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 MOTIVATION AND METHODOLOGY 

1.1 INTRODUCTION 

The atomic mean square displacement (MSD, „ ) is often used in 

computational materials science studies to calculate measurable properties 

from the atomic trajectories of simulations; for example, the diffusion 

coefficient, which according to Einstein relations (Einstein 1905) on the 

random walk is 1/6 of the slope of the trend of  „  vs. time (Chandler 1987). 

Equally relevant is the mean square relative displacement (MSRD, „ ), used in 

X-ray Spectroscopies, mainly EXAFS, to describe the atomic disorder in solids 

(Calvin 2013) (Fornasini 2014). 

Less known is the relevance of the MSRD in X-ray scattering from 

nanoparticles. In particular, in Total Scattering methods (Pair Distribution 

Function and Debye Scattering Equation), which rely on an atomistic 

description of the nanoparticles, the MSRD is the key to distinguish dynamic 

(thermal) and static disorder (Krivoglaz 1969) (Kuhs 2006). Interestingly, the 

trend of the MRSD with the distance is characteristic of the nanoparticle shape, 

an aspect investigated in some detail in this Thesis work. More generally it can 

be shown that beyond the expected effect of nanocrystal size, the shape alters 

the contribution of the surface, which is quite relevant for the MSRD. The 

importance of the shape and of the surface region holds also in case of clusters 

of nanoparticles, not only in isolated particles. 

Besides the MSRD, the atomic configurations simulated by molecular dynamics 

(MD) can also be used to calculate the so-called Warren plot (or diagram), 

originally intrƻŘǳŎŜŘ ƛƴ ǘƘŜ ǎŜƳƛƴŀƭ ǿƻǊƪ ƻŦ ²ŀǊǊŜƴ ϧ !ǾŜǊōŀŎƘ ƻŦ ǘƘŜ Ψрлǎ ǘƻ 

describe the effects of plastic deformation in metals  (Warren B.E. 1950). 

Recent work has shown how to obtain Warren plots from the analysis of the 

diffraction line profiles according to the Whole Powder Pattern Modelling 

(WPPM) (L. M. Scardi P. 2002) (Scardi P 2017) (P. E.-W. Scardi 2018), in 

particular from the analysis of the strain component of the diffraction peak 

profile broadening. As proposed in this work, If the Warren plot can be 
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calculated directly from MD simulations, then it is possible to proceed 

backwards, and construct more reliable strain functions from an atomistic 

knowledge of the local atomic displacement caused by static and dynamic 

disorder components. 

This thesis is divided in two main parts, discussing two different but 

complementary topics:  

(i) atomistic modelling and calculations of displacement quantities,  

(ii) application of the above results to experimental case studies, based 

on the modelling of diffraction data from nanocrystalline systems.  

We start by describing the atomistic simulations and vibrational properties 

calculated for several atomic configurations. The main case study concerns 

Palladium nanoparticles of different sizes and shapes, for which we show that 

vibrational properties and correlation properties between atoms pairs are 

greatly influenced by the geometric shape of the nanoparticle and to a lesser 

extent by their size. The interest is on truncated cubes, i.e. cubes whose edges 

and corners are progressively removed, as in the series of so-called Wulff 

solids, ranging from the cubic to the octahedral shape (Wulff G. 1901). As 

shown in (ii), these are the object of several experimental studies. 

The developed methodologies are nevertheless applicable to other cases, like 

the clusters of nanocrystals observed in powders produced by high-energy ball 

milling, which is also a topic discussed in (ii). 

The work aims to show a general approach to atomistic modelling, both for 

isolated nanoparticles with definite shapes, and grains of unspecified shape in 

plastically deformed polycrystalline materials. We then use the values for 

displacement quantities (e.g., MSD, MSRD) calculated for the simulated 

systems to compare them to the experimental results. An underlying fact that 

seems to hold in all the different cases is that the surface behaviour of 

nanomaterials has the largest influence on the displacement quantities. For 

isolated particles we observe strong correlation between displacement 

quantities and the shape; whereas in the case of a nanocrystalline grain 
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clusters (Figure 1-1) we see that no matter the defects inside the grain, the 

main contribution to MSRD is given by the grain boundary. 

 

 

Figure 1-1 

An example of simulated cluster of 
nanocrystalline FeMo alloy. Colours are 
used to identify the different domains. 

(Scardi P 2017) 
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1.2 NANOPARTICLES AND CATALYSIS 

Catalytic properties are enhanced in materials at the nanoscale. The smaller 

the size of the particle, the larger the surface to volume ratio, meaning that a 

higher number of atoms are sub-coordinated. Not only small nanoparticles 

have a larger percentage of atoms on the surface, but in the case of anisotropic 

shapes (like rods, octahedrons and cubes) different coordination numbers can 

be found for different sectors of the surface. It is important to know what 

direction the faces of a geometrical shape are orientated with respect to the 

crystalline arrangement. In fact, most of the times the morphology of a 

nanocrystal follows the packing arrangement of atoms. This means that 

symmetry elements of the constituting lattice are also properties of the overall 

polyhedral shape. A cube-shaped nanocrystal has the faces parallel to the 

crystallographic planes {100}. Same goes for octahedral faces that are parallel 

to the {111} planes.  

Heterogeneous catalysis is proved to be directly dependant on the nanocrystal 

shape, and on the surfaces exposed to the external world. The coordination 

number of atoms on differently orientated surfaces changes, and therefore the 

electron density too. As a consequence, catalytic activity for different reactions 

changes whether it takes place on ŀ ŎǳōŜΩǎ ƻǊ ƻƴ ŀƴ ƻŎǘŀƘŜŘǊƻƴΩǎ ǎǳǊŦŀŎŜ (Long 

Ran 2013). 

A number of studies address this specific topic, i.e., how the catalytic action 

depends on the type and extension of the exposed facets, i.e. the amount of a 

certain type of surface exposed to the environment (e.g., see (Rao 2007) 

(Kwangjin An 2012) (Yan Zhou 2018)). However, a recent work (Luo Mingchuan 

2017) shows ǘƘŀǘ ǇŀǊǘƛŎƭŜǎ ǿƛǘƘ ŀƴ ƻǾŜǊŀƭƭ άǎƛƳƛƭŀǊέ ǎƘŀǇŜ Ŏŀƴ ƘƻǿŜǾŜǊ 

perform differently as catalysts, depending on the surface strain, i.e. the 

degree of deformation of the surface compared to an ideal shape. 

The geometry of a nanoparticle proved to be important, with the following 

points of interest: 

¶ Metal nanoparticles in catalysts are deposited on a layer or immersed 

in some capping agent or solvent, in order to protect and prevent 

nanoparticles from lumping together. 
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¶ The surface effects are more or less influent depending on the shape 

under investigation. This means that some shapes will deform, 

geometrical faces will get convex or concave depending on the shape 

itself. 

¶ The thermal effects always exist, as atom always vibrate about an 

equilibrium position, but vibration modes and amplitude change with 

size and shape of the nanocrystals. 

In the end it is not sufficient to study different shapes at the nanoscale, as the 

effects on the atomic disorder (as a function of shape and size) should be 

quantified, taking into account both the thermal and the structural 

components of the disorder in the atomic arrangement. The MSRDis a quantity 

well suited for the task and it will be one of the main tools to investigate 

nanocrystals by atomistic simulations. 

In particular, the present work focuses on Palladium nanocrystals, which are 

well known for their catalytic properties. Modern synthesis techniques allow 

the production of precise shapes with narrow size distribution, i.e. almost 

monodispersed Pd nanocrystals of almost identical shape. (Wenxin Niu 2011) 

(Jiawei Zhang 2016) 

Our aim is to simulate Pd nanoparticles using MD (see next paragraph). The 

first step consists in defining the virtual structure to be simulated by fixing 

atomic positions in space. This is done by carving geometrical shapes out from 

a large lattice of palladium atoms in ideal crystallographic positions, i.e. evenly 

spaced according the fcc crystal structure with unit cell parameter a=3.89 Å, 

which is an average of bulk Pd lattice parameter, chosen in order to have a 

plausible starting value for the simulations.  

The nanoparticle shapes illustrated in this work are spheres (a de facto 

standard shape when testing models or calculations, even if not so frequent in 

real applications) and especially truncated cubes. The size ranges from 40 to 

150 Å of the particle shape linear dimension (diameter in case of spheres, cube 

edge for truncated cubes).  
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These sizes involve numbers of atoms ranging from about 3600 (cube edge 40 

Å) to roughly 230.000 (cube edge 150 Å). The computational complexity for the 

MD simulation is approximately of the order ὕὔ ὕὸ (depending on the 

cut-off distance of the employed interatomic potential), i.e. it scales linearly 

with the time of simulation and quadratically with the number of atoms. 

Additional computational complexities arise when analysing the trajectories in 

phase space, as it will be shown in coming paragraphs. Therefore, maximum 

size for the nanoparticles described in the current work is partly dictated by 

the above mentioned computational limitations, but it is also related to the 

heterogeneous catalysis applications. In fact, as stated previously, the 

nanoparticle specific effects (catalytic properties among them) are relevant for 

small aggregates, and the computational limitation does not hinder the results.  

²ƛǘƘ ǘƘŜ ǘŜǊƳ άtruncateŘ ŎǳōŜǎέΣ ǿŜ ǊŜŦŜǊ ǘƻ ǘƘƻǎŜ ²ǳƭŦŦ ǎƻƭƛŘǎ ƻƴŜ Ŏŀƴ 

generate from progressively removing vertices and edges to a cube. 

Specifically: truncated cube with triangular corner facet are cubes where edges 

and vertices are partly removed. The removal is progressive and made in such 

a way that the facet orthogonal to the cube diagonal is always of a triangular 

shape. (See Appendix). 

The reason for choosing truncated cubes is twofold: on one hand the changing 

truncation allows to span the whole spectrum of possible shapes from a cube 

to an octahedron (Wulff solids), dealing therefore with a full family of 

geometrical solids by adjusting one parameter only; on the other hand 

palladium cubes can be grown in laboratory with controlled shape, and 

Transmission Electron Microscopy (TEM) shows that their actual shape closely 

resembles a cube with blunted edges anŘ ŎƻǊƴŜǊǎΦ {ǳŎƘ ΨǎƳŜaǊƛƴƎΩ ƻŦ ǘƘŜ 

perfect cube reference shape is an effect of surface energy minimization, 

which tends to remove atoms from high-energy / low coordination positions 

like sharp corners and edges (e.g., see Figure 8 in (Blazhynska M. M. 2018)). 

One can systematically run from a cube to an octahedron by changing a single 

parameter: the truncation value. A number Ðɴװ πȟρ (Figure 1-2) is defined 

such that p=0 is  a cube of edge Ì, and p=1 is  an octahedron of edge Á ÌȾЍς. 

(Figure 1-3) 
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Figure 1-2 

Naming convention for different 
degrees of truncation is based on 
the fractions of the face diagonal.  

A cube corresponds to a truncation 
value of 0%, while 100% truncation 

yields an octahedron. 

 

 

All the particle renderings in figures are made with OVITO (Stukowski A. 2010). 

 

 

a) 
 

Figure 1-3 

Nanoparticles with three different 
degrees of truncation: 

a) Truncation 0% (p = 0) 
b) Truncation 30% (p = 

0.3) 

c) Truncation 98% (p = 
0.98) 

 

b) 
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c) 
 

 

 

This kind of truncation is obtained by defining 3 points (the vertices of the 

triangular facets) for each cube vertex for a total of 24 points (Figure 1-4). The 

convex volume delimited by the 24 point defines the truncated cube. 

If the cube is centred in the origin, cube vertices are in positions ÌȾςȟװװ

ÌȾςȟװ ÌȾς. One can just focus on the Ø πȟװװÙπװȟװÚπ region, thus 

leaving 7 regions with identical properties. Let us call this subsection of the 

cube eighth of truncated cube. 

 

 

Figure 1-4 

The three delimiting points. For 
every cube vertex three similar 

points are defined. 
The particle will be the space 

region (maximum convex volume) 
delimited by the planes containing 

all 24 points. 

 

In this region, the facet vertices are in positions: 
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 ὺ Ìρ ÐȾςȟװװÌȾςȟװװÌρ ÐȾς 

ὺ ÌȾςȟװװÌρ ÐȾςȟװװÌρ ÐȾς 

ὺ Ìρ ÐȾςȟװװÌρ ÐȾςȟװװÌȾς 

(1-1) 

 

 

Figure 1-5 

The triangular facet along the 
direction [111] 

 

More details in the Appendix. 
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1.3 MOLECULAR DYNAMICS 

Molecular Dynamics provides numerical models of nanocrystals based on the 

solution of the equation of motion for all the atoms in the given atomic or 

molecular system (Allen M.P. 1989) (Rapaport 2004). As such, MD is the 

numerical realization of what has historically been the domain of Statistical 

Mechanics, since the configuration (and phase) space of the system under 

investigation can be simulated, i.e. the 6N values for position and velocity of 

the N atoms. 

Two ingredients are needed to obtain atom trajectories in time: a suitable 

model for the interaction potential and high computational capabilities, in 

order to simulate large systems for long enough periods of time. Since the 

equations of motion must be solved numerically, a discretization of the 

continuous solution is required and the choice for the time step duration and 

overall time scale is important. For each atom in the system the trajectory can 

be calŎǳƭŀǘŜŘ ŀǎ ǎƻƭǳǘƛƻƴ ƻŦ ǘƘŜ bŜǿǘƻƴΩǎ Ŝǉǳŀǘƛƻƴǎ ƻŦ Ƴƻǘƛƻƴ: 

 
άװ
Ὠ►░
Ὠὸ
װ  Ƞ►װ█

(1-2) 

 

With forces acting on each atom obtained from the potential energy: 

 
█░►

Ћ

Ћװ►░
╤►Ȣ 

(1-3) 

 

The potential energy, in general, is a sum of many terms. The zeroth term, 

ǳǎǳŀƭƭȅ ŎŀƭƭŜŘ άŜȄǘŜǊƴŀƭ ŦƛŜƭŘέΣ ƛǎ ŀ ŦǳƴŎǘƛƻƴ ƻŦ ǘƘŜ ŀǘom positions only (ri). 

Following terms are the άƳŀƴȅ-ōƻŘȅ ǘŜǊƳǎέ ǎǘŀǊǘƛƴƎ ŦǊƻƳ ǘǿƻ-body, i.e. the 

interaction between the i-th atom with the other atoms (potentially all N-1 

depending on the interaction range), then adding increasingly more complex 

interactions: 

 

►ל װ ὺρ►Ὥ ὺρς►Ὥȟ►Ὦ ὺρςσ►Ὥȟ►Ὦȟ►Ὧ Ễ

ὔ

ὭȟװὮȟὯρ

ὔ

ὭȟװὮρ

ὔ

Ὥρ

 

(1-4) 
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Once a suitable potential is chosen, the trajectory for each atom is calculated 

at discrete intervals of time (timesteps) by solving (1-2) with an integration 

algorithm (for example Verlet algorithm, leap-frog, velocity-Verlet, see 

(Thijssen 2007) and references therein). 

Modern computers allow the calculation, in a matter of hours, of trajectories 

of ten thousands of atoms for a simulation time of several nanoseconds, which 

is deemed appropriate to study several physical properties (Sheng H. 2018). In 

particular the timestep for simulation should be chosen as some orders of 

magnitude smaller than the reciprocal of the highest frequency of motion 

(Rapaport 2004) (Tuckerman 2010), while the overall timescale (the duration in 

άǊŜŀƭ ǘƛƳŜέύ ǎƘƻǳƭŘ ōŜ ŜƴƻǳƎƘ ǘƻ ǎŀƳǇƭŜ ŀ ǎǳƛǘŀōƭŜ ƴǳƳōŜǊ ƻŦ ǎǘŀǘƛǎǘƛŎŀƭƭȅ 

uncorrelated configurations of the system (Allen M.P. 1989). For Palladium, the 

maximum frequencies are on the order of ὝὌᾀρπ ί  (Miller A. P. 1968) 

(Miller A.P. 1971), therefore the integration timestep is chosen to be ρ Ὢί

ρπ ί and the time for the simulation is at least πȢυ ὲί πȢυẗρπί. 

Interaction potentials range from simple models with few phenomenological 

parameters, like the Lennard-Jones potential: 

 
►flꞌל τװצ

ʎ

►

ʎ

►
ȟ 

(1-5) 

 

to complex molecular potential with ab-initio calculated parameters (like 

ReaxFF) (van Duin A.C.T. 2001). A common choice for metallic materials is the 

Embedded-Atom Method (EAM) (Daw 1983) (Daw 1984) potential, defined as 

(Lee 2011): 

 
װיִꜝל꜡ Ὗװװ ► ὊʍȢ 

(1-6) 

 

¢ƘŜ 9!a ǇŀǊŀƳŜǘŜǊǎ ŀǊŜ ŦƛǘǘŜŘ ŀƎŀƛƴǎǘ ǎƛƳǳƭŀǘƛƻƴǎ ƻŦ άōǳƭƪέ ƳŀǘŜǊƛŀƭǎΣ ǎƻ ǘƘŜȅ 

are chosen to better represent bulk properties. For this reason it is still source 
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of debate whether using an EAM potential for the simulation of isolated 

nanoparticles can give reasonable results, and corrections to the EAM scheme 

have been proposed to overcome such limitations (especially the treatment of 

surface) (Zhou L. G. 2012). 

The EAM potential is composed of a repulsive term Uij and a functional of the 

electron density (́i), F(́ i). In the Embedded-Atom case, the functional form is 

deduced semi-empirically and in part by fitting to esperiments. One of the 

objectives of the present work is to investigate the validity of such a choice, 

also to provide indications for possible future developments, to support a 

better agreement between simulations and experiment. 

Before discussing the use of MD, we need to present some other ingredients 

used throughout the work. For the time being we just underline that the result 

of an MD simulation is a collection of atomic coordinates (frames) evenly 

sampled at different times during the simulation of the system. The whole 

output of coordinates at different times is called a trajectory, borrowing the 

term from classical mechanics, even if these are discrete (in time) trajectories 

and not continuous. 

In the current work, Molecular Dynamics calculations have been performed 

with the open source software LAMMPS. Originally developed in 1995 

(Plimpton 1995), LAMMPS has been constantly upgraded and supported and it 

is still one of the best and widely used software for MD simulations (See 

https://lammps.sandia.gov/papers.html (Sandia National Laboratiries n.d.)).  

 

1.3.1 MSRD and RPDF 

Once the atomic trajectories for a nanoparticle are obtained from MD, it is 

necessary to identify a quantity that can be measured on the virtual sample. 

The aim is to determine properties of the shape and surface of the particle. MD 

provides the position of all N atoms,  ►ὸ, with t as the sampling time for the 

coordinates. The distance of all pairs of atoms, i.e. the distance vector between 

i-th and j-th atoms, is: 

 ►░▒◄ ►░◄ ►◄Ȣ (1-7) 
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Atomic trajectories are simulated by MD for a certain amount of time, usually 

of the order of nanoseconds; one can therefore calculate time-average 

positions of each atom, as well as the time-average distance between each pair 

of atoms, defined respectively as: 

 
►

ρ

Ὕ
►ὸὨὸȟ 

(1-8) 

 

 
►

ρ

Ὕ
►ὸװ  ὸὨὸȢ►װ

(1-9) 

 

The variance of each pair distance with respect to the time average is also of 

interest: 

 
ʎ ►װ ►װװװװ◄ Ȣ 

(1-10) 

 

This quantity is the mean square relative displacement and it is a measure of 

the correlation between positions of two atoms. The higher the value of ʎ  for 

a pair ij, the lower the correlation. As already mentioned in the previous 

section, the MSRD is a suitable quantity to understand the atomic disorder, i.e. 

the displacement of atoms from an idealized position (mainly) due to 

temperature and finite size of the nanocrystal (structural distortion). 

When considered with respect to larger values of interatomic distance ►░▒ 

(which correspond to atoms on opposite facets), the MSRD can display what is 

happening on the surface of the nanoparticle, thus allowing a classification of 

ŘƛŦŦŜǊŜƴǘ ǎƛȊŜǎ ŀƴŘ ǎƘŀǇŜ ƻŦ ƴŀƴƻǇŀǊǘƛŎƭŜǎΣ ŀŎŎƻǊŘƛƴƎ ǘƻ ǘƘŜƛǊ άǎǳǊŦŀŎŜ 

ōŜƘŀǾƛƻǳǊέ (i.e. the different MSRD). 

However, the MSRD is a computationally demanding quantity. A possible 

solution is to use already optimized codes to calculate a related quantity: the 

Radial Pair Distribution Function (RPDF), also indicated with g(r). 
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The RPDF can be readily calculated from molecular dynamics trajectories and it 

is defined as: 

 
Çὶ ÌÉÍ

ᴼ

ὴὶ

τʌὔ ȾὠὶὨὶ
Ȣ 

(1-11) 

 

With p(r) being the average number of atom pairs with distance between r and 

r+dr (Figure 1-6), V total volume of the system, Npairs number of unique atom 

pairs in the system, i.e. 

 
ὔ

ὔὔ ρ

ς
ȟ 

(1-12) 

 

In the limit of ÄÒOװ π the number of atom pairs p(r) is just 

 
Ð► ɿ► ►

ȟɴ Ƞװ

 
(1-13) 

 

²ƘŜǊŜ ǘƘŜ 5ƛǊŀŎΩǎ 5Ŝƭǘŀ is used to count the number of pairs of atoms at 

distance r. 

 

 

Figure 1-6  

Two dimensional projection of a 
spherical shell of radius r and thickness 
dr. 

The function in eq. (1-13) selects only 
the atoms with center inside the shell. 
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The set of all atoms lying at a certain distance forms a shell of atoms, aka the 

coordination shell. These shells are not to be interpreted as physical shells with 

respect to an origin point.  

The typical RPDF for a metal particle is as shown in Figure 1-7. 

 

a) 
 

Figure 1-7 

a) The RPDF of the 
ideal 
configuration. 
The atoms are in 
fixed 
crystallographic 
positions. The 
peaks have zero 
width. 

b) After the 
Relaxation, 
averaging in time 
the RPDF, we 
obtain the 
distribution of 
atoms pairs 
distances. 

 
 

b) 
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In the case of an ideal (perfect) crystal, the peaks of the RPDF arŜ 5ƛǊŀŎΩǎ 

deltas, i.e. infinitely narrow: dispersion of values around the 5ƛǊŀŎΩǎ ŘŜƭǘŀ ƛǎ 

represented by the MSRD discussed earlier. 

Existing algorithms (Levine (2011)) can be used to calculate the RPDF and then 

fit each peak to extract the MSRD. This procedure is applicable only to objects 

in a crystalline form, where it is easy to connect different peaks to different 

coordination shells and it works only for the inner coordination cells, as with 

the increasing distance the overlapping of the peaks makes the separation of 

single shell contributions unreliable. 

 

 
 

Figure 1-8 

An example of RPDF peak. 
Zoom on the 2nd nearest 
neighbours shell, i.e. the 
density of atoms pairs at 
distance around 3.89 Å. 

The Mean Square Relative 
Displacement (eq. (1-10)) is 
the variance of the curve. In 
case of a Gaussian fit, the 
variance of the curve is a 
good approximation of the 
MSRD value for all pairs 
belonging to the 2nd 
neighbours shell. 

 

 

1.3.2 Molecular Dynamics in practice: 

It is important to define which system states can be simulated by MD and the 

differences between them: 

o Starting from an ideal configuration (i.e. a set of atoms arranged 

according to a perfect crystallographic structure) the simulation first 

generates a relaxed configuration of a nanocrystal, where atoms are 

shifted to the minimum energy configuration. Atoms are allowed to 

άŦŜŜƭέ ŜŀŎƘ ƻther through the chosen potential (here the EAM potential 

previously discussed). The Hamiltonian at this step comprises of the 

Kinetic and Potential Term. 
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o After this first minimization step, the system is virtually put in contact 

with a heat bath (reservoir) and brought to room temperature. In the 

Hamiltonian of the system a new term is added, i.e. a thermostat 

function of the conjugated variables (position and momentum) and 

temperature. 

o Finally, the system is left isolated for a suitably long period of time 

(typically, not less than 0.5-1 ns) and time-frames of the atomic 

configurations are saved periodically (usually a snapshot of the system 

configuration every picosecond). These time-frames are called dynamic 

frames.  The collection of all these frames, sampled at different times, 

constitutes the atoms trajectories. In this case the system is considered 

isolated (micro canonical ensemble in statistical mechanics terms), and 

the thermostat term is absent in the Hamiltonian. 

o The time average position of the atoms during the dynamic phase is 

called average dynamic. This can be calculated by averaging the 

positions of atoms during the dynamic phase. 

Every quantity to be measured on the system can be calculated in the four 

aforementioned configurations:  

o ideal,  

o relaxed,  

o dynamic,  

o and average-dynamic.  

Every quantity measured on a simulated nanoparticle must be represented as a 

function of the system coordinates (positions, velocities, magnetic moment, 

etc). The simplest case is a quantity that depends on the atomic positions ► of 

all atoms. The same quantity can be calculated differently, yielding different 

averages, by using atomic coordinates from the four configurations described 

above. For example, a quantity that is represented by a function: 

 ÆÔḳὪ►ἼȢ (1-14) 
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Can be calculated on the time average positions (average-dynamic 

configuration), thus being independent of time: 

 ÆḳὪ►Ȣ (1-15) 

 

Or it can be calculated along the trajectory and then time averaged: 

 
Ὢ►

ρ

Ὕ
Ὢ► ὨʐȢ 

(1-16) 

 

At the same time, the spatial average can be defined, i.e. the average for all 

atoms with a certain property. For example, we can define the indices of atoms 

that are contained in a spherical volume of radius ʍ: 

 6 Ὥװȡװȿὶȿ ʍȠ (1-17) 

 

And calculate a quantity averaged only on the atoms in the volume: 

 ộὪ◄Ớ Ὢ►Ƞὸ

 ɴ

Ȣ 
(1-18) 

 

To better show the difference among the four configurations, see the 

quantities shown in Figure 1-9 for a typical case study of a metal nanocrystal.  
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Figure 1-9 

Detail of the RPDF of a Pd 
nanoparticle for the second 
coordination shell. The ideal 
configuration gives a sharp 
peak, since all atoms 
belonging to the shell are at 
the same ideal distance of 
3.89 Å 

 

 

NƻǘŜ ǘƘŀǘ ǘƘŜ άǊŜŀƭ-ŘȅƴŀƳƛŎέ wt5C ǊŜŦŜǊǎ ǘƻ ǘƘŜ ŀǾŜǊŀƎŜ ƻŦ wt5Cǎ ŎŀƭŎǳƭŀǘŜŘ ŀǘ 

each frame during the dynamic phase. This accounts for the fact that 

observation times of X-ray spectroscopic and scattering techniques (in this 

study, X-Ray Diffraction in particular) are much longer than the typical 

vibrational frequencies. Even with the most modern X-ray Free Electron Lasers 

(X-FELs), X-Ǌŀȅǎ ŀǊŜ ΨŦŀǎǘ ǇǊƻōŜǎΩΣ ǎǳŎƘ ǘƘŀǘ ǘƘŜ ƻōǎŜǊǾŀǘƛƻƴ ƛƴǾƻƭǾŜǎ ŀ ǘƛƳŜ-

averaging process over a large number of time-frames. 

A more detailed discussion of the curves in Figure 1-9 is presented in the next 

paragraph. 
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1.4 STATIC AND DYNAMIC DISORDER 

1.4.1 A full Mean Square Radial Displacement calculation 

The RPDF in Figure 1-9 is a good starting point to define static and dynamic 

disorder (the latter not to be confused with the dynamic configuration of a MD 

simulation, even if the two concepts are indeed related). In the current context 

dislocations are not considered or any other strong strain field: all the atomic 

displacements with respect to an ideal (crystallographic) configuration are due 

to the interatomic potential and to the thermal motion introduced in the 

simulation as explained above. 

Every source of deviation from an ideal configuration is considered disorder. 

Static disorder can be seen in the RPDF for the relaxed configuration, as an 

effect of ǘƘŜ άǎƘǊƛƴƪƛƴƎέ ƻŦ ŀǘƻƳƛŎ ŘƛǎǘŀƴŎŜǎ ŎŀǳǎŜŘ ōȅ ǘƘŜ ŦƛƴƛǘŜ ǎƛȊŜ ƻŦ ǘƘŜ 

particle and the sub-coordination of surface atoms, evident from the shift of 

the center of the peak. It is worth noting here, in pass, that the occurrence of a 

shrinkage or expansion of atomic distances (or absence of variation) depends 

on the atomic species and, to some extent, on the atomic potential used (see 

discussion about different potential in 7.3).  

Temperature is also responsible for a static component, related to thermal 

expansion, that can be spotted in the RPDF of the average-dynamic 

configuration. The largest effect, however, is the dynamic disorder due to the 

thermal vibration of atoms about the equilibrium position, clearly visible for 

the real-dynamic configuration of the RPDF, showing a broad peak.  These 

definitions are not uniformly used and accepted in the context of the different 

X-ray spectroscopies. For example, in EXAFS literature the sources of disorder 

are sometimes divided into structural and thermal (containing both the static 

and the dynamic contribution due to temperature) components (Krivoglaz 

1969) (Lonsdale 1968). 

 

At this point, given the atom trajectories and the ability to take both time and 

spatial averages, we analyse the connection to the experiments. The (single 
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atom) displacement is a time-dependent feature of each atom in the real 

dynamic configuration: 

 ὸ ►ὸ ►ȟ (1-19) 

 

where ÒÔ denotes the position of the i-th atom at time t and ►װis the time 

average position of the i-th atom during the whole dynamic evolution. By 

defining the distance of two atoms at time t as Ἲ Ô ἺÔ ἺÔ,  the pair 

displacement of atoms i and j can be expressed as: 

 ► ὸ ►Ȣ (1-20) 

 

The squared time-averages of the two quantities ὸ and  ὸ  are 

respectively the MSD and the MSRD, as it has already been shown in the 

previous section. The two quantities can be connected, since the MSRD can be 

written in terms of single-atom contributions („) and a correlation term 

(„ẗ„) (a. L. Scardi P. 2016) (Jeong I.-K. 1999): 

װ„  װ„װ װ„װ ςװ„ẗ„Ȣ (1-21) 

 

In the EXAFS literature this is most often written as (Fornasini 2014) (Calvin 

2013) 

 -32$ ὓὛὈװ ὓὛὈ ςὈὅὊȟ (1-22) 

 

where the correlation term is called Displacement Correlation Function (DCF). 

When dealing with monoatomic metals, (1-22) can be further simplified by 

using the approximation „װ „װ  

װ„  ςװװ„װςװ„ẗ„Ȣ (1-23) 

 

Calculating the MSRD from the RPDF is computationally advantageous but is 

unreliable if it is necessary to analyse the MSRD for each the possible pair 
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distances. The radial distribution, in fact, presents broad and overlapping peaks 

for large distances. This requires a direct calculation of the MSRD. In doing so 

different versions of the MSRD function have been constructed, each of them 

able to single out different contribution to disorder.  

First, let us define a coordination shell, by labelling the atoms that (before MD 

simulation) belonged to the same shell. To do so one uses the coordinates of 

the ideal configuration, ►Ƞ, whŜǊŜ ǘƘŜ ŎŀǇƛǘŀƭ άLέ ƛƴŘƛŎŀǘŜǎ ǘƘŜ ƛŘŜŀƭ ǎȅǎǘŜƳΦ ! 

shell of atoms at distance R is then defined as the set of indices whose atoms 

satisfy the distance condition: 

 Ὓ ὭȟὮȡ►░Ƞ╘ ►Ƞ ὙȢ (1-24) 

 
 

r [Å] Number of 
pairs 

2.750 38940 

3.89 18866 

4.764 73488 

Table 1 
Number of atom 
pairs in the first 
three coordination 
shells for a fcc Pd 
sphere of 7000 
atoms. Radius (R) 
is in Å 

 

 

From the definition of equation (1-22), for any two (i-th and j-th) atoms 

 
ʎ ►װ ►װװװװ◄ ȟ 

(1-25) 

 

the MSRD can be written as a function of the coordination shells radius by 

taking the shell average of  (1-22): 

 
ʎ ὶ

ρ

ὔ
ʎ

ȟɴ

  ʎ  
(1-26) 

or  

 ʎ ὶ ʎ Ȣ (1-27) 
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We denote the time average with the BAR and shell average with the 

BRACKETS. 

In paragraph 1.3.1 it has been shown how the MSRD can be obtained, directly 

from the RPDF, by fitting the RPDF peaks with Gaussian functions, the variance 

of which is a good estimate of the MSRD ( Figure 1-8). Although efficient, this 

way of calculating the MSRD has evident limitations. The assumption that the 

RPDF peaks have a Gaussian shapes, even if qualitatively good is not entirely 

correct, since the peaks may be asymmetric (as seen in Figure 1-9 for the 

Average-Dynamic case), and the trend of the tail region can generally be 

different from the Gaussian profile. Moreover, only the first peaks are far apart 

enough to be fitted individually (as seen in Figure 1-7 b); beyond the first ~15 

peaks it becomes difficult to separate unequivocally what contribution to the 

MSRD is due to which peak, due to their increasingly more complex 

overlapping.  

As an alternative we propose in this Thesis work, by resorting to the molecular 

dynamics positions and using equation (1-26) the MSRD can be calculated 

numerically for all coordination shells. The downside of this direct calculation is 

the computational complexity: for a system of ὔ atoms, the number of pairs to 

calculate is ὔὔ ρȾς, and the calculation should be made for a meaningful 

number of time frames (usually several hundreds to have a realistic time 

average). In the following we show details and applications of this approach. 

 

1.4.2 Separation of static and dynamic contributions to disorder 

As shown so far, MSRD is obtained without particular assumptions from MD 

simulations. To get separate information on the components of the MSRD we 

must instead use appropriate averages and approximations. The static 

displacement component of the MSRD, ɿ ὶ, accounts for the deviation of 

distances of pairs from the average value for all pairs in a shell. This is obtained 

from the average-dynamic configuration, thus removing (almost completely) 

the effect of the thermal contribution: 
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ɿ ὶ
ρ

ὔ
װװװװ►

ρ

ὔ
►

ȟɴ

Ȣ

ȟɴ

 

(1-28) 

 

Next step is to obtain the dynamic component of the MSRD. This can be done 

using equation 1-2сΣ ŦƻǊ ǘƘŜ άŦǳƭƭέ a{w5Σ ŀƴŘ м-28, for the static component. 

Under the reasonable approximation that both components can be treated as 

independent Gaussian distributions, the dynamic (thermal) disorder 

component can be obtained as the difference of the previous two quantities. 

With simple algebraic manipulations it can be shown that: 

 ʎ ὶ ɿ ὶ ộ►Ớ ςẗộ► Ớ ộ►ỚȢ (1-29) 

The quantity defined in (1-29) can be interpreted as the only thermal 

component. Figure 1-10 and Figure 1-11 show ɿ ὶ for spheres and 

truncated cubes of various sizes. For the given nanoparticle shape the trend is 

nearly independent of the number of atoms. In particular, the maximum value 

of ɿ ὶ is independent of the nanoparticle size, and shifts to larger 

distances for increasing sizes. This means that for very large nanocrystals, as in 

the bulk form of the material, the mean effect of ɿ ὶ tends to disappear. 

In fact, the trend of the MSRD for a bulk is expected to tend asymptotically to 

twice the ὓὛὈ value, when most pairs are made of atoms far enough to be 

considered uncorrelated (see eq. (1-23) ). 

It is interesting to note where the maximum values of ɿ ὶ fall off. For 

spheres this happens for pair distances close but not equal to the diameter, 

whereas for truncated cubes the maximum falls off around the face-face 

distance (the truncated cube edge). In both cases this is the condition when 

pairs are made of one atom on the surface region (i.e., within 2-3 atomic layers 

from the verȅ ǎǳǊŦŀŎŜύ ŀƴŘ ƻƴŜ ŦŀǊ ŀǿŀȅΣ ōǳǘ ǿƛǘƘƛƴ ǘƘŜ άŎƻǊŜέ ǊŜƎƛƻƴΣ ǿƘŜǊŜ 

surface effects are much weaker. Beyond the maximum the static MSRD 

decreases linearly to zero, rather steeply, for the longest distance in the 

nanoparticle. We also note the trend for truncated cubes in Figure 1-11 (a), is 

not as smooth and definite as in the spherical case, and maxima are higher in 

cubes than in spheres. 
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Figure 1-10 

Values of ‏ ὶ for 
spheres of different 
sizes. The trend is 
ǎƛƳƛƭŀǊΣ ōǳǘ άǎǘǊŜǘŎƘŜŘέ 
along the abscissae for 
the different diameters. 

 

 

 

Nominal Edge Length Number of atoms Face-Face Distance 

3 nm 1464 3.112 nm 

4 nm 3660 4.668 nm 

5 nm 6986 5.446 nm 

6 nm 10204 6.1462 nm 

7 nm 18924 7.78 nm 
 

Table 2 
Details of the 
nanoparticles in 
Figure 1-10 

 

Looking at equation (1-23), in purely algebraic terms a decrease of ὓὛὙὈ could 

stem both from an increase of DCF, the correlation between the atoms pairs, or 

from a decrease of MSD, the single atom mean square displacement.  

In case of an increased correlation, this means long-distance interactions 

between atoms, which makes sense for pairs of atoms on opposite surfaces, 

which presumably behave in similar ways, thus leading to a low variance of the 

pair displacements. It is unlikely, instead, that the low MSRD for longest 

distances be due to a decreasing MSD, as on the contrary the surface atoms are 

presumably less constrained in their displacements than the atoms of inner 

shells. 

The trend of the static MSRD for truncated nanocubes, which is the shape of 

main interest in the applications shown later on, follows approximately a 

polygonal chain (see the triangle of Figure 1-11 (b)). It is null for zero and beyond 

the maximum distance, which in a perfect cube would be the body diagonal 

(Ѝσ ὰ, with ὰ the edge length); whereas the projection of the vertex on the 
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base of the triangle falls approximately at the face-face distance. Given the 

nanocube size (edge length and truncation level) it is therefore possible to use a 

simple parametrization to approximate the trend of the static MSRD. Indeed, 

this possibility is explored in chapter  5 (page 119), where we put forward  an 

approximate analytical expression for the MSRD.  

 

 

 
a) 

 

 
b) 

Figure 1-11 

a) Values of ‏ ὶ 
for 20% truncated 
cubes of different 
sizes. The trend is 
similar, allthough 
more scattered 
than the spherical 
case (Figure 
1-10). 

b) Schematic sketch 

of the ‏ ὶ for 
a cubic 
nanoparticle, see 
text for details. 
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Nominal Edge Length Number of atoms Face-Face Distance 

4 nm 3638 3.8122 nm 

5 nm 10715 5.446 nm 

6 nm 12000 5.7572 nm 

7 nm 18800 6.9242 nm 

8 nm 27778 7.7022 nm 
 

Table 3 
Details of the 
nanoparticles 
in Figure 
1-11 

 

We can now analyse more closely the two contributions to the MSRD. The 

άŦǳƭƭέ a{w5 ƛǎ ƎƛǾŜƴ ōȅ equation (1-26), whereas static and dynamic 

components are estimated from equations 1-28 and 1-29, respectively. Results 

are shown in Figure 1-12 for a sphere and Figure 1-13 for a truncated cube. 

Apart from the longest distances, the thermal component behaves as in bulk 

materials, raising gradually to a nearly constant value. In fact, it is in the first 

(innermost) coordination shells that atom vibrations are correlated, thus 

decreasing the MSRD. The effect of finite nanoparticle size is apparent for the 

longer distances, where the thermal component deviates from the uniform 

trend. This is clearly a consequence of surface atoms vibrating with larger 

amplitudes, but apart from those few distances the trend of the thermal 

component seems not much bound to the nanoparticle shape. It is mostly the 

size, which determines the mean value over the whole particle, as already 

proved with the recently proposed Correlated Debye model, modified to 

account for the finite domain size (F. A. Scardi P. 2018). Moreover, for any 

property derived from the MSRD and its components, the contribution of the 

individual coordination shells must be weighted on the number of pairs of 

atoms; as shown in Figure 1-12(b) and Figure 1-13(b), the weight of the longer 

distances, where the upward deviation of the MSRD is visible, is rather limited. 
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a) 
 

Figure 1-12 

MSRD components for a 
sphere of 6986 atoms. 

a) The three 
components of 
Relative 
Displacement: 
static (orange), 
full (blue), 
difference of the 
two (green). 

b) The 
corresponding 
number of pairs 
for each 
coordination shell 
of radius R. 

 
 

 
b) 

 

 

 

 






















































































































































































































































































