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Abstract

Most human language understanding is grounded in perception. There is thus

growing interest in combining information from language and vision. Multi-

ple models based on Neural Networks have been proposed to merge language

and vision information. All the models share a common backbone consisting

of an encoder which learns to merge the two types of representation to perform

a specific task. While some models have seemed extremely successful on those

tasks, it remains unclear how the reported results should be interpreted and

what those models are actually learning. Our contribution is three-fold. We

have proposed (a) a new model of Visually Grounded Dialogue; (b) a diagnos-

tic dataset to evaluate the encoder ability to merge visual and language input;

(c) a method to evaluate the quality of the multimodal representation computed

by the encoder as general purposed representations. We have proposed and an-

alyzed a cognitive plausible architecture in which dialogue system modules are

connected through a common grounded dialogue state encoder. Our in-depth

analysis of the dialogues shows the importance of going beyond task-success

in the evaluation of Visual Dialogues: the dialogues themselves should play a

crucial role in such evaluation. We have proposed a diagnostic dataset, FOIL
which consists of images associated with incorrect captions that the model has

to detect and correct. Finally, we have used FOIL to evaluate the quality of the

multimodal representation produced by an encoder trained on different multi-

modal tasks. We have shown how the training task used effects the stability of

the representation, their transferability and the model confidence.
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Chapter 1

Introduction

Human brains are multi-modal. Our knowledge comes from various types
of inputs that we simultaneously receive and jointly process in parallel. In this
direction, one of the goals of artificial intelligence (AI) researchers is to enable
a computer to see, understand the visual concepts, express this understanding
into a sentence, and reason about the understanding. To achieve this goal, the
integration of language and vision (LaVi) information is essential such that the
model can use knowledge from both modalities.

Ideally, a model that genuinely merges information received from different
modalities should add and merge them to enrich the knowledge, and not merely
correlate them based on the data. For instance, given an image representing a
woman standing in front of a door and opening it (as shown in Figure 1.1), and
the description Mary is coming to the office; by using one of the two inputs alone
we can answer the questions Is the door close? (visual) and Where is Mary

coming? (linguistic), but we can also answer the question Was Mary’s office

close? by merging the two modalities. Ideally, we would like the LaVi model
to be able to reach this ability. To achieve this goal, the model has to be able to
merge a fine-grained representation and knowledge from both modalities.

Toward this goal, multiple tasks have been proposed in the literature. For
example, image captioning (Kulkarni et al., 2013; Hodosh et al., 2013a), visual
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CHAPTER 1. INTRODUCTION

Figure 1.1: Caption: Mary is coming to the office. An example of complementary information
from language and vision.

question answering (Antol et al., 2015), visual question generation (Mostafazadeh
et al., 2016), visual reference resolution (Kazemzadeh et al., 2014), and visual
dialogue (Das et al., 2017a), etc. These tasks are designed with the increasing
level of complexity to merge the two modalities. For example, image caption-
ing is mostly about model seeing the image and describing it in natural lan-
guage. While the visual question answering (VQA) is asking a question about
content of the image and visual dialogue is asking multiple coherent questions
in a sequence about the image. To perform these tasks computational multi-
modal systems using deep neural networks (DNN) have been proposed. In
general, the visual information is processed using the convolutional neural net-
work (CNN) (LeCun et al., 1998), pre-trained on the ImageNet (Krizhevsky
et al., 2012). The textual information is processed using the recurrent neu-
ral network (RNN) (Mikolov et al., 2010; Hochreiter and Schmidhuber, 1997).
RNNs are trained end-to-end on the task-specific dictionary. Using these visual
and textual features, different fusion mechanisms been proposed: like concate-
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CHAPTER 1. INTRODUCTION

nation (Vinyals et al., 2015), dot product (Antol et al., 2015), bilinear pool-
ing (Park et al., 2016) etc. Broadly there are two types of fusion mechanisms:
early and late fusion (Hodosh and Hockenmaier, 2016). In early fusion, fea-
tures are merged at the word level. While in the late fusion, features are merged
at the sentence level. Later, different attention mechanisms (Xu et al., 2015;
Yang et al., 2015) are incorporated in the pipeline to achieve better-fused rep-
resentations. Most of the attention mechanisms are focused on visual attention.
Recently, memory network (Xiong et al., 2016; Chunseong Park et al., 2017) is
also being used to improve performance further.

These models perform exceptionally well on the given task. However, it
is not clear that these models merge the two modalities to complement each
modalities information. The results presented in Zhou et al. (2015) and Hodosh
and Hockenmaier (2016) show that the tasks currently proposed by the LaVi
community can be tackled successfully by learning correlations within and be-
tween the two modalities (Zhou et al., 2015) and by extracting the gist of the
image rather than understanding it in details (Hodosh and Hockenmaier, 2016).
To explore this, there is a growing interest to understand these models, i.e. how
to explain specific decisions made by models? In this direction, broadly three
mechanisms are proposed: diagnostic dataset (Hodosh and Hockenmaier, 2016;
Johnson et al., 2017), merged representation based model analysis (Kádár et al.,
2015, 2017), gradient-based model analysis (Zhou et al., 2016; Selvaraju et al.,
2017). Using the diagnostic datasets (Hodosh and Hockenmaier, 2016; Johnson
et al., 2017), limitations of state-of-the-art (SoA) models are shown by doing
minimal change in one of the input modalities. In merged representation based
model analysis (Kádár et al., 2017; Conneau et al., 2018), models have been
probed on the different linguistic and visual properties to analysis the repre-
sentation learned. In the case of gradient-based model analysis (Selvaraju et al.,
2017; Goyal et al., 2016b), the weights of the neurons are directly projected into
the input space to analyze the effect of different characteristics of the models

3



1.1. CONTRIBUTIONS OF THIS STUDY CHAPTER 1. INTRODUCTION

directly.

Against this background, we aim to provide a mean to evaluate whether the
encoders of SoA LaVi models truly merge vision and language representations
and to understand whether the task on which a LaVi model is trained effects the
encoder performance in merging the two modalities. In particular, we compare
tasks in which the model has to retrieve a linguistic answer (Visual Question
Answering) vs. an image (using Referring Expression and Visual Dialogue).

1.1 Contributions of this study

Joint Model for Visual Dialogue We introduce a single visually grounded dia-
logue state encoder to jointly train the guesser and question generator modules
to address a foundational issue on how to integrate visual grounding with di-
alogue system components. A decision-making module is also introduced in
this joint setting to stop the dialogue when enough information is gathered to
perform the task. We also do a first in-depth study to compare different learning
approaches. Our study shows that the linguistic skills of the models differ dra-
matically, despite approaching comparable task success levels. This underlines
the importance of linguistic analysis to complement solely task success based
evaluation.

FOIL: a diagnostic dataset We have proposed a diagnostic dataset, called the
FOIL dataset, and three tasks based on it. The FOIL dataset contains image
captions pair such that each image is associated with a foiled caption and a good
one. The foil caption is created by inserting a wrong (foil) word in the caption
in place of the correct (target) word. The foil word can be of various parts of
speech. We exploit available resources to obtain the target foil pairs (target::foil,
i.e., a target word can be replaced by a foil word). Based on these target foil
pairs, we replace one word at a time in the caption to create a foil caption.
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CHAPTER 1. INTRODUCTION 1.2. THESIS OUTLINE

We evaluated SoA LaVi models with the FOIL dataset against three tasks: (a)
Classify the caption as good or wrong; (b) Localize the mistake; (c) Correct
the mistake. These tasks are designed in such a way that, they will evaluate
the strengths and weaknesses of models in their ability to merge language and
vision representation.

Encoder Evaluation Multiple LaVi tasks have been proposed. However, it is not
clear how well these tasks are fusing/encoding the information from language
and vision. Is the merged representation similar for all tasks? Also, are these
merged representations good enough to be transferred to another task?

In this direction, we investigate the three popular LaVi tasks: VQA, ReferIt
and GuessWhat and scrutinize the multimodal representations a model learns
through them. First of all, we proposed a common dataset for these tasks by
minimizing the difference as much as possible. At the task level, we re-design
the tasks to have common evaluation protocol. We evaluate the merged repre-
sentations on the FOIL dataset with classification tasks. Using the FOIL classifi-
cation task, we evaluate how well the learned representations can be transferred
from three tasks to the FOIL task. We also evaluate the learned representa-
tion‘s semantic space using the Representation Similarity Analysis and Nearest
Neighbour overlap of the object representation. We find that the merged repre-
sentation of ReferIt and GuessWhat is similar compared to the VQA. We also
find that all encoders give more weight to the visual input than the linguistic
one.

1.2 Thesis Outline

The remaining sections of this thesis are organized as follows:

In Chapter 2, we provide an overview of LaVi tasks, dataset and models pro-
posed. The first contribution of this doctoral study, a novel method for merging
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1.2. THESIS OUTLINE CHAPTER 1. INTRODUCTION

language and vision for the visual dialogue is described in Chapter 3. In Chap-
ter 4, we describe the second contribution as the FOIL dataset and tasks to show
the limitations of the SoA LaVi models. The last contribution on encoder evalu-
ation described in Chapter 5. Finally, in Chapter 6 we conclude this dissertation
by some remarks.
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Chapter 2

Related Work

Recently, there has been a growing interest in combining information from
language and vision (LaVi). The interest is based on the fact that many con-
cepts can be similar in one modality but very different in the other, and thus
capitalizing on both information turns out to be very effective in many tasks,
for example, image captioning, visual question answering, visual dialogue, etc.
All these tasks provide unique opportunities to understand the commonality and
uniqueness of modalities. In this chapter, we will review different LaVi tasks,
dataset, and corresponding models.

2.1 Non-Interactive Tasks

Multiple non-interactive tasks have been proposed for LaVi. In this section,
we will review three of those tasks: Image Captioning, Referring Expression,
and visual question answering.

2.1.1 Image Captioning

In the image captioning (IC) task, given an image, the system has to describe
the content of the image, see Figure 2.1 for an example. In general IC task is
formulated in two ways; as a retrieval task and generation task. In IC retrieval
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2.1. NON-INTERACTIVE TASKS CHAPTER 2. RELATED WORK

Figure 2.1: An example of image captioning system. For a given image IC model has to generate
a corresponding caption.

task (Hodosh et al., 2013a), given an image model has to retrieve the closest
description of the image from the set of possible description. In IC generation
task (Kulkarni et al., 2013; Fang et al., 2015; Chen and Lawrence Zitnick, 2015;
Donahue et al., 2015; Karpathy and Fei-Fei, 2015; Vinyals et al., 2015; Wang
et al., 2016), the goal is to generate a caption for a given image, such that it is
both semantically and syntactically correct, and properly describes the content
of that image.

Dataset A large number of image captioning datasets has been proposed for
both natural scene (Rashtchian et al., 2010; Elliott and Keller, 2013; Hodosh
and Hockenmaier, 2013; Plummer et al., 2015; Lin et al., 2014a; Krishna et al.,
2017) and abstract scene (Zitnick and Parikh, 2013; Zitnick et al., 2013). In this
thesis, we focused on the natural scene dataset. The Pascal1K (Rashtchian et al.,
2010) is one of early large scale image captioning dataset, based on 1000 images
from the Pascal 2008 object recognition dataset (Everingham et al., 2010). For
each image, five descriptions are collected by humans using Amazon Mechan-
ical Turk (AMT). Similar to the Pascal1K, the Flickr8K (Hodosh and Hocken-
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CHAPTER 2. RELATED WORK 2.1. NON-INTERACTIVE TASKS

maier, 2013) and Flickr30K dataset (Plummer et al., 2015) collected five de-
scriptions per image using AMT, using approximately 8,000 and 30,000 images
from the Flickr respectively.

The MS-COCO dataset (Lin et al., 2014a), one of the widely used image
captioning dataset, consist of 123,287 images. All the images in the MS-COCO
contain at least one of 80 object categories. On average, there are more than
3.5 objects present in an image. Each image is annotated with bounding box
over the objects, and objects are segmented. Each image is annotated with a
minimum of five captions per image using ATM. Multiple datasets are created
on top of the MS-COCO dataset. Our proposed FOIL dataset also uses this
dataset, (see Section 4.2 for more details.)

A further level of annotation is proposed in the Visual Genome dataset (Kr-
ishna et al., 2017). Instead of only focusing on the objects in the image, the
dataset provides detailed annotation of object interactions and attributes, by pro-
viding textual descriptions of multiple regions present in the images. The Visual
Genome dataset is built using the images from the YFCC100M (Thomee et al.,
2015) and MS-COCO (Lin et al., 2014a).

Model Image captioning models can be categorized into two broad categories
based on space used for the feature: the single space model and the joint space
model. In single space models, visual features are projected into the textual
feature space or vice-versa and then different learning algorithms are applied to
generate a good caption. In joint space models, both visual and textual features
are projected into a common space, different from their own space, and then in
this space captions are generated based on different learning algorithms.

Instead of describing the whole image in a sentence, earlier attempts have
been made to associate the image regions to nouns. Different statistical models
are proposed based by Barnard et al. (2003) on the joint distribution of image
regions and words into the single space. Soft-hierarchical clustering is
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performed on the textual data to learn the mapping between the regions and
the nouns. A multi-modal extension to a mixture of latent Dirichlet allocation
models, which tries to learn explicit correspondence between regions and words
was also used. Similarly, Duygulu et al. (2002) have formulated the object
recognition problem as a machine translation task. Where they have to translate
from the visual feature to the text feature. Different regions of the image are
annotated with the word and mapping from a region feature to a word feature is
modeled as an energy minimization problem.

Gupta and Davis (2008) proposed to use preposition and comparative
adjectives also, not only nouns, for image classification task. Image re-
gions respective positions, like above, below, are used to model prepositions and
comparative adjectives, etc. The learning algorithm is formulated as an energy
minimization problem into the joint space. To further improve the per-
formance, post-processing is performed on the prediction based on frequency
correctness and semantic identifications.

Farhadi et al. (2010) formulated the image captioning problem as generating
triplet of < object, action, scene >. Based on these triplets, a coherent

sentence is generated. In this work, joint modeling of the visual and textual
feature is used to generate the common feature space for both. This common
representation is used to retrieved sentences based on an image query and vice
versa. Similar to this, Ordonez et al. (2011) also map both representations in
common space. However, in this work, more natural images and sentences are
used, and instead of focusing only on object, action, scene tripled as in Farhadi
et al. (2010), they have also used different aspects of images like attributes of
the image (e.g., furry cats).

Socher and Fei-Fei (2010) used a few labeled images along with large col-
lection of the newspaper articles to learn the joint mapping of the image and
sentences into the joint space. Instead of mapping whole images and sen-
tences into the joint space, they mapped different image segments and words
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into the joint space using kernelized canonical correlation analysis on feature
representations of both the visual and the textual domain. This is one of the
early work to use unlabeled data to solve the problem in semi-supervised
fashion.

Hodosh et al. (2013a) formulated image description as a ranking task.
Where a given pool of captions is ranked based on the images. Instead of us-
ing one image one caption, they proposed to use multiple captions per
image.

Li et al. (2011) also proposed to use unlabeled textual data from the web
and use them to describe the image. In this work, firstly, the objects (like cat,
dog) present in the image are detected along with their visual attributes (like
black, furry) and then the spatial relationship (like under, above) between these
objects are estimated. After generating, these different pieces of information,
pre-trained n-grams on the web data is used to add the possible objects and
attributes in the list. On this list, different fusion techniques are proposed to
optimize the n-grams frequency to compose them into a sentence. Kulkarni et al.
(2013) extended this approach and used the conditional random field(CRF) to
predict the best caption for the image.

Most of the above the image captioning models are evaluated based on rank-
ing tasks. One of the major drawbacks of the ranking based task is that it has
limited vocabulary words. Based on the recent success of the recurrent neural
network (RNN) on different language tasks, like machine translation Wu et al.
(2016), different generative models are used for the image caption. In
machine translation, an RNN model consists of an ‘encoder’ and a ‘decoder’
module. An ‘encoder’ module reads the source sentence and transforms it into
a fixed-length vector representation, which in turn is used as the initial hidden
state of a ‘decoder’ RNN module that generates the target sentence. Figure 2.2
describes the overall structure of the IC model based on the encoder-decoder
structure. Most the recent models follow similar architecture, having one or
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Figure 2.2: Overview Neural Network based IC Model as encoder-decoder.

more of these components like attending, object detector etc.

Instead of mapping the whole image and the corresponding description sen-
tence into a joint embedding space, Karpathy et al. (2014) proposed to map
the fragments of the images and the fragments of the sentence into
a joint space. While optimizing the mapping, they have used structured max-
margin optimization technique. The structure is provided in terms of the frag-
ment of the sentence and the image. We have used this model for the gener-
ation of the FOIL dataset (see Section 4.2 for more details.) Similar to this,
Vinyals et al. (2015) proposes an end to end image captioning model. In which,
they take the image feature extracted based on convolutional neural network
(CNN) (Krizhevsky et al., 2012) as the output of the encoder module of the
RNN and feed this as an input to the decoder of the RNN. They optimize the
model by maximizing the probability of the correct description given the image.
For RNN, Long-Short Term Memory (LSTM) net is used.

Vendrov et al. (2015) learn the visual-semantic hierarchy of image and de-
scription of images over words, sentences, and images. Instead of preserving
the distance between the visual semantic hierarchy and the embedding space,
they preserve the partial order between the visual semantic hierarchy and the
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embedding space. With this approach, they not only generate good caption but
are also able to perform different tasks like the composition of images objects.

Along with generative process, attempts are being made to use attention
based mechanism (Xu et al., 2015; You et al., 2016) to generate better descrip-
tions. Xu et al. (2015) proposes two different attention based models, based on
hard and soft assignments, attending different salient parts of the image while
generating the image description. To provide the attention, instead of using the
last layer of CNN, the fully connected layer is used. You et al. (2016) uses at-
tention mechanism to semantically fusing results obtained from the image to
the word and the word to the image properties.

Anderson et al. (2018) used fine-grained object-level features based on
Faster R-CNN (Girshick, 2015) on multiple image regions. They enrich the
visual region feature with the object properties, like color, size, etc, to get better
feature representation. Using enriched feature combined with attention is used
to perform both IC and VQA task.

2.1.2 Refering Expression

To have a finer level of image understanding referring expression generation
is proposed. In referring expression task for a given image and an object region
in the image model has to generate a natural language referring expression for
the object region.

Dataset Kazemzadeh et al. (2014) created one of the first large scale LaVi
referring expression dataset, called Referit. The Referit dataset is created us-
ing two player ReferIt Game. Player 1 sees the image and a region and has
to write the referring expression for that region. Player 2 sees the image and
referring expression and has to select one of the objects in the image. Based
on the majority agreement referring expressions and the corresponding region
is selected. For the Referit dataset, images are taken from the ImageCLEF
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Figure 2.3: An example of Referring Expression. For a given image and bounding box of the
target object (in red box), the model has to generate unambiguous referring expression for the
target object.

dataset. Yu et al. (2016a) and Mao et al. (2016) simultaneously created the re-
ferring expression dataset using the images from MS-COCO dataset using the
Referit game, called RefCOCO and RefCOCOg respectively (see Section 5.4).
In general, the RefCOCO dataset consists of a concise description and shorter
length, while the RefCOCOg dataset is comparatively slightly longer length de-
scription. We have used the RefCOCO dataset for the encoder evaluation, more
details in Section 5.2

Model Most of the proposed model for the referring expression is inspired by
IC models. Kazemzadeh et al. (2014) proposed a model as a mapping from the
target object and image to referring expression based on the properties of the
objects. Similar to Vinyals et al. (2015), Yu et al. (2016a) used image feature
to initialize the RNN state to generate the referring expression. Instead of only
using full image feature, they have extracted features of each object of the same
type and fed the difference in the object feature and full image feature to LSTM
to generate the referring expression. Mao et al. (2016) also follow a similar
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method, instead of using single RNN, they have used different RNN for the dif-
ferent regions. To generate discriminative sentences, discriminative maximum
mutual information based loss is used. Further, performance is improved using
data augmentation in a semi-supervised way. Nagaraja et al. (2016) use the con-
text object regions of the region to improve the performance of the generated
expression. Context regions are discovered using multiple instance learning.
Liu et al. (2017) first learn the attribute of the objects and used these learned
attributes to comprehend expression.

2.1.3 Visual Question Answering

Image captioning and referring expression generation suffers from evalua-
tion protocol i.e., sensitive to n-grams (Anderson et al., 2016). Image captioning
is also shown to provide a coarse level of image understanding. To overcome
some of these, visual question answer (VQA) task (Malinowski and Fritz, 2014;
Ren et al., 2015b; Gao et al., 2015; Antol et al., 2015; Yu et al., 2015; Zhu et al.,
2016) is proposed. In VQA, for a given image one can ask any free-form and
open-ended question about the image in natural language and system have to
provide natural language answer to the question. The answer can be in the form
of multiple choice, i.e., given 2 − 4 choices the system has to provide which
option is most likely to be the answer of the question or it can be in terms of
fill in the blanks, where system need to generate appropriate word for the blank
position.

Dataset The DAQUAR (Malinowski and Fritz, 2014), DAtaset for QUestion
Answering, is one of the first datasets for VQA using natural images. The
DAQUAR is build using images from the NYU-Depth v2 dataset (Silberman
et al., 2012). Question/Answers pair is collected by both automatically and
using human annotation. Ren et al. (2015b) automatically created the Ques-
tion/Answers(QA) pairs based on the caption of MS-COCO images. Gao et al.
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Figure 2.4: An example VQA. For a given image and corresponding question, model has to
produce an answer.

(2015) also used the MS-COCO images, the QA pairs were collected using
AMT. The QA pairs were first collected in Chinese, then converted into English
by human translators.

Antol et al. (2015) created one of the widely used VQA dataset(VQAv1),
using images from the MS-COCO dataset and human annotators collected QA
pair. For each image on average at least 3 QA pairs were collected. The dataset
also allows evaluation using a multiple-choice setting, by providing 18 candi-
date answers, of which only one is correct, for each question-image pair. The
further balanced dataset in proposed by Goyal et al. (2016a).

The Visual Genome dataset (Krishna et al., 2017) also contains QA pair such
that all the questions start with ‘seven Ws’ i.e., who, what, where, when, why,
how, and which. Questions are collected such that without images, the answer
cannot be guessed. The Visual7w (Zhu et al., 2016) dataset is a subset of the
Visual Genome with additional annotations and evaluation using a multiple-
choice setting, with four candidate answers, of which only one is correct. The
Visual Madlibs dataset (Yu et al., 2015) is automatically generated QA pair
using “fill in the blank” task.

16



CHAPTER 2. RELATED WORK 2.1. NON-INTERACTIVE TASKS

Figure 2.5: A generic VQA Model. A VQA model can have one or more component of the
encoder.

Model VQA was presented in Antol et al. (2015). Along with the dataset,
different baseline methods are proposed in this work. They model VQA as
a classification problem by selecting top-1000 most frequent answers. Their
best performing model was based on CNN based feature for images and one
hot encoding based on LSTM for questions. The image feature is mapped into
the LSTM feature space using a linear transform. Then, these two features are
combined using the element-wise multiplication. This combined feature is used
to train multilayer perceptron for classification. Soft-max is performed over the
output layer to get the classification output, more details in Section 4.3.1.

Similar to Antol et al. (2015), Ren et al. (2015a) also used CNN and LSTM
feature, main difference is in terms of how the CNN feature is combined with
the LSTM feature Ren et al. (2015a) used the CNN feature also as the first
input to the LSTM network followed by vector encoding of each words in the
sentence followed by the CNN feature again as the last input. A slight variant of
this approach is used in Malinowski et al. (2015), which uses the CNN feature
at every step of the LSTM input. They concatenated the CNN feature with
each words vector encoding and provided these concatenated features as input
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to the LSTM network. Gao et al. (2015) models different LSTM networks for
the question and the answer by sharing the word embedding layer. The CNN
feature is fused with the output of the LSTM. This model can answer more than
one-word answers to questions, along with a coherent sentence.

As an alternative to LSTM networks, in Malinowski and Fritz (2014) au-
thors created a Bayesian framework for VQA. They use semantic segmentation
to get information about the objects present in an image, such as their cate-
gories and spatial locations. Then, their Bayesian framework calculates the
probability of each answer given the semantic segmented image features and
the question feature. In Kafle and Kanan (2016), they first predict the type of
answer like counting, color object, etc. based on the question pre-processing,
using Bayesian model, and then it is combined with a discriminative model to
provide the final answer. They have used skip-thought vector Kiros et al. (2015)
for the question representation.

Park et al. (2016) proposed an interesting idea to create multi-modal space
for feature concatenation. Instead of performing element-wise multiplication
of the visual and the textual feature, they computed the outer product of two
features. To efficiently perform outer products of features, both features are
projected into higher dimensional space. Sine outer product is computation-
ally very expensive compared to element-wise multiplication and convolution
in Fourier domain is element-wise multiplication in the spatial domain and vice-
versa, these high dimensional features are transformed into Furrier domain us-
ing Fast Fourier Transform (FFT). In FFT space, element-wise multiplication
is performed and then inverse FFT is used to get the feature in the projected
higher dimension, which is used for classification purpose. They also used dif-
ferent attention models to improve performance.

In Yang et al. (2015), the author’s argue that visual question answering re-
quires multiple steps for reasoning. To provide multiple steps reasoning, they
have used multi-layer stacked attention networks. In which, they query im-

18



CHAPTER 2. RELATED WORK 2.2. INTERACTIVE TASKS

age multiple time to provide the answer. Similarly Lu et al. (2016) propose
hierarchical co-attention model. They hierarchically put attention on both the
question and the image to predict the answer, more details in Section 4.3.1.

2.2 Interactive Tasks

Visually-grounded dialogue has experienced a boost in recent years, in part
thanks to the construction of large visual human-human dialogue datasets built
by the Computer Vision community (Mostafazadeh et al., 2017; Das et al.,
2017a; de Vries et al., 2017). These datasets include two participants, a Ques-
tioner, and an Answerer, who ask and answer questions about an image. For
example, in the GuessWhat?! dataset developed by de Vries et al. (2017), which
we exploit in the present work, a Questioner agent needs to guess a target object
in a visual scene by asking yes-no questions.

2.2.1 Task-oriented dialogue systems

The conventional architecture of task-oriented dialogue systems includes a
pipeline of components, and the task of tracking the dialogue state is typically
modeled as a partially-observable Markov decision process (Williams et al.,
2013; Young et al., 2013; Kim et al., 2014) that operates on a symbolic dialogue
state consisting of predefined variables. The use of symbolic representations to
characterize the state of the dialogue has some advantages (e.g., ease of inter-
facing with knowledge bases), but also some key disadvantages: the variables
to be tracked have to be defined in advance and the system needs to be trained
on data annotated with explicit state configurations.

Given these limitations, there has been a shift towards neural end-to-end
systems that learn their own representations. Early works focus on non-goal-
oriented chatbots (Vinyals and Le, 2015; Sordoni et al., 2015b; Serban et al.,
2016; Li et al., 2016a,b). Vinyals and Le (2015) proposed an end-to-end sys-
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tem using the sequence to sequence framework. The model takes the previous
sentences and predicts the next sentence. The utility of the model is tested
on two datasets: a closed-domain IT helpdesk troubleshooting dataset and an
open-domain movie transcript dataset.

Similar to Vinyals and Le (2015), Sordoni et al. (2015b) proposed a context
sensitive response generation models utilizing the Recurrent Neural Network
Language Model (Mikolov et al., 2010). First the past information in a hidden
continuous representation, which is then decoded by the RLM to generate con-
textually relevant plausible responses. Two versions of Dynamic-Context Gen-
erative Model is proposed. Serban et al. (2016) further extended the encoding-
decoding process by using hierarchical recurrent encoder-decoder(HRED) (Sor-
doni et al., 2015a) neural network to generate the dialogue. Due to the recurrent
hierarchical architecture, the produced dialogue is better. However, in practice
tuning, the parameters for the HRED is computationally expensive. Further,
improvement in the performance is achieved through the reinforcement learn-
ing (Li et al., 2016b) approach.

Bordes et al. (2017) propose a memory network to adopt an end-to-end sys-
tem to task-oriented dialogue. Recent works combine conventional symbolic
with neural approaches Williams et al. (2017); Zhao and Eskenazi (2016); Ras-
togi et al. (2018), but all focus on language-only dialogue.

This thesis proposed a visually grounded task-oriented end-to-end dialogue
system which, while maintaining the crucial aspect of the interaction of the
various modules at play in a conversational agent, grounds them through vision.

Dialogue Manager In traditional dialogue systems, the dialogue manager is the
core component of a dialogue agent: it integrates the semantic content produced
by the interpretation module into the agent’s representation of the context (the
dialogue state) and determines the next action to be performed by the agent,
which is transformed into linguistic output by the generation module. Concep-
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tually, a dialogue manager thus includes both (i) a dialogue state tracker, which
acts as a context model that ideally keeps track of aspects such as current goals,
commitments made in the dialogue, entities mentioned, and the level of shared
understanding among the participants (Clark, 1996); and (ii) an action selection

policy, which makes decisions on how to act next, given the current dialogue
state. We focus on incorporating a decision-making module akin to an action
selection policy into a visually-grounded encoder-decoder architecture.

In particular, work on incremental dialogue processing, where a system needs
to decide not only what to respond but also when to act (Rieser and Schlangen,
2011), has some similarities with the problem we address in the present work,
namely when to stop asking questions to guess a target. Researchers within the
dialogue systems community have applied different approaches to design incre-
mental dialogue policies for how and when to act. Two common approaches
are the use of rules parametrized by thresholds that are optimized with human-
human data (Buß et al., 2010; Ghigi et al., 2014; Paetzel et al., 2015; Kennington
and Schlangen, 2016) and the use of reinforcement learning (Kim et al., 2014;
Khouzaimi et al., 2015; Manuvinakurike et al., 2017). For example, Paetzel
et al. (2015) implement an agent that aims to identify a target image out of a set
of images given descriptive content by its dialogue partner. Decision making is
handled by means of a parametrized rule-based policy: the agent keeps waiting
for additional descriptive input until either her confidence on a possible referent
exceeds a given threshold or a maximum-time threshold is reached (in which
case the agent gives up). The thresholds are set up by optimizing points per sec-
ond on a corpus of human-human dialogues (pairs of participants score a point
for each correct guess). In a follow-up paper by Manuvinakurike et al. (2017),
the agent’s policy is learned with reinforcement learning, achieving higher per-
formance.

We develop a decision-making module that determines, after each question-
answer pair in the visually grounded dialogue, whether to ask a further question
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or to pick a referent in a visual scene. We are interested in investigating the im-
pact of such a module in an architecture that can be trained end-to-end directly
from raw data, without specific annotations commonly used in dialogue sys-
tems, such as dialogue acts (Paetzel et al., 2015; Manuvinakurike et al., 2017;
Kennington and Schlangen, 2016), segment labels (Manuvinakurike et al., 2016),
dialogue state features (Williams et al., 2013; Young et al., 2013; Kim et al.,
2014), or logical formulas (Yu et al., 2016b).

2.2.2 Visual dialogue

Figure 2.6: An example Visual Dialogue.

In recent years, researchers in computer vision have proposed tasks that com-
bine visual processing with dialogue interaction. Pertinent datasets created by
Das et al. (2017a) and de Vries et al. (2017) include VisDial and GuessWhat?!,
respectively, where two participants ask and answer questions about an im-
age. While impressive progress has been made in combining vision and lan-
guage, current models make simplifications regarding the integration of these
two modalities and their exploitation for task-related actions.
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Dataset For visual dialogue, there are two main datasets proposed in the liter-
ature: GuessWhat?! and VisDial. The GuessWhat?! dataset is a task-oriented
dataset and the VisDial dataset is a chit-chat dataset about the image. Both
datasets are collected via Amazon Mechanical Turk.

GuessWhat?! Dataset: The GuessWhat?! task involves two human par-
ticipants who see a real-world image, taken from the MS-COCO dataset (Lin
et al., 2014a). One of the participants (the Oracle) is assigned a target object in
the image and the other participant (the Questioner) has to guess it by asking
Yes/No/NA questions to the Oracle. There are no time constraints to play the
game. Once the Questioner is ready to make a guess, the list of candidate ob-
jects is provided and the game is considered successful if the Questioner picks
the target object, more details in Section 3.2.

VisDial Dataset: The VisDial dataset involves two human participants; one
participant see the caption corresponding to that image (called ‘Questioner’).
and another participant sees both image and caption (called ‘Answerer’). The
questioner task is to imagine the image based by asking the questions. The an-
swerer task is to answer the question asked by the questioner. An example game
is shown in Figure 2.6. Unlike GuessWhat, answers are multiword answers. In
a dialogue, there are exactly 10 rounds of question-answer.

Model Most of the models proposed for visual dialogue is a combination of im-
age captioning and VQA models. For GuessWhat task, multiple models (de Vries
et al., 2017; Strub et al., 2017a; Zhu et al., 2017; Lee et al., 2017; Shekhar
et al., 2018; Zhang et al., 2018) has been proposed using two disjoint models
for the Questioner, called question generator(QGen) and guesser, and the an-
swerer module is called the Oracle. The QGen model based on the sequence to
sequence (Sutskever et al., 2014) architecture and the guesser and oracle model
is a classification model based on VQA models (more details in Setion 3.2).
Further task improvements are proposed using reinforcement learning based ap-
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proach (Strub et al., 2017b). Lee et al. (2018) proposed an interesting approach
to sample questions from the training dataset, however, this approach is not
directly comparable to other approaches due to the sampling of the questions.

For the Visdial tasks also models follow the sequence to sequence (Sutskever
et al., 2014) architecture. In Das et al. (2017a), authors proposed a supervised
learning based approach to the generate the question and answer. Das et al.
(2017b) and Chattopadhyay et al. (2017) use reinforcement learning based re-
ward on the guessing image game to improve the performance. Lu et al. (2017)
proposed a transfer based learning approach by transferring knowledge from the
discriminator task to the generation task. Further, Massiceti et al. (2018) pro-
posed a generative adversarial networks(GAN) (Goodfellow et al., 2014) based
model to have diversity in the answer. Gan et al. (2019) proposed a recurrent
attention-based model to have multi-step reasoning to improve the performance.

2.3 Diagnostics Dataset and Methodology

Due to the lack of objective evaluation metrics for IC and triviality of VQA
task, research groups have started to look closely at the LaVi integration. To
overcome the bias uncovered in previous LaVi datasets, community have started
proposing the diagnostics datasets which involve distinguishing distractors from
a ground-truth text for an image. To understand the characteristics of LaVi
encoder, different diagnostics methodologies are proposed to closely look at the
encoding of different linguistic and visual properties.

2.3.1 Diagnostics Dataset

Hodosh and Hockenmaier (2016) shows that contrarily to what prior research
had suggested, the image captioning (IC) task is far from been solved. They
proposed a series of binary forced-choice tasks such that each task focus on a
different aspect of the captions. They evaluate a number of state-of-the-art LaVi
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algorithms in the presence of distractors and show that IC models are not able
to distinguish between a correct and distractor caption. Their evaluation was
however limited to a small dataset (namely, Flickr30K (Young et al., 2014)) and
the caption generation was based on a hand-crafted scheme using only inter-
dataset distractors and the task was comparatively simple, where the model has
to select the correct caption for a given image provided with both correct and
distractor caption.

Similarly, for the abstract VQA, Zhang et al. (2016) introduced a binary
VQA task along with a dataset composed of sets of similar artificial images.
They created the dataset such that language biased are controlled, and to per-
form the task, visual information is essential for the model. This allows for
more precise diagnostics of a system’s errors.

Goyal et al. (2016a) found that there is a language bias in the VQAv1 (Antol
et al., 2015) dataset. The bias is exploited by DNN based model to perform
the task. To reduce language bias, they have proposed to balance the dataset
in the visual space by collecting complementary images for each question in
the VQAv1 dataset, such that the answer to the question for the new image is
different. This reduces the language bias and makes harder for the model to
exploit the language biases. However, collecting the complementary image is a
very expensive process and creates the need for an automatic process to balance
the dataset.

Agrawal et al. (2018) created an automatic bias sensitive dataset split for the
VQA task. The split, named VQA Under Changing Priors (VQA-CP), is created
such that there is a large difference in the answer distribution of train and test
set. However, the VQA-CP split mostly checks that memorization capability of
the model. Similarly, Lu et al. (2018) introduce a robust captioning split of the
COCO captioning dataset (Lin et al., 2014a), using the co-occurrence statistics
for COCO object categories. These object categories are used such that the
distribution of co-occurring objects differs significantly between training and
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test.

Similar to the FOIL dataset, Ding et al. (2016) propose to extend the MS-
COCO dataset by generating decoys from human-created image captions. They
also suggest an evaluation similar to our T1, requiring the LaVi system to de-
tect the true target caption amongst the decoys. Our efforts, however, differ in
some substantial ways. First, their technique to create incorrect captions (using
BLEU to set an upper similarity threshold) is so that many of those captions
will differ from the gold description in more than one respect. For instance, the
caption two elephants standing next to each other in a grass field is associated
with the decoy a herd of giraffes standing next to each other in a dirt field (er-
rors: herd, giraffe, dirt) or with animals are gathering next to each other in a

dirt field (error: dirt; infelicities: animals and gathering, which are both prag-
matically odd). Clearly, the more the caption changes in the decoy, the easier
the task becomes. In contrast, the foil captions we propose only differ from the
gold description by one word and are thus more challenging. Secondly, the au-
tomatic caption generation of Ding et al means that ‘correct’ descriptions can be
produced, resulting in some confusion in human responses to the task. We made
sure to prevent such cases, and human performance on our dataset is thus close
to 100%. We note as well that our task does not require any complex instruc-
tions for the annotation, indicating that it is intuitive to human beings. Thirdly,
their evaluation is a multiple-choice task, where the system has to compare all
captions to understand which one is closest to the image. This is arguably a
simpler task than the one we propose, where a caption is given and the system
is asked to classify it as correct or foil: detecting a correct caption is much eas-
ier than detecting foils. So evaluating precision on both gold and foil items is
crucial.

Recently, Hu et al. (2019) proposed a Binary Image Selection (BISON)
dataset which propose a decoy image for a given caption. In principle, the
dataset is similar to the FOIL dataset, instead of the decoy caption they have
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proposed the decoy caption. However, the dataset is collected using the crowd-
sourcing and finding the decoy image is costly, while the FOIL dataset is auto-
matically generated.

For artificial images Johnson et al. (2017) proposed the CLEVR dataset for
the diagnostic evaluation of VQA systems. This dataset was designed with the
explicit goal of enabling detailed analysis of different aspects of visual reason-
ing, by minimizing dataset biases and providing rich ground-truth representa-
tions for both images and questions. Suhr et al. (2017) proposed an artificial
image dataset to test different linguistic phenomena requiring both visual and
set-theoretic reasoning.

2.3.2 Diagnostics Methodology

Our work is part of a recent research trend that aims at analyzing, interpret-
ing, and evaluating neural models by means of auxiliary tasks besides the task
they have been trained for (Adi et al., 2017; Linzen et al., 2016; Alishahi et al.,
2017; Zhang and Bowman, 2018; Conneau et al., 2018). Adi et al. (2017) pro-
pose a methodology that facilitates comparing sentence embeddings on a finer-
grained level. Specifically, they focused on the length of sentence, the presence
of a word in the sentence, and the order of word in the sentence. Linzen et al.
(2016) evaluated neural network architectures sentence representation based on
the different grammatical complexity focusing on the subject-verb agreement.
They found out that given explicit supervision LSTMs could learn to approxi-
mate structure-sensitive dependencies. Alishahi et al. (2017) analyzed the repre-
sentation and encoding of phonemes in RNN using the grounded speech signal.
They have shown that phoneme information is saliently present in the lower
layer of RNN. Zhang and Bowman (2018) studied the effect of pre-training
task on the type of linguistic knowledge is learn by the model. They found out
that the language model learned using bidirectional language models do better
compare to the translation model in extracting syntax information. They also
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show that randomly initialized model performs reasonably well. Conneau et al.
(2018) introduce ten probing tasks to infer the type of information is stored in
the sentence embedding vector. They show that the sentence embeddings are
capturing a wide range of linguistic knowledge.
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Chapter 3

Jointly Learning to See, Ask, and
GuessWhat

In this chapter, a grounded dialogue state encoder is proposed which ad-
dresses a foundational issue on how to integrate visual grounding with dialogue
system components. The proposed visually-grounded encoder leverages syner-
gies between guessing and asking questions, as it is trained jointly using multi-
task learning. The model is further enriched via cooperative learning. We show
that the introduction of both the joint architecture and cooperative learning lead
to accuracy improvements over the baseline system and provide in-depth anal-
ysis to show that the linguistic skills of the models differ dramatically, despite
approaching comparable performance levels. This points at the importance of
analyzing the linguistic output of competing systems beyond numeric compari-
son solely based on task success.1

1Part of work of this chapter will appear in NAACL 2019 as
Ravi Shekhar, Aashish Venkatesh, Tim Baumgärtner, Elia Bruni, Barbara Plank, Raffaella Bernardi, and Raquel
Fernández, “Beyond task success: A closer look at jointly learning to see, ask, and GuessWhat ”, In Proc. of
17th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT) 2019 (Long-Oral).
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Figure 3.1: Our proposed Questioner model with a decision making component.

3.1 Introduction

Over the last few decades, substantial progress has been made in developing
dialogue systems that address the abilities that need to be put to work during
conversations: Understanding and generating natural language, planning ac-
tions, and tracking the information exchanged by the dialogue participants. The
latter is particularly critical since, for communication to be effective, partici-
pants need to represent the state of the dialogue and the common ground estab-
lished through the conversation (Stalnaker, 1978; Lewis, 1979; Clark, 1996).

In addition to the challenges above, the dialogue is often situated in a per-
ceptual environment. In this study, we develop a dialogue agent that builds a
representation of the context and the dialogue state by integrating information
from both the visual and linguistic modalities. We take the GuessWhat?! game
de Vries et al. (2017) as our test-bed and model the agent in the Questioner’s
role.
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To model the Questioner, previous work relies on two independent models to
learn to ask questions and to guess the target object, each equipped with its own
encoder (de Vries et al., 2017; Strub et al., 2017a; Zhu et al., 2017; Lee et al.,
2017; Shekhar et al., 2018; Zhang et al., 2018). In contrast, we propose an end-
to-end architecture with a single visually-grounded dialogue state encoder with
a decision making(DM) component (Figure 3.1). As shown in Figure 3.1, both
visual and textual (QA-pair) is first merged to form a dialogue state (details in
Section 3.3). Using this dialogue state, the DM makes the decision to ‘ask’,
further question using question generator, or ‘guess’, the target object using the
Guesser. Our system is trained jointly in a supervised learning setup, extended
with cooperative learning (CL) regime: By letting the model play the game
with self-generated dialogues, the components of the Questioner agent learn to
better perform the overall Questioner’s task in a cooperative manner. Das et al.
(2017b) have explored the use of CL to train two visual dialogue agents that
receive joint rewards when they play a game successfully. To our knowledge,
ours is the first approach where cooperative learning is applied to the internal
components of a grounded conversational agent.

3.2 GuessWhat?!

The GuessWhat?! game is two player task oriented visual dialogue game. It
is a game between two agents and the goal is to locate an object in an image
by asking a series of questions. The GuessWhat?! game requires the agent to
ask questions about the image to narrow down the possible target object. This
requires the agent to have spatial and effective language understanding. An
example of the game is shown in Figure 3.2.
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QUESTIONER ORACLE
Is it a vase? Yes
Is it on the left of the picture? No
Is it between two vases? No
Is it the light blue one? Yes
Is it on the edge of the table? Yes

Figure 3.2: An example game.The Questioner asks questions to the Oracle to locate the object
marked by green bounding box. Source:de Vries et al. (2017)

GuessWhat?! Dataset

GuessWhat?! is a cooperative game between two agents where both the
agents have access to the same image. The task involves two human partici-
pants who see a real-world image, taken from the MS-COCO dataset (Lin et al.,
2014a). The objective of the game is for the Questioner to have a dialogue with
the Oracle to find the required object in the image. The Oracle is randomly as-
signed an object in the image and has to answer the questions about the object
with Yes, No or Not Applicable (NA). The Questioner does not know about the
assigned object to the Oracle and has to ask questions to gain more informa-
tion about the object. When the Questioner thinks it has sufficient information
to guess the object, it is presented with a list of candidate objects (max 20)
from which it has to choose the correct object given the image, and the dialogue
history.

The dataset is collected using AMT. The dataset consists of 66,537 unique
images with 155,280 games/dialogues with an average of 2.3 games per im-
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age. There are 821,889 question-answer (QA) pairs amongst these games with
a mean of 5.2 QA pairs per game. The answers in the QA pairs have the dis-
tribution: 52.2% No, 45.6% Yes and 2.2% NA. In the collected dataset de Vries
et al. (2017), about 84.6% of the games are successful, 8.4% unsuccessful and
7% of the games are incomplete. The GW dataset is split into training, valida-
tion and test split by randomly allocating 46794, 9844 and 9899 unique images,
respectively. Table 3.1 provides the statistics of the dataset. We use the official
splits given by the authors at guesswhat.ai for all the experiments.

# Unique Images # Dialogues # QA-pairs

train 46794 113221 579633
val 9844 23739 120318
test 9899 23785 121938

Table 3.1: GuessWhat?! Dataset statistics.

GuessWhat?! Baseline Model

Initial models, proposed by de Vries et al. (2017), use supervised learning
(SL): the Questioner and the Answerer are trained to generate utterances (by
word sampling) that are similar to the human gold standard.

Oracle The task of the Oracle is similar to VQA. The Oracle has to answer
Yes/No/NA given a question or the dialogue history and the assigned object in-
formation such as bounding-box, category, image crop, and image. The best
performing model variant of the baseline uses the present question with the ob-
ject’s bounding box and category information. As shown in Figure 3.3, the Ora-
cle comprises of an LSTM and an MLP. The question, qt, from the Questioner is
processed by the LSTM (LSTMo). The input to the Oracle is category embed-
ding, c, and handcrafted spatial features, xspatial, extracted from the bounding
box which is concatenated with the last hidden state of the LSTMo, hso. The
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Figure 3.3: Baseline Oracle Model

hand-crafted spatial features, proposed by Hu et al. (2016), are constructed from
the bounding box information to form an 8-dimensional vector as shown below:

xspatial = [xmin, ymin, xmax, ymax, xcenter, ycenter, wbox, hbox] (3.1)

where wbox and hbox are the width and height of the bounding box, respectively.
The image height and width are normalised to be between 1 to -1 and the origin
is placed at the center of the image. The MLP (MLPo) processes the input
concatenated features to produce an answer Yes/No/NA.

Questioner The Questioner’s objective is to ask relevant questions about the
image to locate the object. After having accumulated evidence to locate the
object, it is presented with a list of candidate objects from which it has to pick
target one. So, the questioner has two tasks: to ask questions and the action
of choosing the object. This is modeled by de Vries et al. (2017) using two
independent models which are called the Question Generator and the Guesser.
These models are explained below.
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Figure 3.4: Baseline Questioner Model: Questioner Model: Question Generator (up) and
Guesser (down)
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Question Generator(QGen) QGen is implemented as a Recurrent Neural Net-
work (RNN) with a transition function handled with Long-Short-Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997), on which a probabilistic se-
quence model is built with a Softmax classifier. At each time step in the dia-
logue, the model receives as input the raw image and the dialogue history and
generates the next question one word at a time. The image is encoded by ex-
tracting its VGG-16 features (Simonyan and Zisserman, 2014).

Guesser The Guesser model exploits the annotations in the MS-COCO dataset
(Lin et al., 2014a) to represent candidate objects by their object category and
their spatial coordinates. This yields better performance than using raw image
features in this case, as reported by de Vries et al. (2017). The objects’ cate-
gories and coordinates are passed through a Multi-Layer Perceptron (MLP) to
get an embedding for each object. The Guesser also takes as input the dialogue
history processed by its own dedicated LSTM. A dot product between the hid-
den state of the LSTM and each of the object embeddings returns a score for
each candidate object.

Limitations In this chapter, we will address the following two major limitations
of the baseline model proposed in de Vries et al. (2017):

• The Questioner agent is composed of two independent models, QGen and
Guesser. Due to this, the two modules are detached from the context of
each other.

• The Questioner has to always ask a fixed number of questions before being
able to guess the target object. This causes the QGen to ask questions even
if it has enough evidence to guess and leads to redundant questions. Also,
if the maximum number of questions is set very low, the Guesser will not
be able to locate the target object.
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Apart from the above two limitations, one major drawback of current setting is
that the Guesser model have to be provided metadata, i.e., spatial co-ordinate,
category, of the objects in the image to guess the target object. This could be
addressed using the object detector, but this issue is outside the scope of this
thesis.

3.3 Visually-grounded dialogue state encoder

In line with the baseline model, our Questioner agent includes two sub-
modules, a QGen and a Guesser. As in the baseline, the Guesser guesses
after a fixed number of questions, which is a parameter tuned on the valida-
tion set. Our agent architecture differs from the baseline model by de Vries
et al. (2017): Rather than operating independently, the language generation and
guessing modules are connected through a common grounded dialogue state

encoder (GDSE) which combines linguistic and visual information as a prior
for the two modules. Given this representation, we will refer to our Questioner
agent as GDSE.

As illustrated in Figure 3.5, the encoder receives as input representations of
the visual and linguistic context. The visual representation consists of the sec-
ond to last layer of ResNet152 trained on ImageNet. The linguistic represen-
tation is obtained by an LSTM (LSTMe) which processes each new question-
answer pair in the dialogue. At each question-answer QAt, the last hidden state
of LSTMe is concatenated with the image features I , passed through a linear
layer and a tanh activation to result in the final layer ht:

ht = tanh (W · [LSTMe(qa1:t−1); I]) (3.2)

where [·; ·] represents concatenation, I ∈ R2048×1, LSTMe ∈ R1024×1 and
W ∈ R512×3072 (identical to prior work except for tuning the ResNet-specific
parameters). We refer to this final layer as the dialogue state, which is given as
input to both QGen and Guesser.
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Figure 3.5: Our questioner model with a single visually grounded dialogue state encoder.

As illustrated in Figure 3.6, our QGen, and Guesser modules are like the
corresponding modules by de Vries et al. (2017), except for the crucial fact that
they receive as input the same grounded dialogue state representation. QGen
employs an LSTM (LSTMq) to generate the token sequence for each question
conditioned on ht, which is used to initialise the hidden state of LSTMq. As
input at every time step, QGen receives a dense embedding of the previously
generated token wi−1 and the image features I:

p(wi) = p(wi|w1, ..., wi−1, ht, I) (3.3)

We optimise QGen by minimising the Negative Log Likelihood (NLL) of the
human dialogues and use the Adam optimiser (Kingma and Ba, 2014a):

LQ =
∑
i

− log p(wi) (3.4)

Thus, in our architecture the LSTMq of QGen in combination with the LSTMe

of the Encoder form a sequence-to-sequence model (Sutskever et al., 2014),
conditioned on the visual and linguistic context — in contrast to the baseline
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Figure 3.6: Question Generation and Guesser modules.

model, where question generation is performed by a single LSTM on its own.
The Guesser consists of an MLP which is evaluated for each candidate object

in the image. It takes the dense embedding of the category and the spatial
information of the object to establish a representation rj ∈ R512×1 for each
object. A score is calculated for each object by performing the dot product
between the dialogue state ht and the object representation. Finally, a softmax
over the scores results in a probability distribution over the candidate objects:

p(oj) = ehT
t ·rj∑

j ehT
t ·rj

(3.5)

We pick the object with the highest probability and the game is successful if
oguess = otarget , where oguess = arg maxj p(oj). As with QGen, we optimise the
Guesser by minimising the NLL and again make use of Adam:

LG = − log p(otarget) (3.6)
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The resulting architecture is fully differentiable. In addition, the GDSE agent
faces a multi-task optimization problem: While the QGen optimizes LQ and the
Guesser optimizes LG, the parameters of the Encoder (W , LSTMe) are opti-
mized via both LQ and LG. Hence, both tasks faced by the Questioner agent
contribute to the optimization of the dialogue state ht, and thus to more efficient
encoding of the input context.

Decision Making We further extend the GDSE with a decision-making com-
ponent (DM) (cf. Figure 3.1) that determines, after each question/answer pair,
whether QGen should ask another question or whether the Guesser should guess

the target object. We treat this decision problem as a binary classification task,
for which we use an MLP followed by a Softmax function that outputs prob-
abilities for the two classes of interest: ask and guess. The argmax function
then determines the class of the next action. With this approach, we bypass the
need to specify any decision thresholds and instead let the model learn whether
enough evidence has been accumulated during the dialogue so far to let the
Guesser pick up a referent.

3.4 Learning Approach

We first introduce the supervised learning approach used to train both BL
and GDSE, then our cooperative learning regime, and finally the reinforcement
learning approach we compare to.

3.4.1 Supervised learning

In the baseline model, the QGen and the Guesser modules are trained au-
tonomously with supervised learning (SL): QGen is trained to replicate human
questions and, independently, the Guesser is trained to predict the target object.
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Our new architecture with a common dialogue state encoder allows us to formu-
late these two tasks as a multi-task problem, with two different losses (Eq. 3.4
and 3.6 in Section 3.3).

These two tasks are not equally difficult: While the Guesser has to learn the
probability distribution of the set of possible objects in the image, QGen needs
to fit the distribution of natural language words. Thus, QGen has a harder task
to optimize and requires more parameters and training iterations. We address
this issue by making the learning schedule task-dependent. We call this setup
modulo-n training, where n indicates after how many epochs of QGen training
the Guesser is updated together with QGen.

As there are no labels for the DM about when to ask more questions and
when to guess the object, we follow the label generation procedure introduced
by Shekhar et al. (2018). The labels for the Decider are generated by annotating
all the last question-answer pairs in the games with guess and other question-
answer pairs as ask. So, we have an unbalanced dataset for the decider module
where the guess label makes up for only 20%. We address this class imbalance
by adding a weighting factor, α, to the loss. The balanced loss is given by

LD = αtarget · (− log p(dectarget)) (3.7)

where αguess = 0.8 and αask = 0.2. During inference, we continue to ask
questions unless the Decider chooses to end the conversation or the maximum
number of questions has been reached. The architecture of the Decider consists
only of the MLPd.

Using the validation set, we experimented with n from 5 to 15 and found that
updating the Guesser every 7 epochs worked best. With this optimal configura-
tion, we then train GDSE for 100 epochs (batch size of 1024, Adam, learning
rate of 0.0001) and select the Questioner module best performing on the val-
idation set (henceforth, GDSE-SL or simply SL, and with Decision making
GDSE-SL-DM or SL-DM).
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3.4.2 Cooperative learning

Once the model has been trained with SL, new training data can be generated
by letting the agent play new games. Given an image from the training set used
in the SL phase, we generate a new training instance by randomly sampling a
target object from all objects in the image. We then let our Questioner agent
and the Oracle play the game with that object as a target, and further train the
common encoder using the generated dialogues by backpropagating the error
with gradient descent through the Guesser. After training the Guesser and the
encoder with generated dialogues, QGen needs to ‘re-adapt’ to the newly ar-
ranged encoder parameters. To achieve this, we re-train QGen on the human
data with SL, but using the new encoder states. Also here, the error is back-
propagated with gradient descent through the common encoder. To update the
parameters of the DM, we use the guesser output as the label to decide ‘ask’ or
‘guess’. When the guesser is successful, the DM has to ‘guess’ else it has to
‘ask’ further question.

Regarding modulo-n, in this case QGen is updated at every nth epoch, while
the Guesser is updated at all other epochs; we experimented with n from 3-7
and set it to the optimal value of 5.

The GDSE previously trained with SL is further trained with this coopera-
tive learning regime for 100 epochs (batch size of 256, Adam, learning rate of
0.0001), and we select the Questioner module performing best on the validation
set (henceforth, GDSE-CL or simply CL and with Decision making GDSE-CL-
DM or CL-DM).

3.4.3 Reinforcement learning

Strub et al. (2017a) proposed the first extension of BL de Vries et al. (2017)
with deep reinforcement learning (RL). They present an architecture for end-to-
end training using an RL policy. First, the Oracle, Guesser, and QGen models
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are trained independently using supervised learning. Then, QGen is further
trained using a policy gradient.

We use the publicly available code and pre-trained model based on Sam-
pling Strub et al. (2017a), which resulted in the closest performance to what
was reported. by the authors.2 This is the RL model we use throughout the rest
of the chapter.

3.5 Experiments and Results

We use the same train (70%), validation (15%), and test (15%) splits as
de Vries et al. (2017). The test set contains new images not seen during train-
ing. We use two experimental setups for the number of questions to be asked
by the question generator, motivated by prior work: 5 questions (5Q) follow-
ing de Vries et al. (2017), and 8 questions (8Q) as in Strub et al. (2017a).

For evaluation, we report task success in terms of accuracy Strub et al.
(2017a). To neutralize the effect of random sampling in training CL, we trained
the model 3 times. RL is tested 3 times with sampling. We report means and
standard deviation (for some tables these are provided in the supplementary
material).

Table 5.2 reports the results for all models. There are several take-aways.

Grounded joint architecture First of all, our visually-grounded dialogue state en-
coder is effective. GDSE-SL outperforms the baseline by de Vries et al. (2017)
significantly in both setups (absolute accuracy improvements of 6.6% and 9%).
To evaluate the impact of the multi-task learning aspect, we did an ablation

2Their result of 53.3% accuracy published in Strub et al. (2017a) is obsolete, as stated on their GitHub
page (https://github.com/GuessWhatGame/guesswhat) where they report 56.5% for sampling and
58.4% for greedy search. By running their code, we could only replicate their results with sampling, obtaining
56%, while greedy and beam search resulted in similar or worse performance. Our analysis showed that greedy
and beam search have the additional disadvantage of learning a smaller vocabulary.
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Model 5Q 8Q

Baseline 41.2 40.7
GDSE-SL 47.8 49.7
GDSE-CL 53.7 (±.83) 58.4 (±.12)
RL 56.2 (±.24) 56.3 (±.05)
GDSE-SL-DM 46.78 49.12
GDSE-CL-DM 4 9.77(±1.16) 53.89(±.24)

Table 3.2: Test set accuracy for each model (for setups with 5 and 8 questions). GDSE-SL is
our grounded supervised learning system, GDSE-CL the cooperative learning setup, and RL the
results we obtain with the reinforcement learning system by Strub et al. (2017). The average
number of question asked by DM models for 5Q setting is 3.83 and 4.02(±0.10) for SL-DM
and CL-DM respectively. Moreover, in the case of 8Q setting, the average number of question
is 5.49 and 5.46(±0.10) for SL-DM and CL-DM respectively.

study and used the encoder-decoder architecture to train the QGen and Guesser
modules independently. With such a decoupled training we obtain lower results:
44% and 43.7% accuracy for 5Q and 8Q, respectively. Hence, the multi-task
component brings an increase of up to 6% over the baseline.3

Cooperative learning and RL The introduction of the cooperative learning ap-
proach results in a clear improvement over GDSE-SL: +8.7% (8Q: from 49.7
to 58.4) and +5.9% (with 5Q). Despite its simplicity, our GDSE-CL model
achieves a task success rate which is comparable to RL: In the 8Q setup, GDSE-
CL reaches an average accuracy of 58.4 versus 56.3 for RL, giving CL a slight
edge in this setup (+2.1%), while in the 5Q setup RL is slightly better (+2.5%).
Overall, the accuracy of the CL and RL models is close. The interesting ques-
tion is how the linguistic skills and strategy of these two models differ, to which
we turn in the next section.

We compared to Strub et al. (2017a), but RL has also been put forward
3While de Vries et al. (2017) originally report an accuracy of 46.8%, this result was later revised to 40.8%, as

clarified on their GitHub page. Our own implementation of the baseline system achieves an accuracy of 41.2%.

44



CHAPTER 3. JOINT 3.6. ANALYSIS USING GDSE

by Zhang et al. (2018), who report 60.7% accuracy (5Q). This result is close
to our highest GDSE-CL result (60.8 ±0.51, when optimized for 10Q).4 Their
RL system integrates several partial reward functions to increase coherence,
which is an interesting aspect. Yet their code is not publicly available. We leave
the comparison to Zhang et al. (2018) and adding RL to GDSE to future work.

Utility of DM The lower part of Table 5.2 reports the accuracy using the DM
with both SL and CL. We can see that the overall accuracy is decreasing in
the case of DM, for SL by 0.5 − 1% and for CL by 4 − 5%. However, the
model asks comparatively very fewer questions and behave more similarly to
humans. For more than the 50% of games, the DM decides to stop asking
questions before reaching the max number of questions allowed. In the case of
8Q, it is asking only 5.49 and 5.46(±0.10) questions for SL-DM and CL-DM
respectively, which is very low. The significant drop in accuracy for CL could
be due to the signal the model is getting while training. Since CL model is being
trained on the generated data, sometimes it might produce the wrong signal.

3.6 Analysis using GDSE

In this section, we present a range of analyses that aim to shed light on the
performance of the models. They are carried out on the test set data using the
8Q setting, which yields better results than the 5Q setting for the GDSE models
and RL. Given that there is only a small difference in accuracy for the baseline
with 5Q and 8Q, for comparability, we analyze dialogues with 8Q also for BL.

4Since our aim is to compare to the best setup for BL (5Q) and RL (8Q), we do not report our results with 10Q
in Table 5.2.
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3.6.1 Quantitative analysis of linguistic output

We analyze the language produced by the Questioner agent with respect to
three factors: (1) lexical diversity, measured as type/token ratio over all games,
(2) question diversity, measured as the percentage of unique questions over all
games, and (3) the number of games with questions repeated verbatim. We
compute these factors on the test set for the models and for the human data (H).

As shown in Table 3.3, the linguistic output of SL & CL is closer to the lan-
guage used by humans: Our agent is able to produce a much richer and less
repetitive output than both BL and RL. In particular, it learns to use a more di-
verse vocabulary, generates more unique questions, and repeats questions within
the same dialogue at a much lower rate than the baseline and RL: 93.5% of the
games played by BL contain at least one verbatim question repetition, for RL
this happens in 96.47% of the cases, whereas for SL and CL this is for only
55.8% and 52.19% of the games, respectively. Notice the % Games with re-
peated Questions in case of the DM model, there is a large drop in the repetition
over GDSE-SL: -13.33% (from 55.80 to 42.47) and GDSE-CL: -19.68% (from
52.19 to 32.51). Significant drop in the accuracy also points to the strong case
for having a DM.

Lexical
diversity

Question
diversity

% Games
with
repeated Q’s

BL 0.030 1.60 93.50
SL 0.101 13.61 55.80
CL 0.115 (±.02) 14.15 (±3.0) 52.19 (±4.7)
RL 0.073 (±.00) 1.04 (±.03) 96.47 (±.04)
SL-DM 0.047 1.62 42.47
CL-DM 0.135(±.02) 10.25(±2.46) 32.51(±6.45)
H 0.731 47.89 —

Table 3.3: Statistics of the linguistic output of all models with the 8Q setting and of humans (H)
in all test games.
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Humans [success]
1. does it have cereal on it? no
2. does it have pink frosting? no
3. does it have cookies? no
4. is it a donut? yes
5. does it have maple frosting? no
6. is there candy? yes
7. is it the doughnut with M&Ms? no
8. is it dark brown? no

GDSE-CL [success]
1. is it a donut? yes
2. is it on the left? no
3. is it on the right? yes
4. is it the whole donut? yes
5. does it have pink icing? no
6. is it touching the donut with the sprinkles? yes
7. does it have chocolate icing? no
8. is it the third donut? yes

RL [failure]
1. is it food? yes
2. is it a donut? yes
3. is it in left? no
4. is it in top? yes
5. is it in top? yes
6. is it in top? yes
7. is it in top? yes
8. is it top? yes

Figure 3.7: Game example where GDSE-CL succeeds and RL fails at guessing the target object
(green box).

3.6.2 Dialogue strategy

To further understand the variety of questions asked by the agents, we clas-
sify questions into different types. We distinguish between questions that aim
at getting the category of the target object (ENTITY questions, e.g., ‘is it a vehi-

cle?’) and questions about properties of the queried objects (ATTRIBUTE ques-
tions, e.g., ‘is it square?’ or ‘are they standing?’). Within ATTRIBUTE ques-
tions, we make a distinction between color, shape, size, texture, location, and
action questions. Within ENTITY questions, we distinguish questions whose fo-
cus is an object category or a super-category. The classification is done by man-
ually extracting keywords for each question type from the human dialogues, and
then applying an automatic heuristic that assigns a class to a question given the
presence of the relevant keywords.5 This procedure allows us to classify 91.41%
of questions asked by humans. The coverage is higher for the questions asked
by the models: 98.88% (BL), 94.72% (SL), 94.11% (CL), 98.30%(SL-DM),
96.57%(CL-DM) and 99.51 % (RL).6

The statistics are shown in Table 3.4. We use Kullback-Leibler (KL) diver-
gence to measure how the output of each model differs from the human distri-
bution of fine-grained question classes. The baseline’s output has the highest

5A question may be tagged with several attribute classes if keywords of different types are present. E.g., “Is it
the white one on the left?” is classified as both COLOR and LOCATION.

6Appendix A provides details on the question classification procedure: the lists of keywords by class, the
procedure used to obtain these lists, as well as the pseudo-code of the heuristics used to classify the questions.
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degree of divergence: For instance, the BL model does never ask any SHAPE

or TEXTURE questions, and hardly any SIZE questions. The output of the RL
model also differs substantially from the human dialogues: It asks a very large
number of LOCATION questions (74.8% vs. 40% for humans). Our models, in
contrast, generate question types that resemble human distribution more closely.
However, there is slightly more variation in the case of the DM models. Specifi-
cally, SL-DM asks more ENTITY questions (71.03%) compared to other models.
We believe this is due to the early stopping of the questions.

Question type Example BL SL CL RL SL-DM CL-DM H

ENTITY 49.00 48.07 46.51 23.99 71.03 51.36 38.11
SUPER-CAT Is it a vehicle? 19.6 12.38 12.58 14.00 15.35 15.40 14.51
OBJECT Is it a skateboard? 29.4 35.70 33.92 9.99 55.68 35.97 23.61
ATTRIBUTE 49.88 46.64 47.60 75.52 27.27 45.21 53.29
COLOR Is he wearing blue? 2.75 13.00 12.51 0.12 10.57 8.41 15.50
SHAPE Is it square? 0.00 0.01 0.02 0.003 0.0 0.07 0.30
SIZE The bigger one? 0.02 0.33 0.39 0.024 0.01 0.67 1.38
TEXTURE Is it wood? 0.00 0.13 0.15 0.013 0.01 0.25 0.89
LOCATION The one on the left? 47.25 37.09 38.54 74.80 21.70 39.92 40.00
ACTION Are they standing? 1.34 7.97 7.60 0.66 3.96 8.01 7.59
Not classified 1.12 5.28 5.90 0.49 1.70 3.43 8.60

KL wrt Human distribution 0.953 0.042 0.038 0.396 1.48 0.055 —

Table 3.4: Percentage of questions per question type in all the test set games played by humans
(H) and the models with the 8Q setting, and KL divergence from human distribution of fine-
grained question types.

We also analyze the structure of the dialogues in terms of the sequences of
question types asked. As expected, both humans and models almost always start
with an ENTITY question (around 97% for BL, SL and CL, 98.7% for RL, and
78.48% for humans), in particular a SUPER-CATEGORY (around 70% for BL,
SL and CL, 84% for RL, and 52.32% for humans). In some cases, humans start
by asking questions directly about an attribute that may easily distinguish an
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object from others, while this is very uncommon for models. Figure 3.7 shows
an example: The human dialogue begins with an ATTRIBUTE question (‘does it

have cereal on it?’), which in this case is not very effective and leads to a change
in strategy at turn 4. The CL model starts by asking an OBJECT question (‘is it

a donut?’) while the RL model begins with a more generic SUPER-CATEGORY

question (‘is it food?’).
We check how the answer to a given question type affects the type of follow-

up question. In principle, we expect to find that question types that are answered
positively will be followed by more specific questions. This is indeed what we
observe in the human dialogues, as shown in Table 3.5. For example, when a
SUPER-CATEGORY question is answered positively, humans follow up with an
OBJECT or ATTRIBUTE question 89.56% of the time. This trend is mirrored by
all models.

Question type shift BL SL CL RL SL-DM CL-DM H

SUPER-CAT→ OBJ/ATT 89.05 92.61 89.75 95.63 98.65 98.04 89.56
OBJECT→ ATTRIBUTE 67.87 60.92 65.06 99.46 91.23 90.51 88.70

Table 3.5: Proportion of question type shift vs. no type shift in consecutive questions Qt →
Qt+1 where Qt has received a Yes answer.

Overall, the models also learn the strategy to move from an OBJECT to an AT-
TRIBUTE question when an OBJECT question receives a Yes answer. The BL,
SL, and CL models do this to a lesser extent than humans, while the RL model
systematically transitions to attributes (in 99.46% of cases), using mostly LO-
CATION questions as pointed out above. For example (Figure 3.7), after re-
ceiving an affirmative answer to the OBJECT question ‘is it a donut?’ both
CL and RL shift to a LOCATION question. Once the location is established,
CL moves on to other attributes while RL keeps asking the same LOCATION

question, which leads to failure. Further illustrative examples are given in the
supplement.

49



3.6. ANALYSIS USING GDSE CHAPTER 3. JOINT

3.6.3 Analysis of the CL learning process

(a) Lexical diversity (b) Question diversity

(c) % Games w/ repeated Q’s (d) KL-distance from human

Figure 3.8: Evolution of linguistic factors over 100 training epochs for our GDSE-CL model.
Note: lexical and question diversity of the human data fall outside the range in (a) / (b). The
same is the case with KL for BL in (d).

In order to better understand the effect of the cooperative learning regime,
we trace the evolution of linguistic factors identified above over the CL epochs.
As illustrated in Figure 3.8 (a) and (b), through the epochs the CL model learns
to use a richer vocabulary and more diverse questions, moving away from the
levels achieved by BL and RL, overpassing SL and moving toward humans.

The CL model progressively produces fewer repeated questions within a di-
alogue, improving over SL in the last few epochs, cf. Figure 3.8 (c). Finally, (d)
illustrates the effect of modulo-n training: As the model is trained on generated
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dialogues, its linguistic output drifts away from the human distribution of ques-
tion types; every 5th epoch QGen is trained via supervision, which brings the
model’s behavior closer back to human linguistic style and helps decrease the
drift.

3.7 Conclusion

We present a new visually-grounded joint Questioner agent for goal-oriented
dialogue. First, we show that our architecture archives 6–9% accuracy improve-
ments over the GuessWhat?! baseline system de Vries et al. (2017). This way,
we address a foundational limitation of previous approaches that model guess-
ing and questioning separately.

Second, our joint architecture allows us to propose a two-phase cooperative
learning approach (CL), which further improves accuracy, results in our overall
best model and reaches state-of-the-art results (cf. Section 4.3.2). We compare
CL to the system proposed by Strub et al. (2017a) which extends the baseline
with reinforcement learning (RL). We find that the two approaches (CL and
RL) achieve overall relatively similar task success rates. However, evaluating
on task success is only one side of the coin. Finally and most importantly, we
propose to pursue an in-depth analysis of the quality of the dialogues by visual
conversational agents, which is an aspect often neglected in the literature. We
analyze the linguistic output of the two models across three factors (lexical di-
versity, question diversity, and repetitions) and find them to differ substantially.
The CL model uses a richer vocabulary and inventory of questions, and pro-
duces fewer repeated questions than RL. In contrast, RL highly relies on asking
location questions, which might be explained by a higher reliance on spatial and
object-type information was explicitly given to the Guesser and Oracle models.
Limiting rewards to task success or other rewards not connected to the language
proficiency does not stimulate the model to learn rich linguistic skills, since a
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reduced vocabulary and simple linguistic structures may be an effective strategy
to succeed at the game.

Further, in our joint architecture, we have also incorporated a decision-making
component that decides when to stop asking questions which results in less
repetitive and more human-like dialogues. This shows the flexibility of the pro-
posed architecture.
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Chapter 4

FOIL Diagnostic Dataset and Tasks

The aim of this chapter is to understand whether current language and vision
models truly merge the two modalities. To this end, we propose an extension
of the MS-COCO dataset, FOIL-COCO, which associates images with both
correct and ‘foil’ captions, that is, descriptions of the image that is highly similar
to the original ones, but contain one single mistake (‘foil word’). We show that
current LaVi models fall into the traps of this data and perform badly on three
tasks: a) caption classification (correct vs. foil); b) foil word detection; c) foil
word correction. Humans, in contrast, have near-perfect performance on those
tasks. We demonstrate that merely utilizing language cues is not enough to
model FOIL-COCO and that it challenges the state-of-the-art by requiring a
fine-grained understanding of the relation between text and image.1

4.1 Introduction

Most human language understanding is grounded in perception. There is
thus growing interest in combining information from language and vision in
the NLP and AI communities. Multiple models have been proposed to merge

1Part of work of this chapter will appear in ACL 2017 as
Ravi Shekhar, Sandro Pezzelle, Yauhen Klimovich, Aurelie Herbelot, Moin Nabi, Enver Sangineto and Raffaella
Bernardi, “FOIL it! Find One mismatch between Image and Language caption”, In Proc. of 55th Annual
Meeting of the Association for Computational Linguistics (ACL), 2017 (Long-Oral).
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language and vision information. Whilst some models have seemed extremely
successful on those tasks, it remains unclear how the reported results should be
interpreted and what those models are actually learning. It has been shown that
co-occurrence based models are performing close to SoA models of different
tasks. For example, for VQA task by simple concatenation of language and vi-
sion features (Agrawal et al., 2016; Jabri et al., 2016; Zhang et al., 2016; Goyal
et al., 2016a) performs very well. In IC task too, Hodosh and Hockenmaier
(2016) showed that contrarily to what prior research had suggested, the task is
far from been solved, since IC models are not able to distinguish between a
correct and incorrect caption.

Such results indicate that in current datasets, language provides priors that
make LaVi models successful without truly understanding and integrating lan-
guage and vision. But problems do not stop at biases. Johnson et al. (2017)
also point out that current data ‘conflate multiple sources of error, making it
hard to pinpoint model weaknesses’, thus highlighting the need for diagnostic

datasets. Thirdly, existing IC evaluation metrics are sensitive to n-gram overlap
and there is a need for measures that better simulate human judgments (Hodosh
et al., 2013b; Elliott and Keller, 2014; Anderson et al., 2016).

This work tackles the identified issues by proposing an automatic method
for creating a large dataset of real images with minimal language bias and some
diagnostic abilities. Our dataset, FOIL (Find One mismatch between Image and
Language caption),2 consists of images associated with incorrect captions. The
captions are produced by introducing one single error (or ‘foil’) per caption in
existing, human-annotated data (Figure 4.1). This process results in a challeng-
ing error-detection/correction setting (because the caption is ‘nearly’ correct).
It also provides us with ground truth (we know where the error is) that can be
used to measure the performance of current models objectively.

We propose three tasks based on widely accepted evaluation measures: we

2The dataset is available from https://foilunitn.github.io/
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Figure 4.1: Is the caption correct or foil (T1)? If it is foil, where is the mistake (T2) and which
is the word to correct the foil one (T3)?

test the ability of the system to a) compute whether a caption is compatible
with the image (T1); b) when it is incompatible, highlight the mismatch in the
caption (T2); c) correct the mistake by replacing the foil word (T3).

The dataset presented in this work (Section 4.2) is built on top of MS-
COCO (Lin et al., 2014b), and contains 297,268 datapoints and 97,847 im-
ages. We will refer to it as FOIL-COCO. We evaluate two state-of-the-art VQA
models: the popular one by Antol et al. (2015), and the attention-based model
by Lu et al. (2016), and one popular IC model by Wang et al. (2016). We show
that those models perform close to chance level, while humans can perform
the tasks accurately (Section 4.3). Section 4.4 provides an analysis of our re-
sults, allowing us to diagnose three failures of LaVi models. First, their coarse
representations of language and visual input do not encode suitably structured
information to spot mismatches between an utterance and the corresponding
scene (tested by T1). Second, their language representation is not fine-grained
enough to identify the part of an utterance that causes a mismatch with the im-
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age as it is (T2). Third, their visual representation is also too poor to spot and
name the visual area that corresponds to a captioning error (T3).

4.2 FOIL-COCO Dataset and Task

In this section, we describe how we automatically generate FOIL-COCO
datapoints, i.e. image, original and foil caption triples. We used the train-
ing and validation set of Microsoft’s Common Objects in Context (MS-COCO)
dataset (Lin et al., 2014b) (2014 split version) as our starting point. We will first
describe the MS-COCO dataset.

MS-COCO Dataset The MS-COCO dataset is created using AMT. First of all,
the common categories of the object are decided. These categories are selected
such that it is a representative set of all categories, and be relevant to practical
applications. Authors first collected object categories from Everingham et al.
(2010) and 1200 most frequent word from Sitton (1996). Apart from these,
children ages from 4 to 8 were asked to name objects in daily use. This selected
list is then pruned using voting based on usefulness for practical applications
and their diversity relative to other categories, which resulted in 91 object cat-
egories. These object categories (e.g. dog, elephant, bird, . . . and car, bicycle,

airplane, . . . ), are from 11 super-categories (Animal, Vehicle, resp.), with 82 of
them having more than 5K labeled instances.

Using these common object categories, the images of the dataset is crawl
using an internet search. The internet query is formulated using pairs of objects
and images retrieved are performed via scene-based queries (Ordonez et al.,
2011). These collected images are then being annotated using a hierarchical la-
beling approach (Deng et al., 2014). The MS-COCO dataset provides multiple
annotations like object bounding box, object segmentation, etc.

For the MS-COCO caption data is collected using AMT. Captions are col-
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lected such that it described the important parts of the image and it doesn’t just
list out the objects in the image. All captions contain at least 8 words. In total
there are 123,287 images with captions (82,783 for training and 40,504 for val-
idation).3 We used the MS-COCO caption to create the FOIL-COCO dataset.

FOIL-COCO Data Generation

Our data generation process consists of four main steps, as described below.
The last two steps are illustrated in Figure 4.2.

Figure 4.2: The main aspects of the foil caption generation process. Left column: some of the
original COCO captions associated with an image. In bold we highlight one of the target words
(bicycle), chosen because it is mentioned by more than one annotator. Middle column: For each
original caption and each chosen target word, different foil captions are generated by replacing
the target word with all possible candidate foil replacements. Right column: A single caption
is selected amongst all foil candidates. We select the ‘hardest’ caption, according to Neuraltalk
model, trained using only the original captions.

1. Generation of replacement word pairs We want to replace one noun in
the original caption (the target) with an incorrect but similar word (the foil). To
do this, we take the labels of MS-COCO categories, and we pair together words
belonging to the same super-category (e.g., bicycle::motorcycle, bicycle::car,

3The MS-COCO test set is not available for download.

57



4.2. FOIL-COCO DATASET AND TASK CHAPTER 4. FOIL

bird::dog). We use as our vocabulary 73 out of the 91 MS-COCO categories,
leaving out those categories that are multi-word expressions (e.g. traffic light).
We thus obtain 472 target::foil pairs.

2. Splitting of replacement pairs into training and testing To avoid the
models learning trivial correlations due to replacement frequency, we randomly
split, within each supercategory, the candidate target::foil pairs which are used
to generate the captions of the training vs. test sets. We obtain 256 pairs, built
out of 72 target and 70 foil words, for the training set, and 216 pairs, containing
73 target and 71 foil words, for the test set.

3. Generation of foil captions We would like to generate foil captions by
replacing only target words which refer to visually salient objects. To this end,
given an image, we replace only those target words that occur in more than
one MS-COCO caption associated with that image. Moreover, we want to use
foils which are not visually present, i.e. that refers to visual content not present
in the image. Hence, given an image, we only replace a word with foils that
are not among the labels (objects) annotated in MS-COCO for that image. We
use the images from the MS-COCO training and validation sets to generate
our training and test sets, respectively. We obtain 2,229,899 for training and
1,097,012 captions for testing.

4. Mining the hardest foil caption for each image To eliminate possible
visual-language dataset bias, out of all foil captions generated in step 3, we
select only the hardest one. For this purpose, we need to model the visual-
language bias of the dataset. To this end, we use Neuraltalk4 (Karpathy and
Fei-Fei, 2015), one of the state-of-the-art image captioning systems, pre-trained
on MS-COCO. Neuraltalk is based on an LSTM which takes as input an image
and generates a sentence describing its content. We obtain a neural network
N that implicitly represents the visual-language bias through its weights. We
useN to approximate the conditional probability of a caption C given a dataset

4https://github.com/karpathy/neuraltalk
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no. of datapoints no. unique images no. of tot. captions no. target::foil pairs
Train 197,788 65,697 395,576 256
Test 99,480 32,150 198,960 216

Table 4.1: Composition of FOIL-COCO dataset.

T and and an image I (P (C|I, T )). This is obtained by simply using the loss
l(C,N (I)) i.e., the error obtained by comparing the pseudo-ground truthC with
the sentence predicted byN : P (C|I, T ) = 1−l(C,N (I)) (we refer to Karpathy
and Fei-Fei (2015) for more details on how l() is computed). P (C|I, T ) is used
to select the hardest foil among all the possible foil captions, i.e. the one with
the highest probability according to the dataset bias learned by N . Through
this process, we obtain 197,788 and 99,480 original::foil caption pairs for the
training and test sets, respectively. None of the target::foil word pairs are filtered
out by this mining process.

The final FOIL-COCO dataset consists of 297,268 datapoints (197,788 in
training and 99,480 in test set). All the 11 MS-COCO supercategories are rep-
resented in our dataset and contain 73 categories from the 91 MS-COCO ones
(4.8 categories per supercategory on average). Table 4.1 provides the details of
the FOIL-COCO dataset.

FOIL Tasks

Along with the FOIL dataset, we also proposed the following three tasks to
test the models, see Figure4.1.

Task 1 (T1): Correct vs. foil classification Given an image and a caption,
the model is asked to mark whether the caption is correct or wrong. The aim is
to understand whether LaVi models can spot mismatches between their coarse
representations of language and visual input.
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Task 2 (T2): Foil word detection Given an image and a foil caption, the
model has to detect the foil word. The aim is to evaluate the understanding
of the system at the word level. In order to systematically check the system’s
performance with different prior information, we test two different settings: the
foil has to be selected amongst (a) only the nouns or (b) all content words in the
caption.

Task 3 (T3): Foil word correction Given an image, a foil caption and the
foil word, the model has to detect the foil and provide its correction. The aim
is to check whether the system’s visual representation is fine-grained enough to
be able to extract the information necessary to correct the error. For efficiency
reasons, we operationalize this task by asking models to select a correction from
the set of target words, rather than the whole dataset vocabulary (viz. more than
10K words).

4.3 Experiments and Results

In this section first, we will describe the details of the models used to perform
the FOIL tasks. And later, we will provide the results obtained using the FOIL-
COCO dataset.

4.3.1 Models Tested

We evaluate both VQA and IC models against our tasks. For the former,
we use two of the three models evaluated in Goyal et al. (2016a) against a bal-
anced VQA dataset. For the latter, we use the multimodal bi-directional LSTM,
proposed by Wang et al. (2016), and adapted for our tasks.

LSTM + norm I: We use the best performing VQA model in Antol et al. (2015)
(deeper LSTM + norm I). To encode the caption, a two stack Long-Short Term
Memory (LSTM) is used and caption embedding is obtained by the last hidden
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Figure 4.3: VQA Model using LSTM + norm I

layer of the LSTM. To encode the image, VGGNet (Simonyan and Zisserman,
2014) is used. The image embedding is obtained by normalizing the last fully
connected layer of VGGNet. Both image embedding and caption embedding
are projected into a 1024-dimensional feature space. The combination of these
two projected embeddings is performed by a point-wise multiplication. The
multi-model representation thus obtained is used for the classification, which is
performed by a multi-layer perceptron (MLP) classifier, as shown in Figure 4.3.

HieCoAtt: We use the Hierarchical Co-Attention model proposed by Lu et al.
(2016) that co-attends to both the image and the question to solve the task.
Authors proposed two types of attention: parallel co-attention and alternating
co-attention. In parallel co-attention, image and question is attended simulta-
neously. In alternating co-attention, attention is sequential alternates between
generating some attention over the image and question. We evaluate FOIL task
using the ‘alternate’ version. It does so in a hierarchical way by starting from the
word-level, then going to the phrase and then to the entire sentence-level (see
Figure 4.4). These levels are combined recursively to produce the distribution
over the foil vs. correct captions.
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Figure 4.4: VQA Model using Hierarchical Co-Attention model.

Figure 4.5: IC Model using BiLSTM

IC-Wang: Amongst the IC models, we choose the multimodal bi-directional
LSTM (Bi-LSTM) model proposed in Wang et al. (2016). This model predicts a
word in a sentence by considering both the past and future context, as sentences
are fed to the LSTM in forward and backward order. The model consists of
three modules: a CNN for encoding image inputs, a Text-LSTM (T-LSTM)
for encoding sentence inputs, a Multimodal LSTM (M-LSTM) for embedding
visual and textual vectors to common semantic space and decoding to sentence.
The bidirectional LSTM is implemented with two separate LSTM layers.
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Baselines: We compare the SoA models above against two baselines. For the
classification task, we use a Blind LSTM model followed by a fully connected
layer and softmax and train it only on captions as input to predict the answer. In
addition, we evaluate the CNN+LSTM model, where visual and textual features
are simply concatenated.

Model’s performance on FOIL tasks For the classification task (T1), the baselines
and VQA models can be applied directly. We adapt the generative IC model
to perform the classification task as follows. Given a test image I and a test
caption, for each word wt in the test caption, we remove the word and use
the model to generate new captions in which the wt has been replaced by the
word vt predicted by the model (w1,...,wt−1, vt, wt−1,...,wn). We then compare
the conditional probability of the test caption with all the captions generated
from it by replacing wt with vt. When all the conditional probabilities of the
generated captions are lower than the one assigned to the test caption the latter
is classified as good, otherwise as foil. For the other tasks, the models have
been trained on T1. To perform the foil word detection task (T2), for the VQA
models, we apply the occlusion method. Following Goyal et al. (2016c), we
systematically occlude subsets of the language input, forward propagate the
masked input through the model, and compute the change in the probability
of the answer predicted with the unmasked original input. For the IC model,
similarly to T1, we sequentially generate new captions from the foil one by
replacing, one by one, the words in it and computing the conditional probability
of the foil caption and the one generated from it. The word whose replacement
generate the caption with the highest conditional probabilities is taken to be the
foil word. Finally, to evaluate the models on the error correction task (T3), we
apply the linear regression method over all the target words and select the target
word which has the highest probability of making that wrong caption correct
with respect to the given image.
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Upper-bound Using Crowdflower, we collected human answers from 738 na-
tive English speakers for 984 image-caption pairs randomly selected from the
test set. Subjects were given an image and a caption and had to decide whether
it was correct or wrong (T1). If they thought it was wrong, they were required
to mark the error in the caption (T2). We collected 2952 judgments (i.e., 3
judgments per pair and 4 judgments per rater) and computed human accuracy
in T1 when considering an answer (a) the one provided by at least 2 out of 3
annotators (majority) and (b) the one provided by all 3 annotators (unanimity).
The same procedure was adopted for computing accuracies in T2. Accuracies
in both T1 an T2 are reported in Table 4.2 and 4.3 respectively. As can be
seen, in the majority setting annotators are quasi-perfect in classifying captions
(92.89%) and detecting foil words (97.00%). Though lower, accuracies in the
unanimity setting are still very high, with raters providing the correct answer
in 3 out of 4 cases in both tasks. Hence, although we have collected human
answers only on rather a small subset of the test set, we believe their results are
the representative of how easy the tasks are for humans.

4.3.2 Results

As shown in Tables 4.2, 4.3, 4.4, the FOIL-COCO dataset is challenging.
On T1(Table 4.2), for which the chance level is 50.00%, the ‘blind’, language-
only model, does badly with an accuracy of 55.62% (25.04% on foil captions),
demonstrating that language bias is minimal. By adding visual information,
CNN+LSTM, the overall accuracy increases by 5.45% (7.94% on foil captions.)
reaching 61.07% (resp. 32.98%). Both SoA VQA and IC models do signifi-
cantly worse than humans on both T1 and T2. The VQA systems show a strong
bias towards correct captions and poor overall performance. They only identify
34.51% (LSTM +norm I) and 36.38% (HieCoAtt) of the incorrect captions (T1).
On the other hand, the IC model tends to be biased toward the foil captions, on
which it achieves an accuracy of 45.44%, higher than the VQA models. But the
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T1: Classification task
Overall Correct Foil

Blind 55.62 86.20 25.04
CNN+LSTM 61.07 89.16 32.98
IC-Wang 42.21 38.98 45.44
LSTM + norm I 63.26 92.02 34.51
HieCoAtt 64.14 91.89 36.38
Human (majority) 92.89 91.24 94.52
Human (unanimity) 76.32 73.73 78.90

Table 4.2: T1: Accuracy for the classification task, relatively to all image-caption pairs (overall)
and by type of caption (correct vs. foil).

overall accuracy (42.21%) is poorer than the one obtained by the two baselines.
On the foil word detection task, when considering only nouns as possible foil
word, both the IC and the LSTM+norm I models perform close to chance level,
and the HieCoAtt performs somewhat better, reaching 38.79%. Similar results
are obtained when considering all words in the caption as the possible foil. Fi-
nally, the VQA models’ accuracy on foil word correction (T3) is extremely low,
at 4.7% (LSTM +norm I) and 4.21% (HieCoAtt). The result on T3 makes it
clear that the VQA systems are unable to extract from the image representation
the information needed to correct the foil: despite being told which element
in the caption is wrong, they are not able to zoom into the correct part of the
image to provide a correction, or if they are, cannot name the object in that re-
gion. The IC model performs better compared to the other models, having an
accuracy that is 20,78% higher than chance level.

4.4 Analysis

We performed a mixed-effect logistic regression analysis in order to check
whether the behavior of the best performing models in T1, namely the VQA
models, can be predicted by various linguistic variables. We included: 1) se-
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T2: Foil word detection task
nouns all content words

Chance 23.25 15.87
IC-Wang 27.59 23.32
LSTM + norm I 26.32 24.25
HieCoAtt 38.79 33.69
Human (majority) 97.00
Human (unanimity) 73.60

Table 4.3: T2: Accuracy for the foil word detection task, when the foil is known to be among
the nouns only or when it is known to be among all the content words.

T3: Foil word correction task
all target words

Chance 1.38
IC-Wang 22.16
LSTM + norm I 4.7
HieCoAtt 4.21

Table 4.4: T3: Accuracy for the foil word correction task when the correct word has to be
chosen among any of the target words.
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mantic similarity between the original word and the foil (computed as the cosine
between the two corresponding word2vec embeddings Mikolov et al. (2013));
2) frequency of original word in FOIL-COCO captions; 3) frequency of the foil
word in FOIL-COCO captions; 4) length of the caption (number of words).
The mixed-effect model was performed to get rid of possible effects due to ei-
ther object supercategory (indoor, food, vehicle, etc.) or target::foil pair (e.g.,
zebra::giraffe, boat::airplane, etc.). For both LSTM + norm I and HieCoAtt,
word2vec similarity, the frequency of the original word, and frequency of the
foil word turned out to be highly reliable predictors of the model’s response.
The higher the values of these variables, the more the models tend to provide
the wrong output. That is, when the foil word (e.g. cat) is semantically very
similar to the original one (e.g. dog), the models tend to wrongly classify the
caption as ‘correct’. The same holds for frequency values. In particular, the
higher the frequency of both the original word and the foil one, the more the
models fail. This indicates that systems find it difficult to distinguish related
concepts at the text-vision interface, and also that they may tend to be biased
towards frequently occurring concepts, ‘seeing them everywhere’ even when
they are not present in the image. Caption length turned out to be only a par-
tially reliable predictor in the LSTM + norm I model, whereas it is a reliable
predictor in HieCoAtt. In particular, the longer the caption, the harder for the
model to spot that there is a foil word that makes the caption wrong.

As revealed by the fairly high variance explained by the random effect re-
lated to target::foil pairs in the regression analysis, both models perform very
well on some target::foil pairs, but fail on some others (see leftmost part of
Table 4.6 for same examples of easy/hard target::foil pairs). Moreover, the vari-
ance explained by the random effect related to object supercategory is reported
in Table 4.5. As can be seen, for some supercategories accuracies are signifi-
cantly higher than for others (compare, e.g., ‘electronic’ and ‘outdoor’).

In a separate analysis, we also checked whether there was any correlation
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Super-category No. of object
No. of foil
captions

Acc. using
LSTM + norm I

Acc. using
HieCoAtt

outdoor 2 107 2.80 0.93
food 9 10407 22.00 26.59

indoor 6 4911 30.74 27.97
appliance 5 2811 32.72 34.54

sports 10 16276 31.57 31.61
animal 10 21982 39.03 43.18
vehicle 8 16514 34.38 40.09

furniture 5 13625 33.27 33.13
accessory 5 3040 49.53 31.80
electronic 6 5615 45.82 43.47
kitchen 7 4192 38.19 45.34

Table 4.5: Classification Accuracy of foil captions by Super Categories (T1). The No. of
the objects and the No. of foil captions refer to the test set. The training set has a similar
distribution.

between results and the position of the foil in the sentence, to ensure the models
did not profit from any undesirable artifacts of the data. We did not find any
such correlation.

To better understand results on T2, we performed an analysis investigating
the performance of the VQA models on a different target::foil pairs. As re-
ported in Table 4.6 (right), both models perform nearly perfectly with some
pairs and very badly with others. At first glance, it can be noticed that LSTM
+ norm I is very effective with pairs involving vehicles (airplane, truck, etc.),
whereas HieCoAtt seems more effective with pairs involving animate nouns
(i.e. animals), though more in-depth analysis is needed on this point. More in-
terestingly, some pairs that are found to be predicted almost perfectly by LSTM
+ I norm, namely boat::airplane, zebra::giraffe, and drier::scissors, turn out to
be among the Bottom-5 cases in HieCoAtt. This suggests, on the one hand, that
the two VQA models use different strategies to perform the task. On the other
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Top-5 Bottom-5
T1: LSTM + norm I

racket::glove 100 motorcycle::airplane 0
racket::kite 97.29 bicycle::airplane 0
couch::toilet 97.11 drier::scissors 0
racket::skis 95.23 bus::airplane 0.35
giraffe::sheep 95.09 zebra::giraffe 0.43

T1: HieCoAtt
tie::handbag 100 drier::scissors 0
snowboard::glove 100 fork::glass 0
racket::skis 100 handbag::tie 0
racket::glove 100 motorcycle::airplane 0
backpack::handbag 100 train::airplane 0

Top-5 Bottom-5
T2: LSTM + norm I

drier::scissors 100 glove::skis 0
zebra::giraffe 88.98 snowboard::racket 0
boat::airplane 87.87 donut::apple 0
truck::airplane 85.71 glove::surfboard 0
train::airplane 81.93 spoon::bottle 0

T2: HieCoAtt
zebra::elephant 94.92 drier::scissors 0
backpack::handbag 94.44 handbag::tie 0
cow::zebra 93.33 broccoli:orange 1.47
bird::sheep 93.11 zebra::giraffe 1.96
orange::carrot 92.37 boat::airplane 2.09

Table 4.6: Easiest and hardest target::foil pairs: T1 (caption classification) and T2 (foil word
detection).

hand, it shows that our dataset does not contain cases that are a priori easy for
any model.

The results of IC-Wang on T3 are much higher than LSTM + norm I and
HieCoAtt, although it is outperformed by or is on par with HieCoAtton on
T1-T2. Our interpretation is that this behavior is related to the discrimina-
tive/generative nature of our tasks. Specifically, T1 and T2 are discriminative
tasks and LSTM + norm I and HieCoAtt are discriminative models. Conversely,
T3 is a generative task (a word needs to be generated) and IC-Wang is a gener-
ative model. It would be interesting to test other IC models on T3 and compare
their results against the ones reported here. However, note that IC-Wang is ‘tai-
lored’ for T3 because it takes as input the whole sentence (minus the word to be
generated), while common sequential IC approaches can only generate a word
depending on the previous words in the sentence.

As far as human performance is concerned, both T1 and T2 turn out to be ex-
tremely easy. In T1, image-caption pairs were correctly judged as correct/wrong
in overall 914 out of 984 cases (92.89%) in the majority setting. In the unanim-

ity setting, the correct response was provided in 751 out of 984 cases (76.32%).
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Judging foil captions turns out to be slightly easier than judging correct captions
in both settings, probably due to the presence of typos and misspellings that
sometimes occur in the original caption (e.g. raters judge as wrong the orig-
inal caption People playing ball with a drown and white dog, where ‘brown’
was misspelled as ‘drown’). To better understand which factors contribute to
making the task harder, we qualitatively analyze those cases where all annota-
tors provided a wrong judgment for an image-caption pair. As partly expected,
almost all cases where original captions (thus correct for the given image) are
judged as being wrong are cases where the original caption is indeed incorrect.
For example, a caption using the word ‘motorcycle’ to refer to a bicycle in the
image is judged as wrong. More interesting are those cases where all raters
agreed in considering as correct image-caption pairs that are instead foil. Here,
it seems that vagueness, as well as certain metaphorical properties of language,
are at play: human annotators judged as correct a caption describing Blue and

banana large birds on tree with metal pot (see Fig 4.6, left), where ‘banana’ re-
placed ‘orange’. Similarly, all raters judged as correct the caption A cat laying

on a bed next to an opened keyboard (see Fig 4.6, right), where the cat is instead
laying next to an opened laptop.

Focusing on T2, it is interesting to report that among the correctly-classified
foil cases, annotators provided the target word in 97% and 73.6% of cases in the
majority and unanimity setting, respectively. This further indicates that finding
the foil word in the caption is a rather trivial task for humans.

4.5 Conclusion

We have introduced FOIL-COCO, a large dataset of images associated with
both correct and foil captions. The error production is automatically generated,
but carefully thought out, making the task of spotting foils particularly challeng-
ing. By associating the dataset with a series of tasks, we allow for diagnosing
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Figure 4.6: Two cases of foil image-caption pairs that are judged as correct by all annotators.

various failures of current LaVi systems, from their coarse understanding of the
correspondence between text and vision to their grasp of language and image
structure.

Our hypothesis is that systems which, like humans, deeply integrate the lan-
guage and vision modalities, should spot foil captions quite easily. The SoA
LaVi models we have tested fall through that test, implying that they fail to in-
tegrate the two modalities. To complete the analysis of these results, a further
task is needed to detect in the image the area that produces the mismatch with
the foil word (the red box around the bird in Figure 4.1.) This extra step would
allow us to fully diagnose the failure of the tested systems and confirm what
is implicit in our results from task 3: that the algorithms are unable to map
particular elements of the text to their visual counterparts.

LaVi models are a great success of recent research, and with the amount of
ideas, data and models produced in this stimulating area. With this work, we
would like to push the community to think beyond the task success and develop
models that can better merge language and vision modalities, instead of merely
using one to supplement the other.
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Chapter 5

Evaluation of the Encoder of Language
and Vision Models

The multimodal models used in the emerging field at the intersection of com-
putational linguistics and computer vision implement the bottom-up processing
of the “Hub and Spoke” architecture proposed in cognitive science to repre-
sent how the brain processes and combines multi-sensory inputs. In particular,
the Hub is implemented as a neural network encoder. We investigate the effect
on this encoder of various vision-and-language tasks proposed in the literature:
visual question answering, visual reference resolution, and visually grounded
dialogue. To measure the quality of the representations learned by the encoder,
we use two kinds of analyses. First, we evaluate the encoder pre-trained on
the different vision-and-language tasks on an existing diagnostic task designed
to assess multimodal semantic understanding. Second, we carry out a battery
of analyses aimed at studying how the encoder merges and exploits the two
modalities.1

1Part of work of this chapter will appear in IWCS 2019 as
Ravi Shekhar, Ece Takmaz, Raffaella Bernardi, and Raquel Fernández, “Evaluating the Representational Hub
of Language and Vision Models ”, In Proc. of 13th International Conference on Computational Semantics
(IWCS), 2019 (Long-Oral).
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5.1 Introduction

In recent years, a lot of progress has been made within the emerging field
at the intersection of computational linguistics and computer vision thanks to
the use of deep neural networks. The most common strategy to move the field
forward has been to propose different multimodal tasks—such as visual ques-
tion answering (Antol et al., 2015), visual question generation (Mostafazadeh
et al., 2016), visual reference resolution (Kazemzadeh et al., 2014), and visual
dialogue (Das et al., 2017a)—and to develop task-specific models.

The benchmarks developed so far have put forward complex and distinct
neural architectures, but in general they all share a common backbone consisting
of an encoder which learns to merge the two types of representation to perform
a certain task. This resembles the bottom-up processing in the ‘Hub and Spoke’
model proposed in Cognitive Science to represent how the brain processes and
combines multi-sensory inputs (Patterson and Ralph, 2015). In this model, a
‘hub’ module merges the input processed by the sensor-specific ‘spokes’ into a
joint representation. We focus our attention on the encoder implementing the
‘hub’ in artificial multimodal systems, with the goal of assessing its ability to
compute multimodal representations that are useful beyond specific tasks.

While current visually grounded models perform remarkably well on the
task they have been trained for, it is unclear whether they are able to learn rep-
resentations that truly merge the two modalities and whether the skill they have
acquired is stable enough to be transferred to other tasks. In this paper, we in-
vestigate these questions in detail. To do so, we evaluate an encoder trained
on different multimodal tasks on an existing diagnostic task—FOIL classifi-
cation task (see Section 4.2)—designed to assess multimodal semantic under-
standing and carry out in-depth analysis to study how the encoder merges and
exploits the two modalities. We also exploit two techniques to investigate the
structure of the learned semantic spaces: Representation Similarity Analysis
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(RSA) (Kriegeskorte et al., 2008) and Nearest Neighbour overlap (NN). We use
RSA to compare the outcome of the various encoders given the same vision-
and-language input and NN to compare the multimodal space produced by an
encoder with the ones built with the input visual and language embeddings, re-
spectively, which allows us to measure the relative weight an encoder gives to
the two modalities.

In particular, we consider three visually grounded tasks: visual question an-
swering (VQA) (Antol et al., 2015), where the encoder is trained to answer a
question about an image; visual resolution of referring expressions (ReferIt)
(Kazemzadeh et al., 2014), where the model has to pick up the referent object
of a description in an image; and GuessWhat (de Vries et al., 2017), where the
model has to identify the object in an image that is the target of a goal-oriented
question-answer dialogue. We make sure the datasets used in the pre-training
phase are as similar as possible in terms of size and image complexity, and use
the same model architecture for the three pre-training tasks. This guarantees
fair comparisons and the reliability of the results we obtain.

We show that the multimodal encoding skills learned by pre-training the
model on GuessWhat and ReferIt are more stable and transferable than the ones
learned through VQA. This is reflected in the lower number of epochs and the
smaller training data size they need to reach their best performance on the FOIL
task. We also observe that the semantic spaces learned by the encoders trained
on the ReferIt and GuessWhat tasks are closer to each other than to the semantic
space learned by the VQA encoder. Despite these asymmetries among tasks, we
find that all encoders give more weight to the visual input than the linguistic one.

5.2 Visually Grounded Tasks and Diagnostic Task

We study three visually grounded tasks: visual question answering (VQA),
visual resolution of referring expressions (ReferIt), and goal-oriented dialogue
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for visual target identification (GuessWhat). While ReferIt was originally for-
mulated as an object detection task (Kazemzadeh et al., 2014), VQA (Antol
et al., 2015) and GuessWhat (de Vries et al., 2017) were defined as classifi-
cation tasks. Here we operationalize the three tasks as retrieval tasks, which
makes comparability easier.

• VQA: Given an image and a natural language question about it, the model
is trained to retrieve the correct natural language answer out of a list of
possible answers.

• ReferIt: Given an image and a natural language description of an entity
in the image, the model is asked to retrieve the bounding box of the corre-
sponding entity out of a list of candidate bounding boxes.

• GuessWhat: Given an image and a natural language question-answer di-
alogue about a target entity in the image, the model is asked to retrieve the
bounding box of the target among a list of candidate bounding boxes. The
GuessWhat game also involves asking questions before guessing. Here we
focus on the guessing task that takes place after the question generation
step.

Figure 5.1 (left) exemplifies the similarities and differences among the three
tasks. All three tasks require merging and encoding visual and linguistic input.
In VQA, the system is trained to make a language-related prediction, while in
ReferIt it is trained to make visual predictions. GuessWhat includes elements
of both VQA and ReferIt, as well as specific properties: The system is trained
to make a visual prediction (as in ReferIt) and it is exposed to questions (as in
VQA); but in this case the linguistic input is a coherent sequence of visually
grounded questions and answers that follow a goal-oriented strategy and that
have been produced in an interactive setting.

To evaluate the multimodal representations learned by the encoders of the
models trained on each of the three tasks above, we leverage the FOIL task
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VQA
Q: How many cups are there?
A: Two.

ReferIt
The top mug.

GuessWhat
Q: Is it a mug?
A: Yes
Q: Can you see the cup’s handle?
A: Yes.

FOIL Diagnostic Task

original caption
Bikers approaching a bird.

foiled caption
Bikers approaching a dog.

Figure 5.1: Illustrations of the three visually-grounded tasks (left) and the diagnostic task
(right).

(concretely, task 1 introduced in Section 4.2), a binary classification task de-
signed to detect semantic incongruence in visually grounded language.

• FOIL (diagnostic task): Given an image and a natural language caption
describing it, the model is asked to decide whether the caption faithfully
describes the image or not, i.e., whether it contains a foiled word that is
incompatible with the image. Figure 5.1 (right) shows an example.

5.3 Model Architecture and Training

In cognitive science, the hub module of Patterson and Ralph (2015) receives
representations processed by sensory-specific spokes and computes a multi-
modal representation out of them. All our models have a common core that
resembles this architecture, while incorporating some task-specific components.
This allows us to investigate the impact of specific tasks on the multimodal rep-
resentations computed by the representational hub, which is implemented as an
encoder. Figure 5.2 shows a diagram of the shared model components, which
we explain in detail below.
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5.3.1 Shared components

To facilitate the comparison of the representations learned via the different
tasks we consider, we use pre-trained visual and linguistic features to process
the input given to the encoders. This provides a common initial base across
models and diminishes the effects of using different datasets for each specific
task (the datasets are described in Section 5.4).

Visual and language embeddings For the visual input, we use ResNet152 fea-
tures He et al. (2016), which yield state of the art performance in image classi-
fication tasks and can be computed efficiently. For the linguistic input, we use
Universal Sentence Encoder (USE) vectors Cer et al. (2018) since they yield
near state-of-the-art results on several NLP tasks and are suitable both for short
texts (such as the descriptions in ReferIt) and longer ones (such as the dialogues
in GuessWhat2).

Encoder As shown in Figure 5.2, ResNet152 visual features (V ∈ R2048×1) and
USE linguistic features (L ∈ R512×1) are input in the model and passed through
fully connected layers that project them onto spaces of the same dimensionality.
The projected representations (Vp and Lp) are concatenated, passed through a
linear layer, and then through a tanh activation function, which produces the
final encoder representation h:

h = tanh (W · [Vp; Lp]) (5.1)

where W ∈ R1024×1024, Vp ∈ R512×1, Lp ∈ R512×1, and [·; ·] represents concate-
nation.

2The dialogues in the GuessWhat?! dataset consists of 4.93 question-answer pairs on average de Vries et al.
(2017).
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Figure 5.2: General model architecture. The encoder receives as input visual (ResNet152) and
linguistic (USE) embeddings and merges them into a multimodal representation (h). This is
passed on to a task-specific component: an MLP in the case of the pre-training retrieval tasks
and a fully connected layer in the case of the FOIL classification task.

5.3.2 Task-specific components

The architecture described above is shared by all the models we experiment
with, which thus differ only with respect to their task-specific component.

Pre-training task component For the three tasks we consider, the final encoder
representation h is given to a Multi-Layer Perceptron (MLP), which generates
either a language embedding (VQA model) or a visual embedding (ReferIt and
GuessWhat model). The three task-specific models are trained with a cosine
similarity loss, which aims to get the generated embedding closer to the ground
truth embedding and farther away from any other embeddings.

FOIL task component To evaluate the encoder representations learned by the
pre-trained models, the task-specific MLPs are replaced by a fully connected
layer, which is trained on the FOIL task using a cross-entropy loss. We train the
FOIL task component using the following settings:

• Random2 The encoder weights are randomly initialized and the FOIL
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classifier layer is untrained. This provides a lower-bound baseline with
random performance.

• Random The encoder weights are randomly initialized and then frozen
while the FOIL classifier layer is trained on the FOIL task. This provides
a strong baseline that is directly comparable to the task-specific setting
explained next.

• Pre-trained (VQA, ReferIt, GuessWhat) The encoder weights are ini-
tialized with the Random setting’s seeds and the model is trained on each
of the tasks. The weights of the task-specific encoders are then frozen and
the FOIL classifier layer is trained on the FOIL task. With this setting, we
are able to diagnose the transfer and encoding properties of the pre-trained
tasks.

• Fully trained on FOIL The encoder weights are initialized with the Ran-
dom setting’s seeds. Then the full model is trained on the FOIL task,
updating the weights of the projected vision and language layers, the en-
coder, and the FOIL layer. This provides the upper bound on the FOIL
classification performance, as the entire model is optimized for this task
from the start.

5.4 Experimental Setup

We provide details on the data sets and the implementation settings we use
in our experiments.

For the three visually grounded tasks, we use the VQA.v1 dataset by An-
tol et al. (2015), the RefCOCO dataset by Yu et al. (2016a), and the Guess-
What?! dataset by de Vries et al. (2017) as our starting point. All these datasets
have been developed with images from MS-COCO Lin et al. (2014a).

QA pairs of VQA.v1 dataset(Antol et al. (2015) is collect using human anno-
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tators. Annotators are instructed to ask interesting, diverse and requires image
to answer. For every question, two types of answers are collected: open-ended
and multiple choice. The open-ended answer is selected via majority annota-
tors agreement. While for the multiple choice answers, 18 candidate answers
are created for each question. Candidate answers are created based on correct-
ness, plausibility, and popularity. The correct answers are selected by majority
agreement. The plausible answers are collected by asking the question with-
out showing the image. And the popular answers are those which are the most
popular answers in the dataset. For every image on average 3 QA pairs are
collected.

The referring expression in the RefCOCO dataset (Yu et al., 2016a) is col-
lected using AMT in an interactive setting. The first player is asked to write the
referring expression for a given image and bounding box of a target object. The
target object is selected such that it has multiple instances of that object in the
image. After writing the referring expressions, the second player is provided
the image and corresponding referring expression to select the object. If the
selected object is matching with the target object that referring expression is
selected for that image and target object. If both players do their job correctly,
they are rewarded and their role is swapped. The dataset is collected such that
it also consists of appearance-based description, not only location based. The
GuessWhat?! dataset is also collect using AMT, in which to guess a target object
in the image multiple round QA-pairs is used, see Section 3.2 for details.

Common Dataset Since all the datasets are collected independently and has a
different set of images and word distribution. Our goal is to create a common
dataset to minimizing the difference in the dataset. In this direction, we first
construct common image datasets for by taking the intersection of the images
in the three original datasets. This results in a total of 14,458 images. An im-
age can be part of several data points, i.e, it can be paired with more than one
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linguistic input. Indeed, the 14,458 common images correspond to 43,374 ques-
tions for the VQA task, 104,227 descriptions for the ReferIt task, and 35,467
dialogues for the GuessWhat task.

To obtain datasets of equal size per task that are as similar as possible, we
filter the resulting data points according to the following procedure:

1. For each image, we check how many linguistic items are present in the
three datasets and fix the minimum number (k) to be our target number of
linguistic items paired with that image.

2. We select n data points where the descriptions in ReferIt and dialogues in
GuessWhat concern the same target object (with n ≤ k).

3. Among the n data points selected in the previous step, we select them data
points in VQA where the question or the answer mention the same target
object (computed by string matching).

4. We make sure all the images in each task-specific dataset are paired with
exactly k linguistic items; if not, we select additional ones randomly until
this holds.

This results in a total of 30,316 data points per dataset: 14,458 images shared
across datasets, paired with 30,313 linguistic items. We randomly divided this
common image dataset into training and validation sets at the image level. The
training set consists of 13,058 images (paired with 27,374 linguistic items) and
the validation set of 1,400 images (paired with 2,942 linguistic items). Table 5.1
provides an overview of the datasets.

As mentioned in Section 5.2, we operationalize the three tasks as retrieval
tasks where the goal is to retrieve the correct item out of a set of candidates. In
the VQA.v1 dataset (multiple choice version), there are 18 candidate answers
per question. In GuessWhat?! there are on average 18.71 candidate objects per
dialogue, all of them appearing in the image. We take the same list of candidate
objects per image for the ReferIt task.
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common image datasets FOIL dataset
training validation training validation testing

# images 13,058 1,400 63,240 13,485 20,105
# language 27,374 2,942 358,182 37,394 126,232

Table 5.1: Statistics of the datasets used for the pre-training tasks and the FOIL task.

FOIL dataset The FOIL dataset consists of image-caption pairs from MS-COCO
and pairs where the caption has been modified by replacing a noun in the origi-
nal caption with a foiled noun, such that the foiled caption is incongruent with
the image—see Figure 5.1 for an example and Section 4.2 for further details on
the construction of the dataset.3 The dataset contains 521,808 captions (358,182
in training, 37,394 in validation and 126,232 in test set) and 96,830 images
(63,240, 13,485 and 20,105, in training, validation and test set, respectively) –
see Table 5.1. All the images in the test set do not occur either in the FOIL
training and validation set, nor in the common image dataset described above
and used to pre-train the models.

Implementation details All models are trained using supervised learning with
ground truth data. We use the same parameters for all models: batch size of
256 and Adam optimizer Kingma and Ba (2014b) with learning rate 0.0001.
All the parameters are tuned on the validation set. Early stopping is used while
training, i.e., training is stopped when there is no improvement on the validation
loss for 10 consecutive epochs or a maximum of 100 epochs, and the best model
is taken based on the validation loss.

3Madhysastha et al. (2018) found that an earlier version of the FOIL dataset was biased. We have used the latest
version of the dataset available at https://foilunitn.github.io/, which does not have this problem.
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5.5 Results and Analysis

We carry out two main blocks of analyses: one exploiting FOIL as diag-
nostic task and the other one investigating the structure of the semantic spaces
produced by the pre-trained encoders when receiving the same multimodal in-
puts.

Before diving into the results of these analyses, we evaluate the three task-
specific models on the tasks they have been trained for. Since these are retrieval
tasks we compute Mean Rank, obtaining 2.84 (VQA), 3.32 (ReferIt) and 4.14
(GuessWhat) on the validation sets. The models learn to perform the task rea-
sonably well, as shown by the fact that Precision@1 results for each model are
above chance: 0.14 for VQA (chance 0.055), 0.12 for ReferIt, and 0.08 for
GuessWhat (chance 0.05 for the latter two).

5.5.1 Analysis via diagnostic task

In this first analysis, we assess the quality of the multimodal representations
learned by the three multimodal tasks considered in terms of their potential to
perform the FOIL task, i.e., to spot semantic (in)congruence between an image
and a caption. Besides comparing the models with respect to task accuracy, we
also investigate how they learn to adapt to the FOIL task over training epochs,
how much data they need to reach their best performance, and how confident
they are about the decisions they make.

FOIL accuracy Table 5.2 shows accuracy results on the FOIL task for the dif-
ferent training settings described in Section 5.3.2. We report accuracy for the
task overall, as well as accuracy on detecting original and foiled captions. As
expected, the Random2 setting yields chance performance (≈50% overall, with
a surprisingly strong preference for classifying captions as foiled). The model
fully trained on FOIL achieves an accuracy of 67.59%. This confirms that the
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FOIL task is challenging, as shown in Chapter 4, even for models that are op-
timized to solve it. The Random setting, where a randomly initialized encoder
is trained on the FOIL task, yields 53.79% accuracy overall – higher than the
chance lower bound by Random2, but well below the upper bound set by the
fully trained model.

The key results of interest for our purposes in this paper are those achieved
by the models where the encoder has been pre-trained on each of the three
multimodal tasks we study. We observe that, like the Random encoder, the
pre-trained encoders achieve results well below the upper bound. The VQA
encoder yields result comparable to Random, while ReferIt and GuessWhat
achieve slightly higher results: 54.02% and 54.18%, respectively. This trend
is much more noticeable when we zoom into the accuracy results on original
vs. foiled captions. All models (except Random2) achieve lower accuracy on
the foil class than on the original class. However, the GuessWhat encoder per-
forms substantially better than the rest: Its foil accuracy is not only well above
the Random encoder, but also around 2% points over the fully trained model
(49.34% vs. 47.52%). The ReferIt encoder also performs reasonably well (on a
par with the fully trained model), while the VQA encoder is closer to Random.

This suggests that the ReferIt and the GuessWhat encoders do learn a small
degree of multimodal understanding skills that can transfer to new tasks. The
VQA encoder, in contrast, seems to lack this ability by and large.

Learning over time In order to better understand the effect of the representations
learned by the pre-trained encoders, we trace the evolution of the FOIL classi-
fication accuracy over time, i.e., over the first 50 training epochs. As shown in
Figure 5.3a, all the pre-trained models start with higher accuracy than the Ran-
dom model. This shows that the encoder is able to transfer knowledge from the
pre-trained tasks to some extent. The Random model takes around 10 epochs
to catch up and after that, it does not manage to improve much. The evolution
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overall original foiled

Random2 49.99 0.282 99.71
Random 53.79 65.33 42.25
VQA 53.78 66.09 41.48
ReferIt 54.02 60.39 47.66
GuessWhat 54.18 59.02 49.34
Fully FOIL 67.59 87.66 47.52

Table 5.2: Accuracy on the FOIL task for the best model of each training setting.

(a) Training epochs. (b) Size of FOIL training set (log
scaled).

(c) AUC indicating confidence.

Figure 5.3: Comparisons among the pre-trained encoders and the randomly initialized encoder,
regarding their accuracy over training epochs, with varying data size, and across different deci-
sion thresholds.

of the accuracy achieved by the ReferIt and GuessWhat encoders is relatively
smooth, i.e., it increases progressively with further training epochs. The one by
the VQA model, in contrast, is far less stable.

Size of FOIL training data Next, we evaluate how the accuracy achieved by the
models changes when varying the size of the FOIL training set. By controlling
the amount of training data, we can better tease apart whether the performance
of the pre-trained models is due to the quality of the encoder representations or
simply to the amount of training the models undergo on the FOIL task itself.
Figure 5.3b gives an overview. The GuessWhat encoder has a clear advan-
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tage when very little training data is available, while the other encoders start
at chance level. Both GuessWhat and ReferIt increase their accuracy relatively
smoothly as more data is provided, while for the VQA model there is a big
jump in accuracy once enough FOIL data is available. Again, this suggests that
the representations learned by the GuessWhat encoder are of somewhat higher
quality, with more transferable potential.

Confidence Finally, we analyse the confidence of the models by measuring their
Area Under the Curve (AUC). We gradually increase the classification threshold
from 0.5 to 0.7 by an interval of 0.01. This measures the confidence of the
classifier in making a prediction. As shown in Figure 5.3c, all models have
rather low confidence (when the threshold is 0.7 they are all at chance level).
The Random model exhibits the lowest confidence, while the ReferIt model is
slightly more confident in its decisions than the rest, followed by the GuessWhat
model.

5.5.2 Analysis of the multimodal semantic spaces learned by the encoders

In this section, we analyse the encoders by comparing the similarity of the
multimodal spaces they learn and by comparing the learned multimodal spaces
to the visual and linguistic representations they receive as input in terms on
nearest neighbours.

Representation similarity analysis Representation Similarity Analysis (RSA) is
a technique from neuroscience Kriegeskorte et al. (2008) that has been re-
cently leveraged in computational linguistics, for example to compare the se-
mantic spaces learned by artificial communicating agents Bouchacourt and Ba-
roni (2018). It compares different semantic spaces by comparing their internal
similarity relations, given a common set N of input data points. Each input
k ∈ N is processed by an encoder for a given task Ti, producing vector hk

T i.
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Let HN
Ti be the set of vector representations created by the encoder of Ti for all

the items in N ; and let HN
Tj be the corresponding set of representations by the

encoder of task Tj. These two semantic spaces, HN
Ti and HN

Tj, are not directly
comparable as they have been produced independently. RSA remedies this by
instead comparing their structure in terms of internal similarity relations. By
computing cosine similarity between all pairs of vectors within each semantic
space, we obtain a vector of cosine similarities per space, which captures its in-
ternal structure. These similarity vectors have identical dimensionality, namely
N(N − 1)/2) values, and hence can be directly compared by computing Spear-
man correlation between them. The resulting RSA scores (corresponding to the
aforementioned Spearman correlation coefficients) tell us the extent to which
the two sets of representations are structurally similar.

The outputs of the encoders are compared when the same set of inputs is
given. We give as input 5,000 data points from the FOIL test set, randomly
sampled from only the ones with original captions and containing unique im-
ages, and compare the representations produced by the encoders under investi-
gation. Figure 5.4 shows that the semantic space produced by the encoder fully
trained on FOIL is rather different from all the other models, and that the VQA
semantic space is very similar to the one produced by the randomly initialized
encoder.

Nearest neighbour overlap We analyze the encoder representations using nearest
neighbor overlap. Collell and Moens (2018) proposed this measure to compare
the structure of functions that map concepts from an input to a target space. It
is defined as the number of k nearest neighbors that two paired vectors share
in their respective semantic space. For instance, if k = 3 and the 3 nearest
neighbours of the vector for ‘cat’ vcat in space V are {vdog, vtiger, vlion}, and
those of the vector of ‘cat’ zcat in space Z are {vmouse, vtiger, vlion}, the nearest
neighbour overlap (NN) is 2. The value is then normalized with respect to the
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Figure 5.4: RSA scores indicating degree of structural similarity between the multimodal se-
mantic spaces produced by the various encoders when receiving 5,000 data points from the
FOIL test set consisting of unique images paired with their original captions.

k = 1 k = 10
ResNet152 USE ResNet152 USE

Random 0.829 0.363 0.876 0.365
VQA 0.638 0.350 0.703 0.386
ReferIt 0.7541 0.346 0.780 0.366
GuessWhat 0.658 0.329 0.689 0.359
Fully FOIL 0.171 0.254 0.246 0.291

Table 5.3: Average nearest neighbour overlap between the encoder multimodal representations
and the ResNet152 and USE embeddings, respectively.

number of data points and the number of k nearest neighbors.

We take the encoder to be a mapping function from each of the modality-
specific representations to the multimodal space, and we use the NN measure
to investigate whether the structure of the multimodal space produced by the
encoder is closer to the visual ResNet152 embeddings or to the linguistic USE
embeddings given as input. We use simple visual and language inputs, namely,
objects and the word corresponding to their object category. We considered the
80 object categories of MS-COCO (e.g., dog, car, etc.) and obtain their USE
representations. We built their visual ResNet152 embedding by selecting 100
images for each category from MS-COCO, and then compute their average. We
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computed the NN by setting k = 1 and k = 10. The results, given in Table 5.3,
show that the multimodal spaces learned by all the models (except the model
with the encoder fully trained on the FOIL task) are much closer to the visual
input space than to the linguistic one.

5.6 Conclusion

Our goal in this chapter has been to evaluate the quality of the multimodal
representations learned by an encoder—the core module of all the multimodal
models used currently within the language and vision community—which re-
sembles the cognitive representational hub described by Patterson and Ralph
(2015). Furthermore, we investigated the transfer potential of the encoded
skills, taking into account the amount of time (learning epochs) and training
data the models need to adapt to a new task and with how much confidence they
make their decisions. We studied three multimodal tasks, where the encoder is
trained to answer a question about an image (VQA), pick up the object in an
image referred to by a description (ReferIt), and identify the object in an image
that is the target of a goal-oriented question-answer dialogue (GuessWhat). To
carry out this analysis, we have evaluated how the pre-trained models perform
on the FOIL diagnostic task, designed to check the model’s ability to detect
semantic incongruence in visually grounded language.

Our analysis shows that the VQA task is easier to learn (the model achieves
a rather high Mean Rank precision). However, the multimodal encoding skills it
learns are less stable and transferable than the ones learned through the ReferIt
and GuessWhat tasks. This can be seen by a large amount of data the model has
to be exposed to in order to learn the FOIL classification task and by the unstable
results over training epochs. None of the models transfers their encoding skills
with high confidence, but again the VQA model does it to a lower extent.

The RSA analysis confirms the higher similarity of the multimodal spaces
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generated by the ReferIt and GuessWhat encoders and the high similarity be-
tween the VQA space and the space produced by the randomly initialized en-
coder. From the NN analysis, it appears that for all models (except for the one
fully trained on the FOIL task) the visual modality has a higher weight than the
linguistic one in the construction of the multimodal representations.

These results could be due to subtle parallelisms with the diagnostic task:
ReferIt and GuessWhat may resemble some aspects of FOIL, since these three
tasks revolve around objects (the foiled word is always a noun), while arguably
the VQA task is more diverse as it contains questions about, e.g., actions, at-
tributes, or scene configurations. In future work, it would be interesting to eval-
uate the models on different diagnostic datasets that prioritize skills other than
object identification.
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Chapter 6

Conclusion

We have witnessed rapid advancement in the fields related to AI, like Com-
puter Vision, Natural Language Processing, Machine Learning etc, thanks to
deep neural networks. Using DNNs, performance on multiple tasks are getting
close to the human performance. For language and vision tasks, image caption-
ing performance is very close to human evaluation. Similarly, for VQA models
are getting closer to human performance. In this thesis, we took a step back and
analysis the performance of these models.

Concretely, in Chapter 3 we develop a joint model for GuessWhat?!, a task-
oriented visual dialogue, to address one of the fundamental problems in the
guessing game. We have also incorporated a decision-making module in the
pipeline to stop the dialogue when it has enough information to perform the
task. To improve the performance, we have incorporated the co-operative learn-
ing paradigm into the architecture. Our proposed model trained with the co-
operative learning setting performed close to models trained with reinforcement
learning. To further analyze the different model’s outputs, we proposed a thor-
ough analysis based on the different linguistic features of the dialogue. We show
that even though the accuracy of the models is similar, the languages learned by
those models are very different.

In Chapter 4, we introduce a diagnostic dataset (FOIL) to show that state-of-
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the-art models are far from merging complimentary language and vision infor-
mation. The FOIL dataset is created using MS-COCO image captioning dataset
by replacing one correct word with the foil word. We proposed three FOIL
tasks to evaluate the models. First, given an image and a caption the model
has to classify the latter to be right or wrong (classification task); this task tests
the overall representation learning of the model. Second, given an image and
a foil caption, the model has to spot the foil word in it (detection task); this
task tests the fine-grained understanding at language level using the image. The
third task, given an image, the foil caption and the foil word in it, the model
has to propose the correct word (correct task); this task aims to evaluate the
fine-grained understanding of both language and vision. All these tasks test the
different level of information merging of the model.

Finally, in Chapter 5, we exploit the FOIL dataset to evaluate the represen-
tation learned by a model trained on three language and vision tasks: VQA,
ReferIt and GuessWhat. To overcome the difference in the dataset, we created
a common dataset. For all tasks, we trained the model in a retrieval setting to
have a better comparison among models. We show that on the FOIL classifica-
tion task, all the model performance is close to each other, while the learning
strategy is different. Further, using representation similarity analysis, we show
that models representation is far from each other. Also, based on the nearest
neighbor analysis, we find that multi-model representation learned by the model
is structurally similar to the visual representation.

Coming back to Figure 1.1, by looking at the image and corresponding de-
scription, we could not only answer questions like Was Mary’s office close?.
We could also infer things like Only authorized person is allowed in the office.

or The door requires a manual key, not electronic key. These type of inference
from the image and given description can be only drawn when the model has
all the fine-grained information about the image and text and it is able to form
the correspondence between those. Along with that, it requires knowledge of
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the world like authorized person is related to having key of the door. Current
state-of-the-art models are far from reaching this level of maturity.
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Appendix A

Joint Learning

A.1 Analysis

We provide further details and examples related to the analyses carried out
in Section 7.2 of the main paper.

A.1.1 Question classification

The analysis by question type is based on a classification on a set of key-
words. These keywords have been annotated using information in the MS-
COCO dataset plus manual annotation. First, we created the possible question
categories by inspecting the human dialogues. As explained in the paper, the
resulting categories are ENTITY, subdivided into SUPER-CATEGORY and OB-
JECT, and ATTRIBUTE, sub-divided into COLOR, LOCATION, SHAPE, SIZE,
TEXTURE and ACTION. We exploited the super-category and object annota-
tions from MS-COCO. To further enrich these annotations, we manually an-
notated the words in the human dialogues that occur at least 40 times in the
training and testing sets. In Table A.2, we report the complete list of keywords
highlighting those obtained from COCO. Algorithm 1 provides the pseudo-code
of the question classification heuristics we used. Table A.1 provides some ex-
amples of the resulting classification.
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Algorithm 1: Question Classification.
Input : Question and annotated words (from Table 1).
Output: Question Classification

1 Let Q = {w1...wt...wn} denotes all the words for the given Question ;
2 Let Color, Shape, Size , Texture, Location, Action, Object, Super denotes all

words present in the ‘Color’, ‘Shape’, ‘Size’, ‘Texture’, ‘Location’, ‘Action’, ‘Object’
and ‘Super-category’ respectively ;

3 Let Qcat a Empty List ;
4 for ∀wk ∈ Q do
5 if wk ∈ Color then
6 Qcat ← Qcat + color ; // Append color to Qcat

7 break
8 end
9 end

10 for ∀wk ∈ Q do
11 if wk ∈ Shape then
12 Qcat ← Qcat + shape ; // Append shape to Qcat

13 break
14 end
15 end
16 for ∀wk ∈ Q do
17 if wk ∈ Size then
18 Qcat ← Qcat + size ; // Append size to Qcat

19 break
20 end
21 end
22 for ∀wk ∈ Q do
23 if wk ∈ Texture then
24 Qcat ← Qcat + texture ; // Append texture to Qcat

25 break
26 end
27 end
28 for ∀wk ∈ Q do
29 if wk ∈ Location then
30 Qcat ← Qcat + location ; // Append location to Qcat

31 break
32 end
33 end
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34 for ∀wk ∈ Q do
35 if wk ∈ Action then
36 Qcat ← Qcat + action ; // Append action to Qcat

37 break
38 end
39 end
40 if Qcat is EMPTY then
41 for ∀wk ∈ Q do
42 if wk ∈ Object then
43 Qcat ← object ; // Assign object to Qcat

44 break
45 end
46 end
47 end
48 if Qcat is EMPTY then
49 for ∀wk ∈ Q do
50 if wk ∈ Super then
51 Qcat ← super ; // Assign super-category to Qcat

52 break
53 end
54 end
55 end
56 if Qcat is EMPTY then
57 Qcat ← not− classified ; // Assign not-classified to Qcat

58 end
59 return Qcat
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Question Question type

is it a basket? OBJECT

is it a human? SUPER-CATEGORY

is it the person in the middle? LOCATION

is the person wearing a white shirt? COLOR

is it the round table? SHAPE

is it the little plate? SIZE

is he wearing a striped shirt? TEXTURE

Table A.1: Examples of questions from the human dialogues with keywords in italics and the
types assigned through our classification procedure.

Humans [success]
1. is it a person? no
2. is it a birthday hat? no
3. is it the candles? no
4. is it a donut? no
5. is it the cake? no
6. is it a piece of clothing? no
7. is it a chair? yes
8. is it the one the baby is sitting in? yes
9. Is it the red part? yes

GDSE-CL [success]
1. is it a person? no
2. is it a cake? no
3. is it a cup? no
4. is it a table? no
5. is it a chair? yes
6. is it the one on the left side of the table? yes
7. is it the one which is sitting? yes
8. is it just behind the girl? yes

RL [failure]
1. is it a person? no
2. is it a food? no
3. is it a table? no
4. is it in left? yes
5. is it in left? yes
6. is it in front? yes
7. is it in top? no
8. is it in top? yes

A.1.2 Quality of the Dialogues

A.1, A.2, A.3 and A.4 provide further examples of the games played by the
models.
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Humans [success]
1. is it a fruit? yo
2. is it the apple? no
3. is it the left orange? no
4. is it the smaller orange on the right? no
5. is it the bigger orange on the right? yes

GDSE-CL [success]
1. is it an orange? yes
2. is it in the front? yes
3. is it an apple? no
4. is it all the orange? yes
5. can you see most of it? yes
6. is it on the left side of the picture? no
7. is it the top right corner? yes
8. so it is an apple touching the apple? yes

RL [failure]
1. is it food? yes
2. is it one of the oranges? yes
3. is it in left? no
4. is it in middle? no
5. is it in top? yes
6. is it in top? yes
7. is it in top? yes
8. is it in top? yes

Figure A.1: Game examples in which GDSE-CL succeeds and RL fails at guessing the target
object (in the green box). In both examples, GDSE-CL asks further attribute-specific questions.
In the top example, chair is not that visible so the RL model does not ask a question about it,
after Q3 it just asks location questions. In contrast, GDSE-CL after getting chair(Q5) it tries
to ask questions to distinguish amongst chairs. Similarly, in the bottom example, after getting
orange (Q2), RL keeps asking simplistic location questions. The GDSE-CL model, after getting
orange (Q1), tries to ask attribute questions along with location questions.

Humans [success]
1. is it in the background? no
2. is it a person? yes

GDSE-CL [success]
1. is it a person? yes
2. is it the man in the white shirt? yes
3. is it the whole man? yes
4. does he have a yellow shirt? yes
5. is he on the right side? no
6. is he on the left side? yes
7. his face is not visible? yes
8. is his face visible? yes

RL [success]
1. is it a person? yes
2. is it in foreground? yes
3. is it in left? yes
4. is it in right? no
5. is it in middle? yes
6. is it in right? no
7. is it in middle? yes
8. is it in right? no

Figure A.2: Game example in which both GDSE-CL and RL succeed at guessing the target
object (green box), using a different strategy. Here, we have only one instance of the target
object super-category person, and both models are able to guess the object correctly. While
RL keeps asking location questions (Q3-8), GDSE-CL asks questions about color, location,
visibility. Even after getting wrong Oracle answer to a question (Q8), it is able to guess the
correct object based on previous evidence.
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Humans [success]
1. is it a person? yes
2. are they wearing a helmet? yes

GDSE-CL [failure]
1. is it a person? yes
2. is it the man on the motorcycle? yes
3. is it the whole person? yes
4. is it a part of the man? no
5. is the whole body shown? yes
6. can i see his whole body? yes
7. is it the man on top of the bike? yes
8. is it the whole person? yes

RL [success]
1. is it a person? yes
2. is it in foreground? yes
3. is it in left? no
4. is it in right? yes
5. is it in right? yes
6. is it in right? yes
7. is it in right? yes
8. is it in right? yes

Figure A.3: Game example in which GDSE-CL fails and RL succeeds at guessing the target
object (green box). Here, there are only two instances of the target object super-category person.
The RL strategy of asking location-based questions works well here.

Humans [success]
1. is it a sofa? no
2. it is green in color? no
3. it is a clock? no
4. is it a tv? no
5. it is blue color? no
6. it is a pillow? no
7. it is a chair? yes
8. it is black color? yes

GDSE-CL [failure]
1. is it furniture? yes
2. is it a couch? no
3. a chair then? yes
4. the blue one? yes
5. the one on the bottom? no
6. the left one? yes
7. the whole thing? yes
8. just the backrest? yes

RL [failure]
1. is it a person? no
2. is it a computer? no
3. is it a couch? no
4. is it in left? yes
5. is it in front? no
6. in top yes
7. is it in top? yes
8. is it in top? yes

Figure A.4: Game examples in which both GDSE-CL and RL fail. The presence of multiple
instances of similar target objects (category chair) in a similar context makes the task very
difficult to the models.
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ENTITY

SUPER-CATEGORY ‘person’, ‘vehicle’, ‘outdoor’, ‘animal’, ‘accessory’, ‘sports’, ‘kitchen’, ‘food’,
‘furniture’, ‘electronic’, ‘appliance’, ‘indoor’, ‘utensil’, ‘human’, ‘cloth’, ‘cloths’,
‘clothing’, ‘people’. ‘persons’

OBJECT ‘bicycle’, ‘car’, ‘motorcycle’, ‘airplane’, ‘bus’, ‘train’, ‘truck’, ‘boat’, ‘traffic
light’, ‘fire hydrant’, ‘stop sign’, ‘parking meter’, ‘bench’, ‘bird’, ‘cat’, ‘dog’,
‘horse’, ‘sheep’, ‘cow’, ‘elephant’, ‘bear’, ‘zebra’, ‘giraffe’, ‘backpack’, ‘um-
brella’, ‘handbag’, ‘tie’, ‘suitcase’, ‘frisbee’, ‘skis’, ‘snowboard’, ‘sports ball’,
‘kite’, ‘baseball bat’, ‘baseball glove’, ‘skateboard’, ‘surfboard’, ‘tennis racket’,
‘bottle’, ‘wine glass’, ‘cup’, ‘fork’, ‘knife’, ‘spoon’, ‘bowl’, ‘banana’, ‘apple’,
‘sandwich’, ‘orange’, ‘broccoli’, ‘carrot’, ‘hot dog’, ‘pizza’, ‘donut’, ‘cake’,
‘chair’, ‘couch’, ‘potted plant’, ‘bed’, ‘dining table’, ‘toilet’, ‘tv’, ‘laptop’, ‘mouse’,
‘remote’, ‘keyboard’, ‘cell phone’, ‘microwave’, ‘oven’, ‘toaster’, ‘sink’, ‘refriger-
ator’, ‘book’, ‘clock’, ‘vase’, ‘scissors’, ‘teddy bear’, ‘hair drier’, ‘toothbrush’,
‘meter’, ‘bear’, ‘cell’, ‘phone’, ‘wine’, ‘glass’, ‘racket’, ‘baseball’, glove’, ‘hy-
drant’, ‘drier’, ‘kite’, sofa’, ‘fork’, ‘adult’, ‘arms’, ‘baby’, ‘bag’, ‘ball’, ‘bananas’,
‘basket’, ‘bat’, ‘batter’, ‘bike’, ‘birds’, ‘board’, ‘body’, ‘books’, ‘bottles’, ‘box’,
‘boy’, ‘bread’, ‘brush’, ‘building’, ‘bunch’, ‘cabinet’, ‘camera’, ‘candle’, ‘cap’,
‘carrots’, ‘cars’, ‘cart’, ‘case’, ‘catcher’, ‘cell phone’, ‘chairs’, ‘child’, ‘chocolate’,
‘coat’, ‘coffee’, ‘computer’, ‘controller’, ‘counter’, ‘cows’, ‘cupboard’, ‘cups’, ‘cur-
tain’, ‘cycle’, ‘desk’, ‘device’, ‘dining table’, ‘dish’, ‘doll’, ‘door’, ‘dress’, ‘driver’,
‘equipment’, ‘eyes’, ‘fan’, ‘feet’, ‘female’, ‘fence’, ‘fire’, ‘flag’, ‘flower’, ‘flow-
ers’, ‘foot’, ‘frame’, ‘fridge’, ‘fruit’, ‘girl’, ‘girls’, ‘glasses’, ‘guy’, ‘guys’, ‘hair
drier’, ‘handle’, ‘hands’, ‘hat’, ‘helmet’, ‘house’, ‘jacket’, ‘jar’, ‘jeans’, ‘kid’,
‘kids’, ‘lady’, ‘lamp’, ‘leg’, ‘legs’, ‘luggage’, ‘machine’, ‘male’, ‘man’, ‘meat’,
‘men’, ‘mirror’, ‘mobile’, ‘monitor’, ‘mouth’, ‘mug’, ‘napkin’, ‘pan’, ‘pants’, ‘pa-
per’, ‘pen’, ‘picture’, ‘pillow’, ‘plant’, ‘plate’, ‘player’, ‘players’, ‘pole’, ‘pot’,
‘purse’, ‘rack’, ‘racket’, ‘road’, ‘roof’, ‘screen’, ‘shelf’, ‘shelves’, ‘shirt’, ‘shoe’,
‘shoes’, ‘short’, ‘shorts’, ’shoulder’, ’signal’, ’sign’, ’silverware’, ’skate’, ’ski’,
’sky’, ’snow’, ’soap’, ’speaker’, ’stairs’, ’statue’, ’stick’, stool’, ‘stove’, ‘street’,
‘suit’, ‘sunglasses’, ‘suv’, ‘teddy’, ‘tennis’, ‘tent’, ‘tomato’, ‘towel’, ‘tower’, ‘toy’,
‘traffic’, ‘tray’, ‘tree’, ‘trees’, ‘t-shirt’, ‘tshirt’, ‘vegetable’, ‘vest’, ‘wall’, ‘watch’,
‘wheel’, ‘wheels’, ‘window’, ‘windows’, ‘woman’, ‘women’

Table A.2: Lists of keywords used to classify questions with the corresponding class according
to Algorithm 1. Words in italics come from COCO object category/super-category.
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ATTRIBUTES

COLOR ‘white’, ‘red’, ‘black’, ‘blue’, ‘green’, ‘yellow’, ‘orange’, ‘brown’, ‘pink’, ‘grey’,
‘gray’, ‘dark’, ‘purple’, ‘color’, ‘colored’, ‘colour’, ‘blond’, ‘beige’, ‘bright’

SIZE ‘small’, ‘little’, ‘long’, ‘large’, ‘largest’, ‘big’, ‘tall’, ‘smaller’, ‘bigger’, ‘biggest’,
‘tallest’

TEXTURE ‘metal’, ‘silver’, ‘wood’, ‘wooden’, ‘plastic’, ‘striped’, ‘liquid’

SHAPE ‘circle’, ‘rectangle’, ‘round’, ‘shape’, ‘square’, ‘triangle’

LOCATION ‘1st’, ‘2nd’, ‘third’, ‘3’, ‘3rd’, ‘four’, ‘4th’, ‘fourth’, ‘5’, ‘5th’, ‘five’, ‘first’, ‘sec-
ond’, ‘last’, ‘above’ , ‘ across’ , ‘after’, ‘around’ , ‘at’ , ‘away’ , ‘back ’ , ‘ back-
ground’ , ‘before’ , ‘behind’ , ‘below’ , ‘beside’ , ‘between’ , ‘bottom ’ , ‘ center’ ,
‘close’ , ‘closer’ , ‘closest’ , ‘corner’ , ‘directly’ , ‘down’ , ‘edge’ , ‘end’ , ‘entire’
, ‘facing’ , ‘far’ , ‘farthest’ , ‘floor’ , ‘foreground’ , ‘from’ , ‘front’ , ‘furthest’ ,
‘ground’ , ‘hidden’ , ‘in’ , ‘inside ’ , ‘ left ’ , ‘ leftmost ’ , ‘ middle ’ , ‘ near ’ , ‘
nearest ’ , ‘ next’ , ‘next to’ , ‘off’ , ‘on’ , ‘out’ , ‘outside ’ , ‘ over ’ , ‘ part ’ , ‘ right
’ , ‘ rightmost’ , ‘row’ , ‘side’ , ‘smaller’ , ‘top’ , ‘towards’ , ‘under’ , ‘ up’ , ‘ upper’
, ‘ with’

Table A.3: Lists of keywords used to classify questions with the corresponding class according
to Algorithm 1. Words in italics come from COCO object category/super-category.
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