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Abstract
Department of Physics

Doctor of Philosophy

Intermodal four wave mixing for heralded single photon sources in silicon

by Stefano SIGNORINI

High order waveguide modes are nowadays of great interest for the development
of new functionalities in photonics. Because of this, efficient mode couplers are re-
quired. In this thesis a new strategy for mode coupling is investigated, based on the
interference arising from two coherent tilted beams superimposed in a star-coupler.
Handling the high order modes allows to explore new processes within the pho-
tonics platform, as the intermodal four wave mixing. Intermodal four wave mixing
is a new nonlinear optical process in waveguide, and it is here demonstrated on a
silicon chip. Via intermodal four wave mixing it is possible to achieve a large and
tunable frequency conversion, with the generation of photons spanning from the
near to the mid infrared. The broadband operation of this process is of interest for
the field of quantum photonics. Single photon sources are the main building block
of quantum applications, and they need to be pure and efficient. Via intermodal four
wave mixing, it is here demonstrated the generation of single photons above 2 µm
heralded by the idler at 1.26 µm. Thanks to the discrete band phase matching of this
nonlinear process, high purity single photons without narrow band spectral filters
are demonstrated. Intermodal four wave mixing enables a new class of classical and
quantum sources, with unprecedent flexibility and spectral tunability. This process
is particularly useful for the developing field of mid infrared photonics, where a
viable integrated source of light is still missing.
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1

Chapter 1

Multimode silicon photonics

Since the 60s, silicon has covered a central role in the technological development of
modern society. Thanks to the abundance and good electrical properties of this mate-
rial, the ultra large scale integrated microelectronics has been possible and has expe-
rienced an exponential performance increase and a widespread diffusion all across
the different application markets. In the last fifty years silicon devices boosted the
technological innovations, making accessible to a wide public high speed commu-
nication and and high frequency computing. Behind this success, there are the low
costs and the huge research in complementary metal oxide semiconductor (CMOS)
technology, which satisfied the continuously increasing demand of computational
power and data rate traffic. Nowadays, microelectronics is facing a fundamen-
tal physical limit both in terms of minimum feature size and performance; these
slow down a further development of the technology, despite the increasing demand
of data bandwidth and operation frequency. A higher bandwidth would induce
stronger parasitic effects in the metallic interconnects, with unacceptable signal losses
and power dissipation [1]. In order to meet the data rate demand, a possible solution
is to change the information carrier: photons instead of electrons. This motivates in-
tegrated photonics, with silicon the best ally for its widespread diffusion. With the
pioneering work of Soref and Lorenzo [2], silicon was demonstrated to be a viable
material for integrated optics in the telecommunication band, with promising per-
spectives for the integration of both optics and electronics on the same chip. The
good optical properties, the already mature CMOS technology and the electronics
compatibility, make silicon the most viable platform for the development of inte-
grated photonics, which is currently revolutionizing the fields of telecommunica-
tion, computing, sensing and others. Silicon photonics can rely on years of micro-
electronics research, exploiting its dense integration and cheap mass-fabrication to
bring optical circuits in the next generation devices [3]. The band gap of silicon (~1.1
eV), which makes it transparent in the spectral range used for optical transport (1.3
- 1.6 µm), explains the focused attention to the applications in telecommunication
and computation. However, silicon photonics not only fits well with electronics,
but also opens new perspectives with unprecedent functionalities in on-chip sens-
ing and quantum technologies. The success of silicon in photonics is also related to
its oxide, silica. Silica is used as cladding material in silicon photonics and the avail-
ability of silicon-on-insulator (SOI) wafer technology [4] makes SOI the paradigm
for micro-fabrication. Silicon dioxide, with its lower refractive index (~1.45 at 1.55
µm wavelength), is used as the cladding surrounding the silicon core at a higher
refractive index (~3.48 at 1.55 µm), as sketched in Fig. 1.1.

The large refractive index contrast ensures the guiding of light inside the core
by means of the total internal reflection occurring at the interface between the core
and the cladding [5]. This is the working principle of the optical waveguide, the
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FIGURE 1.1: a) Cross section of a planar waveguide. b) Cross section
of a channel waveguide. c) Cross section of a rib waveguide. d) 3D
rendering of a channel waveguide, with the reference frame. e) First
three modes in a channel waveguide for transverse electric (TE) (left
column) and transverse magnetic (TM) (right column) polarization.

fundamental building block of integrated photonics. Thanks to the high confine-
ment in the silicon core, the silicon waveguides have small cross section and are
named silicon optical wires. Here, it is possible to achieve unprecedent high optical
intensities, accessing nonlinear optical processes with low pump powers. Therefore,
integrated nonlinear optical devices enabled on-chip all-optical processing such as
filtering [6], wavelength conversion [7] or signal switching [8]. During the years, sev-
eral devices followed the introduction of the waveguide, with increasing complexity
and capabilities. Resonators, interferometers, couplers and many other micron-size
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structures have been demonstrated, which allow fabricating complex and perform-
ing photonic integrated circuits. The number of integrated functions and devices is
continuously increasing, as for the successful path of microelectronics. Even if the
photonics technology is not ready for the widespread diffusion of optics, this plat-
form could even surpass the achievements of microelectronics, exploiting possibili-
ties that are accessible only through light-matter interaction. In particular, nonlinear
optics opened a world of new functionalities that standard technologies based on
electronics could not even imagine. The access to on-chip nonlinear phenomena is
possible thanks to the waveguide technology, which guarantees a much higher op-
tical intensity with respect to bulk or fiber optics, lowering the power requirements
and making nonlinearities suitable for an integrated perspective [9]. Silicon exhibits
a high nonlinear index with respect to other CMOS materials, making this mate-
rial the best choice for the nonlinear applications in the telecommunication spectral
window [10]. Nonlinear applications range from classical and quantum light gen-
eration to wavelength conversion, from sensing to all optical signal processing. The
achievements in nonlinear silicon photonics boosted the growth of new fields of re-
search, like mid infrared (MIR) photonics and quantum photonics. MIR photonics
motivated much efforts in its development since it offers the unique opportunity
to access the fingerprint region of several molecules, with potential applications in
gas, biochemical and environmental sensing [11]. Moreover, the MIR (from 2 µm to
20 µm) exhibits two atmospheric windows suitable for astronomy and communica-
tion [12]. The great opportunities offered by the MIR spectral range have to face the
fundamental limitation imposed by the transparency windows of the involved ma-
terials: silicon is transparent up to 8 µm, while silica has negligible absorption up to
2 µm. This motivates new researches on materials and structures to permit MIR pho-
tonics [12]. Another crucial point in MIR photonics is the lack of integrated sources
and detectors for the MIR light. Currently wavelength conversion in nonlinear bulk
or integrated devices appears to be a possible solution [13].

The same close interaction with nonlinear integrated optics is driving the re-
search of integrated quantum light sources, a hot topic in photonics. Quantum
photonics is becoming a reality thanks to the huge worldwide investments aimed
at making quantum physics the main enabler of the next technological revolution.
Photons are ideal q-bits, the carriers of the quantum information, since they weakly
interact with the environment, move at the speed of light and can take advantage of
the already mature optical communication infrastructure [14]. The vision is to de-
velop an integrated quantum photonic chip, where all the building blocks required
for the full processing of the quantum states of light are present [15]. In particular,
three main components are: the source, the manipulation circuit and the detector
of the quantum states. While the manipulation of the quantum states of light has
reached good levels, a viable solution for the integration of both the source and
the detection stages is still missing [16, 17]. For example, one of the possibilities
currently investigated for the source of quantum states is based on parametric pro-
cesses, which are used to create entangled or uncorrelated photon pairs [18]. In
particular, of great interest is the on-chip production of single photons, which can
be performed through heralded single photon generation, which is based on an un-
correlated pair of photons where one photon is used to certify the generation of the
pair, while the other one is free to propagate in the quantum chip for processing [19].

Interestingly, most of linear and nonlinear silicon photonics developed on a sin-
gle mode platform, thus considering high order waveguide modes as something
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to be avoided. In fact, if higher order modes are supported by the optical waveg-
uide, the information carried by the single mode can be lost through scattering on
these modes. Because of this, a single mode architecture guarantees a better stability
and reproducibility of the devices. Here, I want to show that high order modes are
an opportunity for some applications. If higher order modes are treated properly,
they constitute a new degree of freedom for the design of photonic devices. In fact,
optical telecommunication, computing and signal processing have to handle an ex-
tremely large amount of data, with data rates that are rapidly increasing. To handle
such a huge amount of data, dense wavelength division multiplexing (DWDM) is
used. DWDM encodes the information in different wavelengths, thus using several
communication channels on the same optical fiber. In addition, high order optical
modes, which are orthogonal and not interacting, can be combined with DWDM to
improve even more the capacity of the single fiber. The technology which exploits
modes to multiplex data is called mode division multiplexing (MDM). Because of
this, large interest in photonics is devoted to the implementation of optical devices
able to use the higher order modes in integrated optical structures. In particular,
research is looking for low dimensions, low crosstalk, low losses and large number
of modes. In chapter 2 of this thesis, I investigated a new approach to optical mode
coupling based on the interference pattern arising from two superimposed tilted co-
herent beams. In order to prove the feasibility of the idea, I initially validated the
approach through a free space experiment. Then, I studied through numerical sim-
ulations an integrated device based on this mode coupling strategy. The integrated
interferometer promises small chip size, large number of data channels, unprece-
dent bandwidth and sufficient crosstalk, suggesting a new solution to the already
well developed optical coupling technology.
Up to now, nonlinear optics has relied on single mode waveguides. This because sin-
gle mode waveguides, with their small cross section, are the most suited structures
to get the large intensity required to induce the nonlinearities. On the contrary, large
multimode waveguides require larger optical powers to achieve the same nonlinear
efficiencies. However, the introduction of higher order modes allows to improve the
control over the efficiency and spectral properties of the nonlinear processes, provid-
ing at the same time an interesting connection with multimode optical processing.
An example is the intermodal four wave mixing (FWM): a third order nonlinear
optical process in which two photons coming from a powerful input beam are con-
verted into two new photons at different frequencies. FWM is the most studied
and exploited nonlinear process in silicon photonics, and it is usually used in its
intramodal configuration, i.e. using only one waveguide mode. On the contrary,
intermodal FWM is based on the excitation of higher order modes, enabling func-
tionalities that are not easily accessible to single mode FWM. Thanks to intermodal
FWM it is possible to generate light with controllable wavelength and bandwidth,
enabling spectral conversions which can link the near infrared with the mid infrared
part of the spectrum. These results are extremely attractive for integrated photon-
ics, which looks for devices able to perform all optical wavelength conversion for
signal processing and that can boost the currently developing field of mid infrared
photonics, where sources and detectors of light can benefit of the spectral transla-
tion capability of intermodal FWM. In chapter 3 of this thesis, I discuss intermodal
FWM in silicon waveguides, which is the first experimental demonstration of this
nonlinear process in an integrated platform. I report theory, simulations and mea-
surements showing spectral conversions larger than 900 nm and tunable all over
the telecom band. Intermodal FWM is also much more flexible in terms of phase
matching and fabrication tolerance with respect to intramodal FWM.
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For quantum applications, FWM can be used as a source of correlated photon
pairs, that can be engineered as entangled or single photon states. In particular,
the opportunity to generate quantum light in the mid infrared is appealing for ap-
plications in quantum sensing, which aims at probing with unprecedent sensitivity
the fingerprint of gas molecules, or in quantum communications, which find in the
MIR several transparent windows of the atmosphere for low loss free space data ex-
change. Intermodal FWM is a viable tool for controllable and broadband quantum
light generation. In fact, one of the most detrimental issue of quantum photonics is
the presence of Raman noise, which is at a well defined wavelength from the pump
and that can be avoided by generating the quantum light far from its peak. More-
over, the discrete band generation of intermodal FWM can be used to create sources
of heralded single photons which do not require post-filtering of the single photons.
In chapter 4 of this thesis, I discuss spontaneous intermodal FWM as a source of
heralded single photons, with the single photon generated in the mid infrared. In
this way, we want to exploit all the advantages of intermodal FWM, demonstrat-
ing the first integrated source of mid infrared heralded single photons. In the same
chapter, I also discuss a new strategy for the purification of the biphoton wave func-
tion, exploiting the different group velocities of the higher order modes to achieve
unprecedent purities of the generated single photons, whose theoretical estimation
is around 99%.

In order to provide the basic tools for the understanding of multimode photonics,
I introduce in chapter 1 the basics of multimode waveguides, describing the modes
formation and propagation, with a particular focus on the mechanisms related to
their excitation.

1.1 Basics on multimode photonics

The fundamental building block of silicon photonics is the optical waveguide. Ex-
actly like a metallic wire used to carry the electric current in a microelectronic chip,
the optical waveguide interconnects the devices in an optical chip. An optical waveg-
uide can be fabricated with different cross sections and geometries, and it can be ba-
sically separated into three parts: the core, the cladding and the substrate, as shown
in Fig. 1.1.

The most widely used cross-sections are the channel and rib geometries, that ex-
hibit slightly different confining properties. The core is made with a higher refractive
index material than the one of the substrate and cladding materials, in order to have
an index mismatch at the core borders. In fact, the light confinement in a waveguide
arises due to the total internal reflection occurring at the interface between the core
and the surrounding materials [5]. A waveguide, depending on its core area, can
support one or more modes, where the mode is a solution of the Maxwell equations
for the specific waveguide geometry. Each optical mode corresponds to a spatial dis-
tribution of optical energy whose lineshape does not change along the waveguide.
In the following, the basics of the optical waveguide will be discussed, considering
silicon as the core material and silica as the cladding and substrate material. Then,
the attention will be focused on the multimode regime.
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1.1.1 The optical waveguide

Light in a waveguide can travel exciting different modes, where each mode is a
solution of the Helmholtz wave equation in the guiding geometry [5]. The Helmoltz
equation is (

∇2
xy + β2

m

)
em(x, y) =

ω2

c2 n2(x, y)em(x, y), (1.1)

where m = 1, 2, .., βm is the propagation constant of the m-th order waveguide
mode, em(x, y) is the electric field profile, ω the frequency of the optical wave, n the
refractive index spatial distribution, c the light velocity. The propagation constant,
which appears in the electric field em(x, y, z; ω) ' em(x, y)eizβm(ω), is a peculiar pa-
rameter for the description of the propagation of light in guiding structures and it
is written as βm = ω

c ne f f ,m; ne f f is the effective refractive index, which is a com-
plex quantity that, with its real part, gives information on the phase acquired by the
wave in its propagation, while its imaginary part is proportional to the losses expe-
rienced through the waveguide. In fact, the field intensity decreases while propa-
gating along the waveguide as e−αmz, where αm = 2ω

c Im(ne f f ,m) is the attenuation
coefficient. Each mode experiences a different effective index depending on the
waveguide geometry and light polarization. This dependence is reflected also on
the confinement of the optical mode, that can be quantified with the confinement
factor Γcon f [5],

Γcon f =

∫∫
core n2(x, y)|em(x, y)|2dxdy∫∫
A∞

n2(x, y)|em(x, y)|2dxdy
(1.2)

where n(x, y) is the refractive index profile of the waveguide and the two in-
tegrals are performed over the core area (numerator) and the infinite plane A∞ (de-
nominator). As the core reduces in size, the optical mode is less and less confined, in-
creasing its interaction with the low refractive index cladding. This results in a lower
effective refractive index as the mode spread out from the core. Moreover, reducing
Γcon f , the optical modes approach the diffraction limit, losing the confinement. Con-
sidering the channel or rib cross-sections, the number of supported modes (with
fixed polarization) is approximately 4

π
wh
λ2 NA2 [5], with w and h the width and height

of the waveguide and NA =
√

n2
core − n2

clad the numerical aperture. The modes de-
pend also on the polarization, that can be transverse electric (TE), i.e. with the dom-
inant electric field component along the x direction (reference frame in Fig. 1.1), or
transverse magnetic (TM), i.e. with the dominant electric field along the y direction.
With the typical geometries involved in integrated photonics, where h < w, the
TM modes are less confined with respect to TE polarization. All these parameters
(wavelength, polarization, waveguide geometry, core and cladding materials) influ-
ence the effective refractive index of the optical modes, which, in the case of micron-
size structures, is largely dominated by the geometric dispersion rather than by the
chromatic one. As a result, it is possible to engineer the dispersion of the waveguide
modes simply by changing the geometrical dimensions of the waveguide. In order
to carefully design the integrated structures with the desired dispersion properties,
it is useful to expand the propagation constant βm of the m-th order mode around a
central frequency ω0 [20]:

βm(ω) = ∑
q

1
q!

β
(q)
m (ω−ω0)

q (1.3)
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where β
(j)
m = djβm

djω
are the higher order dispersion coefficients (j = 1, 2, ..). Each

beta coefficient provides a different information about the dispersion properties of
the waveguide. For example, the first order coefficient gives directly the inverse of
the group velocity vg

β
(1)
m =

dβm

dω
=

ng,m

c
= v−1

g (1.4)

where ng is defined the group index. The second order term
(

β
(2)
m

)
is called

group velocity dispersion (GVD). GVD gives information on how the dispersive
character of the medium affects the pulse propagation due to the different group ve-
locities experienced by each frequency component. From Eq. (1.4) it is also clear that
different modes propagate with different group velocities in the same waveguide,
making the multimode behaviour even more tricky. Another important parameter
is the effective area Ae f f , defined as

Ae f f ,m =

(∫∫
A∞
|em|2dxdy

)2∫∫
A0
|em|4dxdy

(1.5)

where A∞ is the infinite plane and A0 is the core area. The effective area, also
known as effective mode area, scales proportionally with the confinement factor Γ
and inversely with the effective index. In fact, as also shown in Fig. 1.2, as the mode
order increases, the effective index decreases and the effective area increases.
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n
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f
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1
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2

A
ef

f
[

m
2
]

1 m - 1TE
1 m - 2TE
1 m - 3TE
1.5 m - 1TE
1.5 m - 2TE
1.5 m - 3TE

(a) (b)

FIGURE 1.2: Simulation of the effective index and effective area for
the first three TE modes in a channel waveguide of 243 nm height
and 1 or 1.5 µm width (see legend). (a) Effective index as a function
of the wavelength. (b) Effective area as a function of the wavelength.

When dealing with micron-size devices, the fabrication quality is of crucial im-
portance in order to achieve the expected performance. The mature CMOS tech-
nology guarantees 140 nm of minimum feature size with a tolerance of few nm.
Higher resolutions can be achieved by electron beam lithography, around tens of
nanomenters, and with lower side walls roughness. Lower roughness means less
scattering on the waveguide borders, resulting in lower propagation losses. In this
thesis work, the devices, with channel or rib geometries, have been defined by 365
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nm lithography, with 3 µm silica as the substrate, 900 nm silica deposited via plasma-
enhanced chemical vapor deposition as the cladding, and silicon as the core material,
with variable thickness depending on the cross-section of the waveguide. The sam-
ples here used have been fabricated by the Centre for Materials and Microsystems
of Bruno Kessler Foundation (Trento, Italy).

1.1.2 Light coupling and propagation in multimode waveguides

In this section I follow the formalism used by Chang [21] 1.
Optical waveguides can support one or more waveguide modes depending on their
cross section and refractive index of the materials used in their fabrication2. When
light has to be loaded inside the waveguide structure, it can in principle excite all the
guided modes supported by the waveguide. Thus these modes propagate together
inside the optical device. Let us consider the excitation of the guided modes in a
channel waveguide by means of free-space beams or optical fibers, which illuminate
the input facet of the waveguide. The modes of a waveguide are solutions of the
wave equation Eq. (1.1), and form a complete set. As a consequence, any electro-
magnetic field incident at the facet of the waveguide can be expressed as a linear
combination of the modes supported by the waveguide, with the expansion coeffi-
cient of each mode proportional to the power coupled on that specific mode. Let us
consider the input facet of the waveguide at z = 0 and the waveguide extending
along the positive z axis, as in Fig. 1.3. Assume that a beam of laser light, arriving
from z < 0, is impinging on the facet at z = 0. Given el the radiation field of the
laser, the following relation holds

el(x, y) = ex(x, y) + ey(x, y), (1.6)

with ex/y the transverse electric/magnetic radiation field. At z < 0, neglecting
reflection and diffraction at the waveguide facet (z = 0), el consists only of the inci-
dent laser radiation. At z ≥ 0, el consists of the guided waveguide modes and the
field radiated in the cladding ex,rad and ey,rad.

x

y

core, n1

substrate, n2

cladding, n3

z

z

y

n1

n3

n2

a) b)

x

m-1

m

m+1

FIGURE 1.3: a) Schematic of the waveguide cross section and relative
reference frame. b) Ray optics representation of mode propagation
in dielectric waveguides. The higher the order mode, the higher the
number of reflections at the boundaries of the core. In the legend
is indicated the relative order mode of the three propagating modes

drawn in the form of rays.

1Please notice that in this thesis the reference frame has been changed with respect to what used in
[21], inverting the x and y axes.

2For an introduction on the formation of optical modes in waveguide, see Appendix A.
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At z = 0 the field amplitudes ex, ey, for the TE and TM modes can be written as

ex(x, y) = ∑
m

Amψx,m(x, y) + ex,rad, (1.7a)

ey(x, y) = ∑
m

Bmψy,m(x, y) + ey,rad, (1.7b)

with ψp,m the field profile of the waveguide mode m with polarization p (x for
TE and y for TM). The Am and Bm coefficients are proportional to the amount of
excitation of each mode, and can be calculated as

|Am|2 =

∣∣∣∫ ∞
−∞ dx

∫ ∞
−∞ dy

[
exψ∗x,m

]∣∣∣2[∫ ∞
−∞ dx

∫ ∞
−∞ dy |ψx,m|2

]2 , (1.8a)

|Bm|2 =

∣∣∣∫ ∞
−∞ dx

∫ ∞
−∞ dy

[
eyψ∗y,m

]∣∣∣2[∫ ∞
−∞ dx

∫ ∞
−∞ dy

∣∣ψy,m
∣∣2]2 , (1.8b)

where
∫ ∞
−∞ dx

∫ ∞
−∞ dy epψ∗p,m is the overlap integral, quantifying the field matching

between the incident radiation and the ψp,m mode. In the following, the field radi-
ated in the cladding will be neglected, since it radiates away after a short distance
and it is not of interest here. Related to the overlap integral is the power overlap in-
tegral, which quantifies the normalized amount of power coupled to the m-th mode
given the input field profile ep. The power overlap integral is written as

Γp,m =

∣∣∣∫ ∞
−∞ dx

∫ ∞
−∞ dy

[
epψ∗p,m

]∣∣∣2(∫ ∞
−∞ dx

∫ ∞
−∞ dy

∣∣ψp,m
∣∣2) (∫ ∞

−∞ dx
∫ ∞
−∞ dy

∣∣ep
∣∣2) (1.9)

with p = x, y. Γp,m does not takes into account coupling losses and it goes from
0 to 1; for example, if only the first TE order mode is excited in the waveguide,
then Γx,1 = 1 and Γx,n = 0 with n > 1. This parameter is quite useful since it
provides an intuitive information about the coupling efficiency for separate modes
given the same input radiation profile. Normalizing properly the input field ep and
the waveguide modes ψp,m it is possible to rewrite Eq. (1.7) using the Γp,m’s as the
expansion coefficienst, such that

ex(x, y) = ∑
m

√
Γx,mψx,m(x, y), (1.10a)

ey(x, y) = ∑
m

√
Γy,mψy,m(x, y), (1.10b)

where the radiative modes have been explicitly neglected, and
∫ ∞
−∞ dx

∫ ∞
−∞ dy|ep|2 =∫ ∞

−∞ dx
∫ ∞
−∞ dy|ψp,m|2 = 1 (p = x, y). With this normalization it results that ∑m Γp,m =

1, as expected from the definition of the power overlap integral.
The overlap integral or the power overlap integral are powerful tools for the de-
scription and simulation of the higher order mode coupling techniques. In a more
naive interpretation, the overlap integral quantifies how much the two field profiles
involved in the calculation are similar, with the maximum of the overlap integral
when the two profiles are identical. This means that the best coupling of a certain
waveguide mode is achieved when the field profile provided at the input of the



10 Chapter 1. Multimode silicon photonics

waveguide resembles the profile of that mode as much as possible. This consid-
eration is true because the tangential component of the electric field is continuous
across the interface, as stated by the Maxwell boundary condition for the radiation
field at the interface between two media [22].

When dealing with abruptly ended optical waveguides, a sudden change in the
refractive index is experienced by the propagating mode (from 3.48 to 1 with Si/air
interface at 1550 nm), giving rise to a non negligible reflection. This gives rise to a
Fabry-Perot oscillation [23] in the waveguide transmission, due to the light being
continuously reflected back and forth at the input and output facets of the waveg-
uide. An example is shown in Fig. 1.4a. For a particular propagating mode order m,
with wavelength λ at position z, the Fabry-Perot response hm(λ, z) is [24]

hm(λ, z) =
(1− Rm)2e−αmz(

1− R̃m

)2
+ 4R̃m sin2(Φm/2)

, (1.11)

with Φ = 2kmL + Φ0. Φ is the phase acquired in one round trip and Φ0 the
phase added at each facet reflection, R̃m = Rme−αz, Rm is the reflection coefficient
at the waveguide/air interface calculated according to the Fresnel formula as R =
(ne f f ,m − 1)2/(ne f f ,m + 1)2. Since many modes can co-propagate along the waveg-
uide, as shown in Fig. 1.4, one has to consider their coherent superposition, and the
resulting field profile at wavelength λ propagating in the waveguide, with polariza-
tion TE or TM, can be expressed by

ewg(λ; x, y, z) = ∑
m

√
Γm(λ)

√
hm(λ, z)em(λ; x, y), (1.12)

where m runs over all the modes supported by the waveguide. In order to sim-
plify the analysis, it is assumed that the mode profiles em(λ; x, y) are independent
on λ, i.e. em(λ; x, y) ≡ em(x, y).

FIGURE 1.4: a) Measured spectrum of the transmitted intensity for
the first TE order mode in a SOI rib waveguide with 600 nm width
and 2.05 mm length. The Fabry-Perot fringes are clearly visible. b)
Simulated intensity profiles for a SOI rib waveguide with only the
1TE mode (top), only the 2TE (middle) mode and with both 1TE and
2TE propagating (bottom) as a function of the wavelength. The pro-
file in the bottom figure arises from the interference between the two
modes. These plots have been simulated through Eq. (1.12), with

z = L, L = 2.05 mm and a width of 1.4 µm.
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1.1.3 The directional coupler

Controlling the light propagating inside an optical waveguide is required for almost
all the applications involving integrated photonic circuits. This can be achieved di-
rectly on-chip using a device called directional coupler (DC). A DC consists of two
parallel waveguides with a small gap in between, as shown in Fig. 1.5a, where a rib
DC with two equal waveguides is shown. In fact, when two waveguides are placed
sufficiently close such that the evanescent field from one overlaps with the field of
the other, a power exchange between the two waveguides occurs. DCs can be used
as power dividers, such as the 3-dB coupler simulated in Fig. 1.5c, which equally
splits the power from the input port into two outports. When the two waveguides
have different widths, like in Fig. 1.5b, the device is called an asymmetric directional
coupler (ADC). The ADC is used as a mode coupler [25]. In fact, when a single mode
waveguide is placed close to a multimode waveguide, it is possible to excite selec-
tively one of the supported higher order modes. This is shown in the simulation
reported in Fig. 1.5d, where an ADC is used to transfer all the input power into the
second order mode of the multimode waveguide. DCs and ADCs can also be used in
the opposite direction, i.e. to bring the power coming from more waveguides into a
single output port, or to extract selectively the power carried by a certain waveguide
mode.

a)

b)

w1
gap

w2

w1
gap

w2

DC

ADC

c)

d)

FIGURE 1.5: a) Directional coupler. b) Asymmetric directional cou-
pler. c) Simulation of a 3-dB directional coupler. d) Simulation of an

asymmetric directional coupler for the 2nd order coupling.

The working principle, for both the DC and ADC, can be explained by the coupled-
mode theory (CMT). CMT is an approximate theory which assumes that the waveg-
uides are weakly coupled [5]. Consider the geometry in Fig. 1.6a, where two planar
waveguides, with thickness h, are placed close with a gap of 2a. The upper waveg-
uide has refractive index n1, the lower waveguide has n2, while the surrounding
medium has refractive index n, such that n < n1 ∼ n2. Let us label the waveg-
uide with refractive index n1 "waveguide 1" and the other one "waveguide 2". The
CMT assumes that the coupling affects only the amplitude of the modes propagat-
ing in the two waveguides, without affecting their spatial profiles or propagation
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P1(z)

z
0
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P2(z)
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P0

FIGURE 1.6: a) Schematic of the DC with equal waveguides of thick-
ness h and gap 2a. The refractive indexes are n1, n2 and n for the
upper waveguide, the lower waveguide and the cladding, respec-
tively. The upper waveguide is initially excited, and after a prop-
agation length L0 the power is completely transferred to the other
waveguide. b) Power in the two coupled waveguides as a function of
the propagation length. Here the two waveguide are not equal and
the total power transfer is not achieved. c) Power in the two coupled
waveguides as a function of the propagation length. Here the two

waveguide are equal and the total power transfer is achieved.

constants. As a result, the amplitudes of the two waveguides are a function of z, the
position along the propagation direction. The fields in the two waveguides can thus
be written as

e1(y, z) = a1(z)u1(y)exp (−iβ1z) , (1.13a)

e2(y, z) = a2(z)u2(y)exp (−iβ2z) . (1.13b)

The CMT aims thus at the calculation of a1(z) and a2(z). The two waveguides
interact through the corresponding evanescent tails, which provide the mutual exci-
tation of the field in the opposite waveguide. This power exchange is modelled by
the coupled differential equations for a1(z) and a2(z) [5]:

da1

dz
= −ic21exp(i∆βz)a2(z) (1.14a)

da2

dz
= −ic12exp(i∆βz)a1(z) (1.14b)

where ∆β = β1 − β2 quantifies the phase mismatch per unit length, and

c21 =
1
2
(n2

2 − n2)
k2

0
β1

∫ a+h

a
u1(y)u2(y)dy, (1.15a)

c12 =
1
2
(n2

1 − n2)
k2

0
β2

∫ −a

−a−h
u2(y)u1(y)dy, (1.15b)

are the coupling coefficients. Assuming that waveguide 1 is excited with a1(0)
amplitude and that a2(0) = 0, then solving Eq. (1.14) yields

a1(z) = a1(0)exp
(

i∆βz
2

)(
cos(ξz)− i

∆β

2ξ
sin(ξz)

)
(1.16a)
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a2(z) = a1(0)
c12

iξ
exp

(
− i∆βz

2

)
(sin(ξz)) (1.16b)

with

ξ2 =

(
∆β

2

)2

+ C2 (1.17)

and C =
√

c12c21. Considering that the optical power is proportional to the mod-
ulus squared of the amplitude, it is possible to write the optical powers P1(z) and
P2(z) circulating in the coupled waveguides as

P1(z) = P1(0)

[
cos(ξz)2 +

(
∆β

2ξ

)2

sin2(ξz)

]
, (1.18a)

P2(z) = P1(0)
|c12|2

ξ2 sin2(ξz). (1.18b)

Eqs. (1.18) show that the power is periodically exchanged between the two
waveguides, as shown in Fig. 1.6b. When the waveguides are equal, i.e. β1 = β2,
and ∆β = 0, the phase matching condition is achieved, and Eq. (1.18) can be rewrit-
ten as

P1(z) = P1(0)cos2(Cz), (1.19a)

P2(z) = P1(0)sin2(Cz). (1.19b)

Eqs. (1.19) are plotted in Fig. 1.6c, showing that when the two waveguides are
equal the power can be completely exchanged between them and the maximum
coupling efficiency is possible. The length required to obtain the maximum power
transfer is

L0 =
π

2C
. (1.20)

When designing a DC aiming at the total power transfer, a coupling length of
L0 has to be used. A 3-dB coupler is obtained with a coupling length of L0/2. In
the case of an ADC, thus involving different waveguide widths and spatial modes,
it is sufficient to consider the propagation constants β for the corresponding modes
and geometries. This means that while in the case of the DC the maximum coupling
efficiency is achieved when the two waveguides have the same effective indexes,
with the ADC the maximum efficiency is achieved when the first order mode of
the single mode waveguide matches the effective index of the higher order mode
to be excited in the multimode waveguide. Even though for the ADCs the CMT is
more inaccurate than for DCs, it still provides a good approximation to the actual
coupling, and it is widely used to design the devices.
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Chapter 2

Interferometric mode coupling in
silicon waveguides

This section has been largely taken from the work that I presented in Ref. [26].

2.1 Introduction

The main building block of the multimode platform is the mode coupler. When deal-
ing with mode couplers, the main parameters used to characterize their efficiency
are the cross talk (XT), that is the ratio between the power in the channel due to the
wrong input ports and the power due to the right input port, the excess loss (EL),
which is the ratio between the total output power on all the channels and the input
power, the bandwidth (BW), measured as the wavelength range over which the XT
remains lower than a reference value [27], and the number of channels (Nch), which
is the number of modes that can be used for the data transport. Clearly, with the
perspective of highly dense on-chip integration, also the footprint becomes crucial
when considering the quality of the device. At the moment, three main approaches
to mode coupling are developing. The first one is based on multimode interference
(MMI), see Fig. 2.1a, where multiple modes are excited in the same waveguide and
their interference gives rise to a N-fold self imaging if the propagation length is prop-
erly chosen [28, 29]. With the MMI very small size devices can be designed, at the
expenses of the insertion losses and the number of channels. The second approach
relies on the mode evolution in an adiabatic structure. Here the width of the waveg-
uide is slowly changed in order to couple all the power of the input mode into the
target output waveguide mode [30, 31], as shown in Fig. 2.1b, where an example of
such structure is proposed. Adiabatic coupling exhibits large footprint but guaran-
tees low cross-talk and losses. The last technique exploits the selective excitation of
higher order modes provided by evanescent coupling through ADCs, as in the ex-
ample in Fig. 2.1c. The ADCs have the advantage of small footprint and easy design,
at the expenses of fabrication tolerance, which is critical due to the precise gap and
waveguide widths required for the device feasibility [32, 33].

Research in the field of integrated optical interconnects is moving towards the
best compromise among the available mode coupling solutions. The final result
should combine small footprint, high number of channels, low crosstalk and a band-
width large enough to match the requirements of DWDM. Up to now, the proposed
devices are not able to provide low crosstalk on a large number of channels keep-
ing at the same time a reduced footprint. Within this framework, I studied a new
approach to mode coupling, that should guarantee smaller size with respect to stan-
dard couplers, with a large number of channels and a much broader bandwidth (>
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a b

c

FIGURE 2.1: a) MMI based two mode (de)multiplexer with an y-
junction to couple the first (top) or second (bottom) order mode. c©
2016 IEEE [29]. b) Adiabatic coupler for the multiplexing of the first or
second TE waveguide mode. Reprinted from Ref. [31] under CC BY
2.0. c) (De)multiplexer based on cascaded ADCs, with also a polar-
ization beam splitter (PBS) to enable the simultaneous multiplexing
of both TE and TM polarizations. Reprinted from Ref. [32] c© 2014

Wiley-VCH.

200 nm) with respect to standard values (∼ 100 nm). This approach to mode cou-
pling takes directly into account the maximization of the overlap integral between
the input exciting field and the desired waveguide mode. The input field is consti-
tuted by spatial interference fringes, whose period is tuned as close as possible to
the period of the electric field lobes characterizing the target waveguide mode. This
maximizes the overlap integral and, therefore, the excitation of the selected mode
in the multimode waveguide. Moreover, the interferometer, exhibits extremely low
crosstalk between even and odd modes. In fact, an odd (even) input profile cannot
excite even (odd) modes. Also the fabrication tolerance is expected to be enhanced,
since the minimum feature size here required is well above the resolution of stan-
dard CMOS fabrication technologies. In order to obtain the suitable interference
pattern at the input facet of the multimode waveguide, two coherent tilted beams
are superimposed within a planar waveguide region.

As a first step to design an integrated device compatible with the SOI platform,
I experimentally investigated a free space implementation of the system in order to
validate the principle. In particular, I studied the selection of higher order modes in
channel SOI waveguides. After validating the principle, I simulated the integrated
version of the device, evaluating the performance of the system and proposing sev-
eral chip designs for both TE and TM mode coupling.

In this work, Dr. Mattia Mancinelli and Dr. Massimo Borghi supervised the de-
velopment of the interferometric coupling approach. The samples used have been
fabricated by the Centre for Materials and Microsystems of Bruno Kessler Founda-
tion (Trento, Italy).

2.2 Theory

2.2.1 Oblique beams interference

Consider two coherent gaussian oblique beams with wavevectors k1 and k2 which
form an angle 2θ between them, as in Fig. 2.2b. Let us make the two beams interfere
on the waveguide input facet at z = 0.

https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
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FIGURE 2.2: a) Cross-section of the waveguide used in the experi-
ment. The top cladding is a 900 nm thick SiOx, the BOX is a 3 µm thick
silicon dioxide and the core, i.e. the waveguide, is a 245 nm thick sil-
icon. b) Scheme for the two oblique beams reaching the waveguide
facet. 2θ is the angle between the beams. c) 2D plot of the simulated
interference fringes forming on a screen placed in the (x,y)-plane,
where the two tilted gaussian beams interfere. In this simulation a
waist of 8 µm for the beams, a wavelength of 1550 nm, transverse

magnetic polarization and θ = 40o are considered.

The beams are assumed to propagate in the (x,z)-plane and are both polarized in
the y-direction. Therefore, the interference pattern occurs along the x direction.
Given r the spatial position and setting z = 0, within the Rayleigh range we can
approximate the complex electric field amplitudes for the gaussian beams as [5]

U1(x, y) =
√

I1(x, y)eik sin(θ)x (2.1)

U2(x, y) =
√

I2(x, y)e−ik sin(θ)xeik ∆L (2.2)

where I1(x, y) and I2(x, y) are the gaussian profile intensities of the two beams,
eik ∆L is a phase term that accounts for a path length mismatch ∆L between the two
beams, k1 = k2 = k = 2πn/λ is the wavevector of the beams and n is the refrac-
tive index of the medium where light is propagating with wavelength λ. The total
intensity I(x, y) is given by

I(x, y) = |U1(x, y) + U2(x, y)|2 = I1(x, y) + I2(x, y)

+2
√

I1(x, y)I2(x, y)cos
[

4πn
λ

sin(θ)x− 2πn
λ

∆L
]

.
(2.3)

I(x, y) exhibits spatial interference fringes along x, with a period δ given by

δ =
λ

2 n sin(θ)
. (2.4)

δ can be changed by means of the θ angle. An example of I(x, y) is reported in
Fig. 2.2c, where the interference pattern is simulated for two beams with θ = 40o,
λ = 1.55 µm and n = 1. The presence of ∆L provides a phase term that makes the
interference fringes to experience a spatial shift along the x direction, as the wave-
length is changed. Let us note that in the simulations we have used gaussian beams
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even for z = 0.
A parameter that characterizes the interference is the visibility of the fringes. If A
denotes the maximum intensity of the fringes and B their minimum intensity, the
visibility V is defined as

V =
A− B
A + B

. (2.5)

If the visibility is lower than 100%, a background intensity all over the inter-
ference region is present, leading to a partial excitation of all the modes supported
by the waveguide in addition to the target higher order mode. The efficiency with
which the modes are excited in the waveguide is evaluated by the power overlap
integral.

Fig. 2.3 shows an example of mode selectivity, simulated for a SOI waveguide
3.65 µm wide and 250 nm high (details of the waveguide in Section 2.3.1). Here the
power overlap integral is evaluated separately for even and odd modes as a function
of the angle 2θ between the two gaussian beams. When ∆L = pλ, with p an integer,
the interference pattern exhibits its maximum value at (x,y) = (0,0), preventing the
excitation of modes which have an electric field profile which is odd with respect
to the center of the waveguide (y = 0 axis). The modes excited with this condition
correspond to even mode orders. However, by inducing a path length mismatch
∆L = pλ/2 the fringes are shifted by half a period, and the resulting pattern ex-
hibits a dark fringe in the middle, allowing efficient odd mode orders excitation.
From Fig. 2.3, one can see that when one of the modes has its maximum excitation,
the power coupled to the other modes is negligible, with a simulated cross-talk of
32 dB for the first order mode, 38 dB for the second, 34 dB for the third, 59 dB for
the fourth and 20 dB for the fifth. For the simulations of Fig. 2.3, the 3-dB band-
width is around ∆θ = 35o for all the waveguide modes considered. Moreover, it can
be calculated that the maximum variation of the power overlap integral due to the
variation of wavelength is about 2% in the C-band (1530nm - 1565nm), and so the
coupling coefficient is almost insensitive to λ and it can be considered constant over
all the C - band. This constitutes a large difference with respect to the ADC, in which
light confinement enhances the geometrical dispersion, resulting in a more limited
bandwidth [34, 35].

2.2.2 Mode beatings in a waveguide

When looking at the spectrum at the output of the waveguide, it is necessary to
take into account also the Fabry-Perot (FP) behaviour of the waveguide itself. For a
particular propagating mode order m, with wavelength λ at position z, the FP effect
is considered through the transfer function in Eq. (1.11). Since many modes can
co-propagate along the waveguide, one has to consider their superposition, and the
resulting field profile can be expressed by Eq. (1.12). An example of the field Ewg
at the output of the waveguide, as a function of the wavelength, is shown in Fig.
2.4b. Here we consider the simulation of the coupling through the interferometer in
a waveguide of width 3.65 µm and length 1.4 cm, with θ = 40o and ∆L = 40 µm. The
θ angle is tuned for a third order mode selection.

In Fig. 2.4a the input exciting field profile coming from the interference process
is reported as a function of the wavelength. According to eq. (2.3), the shift along x
exhibited by the input fringes, as λ is changed, is due to a mismatch in the light path
of the two interfering beams. In Fig. 2.4b the field propagating inside the waveguide
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FIGURE 2.3: Simulated power overlap integral multiplied by the
transmittance T through the input waveguide facet for the first five
TM modes in the 3.65µm wide waveguide. The transmittance is eval-
uated according to Fresnel equations [5] for an air-silicon interface.
The wavelength of the input light is 1550 nm. a) Even modes with
∆L = 0 nm. b) Odd modes ∆L = 775 nm. Note that the power of the

even modes in a) and of the odd modes in b) is negligible.

a)

b)

c)

FIGURE 2.4: Simulation of light coupling in a waveguide of width
3.65 µm and length 1.4 cm, with θ = 40o and ∆L = 40µm. a) Shift
of the input fringes with the wavelength. As the number of fringes
illuminating the waveguide input changes, also the mode excited is
different. b) Profile at the output of the waveguide exhibiting mode
beatings as a function of the input wavelength. c) Power overlap
integral as a function of the input wavelength for the modes in the

waveguide. Only the first five modes are considered.

is shown. Depending on the alignment of the input fringes with respect to the input
waveguide facet, a pure third order mode, which is the target one, or a mixture of
modes, that give rise to beatings, will be excited. This behaviour is quantified by the
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power overlap integral, plotted in Fig. 2.4c. The comparison between Fig. 2.4b and
Fig. 2.4c makes evident that when the third order mode is mostly excited, near λ =
1540 nm, the spatial profile at the output exhibits three lobes, which remains almost
unchanged for small variations of the wavelength. In the other spectral regions, the
profile is a mixture of the second and fourth order modes, or of all the excited modes.

2.3 Experiment

2.3.1 Experimental setup

The setup implemented to perform the interference of two oblique beams is reported
in Fig. 2.5. It is composed by a tunable C - band laser source, followed by a polariza-
tion controlling stage, a beam expander and an interferometer. The interferometer is
realized by a beam splitter, two equal gold mirrors and two equal lenses of 5 cm of
focal length. A tunable free space attenuator is placed in one of the arms, in order
to balance the intensity of the two beams and, according to Eq. (2.5), maximizing
the visibility. Furthermore, in one of the arms is inserted a delay stage that allows to
tune the phase between the two splitted beams by adding a path difference ∆L. The
spot diameter of the oblique beams is (16± 2) µm. In order to probe the interference
pattern at the input and at the output of the waveguide, a Scanning Near field Opti-
cal Microscopy (SNOM) fiber is used. The SNOM fiber has an aperture tip of 250 nm,
which sets the resolution of the near field imaging system. The position of both the
fiber and the waveguide is controlled by means of two XYZ-nanopositioning stages.

2.3.2 Measurement procedure

The selective mode excitation is performed in consecutive steps. Firstly, one has to
verify the quality of the interference pattern in the region where the input facet of
the waveguide will be placed and then the light paths of the two interfering beams
have to be balanced (∆L = 0). At this point, the waveguide input facet has to be
carefully aligned with the fringes of the interference pattern and, as a last step, the
output field profile is probed. Two waveguides were chosen for the measurement,
one 2.45 µm wide for a second order mode selection, and the other 3.80 µm wide for
a third order mode selection. Transverse Magnetic (TM) polarization is used.

Creation of the input interference fringes

Firstly, the interferogram which will be formed on the input facet of the waveguide is
characterized. In order to evaluate the interference period required for the excitation
of the target modes, we performed a numerical simulation of the chosen waveguides
with a Finite Elements Method (FEM) solver and we evaluated the distance between
the lobes of the target modes. This yields (1.31± 0.02) µm for the second order mode
in the 2.45 µm wide waveguide and (1.30± 0.02) µm for the third order mode in the
3.80 µm wide waveguide. The θ angle for these two cases was evaluated with Eq.
(2.4) to be (36.6± 0.7)o for the second order mode in the 2.45 µm wide waveguide
and (36.3± 0.6)o for the third order mode in the 3.80 µm wide waveguide.

Once that the θ angle is chosen, the visibility of the fringes was verified by look-
ing at their spatial distribution in the (x,y)-plane by means of the SNOM fiber. One
of the 1D slices is given in Fig. 2.6, where the experimental pattern is compared with
the simulated one. A good agreement between simulation and experiment exists.
By looking at the period of the experimental interferogram, and through Eq. (2.4),
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FIGURE 2.5: a) Sketch of the implemented setup observed from the
top: (A) laser source, (B) beam expander, (C) beam splitter, (D) delay
stage, (E) gold mirror, (F) lens, (G) waveguide, (H) collecting fiber,
(I) detector. b) Photograph showing the interferometer in the experi-
mental set up, with the letters indicating the corresponding element

in a).

it is possible to evaluate the actual θ angle, that results to be θ = (36.6± 0.3)o. The
visibility is (0.95± 0.02).

Paths balancing

The last step before placing the waveguide on the interference pattern is setting
∆L = 0. Indeed, if ∆L 6= 0 the interference pattern at the input facet of the waveg-
uide changes with the wavelength, as shown in Fig. 2.4, modifying the power over-
lap integral between the input profile and the target mode order.
In order to measure and tune the path mismatch ∆L, one has to look at the spec-
trum collected by the SNOM fiber while it is kept in the middle of the pattern profile
and the wavelength is changed. According to Eq. (2.3), if the paths are balanced,
fringes do not shift with wavelength, so the signal probed by the fiber is constant.
Otherwise, the signal would oscillate, with a maximum when one maximum of in-
terference shines on the tip, and a minimum when a dark fringe is probed.
In order to set ∆L to zero, the delay stage in Fig. 2.5 was tuned until no spectral
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FIGURE 2.6: Measured and simulated 1D interference pattern of the
two beams interferometer for θ = 36.6o and λ = 1550 nm. The mea-

surement was carried out with the SNOM fiber.

shift was measured. In Fig. 2.7 the measured spectrum before and after the path bal-
ancing procedure is reported. ∆L is tuned from (1.47± 0.01)mm to (8± 1) µm. ∆L
is evaluated by fitting the experimental measurement. This value for the path mis-
match provides a good stability, with the intensity greater than 95% of its maximum
in a spectral range of 32 nm, that we consider sufficiently wide for the purposes of
the experiment.
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FIGURE 2.7: Measured and simulated spectrum a) before the balanc-
ing of light paths and b) after the balancing. (Notice the scale change.)
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Selective excitation of the waveguide mode

The waveguide input facet was carefully placed in the plane where the interfero-
gram was formed. In order to verify if the mode excited in the waveguide was ac-
tually the desired one, 1D spatial profiles of the transmitted signal at the waveguide
output facet were taken for different wavelengths. The excited waveguide mode
is pure if the profile does not change with wavelength. In fact, when more than
one mode is excited, mode beatings occur and the field profile at the output of the
waveguide changes periodically with the wavelength, as shown in Fig. 2.4b.

A XYZ-nanometric positioning stage is used in order to tune the waveguide po-
sition. If the first 1D slice did not exhibit a pure mode selection, the waveguide was
moved along the x direction by steps of 10 nm, in order to match better the inter-
ference pattern with the input facet of the waveguide. This procedure was repeated
until the evidence of pure mode selection was found. The field at the output of the
waveguide is probed at wavelength steps of 1 nm.
The measured profiles are reported in Fig. 2.8.
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FIGURE 2.8: a) Experimental mode profile probed at the output of
the 2.45 µm wide waveguide with the SNOM fiber. The measurement
exhibits the selection of a second order mode in the waveguide. b)
Slice from a) taken at 1549 nm. c) Experimental mode profile probed
at the output of the 3.80 µm wide waveguide with the SNOM fiber.
The measurement exhibits the selection of a third order mode in the

waveguide. d) Slice from c) taken at 1546 nm.

The selective excitation of the second order mode in the 2.45 µm wide waveguide
and of the third order mode in the 3.80 µm wide waveguide are shown in Fig. 2.8a
and Fig. 2.8c respectively. The selected modes are identified by the number of lobes
in the spatial profile. These lobes are not uniform in wavelength due to FP and to a
partial excitation of other modes. Considering the bandwidth as the spectral range
where the cross-talk is lower than 20 dB, the simulations suggested a bandwidth
larger than the measured spectral region in Fig. 2.8a and Fig. 2.8c. In particular,
the simulated bandwidth is around 20 nm (from 1540 nm to 1560 nm) both for the
selection of the second order mode in the 2.45-µm-wide waveguide and for the se-
lection of the third order mode in the 3.80-µm-wide waveguide. Experimentally, it
was not possible to measure the field profiles for a wavelength range larger than
the one in Fig. 2.8a and Fig. 2.8c, due to limitations in the mechanical stability of



24 Chapter 2. Interferometric mode coupling in silicon waveguides

our setup. Assuming, in the worst case, that the bandwidth is as large as the spec-
tral range considered in Fig. 2.8a and Fig. 2.8c ( 1545 nm - 1554 nm), the simulated
cross-talk has a minimum of 29 dB for the second order mode excited in the 2.45 µm
wide waveguide and a minimum of 27 dB for the third order mode excited in the
3.80 µm wide waveguide. In both cases, the power overlap integral has an average
value of 0.9 over the bandwidth considered. As a comparison, Fig. 2.9 reports a mea-
surement where the mode selectivity was not accurate, resulting in the excitation of
many modes in the waveguide that give rise to mode beatings.
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FIGURE 2.9: This is the same measurement performed in Fig. 2.8a,
but in the case of a not pure mode selection. In this case the input
pattern profile does not match correctly with the input facet of the
2.45 µm wide waveguide, preventing a pure second order mode se-

lection.

The profiles in Fig. 2.8a and Fig. 2.8c are wider than the waveguides themselves,
due to the point spread function of the SNOM fiber. We measured a value of (25.62±
0.02)dB of coupling losses, due to reflections at the input facet of the waveguide
and to the large size of the input beams with respect to the size of the input facet.
Insertion losses can be significantly reduced by optimizing the optics of the setup.

2.4 Perspectives: integrated interferometer

In order to integrate the interferometer directly on a chip, a planar waveguide re-
gion where the two oblique beams can interfere is required. With this aim, I studied
a structure where the interference is achieved in a planar semicircular region, also
known as star coupler. The basic design of the integrated device is reported in Fig.
2.10a: two input waveguides of width win are angled by θ with respect to the hori-
zontal axis of the star coupler of radius R, and the higher order mode is coupled into
the outgoing multimode waveguide with width wout.

When designing the device, all these parameters are swept in order to find the
best configuration for every mode to be coupled into the output. The insertion angle
of the two beams in the star coupler is chosen according to the mode to be selected,
as in the free-space case. However, the integrated interferometer has also to take into
account the diffraction occurring in the planar waveguide: in fact, once the light exits
the input waveguides the lateral confinement suddenly disappears, and the light
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FIGURE 2.10: a) Basic chip design for the integrated interferometer,
with the main quantities defining its geometry. b) Geometry of the in-
tegrated interferometer, representing the geometrical parameters in-

volved in Eq. (2.6).

diffracts within the planar star coupler. This diffraction is modelled starting from
the equation for the diffraction in a star coupler [21] adapted for the geometry of the
interferometer. The equation used to calculate the diffracted field on the output port
is

eout(x) = −
√

ik
2π

∫
ein(θ)exp (−ikρ)

R
√

ρ
cos(θ)cos(θ − θ1)dθ, (2.6)

where the variables and parameters are as in Fig. 2.10, x = R tan (θ1), ein(θ) is
the field at the input port at θ angle and eout(x) is the output field at z = 0 and x. The
integrated interferometer has also been studied with FEM simulations, as reported
in Fig. 2.11, where the excitation of up to the fifth TE order mode is shown.

a b c d) ) ) )

FIGURE 2.11: FEM simulations of the interferometer showing the
coupling of different higher order modes: a) second order, b) third

order, c) fourth order and d) fifth order mode.

The integrated interferometer should provide a mode order selectivity higher
than the free space case, with lower coupling losses and better phase stability. In
fact, while in the free space case the profile matching between the input beam and
the waveguide mode is limited by the mismatch along the y-direction, in the inte-
grated case the overlap along this direction is guaranteed by the vertical confine-
ment. This vertical confinement allows to simplify the analysis of the overlap inte-
gral considering only the one dimensional profile along the x direction. In order to
control the selection of the even or odd modes, the input field phase has to be pre-
pared accordingly. To do so, a small part of one of the two input waveguide arms
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has been designed with a larger width, as shown in the detail in Fig. 2.12, and whose
length is such that a π phase shift between the two input beams is induced. Also an
active control of the relative phase can be considered, which can be accomplished
by placing thermal heaters on both the input arms, in order to fine tune the phase
shift by changing the temperature of the two input waveguides. If the heaters are in-
troduced, much more phase stability is obtained at the expenses of device footprint.
In Fig. 2.12 the full design for the integrated interferometer is proposed. The in-
put light propagates through a 3-dB coupler, whose outgoing arms, after the heater
stage, reach the star coupler. The total length of the device depends on the presence
or not of the heating stage, which doubles the length of the device, and on the qual-
ity of the fabrication technology, which affects the minimum length of both the 3-dB
coupler and the tapered input waveguides.

10 μm

FIGURE 2.12: Final design of the integrated interferometer. In gray is
the silicon structure, while in red are the metallic heaters. In the inset,
it is shown the larger waveguide used to add a π phase shift on one

of the arm, in order to excite the even mode orders.

As said before, in order to find the best geometrical configuration of the inter-
ferometer given a certain target mode, all the combinations of the parameters have
been explored. I limited the analysis to the first five waveguide modes, since for
higher order modes it is not possible to keep the same small footprint with low XT
and losses at the same time. However, in principle there is not an upper limit to the
mode order that can be excited, the only limit is θ, that cannot be too large in order
to avoid strong reflections at the entrance of the multimode waveguide. In Table 2.1
and Table 2.2 are reported the best parameters up to the fifth TE and TM order mode
respectively. The first waveguide mode has not been included in the tables since it is
not useful to apply the interference method for the excitation of this mode, but it has
been considered in the XT calculation. Γ is the power overlap integral, calculated
between the input interference profile and the target mode within the cross section
of the outgoing multimode waveguide. A common practice is to consider 3 dB as
the maximum acceptable value for the EL. The BW refers to wavelengths with XT <
-15 dB. As for the free space case, the interferometer exploits the symmetry of even
and odd modes, so that the crosstalk of odd (even) modes cannot be affected by even
(odd) modes. This results in low crosstalks, as shown in the Tables 2.1 and 2.2. From
simulations, the bandwidth of the integrated interferometer is larger than 200 nm
for all the modes and polarizations, as shown in Fig. 2.13.

Looking at the MDM application, one has to consider a slightly different design
for the interferometer, in order to couple simultaneously more than one higher order
mode. Considering a 2-mode multiplexer, the design should be like the one in Fig.
2.14, where two pairs of oblique beams are present, one for each mode. From this
figure is evident the increasing complexity of the system, which should consider also
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TE polarization
Mode θ [deg] R [µm] win [µm] wout [µm] XT [dB] EL [dB] BW [nm]

2 15 20 5 2 -27.19 -2.85 >200
3 20 25 5 2.5 -25.95 -3.33 >200
4 22 25 4.5 3 -21.56 -3.63 >200
5 24 30 5 3.5 -20.20 -3.95 >200

TABLE 2.1: Geometrical parameters and efficiency of several simu-
lated integrated interferometers for TE polarization. The first column
refers to the target mode. BW refers to wavelengths with XT < -15 dB.

TM polarization
Mode θ [deg] R [µm] win [µm] wout [µm] XT [dB] EL [dB] BW [nm]

2 16 15 4 2.5 -23.45 -3.70 >200
3 20 25 5 3.5 -22.05 -3.97 >200
4 23 25 5 4 -18.89 -3.98 >200
5 29 15 4.5 4 -14.73 -3.98 >200a

TABLE 2.2: Geometrical parameters and efficiency of several simu-
lated integrated interferometers for TM polarization. The first col-
umn refers to the target mode. BW refers to wavelengths with XT <

-15 dB.

aOnly for the 5TM the bandwidth is calculated considering XT < -13 dB
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FIGURE 2.13: Simulated cross-talks as a function of the wavelength
for the geometrical configurations in Table 2.1 and Table 2.2.

crossings, more heaters and 3-dB couplers. The full device for 2-mode multiplexing
has a length greater than 350 µm, but it has to be considered that the heaters can be
avoided if the phase shift by the larger waveguide (detail in Fig. 2.12) is reliable.
Moreover, this design is limited by the low fabrication resolution, which imposes
longer coupler lengths and tapering. With state of the art fabrication performance,
and removing the heaters, the device can be reduced below 100 µm.

The integrated interferometer, due to the large dimensions involved, exhibits
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20 μm

FIGURE 2.14: Full design of a 2-mode multiplexing interferometer.

large fabrication tolerance. To simulate the fabrication tolerance it has been con-
sidered the geometry for the selection of the 2TE mode, reported in Table 2.1. The
parameters of the geometry have been varied one by one around their optimal value.
The cross-talk variation with respect to the optimal one (δXT) is reported in Fig. 2.15.
If δXT = 0 the fabrication tolerance is perfect. In Fig. 2.15a the most critical param-
eters are considered, θ and wout, which exhibit a maximum δXT of about 3 dB, with
parameter deviations larger than the experimental expectations. In Fig. 2.15b are
considered R and win, which are almost insensitive to fabrication imperfections.
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FIGURE 2.15: Deviation from the optimal cross-talk (δXT) as a func-
tion of the variation of the geometrical parameters from the optimal
values (δθ, δwin, δR, δwout). The simulation considers the geometry
for the selection of the 2TE mode, given in Table 2.1. a) δXT for the

variation of θ and wout. b) δXT for the variation of R and win.

Some pictures of the fabricated devices have been taken with the microscope,
focusing on the input 3-dB coupler (Fig. 2.16a), a single mode interferometer (Fig.
2.16b) and a 2-mode interferometer (Fig. 2.16c).

In Fig. 2.17 are reported two full 3D FEM simulations for the full device, for the
second and third TE modes, with both the input and output couplers. These full
3D simulations are still under analysis and I report them here just as a qualitative
description of the working principle of the integrated coupler.
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FIGURE 2.16: Colored microscope images of the fabricated integrated
interferometers. In red the metallic heaters, in white the integrated
devices. a) Detail of the input 3-dB coupler. b) Detail of the interfer-
ometer. c) Detail of the interferometer with double mode coupling.

Photos by Dr. Mher Ghulinyan.

a) b)

FIGURE 2.17: a) Full 3D FEM simulation of a second TE excited and
extracted through the interferometer mode coupler. b) Full 3D simu-
lation of a third TE excited and extracted through the interferometer

mode coupler.

Ref. Year L [µm] EL [dB] XT [dB] BW [nm] Nch Technique
[36] 2012 80 1 -40 50 2 MMI
[37] 2014 ∼200 0.2 ÷ 3.5 -20 ∼100 8 ADC
[38] 2017 ∼500 0.2 ÷ 1.8 -15 ÷ -25 ∼90 10 Adiabatic
[39] 2018 5 <2.5 -19 >60 3 Y-junction

This thesis 2019 <200 2.85 ÷ 4 -15 ÷ -27 >200 >2 Interferometer

TABLE 2.3: State of the art of mode (de)multiplexers. The BW refers
to wavelengths with XT < -15 dB and L is the length of the device.

(Based on the report in Ref. [27]).

2.5 Conclusions

In this chapter I described a new approach to mode coupling based on the interfer-
ence pattern arising from two superimposed tilted coherent beams. I initially vali-
dated experimentally the method for free space coupling. Then, I investigated the
integrated version of the system. This integrated interferometer, compared with the
already existing mode couplers in Table 2.3, exhibits smaller lengths (when heaters
are not required) and superior bandwidths, without losing in cross talk. The main
drawback of the integrated interferometer is the excess loss, which is larger than
state of the art devices. The peculiarity of this device is the high selectivity on the
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parity of the modes. In fact, even order modes does not affect the cross talk of the
odd modes, and vice versa. The number of available channels can be very large, but
its hard to define an upper limit without testing experimentally the system. In fact,
despite the chip has been fabricated, some errors in the fabrication process affected
irredeemably the propagation losses of the whole chip, preventing its experimental
analysis.
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Chapter 3

Intermodal four wave mixing in
silicon waveguides

3.1 Nonlinear silicon photonics

The silicon photonics platform is one of the most successful technological advance-
ments of the last decades. With their low costs and unique properties, silicon optical
devices are bridging the gap between fundamental research and everyday applica-
tions. One of the key factor contributing to this success is the high nonlinear optical
response of silicon, which enables plenty of new functionalities at the chip scale
and that brought silicon photonics almost everywhere, from medical research to car
industry, from data centers to telecommunication networks [20]. The fundamental
reasons laying at the basis of the successful paradigm of nonlinear silicon photonics
are:

• the high refractive index contrast of the SOI platform, which allows for very
compact devices, that can be integrated in a huge number at the chip scale;

• the high optical densities that the small waveguide core permits, which reduce
the input power requirements in order to trigger the nonlinear effects;

• the moderately high nonlinear index of silicon;

• the CMOS compatibility, which makes silicon preferable with respect to other
semiconductor or polymers or organic materials with even higher nonlinear
response.

While moving outside the labs, nonlinear silicon photonics is still facing new
challenges at the fundamental research level. Among the most intriguing and promis-
ing research fields, mid infrared (MIR) and quantum applications are nowadays
attracting most of the attention. In fact, these two fields are based on the nonlin-
ear parametric processes arising in silicon devices [40], which enable on-chip wave-
length conversion, useful for MIR light detection and generation [11], and correlated
pairs production, which is at the basis of the developing quantum technologies [15].

The theory of optical nonlinearities starts from the polarization vector (or polar-
ization density), which describes how the material responds to an applied electro-
magnetic field. At low optical powers, the relation between the applied electric field
E and the polarization P is essentially linear, namely

P = ε0χ(1)E = ε0 ∑
ij

Eiâj, (3.1)
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where ε0 is the vacuum permittivity and χ(1) is the first order susceptibility, a
second rank tensor whose elements, χ

(1)
ij , multiply the electric field component Ei

and the unitary versor âj [20]. When the input optical power increases, stronger
electric fields have to be considered, and the linear relation between the input electric
field and the polarization no more holds. When such high optical fields are involved
or free carriers have to be considered (which is often the case in semiconducting
materials), the polarization vector can be rewritten as

P = PL + PNL + PFC, (3.2)

where PL is the linear polarization, as in Eq. (3.1), PNL is due to nonlinear optical
interaction and PFC is related to linear optical effects with free carriers involved.
For sufficiently weak optical fields, the nonlinear polarization can be expanded as a
Taylor series:

PNL = P(2) + P(3) + ...

= ε0

[
χ(2) : E2 + χ(3)...E3 + ...

]
= ε0

[
∑
ijk

χ
(2)
ijk EiEjâk + ∑

ijkl
χ
(3)
ijklEiEjEkâl + ...

]
,

(3.3)

where P(2) and P(3) are the second and third order polarization vectors respec-
tively, while χ(2) and χ(3) are the second and third order susceptibilities, which are
tensors of third and fourth order respectively. When amorphous or isotropic mate-
rials are involved (e.g. silica) the susceptibility can be treated as a scalar quantity,
while for crystalline media (e.g. silicon) it has to be considered as a tensor. A further
detail is that as the order of the nonlinear susceptibility increases, its value reduces
rapidly. As an example, χ(2) ∼ 10−12m/V and χ(3) ∼ 10−24m2/V2 [41]; as a result,
second order nonlinear processes require weaker fields with respect to third order
ones. This consideration motivates the photonics community to research primarily
on χ(2) materials, since on-chip integration requires low power functionalities. Un-
fortunately, silicon does not display second order nonlinearity, due to its centrosym-
metric crystalline structure. In fact, when the material is centrosymmetric, it has an
inversion symmetry, which prevents the existence of even order nonlinearities. This
last conclusion comes from the comparison between the second order polarization
without the application of the inversion operator

P(2) = ε0

[
∑
ijk

χ
(2)
ijk EiEjâk

]
, (3.4)

and with the inversion operator applied

− P(2) = ε0

[
∑
ijk

χ
(2)
ijk (−Ei)(−Ej)âk

]
, (3.5)

where χ
(2)
ijk = −χ

(2)
ijk holds according to the inversion symmetry of silicon. As a

consequence,

− P(2) = ε0

[
∑
ijk

χ
(2)
ijk (−Ei)(−Ej)âk

]
= ε0

[
∑
ijk

χ
(2)
ijk EiEjâk

]
= P(2), (3.6)
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which is valid only for χ
(2)
ijk = 0. Because of this the research in nonlinear silicon

photonics moved towards third order nonlinearities. Moreover, higher order sus-
ceptibilities, like χ(4) and higher, are usually not considered due to the tremendous
power intensities required.

When dealing with nonlinear optics, a fundamental role is still covered by the
linear susceptibility χ(1), which is related to the electronic transitions induced in the
medium by individual photons. χ(1) is related to the refractive index n by

χ(1) + 1 = n2, (3.7)

which means that χ(1) is related to the real part of the refractive index, while
its imaginary part encloses information on loss or gain mechanisms in the material
[42]. Related to the real and imaginary parts of the refractive index is the role of
free carriers, whose presence gives rise to extra absorption and dispersion phenom-
ena, named respectively free carrier absorption (FCA) and free carrier dispersion
(FCD). The complex refractive index as a function of the wavelength λ and of the
electron/hole densities Ne/Nh reads as [20]

n(λ, Ne, Nh) = n0(λ) + δnFC(Ne, Nh) + i
λ

4π
[α0(λ) + δαFC(Ne, Nh)] , (3.8)

where n0 and α0 are the standard refraction and absorption coefficients, while
δnFC and δαFC are the refractive index change and extra losses induced by free car-
riers. These coefficients have been estimated at 1550 nm[43]:

δnFC = −8.8× 10−22Ne − 8.5× 10−18N0.8
h , (3.9a)

δαFC = 8.5× 10−18Ne + 6.0× 10−18Nh. (3.9b)

3.2 Second order processes

Despite silicon does not exhibit second order processes, these phenomena are ex-
tremely useful for off-chip applications and experiments, as will be shown in Section
4.5.2, where a χ(2) process is used to up-convert and detect photons in the MIR. Sec-
ond order processes arise from the combination of three photons, which, in terms of
polarization vector, can be described as the superposition of two waves E1 and E2
with ω1 and ω2 frequencies respectively [20]:

P(2)(r, t) =

ε0χ(2) :
[
E2

1(r, ω1)e−i2ω1t
]

+ ε0χ(2) :
[
E2

2(r, ω2)e−i2ω2t
]

+ ε0χ(2) :
[
2E1(r, ω1)E2(r, ω2)e−i(ω1+ω2)t

]
+ ε0χ(2) :

[
2E1(r, ω1)E∗2(r, ω2)e−i(ω1−ω2)t

]
+ ε0χ(2) : [E1(r, ω1)E∗1(r, ω1)]

+ ε0χ(2) : [E2(r, ω2)E∗2(r, ω2)]

+ c.c.

(3.10)



36 Chapter 3. Intermodal four wave mixing in silicon waveguides

where c.c. is the complex conjugate. The first two lines in Eq. (3.10) refer to
the second harmonic generation (SHG), where two photons at ω1 (ω2) annihilate
resulting in the generation of one photon at 2ω1 (2ω2). The third and fourth lines of
Eq. (3.10) are the polarizations associated with the sum frequency generation (SFG)
and difference frequency generation (DFG) respectively: in SFG two photons at ω1
and ω2 disappear to generate a new photon with frequency ω1 + ω2, while in DFG
the generated photon has frequency ω1 − ω2. The last two terms of Eq. (3.10) refer
to optical rectification (OR), which give rise to the generation of a DC component
of the polarization [20]. All the processes involving the annihilation and generation
of photons can be modelled in the quantum mechanical framework as a two level
system, in which the upper level is a virtual state. According to the virtual state
picture, SHG, SFG and DFG have been schematized in Fig. 3.1.

ω1

ω1

2ω1

ω2

ω1

ω1 + ω2

ω2

ω1
ω1 - ω2

SHG SFG DFG

FIGURE 3.1: Virtual state diagram for SHG, SFG and DFG processes.

3.3 Third order processes

Like the second order nonlinearities, it is possible to describe the χ(3) processes and
the corresponding polarization vector considering the superposition of three waves
E1, E2, E3 at respectively ω1, ω2, ω3 frequencies:

P(3)(r, t) =

ε0χ(3)...
[
E3

1(r, ω1)e−i3ω1t
]

+ ε0χ(3)...
[
3E2

1(r, ω1)E2(r, ω2)e−i(2ω1+ω2)t
]

+ ε0χ(3)...
[
3E2

1(r, ω1)E∗2(r, ω2)e−i(2ω1−ω2)t
]

+ ε0χ(3)...
[
6E1(r, ω1)E2(r, ω2)E3(r, ω3)e−i(ω1+ω2+ω3)t

]
+ ε0χ(3)...

[
6E1(r, ω1)E2(r, ω2)E∗3(r, ω3)e−i(ω1+ω2−ω3)t

]
+ ε0χ(3)...

[
3|E1(r, ω1)|2E1(r, ω1)e−iω1t

]
+ ε0χ(3)...

[
3|E2(r, ω2)|2E1(r, ω1)e−iω1t

]
+ c.c.

(3.11)

where all the permutations of the waves for reasons of compactness have not been
considered. The first term in Eq. (3.11) describes third harmonic generation (THG),
with the generation of one photon at 3ω1 frequency after the annihilation of three
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photons at ω1. From the second to the fifth term in Eq. (3.11) different ways to
achieve frequency mixing in a χ(3) material are described, named four wave mixing
(FWM), in which four photons combine to give rise to the generation of new har-
monics. The sixth term in Eq. (3.11) describes both self phase modulation (SPM) and
two photon absorption (TPA). SPM comes from the real part of χ(3) and induces an
intensity dependent modulation ∆n = n2 I(t) to the nonlinear refractive index, with
n2 the Kerr coefficient and I the field intensity; as a result, the propagating pulse
experiences a time-dependent phase shift which give rise to a spectral broadening
of the pulse itself [44]. With TPA two input photons are absorbed by the excitation
of one electron from the valence to the conduction band [41]. TPA leads to the pro-
duction of free carriers in the medium, increasing the system losses. TPA occurs at
wavelengths in which the band-gap energy is larger than the single photon energy,
such that only multiple photons absorption can cover the energy gap of the ma-
terial. Depending on the wavelengths propagating in the medium, also cross-two
photon absorption (XTPA) can occur, which is the same mechanism of TPA but with
two photons with non-degenerate frequency. Silicon is strongly affected by TPA at
1550 nm, which introduces FCA and FCD, and also imposes severe limitations at the
maximum attainable on-chip power [45, 20]. A process analogous to SPM is the one
described by the last term of the summation in Eq. (3.11), cross phase modulation
(XPM), in which the phase shift experienced by the wave at ω1 is not induced by
itself but by another wave propagating simultaneously (ω2 in the case of Eq. (3.11)).
THG, FWM and SPM are also schematized in Fig. 3.2.

ω1

ω1

3ω1

ω2

ω1

ω1

THG FWM SPM

ω1
ω3

ω4

FIGURE 3.2: Virtual state schematics for THG, FWM and SPM pro-
cesses.

Nonlinear processes can be grouped into two categories, parametric and non
parametric processes. Parametric processes are characterized by identical initial and
final quantum mechanical states of the system, thus allowing the excitation of the
population in the ground state to a virtual state only for extremely brief time inter-
vals. As a consequence, parametric processes are instantaneous and the energy of
the system during the process remains in the form of photons [41]. On the contrary,
in non parametric processes the energy can be exchanged with the material also
through other forms, like heat or sound. All the processes described above, both
χ(2) and χ(3), are parametric, with the exception of TPA, in which photon energy
goes into the excitation of free carriers. Another common example of non paramet-
ric process is stimulated Raman scattering (SRS), which results from the interaction
between propagating photons and vibrational modes of the material structure. In
particular, a photon at frequency ω is annihilated and a Stokes-shifted photon at ωs
is generated, according to the energy conservation ωs = ω − ωV , where h̄ωV is the
phonon energy exchanged with the medium [46]. Most of the technological applica-
tions involving nonlinear optics are based on frequency mixing processes; however,
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also the study of TPA and SPM is of crucial importance for nonlinear devices, since
these processes directly affect the light propagation in photonics structures. As al-
ready stated, SPM leads to a nonlinear modulation of the refractive index, while
TPA give rise to nonlinear losses both in terms of multiphoton absorption and FCA.
The perturbation of the refractive index and of the absorption coefficient can be ex-
pressed as

n = n0 + n2 I + i
λ

4π
[α0 + βTPA I] , (3.12)

with n0 the refractive index, βTPA the TPA coefficient and α0 the absorption coeffi-
cient [20]. n2 and βTPA are related to the real and imaginary part of the susceptibility
tensor as [20]

n2 =
3

4ε0cn2 Re
(

χ
(3)
e f f

)
, (3.13a)

βTPA =
3ω

2ε0c2n2 Im
(

χ
(3)
e f f

)
, (3.13b)

where c is the speed of light, χ
(3)
e f f the effective third order susceptibility, calcu-

lated considering the independent terms of the χ(3) tensor [47]. From Eq. (3.13a) and
Eq. (3.13b) it can be seen that SPM, and the nonlinearities in general, is directly de-
pendent on the real part of χ

(3)
e f f , while TPA is related to its imaginary part. In fact, n2

and βTPA can be regarded as two sides of the same coin, in the sense that a high non-
linear coefficient, which is desirable for nonlinear photonics applications, is usually
related to a high βTPA coefficient, which introduces nonlinear losses and it is detri-
mental for integrated optics. Because of this the figure of merit (FOM) parameter
has been introduced, calculated as

FOM =
n2

βTPAλ
. (3.14)

The FOM is used to evaluate the material suitability for nonlinear operation con-
sidering also the induced nonlinear losses [40]. The FOM of crystalline silicon (c-Si),
for example, is between 0.32 and 0.86, much lower than silica (SiO2), whose FOM
� 1. However, silica has an n2 that is two orders of magnitude smaller than the one
of silicon, and its refractive index is much lower than the silicon case; this means
that devices based on silica has a much larger FOM, but they exhibit also a foot-
print that is enormous with respect to SOI structures [40]. Because of this the FOM
alone is not sufficient to judge the quality of a material. Another parameter that is
complementary to FOM is the effective nonlinearity γ, calculated as

γ = 2π
n2

λAe f f
. (3.15)

The dependence on the effective area Ae f f makes the γ parameter a reliable pa-
rameter to compare integrated structures. Silicon single mode waveguides (SMWs)
exhibit γ = 350− 500 W−1m−1, much larger than the one of silica single mode fibers
(SMFs), which have γ ∼ 0.001 W−1m−1. The role of γ is intuitively understood
when considering the nonlinear phase shift φNL, that is the phase accumulated by
the optical pulse due to the intensity-dependent refractive index. φNL is defined as

φNL = γPpLe f f , (3.16)

where Pp is the peak power of the pulse (or the average power in the continuous
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wave (CW) case) and Le f f is the effective length. The effective length defines the
length of a fiber/waveguide considering its linear losses. Le f f is calculated as

Le f f =
1− e−α0L

α0
, (3.17)

where the linear absorption coefficient α0 and the geometrical length L of the de-
vice have been considered. In this way, φNL quantifies the nonlinear efficiency of the
whole device, taking into account the intrinsic nonlinearity of the material, the actual
interaction length of the device and the pump power required to trigger the nonlin-
ear processes. By comparing the integrated structures with silica fibers, it can be no-
ticed that integrated devices have larger linear losses with respect to fibers, but they
exhibit much higher nonlinear phase shifts with insuperable shorter lengths [40].
Thus, integrated photonics is a suitable platform when looking for miniaturization
and scalability of photonics devices, as also shown by Fig. 3.3, where the typical c-Si
SMW is compared with the typical SiO2 SMF in terms of nonlinear phase shift per
watt; it is evident that the Si platform exhibits much higher nonlinearity right at the
centimeter scale, while the SMF becomes comparable only above kilometer lengths.
In order to help the comparison between silicon waveguides and silica fibers, all the
nonlinear parameters mentioned above have been summarized in table 3.1.
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FIGURE 3.3: Nonlinear phase shift per unit of power versus the length
of the device. Typical SiO2 SMF and typical c-Si waveguide are com-
pared, showing that the latter is superior in terms of nonlinearity

right at the chip scale. Data taken from Ref. [40].

3.4 Four wave mixing in silicon waveguides

Nonlinear optics enables several applications in silicon photonics, like wavelength
conversion [48, 49], signal amplification [50], gas sensing [51, 12], light generation
[52], photon pair sources [15] and many others. The common point among these
functionalities is the nonlinear process used, that is FWM. FWM has been initially
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Properties SiO2 SMF c-Si SMW
Ae f f [µm2] 85 0.1
Core index 1.47 3.48
ne f f 1.47 2.3
n2 [cm2W−1] ∼ 2× 10−16 4.3 - 6 ×10−14

γ [W−1m−1] ∼ 0.001 350 - 500
Linear loss [dB/cm] 1.8× 10−6 3
βTPA [cm/GW] 0 0.45 - 0.87
FOMTPA � 1 0.32 - 0.86

TABLE 3.1: Optical properties of typical SiO2 SMF and typical c-Si
SMW at a wavelength of 1550 nm. Data taken from Ref. [40].

discovered in bulk semiconductor materials [53, 54], then silica fibers were consid-
ered to improve the efficiency of the process [55] and only later the SOI platform was
considered as a promising alternative for FWM [56]. Due to the lack of second order
susceptibility in silicon, FWM is the most investigated and developed process on
the SOI platform, and the opportunities offered by this phenomenon are still stud-
ied and developed, especially in the emerging fields of MIR and quantum photonics
[12, 15]. FWM is a nonlinear third order process in which two (three) photons are
annihilated with the instantaneous generation of two (one) photons at frequencies
different from the starting ones. Several patterns for this interaction are possible, as
shown in Fig. 3.4. The most common scheme is the one involving two input pho-
tons, called the pump, at the same ωp frequency, that are converted into the signal and
the idler photons at frequencies ωs and ωi respectively, with ωi > ωs

1. Considering
an optical waveguide, the process can be schematized as in Fig. 3.5, where the two
input pump photons enter the waveguide and the two new frequencies, the signal
and the idler photons, are emitted.

When the two input pump photons are equal in frequency, the process is said
to be degenerate, otherwise it is called non-degenerate. Another distinction is when,
together with the pump, also a stimulating signal is provided at the frequency of the
signal or idler. In this case, the process is called stimulated FWM (sFWM), and the
presence of the stimulating signal fosters the generation rate of the signal and idler
pairs, which becomes much more efficient with respect to the case not involving
the stimulus. This last case, is called spontaneous FWM (SFWM). While sFWM can
be described with a classical electromagnetic theory, the SFWM requires a quantum
picture. From a naive point of view, it is possible to consider the vacuum quantum
fluctuations as the seed of the process [41], in analogy with the stimulated FWM.
The main characteristic of spontaneous FWM is that the generated idler and signal
photons are always emitted simultaneously in pairs, with a degree of correlation
which depends on the bandwidths of both the pump and the process itself. The
capability of generating correlated pairs lays at the basis of the use of FWM for the
generation of entangled and single photon states for quantum applications in χ(3)

materials [57].
Both stimulated and spontaneous FWM are constrained by the same conserva-

tion rules. The first constraint is the energy conservation. Considering the most
common FWM interaction, where the two input photons are annihilated to generate
an idler-signal pair, the energy of the generated pair must equals the energy of the

1In literature, no clear definition exists of whether the idler is the photon at larger or lower fre-
quency with respect to the signal. Because of this, here I prefer to make explicit my notation.
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FIGURE 3.4: Different interaction schemes for the four photons in-
volved in FWM. For each interaction, the energy diagram is reported
(top). The energy conservation relation governing the particular in-
teraction (middle) and the qualitative spectrum of the process (bot-
tom). The length of the arrows in the energy diagram is proportional
to the frequency of the photons, while the arrows in the spectrum
represents the intensity of the wave. ’FWM 1’ refers to the case of
three photon annihilation for the production of one photon at higher
energy. ’FWM 2’ describes the annihilation of two input pump pho-
tons with different frequencies and the consequent generation of the
signal and idler photons. ’FWM 3’ is the degenerate FWM, where the
two input pump photons have the same frequency. ’FWM 4’ depicts
the generation of pump and signal photons after the absorption of the
other pump and idler photons. This last interaction is also known as

FWM-Bragg scattering [40].
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FIGURE 3.5: Schematized FWM process occurring in a waveguide.
The input pump photons are injected from the facet of the waveguide
and are converted into the signal and idler frequencies, which exit

from the end facet of the structure.

input pump photons. This energy conservation is summarized with the equation

h̄ωp1 + h̄ωp2 = h̄ωs + h̄ωi, (3.18)

which forces the idler and signal to be symmetric, in frequency, with respect
to the pump. The second constraint comes from the phase-sensitive nature of FWM,
which means that its efficiency depends on the phase relationship between the waves
involved in the process. In fact, the generated waves in the medium add up con-
structively only when they are generated in phase, that is the so called phase matching
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condition, which corresponds to the momentum conservation, written as

kp1 + kp2 = ks + ki. (3.19)

When dealing with nonlinear processes the momentum conservation is not au-
tomatically satisfied, and particular techniques are required in order to phase match
the waves, as will be discussed later in Section 3.5. The parameter used to quantify
the lack of phase matching is the phase mismatch ∆k, calculated as

∆k = kp1 + kp2 − ks − ki. (3.20)

When ∆k = 0 the phase matching condition is achieved and maximum FWM
efficiency is obtained; when ∆k 6= 0 the phase relationship between the waves in
the process is not optimized, yielding lower generation efficiency [41]. Equations
(3.18),(3.19) and (3.20) have been derived for the most common FWM interaction,
’FWM 2’ in Fig. 3.4. Only this last FWM scheme will be considered in this thesis.

3.4.1 Classical theory of four wave mixing

Light propagation in media is described by the wave equation (see Section 1.1.1).
When during the propagation also generation phenomena, such as FWM, are present,
the wave equation has to be modified by considering the nonlinear polarization. In
this way, the nonlinear wave equation is obtained [58]

∇2E(r, ω) +
ω2

c2 n2E(r, ω) = − ω2

ε0c2 PNL(r, ω). (3.21)

In Eq. (3.21), the nonlinear polarization PNL acts as a source that radiates in a
linear medium of refractive index n. Considering a linearly polarized plane wave
propagating along z, its electric field, with mode profile e(r⊥, ω) and field envelope
u(z), can be written as [20]

E(r, ω) =
1
2

e(r⊥, ω)u(z)eikz, (3.22)

where r⊥ ∈ (x, y)− plane. The field envelope u(z) is such that the optical power P
carried by the wave is calculated as P(z) = P0|u(z)|2, where P0 is the total optical
power of the wave before being perturbed by the interaction with the medium [20].
Considering homogeneous and isotropic materials, Eq. (3.21) becomes

1
2

e(r⊥, ω)

[
∂2u(z)

∂z2 + 2ik
∂u(z)

∂z

]
= − ω2

ε0c2 PNL(r, ω)e−ikz. (3.23)

Eq. (3.23) can be further simplified by introducing the slowly varying envelope ap-
proximation, which states that if the envelope of a wave pulse varies slowly in space
and time with respect to the wavelength of the field, the following relations hold∣∣∣∣∂2u(z)

∂z2

∣∣∣∣� ∣∣∣∣k ∂u(z)
∂z

∣∣∣∣ , (3.24a)

∣∣∣∣∂2u(t)
∂t2

∣∣∣∣� ∣∣∣∣ω ∂u(t)
∂t

∣∣∣∣ . (3.24b)
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The slowly varying approximation allows to rewrite Eq. (3.23) as

ike(r⊥, ω)
∂u(z)

∂z
= − ω2

ε0c2 PNL(r, ω)e−ikz. (3.25)

In order to simplify the analysis, without lacking of significance, I consider only
the z component of the field and I take a weak nonlinear interaction, such that the
undepleted pump approximation holds [20]. In this case, the nonlinear polariza-
tion can be approximated as a constant along the propagation direction, with kNL
the wavevector of the nonlinearly generated wave, therefore PNL(r, ω) ∼ ξNLeikNLz,
where the ξNL is proportional to the nonlinear efficiency and to the coupling with
the input wave. With these assumptions, Eq. (3.25) can be rewritten as

∂u(z)
∂z

= i
ω2

ε0kc2 ξNLe−i∆kz, (3.26)

where ∆k = (k− kNL) is the phase mismatch parameter. Solving Eq. (3.26) re-
sults that

u(z) = − ω2

ε0kc2 ξNL
e−i∆kz − 1

∆k
. (3.27)

Taking then the modulus square of the envelope and considering z = L, with L the
length of the sample,

|u(L)|2 =

(
ω2

2ε0kc2 ξNL

)2

L2sinc2
(

∆kL
2

)
. (3.28)

Eq. (3.28) describes the relation between the generated power, which is propor-
tional to |u|2, and the phase mismatch parameter ∆k. When ∆k = 0 the maximum
efficiency of the process is achieved (Fig. 3.6a). Therefore, when the phase match-
ing is perfect, the efficiency of the process increases with a square law as a function
of the waveguide length, as shown in Fig. 3.6b. On the contrary, when ∆k 6= 0,
the nonlinear wavelets are not in phase for the whole length of the waveguide and
the generated power scales as L2sinc2 (L∆k/2), which is a periodic function of L.
According to this description, the coherence length of the process Lcoh is introduced,

Lcoh =
π

∆k
, (3.29)

which quantifies the length where the nonlinear interaction is constructive, or,
in other terms, the length for the pump and the generated wave to get out of phase
[41].

The result in Eq. (3.28) can be straightforwardly generalized for the FWM case,
where the propagation of multiple waves has to be taken into account and four cou-
pled differential equations have to be solved. Considering the FWM nonlinear po-
larization

PNL,a(r, ωa) = ε0χ(3)...6Eb(r, ωb)Ec(r, ωc)E∗d(r, ωd), (3.30)

where the indices a, b, c, d indicates the four waves involved in the process, the
coupled wave equations for FWM, neglecting the propagation losses, the free carri-
ers effect and other nonlinear phenomena like SPM and XPM, can be written as [20],

du1

dz
= 2iγ1is2

√
P2PiPs

P1
uiusu∗2ei∆kz, (3.31a)
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FIGURE 3.6: a) Schematic description of the nonlinear generation pro-
cess at the wavelet level. When the phase matching condition is sat-
isfied (∆k = 0), the generated wavelets add-up constructively along
the whole medium, giving rise to a large total nonlinear field. The sit-
uation is different when the phase mismatch is non-zero (∆k 6= 0),
which leads to limited regions of coherent summation among the
wavelets. In this case, the total nonlinear field exhibits a modulation
with a period that is twice the coherence length. b) |u(z)|2 as a func-
tion of the propagation length z, according to Eq. (3.28). Depending
on the phase mismatch parameter, the efficiency of the process scales
quadratically with the propagation length (∆k = 0) or it is modulated
by the sinc function as L2sinc2(∆kL/2). The larger the ∆k, the lower

the maximum efficiency that can be obtained.

du2

dz
= 2iγ2is1

√
P1PiPs

P2
uiusu∗1ei∆kz, (3.31b)

dui

dz
= 2iγi12s

√
P1P2Ps

Pi
u1u2u∗s e−i∆kz, (3.31c)
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dus

dz
= 2iγs12i

√
P1P2Pi

Ps
u1u2u∗i e−i∆kz, (3.31d)

where the indices 1, 2 refer to the two input pumps, while i, s refer respectively
to the idler and signal waves; Pj (j = 1, 2, i, s) is the optical power of the waves, and

γabcd =
3ωa
√ng,ang,bng,cng,d

4ε0A0c2 Γabcd, (3.32)

with the labels a, b, c, d referring to 1, 2, s, i, A0 is the waveguide cross-section, ng,ν
the group index and

Γabcd = A0

∫
A0

e∗a(r⊥, ωa)χ(3)...eb(r⊥, ωb)e∗c (r⊥, ωc)ed(r⊥, ωd) dA

∏ν=abcd

(∫
A∞

nwg(r⊥, ων)2|eν(r⊥, ων)|2 dA
)1/2 , (3.33)

where A∞ is the whole transverse plane and nwg is the waveguide refractive index.
The strength of the FWM interaction depends on the γabcd coefficients, which have
been here proposed in the most general form, considering also the case in which the
pump, signal and idler waves propagate with different waveguide modes ej(r⊥, ωj).
In this case, for symmetry reasons, certain modal combinations lead to a vanishing
Γabcd coefficient.

Let us consider the case of single mode FWM, i.e. all the waves are on the same
waveguide mode, and the undepleted pump approximation, which assumes that
the pump power is not affected by the generation process. With these assumptions,
the generated signal power at the end of the waveguide is

Ps(L) = 4 |γs12i|2 P2
p(0)Pi(0)L2sinc2

(
∆kL

2

)
, (3.34)

where Pp(0), Pi(0) are the input powers of the pump and idler waves. Like in
the case of Eq. (3.28), the efficiency depends on the square of the propagation length
modulated by the sinc function of the phase mismatch, and the same considerations
apply. Moreover, Eq. (3.34) shows that the generated waves are characterized by a
sinc2 shaped bandwidth as a function of ∆k or ω, as shown in Fig. 3.7, where also
the role of the waveguide length is shown, with the phasematching bandwidth that
increases with the reduction of L.

Eq. (3.34) highlights two key features of FWM: the linear dependence of the
generated signal intensity on the stimulating idler wave intensity and the quadratic
dependence on the pump power. When measuring FWM, these two dependences
are used to demonstrate that the phenomenon under study is actually FWM.

3.4.2 Quantum theory of four wave mixing

In this section I will provide a brief introduction to the quantum description of the
spontaneous FWM, that will be treated in much more detail in Chapter 4. Sponta-
neous FWM differs from the stimulated case since no stimulating wave is provided
at the input of the waveguide. In this sense, the generation of signal and idler waves
occurs spontaneously. Within the spontaneous FWM, the signal and idler photons
are emitted simultaneously as a unique pair of photons, with the peculiar feature of
being correlated in time [59]. In order to model this quantum process, the creation
(â†) and annihilation (â) operators are introduced, which represent the generation of
signal and idler photons from an initial vacuum state. In fact, from a naive point of
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FIGURE 3.7: Normalized FWM generated signal power as a function
of the frequency and waveguide length, reported in the legend. The
generated signal exhibits a sinc2 shape, with the bandwidth that in-

creases as the waveguide length is shortened.

view, the spontaneous FWM can be interpreted with the same picture of the stim-
ulated case, where the seed is provided by the vacuum quantum fluctuations [60].
Indeed, despite the electric field operator Ê(r, t) evaluated over the vacuum state
returns zero, this is not the case for the squared field operator, which results in

〈0| Ê2(r, t) |0〉 = ∑
j

h̄ωj

2ε0V
(3.35)

where j runs over the radiation modes of the field and V is the quantization
volume [60, 61]. Eq. (3.35) states that electric field fluctuations around the zero mean
value are possible. Spontaneous FWM is fed by these fluctuations. The interaction
of the electromagnetic field with the χ(3) medium can be given as the sum of the
linear (ĤL) and nonlinear (ĤNL) interaction hamiltonians as [62]

Ĥ3 = ĤL + ĤNL, (3.36a)

ĤL =
∫

dkh̄ωk â†
k âk, (3.36b)

HNL = −S
∫

dkp1dkp2dksdki â†
p1 â†

p2 âs âiei(kp1+kp2−ki−ks)z, (3.36c)

where S is a coefficient quantifying the strength of the interaction which includes
also the γ parameter. In order to derive the two-photon state |Ψ2〉 describing the
signal-idler pair the perturbation theory is used [63], where the initial state |Ψin〉 is
evolved as

|II〉 = e−
i
h̄

∫
Ĥ3(t)dt |Ψin〉 . (3.37)

In the case of degenerate spontaneous FWM, |Ψ〉in = |α〉 |0s, 0i〉, since initially



3.5. Phase matching considerations 47

the pump is described by a coherent state |α〉 with |α|2 the average photon number
and the signal and idler modes are unoccupied. The generated two-photon state
results to be [61]

|II〉 = |α〉 |0s, 0i〉+
α2SL√

2
sinc

(
∆kL

2

)
|α〉 |1s, 1i〉 , (3.38)

where multipair states, like |2s, 2i〉, |3s, 3i〉, have been neglected due to their low
generation probability at low input pump power. Starting from Eq. (3.38), it is pos-
sible to calculate the photon detection probability, which results to be proportional
to α4S2L2

2 sinc2
(

∆kL
2

)
. This resembles the result in Eq. (3.34) for the stimulated case,

showing that the main parameters ruling the classical case are the same also for the
spontaneous case. Another characteristic feature of the spontaneous process is that
the signal and idler should be equal in terms of photon number per pulse, since they
come in pairs.

In more general terms, the two-photon state can be given as

|II〉 ∼
∫ ∫

dωsdωiF(ωs, ωi)â†
s â†

i |0s, 0i〉 , (3.39)

with â†
q representing the generation of one photon in mode q and F(ωs, ωi) the

bi-photon wavefunction, which is a function of both the pump and phase matching
envelopes and it will be described in detail in Chapter 4. Depending on the shape
of the bi-photon wavefunction, the idler and signal paired photons can display a
variable degree of entanglement, which can range from a perfect time-energy entan-
glement to a completely decorrelated state [59].

3.5 Phase matching considerations

As already introduced in Section 3.4.1, one of the crucial conditions for the effi-
ciency of FWM is the phase matching. The phase matching problem comes from the
chromatic dispersion of the material, by which the refractive index of the medium
increases nonlinearly and monotonically with the frequency [41]. Because of this,
in a bulk material the wavevector iscreases as a function of the frequency, k(ω) =
n(ω)ω/c, thus the phase mismatch ∆k = kp1 + kp2 − ks − ki cannot vanish what-
ever the frequencies involved [41]. This feature is strictly related to the GVD of the
material, which in bulk media is usually normal (β2 > 0) and prevents the phase
matching. Aiming at ∆k = 0, it is necessary to control the wavevectors of the in-
volved waves, in such a way that the phase mismatch parameter can be designed to
zero.

One of the first approaches to the perfect phase matching for SHG in bulk crystals
was the phase matching based on birefringence [41]. The phase matching condition
for SHG [41],

n(ωp) = n(2ωp), (3.40)

according to the dispersion argument of before, is impossible. However, several
crystals display a birefringent nature, by which the light experiences a different re-
fractive index value depending on its polarization; in fact, in the case of uniaxial
materials, if the light is polarized in the direction of the optical axis of the crystal, the
experienced refractive index is said to be extraordinary (ne), and it is different from
the one saw by light polarized perpendicular to the optical axis, which is called ordi-
nary (no). ne and no are different functions of the frequency, as qualitatively shown in



48 Chapter 3. Intermodal four wave mixing in silicon waveguides

Fig. 3.8a. Their different values can be exploited to phase match the SHG process by
taking the pump as the ordinary wave and the generated light as the extraordinary
wave, as depicted in Fig. 3.8a, such that no(ωp) = ne(2ωp). The case of birefrin-
gence phase matching, which can be analogously applied also to FWM [64], well
explains the basic approach to perfect phase matching, that is considering directly
and independently the refractive index value experienced by the waves involved in
the nonlinear process. However, despite birefringence is common in many crystals,
bulk silicon has a negligible birefringence, around five orders of magnitude lower
than silica [65], making this technique not attractive for integrated photonics.

Another well developed approach to phase matching is the so called quasi-
phasematching. As already introduced in Section 3.4.1, if a phase mismatch is
present, the nonlinear waves can interact constructively only for a limited length
in the medium, namely the coherence length. In the case of SHG, when a phase
mismatch is present, as soon as the the interaction exceeds the coherence length,
destructive interference occurs due to the generation of counter-phased harmonic
wavelets. Within this picture, to recover constructive interference it is sufficient to
reverse the sign of χ(2). In practical terms, this procedure is known as poling and pe-
riodically poled materials are structures fabricated such that the orientation of one
of the crystalline axes is inverted periodically as a function of the position along the
material [66]. This results in a modulated nonlinear coefficient, as depicted in the
inset of Fig. 3.8b. The poling can be modelled as a square wave going from +cNL to
−cNL (being cNL the nonlinear coefficient) with Λ = 2Lcoh spatial periodicity. In the
phase matching relation for poled materials, it appears as an extra phase, such that

∆k = 2kp − kSHG −
2π

Λ
. (3.41)

Quasi-phasematching is a very successful technique when working with materials
that does not display any birefringence, e.g. for FWM in silicon [67], but it requires
a fabrication process not straightforward, especially in silicon photonics. More-
over, perfect phasematching is always preferable because it is more efficient than
the quasi-phase matching, as shown in Fig. 3.8b.

3.5.1 Phase matching in a waveguide

Focusing now on phase matching in silicon photonics, the first consideration is that
the medium is highly nonlinear and other χ(3) effects, different from the one to be
phase matched, may arise, modifying the phase matching relation. It is the case of
SPM, which directly affects the phase of the propagating pump wave, affecting the
phase mismatch as [20]

∆k = kp1 + kp2 − ks − ki − 2γ
(

Pp1 + Pp2
)

. (3.42)

The presence of the phase induced by SPM becomes important only when very
high pump intensities are involved, thus with small cross-section waveguides or
with high peak powers. It contributes shifting the position of the phase matching.
In order to simplify the description, without losing in generality, I will neglect this
term from here on. This is also justified because the work reported in this thesis is
exclusively performed with multimode waveguides, where the large cross-section
lowers the involved intensity.

When light is confined in a waveguide the propagation properties are affected
by the confinement and by the surrounding materials. Thanks to this, it is possible
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FIGURE 3.8: a) Extraordinary and ordinary refractive index for bire-
fringent phase matching. The case of phase matched SHG is shown,
where the fundamental wave at ω has the same refractive index of
the SHG wave at 2ω. b) Quasi-phasematching technique. In the in-
set the schematics of the periodically poled material is shown, where
the arrow represents the nonlinear coefficient orientation with and
without the poling. The graph describes the increase in the gen-
erated SHG field amplitude in the case of perfect phasematching
(dashed line) and quasi-phasematching (continuous line). The per-
fect phasematching exhibits higher performance with respect to the

quasi-phasematching case.

to tailor the dispersion experienced by the guided light by acting on the geometry
of the waveguide, controlling the wavevectors of the propagating waves [47]. This
feature is of crucial importance in nonlinear photonics, where the opportunity to
engineer the dispersion of the device allows to tune the phase mismatch parameter,
controlling its value and achieving the phase matching condition. The first step is to
consider the propagation constant β and its Taylor expansion around ω0,

β(ω) =β0(ω0) + β1(ω0)(ω−ω0) +
1
2

β2(ω0)(ω−ω0)
2+

+
1
6

β3(ω0)(ω−ω0)
3 +

1
24

β4(ω0)(ω−ω0)
4 + ... ,

(3.43)

where βn are the group velocity dispersion terms. Let us consider a degenerate
FWM process, with all the waves on the same waveguide mode, that is the standard
FWM condition. The phase matching condition is

∆k = 2k(ωp)− k(ωs)− k(ωi). (3.44)

or, considering that k ≡ β,

∆β = 2β(ωp)− β(ωs)− β(ωi). (3.45)

The propagation constants can be Taylor expanded around ωp according to Eq.
(3.43), such that

β(ωp) = β0, (3.46a)

β(ωi) = β0 + β1∆ω +
1
2

β2∆ω2 +
1
6

β3∆ω3 +
1
24

β4∆ω4 + ... , (3.46b)

β(ωs) = β0 − β1∆ω +
1
2

β2∆ω2 − 1
6

β3∆ω3 +
1
24

β4∆ω4 + ... , (3.46c)
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where ∆ω = ωi − ωp = ωp − ωs and β j (j = 0, 1, 2, 3, 4) are evaluated in ωp. In
Eq. (3.46), β(ωp) does not exhibit higher order terms since in this expansion ∆ω =
ωp−ωp = 0. It has also to be noticed that odd terms in β(ωs) have the opposite sign
with respect to the odd terms in β(ωi), because ωi −ωp = −(ωs −ωp). By inserting
the expanded propagation constants of Eq. (3.46) into Eq. (3.45), ∆β becomes

∆β = −β2(ωp)∆ω2. (3.47)

Eq. (3.47) states that the perfect phase matching can be achieved with β2(ωp) =
0, that, in terms of wavelengths, corresponds to the zero dispersion wavelength
(ZDW) [5]. If also a small negative contribution is present in the phase mismatch,
like the nonlinear phase induced by SPM, then β2(ωp) should be negative, which
corresponds to the anomalous GVD. This means that in order to fabricate the right
geometry to phase match the process at a certain pump wavelength, a careful nu-
merical modelling of the waveguide dispersion is required. In Fig. 3.9a are reported
the β2 functions for three channel waveguides with different widths and the same
height of 243 nm; from the figure it is evident the difficult task of engineering the
waveguide to have exactly the desired value of β2, which varies critically with the
width. In fact, just a variation from 0.5 to 1 µm in waveguide width induces a large
variation in the ZDW and GVD behaviour. Eq. (3.47) gives also information on the
bandwidth of the phase matching. In fact, looking at Eq. (3.34), we can consider
∆βmax = 4/L the maximum tolerable phase mismatch; therefore, by plugging ∆βmax
into Eq. (3.47), the relation between the process bandwidth BW and the length L of
the sample is found as [20]

BW '
√

∆βmax

β2(ωp)
=

√
4

Lβ2(ωp)
, (3.48)

which is compatible with the qualitative spectra reported in Fig. 3.7. It has to be
noticed that this kind of phase matching has the phase matching band centered at
the pump wavelength, giving rise to the so called continuous band phase matching.

Eq. (3.47) holds till ∆ω is small; as soon as the detuning increases, also higher
order terms in the expansion become important, and the phase mismatch has to be
rewritten as

∆β = −β2(ωp)∆ω2 − 1
12

β4(ωp)∆ω4. (3.49)

In this case the phase matching is achieved when β2(ωp) and β4(ωp) have oppo-
site sign [68]. Therefore β4 can be used to compensate the phase mismatch carried
by the β2 term, giving rise to a phase matching bandwidth centered at the phase
matching wavelength, that is different from the pump wavelength. This kind of
situation is called discrete band phase matching [7]. This technique has been used to
perform a spectral translation from 2440 nm to 1620 nm [48]. However, relying on
the GVD terms for the phase matching is not always the best choice when consider-
ing a practical implementation, because the higher order terms might be much more
important than what expected, as shown in Fig. 3.9b. Here the phase mismatch is
calculated using the full effective index dispersions of the waves (dashed line). This
is compared with the phase mismatch calculated with the higher order β terms. The
∆k calculated with the β’s at the pump wavelength considered (1.55 µm) does not
predict the phase matching in the spectral position expected by the exact calculation
with the effective index; to recover the phase matching at the same wavelength, the
pump has to be moved to 1.94 µm. Moreover, also a small variation of the waveguide
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FIGURE 3.9: a) β2 as a function of the wavelength for different waveg-
uide widths. The β2 value is critically dependent on the geometry
of the waveguide, which makes the engineering of the dispersion a
non trivial task. b) Phase mismatch as a function of the idler wave-
length for a 2 µm wide waveguide with 243 nm height. The ∆k calcu-
lated considering the full effective indices of the waves (dashed line)
is compare with those calculated with the dispersion compensation
(β2− β4). The phase matching is calculated around 1.19 µm by the full
effective index treatment with 1.55 µm pump wavelength, while the
dispersion compensation method fails to calculate its spectral posi-
tion with the same pump wavelength (purple line). The phase match-
ing in the expected position is recovered with 1.94 µm pump wave-

length (red line).

affects critically the phase matching. These examples show that the phase matching
based on the higher order terms is efficient, but is affected by errors in real devices.

Thus far we have considered only the first order waveguide mode, which forces
the engineering of the GVD terms. However, it is possible to use different prop-
agation constants of different order modes to earn one more degree of freedom in
designing the phase matching. This is the case of intermodal phase matching, where
higher order waveguide modes are used, with their different effective index pro-
files, as shown in Fig. 3.10. This allows tuning the propagation constant of each
wave independently, thus improving the control on the phase matching condition.
Up to now, intermodal FWM has been demonstrated only in high-order-mode op-
tical fibers [55, 69, 70] and in photonic crystal optical fibers [71]. The only example
of intermodal phase matching in an integrated device was reported with Brillouin
scattering [72], but FWM has never been investigated. With our work we reported
the first experimental demonstration of intermodal FWM in waveguides [73], which
was rapidly followed by several other works exploiting this kind of phase match-
ing approach for FWM in integrated platforms [74, 75, 76, 77]. The full description,
analysis and experimental demonstration of intermodal FWM are reported in the
next section.

3.6 Intermodal four wave mixing in silicon waveguides: the-
ory and experimental demonstration

This section has been largely derived from my work in Ref. [73].
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FIGURE 3.10: Effective indices in a (2× 0.243) µm2 waveguide. In the
legend are reported the polarization and the waveguide mode order.

As already introduced in Section 3.5, tailoring the dispersion of waveguides is
a good solution for high efficient FWM, but it also has few limitations. First of all,
phase matching by GVD compensation can be achieved only far from the pump
wavelength, making this process not suitable for all those applications requiring a
tunable wavelength conversion in the C-band (1530-1565 nm). Then, it exhibits a
critical dependence on the geometry, which on one side enables high control on the
generation process by means of the geometrical features, but on the other side makes
the device fabrication intolerant. In order to face these drawbacks, it is possible to
take advantage of the higher order modes propagating in a multimode waveguide,
whose different effective index profiles can be used to phase match the FWM waves
[73]. Moreover, introducing actively the higher order modes in the silicon platform
opens new perspectives in terms of interfacing the nonlinear process with the de-
veloping multimode integrated platform. As an example, it has been recently in-
vestigated a new functionality based on higher order intramodal FWM providing
mode-selective wavelength conversion for high-speed and controllable on-chip data
transfer [78, 79, 80]. However, the multimode nonlinearities are even more interest-
ing under the intermodal point of view. Intermodal FWM has the advantage of not
requiring anomalous GVD (group velocity dispersion), which is usually considered
for intramodal FWM to achieve phase matching [81, 82]. This results in an easier
handling of the phase matching condition [70], which exhibits also much more flex-
ibility thanks to the extra degree of freedom introduced by the waveguide modes.
What it is interesting in intermodal phase matching is the fact that, depending on
the excited optical modes and on the geometry of the waveguide, the wavelength of
the phase matched discrete bands can be easily controlled. We demonstrate that this
allows getting largely tunable spectral conversions, from nearby to the pump up to
very large detunings. In fact, we show spontaneous FWM with an idler ranging from
1469 nm to 1202 nm, when the pump is at 1550 nm. To the best of our knowledge, this
is the largest spectral detuning achieved by FWM in a SOI waveguide with a C-band
pump. This paves the way to the application of intermodal FWM for MDM within
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the telecom technology. In addition, broadband and highly tunable on-chip wave-
length conversion can be applied in gas sensing [83], mid infrared (MIR) detection
[84] and MIR light generation [49]. Moreover, the large detuning combined with the
spontaneous generation can be used to get on-chip heralded single photon sources
with the heralder photon generated at short wavelengths, where high efficient single
photon detectors are available, and the heralded photon generated beyond 2 µm, as
will be extensively explained in Chapter 4. The high controllability is also of great
advantage when dealing with the Raman noise, which is always present due to the
nonlinear process of Raman scattering, which appears as an intense peak shifted by
15.6 THz with respect to the pump frequency [15]. Generating the discrete band of
photons far from the Raman peak is of great interest for quantum devices, where the
presence of the Raman noise has detrimental effects over the purity of the generated
quantum states [85].

In this section, I describe the intermodal phase matching technique, reporting
the experimental demonstration of intermodal FWM in silicon waveguides. I exten-
sively investigated a particular modal combination involving the pump on both the
first and second TE modes and the signal and idler on, respectively, the second and
first TE modes. Moreover, I report also of other modal combinations, involving up
to the third order mode and with both TE and TM polarizations.

3.7 Theory

3.7.1 Multimode waveguides

The cross-section of the waveguides used in the experiment is reported in Fig. 3.11a.
These waveguides have been fabricated on a SOI 6’ wafer, with a BOX of 3 µm and
a silicon device layer of 243 nm. The waveguides were defined by 365 nm lithog-
raphy. Reactive ion etching was used to pattern the waveguides, which were then
cladded by 900 nm thick SiO2 deposited by plasma-enhanced chemical vapor depo-
sition (PECVD). The waveguide width ranged from 2 µm to 3.8 µm.
By using a commercial finite element method (FEM) software (COMSOL), we com-
puted the modal field profiles and the effective indices for these multimode waveg-
uides. It is possible to control the effective index value of the propagating wave
by selective excitation of a specific optical mode, as shown in Fig. 3.10. Moreover,
the index dispersion depends critically also on the waveguide width, as reported in
Fig. 3.11c and in Fig. 3.11d. As alredy said, tailoring the index dispersion through
the geometry of the waveguide is of crucial importance for the control of the phase
matching condition [86].

3.7.2 Intermodal phase matching for four wave mixing

Let us consider the degenerate FWM, which is the most used FWM process. Despite
the two pumps have the same frequency, in a multimode waveguide they can prop-
agate on different waveguide modes, thus with different effective indices ne f f . Since
the wavevector is written as k = ω

c ne f f , with c the light velocity, the result is that the
two pumps have the same frequency but different wavevectors.
FWM is ruled by the usual energy conservation relation (3.50) and momentum con-
servation relation (3.51),

ωp + ωp = ωs + ωi, (3.50)
kp1 + kp2 = ks + ki, (3.51)
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FIGURE 3.11: a) Cross-section of the waveguides used in this work.
BOX refers to the buried oxide. The core is made of crystalline Si,
and the cladding by a deposited SiO2. b) Computed intensity profiles
in the core region of the first three TE modes supported by a 3.5 µm
wide waveguide. c) Effective index as a function of the wavelength
for the 1st TE mode for the different waveguide widths reported in the
legend. d) Effective index as a function of the wavelength for the 2nd

TE mode for the different waveguide widths reported in the legend.

where the indices p1, p2, s, i refer to the first pump, second pump, signal and idler,
respectively.

I rewrite here the already introduced phase mismatch ∆k for FWM,

∆k = ∆kL + ∆kNL, (3.52)

where ∆kL = ks + ki − kp1 − kp2 is the linear phase mismatch and ∆kNL = γp1Pp1 +
γp2Pp2 quantifies the phase contribution to ∆k due to SPM of the pumps [87]. γp1
and γp2 are the nonlinear coefficients for the two pumps [20], and Pp1, Pp2 are the
powers of the two pumps.
∆kL in a multimode waveguide can be written as [88]

∆kL =
ωp

c
nj

e f f (ωp) +
ωp

c
nq

e f f (ωp)−
ωs

c
nl

e f f (ωs)−
ωi

c
nm

e f f (ωi), (3.53)

where j, q, l, m are as in (3.57). In the following we use the convention that the modal
combination involved in the FWM process is indicated as (j, q, l, m), i.e. one pump
photon on the j-th order mode, the other pump photon on the q-th order mode, the
signal photon on the l-th order mode and the idler on the m-th order mode. Looking
at Eq. (3.53), and indicating the waveguide modes of the pumps, signal and idler
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with the labels p1, p2, s, i, the most feasible scenarios are:

1. p1 = p2 = s = i, that is the intramodal FWM with generalized mode order,

2. p1 = p2 6= s = i, which correspond to the pumps on one mode and the
signal and idler on another one,

3. p1 = s 6= p2 = i, or p1 = i 6= p2 = s, where one pump has the same mode
of the idler, and the other pump propagates on the same mode of the signal.

While for the first case, intramodal FWM, the phase matching analysis is the
same carried out in Section 3.5, for the second and third cases the treatment is dif-
ferent, and will be studied in the following considering the Taylor expansion of the
propagation constants β on the group velocity terms.

Intermodal FWM with p1 = p2 6= s = i

When dealing with higher order modes, each mode has a different propagation con-
stant βm, with m the mode order, whose group velocity terms are indicated as βn,m,
with n the order of the expansion term. The phase mismatch ∆β, considering the
higher order modes and the expansion in Eq. (3.43) around ωp, becomes

∆β = 2
(

β0,p1 − β0,s
)
− β2,s∆ω2 − 1

12
β4,s∆ω4, (3.54)

where the expansion has been truncated at the fourth term. Depending on the mag-
nitude of ∆ω = ωi − ωp = ωp − ωs, the terms in Eq. (3.54) can be neglected at
different expansion orders, exactly like in the intramodal case. This intermodal com-
bination is very similar to the intramodal case, with the only difference that an extra
constant is present due to the mismatch between the zero order expansion terms
β0,p1 and β0,s. This means that the same considerations for the β2 and β4 terms al-
ready done in the intramodal case in Section 3.5 are valid here with the proper mod-
ifications due to the zero order term, which is also the peculiarity of this intermodal
combination. In fact, with respect to the intramodal case, the phase matching cannot
be achieved at very small values of detuning (∆ω ∼ 0), due to

(
β0,p1 − β0,s

)
, which

cannot vanish since β0,p1 6= β0,s if p1 6= s.

Intermodal FWM with p1 = s 6= p2 = i or p1 = i 6= p2 = s

Considering again the expansion around ωp in Eq. (3.43) for the higher order modes,
the phase mismatch parameter, with ∆ω small, can be rewritten truncating the ex-
pansion at the second order dispersion term as

∆β = − (β1,i − β1,s)∆ω− 1
2
(β2,i + β2,s)∆ω2. (3.55)

Eq. (3.55) suggests that the group velocity mismatch, first term in the equation,
can be compensated by the β2 terms of idler and signal, which do not need to be
negative if β1,i < β1,s, i.e. no anomalous dispersion is required if the idler mode
order is lower than the signal mode order. In fact, the higher the order mode, the
higher the β1 term. On the contrary, if β1,i > β1,s, anomalous GVD is required by at
list one of the two modes. As soon as the spectral detuning increases, also the higher
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order terms in the expansion have to be considered, giving

∆β =− (β1,i − β1,s)∆ω− 1
2
(β2,i + β2,s)∆ω2

− 1
6
(β3,i − β3,s)∆ω3 − 1

24
(β4,i + β4,s)∆ω4.

(3.56)

As already seen with the intramodal phase matching in Fig. 3.9b, also for the in-
termodal case the best design practice is to consider the full effective index profiles
in the phase matching relation, especially when dealing with large spectral transla-
tions. Comparing the intermodal phase matching with the intramodal, the first con-
clusion is that, when no dispersion compensation is introduced for the intramodal
case, the intermodal exhibits a discrete phase matching that can be tuned away from
the pump, while the intramodal displays phase matching only close to the pump
wavelength, as simulated in Fig. 3.12, with a continuous band.
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FIGURE 3.12: Spectral dependence of the idler generation efficiency
for the (1,1,1,1) intramodal FWM and for the (1,2,2,1) intermodal
FWM. All waves have TE polarization. A silicon waveguide with a
cross-section 3.5 µm × 243 nm was assumed in the calculation. Each

efficiency is normalized to its maximum.

In the case of far detuning phase matching (PM), where the β4 compensation
is needed for the intramodal case, the intermodal PM allows generating an idler at
∼ 1.2 µm with a pump at 1.55 µm with lower sensibility to the geometry or pump
deviations from the nominal values, see Fig. 3.13. Here, I considered the 1221TE
combination in a (1.98× 0.243) µm2 waveguide for the intermodal PM and a (0.5×
0.243) µm2 waveguide for the intramodal case. In order to quantify the tolerance to
the fabrication imperfections, I considered a deviation of ±50nm from the nominal
waveguide width. The change in the phase matched idler wavelength as a function
of the width deviation is reported in Fig. 3.13a.

By fitting with a linear function (y = a + bx) these simulated points, I found that,
in these particular conditions, the intramodal PM has b = −0.819 (−0.931, 0.707)
while the intermodal PM has b = 0.55 (0.53, 0.57), where in the parenthesis are
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FIGURE 3.13: a) The fabrication tolereance of intramodal FWM in
a 0.5 µm wide waveguide is compared with the one of intermodal
1221TE FWM in a 1.98 µm wide waveguide (height = 243 nm). The
graph reports the simulated deviation from the idler phase matching
position (δλi) with respect to the deviation from the nominal waveg-
uide width (δw). b) Idler wavelength (λi) for 1221TE combination
as a function of the waveguide width (w). c) Idler phase matching
wavelength as a function of the waveguide width. The intramodal
FWM can be achieved only in a limited spectral range with respect to
the intermodal case. d) Deviation from the phase matching position
with 1.55 µm pump wavelength (δλ) versus the pump wavelength(
λp
)
. The intermodal combination exhibits much larger signal sensi-

tivity to pump wavelength.

reported the 95% confidence bounds. Intuitively b represents the deviation of the
idler wavelength in nm given a deviation of 1nm in the width. Therefore the in-
tramodal PM exhibits a sensitivity to the width deviations that is 49% higher than
the intermodal case. Almost the same relative sensitivity is obtained considering
the signal wavelength, with b = 2.735 (2.475, 2.995) for the intramodal PM and
b = −1.806 (−1.930,−1.683) for the intermodal PM. Considering the typical fab-
rication deviation for standard lithography technologies, ∼ ±20nm, the idler can be
generated, around the nominal idler wavelength, within a range of 32nm in the in-
tramodal case and 20nm in the intermodal PM. Regarding the intermodal PM, if a
generation closer to the pump wavelength was considered, for example with a 3.45
µm waveguide width generating the idler at 1.459 µm with 1.55 µm pump wave-
length, the idler would be found in a range of 2.2 nm with the same width deviation
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of ±20 nm, as shown in Fig. 3.13b. Therefore, it can be concluded that as the waveg-
uide width increases, generating the wavelength closer to the pump wavelength, the
fabrication tolerance also increases, with a good fabrication robustness. Moreover,
intermodal FWM has the possibility to generate over a wide spectral range with re-
spect to the intramodal PM. In Fig. 3.13c is reported the idler wavelength as a func-
tion of the waveguide width for the 1221TE intermodal PM (blu line) and the 1111TE
intramodal PM (inset, red line), both with 1.55 µm pump wavelength. While the gen-
erated idler for the intermodal process spans from 1.2 µm to 1.52 µm, the intramodal
idler is limited to the 1.15 - 1.25 µm range, due to the large dispersion change oc-
curring outside this width range. This means that while the intermodal PM can be
used to generate light almost everywhere above 1.15 µm, the intramodal approach
is limited to a narrow spectral region. Clearly, this analysis has been carried out
with a fixed pump wavelength; by modifying the pump wavelength it is possible
to tune even more the spectral position of the generated light. From the compari-
son here reported it is possible to conclude that the intermodal PM exhibits larger
fabrication tolerance, it is able to cover all the spectrum above 1.15 µm and does
not require a careful control of the ZDW and anomalous GVD like the intramodal
phase matching. Moreover, an interesting feature, peculiar of the intermodal ap-
proach, arises when considering the variation of the pump wavelength with fixed
waveguide geometry. In Fig. 3.13d are reported the wavelength deviations of the
idler and signal wavelengths as the pump is moved from 1.55 µm. The wavelength
deviation is fitted with a linear function. The intramodal 1111TE combination in a
0.5 µm wide waveguide is compared with the intermodal 1221TE combination in
a 1.98 µm wide waveguide; both the waveguides have 243 nm height. For the in-
tramodal 1111TE, the idler and signal slopes are respectively 1.3000 (1.3001,1.2999)
and -0.4119 (-0.4168,-0.4069), while for the intermodal 1221TE the slopes are -0.0736
(-0.0788,-0.0685) for the idler and 4.158 (4.133,4.182) for the signal. It is immediately
evident that while the intramodal PM exhibits a notable variation with both the sig-
nal and idler, with slightly higher slope for the idler, the intermodal case, due to
the different dispersion profile of the two modes involved, has a negligible varia-
tion for the idler while the signal is highly sensitive to the pump wavelength. This
feature is extremely interesting for the application in the field of gas sensing, where
it is required a good tunability of the signal generation to span the gas absorption
spectrum keeping at the same time a low device complexity [12]. These character-
istics can be achieved with this intermodal process, where the signal can be largely
modified by small variations of the pump wavelength and the idler can be used as
the stimulating signal which, as shown in Fig. 3.13d, does not require any spectral
tuning, making the device even more simple.

3.7.3 Mode field overlap and efficiency

Provided that Eq. (3.50) is fulfilled, the efficiency η of FWM in a waveguide of length
L scales with the phase mismatch ∆k as in Eq. (3.34),

ηjqlm ∝ | f jqlm|2 L2 sinc
(

∆k
L
2

)2

, (3.57)

where the dependence on the mode field overlap f jqlm is made explicit, with j, q, l, m
indicating, respectively, the mode orders for the two pump photons, the signal and
the idler photons. f jqlm is similar to the Γabcd parameter of Eq. (3.33), except for the
absence of the χ(3) tensor, and for the combination (j, q, l, m), assuming all the waves
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(j, q, l, m) | f norm
jqlm | ηnorm

jqlm [dB]

TE TM TE TM

1111 1 0.852 0 -1.391
2222 0.996 0.842 -0.035 -1.494
3333 0.989 0.821 -0.096 -1.713
1221 0.665 0.562 -3.544 -5.005
1122 0.665 0.562 -3.544 -5.005
1331 0.661 0.554 -3.596 -5.130
1113 0.333 0.293 -9.551 -10.663

TABLE 3.2: Normalized mode field overlap and normalized efficiency
for various TE and TM modal combinations in a 2× 0.243 µm2 waveg-

uide. The fields are evaluated at 1.55 µm wavelength.

with the same polarization, is given by [87]

f jqlm =

∫
A0

ej(r⊥, ωj)eq(r⊥, ωq)e∗l (r⊥, ωl)e∗m(r⊥, ωm)dA

∏i=jqlm

[∫
A∞

nwg(r⊥, ωi)2|ei(r⊥, ωi)|2 dA
] 1

2
, (3.58)

where r⊥ is the spatial coordinate in the cross-section plane, nwg is the waveguide re-
fractive index, A0 is the waveguide cross-section, A∞ is the whole transverse plane,
and ej/q/l/m is the mode field profile of each wave involved in the intermodal FWM.
f jqlm quantifies the coupling between the fields involved in the process, thus imply-
ing that maximum FWM efficiency requires maximum overlap. Eq. (3.58) suggests
also that not all the modal combinations are available for FWM: in fact, when the
modal combination is such that the integrand at the numerator is odd, f jqlm van-
ishes. Therefore, only modal combinations resulting in an even integrand are pos-
sible. This parameter depends also on the confinement of the modes, it is in fact
measured as µm−2, resulting in a higher value when the modes are more confined
in the waveguide core. In order to compare the role of the mode field overlap when
different modal combinations are considered, I reported in Table 3.2 the normalized
mode field overlap f norm

jqlm = f jqlm/ f1111 and the corresponding normalized efficiency
ηnorm

jqlm = ηjqlm/η1111 for various modal combinations in a 2× 0.243 µm2 waveguide.
All the values reported in the table have been calculated with all the modes eval-
uated at a wavelength of 1.55 µm. It can be seen that intramodal combinations are
similar in terms of efficiency, while the intermodal combinations are all similar when
of the type aabb or abba and lose more than 3 dB with respect to the intramodal case.
As soon as the combination is asymmetric, with only one mode different from the
others, the relative efficiency decreases dramatically to ∼ −10 dB. The situation is
analogous when comparing intermodal and intramodal TM combinations, which,
with respect to the TE case, are even less efficient due to their larger mode area. The
lower efficiency of the intermodal combinations with respect to the 1111 combina-
tion is mainly due to the spatial profile mismatch between the fields rather than to
the larger effective area of the involved modes. In fact, the intramodal combinations
with higher order modes, and therefore with larger mode area, have efficiencies close
to the 1111 combination.

A similar analysis can be carried out with respect to the waveguide width. I con-
sider the two modal combinations more efficient for the intermodal and intramodal
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w [µm] | f norm
jqlm | ηnorm

jqlm [dB]

1111 1221 1111 1221

0.5 1 - 0 -
1 0.552 0.359 -5.161 -8.898
2 0.282 0.187 -10.995 -14.563
3 0.189 0.126 -14.471 -17.993

TABLE 3.3: Normalized mode field overlap and normalized efficiency
for various waveguide widths and the same height of 0.243 µm. The

fields are evaluated at 1.55 µm wavelength with TE polarization.

case, i.e. 1221TE and 1111TE. From Table 3.3 it can be seen the dramatic dependence
of the efficiency on the waveguide width. Therefore, it is evident that the traditional
intramodal FWM in the single mode waveguide of 0.5 µm is much more efficient
than the intermodal phase matching, but it has to be considered that here losses
are not taken into account. In fact, multimode waveguides experience lower losses
with respect to single mode waveguide, due to the higher confinement. Moreover,
when considering the typical cross sections used for state of the art broad wave-
length conversion, around 1 µm width [48], the intermodal 1221 combination in the
2 µm waveguide is less efficient by -9.4 dB with respect to the 1111 combination
in the 1 µm waveguide. This efficiency becomes -9.379 dB when considering the
wavelengths involved in the spectral translation under analysis, i.e. λi = 1.2µm,
λp = 1.55µm, λs = 2.2µm, meaning that the mode field overlap can be estimated
with sufficient accuracy using the pump wavelength for all the fields. Despite the
lower efficiency, the intermodal FWM enables larger spectral translations with re-
spect to intramodal FWM with dispersion compensation [89, 7, 48]. Fig. 3.14 shows
the calculated ∆k for FWM in a 2-µm-wide waveguide with the 1221TE intermodal
combination. It is observed that, as the pump wavelength is increased, the spectral
position of the phase matching condition moves towards longer wavelengths. In
this way, a very large spectral translation is obtained, with the generation of 3.5 µm
signal photons when the pump approaches 1.9 µm wavelength, with a total spec-
tral translation of about 2.2 µm, larger than the state of the art result of 860 nm with
similar pump wavelength [48].

3.8 Experimental demonstration of intermodal four wave mix-
ing

In order to demonstrate experimentally the intermodal FWM, using samples that
had been already fabricated, we worked as follow. First of all, I numerically sim-
ulated the multimode waveguides, using a FEM solver to extract their effective in-
dices. With these index profiles I solved Eq. (3.53) finding the phase matched inter-
modal combinations. Then, I solved the coupled wave equations of FWM with the
higher order modes involved in the intermodal combinations, finding the expected
efficiencies and the spectral properties. Once the simulated results were ready, it
was possible to verify experimentally the process. The samples under study where
simple straight multimode waveguides, without any input coupler able to excite
selectively the higher order modes. Because of this, we studied an alternative ap-
proach to mode coupling based on the misalignment of the fibers used to inject and
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FIGURE 3.14: Numerical simulation of ∆k according to Eq. (3.52) for
a 2-µm-wide waveguide with (1,2,2,1) intermodal combination and
TE polarization. In gray scale the ∆k parameter as a function of the
pump wavelength and the signal wavelength. The red line highlights

the perfect phase matching spectral position.

extract the light. We studied both stimulated and spontaneous intermodal FWM
with several waveguide widths, demonstrating the occurence of spontaneous and
stimulated intermodal FWM over a broad spectral range (1.2 - 1.5 µm).

The samples used have been fabricated by the Centre for Materials and Microsys-
tems of Bruno Kessler Foundation (Trento, Italy). Dr. Mattia Mancinelli and Dr. Fer-
nando Ramiro Manzano developed the monochromator. Dr. Mattia Mancinelli and
Dr. Massimo Borghi suggested the investigation of the intermodal FWM in waveg-
uide.

3.8.1 FWM simulation and phase matching analysis

In order to extract the index profiles of the waveguide modes a FEM solver is used
(COMSOL). This kind of software solves the Maxwell equations for the electromag-
netic fields within the waveguide geometry. The mode solver requires the cross-
section of the guiding structure with the refractive index of the materials used. In
Fig. 3.15a is reported the cross-section used for the simulation of the waveguides of
our experiment. The core is silicon (Si) with 243 nm height, the substrate is thermal
grown silicon oxide (ThOx) 2 µm high, a layer of tetraethyl orthosilicate (TEOS) of
200 nm is deposited over the core and the top cladding is silica deposited via plasma
enhanced chemical vapour deposition (PECVD). To have the lowest mismatch with
respect to the experimental situation, it is fundamental to provide to the software
the exact refractive index of the materials used. In our case, the foundry gave us the
measured refractive indices, that I report in Fig. 3.15b.

I then numerically solved the phase matching relation derived from Eq. (3.53) as

2π

λp
nj

e f f (λp) +
2π

λp
nq

e f f (λp)−
2π

λs
nl

e f f (λs)−
2π

λi
nm

e f f (λi) = 0, (3.59)
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FIGURE 3.15: a) Cross-section used in the FEM solver to extract the
optical properties of the modes. b) Measured refractive indices of
materials used in the fabrication of the waveguides (Data from FBK-

CMM center).

where λp = 1.55µm, λi spans over 1.15 - 2.38 µm and λs is moved according to the
energy conservation, such that

λs =

[
2

λp
− 1

λi

]−1

. (3.60)

By cycling over all the permutations of the modal indices (j,q,l,m) it is possible to
find those combinations phase matched within the spectral range considered. Both
TE and TM polarizations have been considered. Through the comparison between
the simulated phase matching and the experimental spectra it is possible to experi-
mentally verify the excited modal combinations.

3.8.2 FWM coupled wave equations

We simulated the process by numerically solving the coupled wave equations of
FWM [20]. In our experiment we used a pulsed laser with 40 ps pulse duration.
Therefore, since the dispersion length LD = T2

0 /β2 [58], with T0 the pulse duration
and β2 the GVD (1.42× 10−6 ps2µm−1) is much longer than the waveguide length
(e.g. LD > 1 km for the first TE mode in a 2-µm-wide waveguide at λ = 1.550 µm),
we neglected the temporal dependence and we considered continuous waves in the
coupled equations. For the power, the peak power of the pulses is used. The depen-
dence on frequency and position of the wave amplitude u is omitted in the notation
for reasons of compactness.
The coupled amplitude wave equations that we used describe FWM, SPM and XPM,
considering also the presence of free carriers (FCs). The coupled equations used are:

du1

dz
=− α1

2
u1 −

F1

2
u1+

+ i
[
γ1 |u1|2 + 2

(
γ12 |u2|2 + γ1s |us|2 + γ1i |ui|2

)]
u1+

+ 2iγ1is2

√
P2PiPs

P1
uiusu∗2ei∆kLz,

(3.61a)
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du2

dz
=− α2

2
u2 −

F2

2
u2+

+ i
[
γ2 |u2|2 + 2

(
γ21 |u1|2 + γ2s |us|2 + γ2i |ui|2

)]
u2+

+ 2iγ2is1

√
P1PiPs

P2
uiusu∗1ei∆kLz,

(3.61b)

dui

dz
=− αi

2
ui −

Fi

2
ui+

+ i
[
γi |ui|2 + 2

(
γi1 |u1|2 + γi2 |u2|2 + γis |us|2

)]
ui+

+ 2iγi12s

√
P1P2Ps

Pi
u1u2u∗s e−i∆kLz,

(3.61c)

dus

dz
=− αs

2
us −

Fs

2
us+

+ i
[
γs |us|2 + 2

(
γs1 |u1|2 + γs2 |u2|2 + γsi |ui|2

)]
us+

+ 2iγs12i

√
P1P2Pi

Ps
u1u2u∗i e−i∆kLz,

(3.61d)

where ẑ is the propagation direction, the labels ν = 1, 2, s, i refer respectively to
the first pump photon, the second pump photon, the signal and the idler, αν is the
attenuation coefficient due to propagation, Pν is the power. Regarding the FCs,

Fν = σν (1 + iµν) N, (3.62)

where N is the free carrier density generated by the pumps, evaluated through
the rate equation with 30 ns FCs lifetime [47], and

σν =
1
N

cκν

n(ων)vg,ν
δαFC µν = − 1

σνN
2ωνκν

n(ων)vg,ν
δnFC, (3.63)

with n the bulk Si refractive index, ων the frequency, vg,ν the group velocity, δαFC the
FCA coefficient, δnFC the FCD coefficient, and

κν =
n(ων)2

∫
A0
|Eν(r, ων)|2 dA∫

A∞
nwg(r, ων)2|Eν(r, ων)|2 dA

. (3.64)

Consider that in the case of nonlinear optical processes the FCs are mainly gen-
erated through TPA, with the same density of electrons and holes; because of this,
we calculated the coefficients δαFC and δnFC as [20]

δαFC = 14.5× 10−18N, (3.65)

δnFC = −8.8× 10−22N − 8.5× 10−18N0.8. (3.66)

Regarding the γ coefficients, with the labels a, b, c, d referring to 1, 2, s, i, γabcd is
like in Eq. (3.32), γab = γabba, γa = γaaaa and Γabcd is like in Eq. (3.33). In (3.61) the
higher order modes are taken into account by using their field profiles and effective
index dispersions. We assumed the same attenuation coefficient for all the waves.
For further details regarding Eqs. (3.61), see [20].
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3.8.3 Mode selection

The excitation of higher order modes in a multimode silicon waveguide is achieved
by illuminating properly the input facet of the waveguide. The efficiency with which
the modes are excited in the waveguide is calculated through the power overlap
integral ξ, that we already introduced in Chapter 1 as

ξx,m =

∫ ∞
−∞ dx

∫ ∞
−∞ dy ψxE∗x,m

∫ ∞
−∞ dx

∫ ∞
−∞ dy ψ∗x Ex,m∫ ∞

−∞ dx
∫ ∞
−∞ dy|ψx|2

∫ ∞
−∞ dx

∫ ∞
−∞ dy|Ex,m|2

, (3.67)

with the index x indicating TE polarization (y is used for TM polarization), ψx is the
incident TE field profile, Ex,m is the m-th TE order mode field profile. ξ quantifies
how the input power is distributed among the modes supported by the waveguide.
Depending on the input field profile, it is possible to excite a single waveguide mode
or multiple modes [26].
In our experiment, we used a tapered lensed fiber to couple the light in the waveg-
uide. The field profile of the tapered lensed fiber is gaussian, with a measured waist
of (1.17 ± 0.01) µm at 1550 nm. We simulated the coupling efficiency as a function
of the horizontal fiber position, i.e. along the waveguide width, keeping the vertical
position at half of the height of the waveguide. The fiber was assumed to be normal
with respect to the waveguide facet. The power coupled in the different modes is
calculated by

Pwg
p,m = (1− R)ξp,mPp, (3.68)

where m is the order mode, p = x, y refers to the polarization, R is the facet reflection
coefficient, Pp is the input power. In Fig. 3.16 the computed power coupled in the
first three waveguide modes is shown, considering 1 W power in the input fiber and
a waveguide width of 3.5 µm. Fig. 3.16 shows that higher order modes can be excited
by moving the input fiber along the waveguide width, with 0 µm corresponding to
the center of the waveguide. The same coupling method was used also for the output
signal collection.

3.8.4 Experimental set-up

We used the same set-up for the measurement of both the stimulated FWM and
spontanoues FWM, Fig. 3.17. The only difference is that in the spontaneous case
no seed signal is required. A pulsed pump beam, with 1550 nm wavelength, 40 ps
pulse duration and 10 MHz repetition rate, is mixed through a free-space beam split-
ter with the continuous wave (CW) seed signal, whose wavelength can be tuned in
the range 1480 nm - 1670 nm. On both the beams a polarization controller stage is
present. The two beams are then coupled in a tapered lensed fiber through a col-
limator. To excite the proper waveguide mode, the input fiber is moved along the
x-axis with a piezocontrolled translator stage. The SOI chip used has several mul-
timode waveguides with different waveguide widths. An infrared camera coupled
to a microscope allows controlling the selected waveguide. The light transmitted
by the waveguide is then collected at the output by another tapered lensed fiber
mounted on a piezocontrolled translator stage. Then, the signals are analyzed by
a monochromator when their optical power is lower than 0.1 nW or by an optical
spectrum analyzer (OSA) for larger powers. The monochromator was homemade,
using a grating in a double pass configuration, as shown in Fig. 3.18. The monochro-
mator is coupled to an InGaAs single photon counter, allowing for a dynamic range
of 105, i. e. from 1 f W to 0.1 nW. This large dynamic range is possible thanks to
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FIGURE 3.16: Computed power coupled into the different modes of a
waveguide by a tapered lensed fibre as a function of the fibre position
with respect to the centre of the waveguide. It is assumed a 3.5-µm-
wide waveguide and 1 W at the input fibre with a wavelength of 1550
nm. When the fibre position is 0 µm, the fibre is in the middle of the
waveguide. These values of coupled power have been rescaled such
that the losses simulated for the first TE order mode are equal to the

measured ones.
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FIGURE 3.17: Set-up for the sFWM. The pump is initially filtered with
two 1550 nm - bandpass filters. Then, the pump and the signal, after a
polarization controller stage, are mixed by a free space beam splitter
and coupled in the same tapered lensed fiber through a collimator.
The input fiber injects the light in the desired waveguide on the SOI
chip. The light is collected from the waveguide by another tapered
lensed fiber. The position of both fibers is controlled by means of
two XYZ - nanopositioning stages via piezo controllers. The collected
light is analysed with an OSA or a monochromator, depending on
the power of the generated signal. In the inset, the waveguide modes
involved in the intermodal FWM are sketched by showing the mode
profiles at the input and at the output of the waveguide; as an exam-
ple, the case of the (1,2,2,1) modal combination is considered. For the
SFWM, the set-up is exactly the same, except for the lack of the input

signal.

a gated measurement with the pump laser trigger. Note that the use of the InGaAs
photodetector limits our measurements to the wavelength region 1200-1700 nm.

We characterized a 3.5-µm-wide waveguide, measuring the propagation losses
(4.6 dB/cm) and the coupling losses (-5.3 dB) for the 1st TE order mode at a wave-
length of 1550 nm. The coupling losses for the 2nd TE order mode (-10.0 dB) are
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FIGURE 3.18: Schematics of the monochromator used in our exper-
iment. The light is injected in the system through a collimator (cin),
then it is firstly reflected on a monochromator (g) placed on a motor-
ized rotating stage; then, a retroreflector (r) is used to reflect back the
beam with a vertical offset, and another passage over the grating is
made. In the end, after being reflected by two mirrors (m) the light is
outcoupled with another collimator (cout) and measured through the
photon counter. The whole system is controlled through a software
which synchronizes the photon counter and the grating rotation such

that spectra can be measured automatically.

estimated from the simulation (Fig. 3.16). The coupling losses are evaluated consid-
ering the position of the fibre that maximizes the coupling of the considered mode
(1st mode - x = 0 µm, 2nd mode - x = 1.1 µm). Finally, in our simulations, we as-
sumed for the 2nd order mode the same propagation losses of the 1st one, which is
an optimistic assumption.

3.8.5 Measurements and results

We investigated several modal combinations for the intermodal FWM: (1,2,2,1)-TE,
(1,2,2,1)-TM, (1,1,2,2)-TE, (1,3,3,1)-TE and (1,3,3,1)-TM. Here we focus mainly on the
(1,2,2,1)-TE modal combination. We performed the measurements on 15 different
waveguides with the same nominal width of 3.5 µm and 1.5 cm length. We measured
an average idler wavelength λ̄i = 1467.6nm with standard deviation σ = 3.5 nm.
This finding is in agreement with the numerical computed idler peak wavelength of
1467 nm. The deviation from the computed value is mainly due to fabrication imper-
fections, that led to waveguide widths different from the nominal one. In Fig. 3.19a
the spectrum of the spontaneous FWM for one of the 3.5-µm-wide waveguides is
reported. In this particular case, we measured λi = 1469 nm and λs = 1640 nm. The
measurement was performed with the input fibre at x = 0.83 µm, position that max-
imizes the product between the coupled power on the first and second order mode.
The input on-chip peak pump power is about 3.1 W (2.1 W on the first order mode
and 1.0 W on the second one). For this measurement, the fiber-to-fiber losses are 17.9
dB or 22.6 dB, coupling at the output the first or the second TE mode respectively.
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For this calculation we are considering the input fibre fixed at 0.83 µm, with -5.7 dB
total coupling losses for the pump.
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FIGURE 3.19: a) Spectrum of the SFWM in a 3.5-µm-wide waveguide,
with (1,2,2,1) combination and TE polarization. The pump is at 1550
nm. The different lines refer to different position of the output fiber:
the blue line refers to the spectrum measured with the output fiber
in the middle of the waveguide, the red line refers to the spectrum
measured with the output fiber at 1.1 µm with respect to the center
of the waveguide. The two vertical arrows indicate a spurious signal
due to Raman scattering occurring in the input fibre. The shaded gray
box indicates a spurious peak. b) Intensity profile at the output facet
of the waveguide, for the peak at 1469 nm in a. c) Intensity profile at

the output facet of the waveguide, for the peak at 1640 nm in a).

As stated in Section 3.4.1, to confirm the FWM origin of these peaks the generated
light must be quadratic with the pump power. In Fig. 3.20, the average on-chip
generation rate is reported as a function of the on-chip average pump power. The
expected quadratic dependence is measured for pump powers PP < 0.5 mW, see the
inset in Fig. 3.20, while for higher powers the efficiency of the process decreases due
to TPA, which depletes the pump power. We estimate an average generation rate
of 24.6 ± 0.8

(MHz
mW2

)
P2

P for the 3.5-µm-wide waveguide in the pump power range
[0− 0.5]mW. This measurement was performed by monitoring the idler photon
counts.

We verified the intermodal nature of the process by measuring the spectrum with
two different horizontal positions of the output fiber. In fact, since the idler is gen-
erated on the 1st order mode and the signal on the 2nd order mode, according to Fig.
3.16, we expect to observe the maximum intensity for the idler when the output fiber
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FIGURE 3.20: Average on-chip photon generation rate for the SFWM
process as a function of the on-chip average pump power. The blue
circles are the experimental measurements, while the red line is the
quadratic fit of the data belonging to the [0 - 0.5] mW range. The inset

shows the low pump power region.

position is x = 0 µm, i.e. in the middle of the waveguide, and the maximum inten-
sity for the signal when the position of the output fiber is at 1.1 µm, i.e. when the
coupling of the second order mode is maximized. In Fig.3.19a the spectrum mea-
sured with the output fiber at x = 0 µm exhibits only one peak at 1469 nm, the idler
peak. In fact, from simulation in Fig. 3.16, we expect, at x = 0 µm, a negligible cou-
pling efficiency for the second order mode. When the output fiber is placed at 1.1
µm, also the signal peak appears at 1640 nm, as expected.
Another evidence of the intermodal nature of the SFWM is the spatial profile of the
generated idler and signal waves on the output waveguide facet. To do this mea-
surement, we set the monochromator to resolve either the signal or the idler peak
wavelengths, and then we performed an intensity profile scan on the output facet of
the waveguide along the x axis (see Fig.3.17). In Fig. 3.19b and c we report the mea-
sured profiles for the idler and signal, respectively, that exhibit the expected one-lobe
(first-order) and the two-lobes (second-order) shapes.
The stimulated FWM was measured in the same 3.5-µm-waveguide with 1.5 cm
length. An example of the measured spectrum is shown in Fig. 3.21a. For this
measurement, the on-chip input peak pump power was about 1 W (0.7 W on the
1st mode and 0.3 W on the 2nd) at 1550 nm and the input on-chip signal power was
about 47 µW at 1640 nm on the second order mode. An idler peak at 1469 nm is gen-
erated with -14.7 dB maximum conversion efficiency, calculated as the ratio between
the on-chip idler peak power and the on-chip signal power, evaluated at the end of
the waveguide 2.

2The input on-chip signal power was about 47 µW (= −13.3dB) at 1640 nm on the second order
mode. At the end of the waveguide, considering 4.6 dBcm−1 of propagation losses and 1.5 cm waveg-
uide length, the signal power on the second order mode is -20.2 dBm. The off-chip generated average
idler power is about -74.2 dBm, as shown in Fig. 3.21a. Considering the coupling losses for the first or-
der mode, 5.3 dB, the on-chip average idler power is -68.9 dBm. Considering that the pump laser has 10
MHz repetition rate and 40 ps pulse width, the on-chip idler peak power, at the end of the waveguide,
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The input on-chip powers are estimated from the off-chip power reported in Fig.
3.21a and considering the propagation and coupling losses. Regarding the coupling
losses, the measurement reported in Fig. 3.21a was performed with the input fibre
at x = 0.83 µm and the output fibre at x = 0 µm.
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FIGURE 3.21: a) Spectrum of the sFWM with (1,2,2,1) - TE intermodal
combination in a 3.5-µm-wide waveguide. The stimulating CW signal
at 1640 nm is converted into the pulsed idler at 1469 nm. The smaller
peaks (shaded gray boxes) are spurious signals due to the OSA. b)
Spectrum of the stimulated idler generation efficiency with the inter-
modal FWM combination (1,2,2,1) TE in a 3.5-µm-wide waveguide.
The simulation was performed with a 3.66-µm-wide waveguide. The
blue dots are the measured data, while the orange line is the simula-
tion. This measurement was performed by synchronously scanning
the signal wavelength and the monochromator wavelength, in order
to read the idler power corresponding to the input signal. The simu-
lated spectrum was shifted by -3.3 dBm, in order to match the experi-

mental data.

By synchronously scanning the signal wavelength and the monochromator wave-
length according to the energy conservation equation, it is possible to measure the
spectrum of the stimulated FWM. We considered again the (1,2,2,1) TE combination
in the 3.5-µm-wide waveguide. Fig. 3.21b compares the measured and simulated
spectrum of the stimulated idler. A good agreement is observed. The simulation
considered a width of 3.66 µm for the waveguide, in order to match the peak wave-
length. This could be due to a difference of 0.16 µm with respect to the nominal
3.5 µm width. The measured 3-dB bandwidth is 4.7± 0.2 nm, compatible with the
simulated 4.8 nm 3dB-bandwidth. Regarding the bandwidth of the process, we mea-
sured the 3-dB bandwidth as a function of the waveguide length L for a 3.5 µm wide
waveguide, obtaining the results in Fig. 3.22, where also the simulated points are
shown. The measured and simulated results are in good agreement, with the band-
width that decreases, as expected, with the length.

According to Eq. (3.52), it is possible to tune the phase matching position by
controlling the effective index of the modes involved in the intermodal FWM, i.e.
by changing the waveguide cross-section. Therefore, we measured the intermodal
spontaneous FWM with (1,2,2,1) modal combination and TE polarization in several

is -34.9 dBm. Therefore, the conversion between the signal power, -20.2 dBm, and the idler peak power,
-34.9 dBm, is -14.7 dB.
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FIGURE 3.22: 3-dB bandwidth as a function of the waveguide length
for two waveguides with the same width of 3.5 µm. The experimental

points are the dots, while the line represents the simulated values.

waveguides, with widths ranging from 2 µm to 3.8 µm. Due to the use of the In-
GaAs detector we could only trace the evolution of the idler spectral position while
we computed the corresponding spectral position of the signal imposing the energy
conservation. As the waveguide width is increased, the spectral distance between
the signal and idler reduces, as shown in Fig. 3.23. Fig. 3.23 shows that the waveg-
uide geometry and the spectral translation ∆λ = λs−λi are tightly correlated, which
allows an easy tunability of the phase matched wavelengths. Moreover, the inter-
modal phase matching approach allows for extremely large spectral translation in
waveguide. An example is shown in Fig. 3.24, where the SFWM spectrum for a
2-µm-wide waveguide pumped at 1550 nm is shown. The generated idler is at 1202
nm and the expected signal is at 2181.6 nm, resulting in 979.6 nm spectral distance
between signal and idler. This is the largest detuning ever reported for FWM on a
silicon chip with a C-band pump source. Note that in Fig. 3.24, it is also possible to
see the anti-stokes Raman peak at 1434 nm, which can be used as a reference for the
efficiency of the process.

We also investigated other modal combinations. We performed the SFWM mea-
surements in a waveguide with a nominal width of 3.8 µm, with 1.5 cm length, ob-
serving peaks corresponding to the modal combinations reported in Fig. 3.25. Three
spectra are shown, two for the TE combinations and one for the TM combinations.
The TE measurements were performed with an on-chip peak power of about 16.1
W on the first mode, 0.2 W on the second mode and 0.4 W on the third mode. The
on-chip peak power for the TM case was about 10.4 W on the first mode, 5.2 W on
the second mode and 0.4 W on the third mode. The TE combinations required two
spectra, one with the output fibre at x = 0 µm and one at x = 1.25 µm, in order to
enlighten the different modes involved in the combinations (1,3,3,1) and (1,1,2,2). In
fact, the idler on the first order mode is better coupled when x = 0 µm, while the
idler of the second order mode when x = 1.25 µm. Table 3.4 compares the measured
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FIGURE 3.23: Phase matched wavelengths as a function of the waveg-
uide width for the (1,2,2,1) combination, TE polarization and 1550 nm
pump. The experimental idler and signal are reported in blue and red
respectively, while the corresponding simulated values are reported
by the light blue and orange points. The lines are a guide for the eye.
The phase matched signal wavelengths have been deduced by us-
ing Eq. (3.50) and the measured idler wavelengths. For some widths
(those with the errorbars), we performed repeated measurements (ten

measurements) on nominally identical waveguides.

and simulated idler wavelengths for the combinations shown in Fig. 3.25. A good
agreement is observed.

(j, q, l, m) Polarization λsim
i [nm] λ

exp
i [nm]

(1, 1, 2, 2) TE 1211 1205
(1, 2, 2, 1) TE 1479 1479
(1, 3, 3, 1) TE 1346 1340
(1, 2, 2, 1) TM 1525 1531
(1, 3, 3, 1) TM 1480 1492

TABLE 3.4: Intermodal combinations measured in Fig. 3.25. λsim
i and

λ
exp
i are the simulated and the measured idler wavelengths. The sim-

ulation is performed with a 3.84-µm-wide waveguide.



72 Chapter 3. Intermodal four wave mixing in silicon waveguides

1200 1300 1400 1500 1600
Wavelength [nm]

-120

-110

-100

-90

-80

O
f
f
-
c
h
i
p
 
p
o
w
e
r
 
[
d
B
m
]

Anti-Stokes

1434 nm
Idler

1202 nm

FIGURE 3.24: Spectrum of the SFWM for the (1,2,2,1) combination,
TE polarization and a 2-µm-wide waveguide. The pump is at 1550
nm with an on-chip peak power of about 3.9 W (3.3 W on the first
order mode, 0.6 W on the second one). The idler is generated at 1202
nm. The peak at 1434 nm is the anti-stokes peak of the Si Raman
scattering. The two vertical arrows indicate the generated light due
to Raman scattering occurring in the input fibre. The shaded gray box

indicate a spurious peak due to the monochromator.
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FIGURE 3.25: Spectra of intermodal SFWM in a 3.8-µm-wide waveg-
uide. Both TE and TM measurements are reported. The position of
the output fibre is reported in the legend. The peaks refer to the indi-
cated combinations. The pump is at 1550 nm. The shaded gray boxes

indicate spurious signals.
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3.9 Conclusions

In this chapter I initially briefly reviewed the basics of nonlinear optics, describing
how the nonlinear polarization arises in integrated devices and giving a general in-
troduction to the available nonlinear processes, focusing on the second and third
order nonlinearities. I then extensively described the FWM process, the most inves-
tigated nonlinear phenomenon in silicon photonics, with particular attention to the
various phase matching mechanisms currently available. Within the framework of
spectral conversion and compatibility with technologies like DWDM and MDM, I
have introduced intermodal FWM. Thanks to the different effective index disper-
sions of each waveguide mode, it is possible to engineer easily the phase matching
condition of the process, achieving large and tunable spectral translations for several
intermodal combinations. In the chapter we demonstrated both spontaneous and
stimulated FWM via intermodal phase-matching in SOI waveguides. We exploited
the large spectral translation of intermodal FWM to achieve spontaneous generation
of 1202 nm light in a 2-µm-wide waveguide, with 979.6 nm spectral distance with re-
spect to the twin signal photon. Since the phase matching with higher order modes
does not rely on the fourth-order dispersion coefficient β4 of the GVD, the phase
matched wavelengths are less affected by fabrication imperfections with respect to
discrete band phase matching based on the compensation of the higher order GVD
terms, that we compared with the intermodal FWM. The multimode waveguides
are larger than common single mode waveguides, with lower losses and less issues
in terms of relative deviations from the nominal waveguide dimensions. Involving
higher order modes in the FWM process clearly affects negatively the efficiency of
the process, that reduces with the decreased mode field overlap. Despite this lower
efficiency with respect to common intramodal FWM, the intermodal approach en-
ables larger spectral translations and opens new functionalities for technologies in-
volving higher order modes. Moreover, we measured several modal combinations,
demonstrating the flexibility of the intermodal FWM, whose application is not lim-
ited at the first two order modes. Thanks to the discrete phase matched bands and
the tunability of the generation, intermodal FWM can provide a suitable mechanism
for the creation of heralded single photon sources with high brightness and low
noise, since the large spectral distance between the involved photons allows an easy
filtering of the pump and Raman light.
The approach here proposed has been demonstrated by using silicon photonics,
however it can be easily extended to other classes of materials. Specifically, the use
of other materials is relevant to overcome the detrimental effect of TPA, which is
particularly large in Si waveguides.
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Chapter 4

Heralded single photons

When the photon flux is reduced such that the average beam energy corresponds to
the single photon energy, quantum optical phenomena arise. Working at the single
photon level makes possible to unveil and exploit the quantum properties of light,
that are nowadays defining a whole new field of photonics technology. Currently,
quantum technologies are gaining importance due to the unprecedent applications
and improvements that they promise to unlock and photons appear as the most
suitable carriers of such quantum revolution [90]. In fact, photons do not interact
with the environment, resulting in limited decoherence. Photons can be transmit-
ted at high speed and within the already deployed optical fiber network. Finally,
sources of quantum states of light are readily available at room temperature and
at the chip level [91]. In particular, the opportunity to realize low cost and mass
manufacturable devices offered by integrated photonics is a strong motivation to in-
vestigate photonics for quantum applications, looking at the widespread diffusion
of such technologies.

In the last ten years, quantum photonics has experienced a prominent rise, with
outstanding and pioneering results in quantum communication, computation, sens-
ing, cryptography and metrology [14]. Laying at the basis of such quantum appli-
cations are the peculiar properties of quantum physics, such as the wavefunction
collapse, the superposition principle and the entanglement. These properties can be
exploited either through entangled photon pairs or through single photons [15, 92].
Two photons are said to be entangled when the quantum system constituted by the
pair can be described only as a whole [59]. On the other hand, a single photon lacks
any correlation with other systems, and it can be described individually. Depending
on the application, single or paired photons can be used. Entangled pairs are mainly
generated through nonlinear parametric processes, like SPDC and SFWM, and find
particular employment in the field of secure communications [93]. Single photons
can be generated from different types of sources and can be used for a large spec-
trum of technologies. Single photon sources can be atom-like emitters, as trapped
ions or quantum dots [91], or heralded sources based on correlated photon pairs
[94]. The ideal single photon source should emit deterministically exactly one and
only one photon at a time with 100% generation probability [95]. This is the concept
of the "photon gun" [96], the naive description of the ideal single photon source,
where by pressing a button a single photon is emitted instantaneously and with
unit probability. Atom-like emitters are the closest example of "photon gun", due
to their two-level energy diagram, which prevents the emission of more than one
photon. In fact, much effort has been devoted to the development of such sources
and to their integration on the silicon platform; however, the hard manufacture and
low spectral flexibility hinder the establishment of such sources as the standard for
quantum photonics [15]. Moreover, the large majority of quantum applications are
based on the interference between indistinguishable single photons; this means that
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different sources should emit single photons that perfectly overlaps over all the field
modes (energy, polarization, time, ...) [97, 98]. The indistinguishability of emitted
single photons is currently a main topic for atom-like emitters [99, 100], since such
sources, due to their fabrication technology, exhibit broad and not reproducible spec-
tra, resulting in distinguishable sources. Indistinguishability can be achieved also by
filtering the generation bandwidth, such that within the filter band the sources are
identical, but at the expenses of their brightness.

The limited reproducibility and difficult scalability of atom-like emitters (quan-
tum dots, NV centers in diamond,...) together with the cryogenic working tempera-
tures required [101, 102, 103] pushed the photonics research to explore and develop
more feasible single photon sources. The most investigated alternative to atom-like
emitters are heralded single photon sources. Heralded single photon sources ex-
ploit the temporal correlation between pairs generated by means of spontaneous
parametric nonlinear processes, as SPDC or SFWM. In fact, the paired photons gen-
erated through spontaneous processes are emitted at the same time. Thus the idea
is to use one of the two photons as the herald, whose detection confirms that the
pair generation has occurred, and the remaining twin photon, that is the heralded
photon, can be used as a single photon in the quantum device. However, heralded
sources are intrinsically probabilistic, since they are based on nonlinear parametric
processes, thus lacking on-demand generation, which, on the contrary, character-
izes atom-like emitters [101]. Nevertheless, the probabilistic emission of heralded
sources can be mitigated by means of multiplexing, whose basic idea is to use sev-
eral identical heralded sources in parallel, such that the generation probability scales
with the number of such sources and recovering the single photon statistics through
post selection [59].

Single photons are evaluated looking at well defined parameters. First of all, it
has to be verified if they are indeed single photons, i.e. if they are emitted alone
within the generation process. Then, the purity of the single photon state is a main
parameter to characterize the source, since it quantifies how close the quantum state
is to a single mode system [104]. This last parameter is crucial when dealing with
quantum interference between single photons coming from individual sources, since
the maximum visibility is obtained with single mode photons [59]. Purity is in-
versely proportional to correlation, and it is therefore in contrast to entanglement. In
fact, what is generally pursued is the factorizability of the biphoton wavefunction,
i.e. the complete loss of any correlation between signal and idler in order to max-
imize the purity of the state. Looking at the quantum interference between single
photons, also indistinguishability has to be considered. This parameter measures the
similarity between the single photons in terms of the source parameters (spectrum,
polarization, ...) and it is proportional to the visibility of the quantum interference
[105, 98]. Fundamental for the feasibility of the source is the brightness, which is the
emission rate of single photons. The former parameters are equivalently used for
both atom-like emitters and heralded sources, but these latter are characterized by a
property that is peculiar of the heralding scheme, namely the heralding efficiency; this
parameter is proportional to the probability of detecting the heralded photon once
the herald photon has been detected. The heralding efficiency is strictly related to
the losses of the system [59].

A well established strategy for the generation of heralded single photons is SPDC
in periodically poled crystals [106, 107, 108, 109]. Despite the good results that can
be obtained with poled crystals, these cannot be the ultimate solution for integrated
quantum photonics. On one side because the photons generated by the poled crys-
tals are affected by losses when coupled to the guiding structure. On the other side
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because they are not compatible with CMOS technology, thus requiring higher costs
and hindering the mass production of the devices. In order to move towards the
goal of an efficient fully integrated quantum chip, as the one proposed in Fig. 4.1,
it is therefore required the adoption of a source that can be implemented directly
on-chip. The requirement of an integrated source of quantum states comes from
the necessity to reduce drastically the coupling losses, that are detrimental when
dealing with the low photon rate proper of the quantum devices. Moreover, having
all the building blocks at the chip level makes the system much more robust, easy
to fabricate and compact. These advantages are promoting the development of the
quantum silicon photonics platform, which is dealing with the optimization and full
integration of all the devices required for the generation, manipulation and detec-
tion of the quantum states of light. Moreover, the silicon photonics platform meets
all the criteria for an efficient mass productivity. As an example, in Fig. 4.1 is re-
ported the rendering of a possible quantum photonic chip, in which all the required
structures for the generation, pump filtering, control and detection of quantum light
are integrated together.

FIGURE 4.1: Schematics of a possible quantum photonic chip, in
which the generation stage (magenta), filtering (yellow) manipula-
tion (green) and detection (cyan) are integrated together. The labels
indicate: (i) input and 3-dB splitter, (ii) spiralled waveguide, (iii) ring
resonator, (iv) Bragg reflector, (v) coupled resonator optical waveg-
uide, (vi) asymmetric Mach-Zender, (vii) ring resonator filter, (viii)
thermal phase tuner, (ix) MMI, (x) waveguide crossing, (xi) supercon-
ducting nanowire single-photon detector (SNSPD), (xii) grating cou-
pler, (xiii) control electronics. Reprinted from Ref. [15] c©2016 IEEE.

The source of quantum light is the starting point of the chain leading to the fi-
nal quantum operation of the device. Within the silicon photonics platform, her-
alded photons can be generated in spiralled waveguides, ring resonators or sim-
ple straight waveguides, whose schematic design is reported in Fig. 4.2. Spiralled
waveguides are essentially an improvement of the simple straight waveguide, since
they exploit their longer length to enhance the probability generation. Straight and
spiralled waveguides are much more fabrication tolerant with respect to ring res-
onators, which need precise control of the waveguide-ring gap in order to exhibit a
high degree of indistinguishability [62]. On the other hand, ring resonators require
much lower pump power, have a smaller fingerprint and improve the spectral pu-
rity of the single photon state [15]. Nevertheless, resonators are much more sensitive
to phase deviations due to free carriers and they are feasible only for the generation
of photons close to the pump wavelength [15]. This latter limitation comes from the
triply resonant condition required for the generation of SFWM, where pump, signal
and idler must be all resonant in the same cavity. This condition is true only for
an almost flat dispersion, which occurs when all the waves are close in wavelength.
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This hinders the use of ring resonators for applications requiring broad band gen-
eration of single photons, such as quantum sensing or free space communications,
which need quantum light in the MIR part of the spectrum.

a) b)

c)

FIGURE 4.2: Sketch of three typical integrated heralded single photon
sources in the case of SFWM generation. In green are the pump pho-
tons and in blue and red are respectively the idler and signal photons
emitted in pairs. a) Spiralled waveguide, b) ring resonator, c) straight

waveguide.

Owing to the promising perspective of having an efficient integrated source of
single photons, heralded sources have experienced a rapid development in the last
years, with the achievement of bright, pure and indistinguishable single photons
[19, 110, 98, 109]. However, heralded single photons are still at the development
level and several challenges are currently under further investigation. Among these
is the requirement of having an easy spectral tunability of the generated single pho-
tons with high purity and without recurring to narrow band filters. In fact, the most
common approach to pure and tunable generation in silicon is to perform broad-
band SFWM in a spiralled single mode waveguide, which is then filtered in order
to reduce the multimode character of the generated photons, selecting at the same
time the spectral position of the source [59]. This approach is extremely practical and
readily available at the chip level with high purities [111, 112], but spectral filters im-
prove purity at the expenses of source brightness. Obtaining high purities together
with high generation rates is nevertheless possible by using ring resonators, whose
generated single photons are naturally filtered by the linewidth of the ring spectrum.
However, as said before, the generation is limited to a narrow spectral range around
the pump wavelength, with limited single photon spectral control.

In order to combine the large and tunable detuning offered by waveguides with
the high purity and brightness of ring resonators, it is required a phase matched pro-
cess which exhibits a tunable discrete band phasematching, in order to naturally fil-
ter the generated photons. These requirements can be fulfilled within the intermodal
phasematching scheme. As introduced in Chapter 3, intermodal FWM is character-
ized by a discrete band generation, whose bandwidth and central wavelength can be
controlled by changing, respectively, the length and cross section of the waveguide
[73]. The introduction of intermodal SFWM as a source for heralded single photons
could open a new route towards the realization of integrated quantum sources that



4.1. Basics of quantum optics 79

exhibit high purity and brightness together with large detunings from the pump
wavelength [113]. This last feature, in particular, allows to get large spectral dis-
tance between the generated photons and the pump and Raman light, improving
greatly the rejection of such noise sources [114]. Moreover, the capability of gener-
ating the herald photon in the NIR spectral range, where feasible single photon de-
tectors are already present, and the heralded above two microns opens interesting
perspectives for the field of quantum MIR photonics, where an integrated source
of quantum states of light is still missing [115, 116]. Several fields of science and
technology would greatly benefit of single photons in the MIR, like medical imag-
ing [117], free-space quantum communications [118], absorption measurements in
the few photon regime [119] and lidar technologies [120]. Therefore, the research
in MIR heralded photons through on-chip intermodal SFWM is strongly motivated
and of great interest for all the quantum photonics platforms, not only within the
SOI technology. The high spectral tunability is regarded as the main peculiarity of
intermodal FWM; nonetheless, the different propagation properties of the higher or-
der modes involved offer an additional tool for the control of the state purity. In
fact, by exploiting the different group velocities of the pump waveguide modes, it
is possible to implement a dual pump delayed scheme [121] for the generation of
heralded single photons with unprecedent purities (∼ 99%).

During my research I investigated the application of intermodal FWM to the
generation of heralded single photons in silicon. I investigated both the generation
of single photons above 2 µm and the high purity offered by this intermodal process.
The chapter is organized as follow: initially a brief introduction to the basic concepts
of quantum states of light is provided; then, particular attention is devoted to the
purification strategies for the heralded states, including group velocity matching
and dual pump delay approaches; in conclusion, experimental results regarding the
generation of 2 µm single photons are discussed, and simulation results for the dual
pump delay scheme are provided.

4.1 Basics of quantum optics

4.1.1 State vector

Considering an ensemble of objects (e.g. photons) with states {|ψi〉}, if all the objects
occupy the same state, this ensemble is represented by a pure state. Pure quantum
states correspond to vectors in the Hilber space, whose observables are associated
with an operator. The operator acts on the state vectors, while the eigenvalues are the
possible outcomes for the observables [122]. Each eigenvalue has its own eigenvec-
tor/eigenstate, which is a quantum state with a well defined value of the observable
considered (i.e. no quantum uncertainty). However, a quantum system can be in
a linear combination of several eigenstates, and in this case it has quantum uncer-
tainty, since each eigenstate has a different eigenvalue. A state which is the result of
a linear combination of eigenstates can be written as

|ψ(r, t)〉 =
∞

∑
n=0

cn(r, t) |φn〉 (4.1)

where cn are complex coefficients, from which the quantum interference arises,
|φn〉 is the n-th eigenstate. Due to the kind of analysis that we require for the study
of single photon sources, from here on we will consider as the quantum state the
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photon number state, i.e. |φn〉 ≡ |n〉. In order to operate on the photon number
states, the following operators are introduced:

â† |n〉 =
√

n + 1 |n + 1〉 , (4.2a)

â |n〉 =
√

n |n− 1〉 , (4.2b)

where the first one is the creation operator, adding one photon to the |n〉 state,
and the second one the destruction operator, subtracting one photon to the photon
number state. The number states are eigenstates of the single-mode number operator
n̂,

n̂ |n〉 = â† â |n〉 = n |n〉 . (4.3)

Eq. (4.1) is a particular quantum state, since it is a single mode state. An example
of a single-mode state, with j the label of the mode, is a plane-wave, a monochro-
matic field with frequency ωj, wave vector kj and polarization given by the unit
vector ej. A more general notation, involving multimodes, can be given as

|ψ(r, t)〉 = ∑
n1,n2,n3,...

cn1,n2,n3,...(r, t) |n1〉1 |n2〉2 |n3〉3 ..., (4.4)

with n1, n2, n3... the number of photons in the modes 1, 2, 3, ... respectively. The
multimode state product can be written as

|n1〉1 |n2〉2 |n3〉3 ... = ∏
j=1,2,3,...

(â†
j )

nj√
nj!
|0〉 , (4.5)

with |0〉 the global vacuum state, meaning no photons in any mode. These multi-
mode number states form a complete orthonormal basis set, therefore the following
relation holds

[âj, â†
k ] = δj,k. (4.6)

Considering again the single-mode case, it is possible to simplify the notation
by omitting the time and space dependence when these are included in the mode
definition or do not affect the state over the region of interest:

|ψ〉 =
∞

∑
n

cn |n〉 , (4.7)

which in the case of an ideal single photon source becomes

|ψ〉 = |1〉 . (4.8)

Till now we have considered pure states, but also statistical mixtures of states are
possible, which are statistical ensembles of independent pure states. An ensemble
here is considered as the collection of a large number of independent replicas of the
system. A statistical mixture does not involve complex coefficients in the combina-
tion of states, but real positive values which describe the probability that choosing
randomly a system in the ensemble this will be in the n-th state. While the mixed
state exhibits classical probabilities, the quantum superposition of pure states is still
a pure state, therefore based on probability amplitudes which give rise to quantum
interference. Mixed states come from a statistical mixture of the initial state or they
could be due to the uncertainty in the state preparation.
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When dealing with heralded single photon states the degree of purity is inversely
proportional to how much a state is mixed; this means that in order to have a pure
single photon coming from a photon pair, all the correlations between the twin pho-
tons have to be broken in order to avoid the production of a mixed state instead of
a pure photon state [123]. These concepts are further analysed in Sections 4.1.3 and
4.1.4.

4.1.2 Quantized electric field

The quantized electric field at r position and t time is [95]

Ê(r, t) = ∑
j

[
Ê(+)

j (r, t) + Ê(−)
j (r, t)

]
, (4.9)

with Ê(±)
j (r, t) the positive and negative frequency components of the quantized

electric field in mode j; each mode is characterized by a particular spatial distribu-
tion, central wavelength, wave vector, polarization and spectral and temporal pro-

files. The two components are linked through the relation Ê(−)
j (r, t) =

[
Ê(+)

j (r, t)
]†

,
with the † indicating the Hermitian conjugate [122]. The Hamiltonian for the elec-
tromagnetic field, which is treated as a quantized harmonic oscillator, is

Ĥ = ∑
j

h̄ωj

(
â†

j â +
1
2

)
, (4.10)

with h̄ = h/2π and h the Planck constant. To be noticed that the energy of
the vacuum fluctuations in mode j is 1

2 h̄ωj. Considering a plane wave, its positive
frequency component can be written as

Ê(+)
j (r, t) = ε jej âjei(kj·r−ωjt) (4.11)

with ε j = i
√

h̄ωj/2ε0V, ε0 the vacuum permittivity and V the mode volume.
When dealing with non-monochromatic fields, the continuous-mode creation and
annihilation operators are introduced, â†

j (ω) and âj(ω), such that [95][
âj(ω), â†

j (ω
′)
]
= δ(ω−ω′). (4.12)

The number operator becomes

n̂j =
∫

dω â†
j âj(ω), (4.13)

and the positive frequency component of the field

Ê(+)
j (r, t) =

∫
dω ε jej âj(ω)ei(kj·r−ωjt). (4.14)

If pulsed light is considered, the photon wave packet creation operator is taken
into account as follow

â†
j,p =

∫
dω Fj(ω)â†

j (ω), (4.15)

where Fj(ω) is the spectral profile of the photon wavepacket in mode j. The
normalization is

∫
dω |Fj(ω)|2. The positive frequency component, for the wave
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packet case, becomes

Ê(+)
j (r, t) =

∫
dω ε jejF∗j (ω)âj(ω)ei(kj·r−ωjt). (4.16)

If the non-zero band of the spectrum is much smaller than ωj, then the following
approximation holds

Ê(+)
j (r, t) ' ε jejei(kj·r−ωjt)

∫
dω F∗j (ω)âj(ω). (4.17)

All this formalism can be given also in the time domain, that is linked to the
frequency domain through the Fourier Transform.

4.1.3 Density matrix and purity

The density matrix is used to provide a more general quantum representation of the
states. It can be used for both pure and mixed states, and the corresponding operator
(the density-matrix operator) is [122]

ρ̂ = ∑
i

pi |ψi〉 〈ψi| (4.18)

where pi is the probability that the system is in |ψi〉 state and ∑i pi = 1. Eq.
(4.18) represents a general quantum state: if only one of the pi coefficients is non-
zero the state is pure and ρ̂ = ρ̂2 holds, otherwise it is a mixture. Representing a
state through the density matrix is an equivalent alternative to the representation
based on the ket or the statistical ensemble of kets. The density matrix contains
all the information needed in order to derive any property of the state. Regarding
the measurable properties of the state, given the observable Ô, its average over the
ensemble is

〈Ô〉 = Tr{ρ̂Ô}, (4.19)

from which arise the normalization condition Tr{ρ̂} = 1.
When the photon number probabilities have to be calculated, the photon number

states are used as the basis, such that

P(n) = Tr{ρ̂ |n〉 〈n|} = 〈n| ρ̂ |n〉 , (4.20)

with P(n) the probability that the source will emit n photons at a time. So
P(n > 1) = ∑∞

n=2 P(n) is the probability of multi-photon emission. With a pulsed
source, P(n) gives the probability of n photons emitted per pulse, with µ = Tr{ρ̂n̂}
the average number of photons per pulse. The elements on the diagonal (ρnn) of
the density matrix give the population in the basis considered. The off-diagonal el-
ements (ρnm) are called coherences and are related to the interference between the
states |n〉 and |m〉 [95].

The density matrix is also a powerful tool when the physical system under study
is composed by several subsystems. In this case, the reduced density operator is used.
A composite system of A and B subsystems is described by the density operator ρ̂AB.
The reduced density operator for system A is given by

ρ̂A ≡ TrB{ρ̂AB}, (4.21)
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where TrB is the partial trace over B [123], that, in terms of state vectors, is defined
by

TrB{|a1〉 〈a2| ⊗ |b1〉 〈b2|} ≡ |a1〉 〈a2|Tr{|b1〉 〈b2|}, (4.22)

with |ai〉 and |bi〉 (i = 1, 2) vectors in A and B spaces respectively. From the
formalism of the reduced density operator, it is trivial to understand that this tool
provides the right measurement statistics for measurements on the subsystems. In
fact, considering a quantum composite system in the product state ρ̂AB = ρ̂ ⊗ σ,
where ρ̂ and σ̂ are density operators for A and B subsystems respectively, the fol-
lowing relation holds [123]

ρ̂A = TrB{ρ̂⊗ σ̂} = ρ̂Tr{σ̂} = ρ̂, (4.23)

where Eq. (4.21) and the normalization condition for the density operator have
been considered. This means that the partial trace allows to access the correct ob-
servable quantities for subsystems involved in a composite quantum system. This
last concept is of particular importance in the treatment of heralded single photons,
where the composite system is composed by signal and idler photons, and the mea-
surement performed on one of these two photons corresponds to a partial trace over
the other photon state.

Through the density matrix formalism it is possible to quantify the purity of a
state as

P = Tr{ρ̂2} (4.24)

where P = 1 corresponds to a pure state, while P = 1/N is the lower pu-
rity limit for a mixed state with N dimensions [122]. Therefore maximum purity
is achieved when the state has the lowest degree of mixing, namely N = 1. When
dealing with entangled states, the purity of the states of the subsystems involved
in the entanglement defines the degree of the entanglement itself. If the system is
maximally entangled, then the states composing the system are completely mixed
(N � 1) because it is impossible to assign a definite pure state to the subsystems; on
the contrary, if the system is not entangled at all (N = 1), the states of the subsystems
are pure and the state describing the composite system is separable in the product
state of the subsytems [122].

4.1.4 Entanglement and separability

A composite quantum system is composed by two or more quantum subsystems.
The Hilbert space of the composite system is given by the tensor product of the
individual Hilbert spaces associated to the embedded subsystems as H = H1 ⊗
H2 ⊗H3 · ··.
Considering the case of a bipartite system, such that H = H1 ⊗H2, we can prepare
a system |Ψs〉 ∈ H that is the product of the pure states |ψ1〉 ∈ H1, |ψ2〉 ∈ H2 of the
two subsystems, such that

|Ψs〉 = |ψ1〉 ⊗ |ψ2〉 . (4.25)

In this case, |Ψs〉 is separable, and physically corresponds to the fact that the
measurement on one of the subsystems does not affect the outcome on the other one.
This uncorrelation between the measurement outcomes of the subsystems indicates
the absence of entanglement [124]. Consider now a state |Ψe〉 ∈ H that is the result of
the superposition of states |ψ〉i 6= |φ〉i , (i = 1, 2) belonging to the respective Hilbert
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spacesHi, (i = 1, 2), for example,

|Ψe〉 =
1√
2
(|ψ〉1 ⊗ |ψ〉2 + |φ〉1 ⊗ |φ〉2) . (4.26)

In this case, measuring an observable only over one of the two subsystems will
affect the outcome of the other subsystem. In fact, the expectation value of an ob-
servable â over the subsystem 1 will be

〈â〉 = Tr1(âρ̂1), (4.27)

with ρ̂1(2) = Tr2(1) |Ψe〉 〈Ψe| the reduced density matrix of subsystem 1(2) [124].
This means that the states of the individual subsystems are given by ρ̂i, (i = 1, 2),
but the state of the composite system is not equal to the product of the reduced
density matrices ρ̂ = |Ψe〉 〈Ψe| 6= ρ̂1 ⊗ ρ̂2. As a result the composite system state
|Ψe〉 cannot be expressed as a product state like Eq. (4.25), with the direct conse-
quence that a local measurement on one subsystem will affect the entire state, and
thus also the outcome of the other subsystem will be conditioned. When such a cor-
relation between the subsystems is present, the state of the composite system |Ψe〉
is an entangled state, and it is not separable. This description of entanglement and
separability explains the importance of having a full factorization of the two-photon
state when the pair is used within the heralded single photon framework. In fact,
only if the two photons of the pair are uncorrelated, the herald detection does not
affect the heralded state.

As just explained, the separability of the state is related to the degree of entangle-
ment of the corresponding quantum system, and such a state is said to be separable
if a decomposition into product states exists. Generally, a basis able to make explicit
the entanglement properties is always present, and the representation of the state
with this basis is indicated as the Schmidt decomposition [125].

4.1.5 The Schmidt decomposition

Any state |Ψ〉 belonging to a given composite system whose Hilbert space is H =
Hu ⊗Hv, where Hu/v are the Hilbert spaces of the two subsystems U and V of the
composite system, can be written as

|Ψ〉 = ∑
i,j=1

ci,j |ai〉 ⊗
∣∣bj
〉

(4.28)

where {|ai〉 , i = 1, 2, ...} and {
∣∣bj
〉

, j = 1, 2, ...} are the bases of Hu and Hv re-
spectively, and ci,j are complex non-negative coefficients such that ∑i,j |ci,j|2 = 1. If
the state of the composite system U + V is pure, described by ρ̂ = |Ψ〉 〈Ψ|, then an
orthonormal basis {|ui〉} forHu and {

∣∣vj
〉
} forHv such that [126]

|Ψ〉 = ∑
i

gi |ui〉 ⊗ |vi〉 (4.29)

exists, where ∑i |gi|2 = 1. This is the Schmidt decomposition, where |ui〉 and |vi〉
are the Schmidt modes and gi are the Schmidt coefficients [125]. The power of this
decomposition is that only one summation index is required, instead of two, as in a
usual change of basis. From Eq. (4.29) it is evident that if |Ψ〉 is in a pure state, only
one non-zero Schmidt coefficient should be present, resulting in a factorizable state;
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on the contrary, if more than one Schmidt coefficient is different from zero, then |Ψ〉
is no more separable and the state is not pure.

Within the heralded single photon picture, thus involving pair of photons gener-
ated through parametric processes, the Schmidt decomposition is mainly used as a
mean for the definition of a metric for the purity of the heralded single photon state
[127]. Say |II〉 the two-photon state. Considering the density matrix description for
the two-photon state, the purities of the individual idler and signal photon states,
respectively Pi and Ps, are given as in Eq. (4.24),

Pi = Tr
(
ρ̂2

i
)

, (4.30a)

Ps = Tr
(
ρ̂2

s
)

, (4.30b)

where the reduced density matrices are calculated from the density matrix of the
two-photon state ρ̂II as in Eq. (4.23)

ρ̂i = Trs (ρ̂II) , (4.31a)

ρ̂s = Tri (ρ̂II) . (4.31b)

As said before, the number of elements in Eq. (4.29) needed in order to express |II〉
quantifies its factorizability, or purity. The number of Schmidt modes involved in the
entanglement between the photons in the pair can be measured through the Schmidt
number K,

K ≡ 1
∑i g4

i
≡ 1

Tr (ρ̂2
s )
≡ 1

Tr
(
ρ̂2

i

) . (4.32)

K is related to the individual single photon purities of the two-photon state as
[125],

Ps = Pi = ∑
i

g4
i =

1
K

, (4.33)

thus K = 1 corresponds to perfect purity of the single photon state, while the
greater is K the larger is the entanglement between signal and idler, therefore mini-
mizing the factorizability of the two-photon state.

4.1.6 The two-mode squeezed state

When dealing with parametric light generation, the photon pairs that are generated
are described as two-mode squeezed states, in analogy with a system of two oscil-
lators. This state is characterized by reduced uncertainty on the conjugate variables
describing the entire system of oscillators, i.e. on the linear combinations of variables
of both oscillators; in fact, squeezing is not evident on the fluctuations of each oscil-
lator taken separately. A particular feature of the two-modes state is that considering
individually the modes, they will exhibit a thermal behaviour [128].

A coherent state can be described in terms of its quadrature dimensionless vari-
ables X̂ = (ω/h̄)1/2q̂ and Ŷ = (h̄ω)−1/2 p̂, where q̂, p̂ are the canonical variables of
the harmonic oscillator [128]. According to the Heisenberg uncertainty principle, for
minimum uncertainty states, the relation ∆q∆p = h̄/2 holds [129]. In the case of the
ground state (vacuum) of the quantum harmonic oscillator, it can be derived that
[128]

∆p0 =

(
1
2

h̄ω

)1/2

, (4.34a)
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∆q0 =

(
h̄

2ω

)1/2

. (4.34b)

As a consequence, the uncertainties over the quadrature variables are equal,

∆X0 = ∆Y0 =
1√
2

. (4.35)

However, when squeezed states are taken into account, the equality between the
uncertainties is no more valid, and the squeezed state uncertainties ∆qs, ∆ps can be
written as a function of the ground state uncertainties as

∆qs = e−r∆q0, (4.36a)

∆ps = e+r∆p0, (4.36b)

with r the squeeze parameter, whose role is to reduce the uncertainty on one of
the variables (q̂ or p̂) at the expenses of the uncertainty on the conjugate one, whose
fluctuations increase. More in general, an oscillator is said to be squeezed if one of
the conjugate variables exhibits a lower uncertainty with respect that of a coherent
state, while the other variable can be affected by a much larger uncertainty, result-
ing in a product of the conjugate uncertainties larger than the Heisenberg limit. The
most studied squeezers are the single-beam squeezers and twin-beam squeezers.
Single-beam squeezers generate the squeezed state only in one optical mode, with
the squeezing operator Ŝ = exp

(
−ξ â† 2 + ξ∗ â2), while twin-beam squeezers involve

the inter-beam squeezing operator Ŝab = exp
(
−ξ â†b̂† + ξ∗ âb̂

)
[130]. ξ is a param-

eter quantifying the squeezing strength and â† and b̂† are the creation operators for
the mode a and b respectively. Tipically, parametric processes like SFWM and SPDC
generate broadband squeezed states, meaning that they are characterized by a large
amount of squeezers each in a different orthogonal spectral mode. Therefore, the
generated parametric light is characterized by a multitude of spectral modes, which
corresponds to the K > 1 condition discussed in Section 4.1.5. These kind of squeez-
ers are called multimode squeezers, opposed to single mode squeezers, which gen-
erate the signal and idler photons, individually, in one squeezed beam. The number
of mode squeezers is thus directly related to the correlations present between the sig-
nal and idler beams. The two-photon state can be written in terms of the squeezing
operator starting from the Hamiltonian of the parametric process [130],

ĤSFWM = A
∫ ∫

dωidωsF (ωs, ωi) â†
s (ωs) â†

i (ωi) + h.c., (4.37)

where A is proportional to the efficiency of the process, F(ωs, ωi) is the bi-photon
wavefunction or the joint spectral amplitude (JSA), â†

s (ωs) and â†
i (ωi) are the cre-

ation operators for the signal and idler beams respectively. The two-photon state is
obtained through [122],

|ΨSFWM〉 = ÛSFWM |0〉s |0〉i , (4.38)

where

ÛSFWM = exp
[
− i

h̄
ĤSFWM

]
. (4.39)

By applying now the singular value decomposition theorem [131], which is anal-
ogous to the Schmidt decomposition for the factorization of the two-photon state,
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the unitary operator ÛSFWM can be rewritten as the tensor product of N individual
twin-beam squeezers,

ÛSFWM =
N−1⊗
k=0

Ŝab
k (−rk) , (4.40)

with rk the squeezing parameter and Ŝab
k (−rk) = exp

[
rk Â†

k B̂†
k − h.c.

]
[132]. There-

fore, the generated state after the SFWM interaction is the product of the indepen-
dent squeezers, such that

|ΨSFWM〉 =
N−1⊗
k=0

Ŝab
k (−rk) |Ψ0〉 , (4.41)

where |Ψ0〉 is the initial state before the interaction, that usually corresponds
to the vacuum state [133]. To perform the transformation in Eq. (4.40) the new
broadband mode basis has been introduced,

Âk =
∫

dωsψk(ωs)âs(ωs), (4.42a)

B̂k =
∫

dωiφk(ωi)âi(ωi), (4.42b)

where {ψk(ωs)} and {φk(ωi)} each form a complete set of orthonormal func-
tions [134]. These are the Schmidt modes for the decomposition of the bi-photon
wavefunction as

− i
h̄

AF (ωs, ωi) = ∑
k

rkψ∗k (ωs) φ∗k (ωi) , (4.43a)

− i
h̄

A∗F∗ (ωs, ωi) = −∑
k

rkψk (ωs) φk (ωi) . (4.43b)

Consider now a two-mode squeezed state characterized by a single mode emis-
sion per idler and signal beams. Its state can be written, according to Eq. (4.41),
as

|ΨSFWM〉 = Ŝab(−r) |0〉a |0〉b =
∞

∑
n=0

κn |n〉a |n〉b , (4.44)

with photon number distribution p(n) = |κn|2 = sech2(r)tanh2n(r), and where
Âk and B̂k have been transformed according to the Heisenberg representation [130]

Âk → cosh(rk)Âk + sinh(rk)B̂†
k , (4.45a)

B̂k → cosh(rk)B̂k + sinh(rk)Â†
k , (4.45b)

and the index k is removed in the case of two-photon squeezed states with single
mode emission. The photon number distribution p(n) in Eq. (4.44) is a thermal dis-
tribution, as expected for each individual single mode contributing to the two-mode
squeezed state [133]. Therefore, it can be derived that when the two-mode squeezed
state is characterized by multiple modes emission, its photon number distribution is
given by the convolution of all the thermal distributions of the independent squeez-
ers involved [133]. This means that when only one mode contributes to the emission
(N = 1) the photon source exhibits thermal statistics; when other modes come into
play (N > 1) the resulting photon number distribution gradually loses its thermal
statistics becoming Poissonian in the limit of N → ∞, because the convolution of
thermal distributions converges to the Poissonian one [60]. This description well



88 Chapter 4. Heralded single photons

fits with the heralded state purity as a function of the degree of entanglement, that
I discussed in Section 4.1.5. In fact, the higher the frequency correlations between
the signal and idler fields, i.e. the photons are entangled, the larger the number of
squeezed modes required to fully describe the two-mode squeezed state. This anal-
ogy is quantitatively introduced in the estimation of the generated squeezers via
SFWM or SPDC by relating the squeezed parameter rk with the Schmidt coefficients
gk, such that

rk = Bgk, (4.46)

with B ∈ R+ the overall gain of the process and gk related to the probability
of different squeezers occupation in the corresponding optical quantum state [130].
Within this formalism, the Schmidt number K = 1/ ∑k g4

k measures how many
modes contribute to the multimode twin-beam state.

4.1.7 The bi-photon wave function and the joint spectral intensity

In the case of the nonlinear spontaneous parametric processes like SPDC or SFWM,
the two-photon state is generated thanks to the vacuum fluctuations, which seed the
conversion of the input pump photons into the correlated signal and idler photons.
In the particular case of SFWM in waveguide with co-polarised photon generation,
the two-photon squeezed state describing the generated idler-signal pair, both on
the same waveguide mode, is written, according to Section 4.1.6, as [135]

|I I〉 =
∫ ∫

dωsdωiF(ωs, ωi) |ωs〉s |ωi〉i , (4.47)

with |ω〉q ≡ |1〉q,ω = â†
q(ω) |0〉 representing one photon in mode q with fre-

quency ω. F(ωs, ωi), already introduced in Eq. (4.37), embeds the information rela-
tive to the bandwidth of the pump, signal and idler photons, and it is given by

F(ωs, ωi) =
∫ +∞

−∞
dωα(ω)α(ωs + ωi −ω)φ(ωs, ωi, ω), (4.48)

where α(ω) is the complex amplitude of the pump spectrum centered in ωp,
usually considered with a gaussian profile, and

φ(ωs, ωi, ω) = exp
(

i∆kL
2

)
sinc

(
∆kL

2

)
(4.49)

is the phase matching function, with L the waveguide length and ∆k the phase
mismatch parameter [136]. The JSA quantifies the probability density for the gener-
ation of the first photon of the pair in the ωs mode and the second photon in the ωi
mode. The modulus square of the JSA, namely |F(ωs, ωi)|2, is called joint spectral
intensity (JSI), which is considered more frequently than the JSA, cause the JSI deals
directly with the intensity of the field, that is the actual measurable quantity. The JSI
is used to characterize the degree of correlation between the signal and idler photons
[127]. In fact, since the JSI takes into account all the frequencies and bandwidths of
the involved waves (pump, signal, idler), it directly reflects the spectral distribution
associated with the signal/idler once the frequency of the idler/signal is given. In
more quantitative terms, the capability of the JSI to quantify the degree of correla-
tion, and so the purity of the system, is made evident by the Schmidt decomposition.
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In fact, the JSA can be decomposed according to Eq. (4.29) [135],

F(ωs, ωi) = ∑
n

gnun(ωs)vn(ωi) (4.50)

with un and vn two complete sets of orthonormal functions. As introduced in
Section 4.1.5, through the Schmidt number K =

(
∑n g4

n
)−1 the degree of entangle-

ment in the system can be quantified, with K that can be interpreted as the effective
number of populated eigenmodes (see Section 4.1.6): with K = 1, corresponding
to only one non-zero Schmidt coefficient, the system is completely uncorrelated; if
multiple non-zero Schmidt coefficients are present, K > 1 and the system exhibits
entanglement. However, the decomposition in Eq. (4.50) is not possible with the
JSI, and the JSA is not easily accessible experimentally [135]. Anyway, usually it is
considered a singular value decomposition of the square root of the JSI, which pro-
vides a lower bound for the true Schmidt number [137], from which it is possible to
calculate the purity of the heralded single photon as P = 1/K [138]. Despite the JSI
does not exhibit the correlations present in the joint spectral phase, it is in any case
directly related to the degree of correlation, and its shape ranges from a thin line
(perfect correlation) to a circular shape (perfect decorrelation) [107], as shown in Fig.
4.3.

FIGURE 4.3: JSI in the case of (a) correlated and (b) decorrelated pho-
ton pairs.

The circular shape case directly resembles the case in which the two-photon sys-
tem is in a separable state, which means maximum purity, P = 1. When the JSI is
circular, it means that the JSA can be factorized, such that F(ωs, ωi) = Fs(ωs)Fi(ωi)
[95]. The case of separable bi-photon wave function is exactly the pursued condition
for the heralded single photon operation, where the maximum purity for the single
photon state can be attained only by eliminating the correlation between the twin
photons [95]. The JSI can thus be used as a tool for the evaluation of the purity P of
the heralded single photon, which can be calculated as [139]

P =
∫ ∫

dωdω′|qs(ω, ω′)|2, (4.51)

where it is considered the signal photon as the heralded single photon and qs(ω, ω′) =
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∫
dω′′F(ω′′, ω)F∗(ω′′, ω′), with qs related to the density matrix of the heralded pho-

ton as
ρs = Tri{|I I〉 〈I I|} =

∫ ∫
dωdω′qs(ω, ω′)â†

s (ω) |0〉 〈0| âs(ω
′). (4.52)

4.2 Elements of photon statistics for single photon experi-
ments

4.2.1 The g(2) correlation function

When dealing with quantum light sources, it is of fundamental importance knowing
the statistics of the photons involved, in order to predict the emission properties of
the source itself. The most powerful tool when characterizing a single photon source
is the second order coherence g(2), which quantifies the multi-photon emission prob-
ability. The second order coherence between two modes (mode j, at position r1 and
time t1, and mode k, at position r2 and time t2) is

g(2)j,k (r1, t1; r2, t2) =
〈Ê(−)

j (r1, t1)Ê
(−)
k (r2, t2)Ê

(+)
k (r2, t2)Ê

(+)
j (r1, t1)〉

〈Ê(−)
j (r1, t1)Ê

(+)
j (r1, t1)〉〈Ê(−)

k (r2, t2)Ê
(+)
k (r2, t2)〉

, (4.53)

where the angled brackets indicate the average on the ensemble, i.e. over a large
number of photons [95]. When only one mode is measured (j = k), at a single
position (r1 = r2) and with a stationary source (e.g. CW source), i.e. only the time
delay τ = t2− t1 determines the properties of the source , Eq. (4.53) can be rewritten
in terms of creation and annihilation operators as

g(2)(τ) =
〈â†(t)â†(t + τ)â(t + τ)â(t)〉

〈â†(t)â(t)〉2 , (4.54)

which becomes, in terms of the time dependent number operator n̂ = â† â, at
τ = 0,

g(2)(0) =
〈n̂(t)(n̂(t)− 1)〉
〈n̂(t)〉2 . (4.55)

g(2)(0) characterizes the photon number probabilities of the source of photons,
and it is especially used when characterizing the single photon sources. In fact,
g(2)(0) can be directly related to the probability of photon emission P(n), as will be
shown in a while. It has to be emphasized that g(2) does not change if the field under
study is affected by losses, if all the modes experience the same amount of losses [95].
The same treatment can be done also for pulsed sources, where the continuous g(2)

is substituted with its discrete analogous,

g(2)[m] =
〈â†[l]â†[l + m]â[l + m]â[l]〉
〈â†[l]â[l]〉〈â†[l + m]â[l + m]〉 , (4.56)

where l and m are integer numbers indicating the pulse number and the average
is taken over the l index. When treating pulsed sources, the photon statistics is av-
eraged over the duration of the pulse. As in the CW case, g(2)[0] is directly related
to the multi-photon probability associated with the source, and, using the photon
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number operator n̂ = â†[l]â[l], it becomes

g(2)[0] =
〈n̂(n̂− 1)〉
〈n̂〉2 , (4.57)

where n̂ measures the number of photons in the pulse. Therefore, when only one
photon is present in the pulse, i.e. 〈n̂〉 = 1, from Eq. (4.57) it can be understood that
g(2)[0] = 0. Eq. (4.57) can be written maxing explicit the P(n) as

g(2)[0] =
Tr{ρ̂n̂(n̂− 1)}
(Tr{ρ̂n̂})2 =

∑∞
n=0 n(n− 1)P(n)

[∑∞
n=0 nP(n)]2

, (4.58)

where the density matrix has been considered and only its diagonal elements
contribute to g(2)[0] [95].

If the source is characterized by P(1)� P(2)� P(n > 2), which is often the case
when dealing with low-efficiency sources, the following expression can be derived

g(2)[0] ' 2P(2)
µ2 ' 2P(2)

P(1)2 , (4.59)

where µ is the average number of photons per pulse and µ ' P(1) comes from
the assumption P(1) � P(2). Eq. (4.59) states that as soon as the source of single
photons is characterized by P(1) >

√
2 P(2), a g(2)(0) < 1 occurs, approaching

zero as P(1)2/P(2) increases. This is the first signature of single photon statistics,
as will be better described in Section 4.2.2, and it can be measured by means of an
interferometric approach, that is the Hanbury Brown and Twiss interferometer.

Hanbury Brown - Twiss interferometer

In order to characterize a single-photon source it would be desirable to compare
P(1) with the analogous probabilities for multi-photon emission P(2), P(3), .... Un-
fortunately, photon-number-resolving detectors are still limited in combining low
jitter, low dead time and high efficiencies [140, 141]. Because of this, click/no-click
detectors, with lower efficiency but better timing properties, are the most used ap-
proach to the photon statistics measurement. The basic experiment used to resolve
the g(2) of a single-photon source is the Hanbury Brown-Twiss (HBT) interferometer,
also reported in Fig. 4.4. Within this experimental scheme, the single-photon field
enters from one input of the beam splitter (port 1 in Fig. 4.4) and it is then mea-
sured by one of the two detectors (D3 and D4) placed in the trasmitted (port 4) and
reflected (port 3) ports; the electric signal due to detection is then processed by a cor-
relator or a start/stop timing system. The basic idea of the HBT experiment is that
if only one photon at a time enters the beam splitter, there is no possibility that both
the detectors can detect him, yielding zero coincidences at zero delay, which means
g(2)(0) = 0. Via the HBT interferometer it is also possible to explore the g(2)(∆t)
at subsequent or precedent times with respect to the coincidence at zero delay, by
applying a temporal shift or electronic delay ∆t to one of the two detectors. In the
case of single photon statistics, it is expected g(2)(0) < g(2)(∆t), ∀∆t 6= 0. The HBT
experiment is particularly suitable for the second-order coherence estimation thanks
to some distinguishing properties [95]:

• unbalanced transmission and reflection coefficients of the beam splitter do not
affect the g(2) measurement;



92 Chapter 4. Heralded single photons

• the two detectors do not require 100% efficiency or balanced efficiencies;

• click detectors are suitable for the HBT experiment without losing in accuracy
if P(1) >> P(2) >> P(n > 2);

• losses does not modify the g(2) measurement.

Timing/coincidence

electronics

1

2

4

3

D3

D4

FIGURE 4.4: Schematics of the HBT interferometer, with the light field
only in the input port 1, while in the input port 2 the vacuum field is
present. The output detection signals coming from the two detectors
are analyzed by suitable electronics (like a correlator or a start/stop

system) in order to provide the measured g(2)(τ).

4.2.2 Poisson statistics and the bunching/antibunching behaviour

The well known coherent state exhibits Poissonian photon number statistics, mean-
ing random distribution of the photon arrival times and a g(2)(τ) = 1, ∀τ. A source
characterized by Poissonian statistics exhibits neither bunching nor antibunching
behaviour, where bunching means that photons arrive more probably closely spaced
in time rather than far apart, as depicted in Fig. 4.5, and antibunching refers to the
opposite condition, i.e. with the photon arrivals far apart than close in time. In or-
der to link the photon statistics to the g(2) measurement, it has to be considered that
second order coherence relates the average photon number to the variation of the
photon number.

τc

a)

b)

c)
t

t

t

FIGURE 4.5: Photon detections as a function of time, with τc the
temporal coherence. a) Super-poissonian behaviour, exhibiting pho-
ton bunching. b) Sub-poissonian behaviour, exhibiting photon anti-
bunching. c) Poissonian behaviour, with random distribution of pho-

tons and no bunching or antibunching.
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For the bunched case g(2)(0) > g(2)(τ 6= 0), while the antibunched process has
g(2)(0) < g(2)(τ 6= 0). Considering the pulsed case, one can derive from Eq. (4.55)
the relation linking the g(2)[0] to the mean photon number µ = 〈n̂〉 and the variance
(∆n)2 = 〈n̂2〉 − 〈n̂〉2 as

g(2)[0] = 1 +
(∆n)2 − µ

µ2 . (4.60)

For a Poissonian source g(2)[0] = 1, and in fact µ = (∆n)2. If g(2)[0] > 1 then
the variance is larger than the mean value, typical of the bunching behaviour of
a super-Poissonian field. When g(2)[0] < 1 the variance is smaller than the mean
value, signature of the antibunching occurring with sub-Poissonian light, which is
the statistics required for single photon operation. In Fig. 4.6 is reported the g(2)

for various photon statistics as a function of the temporal delay ∆t between the two
arms of the HBT interferometer; the case of perfect sub-Poissonian (g(2)(0) = 0),
perfect super-Poissonian (g(2)(0) = 2, that is the thermal statistics) and Possonian
(g(2)(0) = 1) statistics are shown.

-1 -0.5 0 0.5 1
t [arb.]
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Super-Poissonian
Sub-Poissonian
Poissonian

FIGURE 4.6: g(2) for super-Poissonian, sub-Poissonian and Poisso-
nian light. The super- and sub-Poissonian statistics exhibit respec-

tively the expected bunched and anti-bunched behaviour.

4.3 Experimental parameters of heralded single photon sources

In this section, a short introduction to the main features of the detectors and tim-
ing electronics involved in single photon experiments (Section 4.3.1) is provided and
then it follows a brief introduction to the main experimental parameters for the char-
acterization of the heralded sources (Section 4.3.2).

4.3.1 Detection in single-photon experiments

Considering a free-space coupled detector, the detection efficiency is related to the
probability of obtaining an electrical signal, measurable for the readout electronics,
as a result of a photon illuminating on the active area of the detector. ηDE is the result
of other sub-processes, whose efficiencies affect the overall detection efficiency as
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[95]
ηDE = ηcouplηabsη

i
QEηth (4.61)

where ηcoupl is the coupling efficiency due to the collection optics used to deliver
the optical signal to the detector active-area, ηabs quantifies the probability that a
photon impinging on the active-area is absorbed, ηi

QE is the internal quantum effi-
ciency of the detector and ηth is the efficiency associated to the registration of the
generated electrical signal by the electronics external to the detector. In fact, each
electrical signal is registered and processed by means of electronic devices which
are usually separated from the optical detector. In a real detector, other parameters
have to be considered in order to deal with the detection process in the proper man-
ner. These parameters are mainly related to the working principle of the detector
itself, which is schematized in Fig. 4.7. These parameters are:

• timing latency, tlat, which is the time delay between the arrival of the photon
on the detector and the time at which the photogenerated output electrical
pulse crosses a defined threshold level;

• rise time, trise, which is the time needed by the output detection electrical pulse
to pass from the 10 % to the 90 % of its maximum value;

• timing jitter, which is the pulse-to-pulse variation in the tlat;

• dead time, tdead, which is the time interval over which the detector is not capa-
ble of giving an output electrical pulse;

• reset time, treset, which is the time required by the detector to restore its maxi-
mum detection efficiency after the dead time;

• recovery time, trecovery = tdead + treset, which is the time needed by the detector
to recover to its maximum detection efficiency after a detection event;

• dark count rate, RDC, which is the average counts per second registered by a
detector when no input light is present;

• afterpulse probability, Pa f terpulse, which is the probability of an additional out-
put detection signal, as a dark count, after a previous detection event.

The detection efficiency enters as a crucial parameter when calculating the prob-
ability that the detector gives an output if one or more photons have reached the
active area; in ideal (no afterpulsing or dark counts) threshold detectors (detectors
that are not able to resolve the number of photons related to the detection event but
only whether the photons have been detected), like the single photon avalanche de-
tectors (SPADs), the probability that the detector does not give any output,pDE(0),
with P(n) probability of the incident light flux is

pDE(0) =
∞

∑
n=0

(1− ηDE)
nP(n), (4.62)

while the probability for a "click" on the detector (i.e. the detector gives an electric
output) is

pDE(1) =
∞

∑
n=1

[1− (1− ηDE)
n]P(n). (4.63)
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FIGURE 4.7: Parameters involved in the detection process and their
timing relationship.

4.3.2 Measurement parameters

Coincidence to accidental ratio

When dealing with the pair generation through parametric processes, it is useful to
introduce a parameter which quantifies the overall coincidence detection efficiency
between signal and idler. In fact, the higher the losses on the idler or signal detection
arm, the lower the probability that the detection of a signal/idler photon implies the
simultaneous detection of his twin partner. The losses thus reduce the coincidence
rate, promoting the occurrence of coincidences between the signal (idler) with other
detections, coming from noise or subsequent/previous idler (signal) photons. The
coincidence occurring between the signal and idler belonging to the same pair are
the actual coincidences characterizing the temporal correlation of the emitted pairs.
The coincidences occurring between signal and idler photons belonging to distinct
pairs, or occurring between one photon of the pair and the noise, or between two
noise photons, are indicated as accidental coincidences. An efficient source of pho-
ton pairs is characterized by a rate of "good" coincidences much greater than the
accidental ones, and this concept is formalized through the coincidence to acciden-
tal ratio (CAR) parameter [59],

CAR =
Rsi

Rac
. (4.64)

with Rsi the idler-signal coincidence rate and Rac the accidental coincidence rate.
This parameter is closely related to the signal-idler cross-correlation g(2)si as

g(2)si (τ) =
〈â†

s (t + τ)â†
i (t)âi(t)âs(t + τ)〉

〈â†
s (t + τ)âs(t + τ)〉〈â†

i (t)âi(t)〉
=

Rsi(τ)

Rs Ri τb
, (4.65)

with Rs the signal generation rate, Ri the idler generation rate and τb the coinci-
dence time window. When a CW laser is used,

CAR =
Rsi(0)
Rsi(∞)

, (4.66)
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while if pulsed pump is employed,

CAR =
Rsi(0)

Rsi(n T)
, (4.67)

with T the period of the laser pulses and n > 0 an integer number, since all the
side peaks should be at the same height [106]. For both pulsed and CW light, the
g(2)si is normalized such that

CAR = g(2)si (0). (4.68)

Experimentally, the CAR value is measured as in Fig. 4.8, with the typical out-
come in the right part of the picture, normalized as in Eq. (4.68). To carry out the
measurement, a start/stop timing electronics or a correlator can be used equiva-
lently in the case of CW pumping. If the pump is pulsed, the correlator can be used
only if the pair generation rate is so low that the probability of detecting more than
one pair in the correlator time window is negligible. In fact, the correlator works by
shifting the individual detection traces of the two detectors, cross-correlating also
good coincidence events, giving rise to an over estimation of the accidental counts.

g(2)(τ)

τ0 T 2T-T-2T

SFWM in waveguide

signal

idler

si

timing

electronics

CAR

1

FIGURE 4.8: CAR measurement set-up with pulsed SFWM in waveg-
uide, with 1/T repetition rate of the pump. The timing electronics can

be a start/stop TDC or a correlator.

The CAR is therefore a fundamental parameter when characterizing the quality
of a source in terms of reliability of its pair emission, or, equivalently, it estimates the
amount of noise photons together with the wanted correlated pairs. A useful metric
for the CAR has been introduced in Ref. [142], where it is derived the expected max-
imum CAR attainable given the dark counts and coupling losses for the detection of
signal and idler photons. The maximum CAR is calculated as

CARmax = 1 +
1(√

ds
αs
+
√

di
αi

)2 , (4.69)

with ds, di the dark counts (in ns−1) for the signal and idler detectors respectively
and αs, αi the transmittance for the signal and idler paths respectively.

Purity

As already introduced in former sections, purity is the measurement of the single
mode emission character of the generated single photon. In the case of paramet-
ric processes, this single mode character refers to the signal and idler beams indi-
vidually, whose purity is inversely proportional to their degree of entanglement.
It has been described in Section 4.1 that the purity of the single photon state is
given as the trace over the system density matrix squared, or in terms of the inverse
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of the Schmidt number, that are almost equivalent approaches to the definition of
the purity. Single mode emission, absence of correlations/entanglement, or single
squeezer description of the state are all synonyms to indicate a unit purity heralded
single photon state. It can be experimentally quantified in several ways. As stated
in Eq. (4.51), the purity of the state can be accessed directly through the map of the
JSI, which can be measured exploiting the larger efficiency of the stimulated pro-
cess [143]. This technique is called stimulated emission tomography, and is based
on the use of a tunable stimulating seed and the subsequent spectrum measurement
of the generated light. In this way the JSI is rapidly and easily reconstructed, with
a resolution depending on the seed tunability and spectrometer’s resolution. How-
ever, the JSI cannot map the phase correlations involved in the two-photon state,
since it is a measure of the intensity of the fields rather than of their amplitude. The
estimation of the state purity considering the contribution of the spectral-phase cor-
relations can be accessed through the degree of second order coherence [144]. Within
the squeezed state description, we saw in Section 4.1.6 that each individual squeezer
exhibits a thermal statistics and the single mode emission corresponds to the contri-
bution of only one squeezer to the single photon beam; as a result, when the state is
pure, a thermal behaviour is expected for the heralded single photon. As introduced
in Section 4.2, the statistics of a light source can be measured through the g(2) cor-
relation function, expecting g(2)(0) = 2 for a thermal source and g(2)(0) = 1 when
the light is Poissonian. Therefore, the signal/idler single photon beam is expected
to exhibit a behaviour in between these two boundaries, such that

1 ≤ g(2)(0) ≤ 2, (4.70)

that is, in general, a super-Poissonian statistics if the g2 does not equal the bound-
aries of the inequality. The maximum and minimum purity are therefore achieved
when g(2) = 2 and g(2) = 1 respectively, and the purity parameter, and also the
Schmidt number K, can thus be estimated as

P =
1
K

= 1− g(2)(0). (4.71)

From an experimental point of view, the measurement of the g(2) is typically car-
ried out through the HBT interferometer explained in Section 4.2.1, adapted to the
SFWM analysis as in Fig. 4.9a, where the setup for the signal statistics measurement
is shown together with the typical outcome. The measured g2 exhibits a peak at
zero delay between the two detectors, which corresponds to the coincidences within
the same pulse or coherence time, while the side peaks arise due to the correlated
detection with subsequent or precedent pulses, that are indicated as the accidental
counts. The quantity that is measured through the correlator or start/stop electron-
ics is the rate of coincidences Rcc between the two detectors of the HBT; the g(2) as
a function of the delay τ between the detections at the two detectors in the HBT is
then calculated as

g(2)(τ) =
Rcc(τ)

R1R2τb
, (4.72)

where R1, R2 are the individual detection rates of the detectors and τb is the co-
incidence time window. With this normalization, the g2(0) will be between 1 and 2,
providing a direct measurement of the purity of the state. Notice that the denomi-
nator in Eq. (4.72) corresponds to the accidental counts in the correlation measure-
ments, therefore the g(2)(0) can be also seen as the rate of the "good" coincidences
(peak at τ = 0) normalized for the rate of accidental counts in the self correlation
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measurement (side peaks at τ > 0).
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FIGURE 4.9: a) Setup (left) and typical outcome (right) of the g(2) mea-
surement for the SFWM process, exhibiting super-Poissonian statis-
tics. The pump is pulsed with repetition rate 1/T. b) Setup (left) and
typical outcome (right) for the measurement of the heralded second
order correlation function, g(2)H , in the case of SFWM, with the typical
anti-bunching dip, signature of the non-classical single photon (sub-
Poissonian) statistics. The pump is pulsed with repetition rate 1/T.

A third approach to measure the heralded single photon state purity is through
the Hong-Ou-Mandel (HOM) interference [145] between two independent sources
of heralded single photons. If the heralded photons are indistinguishable and pure,
they will interfere with maximum visibility, since they are not in a mixed state with
limited quantum interference. The two arms of the interferometer are delayed in
time by τ, and the resulting measurement is the plot, as a function of τ, of the co-
incidence counts between the single photons heralded by the corresponding photon
partner. When the state is pure, a dip is present at zero delay, whose vicinity to
zero is proportional to the degree of purity and distinguishability of the states [125].
Despite the HOM interference directly deals with the measurement that is mostly
involved in practical quantum applications, it returns the total state purity, mean-
ing that it is not possible to separate the contribution to the purity coming from
the mixedness of the state or from the distinguishability of the photons involved.
Therefore, the HOM interference visibility does not give an exact measurement of
the purity, but sets a lower bound on the mean photon purity [125].

True single photons

The definition of purity for heralded photons has a different meaning with respect
to atom-like emitters. With atom like emitters, in fact, the g(2) exhibits a clear anti-
bunching dip at zero delay, caused by the intrinsic single photon emission of the
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source. This is not the case for squeezed states generated through parametric pro-
cesses, which display a peak at g(2)(0), due to their super-Poissonian statistics. In
order to recover the sub-Poissonian behaviour, and thus the single photon opera-
tion of the parametric source, the heralding scheme is introduced. Let us name the
idler the herald and the signal the heralded photon. When the heralding procedure
is considered, the second order self correlation for the signal is conditioned on the
detection of the herald idler, thus changing the expression of the g(2). Therefore,
the conditioned second order correlation function g(2)H is introduced, that is the self
correlation of the signal beam triggered by the detection of its twin idler. The ex-
perimental set-up for this kind of measurement is shown in Fig. 4.9b; also for the
conditioned g(2) the experiment is based on a HBT interferometer but with the idler
(herald) arm added in the timing electronics (correlator,start/stop,...). The effect of
the herald arm is to trigger the detection of the signal-signal coincidences only when
an idler has been detected, giving rise to the anti-bunching dip in Fig. 4.9b (right). In
this sense the g(2) is now conditioned. To understand the origin of the dip in the g(2)H ,
I introduce a suitable formalism for this conditioned correlation function, which is
written as

g(2)H (t1, t2|ti) ≡
〈â†

s (t1)â†
s (t2)âs(t2)âs(t1)〉pm

〈â†
s (t1)âs(t1)〉pm〈â†

s (t2)âs(t2)〉pm
, (4.73)

where â†
s (t), âs(t) are respectively the creation and destruction operators for a

photon in the signal mode at time t and 〈·〉pm is the average over the post-measurement
state upon the detection of the herald idler at time ti [146]. Eq. (4.73) can be rewritten
making explicit the conditioning operated by the idler photon as [147]

g(2)H (t1, t2|ti) =
Rssi(t1, t2, ti)Rpair

Rsi(t1 − ti)Rsi(t2 − ti)
, (4.74)

with Rpair = 〈â†
i (t)âi(t)〉 = 〈â†

s (t)âs(t)〉 the pair generation rate, Rssi(t1, t2, ti) the
rate of triple coincidence between the idler detected at ti and two signal photons
detected at t1 and t2, and Rsi(τ) the coincidence rate of signal and idler with a delay
τ in between. These quantities are written as [147]

Rssi(t1, t2, ti) = 〈â†
i (ti)â†

s (t1)â†
s (t2)âs(t2)âs(t1)âi(ti)〉, (4.75a)

Rsi(τ) = 〈â†
s (t + τ)â†

i (t)âi(t)âs(t + τ)〉. (4.75b)

In order to characterize the heralded source, it is of interest to investigate the
particular case of g(2)H (0, τ|0), meaning that one signal detector clicks at the same
time of the idler detector, and the second signal detector has a τ delay with respect
to them. Intuitively, this particular case measures if the statistics of the heralded
source is actually resembling the single photon one, expecting a dip at τ = 0 and
reaching 1 as the delay approaches ∞ or readily at the subsequent pump periods if
the experiment is carried out in the pulsed regime. Therefore Eq. (4.73) is rewritten
in a more useful and practical form as

g(2)H (0, τ|0) =
Rssi(0, τ, 0)Rpair

Rsi(0)Rsi(τ)
, (4.76)

where all the terms comes from the direct measurement of the three-fold or two-
fold coincidences. In order to understand the importance of the CAR quality in
determining the sub-Poissonian statistics, I rewrite Eq. (4.76) as a function of the
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cross correlation between signal and idler g(2)si of Eq. (4.65):

g(2)H (τ) =
〈â†

i (0)â†
s (0)â†

s (τ)âs(τ)âs(0)âi(0)〉
g(2)si (0)g(2)si (τ)

1
R3

pair
, (4.77)

that is expected to display a dip close to zero at τ = 0 and a value of 1 for
τ → ∞. The same result is expected, analogously, in the pulsed case, with τ equal
at an integer number of pump periods. As clear from Eq. (4.77), any dip in the
g(2)H at zero delay should arise from a strong peak at τ = 0 in the denominator; in
fact, the numerator in Eq. (4.77) is just the triple coincidence of the signal and idler,
that can be seen as the signal-signal self correlation sampled at the idler rate, thus
resembling the super-Poissonian statistics of the signal beam. As anticipated before,
the key parameter determining the anti-bunching is the g(2)si (0), which peaks at the

CAR value. Hence, a relation between g(2)H (0) and g(2)si (0) exists, that is [148]

g(2)H (0) =
G(3)(0)
G(3)(τ)

1

g(2)si (0)
=

G(3)(0)
G(3)(τ)

1
CAR

, (4.78)

with G(3)(τ) = 〈â†
i (0)â†

s (0)â†
s (τ)âs(τ)âs(0)âi(0). The higher the CAR, the closer

to the anti-bunched statistics is the heralded photon. In other terms, the act of
heralding can be seen as a procedure to kill the probability of detecting zero sig-
nal photons, i.e. p(0) = 0. The signal beam, in fact, exhibits a super-Poissonian
statistics with typically a very low number of pairs per pulse, that is the typical con-
dition for the single photon operation [59], and hence resulting in a photon number
distribution such that p(0) � p(1) � p(2)..., as in Fig. 4.10a. As soon as the herald
trigger is applied, the signal detectors look at the presence of the photons only when
the pair has actually been generated, thus minimizing p(0), as in Fig. 4.10b, and
increasing the average photon number per pulse µ ' p(1) � p(2) [95]. Therefore,
according to Eq. (4.59),

g(2)H (0) ' 2p(2)
µ2 � 1, (4.79)

displaying the single photon sub-Poissonian statistics, which is closer and closer
to zero as the pump power is reduced.

p(n)

n0 4321 n0 4321

μ<<1 μ~1

a)

p(n)~~
b)

FIGURE 4.10: a) Normalized photon number distribution for a super-
Poissonian signal beam. b) Normalized photon number distribution
for a super-Poissonian signal beam when the heralding detection is

applied. µ is the mean photon number per pulse.
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Heralding efficiency

When dealing with heralded single photons one of the parameters that character-
izes the practical feasibility of the source of such photons is the heralding efficiency
ηH. Such parameter quantifies the probability that, given the detection of the herald
photon, also the heralded photon will be detected. The heralding efficiency, with the
idler as the herald photon, is measured as

ηH =
Rsi

Ri
(4.80)

where Rsi is the rate of coincidences between signal and idler photons, while Ri
is the generation rate of the idler photons.

Close to the concept of heralding efficiency is the preparation efficiency ηP, a
parameter which get rid of the quantum efficiency of the detector, quantifying the
probability that given a detection on the herald counter, the heralded photon will
be successfully delivered to its application. In these terms, ηP is a generalization
of the heralding efficiency, since it is independent of the detection system used for
the heralded photon. Heralding and preparation efficiencies are mainly limited by
losses occurring along the path from the source to the detectors, that in the case
of integrated sources of single photons (waveguides, fibers, crystals...) correspond
to propagation and coupling losses. Because of this, integrated waveguide single
photon sources are a good solution to keep the preparation efficiency high, thanks
to the low optical loss and high mode matching to the optical fiber [95].

Limits to efficient single-photon generation

When working with on-chip parametric processes, several side processes may occur
together with the wanted nonlinear pair generation. These side processes typically
are detrimental for the quality of the heralded source, by inducing losses or limiting
the single photon behaviour of the source. The most common effects are TPA, XTPA,
FCA and multipair generation. TPA, XTPA and FCA have been already introduced
in Section 3.1, and here involve the pump photons or the pump and a generated
photon, inducing losses on the generated frequencies and therefore limiting all the
main features of the heralded single photon source. Multipair generation is related
to the statistics of the generation process, and it directly affects the single photon
statistics of the source. Multipairs arise as the terms p(n > 2) of the photon number
distribution. Their impact scales proportionally with the average number of photons
per pair, thus with pump power. In general, they affect CAR, g(2)ss (0) and the g(2)H (0),
being a main obstacle to the implementation of feasible heralded sources [149], since
when multipairs are generated at least two photons will be heralded, not only one.
As a common practice, to avoid multipair no more than 0.1 signal-idler pairs per
pulse have to be generated [59]. Therefore, heralded sources are forced to work at
very low pump powers, with limited brightness, making the linear and coupling
loss one of the key limitations for the realization of efficient and bright integrated
sources of single photons.

4.4 Purification of the heralded single photon state

Achieving high purity single photon states is a fundamental task for the practical
implementation of single photon based quantum technologies. In fact, most of its
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applications relay on the interference between two or more indistinguishable pure
single photons [123, 150], like quantum logic gates [151] or quantum computing
[152]. Maximum purity is achieved when the single photon emission has a single
mode character, thus hindering the projection of the heralded photon into a mixed
state of all possible modes [19], which would inevitably degrade the single photon
purity. Without treating adequately the parametric generation process, the emitted
pairs are naturally entangled in both spatial and spectral degree of freedom, due to
the energy and momentum conservation [121]. As a result, the photons in the pair
are individually in a mixed state, as shown by the reduced density matrix of the
pure two-photon state. Within the heralding picture, this means that once the herald
photon is measured, the heralded one will be projected into a mixture of states due
to the correlations that hold between the two twin photons, thus preventing a high
quantum interference visibility between independent sources [121]. Because of this,
high attention is devoted to the development of measurement techniques able to
provide a reliable estimation of the state purity and of feasible strategies for the
purification of heralded single photon states [143]. The single mode character of the
photon generation, and so the purity, can be evaluated with a plenty of methods, e.g.
via the JSI tomography, the g(2) measurement, or through the HOM interference. The
tomography of the JSI is a more intuitive description of the process of purification.
Purification occurs through the engineering of the two photon state produced by
the nonlinear parametric process. The idea is to tailor the process so that the two
photon state approaches as much as possible a separable state, thus exhibiting high
single photon purity. Looking at the JSA formulation in Eq. (4.48) it is evident the
role of the pump bandwidth α(ω) and the phase matching function φ(ωs, ωi, ω) in
manipulating its shape. In particular, the pump bandwidth controls the width of the
JSA along the anti-diagonal direction, labelled with A in Fig. 4.11a, while the width
on the diagonal (B in Fig. 4.11a) depends on the phase matching function. Within
this picture, the task of making the JSA factorizable reduces to engineer properly the
spectral profiles of the pump and phase matching functions in such a way that the
final JSI takes the shape of a circle, like in Fig. 4.3b. This can be done through several
approaches, each with its pros and cons.

The simplest technique adopted when dealing with SFWM heralded states is
the spectral filtering: filters are placed on both the heralding and heralded beams,
shaping the JSA by eliminating the unwanted frequency modes [19]. The filtering
process is sketched in Fig. 4.11b, where δs and δi are the filter bandwidth for the
signal and idler beams respectively. The effect of the filters can be included into the
description of the bi-photon wavefunction by multiplying F(ωs, ωi) in Eq. (4.47) by
two gaussian functions of the form

f j(ωj) =
1
Γ

exp

[
(ωj 0 −ωj)

2

δ2
j

4ln(2)

]
, (4.81)

with Γ a normalization factor, ωj 0 the central filter frequency, δj the filter pass-
band and j = i, s labelling the idler and signal, respectively. This approach applies
a drastic manipulation on the JSA, achieving the task of high purity single photon
state, as shown in Fig. 4.12, where the JSI is qualitatively shown before and after
the filtering. However, applying filters has the detrimental effect of lowering the
brightness and heralding efficiency of the source, since the photons occupying the
unwanted modes are irredeemably lost.
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FIGURE 4.11: JSI as a function of signal and idler wavelengths. a) The
JSA, and so the JSI, can be manipulated by engineering properly the
phase matching function and pump spectral profiles, which affect the
A and B widths respectively. b) The factorization of the JSA can be

achieved by filtering adequately the signal and idler beams
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FIGURE 4.12: Qualitative plot for the JSI (a) before and (b) after the
application of filters on both the signal and idler arms.

4.4.1 Group velocity matching for high purity states

An alternative approach to the factorization of the JSA is based on the group velocity
matching. The JSA function in Eq. (4.48) depends strongly on the phase mismatch
parameter ∆k (or ∆β) in φ(ωs, ωi, ω). For the SFWM case and neglecting the self and
cross phase modulation contribution, ∆β is written as

∆β = β1(ω1) + β2(ω2)− βs(ωs)− βi(ωi), (4.82)

where the labels 1, 2, s, i refer respectively to the first pump, second pump, signal
and idler. Following the treatment in [136], expanding ∆β in Taylor series around
the frequencies ω0 j (j = 1, 2, s, i) at which perfect phase matching is attained, ∆β can
be rewritten as a linear approximation

L∆βlin = L∆β0 + Ts∆ωs + Ti∆ωi, (4.83)
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with
∆β0 = β

(0)
1 (ω0 1) + β

(0)
2 (ω0 2)− β

(0)
s (ω0 s)− β

(0)
i (ω0 i), (4.84a)

Tj = τj + τp
σ2

1

σ2
1 + σ2

2
, (4.84b)

τj = L
[

β
(1)
2 (ω0 2)− β

(1)
j (ω0 j)

]
, (4.84c)

τp = L
[

β
(1)
1 (ω0 1)− β

(1)
2 (ω0 2)

]
, (4.84d)

β
(n)
j (ω) =

∂nβ j

∂ωn

∣∣∣
ω=ω0 j

, (4.84e)

with σ1 and σ2 the bandwidths of the two pumps. By plugging ∆βlin into Eq.
(4.48), it is possible to get rid of the integral, thus rewriting the JSA within the linear
approximation as [136]

Flin(∆ωs, ∆ωi) = α(∆ωs, ∆ωi)φ(∆ωs, ∆ωi), (4.85)

with

α(∆ωs, ∆ωi) = exp
[
(∆ωs + ∆ωi)

2

σ2
1 + σ2

2

]
, (4.86)

and φ(∆ωs, ∆ωi) is the same of Eq. (4.49) but with ∆β = ∆βlin. At this point the
idea of factorization of JSA can be understood simply by looking at its approximated
function Flin, which is simply the product of two independent functions. Consider-
ing the case of degenerate pump, α(∆ωs, ∆ωi), due to the energy conservation, has
a shape which forms an angle of -45o with the signal frequency axis in the JSA plot,
with a width equal to the pump bandwidth, as shown in Fig. 4.13a. The phase
matching function φ(∆ωs, ∆ωi), on the other hand, forms an angle θpm with respect
to the signal frequency axis which depends on the group velocities as [95]

θpm = −arctan
[

δi

δs

]
, (4.87)

with δj = L
(

β
(1)
p (ωp 0)− β

(1)
j (ωj 0)

)
. If θpm = +45o, as in Fig. 4.13b, the final JSA

will be the one in Fig. 4.13c, exhibiting a circular shape, signature of a factorizable
JSA, i.e. of a pure heralded single photon state. By solving Eq. (4.87) for θpm = +45o

it is found the proper relationship between the group velocities
(

β
(1)
j

)−1
,

β
(1)
p (ω0 p) =

β
(1)
3 (ω0 3) + k(1)4 (ω0 4)

2
, (4.88)

with p labelling the pump. The condition in Eq. (4.88) is called symmetric group
velocity matching. Group velocities can be engineered also according to another
condition, called asymmetric group velocity matching, which provides the factoriza-
tion of the JSA but with θpm = 0o or 90o [95]. The group velocity matching technique
for SFWM has been extensively used with optical fibers exploiting their birefrin-
gence [136, 153, 154], which allowed to control the phase matching condition of the
waves involved in the process by taking advantage of the different group velocities
characterizing the ordinary and extraordinary rays.

Despite the group velocity matching technique gets rid of the narrow spectral
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FIGURE 4.13: JSA engineering via the symmetric group velocity
matching technique. a) Pump spectral envelope α(∆ωs, ∆ωi). b)
Phase matching function φ(∆ωs, ∆ωi) with θpm = +45o. c) JSA result-
ing from the product of the pump envelope (a) and the phase match-
ing function (b). Within the symmetric group velocity matching, JSA
exhibits the factorization required for a pure heralded single photon

state.

filtering guaranteeing at the same time high single photon purities, it is a viable so-
lution only within the fiber platform, while for silicon chip devices it is not suitable
due to the modest birefringence. However, it is still possible to apply the group
velocity matching technique in the silicon platform if the higher order modes of a
multimode waveguide are considered, where the different group velocities charac-
terizing the different waveguide modes can be used [155]. Nevertheless, the group
velocity matching technique requires non trivial dispersion engineering and it is re-
liable only when dealing with small generation detunings from the pump, otherwise
higher order dispersion terms come into play [156]. Because of this, more robust and
reliable strategies have been recently investigated, focusing on the other degrees of
freedom available in SFWM, such as the temporal delay that can be introduced be-
tween the pumps [121].

4.4.2 Dual-pump delay approach

The standard approach to pair generation through SFWM relays on degenerate pro-
cesses, where the two pump photons come from the same pump pulse and are thus
indistinguishable. However, as explained in Section 3.4, FWM can occur also within
the non-degenerate picture, which involves two pump waves which differ spec-
trally. The possibility of performing the process in the degenerate or non-degenerate
scheme gives additional flexibility to the SFWM over the SPDC process. Moreover,
the non-degenerate scheme proper of FWM has been shown to be a powerful tool
for the achievement of almost unit purity single photons, as theoretically proposed
by Fang et al. [121]. In this work, it is proposed to use a controlled temporal delay
between the two pump pulses for the generation of spectrally pure single photons
through non degenerate FWM. In fact, by tuning adequately the delay it is possible
to shape the phase matching function to a gaussian envelope, thus obtaining a circu-
lar JSI with unit purity. This concept is shown in Fig. 4.14 in the case of a waveguide,
where the purity is maximized when the two pump pulses with different group ve-
locity and proper delay are used. When the pumps are degenerate, they are equal
in all the degrees of freedom and have equal group velocities. Therefore, they are
injected in the waveguide (gray box in the figure) without any temporal delay τ and
propagate till the end of the waveguide without any walk-off. In this case the JSI
exhibits an elongate anti-diagonal profile with reduced state purity.
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When the pumps are not degenerate, whatever the degree of freedom involved (po-
larization, wavelength, spatial mode), they can be prepared with different group
velocities. By applying a temporal delay between the two pulses (τ < 0), it is possi-
ble to make them interact only when they are both already in the sample. Then, due
to the walk-off, the faster pulse move forward ceasing the interaction before the end
of the sample. As a result, at the end of the waveguide the faster pulse is ahead with
respect to the slower one (τ > 0). By choosing adequately τ it is possible to shape
the JSI as a circle, thus with near unit purity.

τ<0 τ>0

τ=0

Degenerate

pumps

vg1 = vg2
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ω
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i

Non
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FIGURE 4.14: This figure provides an intuitive description of the dual
pump delay scheme for the purification of the single photon purity
with SFWM. When the pumps are degenerate, they are equal in all
the degrees of freedom and have equal group velocities. Therefore,
they are injected in the waveguide (gray box in the figure) without
any temporal delay τ and propagate till the end of the waveguide
without any walk-off. In this case the JSI exhibits an elongated anti-
diagonal profile with reduced state purity. When the pumps are not
degenerate, whatever the degree of freedom involved (polarization,
wavelength, spatial mode), they can be prepared with different group
velocities. By applying a temporal delay between the two pulses
(τ < 0), it is possible to make them interact only when they are both
already in the sample. Then, due to the walk-off, the faster pulse
move forward ceasing the interaction before the end of the sample.
As a result, at the end of the waveguide the faster pulse is ahead with
respect to the slower one (τ > 0). By choosing adequately τ it is

possible to shape the JSI as a circle, thus with near unit purity.

We propose to apply the same idea of Fang et al. but exploiting the differ-
ent group velocities characterizing the higher order modes involved in intermodal
FWM. We focus on the case where the pumps are degenerate in frequency and with
the same pump profile, but are loaded on different waveguide modes.

The treatment starts from the JSA function already introduced in Eq. (4.48), that
I rewrite by making explicit the integral over the propagation direction z and con-
sidering a gaussian profile for the pumps:

F(ωs, ωi) =N
∫ L

0

∫
dωpexp

−(ωp −ω0
p

σ

)2
 exp

−(ωs + ωi −ωp −ω0
p

σ

)2


× exp
[
−iωpτ

]
exp [−i∆kz] ,

(4.89)
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where N is a normalization factor, L is the waveguide length, ωp, ωs, ωi the
pump, signal and idler frequencies, ω0

p the central pump frequency, σ defines the
bandwidth of the pump pulse, τ is the temporal delay between the two pumps and
∆k is the phase mismatch parameter as defined in Eq. (3.53), i.e.

∆k =
ω0

p

c
nj

e f f (ω
0
p) +

ω0
p

c
nq

e f f (ω
0
p)−

ω0
s

c
nl

e f f (ω
0
s )−

ω0
i

c
nm

e f f (ω
0
i ), (4.90)

where ω0
j (j = p, s, i) are the frequencies corresponding to the perfect phase

matching, i.e. yielding ∆k = 0.
By Taylor expanding ∆k around the phase matching frequencies and considering

only the linear terms, as already shown with Eq. (4.50), Eq. (4.89) can be simplified
as a function of ∆ωs = ωs −ω0

s and ∆ωi = ωi −ω0
i [136],

Flin(∆ωs, ∆ωi) = Nα (∆ωs, ∆ωi) φ (∆ωs, ∆ωi) , (4.91)

where the pulse envelope is given by

α (∆ωs, ∆ωi) = exp

[
− (∆ωs + ∆ωi)

2

2σ2

]
(4.92)

and the phase matching function is written as

φ (∆ωs, ∆ωi) = exp

[
−
(

τs∆ωs + τi∆ωi

σe f f τp

)2
]

×
[

erf
(

σe f f (τ + τp)

2
+ i

τs∆ωs + τi∆ωi

σe f f τp

)
− erf

(
σe f f τ

2
+ i

τs∆ωs + τi∆ωi

σe f f τp

)]
,

(4.93)

with σe f f = σ/
√

2 the effective bandwidth; the group delays are given as

τs = L

(
β1,p1(ω

0
p) + β1,p2(ω

0
p)

2
− β1,s(ω

0
s )

)
, (4.94a)

τi = L

(
β1,p1(ω

0
p) + β1,p2(ω

0
p)

2
− β1,i(ω

0
i )

)
, (4.94b)

τp = L
(

β1,p1(ω
0
p)− β1,p2(ω

0
p)
)

, (4.94c)

with β1,j(ω) = dk j(ω)/dω (j = p, s, i) the inverse of the group velocity for the
pump, signal and idler waveguide modes. The phase matching angle, already de-
fined in Eq. (4.87), can be rewritten as a function of the temporal delays as [136]

θpm = −arctan (τs/τi) . (4.95)

In order to have a factorizable single photon state, the θpm should be in the range
[0◦, 90◦], therefore requiring that [121]

τsτi ≤ 0. (4.96)
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Eq. (4.96) sets a requirement for the factorizability, that can occur only if the
idler and signal are anti-symmetric in terms of β1 with respect to the average β1 of
the pumps, i.e. if β1,i > 〈β1,p〉 then the β1,s < 〈β1,p〉, and viceversa, with 〈β1,p〉 =
β1,p1+β1,p2

2 . This condition implies a correlation in the group velocities of the signal
and idler: the two generated waves must have respectively greater and lower vg than
the threshold set by the pump group velocities. Since different group velocities are
involved, inevitably the process will be affected by a reduced interaction length, thus
resulting in a lower efficiency. Because of this the effective length Le f f is introduced,
which quantifies the effective interaction length over which the FWM process takes
place. In computing Le f f I consider τ = τp/2, such that the two pump pulses will be
perfectly overlapped in the center of the waveguide (z = L/2), thus maximizing the
available interaction. The effective length is defined as [121]

Le f f =

∫ L
0 dz

∫
dtIp1(z, t)Ip2(z, t)∫

dtIp1(z = L/2, t)Ip2(z = L/2, t)
, (4.97)

where Ip1(z, t), Ip2(z, t) are the intensities of the two pumps at spatial position
z and time t. A value of τ that does not lead to the pump pulses to be perfectly
matched at z = L/2 results in a limited generation efficiency and purity. If the
pump waves have the same group velocity, the interaction between the pumps does
not vary along the waveguide and Le f f = L.

Negligible walk-off

Considering the case of negligible temporal walk-off, i.e. β1,p1(ω
0
p) ∼ β1,p2(ω

0
p), then

the interaction between the pump pulses starts as soon as they enter the medium and
stops at the end of the waveguide, with almost perfect overlap all over the propaga-
tion. The effective length is L and the resulting phase matching function exhibits the
usual sinc behaviour as

φ (∆ωs, ∆ωi) = sinc
(

τs∆s + τi∆i

2

)
. (4.98)

The sinc function is the typical shape of the phase matching function for para-
metric processes, and its oscillatory behaviour hinders the achievement of a factor-
izable JSA without resorting to spectral filtering, as shown in Fig. 4.15, where the
JSI of a sinc shaped phase matching function is shown; despite the circular shape of
the central lobe, centered at the phase matching position, the side lobes limits the
factorizability of the state [156].

Optimal walk-off

Let us now consider the case in which the slower pump pulse is τp/2 in advance
with respect to the faster one. In these conditions, the interaction between the two
pulses starts only when they are both already in the sample, gradually increasing to
the maximum overlap at z = L/2, and then decreasing and switching off before the
end of the waveguide. This situation occurs when |σe f f τp| � 1, which corresponds
to long waveguides, large difference between the pump group velocities, or short
pulse duration of the pumps [121]. The interaction length in this case becomes

Le f f =

√
2

|σe f f τp|
L, (4.99)
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i

FIGURE 4.15: JSI exhibiting a sinc behaviour for the phase matching
function. The side lobes limits the achievement of a factorizable single

photon state.

thus scaled proportionally to 1/|σe f f τp|, which is a large value when the optimal
delay is considered. Despite the reduced interaction length and, therefore, the lower
efficiency, the phase matching function now exhibits a gaussian shape,

φ (∆ωs, ∆ωi) = exp

[
−
(

τs∆ωs + τi∆ωi

σe f f τp

)2
]

. (4.100)

At this point, the JSA in Eq. (4.91) is given by the product of two gaussian shaped
functions, the pulse envelope in Eq. (4.92) and the phase matching function in Eq.
(4.100), such that

Flin (∆ωs, ∆ωi) ≈ exp

[
− (∆ωs + ∆ωi)

2

2σ2

]
exp

[
−
(

τs∆ωs + τi∆ωi

σe f f τp

)2
]

. (4.101)

By using Eq. (4.101) and Eq. (4.51), an analytical expression for the purity P is
found [121],

P =

√√√√√√√
(

τi
τp
− τs

τp

)2(
1
2 + 2

(
τs
τp

)2
)(

1
2 + 2

(
τi
τp

)2
) . (4.102)

Please notice that Eq. (4.102) states that the purity is only a function of the delay
ratios, namely τi/τp and τs/τp, and it does not depend on the length of the sample.
In fact, the interaction length has an upper limit fixed by the delay between the
pumps and by the group velocities of the waves involved in the process. Therefore
extending the waveguide beyond the maximum effective interaction length does
not result in an increased interaction time. In other words, when the faster pump
pulse surpasses the slower one, the interaction switches off whatever the remaining
waveguide length to go through.
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Looking now at the condition for unit purity, by solving Eq. (4.102) for P = 1 the
following relation is found,

τsτi +
τ2

p

4
= 0, (4.103)

which gives the conditions for perfect factorizability of the JSA, i.e. unit purity of
the single photon state. By investigating deeper Eq. (4.103), it is possible to extract a
fundamental relation between the group velocities of the waves for the achievement
of unit purity. From here on I will neglect the frequency dependence of the β1’s, such
that β1,j

(
ω0

j

)
≡ β1,j, (j = p1, p2, s, i). Defining the average β1 of the pumps as

〈β1,p〉 =
β1,p1 + β1,p2

2
, (4.104)

and considering that

β1,p1 − β1,p2 = 2
(
〈β1,p〉 − β1,p2

)
= 2

(
β1,p1 − 〈β1,p〉

)
, (4.105)

it is possible to rewrite τ2
p and 4τsτi as

τ2
p = 4L2 (〈β1,p〉 − β1,p2

) (
β1,p1 − 〈β1,p〉

)
, (4.106)

and

4τsτi = 4L2 (〈β1,p〉 − β1,i
) (
〈β1,p〉 − β1,s

)
. (4.107)

Therefore, by Eq. (4.106), Eq. (4.107) and Eq. (4.103), it follows(
〈β1,p〉 − β1,p2

) (
β1,p1 − 〈β1,p〉

)
=
(
〈β1,p〉 − β1,i

) (
β1,s − 〈β1,p〉

)
, (4.108)

which is satisfied when
β1,p1 = β1,s, (4.109a)

β1,p2 = β1,i. (4.109b)

or

β1,p1 = β1,i, (4.110a)

β1,p2 = β1,s. (4.110b)

The relations in Eq. (4.109) and Eq. (4.110) set a fundamental constraint between
the group velocities of the waves involved in the SFWM, stating that maximum pu-
rity can be achieved only when the idler has the same group velocity of the faster
pump and the signal the same of the slower pump, or vice versa. This condition for
factorizable JSA finds natural implementation with the intermodal combinations of
the type (a,b,b,a) or (a,b,a,b) (see Section 3.7.2), thus with the first pump with the
same mode of the idler and the other pump sharing the same mode with the signal,
or vice versa. These conditions can be achieved with both TM and TE polariza-
tions, as shown in Fig. 4.16, where I report the simulated purity when 1212TM and
1221TE combinations are involved in a SOI channel waveguide with respectively
(2.5× 0.340)µm2 and (2.5× 0.220)µm2 cross-sections. Fig. 4.16a shows the β1 of the
1TM and 2TM modes, highlighting the phasematching position with the 1.55 µm
pump. Only at the perfect phase matching wavelengths, Eq. (4.109) holds, and pu-
rity approaching 1 can be achieved, as depicted by the JSI in Fig. 4.16c. Analogously,
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the same result can be obtained with the symmetric condition in Eq. (4.110), that is
satisfied with 1221TE combination. This second case is reported in Fig. 4.16b, where
the β1 are plotted with the phasematched wavelengths emphasized when the pump
is at 1.55 µm. The corresponding JSI is shown in Fig. 4.16d, with a purity of 0.999.
From Fig. 4.16 it can be seen that by moving the pump wavelength it is possible
to move accordingly the phase matching position, always satisfying the high purity
condition of Eq. (4.109) and Eq. (4.110). In the simulated JSI of Fig. 4.16c,d the
waveguide has a length of 1 cm and the pump FWHM is 10 nm, in order to satisfy
the condition σe f f τp � 1 assumed in deriving the expression of the purity in Eq.
(4.102).
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FIGURE 4.16: β1 as a function of the wavelength for channel cross
section waveguide. a) 1212TM intermodal FWM combination with
(2.5× 0.340)µm2 cross section. b) 1221TE intermodal FWM combina-
tion with (2.5× 0.220)µm2 cross section. In both the plots the black
lines are a guide to the eye, which highlight the matching between
the β1’s of the pumps and those of the signal and idler waves. c) JSI
corresponding to the 1212TM combination in a), with purity P = 0.995
evaluated through the exact JSA of Eq. (4.48). d) JSI corresponding to
the 1221TE combination in b), P = 0.999 evaluated through the exact

JSA of Eq. (4.48).

Considering now a fixed pump wavelength of 1.55 µm, I want to investigate the
purity of the state as a function of the generated wavelength and, also, how the pu-
rity changes with a not phase matched intermodal combination. Looking at the case
of 1212TM phase matched process of Fig. 4.16a, the idler is on the 2TM and the
signal on the 1TM; if the idler was on the 1TM mode and the signal on the 2TM,
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namely 1221TM combination, the resulting purity as a function of the idler wave-
length would be like the one plotted in Fig. 4.17a (blue line). In fact, the 1221TM
combination is phase matched only in the degenerate case, with all the waves at the
same wavelength of the pump, where the conditions for unit purity hold. On the
contrary, if we consider the 1212TM combination, the maximum purity is achieved
in the expected phase matching position. The purity of the phase matched combi-
nation decreases when the idler wavelength moves away from the phasematching
position, reaching P = 0 when β1,s = β1,i, as can be seen from the β1 plot in Fig.
4.16a. β1,s = β1,i is equivalent to τs = τi, that is the lower bound for the factoriza-
tion given in Eq. (4.103). As λi increases to the pump wavelength, the purity grows
again, since τsτi < 0. The same analysis holds for the 1221TE case in Fig. 4.16b,
with the purity for the 1221TE that is maximized at the phase matching wavelength,
while it does not peak at one with the not phase matched 1212TE, as shown in Fig.
4.17b. The purity of Fig. 4.51 has been calculated via Eq. (4.102).
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FIGURE 4.17: Purity calculated through Eq. (4.102) as a function of
the idler wavelength, a) for the case of Fig. 4.16a and b) for the case
of Fig. 4.16b. Only when the intermodal combination is such that the
conditions in Eq. (4.109) and Eq. (4.110) are satisfied, purity reach

unit value.

I showed that the dual pump delay approach to factorizable JSA can be per-
formed within the intermodal FWM scheme and at degenerate pump wavelength.
This strategy offers the opportunity to achieve unit purity without resorting to spec-
tral filtering usually involved in heralded sources based on SFWM; by filtering it
is possible to obtain single mode single photon states, but with P = 1 only in the
limit of zero filter bandwidth [125]. Avoiding filter based purification strategies is
therefore a fundamental step towards the development of feasible and efficient sin-
gle photon sources. In Section 4.7 I discuss the experimental implementation on a
SOI chip of the intermodal dual pump delay strategy here proposed.

4.5 2 µm heralded single photons via intermodal four wave
mixing

This experiment was carried out with the help of Ms. Sara Piccione, who devel-
oped the up-converter detector, and Mr. Matteo Finazzer, who contributed to the
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measurements. Mr. Giorgio Fontana developed the electronics for the photon co-
incidence measurements. The samples used have been fabricated by the Centre for
Materials and Microsystems of Bruno Kessler Foundation (Trento, Italy).

Instead of using the common intramodal FWM, involving only the first order
mode in a single mode waveguide, we propose to apply the peculiar properties of
intermodal FWM (see Section 3.7.2) to solve some of the limitations experienced by
heralded single photon sources. There are two main characteristics of intermodal
FWM that are of interest: the discrete band phase matching, that can be exploited to
obtain a filter free single photon generation; the large detuning between signal and
idler, which offers on one side a mean to filter better the pump and Raman noise
and on the other side can enable a new family of sources able to generated quantum
light in the MIR.

In this section I present the results obtained for a heralded single photon source
based on intermodal FWM on a SOI multimode waveguide, generating the idler
photon at 1.26 µm and the signal photon at 2.011µm. This configuration is partic-
ularly advantageous, having the herald photon where standard InGaAs SPAD are
highly efficient and the signal photon that is still below the absorption edge of silica.
The chip device, the experiment and the outcomes are discussed, with a particular
focus to the 2 µm light detection system.

4.5.1 Chip design and experimental set-up

From the results and simulations obtained with the intermodal FWM experiment in
Section 3.6, I designed a device optimized for the coupling and outcoupling of higher
order modes in a multimode waveguide. I focused on the generation of intermodal
FWM with the intermodal combination 1221 TE, whose superior overall efficiency
has been proven experimentally (Section 3.6). Moreover, the rib geometry chosen
does not propagate the TM polarization. Therefore, the main process investigated
involves the pumps on both the first and second waveguide mode, the idler on the
first mode and the signal on the second one, as sketched in Fig. 4.18. The theory
describing the process is exactly the same already introduced in Section 3.6.

The design of the integrated SOI device, sketched in Fig. 4.19, has been real-
ized with a rib cross section where h = 300 nm, hs = 190 nm, hclad = 900 nm and
hclad = 2 µm (see Fig. 4.18 for the parameters). The same cross section is used for
the simulations. Several waveguide widths have been fabricated, such that control-
lable spectral generation of the pair was possible. The device aims at generating
heralded single photon states through intermodal FWM; in particular, the design in
Fig. 4.19 works with intermodal combinations involving one pump photon and the
idler on the first order mode and the other pump photon and the signal on higher
order modes. The input and output ports are tapered to a width of 3.7 µm, in order
to maximize the coupling with the tapered lensed fibers used to inject and extract
the light. The input pump is splitted through a 3 dB directional coupler (DC), A
in Fig. 4.19, in order to excite the first order mode with 50 % of the power, arm 2
in Fig. 4.19, and the higher order waveguide mode with the remaining half of the
power, arm 1 in Fig. 4.19.At point B in the figure, there is the asymmetric directional
coupler (ADC) used to couple the higher order mode in the waveguide where half
of the pump is already propagating on the first order mode. The waveguide in B
is then tapered up to the width wFWM required for the phase matching of the inter-
modal FWM under consideration, C stage in Fig. 4.19. The last part of the device is
used to separate the signal and the idler. Since the signal has been generated on a
higher order mode, it can be extracted by using another ADC, D in Fig. 4.19. At the
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FIGURE 4.18: SOI rib geometry of the waveguides for heralded sin-
gle photons via intermodal FWM. w is the width of the waveguide, hs
the height of the strip, h the height of the slab, hclad the height of the
cladding over the strip and hsub the height of the substrate. The two
input pump photons, at λp, are converted into signal and idler pho-
tons, respectively, at λs and λi. In the bottom panels, the simulated
intensity profiles of the spatial modes excited in the rib waveguide
are shown within boxes with the same colors of the corresponding

waves in the top diagram.
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FIGURE 4.19: Design of the device used to generate heralded sin-
gle photons via intermodal FWM. The pump is injected through the
input port and then splitted through a 3 dB coupler (3dB-DC) (A).
The power in the reflected arm (1) is coupled on the second TE or-
der mode of the waveguide of the transmitted arm (2) through an
asymmetric directional coupler (ADC(λp)) (B). At this point half of
the pump power is travelling on the first TE order mode while the
other half excited the second TE order mode in the same waveguide.
This waveguide is then tapered up to the width (wFWM) required for
the phase matched intermodal FWM (C). The last stage of the device
(D) consists of an asymmetric directional coupler (ADC(λs)) used to
extract the signal wavelength from the idler and pump waves. The
idler and signal are in this way separated on-chip. At the output of
the device three ports are present: one for the residual pump not com-
pletely coupled through the ADC(λp), one for the idler photons and
the last for the signal photons. All input and output ports are tapered

to a width of 3.7 µm.
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output of the device, there are three ports, one for the residual pump, that was not
completely coupled into the main waveguide through the ADC in B; the second port
carries the idler wave and the remaining pump; the third port allows the extraction
of the signal photons. The design of the DC and ADCs used is exactly like the one
shown in chapter 1, Fig. 1.5. Depending on the width of the multimode waveguide,
different values for the idler and signal wavelengths are generated. As a result, each
ADC has been designed in order to optimize the outcoupling of the predicted wave-
length. In any case, the ADC is a broad band device, thus tolerant to deviations
from the expected target wavelength. The DCs and ADCs have been characterized
experimentally with repeated measurements, finding a splitting of 0.57(4) for the
3dB-DCs, and a light coupling efficiency of 0.72(8), both at 1.55µm. In the partic-
ular devices used for the 1.95 µm wide waveguide, the 3-dB DC had an efficiency
of 0.58 and for the ADC a coupling efficiency of 0.92. Measuring the pump power
on the residual output waveguide, it was estimated the amount of power actually
propagating in the multimode waveguide, that was 96% of the total coupled power,
without considering the propagation losses.
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FIGURE 4.20: Setup for the heralding experiment. See text for de-
scription.

The setup used in the heralding experiment is shown in Fig. 4.20. The pulsed
pump is injected through a collimator (a) into a tapered lensed fiber (b) that is used
to couple the pump into the chip. For stimulated FWM also a tunable CW laser is
mixed with the pump into the fiber. The optical pulse passes through the device, and
the generated signal and idler photons are outcoupled via two tapered lensed fibers
(b) and injected into two collimators. A flipping mirror is placed on the idler beam,
such that the photon can be either sent to the monochromator, that is the same of Fig.
3.18, or to the InGaAs SPAD after passing through a long-pass filter (d) (1400 nm cut-
off wavelength), a grating (e) and a mirror (f). The signal photon is generated above 2
µm; therefore it cannot be measured with standard detection systems. Thus, we used
an up-conversion approach to the signal detection. Starting from the collimator, the
signal wave is coupled inside the up-converter system through several lenses (g),
and up-converted to visible light. When a HBT measurement is needed, the light is
splitted through a beam splitter (BS) and focalised through two lenses into SPADs.
When the HBT is not required, as in the measurement of the CAR, the up-converted
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light is directly detected by one Si-SPAD, as in the inset of Fig. 4.20. Further details
on the signal detection stage are reported in Section 4.5.2. The idler is measured in
gated mode, triggered by the pump laser. Upon detection, the SPADs generate an
electrical signal, that is sent to the coincidence electronics (&). The light polarization
is controlled through half (λ/2) and quarter (λ/4) waveplates. The long pass filter
(d) and the grating (e) are used to suppress the pump and Raman noise. The large
frequency shift of the idler (< 1260 nm) allows to filter completely these sources of
noise. Other instruments are

• the laser pump, which is a pulsed laser at 1.55 µm, with 40 ps pulse duration
and operating at 100 MHz;

• the CW seed laser, which is a tunable laser in the range 1260 - 1640 nm;

• the InGaAs SPAD, which is an ID Quantique ID 210, used in gated mode at
25% detection efficiency and with 100 ns deadtime;

• the visible SPADs, which are Excelitas SPCM-AQRH-14 with 100 Hz of dark
counts.

The losses of the whole system have been characterized. The fiber-chip coupling
losses are 6.0 dB each facet and the propagation losses are 3.0 dB cm−1 in the single
mode waveguide (600 nm width) at 1.55 µm; therefore the multimode waveguide is
expected to experience much lower losses. The overall losses for the idler line, from
the collimator to the InGaAs SPAD are 7 dB, to which the 28 % (-5.5 dB) detection ef-
ficiency of the detector has to be added. Therefore, the detected idler counts differ by
about 18.5 dB from the on-chip generated photon pairs. By comparing the expected
on-chip photon pairs, calculated with the idler, with the detected signal photons, an
overall loss from the collimator to the Si-SPAD greater than 20 dB is expected, with
a factor of 26.6 dB to have the on-chip photons from the detected counts (with the
configuration of the inset in Fig. 4.20). The higher losses in the signal optical line
are due to the low efficiency of the up-conversion module and the use of optical
elements not optimized for wavelengths beyond 2µm.

Particular attention has to be paid to the coincidence detection stage. We are in-
terested in measuring the signal-idler cross correlation g(2)si , the signal second order

coherence g(2)ss and the heralded second order coherence g(2)H . For details on such
quantities see 4.2. To measure the coincidences, we used a time-to-digital converter
(TDC) start/stop counter, shown in Fig. 4.21. As soon as an electrical signal triggers
the start, the internal timing counter of the TDC (minimum temporal resolution 50
ps) starts to count, and it is stopped only when an electric signal triggers the stop.
The TDC measures in this way the delay between the start and stop detections, and
its software returns the histogram of the detected delays. The maximum delay mea-
surable by the TDC is 500 ns. For the measurement of the CAR, i.e. signal-idler
coincidence, we used the configuration in Fig. 4.21a, where the idler acts as the start
and the signal as the stop. Careful control of the delay between signal and idler
photons is required, in order to be sure to have the idler arriving before the signal.
Also noise can result in start and stop photons, but the corresponding delays will be
distributed randomly all over the delay range of the TDC. The idler-signal delay, on
the contrary, is expected to have a large peak corresponding to the delay between
the signal and idler of the same pair (zero-peak), and lower peaks at delays equal
to multiples of the laser period (side-peaks), which arise when the idler is stopped
by a signal not belonging to its same pulse. This occurs when the signal photon is
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FIGURE 4.21: Schematics of the coincidence measurement setup. The
temporal delay (τ) between the photons is reflected in a delay in the
electric pulses, which can be measured through the TDC. a) Config-
uration for the two-fold coincidence measurement through the TDC
start/stop. The detection of the idler triggers the counter start while
the Si-SPAD gives the stop to the delay measurement. The measured
delays are reported in a histogram produced by the TDC software in
the personal computer (PC). b) Configuration for the three-fold coin-
cidence measurement. The start is triggered only when the InGaAs
and one Si-SPAD have a simultaneous detection, evaluated through a

logic AND (&). Then the same as in a) follows.

lost due to losses in the detection stage. Therefore, the ratio between the zero-peak
and the side peaks is a direct measurement of the CAR value. The same detection
configuration is used for the signal-signal g(2)ss , with one Si-SPAD as the start and the
other as the stop. The ratio between the zero-peak and the side-peaks gives g(2)ss (0).
For the heralded second order coherence, it has been used the configuration in Fig.
4.21b. The start is given by the logic AND between the idler InGaAs and one signal
SPAD. The other signal SPAD acts as the stop in the TDC. Therefore, the start be-
gins only at a coincidence between signal and idler, and the triple coincidence peak
correspond to the zero-peak delay. The g(2)H (0) is measured as the ratio between the
triple zero-peak and the triple side-peaks multiplied by the CAR, as in Eq. (4.78).

4.5.2 Detecting 2 µm photons

In order to access the signal counts, we used a detection system able to measure
photons with wavelength > 2 µm and with sensitivity down to the single photon
level. While in the visible and NIR windows well established detection systems are
readily available with sufficient efficiencies, in the MIR feasible solutions have been
proposed based on nonlinear up-conversion [84]. In fact, superconducting nanowire
single photon detectors (SNSPDs), that are the state of the art in terms of detection
efficiencies (up to 90%) and dark counts (∼ 1000 Hz) in the NIR [157], cannot be
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applied with similar performances in the MIR. In this spectral region, SNSPDs are
limited at about 2 µm wavelength, with 2% quantum efficiency and with high dark
counts [158]. Moreover, SNSPDs require cryogenic temperatures, thus posing fur-
ther complications to the experimental setup. With the up-conversion approach,
single photon detection can be performed at room temperature and can be tuned
over the MIR spectrum [84]. The basic idea is to exploit the sum-frequency gener-
ation (SFG) process (see Section 3.2), in a periodically poled lithium niobate crystal
(PPLN) to up-convert the 2 µm signal photon into a visible single photon. This can be
then detected by high efficiency silicon SPADs. The PPLN is quasi-phase matched
at the target wavelength. The SFG respects the following energy and momentum
conservation relations

1
λs

+
1

λSFG
p

=
1

λup
, (4.111a)

2π
n(λSFG

p , T)
λSFG

p
= 2π

(
n(λs, T)

λs
+

n(λup, T)
λup

+
1
Λ

)
, (4.111b)

where λs, λSFG
p and λup are, respectively, the 2 µm signal coming from the SFWM

process, the pump for the SFG process and the up-converted wavelength. T is the
temperature of the nonlinear medium and Λ the poling period. In Eq. (4.111b) the
temperature dependence of the refractive index has been made explicit to highlight
the phase matching tunability of the process via T. In order to improve the efficiency
of the system, in Ref. [159] it has been proposed to place the PPLN inside a free-space
Fabry-Perot cavity, in order to take advantage of the high circulating power induced
by the cavity itself. In our experiment, we are using exactly the same up-converter of
Ref. [159], reported in Fig. 4.22a, with PPLN crystals fabricated for ∼ 2µm with Λ =
15.8µm. Integrated with the up-conversion cavity is the pump source, composed by
a broad area diode laser (BAL) that pumps at 880 nm a Nd:YVO4 crystal, such that
the generated light circulating in the cavity is λSFG

p = 1.064µm. The pump circulates
in the cavity composed by mirrors (labelled with M in the figure), short-pass (M6)
and long-pass (M7) filters, such that the pump wavelength cannot exit the cavity
while the MIR photon and the up-converted photon are free to enter and exit the
system. Also a germanium long-pass filter (cut-off wavelength ∼ 1.9µm) is placed
at the entrance of the cavity, in order to block the pump of the SFWM process at
1.55 µm. The PPLN in our experiment has a length of 2 cm and several waveguides
with height of 1 mm and different widths depending on the wavelength to phase
match. We used a poled waveguide with 1 mm width, in order to phase match the
signal photon at ∼ 2.011µm. In Fig. 4.22b, the simulated phase matching curve as a
function of the temperature is proposed. For our heralding experiment, we used the
phase matching temperature of 63◦C.

A main feature of the up-converter, especially for quantum measurements, is the
spectral bandwidth of the process; in fact, the up-conversion acts as a filtering stage
for the single photon. In Fig. 4.23a is reported the simulated conversion efficiency,
at 63◦C, for the poled waveguide used, that is compared with the experimental one
in Fig. 4.23b. The simulated efficiency spectral position is slightly mismatched with
respect to the measured one. The measurement of the up-converter bandwidth has
been carried out at a fixed temperature of 63 ◦C by performing a wavelength scan
with a CW laser in the range 2 - 2.020 µm; the laser was directly coupled to the
collimator where we usually couple the signal fiber, such that the optical path is
exactly the same. By fitting the spectrum in Fig. 4.23b with a gaussian function,
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FIGURE 4.22: a) Up-converter cavity scheme. The mirrors compos-
ing the cavity are labelled by M. b) Phase matched wavelength as a

function of the PPLN temperature.

namely

y = ae−
(x−b)2

c2 + d; (4.112)

the central wavelength of the up-conversion is b = 2011.0 (2010.9, 2011.1)nm,
and the FWHM = 2

√
ln(2)c = 2.37 (2.25, 2.50)nm; the other parameters of the fit are

a = 0.44 (0.42, 0.46) and d = 0.566 (0.555, 0.577). From this measurement it is clear
that the peak has a FWHM compatible with the simulated one, but the up conver-
sion efficiency does not drop at zero as soon as the wavelength does not satisfy the
phasematching condition of the process. This may be due to fabrication errors of the
poling.
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FIGURE 4.23: a) Simulated phase matching spectrum of the SFG pro-
cess. b) Experimental measurement and gaussian fit of the SFG spec-

trum.

Since idler and signal photons are emitted in pairs, it is possible to extract the
whole detection efficiency of the up-converter coupled to the SPAD by comparing
the measured counts for the signal and idler beams. Knowing the idler counts and
the losses of the idler beam, it is possible to calculate the pair generation rate on-chip.
By rescaling the generated photon pair for the coupling loss of the signal fiber (-6.2(5)
dB) the resulting detection efficiency of the whole signal detection stage is about 1%,
with the cavity operating at about 70 W of internal circulating power. The problem
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of the signal detection stage is the presence of noise due to the up-conversion itself.
In fact, depending on the quality of the PPLN crystal and the working temperature
of the cavity, several unwanted generation processes may occur [160]. First of all, if
the PPLN has a low quality poling it is possible that other nonlinear processes are
phase matched, giving rise to unwanted photons collinear with the up-converted
signal. Because of this a long-pass filter to eliminate the SHG of the crystal has been
placed at the output of the up-converter. Another source of noise is constituted by
the thermal radiation of the cavity itself. In fact, the cavity behaves as a black body,
whose radiated power scales with the operation temperature. If this radiation re-
spects the phasematching condition for the up-conversion, it will be up-converted
exactly like the target signal photon. Since the up-conversion spectrum is not a well
defined sinc function, as shown in Fig. 4.23b, the larger effective bandwidth of the
process may contribute to an increased amount of converted black body radiation
photons. Because of this, the noise superimposed to the signal is even more impor-
tant. Such a broad band noise spectrum propagates differently with respect to the
SFWM photon, therefore it is possible to improve the signal-to-noise ratio (SNR) by
using a pin-hole placed in front of the Si-SPAD. A detail of the measurement setup
which shows the up-converter module interfaced to the SPADs is reported in Fig.
4.24. In particular, we chose the aperture of the pin-hole in order to maximize the
SNR, resulting in about 2000 Hz of dark counts on each SPAD.

Details on the signal detection line

In Fig. 4.24 the detection stage for the signal is described in detail. The signal is
sent into the up-converter through an optical system composed by a collimator (a),
a diverging lens (b) with 7 cm focal length and a converging lens (c) with 15 cm fo-
cal length. The distances between these three elements and the cavity are chosen in
order to have the minimum waist of the signal beam in the middle of the PPLN crys-
tal. The minimum waist has been calculated to be around 250 µm. Before entering
the up-converter, the signal field is filtered through a germanium long pass filter (e)
(λ > 1.9 µm). The up-converted light, after being filtered with a band pass filter (f)
in order to eliminate the SHG of the pump and the pump itself, is splitted through a
50/50 beam splitter. Each beam is then focused through a 4 cm focal length conver-
gent lens (g) into the active area of the SPAD. The SPAD active area is 175(5) µm in
diameter, therefore we modified the position of the lens relative to the up-converter
and the SPAD such that the signal spot was smaller (about 70 µm diameter). In order
to filter out part of the collinear noise, a pin-hole (h) is placed in front of the SPAD.

4.5.3 Idler and signal characterization

On the same chip, several devices with different waveguide widths have been fab-
ricated. In this way it was possible to control the wavelength of the generated pair.
In Fig. 4.25 the spectra for the generated idler are reported for different waveg-
uide widths. For the heralding experiment we chose the waveguide with 1.95 µm
width, in order to use a lower temperature of the up-converter crystal, thus reducing
the up-converted black body radiation (the temperature used is 63◦C). In particular,
from the simulations it is found that the simulated idler wavelength is close to the
measured one if instead of the nominal waveguide height hs of 190 nm it is used 180
nm, and a 5 nm wider waveguide. This correction allows to match better also the
experimental idler positions of the other waveguides shown in Fig. 4.25. In Fig. 4.25
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FIGURE 4.24: A detail of the whole heralding setup showing the sig-
nal detection stage. The 2µm signal photon is coupled into the colli-
mator (a) through an optical fiber. The signal photon is then focused
in the PPLN crystal passing through a divergent (b) and convergent
(c) pair of lenses, and after being TM-polarized with a λ/2 wave-
plate (d) and filtered with a germanium long-pass filter (e). The up-
converted photon is filtered with a band-pass filter (f), divided by
a 50/50 beam splitter and focused in the active area of the SPADs
through a pair of convergent lenses (g). The collinear noise photons
are partially filtered by means of a pin-hole (h) in front of each SPAD.

also the Raman noise contribution is visible at 1434.5 nm, due to crystalline silicon.
The broad band extending from 1400 to 1500 nm is the contribution coming from the
Raman in the fiber and the leakage of the pump laser.
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FIGURE 4.25: Spectra of the idler photon generated through 1221TE
intermodal FWM for different waveguides. The peak at 1434.5 nm is
the anti-stokes Raman peak of crystalline silicon. The shaded gray
boxes indicate spurious peaks due to the monochromator. In legend

there are the nominal widths of the different waveguides.

The first characterization of the signal and idler photons is the measurement of
their quadratic dependence with the pump power, as explained in Section 3.4.1.
In Fig. 4.26 are reported the on-chip pair generation rate (a), the measured idler
counts (b) and the measured signal counts (c) as a function of the on-chip pump
peak power. All these measurements have been fitted with a quadratic function
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(
y = ax2), with a good agreement up to 1 W peak power. For higher power, in

fact, TPA limits the available pump power, therefore leading to the saturation of the
generated photons [149]. The quadratic coefficients for the three fitting functions
are a = 4.93 (4.46, 5.40) MHz W−2 (pairs), a = 69.61 (63.00, 76.22) kHz W−2 (idler)
and a = 1.82 (1.71, 1.93) kHz W−2 (signal). The fit bounds are the 95% confidence
bounds.
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FIGURE 4.26: Measurements performed on the waveguide with 1.95
µm nominal width. (a) On-chip pair generation rate. (b) Idler de-
tected counts. (c) Signal detected counts. All the measurements are
shown as a function of the on-chip peak pump power. All the mea-

surements have been fitted with a quadratic power function.

CAR

We measured the CAR for various input powers, as shown in Fig. 4.27a. Each CAR
value has been measured integrating the counts under a bin width of 1 ns, in order
to be sure to integrate all the signal counts, that spread in time due to the jitter of
detectors and electronics. Each measurement lasted till the saturation of the statis-
tics, with at least 1 hour integration time. Since the noise due to the up-converter
was significant, we decided to give both a raw CAR value (blue in plot) and a noise
corrected CAR (orange in plot). The noise correction is performed evaluating the
average noise counts falling in the bin width, and by subtracting this value to all the
bins containing the signal photons. In Fig. 4.27b is reported, as an example, the mea-
sured histogram for 0.5 W power; the bars are centered at the pump period. In the
inset of Fig. 4.27b, an example of the data with the minimum bin width is reported,
where the shaded bars represent the 1 ns integration bin. As expected, as the power
is reduced, the CAR increases due to the reduced multipair generation probability.
We obtained a maximum not corrected CAR of 11.0(4) and a maximum corrected
CAR of 58(16).
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FIGURE 4.27: a) CAR as a function of the input peak power. In blue
the raw values and in orange the noise corrected values. b) Measured
coincidence as a function of the delay for 0.5 W input pump power.
The ratio between the highest bar (the zero-peak) and the average
of the side bars gives the CAR. The bins have 1 ns width (see inset,
where the shaded bars represent the bin integration). The bins are
centered at multiple pump periods. In blue the raw counts and in

orange the noise corrected counts.

Unheralded g(2)

The unheralded g(2) has been carried out on the signal beam, to show the purity of
the single photon beyond 2 µm. It has been measured exactly like the CAR, thus by
integrating over a defined bin width, with and without noise correction. For the g(2)

measurement we took a bin width of 2 ns, due to the larger counts spreading, due
to the larger jitter arising from the use of two Si-SPAD, which exhibit individually
a larger jitter. Moreover, this measurement, with respect to the CAR one, is affected
by a larger noise, due to the use of free running detection; in the CAR measurement
the idler was affected by less noise due to the external gating of the pump. Due to
the worse SNR, it was possible to measure the g(2)(0) only for input pump powers
larger than 1 W, as shown in Fig. 4.28a. Moreover, the larger noise results in a larger
difference between the raw and corrected g(2)(0) values. As the power increases, the
g(2) gets lower due to a larger multipair generation probability. The integration time
in this case was about 2 hours.

From the g(2)(0) it is possible to evaluate the purity of the state as P = 1− g(2)(0),
as explained in Section 4.3.2. Therefore, in our measurements we get a maximum
purity of the single photon state of 0.54(3), which corrected becomes 0.76(4). From
simulated values of the purity, that we simulated by calculating the JSI as in Section
4.1.7, it is evident the role of the up-converter in filtering the signal photon. This
filtering, with a bandwidth of 2 nm as measured in Fig. 4.23b, results in an increased
purity of the state, as can be seen by comparing Fig. 4.29a and b, where by con-
sidering such filter the purity is increased from 0.16 to 0.47. However, this is not
enough to justify the measured purity. Therefore the measured pump lineshape was
considered. This is shown in Fig. 4.29c. By considering the pump lineshape, which
exhibits a dual peak profile, the JSI in Fig. 4.29d is obtained. The purity now is 0.59.
This purity is much closer to the experimental one, but still far from the noise cor-
rected value. A possible explanation is that the measured purity is overestimated
and longer acquisition times are required, or other effects that have not been con-
sidered play a role in improving the purity, like a broadening of the pump pulse
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FIGURE 4.28: a) g(2)(0) for the signal beam as a function of the input
peak power. In blue the raw values and in orange the noise corrected
values. b) Measured coincidence as a function of the delay for 1.01
W input pump power. The ratio between the highest bar (the zero-
peak) and the average of the side bars gives the g(2)(0). The bins
have 2 ns width (see inset, where the shaded bars represent the bin
integration). The bins are centered at multiple pump periods. In blue

the raw counts and in orange the noise corrected counts.

bandwidth due to SPM. In any case, the dual peak profile of the pump contributes
importantly to the rising of the purity value, due to the larger effective bandwidth
involved.

Heralded g(2)

The measurement of the heralded g(2) has been performed for two pump powers,
0.75 W and 1.5 W, using the scheme introduced in Fig. 4.21b. These measurements
do not give an evidence of the antibunching, since the acquisition time required is
prohibitive with our setup. In fact, the rate of measured three-fold coincidences was
0.00012 Hz (70.5 hours acquisition) and 0.0014 Hz (14.3 hours acquisition) for the
0.75 W and 1.5 W measurements respectively. In Fig. 4.30 are reported the counts
integrated over a bin of 2 ns relative to the triple coincidence idler-signal-signal. It is
clear that the integration time is not enough, since the side peaks are all different. In
any case, g(2)H (0) has been calculated, both raw and noise corrected, as in Eq. (4.78),
i.e. the ratio between the normalized three-fold counts and the CAR at the same
input power. The resulting g(2)H (0) are reported in Fig. 4.31. Only for 0.75 W power
g(2)H (0) < 1, but it is still larger than 0.5, that is the threshold to claim a single photon
behaviour [59].

4.5.4 Conclusions

With the experiment in this section, I reported the first coincidence detection and
characterization of pairs of photons with one photon in the NIR and the other in the
MIR, coming from a spontaneous process in silicon. In particular, a maximum CAR
of 11.0(4) and 58(16), respectively without and with noise correction, was measured.
The maximum purity, measured on the signal photons, has been quantified in 0.54(3)
and 0.76(4), respectively without and with noise correction. These values for purity
and CAR are lower than those of state of the art sources at telecom wavelengths
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[161]. This can be ascribed to the high value of losses due to the measurement of
the 2 µm photon. We also measured the heralded g(2)(0), which displays a moder-
ate antibunching with g(2)H (0) = 0.74(6) and 0.75(8), respectively without and with
noise correction. With these results it can be stated that a SOI integrated source of
photon pairs with one photon at NIR wavelengths and the other beyond 2 µm has
been demonstrated. Coincidence and purity measurements have been successfully
performed. The purity has not a record value, but the target of this experiment was
to show the possibility to have a broadband source of pairs rather than the demon-
stration of a high purity source. In order to demonstrate a clear antibunching, as the
one needed for the unambiguously demonstration of a single photon source, much
lower losses are required in the detection stage. As far as I know, the source of pho-
tons that we demonstrated is the first experimental demonstration of a 2 µm on-chip
heralded photon source and can find application particularly in quantum gas sens-
ing. In addition, we also demonstrated that it is possible to perform coincidence
measurements without relying on strong pump and Raman spectral filtering.

4.6 Improved purity with moderate spectral filtering

This experiment was carried out at the QET Labs of Bristol (UK) in collaboration
with Dr. Massimo Borghi. The samples used have been fabricated by the Centre for
Materials and Microsystems of Bruno Kessler Foundation (Trento, Italy).

Intermodal FWM allows to achieve discrete band generation of photon pairs.
As introduced in Section 4.4.2, via intermodal FWM it is possible to achieve state
purification through a dual pump approach. However, this is possible only when
the two pump photons are distinguishable at least in one degree of freedom, so that
their different group velocities can be used. When the intermodal FWM combination
is of the type (a,a,b,b), i.e. with the two input pump photons on the same waveguide
mode, they cannot be separated through the different group velocities. Therefore,
the JSI exhibits sinc lobes, with reduced purity, as in Fig. 4.32a. However, it is still
possible to use the discrete band of the intermodal process. In fact, by introducing a
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proper spectral filtering, sinc lobes can be eliminated, improving the purity without
reducing significantly the brightness, as shown in Fig. 4.32b. The intermodal FWM
therefore allows to improve the filtering of the single photon state by generating
the photons far from the Raman and pump noise and providing an initial filtering
with discrete band. In this section it is described the experiment carried out on the
intermodal FWM combination 1122TE, with 6 µm wide waveguide and far detuning
between signal (2.014 µm) and idler (1.274 µm) with 1.561 µm pump, showing an
increased photon purity thanks to the moderate filtering (1.8 nm filter) operated on
the idler photon.

4.6.1 Setup and chip design

The chip design for this experiment is shown in Fig. 4.32c. The chip has the rib
cross section of Fig. 4.18, with 6 µm width and 1.6 cm length. From the input of
the device (left) the pump is coupled into the multimode waveguide where FWM
occurs by means of a tapering. Then, to extract separately the idler and signal, which
propagate on higher order modes, ADCs are used. The spectrum of the generated
idler is shown in Fig. 4.32d, a 1.55 µm pump was used. The idler wavelength was at
1.269 µm, close to the simulated one at 1.263 µm.

The purity measurement has been carried out in a different setup. The pump
laser was a pulsed laser at 1.561 µm, with 207 MHz repetition rate and a tunable
bandwidth. The outcoupled light is firstly filtered with a 1.8 nm bandwidth double
monochromator and then sent into a HBT interferometer composed by a 3-dB fiber
connected to two SNSPDs.

4.6.2 Results

The average power was about 100 µW, with a maximum detected pair generation
rate of 50 kHz (with 2.3 nm pump bandwidth). The purity of the state has been
measured as a function of the pump bandwidth. The results are shown in Fig. 4.32e.
The purity has been calculated by measuring the g(2)(0) of the idler photon. As
the pump bandwidth increases, the state becomes more and more indistinguishable,
resulting in an increased purity. The maximum purity achieved was 0.90(2), with
2.27(3) nm pump bandwidth. The measured purity follows the same behaviour of
the simulated one (blue line in 4.32e), calculated as in Eq. (4.51). The simulated
purity is higher than the measured one. This can be due to a larger filter bandwidth
on the idler; in fact, the experimental points are in between the simulation with the
1.8 nm filter (blue) and the simulation without the filter (orange). In order to have
the simulated purity maximized at the same pump bandwidth of the experiment, it
is used 1 cm waveguide length instead of the experimental 1.6 cm. This is due to
the walk off occurring between the generated photons and the pump, which limits
the interaction length of the process; by changing the pump bandwidth, also the
coherence length of the pulse is changed, resulting in a different effective interaction
length. This is shown in the simulation in Fig. 4.33, where the peak of the purity
is obtained at different pump bandwidths depending on the waveguide length. In
fact, the purity calculated as in Eq. (4.51), takes into account the walk off between
the pumps, but does not consider the generated photons walk off from the pumps;
therefore, to compare the experimental results with the simulated ones the reduced
interaction length has to be taken into account by reducing the length of the sample
in the simulation.
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FIGURE 4.32: a) Scheme of the chip for the excitation and collection
of the 1122TE intermodal FWM combination. b) Simulated JSI of the
1122TE intermodal FWM in a 6 µm wide waveguide. The dashed
red lines refer to the 3-dB bandwidth of the spectral filter (1.8 nm)
that is used in the setup to filter the idler photon. c) Same JSI of b)
but with the 1.8 nm filter applied on the idler. The purity is now
increased to 0.996. d) Measured spectrum of the 1122TE combination
in the 6 µm waveguide measured with 1.55 µm pump. In shaded
gray a spurious peak. The peak at 1434 nm is the Raman of silicon.
e) Purity as a function of the pump bandwidth. The experimental
points (black dots) follow approximately the same behaviour of the
simulated curves calculated for a 1 cm long waveguide. The purity
has been simulated with 1.8 nm filter (blue) and without any filter

(orange) on the idler.
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FIGURE 4.33: Simulated purity as a function of the waveguide length
and pump bandwidth.

4.6.3 Conclusions

With this experiment it was demonstrated the possibility to achieve high purity sin-
gle photon states with far detuning from the pump via on-chip intermodal FWM.
Also in this case the signal is at a wavelength beyond 2 µm, thus completing the
work already begun with the experiment in Section 4.5. A moderate filtering of
the idler photon allows to achieve a large purity of 0.90(2), essentially related to
the elimination of the sinc side lobes in the JSI. The discrete band of the intermodal
FWM combined with a proper pump engineering allows to achieve on-chip high pu-
rity states with flexible spectral properties and broadband generation. This kind of
source, with high purity single photons and such large detuning, has no counterpart
in the literature of heralded single photon sources.

4.7 99% purity with dual-pump delay intermodal four wave
mixing

In this section I report some simulations and the proposal of the chip design for the
generation of extremely high purity states based on the dual pump delay approach
described in Section 4.4.2. The idea of applying the dual pump method to the inter-
modal FWM has been developed together with Dr. Massimo Borghi, former member
of QET Labs in Bristol (UK)

In order to apply the dual pump delay scheme, it is required that the two pump
photons involved in the FWM process have different group velocities. With the inter-
modal FWM, it is possible to find modal combinations such that the two pump pho-
tons excite two different waveguide modes, which propagate with different group
velocities. We chose the 1221TM intermodal combination for our simulation. We
studied a SOI channel waveguide, with 2 µm width and 220 nm height. In Fig. 4.34,
we show the JSIs and the relative purities when the FWM is excited by a 5 nm wide
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pump at 1.55 µm and the waveguide has 1 cm length. In a), the case without any de-
lay is reported, while in b) a delay of 1.838 ps is applied between the pump pulses.
Through the delay, the purity improves from 0.72 (a) to ∼1 (b). The purity is here
calculated directly from the JSA given by Eq. (4.89), thus without any approxima-
tion.

a) b)

FIGURE 4.34: JSI from intermodal FWM with 1221TM combination
for 2 cm long and 2 µm wide waveguide. a) Without the delay be-
tween the pumps purity is limited to 0.72. b) With the optimal delay

between the pumps (1.838 ps) the purity exceeds 0.99.

To apply on-chip the delay required, it is necessary to know the group velocities
of the different optical modes: in our case, the 1TM mode has a group velocity of
75.213 µm ps−1 and the 2TM mode has group velocity 73.190 µm ps−1, at 1.55 µm.
For example, considering the case of 1 cm length waveguide, the optimal delay is
1.838 ps. Such a delay is added as shown in the device design in Fig. 4.35. The
intermodal combination involves both the first and the second mode for the pump,
so the input part of the chip is constituted by the pump 3dB splitting and mode
coupling though ADC, exactly like the chip in Section 4.5; however, in the design
here presented also the delay line is introduced, on the pump exciting the first order
mode, since it is the faster one. The generated signal and idler are outcoupled as
usual via ADCs or directly from the multimode waveguide.

Delay line

3dB-DC

ADC

ADC

Signal

Idler

FIGURE 4.35: Chip design for the experimental investigation of the
dual pump delay approach to the generation of pure single photon

states in a waveguide.

With the proposed design, very high purities are expected, as shown in Fig. 4.36.
Here, we show the simulated purities as a function of the pump bandwidth and
of the length of the device, for a 1.55 µm pump and for the idler and the signal
generated at 1.517 µm and 1.585 µm. This figure shows also that it is possible to
optimize the purity of the state by varying the waveguide length and the pump
bandwidth. From Fig. 4.36 is evident the saturation of the purity at almost unit value
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(0.9997), which means that the constraints on the pump and waveguide length can
be also relaxed to smaller values while keeping high values of purity.
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FIGURE 4.36: Simulated purity as a function of the waveguide length
and pump bandwidth in the case of optimal delay included.

4.7.1 Conclusions

In this section it has been proposed a design for the generation of pure single pho-
ton states through intermodal FWM in SOI waveguides. The simulations suggest
purities exceeding 0.99 with photon pairs generated in the telecom band, thus of in-
terest for quantum computation. This approach can be applied also for far spectral
detunings between idler and signal, with purities still larger than 0.98, thus of great
interest for quantum sensing and free-space quantum communications.
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Chapter 5

Conclusions

This thesis explored different topics from classical linear devices, to novel nonlinear
processes, to new sources of quantum states of light. The common thread is the use
of higher order modes in waveguides, and the main result I got is that they can be
enabler of new optical processes and devices.

In chapter 2, I addressed the problem of a new compact mode coupler which can
be used as an alternative to current devices for mode multiplexing. I investigated
a method to use the interference pattern arising when two coherent tilted beams
superimpose. Such device has been theoretically described and simulated in its inte-
grated form. I have also experimentally validated the underlying mechanism. Simu-
lations of the integrated implementation show very compact footprint and very low
crosstalk between even and odd modes, that are peculiar of this approach to mode
coupling. The integrated interferometer is compared with the state of the art devices
in Table 2.3. In terms of minimum cross-talk, the integrated interferometer competes
with the other devices (27 dB vs. 25-40 dB), with much larger bandwidth (> 200
nm vs. 100 nm). These values make the device compatible with DWDM and wave-
length conversion processing, where broadband signals are involved. The device
has a length of 200 µm, which can be reduced to tens of microns if heaters are not in-
cluded; heaters are required only to face the fabrication imperfections. Nonetheless,
the proposed interferometer design is highly fabrication tolerant, thus the perspec-
tive is to avoid the heaters after the experimental validation of the integrated chip
design. With respect to the state of the art (Table 2.3), the device shows high excess
losses (2.85-4 dB vs. 0.2-1 dB). Excess losses are the main drawback of the proposed
device, which hinders its application in large scale optical networks. Moreover, fur-
ther analysis have to be done in order to verify the number of possible channels
(Nch in Table 2.3), which is potentially larger than 2. In conclusion, the compactness,
broadband and fabrication tolerance of the proposed device suggest its adoption as
a robust coupling technique for signal processing and data routing, particularly in
applications where parity mode selection is needed.

In chapter 3, I discussed a novel nonlinear optical process in waveguide: the in-
termodal FWM. Its experimental demonstration in waveguides has been performed
for the first time in this thesis. The main advantage of intermodal FWM is the in-
creased flexibility due to the extra degree of freedom of the spatial waveguide mode.
In particular, it allows the generation of broad band and tunable new frequencies
within a discrete band. This allows to perform selective wavelength conversion and
light generation compatible with multimode operation. The wavelength conversion
can be easily controlled via the waveguide geometry. This functionality is particu-
larly useful for the mode division multiplexing technology, that needs mode selec-
tive wavelength conversion [78]. Moreover, intermodal FWM exhibits the unique
property of achieving a very large spectral detuning between the signal and idler
photons, accessing the MIR part of the spectrum with C-band pump photons. This
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is an interesting possibility for integrated MIR photonics, which opens the way to
on-chip gas sensing and free-space communications. The measured conversion ef-
ficiency is -15 dB, with signal and idler respectively at 1640 nm and 1469 nm. This
is lower than what achieved with intramodal FWM, which exhibits -10 dB efficiency
within a conversion band of 150 nm [7]. However, intramodal FWM is based on
dispersion engineering and therefore is limited to convert wavelengths close to the
pump spectral position. With intermodal FWM, I demonstrated a spectral conver-
sion between signal and idler that ranges from 180 nm up to 980 nm. To get such a
wide spectral conversion, intramodal FWM needs the engineering of the β4 disper-
sion term. A detuning of 820 nm between signal and idler has been demonstrated,
where to reach a 19 dB conversion gain it was needed a pump above 1.9 µm, thus
not affected by TPA [48]. Thus, also intramodal FWM gives raise to discrete band
phasematching and large spectral generation, but only the intermodal FWM allows
controlling the generation of the signal and idler waves over all the telecom band,
even near the pump wavelength. In my work, I mainly investigated the 1221TE
intermodal combination, but also 1122TE, 1331TE, 1221TM and 1331TM combina-
tions have been experimentally demonstrated. The large and tunable wavelength
conversion/generation, the flexibility offered by the spatial modes and the discrete
band phase matching make the intermodal FWM a solution for on-chip optical pro-
cessing and sensing, with perspectives that interest the emerging fields of classical
multimode processing and integrated quantum optics.

Actually, the peculiar properties of intermodal FWM impact quantum photon-
ics. This was the topic of chapter 4, which discusses how integrated quantum optics
can benefit of this nonlinear process. Exploiting the broad band and tunable inter-
modal phasematching, the generation of heralded single photons in the MIR has
been demonstrated in this thesis. This is motivated by the huge interest of MIR
light sources, also at the single photon level. The idea was to generate pairs with
one photon at standard NIR wavelengths which could be used as an efficient herald
for the other 2 µm photon. It has been here demonstrated the possibility to per-
form coincidences between such photons, with the signal at 2011 nm and the idler
at 1260 nm. In this way, the first source of pairs bridging the MIR and NIR spectral
windows on a silicon chip, using a C-band pump, has been demonstrated. The ex-
perimental results show a maximum CAR of 54 after noise correction, with purity
larger than 0.75 and on-chip pair production rate of about 0.1 MHz. The heralded
g(2)(0) was 0.75, that is a good indication of the heralding occurrence but it is still
to high to claim the single photon operation of this source. However, the measure-
ments are largely affected by the losses experienced by the signal detection setup.
With respect to the state of the art, the CAR is comparable to other heralded sources
in SOI waveguides [112, 162], but it is much lower with respect to ring resonators,
with CAR > 12000 [161]. Moreover, the heralded g(2)(0) for ring resonators is less
than 0.0006 [161], or below 0.2 for waveguides [112, 162]. When comparing the state
of the art with our heralded source, it has to be considered that in this experiment
the herald and the heralded are far apart by about 750 nm. Moreover, the purity
of the state can be easily increased with a larger pump bandwidth. In addition, I
exploited the discrete band of the intermodal phase matching to achieve high puri-
ties for broad band photons, with 0.90 purity for a photon at 1.28 µm. The filtering
only eliminates the sinc side lobes, thus with limited brightness reduction. Such
high purity has no counterpart in the quantum silicon photonics literature, where
purities larger than 0.90 have been achieved but with small detuning and relying on
narrow spectral filtering [111] or ring resonances [98]. Nonetheless, I have shown
that the higher order modes characterizing intermodal FWM enable new solutions
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to get high purity single photon states without any filtering. This is the case of the
dual pump delay approach to purification, proposed in this thesis. The higher order
modes involved in the intermodal FWM allows to exploit and engineer the different
group velocities of the waveguide modes, achieving near unit purity states. This is a
completely new solution for silicon quantum photonics, which here I demonstrated
theoretically. Therefore, the perspectives for intermodal FWM in quantum photon-
ics is to enable near unit purity single photon sources operating at both telecom and
MIR wavelengths, providing a new tool for the implementation of quantum sensing
and processing on-chip.
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Appendix A

Formation of waveguide modes

Optical waveguides, in general, are micron sized structures used to confine light
along a certain path. Waveguides on a photonic chip can be considered as "optical
wires", in analogy with the electrical wires of the well developed micro electronics
platform. In the optical waveguide the light is confined in the higher refractive index
core, while the surroundings (cladding and substrate) are fabricated with a lower re-
fractive index. Thanks to this refractive index contrast the light is confined due to
the total internal reflection at the borders of the core region, propagating through
the waveguide; as a consequence, the waveguide is associated with a critical angle
θc and all the waveguide modes propagating with an angle lower than this critical
angle will be confined, while the others will be radiated outside the core region. The
intensity of the light trapped in the core material exhibits a particular spatial pro-
file, depending on the excited waveguide mode, with evanescent field tails in the
surrounding regions, as shown in the waveguide modes in Fig. 1.1d. The evanes-
cent field is crucial for a number of applications exploiting the opportunity to inter-
act with the surroundings through this exponential decaying field, for example for
sensing [163] or light coupling with directional couplers [25]. The evanescent field is
also at the basis of the principal loss mechanism affecting waveguide propagation,
which is the scattering at the core borders. In fact, the propagation losses are due
to material absorption and scattering; since the material used is usually transparent
at the working wavelength, the main contribution to losses comes from the scatter-
ing due to the core roughness introduced by the fabrication process. The evanescent
tail interact with the rough core borders, and the less confined the optical mode,
the higher the evanescent field intensity and so also the scattered intensity will be
higher. Also the waveguide effective index is related to the evanescent field, such
that as the tails of the field increase the effective index decreases due to the larger
probing of the lower refractive index surroundings [21]. This mechanism allows to
engineer the propagating properties of the guided light by perturbing the vicinity of
the optical waveguide introducing other integrated devices or materials.
The field profile of the waveguide modes can be calculated by solving the Maxwell’s
equations. Unfortunately, only for planar waveguides (Fig. 1.1a) analytical solutions
are present, while for channel waveguide it is necessary to use numerical simulation
softwares which extract the field profiles by means of the beam envelop method
or the finite elements method. Despite it is not possible to access analytically the
channel waveguide field profiles, a deep insight into the modes distribution can
be achieved by studying the solutions for the planar waveguide. Considering the
scheme in Fig. A.1, the slab extends indefinitely on the (x,z)-plane, while the light is
confined along the y direction. According to the ray optics interpretation of waveg-
uiding [5], the ray of light propagating inside the dielectric waveguide experiences
total internal reflection at the core boundaries, with θm angle between the ray and
the z direction, with m the mode order. The higher the order mode, the higher the
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θm [5].
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FIGURE A.1: a) Scheme of the planar waveguide with the confine-
ment along the y direction and the slab along the x direction. b) First
four modal profiles (um) in the slab waveguide with the confinement

along the y direction.

The scalar wavevector components for the propagating wave are

(0, n1k0sinθm, n1k0cosθm), (A.1)

with k0 = 2π/λ the wavevector in free space. The electric field for TE polarization
can be written as ex,m(y, z) = amum(y)exp(−iβmz), with am a constant, the propaga-
tion constant βm = n1k0cosθm, and the y-field profile inside the waveguide can be
written as

um(y) ∝

{
cos (n1 k0 sinθm y) , m = 1, 3, 5, ...
sin (n1 k0 sinθm y) , m = 2, 4, 6, ...

with − h
2
≤ y ≤ h

2
, (A.2)

where the proportionality constants come from the normalization condition∫ ∞

−∞
u2

m(y)dy = 1. (A.3)

From eq. (A.2) it is clear that the higher the θm, the larger the variation of the
field profile along y, such that the higher order modes have a faster oscillating profile
with respect to lower order modes. The field extending outside the core region must
match the field inside the core at the boundaries (y = ±h/2), and therefore should
propagate along z as exp(−iβmz); for |y| > h/2, the field has thus the form ex,m =
amum(y)exp(−iβmz) and, by plugging it into the usual Helmholtz equation (∇2 +
n2

2k2
0)ex,m(y, z) = 0, it is obtained

d2 um

dy2 − η2
mum = 0, (A.4)

where η2
m = β2

m− n2
2k0, that is a non-zero positive quantity for guided modes. As

a result, eq. (A.4) is satisfied by

um(y) ∝

{
exp (−ηm y) , y > h

2

exp (+ηm y) , y < − h
2

with − h
2
≤ y ≤ h

2
. (A.5)



Appendix A. Formation of waveguide modes 139

This solution defines the evanescent wave, with ηm the extinction coefficient, that
can be expressed as

ηm = n2k0

√
cos2θm

cos2θ̄c
− 1, (A.6)

with θ̄c = cos−1(n2/n1) the complement of the critical angle. From eq. (A.6),
as the order mode increases, θm becomes larger and ηm decreases, suggesting that
for higher order modes the evanescent field penetrates deeper into the surrounding
media. The first four modal profiles in the slab waveguide along the y direction
have been calculated as in eq. (A.2) and (A.5) and are reported in Fig. A.1b. Anal-
ogous derivation can be done also for confinement along the x direction and with
TM waves [5]. The field profiles for a channel or rib waveguide resemble the same
result obtained for the planar waveguide, with the only difference that the confine-
ment is present on both the x and y direction: the resulting mode profiles have the
same profile of the planar modes along the width of the waveguide, while along the
height only one mode is typically possible due to its typical lower size with respect
to the width. As a result, the modes of a channel/rib waveguide have the profiles
shown in Fig. 1.1.
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