
DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE

ICT International Doctoral School

Network Representation Learning

with Attributes and

Heterogeneity

Nasrullah Sheikh

Advisor

Prof. Alberto Montresor

Università degli Studi di Trento

March 2019

Abstract

Network Representation Learning (NRL) aims at learning a low-dimensional

latent representation of nodes in a graph while preserving the graph infor-

mation. The learned representation enables to easily and efficiently perform

various machine learning tasks. Graphs are often associated with diverse

and rich information such as attributes that play an important role in the

formation of the network. Thus, it is imperative to exploit this information

to complement the structure information and learn a better representation.

This requires designing effective models which jointly leverage structure and

attribute information. In case of a heterogeneous network, NRL methods

should preserve the different relation types.

Towards this goal, this thesis proposes two models to learn a represen-

tation of attributed graphs and one model for learning representation in a

heterogeneous network. In general, our approach is based on appropriately

modeling the relation between graphs and attributes on one hand, between

heterogeneous nodes on the other, executing a large collection of random

walks over such graphs, and then applying off-the-shelf learning techniques

to the data obtained from the walks. All our contributions are evaluated

against a large number of state-of-the-art algorithms, on several well-known

datasets, obtaining better results.

Keywords

[Graph Embedding, Attributed and Heterogeneous Graphs, Unsupervised

Learning]

Dedicated to my parents.

Acknowledgment

Firstly, I would like to express my gratitude to my supervisor, Prof. Alberto

Montresor for his advice and unflagging support over the course of the last

three years. I am also grateful for his trust in me and for giving me the

freedom to explore my research topic that helped me to accomplish this

Ph.D. thesis.

Secondly, I would like to express my gratitude to my collaborators: Dr.

Zekarias Kefato, Cristian Consonni, Dr. Amira Soliman, Dr. Leila Bhari,

and Prof. Sarunas Girdzijauskas. I especially thank Zekarias Kefato for the

extensive collaboration, ideas, and discussions. I thank Cristian Consonni,

our Cricca research group member, for his help, insights, feedback and

being there whenever needed. I would also like to thank my friends and

colleagues at DISI, especially Dr. Kashif Ahmad, Dr. Maqsood Ahmad,

Dr. Attaullah Buriro, Sudipan Saha, and Rajen Chatterjee for all scientific

discussions and fun. Also, special thanks go to my friends in Kashmir: Dr.

Firdous Ahmad, Zamir Ashraf, Attaullah, Dr. Mudasir, Umar, and Amjed.

Further, I would like to thank ICT Secretariat and Ph.D. office, especially

Andrea, Francesca and Roberta for their support in administrative matters.

I would also like to thank Prof. Sarunas for hosting me at the Royal

Institute of Technology, Stockholm (KTH) for an internship. It was a

valuable and rewarding learning experience, and a privilege to work with

Prof. Sarunas, Leila, and Amira.

Next, I would like to take the opportunity to thank Dr. Dawood A.

Khan, who has been my mentor since my bachelor’s degree, for his invalu-

able support and discussions.

Finally, I thank and express my gratitude to my parents, sisters, and

brother for their continuous support and encouragement throughout my

years of study.

Contents

1 Introduction 1

1.1 Machine Learning Tasks For Evaluation 4

1.1.1 Node Classification 4

1.1.2 Link Prediction . 4

1.1.3 Nearest Neighbor Search 5

1.2 Thesis Overview and Contribution 5

1.2.1 Chapter 5: Joint Learning on Attributed Graphs . 6

1.2.2 Chapter 6: A Simple Approach to Learn Represen-

tation on Attributed Graphs 7

1.2.3 Chapter 7: Heterogeneous Information Network Rep-

resentation Learning 7

1.2.4 Chapter 8: Predicting Virality of Cascades 8

1.3 Publication List . 10

2 Preliminaries 13

2.1 Notations . 13

2.2 Definitions . 13

2.3 Evaluation Metrics . 15

3 Background 17

3.1 SkipGram . 17

3.2 Autoencoder . 19

i

3.3 Convolutional Neural Network 22

4 State-of-the-art 25

4.1 Homogeneous Network Embedding 25

4.1.1 Plain Network Embedding 26

4.1.2 Attributed Network Embedding 29

4.2 Heterogeneous Network Embedding 32

5 Joint Learning on Attributed Graphs 35

5.1 Problem . 37

5.2 GAT2VEC Framework . 38

5.2.1 Network Generation 38

5.2.2 Random Walks . 40

5.2.3 Representation Learning 41

5.2.4 gat2vec-wl . 44

5.3 Experiments . 45

5.3.1 Datasets . 45

5.3.2 Baseline Methods 46

5.3.3 Experimental Setup & Parameter Settings 47

5.3.4 Vertex Classification 48

5.3.5 Link Prediction . 52

5.3.6 Qualitative Analysis 53

5.3.7 Parameter Sensitivity 57

6 A Simple Approach to Learn Representation on Attributed

Graphs 61

6.1 Problem Definition . 63

6.2 Model . 63

6.3 Experiments . 66

6.3.1 Datasets . 66

ii

6.3.2 Baselines . 67

6.3.3 Vertex Classification 68

6.3.4 Link Prediction . 70

6.3.5 Network Reconstruction 71

6.3.6 Algorithmic and Scalability Analysis 73

7 Heterogeneous Information Network Representation Learn-

ing 77

7.1 Problem definition . 78

7.2 Model . 78

7.2.1 Sequence Generation and Labeling 79

7.2.2 HetNet2Vec Model 80

7.3 Experiments . 82

7.3.1 Datasets . 82

7.3.2 Baselines . 83

7.3.3 Experimental Setup 83

7.3.4 Classification . 84

8 Predicting Virality of Cascades 87

8.1 Related work . 91

8.2 Model and definitions . 92

8.3 cas2vec . 94

8.3.1 Preprocessing Cascades 95

8.3.2 CNN model for cascade prediction 98

8.4 Experiments and Results 100

8.4.1 Datasets . 101

8.4.2 Baselines . 101

8.4.3 Evaluation Settings 102

8.4.4 Results . 103

iii

9 Conclusion 111

Bibliography 115

iv

List of Tables

2.1 Notations used in the thesis 14

5.1 Dataset Statistics . 46

5.2 Multi-class Classification on dblp 49

5.3 Multi-class Classification on CiteSeer 49

5.4 Multi-label Classification on BlogCatalog 50

5.5 Macro-F1 score of classification (using labels) 51

5.6 P (k) for Link Prediction on dblp 52

5.7 P (k) for Link Prediction on BlogCatalog 53

5.8 Nearest Neighbor Top 3 Results 54

6.1 Dataset Statistics . 66

6.2 The Network Layer Structure for Enhanced Autoencoder . 68

6.3 Vertex Classification of CiteSeer 69

6.4 Vertex Classification of cora 69

6.5 Vertex Classification of pubmed 70

6.6 Vertex Classification of wiki 70

6.7 AUC and AP scores for Link Prediction 71

6.8 Precision at K (P@K) for CiteSeer dataset 72

6.9 Precision at K (P@K) for cora dataset 72

6.10 Precision at K (P@K) for pubmed dataset 73

6.11 Precision at K (P@K) for wiki dataset 73

v

6.12 Computational Complexity and Scalability Analysis on red-

dit dataset (NA:out of memory) 74

6.13 Running Time Analysis on CiteSeer dataset (in seconds) 74

7.1 Dataset Statistics . 82

7.2 Multi-class Classification on Patents and Restaurants nodes 84

vi

List of Figures

1.1 Overview of NRL Applications. 3

3.1 Architecture of SkipGram model 18

3.2 Architecture of Autoencoder model. 20

3.3 Architecture of Convolutional Neural Network 22

5.1 An example of a partially attributed graph. 36

5.2 A graph depicting the structural relationships between ver-

tices. 38

5.3 A bipartite graph between content nodes and attributes. . 39

5.4 The Architecture of gat2vec. 41

5.5 2-D t-SNE Projection of CiteSeer Dataset 56

5.6 Ga Parameter Sensitivity on: (a) Number of Walks(γa), (b)

Walk Length(λa) . 58

5.7 Ga Joint Parameter Sensitivity on: (a) Number of Walks(γa),

(b) Walk Length(λa) . 59

5.8 Sparsity of Attributed Graph Ga 59

5.9 Effect of parameter-th . 60

6.1 The architecture of our proposed Sage2Vec model 64

7.1 The adopted 1D-CNN Architecture for Representation Learn-

ing in HIN . 80

vii

8.1 Examples of two recent hashtag campaigns. (A) The tweet-

ing frequency of each hashtag; #metoo achieved more spread

compared to #gamergate. (B) The network properties of

the participating nodes in each hashtag in terms of average

number of followers; the nodes engaged in the first 12 hours

almost achieve similar reachability in both hashtags. 88

8.2 Two slices of size 2 hours, applied to the user coverage distri-

bution of a viral hashtag (#thingsigetalot) and non-viral

hashtag (#bored), which have reached 13711 and 43 users

in an observation window size of 4 hours. 94

8.3 The distribution of the user coverages for the viral and non-

viral classes. The user coverage distribution is computed at

observation time to as |C(to)| and virality is computed at

prediction time to + ∆. A cascade is viral if |C(to + ∆)| ≥
1, 000 and not-viral if |C(to + ∆)| ≤ 500 97

8.4 The CNN model adopted for cascade prediction 98

8.5 Virality prediction results for both of our datasets. For

Twitter, filter sizes = 3, 5, 7 and for each filter we have

16 of them. For Weibo, filter sizes = 2, 4, 5, 7 and for each

filter we have 64 of them. For both datasets, the embedding

size d is 128, the number of units in the fully connected layer

is 32, and the number of slices is 40. 102

8.6 Evaluation results of early prediction experiments for the

Twitter and Weibo datasets. The same hyper-parameter

values as Fig. 8.5 is used 105

8.7 Break-out coverage for k = 100 and k = 200 for the Twitter

dataset. 107

8.8 Break-out coverage for k = 10 and k = 20 for the Weibo

dataset. 107

viii

8.9 Effect of the number of slices on virality prediction at to = 1

hour and ∆ = 12 hours. 108

8.10 Effect of sequence length on running time. 108

8.11 Effect of seq. length on virality prediction. 109

ix

Chapter 1

Introduction

Graphs are ubiquitous: a large number of systems from diverse domains

(social, biological, technological) can be represented as graphs. Examples

include protein-protein networks, molecular structures, the World Wide

Web, Online Social Network (OSN), power grids and communication net-

works. The entities present in the system are represented as nodes and

the structural relationships between them are represented as edges. For

example, in the case of an OSN, the entities are the users, and relation-

ships such as friendship or follower-followee are the edges connecting them.

Representing a system as a graph allows to exploit the expressive power

of graphs and to obtain various insights about the system, such as pattern

discovery.

Analyzing graphs through machine learning has a variety of applica-

tion across different domains; for example, annotating proteins by role in

protein-protein interaction networks [1, 2], classification of users and rec-

ommendation of new friends in online social networks [3–6], information

diffusion in social networks [7, 8].

The performance of these applications largely depends on the features

that are used to model the graph. A simple feature representation is an

adjacency matrix that only captures the neighborhood information. Un-

1

2

fortunately, this representation does not encode the complex structural

properties of the network such as higher-order proximities, which helps

in the classification task. Moreover, the resulting representation is sparse

and brings with it the curse of dimensionality; this deteriorates the per-

formance of machine learning tasks. Furthermore, since graphs of interest

tend to be really large, this representation makes machine learning tasks

computationally expensive, hence not scalable to large graphs.

Earlier handcrafted features were used in machine learning tasks. These

features include node degree, clustering coefficient, common neighbors, etc.

The extraction of these features is time-consuming and expensive, in addi-

tion to their inflexibility to adjustment during learning.

To overcome these bottlenecks, Network Representation Learning (NRL)

approaches have been proposed to encode and preserve the structural prop-

erties of a graph in a low-dimensional latent vector representation of nodes

which is much smaller than the cardinality of the graph. NRL methods

are built on a basic hypothesis: “birds of same feather flock together”, that

is, similar vertices in the graph should be close to each other in the rep-

resentation space. Following this, if two vertices are directly connected in

the graph, the distance in the embedding space between their latent vec-

tor representation should be small. The learned representation makes it

easy to perform various network analysis tasks, and machine learning tasks

can also be directly applied by taking these learned embeddings as feature

inputs as shown in Figure 1.1.

The success of NRL methods depends on their ability to exploit the dif-

ferent sources of information present in the graphs. The simplest and com-

mon source is the structural information, i.e the connectivity of nodes in the

graph. The methods which use structural information focus on preserving

the structural proximities of the graph. Graphs, however, are often asso-

ciated with additional information such as attributes. The co-occurrence

2

3 CHAPTER 1. INTRODUCTION

1 3

42

6

5

7

8

ba c

b

e

ba c

d e

9

d e

Vertices Attributes

RepresentationGraph

[0.25, 1.8, ... , 0.03]
[-0.5, 0.08, ... , -0.1]

[0.17, 2.03, ... , -.23]
 ...

Node Classification

Recommendation

Network
Reconstruction

Community Detection

Tasks

Clustering

Link PredictionNRL

Nearest Neighbor

Figure 1.1: Overview of NRL Applications.

of attributes between nodes reinforces similarities between them, and thus

alone structural proximities are not sufficient to capture the entire spec-

trum of similarities. For example, in the attributed graph shown in Fig-

ure 1.1, attributes are invaluable in cases where structural information is

missing, or when structurally unrelated vertices have high attribute sim-

ilarity. Vertex 9 is disconnected, but with the aid of attributes, it can

have a representation similar to vertex 6. In the same way, vertices 1

and 8 are structurally far away from each other, but they have similar at-

tributes. Therefore, the proximities in a graph can also be defined by their

similarities in their attributes. By taking attribute proximities into consid-

eration, representations of 1 and 8 will be close to each other. Moreover,

the two sources of information can complement each other in learning, es-

pecially when our knowledge of one of them is only partial. Thus, it is of

paramount importance to consider attribute similarities in order to learn

precise embeddings. The challenges are compounded when such additional

information is included, as the NRL methods have to encode and preserve

both the structural and attribute proximities.

3

1.1. MACHINE LEARNING TASKS FOR EVALUATION 4

1.1 Machine Learning Tasks For Evaluation

We focused mainly on three machine learning tasks for the evaluation of

our proposed approach. We briefly describe them in this section.

1.1.1 Node Classification

The classification task assigns a class label from a given set of classes to

an unlabeled data based on a training dataset. When only two classes

are possible, it is called binary classification. If there are more than two

classes and each data point can have only one label, the task is called as

multi-class classification whereas, when data instances can have more than

one class label it is called as multi-label classification.

In this thesis, we leverage the structural and attribute information to

learn a representation to effectively tackle node classification. We learn

a representation and use it as feature vectors for the classifier. We use

both multi-class and multi-label classification for node classification task

depending on the dataset.

1.1.2 Link Prediction

The aim of link prediction is to predict the missing links or possible new

connections based on the observed connections. For example, given an

OSN, knowing the current connections (friendships), we want to predict

the probability of an edge between two unconnected users; hence, we can

recommend these two users to each other based on such probability. Other

examples are academic networks such as co-author networks, in which it

is interesting to know which two authors are highly likely to collaborate

in the future. In the above examples, not only the connectivity, but also

the attributes (e.g “likes” in an OSN and fields of interest in an academic

network) may play a vital role in future connections.

4

5 CHAPTER 1. INTRODUCTION

In this thesis, to model predictions of future connections, we extract

a residual graph by removing some edges and then learn a representation

through our model. The removed edges serve as ground truth for evalua-

tion, and the existence of an edge is computed from learned embeddings.

1.1.3 Nearest Neighbor Search

Nearest Neighbor (NN) is the proximity search algorithm which finds k-

nearest data-points to a query data-point. In an attributed graph, the near-

est nodes to a query node are those which are in close proximity, both in

structure and attributes. For example, if two nodes, B{z1, z2, z3}, C{z4, z5, z6}
are connected directly to A{z1, z2, z3}, it is obvious that node B is closer

to A than node C, because node A has a higher attribute similarity to B

rather than C.

In this work, we apply representation learning on an attributed graph

in a way that unifies structural proximity and attribute proximity in a

single d-dimensional vector space; thus, the similarity between any two

given nodes can be computed by using a distance metric.

1.2 Thesis Overview and Contribution

The focus of this thesis is on network representation learning of attributed

and heterogeneous graphs, building models that learn a better representa-

tion. We focus on three problem domains: attributed graph representation

learning, heterogeneous graph representation learning, and cascade virality

prediction.

For the sake of consistent reading of the thesis, Chapter 2 introduces

some preliminaries and notations. Chapter 3 provides a detailed study of

some models on which the proposed solutions are built. The state-of-the-

art covering the major aspects of representation learning is discussed in

5

1.2. THESIS OVERVIEW AND CONTRIBUTION 6

Chapter 4. The two models of Attributed Graph Embedding is discussed

in Chapter 5 and 6. Chapter 7 presents a model for Heterogeneous Graph

Embedding. A virality prediction model in OSN is presented in Chapter 8.

Finally, we conclude this dissertation in Chapter 9. The contributions of

this dissertation are the following:

1.2.1 Chapter 5: Joint Learning on Attributed Graphs

To learn a better representation, the two modalities (structure and at-

tributes) need to be taken into account jointly to learn a representation,

as they complement each other. We observe that a node has two con-

texts: a structural context and an attribute context. The structural con-

text describes the nodes which are similar to a given node in terms of edge

connections, whereas the attribute context of a node describes the nodes

which are semantically similar to a given node. Therefore, a representation

learning model needs to jointly optimize on these two distributions.

We propose gat2vec, an early fusion model that jointly learns a rep-

resentation from structural contexts and attribute contexts. To obtain

contexts from an attributed graph, we build two graphs: the structural

one given by the nodes and their connections, and bipartite one, which

connects vertices with the attributes. We employ random walks on both

structural graph and bipartite graph to generate structural contexts and

attribute contexts respectively. We then use the SkipGram model to learn

a representation from both contexts.

Through experimental evaluation, we showed that a joint learning model

learns precise embeddings that preserve network proximities, through ver-

tex classification, link prediction, and nearest neighbor results.

Publication Nasrullah Sheikh, Zekarias Kefato, and Alberto Montre-

sor. gat2vec: Representation learning for attributed graphs. Computing

101(3):187-209. Springer, 2019.

6

7 CHAPTER 1. INTRODUCTION

1.2.2 Chapter 6: A Simple Approach to Learn Representation

on Attributed Graphs

As the network structure is highly non-linear and sparse, shallow learning

architectures learn poor representations. Furthermore, learning is even

more challenging when attributed graphs are taken into considerations,

as attributes themselves bring their own sparsity and non-linearity. This

problem can be solved by designing deep neural networks which handle

non-linearity and sparsity in both structure and attributes, but this adds

more complexity. To model the proximities in an attributed graph, existing

proposed methods use computationally expensive pre-processing–such as

sampling–which limits their scalability.

We propose a simple enhanced autoencoder model (Sage2Vec) that

handles the non-linearity and sparsity of both the structure and attributes,

without the need of computationally expensive preprocessing. We train

the model on the network structure and optimize it on both the vertex

neighborhood and the attributes. The experimental evaluation on vertex

classification, link prediction, and network reconstruction tasks shows that

our simple model is good at handling non-linearity and sparsity, while

preserving the proximities.

Publication Nasrullah Sheikh, Zekarias T. Kefato, and Alberto Mon-

tresor. A Simple Approach to Attributed Graph Embedding via Enhanced

Autoencoder. Submitted to Data Science and Advanced Analytics 2019.

1.2.3 Chapter 7: Heterogeneous Information Network Repre-

sentation Learning

A heterogeneous network has multiple types of nodes and relationships,

and each relationship has different semantics. The homogeneous network

embedding methods cannot be applied to heterogeneous networks because

7

1.2. THESIS OVERVIEW AND CONTRIBUTION 8

their sampling methods, such as random walks, are based on a homoge-

neous distribution of nodes and edges. Therefore, network representation

learning approaches need to explicitly take care of different node types and

relationships while sampling, such that the learned embeddings preserve

the network properties.

In this thesis, we propose a relation-specific short random walk for gen-

erating sequences which represent the contextual relationships between

nodes. We obtain a corpus of sequences by performing multiple random

walks on each relation. The corpus of a sequence is analogous to sentences

of a document, and we train a 1D-CNN for learning an embedding of nodes.

The preliminary results show that our proposed approach HetNet2Vec

performs well and there is a lot of space for improvement.

Publication Nasrullah Sheikh, Zekarias T. Kefato, and Alberto Mon-

tresor. Semi-supervised heterogeneous information network embedding for

node classification using 1D-CNN. In Proc. of the Fifth International Con-

ference on Social Networks Analysis, Management and Security (SNAMS

2018), pages 177–181. IEEE, October 2018.

1.2.4 Chapter 8: Predicting Virality of Cascades

This chapter slightly deviates from the main thesis topic as it deals with

cascade virality prediction. The chapter is presented to show that the

network agnostic approaches can be developed for drawing insights from a

network system.

In Online Social Networks, it is common to see posts or tweets that

start from a few sources and then suddenly spread like a wildfire. Just to

mention a recent example, the post celebrating the landing of the Falcon-

Heavy rocket sent from the SpaceX Twitter account on February 6th, 2018,

8

9 CHAPTER 1. INTRODUCTION

has been retweeted more than 75k times within the same day of posting1.

Such diffusion events are called viral cascades. Predicting cascades virality

is vital for different applications, for example to forecast trends and rumor

break-outs [8]. However, it is challenging to effectively predict the virality

of such kinds of events as early as possible, especially when little supporting

information is available. Many research works have dedicated effort and

attention to the prediction of content popularity with the focus of achieving

good predictions in the shortest possible time, with the least information

possible about the underlying network structure.

The diffusion of content on OSN happens through the underlying user

connectivity graph, which plays an important role in determining the vi-

rality of content. Therefore, for the prediction of virality, it is necessary

to take the properties of the underlying graph into account along with the

cascade of information diffusion. The major challenge is to obtain the un-

derlying social graph due to privacy concerns and the cost of mining such

data. Thus, it is imperative to design virality prediction algorithms that

are network oblivious but at the same time effective in prediction.

We propose cas2vec, a network-agnostic approach that uses explicit

information available in cascades with the premise that the reaction time

between two events is a sufficient indicator to predict the virality. The

reaction time in cascades enables us to model it as a time series where

each element is a discretized reaction time. Noticing that the distribution

of reaction time is similar to the distribution of words in a language, we

have applied CNN model from Natural Language Processing (NLP) to train

our prediction model. The results from experimental evaluation testify our

premise of modeling cascades as a time series and our model performs well

in predicting the virality.

The organization of this chapter is as follows: Section 8.1 describes the

1https://twitter.com/SpaceX

9

1.3. PUBLICATION LIST 10

state-of-the-art, while Section 8.2 provides some definitions. The model

for virality prediction is described in Section 8.3, followed by experimental

setup and evaluation in Section 8.4.

Publication Zekarias T. Kefato, Nasrullah Sheikh, Leila Bahri, Amira

Soliman, Alberto Montresor, and Sarunas Girdzijauskas. CAS2VEC: network-

agnostic cascade prediction in online social networks. In Proc. of the 5th

International Conference on Social Networks Analysis, Management and

Security (SNAMS 2018), pages 72–79. IEEE, October 2018 Best Paper

Award.

1.3 Publication List

The publications which contributed to this thesis are the following:

1. Nasrullah Sheikh, Zekarias Kefato, and Alberto Montresor. “gat2vec

- Representation Learning for Attributed Graphs”. In Journal of Com-

puting. Springer, May 2018.

2. Nasrullah Sheikh, Zekarias T. Kefato, and Alberto Montresor. A Sim-

ple Approach to Attributed Graph Embedding via Enhanced Autoen-

coder Data Science and Advanced Analytics 2019 (under review)

3. Nasrullah Sheikh, Zekarias T. Kefato, and Alberto Montresor. “Semi-

Supervised Heterogeneous Information Network Embedding for Node

Classification using 1D-CNN”. In Proc. of the First International

Workshop on Deep and Transfer Learning (collocated with SNAM).

DTL ’18. Oct. 2018.

4. Zekarias T. Kefato, Nasrullah Sheikh, et al. “CAS2VEC: Network

Agnostic Cascade Prediction in Online Social Networks”. In Proc. of

10

11 CHAPTER 1. INTRODUCTION

the Fifth International Conference on Social Network Analysis, Man-

agement and Security. SNAM’18 Oct. 2018. Best Paper Award.

Other Contributions During the research period, I collaborated on other

research works which resulted in the following publications:

1. Zekarias T. Kefato, Nasrullah Sheikh, and Alberto Montresor. “RE-

FINE: Representation Learning from Diffusion Events”. In Proc. of

the Fourth International Conference on Machine Learning, Optimiza-

tion and Data Science. LOD’18. Sept. 2018

2. Zekarias T. Kefato, Nasrullah Sheikh et al. “CaTS: Network Agnostic

Virality Prediction Model to Aid Rumour Detection”. In Proc. of the

Second International Workshop on Rumours and Deception in Social

Media (Collocated with CIKM). RDSM’18. Oct. 2018.

3. Zekarias T. Kefato, Nasrullah Sheikh, and Alberto Montresor. “MIN-

ERAL: Multi-modal Network Representation Learning”. In Proc. of

the Third International Conference on Machine Learning, Optimiza-

tion and Big Data.MOD’17. ACM, Sept. 2017.

4. Zekarias T. Kefato, Nasrullah Sheikh, and Alberto Montresor. “Deep-

Infer: Diffusion Network Inference through Representation Learning”.

In Proc. of the 13th International Workshop on Mining and Learning

With Graphs. MLG’17. ACM, Aug. 2017.

11

1.3. PUBLICATION LIST 12

12

Chapter 2

Preliminaries

In this chapter, we introduce the various notations and definitions used in

this thesis.

2.1 Notations

Scalars are represented with lower case letters, sets with uppercase letters.

Matrices and vectors are denoted with uppercase and lowercase boldface

letters, respectively. The main symbols used in this thesis are given in

Table 2.1.

2.2 Definitions

Definition 1. [Attributed Graph] Let G = (V,E,M,Z) be an attributed

graph, where V is a set of n nodes, E a set of edges, Mn×n is the adja-

cency matrix representation of the edges and Zn×z is the feature matrix

representing z features associated with nodes.

Let Mi be the ith row vector and let Mij 6= 0 if there is an edge between

the ith and jth vertex. Let Zi be the feature vector of the ith vertex, where

Ziu > 0 if the ith vertex has the uth attribute associated with it.

13

2.2. DEFINITIONS 14

Notation Definition

n number of nodes

z number of features

d embedding dimension

M ∈ Rn×n Adjacency matrix

Z ∈ Rn×z Feature matrix

Mi or M[i] Row vector of matrix M

Mij or M[i, j] Scalar value of M

mi or m[i] Scalar element of vector m

Φ(.) function which return a Rd-dimensional embedding of a vertex

||.||2 l2 norm of a vector

||.||2F Forbenius norm of a matrix⊙
Element wise multiplication

Table 2.1: Notations used in the thesis

For an unweighted graph, Mij = 1 in case there is an edge between

vertex i and j. In case of a weighted graph, Mij 6= 0 is the weight of an

edge between vertex i and j. If there is no edge, then Mij = 0 for both

types of graphs.

Definition 2 (First-Order Proximity[9]). The first-order proximity be-

tween two nodes i and j is determined by |Mij| > 0, that is, these two

vertices are directly connected. It is also called as local pairwise proximity.

Definition 3 (Second-Order Proximity[9]). The second-order proxim-

ity between ith and jth node of graph G is determined by the similarity

between their common neighbors i.e. similarity between Mi and Mj.

Definition 4 (Higher-Order Proximity). Let M̂ be a one-step transi-

tion probability of M and M′ = M̂+M̂2 + · · ·+M̂k is the k-step transition

probability between each pair of vertex. The high-order proximity between

ith and jth is determined by the similarity between M′
i and M′

j.

Definition 5 (Context). Let V = {v1, v2, · · · , vn} be the set of words

(vocabulary) in a sentence (sequence) of size n; let k be the size of the

14

15 CHAPTER 2. PRELIMINARIES

context window. The context of a word v is c words before and after it, i.e

{vi−k, · · · , vi−1, vi+1, · · · vik}.

Definition 6 (Heterogeneous Graph). A Heterogeneous Information

Network (HIN) is a graph Gh = (V,E, f, g), where V is the set of nodes,

E ⊆ V × V is the set of edges, f : V → TV is a function mapping each

node v ∈ V to one node type in TV , and g : E → TE is a function mapping

each edge e ∈ E to one edge type in TE.

2.3 Evaluation Metrics

The embedding methods are evaluated using different machine learning

tasks such as node classification and link prediction. In this section, we

will give brief details about the metrics used to evaluate the tasks.

Definition 7. Precision is the fraction of samples correctly classified as

positive over all positively classified samples. Mathematically, it is defined

below:

pr =
Tp

Tp+ Fp
(2.1)

Definition 8. Recall is the fraction of samples correctly classified as pos-

itive over all correct classifications as described below:

rc =
Tp

Tp+ Fn
(2.2)

where in Equation 2.1 and 2.2, Tp, Fp, and Fn are true-positives, false-

positives, and false-negatives respectively.

For an effective evaluation of the model, both precision and recall are

necessary. Since they are antagonistic to each other, therefore, maximizing

the combination of them gives an optimal solution, called F1-Score. It

is computed as:

F1-Score = 2 · pr × rc
pr + rc

(2.3)

15

2.3. EVALUATION METRICS 16

The general case of F-measure is given as:

Fβ-score = (1 + β2) · pr × rc
β2 × (pr + rc)

(2.4)

In the case of multiclass and multilabel classification F1-Score is aver-

aged due to the presence of independent classes. Micro-F1 and Macro-

F1 are two statistics calculated in this case. Macro-F1 gives the equal

weight to each class and the metrics are calculated for each class. Let pr(.)

and rc(.) be the functions that return the precision and recall for each class

respectively. The average precision (pravg) and recall (rcavg) are calculated

as:

pravg =

∑
c∈C pr(c)

|C|

rcavg =

∑
c∈C rc(c)

|C|
where C is the set of classes.

Macro-F1 is given is harmonic mean of average precision and recall

calculated as:

Macro-F1 = 2× pravg × rcavg
pravg + rcavg

(2.5)

In Micro-F1 average, we sum the scores of different class and calcu-

late the overall precision and recall. Let tps(.), fps(.), and fns(.) be the

functions that return the true positives, false positives and false negatives

for a given class, respectively. Micro-F1 is calculated as:

pra =
∑
c∈C

tps(c)

tps(c) + fps(c)
(2.6)

rca =
∑
c∈C

tps(c)

tps(c) + fns(c)
(2.7)

Micro-F1 is the harmonic mean of pra and rca as given below:

Micro-F1 = 2× pra × rca
pra + rca

(2.8)

16

Chapter 3

Background

This chapter provides the necessary and sufficient details of the methods

on which the work in the thesis is built upon. The sections 3.1, 3.2, and 3.3

are the foundations for the solutions proposed for Chapters 5, 6, 7 and 8.

3.1 SkipGram

Representing the words of text in a continuous vector representation is

a very crucial problem in Natural Language Processing (NLP), as they

significantly simplify and improve NLP applications. The continuous vec-

tor representation preserves the semantic meaning of words and overcomes

sparsity. Various models that have been proposed earlier were limited by

their lack of scalability i.e., they were significantly computationally expen-

sive in training [10–12]. These model were trained on small corpora, thus

the learned representations were of low quality. Mikolov et al. proposed

a distributed word representation learning model called Word2Vec that

is scalable and preserves the semantic meanings of the words [13]. The

preservation of the semantic properties is demonstrated through various

examples, such as the vectors of synonyms of a word tend to be close in

representation space. Another fascinating example is from the analogy,

“Woman is to queen as man is to king”; it turns out that this is true via

17

3.1. SKIPGRAM 18

algebraic operation as well: Φ(queen)− Φ(woman) + Φ(man) ≈ Φ(king),

where Φ(.) returns the embedding of the given word.

....

....
. . .

....
....

O
utput Layer

n

Hidden Layer

0
0
0
.
.
.
0
.
.
0

Input Layer

Wn×d

W
′

d×n

W
′

d×n

W
′

d×n

y1j

y2j

ycj

xi

d

Figure 3.1: Architecture of SkipGram model

Word2Vec proposed two architectures, Continuous Bag-of-words (CBOW)

and SkipGram for learning representation of words. In the CBOW model,

the occurrence of a word is predicted from a given set of context words.

The model is trained through a log-linear classifier which tries to correctly

predict a middle word from a set of context words. The experiments show

that this model does not perform better than SkipGram. Therefore, we

skip the details of this model and we focus on SkipGram. The architec-

ture of SkipGram is shown in Figure 3.1. Let V = {v1, v2, · · · , vn} be

the set of words (vocabulary) of size n, C be the set of all contexts, and

T be the set all word and context pairs (v, c) ∈ T ; i.e for each word v, c

18

19 CHAPTER 3. BACKGROUND

are all contexts associated with it. For a given word v and its contexts c,

the SkipGram model considers the conditional probabilities p(c|v). The

probability is calculated using soft-max as given below:

p(c|v) =
eΦ(c).Φ(v)∑

c′∈C e
Φ(c′).Φ(v)

(3.1)

The goal is find a parameter θ such that probability p(c|v; θ) is maxi-

mized as:

arg max
θ

∏
(c,v)∈T

p(c|v; θ) (3.2)

Applying the logarithm we get:

arg max
θ

∏
(c,v)∈T

p(c|v; θ) =
∑

(c,v)∈T

log eΦ(c).Φ(v) − log
∑
c′∈C

eΦ(c
′
).Φ(v)

 (3.3)

Since summation over all other contexts c
′
in the above equation makes

it computationally expensive as there can be thousand of other contexts,

the soft-max is replaced with the hierarchical softmax.

Hierarchical softmax is an approximation to softmax proposed by Morin

and Bengio [14]. It is a complete binary tree where the words are the leaf

nodes and the root is the given word. Thus, the prediction task is to find

a path that maximizes the probability for the given word.

3.2 Autoencoder

An autoencoder is an unsupervised neural network model that learns a

representation of the input data. Traditionally, autoencoders have been

used for dimensionality reduction and feature learning [15–17]; due to re-

cent advancements in neural networks, they are also used in generative

models. An autoencoder consists of two parts: an encoder function which

19

3.2. AUTOENCODER 20

compresses the input data y = f(m) and a decoder function, m̃ = g(y)

tries to reconstruct the input as close as possible. m is an input vector, y

is the latent representation, and m̃ is the reconstruction. In other words,

the autoencoder tries to learn an identity function such that m ≈ m̃. The

autoencoder functions are constrained so that they are not able to copy the

input exactly. This is achieved by forcing the autoencoder to prioritize to

learn only useful properties of the input which is achieved by constraining

y to a smaller dimension than m. A possible architecture of an autoen-

coder with one hidden layer is shown in Figure 3.2. The two red circles in

the decoder signify the error in reconstruction. Mathematically, encoders

and decoders are described by Equation 3.4 and 3.5, respectively.

 m

y

Encoder Decoder

m̃

Figure 3.2: Architecture of Autoencoder model.

20

21 CHAPTER 3. BACKGROUND

y = f(W.m + b) (3.4)

m̃ = g(W̃.y + b) (3.5)

Here W,W̃ are weight matrices for encoder and decoder respectively and

b is the bias term.

The learning objective of an one-layer autoencoder is described by the

minimizing loss function as given under:

L = E(m, m̃), (3.6)

where E is the loss function that penalizes m̃ for being dissimilar to m.

Mean Square Error (MSE) and binary cross entropy are some examples of

loss functions used. The MSE loss is given as below:

L = ‖m− m̃‖2
2 (3.7)

In general, for a deep autoencoder with L layers and m as input, the

encoder function can be described as:

y(1) = f(W(1)m + b(1))

y(l) = f(W(l)y(l−1) + b(l)), l = 2, · · · , L
(3.8)

yl is the latent representation of m at the lth layer; L is the number of

layers; W(l) is the weight matrix and b(l) is the bias at the lth layer. The

decoder is the reverse of the encoder; thus, it takes y(l) as input and pro-

duces the reconstruction m̃.

An autoencoder learns an embedding in the same subspace as PCA

when the decoder function g is linear and the error function is MSE. In

case, f and g are both non-linear functions; thus, learned embeddings are

nonlinear generalizations of PCA.

21

3.3. CONVOLUTIONAL NEURAL NETWORK 22

3.3 Convolutional Neural Network

Convolutional Neural Network is a deep neural network which operate

on grid-like data such as images and sequences [18]. CNN extracts local

features by exploiting shift-invariance, local connectivity, and composition-

ality of the data. A CNN consists of three components: the convolutional

layer, the pooling layer, and the fully-connected layer. An example archi-

tecture1 of CNN is given in Figure 3.3. The architecture takes an image

with three channels (RGB) as input and applies two convolutions and max-

pooling operations.

Feature
maps
48@4x4

Feature
maps
48@6x6

Feature
maps
32@10x10

Feature
maps
32@18x18

Inputs
3@32x32

Convolution
5x5 kernel

Max-pooling
2x2 kernel

Convolution
5x5 kernel

Max-pooling
2x2 kernel

Hidden
units
768

Hidden
units
500

Outputs
2

Flatten Fully
connected

Fully
connected

Figure 3.3: Architecture of Convolutional Neural Network

Convolutional Layer This layer applies the convolution operation to the

input; the output from the convolution is called feature map. The convo-

lution operation is performed through filters, also referred as kernels ; the

areas on which convolution is applied is called receptive field. Kernels en-

able the CNN to extract high level features which are shift and positional

invariant. Let I be an input 3-channel(RBG) image of size n×n; kernel K

has a size h×w and the depth of the filter is equal to number of channels.

1Generated using https://github.com/gwding/draw_convnet

22

23 CHAPTER 3. BACKGROUND

The i, j-th feature from a receptive field is computed as as:

C[i, j] =
∑
p

∑
q

I[i− p, j − q] ·K[p, q] (3.9)

The convolution performs an element-wise multiplication with the input.

The filter is slid horizontally and vertically along the image, and the slide

is controlled by parameter s. In Figure 3.3, the first convolution layer has

a filter of 5×5×3, and s = 1, thereby producing a feature map of 28×28.

To preserve the spatial dimensions, a number of filters are applied. In the

example, we have 32 filters producing 32 feature maps; on each of them,

an activation function is applied. The weights of filters are trained through

the backpropagation algorithm.

Pooling is a downsampling process to further reduce the size of the input

by computing a summary statistic of nearby points. Pooling can be done

through various methods such as max-pooling and average-pooling. In max-

pooling, a maximum value is returned from a patch of the image and the

rest are discarded. In average-pooling, an average value is returned from a

patch.

Fully Connected Layer The output from the pooling is flattened and fetched

to a fully connected layer component. The number of FC-layers vary de-

pending on the complexity of the data and the model. The result from the

FC-layer can be used for various machine learning tasks such as classifica-

tion.

23

3.3. CONVOLUTIONAL NEURAL NETWORK 24

24

Chapter 4

State-of-the-art

The objective of this chapter is to provide an overall overview of the meth-

ods designed to learn a representation of nodes in a graph. This chapter

will outline an evolution of techniques–from simple to complex–exploiting

different modalities. Broadly, we classify the NRL methods in two cate-

gories: homogeneous and heterogeneous network embedding, depending on

the type of nodes and relationships present in a graph. In homogeneous

NRL methods, the nodes and the edges are of a single type, whereas in

the case of heterogeneous NRL methods nodes and edges are of different

types.

4.1 Homogeneous Network Embedding

In this section, we describe the various methods proposed to learn a repre-

sentation. These methods use various different sources of information for

learning. Broadly speaking, homogeneous network embedding methods are

divided into two groups: plain network embedding and attributed network

embedding. To learn a representation, the former methods use only the

structure of the network, whereas the latter methods use both the network

structure and the attribute information associated with the nodes.

25

4.1. HOMOGENEOUS NETWORK EMBEDDING 26

4.1.1 Plain Network Embedding

Matrix Factorization Methods

Earlier methods of NRL focused on matrix-factorization techniques to em-

bed a high dimensional network representation, often an adjacency matrix

into a low dimensional space. Different algorithms apply different factor-

ization strategies, such as Laplacian Eigenmaps (LE)[19], Modularized-

Non-Negative Matrix Factorization (M-NMF)[20] and others [21–25]. The

approach proposed by Belkin and Niyogi uses an adjacency matrix to con-

struct a weighted input matrix such that two nodes are connected if they

are close to each other [19]. The “closeness” can be quantified by various

methods; for example if they are among k-nearest neighbors. Then they

compute the eigenvalues and eigenvectors on the weighted input matrix.

The top-d eigenvectors correspond to the embedding of the input. Other

approaches also use eigenvectors such as [21, 22]. Tang et al. use mod-

ularity matrix of the graph and top-d eigenvectors represent the learned

embedding [21]; whereas in SocioDim they use normalized Laplacian ma-

trix to generate an embedding from d-smallest eigenvectors [22].

The above approaches work on a single input matrix. Cao et al. argue

that preservation of k-step relational information leads to a better rep-

resentation learning [23]. Hence, they propose GraRep which captures

k-step different relational information. GraRep uses k-hop normalized

adjacency matrix, and for each k learns an embedding using matrix factor-

ization using SVD which captures local information. The final embedding

is obtained by concatenating these k different embeddings.

Neural Network Methods

Due to recent advances in neural networks, NRL has drawn a lot of at-

tention from researchers, proposing approaches from shallow [26] to deep

26

27 CHAPTER 4. STATE-OF-THE-ART

models [27]. Inspired by NLP, Perozzi et al. observed that the distribution

of words in documents is similar to the distribution of vertex sequences

obtained through random walks on a graph [26]. Each vertex is analogous

to a word in a document. They proposed DeepWalk, which adopts the

SkipGram [13] model to learn a representation of vertices in the graph.

DeepWalk exploits truncated short random walks to generate a vertex

sequence which preserves the neighborhood structure of nodes. A num-

ber of random walks are performed on each vertex to generate a corpus

of sequences. For each walk sequence, DeepWalk aims to maximize the

probability of occurrence of a node in a given context of size w.

Various other random-walk based approaches have been proposed [28–

31]. These approaches apply different random-walk sampling methods or

optimization techniques to learn an embedding. Node2Vec proposed by

Grover et al. employs biased random walks to explore the diverse neighbor-

hood of network [28]. It uses two random walk parameters p and q; param-

eter p controls the probability of revisiting a vertex whereas q controls the

probability of visiting a node’s one-hop neighborhood. Hence, these hyper-

parameters help in smoothly interpolating between depth-first or breadth-

first sampling. Furthermore, Node2Vec employs negative sampling in

contrast to hierarchical softmax in DeepWalk. These approaches pre-

serve the higher order proximities. A node classification specific method,

Discriminative Deep Random Walk (DDRW) proposed by Juzheng et al.

captures the global network structure and are discriminative to network

classification task [30].

Structural and Neighborhood Similarity (SNS) uses two aspects in a

graph, neighbor information, and local subgraphs similarity to learn an

embedding [29]. In addition to employing random walk sampling to cap-

ture the global information, the method uses graph mining techniques to

capture the structural equivalence of nodes in subgraphs. Another aspect

27

4.1. HOMOGENEOUS NETWORK EMBEDDING 28

of network embedding is to capture and preserve the structural identity

of nodes in the graphs. In this line, Struct2Vec is proposed which em-

ploys a biased random walk to generate the context of nodes in a multilayer

graph to preserve structural identities of nodes [31].

An edge sampling based method called LINE captures first-order and

second-order proximities to learn an embedding [9]. The edges are sam-

pled with the probabilities proportional to their weights. LINE models

first-order proximity by joint probability distribution between vertices, and

the empirical proximity distribution which is calculated by normalizing the

weight of an edge with a sum of all edge weights. The first-order proximity

is preserved by minimizing these two joint probability distributions. In

case of second-order proximity, two vertices which have similar contexts

are considered close. For each edge, LINE calculates a conditional distri-

bution of a vertex in a given context and also an empirical distribution.

The second-order proximity is also preserved by minimizing these two joint

probability distributions. The overall objective of LINE is to jointly mini-

mize these two objectives.

The above-mentioned models are shallow, thus they do not learn good

quality representations. As pointed out in various works, the underlying

networks are complex structures [32], highly non-linear [33], and sparse [26].

Therefore, it requires deep models to overcome these challenges to learn

a good quality representation. Wang et al. proposed Structural Deep

Network Embedding (SDNE) to preserve the structure, handle sparsity,

and non-linearity of the network [27]. SDNE takes adjacency matrix as in-

put and employs a semi-supervised deep autoencoder model which exploits

first-order and second-order proximity to preserve structural properties of a

graph. It adopts the idea of Laplacian Eigenmaps (LE) for preserving first-

order proximity [19]. To address the sparsity issues, reconstruction errors

of non-zero elements are penalized more than zero elements. In another

28

29 CHAPTER 4. STATE-OF-THE-ART

method, DNGR, a stacked deep denoising autoencoder is used to learn an

embedding [34]. The proposed approach captures structural information

through random surfer model and generates probabilistic co-occurrence

matrix. From it, positive point-wise mutual information (PPMI) matrix is

generated which is fetched into denoising autoencoder to learn an embed-

ding.

Adapting Deep Neural Network models to work on graphs has led to

a new domain called Graph Neural Network (GNN). Gori et al. were the

first to apply neural networks on graphs [35] followed by an extension by

Scarselli et al. [36]. These approaches learn an embedding of nodes by

propagating neighbor information through an iterative architecture which

is computationally expensive. The tremendous success of Convolutional

Neural Network (CNN) in computer vision and NLP has motivated re-

searchers to apply these methods on graph data which led to Graph Con-

volutional Networks (GCN). Various GCNs based on spectral graph theory

have been proposed [37–41]. Bruna et al. were the first to formulate CNN

on graphs [37]. The authors proposed two constructions to use CNN in

graph data: spatial domain-based on multi-scale clustering and spectral

domain based on graph Laplacian. In spatial convolution, the connectivity

matrix is a k-hop adjacency, the features are summed up from the neigh-

bors and the convolution layer is a fully connected layer working on sparse

connectivity matrix of k-hops.

4.1.2 Attributed Network Embedding

Matrix Factorization Methods

In this class, the NRL methods apply matrix factorization techniques on

the adjacency matrix of the graph and the context matrix to learn a repre-

sentation [42–45]. Text Associated DeepWalk (TADW) incorporates text

29

4.1. HOMOGENEOUS NETWORK EMBEDDING 30

features associated with vertices through matrix factorization [44]. The

authors show that the DeepWalk is equivalent to matrix factorization

and the random walk of length t is equivalent to multiplying the adjacency

matrix t times and then factorizing it. The factorization takes the text

associated matrix into account. Given that some attributed graphs can be

partially labeled as groups or community categories, then these labels can

be helpful in learning a better representation. Huang et al. proposed a La-

bel Informed Attributed Network Embedding (LANE), a semi-supervised

approach which incorporates labels in addition to attributes in learning a

representation [42]. LANE separately applies spectral methods on network

structure, attribute matrix and labels matrix to learn a latent represen-

tation, and then these representations are projected in a unified space to

obtain a final representation. Due to the large size of graphs and the as-

sociated attributes, the MF methods are limited due to scalability. To

address this, the authors of LANE proposed Accelerated Attributed Net-

work Embedding (AANE), which divides modeling and optimization into

sub-problems which are solved in a distributed environment [43].

Neural Network Methods

Various approaches have been proposed that use deep neural networks to

learn an embedding jointly from network structure and the attributes [46–

53]. TriDNR is a semi-supervised approach which uses network structure,

network attributes and partial labels to learn an embedding [48]. It em-

ploys a coupled model - one model exploits the inter-node relationships

by using SkipGram on network structure, other one exploits vertex-node

and label-word relationships by using Doc2Vec on node attributes and

labels. The model uses a late fusion approach, i.e. the learning is per-

formed independent of each other and the final embedding is obtained by

a linear combination on two embeddings. The drawback with this approach

30

31 CHAPTER 4. STATE-OF-THE-ART

is that two different sources of information (structure and attributes) do

not complement each other in learning. Another semi-supervised approach

called Predictive Text Analytics (PTE) originally designed for text net-

works, can also be used for graphs with attributes [46]. The word-word,

word-document, and word-label networks described in PTE can be trans-

lated to node-node, node-attributes, and node-label networks for attributed

graphs.

Graph Convolutional Network (GCN) based approaches have also been

proposed for attributed graphs. Kipf and Welling proposed a fast and

scalable semi-supervised approach that uses first-order approximations of

spectral graph convolutions [53]. This approach is transductive, i.e. trains

on network structure, thus the model cannot generalize to unseen nodes.

An inductive approach called GraphSAGE uses node features for training

and generated embedding for the vertices [2]. The model trains a set ag-

gregator functions that aggregate information from nodes at a given depth

from the current node. Thus, each node is represented by the aggregation

of its neighbors. The paper proposed three aggregation functions: mean

aggregator, LSTM aggregator and pooling aggregator. This process is done

iteratively for k steps and at each step, the latent representation is updated

as per aggregator functions.

Graph autoencoder has also shown promising results in learning an em-

bedding using GCN [52, 54]. Variational Graph Autoencoder (VGAE)[52]

is an unsupervised approach which uses GCN encoder and a simple inner

product decoder.

Gao et al. pointed out that not only network structures are highly non-

linear, but also the attributes of the network are non-linear as well [49].

Therefore, they proposed Deep Attributed Network Embedding (dane),

which employs a deep autoencoder on both the structure and the attributes

simultaneously. The proposed approach preserves the first-order proximity

31

4.2. HETEROGENEOUS NETWORK EMBEDDING 32

in the network structure and the attributes, and the high-order proximity

in the network structure only. Furthermore, the model maintains the con-

sistency between two modalities, and a complementary representation is

obtained by jointly optimizing on the joint distribution of two modalities.

This requires sampling the vertices which are similar in attributes. The

sampling strategy is quadratic which limits the scalability of DANE. An-

other approach, ANRL uses an enhanced deep autoencoder which preserves

structural proximities and attributes affinities [50]. The model takes only

attributes as input and reconstructs the attributes and neighborhood of the

given node. The neighborhood reconstruction is optimized against ground

truth which is prior generated through random walks. Most of the ap-

proaches only learn the representation of the nodes and not the attributes.

A recent model called Co-embedding Attributed Networks (CAN) learns an

embedding of both nodes and the attributes and use them in applications

such as user profiling [51]. CAN employs a variational autoencoder and

captures the affinities between nodes and attributes by projecting them in

the same semantic space [55].

4.2 Heterogeneous Network Embedding

Some networks are by and large inherently heterogeneous. The NRL meth-

ods designed for a homogeneous network cannot be directly used for these

networks as these methods discard the node and edge types and the learned

embedding cannot preserve the properties of such a network. On this ac-

count, various approaches have been proposed [56, 56, 57, 57–60]. Yuxio et

al. proposed Metapath2Vec, which uses meta-path based random walks

to generate the heterogeneous neighborhood contexts [56] and introduced

heterogeneous SkipGram model to learn an embedding. The meta-path

based random walk uses a meta-path scheme which guides a random walker

32

33 CHAPTER 4. STATE-OF-THE-ART

to choose the next node in the walk, such that the semantics and structural

correlations between different types of nodes are captured. The heteroge-

neous SkipGram model maximizes the probability of a node in hetero-

geneous contexts and for efficient optimization, it uses negative sampling

approach [61]. In an extension approach called Metapath2Vec++, they

use heterogeneous negative sampling which normalizes the softmax func-

tion with respect to the node type of the context. Hin2Vec is another

meta-path based approach which learns the node representations as well as

representations of the targeted relationships that are used to predict the

target relationships between two nodes [58]. Hin2Vec is a single layer,

feed-forward neural network that takes 3 inputs- two nodes and the re-

lationship between them - and trains a binary classifier which predicts

whether the two input nodes have a specific relationship or not. The cum-

bersome task is to sample the training data such that it covers as many

node pairs and their relationships as possible. Moreover, the binary clas-

sifier also requires negative samples which are populated by replacing one

of the nodes in the input data tuple. The problem with the meta-path

based approach is that it requires a user to define the schema to guide

random walks, and second, these approaches require a very large number

of walks for adequate sampling. To overcome these drawbacks, Rana et

al. proposed a Jump and Stay strategy to perform random walks which

not only performs better with meta-path based learning methods but also

speeds up the learning [62].

A deep network approaches Heterogeneous Network Embedding (HNE)

considers a heterogeneous network having different types of nodes and con-

tents such as images, text [57]. Thus leading to a network in which we can

have text-text links, image-image links, and image-text links. Thus, HNE

strives to learn a unified embedding which preserves the content and rela-

tional information. The neural network of HNE consists of three modules:

33

4.2. HETEROGENEOUS NETWORK EMBEDDING 34

image-image, image-text, and text-text which are fed with pairwise data

from the HIN. The image-image module employs a Convolutional Neural

Network (CNN) for each image, image-text employs a CNN for image and

Fully Connected (FC) layers for text, and FC layers for each text data

input in text-text module. The weights are shared within and between

the modules, and components are optimized through Stochastic Gradient

Descent (SGC) for learning a unified embedding.

34

Chapter 5

Joint Learning on Attributed Graphs

The objective of network representation learning is to embed vertices in

a low-dimensional space where the graph properties such as pairwise rela-

tionships between vertices and the structure of vertex local neighborhood

are preserved. The properties between vertices can be captured through

local information (e.g. followers, citations, friendship relations) or global

information (e.g. h-hop neighborhood, community affiliation). The sim-

ilarity of a vertex with respect to other vertices represents its contextual

information. The contexts obtained using structural information of the

network are called structural contexts.

Similarly to structural contexts, we can define the context of vertices in

terms of attributes. The contextual information based on attributes defines

the semantic relationship between vertices. For example, in a citation

network, two papers having similar keywords share contextual information

irrespective of their distance in structure. It is a challenging task, however,

to generate attribute contexts from attributed graphs, in particular when

the coverage of attributes is only partial, as in Figure 5.1. The labels of

vertices are used in the classification task.

In this chapter, we introduce gat2vec, a framework that jointly learns

from both the structure and the attributes of the network using a single

35

36

Figure 5.1: An example of a partially attributed graph.

neural layer. Structural contexts are obtained from the graph, preserving

structural proximities; attribute contexts are obtained from a bipartite

graph linking vertices and their attributes, preserving content proximities.

The proposed framework learns a representation in an unsupervised

manner, scaling to large graphs, for both directed and undirected homo-

geneous graphs. Our approach is novel as it leverages multiple sources

of information through early fusion and needs to optimize a single objec-

tive function. Furthermore, we will present a semi-supervised variant of

gat2vec called gat2vec-wl, where labels are incorporated as attributes

to enhance the learning of embeddings.

We empirically evaluated and validated our approach on vertex classi-

fication (multi-class & multi-label) and link prediction, on real-world at-

tributed networks. The qualitative analysis from visualization and query

task also validates our approach.

The rest of the chapter is organized as follows. In Section 5.1, we provide

36

37 CHAPTER 5. JOINT LEARNING ON ATTRIBUTED GRAPHS

the motivation and formally describe the problem. In Section 5.2, we

present our proposed framework gat2vec. We describe the experimental

setup and experimental results in Section 5.3.

5.1 Problem

We investigate the problem of integrating structural and attribute con-

textual information obtained from a partially attributed graph and employ

a neural network model to jointly learn a representation of the vertices in

a low-dimensional space. Informally, the problem can be described as fol-

lows:

Problem Given an attributed graph G as shown in Figure 5.1, we aim

at learning a low-dimensional network representation Φ : V → Rd, where

d � |V | is the dimension of the learned representation, such that the

structural and attribute contextual informations are preserved.

The learned representation Φ is generic and can provide feature inputs

for various machine learning tasks, such as classification and link predic-

tion. Its validity is evaluated through such machine learning tasks; the

precise figures of merit to be used are described in the respective Sec-

tions 5.3.4 and 5.3.5. For example, if the learned representation is able to

classify vertices with high precision and recall (combined as F1 score), that

means that the contextual information of vertices is well-preserved.

In this work, we considerG as a homogeneous, un-weighted and partially

attributed graph. We evaluate our proposed approach on classification of

vertices (multi-class and multi-label) and link prediction. We also perform

a qualitative analysis (nearest-neighbor search and visualization).

37

5.2. GAT2VEC FRAMEWORK 38

Figure 5.2: A graph depicting the structural relationships between vertices.

5.2 GAT2VEC Framework

In this section, we present a detailed description of our proposed frame-

work gat2vec1 which learns a network embedding from structural and at-

tribute information. For each vertex, we obtain its structural and attribute

contexts with respect to other vertices through random walks. Then, we

integrate these two contexts to learn an embedding which preserves both

structural and attribute proximities. The gat2vec method is outlined in

Algorithm 1. Specifically, our framework consists of three stages:

• Network generation

• Random walks

• Representation learning

5.2.1 Network Generation

From the attributed graph, G, we obtain two graphs:

(1) A connected structural graph Gs = (Vs, E), consisting of a subset

Vs ⊆ V of vertices that have connections included in the set E of

edges. We refer to vertices in Vs as structural vertices. An edge

1https://github.com/snash4/GAT2VEC

38

39 CHAPTER 5. JOINT LEARNING ON ATTRIBUTED GRAPHS

(ps, qs) ∈ E encodes a structural relationship between nodes as shown

in Figure 5.2.

(2) A bipartite graph Ga = (Va,A, Ea), consisting of (i) the subset of con-

tent vertices Va ⊆ V that are associated with attributes, (ii) the set of

possible attribute vertices A derived from Z as given in the Definition

1 in Section 2.2 of Chapter 2, and (iii) the set of edges Ea connect-

ing content vertices to the attribute vertices that are associated by

function A:

Va = {v : A(v) 6= ∅}

Ea = {(v, a) : a ∈ A(v)}

Figure 5.3: A bipartite graph between content nodes and attributes.

Proposition 1. Two content vertices u, v ∈ Ga are reachable only via

attribute vertices.

Following Proposition 1, the path between content vertices contains

both content and attribute vertices. Therefore, the content vertices con-

tained in the path have a contextual relationship because they are reach-

able via some attribute vertices. These content vertices form the attribute

39

5.2. GAT2VEC FRAMEWORK 40

contexts. The intuition behind our approach is “two entities are similar,

if they are connected with similar objects”. This phenomenon can be ob-

served in many applications, e.g. in the bipartite “user-product” graphs,

where “users” buy “products” and two users are similar if they buy similar

products.

Such bipartite network structure has also been used in [46] which models

a network between documents and the words included in them.

5.2.2 Random Walks

Informally speaking, similarity between entities could be measured in sev-

eral ways. For example, it could be measured based on the distance of two

nodes in the graphs. In the attributed graph of Figure 5.3, e.g., nodes 2

and 8 are both one attribute away from node 1, and thus we could say that

they have equal similarity to 1; but there three paths connecting 1 and 8,

while there are only two paths connecting 1 and 2; thus, 1 and 8 are more

similar than 1 and 2.

While several approaches have been used [9, 26–28, 48], we adopt short

random walks to obtain both the structural and the attribute contexts of

vertices at the same time. The short random walks enable to effectively

capture the contexts in which nodes have high similarity [26].

Random walks are performed on both Gs and Ga. The random walks

over Gs capture the structural context. For each vertex, γs random walks of

length λs are conducted to build a corpus R. This contextual information

is used in the embedding, with the aim of maintaining the local and global

structure information. We denote ri as the i-th vertex in the random walk

sequence r ∈ R.

For example, a random walk in the graph of Figure 5.2 could be the

following: r = (2, 3, 4, 3, 1), with length length 5, starting at vertex 2 and

ending at vertex 1.

40

41 CHAPTER 5. JOINT LEARNING ON ATTRIBUTED GRAPHS

In the bipartite graph Ga, a random walk starts with a content vertex

and jumps to other content vertices via attribute nodes. The attribute

vertices act as bridges between content vertices and help in determining

the contextual relationships among them, i.e. which content vertices are

closely related. As we are interested in how often such vertices co-occur in

random walks and not in which attributes have been traversed to connect

them, we have omitted the attributes in our random walks. Thus, the

walks contain only vertices from Va.

Group of vertices that have high similarity in attributes are likely to

appear frequently together in the random walks. Similar to Gs, we perform

γa random walks of length λa and build a corpus W ; we denote with wj

the j-th vertex of the random walk sequence w ∈ W .

For example, a random walk with attributes in the graph of Figure 5.3

could be the following: [2, b, 1, c, 8, b, 2, b, 8]. Since we are skipping attribute

nodes in walks, therefore the corresponding walk is w = [2, 1, 8, 2, 8], with

length 5, starting from vertex 2 and terminating in vertex 8.

5.2.3 Representation Learning

Figure 5.4: The Architecture of gat2vec.

41

5.2. GAT2VEC FRAMEWORK 42

Algorithm 1: The gat2vec Algorithm

Input : An Attributed Graph G = (V,E,A)

Output : Φ : V → Rd, d� |V |
Parameters: walks per node γs, γa;

length of walks λs, λa;

context window size c;

embedding size d

1 Obtain Gs and Ga from G

2 for v ∈ Vs ∪ Va do

3 initialize Φ(v) // initializing the vectors

4 end

5 for u ∈ Vs do

6 Rs(u) = RandomWalks(Gs, u, γs, λs)

7 end

8 for v ∈ Va do

9 Wa(j) = RandomWalks(Ga, v, γa, λa)

10 end

11 R = ⊕u∈VsRs(u)

12 W = ⊕v∈VaWa(v)

13 Φ = SkipGram(R,W, c) // as per equation. 5.1

14 return Φ

The architecture of gat2vec is shown in Figure 5.4. The input is

given by structural and attribute contexts obtained from the respective

graphs (line 11, 12 of Alg. 1). We use the SkipGram model to jointly learn

an embedding based on these two contexts. From each context, structural

or attribute, a vertex Vx ∈ Vs|Va is selected and is input to SkipGram.

The input vertex is one-hot encoded vector {0, 1}|Vs∪Va|. The input vertex

Vx is the target vertex and the output layer produces 2c multinomial dis-

tributions of associated context vertices to the given input vertex. c is the

context size i.e, the number of predicted vertices before or after the target

vertex. Likewise, the output vertices can belong either to structural ver-

tices or to attribute vertices, or to both, depending on their co-occurrence

42

43 CHAPTER 5. JOINT LEARNING ON ATTRIBUTED GRAPHS

in random walks.

Given a target vertex, the objective of gat2vec model is to maximize

the probability of its structural and attribute contexts. Similar to previous

studies [26, 28], we follow the assumption that given a target vertex, the

probability of context vertices are independent of each other. Therefore,

learning is described by the following objective function:

L =
∑
r∈R

|r|∑
i=1

log p(r−c : rc|ri) +
∑
w∈W

|w|∑
i=1

log p(w−c : wc|wi) (5.1)

The equation 5.1 can be written as:

L =
∑
r∈R

|r|∑
i=1

∑
−c≤ j≤ c

j 6=i

log p(rj|ri) +
∑
w∈W

|w|∑
i=1

∑
−c≤ t≤ c

t 6=i

log p(wt|wi) (5.2)

where r−c : rc and w−c : wc correspond to a sequence of vertices inside

a contextual window of length 2c in random walks contained in corpus R

and W , respectively.

The first term uses the structural contexts, while the second is for learn-

ing from attribute contexts. If |Va| = 0, then the model will become Deep-

Walk, i.e learns only from structure. The term p(rj|ri) is the probability

of the j-th vertex when ri is the central vertex in the structural context

r, while the term p(wt|wi) is the probability of the tth vertex when wi

is the central vertex in the attribute context w. These probabilities can

be computed using the softmax function. The probability p(rj|ri) can be

computed as:

p(rj|ri) =
exp

(
ϕ(rj)

TΦ(ri)
)∑

vs∈Vs exp
(
ϕ(vs)TΦ(ri)

) (5.3)

where ϕ(·), Φ(·) are representations of a vertex when it is considered as

a context vertex or a target vertex respectively. Similarly, we can compute

p(wt|wi) following Equation 5.3.

43

5.2. GAT2VEC FRAMEWORK 44

The softmax calculation is computationally expensive due to normal-

ization over all vertices of a graph. Thus, we approximate it by using the

hierarchical softmax function [14]. Following [63], we used Huffman coding

to build binary trees for hierarchical softmax which has vertices as leaves.

Therefore, in order to compute the probability, we just need to follow the

path from the root to the leaf node of the tree. Thus, the probability of a

leaf node rj to appear in the structural context is:

p(rj|ri) =
d∏
h=1

p(sh|Φ(ri)), (5.4)

where d = log |Vs| is the depth of the tree and sh are the nodes in the path

with so = being the root and sd = rj. Furthermore, modeling p(rj|ri) as

a binary classifier reduces the computational complexity to the order of

O(log(|Vs|). The same can be applied to compute the probability for ver-

tices in attribute contexts. Given that we are computing the probabilities

from two contexts, this leads to the overall computational complexity of

O
(

log |Vs|+ log |Va|
)
.

5.2.4 gat2vec-wl

In our work, we can also exploit the labels for precise learning of an embed-

ding in a semi-supervised manner. The idea behind this approach is that

the vertices sharing labels are similar and thus should be encoded close

to each other in the embedding. We propose gat2vec-wl to incorporate

labels associated with content vertices as attributes of vertices. The labels

will be defined as an attribute vertex in the bipartite graph defined in Sec-

tion 5.2.1. The labels will be helpful in generating the contexts in which

the vertices sharing labels will appear together.

Since real-world networks are partially labeled, therefore, we randomly

pick a percentage LP of labeled content vertices and incorporate their labels

44

45 CHAPTER 5. JOINT LEARNING ON ATTRIBUTED GRAPHS

as attributes. After learning an embedding, these selected vertices are used

in subsequent machine learning tasks. For example, for classification, we

train our classifier on these selected vertices and predict labels for the rest.

5.3 Experiments

In this section, we provide an overview of widely used datasets and dis-

cuss the details of the experimental setup to compare the performance of

our proposed approach, gat2vec, against a collection of state-of-the-art

approaches.

We will validate the representation learned so far to perform two im-

portant tasks, namely vertex classification and link prediction.

5.3.1 Datasets

We use three real-world datasets: the social network BlogCatalog [64]

and the citation networks dblp [65] and CiteSeer [66]. Table 5.1 summa-

rizes their statistics, including information about the associated structural

and attribute graphs.

dblp and CiteSeer are widely used for experimentation [48]. dblp

contains bibliographic data in computer science, extracted from a selected

list of 34 conferences from 4 research areas. CiteSeer is a multi-disciplinary

dataset consisting of papers from 10 research fields.

In the dblp and CiteSeer datasets, the title of the paper constitutes

the vertex content. We pre-process these titles to remove stop words. From

each dataset, we selected the words occurring at least th times as vertex

attributes. At th = 3, dblp, CiteSeer and BlogCatalog have 8618,

3986, and 5413 attributes, respectively.

BlogCatalog [67] is a social network of bloggers. The labels represent

the interests of bloggers and each blogger may be associated to multiple

45

5.3. EXPERIMENTS 46

Dataset |V | |E| # #Lbl Vs Va |A| |Ea|
Lbls Vertices

dblp 60,744 52,890 4 60,744 17,725 60,720 8618 356,230

CiteSeer 38,996 77,218 10 10,310 36,227 10,107 3986 59,477

BlogCatalog 70,004 1,409,112 60 70,004 55,771 57,709 5413 269,363

Table 5.1: Dataset Statistics

labels. The attributes are keywords generated from users blog.

5.3.2 Baseline Methods

We compare gat2vec against state-of-the-art NRL algorithms for learn-

ing graph embeddings: two structure-based methods (Node2Vec and

DeepWalk), one content-based (Doc2Vec), and two methods using both

structure and content (TriDNR and TADW). We also consider variants

of TriDNR and TADW. All the results in the experiments are obtained

using the code released by the authors.

• Node2Vec [28] uses biased random walks to generate the vertex se-

quences based on in-out parameters p, q. For each of our datasets, we

learned these hyper-parameters as described in the original paper.

• DeepWalk [26] is an approach based on random uniform walks to

learn a d-dimensional feature representations of vertices in a network

using only structure information.

• Doc2Vec [63] is an unsupervised neural network model to learn a

representation for variable length texts such as sentences, paragraphs

or documents. The model learns both word vectors and document

vectors. We fed the text associated with each vertex to the model and

obtained a representation for each vertex.

46

47 CHAPTER 5. JOINT LEARNING ON ATTRIBUTED GRAPHS

• TriDNR [48] is a learning model which uses three sources of informa-

tion: network structure, vertex content, and label information to learn

the representation of vertices. TriDNR uses two models: Deep-

Walk to learn the representation from structure, and Doc2Vec to

capture the context related to node content and label information.

The final representation is a linear combination of outputs of these

two models.

• TriDNR noLbl is an unsupervised variant of TriDNR which learns

a representation without using vertex labels.

• TADW [44] learns a d-dimensional representation of vertices by fac-

torizing a text-associated matrix. Before factorizing the matrix, the

features are reduced using SVD.

• TADW noSVD is a modified version of TADW in which we fetched

raw feature vectors of vertices without performing SVD on them to

learn a representation of a network.

• gat2vec-wl is a semi-supervised variant of gat2vec to learn a rep-

resentation using labels as attributes.

• gat2vec-bip is another version of gat2vec which learns a represen-

tation on the bipartite graph only. Thus, no structural information is

used for learning.

5.3.3 Experimental Setup & Parameter Settings

We perform multi-class classification on dblp and CiteSeer, and multi-

label classification on BlogCatalog using the respective learned repre-

sentation.

We set the parameters of gat2vec as follow: number of walks, γs = 10

and γa = 10; walk length, λs = 80 and λa = 80. The representation size is

47

5.3. EXPERIMENTS 48

d = 128; window size is c = 5, the threshold th is equal to 3. For fairness of

comparison, the parameters that are in common between gat2vec and the

other methods are set with the same value, while the rest of the parameters

are set to their optimal default values as reported in the respective papers.

5.3.4 Vertex Classification

For classification, we used one-vs-rest logistic regression classifier Liblin-

ear [68] with default parameters for training the data, and then pre-

dict the unlabeled vertices. We randomly selected a sample of size TR ∈
{10%, 30%, 50%} of vertices as training set to train the classifier and used

the rest as a test set.

In case of gat2vec-wl, we randomly selected a percentage of labeled

vertices, LP ∈ {10%, 30%, 50%} and incorporated their values as attributes

for learning a representation. Then these labeled vertices are used in train-

ing the classifier and predicting the labels of the remaining vertices.

The metrics used to compare our approach against the baselines are the

widely used Micro-F1 and Macro-F1 scores. For fairness in comparison,

we used the same training set of gat2vec across all baselines for training

the classifier. For each training ratio, we repeat the process 10 times and

report the average scores.

Results and Discussion

Tables 5.2–5.4 show the Micro-F1 and Macro-F1 results on the dblp,

CiteSeer and BlogCatalog datasets. The results are consistent with

the results reported in the baselines. gat2vec outperforms all baseline

methods in all three datasets, even when a small number (TR = 10%) of

vertices are used for training. This makes gat2vec suitable in real-world,

sparse-labeled datasets.

48

49 CHAPTER 5. JOINT LEARNING ON ATTRIBUTED GRAPHS

Method
Micro-F1 Macro-F1

10% 30% 50% 10% 30% 50%

DeepWalk 51.8 52.5 52.7 41.0 42.1 42.3

Node2Vec 48.9 49.3 50.0 44.7 45.4 45.7

Doc2Vec 74.2 76.1 78.0 67.2 70.0 71.2

gat2vec-bip 76.5 77.4 77.6 70.1 70.8 71.1

TADW 68.4 68.8 69.0 62.9 63.1 63.5

TADW noSVD 60.8 61.0 61.1 56.1 56.5 56.5

TriDNR noLbl 74.3 74.8 75.1 67.0 67.7 73.1

gat2vec 79.0 79.4 79.5 72.6 73.1 73.4

Table 5.2: Multi-class Classification on dblp

Method
Micro-F1 Macro-F1

10% 30% 50% 10% 30% 50%

DeepWalk 44.0 47.8 49.0 35.1 37.9 39.0

Node2Vec 63.7 66.5 67.3 54.6 56.3 57.0

Doc2Vec 60.9 70.0 72.8 55.5 66.4 68.8

gat2vec-bip 65.5 70.2 71.4 61.4 66.5 67.8

TADW 49.0 51.2 51.8 44.0 45.8 46.4

TADW noSVD 32.5 35.2 36.0 28.4 30.5 31.4

TriDNR noLbl 63.3 67.6 69.8 57.8 62.0 64.5

gat2vec 66.3 70.7 72.0 62.2 67.1 68.5

Table 5.3: Multi-class Classification on CiteSeer

The results validate our approach of generating structural and attribute

contexts and then subsequently learn the representation from both of them.

In fact, gat2vec beats the state-of-the-art, attribute-based method TriDNR

in all three datasets. This implies that properly modeling attribute infor-

mation increases the preciseness of embeddings.

Furthermore, gat2vec outperforms TADW in all datasets. This is due

to the structural and attribute sparsity. The impact of attribute sparsity

49

5.3. EXPERIMENTS 50

Method
Micro-F1 Macro-F1

10% 30% 50% 10% 30% 50%

DeepWalk 29.8 31.8 32.2 16.2 17.8 18.6

Node2Vec 31.0 32.5 32.8 17.0 18.6 18.8

Doc2Vec 40.3 41.4 41.9 23.4 25.8 26.6

gat2vec-bip 47.3 49.2 49.6 34.0 36.6 37.0

TADW 38.0 38.8 39.0 23.4 24.3 24.6

TADW noSVD 24.8 25.4 25.9 8.1 8.2 8.5

TriDNR noLbl 34.2 36.3 36.8 21.0 21.5 22.2

gat2vec 49.5 51.2 51.6 36.3 38.8 39.3

Table 5.4: Multi-label Classification on BlogCatalog

can be ascertained from results of CiteSeer dataset which is much more

sparse than dblp, as only 10,310 out of 38,996 vertices have titles associ-

ated with them. This is also the reason of deviation from reported results

in TriDNR which learns a representation using only 10,310 vertices. The

other reason for this poor performance is due to using an approximation of

DeepWalk. The dismal performance of TADW noSVD shows high de-

pendence of the TADW approach on the costly SVD method; without SVD,

the sparsity issue is aggravated as shown in Table 5.3 for the CiteSeer

dataset.

gat2vec-bip outperforms the content-based method Doc2Vec in Blog-

Catalog dataset, but has almost similar performance in case of Cite-

Seer and dblp datasets. This highlights the appropriate modeling of

attribute information even in cases when attribute information is non-

cohesive and semantically unrelated such as in BlogCatalog dataset.

In the case of CiteSeer and dblp datasets, Doc2Vec uses only titles

of papers which has rich information as compared to the structure. Thus,

it performs better than DeepWalk but has comparable performance with

Node2Vec as it exploits the structural information much efficiently than

50

51 CHAPTER 5. JOINT LEARNING ON ATTRIBUTED GRAPHS

DeepWalk. Furthermore, in BlogCatalog dataset, Doc2Vec under-

performs as the contents do not contain rich information. In this case, our

modeling proves to be better as shown by results of gat2vec-bip.

Structure-based methods such as DeepWalk and Node2Vec perform

poorly, justifying the use of information from multiple sources to learn

embeddings.

Table 5.5 shows the Macro-F1 of the three datasets when the labels are

incorporated in learning the embedding. We have included just TriDNR

as it is the only baseline which uses labels and attributes in learning. The

results of gat2vec prove our claim that including the labels increases

the quality of embedding in classification task. Furthermore, it also im-

plies that our proposed approach of incorporating attributes is sufficient

to generate the proper contexts. gat2vec has superior performances with

respect to TriDNR, which in turn implies that performs better than the

rest of the baselines.

Dataset Tr TriDNR gat2vec-wl

dblp

10% 69.5 75.2

20% 72.0 81.4

30% 72.2 86.3

CiteSeer

10% 64.0 79.2

20% 71.1 77.0

30% 73.8 83.0

BlogCatalog

10% 21.0 39.7

20% 23.8 53.0

30% 24.9 63.8

Table 5.5: Macro-F1 score of classification (using labels)

51

5.3. EXPERIMENTS 52

5.3.5 Link Prediction

One important network analysis task is link prediction, and in the following

we present the setting and comparison of gat2vec and the baselines for

this task. We follow a similar strategy as [27, 28] and sample 15% of

the observed or true edges (TE ⊂ E) and remove them from the graph

while ensuring the residual network is connected. We also sample 15%

false edges (FE
⋂
E = ∅). Next, each network representation algorithm is

trained using the residual network. Once the training is complete, we get

an embedding for each node. Then we predict the probability of an edge

(u, v) being a true edge, for all edges (u, v) ∈ TE
⋃
FE that we have just

sampled, according to the following equation.

p(u, v) =
1

1 + exp−Φ(u).Φ(v)
(5.5)

We finally rank edges according to the probability p and consider the top-

k ones in the ranking at different values of k and measure the prediction

performance using precision at k, P (k). Let R be set of edges ranked

according to p and Rk be the top-k elements of R. Then, P (k) computes

the fraction of correctly predicted edges from the top-k predictions, and it

is specified by

P (k) =
|TE

⋂
Rk|

|Rk|
(5.6)

DeepWalk Node2Vec TADW TriDNR gat2vec

P(1000) 0.93 0.92 1.0 0.95 0.99

P(5000) 0.67 0.73 0.80 0.70 0.93

P(10000) 0.54 0.59 0.54 0.52 0.68

P(15000) 0.43 0.45 0.41 0.42 0.48

P(20000) 0.34 0.34 0.33 0.33 0.37

P(25000) 0.27 0.27 0.37 0.38 0.30

Table 5.6: P (k) for Link Prediction on dblp

52

53 CHAPTER 5. JOINT LEARNING ON ATTRIBUTED GRAPHS

DeepWalk Node2Vec TADW TriDNR gat2vec

P(1000) 0.85 0.92 0.20 0.81 0.74

P(5000) 0.70 0.71 0.17 0.89 0.64

P(10000) 0.66 0.65 0.18 0.51 0.63

P(15000) 0.63 0.63 0.19 0.49 0.63

P(20000) 0.62 0.61 0.20 0.48 0.63

P(25000) 0.61 0.60 0.21 0.47 0.62

Table 5.7: P (k) for Link Prediction on BlogCatalog

Results and Discussion

The results for link prediction is given in Table 5.6–5.7. One can notice

that for the dblp dataset (Table 5.6), where the structural network is

very sparse, algorithms which are based only on the structural knowledge

produce poor results. Our algorithm, which alleviate the structural sparsity

by considering connections with attributes, significantly outperforms the

baselines including those that integrate attribute and label information.

Our finding also shows that when the structural network is sufficiently

dense (BlogCatalog), structure based algorithms could be sufficient in

link prediction as shown in Table 5.7.

5.3.6 Qualitative Analysis

To evaluate qualitatively the learned representations from our proposed

approach, we performed Nearest Neighbor Search and visualization of the

learned embeddings.

Case Study

We carried out a case study on the dblp dataset, by selecting a query

paper and then obtaining the three nearest neighbors with respect to its

representation, using the Cosine Distance metric. We generated an embed-

53

5.3. EXPERIMENTS 54

Algorithm Query : Group Formation in Large So-

cial Networks: Membership, Growth,

and Evolution

Cites # Cit.

gat2vec 1. Microscopic Evolution of Social Networks Yes 4

2. Structure and Evolution of On-line Social

Networks

No 7

3. Maximizing the Spread of Influence

through a Social Network

Yes 14

TriDNR 1. Searching for Rising Stars in Bibliography

Networks

Yes 0

2. A Framework for Community Identifica-

tion in Dynamic Social Networks

Yes 9

3. A Framework for Analysis of Dynamic

Social Networks

Yes 2

TADW 1. Tutorial summary: Large social and in-

formation networks: opportunities for ML

No 0

2. Exploring and Visualizing Academic So-

cial Networks

No 0

3. Seeing Sounds: Exploring Musical Social

Networks

No 0

Node2Vec 1. Characterizing and Predicting Commu-

nity Members from Evolutionary and Het-

erogeneous Networks

Yes 0

2. Searching for Rising Stars in Bibliography

Networks

Yes 0

3. Constant-factor Approximation Algo-

rithms for Identifying Dynamic Communities

Yes 0

Table 5.8: Nearest Neighbor Top 3 Results

ding through gat2vec-wl, with 10% vertices labeled. The query paper

is “Group Formation in Large Social Networks: Membership, Growth, and

Evolution”, which has the highest number of citations in dblp (1666 on

July 2017). The paper studies the effect of network structure on the evolu-

tion of communities in social networks. Therefore, the results of the near-

54

55 CHAPTER 5. JOINT LEARNING ON ATTRIBUTED GRAPHS

est neighbors should have attribute contexts related with social networks,

communities, and evolution. In addition, the resulting papers should also

preserve its structural contexts. Table 5.8 lists the query results on dif-

ferent embeddings, along with citation relationship, and common citations

between the query and the result.

The results returned by gat2vec are relevant in attribute contexts

to the query. The first and third results are cited by the query, which

shows that gat2vec preserves the direct proximity. Indirect proximities

are preserved as well, as it evidenced by the second query result which is

not cited by the query but has 7 common cited papers. Therefore, our

proposed method gat2vec generates accurate structural and attribute

contexts which eventually help to learn precise embeddings.

Apart from the first one, the results from TriDNR are quite related

with the query as they are either directly cited or have common citations

with query paper. The results from TADW have some relevance with the

query. But structurally, there is neither citation relationship nor any com-

mon cited papers with the query paper. The possible reason for such poor

results could be due to matrix approximation for obtaining structural con-

texts. Node2Vec results show what happens when ignoring the attribute

information, nonetheless Node2Vec exploits the structural information

as the results and query have a direct relationship.

The above qualitative analysis support the claim that using multiple

sources of information aids in learning the precise embeddings.

Network Visualization

The learned embedding can be projected in a two dimensional plane to visu-

alize the co-relationship between the nodes. We use the learned embedding

from TriDNR, TADW, and Node2Vec on the CiteSeer dataset for

comparison. Papers which cite less than five papers are filtered out. Since

55

5.3. EXPERIMENTS 56

these embeddings are in a higher dimensional space, we use t-SNE [69] to

reduce these to 2-D space. The visualizations of different approaches are

given in Figure 5.5.

80 60 40 20 0 20 40 60 80
80

60

40

20

0

20

40

60

80
gat2vec

80 60 40 20 0 20 40 60 80
80

60

40

20

0

20

40

60

80
TriDNR

80 60 40 20 0 20 40 60 80
80

60

40

20

0

20

40

60

80
TADW

80 60 40 20 0 20 40 60 80
80

60

40

20

0

20

40

60

80
Node2Vec

Agriculture

Architecture

Biology

Computer Science

Financial Economics

Industrial Engineering

Material Science

Petro-chemical

Physics

Social Sciences

Figure 5.5: 2-D t-SNE Projection of CiteSeer Dataset

The visualization using TADW is not very meaningful; in fact, the

papers belonging to Social Sciences, Biology are not clustered. A small

dispersion of Social Sciences papers is acceptable as they are cross-cited

across different fields such as Computer Science. Unfortunately, no proper

cohesive group is formed here. The problem is related to the use of the

approximation approach for random walks. The results from Node2Vec

are much better, as it depicts some communities properly (Financial Eco-

nomics, Computer Science). This is because Node2Vec performs biased

walks which are effective in capturing the structural equivalences.

TriDNR performs quite well as some clearly defined clusters can be

56

57 CHAPTER 5. JOINT LEARNING ON ATTRIBUTED GRAPHS

seen compared to other two approaches. It still does not learn meaningful

embeddings as papers from Social Sciences and Industrial Engineering are

not clustered but are dispersed. Our proposed approach gat2vec per-

forms better than all given methods. The clusters are well-formed and de-

pict the overlapping properly. The papers from Social Sciences can be seen

forming a well-defined cluster in contrast to other approaches. In addition

to it, this cluster is close to Computer Science and Financial Economics

clusters, which is plausible as there are cross citations between these fields.

Thus, our proposed approach learns an embedding which preserves the

structural and attribute equivalence in the underlying graph.

5.3.7 Parameter Sensitivity

gat2vec requires various parameters to create Gs and Ga, and learn an

embedding. The sensitivity of the choice of parameters on structural net-

works have been investigated in previous works, such as [26, 28]. We in-

vestigate the parameter sensitivity of γa, λa, and th on attributed graph.

Furthermore, we analyze the joint parameter sensitivity of number of walks

(γs, γa), and walk length (λs, λa) on Gs and Ga. In these experiments, we

evaluate on Micro-F1 under the same evaluation process given in Sec-

tion 5.3.4. All other parameters are set to default values unless mentioned.

Impact of γa & λa

Figures 5.6(a,b) shows the effects of varying the number of walks per vertex

and the walk length on bipartite attribute graphs. We empirically observe

that these parameters have direct proportionality relationship with the

sparsity. In a very dense graph, a small number of short walks are adequate

to explore the neighborhood to capture the contexts. dblp is highly dense,

while CiteSeer is very sparse, as shown in Figure 5.8. Therefore, for

dblp, our framework is able to generate precise representations at lower

57

5.3. EXPERIMENTS 58

DBLP Blogcatalog CiteSeer

0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6
65

67

69

71

50

51

52

78.4

78.8

79.2

79.6

TR

M
icr

o-
F1

#Walks
5

10

15

20

(a)

DBLP Blogcatalog CiteSeer

0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

67

69

71

73

49

50

51

52

78.4

78.8

79.2

79.6

TR

M
icr

o-
F1

Walk
Length

40

80

120

160

200

240

(b)

Figure 5.6: Ga Parameter Sensitivity on: (a) Number of Walks(γa), (b) Walk Length(λa)

values of γa and λa. Increasing the number of walks and the walk length

has detrimental effect on the learning representation as it explores the large

parts of the graph, which in turn generates contexts that are noisy i.e.,

include less significant vertices. In case of CiteSeer, we see an opposite

trend: precise representations are learned for higher values of γa and λa.

This is motivated by the sparsity of the dataset, which is composed of

10 different disciplines, thus requiring a larger number of longer walks to

explore the graph adequately and generate the appropriate contexts.

Impact of γs, γa, & λs, λa

Here we analyze the joint parameter sensitivity on the dblp dataset. In

Figure 5.7(a) we increase the number of walks (γs, γa) jointly on both Gs

58

59 CHAPTER 5. JOINT LEARNING ON ATTRIBUTED GRAPHS

dblp

0.1 0.2 0.3 0.4 0.5
78.50

78.75

79.00

79.25

79.50

TR

M
icr

o−
F1

#Walks

5

10

15

20

25

(a)

dblp

0.1 0.2 0.3 0.4 0.5

78.4

78.8

79.2

79.6

TR

M
icr

o−
F1

Walk Length

40

80

120

160

200

240

(b)

Figure 5.7: Ga Joint Parameter Sensitivity on: (a) Number of Walks(γa), (b) Walk

Length(λa)

and Ga, while keeping walk length to 10. In second case 5.7(b), walk lengths

are jointly increased, while the number of walks is kept constant to 10. As

discussed in previous case, increasing the number of walks or walk length

gathers more contextual information, thus, learning more precise represen-

tations. But, an excessive number of walks and large walk lengths are detri-

mental as it generates noisy contexts which lead to poor representation,

as shown in case γs = γa = 25 (Figure 5.7a), and λs = λa = 240 (Figure

5.7b).

Figure 5.8: Sparsity of Attributed Graph Ga

59

5.3. EXPERIMENTS 60

Impact of th

We have shown the usefulness of attributes (Table 5.2–5.4) for learning high

quality embeddings. We further stress upon the importance of attributes

by varying the parameter th. It is pertinent to mention that increasing the

value of th implies a decrease in the number of attributes. From Figure 5.9,

it is evident that as we decrease the number of attributes, the accuracy of

embeddings decreases. At th = 1, the performance is lower due to the

noise introduced by including all possible words as attributes.

●

●

●

●

●

●

●

78.4

78.8

79.2

79.6

0 5 10 15 20 25
th

M
ic

ro
−F

1

DBLP

Figure 5.9: Effect of parameter-th

60

Chapter 6

A Simple Approach to Learn

Representation on Attributed

Graphs

Nodes in an attributed graph tend to have homophilic relationships, i.e.

tend to connect to nodes that are similar to themselves in terms of at-

tributes. By exploiting attribute information and learning from both the

network structure and the attributes at the same time, better representa-

tions can be obtained. But this comes at a cost, due to the increase in

the computational complexity needed to model the various relationships,

structural and attribute, between nodes. Moreover, for some graphs the

number of attributes may be very large (in order of millions), that increases

the overall model complexity.

Similar to network structure, attributes are also highly non-linear and

sparse [27, 33]. Various approaches have been proposed which handle

the network structure and attribute nonlinearity, and sparsity [49, 50].

dane [49] handles them by employing a deep neural network model on both

the network structure and attributes to handle non-linearity and sparsity.

This method preserves semantic proximities between nodes by sampling

nodes that have high similarity in attributes and optimizing their represen-

61

62

tation together with the first- and higher-order proximities in the network

structure. Unfortunately, the cost of this sampling procedure is quadratic

in the number of nodes, thus not scalable to large graphs. Another ap-

proach called Attributed Network Representation Learning (anrl) [50]

uses a neighbor enhancement autoencoder which optimizes the learning

on attributes and the neighborhood context. The neighborhood context

is generated through random walks whose complexity is too high for large

graphs, both in terms of time and space.

Therefore, handling attributes in conjunction with structure is more

challenging as it involves capturing non-linearity and sparsity, while at the

same time preserving the structural properties of the graph.

To address these problems, this chapter proposes Sage2Vec (Simple

Attributed Graph Embedding), a model that preserves the second-order

proximities in the structure, and also handles the network structure and

attribute non-linearity, and sparsity. The motivation behind this work is to

build a simple model in terms of number of parameters and to show that a

very simple approach can achieve better results than complex state-of-the-

art baselines in a large percentage of scenarios. We employ an autoencoder

model with an enhanced decoder that takes only structural information as

input but optimizes on both structure and attribute information. By using

attribute information for optimization reduces the overall model complex-

ity and thus, the model can be scaled to larger graphs.

The rest of the chapter is organized as follows: Section 6.1 provides

the formal definition of the problem. In Section 6.2, we describe our pro-

posed model and the experimental setup, which is later evaluated on several

datasets in Section 6.3.

62

63 CHAPTER 6. A SIMPLE APPROACH TO LEARN REPRESENTATION ON ATTRIBUTED GRAPHS

6.1 Problem Definition

Problem Given an attributed graphG, we aim at learning a low-dimensional

network representation Φ : V → Rd, where d � |V | is the dimension of

the learned representation, such that the mapping function Φ preserves the

structural proximity and attribute information.

The quality of this mapping will be evaluated against several tasks such

as node classification on various real-world datasets, as described in Sec-

tion 6.3.

6.2 Model

We describe now Sage2Vec, a novel model that learns an embedding

using both the network structure and the attributes. It is essential that

the learning occurs on both elements at the same time, so that the two

modalities complement each other, and not as a combination of two learned

models. In this way, the learned representation preserves the structural

proximity and encodes the attribute information in it.

We propose an autoencoder with enhanced decoder model which jointly

learns a representation using the network structure and the attributes.

Our model preserves the second-order proximity, captures the non-linearity

and addresses the sparsity of both the network structure and the node

attributes.

Enhanced Autoencoder Our enhanced autoencoder model considers the

non-linearity of network attributes in conjunction with the network struc-

ture and jointly learns a representation from these two different modalities.

Its architecture is shown in Figure 6.1. The encoder part is similar to Equa-

tion 3.8. The input to our model is only network information. For a given

vertex i, our model takes its second-order proximity Mi as input, and

63

6.2. MODEL 64

Reconstruction Loss

Mi

M̃
i Z̃

i

 Mi
Zi

Yi
1

Yi
l

Embedding

Encoding
D
ecoding

Ỹ
i

1

Figure 6.1: The architecture of our proposed Sage2Vec model

aims to reconstruct the neighbors M̃i along with its respective attributes

Z̃i by incorporating prior knowledge of attributes. To accommodate the

reconstruction of attributes, Equation 3.7 is modified as follows:

Lea =
n∑
i=1

‖(Mi − M̃i)‖2
2 +

n∑
i=1

‖(Zi − Z̃i)‖2
2 (6.1)

Since both the network and the attributes are sparse, the autoencoder

tends to reconstruct zeros. Similar to Wang et al., we impose a higher

penalty to the reconstruction error of the non-zero elements than zero

elements [27]. To incorporate the penalties, Equation 6.1 is revised as:

64

65 CHAPTER 6. A SIMPLE APPROACH TO LEARN REPRESENTATION ON ATTRIBUTED GRAPHS

Lea =
n∑
i=1

‖(Mi − M̃i)�Cs
i‖2

2 +
n∑
i=1

‖(Zi − Z̃i)�Ca
i ‖2

2

= ‖(M− M̃)�Cs‖2
F + ‖(Z− Z̃)�Ca‖2

F

(6.2)

where � is the Hadamard product, Cs
i = [Cs

i1,C
s
i2, · · · ,Cs

in] and Ca
i =

[Ca
i1,C

a
i2, · · · ,Ca

iz] are the penalties for network and attribute zero recon-

structions, respectively. The penalty for zero reconstruction when the deal-

ing with the network structure is given as:

Cs
ij =

1, if Mij = 0

β, otherwise
(6.3)

where β > 1. Likewise, the penalties for zero reconstructions in attributes

are similar to Equation 6.3.

To prevent overfitting, we add a l2 regularizer. Thus, the overall objec-

tive is to minimize the following loss function:

Lo = Lea + γLreg
= ‖(M− M̃)�Cs‖2

F + ‖(Z− Z̃)�Ca‖2
F

+ γ

L∑
l=1

(‖W(l)‖2
F + ‖W̃(l)‖2

F)

(6.4)

where W(l) and W̃(l) are the weight matrices at l-th layer encoder and

decoder, respectively, and γ is the regularization coefficient.

We use stochastic gradient descent to minimize the objective function

Lo by using the back-propagation algorithm on the model parameters θ =

{W(i),W̃(i),b(i)}.

65

6.3. EXPERIMENTS 66

6.3 Experiments

In this section, we describe the datasets and machine learning tasks used

to evaluate our proposed approach against the state-of-the-art baselines.

6.3.1 Datasets

We conduct the experiment on four benchmark datasets and the statis-

tics are given in Table 6.1. CiteSeer, cora and pubmed1 are citation

networks. cora contains papers from machine learning, grouped in seven

categories. CiteSeer contains papers from six categories corresponding

to computer science fields. In both CiteSeer and cora, the attributes

are 0/1 valued vectors for each node. The pubmed dataset is a citation

network related to diabetes. wiki is a web graph of hyper-links [49]. The

attribute vector of both pubmed and wiki for each vertex is described

through a TF/IDF word vector.

reddit2 graph is constructed from the reddit posts where a node is

a post, and two posts are connected if the same user comments on both

posts. The attributes are a concatenation of average word vectors of post’s

title and post’s comment; post’s score and the number of comments on the

post [2]. The labels of nodes are the community memberships.

Datasets |V | |E| |A| #Labels

CiteSeer 3,312 4,660 3,703 6

cora 2,708 5,278 1,433 7

pubmed 19,717 44,338 500 3

wiki 2,045 12,761 4,973 17

reddit 232,965 11,606,919 602 41

Table 6.1: Dataset Statistics

1https://linqs.soe.ucsc.edu/data
2http://snap.stanford.edu/graphsage/#datasets

66

67 CHAPTER 6. A SIMPLE APPROACH TO LEARN REPRESENTATION ON ATTRIBUTED GRAPHS

6.3.2 Baselines

We evaluate our proposed approach Sage2Vec with the several state-of-

the-art baseline methods. DeepWalk and Node2Vec use only structure

of network, while the rest use both the structure and the attributes to learn

an embedding.

• DeepWalk [26] employs short random walks to generate a corpus of

vertex sequences, and then uses SkipGram to learn a representation.

• Node2Vec [28] uses biased short random walks to explore the diverse

neighborhood to interpolate between breadth first and depth first sam-

pling.

• vgae [52] is based on variational graph encoders using graph con-

volutional network (GCN) and learns an embedding by using both

structural and attribute information of vertices.

• gae [52] is a non-probabilistic variant of vgae.

• dane [49] uses a deep network on both structural and attribute in-

formation, while maintaining the consistent and complimentary infor-

mation between the two modalities of informations.

• anrl [50] uses an attribute-aware SkipGram model to incorporate

attribute information and a neighbor-enhanced autoencoder to recon-

struct the target neighbors. We use anrl-wan, the best-performing

variant of anrl introduced in the paper.

• can [51] uses a variational autoencoder to learn an embedding of

vertices and attributes in the same semantic space. For evaluation,

we use only the learned representations of nodes.

We used the code of the baselines released by the authors. The param-

eters used are the reported optimal parameters, otherwise we performed

67

6.3. EXPERIMENTS 68

a random search to obtain an optimal performance of the baseline for a

given dataset. For our model, the number of layers and their sizes for four

datasets is given in Table 6.2; the activation function is tanh, the Adam

Optimizer [70] is employed, and the embedding size d is 128. Our model

requires very less trainable parameters as can be seen in Table 6.2, thus

can be trained quickly.

Dataset #neurons in each layer

CiteSeer 3312-128-7015

cora 2708-128-4141

pubmed 19717-128-19217

wiki 2045-128-7018

reddit 232,965 - 1000 - 64 - 1000 - 233,567

Table 6.2: The Network Layer Structure for Enhanced Autoencoder

6.3.3 Vertex Classification

We evaluate the learned representations of our approach against baselines

through multi-class classification. We use one-vs-rest as l2 regularized lo-

gistic regression classifier. We randomly selected Tr ∈ {10%, 30%, 50%}
vertices as training set and the rest as test set. We repeated the pro-

cess 10 times for each Tr, and report the average Micro-F1 (Mi-F1) and

Macro-F1 (Ma-F1).

The classification results of all datasets are shown in Table 6.3, 6.4,

6.5 and 6.6. The best performance is highlighted in bold. We have the

following observations from the results:

• The results show that leveraging both the structure and attributes

helps to learn a better representation, as expected from the previous

works in this line.

• Our proposed approach achieves the best performance against all base-

lines in the cora, pubmed, wiki datasets and has competitive perfor-

68

69 CHAPTER 6. A SIMPLE APPROACH TO LEARN REPRESENTATION ON ATTRIBUTED GRAPHS

Method
10% 30% 50%

Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

DeepWalk 49.48 42.84 53.85 46.64 55.36 48.60

Node2Vec 53.92 46.48 56.07 48.60 57.37 50.00

gae 63.68 55.26 64.51 56.0 65.0 56.40

vgae 61.25 53.90 62.65 54.78 63.12 52.01

dane 66.22 56.60 69.92 61.48 71.92 64.87

anrl 72.24 63.60 73.46 67.15 73.28 68.32

can 68.30 59.82 70.63 62.30 71.50 63.44

Sage2Vec 71.81 62.75 73.74 67.30 74.89 69.42

Table 6.3: Vertex Classification of CiteSeer

Method
10% 30% 50%

Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

DeepWalk 70.89 67.55 76.30 74.62 78.00 76.60

Node2Vec 74.00 70.66 78.15 77.17 79.32 78.60

gae 76.45 74.06 78.54 77.72 78.84 77.45

vgae 73.54 70.00 76.39 72.75 76.54 73.31

dane 77.80 73.75 81.97 80.45 82.97 81.42

anrl 73.55 69.51 76.55 73.85 78.24 74.50

can 78.68 75.55 82.22 79.48 82.57 80.77

Sage2Vec 79.97 77.05 84.45 83.15 85.67 84.0

Table 6.4: Vertex Classification of cora

mance with anrl for the CiteSeer dataset. Specifically, our model

achieves an improvement around 11% in Macro-F1 for the wiki

dataset against the second-best performing baseline (dane).

• The results show that a well-designed model can learn a better rep-

resentation without involving complex and computationally intensive

optimizations.

69

6.3. EXPERIMENTS 70

Method
10% 30% 50%

Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

DeepWalk 74.65 72.90 75.72 74.28 76.13 74.76

Node2Vec 80.27 78.77 80.90 79.52 81.20 79.85

gae 82.03 81.34 82.27 81.63 82.38 81.78

vgae 81.70 80.97 82.01 81.31 82.22 81.62

dane 84.90 84.22 85.27 85.24 86.76 86.42

anrl 84.55 84.69 85.11 85.25 86.32 86.46

can 78.52 78.20 79.05 78.65 79.38 78.97

Sage2Vec 85.60 85.28 86.21 85.89 86.55 86.22

Table 6.5: Vertex Classification of pubmed

Method
10% 30% 50%

Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

DeepWalk 54.78 35.86 61.25 41.80 62.54 44.25

Node2Vec 54.22 34.08 61.06 40.54 62.47 42.50

gae 56.40 39.17 64.52 47.58 67.49 51.78

vgae 60.02 40.21 63.94 44.94 64.93 46.46

dane 65.13 44.25 73.85 54.0 75.95 56.82

anrl 59.15 39.41 67.80 49.03 70.05 52.98

can 56.73 36.97 64.89 44.99 67.48 48.85

Sage2Vec 68.79 48.15 77.01 57.80 79.42 63.15

Table 6.6: Vertex Classification of wiki

6.3.4 Link Prediction

The goal of link prediction is to predict edges between nodes. Follow-

ing [28, 52], we generate a residual network by removing 10% of edges

from the network, retaining all features and ensuring that the network

remains connected. These removed edges are called true edges. We sam-

ple an equal percentage of negative edges (non-edges), called false edges.

These true edges and false edges form a test set. We train the NRL models

on the residual network. The models are evaluated based on their ability

to correctly classify true edges and false edges. Similar to [50], we classify

70

71 CHAPTER 6. A SIMPLE APPROACH TO LEARN REPRESENTATION ON ATTRIBUTED GRAPHS

Method
CiteSeer cora pubmed wiki

AUC AP AUC AP AUC AP AUC AP

DeepWalk 0.83 0.87 0.86 0.89 0.84 0.86 0.90 0.92

Node2Vec 0.85 0.87 0.89 0.91 0.93 0.93 0.87 0.90

gae 0.90 0.89 0.92 0.92 0.94 0.94 0.91 0.93

vgae 0.93 0.94 0.92 0.93 0.92 0.92 0.92 0.94

dane 0.85 0.88 0.78 0.81 0.84 0.86 0.86 0.87

anrl 0.95 0.94 0.87 0.86 0.92 0.92 0.94 0.94

can 0.96 0.96 0.92 0.93 0.94 0.93 0.96 0.97

SAGE2Vec 0.97 0.97 0.92 0.93 0.96 0.96 0.95 0.96

Table 6.7: AUC and AP scores for Link Prediction

the true and false edges according to a ranking based on cosine similarity.

We employ area under ROC curve (AUC) and average precision (AP) to

evaluate the NRL models on the test set. We perform link prediction on

all four datasets and the results are shown in Table 6.7. Once again, the

results show the advantages of using structure and attribute information

jointly. These two modalities complement each other and the network can

show structure homophily, attribute homophily or both. Our model per-

forms better in AUC and AP for the CiteSeer, pubmed datasets and

is comparable for cora and wiki against all the baselines. In particular,

our method achieves 2% gains in AUC and AP against the state-of-the-art

baseline for the pubmed dataset.

6.3.5 Network Reconstruction

The purpose of network reconstruction is to test the preservation of the

network structure in the learned embeddings. For each dataset, we learned

an embedding using the baseline methods to predict the edges. Then we

compute the probability of an edge p(i, j) for each pair of node i, j given

71

6.3. EXPERIMENTS 72

as:

p(i, j) =
1

1 + exp−(Φ(i).Φ(j)T)
(6.5)

where T is the transpose operation. We rank these edges from high to low

probabilities. The edges from the original network serve as ground truth.

We evaluate the performance of network reconstruction by correctly pre-

dicting the edges using precision-at-K (P@K) metric against the ground

truth. K represents the number of predicted edges selected for evaluation.

The results for all datasets are shown in Tables 6.8 - 6.11. The experi-

ments show that our method performs better in P@K in the CiteSeer,

cora and wiki datasets. In all these datasets, when K increases, P@K

is consistently higher than all baselines. In case of pubmed, since the

dataset is sparse, the Node2Vec is able to explore properly the diverse

neighborhood.

K DeepWalk Node2vec GAE VGAE DANE ANRL CAN SAGE2Vec

100 0.11 0.3 0.44 0.51 0.04 0.17 0.57 0.58

1000 0.14 0.5 0.3 0.39 0.03 0.08 0.46 0.58

3000 0.13 0.34 0.25 0.3 0.04 0.07 0.39 0.53

5000 0.14 0.31 0.21 0.26 0.19 0.06 0.37 0.49

10000 0.14 0.23 0.16 0.22 0.22 0.05 0.33 0.42

Table 6.8: Precision at K (P@K) for CiteSeer dataset

K DeepWalk Node2vec GAE VGAE DANE ANRL CAN SAGE2Vec

100 0.1 0.52 0.49 0.54 0.0 0.08 0.52 0.43

1000 0.16 0.36 0.47 0.46 0.0 0.1 0.51 0.55

3000 0.15 0.18 0.37 0.39 0.05 0.07 0.45 0.52

5000 0.15 0.14 0.33 0.35 0.17 0.06 0.42 0.47

10000 0.14 0.12 0.27 0.28 0.19 0.05 0.36 0.36

Table 6.9: Precision at K (P@K) for cora dataset

72

73 CHAPTER 6. A SIMPLE APPROACH TO LEARN REPRESENTATION ON ATTRIBUTED GRAPHS

K DeepWalk Node2vec GAE VGAE DANE ANRL CAN SAGE2Vec

100 0.01 0.36 0.31 0.28 0.0 0.04 0.32 0.26

1000 0.03 0.51 0.24 0.18 0.0 0.03 0.18 0.14

3000 0.03 0.43 0.2 0.14 0.0 0.03 0.15 0.14

5000 0.03 0.40 0.18 0.13 0.0 0.03 0.14 0.13

10000 0.03 0.33 0.16 0.11 0.0 0.02 0.12 0.12

Table 6.10: Precision at K (P@K) for pubmed dataset

K DeepWalk Node2vec GAE VGAE DANE ANRL CAN SAGE2Vec

100 0.43 0.23 0.06 0.92 0.5 0.08 0.51 0.87

1000 0.33 0.04 0.04 0.88 0.47 0.16 0.23 0.88

3000 0.32 0.09 0.04 0.78 0.55 0.19 0.2 0.83

5000 0.3 0.1 0.04 0.72 0.66 0.18 0.19 0.77

10000 0.28 0.1 0.05 0.58 0.58 0.19 0.15 0.66

Table 6.11: Precision at K (P@K) for wiki dataset

6.3.6 Algorithmic and Scalability Analysis

In this section, we provide an analysis of the computational complexity of

the baselines and our approach. The algorithmic computational complexity

of the state-of-the-art models is provided in Table 6.12. In case of dane,

authors have used some simple sampling strategy but the algorithm is still

dominated by a quadratic time complexity. Given that real-world large

graphs have nodes and edges in the order of millions, the state-of-the-art

methods require huge computational resources, thus limiting their usabil-

ity. Our model Sage2Vec has the smallest algorithmic computational

complexity, and hence is scalable to larger graphs.

To perform the scalability analysis we used the larger graph available,

reddit. We conducted the experiments on a 48-core machine based on

the Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz processor, with 128GB

of RAM. We report the asymptotic computational complexity of the algo-

rithms and the wall-clock time in the Table 6.12. All the baselines ran out

73

6.3. EXPERIMENTS 74

Dataset Algorithmic Computational Complexity Training Time

gae O(|E|) NA

dane O(n2) NA

anrl O(n log n) NA

can O(|E|) NA

Sage2Vec O(n) ≈10 hours

Table 6.12: Computational Complexity and Scalability Analysis on reddit dataset

(NA:out of memory)

of memory; dane and anrl during the data preprocessing phase, while

gae and can during the model computation. We run Sage2Vec for 5

epochs to show that the model works on larger graphs.

Dataset End to End Avg. Epoch Time

gae 32.4 0.21

dane 4345.5 0.45

anrl 2730.0 0.19

can 43.0 0.35

Sage2Vec 27.5 0.90

Table 6.13: Running Time Analysis on CiteSeer dataset (in seconds)

In order to quantify the running time, we used the CiteSeer dataset

for demonstration. The end-to-end time is measured from the start of

the program to its end, so as to highlight the preprocessing time in the

baselines. Moreover, we also measured the execution time per epoch and

we report the average over 10 epochs. Our model has the smallest end-

to-end running time showing as it does not have high preprocessing costs.

Though, the execution time per epoch is highest among baselines but it

converges swiftly. The results are given in Table 6.13.

dane and anrl have the highest end-to-end running time, due to sam-

pling and complex optimization costs. The results validate that a simple

and well designed model can achieve better results and be more efficient

74

75 CHAPTER 6. A SIMPLE APPROACH TO LEARN REPRESENTATION ON ATTRIBUTED GRAPHS

than the existing complex approaches.

75

6.3. EXPERIMENTS 76

76

Chapter 7

Heterogeneous Information Network

Representation Learning

Existing NRL approaches have focused on embedding homogeneous net-

works, where only one type of nodes and edges exist. Real-world networks

are by and large inherently heterogeneous - having distinct types of nodes

and edges.

For example, consider a patent dataset, which consists of three different

nodes: patent, inventor and assignee. A patent has semantically different

relationships in the network. An inventor invents a patent, the patent is

assigned to an assignee, and a patent cites other patents. Links connect

both different and similar types of nodes. Due to different semantics of node

relationships, the homogeneous representation learning methods cannot be

applied because they cannot preserve the different semantics.

In this chapter, we propose HetNet2Vec, a novel approach to learn a

representation of nodes in a heterogeneous information network (HIN). To

preserve the semantic relationships, we perform relationship-specific short

random walks in the network. As in various homogeneous representation

learning approaches, random walks are used to preserve the contextual

relationships between nodes [26, 28, 46]. Random walk sequences are anal-

ogous to sentences. We train a sequence classifier on 1D-Convolutional

77

7.1. PROBLEM DEFINITION 78

Neural Network (CNN) model. The goal is to learn a node embeddings

that enable accurate sequence classification and at the same time learn em-

beddings that preserve the semantic relations encoded in the multi-modal

walks. Various works show that CNNs perform quite well in various NLP

tasks such as sentiment classification [71] and answer selection [72]. We

adopt the model from the work of Kim [71] on sentence classification due to

the stark resemblance of the inputs and optimization objective. The model

is a 1D-CNN with multiple filters taking embedded vectors of random walk

sequences as input.

The rest of the chapter is organized as follows: Section 7.1 briefly de-

scribes HINs, and formally defines the problem. In Section 7.2, we describe

the data preparation step (7.2.1) and the design of the model (7.2.2). Ex-

periments are described in Section 7.3.

7.1 Problem definition

Given a heterogeneous information network Gh, we aim to learn a function

Φ : V → Rd which maps each node v ∈ V to a low d-dimensional vector

space Rd, where d << |V |, such that the different structural relationships

between nodes are preserved.

7.2 Model

In this section, we discuss the methods for generating the sequences of

nodes (Section 7.2.1) followed by the description of our CNN model (Sec-

tion 7.2.2).

78

79 CHAPTER 7. HETEROGENEOUS INFORMATION NETWORK REPRESENTATION LEARNING

7.2.1 Sequence Generation and Labeling

Algorithms based on language modeling require a corpus of words and

sentences. Therefore, in order to use such models on networks, we need

to build a corpus of sequences of vertices from the graph. Approaches

based on random walks have been widely used in homogeneous networks

to generate such corpus [26]. In case of heterogeneous networks, Sun et al.

have shown that random walks ignoring node and edge types are highly

biased towards the types associated to nodes with high degree [73]. Meta-

path based random walks have been proposed [56, 58] for generating the

walk sequence to capture the heterogeneous node contexts. These random

walks are guided by a meta-path scheme. Meta-path based random walks

require a large number of walks per node and longer walks in order to

capture the contexts of nodes.

Considering these issues, we propose a scheme based on edge-constrained

random walks. Given an edge type ti ∈ TE, a random walker traverses the

paths based on the edge type ti to generate a sequence of nodes up to a

length of l. Each sequence of nodes capture the semantic and structural

relationships between the nodes in HIN. For each node in an edge type,

we perform multiple random walks, and we collect all random walks to

form a sequence corpus S. For example, in the U.S. Patents heteroge-

neous network, we use PP - patent-patent, PA - patent-assignee , and PI

- patent-inventor relationships to generate the sequences. The edges which

connect two different types of nodes form a bipartite structure. Random

walks on bipartite graphs to obtain structural contexts has already been

used [46].

Labels of sequences are assigned based on labels of nodes, given that

sequences form a coherent structural and semantic context. We randomly

select a fraction of nodes from V , and use their labels to form a label of

79

7.2. MODEL 80

Static and non­static channels
for Embedded Vectors of nodes

Convolutional Layer with
multiple filters of varying
size and feature map

Max 1D pooling and
concatenation

Fully connected
logistic unit with

dropout and softmax

v1
v2
v3

vn

Figure 7.1: The adopted 1D-CNN Architecture for Representation Learning in HIN

a sequence. Let U ⊆ V be a randomly selected fraction of nodes from V ,

and λ : V → L is a label assignment function that assigns a label to a node

v from a set of labels L. The label for a sequence s is:

Ls = [l : λ(v),∀v ∈ s and v ∈ U]

7.2.2 HetNet2Vec Model

We adopt the CNN model proposed by Kim [71] for representation learning

of nodes. The architecture of the model is shown in Fig. 7.1. The model

was proposed to solve a sentence classification problem. The selection

of this model is motivated by the stark resemblance of our data input

vs the model input and the optimization objective function. Instead of

the words in sentence classification, we have nodes and the sequence of

nodes represents a sentence. The sequences of nodes are obtained by edge-

guided random walks as described in Section 7.2.1. The model classifies

the sequences while optimizing the representation of the nodes.

The model input is a sequence Si of vertices of length n, padded if

necessary. Each vertex v ∈ Si is represented by an embedding vector

80

81 CHAPTER 7. HETEROGENEOUS INFORMATION NETWORK REPRESENTATION LEARNING

ej = Φ(v) ∈ Rd. A sequence is represented as a matrix M of embedding

vectors of its vertices as M =
[
e1, e2, · · · , en

]
. Let M[i : j] represent the

concatenation of row vectors from ith row to jth row. In the convolutional

layer, we apply multiple filters of different sizes, Wk ∈ Rhd where h is

the height of the kth filter, to produce a new feature. The feature ck[i] is

obtained by applying the kth filter on the sub-matrices of M as:

ck[i] = f(Wk ·M[i : i+ h− 1] + b) (7.1)

where i ∈ [1, . . . , n − h + 1], f is non-linear activation function, such as

relu, · is the dot product between the filter and the concatenated vectors

of matrix M[i : i+ h− 1], and b is the bias. The convolutional operator is

applied multiple times to obtain a sequence of feature maps ck ∈ Rn−h+1.

In case of a multi-channel architecture as shown in Fig. 7.1, each filter is

applied to both channels and the respective feature maps are added.

Multiple feature maps are produced from varying filter sizes. The dimen-

sionality of each feature map varies according to the filter size. We apply

1-max-pooling [74] to obtain fixed length vectors from each feature maps.

These vectors are concatenated to form a top-level feature vector which is

followed by a fully connected softmax layer which produces a probability

distribution over labels. At the dense layer, we apply dropout regular-

ization as proposed by Hinton et al. [75]. The training objective of the

model is to minimize the binary cross-entropy while optimizing the weight

vectors. In case of the two-channel architecture, both channels have node

vectors but one is kept static throughout the training and other is tuned

via back-propagation. The parameters include embedding weights, layer

weight, and b bias term are trained using the back-propagation method.

81

7.3. EXPERIMENTS 82

Dataset Nodes Edges Labels

USPATENTS
Patent Inventor Assignee

253,537 14
63,486 83,893 10,245

Yelp
User Business City

168,701 10
22,073 5914 10

Table 7.1: Dataset Statistics

7.3 Experiments

In this section, we present an evaluation of our proposed approach. We first

provide the description of two real-world datasets and the state-of-the-art

baseline methods. Then, we provide an experimental setup for evaluation

through multi-class classification of nodes.

7.3.1 Datasets

We use two heterogeneous datasets for evaluation: U.S. Patents1 and Yelp2.

Table 7.3.1 summarizes some statistics of these datasets. Edges between

nodes can be either undirected (−) or directed (→).

U.S. Patents is a 3-year (1998-2000) drug3 related patent dataset obtained

from United States Patent and Trademark Office. The network contains

three different types of nodes, patent (P), Inventor (I) and Assignee (A).

The network has patent citations P → P , patent-inventor P − I, and

patent-assignee P − A as edges.

Yelp is a dataset on reviews of restaurants by customers. We extracted

data of one year (2010) of restaurants serving at least one of the 10 cuisines4.

1http://www.patentsview.org/download/
2https://www.yelp.com/dataset/challenge
3Drug patent classes: 128, 351, 424, 433, 435, 514, 600, 601, 602, 604, 606, 607, 800
4American, Mexican, Italian, Chinese, Japanese, Thai, Indian, Canadian, Spanish, Greek

82

83 CHAPTER 7. HETEROGENEOUS INFORMATION NETWORK REPRESENTATION LEARNING

The dataset has three types of nodes: restaurants (R), users (U), and

city (C). There are three types of relationships between nodes: user friend-

ships, U − U , user’s reviews, R− U , and restaurant’s city R− C.

7.3.2 Baselines

We evaluate our approach against state-of-the-art NRL methods. Since

DeepWalk and Node2Vec methods are designed for a homogeneous

network, we will treat all nodes and edges in heterogeneous network as

homogeneous ones to learn an embedding in both these approaches. The

results from the baselines are obtained using the code released by the au-

thors.

• DeepWalk [26] is a random-walk based method to learns a d-dimensional

node vectors.

• Node2Vec [28] is a parameterized random walk based approach to

generate the vertex sequences. The node embeddings are learned by

using negative sampling in SkipGram.

• Hin2Vec [58] is a single-hidden-layer neural network model to learn

an embedding of nodes using meta-path based relationships between

different nodes, and also learns an embedding for meta-paths in the

heterogeneous networks.

7.3.3 Experimental Setup

For the corpus generation we performed 10 random walks on each node in

each relation, with a length of 80. For labeling the sequences, we used the

labels of 50% of the nodes. Then we randomly selected a portion of these

sequences for training. In case of a two-channel architecture, we initialized

the non-static layer node vectors with the pre-trained word2vec vectors,

83

7.3. EXPERIMENTS 84

Metric Method Micro-F1 Macro-F1

U.S. Patents

DeepWalk 0.47 0.39

Node2Vec 0.47 0.38

Hin2Vec 0.49 0.41

HetNet2Vec 0.53 0.43

HetNet2Vecrand 0.51 0.42

Yelp

DeepWalk 0.18 0.35

Node2Vec 0.17 0.36

Hin2Vec 0.19 0.36

HetNet2Vec 0.18 0.34

Table 7.2: Multi-class Classification on Patents and Restaurants nodes

and the static layer is initialized randomly. In a single-channel architecture,

the node vectors are randomly initialized. The hyper-parameters for the

model such as number and size of filters, number of epochs were selected

by grid search.

The dimensionality of node vectors is set to 128 in all methods. The

hyper-parameters for the baselines are selected as reported in the respective

papers to get better performance.

7.3.4 Classification

After learning the node representation on the entire dataset, we perform

patent and restaurant node classification in U.S. Patents and Yelp

datasets, respectively. In each dataset, we selected the nodes which were

used in training the CNN model and use their representations as feature

vectors for classification. These nodes comprise the training data and the

remaining nodes are the test set for classifier. We trained a one-vs-rest lo-

gistic regression classifier, Liblinear [68]. We report the average Micro-

F1 and Macro-F1 scores as metrics for evaluation.

The results of node classification are shown in Table 7.2. In U.S.

84

85 CHAPTER 7. HETEROGENEOUS INFORMATION NETWORK REPRESENTATION LEARNING

Patents dataset, HetNet2Vec shows the improvement over the state-

of-the-art models relatively by 8%−12% and 4%−10% in terms of Micro-

F1 and Macro-F1, respectively. This indicates that the proposed model

is able to preserve the different relationships in the HIN. Moreover, HetNet2Vecrand,

which is a single channel variant and the node vectors are initialized ran-

domly, also performs better. In case of Yelp dataset, the results are not

too far from the baselines. This warrants further investigation in the model

architecture and hyper-parameters.

85

7.3. EXPERIMENTS 86

86

Chapter 8

Predicting Virality of Cascades

On social networks platforms, content is usually diffused over the underly-

ing social graph that represents the connections among the users in these

frameworks. Early research on predicting cascade virality assumed strong

correlations between the spread of content and structural properties of

users who started these events. Therefore, most of the early attempts to-

wards predicting the virality of cascades have relied on manually extracted

features from the underlying network structure and the cascade itself [7, 76–

80]. Information such as the number of followers/followees that engaged

users have, users connections and community structure, activity level, etc.,

have been exploited.

This, however, poses two kinds of issues. First, manual feature crafting

is an expensive and challenging task. In most cases, domain knowledge

and external information about the content in question is required. For

instance, content popularity may be linked to several parameters, such as

event topic, external events or the content relevance to given periods of

time (e.g., posting about football during world cup period), etc. Besides,

the optimal number and relevance of features that need to be extracted is

not obvious, making it difficult to decide when to stop looking for addi-

tional ones [28]. Furthermore, some recent cascade examples show differ-

87

88

24−Oct−2017 25−Oct−2017

0 5 10 15 20 0 5 10 15 20

0

500

1000

1500

2000

2500

Hour of the Day

Tw
ee

t C
ov

er
ag

e

(A)

24−Oct−2017 25−Oct−2017

0 5 10 15 20 0 5 10 15 20

0

250000

500000

750000

1000000

Hour of the Day

E
xp

ec
te

d
fo

llo
w

er
s

(B)

Hashtag gamergate metoo

Figure 8.1: Examples of two recent hashtag campaigns. (A) The tweeting frequency of

each hashtag; #metoo achieved more spread compared to #gamergate. (B) The network

properties of the participating nodes in each hashtag in terms of average number of fol-

lowers; the nodes engaged in the first 12 hours almost achieve similar reachability in both

hashtags.

ent spread patterns even when considering similar network properties of

the engaged nodes in the underlying social graph; thus, network proper-

ties may not be the best or the only indicator for virality. For example,

Fig. 8.1(A) shows the spread patterns of two hashtag campaigns #metoo

and #gamergate that happened almost at the same time1. As shown,

#metoo went viral in the first two days. The hashtag #metoo was tweeted

more than 200k times by the end of October 15, 20172. On the other hand,

#gamergate did not become viral like #metoo even though they have rea-

sonably similar network properties such as the expected number of followers

(indicator for potential spread in the future), as shown in Fig. 8.1(B).

1The dataset for these two hashtags is collected based on information available via

https://github.com/datacamp/datacamp-metoo-analysis and https://github.com/awesomedata/

awesome-public-datasets, respectively
2https://en.wikipedia.org/wiki/Me Too movement

88

89 CHAPTER 8. PREDICTING VIRALITY OF CASCADES

In addition to that, acquiring information about the social network

structure is usually very expensive for those who work outside the compa-

nies hosting the data. For example, for popular social networks such as

Twitter and Facebook, it may take several months to extract just a portion

of the network. Moreover, due to privacy constraints and policies of such

systems, the extracted network is usually lacking a significant amount of

structural information, such as edges of some users participating in hashtag

campaigns who set their connections to be private [81].

For the reasons above, it becomes important to design algorithms that

do not require any type of features or information about the underlying

network, but are still able to effectively predict cascade virality in the very

early stages of the spreading. Some initial but also effective attempts to-

wards exploring this network-agnostic approach have already demonstrated

the potential for effective and timely prediction based only on informa-

tion that could be learned from the cascades themselves without requiring

any other additional information [82]. However, most of the works avail-

able in the literature are mainly adopting either “network-aware” or at

best “quasi-network-agnostic” approaches [8], relying on “less expensive”

structural information, such as node degrees.

In this chapter we propose a novel network-agnostic algorithm that pre-

dicts cascade virality based only on information explicitly available in the

cascade itself (i.e., the time between share events). Our main premise is

that the reaction time between the sequence of events encoded in a cascade

should be a sufficient indicator to whether it will become viral or not in

the near future. The reaction times in the early sequence of events can be

used to model the cascade initial speed (i.e., the speed by which a cascade

starts its spread), as well as its momentum. Analyzing the distribution

of reaction times for viral and non-viral cascades on multiple datasets,

and based on corroborating observations supporting our premise, we have

89

90

modeled cascades as a time series, where each element of the series is the

reaction time measured from the source signal. Furthermore, our work is

partly inspired by iSAX [83], that is used for indexing time series data. In

particular, we apply a similar technique as iSAX on cascades to transform

them into instances of one-dimensional point processes in time space, such

that each time series of a cascade is transformed into discrete values by

using equally-sized periods of times.

For the actual prediction task, we adopt a technique from the Natural

Language Processing (NLP) community that has been used for sentence

classification [84]. The algorithm exploits a deep convolutional neural net-

work (CNN) model to effectively predict sentences; instead of sentences,

we feed the neural network with the transformed time series. The choice of

this model is inspired by an empirical observation that shows a similarity

between the distribution of words appearance in sentences and the distri-

bution of discretized values appearance in cascades (time series). Further-

more, CNNs achieve performances as good as RNNs, which are a natural

fit in such settings, but they can be trained more easily.

Summary of contributions

cas2vec provides a novel network-agnostic approach that models infor-

mation cascades as time series and discretizes them using time slices. Fur-

thermore, cas2vec can predict whether a cascade is going to become viral

or not based only on the timestamps of the events encoded in the cascade

itself. To show the effectiveness of our algorithm in cascade prediction,

we have performed extensive experiments and compared it against strong

baselines. Our results show that cas2vec outperforms them by an increase

between 10% and 20% in all the tasks.

The rest of the chapter is organized as the following. Section 8.2 briefly

describes some basic cascade definitions and assumptions that are related

90

91 CHAPTER 8. PREDICTING VIRALITY OF CASCADES

to our model. Section 8.3 illustrates the design of our algorithm. We

discuss the experimental evaluation of cas2vec against strong baselines in

Section 8.4. Then, Section 8.1 briefly describes the state-of-the-art methods

used for cascade virality prediction.

8.1 Related work

Many research works have dedicated effort to the prediction of web con-

tent popularity with the focus on achieving (i) good predictions (ii) in the

shortest possible time windows and (iii) using the least possible informa-

tion. Related research predicts cascades development either in terms of

the potential size they can grow to (i.e., regression approach [8, 85–87]),

or in terms of classifying them as viral or not-viral (i.e., classification ap-

proach [76, 86, 88, 89]). In both approaches, most works are based on

either topological information or on features such as temporal properties,

structure of the cascade at its first stage, the content in question, the early

adopters, etc.

Other studies, however, have utilized little or no network information [8,

82, 90–92]. Recent studies predict content popularity based on point pro-

cess models and node degree [8, 92], whereas another study uses survival

analysis technique and follows a network-agnostic approach [82]. Under

the regression approach, some works have taken the direction of predicting

the optimum future size of a cascade [8], whereas others have provided

time-based predictions of the cascade growth function [87]. Regardless

of the approach taken, most works have been based on either topological

information or on features such as temporal properties, structure of the

cascade at its first stage, the content in question, the source or key early

adopters, etc.

On one hand, some works have based on generative models of these fac-

91

8.2. MODEL AND DEFINITIONS 92

tors as distributions or stochastic processes that interpret the event series

in the cascade [87, 93]. On the other hand, other works based on rep-

resentative models through handcrafted and heuristic-based features that

are mainly extracted from knowledge about the domain and the content

in question. These features are integrated using discriminative machine

learning algorithms that can be used to achieve either the classification or

the regression tasks [76, 86, 88].

In our study, we adopt a fully network-agnostic and domain insensi-

tive approach, where only information available in the cascade is being

deployed. We investigate a complementary approach using deep CNNs. A

related approach has been taken by a very recent work [94], however with

different cascade modeling schemes and classification algorithms.

8.2 Model and definitions

Cascades naturally capture a series of share events associated with the

infection of users. Given that we are adopting a network-agnostic ap-

proach, we shall have no assumptions regarding the underlying connectivity

of users, and we will simply consider a cascade as a sequence of events.

A sequence of events S is represented by the ordered list of timestamps

at which the events occur:

S = [t1, ..., ts]

Timestamps are measured relatively to the first event of the sequence, so

t1 = 0. Since events are ordered, we have that i < j ⇒ ti < tj.

We use S[i] = ti to denote the timestamp of the ith event. We write

t ∈ S to denote the fact that t corresponds to an event that has been

included in S, i.e. S[i] = t for some i between 1 and |S|, the length of the

sequence.

92

93 CHAPTER 8. PREDICTING VIRALITY OF CASCADES

We use S(tb, te) to denote the sub-sequence of events whose timestamps

are between the beginning time tb (included) and the end time te (ex-

cluded):

S(tb, te) = [t : t ∈ S ∧ tb ≤ t < te]

For the sake of brevity, we use S(te) to denote the prefix of the subsequence

including the events occurring before te since the initial event t1 = 0, i.e.

S(te) = S(t1, te)

A cascade is an actual sequence of share events recorded from an online

social network; the set of cascades C = {S1, S2, S3, · · · , Sm} are available

as input of our problem.

There are several prediction tasks that can be computed over cascades;

in this work, we will focus on virality prediction, i.e. the task of deciding

whether a cascade, after an observation period, is going viral or not before

a given amount of time. From a practical perspective, this is one of the

most important issues [82].

To formally define the virality prediction problem, we consider the sub-

sequence O = C(to) of events occurring from the beginning of the cascade

C up to an observation time to. We call such subsequence an observation

of C; the period of time between 0 and to is called the observation window.

Given an observation O = C(to), a prediction window is period starting

from time to and lasting ∆ time units, after which we want to establish

whether a specific cascade is going viral or not. For this purpose, we

consider the number of events |C(to + ∆)| that have occurred in C by the

prediction time tp = to + ∆.

Similar to existing studies [7, 82], we consider two ways of determining

whether a cascade is viral or not:

• through an absolute threshold θa ∈ R+, the cascade C is viral if

|C(to + ∆)| ≥ θa;

93

8.3. CAS2VEC 94

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●0

2000

4000

6000

0 5 10 15 20
Hours

U
se

r
co

ve
ra

ge

#thingsigetalot

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

0

10

20

30

0 5 10 15 20
Hours

#bored

Figure 8.2: Two slices of size 2 hours, applied to the user coverage distribution of a viral

hashtag (#thingsigetalot) and non-viral hashtag (#bored), which have reached 13711

and 43 users in an observation window size of 4 hours.

• through a relative threshold θr ∈ (0, 1), the cascade C is viral if |C(to+

∆)| ≥ |perc(C, θr)|, where perc(C, θr) is the θr-percentile among the

cascades in C.

Our problem is thus the following: we seek to predict whether a cascade

C is going to be viral by the prediction time tp = to + ∆, by inspecting its

observation C(to).

8.3 cas2vec

The design of our algorithm is inspired by the observation that most viral

cascades spread like a wildfire within the very first few hours. In contrast,

non-viral cascades require several hours just to reach merely a handful of

users. For instance, Fig. 8.2 shows the user coverage distribution of two

hashtags in a 24-hour period, one viral (#thingsigetalot) and one not

(#bored).

Some state-of-the-art studies [8, 92, 95] start from the above assumption

and develop elegant solutions based on point processes. Such techniques

94

95 CHAPTER 8. PREDICTING VIRALITY OF CASCADES

rely on the frequency (density) estimation of the rate of cascade growth

during its observation period to predict its ultimate size after a certain

period ∆.

Our approach is partially related, in the sense that it implicitly utilizes

the rate of growth of the number of events within an observation period.

However, it is completely network-agnostic. Based on our main premise,

intuitively we seek to model the initial speed of a cascade (that is, the

speed by which a cascade starts its spread) or the user reaction times

at the early stage of the cascade, as well as its momentum. As we shall

empirically demonstrate in Section 8.3.1, this is a strong signal for potential

virality.

From a high-level point of view, our solution is organized as follows. For

each cascade C in our training data set C, we perform three operations:

• we extract the observation C(to), where to is the observation time at

which the observation period ends and the prediction starts;

• we pre-process the observation C(to) by transforming it into a format

that can be fed to our classification task;

• we label the cascade C as viral or not viral, based on the threshold θ

according to the number of events observed at time to+∆, as discussed

in the previous section.

Using the transformed sequences and their associated labels, we train

our classifier based on an 1D convolutional neural network.

8.3.1 Preprocessing Cascades

The observation period is divided into a collection of slices, i.e. equally-

sized time windows. For example, Fig. 8.2 illustrates an observation win-

dow of 4 hours, divided in two slices of 2 hours each, visualized through red

95

8.3. CAS2VEC 96

boxes. Slices are identified by the slice size ts; the size of the observation

window to should be an integer multiple of ts, such that the number of

slices Ns is equal to to/ts.

Based on the slices, we generate the following two kinds of pre-processed

sequences:

Counter sequence the sequence of integers representing the number of

events included in each slice:

Cc = [|C(i · ts, (i+ 1) · ts)| : 0 ≤ i < Ns]

Discrete sequence the sequence generated by discretizing all the events

within each slices, i.e. by assigning each event within a slice the index of

the slice itself.

Cd = [dC[i]/tse : 1 ≤ i ≤ |C|]

For example, look again at Fig. 8.2 with cascades C1 (#thingsigetalot)

and C2 (#bored). By considering an observation window size of 4 hours and

a slice size of 2 hours, the counter sequences are equal to Cc
1 = [6 709, 7 002]

and Cc
2 = [15, 28]; in the former, there are 6 709 events in the first 2 hours,

and 7 002 in the second 2 hours. In the later, the numbers are just 15 and

28. The discrete sequences are equal to:

Cd
1 = [

6 709︷ ︸︸ ︷
1, . . . , 1,

7 002︷ ︸︸ ︷
2, . . . , 2]

Cd
2 = [

15︷ ︸︸ ︷
1, . . . , 1,

28︷ ︸︸ ︷
2, . . . , 2]

Counter sequences and discrete sequences have different predicting power.

Besides, counter sequences are much faster to train as a result of a fixed

length of training sequences, i.e. Ns, while discrete sequences gives us

the flexibility of choosing larger values for the length of sequences at the

expense of slower training time.

96

97 CHAPTER 8. PREDICTING VIRALITY OF CASCADES

100

10000

non−viral viral
Label

lo
g 1

0 U
se

r
C

ov
er

ag
e

Figure 8.3: The distribution of the user coverages for the viral and non-viral classes.

The user coverage distribution is computed at observation time to as |C(to)| and virality

is computed at prediction time to + ∆. A cascade is viral if |C(to + ∆)| ≥ 1, 000 and

not-viral if |C(to + ∆)| ≤ 500

Based on our assumption regarding the dynamics of viral and non-viral

cascades, we base our algorithm on the following conjecture:

Conjecture 1. Consider two cascades C1 and C2 and an absolute threshold

θ. Given an observation to and a prediction windows size ∆. If the cascade

sizes of C1 and C2 at time to + ∆ are such that |C1(to + ∆)| ≥ θ and

|C2(to + ∆)| � θ, then |C1(to)| � |C2(to)|.

According to the conjecture, within the observation window, we expect

a significant number of events for viral cascades and very few of them for

the non-viral ones. For example, looking again at Fig. 8.2, we have 13 711

events for the viral hashtag #thingsigetalot and just 43 events for the

non-viral hashtag #bored. More generally, the user coverage distribution

for the two classes, shown in Fig. 8.3, further establishes an empirical case

for the conjecture.

97

8.3. CAS2VEC 98

1 2 1 1 3 1 4 1 2 1 2
Preprocessed

sequence Input

Cascade Embedding
Matrix

Convolutional layer
with filters of varying

size (feature maps)

Max Pooling

Fully Connected
logistic unit

ℝ10

ℝ9

Figure 8.4: The CNN model adopted for cascade prediction

8.3.2 CNN model for cascade prediction

Once cascades are pre-processed using slices, we adopt the CNN model [84]

to predict whether they will go viral or not.

The architecture of the model [84] adopted for cascade prediction is

shown in Fig. 8.4. Originally this model was proposed for sentence clas-

sification in natural language documents, and it has been shown to be

effective for this classification task. In addition, our choice is motivated by

recent studies that have shown the CNN-based models outperform existing

state-of-the-art techniques in time-series classification tasks [96, 97].

For the sake of being self-contained, we give an overview of the model;

98

99 CHAPTER 8. PREDICTING VIRALITY OF CASCADES

however, because of space limitations, we will be restricted to a brief de-

scription sufficient enough to replicate our results. Interested users are

referred to the original paper [84]. Instead of words in sentence classifica-

tion, we have the discretized values (numbers) obtained by transforming

the sequences as shown in Section 8.3.1. The input of the model is a pre-

processed sequence Ci (e.g., a sequence of counter, labeled as pre-processed

sequence input in Fig. 8.4). Each input ci in the sequence is represented by

an embedding vector ci ∈ Rd. The entire sequence is denoted by a matrix,

referred to as cascade embedding matrix in Fig. 8.4, and it is denoted by

M = [c1, . . . , cs] where s is the length of the sequence.

Assume the model that we are going to describe is trained and all its

parameters are tuned to their optimal values. Then, the prediction task

starts by applying a set of p filters on the cascade embedding matrix in

the convolutional layer. That is, we apply p filters (denoted by different

colors) of different sizes on every possible slice of the input (the cascade

embedding matrix). More formally,

φl = f(wi ·mk + b)

where the vector wi ∈ Rkd is the ith filter, b ∈ R is the bias, f is an

activation function, such as relu, k is the size of the ith filter, and φl is the

lth feature value. mk = M[j] ⊕ . . . ⊕M[j + k] ∈ Rkd is a concatenation

of the k–columns of the matrix M. Generally, the ith filter of size k is

applied s − k + 1 times, to give a feature map φi = [φi,1, . . . , φi,s−k+1].

φi captures patterns in high-level features, such as n–grams in language

documents. In our setting this corresponds to patterns within small sub-

sequences depending on the filter size.

Next, a max-pooling (or a max-overtime-pooling) operation is applied

over each feature map, which is simply a max(φi) = φ̂i ∈ R of each feature

map φi. Intuitively, this corresponds to selecting the best feature that

99

8.4. EXPERIMENTS AND RESULTS 100

is activated when a certain pattern in the input space is detected. The

max-pooling output, more formally z = [φ̂1, . . . , φ̂p], is followed by a fully

connected logistic classification layer. The vector z can be viewed as the

final set of features extracted for the current cascade, and it will be used

to predict the cascade into one of the two classes y = {1 = viral, 0 =

non–viral}.

Training the Model The above description assumes that the model is

trained; to perform the training, the optimization objective of the model

is specified as the minimization of the misclassification error of the pre-

processed sequences. More formally, we adopt the standard binary cross-

entropy objective function:

min
∑
i

yi log(h(Si)) + (1− yi) log(1− h(Si))

Here, Si and yi ∈ {0, 1} are the ith pre-processed sequence and class

label, respectively. h is the proposed model that produces a probability

distribution (prediction) y for the given input sequences S over the classes

(viral and non-viral):

y = w · (z ◦ v) + b

where v is a Bernoulli distribution used for dropout regularization as pro-

posed in [84].

Ultimately, the model parameters [M, b,wi,w] are trained using the

back-propagation algorithm.

8.4 Experiments and Results

In this section, we report on the experiments we performed to evaluate our

approach. Before discussing the actual results, we introduce the datasets

that have been used as input; we discuss the competing approaches against

100

101 CHAPTER 8. PREDICTING VIRALITY OF CASCADES

which we compare our results; and finally, we describe the experiment

settings.

8.4.1 Datasets

We have evaluated our approach over two well-known datasets:

• Twitter : This dataset has been widely used for cascade prediction [8,

82]. It contains a full month of Twitter data from October, 7th to

November 7th, 2011. There are a total of 166,076 tweets that have

been retweeted at least 50 times.

• Weibo: This dataset contains 225,126 tweets recorded on the Chinese

micro-blogging site Weibo [79, 80].

8.4.2 Baselines

We have compared our algorithm against three competing approaches; nev-

ertheless, some well-known baselines have not been included, because their

source code is not available [82].

• seismic: This is a recent, state-of-the-art study that predicts the

popularity of tweets using a self-exciting point process model [8]. It

estimates the infectiousness of a tweet at time t, based on the number

of reshares Rt at time t, then the estimated infectiousness is used to

predict the ultimate size R∞ of the tweet. We follow a similar strategy

as [82] to label tweets based on R∞, that is viral if and only if R∞ ≥ θ.

We have used the source code provided by the authors 3.

• Logistic Regression (LOR): This baseline has been used in previous

studies [76, 82]. We use a set of features X = [x(1), . . . , x(Ns)] com-

3http://snap.stanford.edu/seismic/

101

8.4. EXPERIMENTS AND RESULTS 102

b b b b b b b b b b

r r r r
r r

r r r r
b

b b b b b b b b b

g

g

g g g

g
g

g g g

m

m

m

m
m m

m
m m m

b b b b b
b b b b b

r r r r r r r
r

r r
b

b b b b b b b b b

g
g g

g
g g g g g

g

m

m

m

m
m m

m
m m m

b

b b

b
b

b

b b b b

r

r
r

r r r r r
r r

b b b
b b b b b b b

g

g
g g

g

g g g

g g

m

m
m

m m m m m m m

b
b

b

b b b b b b b

r
r

r
r

r r
r

r r rb
b

b
b b b b b b b

g

g
g

g

g
g

g

g g

g

m

m

m

m
m m m m m m

Twitter

to : 0.3

Twitter

to : 1

Weibo

to : 0.3

Weibo

to : 1

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60

0.00

0.25

0.50

0.75

1.00

∆ (hours)

F
−

S
co

re

Algorithms b r b g mCAS2VECdisc CAS2VECcount LOR LR SEISMIC

Figure 8.5: Virality prediction results for both of our datasets. For Twitter, filter sizes

= 3, 5, 7 and for each filter we have 16 of them. For Weibo, filter sizes = 2, 4, 5, 7 and

for each filter we have 64 of them. For both datasets, the embedding size d is 128, the

number of units in the fully connected layer is 32, and the number of slices is 40.

puted based on the notion of slices in Section 8.3.1, where x(i) is the

number of users in slice i and Ns is the number of slices.

• Linear Regression (LR): This is also a baseline similar to the one used

in [8, 82]. It is specified as:

logR∞ = log(α ·Rt) + b+ ε,

where ε is a noise term with Gaussian distribution. We apply a similar

thresholding as we did with seismic to label R∞ as viral and non-viral,

taking into account the log transformation.

8.4.3 Evaluation Settings

To evaluate the performance of our algorithm against the baselines, we

have used the following settings. Recall that the prediction problem is

102

103 CHAPTER 8. PREDICTING VIRALITY OF CASCADES

based on an observation time to and a prediction window ∆. So, in all

the reported results for all the classification algorithms, we have trained

a single classifier for every given value of ∆. Furthermore, since the class

distribution is highly skewed and the viral class is very rare, we use down-

sampling in all the experiments.

We tune the hyper-parameters, e.g. the number and size of filters, using

a development set (dev-set) during the training process. Once the hyper-

parameters are tuned, then for all the experiments we fix the parameters

at these values and evaluate the performance of algorithms. Towards this

end, we have used a 3-fold cross validation that does not include the dev-set

and reported the average result along with the error margins.

Similar to previous studies [82], we have used are the F-score with β = 3

(since it is a rare class prediction) and recall as the evaluation metric . In

all the experiments, the threshold for labeling cascades is θa = 700 that is

equivalent to θr ≈ 98%.

8.4.4 Results

Predicting Virality In the first set of experiments, we evaluate the perfor-

mance of our algorithm and the baselines in predicting the virality of cas-

cades based on a given observation to and prediction window ∆ expressed in

hours. Here, our goal is to evaluate the performance of algorithms in effec-

tively classifying both classes. Fig. 8.5 reports the evaluation results. All

the variants of our algorithm (cas2veccount, cas2vecdisc, cas2vecfusion)

outperform the baselines, and provide very similar results. The strongest

baselines are seismic and LOR; in the Twitter dataset, seismic achieves

F-scores between 94% and 60% for to = 0.3 hours and between 96% and

63% for to = 1 hour. LOR is more robust than seismic and it achieves

F-scores between 90% and 83% for to = 0.3 and between 93% and 86% for

to = 1 hour. Whereas, cas2vec variants are very robust in predicting far

103

8.4. EXPERIMENTS AND RESULTS 104

in the future than all the baselines and achieves F-scores between 97% and

88% and between 97% and 91% for to = 0.3 and to = 1 hour respectively.

For the Weibo dataset, LOR achieves F-scores between 64% and 59% for

to = 0.3 hour and between 75% and 66% for to = 1 hour. seismic’s perfor-

mance on Weibo is poor and it achieves F-scores between 49% and 22% and

between 81% and 31% for to = 0.3 and to = 1 hour respectively. cas2vec

on the other hand achieves a significantly high performance, which is more

than the performance of other baselines by at least 10%, i.e. F-scores be-

tween 85% and 67% for to = 0.3 hour and between 92% and 76% for to = 1

hour.

In the following, unless stated otherwise, we focus on cas2veccount, as

it is faster to train.

The above experiments give us a perspective on how far an algorithm

can effectively predict in the future stages of a cascade life. As we can see

from the plots, performance decreases as ∆ increases, as it is difficult to

predict far in the future. This, however, does not tell us how early can an

algorithm predicts a virality.

Early Prediction The next step is to analyze how early in time virality can

be predicted. Subbian et al. have observed that most of the events occur

within twice the median virality time measured over all the cascades [82].

In our datasets, the median time to virality is 8 hours for Twitter and 17

hours for Weibo. Based on that, we select a distinct (but fixed) prediction

time tp = to + ∆ for each of the dataset, i.e. 16 hours for Twitter and 34

hours for Weibo.

We then vary the size of the prediction window size ∆, from 1 hour to

tp − 1 hours and evaluate how early the algorithms can predict virality.

Parameter ∆ is similar to the time-to-virality parameter defined in [82].

Note that having fixed the prediction time, these means that the observa-

104

105 CHAPTER 8. PREDICTING VIRALITY OF CASCADES

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ●
● ●

●
●

●

Twitter Weibo

4 8 12 0 10 20 30
0.00

0.25

0.50

0.75

1.00

0.5

0.6

0.7

0.8

0.9

1.0

∆ (hours)

R
ec

al
l

Algorithms ●CAS2VECcount LOR LR SEISMIC

Figure 8.6: Evaluation results of early prediction experiments for the Twitter and Weibo

datasets. The same hyper-parameter values as Fig. 8.5 is used

tion time to varies inversely w.r.t. the prediction windows size, from tp− 1

hours to 1 hour. In both cases, the variation step is 1 hour.

In the following experiment (Fig. 8.6), we evaluate the recall score only

for the viral calls, that is measured by the fraction of viral cascades detected

by an algorithm out of all the viral cascades.

cas2vec obtains the best result in all of them. As one might expect,

the algorithms achieve good results for small values of ∆. For example,

all algorithms except linear regression achieve more than 96% recall in the

Twitter dataset, with seismic achieving the highest of all, i.e. 99%. Such

result is trivial, however, and we want algorithms to be robust in their

prediction as we increase ∆.

As we get close to ∆ = 15 hours (Twitter) and ∆ = 33 hours (Weibo),

which is equivalent to observing the cascade growth just for 1 hour, the

performance of the baselines drop faster than cas2vec, which achieves the

best recall. seismic achieves the best results up to ∆ = 8, which is after

observing for more than 7 and 25 hours for Twitter and Weibo respectively.

However, as we go beyond, seismic starts to decrease quickly; when ∆ = 15

(Twitter) and ∆ = 34 (Weibo), it recalls only 86% and 42% of the viral

105

8.4. EXPERIMENTS AND RESULTS 106

cascades, respectively. The other strong baseline, LOR, at the end points

drops to 89% and 56% of recall, while cas2vec outperforms the baselines

and gets to 95% and 62% for Twitter and Weibo respectively.

Besides the virality predictions shown previously, these experiments

demonstrate that cas2vec is highly robust compared to the state-of-the-

art method, seismic, and the strong baseline, LOR, in predicting cascades

virality as early as possible.

Break-out Coverage One of the important tasks in cascade prediction is

detecting break-out events. Towards this end, similar to [8, 82], we take

the top-k viral cascades and evaluate the performance of algorithms in

effectively covering such cascades in their prediction. That is, the fraction

of correctly predicted cascades out of the top-k viral cascades.

The results of this experiment are reported in Fig. 8.7-8.8. Yet again,

cas2vec consistently achieves a significant performance gain, specially as

∆ increases. Note that even though LOR was a strong baseline in the

earlier experiments, its performance degrades when it comes to detecting

just the top-k break-out cascades. Similar to the previous experiment, it is

important to achieve a high coverage as we increase ∆. In particular, the

strongest baseline in this experiment achieves only 83% break-out coverage

for k = 100, and 76% for k = 200. cas2vec, however, achieves a remark-

able performance of 95% and 90% for k = 100 and k = 200, respectively.

For the Weibo dataset all the baselines score below 50% and 60%, where

as cas2vec achieves a more than 90% for k = 10 and 20, respectively.

Effect of hyper-parameters In order to further validate our proposal, we

conducted two brief experiments on the effect of its hyper-parameters.

First, we analyzed how the performance varies with the number of slices.

As shown in Fig. 8.9, the performance increases as we increase the number

106

107 CHAPTER 8. PREDICTING VIRALITY OF CASCADES

●●●●●
●●

●
●●●●●

●
●

●

●●
●●●●●

●
●●●●

●
●

●

●

100 200

0 5 10 15 0 5 10 15
0.5

0.6

0.7

0.8

0.9

1.0

∆ (hours)

C
ov

er
ag

e

Algorithms ●CAS2VECcount LOR LR SEISMIC

Figure 8.7: Break-out coverage for k = 100 and k = 200 for the Twitter dataset.

● ●
● ● ● ● ● ●

● ● ●

● ●

● ●
●

●

●

●

●

●

●
●

●

● ●

● ●

● ●

●

●

●

●

10 20

0 10 20 30 0 10 20 30

0.4

0.6

0.8

1.0

∆ (hours)

C
ov

er
ag

e

Algorithms ●CAS2VECcount LOR LR SEISMIC

Figure 8.8: Break-out coverage for k = 10 and k = 20 for the Weibo dataset.

of slices – up to a certain value. For Twitter, as we go from 10 to 30 the

performance drops and starts to improve until we get to Ns = 50, which is

the best spot. Whereas in Weibo the best F-score is achieved at Ns = 30.

We have found out that values between 30 and 50 give the best results.

The other hyper-parameter of our algorithm is sequence length; in par-

ticular, it is the major factor in the run time of our algorithm. Fig. 8.10

show the effect of sequence length (determined by to) for the two variants

of our algorithms. Particularly cas2vecdisc requires more time to finish an

107

8.4. EXPERIMENTS AND RESULTS 108

●

● ●

●
●

●
●

●

●

●
●

●

Twitter Weibo

20 40 60 20 40 60
0.75

0.78

0.81

0.84

0.93

0.94

0.95

0.96

Number of slices

F
−

S
co

re

Figure 8.9: Effect of the number of slices on virality prediction at to = 1 hour and ∆ = 12

hours.

●

●

●

●

●

0

100

200

300

400

0.1 0.2 0.3 0.4 0.5

to

R
un

 ti
m

e
(s

ec
on

ds
)

Preprocessing
Techniques

●CAS2VECcount CAS2VECdisc

Figure 8.10: Effect of sequence length on running time.

epoch as we increase the sequence length. However, Fig. 8.11 shows that

increasing the sequence length beyond a certain value (150 in the figure)

does not give significant performance gain.

This chapter presents cas2vec, a novel algorithm for the prediction of

the virality of social network cascades. Traditionally, network structure

parameters and features extracted from the underlying domain have been

used to perform the prediction either as a regression or a classification

tasks. However, network information and predictive features are expensive

108

109 CHAPTER 8. PREDICTING VIRALITY OF CASCADES

●

●

●

●

●

0.90

0.92

0.94

0.96

50 100 150 200 250
Sequence Length

F
−

S
co

re

Figure 8.11: Effect of seq. length on virality prediction.

to get either because of privacy constraints or need for domain knowledge

and awareness on external affecting factors.

Unlike previous work, our approach is fully network-agnostic: it is solely

based on timing information explicitly encoded in the cascade. We make

use of state-of-the-art techniques for sentence classification using CNNs

for the actual prediction over time series. Our experiments show that time

sequences in cascades are sufficient to make timely and accurate virality

predictions.

cas2vec achieves an increase in prediction accuracy between 10% and

20% in all the tasks w.r.t. F-score and recall compared to strong baselines

in the field, while being fully network-agnostic. As future work, we plan

to extend the model by incorporating extra features like content, early

adopters, and analyze the interpretability of the learned features.

109

8.4. EXPERIMENTS AND RESULTS 110

110

Chapter 9

Conclusion

The ubiquitous nature of graphs in vast and diverse domains such as bi-

ology, economy and technology provides an opportunity to get greater in-

sights into these areas and use modern machine learning approaches to

build useful applications. Therefore, it is essential to obtain relevant and

useful features from them. This thesis is a step towards this direction; we

have built models which are good at exploiting the diverse kinds of infor-

mation present in the graphs for learning representation, which are then

further used in downstream machine learning applications. We focused on

node classification, link prediction, and nearest-neighbor tasks.

Most real-world graphs are associated with rich content information

such as attributes. It is challenging to incorporate attribute information

in learning. We proposed two different models to exploit the attributed

graphs to learn a better representation. In our first contribution, we pro-

posed gat2vec that uses structural information and attribute informa-

tion to generate structural contexts and attribute contexts respectively,

through random walks. Then using these two different contextual infor-

mation jointly helps in learning a better representation by preserving the

structural and attribute contexts of a node which is empirically shown

through machine learning tasks.

111

112

Sage2Vec is our second contribution towards representation learning

on attributed graphs. As observed, the structure of the graph is highly

non-linear and sparse, and this problem is aggravated in the case of at-

tributed graphs. The contribution of this work is to provide a simple

model which handles non-linearity and sparsity of both network structure

and attributes, in addition to avoiding complex optimizations for modeling

complex relationships proposed by state-of-the-art methods. We observed

that a simple, well-designed model having a lower algorithmic and com-

plexity can learn a better representation than complex baselines.

HetNet2Vec is a contribution towards the goal of learning representa-

tions of heterogeneous information networks. The work aims at obtaining

node sequences such that the different semantic relationships are covered

and the model aims at preserving these.

In this thesis, we also worked on prediction of virality of cascades with-

out knowing the underlying information network. We proposed cas2vec,

a network-agnostic approach, that models a cascade as a time-series data

and train a neural network model inspired from NLP to predict virality of

a cascade. Our experiments show that time sequences in cascades are suf-

ficient to make timely and accurate virality predictions. cas2vec achieves

an increase in prediction accuracy between 10% and 20% in all the tasks

w.r.t. F-score and recall compared to strong baselines in the field, while

being fully network-agnostic. As future work, we plan to extend the model

by incorporating extra features like content, early adopters, and analyze

the interpretability of the learned features.

The area of NRL is rapidly advancing with introduction of new models

such as Graph Neural Networks (GNN), and there is lot of scope to extend

it to various domains such as heterogeneous networks and dynamic net-

works. As in the thesis, we discussed the importance of well-designed and

scalable models for large graphs. In continuation of the current focus in

112

113 CHAPTER 9. CONCLUSION

NRL, the near term plan is to work on scalable GNN models in attributed

and heterogeneous networks.

113

Bibliography

[1] A. Fout, J. Byrd, B. Shariat, and A. Ben-Hur, “Protein interface pre-

diction using graph convolutional networks,” in NIPS, 2017.

[2] W. Hamilton, R. Ying, and J. Leskovec, “Inductive representation

learning on large graphs,” CoRR, vol. abs/1706.02216, 2017.

[3] L. Backstrom and J. Leskovec, “Supervised random walks: predicting

and recommending links in social networks,” in Proceedings of the

fourth ACM international conference on Web search and data mining,

pp. 635–644, ACM, 2011.

[4] F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens, “Random-walk

computation of similarities between nodes of a graph with application

to collaborative recommendation,” IEEE Trans. on Knowl. and Data

Eng., vol. 19, pp. 355–369, Mar. 2007.

[5] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-

Rad, “Collective classification in network data,” AI Magazine, vol. 29,

no. 3, pp. 93–106, 2008.

[6] X. Yu, X. Ren, Y. Sun, Q. Gu, B. Sturt, U. Khandelwal, B. Norick,

and J. Han, “Personalized entity recommendation: A heterogeneous

information network approach,” in Proc. of the 7th ACM Int. Conf. on

Web Search and Data Mining, WSDM ’14, pp. 283–292, ACM, 2014.

115

BIBLIOGRAPHY 116

[7] L. Weng, F. Menczer, and Y.-Y. Ahn, “Virality prediction and com-

munity structure in social networks,” Sci. Rep., vol. 3, no. 2522, 2013.

[8] Q. Zhao, M. A. Erdogdu, H. Y. He, A. Rajaraman, and J. Leskovec,

“SEISMIC: A self-exciting point process model for predicting tweet

popularity,” in Proc. of KDD’15, ACM, 2015.

[9] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE:

Large-scale information network embedding,” in Proc. of the 24th Int.

Conf. on World Wide Web, WWW ’15, pp. 1067–1077, 2015.

[10] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural proba-

bilistic language model,” J. Mach. Learn. Res., vol. 3, pp. 1137–1155,

Mar. 2003.

[11] G. E. Hinton, J. L. McClelland, and D. E. Rumelhart, “Parallel dis-

tributed processing: Explorations in the microstructure of cognition,

vol. 1,” ch. Distributed Representations, pp. 77–109, Cambridge, MA,

USA: MIT Press, 1986.

[12] T. Mikolov, J. Kopecky, L. Burget, O. Glembek, and J. Cernocky,

“Neural network based language models for highly inflective lan-

guages,” in Proceedings of the 2009 IEEE International Conference

on Acoustics, Speech and Signal Processing, ICASSP ’09, (Washing-

ton, DC, USA), pp. 4725–4728, IEEE Computer Society, 2009.

[13] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation

of word representations in vector space,” CoRR, vol. abs/1301.3781,

2013.

[14] F. Morin and Y. Bengio, “Hierarchical probabilistic neural network

language model,” in Proc. of the Tenth Int. Workshop on Artificial

116

117 BIBLIOGRAPHY

Intelligence and Statistics, AISTATS’05, Society for Artificial Intelli-

gence and Statistics, 2005.

[15] H. Bourlard and Y. Kamp, “Auto-association by multilayer per-

ceptrons and singular value decomposition,” Biol. Cybern., vol. 59,

pp. 291–294, Sept. 1988.

[16] G. E. Hinton and R. S. Zemel, “Autoencoders, minimum descrip-

tion length and helmholtz free energy,” in Proceedings of the 6th

International Conference on Neural Information Processing Systems,

NIPS’93, (San Francisco, CA, USA), pp. 3–10, Morgan Kaufmann

Publishers Inc., 1993.

[17] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal

representations by error propagation,” pp. 318–362, Cambridge, MA,

USA: MIT Press, 1986.

[18] Y. LeCun and Y. Bengio, “The handbook of brain theory and neural

networks,” ch. Convolutional Networks for Images, Speech, and Time

Series, pp. 255–258, Cambridge, MA, USA: MIT Press, 1998.

[19] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral tech-

niques for embedding and clustering,” in Proceedings of the 14th Inter-

national Conference on Neural Information Processing Systems: Nat-

ural and Synthetic, NIPS’01, (Cambridge, MA, USA), pp. 585–591,

MIT Press, 2001.

[20] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community

preserving network embedding,” in AAAI, 2017.

[21] L. Tang and H. Liu, “Relational learning via latent social dimensions,”

in Proc. of the 15th ACM SIGKDD Int. Conf. on Knowledge Discovery

and Data Mining, KDD ’09, pp. 817–826, ACM, 2009.

117

BIBLIOGRAPHY 118

[22] L. Tang and H. Liu, “Leveraging social media networks for classifica-

tion,” Data Mining and Knowledge Discovery, vol. 23, pp. 447–478,

Nov 2011.

[23] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations

with global structural information,” in Proceedings of the 24th ACM

International on Conference on Information and Knowledge Manage-

ment, CIKM ’15, (New York, NY, USA), pp. 891–900, ACM, 2015.

[24] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transi-

tivity preserving graph embedding,” in Proceedings of the 22Nd ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’16, (New York, NY, USA), pp. 1105–1114, ACM, 2016.

[25] C. Tu, W. Zhang, Z. Liu, and M. Sun, “Max-margin deepwalk: Dis-

criminative learning of network representation,” in IJCAI, pp. 3889–

3895, IJCAI/AAAI Press, 2016.

[26] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of

social representations,” in Proceedings of KDD’14, (New York, NY,

USA), pp. 701–710, ACM, 2014.

[27] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,”

in Proc. of the 22nd ACM SIGKDD Int. Conf. on Knowledge Discov-

ery and Data Mining, KDD ’16, pp. 1225–1234, ACM, 2016.

[28] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for

networks,” in Proc. of the 22Nd ACM SIGKDD Int. Conf. on Knowl-

edge Discovery and Data Mining, KDD ’16, pp. 855–864, ACM, 2016.

[29] T. Lyu, Y. Zhang, and Y. Zhang, “Enhancing the network embedding

quality with structural similarity,” in Proceedings of the 2017 ACM on

118

119 BIBLIOGRAPHY

Conference on Information and Knowledge Management, CIKM ’17,

(New York, NY, USA), pp. 147–156, ACM, 2017.

[30] J. Li, J. Zhu, and B. Zhang, “Discriminative deep random walk for net-

work classification,” in Proceedings of the 54th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers),

pp. 1004–1013, Association for Computational Linguistics, 2016.

[31] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, “Struc2vec: Learn-

ing node representations from structural identity,” in Proceedings of

the 23rd ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, KDD ’17, (New York, NY, USA), pp. 385–

394, ACM, 2017.

[32] B. Shaw and T. Jebara, “Structure preserving embedding,” in Proc. of

the 26th Annual Int. Conf. on Machine Learning, ICML ’09, pp. 937–

944, ACM, 2009.

[33] D. Luo, C. H. Q. Ding, F. Nie, and H. Huang, “Cauchy graph embed-

ding,” in Proceedings of the 28th International Conference on Machine

Learning, ICML’11, pp. 553–560, 2011.

[34] S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning graph

representations,” in Proceedings of the Thirtieth AAAI Conference on

Artificial Intelligence, AAAI’16, pp. 1145–1152, AAAI Press, 2016.

[35] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning

in graph domains,” Proceedings. 2005 IEEE International Joint Con-

ference on Neural Networks, 2005., vol. 2, pp. 729–734 vol. 2, 2005.

[36] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-

dini, “The graph neural network model,” Trans. Neur. Netw., vol. 20,

pp. 61–80, Jan. 2009.

119

BIBLIOGRAPHY 120

[37] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks

and locally connected networks on graphs,” CoRR, vol. abs/1312.6203,

2013.

[38] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on

graph-structured data,” CoRR, vol. abs/1506.05163, 2015.

[39] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neu-

ral networks on graphs with fast localized spectral filtering,” in Pro-

ceedings of the 30th International Conference on Neural Information

Processing Systems, NIPS’16, (USA), pp. 3844–3852, Curran Asso-

ciates Inc., 2016.

[40] R. Li, S. Wang, F. Zhu, and J. Huang, “Adaptive graph convolutional

neural networks,” CoRR, vol. abs/1801.03226, 2018.

[41] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “Cayleynets:

Graph convolutional neural networks with complex rational spectral

filters,” CoRR, vol. abs/1705.07664, 2017.

[42] X. Huang, J. Li, and X. Hu, “Label informed attributed network em-

bedding,” in Proc. of the 10th ACM Int. Conf. on Web Search and

Data Mining, WSDM ’17, pp. 731–739, ACM, 2017.

[43] X. Huang, J. Li, and X. Hu, “Accelerated attributed network embed-

ding,” in SIAM International Conference on Data Mining, pp. 633–

641, 2017.

[44] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Chang, “Network repre-

sentation learning with rich text information,” in Proc. of the 24th

Int. Conf. on Artificial Intelligence, IJCAI’15, pp. 2111–2117, AAAI

Press, 2015.

120

121 BIBLIOGRAPHY

[45] D. Zhang, J. Yin, X. Zhu, and C. Zhang, “Homophily, structure,

and content augmented network representation learning,” in ICDM,

pp. 609–618, IEEE Computer Society, 2016.

[46] J. Tang, M. Qu, and Q. Mei, “Pte: Predictive text embedding through

large-scale heterogeneous text networks,” in Proc. of the 21th ACM

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD

’15, pp. 1165–1174, ACM, 2015.

[47] Z. Yang, W. Cohen, and W. Salakhutdinov, “Revisiting

semi-supervised learning with graph embeddings,” CoRR,

vol. abs/1603.08861, 2016.

[48] S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang, “Tri-party deep net-

work representation,” in Proc. of the 25th Int. Joint Conf. on Artificial

Intelligence, IJCAI’16, pp. 1895–1901, AAAI Press, 2016.

[49] H. Gao and H. Huang, “Deep attributed network embedding,” in Pro-

ceedings of the Twenty-Seventh International Joint Conference on Ar-

tificial Intelligence, IJCAI-18, pp. 3364–3370, 7 2018.

[50] Z. Zhang, H. Yang, J. Bu, S. Zhou, P. Yu, J. Zhang, M. Ester, and

C. Wang, “Anrl: Attributed network representation learning via deep

neural networks,” in Proceedings of the Twenty-Seventh International

Joint Conference on Artificial Intelligence, IJCAI-18, pp. 3155–3161,

7 2018.

[51] Z. Meng, S. Liang, H. Bao, and X. Zhang, “Co-embedding attributed

networks,” in Proc. of the 12th ACM Int. Conf. on Web Search and

Data Mining, WSDM ’19, ACM, 2019.

[52] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” NIPS

Workshop on Bayesian Deep Learning, 2016.

121

BIBLIOGRAPHY 122

[53] T. N. Kipf and M. Welling, “Semi-supervised classification with graph

convolutional networks,” CoRR, vol. abs/1609.02907, 2016.

[54] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, “Adversari-

ally regularized graph autoencoder for graph embedding,” in Proceed-

ings of the Twenty-Seventh International Joint Conference on Artifi-

cial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden.,

pp. 2609–2615, 2018.

[55] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”

CoRR, vol. abs/1312.6114, 2013.

[56] Y. Dong, N. V. Chawla, and A. Swami, “Metapath2Vec: Scalable

representation learning for heterogeneous networks,” in Proc. of the

23rd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data

Mining, KDD ’17, pp. 135–144, ACM, 2017.

[57] S. Chang, W. Han, J. Tang, G.-J. Qi, C. C. Aggarwal, and T. S.

Huang, “Heterogeneous network embedding via deep architectures,”

in Proceedings of the 21th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, KDD ’15, (New York, NY,

USA), pp. 119–128, ACM, 2015.

[58] T.-Y. Fu, W.-C. Lee, and Z. Lei, “Hin2vec: Explore meta-paths in het-

erogeneous information networks for representation learning,” in Proc.

of the 2017 ACM on Conf. on Information and Knowledge Manage-

ment, CIKM ’17, pp. 1797–1806, ACM, 2017.

[59] Z. Huang and N. Mamoulis, “Heterogeneous information network em-

bedding for meta path based proximity,” CoRR, vol. abs/1701.05291,

2017.

122

123 BIBLIOGRAPHY

[60] J. Shang, M. Qu, J. Liu, L. M. Kaplan, J. Han, and J. Peng, “Meta-

path guided embedding for similarity search in large-scale heteroge-

neous information networks,” CoRR, vol. abs/1610.09769, 2016.

[61] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Dis-

tributed representations of words and phrases and their compositional-

ity,” in Proceedings of the 26th International Conference on Neural In-

formation Processing Systems - Volume 2, NIPS’13, (USA), pp. 3111–

3119, Curran Associates Inc., 2013.

[62] R. Hussein, D. Yang, and P. Cudré-Mauroux, “Are meta-paths neces-

sary?: Revisiting heterogeneous graph embeddings,” in Proceedings of

the 27th ACM International Conference on Information and Knowl-

edge Management, CIKM ’18, (New York, NY, USA), pp. 437–446,

ACM, 2018.

[63] Q. V. Le and T. Mikolov, “Distributed representations of sentences

and documents,” CoRR, 2014.

[64] “BlogCatalog,” 2017. Accessed: 2017-07-01.

[65] “dblp,” 2017. Accessed: 2017-07-01.

[66] “CiteSeer,” 2017. Accessed: 2017-07-01.

[67] X. Wang, L. Tang, H. Gao, and H. Liu, “Discovering overlapping

groups in social media,” in Proc. of the 10th IEEE Int. Conf. on Data

Mining, ICDM 2010, pp. 569–578, IEEE, 2010.

[68] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “LI-

BLINEAR: A library for large linear classification,” J. Mach. Learn.

Res., vol. 9, pp. 1871–1874, June 2008.

123

BIBLIOGRAPHY 124

[69] J. Tang, J. Liu, M. Zhang, and Q. Mei, “Visualizing large-scale and

high-dimensional data,” in Proc. of the 25th Int. Conf. on World Wide

Web, WWW ’16, Int. World Wide Web Conf.s Steering Committee,

2016.

[70] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-

tion,” CoRR, vol. abs/1412.6980, 2014.

[71] Y. K., “Convolutional neural networks for sentence classification,” in

Proc. of the 2014 Conf. on Empirical Methods in Natural Language

Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meet-

ing of SIGDAT, a Special Interest Group of the ACL, pp. 1746–1751,

2014.

[72] T. Yang, W. Yih, and C. Meek, “Wikiqa: A challenge dataset for open-

domain question answering,” in Proc. of the 2015 Conf. on Empirical

Methods in Natural Language Processing, EMNLP 2015, Lisbon, Por-

tugal, September 17-21, 2015, pp. 2013–2018, 2015.

[73] Y. Sun, J. Han, X. Yan, P. Yu, and T. Wu, “PathSim: Meta path-

based top-k similarity search in heterogeneous information networks,”

PVLDB, vol. 4, no. 11, pp. 992–1003, 2011.

[74] Y. lan Boureau, F. Bach, Y. LeCun, and J. Ponce, “Learning mid-level

features for recognition,” in IN COMPUTER VISION AND PAT-

TERN RECOGNITION (CVPR), 2010 IEEE CONFERENCE ON,

pp. 2559–2566, IEEE, 2010.

[75] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov, “Improving neural networks by preventing co-

adaptation of feature detectors,” CoRR, vol. abs/1207.0580, 2012.

124

125 BIBLIOGRAPHY

[76] J. Cheng, L. Adamic, P. A. Dow, J. M. Kleinberg, and J. Leskovec,

“Can cascades be predicted?,” in Proc. of WWW’14, (New York, NY,

USA), pp. 925–936, ACM, 2014.

[77] C. Li, J. Ma, X. Guo, and Q. Mei, “DeepCas: An end-to-end predictor

of information cascades,” in Proc. of WWW’17, Int. World Wide Web

Conferences Steering Committee, 2017.

[78] G. Szabo and B. A. Huberman, “Predicting the popularity of online

content,” Commun. ACM, vol. 53, pp. 80–88, Aug. 2010.

[79] J. Zhang, B. Liu, J. Tang, T. Chen, and J. Li, “Social influence locality

for modeling retweeting behaviors,” in Proc. of IJCAI’13, pp. 2761–

2767, AAAI Press, 2013.

[80] J. Zhang, J. Tang, J. Li, Y. Liu, and C. Xing, “Who influenced you?

predicting retweet via social influence locality,” ACM Trans. Knowl.

Discov. Data, vol. 9, pp. 25:1–25:26, Apr. 2015.

[81] E. Sadikov, M. Medina, J. Leskovec, and H. Garcia-Molina, “Correct-

ing for missing data in information cascades,” in Proc. of WSDM’11,

pp. 55–64, ACM, 2011.

[82] K. Subbian, B. A. Prakash, and L. Adamic, “Detecting large reshare

cascades in social networks,” in Proc. of WWW’17, pp. 597–605, Int.

World Wide Web Conferences Steering Committee, 2017.

[83] A. Camerra, T. Palpanas, J. Shieh, and E. Keogh, “iSAX 2.0: Indexing

and mining one billion time series,” in Proc. of ICDM’10, (Washing-

ton, DC, USA), pp. 58–67, IEEE Computer Society, 2010.

[84] Y. Kim, “Convolutional neural networks for sentence classification,”

in Proc. of EMNLP’14, pp. 1746–1751, 2014.

125

BIBLIOGRAPHY 126

[85] O. Tsur and A. Rappoport, “What’s in a hashtag?: content based

prediction of the spread of ideas in microblogging communities,” in

Proc. of WSDM’12, pp. 643–652, ACM.

[86] L. Weng, F. Menczer, and Y. Ahn, “Predicting successful memes using

network and community structure,” in Proc. of ICWSM’14, The AAAI

Press, 2014.

[87] L. Yu, P. Cui, F. Wang, C. Song, and S. Yang, “From micro to macro:

Uncovering and predicting information cascading process with behav-

ioral dynamics,” in Proc. of ICDM’15, pp. 559–568, 2015.

[88] P. Cui, S. Jin, L. Yu, F. Wang, W. Zhu, and S. Yang, “Cascading

outbreak prediction in networks: a data-driven approach,” in Proc. of

the KDD’13, pp. 901–909, ACM, 2013.

[89] M. Jenders, G. Kasneci, and F. Naumann, “Analyzing and predicting

viral tweets,” in Proc. of WWW’13, ACM, 2013.

[90] D. Agarwal, B.-C. Chen, and P. Elango, “Spatio-temporal models for

estimating click-through rate,” in Proc. of WWW’09, (New York, NY,

USA), pp. 21–30, ACM, 2009.

[91] R. Crane and D. Sornette, “Robust dynamic classes revealed by mea-

suring the response function of a social system,” Proc. of the National

Academy of Sciences, vol. 105, no. 41, pp. 15649–15653, 2008.

[92] S. Gao, J. Ma, and Z. Chen, “Modeling and predicting retweeting

dynamics on microblogging platforms,” in Proc. of WSDM’15, (New

York, NY, USA), pp. 107–116, ACM, 2015.

[93] C. Bauckhage, K. Kersting, and F. Hadiji, “Mathematical models of

fads explain the temporal dynamics of internet memes.,” in Proc. of

ICWSM’13, 2013.

126

127 BIBLIOGRAPHY

[94] C. Gou, H. Shen, P. Du, D. Wu, Y. Liu, and X. Cheng, “Learning

sequential features for cascade outbreak prediction,” Knowledge and

Information Systems, pp. 1–19, 2018.

[95] S.-H. Yang and H. Zha, “Mixture of mutually exciting processes for

viral diffusion,” in Proc. of ICML’13, pp. II–1–II–9, JMLR.org, 2013.

[96] B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu, “Convolutional neural

networks for time series classification,” Journal of Systems Engineer-

ing and Electronics, vol. 28, pp. 162–169, Feb 2017.

[97] Z. Wang, W. Yan, and T. Oates, “Time series classification from

scratch with deep neural networks: A strong baseline,” CoRR,

vol. abs/1611.06455, 2016.

127

