
Beryllium-9 in Cluster

Effective Field Theory

Paolo Andreatta
Supervisor: Winfried Leidemann
A thesis presented for the degree of

Doctor of Philosophy

Università degli Studi di Trento

Facoltà di Scienze Matematiche, Fisiche e Naturali

Dipartimento di Fisica



2



Contents

Chapters:

Contents 3

List of Figures 5

List of Tables 9

1 Introduction 11

2 The hyperspherical harmonics (HH) basis 17

2.1 Jacobi coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Permutations and transformations between different sets . 19

2.2 Hyperspherical coordinates . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 The Laplace operator in hyperspherical coordinates . . . 24

2.3 Hyperspherical harmonics functions . . . . . . . . . . . . . . . . . 26

2.4 Complete HH basis . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 The Symmetrized and the Non-Symmetrized HH Basis . . . . . . 31

3 Momentum Space 35

3.1 The properties and characteristics of momentum space . . . . . . 36

3.2 The right set of coordinates . . . . . . . . . . . . . . . . . . . . . 38

3.3 Nonlocal potential in the HH formalism . . . . . . . . . . . . . . 40

3.3.1 The Euler angles . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Effective Field Theory 57

4.1 What is an Effective Theory? . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Multipole expansion . . . . . . . . . . . . . . . . . . . . . 59

3



CONTENTS

4.1.2 Earth’s gravitational potential . . . . . . . . . . . . . . . 60
4.1.3 Schrödinger equation . . . . . . . . . . . . . . . . . . . . . 61
4.1.4 Fermi electroweak interaction . . . . . . . . . . . . . . . . 63

4.2 Effective theory in cluster nuclei . . . . . . . . . . . . . . . . . . 65
4.2.1 A brief history of cluster nuclei . . . . . . . . . . . . . . . 65
4.2.2 Partial wave decomposition . . . . . . . . . . . . . . . . . 69
4.2.3 αn and αα potentials . . . . . . . . . . . . . . . . . . . . 71

5 Results 77
5.1 The Carbon-12 nucleus . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 The Beryllium-9 nucleus . . . . . . . . . . . . . . . . . . . . . . . 79

6 Summary and outlook 81

Bibliography 85

4



List of Figures

1.1 Comparison of 9Be photodisintegration cross section from dif-
ferent experiments given in Ref. [1] (data and line labeled with
’present’ refer to this). In (a) the shown data is from Burda et
al. [2] (virtual photons from inelastic electron scattering), Ut-
sunomiya et al. [3] (real photons from inverse Compton scatter-
ing), Gibbons [4], John et al. [5] and Fujishiro et al. [6] (real
photons from radioisotopes). In (b) an enlargement of the boxed
region in (a) is presented. . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Two alternatives to the standard scheme a) of a 5-body Jacobi
set of coordinates. In b) a recoupling of particles 4 and 5 is shown:
the vector describing their relative positions is connected to the
CM of the remaining three particles. In c) the order of coupling
of particle 4 and 5 is exchanged with respect to a). . . . . . . . . 20

2.2 Tree diagram representing the standard scheme of hyperangular
coordinates. The explicit relations are shown in Eq. (2.25) . . . . 24

2.3 Tree diagram representing the sequential reversed-order A-body
isospin coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Tree diagram representing the coupling scheme between the or-
bital angular momentum LN and the total spin SA in a A-body
non-central basis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Comparison between the calculations of the ground state of tri-
tium with a Minnesota potential and its momentum space coun-
terpart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5



LIST OF FIGURES

3.2 Comparison between the calculations of the ground state of 3He
with a Minnesota plus a Coulomb interaction and its momentum
space counterpart. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Comparison between the calculations of the ground state of tri-
tium with a Malfliet-Tjon interaction and its momentum space
counterpart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Comparison between the calculations of the ground state of Carbon-
12 with an Ali-Bodmer interaction and its momentum space coun-
terpart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Comparison between the calculations of the ground state of Carbon-
12 with an Ali-Bodmer+Coulomb interaction and its momentum
space counterpart. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Schematic of a Beryllium-9 nucleus (P. Mueller/Argonne National
Lab). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.7 Comparison between the calculations of the ground state of Beryllium-
9 with a modified Ali-Bodmer+Coulomb interaction and its mo-
mentum space counterpart. . . . . . . . . . . . . . . . . . . . . . 56

4.1 A scheme of the relation between theories in Physics. Starting
from classical Mechanics and adding quantization, limited speed
of light and/or gravity, one can move toward more fundamental
and complete theories. . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 S-wave phase shifts errors for the non-corrected interaction and
for the corrected ones, both with only a2 terms and with also a4

terms. Example from Lepage [7] paper. . . . . . . . . . . . . . . . 63

4.3 The Fermi diagram of the muon decay, mediated through the
weak force and the ’Fermi-theory like’ diagram one gets at a low-
momenta approximation. . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Binding energy per nucleon of light nuclear systems (up to A =

28), the lines connect isotopes of each element. The α-particle
nuclei are marked by the circles. . . . . . . . . . . . . . . . . . . 66

4.5 Binding energy per nucleon of A = 4n nuclei versus the number
of α−α bonds. The analysis by Hafstad and Teller [8] suggested
that the ground states of A = 4n, α-conjugate, nuclei could be
described by a constant interaction energy scaled by the number
of bonds. For 8Be there is one bond, for 12C three, six for 16O,
nine for 20Ne, twelve for 24Mg and for structural reasons (the
geometric packing of the α-particles) sixteen for 28Si. . . . . . . . 67

6



LIST OF FIGURES

4.6 The Ikeda diagram. The threshold energies for each configuration
are given in MeV. The smallest, unlabelled clusters are alpha
particles. Increasing excitation energy is required to form more
and more complex cluster structures. Figure from [9] . . . . . . . 68

4.7 Feynman diagrams for a contact interaction, described as a delta
function and its derivative. . . . . . . . . . . . . . . . . . . . . . 70

4.8 c0 and c1 for αn case as functions of Λ. c0neg and c1neg are those
obtained from the solutions with the minus sign in the previous
equations while c0pos and c1pos are those obtained with the plus
sign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.9 c̃0 and c1 for αα case as functions of Λ. c̃0neg and c1neg are those
obtained from the solutions with the minus sign in the previous
equations while c̃0pos and c1pos are those obtained with the plus
sign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.10 Phase shifts δ1
3(En) (l = 1, J = 3/2) with experimental data from

Morgan and Walter [10] and in the inset the cross section σ0(En)

obtained at Λ = 300 MeV. . . . . . . . . . . . . . . . . . . . . . . 75
4.11 Phase shifts δ0(Elab) with experimental data from Afzal et al. [11]

and in the inset the cross section σ0(Elab) obtained at Λ = 200

MeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Ground state energy of 12C calculated using the cluster EFT
potential at different levels of the cutoff Λαα shown at various
levels of the hypermomentum K. . . . . . . . . . . . . . . . . . . 78

5.2 Heatmap showing the ground state energy of 9Be calculated using
the cluster EFT potential for different cutoffs Λαα and Λαn. . . . 79

7



LIST OF FIGURES

8



List of Tables

3.1 The most common potentials and relative Fourier transformed
form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9



LIST OF TABLES

10



Chapter 1
Introduction

This thesis makes a contribution to ab initio calculations for light nuclear sys-
tems. It belongs to a long term program that aims at calculating observables in
quantum composite systems, whose components are groups of distinguishable
or indistinguishable particles, which can be bosons and fermions. The spec-
tra of such particle systems can be obtained by diagonalizing the Hamiltonian
matrix represented on a suitable basis and by paying attention to a proper con-
vergence. The basis chosen here is the Hyperspherical Harmonics (HH) basis,
which ensures the necessary translation and Galilean invariance. Such a basis
is more often used for configuration space calculations, however, when work-
ing with potentials which are defined in momentum space it can be convenient
to diagonalize the Hamiltonian directly in momentum space. In fact my thesis
work consists in the development of such a momentum space calculation for an
HH basis. In particular, for the proper treatment of SN symmetries the non-
symmetrized hyperspherical harmonics (NSHH) basis and Casimir operator in
the Hamiltonian were used.
After having achieved and tested on known results I can then make the initial
steps for a calculation of a physical process of astrophysical interest, namely the
9Be photodisintegration, where my contribution consists in the calculation of
the 9Be ground state expressed as an assembly of two bosons, the α-particles,
and one fermion, the neutron. The interactions needed for such a system is
taken from cluster effective field theory, where the α particles and neutrons are
considered relevant degrees of freedom.
In order to describe the role of the 9Be photodisintegration, or better its inverse
process α+α+n→9Be+γ, for the nucleosynthesis a brief summary of the latter
is given in the following.
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In the brief span of 20 minutes, according to the Big Bang Nucleosynthesis
(BBN) scenario, the lightest elements of our universe, from hydrogen up to
lithium, came into being.
In the following hundreds of millions of years the clouds of gas collapsed under
gravitational forces and created the first stars and galaxies. It is in these hot
furnaces made mainly of hydrogen and helium that the rest of the elements of
the Universe were and are still made. This process, called stellar nucleosynthe-
sis, was first proposed in the famous "B2FH paper" [12] in 1957. Now, more
than sixty years from the publication of that article, physicists know that the
nucleosynthesis inside the stars is the sum of a number of different processes,
and the presence and importance of every one of them is given by the size and
age of the star.
Through the p-p chain (for Sun sized or smaller stars) and the CNO cycle (for
bigger stars) the hydrogen is burned and becomes helium. After that even the
helium undergoes fusion creating carbon and then, if the star is massive enough,
this process continues, synthesizing neon, then oxygen, silicon and, in the end,
iron. These types of processes stop at this nucleus, 56Fe, since no energy gain
through nuclear fusion is possible above this level. If we want to obtain other,
heavier nuclei we need to look at other sources. To our knowledge, the mecha-
nisms that allow the creation of these heavy elements are mainly found in two
different places: supernovae and asynthotic giant branch (AGB) stars.
In the first case the main engine of heavy nuclei generation is called r-process
(rapid neutron capture). In an environment with an high density of neutrons
and electrons the nuclei undergo a process of neutron capture, running along
the neutron drip line and creating heavy, unstable, neutron-rich nuclei.
In the second case, instead, the neutron capture is slower, allowing β-decays
between each capture, making the creation of nuclei go along the so-called line
of β-stability.
Among all these nuclei in all these different processes, however, there is one that
is quite important, both for its biological role and for being the basis of many
processes of nucleosynthesis. That is, carbon.
The usual path for the creation of the 12C nucleus is what is called the triple-α
process. However, under the extreme conditions of supernovae, another path
becomes dominant, the so called ααn path. Since no stable nucleus with 5 or 8
nucleons exists, the ααα (or, equivalently, triple-α) process allows stars to jump
above these gaps and create carbon.
This reaction (also the main source of energy in AGB stars) is composed of two
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CHAPTER 1. INTRODUCTION

phases:

α+ α→8 Be (1.1)

and

8Be+ α→12 C + γ. (1.2)

However, in an high enough abundance of neutrons and alpha particles, another
path may dominate over this channel. The first reaction being the same as 1.1,
but then it continues as

8Be+ n→9 Be+ γ (1.3)

and

9Be+ α→12 C + n. (1.4)

The ααn channel has been shown to be the predominant path for carbon creation
in core-collapse supernovae, meaning that studying the generation of 9Be is of
utmost importance for the beginning of the synthesis of heavy nuclei in this
environment.
Since 8Be is a resonance just above the continuum threshold of two α particles
(at an energy of 91.8 keV above the threshold) for the synthesis of 9Be we can
study the following reaction

α+ α+ n→9 Be+ γ (1.5)

or, equivalently, the inverse one, the photodisintegration of 9Be.
This photodisintegration has been studied in several experiments, the first be-
ginning in the ’40s. Various photon sources have been employed in the process,
first among them, at quite low resolution, Bremsstrahlung radiation [13, 14] and
radioactive isotope measurements [15, 16, 4, 5, 6]. Still, such early experiments
where able to restrict to ∼2.8 MeV the area where to search. In more recent
times, with the improvement of techniques, it has been possible to use more
precise laser-induced Compton backscattered γ rays (Utsunomiya et al. [3]), in-
vestigating the range from 1.78 to 6.11 MeV.
The most recent results used collimated nearly monoenergetic beams (from 1.5
to 5.2 MeV) from free-electron-lasers and 3He-based neutron detectors[1]. These
last experiments have shown a much increased cross-section compared to pre-
vious results, with important consequences on the models of supernovae nu-
cleosynthesis. All these results are shown in Fig.1.1, where it’s also important
to notice the threshold energy of a little less than 1.6 MeV, that shows us the

13



Figure 1.1: Comparison of 9Be photodisintegration cross section from different
experiments given in Ref. [1] (data and line labeled with ’present’ refer to this).
In (a) the shown data is from Burda et al. [2] (virtual photons from inelastic
electron scattering), Utsunomiya et al. [3] (real photons from inverse Compton
scattering), Gibbons [4], John et al. [5] and Fujishiro et al. [6] (real photons from
radioisotopes). In (b) an enlargement of the boxed region in (a) is presented.

binding energy between the two α-particles and the neutron products of this
reaction.
On the other hand, theoretical calculations for the 9Be photodisintegration can
be quite problematic. The configuration of the nucleus and the number of par-
ticles involved make calculations with realistic potentials on all nine nucleons of
the system extremely expensive in terms of power and time used.
This work is the first step to study such a reaction employing a cluster model
instead, that reduces the number of degrees of freedom of the system, simplify-
ing and accelerating the required calculations.
Such an approach is not new for the study of Beryllium-9 photodisintegration.
The same technique of clustering was employed by Efros et al. in [17], where the
9Be nucleus is described as an ααn system and a calculation for the reaction is
achieved by means of phenomenological local potentials. Within the same three-
body approach, another calculation of the reaction rate by Casal et al. [18] was
performed using two-body interactions described by phenomenological potential
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CHAPTER 1. INTRODUCTION

models, fitted to αα and αn phase shifts, and a three-body force fixed to repro-
duce the empirical energies. Both these studies give theoretical predictions in
good agreement with the experimental data, however they are both employing
phenomenological potential.
In this work instead non-local potentials within Effective Field Theory (EFT),
with a more solid theoretical background, have been used. The computation-
ally intensive interaction between nine or more bodies was reduced to a more
maneageable interaction between a much smaller number of clusters of nucle-
ons, α particles, and singular neutrons, thanks to the separation of momentum
scales present in these nuclei. Using the non-symmetrized hyperspherical har-
monics method I have developed a program able to calculate the energy levels of
Carbon-12 and Beryllium-9, using this nonlocal, momentum space cluster EFT
potential.
The next chapter will introduce the hyperspherical basis and the hyperspherical
harmonics functions, showing their properties and how to use them to develop a
complete basis of states. The last part will introduce the non-symmetrized basis
and the difference with the symmetrized one.
The following chapter will be an introduction to the concept of momentum
space, its properties and how to develop an HH basis in this space. It follows
an introduction to nonlocal calculations using an HH basis and the benchmark
tests for the final program that was generated from the theoretical work laid in
the previous parts.
The fourth chapter will introduce the reader to the subject of Effective Field
Theory (EFT), to Cluster EFT, and how they were used to generate the inter-
actions used in this program. The results of the calculations and a brief outlook
on future prospects will be the subjects of the last two chapters.
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Chapter 2
The hyperspherical harmonics
(HH) basis

Contents
2.1 Jacobi coordinates . . . . . . . . . . . . . . . . . . . 18

2.1.1 Permutations and transformations between different

sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Hyperspherical coordinates . . . . . . . . . . . . . 22

2.2.1 The Laplace operator in hyperspherical coordinates 24

2.3 Hyperspherical harmonics functions . . . . . . . . 26

2.4 Complete HH basis . . . . . . . . . . . . . . . . . . 29

2.5 The Symmetrized and the Non-Symmetrized HH
Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

The first chapter introduced the final objective of this thesis: the creation of
a program able to solve the eigenvalue problem for a few-body nuclear system,
a program that is able to us both coordinate space and momentum space inter-
actions, local or nonlocal they may be. In particular, the interaction that will
be the final suject of study will be a nonlocal, momentum space, EFT potential.
But first one must find a suitable basis of functions with which one can build
and, consequently, diagonalize the Hamiltonian matrix. Such a basis, as previ-
ously mentioned in this thesis, is the non-symmetrized hyperspherical harmonics
(NSHH) basis of functions.
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2.1. JACOBI COORDINATES

2.1 Jacobi coordinates

The first step in order to construct the hyperspherical basis and, subsequently,
the HH functions, is given by the Jacobi coordinates.
Through the use of this type of coordinate system we can separate the center of
mass (CM) motion from the internal ones in the kinetic term of energy. This is
particularly interesting in our case, since it allows us to study specifically only
the internal degrees of freedom of our nuclear system.
In a system of A particles, where ri and mi are the Cartesian position and the
mass of the i-th particle respectively, we introduce the mass-weighted Jacobi
coordinates by adopting the so-called reversed order convention:

ηηηA−i =

√
mi+1Mi

mMi+1

(
rrri+1 −

1

Mi

i∑
j=1

mjrrrj
)

(2.1)

where N = A− 1, i = 1, .., N , the constant m is a reference mass (in our case
it will be the nucleon mass) and:

Mi =

i∑
j=1

mj . (2.2)

As one can see, the Jacobi coordinates are order-dependent, meaning that chang-
ing ordering, coupling and mass parameter one obtains a completely different
set of coordinates. Still, it is possible to move, using suitable transformation
(that we will show later in the chapter), from one set of Jacobi coordinates to
another of different ordering and parameters.
In our case shown above, each ηηηA−i vector (for i > 1) represents the (i+ 1)-th
particle position with respect to the center of mass of the first i particles. In
particular the last Jacobi coordinate, ηηηN , is directly proportional to the relative
distance between the first two particles:

ηηηN =

√
m1m2

mM2
(rrr2 − rrr1). (2.3)

Following the reversed order convention then ηηη0 becomes the rescaled CM co-
ordinate:

ηηη0 =

√
MA

m
RRRcm =

1√
mMA

∑
i

mirrri. (2.4)
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CHAPTER 2. THE HYPERSPHERICAL HARMONICS (HH) BASIS

We can define the passage between the two bases, Cartesian and Jacobian, using
the following matrix S:

S =



−
√

m2

m1M2

√
m1

m2M2
0 · · · 0

−
√

m3

M2M3
−
√

m3

M2M3

√
M2

m3M3
· · · 0

−
√

m4

M3M4
−
√

m4

M3M4
−
√

m4

M3M4
· · · 0

...
...

...
. . .

...√
1
MA

√
1
MA

√
1
MA

· · ·
√

1
MA


· M (2.5)

whereMij =
√
miδij . Then one can verify the following properties:

ST · S = I det(S) = 1, (2.6)

showing us how S belongs to the SO(N) group. Also, given a vector vvvr defined
in the Cartesian basis and the same vector vvvη defined in the Jacobian one, we
have the following relation:

vvvr =
1√
m
M · ST · vvvη, (2.7)

and the relation between volume elements is instead:

dVη =

N∏
i=1

dηηηi =

N∏
i=1

√
mi

m
drrri =

( N∏
i=1

√
mi

m
)dVr. (2.8)

From Eq. (2.7) one can then easily convert the Cartesian kinetic operator to the
Jacobi version:

T = −
A∑
i=1

~2

2mi
∇2 = −~2

2
∇Tr · (M−1)2 · ∇r

= − ~2

2m
∇Tη S · M · (M−1)2 · M · ST · ∇η (2.9)

= − ~2

2m

N∑
i=0

∇i,

where ∇Tr = (∇Tr1 ,∇
T
r2 , · · · ) and an analogue definition for ∇Tη .

2.1.1 Permutations and transformations between different
sets

As mentioned before, the one chosen above is not the only possible scheme for
the Jacobi coordinates. Indeed, one has A! choices of possible Jacobi coordinates,
that differ between each other by the sequence of coupling among each of the A
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2.1. JACOBI COORDINATES

Figure 2.1: Two alternatives to the standard scheme a) of a 5-body Jacobi set of
coordinates. In b) a recoupling of particles 4 and 5 is shown: the vector describing
their relative positions is connected to the CM of the remaining three particles.
In c) the order of coupling of particle 4 and 5 is exchanged with respect to a).

particles composing the system and by the orientation of each ηηηi vector.
All the applications which allow to pass from one scheme to another belong
to the group O(N), since they do not involve the relative orientation of the
x, y and z components of each ηηηi vector nor the center of mass coordinate.
All these applications are compositions of three basic types of transformations,
called kinematic rotations: change in sign of a vector, exchange between adjacent
particles and recoupling of two particles. In Fig. 2.1 two examples of exchange
and recoupling of two particles are shown.
One can generate transformations from one ordering to another through the
composition of exchanges between adjacent particles (i and i+ 1) which involve
only two coordinates:


...

ηηη′A−i

ηηη′A−i+1

...

 = p(i,i+1)


...
ηηηi

ηηηi+1

...

 (2.10)
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CHAPTER 2. THE HYPERSPHERICAL HARMONICS (HH) BASIS

where

p(i,i+1)


IN−i

− cosβi sinβi

sinβi cosβi

Ii−2

 (2.11)

with βi called the kinematic angle and defined as:

cos2 βi =
mmi+1

Mi(Mi−1 +mi+1)
. (2.12)

However, there is an observation to make. Except the peculiar case of identical
masses for every particle a kinematic rotation like the one given in Eq. (2.10) is
not equivalent to a spatial permutation. Indeed, a spatial permutation P(i,i+1)

between particles i and i + 1 exchanges, by definition, the ri and ri+1 vectors
only:

P(i,i+1) · ηηη[(m1, r1), ..., (mi, ri), (mi+1, ri+1), ...] (2.13)

= ηηη[(m1, r1), ..., (mi, ri+1), (mi+1, ri), ...]

affecting every ηηηj definitions from j = 0 to j = A − i. Kinematic rotations,
instead, exchange both masses and positions

p(i,i+1) · ηηη[(m1, r1), ..., (mi, ri), (mi+1, ri+1), ...] (2.14)

= ηηη[(m1, r1), ..., (mi+1, ri+1), (mi, ri), ...]

and end up affecting only the definitions of ηηηi and ηηηi+1.
Still, we can find a link between the two by introducing another type of trans-
formation, the transformations between two different sets of mass parameters.
Given one set of masses, ζ, with

ζ = {mi > 0; i = 1, ...A} (2.15)

in which a set of Jacobi coordinates ηηηζi is defined, it is possible to operate a
transformation from this set to another set of masses (and relative set of Jacobi
coordinates) ζ ′. This is accomplished through the use of the matrix of this
transformation, Wζζ′ , that can be built from the particular case where the only
different mass between the two sets is in the A-th particle. Then it is easy to
see that

ηζi =

aAη
ζ′

i i = 1

ηζ
′

i i = 2, ..., N
(2.16)
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2.2. HYPERSPHERICAL COORDINATES

with

aA =

√
mAM ′A
m′AMA

M ′A = MA −mA +m′A, (2.17)

making Wζζ′ = W(A) assume the simple form of

W(A) =

(
aA

IN−1

)
. (2.18)

Then if the mass to change is located in the generic i-th position, one can always
apply a sequence of kinematical rotations in order to move the (mi, ri) couple
in the last coupling position, and then come back after the application of the
scaling transformation W(A):

W(i) =

[ i∏
α=N

pζ
′

α,α+1

]
W(A)

[ N∏
α=i

pζα,α+1

]
(2.19)

where pζ
′

α,α+1 is the kinematical rotation in ζ ′, pζα,α+1 in ζ.
Wζζ′ is then constructed as

Wζζ′ =

A∏
i=1

W(i). (2.20)

With this new transformation we can finally find the link between spatial per-
mutations and kinematical rotations in the Jacobi coordinates:

Pijηηη = Wij · pi,jηηη[(m1, r1), ..., (mi, ri), ..., (mj , rj), ...] =

= Wij · ηηη[(m1, r1), ..., (mj , rj), ..., (mi, ri), ...] = (2.21)

= ηηη[(m1, r1), ..., (mi, rj), ..., (mj , ri), ...] (2.22)

2.2 Hyperspherical coordinates1

After generating a set of Jacobi basis the next step we need to take is to express
every single vector ηkηkηk in spherical coordinates. So, for every ηkηkηk we will have one
radial coordinate ηk and two angular coordinates η̂k = (θk, ϕk).
The final step we need to do in order to construct the hyperspherical basis is to
take the N radial coordinates and transform them in N −1 angular coordinates
and a single hyperradial coordinate ρ. To better comprehend how it’s done we
should start from the case of two Jacobi radial coordinates, η1 and η2. We

1This section and the following ones are liberally inspired by the doctoral work of Nir
Barnea[19]
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CHAPTER 2. THE HYPERSPHERICAL HARMONICS (HH) BASIS

can parameterize them using the hyperradial coordinate ρ2 and the hyperradial
angle Φ2, in polar coordinates:η1 = ρ2 cos Φ2

η2 = ρ2 sin Φ2

(2.23)

Adding another angle and with a different hyperradius ρ3 we can describe three
Jacobi radial coordinates using spherical coordinates:

η1 = ρ3 cos Φ3 cos Φ2

η2 = ρ3 cos Φ3 sin Φ2

η3 = ρ3 sin Φ3

(2.24)

And we can add up to N − 1 angles, in order to describe N radial ηi:

η1 = ρN cos ΦN ... cos Φ3 cos Φ2

η2 = ρN cos ΦN ... cos Φ3 sin Φ2

...

ηi == ρN cos ΦN ... cos Φi+1 sin Φi
...

ηN−1 = ρN cos ΦN sin ΦN−1

ηN = ρN sin ΦN

. (2.25)

In conclusion, we can describe N different radial coordinates using a SN−1

hypersphere in RN . We can reverse the previous definition and define the hy-
perradius ρ and every single hyperangle Φi with the radial Jacobi coordinates:sin Φn = ηn/ρn

cos Φn = ρn−1/ρn
⇒


ρ2
n = ρ2

n−1 + η2
n =

∑n
j=1 η

2
j

sin Φi = ηi√
η2

1+...+η2
i

. (2.26)

To note that the hyperradial coordinate ρ = ρN is symmetric with respect to
permutations of the particles.
With these formulae then the 3N = 3(A − 1) internal coordinates for an A-
particle system can be represented by an hyperradial coordinate ρ and 3N −
1 = 3A − 4 hyperangular coordinates Ω(N) = {η̂1, η̂2, · · · , η̂N ,Φ2, · · · ,ΦN} =

{Ω1,Ω2, · · · ,ΩN ,Φ2, · · · ,ΦN}, with the hyperangles Φn varying in the range
π
2 ≥ ΦN ≥ 0. In short, we have developed the following parametrization:

ηηη(ρ,Ω(N)) : R3N → R+ × SN−1
+ × (S2)N . (2.27)
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2.2. HYPERSPHERICAL COORDINATES

Figure 2.2: Tree diagram representing the standard scheme of hyperangular
coordinates. The explicit relations are shown in Eq. (2.25)

We can then define the hyperradial volume element (with ρ = ρN ) as:

dV3N = ρ3N−1dρdS3N−1 =

= ρ3N−1dρ sin2(ΦN ) cos3N−4 ΦNdΦNdΩNdS3N−4 = (2.28)

= ρ3N−1dρ sin θ1dθ1dϕ1

N∏
i=2

sin θidθidϕi(sin Φi)
2(cos Φi)

3i−4dΦi

where dS3N−1 is the volume element associated with the 3N − 1 dimensional
hypersphere and dΩN is the volume associated with the angular part of the Nth
Jacobi coordinate ηN . Like for the Jacobi coordinates also in the hyperspherical
case we can choose between several different sets of coordinates. A powerful
tool in representing the variety of such sets is given by the tree diagram, first
introduced by N. Ya. Vilenkin et al. in [20]. In Fig. 2.2 the set of Eq. (2.25) is
schematized.
Each hyperangle Φi is related to the i-th node: if the segment joining this node
with the upper one extends to the right, a factor equal to sin Φi is associated,
otherwise cos Φi. Each ηi is obtained by the product of ρ with each sine or cosine
factor associated to each node starting from the lowest vertex and following the
track to the ηi termination.

2.2.1 The Laplace operator in hyperspherical coordinates

The hyperspherical coordinates are a generalization of the spherical coordinates
for a A-body system, the hyperspherical harmonics functions a generalization
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CHAPTER 2. THE HYPERSPHERICAL HARMONICS (HH) BASIS

of the spherical harmonics functions. These are eigenfunctions of the angular
momentum operator, contained in the relative kinetic energy operator so, in
order to generate the HH, we need to search for a generalization of the Laplace
operator.
The internal kinetic energy operator for a two particle system is given by the
three dimensional laplacian, that we express in terms of the relative motion
Jacobi coordinate η1 and the corresponding angular coordinates Ω1

∆(1) = ∆ηηη1 = ∆η1
− 1

η2
1

l̂21 (2.29)

where the radial part is given by

∆η1
=

∂2

∂η2
1

+
2

η2
1

∂

∂η1
(2.30)

and l̂1 is the angular momentum operator of the relative motion.
If we go to the three particle system we can describe the internal kinetic energy
with a six dimensional Laplace operator which is a sum of the three dimensional
Laplace operators that act separately on coordinates η1 and η2.

∆(2) = ∆ηηη1 + ∆ηηη2 = ∆η1
+ ∆η2

− 1

η2
1

l̂21 −
1

η2
2

l̂22 (2.31)

Using equation (2.23) we can transform the Jacobi coordinates η1 and η2 in the
hyperradial coordinate ρ2 and the hyperangle Φ2, obtaining

∆(2) = ∆ρ2 −
1

ρ2
2

K̂2
2 . (2.32)

The radial part of the this equation depends only on the hyperradius ρ2

∆ρ2
=

∂2

∂ρ2
2

+
5

ρ2
2

∂

∂ρ2
. (2.33)

The hyperspherical angular momentum operator K̂2
2 is instead expressed in

terms of the hyperangle Φ2 and the two "classical" angular momentum operators
l21 and l22 as follows

K̂2
2 = − ∂2

∂Φ2
2

− 4 cot(2Φ2)
∂

∂Φ2
+

1

cos2 Φ2
l̂21 +

1

sin2 Φ2

l̂22 (2.34)

The internal total angular momentum of the system is L̂2 = l̂1 + l̂2. Note that
L̂2

2 and L̂2z commute with ∆(2), l̂21, l̂22 and K̂2
2 .

From these examples is then easy to find the generalization to the 3N dimen-
sional Laplace operator, that describes the internal kinetic energy of the N + 1

particle system. The laplacian will be a sum over all the three dimensional
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2.3. HYPERSPHERICAL HARMONICS FUNCTIONS

Laplace operator that act on the Jacobi coordinates η1, η2, · · · , ηN

∆(N) =

N∑
i=1

∆ηηηi =

N∑
i=1

(
∆ηi −

1

η2
i

l̂2i

)
. (2.35)

We can express it also using a recurrence relation

∆(N) = ∆(N−1) + ∆ηηηN = ∆ρN−1
+ ∆ηN −

1

ρ2
N−1

K̂2
N−1 −

1

η2
N

l̂2N . (2.36)

Then we can apply Eq. (2.26), transforming the coordinates ρN−1 and ηN into
the hyperradius ρ = ρN and the hyperangle ΦN . This will result in

∆(N) = ∆ρN −
1

ρ2
N

K̂2
N (2.37)

where the (hyper)radial part is

∆ρN =
∂2

∂ρ2
N

+
3N − 1

ρ2
N

∂

∂ρN
=

1

ρ3N−1
N

∂

∂ρN
ρ3N−1
N

∂

∂ρN
. (2.38)

The hyperspherical or grand angular momentum operator K̂2
n, n = 2, ..., N , can

then be expressed in terms of the squared angular momentum associated to the
nth Jacobi coordinate, l̂2n and K̂2

n−1, as follows:

K̂2
n = − ∂2

∂φ2
n

− 3n− 6− (3n− 2) cos(2φn)

sin(2φn)

∂

∂φn
+

1

cos2 φn
K̂2
n−1 +

1

sin2 φn
l̂2n

(2.39)

where we define K̂2
1 = l̂21 and the internal n particle angular momentum operator

as L̂n = L̂n−1+ l̂n. The operators l̂2n, K̂2
n, K̂2

n−1, L̂2
n and L̂nz then commute with

each other thus giving us the possibility of labelling each hyperspherical state
with a complete set of quantum numbers K2

N ,K
2
N−1, · · · ,K2

2 corresponding to
the hyperspherical angular momentum, LN , LN−1, · · · , L2,MNz corresponding
to the spatial angular momentum and lN , lN−1, · · · , l2, l1 for the angular part
of the Jacobi coordinates.

2.3 Hyperspherical harmonics functions

The angular part of the internal state for two particle is described by the spheri-
cal harmonic Yl1,m1(Ω1). Adding a third particle and taking the state Yl2,m2(Ω2)

we can form the three particle state φL2M2;l1l2(Ω2), eigenstate of the operators
l̂21, l̂22, L̂2

2 and M̂2z . This three particle state is obtained by coupling the states
Yl1,m1

(Ω1) and Yl2,m2
(Ω2) with the use of Clebsch-Gordan coefficients:

φL2M2;l1l2(Ω1,Ω2) =
∑
m1m2

(l1m1l2m2|L2M2)Yl1,m1
(Ω1)Yl2,m2

(Ω2). (2.40)
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CHAPTER 2. THE HYPERSPHERICAL HARMONICS (HH) BASIS

The next step in the construction of the HH for three particle systems is given
by the definition of the eigenfunctions Ψ of K̂2

2 (2.34). They are functions of
the hyperangle Φ2, dependent on the quantum numbers K2, l2 and K1(≡ l1) as
follows:

ΨK2;l2l1(Φ2) = N2(K2; l2l1)(sin Φ2)l2(cos Φ2)l1P
(l2+ 1

2 ,l1+ 1
2 )

n2 (cos 2Φ2) (2.41)

where P (l2+ 1
2 ,l1+ 1

2 )
n2 is the Jacobi polynomial, n2 is a non negative integer and

K2 = 2n2 + l1 + l2. (2.42)

The normalization constant is

N2(K2; l2l1) =

[
(2K2 + 4)n2!Γ(n2 + l2 + l1 + 2)

Γ(n2 + l2 + 3
2 )Γ(n2 + l1 + 3

2 )

] 1
2

(2.43)

and the eigenvalues of the K̂2
2 corresponding to this functions are K2(K2 + 4),

where K2 ≥ l1 + l2 ≥ L2 ≥ 0. The parity is the same of l1 + l2.
The hyperspherical function for three particles, eigenfunction of K̂2

2 and L̂2, is
obtained simply multiplying Ψ and φ:

Y[K2](Ω(2)) = ΨK2;l2l1(Φ2)φL2M2;l1l2(Ω1,Ω2,Φ2), (2.44)

with Ω(2) = {Ω1,Ω2}.
This state is dependent on five quantum numbers, K2, L2,M2, l1 and l2, here
grouped under the symbol [K2], since it is dependent by five coordinates (Ω1 =

(θ1, ϕ1), Ω2 = (θ2, ϕ2) and Φ2 aggregated under Ω(2).)
Since K1 = l1 it is not possible to extract the generic characteristics of the
recursive construction of the hyperspherical functions in general. We therefore
need to describe the four particle case.
First we need to couple the two-body HH in Eq.(2.44) with the function Yl3,m3(Ω3).
This is done, as in the previous case, with the aid of the Clebsch-Gordan coef-
ficients:

φL3M3;[K2]l3(Ω(2),Ω3) =
∑
M2m3

(L2M2l3m3|L3M3)Y[K2](Ω(2))Yl3,m3(Ω3). (2.45)

Using Eq. (2.24) it is then possible to generate the eigenfunctions of the operator
K̂2

3 in a manner similar to the previous one:

ΨK3;l3K2(Φ3) = N2(K3; l3K2)(sin Φ3)l3(cos Φ3)K2P
(l3+ 1

2 ,K2+2)
n3 (cos(2Φ3))

(2.46)

with

K3 = 2n3 +K2 + l3. (2.47)
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and

N2(K3; l3K2) =

[
(2K3 + 7)n3!Γ(n3 + l3 +K2 + 7

2 )

Γ(n3 + l3 + 3
2 )Γ(n3 +K2 + 3)

] 1
2

. (2.48)

The eigenvalues of K̂2
3 corresponding to these eigenfunctions are K3(K3 + 7),

with K3 ≥ K2 + l3 ≥ 0 and the same parity of K2 + l3.
In a manner akin to the previous, we construct the HH

Y[K3](Ω(3)) = ΨK3;l3K2(Φ3)φL3M3;[K2]l3(Ω(2),Ω3), (2.49)

where [K3] stands for K3, L3,M3,K2, L2, l3 and Ω(3) = {Ω1,Ω2,Ω3,Φ2,Φ3} =

{Ω(2),Ω3,Φ3}.
From these examples it is now possible to deduce how to obtain the N+1 parti-
cle hyperspherical function Y[KN ]. First one needs to couple the N particle HH
Y[KN−1] and the spherical harmonic YlN ,mN (ΩN ) using Clebsch-Gordan coeffi-
cients:

φLNM3N ;[KN−1]lN (Ω(N−1),ΩN ) =

=
∑

MN−1mN

(LN−1MN−1lNmN |LNMN )Y[KN−1](Ω(N−1))YlN ,mN (ΩN ). (2.50)

Second, one constructs the orthonormalized eigenfunctions of the grand angular
momentum operator K̂2

N

ΨKN ;lNKN−1
(ΦN ) = NN (KN ; lNKN−1)(sin ΦN )lN (cos ΦN )KN× (2.51)

× P (lN+ 1
2 ,KN−1+ 3N−5

2 )
nN (cos 2(ΦN ))

with

KN = 2nN +KN−1 + lN . (2.52)

and

NN (KN ; lNKN−1) =

[
(2KN + 3N − 2)nN !Γ(nN + lN +KN−1 + 3N−2

2 )

Γ(nN + lN + 3
2 )Γ(nN +KN−1 + 3N−5

2 )

] 1
2

.

(2.53)

The eigenvalues of the operator K̂2
N for the functions ΨKN ;lNKN−1

areKN (KN+

3N − 2), where KN ≥ KN−1 + lN ≥ 0 and has the same parity as KN−1 + lN .
As the last step we construct Y[KN ], N (Jacobi) coordinates, N + 1 particle
functions, coupled to a total angular momentum LN . As usual the method is
composed of simply the product of Ψ and φ,

Y[KN ](Ω(N)) = ΨKN ;lNKN−1
(ΦN )φLNM3N ;[KN−1]lN (Ω(N−1),ΩN ), (2.54)
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where [KN ] stands forKN , LN ,MN ,KN−1, LN−1, lN and Ω(N) = {Ω(N−1),ΩN ,ΦN−1}.
This means that the A-body HH function can be expressed in the following form:

Y[KN ](Ω(N)) =[Yl1(η̂ηη1)⊗ Yl2(η̂ηη2)|L2 ⊗ ...⊗ YlN−1
(η̂ηηN−1)|LN−1

× (2.55)

× YlN (η̂ηηN )|LNMN
]
[ N∏
i=2

ΨKi;liKi−1(Φi)
]

2.4 Complete HH basis

While the HH functions are a powerful tool, they’re not enough to generate
a complete basis of functions of our space. Not only we are still missing the
hyperradial part but also the spin and isospin one. Indeed, a function of a basis
in this space will be of the form

|Φi〉 =
∣∣RriY[KN ]i

〉
⊗
∣∣χ[SA]iχ[TA]i

〉
(2.56)

where Rri are the hyperradial functions, χ[SA]i and χ[TA]i are the spin and
isospin states.
The hyperradial basis is generated from a set of generalized Laguerre polyno-
mials L(ν)

n (ρ/β) coupled with the appropriate weights

Ln(ρ) =

√
n!

(n+ ν)!
L(ν)
n (ρ/β)e−

ρ
2β

(
ρ

β

) ν−3A+4
2

(2.57)

where β is a variational parameter with dimension of a length, that has been
studied in order to analyze the convergence of bound state, and n is an integer
number 0 < n < nmax.
By using the properties of the Laguerre polynomials we can calculate the fol-
lowing integral in an analytical way

Rν;a
n,n′ = 〈Ln(r)| ra |Ln′(r)〉 =

=

√
n!n′!

(n+ ν)!(n′ + ν)!

∫ ∞
0

e−rrνLn(r)Ln′(r)ra = (2.58)

=

√
n!(n+ ν)!

n′!(n′ + ν)!

n∑
m=0

(−1)m
(ν + a+m)!(−a−m)n′

(n−m)!(ν +m)!m!
,

meaning that we can analytically evaluate the kinetic radial matrix elements:

〈Ln(r)| ∇ρ |Ln′(r)〉 =
1

4
δnn′ −

3N − 1 + 2n′

2
Rν;−1
n,n′ + (3N − ν + 2)× (2.59)

×
[
n′Rν;−2

n,n′ −
√
n′(n′ + ν)Rν;−1

n,n′−1

]
.

Choosing ν = 3N − 1 we can recover the volume element dVρ defined in Eq.
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Figure 2.3: Tree diagram representing the sequential reversed-order A-body
isospin coupling.

Figure 2.4: Tree diagram representing the coupling scheme between the orbital
angular momentum LN and the total spin SA in a A-body non-central basis.

(2.28), making this the most natural choice.
The spin and the isospin basis were both defined on a reversed sequential
coupling. By denoting as si and ti, respectively, the spin and the isospin quantum
numbers of the i-th particle, each spin and isospin state can be identified by the
following notation:

[SA] = sA, sA−1, ..., s1;S2, ..., SA−1, SA (2.60)

[TA] = tA, tA−1, ..., t1;T2, ..., TA−1, TA;TAz ; (2.61)

where Si is the total spin quantum number of the system composed by particles
from A to A− i+ 1 (the same notation is used for the isospin part). TAz is the
projection on the z axis of the total isospin TA. As seen in Fig. 2.3, the isospin
coupling scheme can be represented in the tree diagram form.
In the case of a central force LN and SN are conserved, meaning that they
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CHAPTER 2. THE HYPERSPHERICAL HARMONICS (HH) BASIS

are good quantum numbers for defining the eigenstates of Ĥ ([KN ;SN ]c =

[KN ]⊗ [SA]). In the non-central case however SN and LN are not good quantum
numbers anymore, and only the total angular momentum J , together with the
isospin numbers TA and TAz , can be used to define the angular plus spin/isospin
wavefunction ([KN ;SN ]c = [KN ;SA−2; [[LN−1, lN ]LN ; [SA−1, sA]SA ]J ]), leading
to a much bigger basis (Fig. 2.4).

2.5 The Symmetrized and the Non-Symmetrized

HH Basis

The HH functions do not possess any intrinsic, particular symmetry under par-
ticle permutations, then they have to be manually symmetrized.
One approach consists in a recursive construction of HH functions by realizing
irreducible representations not only of the orthogonal group O(3N) but also of
the group O(N), accordingly to the chain O(3N) ⊂ O(3)⊗O(N):

O(3N − 3) ⊃ O(3)⊗ O(N − 1) ⊃ O(N − 2) · · · ⊃ O(2)

∪ ∪ ∪
SN ⊃ SN−1 · · · ⊃ S3 ⊃ S2

(2.62)

Such an approach has been developed through an efficient technique by N.
Barnea more than two decades ago [19] and it led to the first 6-body calculation
through the use of the HH method [21]. Up to 7-body calculations have also
been performed, but limited to central potentials.
This approach for a few-body system of fermions is quite powerful, since with
an antisymmetric wavefunction ΨA one can calculate all the matrix elements
for a potential by calculating only the matrix element of one pair of particles

〈ΨA|
∑
i<j

Vij |ΨA〉 =
N(N − 1)

2
〈ΨA|V12 |ΨA〉 . (2.63)

However, the couples analyzed in this program (nn, αα and αn) have all differ-
ent symmetries, making the implementation of this method exceedingly difficult.
An alternative HH approach to the few-body problem has been developed a few
years ago by M. Gattobigio et al. in ref. [22] and it is based on the use of the
Hyperspherical Harmonics basis without previous symmetrization.
The eigenvectors of the A-body Hamiltonian possess a well defined symmetry
under particle permutations, and this symmetry can be identified by means of
the application of the Casimir operator of the group of permutations of A ob-
jects, C(A). When the spatial part of the eigenstates is found and its symmetry
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determined, the spin and isospin parts are combined in order to obtain the de-
sired total permutational symmetry.
A variation on the non-symmetrized HH (NSHH) approach has been later in-
troduced by N. Barnea et al. and it is based on the definition of a pseudoHamil-
tonian as a suitable combination of the A-body Hamiltonian and the C(A)

operator. The lowest eigenvectors of such an operator possess the desired per-
mutational symmetry and they can be calculated by means of fast diagonaliza-
tion procedures, in this case the Lanczos procedure, given its property of fast
convergence on the lowest eigenstates, was chosen.
In order to tackle the problem of having to calculate the matrix elements for
all the couples of particle ij, since we are missing an intrinsic symmetry of the
wavefunction, we use permutation matrices in a similar manner to Eq:(2.22):

〈ΨNSHH |Vij |ΨNSHH〉 = 〈ΨNSHH |P−1
1i P

−1
2j V12P1iP2j |ΨNSHH〉 . (2.64)

with

Pab =

b−1∏
s=a

P(s)
a∏

s=b−2

P(s), a < b. (2.65)

The unitary matrix P(j) is defined as

P(j)
[KN ][K′N ] =

∫
Y ∗[KN ] (ΩN )Y[K′N ](Ω

(j)
N )dΩN (2.66)

and represents the kinematic rotation between the two mass-position pairs
(mj , rj) and (mj+1, rj+1) in the HH basis.
It can be shown (see [23]) to be equal to

P(j)
[KN ][K′N ] =

[ i−2∏
α=1

δlα,l′α

i−2∏
k=2

δLk,L′kδKk,K′k

](i)

BLi−2Ki−2LiKi
li−1l′i−1Li−1L′i−1K

′
i−1

(2.67)

·
[ N∏
α=i+1

δlα,l′α

N∏
k=i+1

δLk,L′kδKk,K′k

]
.

The B matrices represent the blocks of the P matrix and are combinations
recouplings by means of the Tree, the T and the Raynal-Revai coefficients:

(i)BLi−2Ki−2LiKi
li−1l′i−1Li−1L′i−1K

′
i−1

=
∑
Li,i−1

T
Li−2li−1li
Li−1,Li,i−1,Li

T
Li−2l

′
i−1l

′
i

Li−1,Li,i−1,Li
· (2.68)

·
∑
Ki−1,i

T
αKi−1

αli−1
αli

Ki−1Ki,i−1Ki
T
αKi−1

α′li−1
α′li

Ki−1Ki,i−1Ki
· RKi,i−1,Li,i−1

li−1li,l′i−1l
′
i
,
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with

T
Li−2li−1li
Li−1,Li,i−1,Li

=(−1)Li−2+li−1+li+Li
√

2Li−1 + 1· (2.69)

·
√

2Li,i−1 + 1

Li−2 li−1 li

li Li Li,i−1

,

and RKi,i−1,Li,i−1

li−1li,l′i−1l
′
i

(βj) the Raynal-Revai coefficients as described in [24].
Even without a symmetrized basis one can then calculate all the potential ma-
trix elements through the use of permutation matrices and the Casimir operator.
This last approach is the one adopted by the present work. Here I just stress
that the avoidance of the symmetrization procedure, however, is partly counter-
weighted by the larger dimension of the basis, which is not anymore constrained
by the permutational symmetry.
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Chapter 3
Momentum Space
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The potentials that will be used in this thesis are interactions born in the
space called momentum space.
Similar to the more commonly known and used coordinate space, momentum
space has its own peculiarities that will set us up in the right path for the cre-
ation of our system of coordinates.
In this chapter I will explore the momentum space and how one can build a
system of hyperspherical coordinates in this case.
HH calculations have been already carried out in momentum space [25]. In
that work the momentum space HH basis was obtained from a Fourier trans-
form of the coordinate space HH basis. For the hyperspherical part one finds
that Y[KN ](Ωr)

FT−−→ Y[KN ](Ωp), whereas the hyperradial basis does not simply
lead to Laguerre polynomials in momentum space. This allowed the possibility
to calculate at the same time matrix elements of momentum space potentials
and coordinate space potentials (e.g. the Coulomb interaction)and simply sum
them. However, following such an approach there is an increase in complexity
for the momentum space hyperradial part, since the Fourier transform of the La-
guerre polynomial is a more complicated hypergeometric function that requires
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an enormous amount of precision in the integrations as the required number of
polynomials necessary for convergence rises.
The program that I developed in this thesis, instead, uses a system of coor-
dinates that is completely born in momentum space, and it is generated in a
similar manner as its coordinate space counterpart. The end result is a program
able to use momentum space or real space potentials, and it is able to study
systems composed of particles of different masses and/or statistics.
After the proper definition of momentum space basis I will then show results of
the benchmark calculations comparing coordinate and momentum space compu-
tations for various potential models (Minnesota, Malfliet-Tjon and Ali-Bodmer)
and systems (3H,3He and 12C and 9Be in cluster configurations).

3.1 The properties and characteristics of momen-

tum space

Momentum space is defined as the set of all the momentum vectors ppp a physical
system can have.
Is it a space very closely related to the coordinate space, the set of all space
position vectors rrr a system can have. Indeed, the two spaces are connected
by what is a called a Pontryagin duality: one can "move" from one space to
the other through the use of the operation called Fourier transform, and the
three-dimensional vectors ppp and rrr are conjugate variables:

[rαi , p
β
j ] = i~δαβδij , (3.1)

where i, j = 1, ..., A and α, β = x, y, z.
Given a distribution f(rrr) in coordinate space, then one can find the equivalent
distribution in momentum space, ψ(ppp), through the use of a Fourier transform:

ψ(ppp) = F(f(rrr)) =
1

(2π)
3
2

∫
eippp·rrrf(rrr)drrr. (3.2)

We can also calculate the inverse operation, finding f(rrr) from ψ(ppp), through the
use of the inverse Fourier transform:

f(rrr) = F−1(ψ(ppp)) =
1

(2π)
3
2

∫
e−ippp·rrrψ(ppp)dppp. (3.3)

The Fourier transform is an operation that has been studied for almost two
centuries, with many useful properties. However, their explanation is outside
the scope of this thesis, so, for the time being, we will consider only a couple of
them, the most used and useful ones for this study:
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V(rrr) V(qqq)

δ(rrr) 1

(2π)
3
2

∇2δ(rrr) qqq2

(2π)
3
2

e−αrrr
2 (√

π
α

)3
e−

qqq2

4α

e−µrrr

rrr
1

(2π)
3
2

4π
µ2+qqq2

1
rrr

1

(2π)
3
2

4π
qqq2

Table 3.1: The most common potentials and relative Fourier transformed form.

• Linearity:

F(af(rrr) + bg(rrr)) = aF(f(rrr)) + bF(g(rrr)). (3.4)

• Time scaling:

F(f(rrr)) = ψ(ppp)⇒ F(f(arrr)) =
1

a3
ψ
(ppp
a

)
. (3.5)

Then one can see, from the these formulae and properties, that it is possible to
transform quite easily the scalar part of a potential V (rrr) in coordinate space in
its counterpart in momentum space, V (ppp).
However, the transformed potential is not dependent only on ppp, but it is V (qqq),
where qqq is the transferred momentum qqq = ppp − ppp′. Then the hidden difficulty
of momentum space potentials is then revealed: the overwhelming majority of
them is in a nonlocal form.
In table 3.1 are reported the most common forms of the coordinate space poten-
tial V (rrr) and the relative momentum space, Fourier transformed potential V (qqq).
As one can see, moving in the momentum space doesn’t complicate the ’form’
of the potential; indeed one can see in some cases, as the contact interaction,
it becomes even simpler, moving from a collection of Dirac deltas to a much
more manageable form. However, the aforementioned nonlocality is shown to be
present everywhere except the simplest case of a contact potential; it becomes
essential then the study of how one can treat such a troublesome form in the
Hyperspherical Harmonics formalism.
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3.2 The right set of coordinates

As it was introduced in the first section of this chapter, one can easily transform
a coordinate space potential in its momentum space equivalent. The transfor-
mation will most likely put the aforementioned potential in a nonlocal form,
that can still be treated in the HH formalism. The only missing piece now is the
choice of the Jacobian coordinates, the link between these two.
As seen before, there is quite a large choice in how rrr1, rrr2, etc., the real space
coordinates, can be mixed in order to create a full set of Jacobian coordinates.
The same freedom is present also in the case of the momentum space coordinates
ppp1, ppp2, etc. However, like in the previous case the right choice in the ordering of
the coordinates simplified enormously the calculation by tying only coordinates
present in the potentials to ηηηN , even in this case there are some peculiar mixing
choices that can help in the simplifications of the calculations, and, doing so, in
a lighter workload for the calculator.
In the first section it was mentioned how the transformed potential and the EFT
potential that will be used are dependent on both ppp12 and its primed counter-
part. However ppp12 has a different definition than rrr12; while the latter is defined
as simply rrr2 − rrr1, the former, following the definition of conjugate variable, is
instead

ppp12 =
m1ppp2 −m2ppp1

M2
=
m1ppp2 −m2ppp1

m1 +m2
. (3.6)

This makes the previous choice of Jacobian coordinates not quite ideal in this
case, since we will lack a direct proportionality between a momentum space
equivalent of ηηηN (that we will call πππN ) and ppp12 if m1 6= m2, the case analyzed
in this thesis. This will make a potential V=V(ppp12) dependent on more than
one Jacobian coordinate after the transformation, increasing by several times
the number of integrations necessary for the calculations of matrix elements of
the potential, an extremely heavy amount for the calculator.
Another possibility is to start from the definition of momentum. As

ppp = −i~ ∂
∂rrr

(3.7)

the momentum space Jacobian coordinates (defined henceforth as πππi) will be
defined as

πππi = −i~ ∂

∂ηηηi
=

N∑
j=1

−i~ ∂

∂rrrj

drrrj
dηηηi

=

N∑
j=1

pppj
drrrj
dηηηi

. (3.8)
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Indeed, the procedure here described is just the generation of the conjugate
variables of ηηηi:

[ηαi , π
β
j ] = i~δαβδij , (3.9)

where i, j = 1, ..., N and α, β = x, y, z.
In the case analyzed in this thesis, the three body system of particles, this leads
to the following result:

πππ2 =

√
mM2

m1m2

(
m1ppp2 −m2ppp1

M2

)
πππ1 =

√
mM2

m3M3

(
ppp3 −

m3

M2
(ppp1 + ppp2)

)
(3.10)

πππ0 =

√
m

M3
(ppp1 + ppp2 + ppp3)

where the direct proportionality between the last Jacobian coordinate (πππ2 in
this case) and ppp12 has been restored:

πππ2 =

√
mM2

m1m2
ppp12. (3.11)

The Jacobian determinant for the transformation (ppp1, ppp2, ppp3) → (πππ0,πππ1,πππ2) is
the opposite as the coordinate space one

J =

3∏
i=1

√
m

mi
. (3.12)

After the determination of the Jacobian coordinates, the move to hyperspherical
coordinates and the construction of the HH functions is the same as described
in the second chapter, so, to distinguish between the two spaces from here on I
will use Q to specifically describe the momentum space hyperradius. The only
notable difference is present in the construction of the kinetic energy operator.
While in the previous case in real space the internal kinetic energy of the system
would be calculated from a quite complicated hyperlaplacian, in momentum
space the calculation of the internal kinetic energy is a much simpler matter.
In the three body case the total kinetic energy is

Ttotal =

3∑
i=1

p2
i

2mi
, (3.13)
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3.3. NONLOCAL POTENTIAL IN THE HH FORMALISM

that can be written in Jacobian coordinates, by using the inverse transformation
of Eq. (3.11):

ppp1 =

√
m1

m

(√
m1

M3
πππ0 −

√
m1m3

M3M2
πππ1 −

√
m1

M2
πππ2

)
ppp2 =

√
m2

m

(√
m2

M3
πππ0 −

√
m2m3

M3M2
πππ1 +

√
m1

M2
πππ2

)
ppp3 =

√
m3

m

(√
m3

M3
πππ0 +

√
M2

M3
πππ1

)
(3.14)

obtaining the following nice, compact result:

Ttotal =
π2

0 + π2
1 + π2

2

2m
(3.15)

The internal kinetic energy is defined as

Tint = Ttotal − TCM = Ttotal −
P 2
CM

2M3
= Ttotal −

(p1 + p2 + p3)2

2M3
, (3.16)

inserting Eq. (3.11) and (3.15) in this definition, one gets the following result

Tint =
π2

1 + π2
2

2m
(3.17)

Finally, remembering that, in momentum space in a three body system, the
hyperradius Q is defined in a similar manner as its real space counterpart ρ, as

Q =
√
πππ2

1 + πππ2
2 (3.18)

one obtains the following, extremely simple, formula to calculate the internal
kinetic energy:

Tint =
Q2

2m
. (3.19)

3.3 Nonlocal potential in the HH formalism

We want to calculate the following matrix element of a nonlocal potential in a
HH basis

V12,mn = 〈Ψ[m]|V (p12, p
′
12)|Ψ[n]〉 (3.20)

where [m] and [n] are sets of quantum numbers. In order to obtain this, we first
define our basis wavefunction Ψ as a product of purely hyperradial function and
a purely hyperangular one:

Ψ[n](πππ1, ...,πππN ) = Ψ[n](Q,Ω(N)) = gn(Q)Y[Kn](Ω(N)) (3.21)
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with gn(Q) defined as

gn(Q) =

√
n!

(n+ ν)!
Q
ν
2−

3n−1
2 e−

Q
2 Lνn(Q) (3.22)

and Y[Kn](Ω(N)) the hyperspherical harmonic of the full system, with set of
hyperangular quantum numbers [KN ]. Such a function can be decomposed, as
seen in the second chapter, in the following way:

Y[KN ](Ω(N)) =N (KN ; lNKN−1)(sin ΦN )ln(cos ΦN )KN× (3.23)

× P (lN+ 1
2 ,KN−1+ 3N−5

2 )
nN (cos(2ΦN ))×

×
∑

MN ,mN

(〈LN−1MN−1lNmN |LNMN 〉×

× Y[KN−1](Ω(N−1))Y
mN
lN

(ΩN )).

Before calculating the value of this integral I need to take another little step,
though.
As described in the previous sections of this chapter, when moving from a set of
Cartesian coordinates to a set of Jacobian ones to a set of hyperspherical ones
we make the following transformations:

(ppp1, ..., pppA)→ (πππ1, ...,πππN )→ (Q,Φ2, ...,ΦN , ϕ1, ..., ϕN , θ1, ..., θN )→ (Q,Ω(N))

(3.24)

However in this case the potential is nonlocal, meaning that it is dependent not
only on the distance p12 but also on p′12. Then we need to define a new set of
Jacobian coordinates (πππ1, ...,πππN ,πππ

′
N ) to reflect the added variable. Then our

nonlocal potential becomes V = V (πππN ,πππ
′
N ). However we need to reflect this

change also in the hyperspherical basis; by definition we haveπN = Q sin(ΦN )

ΩN = (ϕN , θN )
(3.25)

with

Q =

N∑
i=1

π2
i (3.26)

Then we can, in the same fashion, define four other variables:π′N = Q′ sin(Φ′N )

Ω′N = (ϕ′N , θ
′
N )

(3.27)
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with

Q′ =

N−1∑
i=1

π2
i + π′2N (3.28)

However this gives rise to a little problem. The addition of πππ′N gave us three
more variables, while we have just defined four. Luckily this discrepancy can be
easily solved by noting that there is a relation present between two of the four
variables. Using Eq. (3.27) together with Eq. (3.28) one obtains the following:

Q′2 =

N−1∑
i=1

π2
i + π′2N =

N−1∑
i=1

π2
i +Q′2 sin2(Φ′N )⇒

N−1∑
i=1

π2
i = Q′2(1− sin2(Φ′N ))

(3.29)

Then one can make the same reasoning with Eq. (3.25) and Eq. (3.26), obtaining

N−1∑
i=1

π2
i = Q2(1− sin2(ΦN )) = Q2 cos2(ΦN ) (3.30)

Putting the two results together

Q2 cos2(ΦN ) = Q′2 cos2(Φ′N )⇒ cos2(Φ′N ) = cos2(ΦN )
Q2

Q′2
(3.31)

we obtain a relation with which we can remove Φ′N as a free variable in the
integration. However one needs to pay attention for the consequences that this
act involves: when one moves from the Jacobian set of coordinates to the hy-
perspherical one there is a new element of volume to add that cannot be simply
obtained by mirroring the relation used for Q and ΦN . Indeed, we have to make
the following transformations:

πππ′N = (π′Nx , π
′
Ny , π

′
Nz )→ (π′N , ϕ

′
N , θ

′
N )→ (Q′, ϕ′N , θ

′
N ). (3.32)

While the first one is a simple movement from the Cartesian coordinates to
the spherical ones, the second one is a little more tricky. In the second set the
volume element is

dV = π′Ndπ
′
NdΩ′N (3.33)

so we need to transform it using Eq. (3.27) but keeping in mind the relation
(3.31). Doing so will result in the following:

dπ′N = d(Q′ sin(Φ′N ) = d(Q′
√

1− cos2(Φ′N )) =

= d

(
Q′

√
1− cos2(ΦN )

Q2

Q′2

)
= d(

√
Q′2 −Q2 cos2(ΦN )) =

=
2Q′

2
√
Q′2 −Q2 cos2(ΦN )

dQ′ =
dQ′√

1− Q2

Q′2 cos2(ΦN )
=

dQ′

sin(Φ′N )
(3.34)
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meaning that the final element of volume will be

dV = π′2Ndπ
′
N = Q′2 sin2(Φ′N )

dQ′

sin(Φ′N )
= Q′2 sin(Φ′N )dQ′ (3.35)

From here one can rewrite integral (3.20) in HH coordinates as

Vmn = N
∫
dQdQ′dΦNdΩ(N−1)dΩNdΩ′NQ

3N−1Q′2gm(Q)gn(Q′)×

× (sin(ΦN ))lN+2(cos(ΦN ))KN−1+3N−4P
(ln+ 1

2 ,KN−1+ 3N−5
2 )

nN (cos(2ΦN ))×

×
∑

MN−1,mN

(〈LN−1MN−1lNmN |LNMN 〉Y[KN−1](Ω(N−1))Y
mN
lN

(ΩN ))×

× V (πππN ,πππ
′
N )(sin(Φ′N ))l

′
N+1(cos(Φ′N ))K

′
N−1P

(l′n+ 1
2 ,K

′
N−1+ 3N−5

2 )

n′N
(cos(2Φ′N ))×

×
∑

M ′N−1,m
′
N

(〈L′N−1M
′
N−1l

′
Nm

′
N |L′NM ′N 〉Y[K′N−1](Ω(N−1))Y

m′N∗
l′N

(Ω′N ))

(3.36)

with N = N (KN , lN ,KN−1)N (K ′N , l
′
N ,K

′
N−1) the product of all normalization

factors of the various functions in the integrand.
The best way to calculate this integral is in steps:

1. Calculate the integral in Ω(N−1)

2. Calculate the integral in the remaining angles except ΦN (ΩN and Ω′N )

3. Finish the calculation in ΦN , Q and Q′

The first one is the easiest to complete, since the only functions dependent on
Ω(N−1) are the hyperspherical harmonics Y[KN−1] and Y[K′N−1]. As seen before
the integral will give a very simple result:∫

dΩ(N−1)Y[KN−1](Ω(N−1))Y[K′N−1](Ω(N−1)) = δ[KN−1][K′N−1] (3.37)

This means that the integral in Eq. (3.36) can be reduced to

Vmn = N
∫
dQdQ′dΦNdΩNdΩ′NQ

3N−1Q′2gm(Q)gn(Q′)×

× (sin(ΦN ))lN+2(cos(ΦN ))KN−1+3N−4P
(ln+ 1

2 ,KN−1+ 3N−5
2 )

nN (cos(2ΦN ))×

×
∑

MN−1,mN

(〈LN−1MN−1lNmN |LNMN 〉Y mNlN
(ΩN ))×

× V (πππN ,πππ
′
N )(sin(Φ′N ))l

′
N+1(cos(Φ′N ))K

′
N−1P

(l′n+ 1
2 ,K

′
N−1+ 3N−5

2 )

n′N
(cos(2Φ′N ))×

×
∑

M ′N−1,m
′
N

(〈LN−1MN−1l
′
Nm

′
N |L′NM ′N 〉Y

m′N∗
l′N

(Ω′N ))δ[KN−1][K′N−1]. (3.38)
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Now we need to tackle the second point in the list, the integration in the angles
ΩN and Ω′N . This is a set of four angles, result of moving the Jacobian coordi-
nates from a set of Cartesian-like coordinates to a spherical one.
Usually the integration in these angles will simply give a delta in the last set
of angular quantum numbers (LN and MN ), however in this case we have also
the potential in the integrand. This increase the total number of integrations
required by four, making the calculations of the matrix elements much longer
and problematic.
However there is a technique we can use to reduce this problematic calculation
to a more manageable size.

3.3.1 The Euler angles

The non-locality of the potential raises the number of dimensions of the final
integral, adding to ΦN and (Q,ΩN ) the three dimensional (Q′,Ω′N ), increasing
greatly the computational load on the calculation. A solution is to choose Euler
angles, representing rotations of the system as a whole, as three of the seven
degrees of freedom and carry out the integration as a whole. The following
procedure was introduced by V.D. Efros as a method for the elimination of
rotational degrees of freedom in the expansion method for three nucleons in
[26].
We first consider two three dimensional vectors, they could be πNπNπN and π′Nπ

′
Nπ
′
N or

(Q,ΩN ) and (Q′,Ω′N ). For simplicity we will call them uuu = (ux, uy, uz) and
vvv = (vx, vy, vz).
We consider three-dimensional rotations over the three Euler angles (from now
on collectively denoted by ω) as rotations of the whole system of coordinates,
moving the vectors uuu, vvv to the new vectors uuu′, vvv′ in the new system. Then,
given some spatial components FLM (uuu,vvv) of some basis functions for our system
(where L and M are respectively the orbital momentum and its projection
quantum numbers), its transformation under rotation is the following

FLM ′(uuu
′, vvv′) =

L∑
M=−L

DL
MM ′(ω)FLM (uuu,vvv) (3.39)

where DL
MM ′ are the Wigner D-functions.

One can also use the inverse relation

FLM (uuu,vvv) =

L∑
M ′=−L

DL∗
MM ′(ω)FLM ′(uuu

′, vvv′) (3.40)

to choose a new coordinate system in a way that it corresponds to a body
reference frame associated with the plane generated by the vectors uuu and vvv.
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In this way one can express the various coordinates uuu′i and vvv′i in terms of the
scalar quantities u, v, and uuu · vvv. In this way the previous expression becomes
an expansion of FLM over D-functions with coefficients depending on scalar
coordinates.
Since we’re free to choose the orientation of the body reference frame with
respect to the laboratory reference frame, we can use the convenient choice of
directing the z axis of the body reference frame along the vector uuu, and to place
the x axis on the uuu − vvv plane in a way that gives us a positive projection of vvv
along this axis. With this we obtain the following simplifications:

u′x = 0 u′y = 0 u′z = u v′x = v
√

1− t2 v′y = 0 v′z = vt (3.41)

where t = û · v̂. Then equation (3.40) becomes

FLM (uuu,vvv) =

L∑
M ′=−L

DL∗
MM ′(ω)FLM ′(u, v, t) (3.42)

with

FLM ′(u, v, t) = FLM ′(u
′
z = 0, u′y = 0, u′z = u, v′z = v

√
1− t2, v′y = 0, v′z = vt).

(3.43)

Suppose now that we want to calculate the following integral∫
duuudvvvGLM (uuu,vvv)Ôu,v,tFLM (uuu,vvv) (3.44)

where F and G are functions and Ô an operator.
Then one can introduce the previous relations together with a change of variables
(from (uuu,vvv) to (ω = {α, β, γ}, u, v, t)). The previous integral in Eq. (3.44) over
the Euler angles can then be calculated analytically (see [26]), leading to the
following expression:

δMM ′δLL′
8π

2L+ 1

∫
du dv dt u2v2

L∑
M ′′=−L

GLM ′′(u, v, t)Ôu,v,tFLM ′′(u, v, t).

(3.45)

We can then get back to the Eq. (3.38). Using, instead of uuu and vvv, the coordinates
πNπNπN and π′Nπ

′
Nπ
′
N and as the F and G the remaining functions of equation (3.38), with

the potential as the operator. Remembering that, after the rotation, the angles
(ΩN ,Ω

′
N ) = (θN , ϕN , θ

′
N , ϕ

′
N ) become (0, 0, arccos(û · v̂) = arccos(t), 0) we have

45



3.3. NONLOCAL POTENTIAL IN THE HH FORMALISM

that Eq.(3.38) becomes:

Vmn =
8π2

2ln + 1
N
∫
dQdQ′Q3N−1Q′2gm(Q)gn(Q′)×

×
∫
dΦN (sin ΦN )lN+2(cos ΦN )KN−1+3N−4P

(lN+ 1
2 ,KN−1+ 3N−5

2 )
nN (cos(2ΦN ))×

× (sin Φ′N )lN+1(cos Φ′N )K
′
N−1P

(lN+ 1
2 ,KN−1+ 3N−5

2 )
nN (cos(2Φ′N ))×

×
∫
dt

∑
MN−1,mN

∑
M ′N−1,m

′
N

〈LN−1MN−1l
′
Nm

′
N |L′NM ′N 〉〈LN−1MN−1lNmN |LNMN 〉×

×
lN∑

m′′N=−lN

Y
m′′N
lN

(0, 0)V (πN , π
′
N , t)Y

m′′N
lN

(arccos(t), 0)δ[KN−1][K′N−1]δlN l′N δmNm′N =

(3.46)

= δ[KN−1][K′N−1]δlN l′N δmNm′NN
∫
dQdQ′Q3N−1Q′2gm(Q)gn(Q′)×

×
∫
dΦN (sin ΦN )lN+2(cos ΦN )KN−1+3N−4P

(lN+ 1
2 ,KN−1+ 3N−5

2 )
nN (cos(2ΦN ))×

× (sin Φ′N )lN+1(cos Φ′N )K
′
N−1P

(lN+ 1
2 ,KN−1+ 3N−5

2 )
nN (cos(2Φ′N ))×

×
∑

MN−1,mN

〈LN−1MN−1lNmN |LNMN 〉〈LN−1MN−1lNmN |L′NM ′N 〉×

× 8π

2lN + 1

lN∑
m′′N=−lN

∫
dtY

m′′N
lN

(0, 0)V (πN , π
′
N , t)Y

m′′N
lN

(arccos(t), 0). (3.47)

We obtained a non-negligible simplification of the previous integral, but, with
some additional observations, we can do better.
Let’s look at the first integral that we need to make∫

dtY
m′′N
lN

(0, 0)V (πN , π
′
N , t)Y

m′′N
lN

(arccos(t), 0) (3.48)

The spherical harmonic function Y ml (θ, φ) can be written in the following way:

Y ml (θ, φ) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos(θ))eimφ, (3.49)

where Pml is the associated Legendre polynomial. Inserting this definition in the
matrix element integral we obtain

2lN + 1

4π

(l −m′′N )!

(l +m′′N )!

∫ 1

0

dtP
m′′N
lN

(1)V (πN , π
′
N , t)P

m′′N
lN

(t). (3.50)

Remembering that the associated Legendre polynomial is defined as

Pml (x) = (−1)m(1− x2)
m
2
dm

dxm
(Pl(x)) (3.51)
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where Pl(x) is the ordinary Legendre polynomial, we can see that

Pml (1) = (−1)m(1− 1)
m
2
dm

dxm
(Pl(1)) = δm0 (3.52)

and, using it in the previous equation,

∫
dtY

m′′n
lN

(0, 0)V (πN , π
′
N , t)Y

m′′N
lN

(arccos t, 0) = δmn
2lN + 1

4π

∫ 1

−1

dtV (Q, ρ′, t)P 0
lN (t).

(3.53)

Defining a new, angular momentum dependent, potential

VlN (πN , π
′
N ) =

∫ 1

−1

dtV (πN , π
′
N , t)P

0
lN (t) (3.54)

we can write the new form of our matrix element

Vmn = δ[KN−1][K′N−1]δlN l′N δmNm′NN
∫
dQdQ′Q3N−1Q′2gm(Q)gn(Q′)×

×
∫
dΦN (sin ΦN )lN+3N−4(cos ΦN )KN−1+2P

(lN+ 1
2 ,KN−1+ 3N−5

2 )
nN (cos(2ΦN ))×

× (sin Φ′N )lN+1(cos Φ′N )K
′
N−1P

(lN+ 1
2 ,KN−1+ 3N−5

2 )
nN (cos(2Φ′N ))×

×
∑

MN−1,mN

〈LN−1MN−1lNmN |LNMN 〉〈LN−1MN−1lNmN |L′NM ′N 〉×

× 8π

2L+ 1
δm′′0

2lN + 1

4π
VlN (πN , π

′
N ) = (3.55)

= δ[KN−1][K′N−1]δlN l′N δmNm′N δm′′02πN
∫
dQdQ′Q3N−1Q′2gm(Q)gn(Q′)×

×
∫
dΦN (sin ΦN )lN+2(cos ΦN )KN−1+3N−4P

(lN+ 1
2 ,KN−1+ 3N−5

2 )
nN (cos(2ΦN ))×

× (sin Φ′N )lN+1(cos Φ′N )K
′
N−1P

(lN+ 1
2 ,KN−1+ 3N−5

2 )
nN (cos(2Φ′N ))×

×
∑

MN−1,mN

〈LN−1MN−1lNmN |LNMN 〉〈LN−1MN−1lNmN |L′NM ′N 〉VlN (πN , π
′
N ).

(3.56)

For the final observation we note the following property of the Clebsch-Gordan
coefficients:

j1∑
m1=−j1

j2∑
m2=−j2

〈j1m1j2m2|jm〉〈j1m1j2m2|j′m′〉 = δjj′δmm′ (3.57)

Introducing this equation in our previous one (with LN−1 = j1,MN−1 =

m1, lN = j2,mN = m2, LN = j,MN = m,L′N = j′ and M ′N = m′) we can
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obtain the final form of our non-local matrix element:

Vmn = δ[KN−1][K′N−1]δlN l′N δmNm′N δLNL′N δMNM ′N
δm′′0× (3.58)

× 2πN
∫
dQdQ′Q3N−1Q′2gm(Q)gn(Q′)×

×
∫
dΦN (sin ΦN )lN+2(cos ΦN )KN−1+3N−4P

(lN+ 1
2 ,KN−1+ 3N−5

2 )
nN (cos(2ΦN ))×

× (sin Φ′N )lN+1(cos Φ′N )K
′
N−1P

(lN+ 1
2 ,KN−1+ 3N−5

2 )
nN (cos(2Φ′N ))VlN (πN , π

′
N ).

3.4 Benchmarks

Using the HH in momentum space frame described as in chapter 3, the code,
scope of this thesis, was developed.
Using a Laguerre quadrature for the hyperradial coordinate Q and a Jacobi one
for the hyperangular part, this program creates the two-body potential matrix
V12. Successively such a matrix is transformed into the other two-body potential
matrices (V23,V13, etc.) through the use of the permutation matrices defined in
Eq.(2.22). The complete potential matrix is then added to the complete internal
kinetic matrix T , derived from the simple formula discussed at the end of the
second section. The lowest eigenvalues and eigenstates of the matrix are then
obtained through the Lanczos procedure of diagonalization.
The number of hyperradial Laguerre functions, after a study of convergence, has
been settled at 30 during all the tests. Increasing the number of polynomials
is detrimental to both the speed and the precision (with the introduction of
higher-frequency functions) of the calculation, with no discernible difference in
the final result with thirty polynomials.
The increase in the number of nested integrations, given by the non-locality of
the potential, increases the number of necessary grid points in the hyperradial
coordinate’s integrations in order to reach convergence, up to 250 points in a
classical Laguerre quadrature method of integration. The number of points in
the grid necessary for the integration of the hyperangular Jacobi polynomials
was instead set to 150.
The first benchmark is a comparison, in the tritium system, between a local
potential in coordinate space and its counterpart in momentum space. The first
interaction that has been used is a Minnesota potential[27]:

VMinn = VS=0 + VS=1 (3.59)
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with  VS=0(r) = V1e
−µ1r

2

+ V2e
−µ2r

2

VS=1(r) = V1e
−µ1r

2

+ V3e
−µ3r

2
(3.60)

in coordinate space and
VS=0(p− p′) = V1

8(πµ1)
3
2
e−

(p−p′)2
4µ1 + V2

8(πµ2)
3
2
e−

(p−p′)2
4µ2

VS=1(p− p′) = V1

8(πµ1)
3
2
e−

(p−p′)2
4µ1 + V3

8(πµ3)
3
2
e−

(p−p′)2
4µ3

(3.61)

in momentum space, the constants Vi and µi being
V1 = 200MeV

V2 = −178MeV

V3 = −91.85MeV

(3.62)


µ1 = 1.487fm−2

µ2 = 0.639fm−2

µ3 = 0.465fm−2

. (3.63)

As one can see in figure 3.1 the result of the computation, for every value of the
total hypermomentum K is almost identical in both spaces. The difference is so
minimal that it is not visible in the graph, since it amounts to less than a keV,
less than a part in ten thousand on the final result. This first benchmark shows
the symmetry between the two spaces and serves as the first stepping stone in
the generation of the final program. The next step occurs in adding to the soft
Minnesota potential an harder part composed of Coulomb repulsion, using this
new interaction in the study of the 3He ground state.
As shown in the first section of this chapter, the Yukawa type potential

V (r) =
e−µr

r
(3.64)

transforms in its momentum space counterpart as

V (p− p′) =
1

2π2

1

µ2 + (p− p′)2
. (3.65)

This means that, taking µ = 0, one can easily get the momentum counterpart
of the Coulomb potential:

V (r) =
e2

r
⇐⇒ V (p− p′) =

1

2π2

e2

(p− p′)2
, (3.66)
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Figure 3.1: Comparison between the calculations of the ground state of tritium
with a Minnesota potential and its momentum space counterpart.

with e2 ' 1.44 MeV · fm.
The results of the computation are given in figure 3.2, showing once again
the symmetry between the two spaces. However, in this case, it was necessary
to increase by quite a lot the number of points in the Laguerre grid for the
momentum part in order to reach convergence. The hard divergence given by
the Coulomb potential required the increase up to 500 points of grid, since with
the standard 250 points there was a small but important difference of 0.02 MeV
at K = 20.
The second potential used for a comparison between spaces of the ground state
of tritium is a Malfliet-Tjon potential[28]. Being made of a sum of Yukawa-type
potentials, compared to the sum of softer Gaussians that generate the Minnesota
potential, this potential should be in principle harder to calculate in momentum
space for the program.
The potential presents two components

VMT13 = VS=0 + VS=1 (3.67)

with  VS=0(r) = V1
e−µ1r

r − V2
e−µ2r

r

VS=1(r) = V1
e−µ1r

r − V3
e−µ2r

r

(3.68)
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Figure 3.2: Comparison between the calculations of the ground state of 3He with
a Minnesota plus a Coulomb interaction and its momentum space counterpart.

in coordinate space and VS=0(p− p′) = 1
2π2

(
V1

µ2
1+(p−p′)2 − V2

µ2
2+(p−p′)2

)
VS=1(p− p′) = 1

2π2

(
V1

µ2
1+(p−p′)2 − V3

µ2
2+(p−p′)2

) (3.69)

in momentum space, with V1 = 1458.047 MeV, V2 = 520.872 MeV, V3 = 635.306

MeV, µ1 = 3.11 fm−2 and µ2 = 1.555 fm−2. The results of the computation, up
to K = 20, are represented in figure 3.3.
The momentum space result, like the previous case of Minnesota plus Coulomb,
required an expanded grid up to 500 points, since the 250 points grid result
presented more than half a MeV difference from the local result, given by the
difficulty of convergence for the numerical integration of the Yukawa potential.
After the checks on the simplest and most commonly used systems for bench-
marks, the tritium and 3He nuclei, the next benchmark focuses on the capability
of the program to work with different masses M other than the reference mass
m. In this case the new system analyzed is the nucleus of Carbon-12, one of the
protagonists of this thesis.
Made of six protons and six neutrons, the structure of 12C is that of a cluster
nucleus made of three identical substructures, in this case α particles.
As I will explain more at length in the next chapter, using cluster EFT we can
represent the three alphas as point-like bosons with mass M = mα. In such
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Figure 3.3: Comparison between the calculations of the ground state of tritium
with a Malfliet-Tjon interaction and its momentum space counterpart.

a cluster approximation Carbon-12 becomes rather similar to tritium, differing
only for particle mass, charge and spin-isospin particle statistics while maintain-
ing the same general structure as a nucleus composed of three indistinguishable
particles. Therefore Carbon-12 calculation was rather easy to implement and it
could be used as a testing ground both for the cluster EFT potentials and for
the nonlocal, momentum space configuration introduced for the first time in the
program.
Being the α-particle a spin zero particle, this benchmark will test the capability
of the program to handle bosons, that require a different choice in the type and
number of states in the basis, being the spin=1 triplet states, usually taken into
account (like in the previous cases) not present in this peculiar system.
The interaction used for this benchmark is the Ali-Bodmer partial-wave potential[29]:

V AB =
∑

l=0,2,4

V ABl |l〉 〈l| (3.70)

with V ABl being

V ABl (r) = Vr,le
−µ2

rr
2

− Vae−µ
2
ar

2

(3.71)

for the coordinate space case and

V ABl (p) =
Vr,l

8(πµr)
3
2

e
− (p−p′)2

4µ2
r − Va

8(πµa)
3
2

e
− (p−p′)2

4µ2
a (3.72)
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Figure 3.4: Comparison between the calculations of the ground state of Carbon-
12 with an Ali-Bodmer interaction and its momentum space counterpart.

for the momentum space form.
The constants Vi and µi are Vr,0 = 500 MeV, Vr,2 = 340 MeV, Vr,4=10 MeV,
Va = 130 MeV, µr = 0.7 fm−1 and µa = 0.475 fm−1.
The results of the calculation are shown in figure 3.4. As one can see, there is a
perfect correspondence between the two spaces after the system becomes bound
(at K = 4), with a difference between the two results of 400 eV at K = 20 over
more than 6 MeV, less than a a part in ten thousand, showing the goodness
of the program even when using systems composed of particles with different
masses from the reference one, m = mnucleon. In addition, as one can see, both
results are also converging to the value of −6.2285 MeV calculated in the original
paper[29].
Another test has been developed with the use of the same Ali-Bodmer potential
together with a Coulomb repulsion, on the same Carbon-12 nucleus system.
However, differently from the Helium case, there is the addition of a cutoff term
erf(βr), giving to the Coulomb potential the following form in coordinate space:

VC(r) =
4e2 erf(βr)

r
. (3.73)
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Figure 3.5: Comparison between the calculations of the ground state of Carbon-
12 with an Ali-Bodmer+Coulomb interaction and its momentum space coun-
terpart.

This potential can be also transformed in momentum space, where the error
function becomes a Gaussian regulator

erf(βr)

r

F.T.−−−→ 1

2π(p− p′)2
e
− (p−p′)2

4β2 , (3.74)

giving the final form to the potential in momentum space as

VC(p, p′) =
4e2

2π(p− p′)2
e
− (p−p′)2

4β2 . (3.75)

For the parameter β it was chosen the value
√

3/2.88 from the reference paper.
The results of the calculation of the ground state for the Carbon-12 nucleus
are shown in figure 3.5.
As one can see, the addition of the Coulomb interaction adds, like it was shown
in the case of the Minnesota potential in the 3He system, a more serious diver-
gence to be taken care of in momentum space than the correspondent divergence
in real space. Such a divergence slows down the convergence in the non-local,
momentum case, up to the point where it required, like in the previous cases,
to reach 500 points in the Laguerre grid to obtain the same result between the
two spaces. Still, as the figure shows, there is a good agreement between the two
results, with differences in the final energies of less than a single keV, less than
one part in a thousand.
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Making a direct comparison with the results of the paper where this potential
was introduced can also confirm the goodness of the obtained energies, since
the authors of [29] obtained an energy of 1.523 MeV, comparable to the result
of 1.511 MeV of this work.

Figure 3.6: Schematic
of a Beryllium-9 nu-
cleus (P. Mueller/Ar-
gonne National Lab).

The last benchmark needed for the program is the
case of Beryllium-9. Differently from the previous
systems analyzed in this section, the Beryllium nu-
cleus presents, as the little figure 3.6 shows, a clus-
ter nucleus (a definition that will be explained in the
next chapter) configuration, a mix of two types of
particles, neutrons and α-particles, different in both
weight, charge and statistics: being the former particle
a fermion and a nucleon (with both spin and isospin
equal to 1/2), and the latter being a boson (with both
spin and isospin equal to 0).
The construction of a new set of Jacobi coordinates
for this new couple is not a problem, thanks to the reference mass reducing
the difference with the previous ones to a single variable. However, while the αα
and nn couples are made of two identical particles, interacting through a nuclear
potential (and a Coulomb potential too in the αα case), the αn couple is be-
tween an electrically charged boson and an electrically neutral fermion, meaning
that the Coulomb force between the two is zero and, different from the fermion-
fermion and boson-boson couples that presented a natural antisymmetry and
symmetry respectively, this new couple doesn’t have a defined symmetry.
Calculating the ground state energy of a Beryllium-9 nucleus then becomes a
much more difficult task, from a programming point of view, compared to the
Carbon-12 nucleus. Every couple needs a special spin and isospin statistic and
mass parameter tailored to itself before being used for the calculation of the
final Hamiltonian matrix of the system and the basis states has to take into
consideration the spin 1/2 states for the couple while, in the previous bench-
marks used until now, it cared about only spin 0 and spin 1 states.
However, these necessary modifications have been accomplished with an high
degree of success, obtaining an evolved program able to calculate the matrix
elements in couples of bosons, fermions and mixed bosons and fermions, in mo-
mentum and coordinate space both with local and nonlocal potentials.
As the last test for the compatibility between the two spaces for this last case
the first idea was using the Ali-Bodmer interaction as a "fake" interaction be-
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Figure 3.7: Comparison between the calculations of the ground state of
Beryllium-9 with a modified Ali-Bodmer+Coulomb interaction and its momen-
tum space counterpart.

tween α particles and neutrons, other than in αα couples. However this lead to
an unbound system. So the term Va in the Ali-Bodmer potential (Eq. (3.72))
was modified, increasing it to 180 MeV, and resulting in a bound system, in both
cases, coordinate space local potential and momentum space local potential. As
in the case of Carbon-12 and the other nuclei there was a very good (roughly
one part in a thousand) correspondence between the two cases, as can be seen
from figure 3.7.
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Chapter 4
Effective Field Theory
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As described in the introduction my aim is the calculation of 9 Be in an
ααn cluster model, where the α − α and α − n potentials are derived from an
Effective Field Theory (EFT).
Therefore, in this chapter, I first want to give an introduction to Effective The-
ory. In addition I will present a brief outline of the historical development of
cluster models in nuclear physics. Finally, I then come to the description of the
α − α and α − n EFT potentials, which had been derived in the master thesis
of C.A. Manzata [30].

4.1 What is an Effective Theory?

Before moving towards the explanation of what EFT means, one has to under-
stand what is an effective theory in general.
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It is commonly known what Newtonian mechanics, called also classical me-
chanics, is, and how it can describe with quite a good precision the motion of
macroscopic objects, be it a car or a planet. However, it is also known that, at
much larger (and smaller) distances and energies than the one usually experi-
enced in day-to-day life, classical mechanics makes poor predictions of objects’
motion, with substantial deviations from the observations.
In these cases other theories, like quantum mechanics and relativity, can be used
to make better predictions. In the realm of classical mechanics then these the-
ories, in their approximate form, return to the original Newtonian formulation.
We can see then that Newtonian mechanics takes the role of what is called an
effective theory: a theory that has validity only in a certain regime of parameters
or in certain length scales. As one moves outside of these limits the predictions
given by the effective theory become less and less correct, moving away from
the observed values. Then another theory can take its place, effectively creating
a chain of effective theories, each one becoming more and more "fundamental"
of the former, able to predict a larger and larger number of events and observa-
tions.
This does not mean that, once one has found a "more fundamental" theory than
another, we have to abandon the latter. This effective theory indeed can still be
used to make predictions in its range of validity. Not only this, in some cases
the computational complexity of making calculations with a certain theory can
exceed the capacity, in both time and computational power, at our disposal.
Then an effective theory is not only a possibility, but a necessity. The use of an
effective theory becomes then a powerful technique to make predictions and to
validate the underlying theories used to build it. This is the case that brought
the creation of the so-called Effective Field Theories (EFTs). Such theories have
been generated from studies of QCD and QED, where it exists a ’range’, be-
yond which increasingly complex problems arise. For example, the QCD theory
beyond the size of a nucleon loses its perturbative nature, the QED theory gets
increasingly complex as the range in which interactions are studied diminishes.
The idea is then to hide all this complexity for the calculation of low-energy
states, by treating this complicated interaction as perturbative for the long-
range behaviour. Ignoring the substructures, the short-range mechanisms and
degrees of freedom, one then is able to study systems that would have been too
complex before, allowing the testing of theories on new structures.
In order to understand better how an effective field theory in the case of this
thesis, cluster nuclei, is implemented, I will show some common techniques for
the creation of effective theories.
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Figure 4.1: A scheme of the relation between theories in Physics. Starting from
classical Mechanics and adding quantization, limited speed of light and/or grav-
ity, one can move toward more fundamental and complete theories.

4.1.1 Multipole expansion

A very common technique in the construction of the Effective Theories, and also
one of the first a student in Physics meets, is the multipole expansion.
While comparatively simpler than most of other methods, it shows to great
effect the basis of this type of techniques.
The basic idea is to apply a Taylor expansion on an arbitrary function (that
will be our potential) V (rrr −RRR) around the origin rrr = 0:

V (rrr −RRR) = V (RRR)−
∑

α=x,y,z

rαVα(RRR) +
1

2

∑
α,β=x,y,z

rαrβVα,β(RRR) + ... (4.1)

where

Vα(RRR) =

(
∂V (rrr −RRR)

∂rα

)
rrr=0

and Vα,β(RRR) =

(
∂2V (rrr −RRR)

∂rα.∂rβ

)
rrr=0

(4.2)

The most common example is the case of the Coulomb potential of a distribution
of point charges at a distance RRR � rrri, with rrri the position vector of the single
charges qi:

V (RRR) =

N∑
i=1

qi
|rrri −RRR|

=
q

R
+

1

R3

∑
α=x,y,z

PαRα +
1

2R5

∑
α,β=x,y,z

Qα,βRαRβ + ...

(4.3)
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where we see the first three terms of such an expansion, the monopole term with
q =

∑N
i=1 qi, the dipole one with Pα =

∑N
i=1 qiri,α and the quadrupole one with

Qα,β =
∑N
i=1 qi(3ri,αri,β − δαβr2

i ).
As one can see, the terms become smaller and smaller as they go on, but only
in the case RRR� rrri.
This shows what has been said before: one can take a complicated interaction,
like the one between many point charges, and move it to a simpler form (a
monopole interaction), with smaller and smaller corrective terms (the dipole
and quadrupole and other, higher order, terms) in a limited range (in this case
as RRR remains large compared to the various rrri).

4.1.2 Earth’s gravitational potential

Another common subject of Physics students is the gravitational acceleration
exerted by our planet. As it is commonly known, such a quantity in Newtonian
physics is g = GM/R2 (with M the mass of the Earth and R it’s radius). Also
it is well-known that, for an object of mass m moving at a height h from the
surface of Earth, the gravitational potential is given by

∆U = mgh. (4.4)

This is also an effective theory, since the expression above is just an approxima-
tion of

∆U =
GMm

ri
− GMm

rf
. (4.5)

Indeed, giving an initial distance ri = R and as the final distance rf = R + h,
in the limit h� R one can expand the formula in Eq. (4.5) as

∆U =
GMm

R
− GMm

R+ h
=
GMm

R

h

R+ h
= (4.6)

=
GM

R2
mh

R

R+ h
= mgh

R

R+ h
, (4.7)

and, expanding over h/R� 1, we obtain

∆U = mgh

(
1− h

R
+
h2

R2
+ ...

)
. (4.8)

Taking the first term of this expansion (a term much bigger than the others, in
the limit we are considering) we obtain the first result.
As one can see, this is another example of an Effective Theory. Even more clearly
than the multipole expansion, we can easily see that there is only a certain
maximum range under which this theory works, the distance R. Indeed, above
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such a limit the expanded formula doesn’t even converge anymore, marking this
a hard limit to our theory. This distance, this extreme limit to our effective
theory, is called the breakdown scale.
Also we can observe another essential mechanism of this type of effective theories
and that is, the control over the error. Every term in the potential energy after
the first one becomes dependent on a progressively higher power of h/R. This
means two very important things. First and foremost, while it is true that adding
terms to our potential will increase the quality of our prediction, the correction
to the final energy will become progressively smaller. On the other side, the error
will proportionally get smaller as well. The addition of terms is the addition of
computational load as well, so when developing such an effective theory one
needs to find a balance between the benefits of adding terms to the effective
potential (better prediction, smaller errors) and the disadvantages (increased
computational complexity and load for smaller and smaller corrections).

4.1.3 Schrödinger equation

While these examples were useful in understanding what is an Effective The-
ory, they are still applied on relatively simple problems, enough that we could
technically still calculate the full problem. However, there are problems where
the behaviour at certain scales becomes much more complicated, enough that
sometimes an Effective Theory is not a preferred but also the only way one can
proceed.
The bulk of Effective Theory is based on a simple principle: the low-energy (long
range) physics is insensitive to the details of the high-energy (short range) one.
We can then control and contain the high-energy physics, putting in a simple
expression its effects on the long-range behaviour. Lepage [7], wrote a quite
complete discussion of this procedure, which will be briefly summed up in this
section. In short, the steps to make an Effective theory are the following:

1. Introduce a scale that separates low-energy (long range) and high-energy
(short range) physics.

2. Find and describe the low-energy behaviour of the theory.

3. Introduce a cutoff in order to exclude the short range behaviour.

4. Add a finite number of local correction terms to the effective Hamiltonian,
which should describe the effects of the short range physics in the long
range one.

5. Fit the corresponding parameters to the experimental data.
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Lepage applied this process to a quantum system, consisting in a particle of
mass m interacting through a Coulomb potential plus a short-range, ’nuclear-
like’ potential Vs(rrr):

H = T + V =
p2

2m
− α

r
+ Vs(rrr). (4.9)

Following the aforementioned steps, one must first identify the low-energy be-
haviour. In this quite simple example one can see that at a long-range in the
effective potential one should obtain the Coulomb interaction. Then one needs
to regularize such an effective potential, adding a cutoff. To obtain such a result,
we can move in momentum space, adding a Gaussian regulator:

α

r
→ 4π

q2
e−q

2a2/2 (4.10)

where q is the exchanged momentum and Λ = 1/a is our cutoff.
As one can see, as q increases our potential fall off to zero, thereby excluding the
high-energy, short-range (< Λ) terms, reaching zero in the limit r = 0⇔ q →∞,
and therefore regularizing our interaction.
The next step in the creation of this effective potential is returning to coordinate
space, through the inverse Fourier transform, the form of which was seen in the
third chapter:

erf(r/
√

2a)

r
, (4.11)

where

erf(x) =
2

π

∫ x

0

e−t
2

dt (4.12)

is the error function.
To this potential one needs to add the short range interaction, so we will mimic
it through correction terms. The low-momentum behavior of any short-range
potential is efficiently described in terms of the Taylor expansion in momentum
space. Transforming back to coordinate space gives a series that is a polynomial
in the momentum operator ppp = −i∇ multiplied by a delta function. In order to
avoid infinities we need to introduce an ultraviolet cutoff, therefore we smear the
delta function over a volume whose radius is approximately our cutoff distance
a. Then a good choice, useful for avoiding infinities, is the use of the smeared
three-dimensional delta function and its derivatives:

δ3
a(rrr) =

e−r
2/2a2

(2π)3/2a3
, (4.13)
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Figure 4.2: S-wave phase shifts errors for the non-corrected interaction and for
the corrected ones, both with only a2 terms and with also a4 terms. Example
from Lepage [7] paper.

giving to our effective potential its final form:

Veff (rrr) = −α
r

erf(r/
√

2a) + ca2δ3
a(rrr) + d1a

4∇2δ3
a(rrr) + d2a

4∇ · δ3
a(rrr)∇+ ...

(4.14)

As seen in Fig. 4.2, where it is shown the error on the phase shifts compared
to the complete potential (after determining the value of the constants c and d
on a set of synthetic data), one can easily see the improvement brought by the
effective potential even at lower orders, compared to only the Coulomb potential.
At low energies (measured in a2m), the errors decrease steadily as the correction
terms are added, order-by-order in a2. The slope of the error curve changes as
each new correction is added, getting steeper by one power of E ∝ p2 each
time the order of the error is increased by a2. At values of E > 1 the particle
wavelength is short enough that it is able to probe the details structure of the
short range potential Vs(rrr), putting a limit on where our effective potential can
be used.

4.1.4 Fermi electroweak interaction

Last in this series of examples, I will show a historical use of effective potential
in quantum field theory, that is, an Effective Field Theory.
In 1933, before the development of the Standard Model, Wolfgang Pauli pro-
posed a theory in order to explain the peculiar characteristics of the β decay,
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namely the continuous energy spectrum and the apparent lack of conservation of
angular momentum. In this theory Pauli hypothesized the existence of another,
very small neutral particle, the neutrino, while Enrico Fermi developed quite a
peculiar Lagrangian for the particles involved to interact with. While, as of to-
day, we know that the β decay is quite different from what Fermi imagined, such
a theory was an important milestone in the road toward the Standard model.
Not only, such a theory was in reality an effective theory of the real one, as I
will show in this section.
Fermi proposed a pointlike interaction described by the following Lagrangian:

L(x) =
GF√

2
V †µ (x)V ′µ(x), (4.15)

with Vµ as a vector current and GF as the Fermi constant, known today to fulfill
the following relations

GF =

√
2g2

8M2
W

' 1.1663787(6)× 10−5GeV −2 (4.16)

and g is the coupling constant of the weak interaction. Taking into account
parity violation Sudarshan and Marshak, Feynman and Gell-Mann and Sakurai
in 1957 rewrote the previous Lagrangian [31] as

L(x) =
GF√

2
(V †µ −A†µ)(V ′µ −A′µ), (4.17)

where Aµ is a vector-axial current.
We now know that the β− decay is mediated by the W− boson, which gives the
following modification to the amplitude:

GF√
2

(V †µ −A†µ)(V ′µ −A′µ)→ GF√
2

(V †µ −A†µ)Pµν(V ′ν −A′ν), (4.18)

where

Pµν =
−gµν + qµqν/M

2
W

q2 −M2
W

, (4.19)

with qµ andMW as the four-momentum and mass of the W boson, respectively.
Moving in the limit q2 �M2

W one has Pµν equal to

gµν
M2
W

, (4.20)

meaning that both theories lead to the same low-energy result. One can then see
that the modified Fermi interaction is an Effective Field Theory ante-litteram,
one of the first examples. Not only that, it is also an example of how good in
their range of validity such theories can be. Being the mass of the W− boson
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Figure 4.3: The Fermi diagram of the muon decay, mediated through the weak
force and the ’Fermi-theory like’ diagram one gets at a low-momenta approxi-
mation.

around 80 GeV and the first experiments in the tens of MeV, it was quite some
time before the modified Fermi theory could be experimentally shown to be
not complete. This was quite the problem at the time, because calculations had
shown that the Fermi theory of weak interactions is not renormalizable.

4.2 Effective theory in cluster nuclei

As shown in [7] in the previous examples, in order to create an effective poten-
tial, an effective interaction that can predict low-energy levels of a system as
well as the more "fundamental" and complicated interactions can, one needs a
separation of scales, a possibility to "hide" the high-energy structure inside a
certain range, a cutoff.

4.2.1 A brief history of cluster nuclei

Since the beginning of nuclear studies it was known, in Nature particles like to
aggregate together. From nuclei and electrons to atoms, from atoms to molecules
to crystalline structures, the elementary particles at a certain length (and en-
ergy) scale create the ones at the next level. And the same happens inside the
nucleus. Moving from quarks and gluons to the quark triplets that compose
nucleons, to the nucleons themselves, one can move from a scale of energy to
another. And in some peculiar nuclei the process continues, with particles ag-
gregating in certain substructures that finally compose the nucleus. These are
called halo and cluster nuclei.
In order to minimize the repulsion due to Pauli exclusion principle nucleons will
try to pair with spin anti-aligned and in orbitals with maximal overlap, leaving
a spin-zero entity. Of course, it is possible for both pairs of protons and neu-
trons to perform this same pairing, resulting in a maximally correlated quartet
of two protons and two nucleons known as the α-particle. This correlation gives
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Figure 4.4: Binding energy per nucleon of light nuclear systems (up to A = 28),
the lines connect isotopes of each element. The α-particle nuclei are marked by
the circles.

the α-particle one of the highest binding energies per nucleon amongst all light
nuclei. Usually a bound nucleon possesses a binding energy of the order of 8
MeV. The α-particle’s first excited state excitation energy is at a much higher
value of 20 MeV, suggesting that the α-particle bound system is a natural state
for nucleons in a nucleus to fall in. This initial idea is further strengthened by
ab-initio calculations of light nuclei where this type of alpha-clustering seems
to be a preferred configuration [32]. Other studies [33] have shown that the nu-
clear surface plays a critical role in the formation of clusters. When the nuclear
density falls to one third of normal nuclear matter density, there is expected to
be a phase change and nucleons condense into α-particles. So there is a strong
theoretical evidence that nucleons prefer to aggregate together in nuclear sub-
structures, mainly α-particles, inside light nuclei. This type of nuclei are called
cluster nuclei. The only question that remains is this clustering effect is effec-
tively real, or it is just a bizarre flaw of the theory.
Since the discovery of the phenomenon of α decay in heavy nuclei, the idea that
protons and neutrons could form together an α substructure gained traction in
the scientific community.
As one can see from Fig. 4.4, analyzing the binding energies per nucleon of the
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light nuclei one can find that the nuclei with even and equal number of nucleons
and protons (4He, 8Be, 12C, 16O...) have the highest binding energy per nucleon
among all the isotopes of said nucleus and among all nuclei close in atomic
number. These nuclei have been called α-conjugate nuclei, since their peculiar
atomic number A = 4n(n = 2, 3, 4, ...) and number of neutrons N = Z allows
them to be entirely made of α particles.
These systems were examined more in depth in 1938 in an important paper by
Hafstad and Teller [8], who charted the evolution of the binding energy with
number of ’bonds’ or connections between the α-particles (figure 4.5). The seem-
ingly linear relationship pointed to an apparently constant α−α interaction and
also to the resilience of the α-particles in the ground states of these nuclei.
In the 1960s it was understood that, in order to be fully formed the proximity
of cluster states to the decay threshold is crucial. This has become encapsulated
in what is known as the Ikeda diagram [34](figure 4.6). This would predict that
cluster structures are most obvious at an excitation which coincides with a par-

Figure 4.5: Binding energy per nucleon of A = 4n nuclei versus the number
of α − α bonds. The analysis by Hafstad and Teller [8] suggested that the
ground states of A = 4n, α-conjugate, nuclei could be described by a constant
interaction energy scaled by the number of bonds. For 8Be there is one bond, for
12C three, six for 16O, nine for 20Ne, twelve for 24Mg and for structural reasons
(the geometric packing of the α-particles) sixteen for 28Si.
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Figure 4.6: The Ikeda diagram. The threshold energies for each configuration are
given in MeV. The smallest, unlabelled clusters are alpha particles. Increasing
excitation energy is required to form more and more complex cluster structures.
Figure from [9]

ticular decay threshold. Hence, the α+ α cluster structure found in the ground
state of 8Be (which undergoes α-decay with an half-life of 6.7(17) × 10−17 s ).
The three alpha-cluster structure would be expected to be close to the three
alpha-decay threshold (7.3367 MeV). Indeed there is such an excited state in
Carbon-12, the famous state predicted by Fred Hoyle in 1954 [35]. The excited
Hoyle state of 12C is 7.656 MeV above the ground state, allowing the aforemen-
tioned three-α process that leads to the abundant carbon in the Universe.
The research on alpha-clustered nuclei, especially the lighter ones like Beryllium-
8 and Carbon-12, continued in the following years.
The simplest case is that of the two α-particle system, the Beryllium-8 nucleus.
The single α-particles in this resonance are tightly bounded by themselves, cre-
ating a peculiar dumbbell-like structure that gives rise to a rotational band,
from which the moment of inertia is found to be commensurate with an axial
deformation of 2:1. The binding energy of the α-particle is so large that even
systems close in atomic number such as 6Li and 7Li display visible cluster struc-
tures (α+ d and α+ t respectively).
In 1957 it was found experimental evidence of the predicted Hoyle state [36],
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and a 100 keV resonance in 24Mg, discovered in the 1960s, was later interpreted
as a 12C+12C cluster state.
Even more experimental evidences for the cluster structure of light nuclei have
been found and they are well documented (see [37] and references therein).
To this day several nuclei have been recognized as being cluster nuclei, among
which the aforementioned Beryllium-9 and Carbon-12. In these nuclei one then
can recognize the presence of a natural separation of scales, the necessary re-
quirement for the creation of an Effective Field Theory potential.

4.2.2 Partial wave decomposition

The interaction between α clusters and neutrons inside of a 9Be nucleus is very
weak, especially compared to the one holding the α-particles together. Indeed,
it’s so weak that the two types of subsystems of 9Be, the αα pair and the αn
one, alone don’t give rise to a bound state. The bound state in Beryllium-9
and Carbon-12 nuclei is purely due to a three-body phenomenon. These types
of systems are called Borromean (after the name Borromean rings, a system
composed by three rings, in which, removing any of them, the remaining two
are left unlinked).
To give a quantitative value to this "weak link" between clusters and neutrons,
one can remember that the binding energy per nucleon of 9Be nucleus is 6.463

MeV, meaning that the total binding is

BE(9Be)=58.164 MeV. (4.21)

Removing the internal binding energy of the two α-particles one gets an effective
binding energy of

B3(
9Be)=BE(9Be)-2BE(α)=1.572 MeV, (4.22)

well below the break-up threshold of the α-particle into 3H+p, the proton sep-
aration energy

Sp(
4He)=19.813 MeV. (4.23)

Since B3(9Be)� Sp(4He), the dynamics describing the clustering configuration
of 9Be can be considered insensitive to the internal dynamics of α. Therefore
one can treat α as a point particle and introduce contact interactions between
αα and αn, described as a in Fig. 4.7.
At low energies, one can describe the contact potential as

〈xxx|V (xxx) |xxx〉 = (2π)3[λ0 − λ1(∇2 +∇′2)]δ(3)(xxx− xxx′)δ(3)(xxx) (4.24)
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Figure 4.7: Feynman diagrams for a contact interaction, described as a delta
function and its derivative.

Here I will use the Fourier transform of this potential, a non-local interaction
which has a separable form:

V (ppp,ppp′) = λ0 + λ1(p2 + p′2), (4.25)

where p and p′ are the two-body relative momenta. This can be rewritten in the
compact form

V (ppp,ppp′) =

1∑
i,j=0

p2iλijp
′2j , (4.26)

where we have introduced the matrix

λ =

(
λ0 0

0 λ1

)
. (4.27)

As seen in [38] we can, in general, expand a potential in partial-wave components
by defining

Vl(p, p
′) =

1

2

∫ 1

−1

〈ppp|V |ppp′〉Pl(p̂pp · p̂pp′)d(p̂pp · p̂pp′), (4.28)

V (ppp,ppp′) = 〈ppp|V |ppp′〉 =

∞∑
l=0

(2l + 1)Vl(p, p
′)Pl(p̂pp · p̂pp′), (4.29)

where Pl is the l-th Legendre polynomial. In particular, for a potential domi-
nated by a specific partial wave l

V (ppp,ppp′) = plp′lg(p)g(p′)

1∑
i,j=0

p2iλijp
′2j(2l + 1)Pl(p̂pp · p̂pp′) (4.30)

where the λ matrix is defined as in (4.27). V (ppp,ppp′) is modified by introducing the
regulator g(p), which regulates the short-distance dependence of the interaction,
such that

g(p = 0) = 1 and g(p→∞) = 0. (4.31)
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The two indices i and j, in principle, could be larger than 1, but we are limiting
them in order to get a phase shift expansion up to the effective range order,
being for the on-shell T-matrix

k2l+1

T onl (E)
= − µ

2π

(
1

αl
+

1

2
re,lk

2 − ik2l+1

)
+ o(k3) (4.32)

with the scattering parameters being the scattering length αl and the effective
range re,l.
The partial wave expansion shown here is important in the study of Beryllium-
9 and Carbon-12 nuclei, for two reasons. First, the two possible interactions
(between α-particles and between alphas and neutrons) have a particularly pre-
dominant wave. The αα interaction is dominated by the 1S0 state, the 8Be
resonance, while the αn interaction has a resonance in the 2P3/2 one. The sec-
ond reason will be explained further in this thesis, when Euler angles will be
introduced.
After this one needs to find an explicit expression for the coefficients λ0 and λ1

in terms of some experimentally measurable quantities (the scattering length
and the effective range in this case) and with a dependence on a cutoff, that
will be called Λ. The latter is necessary in this model for the presence of ultra-
violet divergences, to give meaning to the potential in (4.24) and to absorb the
regularization dependence of the predicted observables.

4.2.3 αn and αα potentials1

The coefficients for the potential were found by expanding the Lippman-Schwinger
equation in partial waves in a similar manner to (4.29):

T (ppp,ppp′) =

∞∑
l=0

(2l + 1)Tl(p, p
′)Pl(p̂pp · p̂pp′) (4.33)

where

Tl(p, p
′) = plp′lg(p)g(p′)

1∑
i,j=0

p2iτij(E)p′2j . (4.34)

What differs between the two cases is how the Lippman-Schwinger equation is
generated. While in the case of the couple αn the Lippman-Schwinger equation
takes the form

T (ppp,ppp′) = V (ppp,ppp′) +

∫
dqqq

(2π)3
V (ppp,qqq)

1

E − q2

2µαn
+ iε

T (qqq,ppp′) (4.35)

1The following section therein shown is a small summary of the work made by C.A. Manzata
in his master’s thesis [30].
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with E = k2/(2µαn), while in the case of the αα couple interaction one has to
consider the presence of the Coulomb interaction, a long range interaction.
The presence of a potential at an infinite distance impacts on the in/out waves
ψ

(±)
ppp used in the Lippman-Schwinger equation, distorting them∣∣∣ψ(±)

ppp

〉
=
[
1 +G

(±)
C VC

]
|ppp〉 (4.36)

where G(±)
C is the retarded/advanced Green’s function in the case of a purely

Coulomb interaction.
The T-matrix is now given by two contributions:

T (ppp,ppp′) = TC(ppp,ppp′) + TSC(ppp,ppp′), (4.37)

where the pure Coulomb one is

TC(ppp,ppp′) = 〈ppp′|VS
∣∣∣ψ(+)
ppp

〉
(4.38)

and the Coulomb-modified strong one is

TSC(ppp,ppp′) =
〈
ψ(−)
ppp

∣∣∣VS ∣∣∣Ψ(+)
ppp

〉
, (4.39)

with ∣∣∣Ψ(±)
ppp

〉
=

∞∑
n=0

(G
(±)
C VS)n

∣∣∣ψ(±)
ppp

〉
=
∣∣∣ψ(±)
ppp

〉
+G

(±)
C VS

∣∣∣ψ(±)
ppp

〉
(4.40)

This modification applied to the Lippman-Schwinger equation results in the
following expression for the strong force coupled with the Coulomb one:

TSC(ppp,ppp′) =
〈
ψ(−)
ppp

∣∣∣VS ∣∣∣ψ(+)
ppp

〉
− (4.41)

− 2µαα

∫
dppp′′

(2π)3

〈
ψ

(−)
ppp′

∣∣∣VSG+
C

∣∣∣ψ(−)
ppp′′

〉 TSC(ppp,ppp′′)

p2 − k2 + iε
.

Following these definitions, the next step is putting the partial wave decompo-
sition into the Lippman-Schwinger equations. This operation allows us to define
the T-matrix τij for the two possible cases. The next calculations, rather long
and outside of the scope of this thesis, are well documented in [30]. In short,
the resulting expressions are expanded in k2/Λ2 and evaluated for the relevant
partial waves (S-wave for the αα interaction and P-wave for the αn one). After
the addition of the necessary cutoffsg(k)αn = e−( kΛ )4

g(k)αα = θ(k − Λ)
(4.42)
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one will find two couples of equations that will give us λ0 and λ1. In the αn
case solving such equations we get:

c0 =

[( f5,2

5 −
1
c1

)2
f3,2

3 −
π

2a1Λ3

− f7,2

7

]
c21 (4.43)

c1 =
5

f5,2

{
1±

[
1−

(
f1,2 + r1π

4Λ

) f5,2

5( f3,2

3 −
π

2a1Λ3

)2
]− 1

2
}

(4.44)

where

λ0 = − 1

8πµαn

c0
Λ3

(4.45)

λ1 = − 1

8πµαn

c1
Λ5
, (4.46)

the function

fn,m =
n

Λn

∫ ∞
0

dqqn−1e−2( qΛ )2m =

(
1

2

) n
2m

Γ

(
n

2m
+ 1

)
(4.47)

and a1 = −62.951 fm3 and r1 = −0.8819 fm−1 the scattering parameters (the
scattering volume and effective range respectively).
In a similar manner one can find the equations connecting the scattering quan-
tities a0 = −1920 fm and r0 = 1.099 fm to c0 and c1 for the αα coupling:

c̃0 =

[(
f3

3 −
1
c1

)2
f1 − π

2a0Λ

− f5

5

]
c21 (4.48)

c1 =
3

f3

{
1±

[
1−

(
− f−1 + r0πΛ

4

)
f3

3(
f1 − π

2a1Λ

)2
]− 1

2
}

(4.49)

where

λ̃0 = − 1

8πµαα

c̃0
Λ

(4.50)

λ̃0 = λ0 −
(

32αµαα
π

Λ + 64α2µ2
αα

)
λ1 (4.51)

λ1 = − 1

8πµαα

c1
Λ3

(4.52)

and the function

fn =
n

Λn

∫ ∞
0

dqqn−1 8απµαα

q(e
8απµαα

q − 1)
. (4.53)

The resulting values for the various c0 and c1 are represented in the figures
4.8 and 4.9. As one can see, the αα case presents an extremely strong decrease
as we approach the limits below which we stay in EFT territory, while the αn
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Figure 4.8: c0 and c1 for αn case as functions of Λ. c0neg and c1neg are those
obtained from the solutions with the minus sign in the previous equations while
c0pos and c1pos are those obtained with the plus sign.

Figure 4.9: c̃0 and c1 for αα case as functions of Λ. c̃0neg and c1neg are those
obtained from the solutions with the minus sign in the previous equations while
c̃0pos and c1pos are those obtained with the plus sign.
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Figure 4.10: Phase shifts δ1
3(En) (l = 1, J = 3/2) with experimental data from

Morgan and Walter [10] and in the inset the cross section σ0(En) obtained at
Λ = 300 MeV.

interaction has a softer limit. These limits are given by the equations defining c0
and c1, where we can see that, in order to have a real value for these coefficients,
one needs to limit Λ to 215 MeV for the αα interaction and roughly 340 MeV
for the αn interaction.
Also, as seen from the previous equations, there is the presence of a Wigner
bound for both cases, a limit on the cutoff given by the relation with the finite-
ness of the effective range, these being

r1 < −
Λ

9π
(4.54)

for the αn case and

r0 → −
4

πΛ

[
3

f3

1(
c1
f3

3 − 1
)2 − f−1

]
≤ 0 (4.55)

in the αα case.
As one can see from figure 4.10, where the phase shifts and the cross sections
calculated at various levels of Λ are shown, from a cutoff Λ = 200 MeV the phase
shift is reproduced with quite an high accuracy and the the total cross section
reproduces the resonance at ER = mα/(mα + mn)ER,n = Qα−decay(5He) =

0.798 MeV with Γr = 0.648 MeV.
Instead, for the αα case, as seen in figure 4.11, where the phase shifts and cross
section for this other interaction are shown, the minimum threshold for Λ is
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4.2. EFFECTIVE THEORY IN CLUSTER NUCLEI

Figure 4.11: Phase shifts δ0(Elab) with experimental data from Afzal et al. [11]
and in the inset the cross section σ0(Elab) obtained at Λ = 200 MeV.

around 120 MeV. In this case the important resonance is 8Be, that can be seen
from the aforementioned figure to be at ER = Qα−decay

8Be = 91.8 keV, with a
width ΓR = 5.57± 0.25 eV, in agreement with the experimental data.
The last step to follow is to combine this cluster EFT potential with the program
that has been developed, shown in the previous chapters, in the cases of the
cluster nuclei 12C and 9Be.
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Chapter 5
Results

Contents
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5.1 The Carbon-12 nucleus

The first nucleus that was analyzed with the new potential was the Carbon-12
nucleus.
The test benchmarks on this system were already presented in the third chap-
ter, and they showed both the accuracy of the program, being able to predict
correctly the results using an Ali-Bodmer potential with a known ground state
energy value, and the validity of the calculation, after transformation through
Fourier transform, in momentum space.
The the final calculation of the ground state energy of Carbon-12 with the
aforementioned cluster EFT potential, the result of which can be seen in figure
5.1, yields a couple of interesting results.

1. The speed of convergence: one reaches quite a good convergence already
at K = 10, suggesting a very fast convergence for this type of potential.
This can be explained by looking at the expression of this interaction: as
seen in Eq. (4.30), the αα interaction is quite simple in form (being the
terms Pl(p̂pp · p̂pp′), pl and p′l equal to 1 for l = 0), resulting in quite a soft,
fast converging potential.
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5.1. THE CARBON-12 NUCLEUS

Figure 5.1: Ground state energy of 12C calculated using the cluster EFT poten-
tial at different levels of the cutoff Λαα shown at various levels of the hypermo-
mentum K.

2. The range for the binding energy, with a local upper limit of −0.348 MeV
at Λαα ' 150 MeV and a lower limit growing as Λαα increases or de-
creases. The local maximum is in the expected range: at a smaller scale
one has a potential that excludes too much high-momenta physics, while,
at a larger scale, one is too close to the limit given by the use of an Ef-
fective Theory. The final result, in the local maximum, however is smaller
than the expected binding energy of roughly 7 MeV. There are several rea-
sons for this result: first, one can see that there is a dirscrepancy given by
the inherent nature of the effective potentials: executing the cluster sim-
plification by reducing greatly the number of interacting particles, from
12 particles (with all the 66 possible couples) to 3 (only three couples), a
price has been paid. And such a price comes, in this case, in the form of
three-body forces. By removing degrees of freedom in the particle number
one obtains many-body forces, that are still not accounted for the final
result. Second, the cutoff that has been employed. Although one starts
with a theta function cutoff in the bare potential, the Coulomb dressed
regulator only ’look’ like a theta cutoff at a certain range. Therefore we
made an approximation in that case. It might be good enough in the two
body case, but the error may be enlarged in the three body case. The use
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CHAPTER 5. RESULTS

Figure 5.2: Heatmap showing the ground state energy of 9Be calculated using
the cluster EFT potential for different cutoffs Λαα and Λαn.

of a smoother regulator function therefore should be more rigorous and
more accurate.

5.2 The Beryllium-9 nucleus

This program, the product of this thesis, has been then used for the calculation
of the ground state energy of the Beryllium-9 nucleus through the use of the
already introduced cluster EFT potential.
The results can be seen in figure 5.2. As one can see, the first thing that catches
one’s eye is the presence of a maximum. At a level of cutoff for αα equal to the
one for Carbon-12 and at 160 MeV for Λαn, there is a maximum level for the
binding energy of Beryllium-9 at 0.152 MeV. Like the case of Carbon-12 before,
the binding energy is too small. However the result is much closer than before to
the real value, since the total binding energy of 9Be is 58.164 MeV, from which
one has to remove the binding energy of both α clusters (two times 28.296 MeV,
56.164 MeV), meaning that the remaining binding energy for the cluster system
is 1.572 MeV. As before, the difference between the two value is probably given
by both the lack of a three-body force and the use of a step-function cutoff.
Another interesting behaviour is observed if one continues increasing or decreas-
ing the cutoff level after reaching the maximum. As predicted, reaching a little
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5.2. THE BERYLLIUM-9 NUCLEUS

over 210 MeV for Λαα (or a little under than 130 MeV) the ground state energy
begins rapidly descending, reaching the level of more than one MeV of change
in the result for a MeV of change in the cutoff. In the range considered, instead,
the αn interaction has a very small dependence on the cutoff, mainly due to the
bigger range allowed for its Λ.
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Chapter 6
Summary and outlook

My thesis work consisted in setting up a program for the diagonalization of a
nonrelativistic momentum space Hamiltonian for various particle systems. Such
particles can differ between each other for mass, charge, spin and isospin. In par-
ticular it was used for calculations of cluster nuclei, Carbon-12 and Beryllium-9,
using a momentum space cluster EFT potential.
After a brief chapter of introduction, where I showed the experimental and
theoretical results obtained until now in the study of the Beryllium-9 photodis-
integration, I’ve introduced the chosen basis where the calculations were made,
the HH basis. Therefore in the second and third chapters it was shown a detailed
description of the HH basis both in coordinate and momentum space, from the
definition of the Jacobi coordinates to the calculations needed in the case of a
nonlocal potential. Due to the difference between local and nonlocal potential
and the difference between the two spaces it was necessary to completely re-
structure the original code.
At the end of the third chapter I showed several benchmark tests on different
systems from tritium to Beryllium-9, passing through Helium-3 and Carbon-12,
demonstrating how the new program was able to reproduce the results of the
existing coordinate space program, it was also able to reproduce the results in
the literature (Carbon-12 using an Ali-Bodmer potential).
The fourth chapter was an introduction to Effective Field Theory, with several
examples of the application of effective theories, and I gave an overview over
the history of cluster effective theory and how it was used for the Beryllium and
Carbon nuclei. In the last part it was reported how to obtain the cluster EFT
potential. The latter was used in the fifth chapter for the calculations of the
ground state energies of Carbon-12 and Beryllium-9. Both nuclei showed a dif-
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ferent energy from the experimental results at all values of cutoff. The Carbon
result shows a similar underbinding to the case obtained with the Ali-Bodmer
potential, while the Beryllium nucleus instead shows an overbinding.
The basis for this work was a program able to calculate the binding energy of
fermions of different masses. I expanded and evolved greatly such a program
by including the possibility to compute different types of particles and interac-
tions, adding potentials that can be local and nonlocal, in coordinate space and
in momentum space, between fermions and bosons.
The final product, as shown in the previous chapters, is a program able to move
from simple systems like the tritium nucleus to more complex systems, up to
cluster nuclei in which the constituents interact through effective field theory
potentials. This opens the possibility of further calculations, with other systems
and other EFT interactions.
In future, the first point to explore is the substitution of the step function cutoff
in the αα potential by a Gaussian one, similarly to the case of αn. While the
calculation for the λ0 and λ1 coefficients in Eq. (4.24) becomes considerably
more difficult, the change from such a sharp cutoff to a softer should improve
the results of the calculations, for the reasons stated in the previous chapter.
The calculations withthis new regulator are only in the first stages, but the first
results seem to be promising.
However, this is not the only possible development that can be made with this
program. The missing three-body force generated by the EFT approach is an-
other problem that need to be tackled. Looking back at the chapter about the
hyperspherical basis one can then see that the future implementation of three-
body interactions in the program is a feasible idea: adding to the hyperradius
and last hyperangle, as a variable of integration, the second-to-last hyperangle
one can then use interactions that take into account the third particle in ad-
dition to the first two. Adding permutation matrices the three-body force can
be extended to all the possible triplets of the system, allowing the use of better
EFT potentials.
Another possible future project is the study of 9Be photodisintegration.
As it was stated in the Introduction, the photodisintegration of 9Be is an inter-
esting reaction because it is the inverse process of α+ α+ n→9Be+γ, the first
step in Carbon-12 production through the ααn chain, which is hypothesized to
be the main path of carbon generation in supernovae. In order to study this
process one needs to calculate the photoabsorption cross-section, which can be
expressed in terms of the response function r(E).
The idea is then to employ the so-called Lorentz Integral Transform (LIT) tech-
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nique [39], that transforms the continuum problem to a bound state like problem.
In the case of an inclusive reaction, as for example the total photodisintegration
cross section of a nucleus, one needs to determine a response function r(E) of
the following type

r(E) =
∑∫
γ

〈ψ0| Ô† |ψγ〉 〈ψγ | Ô |ψ0〉 δ(Eγ − E), (6.1)

where ψ0 is the nuclear ground state wave function and ψγ the wave function of
an excited state of the nucleus, and Ô is an operator that induces the transition.
The LIT is defined as follows

L(σR, σI) =
∑∫

K(σ,E)r(R)dE =
〈
ψ̃
∣∣∣ψ̃〉 , (6.2)

with the Lorentzian kernel K(σ,E) defined as

K(σ,E) =
1

(E − E0 + σR)2 + σI
, (6.3)

and σ = E0 + σR + σI , E0 being the ground state energy.
The LIT state is obtained from

(Ĥ − E0 − σR − iσI)
∣∣∣ψ̃〉 = Ô |ψ0〉 . (6.4)

After having determined the LIT one needs to invert the transform in order to
determine r(E).
The equation (6.4) can be solved with bound state methods, the solution is
based on the diagonalization of the Hamiltonian for a given final channel. For
this part of the solution the program developed in this thesis can be used.
For the low-energy 9Be photodisintegration one can use the electric dipole op-
erator D̂ as Ô hence the possible final channels must satisfy

∆l = 0,±1

∆s = 0.

πf = −πi

(6.5)

Since 9Be ground state is Jπ = 3/2−, one finds three possible final channels:
1/2+, 3/2+ and 5/2+.
The program isn’t limited to deal only with cluster nuclei, it is also possible to
study nucleonic systems interacting through chiral EFT (χEFT) potentials.
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