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MOTIVATION ANMETHODOLOGY

1.1 INTRODUCTION

The atomic mean squaraésglacement (MS[f) is often usedn
computational materials scienséudiesto calculatemeasurable properties
from theatomic trajetories of simulationdor example the diffusion
coefficient, which according to Einstein relati@mstein 1905)n the

random walk is 1/6 of the slope of the trend,p_fvs. time(Chandler 1987)

Equally relevars themeansquarerelativedisplacement (MSRI:), used in

X-ray SectroscopiesmainlyEXAFSo0 describe theatomic disorder in solids
(Calvin 2013)Fornasini 2014)

Less known ithe relevance othe MSRD in-Xay scattering from
nanoparticles. In particulan Total Scatteringnethods (Pair Distributio
Function and Debye Scattering Equatievh)ichrely on an atomistic
description of the nanoparticte the MSRD is the key tatiinguishdynamic
(thermal) andstaticdisorder(Krivoglaz 1969Kuhs 2006)nterestingly, he
trend of the MRSD with the distance is characteristic of the nanopatiiaje
an aspect investigatl in some detail in this Thesis wadvlore generally it can
be shown that beyonthe expected effectf nanocrystal sizehé shape alters
the contribution of the surface, which is quite relevant for the MSRD. The
importance otthe shape and of the surfagegion holds also in case of clusters
of nanoparticles, not only in isolated peles.

Besides th&ISRD, the atomic cogfirations simulated byoleculardynamics
(MD) can also be used to calculate thecathed Warren plotqr diagram,)
originallyintt RdzOSR Ay (KS aSYAylft @g2N] 27
describe the effect of plastic defornt&gon in metals(Warren B.E. 1950)

Recent work has shown how to obtain Warpdots fromthe anaysis of the
diffraction lineprofiles according to the Whole Powder Pattern Modelling
(WPPMJL. M. Scardi P. 200&cardi P 2017p. EW. Scardi 2018)n

particulr from the analysis of th&rain component of theiffractionpeak

profile broadeningAs prgosed in this wrk, If the Warren ot can be
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calculatel directlyfrom MD simulations, then it is possiblepimceed
backwardsand construct more reliable strafunctions from an atomist
knowledge of théocal atomic displacement caused by static and dynamic
disorde comporents.

Thisthesisis divided in two main partsliscussing two different but
complementary topics

) atomistic modelling and calculationkdisplacement quantities,
(i) application of theaboveresults to experimental case studibased
on themodeling of diffraction dtafrom nanocrystalline systems

We start by describing the atomistic simulations and vibrational properties
calculated foseveral atomic configuratisnThe main case studynoerns
Palladium nanoparticles of different sizes ancpsafor which we siw that
vibrational properties and correlation properties between atoms pairs are
greatly influenced by the geometric shapehaf nanoparticle and to &s$ser
extent by their siez. The interest isn truncated cubes, i.e. cubes whoskges
and corners ar@rogressively removed, as in the series e¢alted Wulff
solids, ranging from the cubic to the octahedral sh@gealff G. 1901)As
shown in (ii),htese are the object of several experimental studies.

Thedeveloped methodoldgs are nevertheless applicable to other cases, like
the clusters of nanocrystals observed in powders produced byehmyigyball
milling which is alsa topic discussed in (ii)

The work aims to show a general approach to atomistidefting, both for

isolated nanoparticles with definite shapes, and grains of unspecified shape in
plastically deformed polycrystalline materi&lge then use the values for
displacement quantitie®(g., MSD, MSRD) calculated for the simulated
systems tawompare them to the@xperimental results. An underlying fact that
seems to hold in all the different cases is thatsurface behaviour of
nanomderials has the largest infnceon thedisplacementuantities.For

isolated particles we observe strongretation between dislacement

guantities and the shapghereasn the case of a nanocrystalline grain



clusters Figurel-1) we see that no mattehe defects inside the grain, the
main contribution to MSRD is given by the graandary.
Figurel-1
An example asimulated cluster of
nanocrystalline FeMo alloy. Colours ¢

used to identify the differé domains.

(Scardi P 2017







1.2 NANOPARTICLES ABHTALYSIS

Catalytigpropertiesare enhanced in materials at the nanoscale. The smaller
the size of the particle, the larger the surface to voluat®, meaning that a
highe number of atoms are sutoordinated. Not only small nanoparticles
have a largepercentage of atomen the suréce, but in the case of anisotropic
shapes (like rods, octahedrons and cubes) different coordination nucdoers
be foundfor different sectorof the surface. It is important to know what
direction the faces of a geometricdlape are orientatd with resgect to the
crystalline arrangement. In fact, most of the times the morphology of a
nanocrystal follows the packiagrangement of atoms. Thiseans that
symmetry elements of the constituting lattice are also properties obveeall
polyhedralshape. A doe-shaped nanocrystal has the faces parallel to the
crystallographic planes {100}. Same goes for octahedral featesrée parallel

to the {112 planes.

Heterogeneous catalysis is proved to be directly dependant omathegystal

shape, and othe surfaesexposedo the external worldThe coordination

number of atoms on differently orientated surfaces changestlar@fore the

electron dengy too. As a consequenceatalytic activity for different reactions
changes whetér it takes placeoh O dzBlBE 2§ 2y 2 Ol | (KBRNER Yy Q
Ran 2013)

A number of studies address this spedibpic, i.e., how theataltic action

depends on theéype and extension of thexposed facets, i.e. the amutuof a

certain typeof surface exposed to the environmedpetg., se¢Rao 2007)

(Kwangjin An 201%ZYan Zhou 2018Howeverarecent work(Luo Mingchuan
2017)shows K G LI NI A Of S&a S6AGK |y 2@SNFff ¢
perform differently as catalysts, depending on the surfien, i.e. the

degree of defrmation of the surface compared to an ideal shape.

The geometry of a nanopartigheoved tobe imporant, with the following
points of interest:

1 Metal nanopatrticles in catalysts are deposited on a layer or immersed
in some cpping agent or solvent, in oed to protect and prevent
nanoparticles from lumping together.



1 The surface effectsre more or lesgifluent depending on the shape
under investigation. This means that some shapes will deform,
geometrical faces will get conver concave depending on tishape
itself.

1 The thermal effects always exiasatom always vibrate about an
equilibrium positionbut vibration modes and amplitude change with
size and shape of the nanocrystals.

In the end it is not sufficient to studyfférent shapes at the nanodeaas the
effects on the atomic disorder (as aétion of shape and sizehouldbe
guantified taking into account both the thermal and the structural
components of the disordén the atomic arrangemenThe MSRID a quanty
well suited for the task and it will be onetloé main tools to investigate
nanocrystaldy atomstic simulations

In particular, he present work foceson Palladium nanocrystalshich are
well knownfor their catalytiqoroperties Modern synthesigechniques allow
the production of precise shapesth narrow size distribution,e. almost
monodisgersed Pd nanocrystals of alma$tnticalshape (Wenxin Niu 2011)
(Jiawei Zhang 2016)

Our aim$ to simulate Pd nanoparticles usM@ (see next paragraphyhe

first step consistg defining thevirtual structureto be simulatedy fixing

atomic positions in space. This is done by carving geometrical shapes out from
a large latice of palladium #ms in deal crystallographic positions, i.e. evenly
spaced according thfeccrystal streture with unit celparameter a=3.84,,

which is an average of bkl lattice parameter, chosen in order to have a
plausible starting value fdine simulations.

The nanopaticle shapes illustrated in this work agheregade facto

standard shape whetesting models oralculations, even if not so frequent in
real applications) and especialyncated cubesThe size ranges from 40 to
150 A otthe particle shapéinear dmension (diameter in case of spheres, cube
edge for truncated cubes).



These sizeinvolve numbers @toms ranging from about 3600 (cube edge 40
A) to roughly 230.000 (cube edge 150The computational complexity for the
MD simulation is appromatelyof the orderd 0 0 0 (depending on the
cut-off distance of the employedteratomic potentid), i.e. it scales linearly
with the time of simulation and quadratically with the number of atoms.
Additional computational coplexities arise whreanalysng the trajectoriesn
phase spaceas it will be shown in coming paragraphs.réioee, maximum
sizefor the nanoparticles described in the current work is partly dictated by
the above mentioned computational limitations, buis also relateddthe
heterogeneous catalysis applications. In fact, as stated previously, the
nanoparticé specific effectcatalytic properties among them) are relevant for
small aggregates, and the computational limitation does not hinder thegesul
2 A 0K 0 KrBncald® NOdzexSa¢s ¢S NBFSNI G2 GK2&a$
generate from progressively remogvertices and edegs to a cube.
Specificallytruncated cube with triangul@ornerfacetare cubeswhere edges
and verticesare partlyremoved.The removal is pragssiveandmadein such

a way that the facet orthogonal to the cube diagonal is alwaggratngular
shape (SeeAppendiy.

The reason for choosing truncated cubes is twofold: on one hand the changing
truncation allows to spatine whole spectrum gbossible shapes from a cube

to an octahedronWulff solids)dealing thereforewith a full family of

geometrical solidby adjusting one paramet@enly, on the other hand

palladium cubes can be grown in laboratory with controlled eleapl

Transnission Electron Microscoffy EM) shows that their actual shape closely
resembles a cube with blunted edgeRan O 2 NI/ S NEaNA [ A K2 Wa Y iES
perfect cube reference shape is an effect of surface energy minimization,

which tends to remove atosnfrom higkenergy / low coordination gitions

like sharp corners and edg@sg., see Figure 8 {Blazhynska M. M. 2018)

Onecan systematically run from a cube to an octahedron by changing a single
parameter: he truncatior value. AnumberD N Tip (Figurel-2) is defined

such thatp=0is acube of edgé, and p=1is an octahedron of edgd V.
(Figurel-3)



Figurel-2

Naming conventiofor different
degreef truncation is based ol
the fractions of the face diagona

A cube corresponds to a truncatic

value of 0%, while 100% truncatic
yields an octahedron

60%

X 40%
}20%

All the patrticle renderings in figures are made with OY®takowski A. 2010)

Figurel-3

Nanoparticles with three differer
degrees of truncation
a) Truncation 0% (p=C
b) Truncation 30% (p :
0.3)
C) Truncation 98% (p :
0.98)




This knd of truncation is ofained by defining 3 poin{¢he vertices of the
triangular facetsjor each cube vertex for a total of 24 poiffgyurel-4). The
convex volume delimited by the 24 podgfinesthe truncated cube

If the aube is centredn the origincubevertices are in positions I7¢hI 1l
I¥chi 17 . One can justocus on thed mhi 11 Wi U mregion,thus
leaving7 regionswith identical properties. Let us cHiis subsection of the
cubeeighth of truncated cube

z Figurel-4

The three dlimiting points. For
every cube vertex three simil
points are defined

The particle will be the spac
region (maximum convex volum
delimited by the planes containir
all 24 points.

In this region, hie facet vertices are in positions:



O Ip DIhich pi DI (1)
0 ITchi w1 BIchi pl DIC
0 Ip DIchi pl DIchifig ]

Figurel-5

The triangular facetlong the
direction [111]

More details in the\ppendix
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1.3 MOLECULAR DYNAMICS

Molecular Dynamics providesmerical model®f nanocrystals based on the
solution ofthe equation of motion for all the atomstime givenatomic or
molecular syem (Allen M.P. 1989Rapaport 2004 As suchMD is the
numerical realization offhat has historically been tltmman of Statistical
Mechanics, since the cogfiration(andphase)space of the system under
investigationcan be simulated.e. the6N values for position andelocityof
the Natoms

Two ingredients are needed to obtain atom trajectories in time: a suitable

model for the interaction potential andgh computational capabilitieg

orderto simuhte large systems for longeugh period®f time. Sincehe

equations of motion must be solvedmericallya discretiation ofthe

continuous solutioms requiredand the choice for the timstep duration and

overall time scalesimportant For each atm in the system the trajectp can

becaDdzt F i SR a4 &az2fdziAzy 2F :0KS bSgi2yQ:

NN = I 12
a =1l I »
D n
With forces acting on each atom obtained fraifme potential energy:
(1-3)

-F]
i T 8

The potential energy, in genersa sum of many terms. The zeroth term,

dza dzl t f & OFfft SR &aSEGSNImpositiohdioB§riReé = Aa |
Folbwingterms eethed YI-§ 2 R& G SNl aé abody N thes 3 T NRB
interaction between the-ih atom with the othemmtoms (potentially alN-1

depending on th interaction range)then adding increasingly more complex
interactions:

0 0 0 (1-4)
P2 R VIR 0p ¢ PEPG Op c PEP»y  E
Qp "0 p W0 p
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Once a suitable potential is chosen, the trajectory for each a@alculted
at discree intervals of time (timesteps) by solviiep) with an integration
algorithm (for example Verlet algorithdeap-frog, velocityVerlet, see
(Thijssen 2007gnd references thern).

Modern computersallow the calculation, in a matter of hours, of trajectories
of ten thousands of atoms forsamulation time of several nanoseconds, which
is deemed appropriate to study several physical propef@bsng H. 2018n
particula the timestep for simulation should be chosen as some owfers
magnitudesmaller than theeciprocal of the highest frequency of motion
(Rapaport 2004(Tuckerman 2010while the oveall timesca (the duration in
GNBFf GAYSé0 aKz2dzZ R 6S Sy2dzaK (G2 &l YL
uncorrelated configurations of the systéilen M.P. 1989)For Palladium, the
maximum frequencies are on tleeder of 'YOda p i (Miller A. P. 1968)
(Miller A.P. 1971Xherefore the integration timestep is chosen tod®i

p T i and the time for the simulationis at lea&® ¢ | T®tp 1.

Interaction potentiad range from simple models with feviagnomenological
parameterslikethe Lemard-Jonegotentiat

A Iy (1-5)
D0 » ™I — — h
>

to complexmolecular potential with amitio calculated parameters (like
Rea¥H (van Duin A.C.T. 200B) common choice fanetallic materialss the
EmbeddedAtom Method(EAM (Daw 1983fDaw 1984potential, definedas
(Lee 2011)

S, nn’Y » Oom 8 (-9

¢KS 9! a LINFYYSGSNA INB FAGGSR F3lFAyad
are chosen to better represent bulk properties. Fas tkason it is still source

12



of debate whether using an EAM potential for the simulation of isolated
nanoparticles can giveasonable results, and corrections to the EAM scheme
have been proposed to overcome such limitations (especially the treatment of
surface)(Zhou L. G. 2012)

The EAM potential is composefia repulsive terntJjand a functional of the
electron density (), F(i). In the Embeddedtom case, the functional form is
deduced semempirically and in part by fitting esperimentsOne of the
objectives of the present worktis investigate the validity of suehchoice
also to provide indications fpossibé future develpments to supporta
better agreement between simulations and experiment.

Beforediscussing the use of MD, we need to present some other ingredients
used throughout the work. For the time being we just underline that the result
of an MD simiation is a cdéction of atomic coordinates (frames) evenly
sampled at different times durirtge simulation of the system. The whole
output of coordinates at different times is callettajectory, borrowing the

term from classical mechanics, even ifshare discretéin time) trajectories

and not continuous.

In the current work, Molecular Dynaes calculations have been performed
with the open source software LAMMPS. Originally developed in 1995
(Plimpton 1995)LAMMPS haskn constantlyipgraded and supported and it
is still one of the best and widely used softwiareMD simulations (See
https://lammps.sandia.gov/papers.htif8andia National Laboratiries n)d.)

1.3.1 MSRD and RPDF
Once the atomic #&jectories fom nanoparticle are obtained from MD, it is

necessary to identify a quantity thedn be measured on the virtual sample

The aim is to determine properties of the shape and surface of the particle. MD
provides the position of all N atom®, 0 , witht as the sampling time for the
coordinates. The distance of all pairs of atoms, i.e. the distance vector between
i-th and {th atoms, is

> <« » B 17
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Atomic trgectories are simlated byMD for a certain amount of timeusually
of the order of nanosecongdsne can therefore calculate timaverage
positiors of each atomas well ashe time-average distancketweeneach pair
of atoms definedrespectivelyas

1-9)

> » 0Qb

5%

p . . (1-9)
> ~ > Ooll I»0 Q8

Thevariance of each pair distanegth reged to the time average is also of
interest:

1-10
A in» <l 1w 38 (19

This quantity ishe mean square relative displasentandit is a measure of
the corrdation betveen positions of two atoms. The higher the valu& ofor

a pairij, the lower the correlation. As already mentioned in the previous
section, the MSRD is a suitaleantity to understand the atomic disorder, i.e.
the displacement aditoms froman idealized position (mainly) due to
temperature and finite sizef the nanocrystalstructural distortion)

When considered with respect targervalues of interatomic distee
(which correspond to atoms on opposite facetis MSB candisday whatis

happening on the surface of the nanopadijthusallowing aclassiication of
RATFSNBYG aAl Sa FyR &aKFLS 2F yIy2Ll NI
0 S K I Q(he2toeNiferent MSRD)

However, the MSRIB a computationidy demarding quanity. A possible
solution is to use already optimized cedle calculate aelatedquantity:the
Radial Pair Distribution Functi(fPDF), also indicated wit(r).

14



The RPDEan be readily calculated from molecular dynamics trajectories and it
isdefinedas
‘ o N i 1-12)
Ci | E4+— — =8
° tA 0 Toi Qi

With p(r) being the average number of atom pairs with distance betweerl
r+dr (Figurel-6), V totalvolume of the system\pairsnumber of unique atom
pairs in the system, i.e.

60 p (1-12)

P» 1> > (19

2 KSNBE (KS i5ustdb @nétheh$ribebf pairs of atoms at
distancer.
Figurel-6

Two dimensional projectiaf a
spheical shell of radius r and thicknes
dr.

The function in e1-13) selects only
the atoms with center inside the shell

15



The set of all atoms lying at a certain distance forms a shell of atomsgaka th
coordiration shell These shells are not to be interpreted as physical shells with
respect to an origin point.

The typical RPDF for a metal particle is as shofigurel-7.

Figurel-7
RPDF for Pd (a = 3.894) [ideal positions]
a) The RPDF of the
3501 ideal
3004 configuration.
The atoms are in
250 - fixed
crystallographic
— 200 _
g 00 positions. The
150 4 peaks have zero
width.
100
b) Afterthe
504 .
| l “l Relaxation,
0 1 1] averaging in time
{I) i é é 21 é (:3 ‘7 IB é 1ID lll 1I2 1I3 1I4 lL’: 1IE 1I7 lé llg the RPDF’ we
r [4] obtain the
a) distribution of
atoms pairs
distances.
RPDF for Pd (a = 3.894) [dynamic positions]
17.5
15.0
12.5
= 10.0
&
7.5 A
5.0
2.5
0.0 4
(IJ ]I. 2I é 1‘1 EI: fli % é é 1‘01‘11I21I31‘41‘51I61I71‘81|9
r[A]
b)
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In the case ban ide& (perfect) crystal, the peaks of the RRIEF 5 A NI OQa
deltas, i.e. infinitely narrow: dispersion of values aroundstleNI O Q& RSt G|
represented by the MSRD discussed earlier.

Existing algorithm@_evine (20110anbe usedo calculate the RPDF and then

fit each peak to extract the MSRD. This procedure is applicable only to objects
in a cngtalline form, where it is easy to connect different peaks to different
coordination shells and it works only for the inner damationcells, as with

the increasing distance the overlapping of the peaks makes the separation of
single shell contributionsnreliable.

Figurel-8
RPDF - ZOOM

An example of RPDF peak
Zoom on the ® nearest
neighbours skll, i.e. the
density of atoms pairs at
31 distance around 3.89 A.

Z2 The Mean Square Relative
Displacement (e@l1-10)) is
the variane of the curve. In
case of a Gaussian fit, the
variance of the curve is a
good approimation of the
MSRD value for all pairs
35 36 37 38 39 40 41 a2 belonging to the ®
r 1A neighbours shell.

1.3.2 Molecular Dynamgin practice:
It is important to define which system states carsimeulated by MD and the
differences between them

o Starting from ardealconfiguration (i.e. a set of atoms arranged
according to gerfectcrystallographic structure) the simulation first
generates aelaxedconfigurationof a nanocrystal, where atoms are
shifted to the minimum energy configuratioktoms are allowed to
G TS St gherdhrodykthezhosen potential (here the EAM potential
previously discussed). The Hamiltonian at this step comprises of the
Kinetic and Potential Term.

17



0 After this first mimnization step, the system is virtually put in contact
with a heat bath (reservgiand bought to room temperatureln the
Hamiltonian of the system a new term is added, i.e. a thermostat
function of the conjugated variables (position and momentum) and
temperature.

o Finallythe system is left isolated for a suitably Iqagiod of tine
(typicdly, not less than 0:-% ns) and timdrames of the atomic
configurations are saved periodicgligually a snapshot of the system
configuration every picosecondjhese timeframes are calledynamic
frames. The collection of all these frameangpled atdifferent times,
constitutesthe atomstrajectories In this case the system is considered
isolated (micro canonical ensemble in statistical mechéeios), and
the thermostat term is absent in the Hamiltonian.

o0 Thetime average position of #thatoms duing the dynamic phase is
calledaverage dynamid his can be calculated by averaging the
positions of atoms during theynamicphase.

Evey quantity tobe measurean the system can be calculated ihe four
aforementionedconfigurations

ideal

relaxed,

dynamic,

and averagalynamc.

O O O O

Every quantity measured orsanulatednanoparticle must be represented as a
function of the system coordinates (positions, velocities, magnetic moment,
etc). Thesimplest case is a quantity that depends on the atomiatpmss » of

all atoms.Thesame quantitycan be calculatedifferently, yielding different
averages, by using atomic coordinates from the four configurations described
above. For example, a quantity that is represented by a function:

Ak Qr»’l 8 (1-14)
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Can be calculated on the time average positions (avetagamic
configuration), thus being independent of time:

Ak "Q» 8 (1-19)

Or it can be caldated along therajectory and then time averaged:

(1-16)

Q» Q» Qz8

p
~

At the same time, the spatial averagpn be definedi.e. the average for all
atoms with a certain propeyr. For example, we can defineetindices of atoms
that are contained in a spherical volume of radius

6 ‘MEs mn 17

And calculate a quantity averaged only on the atoms in the volume:

50 <O Qpp 8 (18

To better show the difference among the four configuratisesthe
guantities shown ifrigurel-9 for a tyfdcal case study of aetal nanocrystal.
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Figurel-9

—— AVERAGE-DYNAMIC

7" e Detail of the RPDF of a Pd
— RELAXED nanoparticle for the seconc
coordination shell. The ide:
configuration gives a sharp
peak, since all atoms

) belonging tahe shell are at
E \ the samedeal distance of

3.89 A

N2GS OKIFI{Reyk YADONBIwit 5C NBEFSNR (2 G§KS |
each frame during the dynamic phaséis accounts for the fact that

observation times of-¥ay spectroscopic and scattering techniques (in this

study, X-Ray Diffraction in padular) are much longer than the typical

vibrational frequencies. Even with the most modemayFree Electron Lasers
(XFELs), X} 2&a FFNBX WTlFad LINP0oSaAQX &adzOK GKI i
averaging process over a largember of timeframes.

A moredetailed discussion of the curvesHigurel-9is presented in the next
paragraph.
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1.4 SIATIC AND DYNAMIS@RDER

1.4.1 Afull Mean Squaredtiial Displacememtalculation

The RPDF Irigurel-9is a good starting point to defirstaticand dynamic
disorder(the latter not to be confused with the dynamic configuration offa M
simulation, even if the two concepts are indeed related). In the cucmrext
dislocationsare not congilered or any other strong strain field: all the atomic
displacements with respect to an ideal (crystallographic) configuration are due
to the interatomic potential and to the thermal motion introduced in the
simulation as explained above.

Every source of deation from an ideal configuration is considered disorder.

Static disorder can be seen in the RPDF for the relaxed configuration, as an
effectofi KS GaKNAY(1Ay3aé 2F G2YAO RAAGIYO
particle and the sugoordination of surfee atoms, evident from the shift of

the center of the peakt is worth noting here, in pass, that the occurrence of a
shrinkage or expansion afomic distances (or absence of variation) depends

on the atomic species and, to some extent, on the atomienpial used(see

discussion about different potential 3).

Temperature is also responsible for a static component, related to thermal
expansion, that can be spotted in the RPDF of the avelgtgamic

configuration. The larggeffect, however, is t dynamic disorder due to the
thermal vibration of atoms about the equilibrium position, clearly visible for

the realdynamic configuration of the RPDF, showing a broad peak. These
definitions are not uniformly used and acceptethie context of the diffrent

X-ray spectroscopies. For example, in EXAFS literature the sources of disorder
are sometimes divided in&tructuralandthermal(containing both the static

and the dynamic contribution due to temperature) componéKisvoglaz
1969)(Lonsdale 1968)

At this point, given the atom trajectories and the ability to take both time and
spatial averagesye analyse the connection to the experiments. The (single
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atom) displacment is a timedependent feature of each atom in the real
dynamic configuration:

0O »O0 »h (1-19)

whereO O denotes the position of thieth atom at timet and »listhe time
average position of theth atom during the whole dynamic evolution. By
defining the distance of two atoms at timas™ O "I O "I O, the pair
displacement of atomisandj can be expressed as:

>0 by (1-20

The squared timaverags of the two quantities 0 and 0 are
respectivelfthe MSD andhiie MSRDasit hasalreadybeenshownin the
previous sectionThe tvo quantities can be connected, sinbe MSRD can be

written in terms of singlkatom contributions,( ) and a correlation term
(, t,)(a.L.Scardi P. 201@kong K. 1999)

oo gut, 8 (1-21)

In the EXAFS literature this is most often writte(Fasnasini 2014)Calvin
2013)

-32% WO 0O o6 (1-22)

where the correlation term is called Displacement Correlation Fun@ic#:
Whendealing with monoatomic metal@,-22) canbe further simplifed by

using the apprarnation,, 1l 1}

, g hinmungnt, 8 (1-23

Calculating the MSRD from the RPDF is computdyi@aiziantageous bus
unreliable ifit is ne@ssary tanalyse the MSRD feachthe possible pair
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distances. The radial distribution, in fact, presémbad and overlapping peaks
for large distances. Thisquiresa direct calculation of the MSRD. In dang
different versios of the MSRD functionave been constructeegach othem
able to single outlifferent contribution to disorder.

First, let us define a coordination shell, by labetlegatoms thaibeforeMD
simulaion) belonged to the same shello do s@mne uses theoordinates of
the ideal configurationwn, whS NB
shell ofatoms at distance R is then defined as the set a¢@sdvhose atoms
satisfy the distance condition:

GKS OIF LG €

Y Ag ey »n Y8
r[A] Number of
pairs
2.750 38940
3.89 18866
4.764 73488

alLé

(1-24)

Tablel

Number ofatom
pairs in the first
three coordination
shells for a fcPd
sphere of 700
atoms.RadiusR)

isin A

From the definition of equatiof1-22), for anytwo (ith and jth) atoms

A

iy <l 1wl

h

(1-25)

the MSRD can be written agunctionof the coordinatiorshelk radiusby
taking the shell averagg (1-22):

or

A

N

(1-26)

1-27)
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We denote the time average with tiBBARand shell average with the
BRACKETS

In paragrapi.3.1it has beenlsown how the MSRD can be obtained, directly
from the RPDF, by fitting the RPDF peaks with Gaussian funttie®xariance
of whichis a good estimate of the MSREdurel-8). Although efficient, this
way of calculating the MSRis evident limitations. The assumption that the
RPDF peaks have a Gaussian shapes, even if qualitatively go@hiselpt
correct, since the peaks may be asymmetric (as seepurel-9 for the
Avergye-Dynamic case), antie trendof the tail region can generally be
differentfrom the Gaussian profildoreover, only the first peaks are far apart
enoughto be fitted individually (as seenkfigurel-7 b); beyond the first15
peaks it becomes difiult to separate unequivocally what contribution to the
MSRD is due to which peak, due to their increasingly more complex
overlapping.

As an alternative we propose in this Thesis waykesorting to the molecular
dynamics positins and using equatiqn-26) the MSRD can be calculated
numerically for all coordination shells. The downside of this direct calculation is
the computational completyi: for a systenof 0 atoms, the number of pairs to
calculate i$y 0 p 7¢, and the ckeulation should be made for a meaningful
number of time frames (usually several hundreds to have a realistic time
average). In the following we show details and aafptins of this apprach.

1.4.2 Separation of static and dynamic contributions to disorder
Asshown so far, B is obtained without particular assumptions from MD

simulations Toget separateinformation on the componentsf the MSRIve
must instead use approjate averages and gpoximations.The static
displacement componeof the MSRD, 1 , accounts fothe deviation of
distances of pairs from the average value for all pairs in a dfislisdbtained
from the averagedynamicconfiguration thusremoving (almost completely)
the effect of thethermalcontribution:
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(1-28)

) i 3 >||||||£+ » 8
) U

hn hn

Next step is to obtain the dynamic component of the MSRD. This can be done
usingequationl-2c = F2 NJ ( KS &2Bdrfr theéstatic fompoBentt Y R ™
Under thereasonable approximation thabth components can be treated as
independentGaussian distrilitons, thedynamic (thermal) disorder

componentcan be obtaineas the difference of the preaus two quantities

With simple algebraic manipulations it can be shown: that

A1 17 1 o0 ctor O o» 08 (1-29)
Thequantity defined in1-29) can be interpreted as the ontlgermal
component Figurel-10 and Figurel-11 show) i for spheres ad
truncated cubes of various siz€ar the given nanoparticle shagesttrend is
nearly independent of the number of atomhs.particular, the maxiom value
of) i is independent of the nanoparticle size, and shdflarger
distancedor increasingsizes. This means that for very large nanocrystals, as in
the bulk form of the material, the mean effechjof 1 tends to disappear.
In fact, the trend of the MSRD for a bulk is expected to tend asymptotically to

twice thed "Y'®@alue, vihenmost pairs are made of atorfer enough to be
considered uncorrelated (see €t}23) ).

It is interesting to note wherthe maximum valuesf) i falloff. For
spheres thisvappendor pair distances clodeut not equédto the diameter
whereas for truncated cubeke maximum fallsff around the facdace
distance (the truncated cube edg#) both cases this ithe condition when
pairs are made of one atom ¢ime surface region (i.e., within2atomic layers
fromthevee & dzZNF I OS0 | yR 2yS FINI gl &sx 06dzi
surface effects are much weakBeyond the maximum the static MSRD
decreasedinearly to zerorather steeplyfor the longestistancein the
nanoparticle We also note th&end for truncded cubes irFigurel-11 (a), is
not as smooth and definite as in the spherical casd maxima are Higrin
cubesthan in spheres
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Spheres Figurel-10
0.0200

- 3nm

0.0175 1 anm Values Glf i for
-osnm spheres of different

6nm

nm

0.0150 - sizes. The trend is

AAYAL I NE o0d
. along the abscissae for
0.0100 - the different diameters.

0.0125 -

58 [A7]

0.0075 -

0.0050 4

0.0025 4

0.0000 -

0 10 20 30 4 50 60 70 80
r [A]

Nominal Edge Lengtll Numkter of atoms | FaceFace Distance | Table2

3 nm 1464 3.112 nm Details of the

4 nm 3660 4.668 nm nanoparticles in
5nm 6986 5.446 nm Figurel-10

6 nm 10204 6.1462 nm

7 nm 18924 7.78 nm

Looking at equadin (1-23), in purely algebraic terms a decrease oY €uld
stemboth from an increase dDCFthe correlation between the atoms paios,
from a decrease d¥ASD the single atom mean square displacement.

In case of an increased correlation, this means -thstgince interactions
between atoms, whicimakes sense for pairs afoms on opposite surfaces,
which presumably behave in similar ways, thus leading to a low variance of the
pair displacements. It is unlikely, instead, that the low MSRD foesbng
distances be due to a decreasing MSD, as oodheary the surface atomare
presumably less constrained in their displacements than the atoms of inner
shells.

Thetrend of thestatic MSRD for truncated nanocubesyich isthe shape of
main interest in the applications shown later on, follows apprabeiy a
polygonal chaifseethe triangle ofFigurel-11 (b)). It is null for zero arteeyond
the maximum distangewhich in a perfectube would be théody diagonal

(Vo & withathe edge length)whereasthe projection of he vertexon the
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base of the triangldalls approximately at the fadace distanceGiven the
nanocube size (edge length and truncation level) it is therefore possible to use a
simple parametrizationto approxmate the trend of the static MSRD. Indeed,
this possibility is exploredhichapter 5 (pagel19), where we put forward an
approximateanalytical expression for the MSRD.

Cubes 20% truncation Figurel-11
0.0200 -
-« 4nm .
0.0175 - 5nm a) Values of i
+ Gnm ' : for 20% truncated
7nm N

o109 0 K cubesof different
' sizesThe trend is
: similar,allthough
0.0100 4 B s more scattered
R RS than the spherical
case Figure
1-10).

0.0125 4

62, [A%]

0.0075 A

0.0050 1

b) Schematic sketch
of the| i for

‘ . . . . ‘ a cubic

0 20 40 60 80 100 nanoparticle, see

textfor details.

0.0025 A

0.0000 4

Max atom-atom distance

b)
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Nominal Edge Lengtll Number of atoms | FaceFace Distance Table3

4 nm 3638 3.8122nm Details of the
nanoparticles

5nm 10715 5.446nm in Figure

6 nm 12000 5.7572nm 111

7 nm 18800 6.9242nm

8 nm 27778 7.7022 nm

We can now analyse more closely the two contributions tiMB&D The
GFdzZ £ ¢ a{ veguatibril-26] WheiSag stati@and dynamic
components are estimated froeguatiors 1-28 and1-29, respectively Results
are shownn Figurel-12for a sphere an@igurel-13for a truncated cube
Apart fromthe longest distances, the thermadbmpment behaves as bulk
materiak, raisng gradually to aearly constant valudn fact, it is in the first
(innermost) coordination shells that atom vibrations are correlated, thus
decreasing the MSRDhe effect of finite nanoparticle size is apparentfie
longer distanceswherethe thermal componenteviaes from the uniform
trend. This is clearly consequence &urface atoms vibratgwith larger
amplitudes but apart from those few distanctdse trend of the thermal
componentseems not mucbound to the nanoparticle shapét is mostf the
size, which etermines the mean value over the whole partiees already
proved with the recently proposed Correlated Debye model, modified to
account for the finite domain siZE. A. Scardi P. 201B)oreover, for any
property derived fom the MSRD and its components, the contribution of the
individual coordination shells must be weighted on the number of pairs of
atoms; as shown iRigurel-12(b) andFigurel-13(b), the weight of the lnger
distances, where the upward deviation of the MSR/Xilsle, is rather limited
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+  Static - 62,
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a)

b)

Figurel-12

MSRD componentsr a
sphere of 6986 atoms.

a)

b)

The three
components of
Relative
Displaement:
static (orange),
full (blue),
difference of the
two (green).

The
corresponding
number of pairs
for each
coordination shell
of radiusR.
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