
Polynomial Method (KPM) to avoid the diagonalization of the Hamiltonian matrix.
The topics presented in this chapter represent by all means challenging and interest-
ing tasks from many perspectives, spanning different research areas, such as geomet-
rical topology (the tessellation problem), physics (black-hole analogue physics), and
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mechanical engineering (the assessment of the structural stability of this novel car-
bon allotrope). Finally, we notice that all the computational results described in this
chapter are based on in-house developed and tailored codes, which can be of course
extended to study different geometrical arrangements tiled by atomic centers.

5.2 Computational Methods

5.2.1 Tiling the Beltrami’s pseudosphere by three-coordinated car-
bon atoms

Once fixed the length of the pseudopshere along the axis of revolution, which means
the top to bottom distance between the centers of the largest and minimum circles of
the structure, the steps followed to tile the Beltrami’s pseudosphere by carbon atoms
can be summarized as follows:

I. We assess the exact number of carbon atoms N that must be present to tessellate
the surface of the Beltrami’s pseudosphere by using the planar graphene density
(0.379 atoms/Å2) as a reference.

II. We create a planar graph (N, F, E) of N vertices, F faces and E edges. The N ver-
tices represent carbon atoms which are intentionally compressed in this initial
configuration (meaning that the carbon-to-carbon bond lengths are shortened
with respect to the usual value of 1.42 Å). Each vertex is linked to the three near-
est neighbours by edges, representing bonds, and is shared by three faces.

III. The graph of compressed planar graphene is mapped on the Beltrami’s pseudo-
sphere surface via a one-to-one (injective) map as the value of the z coordinate
(along the axis of revolution) of the vertices is unambiguously determined by
fixing the (x, y) coordinate couple, i.e. z = z(x, y).

IV. We find the atomic arrangements that provide minima of the potential energy
surface. In order to achieve that, we carry out mixed Monte Carlo (based on the
WWW method [10]) and molecular dynamics (based on the FIRE approach [11])
simulations, whose details will be explained further below.

V. Finally, once local minima are found, we developed a dualization algorithm to
increase the number of atoms N by exploiting the 3-connectivity of the graph.

All these points will be explained in detail in the following.

Step I

The first issue we face is to assess the number of atoms necessary to tile the sur-
face of the Beltrami’s pseudosphere. The area of this surface, represented in Fig.



116 Chapter 5. Forging graphene pseudospheres to mimic curved space-times

(5.1b), is given by 2πR2
p. Moreover, we notice that the carbon atoms at the very end

of the pseudosphere, both in the top and in the bottom circumferences, are charac-
terized by the presence of dangling bonds differently from the carbon atoms in the
body of the structure which present sp2-hybridized and completely saturated bonds.
It is arguable that the presence of these dangling bonds in proximity of the largest
and smallest circumferences can modify dramatically the electronic properties of the
carbon pseudosphere, particularly close to the Fermi level, where usually the fin-
gerprint of defects can be found. Thus, on the one hand we decided to introduce
periodic boundary conditions to saturate the outer carbon atoms of the maximum
circumference. In this regard, at the very top of the pseudosphere (the maximal cir-
cumference has radius Rp and corresponds to z = 0) we add a rectangular supercell
with side lengths a and b periodically repeated along the x and y directions, respec-
tively. In this way, the surface area covered by carbon atoms is ab + πR2

p (obtained
by ab− πR2

p + 2πR2
p).

The graphene unit cell is also chosen rectangular with side lengths ag=
√

3 · d0 and
bg = 3 · d0, where d0=1.42013 Å is the distance between nearest neighbours in planar
graphene, and contains four carbon atoms. Thus, the number of atoms which must

be on the pseudosphere surface is Np = 4 · 2πR2
p

3
√

3d2
0
. This equation can be inverted and

gives a Beltrami’s surface radius Rp = d0

√
Np ·3

√
3

8π . Since we want to make use of
the in–plane periodic boundary conditions, the graphene simulation supercell is de-
termined by setting up the number of unitary cells along the x (na) and y (nb) axes.
Nevertheless, the density of carbon atoms within the trumpet is distorted with re-
spect to planar graphene, due to the curvature that stretches the carbon–to–carbon
bonds. In particular, mapping the disk of radius Rp, cleaved out in the middle of the
rectangle of surface ab, into the pseudosphere results in an increase of the effective
surface area to be covered by carbon atoms and, thus, in a decreasing of the density
with respect to planar graphene. To enforce a density similar to graphene also within
the pseudosphere we introduce a scale factor fs < 1 to multiply the edges of the
rectangular supercell satisfying the following condition:

f 2
s =

agnabgnb f 2
s

agnabgnb f 2
s + πR2

p
(5.1)

From Eq. (5.1) one obtains f 2
s +

πR2
p

agnabgnb
− 1 = 0 or f 2

s = 1− Np
2·N , where N = 4nanb

is the total number of atoms.
Moreover we notice that, while the Beltrami’s pseudosphere is in principle infinite,
we cannot of course make it endless in real configuration space. Thus, we chose
to cut circumferentially the carbon structure at the very bottom and to saturate the
bonds by a zig-zag nanotube with 6 hexagons. The final carbon atoms belong thus
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to the bottom circle of radius Rmin = 3·d0·
√

3
π Å. The area below this circle must be

deleted in our computation of the surface carbon density. This area can be found by
the following area formula valid for our surface of revolution parametrized with v
ranging over −∞ to zmin: Ain f = 2πR2

p
∫ zmin
−∞ sech(v) · tanh(v)dv. After subtraction

of the latter surface the scale factor reads f 2
s = 1− Np

2·N +
Ain f

nanbagbg
. Finally, the surface

area Sp covered by the carbon atoms is equal to

Sp = agnabgnb f 2
s + πR2

p − Ain f (5.2)

which can be further divided by the area of the unit cell of planar graphene ag · bg
and multiplied by four (the number of carbon atoms within the unit cell) to obtain
the number of vertices of the graph to tile appropriately the pseudosphere.

Step II

With such constraints in place on the total number of carbon atoms N, one can ini-
tialize the graph by writing a list of vertices, whereby we store the information of the
initial coordinates, the indices of the three nearest neighbours and the indices of three
faces to which the vertex belongs.
Furthermore, by virtue of the Gauss-Bonnet theorem the number of heptagonal faces
needed to tile the Beltrami’s surface must be in excess of six with respect to the pen-
tagonal faces. Thus, we add to the starting configuration seven heptagons as shown
in Fig. (5.2), where we show a graph with periodic boundary conditions containing
140 vertices.

Step III

The reference frame of the graph of Fig. (5.2) is pinned in the centre of the rectangle
identified by the coordinates (0,0). The vertices satisfying the relation

√
x2 + y2 < Rp

were then mapped into the Beltrami’s pseudosphere by calculating the z-coordinate
as follows:

z = z(x, y) = R ·
[√

1− x2 + y2

R2
p
− atanh

(√
1− x2 + y2

R2
p

)]
(5.3)

Indeed, for given x and y the z-coordinates of the vertices on the Beltrami’s sur-
face are unambiguously determined. In Fig. (5.3) we show an example of this map
from planar graphene (a) to the pseudosphere geometry with periodic boundary con-
ditions (b).
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FIGURE 5.2: Starting configuration: this graph contains 140 vertices
and each vertex is connected to the three nearest neighbours includ-
ing periodic boundary conditions. Only the 6 atoms highlighted in
red are 2-coordinated; the presence of these atoms was forced to have
the excess of six heptagonal defects in the structure according to the

Gauss-Bonnet theorem.

  

a) b)

FIGURE 5.3: a) A supercell of planar compressed graphene.
b) Graphene sheet mapped onto the pseudosphere surface
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Step IV

To find the minimal energy configuration of carbon atoms over the surface we use the
Wooten, Winer, Weaire (WWW) method [10], where materials are conceived as a net,
i.e., a graph. More in detail, within this framework the information about the state
of a system is embedded in both the bond topology and in the atomic coordinates,
which are the variables that must be optimized. The knowledge of the bonds and
positions gives access to the potential energy of the system. In particular, for the
latter we chose a functional form of the Keating type, which reads [12]:

E =
3

16
α

d2
0

∑
i,j

(
r2

ij − d2
0

)2
+

3
8

β

d2
0

∑
i,j,k

(
rij · rik +

d2
0

2

)2
(5.4)

where α = 25.88 eV Å −2 is the bond stretching force constant, d0 = 1.42013 Å is the
carbon-to-carbon bond length in planar graphene, rij is the distance between atoms i
and j, and β ∼ α

5 is the bond bending force constant [12]. The Keating model is thus
a three-body potential, which depends on the bond net and the position of the atoms
only.
The search for the optimal configuration that minimizes this functional form is of
course an extremely complex task owing to the large number of spatial degrees of
freedom. To find the minimal-energy configuration we must thus find a reliable as
well as efficient and scalable procedure. We use in this regard a Monte Carlo (MC)
algorithm in which the moves are given by the switching of bonds between atomic
centers, and the move is accepted only if it lowers the total energy of the system ac-
cording to a Metropolis algorithm [13].
In Fig. (5.4) we show a typical move to clarify our MC procedure. The trial bond–
switch starts by randomly selecting an atomic center of the graph (B in Fig. (5.4)).
Then, the procedure proceeds by randomly picking two neighbouring atomic cen-
ters, A and C, and another atom D, which is a neighbour of C (see Fig. (5.4a)). By
breaking the bonds AB and CD and forming the new bonds AC and BD, a novel
topology of the net is created (see Fig. (5.4b)). At this point we perform a trial twist,
which transforms the 6-fold rings of pristine graphene into two 5-fold rings and two
7-fold rings, creating a Stone-Wales (SW) defect. This topological change of course
results in moving the structure out of the minimum energy position. Therefore, the
potential energy must be minimized with respect to the positions of the atoms to get
the minimal potential energy (see Fig. (5.4c)).

Subsequently to each and every switch-twist trial move, the atomic coordinates
of the system are “relaxed” by using the Fast Inertial Relaxation Engine (FIRE) algo-
rithm [11]. This method is competitive with other quasi-Newton schemes and is not
too difficult to implement into a computer program.
To summarize, to find the minimum energy configuration of the Beltrami’s structure
at T ∼ 0 K we perform the following steps:
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FIGURE 5.4: A bond-switch trial move in the case of graphene. (a)
The initial configuration showing 6-fold rings identified by dashed
circles. (b) Bonds are switched so that bonds AB and CD are broken,
and AC and BD are formed. (c) The positions of the atoms have been
optimized by searching the potential energy minimum. In particular,
the move transforms the four 6-fold rings into two 5-fold rings and

two 7-fold rings. Figure adapted from Ref. [14].

1. random switch (or switches) and twist;

2. relaxation of the geometry using the FIRE algorithm;

3. acceptance or rejection of the switch (or switches).

These steps were repeated up to when the energy did not decrease further be-
tween two switches-twists. Of course initially the number of accepted moves is large,
while after some 20,000 steps for a thousand atoms all the moves were consistently
rejected. At this point, being the structure close to the local minimum, the procedure
halts.

Step V

The implementation of the last step stems from the need of finding in reasonable com-
putational time Beltrami’s pseudospheres containing a few millions atoms. Indeed,
in order to deliver a reliable numerical test of the signature of the Hawking-Unruh
effect, taking vF ∼ 1 × 106m/sec [1], only electrons with an energy E = h̄vF/Rp
for Rp >> d0, which represents the intrinsic energy scale associated to the pseudo-
sphere, have a long enough wave–length to “experience” the whole curved surface,
hence their contribution to the LDOS is important. Thus, for our purposes we need
to increase the size of the pseudosphere with respect to that obtainable by using the
steps I to IV, through which the minimum energy configurations of structures with
only a few thousands carbon atoms can be obtained.
Our approach “to move up the dimensional ladder” starts from the minimum energy
configuration obtained upon completion of step IV above, and uses the 3-connectivity
of the graph. We report the working scheme in Fig. (5.5). The pivotal idea is to create
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a) b)

FIGURE 5.5: Example of local dualization exploiting the 3-
connectivity of the planar graph. a) Parent geometry; b) Daughter

geometry

a hexagon around each vertex of the initial optimized structure (see Fig. (5.5)). In
such a way, the resulting structure would show bond lengths lower than those usu-
ally found in graphene. Nevertheless, by multiplying the coordinates by a

√
3 factor,

one can stretch the bonds and recover the proper bond lengths between carbon atoms
in the graphene net.

Of course the daughter structure need to be minimized after the augmentation
as we will show in the results section. This simple algorithm enables us to build
pseudospheres tiled by millions of atoms with a radius of the order of tens of nm.
Below in Fig. (5.19), we will show an example of a pseudosphere with a radius Rp ∼
740 Å which is the biggest one we have created, while in Fig. (5.11) we will report all
the augmentation path to build a Beltrami pseudosphere with radius Rp ∼ 520 Å.

5.2.2 Evaluating the electronic properties of large systems by the
Tight Binding plus Kernel Polynomial Method

Multi-Orbital Tight Binding

Finally, we remind that our goal is to provide a numerical test of the Hawking-Unruh
effect in pseudospheres. To do so we need to calculate the local density of states
(LDOS) in extended structures, which is intimately related to this thermal effect. In
order to deal with geometries containing millions of atoms, we make use of a Tight
Binding (TB) approach, which is well known to describe correctly the dispersion of
graphene around the six Dirac K-points in the first Brillouin zone (IBZ) [1]. In this
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TABLE 5.1: Slater-Koster two-centre hopping parameters for s and p
orbitals. We report the minimal elements; all the others can be ob-
tained by permuting the direction cosines (l, m, n) between the in-

volved atoms.

tss Vssσ

tspx l Vspσ

tpx px l2 Vppσ +(1-l2)Vppπ

tpx py lm (Vppσ -Vppπ)

work in particular, we are interested in the low-energy excitation region. Neverthe-
less, at odds with planar graphene, the Beltrami’s pseudosphere has a curvature in
which the pz orbitals forming the π band are not anymore orthogonal to the in-plane
direction as well as the sp2-hybridized orbitals do not lay in the graphene plane.
Thus, a multi-orbital TB approach, in which all four valence orbitals (2s, 2px, 2py, 2pz)
are included in the simulation instead of the only pz orbital, is necessary to deal with
the curvature effects. In our model, the TB Hamiltonian must then be generalized to
sum up also over orbital indices as follows:

H = ∑
ξi

εi
ξ a†

i,ξ ai,ξ + ∑
ξ,γ<ij>

tij
ξ,γa†

i,ξ aj,γ (5.5)

where ξ, γ are orbital label indices while i, j are site indices; tij
ξ,γ indicates the hopping

parameters, and the symbol < ij > means that the nearest neighbours approximation
is adopted. The parameters tij

ξ,γ describing the hopping between orbitals in differ-
ent sites were computed within the Slater-Koster formulation [15], which provides a
scheme to relate the orbital symmetry, distances and directions of neighbour atoms
(Tab. 5.1). We notice that owing to the non-planarity of our geometry we cannot make
use of the multi-orbital parametrization typically used for graphene [16, 17] where
the onsite energy of the pz-symmetry orbitals are treated differently from the x, y or-
bital cartesian components along the in-plane directions (that is εpx = εpy 6= εpz ).
Therefore, we derived the TB parameters by fitting DFT ab-initio simulations of the
graphene bands by further imposing that the onsite energies for the p orbitals are the
same (εpx = εpy = εpz ) and that the Fermi energy is equal to 0 eV. DFT calculations
on equilibrium and strained configurations of graphene were carried out by using
the Quantum Espresso code suite [18] with the same cut-off parameters adopted in
chapter 3.

In Tab. (5.2) we report the TB parameters that we obtained using Eq. (5.5) for
unstrained and strained graphene (second and third columns, respectively). In Fig.
(5.6) we report the band structure obtained using the DFT and TB methods for sev-
eral interatomic distances d (d/d0 = 0.96, d/d0 = 1, d/d0 = 1.04, d/d0 = 1.08) to



5.2. Computational Methods 123

TABLE 5.2: Two-center integrals defined in the Slater-Koster param-
eters for graphene (second column) and for strained graphene (third
column). Values are reported in eV and we assume the equilibrium

distance in graphene d0 ≈ 1.42. Å

Graphene Strained graphene
εs -2.8 -2.8
εp 0.0 0.0

Vssσ -5.6 −5.6 · r
r0
· e−

r−r0
0.55

Vspσ 5.2 5.2 · r
r0
· e−

r−r0
0.75

Vppσ 4.6 4.6 · r
r0
· e−

r−r0
0.55

Vppπ -2.44 −2.44 · r
r0
· e−

r−r0
0.41

determine the variations of the hopping parameters for changing overlaps between
the nearest neighbour carbon atoms.

Kernel Polynomial Method

The Kernel Polynomial Method (KPM) is a numerical approach useful to access spec-
tral quantities of extended systems for which a direct diagonalization of the full
Hamiltonian matrix is computationally unfeasible. Our aim, to find an analogy be-
tween the graphene pseudospere and a black-hole, requires to evaluate the Local
Density of States (LDOS) in different regions of the largest possible Beltrami’s struc-
ture. Thus, this approach turned out to be the most convenient for our purpose.
This method consists basically in the expansion of the sought quantity in terms of a
set of orthogonal polynomials, and then in improving the convergence of the expan-
sion with a kernel to avoid the spurious Gibbs oscillations [19].
In this investigation, we use the Chebyshev polynomials of the first kind, which are
defined as follows:

Tn(x) = cos[n arccos(x)] (5.6)

and of the second kind, which are defined by

Un(x) =
sin[(n + 1)arccos(x)]

sin[arccos(x)]
(5.7)

Both kind of polynomials are defined in x ∈ [−1, 1] and are orthogonal with weight
functions 1

π
√

1−x2 and π
√

1− x2, respectively:∫ 1

−1
Tn(x)Tm(x)

1

π
√

1− x2
dx =

1 + δn,0

2
δn,m (5.8)



124 Chapter 5. Forging graphene pseudospheres to mimic curved space-times

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

Γ M K Γ

E
n

e
r
g
y
 [

e
V

]

graphene   d/d0=0.96

DFT
TB

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

Γ M K Γ

E
n

e
r
g
y
 [

e
V

]

graphene   d/d0=1

DFT
TB

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

Γ M K Γ

E
n

e
r
g
y
 [

e
V

]

graphene   d/d0=1.04

DFT
TB

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

Γ M K Γ

E
n

e
r
g
y
 [

e
V

]

graphene   d/d0=1.08

DFT
TB

FIGURE 5.6: TB fit of the bands obtained from DFT electronic struc-
ture calculations of graphene. From left to right and from top to bot-
tom we report the bands for a strain value d/d0 = 0.96 corresponding
to a biaxial compression of the graphene cell equal to 4 %; unstrained
graphene (d/d0 = 1); d/d0 = 1.04, corresponding to a biaxial ten-
sile strain of the graphene cell equal 4 %; d/d0 = 1.08 representing a

biaxial tensile strain of the graphene cell equal to 8%.
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∫ 1

−1
Un(x)Um(x)π

√
1− x2 dx =

π2

2
δn,m (5.9)

With these definitions in place, one can show that the Chebyshev polynomials satisfy
the following recursion relations

T0(x) = 1; T1(x) = T−1(x) = x; Tm+1(x) = 2Tm(x)− Tm−1(x);
2Tm(x)Tn(x) = Tm+n(x)− Tm−n(x);

(5.10)

U0(x) = 1; U−1(x) = 0; Um+1(x) = 2Um(x)−Um−1(x);

2(x2 − 1)Um−1Un−1 = Tm+n(x)− Tm−n(x);
(5.11)

The expressions (5.10) and (5.11) will be used later on in the iterative method through
which the LDOS will be computed.
Generally, a function f : [−1, 1] → R can be expanded in terms of Chebyshev poly-
nomials as f (x) = α0 + ∑∞

n=1 αnTn(x) where αn are coefficients defined by αk =∫ 1
−1 f (x)Tk(x) 1

π
√

1−x2 dx. A convenient way to perform this expansion in numeri-
cal simulations is to use the modified Chebyshev polynomials defined by φn(x) =

Tn(x)
π
√

1−x2 [19], which satisfy the same orthogonal relation as in (5.8) with the weight

function of the Chebyshev polynomials of the second kind, i.e.
∫ 1
−1 φn(x)φm(x)π

√
1− x2dx =

1+δn,0
2 δn,m. Finally, one can obtain the expansion and the relevant coefficients from:

f (x) =
1

π
√

1− x2

[
µ0 +

∞

∑
1

µnTn(x)

]

µk =
∫ 1

−1
f (x)Tk(x)dx

(5.12)

The convergence of the sum in (5.12) can be improved by using a kernel, which
avoids spurious oscillations close to the points where the function is not differen-
tiable [19]. In this work, we used the Jackson kernel, for which a function can be
approximated as:

f (x) =
1

π
√

1− x2

[
µ0g0 +

Nc−1

∑
n=1

µngnTn(x)

]
(5.13)

with the coefficients gn are defined as
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gn =
(Nc − n + 1)cos πn

Nc+1 + sin πn
Nc+1 cot π

Nc+1

Nc + 1
(5.14)

and Nc the truncation number related to the maximum momentum number. Using
the Jackson kernel, the best achievable resolution ∆J is

∆J =

√
1− cos

π

Nc + 1
(5.15)

In order to compute the moments in Eq. (5.12) one has to scale the Hamiltonian
so to have eigenvalues within the range [−1, 1]. This can be achieved by

H̃ =
H − b

a
with a =

EM − Em

2− η
, b =

EM + Em

2
(5.16)

where Em and EM are the minimum and maximum eigenvalue, respectively, and η is
a small value introduced to avoid numerical instability problems [19]. The eigenval-
ues EM and Em can be computed by using the Lanczos recursion method which, sim-
ilarly to KPM, bypass the direct diagonalization of the Hamiltonian matrix [19, 20].
Furthermore, the DOS can be defined by:

ρ(E) =
1
L

L−1

∑
i=0

δ(E− Ei) (5.17)

where Ei are the eigenvalues of a L-dimensional TB Hamiltonian matrix H.
By defining ρ̃(Ẽ) = 1

L ∑L−1
i=0 δ(Ẽ− Ẽi) the respective scaled quantity and by insert-

ing this function into the definition of µn in Eq. (5.12), one obtains:

µn =
∫ 1

−1
ρ̃(Ẽ)Tn(Ẽ)dẼ =

1
L

L−1

∑
i=0

Tn(Ẽi) =
1
L

L−1

∑
i=0
〈i|Tn(H̃)|i〉 = 1

L
Tr[Tn(H̃)] (5.18)

The recursion relations (5.10) of the Chebyshev polynomials can now be used to
calculate the matrix elements µn = 〈i|Tn(H̃)|i〉 by applying recursively Tn(H̃) to the
state |i〉, i.e., |in〉 = Tn(H̃)|i〉 in the following way:

|i0〉 = |i〉,
|i1〉 = H̃|i0〉,
|in+1〉 = 2H̃|in〉 − |in−1〉

(5.19)

For the moments in particular these recursion relations give
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µ0 = 〈i0|i0〉,
µ1 = 〈i1|i0〉,
µ2n = 〈in|in〉 − µ0,
µ2n+1 = 〈in+1|in〉 − µ1

(5.20)

Finally, in order to compute the traces in (5.18) we used the stochastic evaluation
method [19], by which

Tr[Tn(H̃)] ≈ 1
R

R−1

∑
r=0
〈r|Tn(H̃)|r〉 (5.21)

where |r〉 are random vectors defined by |r〉 = ∑L−1
j=0 ζrj|j〉, with j running over the

atomic sites of the structure, R is the number of random vectors and ζrj ∈ C are
random functions satisfying the following statistical averages:

〈〈ζrj〉〉 = 0,

〈〈ζrjζr′ j′〉〉 = 0,

〈〈ζ∗rjζr′ j′〉〉 = 0

(5.22)

In this work, we choose ζrj = eiφ with φ ∈ [0, 2π]. It can be shown that the error
over the evaluation of the traces decreases as 1/

√
L · R [19].

Using this method we can then compute either the Total DOS (TDOS) by initializing
the normalized initial wavefunctions |i〉 of Eq. (5.19) over all the sites of the structure
or the Localized DOS (LDOS) by initializing the normalized initial wavefunctions
over a partial number of sites on which the DOS is projected.

5.3 Results

5.3.1 Computational model of the Beltrami’s surface tiling

In this section we apply the approach discussed in section 1.2 to build a real Bel-
trami’s pseudosphere. In Fig. (5.7) we report six minimization snapshots, starting
from the initial configuration shown in the top left panel 1, of a structure containing
N = 1626 carbon atoms, where we coloured in red those not belonging to purely
hexagonal faces to identify the defected sites. The initial configuration, obtained by
projecting the graphene net on the Beltrami’s surface, is characterized by a high level
of order, where defected faces are present only in the bottom part of the pseudo-
sphere owing to the six heptagons added to the pristine graphene cell according to
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1) 2) 3)

6)5)4)

….

FIGURE 5.7: Optimization of a carbon pseudosphere containing 1626
atoms with radius Rp = 18.26 Å . Panels from 1) to 6) represent dif-
ferent optimization stages, where each move consists of a single trial
switch–twist. We colour in red the carbon atoms that do not belong
to the hexagonal faces. Starting from an initial configuration (panel
1) almost entirely tiled with hexagonal polygons, atoms rearrange to
fill uniformly the surface reaching a local minimum after a few thou-
sands steps (panel 6). After reaching this configuration, trial moves
are increasingly rejected and the Metropolis algorithm becomes inef-

ficient.

the step discussed in paragraph (5.2.1). In this configuration hexagonal faces clearly
outnumber by far the heptagonal ones. We notice that in this initial configuration
carbon-to-carbon bond lengths are generally too short in the flat region while are
too long within the Beltrami’s surface with respect to graphene. The carbon atoms
tend to rearrange quickly after the first bond switching trial moves, which are sel-
dom rejected. This effect is clearly visible in panel 2) of Fig. (5.7), representing the
surface after about 1600 bond switches, where the number of heptagons, pentagons
and hexagons becomes comparable. Further bond switching of the order of ten thou-
sands Monte Carlo steps result into a rather stable structure, which has apparently
reached a local minimum in configuration space. After reaching this configuration,
trial moves are increasingly rejected and the Metropolis algorithm is inefficient being
characterised by a drastically low number of accepted moves. Of course, owing to
the use of a Monte Carlo algorithm, we obtain different structures from different sim-
ulations even though starting from the same initial conditions. Therefore, among the
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a) b)

FIGURE 5.8: An example of a ’good’ Beltrami’s structure containing
N = 1978 carbon atoms with radius Rp = 19.37 Å after optimiza-
tion. In a) we report the simulation supercell, while in b) the 3×3

periodically repeated system.
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FIGURE 5.9: Pair distribution function (left panel) and angle distri-
bution (right panel, where 120◦ corresponds to pristine graphene) for

the structure in Fig. (5.8).

several configurations obtainable by our procedure we keep only the final structures
that do not present defects on the flat region, where we expect to recover the pris-
tine graphene net, which includes the maximum circle (the “event horizon” of the
pseudosphere). In Fig. (5.8a) we show an acceptable Beltrami’s surface according to
our criterion, where we observe the flat region corresponding to pristine graphene.
Moreover, in Fig. (5.8b) we report also the 3×3 supercell periodically repeated along
the x and y directions. Finally, in Fig. (5.9) we report the pair distribution function
(left panel) and the angular distribution function (right panel). These distributions
are peaked respectively at d0 ∼ 1.42 Å and around θ0 ∼ 120◦, which are the typi-
cal values for pristine graphene. The latter structure is characterised by 985 faces, of
which 97.77% are hexagonal, 1.42% are heptagonal and only 0.81% are pentagonal.
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a) b)

FIGURE 5.10: An example of application of the dualization algo-
rithm: a) parent structure; b) daughter structure.

5.3.2 The dualization algorithm for three-fold coordinated graphs

In order to scale up the number of atomic centers we apply the dualization algorithm
discussed in step V of section (5.2.1). Using this approach, we can increase the num-
ber of atoms by a factor of ∼ 3 and the largest radius by a factor of ∼

√
3 after bond

stretching. In Fig. (5.10) we report an example of application of our method.
Notice that the straight application of our algorithm to increase the system size

conserves both the distances and the number of non-hexagonal faces passing from the
parent to daughter structure, but splits the Stone–Wales defects (penta-heptagonal
defects). This is clearly visible in Fig. (5.5), where after the dualization the non-
hexagonal faces are not neighbouring any more. This effect is unphysical as it is
known that the energetically favourable position of penta-heptagonal defects is to
stick together, forming eventually chains of defects or “scars” [9]. Therefore, after
the dualization procedure our strategy has been to perform further bond switching-
twisting MC optimization steps, again based on the Metropolis acceptance ratio, of
the atomic positions to overcome the potential energy barriers. This second stage of
optimization results in a collapse of the pentagonal and heptagonal faces.

We notice that the major advantage of this approach is that allows to optimize ini-
tially a relatively small structure with a number of atoms in the range N ∈ [1000, 2000]
using only a few CPU hours of desktop machines and then to dualize the optimized
structure to obtain a system with a triplicated number of atoms close to a local min-
imum, using again only a few CPU minutes of a desktop machine. Thus, we hasten
to emphasize that all the simulations necessary to build extended Beltrami’s pseudo-
spheres, having a number of carbon atoms in excess of a million (see e.g. Fig. (5.11))
can be carried out using only a few CPU hours in affordable commercial computer
machines.
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I)

N=1,978
Rp=1.937 nm

II)

N=5,928
Rp=3.355 nm

III)

N=17,766
Rp=5.812 nm

IV)

N=53,280
Rp=10.065 nm

V)

N=159,786
Rp=17.435 nm

VI)

N=479,304
Rp=30.197 nm

VII)

N=1,437,750
Rp=52.304 nm

FIGURE 5.11: Example of six consecutive applications of our dualiza-
tion algorithm. The starting structure is the same of Fig. (5.8a)
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FIGURE 5.12: DOS of a graphene rectangular cell with 199.97 nm ×
199.81 nm sides, containing 1, 525, 188 carbon atoms for different val-
ues of the cut-off parameter Nc. In the left panel we report the full

spectrum while in the right panel we zoom near the Fermi energy.

5.3.3 Density of States simulations

Planar graphene

In this section we discuss the TB simulations performed to calculate the DOS of pla-
nar graphene. This is of course a test for our newly developed code to investigate
convergence properties, e.g., with respect to the number Nc of moments needed to
expand the DOS, and the number of random vectors R needed for computing the
matrix elements in Eq. (5.21).

First, we test the convergence of the DOS with respect to the cut-off number Nc.
In the left panel of Fig. (5.12) we report the DOS in the energy range -20 to 15 eV for
four different values of Nc. On this energy scale the curves calculated with Nc ranging
from 2400 to 6000 are indistinguishable. However, by zooming near the Fermi level
(see right panel of Fig. (5.12)) it is evident that a finer resolution of the DOS can be
obtained by increasing the truncation value. The DOS of graphene indeed reproduces
more closely the expected linear dispersion around the Fermi energy. In other words,
by summing up more terms in Eq. (5.13) the approximate function becomes more
accurate. Nevertheless, we found out that there is a threshold to the number of terms
in the summation after which spurious oscillations appear in the DOS, leading to
poor convergence, as can be seen in Fig. (5.13). A method for estimating the value of
Nc that trades-off between accuracy and computational efficiency is reported in Ref.
[21]. In this method one can track the change of an approximated function fapprox by
modifying some parameters x and P, which in our case are represented by Nc and R,
with

δP fapprox =
∣∣∣ fapprox(x, P + dP)− fapprox(x, P)

fapprox(x, P)

∣∣∣
Max

(5.23)
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FIGURE 5.13: Left: δNc ρ as by Eq. (5.23); the best trade-off value of
Nc is found to be ≈ 6500 for this lattice containing around 1.5 · 106

atoms. Right: The DOS computed with Nc = 6000 (blue curve), 8000
(red curve), and 10000 (green curve).

In the left panel of Fig. (5.13), according to Eq. (5.23), we report the quantity
δNc ρ in the energy range [-0.2,0.2] eV, while in the right panel we show the DOS for
different Nc zoomed in the energy range [-0.03,0.03] eV. This analysis shows that the
“best” value of Nc to avoid numerical instabilities in the form of rapid oscillations in
the spectrum without loss of accuracy is about 6500, corresponding to the value in
which δNc ρ deviates from linearity (see the left panel of Fig. (5.13)). These oscillations
can be rationalized by noticing that the energy separation between levels in periodic
graphene is infinitesimal and the DOS is a continuous function. At odds, in our simu-
lations the pseudosphere is a large but finite system and the energy separation of the
levels increases with respect to infinite periodic structures. Thus, a too big value of Nc
may result in a KPM energy resolution marginally above the finite energy separation
between levels of our finite system, leading to poor convergence [21]. The depen-
dence of the convergence by R, which is the number of random vectors to use in Eq.
(5.21), is easier since there is virtually no upper limit except the computational feasi-
bility. Thus, one typically increases its value until spectra do not change by adding
further terms to the summation. For example, a convergence test is reported in Fig.
(5.14), where one can observe that the values R = 1 and R = 5 provide absolutely
comparable results for a graphene lattice containing 1.5 · 106 carbon atoms. Thus, in
this case a single initial random vector was enough to obtain a converged DOS.

Planar graphene with a single SW defect

In this section we investigate how the DOS of graphene is affected by the presence of
a single Stone–Wales (SW) defect within a net of N = 823, 860 carbon atoms. These
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FIGURE 5.14: LDOS of graphene containing ≈ 1.5 · 106 atoms near
the Fermi level for different values of R.

defects are indeed also present within the Beltrami’s pseudosphere owing to the neg-
ative curvature. In Fig. (5.15) we report the LDOS projected over sites found at dif-
ferent distances from the SW defect. These calculations are carried out using R = 100
and Nc = 5000, a value that according to the formula (5.15) delivers a resolution of
about 7.5 meV. In the left panel of Fig. (5.15) we observe not surprisingly that the
shape of the LDOS is dramatically modified near the defect site, while far from it the
graphene-like shape is recovered. It is worth to note that the presence of the SW de-
fect still affects the LDOS projected at distances of ≈ 100 Å with small oscillations in
the spectrum. In the right panel of (5.15) we zoom near the Fermi energy to search for
possible symmetry breaking of the LDOS. We find that while the valence and conduc-
tion bands are significantly modified near the defects, far from it an asymmetrization
of the LDOS clearly emerges in the energy range [-0.02,0.02] eV up to a distance of
≈ 100 Å .

It is also meaningful to analyse the LDOS projected over the two graphene sub-
lattices, which are usually called A and B [1]. In Fig. (5.16) we report the two DOSs
projected over the sites at the same distance (≈ 56 Å ) from the single SW defect re-
solved for the sublattices A and B. Interestingly, we observe that the two LDOSs have
a graphene-like shape but with an oscillatory behaviour in counterphase for the two
sublattices. Therefore, we can safely conclude from this analysis that the fingerprint
of the presence of a single SW defect in a graphene sheet, which breaks the spatial
symmetry of the pristine net, is the loss of symmetric behaviour of the LDOS near the
Fermi level.

Planar graphene with random SW defect density

The presence of a single SW in a graphene large area is of course unrealistic, while
we aim at simulating a surface as close as possible to experimental conditions. Thus,
we increased the number of SW defects, which were created randomly within the
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FIGURE 5.15: Left: LDOS projected over different sites of the
graphene lattice for increasing distances from the single SW defect.
Distances, d, are reported in Å. Right: zoom of the LDOS near the

Fermi energy.
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FIGURE 5.16: Left: LDOS projected at the same distance from the
single SW defect over the two graphene sublattices A and B. Right:

zoom of the LDOS in the range [-1,1] eV.
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FIGURE 5.17: Supercell of graphene with 0.05% density of random
SW defects. In red colour we design the atoms belonging to the SW,
while the green sphere points out the atomic sites over which we

project the LDOS.

graphene lattice. In this case, we calculate the DOS projection over sites positioned in
both the two different sublattices. These simulations were carried out in a graphene
lattice containing N = 1, 240, 236 carbon atoms, where we introduced 100 SW defects,
of which a square cut is shown in Fig. (5.17). After testing the convergence parame-
ters were set to R = 100 and Nc = 6000. In Fig. (5.18) we show the LDOS (blue and
red curves) and the TDOS (black curve) of this structure. The LDOS, in particular, is
plotted at a distance of approximately 100 Å from the nearest defect site, comparable
to the LDOS previously reported in Fig. (5.16). Surprisingly, here the LDOSs over the
two sites belonging to the sublattices A and B have a lineshape similar to the single-
defect case and to the pristine graphene (see Fig. (5.12)), but showing more noisy
peaks. On the other hand, the TDOS is smoother, as the contributions of the defects
averages out in this case.

Finally, we observe that an asymmetric behaviour is found again zooming the
DOS near the Fermi energy (see the right panel of Fig. (5.18)).

LDOS of the extended Beltrami’s pseudosphere

After having paved the way to perform the DOS computation in the Beltrami’s pseu-
dosphere by showing simulations in pristine and SW defected planar graphene, we
are ready to show whether the former structure represents a condensed matter ana-
logue of a curved spacetime. To make a Beltrami’s surface, tiled with carbon atoms
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FIGURE 5.18: Left: LDOS (red and blue curves) and TDOS (black
curve) of graphene with 0.05 % density of random SW defects. Right:
zoom near the Fermi energy to show the asymmetric behaviour of

the DOS.

in the equilibrium configuration, we use our multiscale algorithm discussed in sec-
tion 1.3. The optimized Beltrami’s pseudosphere of which we assess the LDOS is
reported in Fig. (5.19). This structure contains N = 2, 615, 976 atoms, with a pseudo-
sphere maximum radius of Rp ≈ 740 Å . While our scale-up procedure can of course
be applied recursively to obtain larger and larger structures, the only limiting factor
being the computational feasibility, this pseudosphere is already enough extended
to deliver suitable defect density distribution, large planar graphene area, sufficient
distance between the bottom end and the “event horizon”, and remarkable accuracy
in terms of energy resolution of the DOS. Indeed, the natural energy scale in which
the Hawking-Unruh effect should be observed is Er ∼ l

Rp
El where l ≈ 1.42 Å and

El ∼ h̄vF/l ∼ 4.63 eV. For Rp ≈ 740 Å , we achieve an energy scale of [-9,9] meV near
the Fermi energy. In this condition the Hawking temperature of this system defined
by the relation [3]

Θ(u, Rp) =
h̄vF
κB

l
2πR2

p
eu/Rp (5.24)

is around 16 K at the Hilbert horizon (where it achieves its maximum value).
The number of polygons tiling the Beltrami’s surface amounts to 1, 306, 233 hexago-
nal faces, 799 heptagonal faces and 793 pentagonal faces. Pentagonal and hexagonal
defects have been highlighted in Fig. (5.19) in red, while the green points show the
sites over which the LDOS was eventually projected. In this regard, we have selected
sites far from the defects, in order to at most avoid the noise described in the previ-
ous section close to the SW defects. Here, we aim to understand the behaviour of the
LDOS moving from graphene (sites a and b), to regions in the proximity of the pseu-
dosphere (sites c, d,e) and to regions belonging to the Beltrami’s surface (sites from f
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FIGURE 5.19: Beltrami’s pseudosphere with a radius Rp ≈ 740
Å . This structure contains N = 2, 615, 976 carbon atoms. In red
we colour the atoms belonging to defected sites (pentagons or hep-
tagons), while the green points highlight the sites over which we

project the LDOS.

to l).
We notice that in evaluating the DOS in the curved Beltrami’s surface, at odds

with planar graphene, we deal with two concurring types of effects, both breaking
the graphene symmetry: the proper defects, given by the non-hexagonal faces, and
the spatial curvature. Indeed, while the influence of defected sites on the LDOS has
been already investigated in planar graphene, in the case of the Beltrami’s pseudo-
sphere their contribution to valence and conduction states is cumbersome as the lat-
tice spacing between carbon atoms is not as regular as in graphene; furthermore, we
stress the fact that the presence of non-hexagonal defects is the consequence of a con-
stant negative spatial curvature (as much as the presence of a constant positive cur-
vature induces pentagonal faces in fullerene). In this sense curvature and defects are
intimately related via the Gauss-Bonnet theorem, which links topology (curvature)
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FIGURE 5.20: Left: TDOS of the graphene pseudosphere reported in
Fig. (5.19) for Nc = 8000 (black curve) and Nc = 16000 (green curve).

Right: zoom of the TDOS near the Fermi energy.

with the number of defected faces, and one cannot really disentangle their respec-
tive contribution to the LDOS. Thus, the LDOS lineshape in curved graphene can be
considered as the result of the two overlapping effects of curvature and defects [22].

In Fig. (5.20) we show the TDOS of the Beltrami’s structure plotted in Fig. (5.19)
for two values of the cut-off parameter, that is Nc = 8000, leading to an energy res-
olution of 0.0058 eV, and Nc = 16000, leading to an energy resolution of 0.0029 eV.
Looking at the left panel one might conclude incorrectly that 8000 moments (see Eq.
(5.13)) are enough to get a well-resolved TDOS. However, by zooming near the Fermi
energy, which we report in the right panel of Fig. (5.20), the width of the peak around
0 eV narrows by increasing the number of moments to 16,000. In general, we find
that the shape of the TDOS in this energy range is similar to that one of graphene
(see Fig. (5.12)), showing two symmetric peaks of the valence and conduction bands,
respectively. The main difference is found in the energy range near 0 eV, where an
asymmetric behaviour due to the emergence of a small peak is detected. We attribute
the latter behaviour to the entangled interplay between the negative spatial curvature
of our structure and to the presence of heptagonal defects.
The same behaviour can be recovered in the LDOS projected over different circum-
ferences of the pseudosphere, as shown in Fig. (5.21).

This issue can be discussed more exhaustively by showing the LDOS over single
sites of the structure. Indeed, in Figs. (5.22) and (5.23) we show the LDOS projected
over the green-coloured sites of Fig. (5.19) for two different values of the cutoff pa-
rameter, that is Nc = 8, 000 and Nc = 16, 000 for better resolution, respectively. In
both cases, we projected over two neighbour sites belonging, at least in the flat re-
gion out of the pseudosphere, to the two sublattices A and B of graphene.

We notice that the loss of spatial symmetry induced by deforming planar graphene
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FIGURE 5.21: Left: LDOS of the graphene pseudosphere reported in
Fig. (5.19) for Nc = 8000 (continuous curve) and Nc = 16000 (dashed
curve), projected over the pseudosphere circumferences highlighted

on the right.

into the pseudosphere shape, which leads forcibly to the formation of heptagonal de-
fects to sustain the negative curvature, is reflected into the symmetry breaking of the
LDOS over the two sublattices of graphene. While it does not make any sense to
identify the sublattices A and B in the pseudosphere region, where this concept is
rigorously inevitably lost, nevertheless in the outer region of the pseudosphere, char-
acterised by the presence of pristine planar graphene (5.19), we can still disentangle
the contribution of the two sublattices. For example, in the site a, which is≈ 700 Å far
from the defected region within the pseudosphere, one could guess that a graphene-
like shape of the LDOS should be recovered. However, looking at the LDOS over the
two neighbour atoms (see Fig. (5.22a)) we find that near 0 eV (Fermi energy) a small
bump appears in the sublattice B. Moreover, we notice that the DOS is symmetric in
this site. We rationalize this different behaviour of the two sublattices as due to the
presence of a strong deformation induced by the Beltrami’s pseudosphere also in the
outer region, which substantially breaks the spatial symmetry [22]. In Fig. (5.22b), at
the sites≈ 240 Å far from the pseudosphere surface we observe a marginally sharper
difference between the two sublattices (see Fig. (5.22a)), reinforcing this view.

5.3.4 Is the Beltrami’s pseudosphere a condensed matter analogue
of a black-hole?

In this final section we compare our results with the theoretical predictions by Iorio et
al. [3] concerning the hypothesis that the Beltrami’s pseudosphere can be regarded a
condensed matter analogue of a black-hole and, thus, realizes a realistic analogue of
a quantum field in curved spacetimes. The authors claim in particular that by solving
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Nc=8000;  R=100

FIGURE 5.22: LDOS of the Beltrami’s pseudosphere projected over
the green-coloured sites of Fig. (5.19). The LDOS at each site was
computed by projecting over two neighbour sites belonging, at least
in the flat region out of the pseudosphere, to the two sublattices A
and B of graphene. In the insets of each panel we report the LDOS
close to the Fermi energy to zoom in the different behaviour of the
two sublattices. These LDOSs were computed using a cut-off param-

eter Nc = 8000 and R = 100.
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Nc=16000;  R=100

FIGURE 5.23: Same as in Fig. (5.22) but for Nc = 16, 000 and R = 100.
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FIGURE 5.24: Shape of LDOS predicted over the sites of the Beltrami
pseudosphere structure given in Fig. (5.19) by (5.25).

the Dirac equation in a curved continuum, the relevant LDOS, which can be used to
test the physics of the Hawking-Unruh effect, has the following analytical form:

ρIL(E, u, Rp) =
4
π

1
(h̄vF)2

R2
p

l2 e−2u/Rp
E

e
E

κBΘ(u,Rp) − 1
(5.25)

where vF ≈ c
300 and u is the coordinate running over the Beltrami’s surface re-

lated to the cartesian coordinates by r(u) = const · eu/Rp , with r(u) the distance
of a point on the Beltrami’s surface from the rotational symmetry axis. The phe-
nomena we are interested in occur near the horizon [3]. For example, the maxi-
mum value of the Hawking temperature is reached at the Hilbert (or event) horizon
Θ(Rp · ln(Rp/l), Rp) =

h̄vF
κB2πRp

(see Eq. (5.24)).
For the Beltrami’s pseudosphere shown in Fig. (5.19) we find a Hawking tem-

perature of about 13 K, while the Hawking temperatures for the sites over which we
project the LDOS on the pseudosphere surface (sites e to l) range from 13.72 K (site i)
to 16.07 K (site e).
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In Fig. (5.24) we report the LDOS over the green-coloured sites of Fig. (5.19) pre-
dicted by using the analytical formula (5.25). The exponential behaviour shown in
Fig. (5.24) is derived in the continuum approximation and by ignoring elastic effects
[2, 3], owing to the long wavelength excitations near the Fermi energy. On the other
hand, in our computational model we cannot neglect the elastic effects induced by
the curvature (or, which the same, by the defects) on the LDOS over the two sub-
lattices of graphene. Thus, the comparison between our numerical results with the
analytical predictions is non-trivial. Furthermore, our resolution is limited by two
factors: the maximum number of recursion step, and the resolution achievable in the
energy range [-9,9] meV (which was ∼ 3 meV in the case of Nc = 16000).

In Fig. (5.25) we zoom in the energy range [-8,8] meV the LDOS projected over
the same sites of the Beltrami’s surface used in Figs. (5.22,5.23). The LDOS in the
site (a) (flat case) is reported in both panels to have a “standard” for comparison. A
and B in Fig. (5.25) label again the two neighbour sites belonging to the two different
sublattices of graphene. We notice that the asymmetric exponential behaviour found
in the analytical model, under the continuum approximation and neglecting elastic
effects due to the heptagonal defects, is also reproduced in our realistic numerical
simulations. In view of these results, we conclude that the Beltrami’s pseudosphere
may represent a valid analogue of a black-hole in the meaning explained above and,
in this respect, we feel that the actual forging of the carbon pseudosphere in a lab
should be pursued as well as the experimental measurements of the LDOS either by
low temperature STM or optical near-field spectroscopy.

5.4 Conclusions

This chapter was aimed at discussing the modeling of a novel carbon-based allotrope
having the shape of the Beltrami’s pseudosphere. We have first demonstrated that
this computational model can be achieved by tiling the surface with pentagonal,
hexagonal and heptagonal polygons and that can be scaled up efficiently to dimen-
sions useful to probe several properties by experiments (millions of atoms). Fur-
thermore, we tackled also the problem of computing the electronic properties of this
extended system. As this size is out of reach for ab-initio techniques, we used a tai-
lored tight-binding approach, by which we were able to reproduce correctly graphene
properties. Furthermore, we used the Kernel Polynomial Method to obtain accurate
numerical LDOS and TDOS, to be compared with the analytical LDOS behaviour
predicted in curved continuum. Notably, we find an asymmetric shape of the LDOS
similar to the theoretical predictions, which can be the signature of the Hawking-
Unruh effect in a condensed matter analogue of a black-hole. While in our model we
cannot avoid the presence of topological defects and thus of elastic effects not present
in the purely analytical calculation, which may produce some numerical noise in our
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FIGURE 5.25: Zoom of the LDOS computed over the sites of the Bel-
trami’s pseudosphere of Fig. (5.19). Top panel: sites e, f, g, a. Bottom
panel: sites h, i, l. A and B label the two neighbour sites belonging
to the two different sublattices of graphene. The LDOS in the site (a)
(flat case) is reported in both panels to have a “standard” for compar-

ison.
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simulations, nevertheless we are rather confident that our simulations point towards
a condensed matter analogue of a black-hole.
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Chapter 6

Future works

To outline some possible future directions towards my post-doctoral studies, in this
chapter we discuss a challenging investigation that we tackled at the end of my PhD.
Thus, the following description is not in its final form, but still needs significant
further investigations. This work concerns the computer simulation of a process in
which an 8 keV X-ray beam impinges on an amorphous SiO2 sample. In particular,
our goal is to study how the light-matter interaction affects the sample at the atomic
level with an emphasis on possible atomic displacements possibly due to bond break-
ing. This problem has been proposed by the experimental group of Prof. G. Monaco
(University of Trento). In their measurements, performed at the ESRF synchrotron
light source in France, they observe a local modification of the samples in terms of
atomic displacements of as much as tens of atoms. The key quantity to assess this dis-
placement is the so-called scattering function Fs(q,τ), which will be defined below.
On the theoretical side, the basic issues that we wish to investigate by computer simu-
lations are the following: i) do the atoms shift their positions only near the interaction
site or in overall the sample, due to the presence of secondary electrons and photons
emitted inside the material after the absorption of the X-ray photons? ii) What is the
fundamental reason of this local modification of the atomic arrangement?

From the computational point of view, this is a very tricky problem to solve. In-
deed, after X-ray scattering, photo-emitted core electrons of silicon or oxygen atomic
centres travel within the sample, releasing their kinetic energy by exciting other elec-
trons (secondary electrons). This leads to further de-excitation mechanisms, includ-
ing both electrons and photons. Of course we are not able to simulate all the pro-
cesses occurring after the initial the X-ray absorption. However, using the approach
presented in the second chapter we can follow, by computing the electron inelastic
mean free path in SiO2, the electron trajectories as a function of their energy prior
stopping. Knowing this observable, one can guess that after a transient in which the
electrons release the majority of their kinetic energy within the sample, the system
reaches a state in which only low-energy electrons or photons are present in thermal
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equilibrium with the sample. This is the starting point of our simulations.
In order to describe the after-scattering mechanisms we use a Non Adiabatic

Molecular Dynamics approach, which allows us to investigate the coupling between
nuclear and electronic degrees of freedom during the dynamical simulation of the
system. These simulations were performed by the CPMD code suite [1], which im-
plements this model. In particular, we studied three different structures of SiO2: the
quartz, an “ideal” amorphous geometry where the atoms are fully coordinated and
do not have dangling bonds, and finally a defected amorphous geometry, where a
few atoms have some dangling bonds. While the quartz structure is well known, the
latter two geometries were obtained by Molecular Dynamics simulations.

6.1 Theory of Non Adiabatic Molecular Dynamics

Shortly, we sketch the non-adiabatic Molecular Dynamics (NAMD) approach [2].
Within this framework, to follow the system dynamics one has to solve the time-
dependent Schrödinger equation, which in atomic units reads:

i
∂

∂t
Ψ({ri}, {RI}; t) = HΨ({ri}, {RI}; t) (6.1)

where {ri} and {RI} are the electronic and nuclear degrees of freedom. The
Hamiltonian of the system can be written:

H = −∑
I

1
2MI
∇2

I −
1
2 ∑

i
∇2

i + Vn,e({ri}, {RI}) (6.2)

where (6.3)

Vn,e({ri}, {RI}) = ∑
i<j

1
|ri − rj|

−∑
i,I

ZI
|RI − ri|

+ ∑
I<J

ZI ZJ

|RI − RJ |
(6.4)

The total Hamiltonian H can be split as a sum of two terms, which are func-
tions of the electronic and nuclear degrees of freedom respectively as follows H =

−∑I
1

2MI
∇2

I +He({ri}, {RI}). The second term depends parametrically on the nu-
clear coordinates. A possible ansatz for the total wave-function is

Ψ({ri}, {RI}; t) ≈ Φ({ri}; t) χ({RI}; t) · exp
[

i
∫ t

t0

〈Ψ(t′)|He|Ψ(t′)〉dt′
]

(6.5)

where the nuclear (χ) and electronic (Φ) contributions are factorised and the phase
factor is added for later convenience. This approximation for the total wave-function
is called single-configuration ansatz [2] and leads to a mean-field description of the
dynamics, also called Ehrenfest dynamics. Indeed, inserting (6.5) into Eqs. (6.1), (6.2),
after multiplication from the left by Φ∗ and χ∗ and integration over all the nuclear
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and electronic coordinates, one can obtain the following system of coupled equations
by imposing the conservation of the total energy d〈H〉

dt = 0:

i
∂

∂t
Φ = −1

2 ∑
i
∇2

i Φ +

[∫
χ∗({RI}; t)Vn,e({ri}, {RI}) χ({RI}; t)dR

]
Φ (6.6)

i
∂

∂t
χ = −∑

I

1
2MI
∇2

I χ +

[∫
Φ∗({ri}; t)He({ri}, {RI}) Φ({ri}; t)dr

]
χ (6.7)

where electrons and nuclei move in a time-dependent averaged mean–field poten-
tial created respectively by nuclei and electrons. The method to extract semiclassical
mechanics for nuclei is given by writing the χ wavefunction in terms of an amplitude
A and a phase factor S:

χ({RI}; t) = A({RI}; t)eiS({RI};t) (6.8)

By inserting Eq. (6.8) into Eq. (6.7), one obtains after some algebra two coupled
equations for the modulus and the phase factor of the nuclear wavefunctions [2]. The
equation for the amplitude A can be rationalized as a continuity equation for the
current [2], while the equation for the phase factor S, defining PI = ∇IS and taking
the classical limit h̄→ 0, leads to a Newton equation of motion for the nuclei:

dP
dt

= −∇I

∫
Φ∗HeΦdr

or MI
d2RI

dt2 = −∇IVE
e ({RI(t)})

(6.9)

Equations (6.9) clearly describe nuclei moving according to classical mechanics
where the potential VE

e is called the Ehrenfest potential and it is obtained by solving
the time dependent Schrödinger equation (6.6).
At this point also the nuclei in Eq. (6.6) can be approximated as classical point parti-
cles. By replacing the nuclear density |χ({RI}; t)|2 in the limit h̄→ 0 by a product of
delta functions ∏I δ(RI − RI(t)) centered at the instantaneous positions {RI(t)} of
the classical nuclei∫

χ∗({RI}; t)RIχ({RI}; t)dR→ RI(t) for h̄→ 0 (6.10)

one obtains finally the following equations:
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MI R̈I(t) = −∇
∫

Φ∗HeΦ dr = −∇I〈He〉

i
∂Φ
∂t

=

[
−1

2 ∑
i
∇2

i + Vn,e({ri}, {RI(t)})
]

Φ = HeΦ
(6.11)

This is a coupled set of quantum/classical equations that must be solved simul-
taneously. The assessment of the potential energy surface is avoided by solving the
time-dependent electronic Schrödinger equation “on-the-fly”, as the nuclei are prop-
agated using classical mechanics.
The equations of motion corresponding to Eq. (6.11) can be expressed by represent-
ing the electronic wave-function Φ in terms of the instantaneous adiabatic electronic
states

He({ri}, {RI})Φk = Ek({RI})Φk({ri}, {RI}) (6.12)

and the time dependent expansion coefficients deriving from the following expres-
sion for the wave function

Φ({ri}, {RI}; t) =
∞

∑
l=0

cl(t)Φl({ri}, {RI}) (6.13)

The coefficients {cl} satisfy ∑l |cl(t)|2 = 1 and describe the time evolution of the
different states labeled by l. In this way the Ehrenfest dynamic can be expressed by

MI R̈I(t) = −∇I ∑
k
|ck(t)|2Ek =

= −∑
k
|ck(t)|2∇I Ek + ∑

k,l
c∗k cl(Ek − El)d

kl
I

ih̄ċk(t) = ck(t)Ek − ih̄ ∑
l

cl(t)Dkl

(6.14)

where the non-adiabatic coupling elements are given by

Dkl =
∫

Φ∗k
∂

∂t
Φld

3r = ∑
I

ṘI

∫
Φ∗k∇IΦld

3r = ∑
I

ṘIdkl
I (6.15)

Eqs. (6.14) include rigorously non-adiabatic transitions between different elec-
tronic states Φk and Φl within the framework of the classical nuclear dynamics and
the mean-field approximation (6.5) to the coupled problem.
Here we make use of Tully molecular dynamics where the non-adiabatic effects are
taken into account with a ’fewest switches’ surface-hopping algorithm. More details
about this approach can be found in [2].
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6.2 Partial results for different allotropes of SiO2

We remind that our aim is to study the role that the electronic excitations might play
in the dynamics of SiO2 samples hit by hard X-rays in order to interpret the experi-
mentally observed collective displacements of atoms. Thus, our model of this scatter-
ing process is that, after X-ray photoionization, the sample thermalizes by exchanging
energy between electronic and nuclear degrees of freedom. To better understand the
role of non-adiabatic terms we performed both ground–state (adiabatic) and excited–
state (non-adiabatic) ab-initio simulations. Of course, it is clear that this physical
model cannot fully follow the atomic displacements, not to mention the bond break-
ing, upon X-ray irradiation of the sample.
CPMD is a Pseudo Potential (PP) code, i.e. calculates electronic properties of struc-
tures using effective potentials which lead to a reduction of the number of electrons
in the system. In particular, simulations were performed using a norm-conserving
PP (GO-BLYP type) with a cut-off of 90 Ry. This PP is able to reproduce both the ex-
perimental bond lengths between Si and O atoms (1.6 Å) and the band-gap (around
5. eV) in the ’ideal structure’. The basis set is given by plane waves and periodic
boundary conditions are used. We studied in particular three different types of cells,
reported in Fig. (6.1). These simulation cells have all 72 atoms, while they reproduce
the quartz structure (’crystal structure’); amorphous phase without the presence of
dangling bonds, i.e. each O atom displays two bonds while each Si has four bonds
(’ideal structure’); amorphous phase showing some degree of dangling bonds (’de-
fected structure’). In this way, we are able to compare the behaviour of different
electronically excited SiO2 architectures and to investigate their relevant relaxation
dynamics.

MD simulations follow the ion trajectories, from which one can extract relevant
observables for analysing the experimental data, such as the self-intermediate scatter-
ing function Fs(q, τ) and the mean square displacements MSD(τ). These quantities
are defined as:

Fs(q, nτ) =
1

Nat

1
Nt − nτ

Nat

∑
i=1

Nt−nτ

∑
j=1

1
4π

∫
dΩq e

i·q
∣∣∣ri(nτ+j·∆t)−ri(j·∆t)

∣∣∣ cos(θrq)
(6.16)

MSD(nτ) =
1

Nat

1
Nt − nτ

Nat

∑
i=1

Nt−nτ

∑
j=1

∣∣∣ri(nτ + j · ∆t)− ri(j · ∆t)
∣∣∣2 (6.17)

where Nat = 72 in all the three cases, Nt is the number of time steps, nτ is the
correlation time step, g(r, t0) is the pair distribution function at a fixed time t0. The
centre of mass drift was subtracted from our MD simulations, so that the position
vector of atom j is written ri(nτ + j · ∆t)− ri(j · ∆t) became
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SiO2 - Quartz

SiO2 – Ideal silica SiO2 – Defected silica

FIGURE 6.1: The three different geometries of SiO2 studied in this
work. They all contain 72 atoms (24 silicon atoms and 48 oxygen
atoms). The crystal structure of quartz is tetragonal, while to simulate

amorphous SiO2 we built cubic cells of 10 Å side.

[
ri(nτ + j · ∆t)− rcm(nτ + j · ∆t)

]
−
[
ri(j · ∆t)− (rcm(j · ∆t)

]
.

In Fig. (6.2, 6.3, 6.4) we report the above mentioned quantities for the crys-
tal, amorphous ideal and amorphous defected case, respectively. Ab-initio simula-
tions proceed by optimizing the atomic positions within the supercells, and by ther-
malizing the systems to 300 K via a Nosè-Hoover thermostat. Adiabatic or Born–
Oppenheimer (BO) and non-adiabatic (NA) simulations were performed starting from
the same configuration. In the BO case electrons were assumed in their ground state
for the given geometry, while in NA simulations electrons are initially excited to a
low-energy excited state. In particular, NA simulations were carried out by consid-
ering only the first five excited states due to the high computational cost of these
calculations with increasing number of excited states. CPMD deals with the excited
states within the Linear Response TDDFT.
We can observe that for the quartz crystal structure the difference between BO and
NA cases is not significant. We rationalize this similar behaviour by noticing that no
empty space for the atoms to move can be found in the perfect crystal and amorphous
systems, despite the excitation takes place. Possibly, to treat correctly amorphous sys-
tems a much bigger supercell than that we used here should be considered, to exclude
that periodic boundary conditions force it to behave as a crystal. On the other hand,
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FIGURE 6.2: Left: Self part of the intermediate scattering function for
the quartz crystal for different q values. Right: Mean square displace-
ment of the atoms during the simulation. In both cases, points indi-
cate Born-Oppenheimer, i.e. adiabatic, simulation, while continuous

lines represent NAMD.
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FIGURE 6.3: Same of Fig. (6.2), but for the ideal amorphous structure.
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FIGURE 6.4: Same of Fig. (6.2), but for the defected amorphous struc-
ture. Simulations stop after 330 fs, due to convergence issues in the

electronic structure calculations.
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the difference between NA and BO in the defected amorphous structure is remark-
able and the MSD and Fs functions are rather different with respect to the previous
cases. However, further investigations must be performed as the self-consistency
cycles to calculate the excited-state electronic structure did not reach a proper con-
vergence.
In the nearest future we will thus try to improve the accuracy and stability of the
NAMD simulations, to enlarge the simulation supercells and to achieve the picosec-
ond time scale, in order to demonstrate that the collective atomic motion is the result
of efficient energy transfer mechanisms among the electronic and nuclear degrees of
freedom owing to non-adiabatic effects.
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Conclusions

In this thesis, we presented several computational investigations with the focus on
carbon-based structures, particularly at low-dimensionality where unique properties
emerge. The back-bone and the theme of this thesis work are the theoretical and
computational methods for treating accurately the Coulomb repulsion among the
electrons.
In particular, we used state-of-the-art and developed novel computational techniques,
ranging from ab initio approaches such as Dirac-Hartree-Fock and Density Func-
tional Theory to the less accurate but efficient Tight Binding method. By these meth-
ods, we carried out the study of the electronic, optical and mechanical properties of
systems characterised by different level of complexity, in both amorphous and crys-
talline phases. In several cases these systems, to the best of our knowledge, are new
(e.g. bi-dimensional structures at low density and Beltrami’s pseudosphere).
Specifically, in the first chapter we introduced an original approach for calculating
self-consistently the electronic levels of atoms and molecules using the Dirac-Hartree-
Fock theory, and thus, with the inclusion of relativistic effects. The equations derived
are general and can be used to model different types of interaction potentials, such as
the nuclear forces.
In the second chapter we have shown that an ab-initio approach for calculating the
dielectric properties of semiconductors and insulators is mandatory to properly take
into account electronic correlation effects, such as the mixing of collective (plasmons)
and single-particle excitations beyond the optical limit. From the knowledge of the
dielectric function the Reflection Electron Energy Loss spectra are accurately described
within Monte Carlo simulations of electron charge transport. On the other hand, for
metal and semi-metal, such as graphite, a combined ab initio and semiclassical ap-
proach is accurate enough to understand the shape of these spectra.
Furthermore, we have studied prototype sp2 carbon based systems at low density
produced by an augmentation method using the graphene geometry as a texture.
From Density Functional Theory we have obtained the electronic and mechanical
properties of these systems, such as the Young’s modulus, the Poisson’s ratio and the
stress-strain characteristics of these novel bi-dimensional materials. We found that,
while lowering the density of graphene, one can retain some specific characteristic
comparable to graphene, such as the Young’s modulus and toughness. Nevertheless,
in general the absolute values of these quantities deplete significantly for small den-
sity.
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Moreover, we have presented a realistic model of SiC/SiOx core/shell nanowire, a
structure which can be possibly used in photodynamic therapy for cancer treatment.
Density Functional Tight Binding simulations were carried out to study the effects of
the radius size of the NW and different surface terminations on the electronic prop-
erties. In particular, measured XANES spectra were interpreted by DFT and a good
agreement was found by introducing local defects into our model, especially in the
case of the C-K edge. This work paves the way towards the inclusion of light sen-
sitive porphyrin molecules in the model to be used as cromophores absorbing X-ray
light within the patient body.
Finally, we developed a model of a graphene-like net over a Beltrami’s pseudosphere.
To that end, we developed a novel method which is able to scale up the size of all-sp2

systems up to micrometric dimension. To compute the electronic properties in this
extended systems the use of a Tight Binding approach is necessary. In this regard, we
exploited the Kernel Polynomial Method to calculate the Density of States of proto-
typical Beltrami’s pseudospheres; the latter approach avoids the diagonalization of
the Hamiltonian matrix and scales linearly with the number of atoms. In particular,
we were able to calculate Localized DOS resolved within the meV, which allows us
to devise some fundamental hypothesis on the nature of the Dirac pseudo-particles
within this structure.
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This thesis deals with the theoretical and computational modelling of materials by using a 
variety of ab-initio approaches to accurately predict the properties of realistic structures. A 
number of known and novel carbon-based materials are studied, exploiting the unique 
versatility of carbon to bind into several bonding configurations, with the aim of tailoring their 
electronic and mechanical characteristics. In this regard, the methods used to carry out 
electronic structure simulations depend on the system size: from the Dirac-Hartree-Fock 
approach to model molecular properties, to Density Functional Theory used for periodic 
solids, such as diamond and graphene-related materials composed by a few to some 
hundred of atoms, to Density Functional Tight Binding or plane Tight Binding to study 
nanowires or Beltrami pseudospheres, which are composed by some hundreds to a few 
millions atoms. The details of these methods are introduced in the chapters where they are 
used. The criterion used to present these concepts is to organize the chapters, with the 
exception of the last one, according to the increasing dimension of the systems. More in 
details, the first chapter uses the Dirac-Hartree-Fock approach to simulate atoms and 
molecules, such bromotrifluoromethane; the second chapter deals with periodic systems 
characterized by  unit cells with a relatively small number of atoms, such as diamond and 
graphite; the third one discusses graphene and graphene--related materials with lower 
density; the fourth one present a new computational and experimental model of silicon 
carbide nanowires coated with silicon dioxide shell; the fifth chapter is focused on the study 
of sp2-hybridized carbon atoms, arranged on a Beltrami surface. The latter topic spans 
different research fields such as geometrical topology, physics and mechanical engineering. 
Finally, the last chapter is dedicated to an on going work which deals with the Non-Adiabatic 
Molecular Dynamics simulation of amorphous silica samples where we couple the nuclear 
dynamic of the system to the electronic structure.
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