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Introduction
The phenomenon of of Bose–Einstein condensation is one of the most studied topics
in condensed matter physics. The theoretical and experimental effort of the scientific
community has brought, over more than twenty years of research, to a deep understand-
ing of the physics underlying condensed systems. However, a number of fundamental
aspects of the topic are still under active research. During the course of my PhD I was
involved in two projects of fundamental BEC physics: a study of the structure of quan-
tized vortices, with direct comparison to theoretical predictions, and a measurement
of the equation of state of a condensed Bose gas, highlighting the influence of particle
interactions on the thermodynamics of the BEC transition. This thesis presents the work
that I have done on each of these subjects.

Quantized vortices have been studied since the discovery of superfluidity in 4He,
and they are a typical characteristics of superfluid systems, contributing to their unique
physical properties. The physics of quantum vortices depends strictly on the absence of
viscosity in the fluid, for which particle interactions play a key role. There are numerous
studies on the physics of isolated vortices, their interactions, and the mechanisms
leading to their formation. Ultracold atomic BEC are a versatile experimental platform,
thanks to the high degree of control over the parameters of the system which allowed
for the development of a variety of techniques to create and observe quantized vortices.
Despite all of this work, a direct and quantitative observation of the shape and density
structure of quantized vortices in bulk superfluids was still missing, which was the aim
of our work. Again, ultracold atoms are a good candidate for this research, thanks to
the accurate predictions of the Gross–Pitaevskii theory.

The observation of vortices is made problematic by their small size, and by the
difficulty of controlling the orientation of the nodal line for a precise determination
of their shape. In our experiment a cigar-shaped geometry favors the formation of
short and straight vortices, thanks to the tight radial confinement, and constrains their
orientation on a plane. The size of the system is still big enough with respect to the
width of the defect, so that the vortex behaves as isolated in a 3D bulk superfluid. The
observation is made possible by time-of-flight techniques, since the vortex expands
together with the condensate after releasing the system from its trapping potential.
Comparing the observations with the expansion dynamics predicted by the Gross–
Pitaevskii theory, we achieved a first quantitative measurement of the spatial structure
of a quantized vortex.

Another key aspect of condensed systems, in which particle interactions play a major
role, is in the thermodynamics of the BEC transition. Condensation does not require
interactions, as it is driven only by the quantum statistics of particles, but their presence
dramatically changes the thermodynamic properties of the gas. As the interaction energy
grows with the particle density, their role is dominant at low temperatures in atomic
gases in the BEC phase. The striking difference between an ideal and an interacting gas
at zero temperature is immediately revealed in the shape that the sample assumes in a
harmonic trap: a Thomas–Fermi profile is routinely observed in experiments, where an
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ideal gas would have a much narrower Gaussian distribution.
What is less easy to observe is the way interactions affect the phase transition at finite

temperature, which is revealed by the equation of state (EoS) of the system. The Hartree–
Fock theory, which is the mean-field approach to the thermodynamics of interacting
systems, predicts changes in the pressure and in the chemical potential of the gas that
are in stark contrast with the textbook ideal model. In particular, the chemical potential
is predicted to be non-zero in the BEC phase, and non-monotonic as a function of
temperature with a peak at the transition point, due to the different exchange energy
terms in the condensate and thermal fractions which coexist below the critical point.

What makes this feature interesting is that it has been theoretically predicted and
observed in other, completely different kinds of superfluids. It has been measured in
4He, where the EoS can be calculated starting from experimental measurements of the
specific heat across the lambda transition. It has been directly observed in unitary Fermi
gases, confirming the prediction of the universal thermodynamics of such systems with
infinite interactions. This linked sequence of observations in superfluid systems of
different nature brings to the conjecture that the presence of a peak in the chemical
potential is a signature of the phase transition to a superfluid phase, independent of the
physical nature of the superfluid. At the moment there is no theoretical proof for such a
general statement. This makes it interesting to search for the presence of the peak in the
EoS of a weakly interacting Bose gas, where it is predicted by the Hartree–Fock theory
but still without any experimental observation. The measurement of this equation of
state is precisely the goal of my research project.

Most of the experimental work on the thermodynamics of homogeneous systems
results from observations in inhomogeneous samples, interpreted by means of the
local density approximation. To apply this scheme, we need to measure the density
distribution of a trapped atomic sample, which is difficult in a Bose gas because of the
high density of the condensate. We solved this problem employing the partial-transfer
absorption imaging technique (PTAI), which we used to image high-density regions of
the BEC. Since the dynamic range of the density in a BEC is wider than the one accessible
with a single image, I developed a high-dynamic-range reconstruction method to obtain
a complete image of the trapped condensate from a sequence of PTAI shots, each one
giving data in a different density range. With the combination of the two methods, we
were able to measure the EoS of an interacting bosonic gas in a range of temperatures
across the phase transition. The observations agree with the prediction of the Hartree–
Fock theory, and confirm the presence of the superfluid peak in the chemical potential
at T = Tc.

Thesis summary

The first chapter of this manuscript is a short, self-contained introduction to the the-
ory of the subjects under study. I will first introduce the Gross–Pitaevskii equation
(GPE), which describes dilute Bose–Einstein condensates of interacting particles at zero
temperature. The properties of superfluid system are expressed in the GP theory by
the connection between the wavefunction and the velocity field of the quantum fluid,
which naturally leads to the presence of quantized vortices as particular solutions of
the GPE. The resulting wavefunction describes the core structure of the vortex and its
dependency on the shape and the density of the system, as well as its dynamics during
a free expansion, and will be compared to the measurements detailed in Chap. 4. I will
then turn to the finite-temperature case and review the thermodynamics of homoge-
neous and trapped condensed systems, deriving the equations expressing the pressure
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and the chemical potential as functions of density and temperature. I will refer to this
theory for the interpretation of the measurements that will be presented in Chap. 5. I
will then introduce the local density approximation, and how it can be used to retrieve
information on a homogeneous system from density measurements in a trapped sample.
I will finally introduce the topic of universality in the thermodynamics of a system, and
discuss the extent to which these two concepts apply to the case of an atomic Bose gas.

The second chapter is a technical description of the experimental setup in the Trento
ultracold atoms laboratory, describing the tools that allow us to produce condensates
of 23Na atoms: the vacuum apparatus, the laser system, the electronics control, the
high-power electrical setup needed to produce the magnetic trap. I will also describe
the basic steps of our experimental routine to cool atoms down to condensation.

In the third chapter I will review the basis of absorption imaging, describing our
imaging setup and the measurements for its calibration. These steps were crucial for the
EoS project, as they are necessary for a precise determination of the absolute density
distribution in the trapped sample.

The fourth chapter is dedicated to the vortex visibility project. I will describe the
numerical solutions to the GPE leading to theoretical predictions for the shape of the
vortex line and its time evolution during a free expansion. Then I will describe the
measurements and the analysis procedure, which I developed and applied to both the
simulation results and the experimental data, compare the two and discuss the results.

The final chapter describes my work on the EoS project. I will introduce the PTAI
technique, describe our implementation and calibration, and the image reconstruction
algorithm. Then I will present our results for the pressure and density profiles along
the trap axis. I will discuss the method we used to extract the global thermodynamic
parameters from such profiles. I will show the results for the EoS p(n, T) and µ(n, T),
where we observed the peak across the transition. Finally, I will discuss both the
technical limitations in our experiment and the conditions for the validity of the LDA,
which is at the basis of our result.
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The concept of Bose–Einstein condensation (BEC) was first theorized in 1924 in a
seminal work by S. N. Bose about the quantum statistics of indistinguishable particles
applied to photons [1], and successively extended by A. Einstein to massive particles [2].
BEC predicts that in a gas of bosons, at sufficiently low energy, particles accumulate in
the lowest-energy single-particle quantum state of the system with a macroscopic occu-
pation. The transition can be described by the appearance of a complex order parameter,
also called the condensate wavefunction, which represents the density distribution of
condensed particles in the BEC phase and vanishes above the transition.

The discovery of superfluid 4He [3, 4] brought the phenomenon to attention, as it de-
veloped the intuition that superfluidity could be a manifestation of BEC. The connection
between condensation and superfluidity continued to be developed, with experiments
on superfluid helium and superconducting metals playing a central role. Later on,
the research on BEC was enriched by experiments on ultracold atomic gases, with the
achievement of condensation of 87Rb atoms in the group led by Cornell and Wieman [5]
and of 23Na in the Ketterle group [6] in 1995. This was made possible by the great devel-
opment in experimental techniques of atomic physics for manipulating, trapping and
cooling atoms [7–9]. Nowadays BEC can be observed routinely in laboratories, thanks
to the scientific and technological effort that continued to the present day. Ultracold
atomic gases represent a flexible experimental platform, where it is possible to study
degenerate samples of many bosonic and fermionic species, manipulate them almost
arbitrarily with the use of magnetic and optical fields, and study the fundamental and
thermodynamic properties of these macroscopic quantum systems.

Being driven only by the quantum statistics of the constituting particles, BEC is the
only known phase transition taking place also in the absence of interactions, making it
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2 BEC at zero temperature

a cornerstone of quantum statistical mechanics. Particle interactions have however an
important role in the physics of Bose gases, as they are necessary for the phenomenon
of superfluidity and as they change the thermodynamics of the gas in a non-trivial way.

In this chapter, I will review some basic theory about interacting Bose–Einstein
condensates, introducing superfluidity at zero temperature and showing how this leads
to the presence of quantized vortices. I will describe the properties of these objects,
that we observed in the measurements detailed in Chap. 4. Then I will review the
thermodynamics of condensed systems and put the basis for the measurement of the
equation of state that will be presented in Chap. 5.

1.1 BEC at zero temperature

1.1.1 The Gross–Pitaevskii equation

The physics of a condensate of interacting particles at zero temperature is captured by
the Gross–Pitaevskii (GP) equation, independently derived by L. P. Pitaevskii [10] and E.
P. Gross [11] in 1961 from a generalization of Bogoliubov’s theory for weakly interacting
bosons to inhomogeneous systems [12, 13]. To describe it, we start from the hamiltonian
of a system of particles with mass m confined by a potential Vext, written in second
quantization as

H =
∫

d3r ψ̂†

(
− h̄2

2m
∇2 + Vext

)
ψ̂ +

g
2

ψ̂†ψ̂†ψ̂ψ̂ . (1.1)

The quantum field operator ψ̂(r) describes the particle distribution in space, and the
coupling constant g expresses the strength of two-body interactions. This simple form
for the interaction term is valid only under the condition that the gas is dilute, that is
when the mean interparticle distance is much greater than the range of the true two-
body interaction potential. At low temperatures we can relate the coupling constant
to the two-body s-wave scattering length a as g = 4πh̄2a/m, and write the diluteness
condition in terms of the gas parameter na3 � 1, where n is the density of particles in
the system.

At zero temperature, the macroscopic occupation of the condensed state makes the
relative fluctuations in the number of particles in the condensate vanishingly small,
hiding the quantum nature of the system. This allows us to replace the field operator
with the classical function ψ(r), the condensate wavefunction. Its squared modulus
represents the particle density, n = |ψ|2, while the gradient of the phase is related to the
velocity field of the quantum fluid.

The total energy of the system is expressed by the energy functional

E =
∫ ( h̄2

2m
|~∇ψ|2 + Vext|ψ|2 +

g
2
|ψ|4

)
d3r , (1.2)

which can be calculated as the average value of the hamiltonian in Eq. 1.1, once one
identifies ψ with the quantum average 〈ψ̂〉 and neglects all correlation terms in averaging
the product of two or more field operators. This substitution marks the GP theory as a
mean-field theory, where at the lowest order the (quantum, in this case) fluctuations in
the order parameter are neglected. Using a stationary action principle, the equation of
motion for the condensate wavefunction is derived as ih̄∂tψ = δE/δψ∗, leading to the
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GP equation

ih̄
∂ψ

∂t
=

[
− h̄2

2m
∇2 + Vext(r) + g|ψ|2

]
ψ . (1.3)

The GP theory provides extremely accurate predictions when compared to con-
densates of ultracold atomic gases [14]. In such systems the diluteness condition is
completely fulfilled: considering alkali atoms for a simple estimate, the peak densities
available in experimental samples are of order 1020 atoms/m3 while the scattering length
for contact interaction is typically of order 1 nm, making the gas parameter na3 ∼ 10−7.

The ground state of the condensate can be found as the stationary solution of Eq. 1.3
with the lowest energy. Substituting ψ(r, t) = ψ(r)e−iµt/h̄ we obtain[

− h̄2

2m
∇2 + Vext(r) + g|ψ|2

]
ψ = µψ (1.4)

which is also called the stationary GP equation. The quantity µ is the chemical potential
of the many-body system, and it is related to the total number of atoms N by the
normalization of the wavefunction ∫

|ψ|2 d3r = N . (1.5)

Even if cold atomic gases satisfy the dilute gas condition, the effects of atomic
interactions are relevant and can actually dominate the physics of a trapped system. We
will discuss the case of a harmonically trapped gas, where the external potential is given
by

Vext =
1
2

m
(

ω2
xx2 + ω2

yy2 + ω2
z z2
)

, (1.6)

where ωj are the trap frequencies. This is the most natural choice to compare with
experiments, as typical experimental samples are trapped in (magnetic or optical)
potentials that, in the volume occupied by the atoms, are harmonic to a very good
approximation. This form of the potential sets an energy scale of h̄ωho, where we
define ωho = (ωxωyωz)1/3 as the harmonic oscillator trap frequency, and a length scale
aho =

√
h̄/mωho called the harmonic oscillator length.

The strength of mean-field interactions in the BEC is governed by the parameter
Na/aho, which in typical trapped gases can reach values of 103 when the number of
atoms is sufficiently high (order of 106). In this conditions the kinetic energy term in
Eq. 1.4, also called quantum pressure after the hydrodynamical formulation of the GPE,
can be neglected, giving the analytic solution for the BEC ground state density

nTF(r) = |ψ(r)|2 =
µ−Vext(r)

g
(1.7)

known as Thomas-Fermi (TF) approximation. The chemical potential can be calculated
from the total atom number using Eq. 1.5 as

µ =
h̄ωho

2

(
15

Na
aho

)2/5

. (1.8)

The condensate has the shape of an inverted parabola, modeled by the trap potential.
The peak density is n0 = µ/g and the extension of the condensate is determined by the
Thomas-Fermi radii Rj =

√
2µ/mωj, allowing to rewrite Eq. 1.7 as

nTF(x, y, z) = n0

(
1− x2

R2
x
− y2

R2
y
− z2

R2
z

)
. (1.9)
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Figure 1.1: Comparison between the radial density profile calculated from the GPE (solid line)
for a 23Na condensate with 5× 106 atoms in a spherical trap of frequency 40 Hz and the TF
profile with the same number of atoms (dashed line). The radial coordinate and the density
are normalized to the harmonic oscillator length aho. Inset: zoom of the surface region of the
condensate, highlighting the difference in the density profile due to quantum pressure.

Fig. 1.1 compares the density distribution predicted by the GPE for a condensate of
5× 106 atoms in a spherical trap of frequencies ωx,y,z = 2π × 40 Hz with its TF approxi-
mation. The small differences at the edge of the condensate and in the peak density are
due respectively to the quantum pressure contribution, which becomes non-negligible
at the edges of the distribution, where the density is low, and to the difference in the
chemical potential as computed by the GPE or using Eq. 1.8 (< 2%), as both distributions
are normalized to the same number of atoms.

1.1.2 Superfluidity and vortex lines

Particle interactions affect the way a condensed gas exchanges energy with surrounding
media through its elementary excitations. Bogolyubov’s theory in a homogeneous BEC
of density n at zero temperature shows that excitations of the condensate at wavevector
k follow a phonon-like dispersion relation, linear at low k [12]. The low-energy modes
of the BEC are wave-like collective oscillations called phonons, propagating with the
sound velocity c = gn/m. Following the criterion formulated by Landau [15], the above
property makes the weakly interacting Bose gas a superfluid, a fluid of particles able
to flow with no viscosity or internal friction. This is in stark contrast with the case of
the ideal Bose gas with no interactions (g = 0), where the excitation spectrum is instead
quadratic in k, proper of non-interacting free particles, and the system doesn’t show
superfluidity.

One of the most characterizing properties of a superfluid system is its behavior
under rotation, as a superfluid cannot rotate like a normal liquid: the absence of shear
viscosity is actually a necessary condition for the presence of irrotational vortices. A
vortex, a configuration of fluid rotating around a nodal line, is defined as irrotational
when the vorticity ~ω = ~∇×~v, the curl of the velocity field, vanishes everywhere except
than on the vortex line, where it is concentrated. The modulus of the velocity is inversely
proportional to the distance r from the rotation axis, increasing indefinitely close to the
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core. Such a configuration cannot be realized in normal fluids, where viscosity quickly
dissipates the kinetic energy in the high-velocity core region, up to the creation of a
region with diffused vorticity and a rigid rotational field where |~v| ∝ r, as modeled by
solutions to the classical fluid equations such as the Rankine or the Lamb–Oseen vortex
model [16].

A vortex in a BEC is described by a solution of the stationary GP equation where
all particles circulate with the same angular momentum h̄ around a line at zero density.
The velocity field is related to the phase φ of the wavefunction as

~v =
h̄
m
~∇φ , (1.10)

which makes the flow irrotational since ~∇× (~∇φ) = 0 identically. The circulation of
the velocity Γ =

∮
~v · d~l is constant for every contour enclosing the nodal line (and zero

otherwise) and has the value

Γ =
h̄
m

∮
d~l · ~∇φ =

h̄
m

∆φ = 2πs
h̄
m

, (1.11)

where ∆φ = 2πs is the variation of the phase around the contour, which must be
an integer multiple of 2π for the wavefunction to be single-valued. This condition
defines the vortex as quantized, as the angular momentum of the system, related to the
circulation Γ, can assume only discrete values.

Looking for a symmetric solution within the above conditions, the wavefunction
takes the form ψ(r, θ) = eisθ |ψ(r)|, where s is an integer, in cylindrical coordinates
around the vortex line. Substituting it in Eq. 1.4 with Vext = 0 one obtains

− h̄2

2m
1
r

d
dr

r
d|ψ|
dr

+
h̄2s2

2mr2 |ψ|+ g|ψ|3 − µ|ψ| = 0 . (1.12)

0 1 2 3 4 5
r/

0.0

0.2

0.4

0.6

0.8

1.0

|
|/

n

Figure 1.2: Solid line: numerical solution to
Eq. 1.12 for a vortex with s = 1, normal-
ized to the bulk value

√
n and plotted

vs. the rescaled coordinate x = r/ξ. The
dashed line is the variational approxima-
tion x/

√
2 + x2 [17, chap. 9.2].

The solution, plotted in Fig. 1.2 for s = 1,
shows that the wavefunction goes to zero
at the vortex core as r|s|, and recovers its
bulk value

√
n =

√
µ/g within a distance

ξ = h̄/
√

2mgn defined as healing length, de-
termined by the balance between mean-field
interactions and the kinetic energy due to ro-
tation. In a 23Na condensate with a typical
density of 1020 atoms/m3 the healing length
has the value 0.3 µm, while in superfluid 4He
it is of the same order as the atom size because
of the much stronger interactions.

Considering a finite cylindrical volume of
radius R and length L, the energy cost asso-
ciated to the presence of the vortex can be
calculated by the difference between the to-
tal energy of the vortex state and the one of a
uniform system within the same volume. Both
are calculated evaluating Eq. 1.2 for the corresponding wavefunctions. The result
obtained is [10]

Ev = Lπn
h̄2

m
ln
(

1.464
R
ξ

)
, (1.13)
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highlighting the important property that the energy of a vortex is proportional to the
length of its nodal line.

A free vortex is an excited state of a static system, but it appears instead as the
lowest energy configuration in the case of a rotating superfluid. For a system rotating
with angular speed Ω the energy in a co-rotating reference frame is E′ = E − ΩL,
where E is the same as in Eq. 1.2 and L is the total angular momentum carried by the
wavefunction. For sufficiently high Ω a solution with nonzero angular momentum
becomes energetically favorable, and a vortex is formed around the rotation axis. As the
rotation speed increases more vortices appear, forming a regularly spaced array that
distributes the angular momentum through the system.

Harmonically trapped BECs support vortex states as well. The geometry of the
confinement plays an important role for the nature and stability of the defects, which
we discuss in the case of a cylindrically symmetric trap where ωy = ωz = ω⊥ and
ωx = λω⊥.

For λ > 1 the condensate has an oblate shape. As the energy of a vortex scales
with the length of its nodal line, the preferred orientation is along the tightly confined
direction x. In such a geometry vortices behave as point-like defects in two dimensions
rather than as filaments in a 3D fluid. When the chemical potential µ is lower than
the transverse confinement energy h̄ωx, the system enters in an effective 2D regime.
The energy cost of a vortex is now microscopic, because its length is always small
compared to the system’s size, and this allows for vortices to be thermally excited.
This is a fundamental difference with respect to the 3D case, and it is at the basis of
a phase transition known as Berezinskii–Kosterlitz–Thouless (BKT) transition [18, 19]:
despite the reduced dimensionality prevents the creation of long-range order and the
formation of a true Bose condensate [20], below a critical temperature TBKT the system
has a superfluid phase, characterized by the presence of bound pairs of vortices with
opposite circulation.

For λ close to 1, spherical BECs host vortices as in a bulk homogeneous superfluid.
The physics of vortices in such quantum systems share a number of properties with its
classical counterpart. Without a preferred direction for the orientation, vortex filaments
can easily bend [21–23], allowing for the creation of vortex tangles and the development
of turbulence [24, 25].

In a cigar-shape geometry, for λ < 1, the condensate can support topological defects
with different structures on the radial plane yz. The nature of the most stable defect,
the one with the minimum energy, is determined by the dimensionality parameter
γ = µ/h̄ω⊥ [26]. For γ < 1 the system is in a quasi-1D regime where the stable
nonlinear excitations are dark solitons, characterized by a density depletion in the radial
plane and by a phase jump of π across the defect. At higher values of γ the most stable
structure is known as solitonic vortex (SV) [27, 28] which shares the characteristics both
of a vortex and a soliton: the phase structure resembles the one of a vortex, with phase
circulation around a zero-density nodal line that, to minimize its energy, is aligned in
a random direction on the radial plane. Because of the anisotropic confinement, the
phase gradient is higher close to the plane containing the vortex line, which reduces the
density in that region. Looking from far away from the radial plane the SV resembles
a 1D soliton, with a planar density depletion and an overall π phase jump. Fig. 1.3
shows the result of GPE simulations of a cigar-shaped condensate in 2D hosting the two
different kinds of solitonic defects, comparing their density and phase profile.
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Figure 1.3: 2D GPE simulations showing the density (top) and phase (bottom) distribution of an
elongated BEC hosting different kinds of defects. Left: the SV case, where the vortex core is
accompanied by a weaker density depletion on the y = 0 line, where the phase gradient is
stronger. Right: the dark soliton case, where the y = 0 line at zero density marks a π phase
jump. Figure adapted from [28].

1.1.3 Free expansion of a vortex line

A sudden switch-off of the trapping potential induces a fast expansion of the conden-
sate. The resulting decrease of the atomic density quenches the strength of mean-field
interactions, with effects on both the expansion dynamics and on the shape of nonlinear
defects such as solitons and vortex lines.

When the TF approximation is valid, the expansion dynamics can be described by
simple scaling laws [Castin1966]. In a cigar-shaped elongated trap (λ� 1) the TF radii
scale in time according to

R⊥(τ) = R⊥(0)
√

1 + τ2 ,

Rx(τ) = Rx(0)
[
1 + λ2

(
τ arctan τ − ln

√
1 + τ2

)]
,

(1.14)

where R⊥ = Ry,z is the radius on the radial plane yz, and τ = ω⊥t. The expansion
is much faster in the radial directions, which are the tightly confined ones. A known
consequence of this is that the sample inverts its aspect ratio during the expansion,
which is a hallmark of the presence of a Bose–Einstein condensate.

A simple model for the evolution of the core structure is obtained assuming that the
vortex is a hollow cylinder of radius rv = cξ, with c a constant number expected to be of
order 1. The decrease of the density divides the expansion dynamics in two different
regimes, which are distinguished by the role of mean-field interaction energy. At early
times, where the density is still high, the expansion is mainly driven by mean-field
energy. In this regime the size of the core can be expected to follow adiabatically the
dependency of the healing length on the instantaneous peak density n0, whose scaling
in time can be derived from conservation of the total number of atoms N ∝ n0R2

⊥Rx
during the expansion. At lowest order in λ we neglect the slow axial expansion and
find that the peak density scales as

n0 ∼
R2
⊥(0)

R2
⊥(τ)

=
1

1 + τ2 , (1.15)

so that the vortex core radius expands as
√

1 + τ2. At later times instead, when the gas
becomes more dilute, atomic interactions can be neglected and the expansion becomes
ballistic. Both TF radii increase linearly in τ and the size of the vortex is expected to
scale proportional to that of the condensate. For a BEC in a spherical trap with frequency
ω the crossover from mean-field to ballistic regime happens at around τdec ∼

√
2µ/h̄ω

[29].
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The free expansion increases the optical visibility of the vortex, due to the different
scaling laws with which the condensate radii and the vortex core expand. The profile
obtained by imaging the condensate along the x direction is proportional to the column
density

ncol
TF(y) = ncol

TF(0)

(
1− y2

R2
⊥

)3/2

, (1.16)

where ncol
TF(0) = 4n0Rx/3, obtained integrating Eq. 1.9 along x and considering a slice

on the plane z = 0.
A straight vortex line oriented along z will produce a dip in the column density, as it

depletes a narrow region of the sample. The dip is expected to be small, as the transverse
extension of the vortex is much smaller than the size of the BEC, and maximum for a
vortex located in the center of the condensate. We compute the same quantity ncol

v (y) for
the density distribution containing a cylindrical vortex located at x = y = 0, and define
the rescaled visibility of the vortex line as δnv(y) = (ncol

v (y)− ncol
TF(y))/ncol

TF(0), which
reads

δnv(y) = −
3
2

√
r2

v − y2

Rx

(
1− y2

R2
⊥

)[
1−

R2
⊥

3R2
x

r2
v − y2

R2
⊥ − y2

]
(1.17)

for y < rv, and zero otherwise. Defining the rescaled vortex radius r̃v = rv/R⊥, which
is constant during the expansion, and the rescaled coordinate ỹ = y/R⊥, we explicit the
time dependency of the vortex visibility as

δnv(ỹ, τ) = −3λ

2
r̃v

√
1 + τ2(1− ỹ2)

(
1− ỹ2

r̃2
v

)1/2

(1.18)

where we dropped the last term in square brackets in Eq. 1.17 which is O(λ2).

1.1.4 Production and observation of vortices

Quantized vortices have been extensively studied in superfluid helium systems [30],
with seminal experiments which used rotating buckets to introduce vortices in the
superfluid. The extremely small width of the nodal line precluded a direct observation,
so vortices were revealed either indirectly by their effects on sound propagation [31] or
employing tracer particles like electrons [32], solid hydrogen [33] and He2 excimers [34].

In ultracold atomic gases, vortices are produced and observed with different tech-
niques [35]. There are numerous method that exploit the mechanical action of a time-
varying potential on the gas, which is reminiscent of the rotating bucket method used
with 4He. A stirring laser beam [36, 37], a rotating elliptic magnetic potential [38], or a
combination of the two [39] were used to put the condensate in rotation at high speed,
observing vortices nucleate at the edge of the sample, where the density is low and
their energy cost is reduced, and migrate towards the center forming a triangular lattice.
Vortex lattices have been arranged in different regularly spaced geometries by stirring
the BEC with a rotating optical lattice [40]. By sweeping an optical obstacle through the
superfluid, it is possible to deterministically create a few vortices, or vortex-antivortex
pairs, and manipulate the vortices by pinning them to the optical potential [41]. A
sweeping laser beam was also used to demonstrate the creation of Von Karman’s vortex
streets shedding past the obstacle [42].

Vortices can be injected in a superfluid by directly engineering the phase of the
system’s wavefunction. In a two-component BEC, vortices were created by manipulating
the coherent coupling between two atomic states with a rotating potential [43], exploiting
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the presence of the non-rotating condensate in the other component to measure the
circulating phase of the vortex with an interferometric imaging. The same technique
was later used to create dark solitons which, being unstable in the given geometry, were
seen to decay into vortex rings [44]. A two-beam Raman coupling was used to transfer
angular momentum to a single-component BEC from a Laguerre–Gauss laser beam [45].

Vortices can naturally arise as phase defects while crossing the BEC transition, in a
phenomenon common to second-order phase transitions known as the Kibble–Zurek
mechanism [46, 47]. The spontaneous formation of vortices after fast temperature
quenches resulting from the relaxation of a random pattern of independent phase do-
mains was observed both in 3D [48, 49] and 2D systems [50]. The phase relaxation
dynamics was explored in a controlled way by merging independently created conden-
sates, both in small number [51, 52] or releasing a big number of them from the sites
of an optical lattice [53]. The dynamics of the cooling process has been theoretically
studied using finite-temperature GPE models [54], describing the chaotic nature of the
process and the resulting turbulent post-quench dynamics. This leads to the survival of
a random number of defects after relaxation, that can be experimentally observed and
counted, measuring the power law scaling of their average number with the quench
time [49, 55].

The direct in-situ observation of vortices is made difficult by the small size of the
defect, often lower or comparable to the resolution of the imaging system. Although
achieved in-situ by the use of high-numerical-aperture optics and dark-field imaging
methods [56], the vast majority of the observations relies on time-of-flight (TOF) imaging,
where the condensate is released from the trap and let expand for a suitable time before
being imaged. The vortex core expands together with the background density [29, 57]
which allows for optical detection. This method was used in nearly all of the above
cited works to obtain single snapshots of vortical configurations, and allowed also to
investigate the shape of a single vortex in different geometries. In the quasi-2D case the
density distribution develops characteristic ring structures due to interference between
the vortex velocity field and the one of the surrounding fluid [58]. In the 3D cigar-
shaped geometry the nonlinear phase gradient of the SV gives rise to a characteristic
S-shaped twist in the density depletion, that is observed when the nodal line is parallel
to the imaging direction [23], while imaging along the axis of the sample reveals that
the core structure in the bulk has approximately the same shape as in a homogeneous
condensate. One of my PhD projects was related to this topic, as detailed in Chap. 4,
where I performed measurements of the structure of the vortex core after expansion and
quantitatively compared them to the predictions of the GPE [59].

The investigation of vortex dynamics requires instead a non-destructive imaging
method. A compromise between the need of TOF expansion and the possibility of
repeated imaging is found with the use of output coupling methods [60–62]. A small
fraction of atoms is transferred to a non-trapped state and imaged after expansion,
obtaining a snapshot of the density distribution of the system at the time of the extraction
without interrupting the in-situ dynamics. Such a method has been used to observe the
dynamics of isolated vortices [61, 63, 64] and to observe vortex-vortex interactions [65].

1.2 Thermodynamics of finite-temperature BEC

In the textbook model of an ideal Bos gas, condensation is determined by a single
parameter, the phase space density (PSD) D = nλ3

T, depending on the ratio between
the interparticle distance and the thermal de Broglie wavelength λT = (2πh̄2/mkBT)1/2

associated to the temperature T. The PSD expresses the degree of degeneracy in the
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system, as condensation starts when it reaches a critical value of order 1. This picture is
valid also in the case of an interacting gas. Anticipating a result given by mean-field
theory, interaction effects grow proportionally to the density, so that they are expected
to be important only once the system enters the condensed phase, and to affect the
condition for condensation only in a minimal way. For the same reason the geometry
of the confinement becomes important, changing the spatial distribution of condensed
and thermal atoms, such that the uniform and the harmonically trapped case now show
significant differences.

Effects of particle interactions can be revealed by the equation of state of the system.
An equation of state (EoS) is a relation holding between three thermodynamic variables,
which summarizes the thermodynamic properties of the system. There is not a unique
expression for it since, given a particular form of the EoS relating three variables of
choice, analogous relations for any other triplet of variables can be obtained using
Maxwell’s relations. The EoS carries information about the presence of phase transitions
in the system, which are accompanied by discontinuities in the derivatives of the free
energy [66] and show up as singular points in the EoS profile.

In superfluid systems such as the interacting Bose gas, the phononic contribution to
the free energy gives rise to a peculiar non-monotonic behavior of the chemical potential
with temperature [67]: close to T = 0 the chemical potential must be increasing, as the
slope ∂µ/∂T can be related to the sound velocity, which is positive for all the known
kinds of superfluids. In the opposite regime of high temperatures µ is negative and
decreasing, going in the limit of a non-interacting Boltzmann gas. This implies that the
chemical potential has a peak (at least one) as a function of temperature, and theoretical
models for different kinds of superfluid systems predict the peak to be right at the
normal-to-superfluid phase transition temperature. This observation leads to speculate
that such a feature is general to the superfluid transition, even thought there is still no
rigorous theoretical proof for this claim, and makes it worth of further experimental
investigation.

In the following sections, I will introduce the theory for the thermodynamics of an
interacting Bose gas, show how it predicts the EoS for the chemical potential, and I will
review the experimental observation of its features in many superfluid systems other
than the Bose gas.

1.2.1 Hartree–Fock theory

The simplest theory accounting for interactions in the thermodynamics of a bosonic
gas is the Hartree–Fock (HF) theory. In this framework, the particles constituting the
many-body system are distributed among statistically independent single-particle states,
whose occupation numbers enter in the definition of the energy and have to be computed
self-consistently.

We start from Eq. 1.1 for the many-body hamiltonian H. We can decompose the
quantum field operator ψ̂ in the form

ψ̂(r) = ∑
i

ϕi(r)ai (1.19)

where ϕi are wavefunctions for single-particle states, normalized to unity, and ai (a†
i ) are

the corresponding annihilation (creation) operators. The HF prescription is to evaluate
the total energy E = 〈H〉 retaining the product of at most two particle operators, with
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the following substitutions:

〈a†
i aj〉 = niδij ,

〈a†
i a†

j akal〉 = ninj(δikδjl + δilδjk) for i 6= j ,

〈a†
i a†

i aiai〉 = ni(ni − 1) .

(1.20)

The energy obtained in this way describes a gas of independent bosonic particles at
equilibrium in a self-consistent potential, determined both by the external potential
and by mutual interactions. The particle occupation numbers ni are determined by
minimizing the grand canonical potential Ω = E − TS − µN, where the number of
atoms N = ∑i ni and the entropy

S = kB ∑
i
[(1 + ni) ln(1 + ni)− ni ln ni] (1.21)

are fixed respectively by the chemical potential µ and by the temperature T.
The minimization leads to the result

ni =
1

e(εi−µ)/kBT − 1
(1.22)

proper of Bose–Einstein statistics, where εi are the energies of the single-particle levels,
determined by

εi =
δE
δni

. (1.23)

Homogeneous systems

For a homogeneous system of bosons with Vext = 0 confined in a volume V, the natural
choice for the single-particle wavefunctions is that of plane waves ϕk = eikr/

√
V, labeled

by the wavevector k. Substituting it in Eq. 1.19 and using the prescription 1.20, the
energy of the system is

E = ∑
k

h̄2k2

2m
nk + gn2V , (1.24)

where we substituted the particle density n = ∑k nk/V. The single-particle energies

εk =
∂E
∂nk

=
h̄2k2

2m
+ 2gn (1.25)

show that the system can be thought as composed by non-interacting particles whose
energy is shifted by the mean-field contribution 2gn. The density can be explicitly
calculated by replacing the sum over wavevectors by an integral,

1
V ∑

k
nk →

∫ d3k
(2π)3 nk , (1.26)

obtaining

n =
1

λ3
T

g3/2

(
e(µ−2gn)/kBT

)
, (1.27)

where gν(z) is the polylogarithm function with index ν [68]. The replacement of a
discrete sum over the levels with an integral becomes exact in the thermodynamic limit,
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where V → ∞ keeping the density n constant, and it is allowed since none of the states
ϕk is macroscopically occupied.

Eq. 1.27 fixes a relation between the chemical potential and the PSD of the system.
By decreasing the temperature at fixed density (or either introducing particles at fixed
temperature) the PSD must increase, hence µ will increase accordingly. Bose–Einstein
condensation starts at the point where µ reaches the energy of the lowest-lying single-
particle state, which is the one at k = 0 with ε0 = 2gn. This defines a critical temperature
Tc where nλ3

Tc
= ζ(3/2), or

Tc =
2πh̄2

mkB

(
n

ζ(3/2)

)2/3

, (1.28)

where we used the fact that, for z = 1, the polylogarithm functions assume the values of
the Riemann zeta function, gν(1) = ζ(ν).

For temperatures below Tc a macroscopic number of atoms occupies the lowest-
energy state. Its contribution to the occupation of the system has to be separated from
the other states, substituting Eq. 1.19 with

ψ̂(r) =
√

n0 + ∑
k 6=0

eikr
√

V
ak (1.29)

and replacing each occurrence of aj=0 in Eq. 1.20 with
√

n0, where n0 is the density of
condensed atoms. The total energy now has the form

E = ∑
k 6=0

h̄2k2

2m
nk + V

(
1
2

gn2
0 + 2gnTn0 + gn2

T

)
(1.30)

where nT = ∑k 6=0 nk/V is the density of the thermal component. The chemical potential
is identified with the lowest energy level ε0, so that

µ =
∂E
∂n0

= gn0 + 2gnT ,

εk =
∂E
∂nk

=
h̄2k2

2m
+ 2g(n0 + nT) ,

(1.31a)

(1.31b)

and the density of the thermal fraction can be calculated using again Eq. 1.26. The
thermal and the condensate density are to be determined self-consistently from the
coupled equations

n = n0 + nT ,
n0 = µ/g− 2nT ,

nT =
1

λ3
T

g3/2

(
e(µ−2gn)/kBT

)
.

(1.32a)
(1.32b)

(1.32c)

The solutions to Eq. 1.27 and to Eq. 1.32 constitute the equation of state (EoS) for
the bosonic gas, defining the relation µ(n, T) respectively in the normal and in the
condensed phase. The result is plotted in Fig. 1.4b: from µ = gn at zero temperature,
the chemical potential peaks at the value µ = 2gn at the transition point (where n0 = 0),
and then falls down to negative values in the normal phase.

The equation for the pressure can be found from the relation Ω = −pV holding for
the grand canonical potential, leading to

p = gn2 − 1
2

gn2
0 +

kBT
λ3

T
g5/2

(
e(µ−2gn)/kBT

)
, (1.33)
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Figure 1.4: Equation of state for three thermodynamic variables at fixed density, as a function
of the reduced temperature T/Tc. (a) Pressure p normalized to the value in the condensed
phase for an ideal gas at the same temperature pc = kBTζ(5/2)/λ3

T . (b) Chemical potential
µ normalized to the zero-temperature value gn. (c) Compressibility κ normalized to the
zero-temperature value κ0 = 1/gn2. The solid lines are for an interacting 23Na gas with
density 1020 atoms/m3. The dashed lines are for an ideal Bose gas with the same density.

which depends on the density even in the condensed phase due to mean-field interac-
tions.

The isothermal compressibility

κ =
1
n

∂n
∂p

∣∣∣∣
T

(1.34)

has the finite value 1/gn2 at T = 0, and diverges at the transition. These results have
to be compared with the ideal gas case (Fig. 1.4), where in the BEC phase the pressure
does not depend on the density, the chemical potential is fixed to the value µ = 0 and
the compressibility, still diverging at Tc, is always infinite.

Trapped gases

The Hartree–Fock approximation applies also to systems confined by an external po-
tential Vext. When a condesate is present, the proper form for the field operator 1.19
is

ψ̂(r) = ψ0(r) + ∑
i 6=0

ϕi(r)ai (1.35)

which leads to the expression for the total energy

E =
∫

d3r

[
h̄2

2m
|~∇ψ0|2 + ∑

i 6=0

h̄2

2m
ni|~∇ϕi|2 + Vext(n0 + nT) +

1
2

gn2
0 + 2gnTn0 + gn2

T

]
.

(1.36)

Here ψ0 is the condensate wavefunction, and the densities are determined by

n0(r) = |ψ0(r)|2

nT(r) = ∑
i 6=0

ni|ϕi(r)|2 (1.37)

respectively for the condensed and the thermal fraction.
Eq. 1.22 holds for the occupation numbers ni also in this case. The wavefunctions

ψ0 and ϕi are to be determined together with their energies ε0 = µ and εi from the
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variational equation
δE
δϕ∗i

= niεi ϕi , (1.38)

which stems together with Eq. 1.23 from the minimization of the grand-canonical poten-
tial Ω. This leads to the system of nonlinear Schrödinger equations for the wavefunctions
[69] [

− h̄2

2m
∇2 + Vext(r) + g(|ψ0|2 + 2nT)

]
ψ0 = µψ0 ,[

− h̄2

2m
∇2 + Vext(r) + 2g(|ψ0|2 + nT)

]
ϕi = εi ϕi ,

(1.39a)

(1.39b)

which are the analogous of Eq. 1.31 in the trapped system. The normalization of ψ0 is
determined by the constraint

N =
∫
(|ψ0|2 + nT) d3r (1.40)

for the total number of particles. At T = 0, all occupation numbers for i > 0 vanish,
leaving nT = 0. Eq. 1.39a coincides with the stationary GPE (Eq. 1.4), which now can be
interpreted as the HF equation for the ground state.

The density of the thermal component can be calculated in a semiclassical approxi-
mation: when the length scale of the spatial variations in the potential is bigger than
the wavelength of typical excitations, the wavefunctions for the excited states can be
approximated by plane waves, ϕ(r) ∼ eikr, which is equivalent to solving Eq. 1.39b
within the WKB approximation [17, 69]. This leads to the semiclassical expression for
the single-particle energies

ε(k, r) =
h̄2k2

2m
+ Vext(r) + 2gn(r) , (1.41)

which can be substituted in the k-integral in Eq. 1.27 to obtain

nT(r) =
1

λ3
T

g3/2

(
e(µ−Vext(r)−2gn(r))/kBT

)
. (1.42)

The substitution is exact for Vext = 0, where we find back the results of Eq. 1.31 for
the uniform system, with a homogeneous condensate density and excited states in
the form of plane waves. The semiclassical approximation is more precise at high
temperatures, where the occupation of high-energy modes is bigger. In particular, it
is valid for temperatures above the transition, hence it can be used to compute the
mean-field corrections to the critical temperature for a trapped gas [70].

A mean-field treatment of the interactions given by the Hartree–Fock theory already
captures most of the relevant aspects of the thermodynamics, and it has been tested
against more complicated self-consistent schemes such as the Popov approximation [70],
as well as against exact Monte Carlo calculations [71]. In the case of weakly-interacting
homogeneous gas, it is possible to give a universal description of the phase transition
accounting for the role of thermal fluctuations [72], which confirms the peak value of
µ = 2gn at the transition even beyond mean-field theory.
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1.2.2 Local density approximation

Equations 1.39a, 1.42 and 1.40 altogether predict the density distribution of a finite-
temperature Bose gas in the external potential Vext. An alternative approach for the
description of trapped systems, based on the knowledge of the EoS of homogeneous
matter, relies on the local density approximation (LDA).

When the potential Vext varies smoothly in space, the gas occupying a small volume
at position r can be thought as a homogeneous system in thermal and chemical equi-
librium with the surrounding ones. The global chemical potential µ0 that determines
the flux of particles between the small volumes, hence the density distribution, has two
contributions: one coming from the external potential, and another one coming from
the chemical potential µ(n, T) of the local homogeneous ensamble of particles at density
n. The condition for the density distribution is then given by

µ0 = µ[n(r), T] + Vext(r) . (1.43)

The density distribution in the generic potential Vext can then be calculated from the
EoS n(µ, T) for the same homogeneous system with the substitution µ→ µ0 −Vext. If
applied to the interacting gas at T = 0, where µ = gn, one finds the TF approximation
1.7 for the trapped condensate. Substituting it in Eq. 1.27 we recover the semiclassical
result 1.42 for the distribution of the thermal component.

This opens an alternative approach for the study of the EoS of homogeneous quan-
tum systems, which can be experimentally obtained from the measurement of the
density profile n(r) in a trapped sample, of the trapping potential Vext, and of the global
thermodynamic quantities µ0 and T.

Following this route, T. L. Ho and Q. Zhou demonstrated a method to measure the
pressure EoS p(µ, T) from in-situ images of harmonically trapped gases [73, 74]. We
apply the Gibbs–Duhem relation

dp = ndµ + sdT , (1.44)

where s denotes the entropy density, to relate the pressure gradient to the trapping
potential within LDA. As nearby points are in thermal equilibrium, their temperature is
the same, so that dT = 0, while according Eq. 1.43, dµ = d(µ0 −Vext) = −dVext.

The value of the pressure p(x) at a point (x, y = 0, z = 0) along the axis of a trapped
cloud can be found integrating Eq. 1.44 at fixed temperature. In the same point the
chemical potential takes the value µ(x) = µ0 − Vext(x, 0, 0). Integrating from infinite
distance, where µ = −∞ and p = 0, to the point x, we obtain

p(x) =
∫ µ(x)

−∞
n(µ)dµ =

∫ +∞

Vext(x)
n(µ0 −Vext)dVext . (1.45)

For a harmonic trapping potential (Eq. 1.6), at fixed x,

dVext(x, y, z) = m(ω2
y ydy + ω2

z zdz) = m
ωyωz

2π
dydz , (1.46)

so we can integrate Eq. 1.45 over the yz plane and find

p =
mωyωz

2π

∫
n dydz =

mωyωz

2π
n1 , (1.47)

relating the pressure along the trap axis with the doubly-integrated density n1 =∫
n dydz.
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The Gibbs–Duhem equation also allows to compute the 3D density along the trap
axis as n = (∂p/∂µ)T. The change in the potential along x at fixed y = z = 0 is
dVext = mω2

x xdx, so differentiating the pressure along x leads to

n =
dp
dµ

= − 1
2πx

ωyωz

ω2
x

dn1

dx
. (1.48)

Once the density profile is known, the isothermal compressibility can be computed
using again Eq. 1.44. Substituting in Eq. 1.34, we obtain

κ =
1
n2

dn
dµ

= − 1
mn2ω2

xx
dn
dx

. (1.49)

The power of the above described method is that it allows to measure the 3D density
of the sample. This is a rather unusual observable in 3D systems to have access to, as all
imaging methods can only measure the column density, integrated along the line of sight.
Although restricted only to the trap axis, this is sufficient to determine the complete
homogeneous EoS in the LDA scheme. For non harmonic potentials the principle of the
method remains the same: a precise measurement of the trapping potential allows to
obtain the axial pressure and density after proper modifications of Eq. 1.46.

The LDA corresponds to neglecting gradient terms in the equation determining the
density profile. As density gradients are associated with kinetic energy, a condition for
the validity is that the kinetic energy is negligible with respect to the other energy scales
in the system.

For a trapped condensate at zero temperature the LDA coincides with the TF approx-
imation for the density profile, which differs significantly from the exact GPE solution
only at the edges, where the gradient in the potential is stronger. We can use an energy
scaling argument to estimate the thickness of the surface region where the approxima-
tion fails [75, 76]. Considering a spherical trap of frequency ω, the TF wavefunction
scales as ψ ∼

√
R− r close to the condensate boundary, where R is the TF radius. The

kinetic energy per particle can be estimated as

h̄2

2m
|dψ/dr|2
|ψ|2 ∼ h̄2

2m(R− r)2 . (1.50)

This has to be compared with the interaction energy per particle, scaling as the local
chemical potential

µ− 1
2

mω2r2 ∼ F(R− r) , (1.51)

where F = mω2R is the trapping force acting on the particles at the edge of the conden-
sate. The TF approximation breaks in the region for R− r . δ where the kinetic energy
dominates, with

δ =

(
h̄2

2mF

)1/3

=
R
2

(
h̄ω

µ

)2/3

. (1.52)

1.2.3 Measurement of the EoS in superfluid systems

The experimental research on the thermodynamics of superfluid 4He focused on its
properties at the phase transition, signaled by the characteristic peak in the specific heat
at the transition temperature Tλ = 2.1 K, the so-called lambda point [77, chap. 8]. The
peak feature in the chemical potential has been indirectly measured in superfluid 4He.
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Data from specific heat measurements allow to model the thermodynamic free energy
of the fluid [78], from which it is possible to extract the EoS for µ(T) [67], showing a
non-monotonic behavior due to the contribution of rotonic excitations in the system.

In ultracold atomic gases, the possibility to directly access the density and momen-
tum distributions of the sample in experimental images is the principal tool for studying
the thermodynamics of such systems.

The theory of the harmonically trapped interacting Bose gas, subject of immedi-
ate comparison with experimental results, has been developed with a focus on trap-
averaged parameters [14, 79–82] and to the effect of atomic interactions on the global
thermodynamic features of the sample, such as the mean-field shift of the critical temper-
ature [83–85] and the divergence in the condensate number fluctuations at the transition
[86].

With the recent realization of flat-potential optical traps [87] it became possible to
obtain homogeneous Bose–Einstein condensates, and to confirm the mean-field theory
predictions on the momentum distribution, interaction energy, and TOF dynamics [88].

Adopting the viewpoint of LDA, the homogeneous gas thermodynamics has been
measured on trapped samples of many different quantum fluids. In 2D Bose gases, it
has been observed the universal scaling of the thermodynamic quantities across the
BKT transition [89–91]. In unitary Fermi gases, realized in ultracold atoms tuning the
scattering length to infinity with the use of Feschbach resonances, it was possible to
explore the BEC–BCS phase transition taking place in such systems [92], and to measure
the EoS of the fluid at unitarity [93–96], confirming the presence of the peak in the
chemical potential at the onset of the superfluid transition [97].

The LDA approach has been applied also in the case of 3D weakly interacting Bose
gases, exploring the EoS in the form p(µ, T). The sharp rise in the pressure profile
due to the mean-field repulsion, enhanced by the presence of the condensate, has been
observed at the transition point [98]. In the regime of low temperature and strong
interactions instead, it was possible to measure the Lee–Huang–Yang correction to the
pressure arising from the contribution of quantum fluctuations [99]. At present, there
are no experimental observations of the peak in the chemical potential at the transition.

1.2.4 Universality

Starting from general principles, any equation of state relating three thermodynamic
variables of choice will also depend on the microscopic parameters in the system’s
hamiltonian. In the case of a dilute gas this includes the coupling constant g, which
completely specifies atomic interactions, the mass of the particles, as well as fundamental
constants like h̄.

We can sort out the number of relevant parameters using dimensional analysis,
choosing a set of dimensionally independent variables to rescale all the other quantities
in the problem. In special regimes such as at zero temperature or at infinite interac-
tions, some parameters must be directly dropped out of the equation, because the
corresponding dimensional scale cannot be compared any more with the remaining
ones. A universal regime is reached when such simplifications leave the equation of
state dependent on one single parameter, such as even very different physical systems
will behave the same after proper rescaling of the relevant variables [100].

Scanning through the density distribution of a trapped sample in the LDA mea-
surement, we are moving on the EoS surface along a line at constant temperature. In
a system showing universal thermodynamics this is sufficient to explore the complete
equation of state, as varying any thermodynamic coordinate will correspond to scanning
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Figure 1.5: (a) 2D plot of the function µ(n, T)/gn. The colormap is limited for clarity to values
|µ| ≤ 2, and µ is monotonically decreasing in the non-colored area. The dashed line marks
the BEC transition, where T = Tc(n). The blue and red lines with arrows are respectively
paths at constant density (1020 atoms/m3) and constant temperature (270 nK). (b) Same as
(a), replotted as a function of (η, t). The BEC line is at t = 1, and the blue and red paths are
transformed to the new coordinates. (c) The µ vs. t curve along the blue and red paths, in
corresponding colors. The dot-dashed line is the simplified form 1 + t3/2, independent of η.

through the single dimensionless parameter the EoS depends on.
Let’s focus the discussion on the chemical potential, where the above considerations

bring to the expression µ = µ(n, T, g, h̄, m). We take out the dependency on the den-
sity, which also sets the temperature scale Tc ∝ h̄2n2/3/m identified with the critical
temperature, and rewrite the chemical potential in the form

µ

gn
= f

(
T
Tc

,
gn

kBTc

)
= f (t, η) (1.53)

as a function of the coordinates t = T/Tc and η = gn/kBTc ∝ an1/3.
In the weakly interacting Bose gas, without other general considerations we must

conclude that the system does not have a universal thermodynamics. Using the Hartree–
Fock theory we derive a model for the equation of state, and find that there is a regime of
“weak universality” where the above expression can be approximated as independent of
η in a suitable range of density and temperatures.

From Eqs. 1.32 we can write µ/gn = 1 + nT/n in the condensed phase. In a regime
of intermediate temperatures where the BEC fraction is not too high, we can set (µ−
2gn)/kBT � 1 and expand the polylogarithm g5/2(z) in Eq. 1.32b around z . 1.
Keeping terms up to the first correction in η leads to

µ

gn
= 1 + t3/2 − 2

√
π

ζ(3/2)
t
√

η(1− t3/2) +O(η) . (1.54)

The expansion is valid in the region η � t < 1, which ensures the above condition
µ− 2gn� kBT and physically corresponds to the regime of temperatures µ . T . Tc.
At a density n = 1020 atoms/m3 we have η = 0.05 and the above expression differs
from the true HF result by less than 3%. The distance of the HF result from the universal
curve 1 + t3/2 is ≤ 0.1 in all the range t < 1.

This estimates the error we are making by comparing the LDA method, which is a
measure at fixed temperature, to the theory curve at fixed density shown in Fig. 1.4b. In
Fig. 1.5 we plot the chemical potential respectively as a function of (n, T) (a) and of (η, t)
(b), and show how an iso-density and isothermal line look like in both coordinate spaces,
for values of T = 270 nK and n = 1020 atoms/m3 that are reasonable for our experiment.
We plot in (c) the chemical potential profile we get along each of the two paths. Figs.
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(b-c) show how moving along the LDA path at fixed T we are simultaneously varying
both t and η, and that the weak dependency of Eq. 1.54 on η makes the two µ profiles
differ for less than 2%, allowing to neglect the non-universal dependency on the density
in the condensed phase.
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2.1 Experimental setup

The production of Bose–Einstein condensates is a rich topic in experimental physics.
Since the first attempts to cool down and manipulate atoms [7] to the first realization of
a BEC [5, 6], the technological progress in atomic physics of the last decades allowed for
the development of more and more advanced experiments. This not only deepened our
knowledge about fundamental physics, but also led to important advances in research
fields such as metrology [101] or to the beginning of new ones like quantum information
[102].

Yet, the basic ingredients of an atomic physics experiment remained the same,
although evolved and refined through the years: vacuum technology, production of
coherent laser light, control of radio-frequency (RF) and microwave radiation and static
electric and magnetic fields. All of this requires an automated control of the hardware
and precise timing of the experimental sequence.

In this chapter I will describe our experimental setup [103], detailing the upgrades
implemented during the course of my PhD.

2.1.1 Vacuum system and atomic source

The vacuum apparatus, sketched in Fig. 2.1a, is built with AISI 316 stainless steel and
is divided in two sections: a high-vacuum chamber (HV) at a pressure of 10−7 mbar,
hosting the atomic source, and a ultra-high-vacuum (UHV) chamber with pressure down

21
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to 10−10 mbar hosting the science cell. An ion pump VARIAN STARCELL with nominal
pumping speed of 55 L s−1 and a secondary titanium sublimation pump (VARIAN TSP)
are attached to each of the two parts. The two sides are connected by a differential
pumping channel of diameter 2 mm and length 22.8 mm.

In our experiment the atomic species of choice is 23Na, whose level structure is
shown in Fig. 2.2 [104]. The atomic source, hosted in the HV section, consists of a
transversely loaded two-dimensional magneto-optical trap (2D MOT) with a push beam.
This design, first developed for a lithium experiment [105], allows to realize a high-flux
atomic source with compact hardware.

23Na atoms evaporate from a crucible placed 10 cm below the 2D MOT and heated
up to 240 ◦C. Hot atoms coming out of the oven are captured by the 2D MOT, which is
made out of a pair of retro-reflected circularly polarized beams and a set of four stacks of
neodymium bar magnets (ECLIPSE N750-RB) used to generate the required quadrupole
magnetic field. A resonant push beam aligned along the axial unconfined direction
pushes the cooled atoms to the science chamber in the UHV side. The atomic beam loads
a three-dimensional magneto-optical trap (3D MOT) with a dark-spot repumper beam
(DS), which serves as the first of the cooling and trapping stages leading to condensation.
The physical division helps in keeping a clean environment in the science chamber,
separating the high pressure side, contaminated by hot atoms coming out from the
crucible, from the low pressure environment required to cool the sample to degeneracy.

A red-detuned beam directed from top to bottom towards the atomic oven exploits
the magnetic field gradient produced by the tails of the 2D MOT quadrupole to act as
an integrated Zeeman slower (ZS) stage, which slows down a large velocity class of
atoms below the capture velocity of the 2D MOT. The addition of the ZS beam improves
the 2D MOT capture efficiency, increasing the atomic flux to the 3D MOT by more than
one order of magnitude. The overall measured loading rate of the 3D MOT reaches
4× 109 atoms/s. Beams and magnets positions are sketched in Fig. 2.1(b-c).

As shown in Fig. 2.1c, in addition to the 23Na crucible the experiment hosts also a
source for 39K that was used for an early stage project on NaK heteronucelar molecules
[106]. There is also a source for Sr atoms, which is not used at present.

The experiment is performed in an annealed quartz cell whose size is about 80×
60× 35 mm, with 5 mm thick windows. The cell is a polyhedron with two non-parallel
faces, to avoid spatial interference between the 3D MOT beams and the flange that
connects it to the UHV system, traversed by the loading push beam. The outer surfaces
of the four largest windows have an anti-reflection coating, with reflectivity ∼ 0.5% on
the spectral range 500 to 1100 nm.

2.1.2 Laser cooling and lasers system

Precise frequency tuning and control of coherent laser radiation is necessary for all
stages of optical cooling and manipulation of ultracold atoms.

The main laser source is locked to the cyclic transition on the D2 line 32S1/2|F =
2〉 → 32P3/2|F′ = 3〉 at 589.16 nm which we use for optical cooling. Part of its light is
frequency offset to the |F = 1〉 → |F′ = 2〉 transition to serve as a repumper, both in the
cooling stage in a dark-spot trapping scheme [107] and to repump the ultracold sample
to |F = 2〉 before imaging it in the last stages of the experiment.

A separate source is locked to the 32S1/2|F = 2〉 → 32P1/2|F′ = 2〉 transition of the
D1 line, which is needed for a gray molasses sub-Doppler cooling stage [108].

Both laser sources generate light at the wavelength of 1178 nm, that we amplify and
then frequency-double with the use of a resonant doubling cavity. In this way we take
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Figure 2.1: (a) 3D view of the vacuum system. HV region on the left side contains the crucibles,
sourcing hot atomic vapors, and the optical access for the 2D MOT and push beams. The
differential pumping channel connects this to the UHV region where the experiment is
performed in a clean environment. Light beams (yellow) and magnets (red-blue) are shown.
(b) Magnification of the compact slowing/cooling region. (c) 2D view of the pre-cooling plane
showing atomic sources and beams configuration. (d) A picture of the quarz cell constituting
the science chamber. Figure adapted from [103]
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advantage of the ease of use of diode lasers, which are not directly available in the
wavelength range of 23Na transitions.

F = 0
F = 1

F = 2

F = 3

16 MHz

34 MHz

58 MHz32P3/2

F = 1

F = 2

189 MHz

32P1/2

F = 1

F = 2

1772 MHz

M
OT

 c
oo

l

GM
 c

oo
l

M
OT

 re
pu

m
p

GM
 re

pu
m

p

32S1/2

Figure 2.2: Hyperfine level structure
of the D1 and D2 lines of 23Na. Ar-
rows correspond to the laser transi-
tions used in the cooling stages: 3D
MOT cooler (red) + repumper (or-
ange); gray molasses cooler (blue) +
repumper (cyan).

The two infrared sources are extended cavity
diode lasers (ECDLs), where the active medium
is a INNOLUME GC-1178-TO-200 gain chip with
InAs quantum dots on a GaAs substrate, with
anti-reflection coating on the output facet. The D1
source is built in the Littrow configuration [109]:
the light of the diode is collimated using an as-
pheric lens (THORLABS C340TME-C) and sent
onto a reflective holographic grating (THORLABS

GH13-12V) fixed to a piezoelectric stage. The D2
source uses a cat-eye configuration [110] with an
interference filter, which allows for a more me-
chanically stable configuration. In both sources
the coarse wavelength tuning is done using the
laser diode current and the temperature, while the
piezoelectric stage is used for fine-tuning and lock-
ing with a PID. The laser frequency is stabilized
by performing frequency-modulated saturated ab-
sorption spectroscopy on a Na vapor cell.

The seed light from the master laser is optically
amplified with a Raman fiber amplifier (MPB RFA-
SF SERIES) pumped with an Yb fiber laser. About
20 to 30 mW of light are injected to the amplifier,
which outputs up to 7 W on a single transverse
mode, maintaining polarization and spectral prop-
erties of the input beam. The amplified infrared
radiation is then frequency-doubled by sending it
through a resonant bow-tie cavity with a nonlinear
LBO optical crystal [111, 112]. At the output of the
doubling cavity, about 3.5 W of 589 nm light are
available for the experiment.

Both laser sources are located on a different
optical table than the one of the experiment. The source outputs are split into several
branches by combining half-wave plates with polarizing beam splitters (PBS), each
independently controlled in terms of power and frequency using RF-driven acousto-
optic modulators (AOMs) GOOCH & HOUSEGO and electro-optic modulators (EOMs)
QUBIG. A complete scheme of the D2 laser source is shown in Fig. 2.3, where the
secondary beams are numbered according to the following description:

(1) the spectroscopy line, split in two paths for pump and probe. The pump is offset
relatively to the probe by a double-pass AOM which is frequency-modulated.
The probe is split again in two beams, only one of which is overlapped with the
counterpropagating pump. Both propagate through the Na heatpipe, and the
difference in the two absorption signals is measured by a differential photodiode
and sent to a lock-in demodulator to compute the error signal fed into a PID.
This line locks the laser source to the 2→ 3 transition frequency. The frequency
detunings listed below are referenced to this resonant frequency.

(2) The 3D MOT line. The combination of the two single-pass AOMs offsets the beam
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by -23 MHz and leaves the possibility of further tuning the cooling frequency.

(3) The atomic source line, that provides light for the 2D MOT beams at -10 MHz and
for the ZS at -300 MHz in double pass. An EOM, set at 1.713 GHz, provides a
repumper sideband for both lines.

(4) The dark spot / repumper line produces an independent beam tuned to the repumper
frequency to be used for the dark spot. This is obtained with a sequence of three
double-pass AOMs, the first two driven at +228 MHz and the last one at +400 MHz.
The last stage is duplicated to obtain a second beam, which we use as a dedicated
repumper for the imaging.

(5) The probe / push line output is split in two different beams, one used for the push in
the atomic source, operated at +12 MHz detuning, and the other one for resonant
probing light. The frequency detuning is switched between the two modes, as
they are employed in two distinct phases of the experiment.

Each beam is sent to the experiment table hosting the vacuum chamber through
polarization maintaining optical fibers (SCHÄFTER + KIRCHHOFF PMC-630-4.2-NA12-
3-APC). Mechanical shutters are placed in front of each fiber input, and are used
together with AOMs to block laser light when not needed.

2.1.3 Magnetic fields and RF

We use a set of five water-cooled coils to generate the trapping fields. The coils geometry
is sketched in Fig. 2.5, and their axes are labeled according to the reference frame in the
figure.

For the 3D MOT we generate the quadrupole field using the vertical pair of coils
(cyan) in anti-Helmholtz configuration, which produces a gradient of 1.4 G cm−1 A−1

along z. The conservative magnetic trap, in a Ioffe-Pritchard (IP) configuration, is formed
with an additional set of three coils oriented along x, the pinch (green) and two compen-
sation (red) coils. The pinch is set such as its gradient term cancels out the quadrupole
gradient along x, while the compensation pair, in Helmholtz configuration, reduces the
bias term of the pinch field to a few G leaving a shallow quadratic confinement due to
the residual field curvature along the axis. We can also generate a levitating magnetic
field using only the lower quadrupole coil, which is used to image the atoms after a
long TOF (> 20 ms).

The coils are driven by a pair of high power supplies (DELTA ELEKTRONICA SM30-
200), which are remotely controlled. Coils are water cooled through pressurized water
flowing in the hollow core of the copper wire at 10 bar. All coils are connected in series,
hence the current is the same for all of them, suppressing fluctuations in the trap shape
due to current imbalance in paired coils. We switch between the different field configura-
tions using high-current insulated-gate bipolar transistors (IGBT) switches (SEMIKRON

SKM400GAL12E4) and mechanical relays (KILOVAC EV200). Fig. 2.4 shows the electric
circuit powering the coils and the location of the switches. At maximum power we have
200 A flowing in the circuit with a setting time of the order of 10 ms, while the switch-off
time for the lower currents (50 A) normally used for BEC trapping is 500 µs, limited by
eddy currents.

We have an additional pair of smaller bias coils in Helmoltz configuration along each
direction. These are used to zero the environmental magnetic field at the center of the
trap, which is a required condition for the gray molasses cooling to be effective. The
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Figure 2.3: Schematic of the optical setup of the D2 laser source, illustrating the position of PBS
cubes, half- (green) and quarter- (red) waveplates, AOMs, EOMs and fibers used to actively
control the beams, and the spectroscopy line. Numbers list the branches in which we split the
main laser line and their use: (1) spectroscopy, (2) 3D MOT, (3) 2D MOT/Zeeman slower, (4)
dark spot/repumper, (5) probe/push. This figure is drawn with the use of ComponentLibrary
[113], licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
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Figure 2.4: Schematic of the electric circuit powering the high-current coils used for the 3D
MOT and the magnetic trap. The coils are labeled as: P (pinch), C1,2 (compensation), Qup,dw
(quadrupole). The switches are labeled as I (IGBTs) and R (relays).

(a) (b)

Figure 2.5: (a) Magnetic trap coils positioning around the glass cell: top view from the xy plane.
The (lower) quadrupole coil is visible in cyan, the pinch coil in green and the compensations
coils in red. The push and the MOT beams are shown in yellow. (b) 3D view of the coils.
Figure adapted from [114]

pair along x is also used to finely tune the value of the bias field B0 in the magnetic trap,
which allows to change the trap aspect ratio.

We use wire antennas to deliver RF radiation to the atomic sample. RF signals in
the range 50 to 0.5 MHz couple between the Zeeman sublevels of the F = 1 manifold.
They are generated by DDS boards (Sect. 2.1.4), amplified using MINICIRCUITS ZHL-
1-2W-S+ amplifiers, and radiated by the ring-shaped antennas shown in Fig. 2.6. The
hook antennas are instead tuned in the microwave range, where we use MARCONI 2040
function generators to produce signals around the 23Na hyperfine splitting frequency
1.7 GHz to couple the F = 1 and F = 2 hyperfine levels. The vertical distance between
the antennas and the atoms is around 17 mm.

2.1.4 Electronics and control

We adopted a hardware control system based on field-programmable gate arrays (FP-
GAs), developed by Marco Prevedelli and adapted through the years. The central FPGA
(XILINX SPARTAN XC3S250E), clocked at 10 MHz, receives a buffered sequence of in-
structions via USB. Each instruction has a target slave board identified by an address.
The FPGA writes the instructions on a 24-bit parallel bus with a time resolution of 100 ns
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Figure 2.6: Loop and hook wire antennas placed above the quartz cell to deliver RF radiation to
the atomic sample. The white windings are part of the upper quadrupole coil Qup, the smaller
copper ones are one of the bias coils on the z direction. The tube on the left holds optics to
collect fluorescence light from the MOT. The DS-MOT is clearly visible inside the quartz cell.

and at a maximum rate of 2.5 MHz. All the slave boards are connected to the bus, and
each board executes the instruction when called for by the corresponding address. The
available boards are:

• TTL boards: with 16 channels digital outputs, they are used to trigger timed
signals such as IGBT switch on/off, shutters, radio-frequency mixers to control RF
and laser pulses, camera exposure;

• Analog boards: these boards have two 16-bit digital-to-analog converter (DAC)
chips and can be switched between floating or referred to ground. They are
used to control analog parameters such as magnetic field ramps during the RF
evaporation;

• DDS boards: RF inputs for the AOMs and the evaporative cooling are generated
with direct digital synthesizer (DDS) boards with a ANALOG DEVICES AD9958
dual channel chip. A PIC18F2550 microcontroller programs the DDS reading the
parameters from a look-up-table. These devices can be directly commanded by the
FPGA to output signals of frequency from 200 kHz to 150 MHz and up to 13 dBm.

Each experiment consists of a timed list of instructions that is executed by the FPGA.
This list is compiled by a Python software developed in our laboratory [115] which
provides the high-level user interface for the experiment design. The software also
sets up other external devices that are not directly controlled by the FPGA, such as the
microwave signal generators, and allows to program sequences of experimental runs
scanning any of the input parameters.

Data are collected at the end of the experiment, which usually consists in image
acquisitions from one or more cameras and triggered oscilloscope signals. All raw data
from each experimental run are collected and stored in a single file in HDF5 format,
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Figure 2.7: Sketch of the imaging system, showing the optical setup of the cameras on the xy
plane. Two cameras (H1 and H4) image the y direction, and one (Ax) the x direction. An extra
camera (V), placed along z, is not shown. Distances between the optical components are not
to scale.

together with a record of the full experimental sequence. For on-line data visualization
and analysis we recently adopted the lyse tool from the Labscript suite [116].

2.1.5 Imaging setup

The imaging setup in our experiment consists of a total of four cameras. There is one
camera along each one of the laboratory axes, allowing to image the atomic sample from
every direction, and an extra one is placed along the y axis for in-situ imaging. Fig. 2.7
shows the optical setup, where the cameras are labeled as following:

H1 This camera is placed on the horizontal plane, imaging the atoms along the y
direction. The objective is a 75 mm achromat doublet (THORLABS AC254-075-
A), placed at a distance ∼ 75 mm from the atoms and paired in a telescope to a
100 mm plano-convex lens (THORLABS LA1509-A). The nominal magnification of
the system is of 1.33.

H4 This extra camera along y is dedicated to in-situ imaging. It shares the same
objective as the H1 and it uses a 300 mm ocular (THORLABS LA1484-A) for a
nominal magnification of 4.

Ax The axial camera images the atoms along the x axis of the trap with a 150 mm lens
LA1433-A in a 2 f -2 f configuration (M = 1).

V This camera (not sketched on Fig. 2.7) is placed along the z axis with a 100 mm
singlet lens for a demagnified (M = 1/2) view of the sample. It is used for
characterizing the sample at the dark spot and gray molasses stages through
time-of-flight imaging.

All our cameras are STINGRAY F-201, with a 1234× 1624 CCD sensor of 4.4× 4.4µm
pixel size lpix, and communicate using the Firewire IEEE 1394b serial protocol.
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2.2 Steps towards condensation

2.2.1 Dark spot MOT

The dark spot MOT (DS-MOT) configuration was introduced as a method to improve
the density of magneto-optically trapped atoms [107]. In a standard 3D MOT, atoms are
both cooled and trapped by the combined effect of near-resonant light and a magnetic
field gradient. The implementation of this mechanism in alkali atoms relies on light
tuned close to the F = 2→ F′ = 3 transition, and requires an additional repumper beam
to compensate for off-resonant scattering that leads to optical pumping to the F = 1
ground state. In this scheme of continuous cooling, density limiting effects are mainly
caused by re-absorption of spontaneously emitted photons from within the sample,
which gives rise to an effective atom-atom repulsive force. A way to limit this spurious
effects is to reduce as much as possible light scattering, especially from the already
trapped atoms. In the DS-MOT the 6-axis repumper used in a standard magneto-optical
trap is substituted with a hollow-profile beam along one single axis. In this way hot
atoms are cooled down in the outer part of the MOT, drift to the center where they are
pumped in the F = 1 manifold, and accumulate in the central dark region where light
scattering is strongly suppressed.

The atoms are loaded in a magnetic field gradient of 16.8 G A−1. The hollow beam is
produced using an axicon (THORLABS AX252-A). This conic-shaped optical component
is designed to convert a collimated beam into a ring, inverting the inner and the outer
parts of the beam profile. Sending a collimated Gaussian beam through the axicon we
obtain a non-diverging hollow beam with a high light intensity at the border, which is
ideal for the geometry of a DS-MOT. Residual light in the central dark region is blocked
using a disk-shaped obstacle before imaging such beam profile on the atoms. The radius
of the dark region, determined by the optical path of the hollow beam and by the size of
the disk obstacle, was experimentally optimized to maximize the number of trapped
atoms.

2.2.2 Gray Molasses

Gray molasses (GM) cooling is a sub-Doppler cooling mechanism which combines
the physics of polarization-gradient cooling with the presence of coherent dark states.
As in ordinary sub-Doppler cooling techniques, atoms are cooled while moving in
a polarization lattice and are optically pumped to a lower energy state with reduced
scattering probability. In the GM scheme such a state is a coherent dark state, which is not
coupled to the laser radiation due to quantum interference effects. This suppresses the
coupling with light for the already cooled atoms so that they don’t reheat by scattering
extra photons. This method cools the atoms down to the fundamental limit of recoil
temperature Trec = h̄2k2

L/mkB (where kL = 2π/λ is the wavenumber of the cooling light
and m is the atomic mass), which for sodium atoms is 2.4 µK.
This mechanism requires blue-detuned light on a F → F′ = F of F → F′ = F − 1
transition in order to provide cooling, contrary to standard laser cooling methods
requiring red-detuned light on a F =→ F′ = F + 1 transition. Given the level structure
of 23Na the most convenient implementation for this method is using the D1 line, with
cooling light tuned to the |F = 2〉 → |F′ = 2〉 optical transition. The advantage of this
choice is the absence of higher hyperfine levels in the manifold, preventing off-resonant
excitations due to the blue detuning, and the more resolved energy spectrum.

The implementation of such a cooling scheme on the D1 line was demonstrated on
sodium atoms for the first time in our experiment [108], characterizing the dependency
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Figure 2.8: (a) TOF picture of the atomic sample after GM cooling and a free expansion of 20 ms,
imaged along the vertical direction. The white dashed line marks the r.m.s. of the Gaussian
fit. (b) Linear fit tot squared r.m.s. of the atomic sample versus squared TOF, comparing the
different cooling schemes: right after the Dark Spot (DS), after standard bright molasses (BM),
after gray molasses (GM). The fitted slope is proportional to the temperature, comparing the
performance of the different cooling stages: 330(25) nK (DS), 40(4) nK (BM), 6.3(7) nK (GM).

of the final temperature from the experimentally tunable parameters (shape of the
cooling pulse, frequency detuning). After installing the DS-MOT axicon setup, we
characterized the performance of the GM against the ones of a bright molasses cooling
method that was used before, measuring the temperature from the expansion of the
r.m.s. size of the sample in TOF. Fig. 2.8 shows a picture of the GM cooled sample after
20 ms of free expansion, and a comparison of temperature measurements in the different
cooling stages of the sequence.

2.2.3 Evaporative cooling

After GM cooling the sample needs to be re-captured in the magnetic trap, where RF
evaporation is carried out. Loading the cold sample in the IP trap is highly inefficient
because the elongated shape of the trap does not match with the one of the distribution,
which is roughly spherical. To reduce heating of the sample during the transfer we
devised a two-step loading. The atomic cloud is first loaded in a 3D quadrupole gradient
at a relatively low current, then the trap is switched to the elongated IP configuration
and compressed by ramping up the current to the final value at which evaporation
starts.

The evaporation sequence takes up from 30 to 50 s, with RF sweeping from 30 MHz
to 730 kHz, which in a trap bottom of about 700 kHz (1 G) corresponds to a final trap
depth of ∼1.5 µK. The magnetic trap is decompressed at half of the evaporation to
avoid three-body losses, to a final shape with trap frequencies ωx = 2π × 8.85(2)Hz,
ωy,z = 2π × 86.6(2)Hz. Table 2.1 shows the phase space density (PSD) of the atomic
sample and other characteristic parameters through the experimental sequence. With
the above described procedure procedure we typically obtain almost pure condensates
of 106 to 107 atoms, with temperatures in the range from 150 to 250 nK. Fig. 2.9 shows a
condensed sample, imaged after a 50 ms TOF with magnetic levitation.
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Table 2.1: Characterization of the atomic cloud through the experimental sequence, measured
at the end of the DS-MOT loading (DS), after GM cooling (GM), after the transfer to the
low-current quadrupole trap (QT 50), after the switch to the compressed magnetic trap (MTC)
and at the end of the RF evaporation when condensation is reached (BEC). We record the
in-situ r.m.s. radius extrapolated from TOF measurements, the temperature, the number of
atoms, the capture efficiency (percentage of atoms transferred from the previous stage) and
the phase space density.

r.m.s. radius [mm] T [µK] N [×109] capture PSD

DS 2.16(5) 290(5) 4.4(2) - 2.5× 10−7

GM 1.87(3) 6.2(5) 3.9(1) 90% 2× 10−4

QT 50 1.16(2) 30(2) 1.0(1) 25% 1× 10−5

MTC 1.30(1) × 13.0(1) 30(2) 0.85(5) 85% 8× 10−7

BEC 15 × 150 µm 200(10) nK 2 to 5 ×106 – ∼ 20
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Figure 2.9: Optical density of a condesate of ∼ 5× 106 atoms at 250 nK, observed after a 50 ms
TOF with magnetic levitation.
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Resonant absorption imaging is a common technique used to image atomic samples.
It is done by illuminating the atoms with a laser beam, tuned to the frequency of an
atomic optical transition, and recording the shadow casted by the atoms on a CCD
camera. This measures the transmission coefficient of the atomic medium. Modeling the
scattering process allows to relate this quantity to the absolute density of the sample.

In practice, this requires to measure the parameters that determine the process of
light scattering in the actual experimental conditions, determined by the probe light
intensity, its polarization, and the magnetic field at the position of the atoms. A precise
calibration of these parameters was important in our measurements of the equation of
state discussed in Chap. 5, since the result depends critically on the knowledge of the
absolute density of the imaged sample.

In this chapter I will review the principles of absorption imaging, discuss our choices
for the imaging conditions suited to in-situ density measurements for the EoS project,
and describe the methods we used to set up and characterize the imaging system.

3.1 Absorption imaging

At the basis of absorption imaging, light is scattered off the atoms in cycles of absorption
and spontaneous emission events. After absorbing one photon, each atom re-emits it in
a random direction, effectively removing it from the beam. This results in a decrease of
the transmitted light intensity as a function of the density of scatterers.

A semiclassical description of light-matter interaction is provided by the optical
Bloch equations (OBE) [117, chap. 5], describing both the coherent dynamics of atom-
light coupling and the dissipative process due to spontaneous emission. In the simple
case of a two-level system interacting with monochromatic light at frequency ω/2π, the
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time evolution for the atomic density matrix ρ reads

∂tρgg =
iΩ
2
(ρge − ρeg) + Γρee ,

∂tρee = −
iΩ
2
(ρge − ρeg)− Γρee ,

∂tρge = −
(

Γ
2
+ i∆

)
ρge −

iΩ
2
(ρee − ρgg) ,

(3.1)

where Ω ∝ degE is the Rabi frequency of the coupling between the light electric field
E and the electric dipole moment deg for the transition between the excited state e and
ground state g. Γ is the linewidth of the excited state, ∆ = ω−ωat is the detuning with
respect to the atomic transition at frequency ωat/2π, and the rotating wave approxi-
mation (RWA) has been carried out, dropping the contribution of off-resonant terms at
frequencies ω + ωat.

In the approximation where the probing time is much longer than 1/Γ, the atoms
interact with light in a steady regime, given by the steady-state solution of Eq. 3.1. The
average excited state population gives the light scattering rate

R2lev = Γρee(t→ +∞) =
Γ
2

s0

1 + s0 +
( 2∆

Γ

)2 , (3.2)

which depends non linearly on the saturation parameter s0 = I/Isat. Here I is the
light intensity and Isat = h̄ω3

atΓ/12πc2 is the saturation intensity for a closed two-level
transition.

In the real case of a multilevel atom the OBE should be extended to include all the
possible couplings, dependent on the angular momentum structure of the coupled levels
and on the light polarization. Their solution describes the dynamics of optical pumping.
The scattering rate is given by R = Γ ∑e ρee, a sum over the steady-state populations of
all the excited states.

When the probe light is circularly polarized, it will transfer angular momentum
to the atoms until the population is pumped to the stretched states of the ground and
excited hyperfine levels, the ones with highest angular momentum. In the steady state
the atoms continue to cycle only between the two stretched states, so that the dynamics
is effectively the one of a two-level system, and the scattering rate is given by Eq. 3.2. In
the F = 2→ F = 3 23Na line this corresponds to the transition |2,±2〉 → |3,±3〉, and
the corresponding value of the saturation intensity is 6.260(2)mW/cm2.

When the probe light is linearly polarized and parallel to the axis of the atomic spin
(π polarization), the scattering rate takes the form

R =
Γ
2

s0/α

1 + s0/α +
( 2∆

Γ

)2 , (3.3)

analogous to Eq. 3.2 with the substitution s0 → s0/α, where α is a coefficient depending
on the steady distribution of the atomic population between the hyperfine sublevels.
At zero magnetic field, hence in absence of Zeeman splitting, the coefficient can be
calculated analytically and for a 2→ 3 transition it takes the value α = 1.829 [118].

The above calculated scattering rate is used to describe the process of absorption
imaging. In the case of a dilute cloud, neglecting multiple scattering and effects related
to atomic motion, the propagation of light in the atomic medium follows the Beer–
Lambert law dI/dz = −h̄ωnR, which defines the rate of change of light intensity along
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the propagation direction z as a function of the scattering rate R. Here n is the 3D density
of scattering particles along z. Substituting Eq. 3.3, it can be recasted in the form

dI
dz

= −σ0nIsat
s0/α

1 + s0/α +
( 2∆

Γ

)2 , (3.4)

where σ0 = h̄ωatΓ/2Isat = 3λ2/2π is the resonant value of the absorption cross section
for a two-level system, and λ = 2πc/ωat is the wavelength at the transition.

Considering resonant light (∆ = 0) we can integrate Eq. 3.4 along z and solve for the
optical density

OD = σ0

∫ +∞

−∞
n dz = α ln

(
Iin

Iout

)
+

Iin − Iout

Isat
(3.5)

where Iin = I(z = −∞) is the value of the incident light intensity, before interacting
with atoms, and Iout = I(z = +∞) is the transmitted intensity.

Experimentally, we record intensity images as arrays of pixel counts, proportional
to the time integral of the light transmitted from a specific location on the object plane
during the probing time. After a probing time τ, the count at the pixel (i, j) on the image
can be related to the emitted light profile as

Cij = ηGT
∫ τ

0

I(xi, yj, t)
h̄ω

(
lpix

M

)2

dt = χsat
I(xi, yj)

Isat
τ , (3.6)

where (xi, yj) is the location of the object plane imaged on the (i, j) pixel of the sensor,
and we considered the emitted intensity as independent on time. The image count de-
pends on the geometry of the imaging system (magnification M, transmission coefficient
of the optics T) and the characteristics of the sensor (pixel size lpix, quantum efficiency
η, ADC gain G). We normalize the light intensity by Isat and collect all the coefficients in
the calibration constant

χsat = ηGT
(

lpix

M

)2 Isat

h̄ω
. (3.7)

Measuring χsat allows to calibrate the imaging setup, converting pixel counts in
absolute light intensity. This is necessary to compute the density of the atomic sample
from Eq. 3.5. In practical absorption imaging we acquire three distinct images:

• atoms picture: a picture of the atoms illuminated by resonant light. This gives an
image Cout which is a time integral of the transmitted intensity Iout;

• probe picture: a picture Cin with the same illumination conditions of the previous
one, but without atoms. This returns an image of the incident intensity Iin;

• background picture: a picture in the absence of atoms or direct probe light Cbg, to
measure residual stray light and background illumination on the camera.

For good imaging conditions, the probe picture counts should almost cover the full
dynamic range given by the sensor bit depth, and the background picture counts should
be almost zero. The optical density of the sample is calculated as

OD = α ln
(

Cin − Cbg

Cout − Cbg

)
+

Cin − Cout

χsatτ
. (3.8)

Fig. 3.1 shows a typical set of experimental images. The top row shows the raw pic-
tures of the atoms, the probe, and the background picture. In the bottom row, the
corresponding histograms of the pixel counts.
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Figure 3.1: Top row, from left to right: atoms, probe, and background raw pictures. These are
the direct output of the camera, with counts in the range from 0 to 216 − 1. Bottom row:
histograms of the counts in each corresponding raw picture.

3.1.1 Appropriate probe conditions

As pointed out in a recent work [119], Eq. 3.5 provides a reliable value for the absolute
density only neglecting a number of effects in the interaction of the atoms with the probe
beam.
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Figure 3.2: Appropriate probe conditions for
23Na absorption imaging. The red cross
marks the point s0 = 4, τ = 5 µs chosen
as working conditions for the EoS measure-
ments. Figure inspired from [119] and plotted
for 23Na parameters.

Multiple scattering of light can take
place in a dense atomic cloud illumi-
nated by resonant light. Corrections to
the Beer–Lambert law due to multiple
scattering are governed by the parame-
ter n1/3/kL, comparing the length scale
of the absorption cross section with inter-
particle distance. When this parameter
is much smaller than 1, the atomic effec-
tive cross sections are not overlapping,
and the atoms can be regarded as inde-
pendent scatterers. In our trap geometry
the transverse diameter of the (condensed)
sample is about 30 µm. An imaged max-
imum optical density of 3 corresponds
then to a peak particle density of order
1018 atoms/m3, which makes n1/3/kL =
0.09. We can then neglect multiple scatter-
ing effects in all practical cases of absorp-
tion imaging in 3D samples, provided that
the imaged optical density is not so high.
The phenomenon is instead very relevant
in the 2D case [120–122], where the tight transverse confinement results in a higher
particle density even for moderate values of the OD.

Other effects are related to the motion of the atoms during the scattering process,
which can be described as a Brownian motion [123, 124]. Scattering cycles result in
a linear acceleration along the probe beam direction, causing a Doppler shift, and in
diffusion of the velocity causing a diffusion in real space, that will blur the atomic
distribution once the r.m.s. displacement in the transverse plane becomes comparable
to the resolution of the imaging system.

The approach described in [119] is to find appropriate conditions for the intensity
and duration of the probe pulse such as to minimize the side effects listed above. To
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limit the loss of resonance from the Doppler effect, we compare the total frequency shift
accumulated during the probing time τ with the effective linewidth of the resonance,
accounting for the power broadening at high intensities. This leads to the condition

2
kLvrec

Γ
Nsc(s, τ) <

√
1 + s , (3.9)

where s = s0/α, and Nsc(s, τ) = (τΓ/2)s/(1 + s) is the total number of photons scat-
tered at resonance.

To control the blurring effect of Brownian motion, we want to ensure that the r.m.s.
radius δrrms walked by the atoms in the transverse plane during the probing time is
smaller than the effective imaged pixel size lpix/M, including the magnification M, so
that it cannot be detected. From this consideration we derive

δrrms =
∫ τ

0

√
2
3

v2
recNsc(s, t) dt < lpix/M . (3.10)

As those two conditions alone would push towards short and weak probe pulses, a
third one

SNROD =
OD√
σ2

OD

> SNRmin (3.11)

puts a limit on the signal-to-noise ratio of the measured optical density, considering that
the r.m.s. noise σOD on the optical density originates from the shot noise on the photons
counted in each pixel of the CCD during the acquisition of Iin and Iout.

Fig. 3.2 shows the range of probe conditions suitable for imaging 23Na, that is the
region of parameters (s0, τ) where the three above inequalities are satisfied at a threshold
SNRmin = 10, considering an imaging magnification of 4 and linearly polarized probe
light at low magnetic field, so that α has a value close to 2.

3.2 Characterization of the imaging system

3.2.1 Fast imaging

The use of Eq. 3.8 would require measuring simultaneously both the incident and the
transmitted probe light, which is not possible. In practice, the probe and the atoms
picture are taken at two different times, and we assume to image in the first one the
same light beam that actually hits the atomic sample in the second one. Differences
in the two pictures other than absorption from the atomic sample will show up as a
spurious OD signal, spoiling the measurement of the density profile.

One of the most common issues is the presence of fringes. Interference fringes arise
from multiple reflections of the probe beam in the path traveled to reach the camera.
Mechanical vibrations of the optical system randomly shift the phase of the interference
figure, resulting in different intensity patterns in the two pictures.

It is possible to compensate for these errors with image processing techniques, such
as Fourier filtering or the eigenfaces method [125], but a way to strongly suppress the
presence of fringes is to reduce as much as possible the time between the two light
pulses. As the typical frequency scale of mechanical vibrations is in the kHz, the time
delay needs to be on the order of 100 µs to avoid variations in the optical path.

We achieved this with the imaging sequence sketched in Fig. 3.3. As our camera
mounts an interline transfer CCD sensor, it allows to trigger a second acquisition while
another frame is being read out with a minimum delay of about 20 µs, although the
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Figure 3.3: Time sequence for fast imaging. The traces are TTL signals sent (trigger, probe, uw)
or acquired (exposure) during an imaging sequence. The camera exposure, whose length is
set to 70 ms, starts after a trigger signal is sent to the camera. The first probe pulse is sent at
the end of the first frame exposure, then a microwave pulse flips a fraction of the atoms to the
F = 2 hyperfine levels, and they are imaged by a second probe pulse sent at the beginning
of the exposure of the second frame. The background picture is acquired at the end of the
sequence.

exposure time for each picture can be of 10 to 100 ms depending on the size of the
imaged area [126].

At the end of the preparation, the atoms are trapped in the |F = 1, mF = −1〉
state, and need to be transferred to F = 2 to be resonant with probe light. The probe
picture is acquired first, while the atoms are still far out of resonance and will not scatter
light from the beam, shining light at the end of the exposure. After the acquisition is
finished, we pump the atoms to the resonant state with either a laser beam or microwave
radiation, and then we take the atoms picture, shining light at the beginning of the
second exposure. The background picture is acquired much later, at the end of the
experimental sequence. In this way we were able to reduce the delay between the first
and second probe pulse to 200 µs.

3.2.2 Magnification

A standard way to measure the magnification of an imaging system which looks at the
atoms along a horizontal direction consists in measuring the distance the atoms travel
while freely falling under the effect of gravity only.

To suppress the effect of stray magnetic field gradients we use atoms in mF = 0,
as they are at first order insensitive to magnetic forces. We also need to switch off the
magnetic trap after transferring the atoms, as the field strength increases rapidly far
away from the trap center and the second-order Zeeman shift becomes non negligible
(it would exert on a mF = 0 atom an acceleration of 2 m/s2 after a 2 mm fall).

After preparing the condensed sample in |F = 1, mF = −1〉 we transfer 10% of it to
the non-magnetic state |F = 2, mF = 0〉 with a microwave pulse, let it fall for 2 ms to
separate it from the trapped fraction, then switch off the magnetic trap and let the two
clouds fall together. We measure the imaging magnification M from the trajectory of the
mF = 0 atoms. The measured values are 1.38(5) for the H1 camera, and 4.02(7) for the
H4 camera, in good agreement with the nominal values 1.3 and 4 calculated from the
geometry and the focal lengths of the optics system, reported in Fig. 2.7.

From the difference in the acceleration measured on the two clouds we can evaluate
the strength of environmental magnetic field gradients, that are present even long after
the magnetic trap has been switched off, estimated to ∼ 0.16 G/cm.
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Figure 3.4: (a) Image of the two of free-falling clouds on the H4 camera. On the left, the image is
integrated along the rows, and Gaussian fits are used to measure the vertical position of each
cloud. (b) Parabolic fit to the position of the clouds as a function of the fall time.

3.2.3 Focusing

In the regimes of weak probe intensity (s0 � 1) or far-detuned light (δ = 2∆/Γ� 1) the
atomic response to light is linear, and can be interpreted in terms of a refractive index
dependent on the atomic density n [127, 128]

nre f = 1 +
σ0λn
4π

(
i

1 + δ2 −
δ

1 + δ2

)
. (3.12)

In the far detuned case we can neglect the imaginary part in nre f (which is responsible
for the absorption), so that after passing through the cloud the probe beam acquires a
phase factor eiφ with argument proportional to the integrated column density,

φ =
2π

λ

∫
Re(nre f − 1) dz =

σ0

2
δ

1 + δ2

∫
n dz . (3.13)

Assuming a flat probe intensity, after propagating for a distance D the phase-shifted
light produces an intensity profile

ID = I0

[
1− λD

2π
∇2φ

]
. (3.14)

This signal, proportional to the second derivative of the column density, can actually be
used to image the atoms in a dispersive imaging technique called shadowgraph imaging
[129]. As shown by Eq. 3.14, the contrast of the signal is proportional to the distance
between the plane of the atoms and the object plane which is imaged by the optics on
the camera sensor.

We used instead the diffractive signal to focus the camera, exploiting the fact that it
is cancelled only when the atoms are imaged precisely on focus. Focusing the optical
system is critical for in-situ imaging, as imaging out-of-focus results in a blurred picture
with reduced resolution. Moreover, an optical signal from non-resonant atoms would
spoil the fast imaging method, as the probe picture would display the shadowgraph
image instead of the probe intensity pattern only.

Starting from a condensed sample in |F = 1, mF = −1〉 we take four in-situ images
of the BEC while scanning the camera position. First a picture of the F = 1 atoms, which
is showing the dispersive intensity pattern; then we transfer a small fraction the sample
to F = 2 (∼ 1%), to avoid OD saturation, and take an absorption image of the resonant
atoms. After releasing the atoms from the trap we take a reference picture of the probe
beam only, and later on the background one.
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Figure 3.6: From left to right: resonant OD of F = 2 atoms (first column) and shadowgraph
optical signal of F = 1 atoms (second column) at three different camera positions. Third
column: integral along the rows of the shadowgraph signal, fitted with a Gaussian function.
Fourth column: fitted amplitude as a function of the camera position. The camera is on focus
at the point where the amplitude is zero.

We extract the dispersive signal from the first image by subtracting the probe picture
and integrating along the rows to enhance the contrast, and we fit it to the function
A(x2 − 1)e−x2/2σ2

(second derivative of a Gaussian). At each position, we also compute
the OD of the F = 2 atoms from the second and third pictures. Fig. 3.6 shows the
shadowgraph and OD images for some camera positions, the diffractive signals with
Gaussian fits across the position scan, and a plot of the fitted amplitude as a function of
the camera position.
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Figure 3.5: Microwave π-pulse
at a Rabi frequency Ω =
2π × 20 kHz, in a vertical
magnetic field gradient of 34
G cm−1. Dashed line: tran-
sition profile along z. The
r.m.s. width of the resonance
peak is of 1.6 µm. Solid line:
the same profile is blurred
by convolving it with a Gaus-
sian of σ = 4 µm, resulting in
a larger width of 5 µm.

As the shadowgraph signal goes from positive to
negative amplitude, the optical density of the resonant
F = 2 atoms loses the side lobes which are characteristics
of out-of-focus imaging, and the point of focus is where
the shadowgraph signal goes to zero. With this method
we were able to put the H4 camera on focus with sub-
millimeter precision and to eliminate the spurious signal
from in-situ OD measurements.

3.2.4 Imaging resolution

To measure resolution we image a small slice of the
atomic sample, repumping the atoms with a spatially-
selective microwave transition.

We release a dilute cloud of thermal atoms in a strong
vertical magnetic field gradient, produced using the
lower quadrupole coil, send a microwave pulse to trans-
fer atoms to the F = 2, and image the transferred atoms.
Only a thin slice of the cloud lying on a horizontal plane
determined by the microwave frequency will be resonant,
and the width of the resonance is determined by the field
gradient and the Rabi frequency of the coupling.

Scanning the microwave frequency, we find a reso-
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Figure 3.7: Left: images of the sliced atomic distribution, for a Rabi frequency Ω = 2π × 20 kHz
and pulse times of 14, 20, 38, 50 µs, with integrals along the rows. Right: The dots are the
width of the atomic slice, measured with a Gaussian fit on the row-integrated image, as a
function of the microwave pulse time for three different Rabi frequencies. The solid lines
show the simulated width, calculated using a Gaussian PSF of 4 µm r.m.s.

nance at the position of the atomic sample at a frequency of 1371.6 MHz. Considering
the second order Zeeman shift, this corresponds to a transition |1,−1〉 → |2,−2〉 in a
field of 210 G, in agreement with the value predicted from the coil design at the given
current. The same model gives a field gradient of 34 G cm−1 along z. We integrate the
OD along the rows, fit with a Gaussian, and plot the fitted width as a function of the
Rabi pulse time. The measurement is repeated lowering the microwave power, hence
reducing the microwave Rabi frequency and the width of the resonance feature, until
the smallest width we can observe is not varying anymore.

As the field gradient and the Rabi frequency are known, we compute the resonance
profile in space, convolve it with a Gaussian modeling the optical PSF, and fit it again
with a Gaussian function to measure its size, thus simulating the result of our measure-
ments. For the dataset with the smallest Rabi frequency (20 kHz), the true width of the
atomic slice would have a minimum at 1.6 µm, shown in Fig. 3.5.

We measure the width of the PSF in our optical system as the value at which the
simulated curve matches with the data. We obtain a good match for all the measured
datasets with a value of the PSF width of 4 µm.

3.2.5 Calibration of absorption imaging

To complete the calibration of the optical system for absorption imaging, we need to
measure the two coefficients α and χsat required in Eq. 3.8. The two have a different
physical origin, since the former depends on the dynamics of light scattering in the
atomic cloud, while the latter depends only on technical characteristics of the imaging
setup.

Calibration of the probe intensity: χsat

We measure the intensity of the probe beam at the plane of the atoms, and compare it to
the pixel counts obtained imaging the same beam on the camera. We sample part of the
probe beam, send it onto a photodiode, and measure the beam power just before the
glass cell with a calibrated power meter THORLABS S130C (Fig. 2.7). The value read on
the power meter needs to be corrected by the transmission coefficient of the first window
of the glass cell, which is measured to be 0.96(1), to measure the light power P hitting
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Figure 3.8: Left: a raw image of the probe beam with Gaussian fit. The dashed circle marks the
beam waist. Right: peak intensity value in pixel counts A vs. s0τ. The slope of the fitted line
gives the value of χsat

the atoms. We calibrate the voltage reading of the photodiode to directly measure P,
then we remove it to let the beam pass through the glass cell and reach the camera.

The low-magnification camera H1 has a wide field of view, and it sees the whole
Gaussian profile of the light. We take pictures of the beam using the H1 camera, scanning
the probe power at fixed pulse time τ. The beam power is measured in-shot from the
photodiode signal, while the picture is fitted with a Gaussian function Ae−2x2/w2

x−2y2/w2
y

to measure the beam waists wx, wy. The fit amplitude A is a measure of the peak
intensity of the beam at the plane of the atoms in units of pixel counts, and is related
using Eq. 3.6 to the measured power by

A = χsats0τ = χsat
2P

πwxwy Isat
τ (3.15)

A linear fit of A vs. the product s0τ gives a value χH1
sat = 3462(38) counts µs−1. Fig. 3.8

shows a picture of the probe beam and the fitted data.
We repeat the same procedure for the second camera H4. This time the field of view

is too small to capture the Gaussian shape of the beam, but yet not small enough to
consider the light profile as homogeneous on the whole sensor. Since we know already
the geometry of the beam from the former calibration, we use the previously measured
magnifications to fix the position and the size of the Gaussian beam on the new field of
view, taking as absolute reference the in-situ position of an atomic cloud as seen by both
cameras. Leaving the amplitude A as the only fitting parameter we repeat the above
procedure, and obtain the coefficient χH4

sat = 1950(5) counts µs−1.

Calibration of the absorption cross section: α

We measure α using two different methods, both based on the principle that the optical
density of an imaged atomic cloud, which appears on the left-hand side of Eq. 3.8, only
depends on the optical properties of the atomic sample and not on the intensity of probe
light, which instead the two pictures Cin and Cout depend on.

An alternative calibration method found in the literature consists in measuring the
recoil imparted on the atoms by the probe beam. This allows to calculate the light
scattering rate as a function of the probe intensity, determining the product αχsat [131].
As the EoS measurements required to image the atoms while still holding them in
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Figure 3.9: Calibration of α. (a) Method by Horikoshi et al. Top: a picture of the atomic sample,
showing the location of the ROI used in the calibration. The OD in this picture is calculated
using α = 2. Bottom: Linear fit of Clog vs. Clin, which gives α = 2.0(4). (b) Method by
Reinaudi et al. Main: OD of the same atomic sample at different s0, calculated for α = 1, 2, 4.
Inset: ∆OD vs. α, minimized at α = 1.9(4).

the magnetic trap, we could not use this calibration method, as the trapping field
would interfere with the motion of the sample after the probing and spoil the recoil
measurement.

We take a sequence of in-situ images of a dilute thermal cloud with the H4 camera
while scanning the probe intensity over a broad range. Following the method described
in Horikoshi et al. [119], we define the quantities Clog = ln((Cin − Cbg)/(Cout − Cbg))
and Clin = (Cin − Cout)/τ. These are related to the optical density through Eq. 3.8,
which can be rewritten as

Clog =
OD

α
− 1

αχsat
Clin . (3.16)

For each image in the dataset, we consider a region of interest (ROI) in the center of
the cloud, smaller than the r.m.s. of the sample such that the density can be considered
as constant, and calculate Clog and Clin averaging over the ROI. The ratio OD/α is
unknown, but constant for each point. A linear fit of Clog vs. Clin returns the product
αχsat, which divided by χH4

sat that we previously measured leads to α = 2.0(4).
We analyzed the same dataset with another method, reported in Reinaudi et al. [130].

We compute the OD in the central ROI in each picture using Eq. 3.8 and the value of χH4
sat ,

leaving α as a free parameter. The correct value is the one that minimizes ∆OD(α), the
standard deviation of the OD over the dataset. Fig. 3.9b shows in the inset the quantity
∆OD vs. α, which is minimized for α = 1.9(4). In the main panel we plot the OD of
the data at different s0 calculated using selected values of α, showing that it becomes
constant for α close to 2.

The result of Eq. 3.3 for the scattering rate, which Eq. 3.8 depends on, is demonstrated
valid only for linearly polarized light and at zero magnetic field, which means that the
levels are not split by the Zeeman effect [118]. This is not our case, as we are working in
a magnetic trap. To estimate the influence of the finite Zeeman splitting, I calculated
the scattering rate for arbitrary magnetic field and light polarization with a numerical
integration of the OBE, using the Python package qutip [132]. The technical details are
explained in Appendix A.

From the scattering rate we obtain the theoretical value of α as a function of the
magnetic field B. For a linear polarization of the probe light, the results agree with Eq. 3.3
with a weak quadratic dependency of α from the magnetic field. At B = 0 we retrieved
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the analytical result α = 1.829. Comparing the simulations with the experimental
imaging calibration, the measured α is compatible with the value calculated at B = 1 G
within errors.
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The physics of quantized vortices in superfluid systems is an actively investigated
topic, as it represents one of their most striking and characteristic features. In atomic
BECs, the Gross–Pitaevskii equation analytically describes the shape of these defects in
homogeneous systems, and provides a solid and accurate background for the study of
trapped samples, as the ones available in a laboratory.

There is still however no direct quantitative comparison between theory and experi-
ment for the structure of the vortex core in three-dimensional condensates. A reason
for that is that the direct in-situ observation of these defects is challenging, as their
typical length scale is much smaller than the resolution of standard optical imaging
methods. A possible solution is to release the condensate from the trap and observe it
after a suitable time of flight, letting the vortex expand and become visible with optical
imaging methods [29, 57].

In this work, we observed 3D vortex filaments after a TOF expansion with enough
accuracy to allow for a direct comparison with the predictions of the GP theory. Nu-
merical GP simulations provide results for both the in-situ shape and the expansion
dynamics of such defects, and using scaling laws which are valid in the limit of large
condensates we compare them with with our experimental observations, and find good
agreement. In the first part of this chapter I will outline the setup and the results of
GPE simulations, which have been done by our collaborators in the theoretical group.
Then I will describe the experimental measurements and the analysis procedure, which
I developed and applied to both the simulation results and the experimental data, and
discuss the results.

4.1 Numerical simulations

A typical GPE simulation outputs snapshots of the condensate wavefunction through
its time evolution, from which one can compute density profiles to compare with
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Figure 4.1: Snapshots of GPE simulations, showing the column-integrated radial (a) and axial (b)
density profiles absorption images of a condensate with µ̃ = 9.7 atoms after a free expansion
evolution time of τ = 73 (120 ms). (c) Residual of the TF fit of the axial density profile,
showing the vortex density dip.

experimental images. Having access to both density and phase at once, and with spatial
and temporal resolution limited only by computational resources (which is by the way a
rather strong constraint), simulations give a great amount of information on the physical
system under investigation. The results are in any case limited to the scope of GP theory,
and they still need to be checked against real-life observations. Nonetheless numerics
and experiments fruitfully complement each other, leading together to a complete and
better understanding of the physics behind condensed systems.
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Figure 4.2: Number of condensed
atoms vs. chemical potential
µ/h̄ω⊥

In this work we used the GPE (Eq. 1.3) to study
weakly-interacting trapped condensates hosting a
vortex, and to and simulate the evolution of the
atomic density during a free expansion of the BEC.
The parameters of the simulation are the same as
in the experiment: the interaction coupling con-
stant is set by the scattering length a = 54.54 aB (in
units of the Bohr radius aB) [133], and the trapping
geometry is a cigar-shape harmonic potential of fre-
quencies ωx = 2π × 9.3 Hz and ω⊥ = 2π × 93 Hz.
The number of atoms is adjusted by the chemical
potential µ̃ = µ/h̄ω⊥, in units of the transverse
harmonic oscillator energy (Fig. 4.2).

A vortex line is phase-imprinted in the center
of the condensate along the z axis, and the in-situ density profile is computed by
propagating the GPE in imaginary time. The solution is used as the starting condition for
a real-time evolution with Vext = 0, simulating the free expansion after the release from
the trap. The evolution time is measured in units of the transverse trapping frequency
as τ = ω⊥t. Fig. 4.1(a-b) show integrated column densities along two orthogonal axes
for a simulated BEC with µ̃ = 9.7 after an expansion time τ = 73 (120 ms).

The requirements for such a simulation are demanding: the computational volume
needs to be suitably bigger than the sample to avoid non-physical self-interference effects
due to boundary conditions, and the grid must be fine enough to capture the length scale
of the defect. With the above constraints the number of grid points scales with the size
of the object as µ̃3, which limits the feasibility of simulating large-number condensates.
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For this reason we could run simulations only for condensates with chemical potential
µ̃ from 7 to 12, corresponding to an atom number of 3× 105 to 1× 106.

4.2 Experiment

Vortices are naturally produced in the experiment while crossing the phase transition, as
a result of the Kible–Zurek mechanism [47]. Due to the stochastic nature of the process,
both their number and position are random at each experimental shot. The average
number of vortices depends on the quench rate at the transition point, which is however
limited by atom losses. Rapid quench rates introduce more vortices but reduce the atom
number to the point where it is not possible to achieve condensation.

We can tune the average vortex number with the cooling rate at the transition point.
By adjusting the number of atoms loaded in the 3D MOT and the RF sweeping rate of
the final part of the evaporation, we obtain samples with 2× 106 to 20× 106 atoms (µ̃
from 15 to 35), with one vortex on average, and negligible thermal component.

Figure 4.3: Sketch of the TOF
imaging of a BEC with a vor-
tex

The elongated geometry of the trap ensures that vor-
tices align on a radial plane, perpendicular to the weak
axis of the trap. This allows to have a 3D visualization
of the vortex density distribution by imaging the BEC
along two orthogonal axes. We take two simultaneous
absorption images after a long TOF, one along the x direc-
tion (axial image) and one along the y direction (radial
image), as sketched in Fig. 4.3. The TOF is chosen in
the range from 100 to 150 ms, to let the optical density
decrease below a value of 2 on both images. For such
a long TOF we employ magnetic levitation, otherwise
the BEC would fall out of the field of view of the camera,
setting a current of about 10 A in the lower quadrupole
coil only.

The two images together reveal the three-dimensional
structure of the vortex. On the radial image we can see
the planar density depletion characteristic of the solitonic
nature of this defect, with a central dip corresponding to the nodal line and an S-shaped
twist in the cases when the vortex core is aligned with the imaging direction, as the one
shown in Fig. 4.4a. In the axial image of Fig. 4.4b the planar depletion is integrated out
by the imaging process, and the vortex filament structure is visible as a linear dip on top
of the Thomas–Fermi density distribution.

4.3 Data analysis

The analytical results provided by Thomas–Fermi approximation for the in-situ shape
of the trapped BEC (Eq. 1.7) and the by the Castin–Dum dynamical equations for the
free expansion (Eq. 1.14) are the starting point of our analysis. A set of GPE simulations
without vortices are fitted with TF profiles at all expansion times, checking that the
inverted parabola is a very good approximation of the GP profile even for the lowest
simulated atom number. The time evolution of the TF radii during expansion is found
to agree very well with the analytical solution of Eq. 1.14. Motivated by these results,
we use the TF profile as a fitting function to measure the peak density and radii of the
expanding condensate even in presence of the vortex.
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Figure 4.4: Radial (a) and axial (b) absorption images of a condensate with 7× 106 atoms after
120 ms of free expansion, showing the twisted density depletion on the radial plane of the
defect and the vortex nodal line. (c) Residual column density, obtained by cleaning the OD
from optical interference fringes and subtracting the Thomas–Fermi fit. The result is an image
of the residual column density which neatly reveals a vortex filament. (d)-(g) Other examples
of vortex filaments shown by the residual column density for different condensates with one
or more vortices. Figure adapted from [59].

The data analysis methods presented in this section will be consistently used to
analyze both the simulated profiles and the experimental images. The two datasets
remarkably complete each other, because while the simulations allow to follow the full
time evolution of the expansion, the experiment provides single-TOF data in a range
of chemical potential which is totally out of reach from the simulations due to our
computational constraints.

We integrate the GPE density profile along the x direction to obtain a image of the
BEC axial column density (Fig. 4.1b), which is the quantity that will be measured in the
experiment. We fit it to an integrated TF profile

ncol
TF = ncol

TF(0)

(
1− y2

R2
y
− z2

R2
z

)3/2

, (4.1)

where we fix Ry = Rz = RTF, as the simulated condensate expands symmetrically on
the yz plane. We subtract the fit from the column density to reveal the shape of the
vortex, that appears as a negative dip in the fit residuals. Fig. 4.1c shows an example of
such a residual image. The fit provides the values of the transverse TF radius RTF and
of the peak column density ncol

TF(0) at evolution time τ, that we use as normalization
scales: we define the normalized coordinates ỹ and z̃ as y/RTF and z/RTF respectively,
and rescale the residual image by the value of ncol

TF(0).
We extract a 1D vortex profile by averaging the normalized residual along z̃ over

the interval [−1/3, 1/3]. This averaging step will be necessary when dealing with
noisy experimental data to improve the SNR of the vortex profile, so we apply it also
on numerical data to compare consistent results. We fit the profile with the Gaussian
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Figure 4.5: First (left) and second (right) TF fit to extract the vortex profile. Top: slice at z̃ = 0
of the normalized axial column density from the GPE simulations plotted in Fig. 4.1b, fitted
with a TF profile. The shaded area marks the region excuded from the second fit. Bottom: Fit
residuals, showing a density bump around the vortex core in the first fit, which is corrected in
the second one.

function g(ỹ) = −d e−ỹ2/2σ2
to measure the vortex width σ and the depth d.

The procedure is repeated, starting from the Thomas–Fermi fit of the column density
image, but this time we exclude from the fitted region a stripe of width ±3σ around
the vortex line. This is because letting the fit go through the vortex dip results in an
underestimate of the peak density at the edges of the nodal line, and in the presence of
positive bumps in the residual profile. Fig. 4.5 shows a comparison between the two
fitting procedures. In the upper panels we plot a slice of the column density and of
the TF fit at z̃ = 0, zooming around the vortex core. The lower panels show the vortex
profiles obtained from the fit residuals. After the second iteration we get the final values
of σ and d.

Fig. 4.6a shows the evolution of the vortex profile at increasing expansion times,
obtained from the GP simulation of a condensate with µ̃ = 9.7. As expected, since the
density depletion of the vortex is very narrow, the profile depth is only a few percent of
the central column density of the condensate. The depth increases during the expansion,
as the solution in Eq. 1.18 for the hollow-core vortex model would suggest, while the
width remains constant.

Fig. 4.6b compares the time evolution of the vortex profile parameters for conden-
sates with different atom numbers. The black dashed line corresponds to the hollow-core
model prediction Eq. 1.18, where the value of the parameter c = 1.62 was determined
fitting to the τ = 0 profile in Fig. 4.6a. This makes the rescaled width of the hollow
vortex r̃c = cξ0/R⊥ = 0.08 for the given value of µ̃, in good agreement with the width σ
fitted by the Gaussian model. The scaling for hydrodynamic expansion ∝

√
1 + τ2 is

valid only at short times, and as the mean-field interaction decreases with the density
the expansion goes in the ballistic regime [29], where both the rescaled width and depth
of the defect saturate to a constant value.

The analysis of experimental images follows the same procedure. We fit both the
axial and the radial images with Eq. 4.1, obtaining a first estimate for the width of the
sample in all three directions and of the number of atoms. The fit residuals in both
directions allow us to clearly identify the presence of vortices, and to determine their
number and orientation as shown in Fig. 4.4(c-g).

The condensate is slightly elongated and twisted in the axial image: we attribute
this to a residual curvature in the levitating field, that introduces a weak anti-trapping
potential of a few Hz along the z direction that deforms the condensate during the long
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Figure 4.6: Left: Time evolution of the vortex profile for the GP simulation in Fig. 4.1 (µ̃ = 9.7),
plotted at time τ = 5, 10, 20, 50, 69. Right: Time evolution of the Gaussian depth d (top) and
width σ (bottom) for different values of the chemical potential µ̃. The black dashed line in the
depth plot is the hydrodynamic scaling d ∝

√
1 + τ2.

TOF. We leave independent fitting parameters for the Thomas–Fermi radii Ry and Rz
and for the rotation angle of the ellipsoid, and define RTF =

√
RyRz as the radius we

use to normalize the vortex width.
The data are postselected, retaining only the ones where the vortex line has certain

characteristics. First we select only the images with one single vortex, discarding the
case of multiple vortices like in Fig. 4.4(f-g) to avoid that the shape of the nodal is
influenced by the velocity field of other vortices, or by vortex-vortex interaction events
[65]. Then we select only the images where the vortex line is straight enough and as
close as possible to the center, with a threshold distance of RTF/3. In this way we try
to match in the experimental shots the same case deterministically produced in the
numerical experiments, with one single isolated vortex perfectly straight through the
center. Moreover, both the bending and the distance from the center contribute to reduce
the vortex visibility and would make it more complicated to analyze.

We measure the position and orientation of the vortex by manually marking two
points along the nodal line in both residual images, as shown in Fig. 4.7. From the
markers’ coordinates we determine the angle of the line on the yz plane and its 3D
position, as the geometric distance between the line and the condensate center along the
three directions (x is measured on the radial image, y and z on the axial one). To compute
the 1D vortex profile we define the rotated coordinates ỹ and z̃ as respectively the axis
of the vortex line and the perpendicular direction, both normalized to the transverse
Thomas–Fermi radius RTF (Fig. 4.7b). We average the residual along z̃ over the interval
[−1/3, 1/3] to improve the SNR, then we fit it with the Gaussian profile and extract first
estimates for the width σ and the depth d. Finally we repeat the analysis of the axial
image excluding the stripe at ±3σ around the vortex ad get the final values of the vortex
parameters.

4.4 Results

Fig. 4.8 summarizes the results from both GPE simulations and experiment for the
profile parameters d and σ as a function of the inverse chemical potential 1/µ̃, including
the limiting case of an infinite condensate at 1/µ̃ = 0. GPE data are shown in black,
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Figure 4.7: Radial (left) and axial (right) column density residuals. The vortex line is manually
marked by two points, which are used in the axial image to fix the orientation of the reference
frame used to compute the vorex profile.

while experimental data are colored and grouped in four distinct datasets, where the
experimental routine and the image TOF were optimized for different atom numbers.
The parameters of each the dataset are summarized in Table 4.1. Error bars account for
statistical noise in the residual column density and for uncertainties in the fit.

The GP results in panel (a) show that the rescaled width σ is linear in 1/µ̃. This is
in agreement with the expected scaling with the healing length ξ/RTF ∝ 1/µ which is
maintained also during the expansion, in both the hydrodynamic and ballistic regimes
(Fig. 4.6c). The dashed line is a linear fit to the GP points only. The experimental points
lay on the line in good agreement with the GP predictions, especially for the data with
the largest atom number that have a better SNR on the vortex profile.

Regarding the vortex depth, there are no simple scaling laws from the Thomas–
Fermi theory. The numerical results in Fig. 4.6b show that the depth saturates after a
long expansion, so that it is fair to compare asymptotic values for its dependency on
1/µ̃, which is seen on Fig. 4.8b to be smoothly decreasing to zero as the number of
atoms increases (1/µ̃ → 0). The experimental points confirm this trend, and they are
compatible with theory in the sense that any reasonable interpolating function down to
the infinite condensate limit would pass through most of the experimental points within
error bars.

Finally we plot a scaled GP profile on top of an experimental one, to make a direct
comparison beyond the features that can be extracted by the Gaussian fit. In Fig. 4.9,
blue dots are the vortex profile from a condensate in the orange dataset, with 2× 107

atoms (µ̃ = 34), measured after a TOF of 150 ms. The black line on top is extracted from
a GPE simulated condensate at µ̃ = 9.7, where its coordinate ỹ has been rescaled by the
ratio between the chemical potentials, while the depth (in absence of a prediction for
its value as a function of µ) has been scaled to simply match the one measured on the
experimental profile. Here we can see that, after a proper scaling of the profile geometry
captured by the data in Fig. 4.6, the overall shape of the vortex dip in the column density
is in good agreement with the prediction of the Gross–Pitaevskii equation.

Conclusions

To summarize, in this project we present a first measurement of the spatial structure of
the core of a quantized vortex, imaged with standard optical methods after a time-of-
flight expansion. With a TF fitting procedure we extract the density dip left by the vortex
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Figure 4.8: Width (left) and depth (right) of the 1D vortex profile after long expansion times as
a function of 1/µ̃. Here the simulated and experimental data are plotted together, showing
good agreement. Figure adapted from [59].

Table 4.1: Experimental parameters for data in Fig. 4.8

data N [×106] µ [h̄ω⊥] TOF [ms]

black (GPE) 0.3 to 1 7 to 12 120

blue 3.5(7) 17(1) 100

green 7.5(7) 23(1) 120

orange 20.1(7) 34.0(5) 120

red 19.2(5) 33.4(3) 150

in the OD profile of the condensate, whose shape is parametrized by a heuristic Gaussian
fit returning the visibility of the defect and its width. We apply the same procedure to
the density profiles simulated by the GPE, which first is solved in imaginary time to
compute the in-situ shape of the vortex line, and then propagated in real time to simulate
the expansion dynamics. In this way we obtain from the simulations a prediction for the
time dependence of the vortex parameters during the free expansion: we observe that
the visibility is enhanced by the TOF, due to the difference in the scaling between the
axial and radial direction of the BEC, and that the width is proportional to the transverse
TF radius at all times during the expansion.

We measured the dependency of the asymptotic vortex parameters on the number
of atoms, parametrized by the rescaled chemical potential µ̃. The experimental data and
the numerical simulations provide information in different and mutually inaccessible
parameter ranges, as it is computationally expensive to simulate condensates with a
high atom number, while it is difficult to experimentally produce small condensates
hosting a single vortex using a temperature quench.

The experimental results show good agreement with the theoretical values, which
are extrapolated at higher µ̃ with TF scaling arguments. The width of the vortex line
follows the TF linear scaling with 1/µ̃. There is no expected prediction for the visibility,
but the data are seen to follow a reasonable interpolation between the simulated results
and the limiting case at µ̃→ ∞.

We conclude this work with a quantitative comparison of the shape of the vortex
density dip with GP theory, observing that the whole profile of the vortex line matches
the one predicted in the simulations after rescaling their width and depth according to
the above results.
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Figure 4.9: Direct comparison of the shape of a vortex. Blue dots: 1D vortex profile of a
condensate with 2× 107 (µ̃ = 34) after an expansion of 150 ms. The inset shows the Ax-
residual image, and the rectangular box marks the area averaged along z̃ used to obtain the
plotted profile. Solid line: vortex profile of a simulated condensate at µ̃ = 9.7, after scaling the
width according to the fitted TF linear law and the depth to match the one measured in the
experiment. Figure from [59].
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The goal of this project is to measure the EoS of a homogeneous interacting Bose gas,
with a focus on the temperature dependency of the chemical potential µ. In particular,
we aim to verify the presence of a non-monotonic behavior of µ, with a peak around
the critical temperature. The presence of this peak is believed to be a signature of the
transition to the superfluid phase, and its presence has been already experimentally
verified in various kinds of superfluid systems other than the Bose gas, for which there
is still no direct observation.

We reconstruct the EoS for a homogeneous system from the direct measurement of
the density distribution of a trapped atomic sample, following an approach based on
the Gibbs–Duhem relation and the local density approximation presented by Ho and
Zhou [74]. As the gas equilibrates in the external trapping potential Vext, reaching a
homogeneous temperature T, the particle distribution will be determined by the EoS
of the uniform system, which relates density and temperature with the local chemical
potential µ = µ0 −Vext.

Measuring both the density distribution and the global variables µ0 and T corre-
sponds then to measuring the EoS for a homogeneous system at constant temperature,
in a range of chemical potential determined by the trap. In the presence of a condensate,
the points in the center of the trap have the highest condensed fraction and provide
data about the condensed phase of the system. Moving towards the periphery, the local
condensed fraction decreases, down to the point corresponding to the Thomas–Fermi
radius where the condensate vanishes as we cross the phase transition. Farther in the
tails of the distribution, the gas is in the normal phase and approaches the limit of a
perfect non-interacting gas.
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This method allows to explore the whole phase diagram of a uniform BEC system
within a single trapped sample. It is a powerful result, that however requires to measure
the absolute density of the gas everywhere, in a well-known trapping potential. This is
challenging in the case of Bose gases, because in the condensed phase the density inside
a trapped sample can vary by two or three orders of magnitude between the center and
the tails, and standard optical imaging methods are effective only at low optical density,
and only in a limited range.

We tackled this problem with the use of the partial-transfer absorption imaging
technique, which allowed us to accurately measure the density of the sample in a wide
range, from the high-density region in the center of the BEC to the low-density one on
the thermal tails. With a sequence of images, in each of which the imaging parameters
are tuned to be sensitive in a different density range, we built a complete image of the
column density of the sample using an image reconstruction method I developed for
this project. From the column-integrated density obtained in this way, we computed the
3D density distribution using the inverse Abel transform.

In this chapter I will describe the details of the techniques summarized above and
present our results for the pressure and density profiles along the trap axis. I will discuss
the method we used to extract the global thermodynamic parameters from such profiles.
I will show our results for the EoS p(n, T) and µ(n, T), where we observed the peak
across the transition, and discuss both our experimental limits and the conditions for
the validity of the LDA, which is at the basis of these results.

5.1 Partial transfer absorption imaging

Standard imaging methods are not suited observe atomic samples of high density.
Resonant absorption imaging measures the transmission of the atomic medium, which
scales exponentially with the column density integrated along the line of sight. Non-
resonant imaging methods are affected by the atomic density due to strong refraction of
the light. Moreover, working in a magnetic trap we cannot make use of Faraday imaging
or other polarization-based imaging schemes, since to take advantage of the elongated
geometry of the trap we need to image the BEC along a radial direction, perpendicular
to the bias field of the trap.

Figure 5.1: A scheme of the hy-
perfine 23Na levels involved
in the PTAI. Figure from [62]

The partial-transfer absorption imaging method
(PTAI) [62] makes it possible to fulfill all our require-
ments. In this technique, a controlled fraction of the
atoms is transferred to an auxiliary level, from where it
is imaged with a resonant beam. The transferred frac-
tion controls the optical density of the imaged sample,
which can be put in the optimal range for absorption
imaging. This makes it possible to image arbitrary high
atomic densities retaining all the advantages of the ab-
sorption method in terms of resolution and SNR. The
technique of output-coupling a small fraction of atoms
out of the whole sample for studying its properties was
first explored in the context of atom lasers [134]. Then it
was used as an imaging method to observe the real-time
dynamics of vortices [61] and was later demonstrated
also for in-situ imaging of trapped atomic samples [135].

We implement PTAI by radiating the atoms with mi-
crowave radiation, which transfers them from the |F = 1, mF = −1〉 state, where they
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Figure 5.2: Microwave frequency scan. From left to right, the peaks correspond to the microwave
transitions from |1,−1〉 to |2,−2〉 at 546(3) kHz, to |2,−1〉 at 1245(4) kHz, and to |2, 0〉 at
1932(4) kHz. The frequency axis is offset by 1.769 GHz. Top row: number of atoms flipped to
F = 2. Bottom: population remainig in F = 1.

are magnetically trapped, to the upper hyperfine level F = 2. The transferred atoms
are then imaged with light resonant to the F = 2 → F′ = 3 cycling transition. The
microwave is generated with a MARCONI 2024 signal generator, amplified with a high-
power MINICIRCUITS ZHL-100W-272+ amplifier, with a maximum output of 100 W,
and delivered to the atoms with a hook antenna (Fig. 2.6).

The antenna is positioned such that the oscillating magnetic field it produces at
the position of the atoms is oriented orthogonal to the x axis, which is the direction of
the trap bias field, driving σ± transitions (mF → mF ± 1). Nonetheless, an oscillating
x component of the field is also present, driving π transitions (mF → mF). We can
then selectively address one among the F = 2, mF = (0,−1,−2) states by tuning the
microwave frequency. The bias field in the magnetic trap is approximately 1 G, which
splits the Zeeman states in both the F = 1 and F = 2 levels by 700 kHz. The choice
of the auxiliary state is irrelevant for the subsequent imaging, as their separation is
much smaller than the optical linewidth of 10 MHz. Fig. 5.2 shows a broad scan of
the microwave frequency, where all the three hyperfine transitions are revealed by
measuring in TOF the transferred and remaining populations after a microwave pulse
at fixed power and pulse time.

We decided to use as auxiliary state the |F = 2, mF = −2〉: as we are coupling two
stretched levels (highest |mF|), the transition has the highest Clebsh–Gordan coefficient,
which means we maximize the coupling strength for the same delivered power. More-
over, spin-flipping collisions in the resulting hyperfine mixture are suppressed due to
conservation of total mF, avoiding a strong source of atom losses.

5.1.1 Effects of inhomogeneous magnetic field

The major issue of using this method in a magnetic trap is that the microwave resonance
frequency depends on space. Because the Zeeman shift due to the trap field is different
in the two coupled levels, the result is that the transferred fraction is not spatially
homogeneous, which effectively introduces distortions in the measured density profile.
We model this effect and include it in the measurement of the microwave Rabi frequency,
which calibrates the PTAI method, and discuss the regime in which the inhomogeneity
can be neglected for the measurement of in-situ density profiles.

The population transfer is described by Rabi oscillations in a two-level system. The
microwave induces magnetic dipole transitions between the hyperfine levels, and its
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Figure 5.3: Sketch of the atomic sample in the magnetic trap, with magnetic field contour lines.
Slices on the yz plane (left) and xz plane (right). In a coordinate system centered on the atomic
sample, the minimum of the magnetic field is placed above the atoms at a position z = zsag.
The ellipses show the boundaries of the BEC fraction (TF radii) and of the thermal fraction (at
2.5 σ).

coupling strength is measured by a Rabi frequency Ω proportional to the amplitude of
the microwave field. The fraction of atoms transferred after a pulse time t is

P(t, δ) =
1

1 + δ2 sin
(

Ω t
2

√
1 + δ2

)2

, (5.1)

where δ = (ωµw −ωHF)/Ω is the detuning from resonance in units of the coupling Rabi
frequency, and ωµw/2π is the frequency of the microwave.

The hyperfine resonance frequency ωHF/2π depends on the energy splitting be-
tween the selected levels, h̄ωHF = E|2,−2〉 − E|1,−1〉. The energy of each level is shifted
by the linear Zeeman effect as a function of the modulus of the local magnetic field
|B(x, y, z)|. In the region occupied by the atoms, the magnetic field is of the order of 1 G,
so that second order Zeeman terms can be neglected.

The total potential experienced by the trapped |1,−1〉 atoms is Vext = E|1,−1〉 + mgz,
the sum of the Zeeman energy of the level E|1,−1〉 and of the gravitational potential mgz.

Substituting Eq. 1.6 for the expression of the harmonic potential, we can write
E|1,−1〉(x, y, z) = Vext(x, y, z) − mgz = E1 + Vext(x, y, z − zsag), where E1 is a constant
energy offset. The equilibrium position of the cloud where Vext = 0 does not coincide
then with the minimum of the magnetic field, which is is placed above the atoms at
a position z = zsag, where zsag = g/ω2

z is called gravitational sag, and g is the local
acceleration of gravity.

The same applies for the upper state |2,−2〉, with the difference that Landé factor
in F = 2 has opposite sign (which makes it an anti-trapped state), which results in
E|2,−2〉(x, y, z) = E2 − 2Vext(x, y, z− zsag).

The frequency ωµw is set to the value that cancels the spatially-independent detuning
term, which is found experimentally as the frequency that maximizes the transfer at a
fixed power. Substituting the above expressions in the definition of δ leads to

δ(x, y, z) =
3m

2h̄Ω

(
ω2

xx2 + ω2
yy2 + ω2

z(z
2 − 2zzsag)

)
. (5.2)

Rabi frequency calibration

When the Rabi frequency Ω is known, we can calibrate the PTAI using Eq. 5.1 to calculate
the fraction of atoms that are imaged after the pulse. I developed a simple model to
measure Ω which takes into account the spatial dependency of the detuning.
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Figure 5.4: A series of Rabi flop measurements at different microwave powers. From top to
bottom: 6, 0, −12, −20 dBm. The figure legend reports the values of Ω and ∆0 resulting from
a fit of Eq. 5.5.

The Rabi frequency is obtained with the standard method of measuring the time
dependency of the atomic populations during a Rabi flop. We prepare a BEC trapped
in |1,−1〉, pulse the microwave coupling to |2,−2〉 for a time t, and let the transferred
atoms fall under the action of gravity and of the anti-trapping magnetic field, which is
left on. In this way we separate the two populations, and after a limited TOF (∼ 10 ms)
we image the falling atoms with a resonant probe, measuring their number N2. The
remaining atoms are then released from the trap and imaged in TOF with an optical
repumper to count their number N1.

We image both populations to minimize errors in the Rabi frequency due to shot-to-
shot number fluctuations in the preparation of the atomic sample. The experimental
transferred fraction is

P̃(t) =
N2

N1 + N2
=

1
N1 + N2

∫
P(t, δ(r)) n(r) d3r , (5.3)

which is related to Eq. 5.1 by an integral over the atomic density. We expect the Rabi
oscillations to have a reduced contrast, since the inhomogeneous detuning effectively
introduces spatial decoherence across the atomic cloud, so that not all the atoms are
flipped simultaneously.

To extract the value of Ω from the above expression, we introduce some approxi-
mations. Since the atoms are vertically displaced by the gravitational sag, if the atomic
sample is small enough with respect to the spatial variation of the field, then only the
term linear in z in Eq. 5.2 is important in the region occupied by the atoms, so we can
neglect the quadratic terms and rewrite δ ∝ 2zzsag. Moreover, we approximate the
atomic density distribution with a Gaussian shape, to separate and integrate out the
two spatial directions where the detuning does not vary and remain with an integral
along z. With a change of variables to integrate over δ, Eq. 5.3 reads

P̃(t) ' 1√
2π∆0

∫
P(t, δ) e−δ2/2∆2

0 dδ , (5.4)

which shows that the effect of the field gradient is to average the transferred population
over the local detuning, with a weight dependent on the atomic distribution. The width
∆0 represents the range of magnetic field spanned by the condensate in frequency units,
and depends on the microwave field strength and on the size of the atomic sample.
Both a high Rabi frequency or a small atomic sample reduce the inhomogeneity seen by
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Figure 5.5: Trap frequencies measurement. From top to bottom, fit to the in-situ displacement of
the BEC along the x, y and z axes.

the atoms and lead to Rabi oscillations with maximum contrast. In our trap, a BEC of
5× 106 atoms has a transverse size of 12 µm, which corresponds to a frequency width
∆0 of almost 20 kHz.

Within these approximations the integral in Eq. 5.4 can be solved analytically and
the result is

P̃(t) =
1

2
√

1 + 2D2

(
1− cos(τ + arctan(b)/2)

(1 + b2)1/4

)
, (5.5)

where τ = 2πΩ t, D = ∆0/Ω and b = τD2/(1 + 2D2). Fig. 5.4 shows a series of Rabi
flop measurements at different microwave powers. The data are fitted to the expression
in Eq. 5.5 with Ω and ∆0 as free parameters. The fit results are reported in the figure
legend.

To check the validity of this approximate model, we also compute the transferred
fraction from a numerical integration of Eq. 5.3, computing the detuning from Eq. 5.2
using our trap parameters and the density distribution as a TF profile from the known
number of atoms. We fit the data in Fig. 5.4 to the numerically computed fraction with
Ω as the only free parameter, and find that the analytical approximation agrees well
with the numerical model.

5.2 The experiment

5.2.1 Trap frequencies

The trap frequencies that parametrize the atomic potential in Eq. 1.6 are measured from
center-of-mass oscillations of the trapped sample.

We produce a BEC in the magnetic trap, which is at rest at the end of the RF evapo-
ration. We displace it from the equilibrium position applying a magnetic field gradient
for 10 ms, using a pair of coils in anti-Helmoltz configuration placed along x. The coils
produce magnetic gradients in all the three directions, inducing in-trap oscillations
along all the axes. We sample the oscillation applying a sequence of microwave pulses
coupling to |2,−2〉 to extract 3% of the trapped sample every 20 ms. The extracted atoms
fall for 4 ms before being imaged simultaneously along the x and y directions using
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the Ax and the H1 camera, respectively. We are able to make 10 extractions before the
condensate is depleted too much and the visibility of the falling cloud is reduced.

The motion of the center-of-mass after TOF is mapped to the in-situ position of the
cloud at the time of the extraction, measuring the frequency and amplitude of the BEC
oscillation. With this real-time imaging procedure, the in-situ motion of the BEC is
measured in a single experimental shot at a sampling frequency of 50 Hz, limited by
the frame rate of our camera. A faster acquisition would require cropping the region
imaged by the camera, which cannot be made smaller than the size of the falling cloud.
This rate is sufficient to measure the axial trap frequency, but not high enough for the
radial one. Since the initial conditions of the oscillation are reproducible, we repeat the
experiment 10 times shifting each time the sampling start time by 2 ms, and then we
interleave the data sequences obtaining a total sampling rate of 500 Hz.

Fig. 5.5 shows the in-situ displacement over time along the three axes. Data along
x in (a) come from one single experiment, while the data in (b-c) for y and z are the
result of 10 interleaved sequences. Fitting with a sine function we measure the trap
frequencies: ωx = 2π× 8.89(3)Hz, ωy = 2π× 87.77(3)Hz, ωz = 2π× 86.43(6)Hz. We
fitted the frequency along x also on the interleaved sequence, to increase the number of
fitted points, and found a result compatible with the one from one single sequence.

To verify that the extraction process does not affect the motion of the trapped cloud,
we repeat the measurement with a more standard method. We excite the oscillation
pulsing the magnetic gradient, wait for a variable evolution time, then release the whole
cloud and image it after a fixed TOF along the x and y directions. The experiment must
be repeated once for each single point on the measured curve, but we ensure that the
in-situ motion is not disturbed by other operations. The values of the trap frequencies
we find fitting the TOF position vs. waiting time are in good agreement with the ones
quoted above.

5.2.2 In-situ imaging

We now turn to the measurement of the in-situ density profiles for the EoS. Before each
data run we re-calibrate the Rabi coupling, first scanning the microwave frequency to
tune it to the value resonant with the center of the BEC, and then scanning the pulse time
to measure the Rabi frequency with the method explained in Sect. 5.1.1. An example of
such measurements is plotted in Fig. 5.6.

To sample (in the LDA picture) the full equation of state of the homogeneous gas,
we need to produce a trapped condensate keeping a sizable thermal component. We
tune the evaporation parameters to obtain samples with a typical number of 8× 106

atoms and temperature of about 300 nK, corresponding to a BEC fraction of about 30%.
To stabilize the number of atoms, we monitor the fluorescence of the DS-MOT during
the loading stage using a photodiode, and trigger the beginning of the experiment (gray
molasses and magnetic trap loading) when the fluorescence signal reaches a defined
value. In this way we reduce the effect of frequency or intensity fluctuations of the
cooling lasers, which can affect the loading rate of the experiment.

At the end of the RF evaporation we wait 500 ms to let the sample reach equilibrium,
then we image it on the H4 camera with the PTAI technique. We combine PTAI with the
fast imaging sequence described in Sect. 3.2.1. We first take the probe picture, when the
atoms are still far-off-resonance. With the focusing procedure described in Sect. 3.2.3 we
ensured that the probe picture is not affected by the presence of F = 1 atoms. Then we
repump the desired fraction of the sample and image it with the second picture. The
time between the two probe pulses, with the microwave one fired in the middle, is of
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200 µs. The imaging conditions are set to I/Isat = 4, τ = 5 µs, as discussed in Sect. 3.1.1.
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Figure 5.6: Top: microwave fre-
quency scan. The fraction
of transferred atoms is fitted
with a sinc function to mea-
sure the resonance frequency
of the |1,−1〉 → |2,−2〉 tran-
sition. Bottom: Rabi fre-
quency measurement with
the procedure discussed in
Sect. 5.1.1.

We image different regions of the condensed sample
by varying the microwave pulse time. A short pulse
puts on resonance only a small fraction of atoms, which
we tune so that the central high-density peak reaches an
optical density of ∼ 2 and can be imaged in absorption
without saturation. When doing so, the OD in the outer
regions of the cloud is still too low to be measured with
a sufficient SNR. Using a longer microwave pulse, the
OD in the tails of the distribution is brought to the op-
timal range for imaging, while in the center the sample
becomes too optically thick and the image is saturated.

In each experimental shot we calculate the repumped
fraction P(t) from Eq. 5.1, using the measured microwave
pulse time t, the Rabi frequency Ω calibrated in the same
run, and where we set δ = 0 neglecting the spatial in-
homogeneity of the partial transfer. Fig. 5.7a shows a
stack of tree different frames, imaged with increasing
microwave pulses. The Rabi frequency for this data is
Ω = 49.3(3) kHz, and the pulse times (with the corre-
sponding P(t)) are, from top to bottom: 0.6 µs (0.9%),
1.21 µs (3.5%), 2.41 µs (13.4%). Each image is the average
of 4 to 6 experimental shots in the same conditions.

We clean the images from residual interference
fringes by selectively removing high spatial frequency
peaks in the FFT. To improve on the SNR, we bin and
make a moving average along the rows (x axis of the BEC), which is the direction in
which the gradient of the trapping potential is lower, and the features in the density
profile are expected to be smoother. We do not apply any correction along the columns
(z axis), as the sample is 10 times tighter in that direction and filtering would also wash
out the spatial features.

5.2.3 Reconstruction of the density profile

With the PTAI method we are able to image arbitrary regions of the BEC, but a single
image is not able to cover the whole range of interest. With a technique inspired to
high-dynamic-range (HDR) photography, we combine the information from different
shots to obtain a complete image of the column density of the trapped sample.

We remove the saturated parts in all the pictures by cropping them out above a
threshold of OD = 3, chosen to be higher than the maximum OD in the first frame.
We plot slices along x of the cropped data in Fig. 5.7b, highlighting the regions where
the data from each extraction are considered valid before they are covered by the next
one. In the overlap regions we consider only the highest profile, for which the SNR is
maximum. The non-overlapping regions of valid data, although sketched only along
the x axis, actually form concentric rings, and cover without intersections the whole
area of the picture by construction.

Each frame is rescaled by the corresponding transfer fraction, cropped to the validity
region, and then joined to the other ones to form a complete HDR image of the optical
density of the atomic sample. Fig. 5.7c shows the HDR picture computed from the
frames in (a), while in (d) we plot a slice along x indicating the contribution of the single
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Figure 5.7: (a) Optical density images at different microwave pulse times: 0.6, 1.2, 2.4 µs. (b)
Slices along the x axis, showing the validity region of each frame. (c) HDR image of the BEC
and (d) slice along x, showing the contributions of each single frame.

frames. The number of atoms, obtained integrating the OD, is of 8.7(5)×106.

Uniform partial transfer

The reconstruction algorithm described above assumes a homogeneous extraction. This
is not exact in the magnetic trap due to the spatially-dependent Zeeman detuning
expressed by Eq. 5.2, but we can work in a range of parameters where the extraction
P(t) is approximately independent of the detuning and can be considered uniform.

For Ωt� 1, we expand Eq. 5.1 in powers of Ωt and find that the transferred fraction
is independent from the microwave frequency, scaling as Ω2t2/2. This means that the
lowest extractions, which are the ones we use to image the BEC, are the less affected by
the inhomogeneity. Moreover, for a given product Ωt (which is equivalent to fixing the
fraction we want to extract), a high Rabi frequency helps to minimize the inhomogeneity,
as the detuning therm δ ∝ 1/Ω becomes negligible due to power-broadening of the
resonance.

We estimate the systematic error on the density measurement by computing the
spatial dependency of P(t, δ) in our trap geometry, using Eq. 5.2. In Fig. 5.8 we plot a
map of the transferred fraction in the xz plane around the atoms, for the parameters used
for the data in Fig. 5.7. The area occupied by the sample is sketched by the blue and red
ellipses, delimiting the condensate (at the Thomas–Fermi radii) and the thermal fraction
(at 2.5 σ, where the measured density goes to zero within errors) respectively. Fixing
the resonance in the center of the atomic cloud, the maps show that the inhomogeneity
is stronger along the z direction, due to the gravitational sag, and the lower side of the
sample is the most affected. We see that a Rabi frequency of about 50 kHz allows to
extract up to 15% of the sample with a top-to-bottom difference in the extraction at the
edges of the BEC of less than 1%. The inhomogeneity affects the extraction in the tails of
the thermal cloud, with a top-to-bottom difference of up to 25%. However, the atomic
density in those regions is 102 times smaller than in the BEC fraction, so that they have
a negligible contribution to the integrated column density.
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Figure 5.8: Map of the transferred fraction P(t, δ(r)) for a Rabi frequency Ω = 2π × 49.3 kHz,
calculated on the xz plane using Eq. 5.1 and Eq. 5.2 for four different values of the microwave
pulse time (top to bottom): 0.6, 1.2, 2.4 and 10 µs.
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5.3 Results

5.3.1 Pressure and density profiles
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Figure 5.9: (a) Pressure profile p(x) along the
trap axis. (b) Density profiles, computed with
the LDA method (red) and with inverse Abel
transform (blue). The inset shows a zoom on
the transition region. (c) Local reduced tem-
perature T/Tc(n) computed from the Abel
density data with Eq. 1.28. The inset shows
a zoom on the transition region, in the same
spatial range as in (b).

We compute the pressure along the x axis
using Eq. 1.47, following the LDA method
[74]. The doubly-integrated density n1 is
obtained by integrating the optical den-
sity along z, as n1 =

∫
OD dz/σ0, and the

left (x < 0) and right (x > 0) side of the
image are averaged to exploit the sample
symmetry. The resulting pressure profile
is plotted in Fig. 5.9a.

We compare the results of two differ-
ent methods to obtain the density along
the axis. The first one uses Eq. 1.48, follow-
ing from the same LDA approach used
for the pressure, and requires to calculate
(1/x)dn1/dx. This method is sensitive to
experimental noise, because differentia-
tion naturally amplifies high-frequency
noise components. To compute the nu-
merical derivative we use a smooth high-
order central difference scheme [136],
which limits the noise by suppressing
the amplification of high spatial frequen-
cies. The density profile obtained with
this method, plotted in Fig. 5.9b (red dots),
is affected by strong ripples close to x = 0,
where the 1/x factor enhances the oscil-
lations that are not filtered out by the
smoothing differentiation method. Try-
ing to suppress them by reducing the fre-
quency cutoff of the filter results in an ex-
cessive smoothing of the curve, losing the
knee corresponding to the BEC transition
point.

Alternatively, we compute the 3D den-
sity from the inverse Abel transform of
the OD [137]. The Abel transform is an
integral transform mapping a slice of a
3D cylindrically symmetric object to the
image of its projection on a plane paral-
lel to the symmetry axis. Conversely, the
inverse transform allows to retrieve infor-

mation on the density structure of the object starting from its projection. As a data
analysis method, it gained primary importance in the field of photoelectron imaging
[138], and was recently proven to be useful also in the cold atoms community [96, 97,
139].

The use of the Abel inversion is possible due to the symmetry of the harmonic
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trapping potential. It actually turns out that the requirement for Abel inversion is that
the imaged object is elliptically symmetric, meaning that its density distribution depends
on a generalized radial coordinate

√
λ2x2 + y2 on planes parallel to the projection

direction. This is the same as requiring that the object can be made circularly symmetric
with a proper scaling of coordinates. In our trap geometry this is evident around the
x axis, because it is the axis around which the Ioffe trap is designed to be symmetric,
but the elliptical symmetry is present around any of the principal axes as long as the
approximation of harmonic potential is valid.

We choose to consider the rotational symmetry around z and reconstruct the density
profile from slices along horizontal planes. This is done computing the inverse Abel
transform along the rows of the image, rescaling the x coordinate by the ratio ωy/ωx.
This allows to take advantage of the noise-reducing operations that was possible to
perform only along the rows. If we considered the obvious symmetry around the x axis,
this would have required to compute the inverse Abel transform along z, where the
noise could not be removed and where the details in the density are less resolved.

As the direct transform is an integration process, implicit in the imaging method,
the inverse transform involves differentiation of the data and so it is subject to the same
considerations about the noise as in the LDA method. In this case we can take advantage
of the variety of numerical implementations for the computation of the Abel transform,
which include strategies to suppress the effect of noise. I choose to focus on the Hansen–
Law method [140], starting from its implementation in the Python package PyAbel [141].
In this method, the transformed function is computed recursively as the solution of a
linear set of differential equations, where the derivative of the input function serves as
the driving therm. I implemented a version of the Hansen–Law algorithm which uses
the high-order differentiation scheme presented above to compute the driving term, and
used it for the calculation of the 3D density profile. The result is plotted in Fig. 5.9b. The
Abel method performs better than the LDA one in handling the noise: even thought
some oscillations are still present, it does not show the strong ripples close to the top of
the distribution.

5.3.2 Global thermodynamic variables

We compare the measurements with Hartree–Fock theory, which describes the non-
monotonic behavior of the chemical potential in terms of the mean-field interactions
between the condensate and the thermal fraction. Within LDA, the density distribution
of the trapped gas nHF(r) is described by Eq. 1.32 with the substitution µ→ µ0−Vext(r),
leading to the expression

nHF(r) = n0(r) + nT(r) ,

n0(r) = max
(

µ0 −Vext(r)− 2gnT(r)
g

, 0
)

,

nT(r) =
1

λ3
T

g3/2

(
e(µ0−Vext(r)−2gnHF(r))/kBT

)
.

(5.6a)

(5.6b)

(5.6c)

Likewise, the pressure inside the cloud pHF(r) can be derived from Eq. 1.33 with the
LDA substitution.

This means that, within LDA, the shape of the atomic sample is completely deter-
mined by the global thermodynamic quantities µ0 and T, the chemical potential in the
center of the atomic cloud and the temperature. We need a method to measure those
parameters from the density distribution, as they are necessary to determine the EoS of
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Figure 5.10: Fit of the ideal gas model on the tails of the optical density with two free parameters.
Left (a): A slice along x of the OD, the fitted ODHF (black dashed line) and the HF profiles
computed from the result of ideal model fits at selected Rlim. Right: Fit results for T (b) and
µ0 (c) as a function of Rlim. In (b) and (c) the dashed lines mark the best-fit values from the
full HF model.

the homogeneous phase. We notice here that the expression 5.6c coincides with Eq. 1.42
for the HF distribution of the thermal fraction in a trapped gas computed in the semi-
classical approximation, which states the equivalence of semiclassical approximation
and LDA for the distribution of a non-condensed trapped gas.

As a first step, we compute the optical density ODHF = σ0
∫

nHF dy integrating the
HF density along y, which is the imaging direction in our experiment, and make a 2D
fit to the reconstructed in-situ image. The values we obtain, µ0 = kB × 76.1(1) nK and
T = 295.2(1) nK, are the ones that best parametrize the measured density distribution
according to HF theory.

We also try to measure these parameters in a way that does not directly involve the
theory that we are comparing the data with. A common approach is to assume that
the tails of the density profile can be approximated using the equation of state of an
ideal Bose gas [98], and fit the approximate model only in a limited region of the data.
The atomic density of an ideal gas nIBG(r) is calculated by setting g = 0 in Eq. 5.6c.
Integrating it along y we obtain an expression for the optical density

ODIBG(x, z) = σ0
kBT

h̄ωyλ2
T

g2

(
e(µ0−Vext(x,0,z))/kBT

)
, (5.7)

where σ0 is the resonant cross-section for absorption imaging as in Eq. 3.5.
We select the tails in the OD image (Fig. 5.7c) by considering the region where

x2 + (ωz/ωx)2 z2 > R2
lim and fit it with Eq. 5.7 with both µ0 and T as free parameters.

Fig. 5.10 shows the results of this method as a function of the threshold radius Rlim.
On the left (a) we plot a slice along x > 0 of the measured optical density, the fitted
ODHF (black dashed line), and some ODHF curves calculated using the result of the
ideal gas fit at selected values of Rlim. On the right (b), the dots show best-fit values
from the ideal gas fit in a range of Rlim, marking with colors the ones used to plot the
profiles in (a). The dashed lines mark the HF fit result. All the fits are two-dimensional,
but we only plot a slice of the resulting images for a better visualization.

The ideal model gives results in agreement with the HF predictions, but only when
the OD is fitted including regions close to the BEC, where in principle the approximation
to ideal gas is less exact. On the other hand we should consider that we are fitting an
integrated column density, where the values on the axis even close to Rlim are determined
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Figure 5.11: Experimental data fit to the ideal gas model, one parameter at a time. (a) Fit to p(n)
with T as the only free parameter. (b) Fitted temperature vs. Rlim. (c) Slice along x > 0 of
the measured OD, with HF curves resulting from a 2D fit of ODHF where µ0 is the only free
parameter, while T is fixed to 290 nK fitted on the data in (a). (d) Fitted chemical potential vs.
Rlim. In (b) and (d) the dashed lines mark the best-fit values from the full HF model.

integrating points whose distance from the center of the cloud is always greater then
Rlim, such that the ideal model approximation is better suited.

Anyway this fitting procedure is difficult to trust: as the shape of the distribution in
the tails is relatively insensitive to variations in µ0, leaving it as a free parameter results
in too high values which are inadequate to describe the distribution in the condensed
region, as we can see by computing the corresponding HF profiles.

The use of two fitting parameters is due to our choice to compare the distribution
to the EoS n(µ, T), where in LDA the spatial coordinate takes the place of the chemical
potential through the introduction of the parameter µ0. Since having measured both
the pressure and the density profile is equivalent to having measured the EoS p(µ, T)
and n(µ, T) in the same range of µ, we eliminate the chemical potential by plotting the
pressure as a function of the density, and fit it with the EoS p(n, T), where now T is the
only unknown parameter. Considering the data in the tails for x ≥ Rlim, we fit using the
ideal Bose gas result

pIBG(n, T) =
kBT
λ3

T
g5/2

[
g−1

3/2

(
nλ3

T
)]

, (5.8)

derived from Eq. 1.27 and Eq. 1.33 with g = 0.
Fig. 5.11b shows the fitted temperature as a function of Rlim, where in (a) we plot in

log-scale the experimental pressure vs. density, and the fitted pIBG for selected values of
Rlim, marked with colors. We see that the temperature has in practice the same behavior
as in the previous two-parameters fit (Fig. 5.10), confirming that µ0 plays a negligible
role in the ideal gas model, and is rather a potential cause of overfitting. The temperature
that best fits the data in the whole range of the non-condensed phase is T = 290(10) nK.

We fix the temperature in the ODHF function to this value, and repeat the 2D fit
on the optical density leaving µ0 as the only free parameter. The results are plotted in
Fig. 5.11(c-d), where the meaning of the displayed curves is the same as in Fig. 5.10.
Now the fitted values of µ0 do not drift away like in the previous case, and are more
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Table 5.1: Fitted values of µ0 and T for different fitting schemes.

fit µ0 [kB × nK] T [nK]

ODHF 76.1(1) 295.2(1)

ODIBG (Rlim = 150 µm) 78.0(4) 292.1(2)

pIBG(n) (T only) — 290(10)

ODIBG (µ0 only) 76(3) —
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Figure 5.12: (a) p(n) experimental EoS in reduced variables. The data smoothly interpolate
between two extreme regimes across the phase transition, the ideal gas model for n/nc < 1
and a simplified zero-temperature model for n/nc > 1, showing that the condensate gives the
dominant contribution to the pressure in the condensed phase. On the left, the data approach
the perfect gas law p = nkBT. (b) Experimental curve p(t), compared to the HF (black) and
the ideal gas model (orange). The data show a clear deviation from the non-interacting regime
in the condensed phase.

distributed around the value found by fitting the full HF model. Comparing the different
HF profiles computed using the values of µ0 and T obtained from the combination of the
two fits described above, we fix the value of the chemical potential to µ0 = kB× 76(3) nK.
Table 5.1 summarizes the results of the different fitting schemes.

We conclude that fitting an approximate model to a selected region of the data to
measure global thermodynamic parameters is in principle a correct procedure, but that
can lead to incorrect results when used to describe the data on a global level. Using the
pair of values quoted above we compute the HF predictions for the pressure pHF(x) and
for the density nHF(x) along the trap axis, which we compare to the measured profiles,
and we also use them to compute the EoS for the chemical potential.

5.3.3 Equation of state

Using pressure, density and temperature along the trap axis, we study the equation of
state of the interacting Bose gas through the BEC phase transition. A parameter that
indicates the crossing of the transition is the reduced temperature t = T/Tc, where the
(local) critical temperature is a function only of the density through Eq. 1.28. Fig. 5.9c
shows the variation of t along the trap axis. An equivalent parameter is the reduced
density n/nc = t−2/3, where the atomic density is normalized to the critical density
nc = ζ(3/2)/λ3

T, which is a function of temperature only.
We first discuss the pressure EoS p(n, T) by plotting in Fig. 5.12a the reduced pressure
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p/pc, normalized to the value in the condensed phase for an ideal gas at the same
temperature pc = kBTζ(5/2)/λ3

T, versus the reduced density. We see how the data
smoothly interpolate between two distinct regimes across the BEC phase transition.

In the normal phase at n/nc < 1 the gas follows the EoS of the ideal Bose gas. In the
low density side, corresponding to low values of the chemical potential, one can neglect
higher orders in the power series of the polylogarithm functions, thus neglecting the
quantum statistics of the particles, and the gas pressure becomes simply proportional to
the density, following the ideal gas law p = nkBT.

On the other side of the plot, at n/nc > 1, the pressure is dominated by the con-
tribution of the condensed phase. The data are seen to agree well with a simplified
zero-temperature model, p = pc + gn2/2: neglecting the small thermal fraction, we
approximate the pressure as the one of an interacting gas at the same density and zero
temperature gn2/2, to which we sum the partial pressure pc of the thermal component,
which is independent of the density.

0.0 0.5 1.0 1.5
2

1

0

1

2

3

0.0 0.5 1.0 1.5 2.0 2.5
T/Tc

125

100

75

50

25

0

/g
n

Figure 5.13: Reduced chemical potential u =
µ/gn across the phase transition, as a func-
tion of t. Blue dots are experimental data,
while the black and orange lines are the HF
and ideal gas predctions, respectively. The
two plots show the same data on different
zoom scales, highlighting the correction due
to mean-field interactions. In the condensed
region, for t < 1, the data follow the non-
monotonic HF curve with a smoothed peak
close to t = 1.

In Fig. 5.12b we plot the same curve as
a function of t, to compare it with the ho-
mogeneous gas result shown in Fig. 1.4a.
The pressure profile agrees with the same
quantity computed from the HF theory
(black dashed line), and in both plots it
deviates from the ideal gas prediction due
to the strong effect of interactions in the
condensed phase. The agreement with the
simplified T = 0 model, where we have
completely neglected interaction terms in
the thermal fraction, indicates that the
pressure of a condensed gas is insensitive
to finite-temperature interaction effects, as
it is dominated by the much bigger contri-
bution of the condensate.

The fitted value of µ0 allows to obtain
the chemical potential EoS. In Fig. 5.13 we
plot the local reduced chemical potential
u = (µ0 − Vext)/gn vs. the reduced tem-
perature t. The data are compared, as in
Fig. 1.4b, to the ideal Bose gas theory and
to HF theory.

On the bigger scale of the lower plot,
the data follow a curve which essentially
coincides with the ideal gas EoS, as the
mean-field correction becomes negligible
when compared to the values of µ in the
normal phase. The distinction is evident
in the zoomed region of t < 1, where the
data show that the chemical potential is
non-zero and follows the non-monotonic
behavior predicted by HF theory, confirming the presence of a peak at the transition.
Only the points in a narrow window close to the edge of the condensate (inset in
Fig. 5.9b) contribute to the region of the EoS curve where t is close to 1. There the
condensate fraction goes to zero, and the mean-field shift in the chemical potential
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Figure 5.14: Solution of the 3D trapped HF model, for a sample of 8.6× 106 23Na atoms at
290 nK with the same trap parameters as in the experiment. (a) and (b) show slices along x
and z respectively of the condensate (dot-dashed), thermal (dashed) and total density (solid
line), showing that the relative surface width of the condensate, where LDA fails, is negligible
along the weak axis x but is instead very relevant along z, breaking the LDA assumption.
(c) Plots of the chemical potential EoS measured with the LDA method along x (blue) and z
(orange), showing how beyond-LDA effects completely wash out the peak feature predicted
in a homogeneous system. The colors correspond to the curves in (a-b). In all the panels, the
black dashed line is the HF profile calculated using the LDA.

starts to be dominated by the contribution of the thermal fraction, which is twice as big,
resulting in the shifted value u = 2. In the inner region of the sample the thermal fraction
becomes quickly negligible with respect to the condensate, and the data accumulate
close to the T = 0 limit value of u = 1.

The agreement between the data and the HF curve is still not complete, and it can be
affected by a number of factors. Oscillations in the curve are the result of oscillations in
the density profile, which are visible also in Fig. 5.9b. These are attributed to the cleaning
steps in the data analysis, such as moving averages or high-order differentiation. Any
noise-cancelling operation has the effect of low-pass filtering the data in the spatial
frequency domain, and as discrete filters cannot be made smooth by definition, this
leads to the creation of ringing artifacts in the signal.

Imaging resolution contributes to change the shape of the measured curve, as the
peak shape in µ comes from the sharp density change predicted by HF theory at the
boundary of the condensate. The width of the transition region along the x axis can
be estimated as the range where 0.5 ≤ t ≤ 1.2 (the region where, in the EoS plot,
u ≥ 1.5), whose extent is of about 30 µm as shown in the inset of Fig. 5.9c. The limited
resolution of our imaging system should smear the peak feature, but still allow us to
see the non-monotonic trend. We check this by convolving the fitted ODHF with a 2D
Gaussian of 4 µm r.m.s. width (the value measured in Sect. 3.2.4), compute the density
from the smoothed image with the same Abel inversion routine we used on real data,
and plot the resulting EoS (gray dashed line) on top of our measurement, finding a
better agreement on the values close to the peak.

The use of HF theory to predict the properties of the system at the critical point
could be questioned, as mean-field theories are notoriously incorrect close to a phase
transition, where fluctuations are enhanced. In the case of homogeneous systems, the
peak shape of the chemical potential is confirmed by a thermodynamic description
based on beyond-mean-field universal relations [72].

From an experimental point of view, the possibility of observing it in a trapped
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Figure 5.15: Reduced compressibility, plotted versus the axial coordinate (left) and versus T/Tc
(right). The black line and the orange line are the prediction from the HF and the ideal gas
model, respectively.

sample is based on the validity of the local density approximation, which itself breaks
up at the edge of the condensate. The extent of the region where LDA fails can be
estimated by the thickness of the surface region of the condensate, calculated with
Eq. 1.52. Using the parameters of our experiment, the depth along the x axis is of about
1 µm, which is negligible compared to the transition region of 40 µm as estimated in
Fig. 5.9c. Along the tightly-confined direction z instead, where the potential gradient
is stronger by a factor of 10, the surface depth is of about 2 µm and covers almost the
whole transition region, whose length is reduced to 4 µm.

A step beyond LDA is the inclusion of quantum pressure in the calculation of the
condensate density, which is done in the HF theory developed in a harmonic trap,
leading to Eq. 1.39. I computed the solution to HF equations in a 3D geometry with our
trap parameters for the measured number of atoms and temperature, using the iterative
method reported in [70] (technical details in Appendix B). In Fig. 5.14 we plot slices of
the solution along the x (a) and z directions (b), compared with the LDA profile at the
same values of µ0 and T (black dashed line). The calculation shows that beyond-LDA
terms have a strong effect on the shape of the density distribution where the potential
gradients are high, smoothing the corresponding LDA EoS profiles plotted in (c).

Last, we compute the compressibility κ from n and p using Eq. 1.34. In Fig. 5.15 we
plot the reduced quantity κ/κ0, normalized to the zero-temperature value κ0 = 1/gn2,
both as a function of the axial coordinate and of T/Tc. The divergence at the transition is
still present in HF theory, even thought it is not visible in the plot due to finite numerical
resolution. The data qualitatively follow the interacting gas curve, going from κ ∼ 0
to κ = κ0 across the phase transition, but noise and oscillations in the density profile
prevent any quantitative comparison. If we try to reduce the strength of the filtering
data operations to gain a steeper profile, the SNR in the plateau region below Tc goes
easily below 1, and the signal is completely masked.

The width of the peak, almost 2 µm in the left plot, falls closely below the resolution
of a standard imaging setup. Moreover, the feature falls completely within the region
where LDA is known to fail, so that it is not even guaranteed that such a sharp feature
exists in a trapped condensate, as quantum pressure effects could be responsible for
washing out the transition in the compressibility.
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Conclusions

Using the PTAI method and the HDR reconstruction technique I developed for this
project, we were able to measure the in-situ absolute density of a trapped BEC in the full
range, from the center to the thermal wings. A complete image of the optical density
allowed to measure the pressure and the density along the trap axis, using respectively
the LDA method [142] and the inverse Abel transform.

We fit the obtained profiles to determine the global thermodynamic parameters µ0
and T. We discussed the feasibility of a fitting scheme which does not rely on the HF
model, and found that approximating the tail of the atomic sample with the ideal Bose
gas model leads to results consistent with HF theory, provided that the selected data
range is sufficiently close tho the edges of the BEC. Also, we took advantage of the
combination of the axial pressure and density to fit the two parameters independently.

The pressure and density profiles do not depend on a particular thermodynamic
model for the Bose gas, as their calculation is based either on general thermodynamic
principles (Gibbs–Duhem relation) or on the symmetries of the system (Abel inversion).
Therefore, the p(n) plots in Fig. 5.11a and Fig. 5.12a represent a model-free EoS for the
homogeneous interacting Bose gas. On the other hand, since the values of µ0 and T
must be obtained by a fitting procedure, they are dependent on the particular model
that we choose to fit with. It is necessary to fit at least the temperature to identify the
transition point on the pressure curve, since the pressure is a relatively smooth quantity
at the transition, with a discontinuity only in the second derivative (corresponding to
the compressibility peak) which is very hard to distinguish measuring the p(n, T) EoS.

We extracted the µ(T) EoS by plotting the reduced chemical potential (µ0−Vext)/gn
vs. T/Tc(n). This measurement is a first direct observation of the non-monotonic
shape of the chemical potential curve across the BEC phase transition, and contributes
to sustain the hypothesis that a peak in the chemical potential is associated with the
general normal-to-superfluid phase transition, of which the weakly-interacting Bose gas
is one of the many examples.

The comparison of the data with HF theory suffers from a number of limitations,
the main one being imaging resolution. The effect of low resolution on the chemical
potential plot is to smooth the peak feature and lower its height. As the potential
gradient is weaker along the x axis of our trap, the transition region is wide enough
to allow us to observe the non-monotonic behavior applying the LDA scheme on the
axial density profile. We found agreement between our data and theory including
resolution effects on the LDA HF prediction for the EoS curve. Another good aspect of
the weak trapping potential along x is that it mitigates the corrections to LDA, which
in principle breaks up in the edge regions of the BEC preventing the applicability of
our measurement scheme. We evaluated the extent of the corrections by solving the HF
equations in harmonic trap, which include beyond-LDA quantum pressure terms in the
calculation of the condensate density, and found that such corrections are small along
the x axis, while they are very relevant along the tight axis z.

Finally, we calculated the compressibility EoS κ(T), but the experimental data are
too noisy to be able to observe the presence of a peak at the transition. The above
considerations apply even stronger in this case, as the compressibility is seen to recover
the constant value κ0 as soon as one enters the condensed phase, as shown by the
LDA HF curves. The peak is narrow and completely contained in the spatial region
where LDA cannot be applied. Even if cleaner measurements could help identifying
the transition point and determine the value of the compressibility in the BEC phase,
we question the possibility of observing the sharp peak across the transition with an
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Numerical solution of
the optical Bloch equations
Writing Eq. 3.3, we assume that the scattering rate R in a multilevel atom has the same
dependency on s0 and ∆ as in the two-levels case (Eq. 3.2), and that the effect of light
polarization can be summarized, under certain conditions, in a single coefficient α. This
coefficient represents then a weighted average of the oscillator strengths of the single
mF → mF′ transitions that contribute to the scattering process.

The calculation of the scattering rate in the general case requires to solve the full
system of the OBE, which includes all the atomic levels, all the couplings introduced
by laser light, and the decay channels of the excited states. It is convenient to rewrite
the OBE in the form of a master equation for the time evolution of the atomic density
matrix ρ:

∂tρ = −i [H0 + Hint, ρ] +
Γ
2 ∑

q
2ΣqρΣ†

q − ρΣ†
qΣq − Σ†

qΣqρ . (A.1)

The atomic states are grouped in the two separate subsets of ground g = −F, . . . , F and
excited e = −F′, . . . , F′ states, and the index q = −1, 0, 1 labels the light polarizations
(corresponding to σ−, π, σ+). We notice that this formalism applies to the case of weak
magnetic fields, where the hyperfine levels |F, mF〉 are well defined. The free atom
hamiltonian

H0 = ∑
g

δωg|g〉〈g|+ ∑
e
(δωe − ∆)|e〉〈e| (A.2)

includes the linear Zeeman frequency shift δωg,e = gFmFµBB/h̄ and the laser detuning
∆, which is defined with respect to the non-shifted transition |F, mg = 0〉 → |F′, me = 0〉.
Both the RWA interaction hamiltonian Hint and the Lindblad term can be expressed in
terms of lowering operators

Σq = ∑
g,e
〈F, mg; 1, q|F′, me〉|g〉〈e| , (A.3)

which express the transition between all the pairs of ground and excited levels coupled
by light with polarization q. In the interaction term

Hint =
1
2 ∑

q
Ω∗q Σq + ΩqΣ†

q (A.4)

the Rabi frequencies Ωq are specified for each polarization by

Ωq =
〈J||er||J′〉Eq

h̄
(A.5)
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Figure A.1: Solution of the OBE with π polarized light and B = 4 G, scanning s0. (a) Total
steady-state population vs. time, showing a shorter transient time for higher intensity. (b) Top:
histograms of the populations in the excited states. Bottom: Excited populations, normalized
to the one in mF′ = 0. This shows that the relative distribution of the atomic populations is
independent of the light intensity. (c) Scattering rate R/Γ, fitted with Eq. 3.3.

where 〈J||er||J′〉 is the reduced dipole matrix element of the optical transition, and Eq is
the amplitude of the q-polarized component of the light electric field. They are related
to the total light intensity I by

2 ∑
q

|Ωq|2

Γ2 =
I

Isat
. (A.6)

Given the definition of s0 = I/Isat, we can specify the light polarization by a vector λq
(such as ∑ |λq|2 = 1) and rewrite the Rabi frequencies as Ωq =

√
s0/2 λqΓ.

I numerically computed the time evolution of the system using the Python pack-
age qutip [132] for the 23Na D2 transitions F = 2 −→ F′ = 3, with arbitrary light
polarization and in a range of magnetic fields.

For a given polarization, a fixed magnetic field B and ∆ = 0, I run simulations
scanning the total light intensity s0. Each simulation returns the time evolution of the
atomic density matrix ρ(t), from which the scattering rate at steady state is calculated
as R = Γ ∑e ρee. The result is fitted as a function of s0 with Eq. 3.3, with α as the fitting
parameter. As the OBE do not include atomic motion, the resulting scattering rate does
not account for the Doppler shift effect due to probe recoil. Fig. A.1a shows an example
of time evolution, plotting the total excited population ∑ ρee(t) as a functon of time, at a
finite magnetic field of 4 G. Fig. A.1c shows the scattering rate R/Γ and the value of α
resulting from its fit.

The results do not depend on the initial state of the atomic system, since optical
pumping will bring the atoms to the steady distribution with no memory of the initial
state. However, the transient time evolution is influenced by the initial conditions and
by the probe intensity, and it can take up to several µs to reach the steady state if s0 . 0.1.
To reproduce our experimental case of PTAI imaging, all the simulations are initialized
with all the atoms in |2,−2〉.

When the light is circularly polarized, the system is pumped to cycle between the
stretched states |2,±2〉 and |3,±3〉 becoming effectively a closed two-level system.
Eq. 3.2 holds at all magnetic fields, and α has a constant value of 1.

For linear polarization, in the steady state the population ends up symmetrically
distributed around mF = 0. This symmetry is preserved even at finite magnetic field,
since the Zeeman detuning is opposite for states with opposite mF, but it appears
squared in the expression for the excited state populatons. Scanning the probe intensity
one varies the total population in the excited states, but not their distribution among the
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Figure A.2: Same plots as in Fig. A.1, but for θ = π/6. The total light intensity is still indicated
by s0, but it is divided in a 75% (cos2 θ) on π polarization, and 25% on σ± (equally distributed).
The presence of circularly polarized light produces a non-zero population in the mF′ = ±3
states.
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Figure A.3: Left: α as a function of magnetic field B, for π polarized light. Right: α as a function
of the polarization angle θ, for different values of magnetic field.

Zeeman sublevels. This can be visualized by plotting a histogram of the ρee normalized
by the population in mF′ = 0, as done in Fig. A.1b (bottom).

Fig. A.3a shows the fitted value of α vs. B, where we recover the analytical result
1.829 at zero field [118]. The plot shows that the effect of the magnetic field is a weak
quadratic correction, as α remains close to 2 within 5% even at moderate fields.

I also checked the effects of a possible error in the setting of the light polarization,
simulating the case where light is sent perpendicular to the magnetic field and linearly
polarized, but the polarization is tilted by an angle θ with respect to the field direc-
tion. For θ = 0 the light is totally π polarized, while for θ = π/2 the light oscillates
perpendicular to the field, so it is equally distributed between σ− and σ+.

Fig. A.2 shows the same quantities plotted in Fig. A.1, but for B = 0 and θ = π/6.
The presence of circularly polarized components of light produces a non-zero population
in the mF′ = ±3 states. The dependency of α on the polarization angle θ is shown in
Fig. A.3b. There is no effect from the tilt at zero magnetic field, where α maintains the
constant value 1.829, which is physically correct since at zero field the quantization axis
of the atomic spin is undefined, and all light polarizations are equivalent. The effect of
the misalignment becomes relevant at finite magnetic field.
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Solution of HF equations in the
harmonic trap
The Hartree–Fock theory for a harmonically trapped gas determines the effective single-
particle eigenstates of the system from the (infinite) set of equations in Eq. 1.39. With a
semiclassical approximation, the density of thermal particles can be self-consistently
calculated, reducing the set of equations to[

− h̄2

2m
∇2 + Vext(r) + g(|ψ0|2 + 2nT)

]
ψ0 = µψ0 ,

nT =
1

λ3
T

g3/2

(
e(µ−Vext(r)−2gn/kBT

)
,

N =
∫
(|ψ0|2 + nT) d3r ,

(B.1a)

(B.1b)

(B.1c)

with n = |ψ0|2 + nT. These have been already derived in Chap. 1 respectively as
Eq. 1.39a, Eq. 1.42 and Eq. 1.40, and I rewrite them here for clarity.

Fixing the values of the number of atoms N and the temperature T, the system can be
solved for ψ0, nT and µ, which are the condensate wavefunction, the density of thermal
atoms, and the chemical potential. The density of condensed atoms is then n0 = |ψ0|2.

I set N = 8.6× 106 and T = 290 nK, measured from the data discussed in Sect. 5.3,
and the trap frequencies in Vext to the experimental values (Sect. 5.2.1), and solve the HF
equations with the iterative approach described by Giorgini, Pitaevskii, and Stringari
[70]:

(i) given nT, the number of condensed atoms N0 is calculated as N0 = N −
∫

d3r nT.
This value is used to fix the normalization of the GPE Eq. B.1a, which is solved for
ψ0 and µ;

(ii) the total density n is updated with the new |ψ0|2, and used in Eq. B.1b with the
temperature T and the updated µ to compute a new thermal density nT;

(iii) the two steps above are repeated until we reach convergence.

The loop is initialized using the LDA HF profile in Eq. 5.6c for the thermal fraction.
The 3D stationary GPE is solved with imaginary time propagation, renormalizing the
wavefunction to N0 at each step. To run the calculation I used the xmds2 package [143],
using a spectral method for the spatial derivatives and a fourth-order Runge–Kutta
method for the time propagation, with fixed timestep ∆t. The problem is reduced to two
dimensions by setting ωy = ωz and working in cylindrical coordinates, and solved only
in the x > 0 half space by enforcing the wavefunction to be even in x. At each timestep,
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Figure B.1: Left: convergence of the HF solution. From top to bottom: number of condensed
atoms N0, energy per BEC particle E/N0, chemical potential µ. Top right: a 2D plot of the final
density distribution. The colormap is logarithmic, to highlight the different density between
the condensed and the thermal fraction. Bottom right: a slice along the x axis of the calculated
distribution on top of the experimental density data.

the wavefunction is evolved from ψ
(n)
0 to ψ

(n+1)
0 , and the chemical potential is calculated

as

µ(n+1) =
1

∆t

(
1−

∫
ψ
(n)
0 ψ

(n+1)
0 d3r∫

|ψ(n)
0 |2 d3r

)
(B.2)

before renormalizing ψ
(n+1)
0 to integrate the next step.

The convergence of the GPE to the stationary solution is monitored reading both the
values of µ and of the total energy E, calculated with Eq. 1.2. The asymptotic values
approximately agree with the relation E = (5/7)µN0, which is valid in the Thomas–
Fermi limit, and to which we expect corrections due to both the finite surface of the
BEC and the extra potential energy of the thermal fraction. The convergence of the total
calculation is checked by monitoring µ and N0, which become stable in a small number
of iterations.

Fig. B.1 shows the parameters E/N0, N0 and µ at each iteration step. The final value
of the chemical potential is 71.83 nK, slightly different than the value obtained by fitting
the data (listed in Table 5.1). The calculated density distribution agrees very well with
the measured density profile.
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