
DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE
ICT International Doctoral School

Multi-target Prediction
Methods for Bioinformatics

Approaches for Protein Function Prediction
and Candidate Discovery for Gene Regulatory

Network Expansion

Luca Masera

Advisor
Prof. Prof. Enrico Blanzieri
Università degli Studi di Trento

June 23, 2019

Abstract
Biology is experiencing a paradigm shift since the advent of next generation se-
quencing technologies. The retrieved data largely exceeds the capability of biologists
to investigate all possibilities in the laboratories, hence predictive tools able to guide
the research are now a fundamental component of their workflow. Given the cen-
tral role of proteins in living organisms, in this thesis we focus on their functional
analysis and the intrinsic multi-target nature of this task. To this end, we propose
different predictive methods, specifically developed to exploit side knowledge among
target variables and examples.

As a first contribution we face the task of protein-function prediction and more in
general of hierarchical-multilabel classification (HMC). We present Ocelot a pre-
dictive pipeline for genome-wide protein characterization. It relies on a statistical-
relational-learning tool, where the knowledge on the input examples is coded by the
combination of multiple kernel matrices, while relations among target variables are
expressed as logical constraints. Both, the mislabeling of examples and the infringe-
ment of logical rules are penalized by the loss function, but Ocelot do not forces
hierarchical consistency. To overcome this limitation, we present AWX, a neural-
networks output-layer that guarantees the formal consistency of HMC predictions.

The second contribution is VSC, a binary classifier designed to incorporate the
concepts of subsampling and locality in the definition of features to be used as the
input of a perceptron. A locality-based confidence measure is used to weight the
contribution of maximum-margin hyper-planes built by subsampling pairs of examples
of opposite class. The rationale is that local methods can be exploited when a multi-
target task is expected, but not reflected in the annotation space.

The third and last contribution are NES2RA and OneGenE, two approaches
for finding candidates to expand known gene regulatory networks. NES2RA adopts
variable-subsetting strategies, enabled by volunteer distributed computing, and the PC
algorithm to discover candidate causal relationships within each subset of variables.
Then, ranking aggregators combine the partial results into a single ranked candidate
genes list. OneGenE overcomes the main limitation of NES2RA, i.e. latency, by
precomputing candidate expansion lists for each transcript of an organism that are
then aggregated on-demand.

Keywords
Multi-target prediction; Hierarchical-multilabel classification; Protein functional

analysis; Network expansion; Volunteer distributed computing

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor, Prof. Enrico Blanzieri, who
guided and motivated me through all my Ph.D study, providing me precious ideas and advises not
only work-wise. As a natural continuation, I would like to say a big thank the gene@home team, the
collaborators at the Edmund Mach Foundation, as well as to Gabriela Viero and Andrea Passerini
for having inspired me to purse the path of machine learning and bioinformatics. Our meetings
probably were not the most time-efficient, but surely we have had good times with Valter’s jokes
and stories. Thank you.

A sincere acknowledgements to Davide Bacciu and Gianluca Pollastri for having read and
reviewed this thesis. Your comments have been precious to highlight weak points and possible way
of improvement. Moreover, I would like to thank the ICT Doctoral School secretariat staff for all
the patience and help they gave me in the past years.

My deepest gratitude goes to my colleagues, that helped me survive these three years. The
coffee-break at 4pm, the infinite walks in the corridors of DISI, the eternal sessions of pair pro-
gramming and article writing, and the “intellectual” nights. I will miss all of this. A special
acknowledgment is reserved for Daniele, who has been a fantastic friend to me. We shared un-
forgettable experiences in Canada and all around Trentino Alto-Adige. Thank you for having
awakened my passion for mountains.

When you move to an apartment with three roommates, things can go terribly wrong. Fortu-
nately that was not the case, and I found three splendid friends to share “la tana di Manci”. My
Ph.D. study would not have been the same without you guys, I am already looking forward to our
next session of D&D.

After the new friends, I would like to acknowledge the old good PARVs. We changed and
grew a lot in the last years, spreading ourselves even wider around the globe (thank you D. for
being PARV-ambassador in North-America). Nonetheless we always find ways to share fantastic
experiences and adventures, that keep us as close as at the time we shared the lanes on the athletic
field. Our discussions and meetings are always a precious source of ideas and inspiration. Thank
you all for being so non-representative of the average population.

I would like to say that most of the concepts and ideas expressed in this thesis come from
the twelve or more hours of driving (Trento Ø Zurich) that I have done in uncountable weekends
during these years, but that would simply be a lie. Our weekend migrations were not very relaxing,
and probably affected our performance on Monday, but we held on. Thank you Sara for having
come all along this journey at my side and having been “pazientissima”. We finally made it.

In ultimo non posso che esprimere tutta la mia gratitudine alla mia famiglia. Mi avete accom-
pagnato in questi i miei 20 e più anni di formazione, senza mai farmi mancare il vostro supporto,
che le cose andassero bene o meno. “Lo studio è il tuo lavoro” mi dicevate quando non ero che un
giovanotto, evidentemente ci vedevate più lontano di quanto potessi fare io.

Luca Masera

i

ii

Contents

1 Introduction 1
1.1 Contributions . 3
1.2 Structure of the Thesis . 5
1.3 Personal Contributions . 6

2 Background 9
2.1 Biological Background . 9

2.1.1 From DNA to Protein . 9
2.1.2 Regulation of Gene Expression 12
2.1.3 Transcriptomics technologies 15
2.1.4 Protein Structure . 16
2.1.5 Gene Ontology . 18

2.2 Kernel Methods . 19
2.2.1 Semantic Based Regularization 20

2.3 Artificial Neural Networks . 22
2.4 PC Algorithm . 25
2.5 Ranking aggregators . 26
2.6 BOINC . 28

3 Multi Target Prediction 29
3.1 Hierarchical Multilabel Classification 29

3.1.1 Formalization . 31
3.1.2 True Path Rule . 32
3.1.3 Evaluation metrics . 32

3.2 Candidate Discovery for Network Expansion 34
3.2.1 Formalization . 35

iii

4 Combining Learning and Logical Constraints for Hierarchical Mul-
tilabel Classification of Protein Functions 37
4.1 Related Work . 39
4.2 Model Description . 40

4.2.1 Overview of the Prediction Pipeline 40
4.2.2 Rules . 43

4.3 Results . 45
4.3.1 Data Processing . 45
4.3.2 Empirical analysis . 48

4.4 Conclusion . 53

5 Consistent Hierarchical-Multilabel Classification with Artificial Neu-
ral Networks 55
5.1 Model description . 56
5.2 Generalized TPR . 58

5.2.1 The gTPR holds for AWX . 59
5.2.2 Implementation . 59

5.3 Experimental setting . 60
5.4 Results . 62
5.5 Conclusion . 65

6 Binary Classification from Unknown Multilabel Annotation Space 67
6.1 Very Simple Classifier . 70

6.1.1 Hyperplane selection . 71
6.1.2 Hyperplane confidence . 71
6.1.3 Learning the hyperplane weights 72
6.1.4 Characterization of the confidence in terms of Chebichev in-

equality . 73
6.2 Results . 75

6.2.1 Experimental setup . 75
6.2.2 Experiment 1 . 75
6.2.3 Experiment 2 . 77
6.2.4 Discussion . 79

6.3 Conclusion . 81

7 Gene Regulatory Network Expansion by Stratified variable Sub-
setting and Ranking Aggregation 83
7.1 Related Work . 84

iv

7.2 NES2RA . 84
7.3 NES2RA on the gene@home BOINC project 89
7.4 Evaluation . 91
7.5 Conclusion . 96

8 OneGenE: Regulatory Gene Network Expansion via Distributed
Volunteer Computing on BOINC 99
8.1 OneGenE . 100
8.2 Implementation . 102

8.2.1 Performance . 102
8.2.2 Benchmarks . 104
8.2.3 Computational power and drawbacks 106

8.3 Pseudomonas aeruginosa . 107
8.3.1 Experimental results . 108

8.4 Conclusion . 111

9 Conclusions 113

10 Publications 117

11 Released Software 119

Bibliography 121

v

List of Tables

5.1 Details of the benchmark datasets used in the experiments 60
5.2 ANN architecture used in the experiments 60
5.3 Performance of AWX with AUCpPRq 63
5.4 Performance of AWX with AUCPR 64
5.5 Performance of AWX with AUCPRw 65

6.1 Details of the used datasets . 76
6.2 Parameters’ values used in the grid search 77
6.3 Average results of Experiment 1 . 78
6.4 Ranks the classifiers in Experiment 1 79

7.1 Performance comparison between skeleton and PC++ 91
7.2 Candidate genes list of the FOS LGN of A. thaliana produced by

NES2RA . 93
7.3 NES2RA precision performance using different aggregation methods 93
7.4 Ranked lists of the gadW LGN of E. coli 95
7.5 Cumulative BOINC statistics for the E. coli experiments. 96
7.6 Statistics of the workunits computational costs 96
7.7 Detailed BOINC statistics for NES2RA ΠL on the E. coli data set. . 97

8.1 Optimization of the executable of the OneGenE application 104
8.2 Benchmark table for the OneGenE application 104
8.3 Top 10 candidate genes OneGenE . 109

vii

List of Figures

2.1 Central Dogma of Molecular Biology 10
2.2 Schematic representation of a gene regulatory network 14
2.3 Protein structure . 17
2.4 Gene Ontology DAG . 18

3.1 True path rule examples . 30
3.2 Finding candidate for network expansion 35

4.1 Depiction of the Ocelot decision making process 41
4.2 Overall performance of all prediction methods on the Yeast dataset . 50
4.3 Breakdown of the performance of all methods at different GO term

depth . 51
4.4 Overall performance of DeepGO, Ocelot, GoFDR and the baseline

on the Yeast dataset . 52

5.1 From hierarchy to AWX . 56
5.2 Comparison of max and `-norms . 57
5.3 Generalized true path rule example 58
5.4 Terms and leaves distribution by depth 61

6.1 Schematic representation of the hyperplane selection 71
6.2 Shape of the confidence measure . 72
6.3 Results of Experiment 1 . 80
6.4 Results of Experiment 2 . 80

7.1 NES2RA workflow. 85

8.1 Blocks scheme of the OneGenE architecture 101
8.2 Computing status page of the gene@home project 105
8.3 Estimated FLOPS per day for gene@home project 106
8.4 Output similarity by aggregator . 110

ix

Chapter 1

Introduction

The marriage between computer science and biology has a 60 years long history.
Since the identification of the DNA as the molecule that contains the genetic infor-
mation [Watson et al., 1953] and the works by Sanger to sequence proteins [Sanger,
1945] and DNA [Sanger et al., 1977], it was clear the necessity to systematically
store and share the retrieved data. The Atlas of Protein Sequence and Structure
by Margaret Dayhoff laid the foundations for the modern biological data banks by
collecting all the available sequences, at that time 65, in a book that was published
in 1965. This paved the way to subsequent works that aimed at finding similari-
ties in biological sequences [Needleman and Wunsch, 1970; Smith and Waterman,
1981], and building evolution-based substitution matrices [Dayhoff and Schwartz,
1978]. On top of these milestones, the Human Genome Project (HGP) was formally
launched in 1990 giving start to the era of bionformatics.

This ambitious project required more than ten years and 0.5 ´ 1 billion dollars
to be accomplished [Reuter et al., 2015], but in 2003 the complete human genome
was finally unveiled. However, the Sanger sequencing technology used for the HGP
was not scalable enough to be systematically applied on new organisms. To this
end, the National Human Genome Research Institute created a 70 million dollars
initiative to reduce the sequencing cost to $1000. This, and other large investments,
led to the introduction of a plethora of high-throughput sequencing (HTS) or next
generation sequencing (NGS) protocols, reducing the cost per sequenced megabase
(one million DNA bases) from almost $10000 in 2001 to less then $0.1 nowadays1.
NGS technologies represent one of the biggest breakthrough in biology since the work
of Watson et al. [1953], opening the gates to previously unimaginable scenarios.

Proteins are among the most important molecules in living organisms. Their
structure and capability to bond with other bio-molecules make protein extremely

1Data available at https://www.genome.gov/sequencingcostsdata/

https://www.genome.gov/sequencingcostsdata/

2 Introduction

versatile building blocks whose space of activity ranges from the very basic enzy-
matic reactions up to structural support of cells. Despite the fact that the genetic
material required to assemble proteins is the same in each cell of an organism2, the
regulation of gene expression controls the relative abundance of proteins inducing
cell differentiation and reaction to stimuli.

The amino-acid sequences of proteins (proteins are made of a combination of 20
different amino-acids) for the commonly studied organisms are publicly available
on different data banks online, but also the de-novo sequencing of new organisms is
feasible even for relatively small laboratories. Despite this, the functional annotation
of these macro molecules is still an open issue. Indeed, the function accomplished
by a protein is strongly related to its three-dimensional structure that is typically
inquired through X-ray crystallography [Engh and Huber, 1991]. At the time of
writing, 45970 distinct protein-sequences 3D structures are available, while more
than 100 millions proteins have a known amino-acid sequence (500 thousand of which
are manually curated)3. NGS protocols widened the gap between retrieved and
experimentally-annotated data. Indeed, wet-lab procedures to precisely investigate
molecules properties still require hours or days to be accomplished. For example,
the protocol to verify experimentally the interaction between two proteins needs
more then 2 days4 and testing all pairs of proteins even in a small organism is
therefore far from possible. Computational methods that can guide the work of
biologist identifying the most likely targets are therefore of crucial importance, and
are nowadays an essential component of the biological research.

The possibility to code protein sequences as strings, whose alphabet is the set of
amino acids, was extremely tempting for computer scientists. Many computational
approaches have been developed to face the supervised task of protein-function pre-
diction (PFP), exploiting similarities of protein sequences to transfer annotation
from known to unknown ones [Gong et al., 2016; Kulmanov et al., 2018]. The
performance of this class of algorithm is good as long as proteins are evolutionary
related, homologous, and performs better for predicting molecular functions and
cellular component rather then biological processes5 [Dessimoz et al., 2013; Rost
et al., 2003]. More sophisticated approaches rely on the aggregation of different
data sources [Yu et al., 2016; Li et al., 2016; Stuart et al., 2003] to cover a wider
range of biological aspects.

Microarrays and RNA-seq technologies (see Section 2.1.3 for details) allowed bi-

2Exception made for haploid cells in Eukaryotes.
3Data from https://www.rcsb.org/stats/ and https://www.uniprot.org/
4Time for co-immunoprecipitation protocol [Anderson, 1998]
5See Section 2.1.5 for definitions.

https://www.rcsb.org/stats/
https://www.uniprot.org/

Contributions 3

ologists to simultaneously measure gene expression levels of (all) genes transcripts
from a population of cells. From the measurement of gene expression in differ-
ent conditions are obtained observational data. On top of this data computational
methods that capture causal relations among gene products are of the foremost
importance. Simple correlation between pairs of transcripts is still widely used by
biologists to explore and visualize high-dimensional data [Butte et al., 2000; Old-
ham et al., 2006], but it fails in distinguishing direct relations from indirect ones
[Opgen-Rhein and Strimmer, 2007]. Taking into consideration the expression levels
of the other transcript is therefore necessary to provide the user with more accurate
predictions [Maathuis et al., 2010]. A wide range of pathologies is caused by the
misregulation of specific genes or pathways, that may be over or under expressed
[Lee and Young, 2013]. Being able to predict the genes that affect the regulation of
those pathways is therefore crucial to identify new drugs targets [Imoto et al., 2007;
Emmert-Streib et al., 2014; Aloraini and ElSawy, 2018].

1.1 Contributions

HTS protocols deeply shaped biological research in the last twenty years, generating
huge amount of raw data. Providing accurate insight to biologists to guide their and
accelerate the research process is therefore of the foremost importance. However,
going beyond the standard binary classification framework is critical to improve
prediction quality [Waegeman et al., 2018]. For this reason we face the task of
multi-target prediction in bioinformatics. The contribution of this thesis is three-
folds.

The first contribution is on the task of hierarchical-multilabel classification (HMC)
that, as mentioned in the previous section, plays a crucial role in the protein func-
tion prediction (PFP) problem. To this aim we propose two solutions, the first one
is task-driven, the second one is methodological. We propose Ocelot, a predictive
pipeline specifically developed for genome-wide protein annotation. It is based on
SBR, a state of the art statistical relational learning framework that incorporates
fuzzy-logical constraints in the kernel machinery. The knowledge on the label struc-
ture and the protein-protein interactions are formulated as first-order logic rules and
used as penalty in the model training. The genome-wide application of Ocelot
on the model organism Saccharomyces cerevisiae showed that the proposed kernel,
based on multiple biological features, and rules positively affect the predictions, out-
performing the baseline and the state-of-the-art when trained in the same setting.
It must be noticed that Ocelot penalizes the infringement of hierarchical con-

4 Introduction

straints, but does not guarantee a formal consistency on the final result. In order
to overcome this limitation, and the poor scalability, we propose AWX (Adjacency
Wrapping Matrix), a novel neural network output layer. We generalized the true
path rule to continuous prediction and proved that AWX predictions are consis-
tent for each possible threshold. AWX performs the prediction on the leaf-nodes
of the hierarchy and combine them with different aggregation strategies to obtain
the prediction of the inner-nodes. The whole output is then jointly optimized by
means of stochastic gradient descent. Thanks to the modularity of neural networks
(NN) architectures, AWX is completely agnostic to the underlying topology and
can therefore be employed on top of any deep NN. An extensive benchmark evalu-
ation confirmed a significant improvement in performance of AWX with respect to
state-of-the-art HMC-specific approaches.

Multi-target classification has multiple fields of application, but the annotation
space is not always given. The second contribution of the thesis is VSC (Very Simple
Classifier), a binary classifier that exploits the concept of locality to provide accurate
classification also when a multi-target annotation space is expected but unknown.
The idea behind locality is that decisions based on the portion of space “close” to
the target example are preferable to the ones that take into consideration the whole
input space [Bottou and Vapnik, 1992]. To incorporate this concept, VSC starts by
sampling pairs of training examples belonging to opposite classes and for each of
them builds the maximum margin hyper-plane. When a new example is evaluated,
the pre-computed separation hyper-planes are weighted by means of a learned score
and a locality-based confidence measure. We performed an extensive experimental
evaluation on benchmark datasets and compared the results of VSC with other 10
general-purpose binary classifiers. VSC has competing performance on the tested
datasets especially when the input has very distinct clusters within the same class.
Moreover we show that the confidence measure plays an important role in the quality
of the predictions.

The third and last contribution of the thesis regards the task of finding candidates
to expand known gene regulatory networks. To this end we developed NES2RA, a
predictive pipeline capable of facing this task also for large scale genomes, as plants
or human ones. NES2RA takes as input a gene expression data matrix and a set
of variables (transcripts) that are the target of a biological investigation. The tran-
scriptome of the analyzed organism is subdivided in (almost) disjoint subsets (called
tiles) where appearance probability of the input transcripts in each tile is controlled
by a probability vector. The skeleton function of the PC algorithm [Kalisch and
Bühlmann, 2007] is applied on the expression data of each tile to systematically

Structure of the Thesis 5

test conditional independence of variable pairs. This process is iterated thousand
of times with different parameters’ sets and the obtained partial results are aggre-
gated by means of ranking aggregators. This task is computationally intensive and
could require years on a single machine. Given the highly parallel nature of the
algorithm we developed gene@home, a distributed volunteer research project based
on the BOINC platform [Anderson, 2004b]. gene@home has an average throughput
over 10 TFLOPs that allows us to drastically reduce the computation time of the
ranked expansion lists. NES2RA has been successfully applied on four GRN of Vitis
vinifera related to climate change [Malacarne et al., 2018]. Despite the huge boost
provided by the BOINC platform, NES2RA computation is definitely not real-time
and is therefore the best choice for an exploratory research. To overcome this is-
sue we developed OneGenE, an evolution of NES2RA, where partial expansion
lists are pre-computed for each transcript and combined on the fly given a set of
input variables. Up to now, we have pre-computed expansion lists for two bacterial
organisms and two plants, respectively Pseudomonas aeruginosa, Escherichia coli,
Arabidopsis thaliana, and Vitis vinifera. The expansion of the human transciptome
in currently undergoing.

1.2 Structure of the Thesis

This chapter presents the motivations and the contributes achieved in this thesis.
The rest of the manuscript is organized as follows.

Chapter 2 collects the biological and computational background useful for the
thesis, while chapter 3 presents and formalize the task of multi-target prediction,
with a focus on the tasks of hierarchical-multilabel classification and finding candi-
date for network expansion.

Chapter 4 and 5 present our contributes on hierarchical-multilabel classification
applied to protein function prediction. Chapter 4 discusses Ocelot, a predictive
pipeline for protein function prediction that has been published in:

Teso, Stefano; Masera, Luca; Diligenti, Michelangelo, and Passerini, Andrea.
Combining learning and constraints for genome-wide protein annotation.
BMC Bioinformatics, 20(1):338, 2019

Chapter 5 discusses AWX, an artificial neural network component for consistent
hierarchical-multilabel classification, presented in:

6 Introduction

Masera, Luca and Blanzieri, Enrico. AWX: An Integrated Approach to
Hierarchical-Multilabel Classification. In Machine Learning and Knowledge
Discovery in Databases 2018, Proceedings, Part I, pages 322–336. Springer
International Publishing, 2019a

Chapter 6 discusses VSC, a binary classifier that exploits locality for investigating
problems where a multi-target structure is supposed but not known. The article has
been presented in:

Masera, Luca and Blanzieri, Enrico. Very Simple Classifier: a Concept Bi-
nary Classifier to Investigate Features Based on Subsampling and Locality.
In European Symposium on Artificial Neural Networks, Computational In-
telligence and Machine Learning, 2019, 2019b

Chapter 7 and 8 presents our contributes on finding candidate genes for network
expansion. Chapter 7 discusses NES2RA, our solution based on volunteer dis-
tributed computing for finding candidate genes that expand known gene regulatory
networks. The work has already been published in:

Asnicar, Francesco; Masera, Luca; Coller, Emanuela; Gallo, Caterina; Sella,
Nadir; Tolio, Thomas; Morettin, Paolo; Erculiani, Luca; Galante, Francesca;
Semeniuta, Stanislau; Malacarne, Giulia; Engelen, Kristof; Argentini, An-
drea; Cavecchia, Valter; Moser, Claudio, and Blanzieri, Enrico. NES2RA:
Network Expansion by Stratified Variable Subsetting and Ranking Aggre-
gation. The International Journal of High Performance Computing Appli-
cations, 32(3):380–392, aug 2016

Chapter 7 discusses OneGenE; based on NES2RA, it aims at overcoming the
main limitations of its predecessor. The article has been presented in:

Asnicar, Francesco; Masera, Luca; Pistore, Davide; Valtentini, Samuel;
Cavecchia, Valter, and Blanzieri, Enrico. OneGene: Regulatory Gene Net-
work Expansion via Distributed Volunteer Computing on BOINC. In 27th
Euromicro International Conference on Parallel, Distributed and Network-
Based Processing, 2019

1.3 Personal Contributions

I am the second author of the submitted article discussed in Chapter 4. The work
started in my master project [Masera, 2015]; I formulated the first order logic rules
that describe the hierarchical relations, performed the experimental comparison with

Personal Contributions 7

related works, and contributed to the writing of the article.
I am first author of the published article discussed in Chapter 5. I conceived the

model, implemented it, performed the experimental evaluation and contributed to
the writing of the article.

I am first author of the submitted article discussed in Chapter 6. I contributed
in the formulation of the model, implemented it, performed the experimental eval-
uation, and contributed to the writing of the article.

I am co-first author of the accepted articles discussed in Chapter 7 and 8. I
contributed in the formulation of the pipelines, to their implementation, and con-
tributed to the writing of the articles.

8 Introduction

Chapter 2

Background

2.1 Biological Background

This section will introduce the biological background related to the work presented
in the thesis, focusing on the most crucial processes and molecules that are the basis
of life. Firstly we will follow the flux of genetic information, described by the central
dogma of molecular biology, with a deeper look into the gene expression regulation
mechanisms and the final product, i.e. proteins. Finally we will introduce the tech-
niques employed to retrieve the data from biological samples and the bioinformatic
resources that store and provide this information.

The concepts discussed in this section are taken from [Alberts et al., 2015].

2.1.1 From DNA to Protein

Proteins are the most important part of the cells and are involved in almost all
vital processes of the cell and of the organism. They are essential for several crucial
roles such as structural functions, movement, transport and storage of molecules,
regulation of several processes and even more complex roles in big organisms such
as humans with also other crucial functions as in body-protection (antibodies).

Proteins are large molecules with a chain form, composed of a series of smaller
units called amino acids. There are 20 different types of amino acids (or actually
23, including Selenocysteine, Pyrrolysine and N-Formylmethionine, which are coded
only in some species and are interpreted as stop codons). The different sequence
of these 20 amino acids in every protein determines the way the protein will fold
into her unique 3-dimensional structure which consequently determines its specific
function. Being able to predict the folding of a protein knowing its sequence could
therefore help in also predicting the function of the protein.

10 Background

DNA RNA ProteinReplication
Transcription Translation

Figure 2.1: Central Dogma of Molecular Biology. The Central Dogma of Molecular Biology
describes the three fundamental processes for life.

All cells and organisms (bacterial, virus and human) produce and use proteins.
To build them every cell needs the information that is stored in the nucleic acids
(RNA or DNA) and a process to translate this information from nucleic acids to
amino acids.

The same type of process to read and translate the information from DNA to pro-
tein is used, with only secondary differences, in every cell, from bacterial to human,
representing therefore a fundamental process, explained by the central dogma of the
molecular biology (Figure 2.1). This process consists of two steps: transcription and
translation, which together constitute the phenomenon of gene expression.

Transcription

The DNA is the holder of all information of the organism, including information
required to build proteins. In 1950s Watson and Crick discovered the structure
of DNA: a double helix composed from two complementary chains of nucleotides,
bound together with hydrogen bonds. Four different nucleotides (cytosine, guanine,
adenine and thymine) are bound together in a specific sequence to form a single
strand DNA. This chain is then bound with hydrogen bonds according to the base
pairing (adenine bonds thymine and cytosine bonds guanine) to form the double
stranded DNA. In this double stranded DNA dwells all the information needed for
the life of the cell and the organism. This information needs nevertheless to be
translate in a structure which can suit the needs of the cell, i.e. from nucleotides to
amino acids.

The first step of this process is called transcription, since the information hold in
a DNA-gene is re-written in a similar code, called RNA, using similar nucleotides.
The difference in the molecular structure of the two nucleic acids (DNA and RNA) is
due to a different sugar: DNA contains the sugar deoxyribose, while RNA contains
the sugar ribose. The languages of the two nucleic acids is also slightly different
since RNA uses the base uracil instead of thymine, used in DNA.

The information stored in the DNA-gene needs to be accessible to start the
process of transcription. Since this information could not be read if the two DNA

Biological Background 11

chains were bond, the DNA double helix must unwind in a region very closed to
the gene that has to be transcribed: this region is called transcription bubble. The
transcription is performed by enzymes called RNA polymerases, which link the
DNA nucleotides in special recognizable regions called promoters and use the DNA
sequence as template to form a RNA strand. The first site of transcription is called
initiation site and represents the first nucleotides being transcribed from DNA into
RNA.

There are slight differences between the transcription process in bacteria and in
eukaryotes.

In bacteria, group of genes are transcribed together, starting from a common
promoter. The bacterial polymerase recognizes and binds the promoter, opens the
double stranded DNA and start the transcription. This promoter zone is mostly
composed from several thymine and adenine bases, since they are easier to open due
to only two hydrogen bonds instead of the three bonds of the bases guanine and
cytosine.

In eukaryotes, like human, each gene has its own promoter and also starting
zones called TATA-box (so called because of repeating thymine and adenine bases,
similarly to bacteria). Differently from bacteria, in eukaryotes additional helper
proteins (transcription factors) are needed to help the polymerase recognize and
bind these promoters.

Once the polymerase is bond to the right zone of the DNA, the transcription can
start: it takes place adding complementary RNA nucleotides to the template DNA
sequence (using uracil instead of thymine). As well as initiating zones, there is at
the end of the gene (or group of genes in bacteria) a termination zone which leads to
the end of transcription in slightly different ways, which will not be discussed here.
Once the transcription is finished, the RNA transcript, called now messenger-RNA
(mRNA) is ready to undergo the next process: the translation.

In bacteria translation can take place even before the transcription is finished and
the protein can be translated while the transcription of its gene is still undergoing.
This is not possible in eukaryotes like human since transcription is taking place
in the nucleus and translation in cytosol, needing a transport through the nucleus
membrane before starting the transcription. Moreover, in eukaryotes several other
processes called splicing happen to the mRNA before the translation takes place,
changing its sequences and therefore possibly coding for different proteins, even if
coming from the same gene transcription.

12 Background

Translation

The second step of the central dogma of biology is the process in which the language
will decode, from a sequence of nucleotides to a sequence of amino acids, building
the different proteins.

The enzymes involved in this process are the ribosomes: these enzymes together,
with other help proteins, are able to read the genetic code in which every triplet
of nucleic acids (called codon) corresponds to a specific amino acid. The ribosomes
are composed of two different subunits which are normally separated in the cytosol
and join together only on specific initial region on the mRNA molecule to start
the translation. This specific first region of every mRNA is known as untranslated
region (UTR), since is a region only used to link mRNA to ribosome and it is not
translated into protein.

A special triplet (AUG) which codes for methionine acts also in every mRNA
as start codon, giving the signal to the ribosome to start the translation. The
methionine added as very first amino acid in every new protein is then often removed
after the end of the translation.

At the end of the mRNA three different codons (UAA, UAG, UGA) which do
not code for any amino acid act as stop-codons.

The ribosome is not able alone to pair the different codons with the corresponding
amino acid and needs helper proteins. Special RNA complexes, known as transfer-
RNA (tRNA) are used as adaptor molecule. They present two ends: one end is
composed of a specific triplet (anticodon) which pair to the complementary codon
on the mRNA, the other end of tRNA attaches the corresponding amino acid.

After the assembly of the ribosome on mRNA with the discussed mechanisms,
the elongation process of translation can take place. The ribosome allows the dif-
ferent tRNA to bind the codon on the mRNA and form peptide bonds between the
corresponding amino acids to form a polypeptide chains and finally a protein. Sev-
eral corrective processes are performed to prevent a mismatch of the codons. When
the ribosome come to the stop codons, the translation is ended and the protein,
already folded in its 3-dimensional structure, is ready to undergo further processes
or to start its function.

2.1.2 Regulation of Gene Expression

Every cell of an organism contains exactly the same DNA. The gene expression
is nevertheless very different in different type of cells, determining their different
functions. There are very basic genes, involved in metabolic functions, which are

Biological Background 13

expressed at constant rates in every cell and other very specific sets of gene which
are expressed just in some cells, after specific signals or changes of the environment.

The modulation of the gene expression is therefore vital for the cell and the
organism and several different mechanisms are involved in it. The eukaryote cell
presents all the following mechanisms.

DNA packaging The human DNA is composed of 3 billions base pairs that would be
about 100cm in length if stretched. To be able to be included in every single cell, the
DNA must be packaged. Chromatin is the name of packaged DNA, which gives it the
known form of chromosome. This very sophisticated packaging is realized in several
stages: at the very first level the double helix will wrap around proteins, called
histones, forming the so called euchromatin. The euchromatin will then be coiled
to form a more compressed DNA, called heterochromatin, which will be supercoiled
to form the chromosomes.

In this very condensed form, the chromatin is not accessible to any process and
must be open before the transcription process could start. Because of the very big
size of DNA, only the needed regions of DNA will be open to allow the transcrip-
tion, while the rest of DNA stays condensed. The transcription could even further
be repressed due to the so-called methylation of the chromatin: it is a process of
methylation of DNA that leads to heterochromatic silencing of specific, not needed,
regions of DNA.

Transcription regulation As seen in the transcription paragraph, many regulatory
systems are necessary to start the transcription of specific genes. As transcription
enabling factors are needed to recognize the start-site and begin the process, many
other contro-regulatory factors could repress the transcription of silenced genes.
Control mechanisms could even act after the transcription process has ended, modi-
fying the resulting RNA: the different processes are known as RNA-processing. The
same transcript of RNA could undergo alternative splicing, which is a process of
cutting and modifying the sequence of nucleic acids, resulting in different mRNAs
that code for very different proteins, even though they initially came from the same
DNA template. Other post-transcription processes to the RNA include capping and
poly-A tail, to enable the RNA-transcript to exit from the cell nucleus, and other
signaling modifications allowing the molecules to be transported in separated places
for the translation, for example mitochondrial cytoplasm.

14 Background

6 Vân Anh Huynh-Thu and Guido Sanguinetti

terminating at a node, and out-degree (also called fan-out), the number of edges
starting at a node.

Gene 1

Gene 3

mRNA 1

mRNA 2

mRNA 3
Protein 1

Protein 2

Protein 3

Gene 2

Gene regulatory
network

g3

g1

g2

Fig. 1 A cartoon schematic of a gene regulatory network. A complex biophysical model describes
the interaction between three genes, involving both direct regulation (gene 2 by gene 1) and com-
binatorial regulation via complex formation (gene 3 by genes 1 and 2). The abstracted structure of
the system is given in the (directed) network on the right.

Finally, in many cases the bare topological description is insufficient in capturing
aspects of interest, such as the different importances of different edges. To obviate
this problem, one can consider weighted networks, where each edge is associated
with a real number, its weight. We will see that in most cases reconstructed net-
works, the topic of this book, arise naturally as weighted networks, where the weight
is intuitively associated with the support that the data offers for the existence of an
edge. Weighted networks are often visualised as networks with edges of different
thickness, retaining the visual immediacy of the network abstraction but effectively
conveying more information. A schematic example of a standard graphical repre-
sentation for directed, undirected and weighted networks is given in Figure 2.

Network science is a rich interdisciplinary field of research, and this whistle-stop
tour of the basic mathematical concepts cannot do justice to such a field. Neverthe-
less, we now have the essential tools to understand, at least at a high level, many of
the common strategies for reconstructing GRNs.

3 Data-driven methods

The first class of GRN reconstruction methods considers a fully connected network
and associates a weight to each edge by estimating gene dependencies directly from
the data. The output of such methods is therefore a weighted network, which can be
suitably thresholded to yield the topology of the network. Such methods are gener-
ally simple to implement, computationally efficient (they scale with the number of

Figure 2.2: Schematic representation of a gene regulatory network. A complex biophysical
model describes the interaction between three genes, involving both direct regulation (gene 2 by
gene 1) and combinatorial regulation via complex formation (gene 3 by genes 1 and 2). The
abstracted structure of the system is given in the (directed) network on the right. Figure and
caption from [Huynh-Thu and Sanguinetti, 2019].

Stability of molecules Some regulating systems act modifying the stability i.e. the
longevity of the mRNAs. If an mRNA would not be dismissed, it would be able
to be continuously be translated in the corresponding protein. To allow for the
building of just the exact number of needed protein, the mRNA transcript gets into
modifications, targeting it to be degraded from specific enzymes (Ribonuclease).

Translation’s efficacy and protein regulation The translation rate itself could also
been regulated, leading to an inhibition or an increase of the efficacy of the protein-
building process. Several regulating factors are involved in this process. The end-
product of the whole process, the protein, could also undergo regulation-processes,
as well as degradation process through specific enzymes called proteasome, which
lead to an enhanced or inhibited function of the protein itself.

All of these mechanisms, and maybe even more, are present in the eukaryotic
cells, which are more complex than the prokaryotic ones. Nevertheless, some of
the described mechanisms are also present in prokaryotic cells. With this very
sophisticated set of tools, organisms manage to express the proteins they can code
when they are needed (in response to specific stimuli and situations, or in specific
cell) to guarantee and maintain a well-working system.

Gene Regulatory Networks

Gene Regulatory Networks are a synthetic and convenient way of representing as
graphs the functional interactions of the genes of an organism [Hasty et al., 2001b].

Biological Background 15

The representation abstracts away from the details of the actual underlying chain
of events that produce an interaction between two genes, and draws it as an edge,
possibly directed, between the corresponding nodes. Figure 2.2 provides an example,
on how biological processes and interaction are translated into a gene regulatory
network.

2.1.3 Transcriptomics technologies

In the previous section we have introduces the mechanisms that regulate gene expres-
sion allowing cell specialization and prompt response to stimuli. In order to study
such mechanisms, researchers must be able to simultaneously measure the levels of
expression of multiple gene products [Huynh-Thu and Sanguinetti, 2019]. However,
the intrinsic limits in sensitivity and a relatively complex analysis pipeline make the
analysis at proteomics level not a viable solution [Bantscheff et al., 2007]. There-
fore, here we will discuss the main techniques to quantitatively assess expression at
transcriptomics level, as a proxy to proteomics.

Methods for the quantification of RNA levels have largely improved in the last
twenty years. Microarray technology first provided enormous impetus to the field
in the late 90s [Brown and Botstein, 1999]. Microarrays exploit the technique of
inverse hybridization to assess at the same time the expression levels of thousand of
transcripts within a population of cells. For each mRNA that need to be measured, a
set of DNA called probes is arranged on a substrate chip (array). Target mRNA, ex-
tracted from the biological sample, is converted to complementary DNA via reverse
transcriptase and marked with fluorescent atoms. When hybridization is activated,
cDNA molecules bounded to DNA probes can be identified simply by looking at
their coordinates and their concentration is proportional to their luminescence.

Despite the huge breakthrough represented by the introduction of Microarrays,
their design implicitly bounds their application allowing to measure only those mR-
NAs whose probe is present on the chip. This limits the discovery of unexpected
behaviours and mechanisms, as in the case of long-non-coding RNAs, whose impor-
tance has been ignored for decades due to the lack of measurements.

Next generation sequencing (NGS) technologies filled this gap, drastically re-
ducing the cost of sequencing per base by implementing highly parallel protocols.
RNA-seq [Wang et al., 2009] is one of the most popular NGS technologies, that al-
lows biologists to study the transcriptome by quantitatively measure the abundance
of transcripts in biological samples. The sequencing protocol changes according to
the technology, but we can depict the main steps. Firstly, the RNA from a pop-
ulation of cells is reverse transcribed in cDNA, and processed by high-throughput

16 Background

sequencing technology, to obtain fragments of sequences called reads. Reads are then
mapped on reference genome or transcriptome in order to identify and measure the
abundance of the transcripts present in the sample. The so-obtained counts are
typically normalized by length and gives a raw measurement of gene expression.

RNA-seq has several advantages over Microarrays. It is suitable for organism
with no reference genome or transcriptome and, more in general, being not bounded
by the probes, it does not limit the scope of research. Moreover, RNA-seq has a
better resolution and dynamic range, with a better reproducibility of the results.
The popularity of RNA-seq is indeed rapidly growing.

2.1.4 Protein Structure

Proteins are long polymers and amino acids are their monomers. Amino acids are
organic molecules composed of a common backbone, consisting of amine (-NH2) and
carboxylic acid (-COOH) functional groups, along with a specific side-chain, that
characterize each amino acid. Indeed, the physico-chemical properties of the side
chain determine the structure and the shape of the whole protein.

After the translation, proteins fold themselves in complex three dimensional
structures, which will widely determine their functionalities. During the folding
process, not only the amino acids composition is important, but also the environ-
ment plays a critical role. Indeed, according to it, some amino acids may “prefer”
to face the outside of the protein or the core. If the folding does not succeed the
protein is useless or, in some cases, even dangerous. It is indeed known that many
degenerative diseases like the Alzheimer, the Cystic fibrosis or the BSE (commonly
known as “mad cow” disease) are caused by the misfolding of proteins. Therefore,
there exist specialized proteins (called molecular chaperones) and biological process
(translocation) that try to guarantee to proteins the right folding environment.

The structure of a protein is usually analyzed at four different abstraction levels
(Figure 2.3):

• Primary structure: is the lowest of the four levels and is determined by the
bare sequence of amino acids. Nowadays it is reasonably easy to obtain this
information by translating the nucleotide triplets in coding sequences of genes
obtained by genome sequencing, but is less informative than the higher levels.

• Secondary structure: represents how the peptidic backbone interacts with itself
through hydrogen bonds. At this level specific folding shapes can be identified,
i.e. the alpha helix and the beta sheet. This first level of folding occurs just
after the translation (few milliseconds) and is mainly caused by hydrophobic

Biological Background 17

Figure 2.3: Protein structure. The figure shows the schematic representation of the four levels
of the protein structure.

behaviors of the amino acids.

• Tertiary structure: describes how the secondary structures interact with them-
selves forming the three dimensional shape. The structure is stabilized through
hydrogen bonds and disulfide bridges (covalent bonds created post-translation).
Information about this levels are still hard and expensive to obtain. Bioinfor-
matic methods are not powerful enough to face this problem, so techniques
like NMR (Nuclear Magnetic Resonance) or X-ray crystallography have to be
applied.

• Quaternary structure: some proteins are constituted by more than one peptidic
chain or are part of protein complexes. These interactions are described by the
quaternary structure. Studying this structure level is usually even harder than
for the tertiary one. Due to the steric effects of protein complexes, they can
not be easily crystallized and analyzed with X-ray crystallography. In these
cases cryo-electron microscopy is used, allowing researchers to literally freeze
the structure of a protein and investigate it through an electron microscope.

Even after having finished the folding process, the structure of a protein is not
rigid and immutable. The three-dimensional structure can indeed change in time
depending on the surrounding environment (temperature, pH, voltage, ion concen-
tration, phosphorylation or ligand binding), which can actually trigger their func-
tionalities. It is, for example, the case of myosin which interacts with ATP molecule.
ATP molecules are very energetic and their hydrolysis induces a conformational
change in the protein that, as a final result, allows the muscle contraction.

Evolution has deeply shaped living beings, giving them very different forms and
features, from their appearance to their molecular level. Proteins are no excep-
tion. Despite this there are portions of them, which are strongly conserved between
different proteins of the same organism but also between species. These pieces of
proteins are called domains and are usually characterized by a compact structure
and a specific folding. Protein domains are strongly related to their function and

18 Background

Figure 2.4: Gene Ontology DAG. The figure shows a portion of the cellular component hierarchy
of GO. Note that the edges represent is a relations and flow from the leaf terms to the root.

are combined in proteins like building blocks. Their conservation can be used as a
key for identifying known domains in proteins according to their primary sequence.

2.1.5 Gene Ontology

The lack of a standard terminology in the biological field can lead to inefficient com-
munication and ambiguous data sharing in the scientific community. Gene Ontology
(GO) [Gene Ontology Consortium, 2001] is a bioinformatic project whose purpose
is to fill this gap.

The Structure Gene Ontology is a manually-curated structured ontology with the
aim to provide a unique and unequivocal description of all gene products. This infor-
mation consist of an ID, a name, the GO domain and a natural language definition
listing its main features. All the entries are organized in three direct acyclic graphs
(DAGs) as shown in Figure 2.4, each one having as root a specific GO domain, which
are:

• cellular component: the parts of a cell or its extra-cellular environment,

• molecular function: the elemental activities of a gene product at the molec-
ular level, such as binding or catalysis,

• biological process: operations or sets of molecular events with a defined

Kernel Methods 19

beginning and end, pertinent to the functioning of integrated living units: cells,
tissues, organs and organisms.

In addition to the annotation, relation plays a very important role in the GO struc-
ture definition, giving fundamental information about relationships between the
various terms.

• is a: is the main relation and forms the basic structure of GO. A GO term
A is said to be in a is a relation with a GO term B if A is a subtype of
B. Therefore A Ñ B, but not vice-versa. This relation is transitive, indeed
taking the is a chain of mitochondrion, intra-cellular organelle and organelle as
example, it is clear that a mitochondrion is an organelle and not every organelle
is mitochondrion.

• part of : is similar to the is a relation, but it express the concept of being
part of something (cellular component) or take part in something (biological
process and molecular function). As the is a relation, part of is transitive,
indeed if A part of B and B part of C, then A part of C. This relation can be
trans-hierarchy, e.g. a Molecular Function can be part of a Biological Process.

• regulates: this relation represents the ability of a GO term to directly affect the
manifestation of another. It can be further specified if the regulation is positive
(at the growth of the first the second grows) or negative (at the growth of the
first the second decreases).

• occurs in: this relation expresses a locational relationship between a BP and
a CC term. It is probably the most informative trans-hierarchy relation, but
unfortunately it occurs rarely in the GO DAGs.

2.2 Kernel Methods

Kernel methods are a class of machine learning algorithms for pattern analysis,
whose best-known exponents are the Support Vector Machines (SVM) [Cortes and
Vapnik, 1995]. Thanks to their theoretical firmness, their computational efficiency
and flexibility, kernel methods are ubiquitously presents, not only in the machine
learning literature, but also in fields like computational biology where they are often
used as black boxes to solve the most diverse tasks.

The common ground among these methods is the use of kernel functions. These
functions allow to operate in a high-dimensionality feature space, without the cost
of computing the explicit inner product between feature vectors. This means that

20 Background

kernel functions merge the expressiveness of non-linear machine learning algorithm
with the efficiency of the linear ones. Intuitively kernel functions generalize the
notion of dot product to arbitrary (even infinite-dimensional) input space and can
be seen as a measure of similarity between objects. The flexibility and expressiveness
of kernel functions arise from the fact that they can be reasonably easy applied, not
only to points in the euclidean space, but also to data structures, such as graphs,
trees or sequences.

Definition 1. Valid kernel function [Schölkopf et al., 2001]: Given a function
K : XˆX Ñ Rě0 and a set of examples tx1, ... , xnu, the Gram matrix G P Rnˆn is
defined as:

Gi,j :“ Kpxi, xjq (2.1)

If the Gram matrix generated by K is positive semi-definite, i.e. if it satisfies the
condition:

ÿ

i,j

cicjKi,j ě 0, @c P Rn (2.2)

then K is a valid kernel function.

Valid kernel functions are very important in machine learning because they always
correspond to a dot product in some Reproducing Kernel Hilbert Space (RKHS).
Moreover the Representer Theorem [Schölkopf et al., 2001] shows that problems in
the form:

f˚ “ arg min
fPH

cppx1, y1, fpx1qq, ..., pxn, yn, fpxnqq ` gp‖f‖q (2.3)

where H is an appropriate RKHS, g a strictly monotonically increasing real-valued
function and c an arbitrary cost function, admits representation in terms of kernel
expansions of the form:

f˚pxq “
n
ÿ

i“1
αiKpx,xiq (2.4)

where αi P R for all i P t1, ..., nu. This theorem demonstrates that many learning
methods admit solutions that can be expressed as expansion in the training data.

2.2.1 Semantic Based Regularization

Semantic Based Regularization (SBR) [Diligenti et al., 2012, 2017] is a state-of-the-
art Statistical Relational Learning framework specifically designed to reason and
learn with constraints and correlations among related prediction tasks. Entities,
tasks and relations are encoded in SBR using First-Order Logic (FOL).

Kernel Methods 21

Knowledge Base and constraints. SBR is based on a variation of fuzzy general-
izations of FOL, which have been first proposed by Novák [1987], and which can
transform any FOL knowledge base into a set of real-valued constraints.

A T-norm fuzzy logic [Zadeh, 1965] generalizes Boolean logic to variables assum-
ing values in r0, 1s. A T-norm fuzzy logic is defined by its T-norm tpa1, a2q that
models the logical AND. A T-norm expression behaves as classical logic when the
variables assume the crisp values 0 (false) or 1 (true). Different T-norm fuzzy log-
ics have been proposed in the literature. For example, given two Boolean values
ā1, ā2 and their continuous generalizations a1, a2 in r0, 1s, the Lukasiewicz T-norm
is defined as

pā1 ^ ā2q Ñ tpa1, a2q “ maxp0, a1 ` a2 ´ 1q . (2.5)

The negation ā of a variable corresponds to 1´a in the Lukasiewicz T-norm. From
the definition of the ^ and logic operators, it is possible to derive the generalized
formulation for the _ operator via the DeMorgan law and the implication ñ via
the T-norm residuum. Other choices of the T-norm are possible, like the minimum
T-norm defined as

pā1 ^ ā2q Ñ tpa1, a2q “ minpa1, a2q. (2.6)

We focus our attention on FOL formulas in the Prenex Normal Form, having
all the quantifiers at the beginning of the expression. The quantifier-free part of
the expression is an assertion in fuzzy propositional logic once all the quantified
variables are grounded. Let us consider a FOL formula with variables x1, x2, . . .,
with values in the finite sets X1,X2, . . ., and let P indicate the vector of predicates
and PpX q be the set of all grounded predicates.

The degree of truth of a formula containing an expression E with a univer-
sally quantified variable xi is the average of the T-norm generalization tEp¨q, when
grounding xi over Xi:

@xi E
`

PpX q
˘

ÝÑ Φ@pP
`

X q
˘

:“ 1
|Xi|

ÿ

xiPXi

tE
`

PpX q
˘

(2.7)

Building constraints from logic. Let us assume to be given a knowledge base KB,
consisting of a set of FOL formulas. We assume that some of the predicates in the
KB are unknown: the SBR learning process aims at finding a good approximation
of each unknown predicate, so that the estimated predicates will satisfy the FOL
formulas for the sample of the inputs. In particular, the function fjp¨q will be
learned by a Kernel Machine as an approximation of the j-th unknown predicate pj.
Let f “ tf1, . . . , fT u indicate the vector of all approximated predicates and f

`

X
˘

indicate the output values for all possible groundings of the approximated predicates.

22 Background

One constraint 1´Φipf
`

X
˘

q “ 0 for each formula in the knowledge base is built by
taking its fuzzy FOL generalization Φi, where the unknown predicates are replaced
by the learned functions.

Cost function and training. Let us assume that a set of H functional constraints 1´
Φhpfq “ 0, 0 ď Φhpfq ď 1, h “ 1, . . . , H describes how the functions should behave.
Let fpX q be a vector collecting the values of the functions for each grounding. In
order to enforce the functions to satisfy the constraints, the cost function C penalizes
their violation on the sample of data:

CrfpX qs “
T
ÿ

k“1
||fk||

2
` λlLpy,fpX qq `

H
ÿ

h“1
λh

´

1´ Φh

`

fpX q
˘

¯

, (2.8)

where Lpy,fpX qq is the loss with respect to the supervised examples y, λl is the
weight enforcing the fitting of the supervised patterns, λh is the weight for the
h-th constraint and the first term is a regularization term penalizing non-smooth
solutions such that ||fk||2 “ wT

kGkwk, where Gk,wk are the Gram matrix and
the weight vector for the k function, respectively. The weights are optimized via
gradient descent using a back-propagation schema, see [Diligenti et al., 2017] for
more details.

Collective classification. The process of performing inference over a set of instances
that are correlated is commonly referred to as Collective classification [Sen et al.,
2008]. Collective classification takes advantage of the correlations by performing a
collective assignment decision.

Let fpX 1q be a vector collecting the groundings for all functions over the test
data. Collective classification for SBR minimizes the following cost function to find
the values f̄pX 1q respecting the FOL formulas on the test data:

Ccollrf̄pX 1q,fpX 1qs “ Lcoll
`

f̄pX 1q,fpX 1q
˘

`
ÿ

h

´

1´ Φh

`

f̄pX 1q
˘

¯

. (2.9)

where Lcoll is a loss penalizing solutions that are not close to the prior values estab-
lished by the trained kernel machines.

2.3 Artificial Neural Networks

Artificial neural networks (ANN), or more commonly just neural networks (NN), are
a wide class of machine learning algorithms, that take inspiration from biological
neural networks and are nowadays omnipresent in many fields, not only in computer

Artificial Neural Networks 23

science. Their formulation stems from one of the very first learning models devel-
oped: the perceptron. It was introduced by Frank Rosenblatt in 1958 [Rosenblatt,
1958] with the idea to abstract the mechanism of brain neurons by collecting the
input signals, summing them together and applying on top of this an activation
function. However, the linear nature of the perceptron strongly limited the class of
problem that could be tackled, and few decades have been required in order to reach
the formulation of the multi layer perceptron (MLP) and its learning algorithm by
back propagating errors [Werbos, 1974; Rumelhart et al., 1986] in order to bring
ANN to the limelight. Their success was not very durable, indeed in the late ’90 the
introduction of kernel-based methods, ANN were almost ignored for two decades by
the computer science community. Until 2012, when [Krizhevsky et al., 2012] largely
outperformed the previous record on the Imagenet [Deng et al., 2009] competition,
giving start to the era of deep leaning [LeCun et al., 2015].

When considering ANN the main distinguish to be done is between feed-forward
and recurrent NN’s. Under those classes, a plethora of task-specific implementations
have been proposed to collect, transform, and transmit signals through the network.
Feed-forward NNs are a class of ANN with no loops, where information moves
only forward. They have no memory on previous inputs, so the output depends
only on the current input. On the other hand, recurrent NNs (RNNs) have been
developed exactly to catch relations among sequences of inputs, by looping on the
input and keeping memory of previous states. Unfortunately RNNs are harder to
train and suffer from the gradient vanishing problem [Hochreiter, 1998] that leads
to flat gradient regions where learning is impossible. To overcome this problem,
that afflicts deep feed-forward NN as well, several approaches have been proposed.
LSTM (Long Short Term Memory) [Hochreiter and Schmidhuber, 1997] are RNNs
with a forget gate that allows the networks to forget dependencies too distant in
time. More general solutions involve activation functions, where the rectified linear
unit (ReLU) [Nair and Hinton, 2010] and its variants [He et al., 2015; Maas et al.,
2013] allowed the researchers to explore deeper network architectures.

Now consider a feed-forward ANN with L hidden layers, where l P t1, . . . , Lu is
the index of the l-th hidden layer.

Dense layers are the basic feed-forward ANN layers where Hplq hidden units (neu-
rons) are arranged in parallel in layer h. The output of the i-th hidden unit is
computed as

y
plq
i “ fpwplq

i ypl´1q
` b

plq
i q (2.10)

24 Background

where wplq
i is the weight vector specific for the i-th unit, bplq is the bias, ypl´1q is

the output of the previous layer of size Hpl´1q, and f an activation function. The
complete output for the l-th layer can be formulated as matrix multiplication as
follows:

yplq “ fpWplqypl´1q
` bplqq (2.11)

where Wplq is a Hplq ˆHpl´1q weight matrix and b is the bias vector.

Convolutional layers are a class of feed-forward ANN layers developed to mimic
receptive field of the human brain visual cortex. The very basic idea is to learn k

n-dimensional1 filters that scan the input looking for patterns. Let us consider the
simplest case, with only one one-dimensional filter of size m, then the output of a
convolutional layer is computed as follows.

y
plq
i “ f

˜

m´1
ÿ

a“0
w
plq
i`a ¨ y

pl´1q
i`a ` b

plq
i

¸

(2.12)

Note that if no padding is applied, the output will be m ´ 1 units smaller. Con-
volutional layers incorporates a strong notion of locality, that is particularly useful
when analyzing data where feature order is meaningful.

Abstract Feature Learning

Kernel methods have shown remarkable results in terms of adaptability and sound-
ness, but require deep field-specific knowledge for feature engineering. The incredible
amount of available data and the advent of powerful GPUs opened the gates to deep
neural networks, where powerful features are not engineered, but directly learned
by the model starting from raw data. Zeiler and Fergus [2014] showed a very in-
teresting example of this behaviour, by visualizing the filters of the convolutional
layers in a deep architecture for image categorization. The analysis of the filters in
the shallow layers (closer to the input) showed activation pattern similar to Gabor
filters [Jain and Farrokhnia, 1991], hence recognizing edges and very simple shapes.
On the other hand, deeper filters were activated by abstract concepts, like faces or
car wheels.

Unfortunately the analysis of deep NN provides typically no human-explainable
interpretation, limiting therefore their applicability in fields where a reasonable ex-
planation is required, as in medicine or finance. This opened a very fruitful field of

1Typically n “ 2 because of the very popular application on images classification, but filters with n “ 1 are
often applied on sequences and n ą 2 to multi-channel data.

PC Algorithm 25

Algorithm 1: skeleton procedure [Kalisch and Bühlmann, 2007].
Data: T set of variables, E “ nˆ p data matrix
Input: Significance level α
Result: An undirected graph with causal relationship between transcripts
Graph GÐ complete undirected graph with nodes in T

lÐ ´1
while l ă |G| do

lÐ l ` 1
foreach Du, v P G s.t. |AdjGpuqztvu| ě l do

if v P AdjGpuq then
foreach k Ď AdjGpuqztvu s.t. |k| “ l do

if u, v are conditionally independent given k w.r.t. E with significance level
α then

remove edge tu, vu from G

return G

research and in the last years some interesting works have been published [Sturm
et al., 2016; Zhang et al., 2018].

2.4 PC Algorithm

The work of Judea [Pearl, 2009] established causality as a fundamental concept of
statistics and computing. The notion of causality is receiving a growing attention
by the data mining community [Le et al., 2018], in applications where the focus is
the discovery of cause-effect relationships from observational data. The PC algo-
rithm [Spirtes and Glymour, 1991b] and its recent variants are among the so-called
constraint-based algorithms whose main characteristic is to start “with a fully con-
nected undirected graph and using conditional independence (CI) tests to eliminate
edges [. . .] the graph is oriented via a series of rules (identifying v-structures or
colliders, avoiding cycles, etc.)” [Raghu et al., 2018].

The PC algorithm takes as inputs an n ˆ p data matrix and a significance level
alpha, typically 0.05 or 0.01. It starts by computing the skeleton function (Algo-
rithm 1). A fully connected graph G with n nodes is constructed and systematically
CI is tested for adjacent nodes in the graph w.r.t. a separation set of increasing
cardinality l. Note that with l “ 0, the separation set is empty, hence the CI is
tested pairwise. On the other hand, if a node in the graph has k neighbours

`

k´1
l

˘

tests are performed. This leads to a worst-case super-exponential complexity in the
number of variables, that however becomes polynomial in the case the graph to be

26 Background

reconstructed is sparse enough [Leclerc, 2008; Kalisch and Bühlmann, 2007].
An other important consideration is that the skeleton function is strongly de-

pendent on the order of the input. Consider a clique of three nodes u, v, q, l “ 1
and assume that each couple of nodes is conditionally independent given the third
variable. As soon as the CI test between the first two variables is tested, the edge
between them is immediately removed, limiting the possibility to test the CI of the
remaining pairs. To overcome this issue different solution have been developed. A
näıve order-independent solution, using correlation to test for CI, has been pre-
sented in Colombo and Maathuis [2014]. The concept is to postpone the deletion of
edges the end of each cycle, with the clear drawback of being computationally more
demanding. [Bacciu et al., 2013] explore various adaptation on the PC-algorithm,
mainly based on mutual information, to evaluate the trade-off between quality of
the reconstructed network and the computational feasibility of the approaches. The
“test the weakest first” heuristic proposed in the article not only is capable of pro-
viding an order-independent solution, but also improves the quality of the recon-
structed when combined with other strategies, while keeping the computational load
unchanged.

Once the skeleton function terminates, a series of rules is applied in order to
reconstruct a Markov equivalent DAG.

The discovery of causal relationships is particularly relevant for biological data
and in fact a successful application of the PC algorithm to gene regulatory net-
works inference has been already reported [Maathuis et al., 2010]. In the work of
Maathuis et al. [2010] the expression data of Escherichia coli, a bacterial model
organism with a relatively small genome, was fed in a R implementation of the
PC algorithm [Kalisch and Bühlmann, 2007]. However, the worst-case complex-
ity of the algorithm and the sub-optimal implementation, make this approach not
directly suitable for more complex organisms with tens of thousands of genes.

2.5 Ranking aggregators

The problem of ranking aggregation is strictly related to the voting theory. There are
k candidates and n voters expressing a (partial) preference list over the candidates, a
voting system aims at combining the preferences such that the result is a “consensus”
of the voters [Dwork et al., 2001b]. Even though the problem stems from the ancient
Greece, there are plenty of present-day applications, ranging from ensembles of
learning machines [Valentini and Masulli, 2002], to the aggregation of search engine
results [Dwork et al., 2001b].

Ranking aggregators 27

The task of ranking aggregation can be formulated as follows. Given a set of
ranked lists L “ tl1, . . . , lnu, the ranking aggregation problem can be informally
defined as combining the ranking in L in order to obtain a “better” final ordering
l‹.

Borda Count

The Borda count [Borda, 1781], consists in associating to each element u in a list
l a Borda score Blpuq. The final rank of the element u will be computed using
an aggregation function fpB1puq, ..., Bnpuqq. Common aggregation function are the
arithmetic mean or the median.

RankAggreg Package

RankAggreg [Pihur et al., 2009] algorithm, using local search, tries to find the list
l‹ defined as:

l‹ “ arg minl
ˆ n
ÿ

i“1
widpl, liq

˙

where wi is the weight associated with list li (usually wi “ 1) and d is the Kendall
Tau or the Spearmann distance.

RobustRankAggreg Package

RobustRankAggreg [Kolde et al., 2012] is an R package which implements an aggre-
gator based on order statistics. The assumption behind it is that the rank of each
element U in lists in S is sampled from a distribution and, once the distribution is
known, it can be compared with a null distribution obtained by sampling the rank-
ing uniformly (non-informative ranking). The aggregator associates at each element
a corrected p-value and the final ranking is obtained by sorting the elements by
p-value.

Markov Chain method

Markov chain 4 (MC4) method have been proposed by [Dwork et al., 2001a]. MC4
method builds an ergodic markov chain, where each state represents a ranked ele-
ment, using the ranking in L. The chain is build starting from a ranked element
U, then an element V different from U is sampled uniformly. If V is ranked lower
for a majority of the lists in L where both of elements are present then, associate
a probability to the transition from U to V else increase the probability of staying

28 Background

in U. The final rank l‹ is obtained by computing the stationary distribution of the
chain and by sorting the elements by their stationary probability.

2.6 BOINC

In the era of big data, the computational resources required to deal with modern
computational problems are constantly increasing. A viable alternative to expen-
sive server clusters is the volunteer distributed computing (VDC), a distributed
computational system that rely on the computational power provided by personal
computing devices that would be otherwise idle.

The most famous framework for VDC is probably the Berkeley Open Infras-
tructure for Network Computing (BOINC) [Anderson, 2004b]. It was developed in
the early 2000 by the Berkeley University in order to provide the computational
power required by the SETI@home project [Anderson et al., 2002], whose aim is
to search for extra-terrestrial intelligence by analyzing data coming from a radio
telescope. In the following years, BOINC started hosting a plethora of scientific
projects, ranging from mathematics and physics to biology and medicine [Das et al.,
2007; Lombraña González et al., 2012; Monasterio et al., 2018]

BOINC projects have a typical master-slave architecture. The master node,
server side, is composed by one or more nodes whose goal is to generate the work
for slave-nodes, and then collect the processed results.

Chapter 3

Multi Target Prediction

Many important decision problems require the simultaneous prediction of more then
one target variable, possibly of different types [Waegeman et al., 2018]. Even though,
most of the multi-target problems can be deconstructed in many single-target predic-
tions and tackled with standard predictors, dedicated methods have been developed
to face specific aspects of this interesting class of problems. The common ground
among this class of dedicated methods is to exploit side knowledge that may arise
from a priori information on the task, as in the case of hierarchical relations, or may
be hidden in the data and the relations among target variables need to be unraveled
by the predictor.

In this thesis, we will focus on two classes of multi-target prediction problems,
that may be tagged under the names of hierarchical-multilabel classification and
candidate discovery for network expansion. This choice stems from the central role
they have in bioinformatics, the former in the well-known problem of protein function
prediction, the latter for the expansion of known biological networks.

3.1 Hierarchical Multilabel Classification

The task of multilabel classification is an extension of binary classification, where
more than one label may be assigned to each example [Sorower, 2010]. However,
if the labels are independent, the task can be reduced without loss of generality to
multiple binary tasks. Of greater interest is the case where there is an underlying
structure that forces relations across the labels. These relations define a notion
of consistency in the annotations, that can be exploited in the learning process
to improve the prediction quality. This task goes under the name of hierarchical
multilabel classification (HMC) and can be informally defined as the task of assigning
a subset of consistent labels to each example in a dataset [Vens et al., 2008].

30 Multi Target Prediction

T3 T4 T5

T1

T6

T2

T0

T8T7

(a) TPR-compliant annotation.

T3 T4 T5

T1

T6

T2

T0

T8T7

(b) Not TPR-compliant annotation.

Figure 3.1: True path rule examples. Examples of hierarchical multilabel annotations, where
the red-filled nodes are the predicted ones. Note that the edges represent “is a” relations. In
the right hierarchy T2 is not positively predicted, interrupting the path from T8 to T0, resulting
therefore a not TPR-compliant annotation.

Knowledge is organized in hierarchies in a wide spectrum of applications, rang-
ing from content-categorization [Soricut and Marcu, 2003; Sun and Lim, 2001] to
medicine [Schriml et al., 2011] and biology [Ruepp et al., 2004; Gene Ontology Con-
sortium, 2001; Murzin et al., 1995]. Hierarchies can be described by trees or direct
acyclic graphs (DAG), where the nodes are the labels (we will refer to them as terms
in the rest of the thesis) and the edges represent is a relations that occurs between
a child node and its parents1. These relations can be seen as a logical implication,
because if a term is true then also its parents must be true. In other words, “the
pathway from a child term to its top-level parent(s) must always be true” [Gene On-
tology Consortium, 2001]. This concept was introduced by “The Gene Ontology
Consortium” (GO) under the name of “true path rule” (TPR) to guarantee the con-
sistency of the ontology with respect to the annotations, such that, whenever a gene
product is found to break the rule, the hierarchy is remodelled consequently. Be-
sides guaranteeing the consistency of the annotation space, the TPR can be forced
also on the predictions, see example in Figure 3.1. Inconsistencies in the predictions
have been shown to be confusing for the final user, who will likely not trust and
reject them [Obozinski et al., 2008]. Even though there are circumstances where
inconsistencies are accepted, we will focus on the strict case, where the TPR should
hold for predictions as well.

HMC has a natural application in bioinformatics, where ontologies are widely
1A formal definition of child and parent nodes will be provided in the next section.

Hierarchical Multilabel Classification 31

used as annotation space in predictive tasks. The critical assessment of functional
annotation (CAFA) [Jiang et al., 2016b; Radivojac et al., 2013], for example, is the
reference challenge for the protein function prediction community and uses the GO
terms as annotations. The ontology comprises thousands of terms organized in three
DAGs and the concepts expressed by some of those terms are so specific that just
few proteins have been experimentally found belonging to them. Therefore, even
though a perfect multilabel classification on the leaf nodes would solve the problem,
the lack of examples forces the participants to exploit the hierarchical structure, by
learning a single model [Sokolov and Ben-Hur, 2010] or by correcting the output of
multiple models a posteriori [Gong et al., 2015].

As stated by Waegeman et al. [2018], dedicated methods for MTP have an edge
over methods that do not exploit side information. This holds also for HMC, Vens
et al. [2008] propose and compare three approaches based on predictive clustering
trees. The global method called clus-HMC trains one decision-tree to cope with the
entire classification problem. The proposed method is then compared with its näıve
version clus-SC, which trains a decision-tree for each class of the hierarchy, ignoring
the relationships between classes, and with clus-HSC, which explores the hierarchical
relationships between the classes to induce a decision-tree for each class. The authors
performed the experiments using biological datasets, and showed that the global
method was superior both in the predictive performance and size of the induced
decision tree. CLUS-HMC has been shown to have state-of-the-art performance, as
reported in the study by Triguero and Vens [2015].

3.1.1 Formalization

This section formalizes the task of hierarchical multilabel classification and intro-
duces the notation used in the rest of the thesis. Consider the hierarchy involved
in the classification task described by a DAG H “ pT , Eq, where T “ tt1, . . . , tmu

is a set of m terms and E “ tT ˆ T u is a set of directed edges. In particular the
edges in E represent “is a” relations, i.e. given a sample x and xtu, tvy P E, tu is a tv
means that tu implies tv, tupxq ùñ tvpxq for all x.

child tu is a child of tv iff xtu, tvy P E, childrenptvq returns the children of tv;
parent tv is a parent of tu iff xtu, tvy P E, parentsptuq returns the parents of tu;
root a term tv such that parentsptvq “ H;
leaf a term tu such that childrenptuq “ H, F “ ttu|childptuq “ Hu is the set of

leaves;
ancestors the set of terms belonging to all the paths starting from a term to the

32 Multi Target Prediction

root, ancestorsptvq returns the set of ancestors of tv;
descendants the set of terms belonging to the paths in the transposed graph HT

starting from a term to the leaves.

Let X be a set of i.i.d. samples in IRd drawn from an unknown distribution,
and Y the set of the assignments ty1, . . . ,ynu of an unknown labelling function
y : X Ñ PpT q2, namely yi “ ypxiq. The function y is assumed to be consis-
tent with the TPR (formalized in the next paragraph). Let D be the dataset
D “ txx1,y1y, . . . , xxn,ynyu where xi P X, and yi P Y. For convenience the la-
bels yi assigned to the sample xi are expressed as a vector in t0, 1um such that
the j-th element of y is 1 iff tj P ypxiq. The hierarchical multilabel classification
can be defined as the task of finding an estimator ŷ : X Ñ t0, 1um of the unknown
labelling function. The quality of the estimator can be assessed with a loss function
L : PpT q ˆ PpT q Ñ IR, whose minimization is often the objective in the learning
process.

3.1.2 True Path Rule

The TPR plays a crucial role in the hierarchical classification task, imposing a
consistency over the predictions. The informal definition introduced in Section 3.1
can now be formalized within our framework. The ancestors function, that returns
the terms belonging to all the paths starting from a node up to the root, can be
computed by

ancestorsptuq “

$

’

’

&

’

’

%

˜

Ť

tkPparptuq

ancptkq

¸

Y parptuq if parptuq ‰ H

H otherwise
(3.1)

where anc and par are shorthand abbreviations for the parents and ancestors func-
tions.

Definition 2. The labelling function y observes the TPR iff

@tu P T , tu P ypxiq ùñ ancestorsptuq Ă ypxiq.

3.1.3 Evaluation metrics

HMC requires a dedicated class of metrics for performance evaluation. Zhang and
Zhou [2014] reports an exhaustive set of those metrics highlighting properties and

2Pp¨q is the power set of a given set.

Hierarchical Multilabel Classification 33

use cases. We report here the definitions of the metrics used to evaluate the proposed
approaches and compare them with the state-of-the-art.

Selecting optimal thresholds in the setting of HMC is not trivial, due to the
natural unbalance of the classes. Indeed, by the TPR, classes that lay in the upper
part of the hierarchy will have more annotated examples with respect to one on the
leaves. Metrics that do not set thresholds, such as the area under the curve (AUC),
are therefore very often used.

Metrics for HMC can be subdivided in two classes, i.e. term-centric metrics and
example-centric metrics. The former, as the name suggests, focus on the goodness
of the predictions for each term in the hierarchy, highlighting particularly-difficult
terms or sub-hierarchies. The latter, instead, are computed example by example,
giving insights on how the predictor performs on single predictions.

Term-centric Metrics The micro-averaged area under the precision recall curve
(AUCpPRq) computes the area under a single curve, obtained computing the micro-
averaged precision and recall of the m classes

Prec “

řm
i TPi

řm
i TPi `

řm
i FPi

Rec “

řm
i TPi

řm
i TPi `

řm
i FNi

(3.2)

where TPi, FPi and FNi are respectively the number of true positives, the false
positives and the false negatives of the i-th term. It gives a global snapshot of the
prediction quality but is not sensitive to the size of the classes.

Macro-averaged (AUCPR) and weighted (AUCPRw) area under the precision
recall curve, take more into account the classes with fewer examples. Both compute
AUCPRi for each class i P t1, . . . ,mu, which are then averaged uniformly by the
former and proportionally by the latter.

AUCPR “ 1
m

m
ÿ

i

AUCPRi

AUCPRw “

m
ÿ

i

wi ¨ AUCPRi

(3.3)

where wi “ vi{
řm
j vj with vi the frequency of the i-th class in the dataset.

Example-centric Metrics As in the case of terms-centric metrics, the choice of the
decision threshold τ is critical. The creators of the CAFA challenge propose this set
of metrics to evaluate the competitors.

Fmax “ max
τPr0,1s

2 prpτq rcpτq
prpτq ` rcpτq Smin “ min

τPr0,1s

a

rupτq2 ´mipτq2

34 Multi Target Prediction

The Fmax score is maximum value achieved by the F1 score, i.e. the harmonic mean
of the precision prpτq and recall rcpτq:

prpτq “ 1
mpτq

mpτq
ÿ

i“1

|Pipτq X Ti|

|Pipτq|
rcpτq “ 1

n

n
ÿ

i“1

|Pipτq X Ti|

|Ti|

Here Pipτq is the set of terms for the i-th example, Ti is the set of true (observed)
annotations, mpτq is the number of examples with at least one predicted annota-
tion at threshold τ , and n is the total number of examples. The Smin score is the
minimum semantic distance, defined in terms of the remaining uncertainty (ru) and
misinformation (mi):

rupτq “ 1
n

n
ÿ

i“1

ÿ

f

icpfqJf R Pipτq ^ f P TiK

mipτq “ 1
n

n
ÿ

i“1

ÿ

f

icpfqJf P Pipτq ^ f R TiK

where icpfq is the information content of term f and J¨K is the 0-1 indicator function.

3.2 Candidate Discovery for Network Expansion

In the previous section we defined the task of HMC, where relations among (target)
variables are exploited to refine the predictive task. In this section we will focus
on the prediction of those relations starting from partial knowledge of a graph.
Scientific research is often guided by incomplete prior knowledge, so starting from
a set of variables that are known to be related and part of a common sub-network,
the researchers may wonder if other variables are involved in the same network.
The task of Candidate Discovery for Network Expansion (NE) aims at providing
predictive tools that can help in this process.

NE approaches are of particular interest in computational biology. We are wit-
nessing an exponential increase of sequencing data and gene expression data in the
public databases. The collection and integration of these data sets has offered new
opportunities and challenges to the field of computational biology. In particular, the
analysis of the huge amount of available gene expression data can lead to discover
causal relationships between the genes of an organism and link them to a specific bi-
ological process. However, to date these causal relationships are not yet well known,
even when considering the most studied model organisms. It is very common in
biological research, when studying a particular process, to start taking into account
the prior available knowledge such as the genes participating in that process. In

Candidate Discovery for Network Expansion 35

Known input network
variables

Expansion variables

Variables not connected to
the input network

Figure 3.2: Finding candidate for network expansion. Given the input variables S (green
nodes), the task of network expansion consist in ranking the remaining nodes S z N , such that the
expansion variables (blue nodes) have an higher score then the one not connected (red nodes).

this scenario, methods that can suggest new candidate genes, which are potentially
playing a role within a given gene network, are of essential importance for biologists.
In particular, the Gene Network Expansion (GNE) task starts with a set of genes
known to be interacting and searches for other candidate genes that regulate or are
regulated by genes belonging to the input set of genes.

Network inference (NI) methods can be used to solve the task of NE. Indeed, a
perfect solution for the NI task would perfectly solve also the NE task and conse-
quently the task of finding candidate genes. However, the available NI methods are
far from perfect and computationally very demanding due to the enormous size of
the solution space. For instance, in the PC-algorithm the solution space is super-
exponential in the number of nodes [Kalisch and Bühlmann, 2007].

3.2.1 Formalization

We generalize here the concepts defined by Asnicar et al. [2015a] for gene regulatory
networks. Given a set S of variables and a golden-truth direct-graph G “ pS, Bq
with B Ă S ˆ S that represents the real causal relationships between the variables,
it is possible to define the following tasks.

Task 1. Network inference. Given a subset of variables N Ď S, find a (direct)
graph G “ pN,Bq where B Ă N ˆN is a relation between the elements of N , and
G approximates the sub-graph in G obtained considering just the variables in N .

Task 2. Candidate discovery for network expansion (or simply network expansion).
Given a graph G “ pN,Bq where N is a subset of the variables of S and B Ă NˆN

is a relation between the elements of N , find a ranked list of elements of S z N such
that the elements of the list are connected or very near to the elements of N in G.

36 Multi Target Prediction

Chapter 4

Combining Learning and Logical
Constraints for Hierarchical
Multilabel Classification of
Protein Functions

The advent of high-throughput experimental procedures comes both as an oppor-
tunity and as a challenge for computational approaches. On one hand, it allows to
rely on unprecedented amounts of experimental data, such as sequential data at a
genomic and meta-genomic scale as provided by next generation sequencing exper-
iments. On the other hand, it calls for a change of scale for predictive approaches,
from the focus on the analysis of individual biological sequences to the develop-
ment of models characterizing the behaviour of all sequences in a given genome or
metagenome [Friedberg, 2006].

This level of analysis requires to develop models capable of jointly performing pre-
dictions on multiple entities, accounting for the relationships between these entities
in order to provide predictions which are consistent with the existing knowledge.

In this chapter we focus on two tightly-connected aspects of protein behaviour
which are crucial in determining cell life, namely protein function and protein-protein
interaction (PPI). By protein function we refer to the characterization of protein be-
haviour as formalized by the Gene Ontology Consortium (GO) [Ashburner et al.,
2000]. Proteins mostly function through their interactions with other proteins, and
predicting these interactions is thus at the heart of functional genomics [Keskin
et al., 2008]. Furthermore, PPI play crucial roles both in the mechanisms of dis-
ease [Hopkins, 2008] and the design of new drugs [Csermely et al., 2013].

38 Combining Learning and Constraints

These predictive tasks are highly relational. GO hierarchies naturally enforce
a set of taxonomic constraints between predictions. For instance, if a protein is
annotated with a GO term it should also be annotated with the parents of this
term as well as with its ancestors, all the way up to the root of the hierarchy.
Protein-protein interaction predictions provide additional sources of constraints, as
for instance two interacting proteins are more likely to be involved in the same
process, while two proteins located in different cellular compartments are less likely
to interact.

In this chapter we present Ocelot, a predictive model based on Semantic Based
Regularization (SBR) [Diligenti et al., 2017], a statistical relational learning frame-
work combining statistical learners with fuzzy-logic rules. For each GO term, a
binary classifier is trained to predict whether a protein should be labelled with that
term. A pairwise classifier is trained to predict whether pairs of proteins interact
or not. All classifiers are implemented as kernel machines with kernels defined over
multiple sources of information such as gene co-expression, sequence conservation
profiles and protein domains (see Section 4.3.1 construction for the details). Con-
sistency among predictions is enforced by a set of fuzzy-logic rules relating terms in
the hierarchies and terms with PPI predictions (see Section 4.2.2 for details).

An extensive experimental evaluation over the Yeast genome shows the poten-
tial of the approach. Yeast was chosen as a reference genome because of the large
amount of functional and interaction annotation available. Our results show that
both hierarchical and term-interaction rules contribute in increasing prediction qual-
ity in all GO hierarchies, especially for the lower levels where less training examples
are available. PPI predictions provide an additional boost in function prediction
performance. The converse is not true, as function predictions do not contribute to
improve PPI prediction quality. This is an expected result, as the latter task is com-
paratively simpler, and information tends to propagate from simpler tasks to more
complex ones. When compared to alternative approaches, our model substantially
improves over GoFDR [Gong et al., 2016], the only high-ranking system at the latest
CAFA challenge [Jiang et al., 2016a] for which an implementation was readily avail-
able, when GoFDR is allowed to access Yeast proteins only (as our method does),
and has comparable or better results (depending on the hierarchy and performance
measure) when GoFDR is given full access to the UNIREF90 database of proteins.
In addition, our system produces comparable results to DeepGO [Kulmanov et al.,
2018], a deep learning-based method that relies on the true PPI network to produce
its predictions.

Related Work 39

4.1 Related Work

Protein function prediction methods can be roughly grouped in two classes. Sequence-
based methods perform annotation transfer by leveraging sequence similarity only.
They follow a two-step scheme: first candidate homologues are identified using tools
like BLAST [Altschul et al., 1990] or PSI-BLAST [Altschul et al., 1997], then the
annotations of the hits are transferred to the target based on various strategies. The
underlying assumption is that homologues tend to share the same functions. Indeed,
this is often the case for sequences with at least 60% similarity [Lee et al., 2007].
Targets that do not satisfy this condition are more challenging (they are referred
to as “difficult targets” in CAFA parlance), and require finer-grained approaches.
Recent approaches leverage deep learning architectures for analyzing the sequence
data (e.g. [Kulmanov et al., 2018]). Some sequence-based methods additionally rely
on sequence features such as (inferred) domains, motifs, or conserved residues, see
e.g. [Gong et al., 2016].

Data-based methods instead gather functional hints from heterogeneous data
sources, including physical interactions [Yu et al., 2016; Li et al., 2016], co-expression
patterns [Stuart et al., 2003; Massjouni et al., 2006], and genetic context [Škunca
et al., 2013; Sokolov et al., 2013], among others. Please see [Rentzsch and Orengo,
2009; Jiang et al., 2016a] for a list of frequently used sources. In this context, the
key issue is how to appropriately integrate the sources while taking into account
differences in format and reliability. The integration step is often carried out using
statistical, probabilistic or machine learning tools.

Methods in both categories often do not enforce consistency among predictions.
Those that do typically rely on a post-processing step to prune inconsistent anno-
tations. More principled methods account for relations among GO terms directly in
the training procedure, allowing annotation information to propagate across related
terms. For instance, GOstruct [Sokolov and Ben-Hur, 2010; Sokolov et al., 2013]
employs structured output support vector machines (SVM) [Joachims et al., 2009]
to jointly predict all functional annotations of any target protein in a consistent
manner. Ocelot follows the same principles, but relies on Semantic Based Regu-
larization, a different, sound structured-output method. SBR has previously been
applied to multi-level PPI prediction [Saccà et al., 2014]. Contrary to structured-
output SVMs, SBR can be easily adapted to different prediction tasks by changing
the consistency rules, as described in Methods. Further, SBR does not require to
solve an optimization problem explicitly (as is the case for loss-augmented inference
in structured-output SVMs [Joachims et al., 2009]) and can scale to larger tasks.

40 Combining Learning and Constraints

We note in passing that self-consistency alone is not enough to guarantee state-
of-the-art results, as shown by the GOstruct results in the CAFA2 challenge [Jiang
et al., 2016a]. More generally, despite the growing amount of “omics” data, which
should favor data-based methods, sequence-based approaches proved to be hard to
beat in practice [Hamp et al., 2013b], with some of them ranking among the top
methods in the CAFA 2 competition [Jiang et al., 2016a]. For instance, GoFDR [Gong
et al., 2016], an advanced sequence-based method, demonstrated excellent results
in several categories, including eukaryotic genomes. Due to its excellent perfor-
mance and immediate availability, we use GoFDR as the prime competitor in our
experiments.

In addition, given the recent success of deep learning-based methods, we consider
also the DeepGO approach of Kulmanov et al. [Kulmanov et al., 2018]. This ap-
proach applies a one-dimensional convolutional neural network (with max-pooling
layers) to the sequence data in order to produce a hidden representation of the
protein. Then, PPI information is also converted into a hidden representation via
knowledge graph embeddings. These representations are fed into a neural network,
whose structure mimics the target GO ontology. DeepGO has shown considerable
performance, but, in contrast to our method, it requires interaction data to be
available.

4.2 Model Description

4.2.1 Overview of the Prediction Pipeline

Genome-wide prediction of protein function and interaction involves inferring the
annotations of all proteins in a genome. Ocelot approaches this problem by de-
composing it into simpler prediction tasks, and exploits prior biological knowledge
to reconcile the resulting predictions. Ocelot instantiates one task for every candi-
date GO term, i.e., deciding whether a given protein should be annotated with that
term, plus a separate task for deciding whether a given protein pair interacts. The
overall, genome-wide annotations are obtained by imposing consistency across the
predictions of all tasks. See Figure 4.1 for a simplified depiction of our prediction
pipeline.

In order to model the genome-wide prediction task, Ocelot employs Semantic
Based Regularization (SBR) [Diligenti et al., 2012, 2017], a state-of-the-art Statis-
tical Relational Learning framework specifically designed to reason and learn with
constraints and correlations among related prediction tasks. Entities, tasks and
relations are encoded in SBR using First-Order Logic (FOL). At the logical level,

Model Description 41

f2f1

f3 f4

f5
...

f2f1

f3 f4

f5
...

p1

p3
p4 p5 p6

p2PIN

GO

f2f1

f3 f4

f5
...

f2f1

f3 f4

f5
...

p1

p3
p4 p5 p6

p2PIN

GO

Figure 4.1: Depiction of the Ocelot decision making process. Above: predicted protein–
protein interaction network, circles are proteins and lines represent physical interactions. Below:
GO taxonomy, boxes are terms and arrows are is a relations. Predicted annotations for proteins p1

and p2 (black): p1 is annotated with terms f1, f4, f5 and p2 with f2, f4. The functional predictions
are driven by the similarity between p1 and p2, and by consistency with respect to the GO taxonomy
(e.g. f1 entails either f3 or f4, f2 entails f4, etc.). The interaction predictions are driven by
similarity between protein pairs (i.e. pp1, p2q against all other pairs) and are mutually constrained
by the functional ones. For instance, since p1 and p2 do interact, Ocelot aims at predicting at
least one shared term at each level of the GO, e.g. f4 at the middle level. These constraints are
not hard, and can be violated if doing so provides a better joint prediction. As an example, p1 is
annotated with f1 and p2 with f2. Please see the text for the details.

proteins and terms are represented as constants p, p1, f, f 1, etc, while annotations
are modelled as predicates. Ocelot uses several predicates: a predicate Funf ppq
for each candidate term f , indicating whether protein p performs function f , and a
separate predicate Boundpp, p1q, encoding whether proteins p and p1 are physically
bound. The truth value of a predicate is either fixed, in case the corresponding
annotation is already known, or automatically imputed by SBR. In the latter case,
the predicate is said to be a “target” predicate, and the truth value is predicted by
a kernel machine [Scholkopf and Smola, 2001; Borgwardt, 2011] associated to the
predicate itself.

The kernel function, which lies at the core of kernel machines, measures the sim-
ilarity between objects based on their representations. In our setting, a protein can
be represented by the sequence of its residues, as well as by information about its

42 Combining Learning and Constraints

amino acid composition or phylogenetic profile: having similar sequences, compo-
sition or profiles increases the similarity between proteins. Given a kernel and an
object x, a kernel machine is a function that predicts some target property of x
based on its similarity to other objects for which that property is known. More
formally, the function is:

fpxq “
ř

iwiKpx, xiq

This summation computes how strongly the property is believed to hold for x (if
the sum is positive) or not (otherwise), and is often referred to as “confidence” or
“margin”. For instance, a kernel machine could predict whether a protein x resides
in the nucleus or not. In this case, being similar to a protein xi residing in the
nucleus (positive wi) drives the prediction toward a positive answer, while being
similar to a protein xi residing elsewhere (negative wi) has the opposite effect. Note
that designing an appropriate kernel is critical for predictive performance.

In SBR each target predicate is implemented as a kernel machine. The truth value
of a predicate—applied to an uncharacterized protein— is predicted by the associ-
ated kernel machine. Given a set of kernel machines (or predicates), SBR employs
FOL rules to mutually constrain their predictions. It does so by first translating the
FOL rules into continuous constraints using T-norms, a procedure discussed more
thoroughly in Section 2.2.1. Roughly, these constraints combine the confidences
(margins) of the predicates appearing in the FOL rule into an overall confidence in
the satisfaction of the rule.

In order to make the predictions of different tasks consistent with the rules,
SBR computes a joint truth value assignment that maximizes the sum of 1) the
confidences of the individual predicates, and 2) the confidence in the satisfaction of
the rules. Informally, the optimal assignment y˚ is obtained by solving the following
optimization problem:

y˚ “ argmaxy consistpy, kernel machinesq ` consistpy, rulesq

The two terms represent the consistency of the inferred truth values and with respect
to the predictions given by the kernel machines, and with respect to the rules derived
from the FOL background knowledge, respectively. Notice that in this optimization
problem, the rules act as soft constraints, encouraging assignments satisfying many
rules with high confidence.

As for most other complex Statistical-Relational Learning models Getoor and
Taskar [2007], this inference problem is not convex, which implies that we are re-
stricted to finding local optima. SBR exploits a clever two-stage procedure to im-
prove the quality of the obtained local optimum. In a first step, SBR disables the

Model Description 43

constraints (by ignoring the second term of the equation above), thus obtaining
individual predictions that fit the supervised data. This inference step is convex
and can be solved efficiently to global optimality. In a second step, the obtained
predictions are used as a starting point for the full inference procedure, where the
constraints are turned back on. Empirically, this strategy was shown to achieve high-
quality solutions, while being less computationally expensive than other non-convex
optimization techniques Diligenti et al. [2017].

SBR can be used both in inductive and transductive mode. In the latter case,
both training and test examples are provided during training, with labels for the
training examples only. In this way, test examples can contribute via the rule con-
sistency term even if their labels are not known. Semi-supervised approaches are
known to boost predictive performance Zhu [2006], and fit the genome-wide predic-
tion setting, where the full set of target proteins is available beforehand.

To summarize, functions and interactions of uncharacterized proteins are pre-
dicted based on similarity to other proteins and proteins pairs, respectively. The
genome-wide predictions follow from applying consistency constraints, derived from
biologically grounded FOL rules, to the low level predictions. In doing so, the con-
straints propagate information across GO terms and between the functional and
interaction predictions.

4.2.2 Rules

Functional annotations are naturally subject to constraints. We consider both con-
straints entailed by the Gene Ontology and constraints imposed by the (partially
predicted) protein–protein interaction network. SBR allows to express these through
First-Order Logic rules, and to efficiently reason over them, even in the presence of
inconsistencies. We proceed to describe the rules employed by our predictor.

Consistency with the GO hierarchies. The GO encompasses three domains, repre-
senting different aspects of protein function: biological process (BP), cellular com-
ponent (CC), and molecular function (MF). Each domain specifies a term hierarchy,
encoded as a directed acyclic graph: nodes are terms, while edges specify the specific-
to-general is a relation1. More general terms (parents) are logically implied by more
specific ones (their descendants). For instance, all proteins annotated with “ribo-
some” as their Cellular Component must also be annotated with its ancestor term

1In this chapter we restrict ourselves to “is a” relationships only, since the remaining GO relations, e.g. “part of ”
and “regulates”, occur too infrequently in the ontology.

44 Combining Learning and Constraints

“intracellular organelle”. We encourage the Ocelot predictions to be consistent
with the GO with the two following constraints.

First, terms imply their parents. If a protein p is annotated with a term f , then
it must also be annotated with all of its parent terms. The converse also holds: if
p is not annotated with f , then it can not be annotated with any of its children
either. These constraints can be expressed as a single FOL statement:

Funf ppq ùñ
Ź

f 1 parent of f Funf 1ppq @ p @ f

Second, terms imply some of their children. If p is annotated with f , then it must
be also annotated with at least one of the children of f :

Funf ppq ùñ
Ž

f 1 child of f Funf 1ppq @ p @ f

Again, the converse also holds. These two rules are enforced for all GO aspects.
Note that if a protein is annotated (in the data) with a term f but with none of

the children of f , the former may still result in the protein to be wrongly associated
to a child term. We mitigate this applying the rules only to the upper levels of the
hierarchy, where annotations are more abundant, as described below. Our empirical
results show that, despite this issue, these rules provide non-negligible benefits in
practice.

Consistency with the interaction predictions. Protein function and interactions are
substantially intertwined: often a biological process is carried out through physical
interaction, and interacting molecules must usually lie in the same (or close) cellular
compartments. We tie functional annotations and interactions together by requiring
that binding partners share at least one term at each depth of the corresponding
domain. This rule can be encoded as:

Boundpp, p1q ùñ
Ž

fPDomainl pFunf ppq ^ Funf pp
1qq @ p, p1, l

Here Domainl is the set of GO terms appearing at depth l in the given domain. As
above, the rule is soft. This rule is only applied to the BP and CC domains, as
molecular function is less influenced by physical interactions. Further, we observed
that this rule is mostly beneficial when applied to the top 5 levels of the CC taxonomy
and 5 levels of the BP one. Its effect becomes irrelevant at the lower levels. Given
that the rule is rather computationally expensive (as it involves all pairs of proteins
p, p1 in the genome and all terms at each depth l), we opted for applying it to the
upper levels only.

Results 45

4.3 Results

4.3.1 Data Processing

Annotations. We built a comprehensive genome-wide yeast dataset. All data was
retrieved in August 2014. Protein sequences were taken from the Saccharomyces
Genome Database (SGD) [Cherry et al., 2012]. Only validated ORFs at least 50
residues long were retained. The sequences were redundancy reduced with CD-
HIT [Fu et al., 2012] using a 60% similarity threshold, leading to a set of 4745
proteins.

Functional annotations were also taken from SGD, while the GO taxonomy was
taken from the Gene Ontology Consortium website2. Following common practice,
automatically assigned (IEA) annotations were discarded. We also removed all
obsolete terms and mismatching annotations, i.e. SGD annotations that had no
corresponding term in the GO graph. The resulting annotations were propagated
up to the root, i.e. if a sequence was annotated with a certain term, it was annotated
with all its ancestor terms in the hierarchy. Since known annotations become more
sparse with term specificity, we discarded the lowest levels of each GO hierarchy:
we retained terms down to depth 9 for Biological Process and Molecular Function,
and down to 6 for Cellular Component. We also dropped terms that had fewer than
20 annotations3 . Dropped annotations were ignored in our performance evaluation.
The resulting dataset includes 9730 positive annotations. All missing annotations
were taken to be negative4.

The protein–protein interaction network was taken from BioGRID [Chatr Arya-
montri et al., 2015]. Only manually curated physical interactions were kept. After
adding any missing symmetric interactions, we obtained 34611 interacting protein
pairs. An equal number of non-interactions was sampled from the complement of the
positive protein–protein interaction network uniformly at random. This procedure
is justified by the overwhelming proportion of true non-interactions in the comple-
ment [Park and Marcotte, 2011]. All physical and functional interactions annotated
in STRING 9.1 [Franceschini et al., 2013] were deleted from the complement prior
to sampling, so to minimize the chance of sampling false negatives.

2http://geneontology.org/page/download-ontology
3Annotations of dropped child terms were aggregated into new “bin” nodes under the same parent. These terms

provide useful supervision during training, and increase the satisfaction of Ocelot rules; see below for details.
4Some databases, e.g. NoGO [Youngs et al., 2014], do publish curated negative functional annotations. However,

these resources do not yet provide enough annotations for training our predictor. Therefore, we resorted to sampling
negative annotations from the non-positive ones, as is typically done. We adopted the same solution for negative
interaction annotations [Blohm et al., 2013].

http://geneontology.org/page/download-ontology

46 Combining Learning and Constraints

Kernels

In Ocelot, each learned predicate is associated to a kernel function, which deter-
mines the similarity between two proteins (or protein pairs). Following the idea that
different sources provide complementary information [Rentzsch and Orengo, 2009;
Yip et al., 2009; Sokolov et al., 2013], we computed a number of kernels, focusing
on a selection of relevant, heterogeneous biological sources, intended to be useful for
predicting both functions and interactions. Some very well known kernel for PFP
have been excluded for the level of prior knowledge required for their construction.
It is the case of graph kernels Ralaivola et al. [2005]; Borgwardt et al. [2005], that
despite their biological and formal soundness rely on 3D protein structure, that is
still not obtainable through high-throughput methodologies. The sources used in
Ocelot include (i) gene co-localization and (ii) co-expression, (iii) protein com-
plexes, (iv) protein domains, and (v) conservation profiles. Detailed explanations
follow.

Co-localization Gene co-localization is known to influence the likelihood of pro-
teins to physically interact [Yip et al., 2009], which is a strong indication of shared
function [Yu et al., 2016; Li et al., 2016]. This information is captured by the gene
co-localization kernel

Kcolocpp, p
1q “ exp p´γ|pos´ pos1|q .

Here |pos´ pos1| is the distance (measured in bases) separating the centroids of the
genes encoding proteins p and p1. Closer centroids imply higher similarity. Genes
located on different chromosomes have null similarity. Gene locations were obtained
from SGD; γ was set to 1.

Protein complexes Similarly, protein complexes offer (noisy and incomplete) evi-
dence about protein–protein interactions [Yip et al., 2009; Saccà et al., 2014]. We
incorporated this information through a diffusion kernel

Kcomplexpp, p
1
q

over the catalogue of yeast protein complexes [Pu et al., 2009]. Roughly speaking,
similarity between proteins is proportional to the number of shared binding partners
(and their shared partners, and so on) the two proteins have. The exact values are
defined in terms of a diffusion process over the complex network. The contribu-
tion of more distant partners is modulated by a smoothness parameter β, set to
1 in our experiments. We refer the reader to [Kondor and Lafferty, 2002] for the
mathematical details of diffusion kernels.

Results 47

Co-expression kernel Co-expression also provides valuable information [Stuart et al.,
2003]. The co-expression kernel is an inner product

Kcoexppp, p
1
q “ xe, e1y

between vectors e and e1 encoding the expression levels of p and p1 across exper-
imental conditions. The measurements were taken from two comprehensive sets
of micro-array experiments [Spellman et al., 1998; Gasch et al., 2000] related to
cell-cycle and environmental response in yeast.

Domains Domains often act as functional building blocks, so sharing the same
domain is a strong indication of shared function [Fang and Gough, 2013]. We used
InterPro [Mitchell et al., 2015] to infer the domains occurring in all proteins in the
dataset. Presence of a domain in a protein p (resp. p1) is encoded by an indicator
vector b (resp. b1): the k-th entry of b is 1 if the k-th domain was detected as
present in p, and zero otherwise. Given this information, we defined a linear kernel
over the indicator vectors, i.e.

Kdompp, p
1
q “

ÿ

k

dkd
1
k.

Similarity is determined by the number of shared domains.

Conservation profiles Finally, we included phylogenetic information through a pro-
file kernel [Kuang et al., 2005; Hamp et al., 2013a] over position-specific scoring
matrices (PSSMs) obtained from the protein sequences. The PSSMs were com-
puted with iterated PSI-BLAST (default parameters, two iterations) against the
NCBI non-redundant sequence database (NR), as customary.

Each of the above kernels corresponds to a kernel 4865 ˆ 4865 matrix. The
matrices were normalized by the transformation

K̂pp, p1q “ Kpp, p1q{
a

Kpp, pqKpp1, p1q

and preconditioned by a small constant (10´6) for numerical stability. Since Ocelot
allows only a single kernel for each target term, we aggregated all the matrices into
a single one through simple averaging:

Kpp, p1q “
1
5

ÿ

all sources s
K̂spp, p

1
q.

This transformation equates to compounding information from all sources into a
single kernel. More sophisticated strategies (e.g. assigning different weights to

48 Combining Learning and Constraints

different kernels) did not provide any benefits in our empirical analysis. Finally, the
interaction predicate works on pairs of proteins, and thus requires a kernel between
protein pairs. Following Saccà et al. [2014], we computed the pairwise kernel

Kpairwiseppp, p
1
q, pq, q1qq

from the aggregate kernel Kpp, p1q as follows:

Kpairwiseppp, p
1
q, pq, q1qq “ Kpp, qq ¨Kpp1, q1q `Kpp, q1q ¨Kpp1, qq

The pairwise kernel was also normalized and preconditioned.

4.3.2 Empirical analysis

We assessed the performance of Ocelot by comparing it against several competi-
tors:

• GoFDRU90: the state-of-the-art GoFDR prediction method [Gong et al., 2016]
trained over all sequences in UNIREF90 [Suzek et al., 2015]. GoFDR is a
state-of-the-art, sequence-based method that ranked very high in the CAFA 2
competition [Jiang et al., 2016a]. GoFDR5 was shown to perform well on both
“hard” and eukaryote targets. Note that UNIREF90 contains substantially
more sequences than our own yeast genome dataset (including orthologues),
giving GoFDRU90 a significant advantage in terms of sequence information.

• GoFDRyeast: GoFDR trained only on the same sequences used by Ocelot.
Since only yeast sequences are considered, the parameters of PSI-BLAST (as
used by GoFDR) were adjusted to capture even lower confidence alignments
(namely by increasing the E-value threshold to 0.9 and the number of iterations
from 3 to 4).

• BLAST: an annotation transfer approach based on BLAST, used as baseline
in the CAFA2 competition6.

• Ocelot with only GO consistency rules (i.e. no protein–protein interactions),
and with no rules at all. We refer to these two baselines as Ocelotnoppi and
Ocelotindep, respectively.

All methods were evaluated using a 10-fold cross-validation procedure: the pro-
teins were split into 10 subsets, 9 of which were used for parameter estimation7,

5Software taken from http://gofdr.tianlab.cn.
6Software taken from https://github.com/yuxjiang/CAFA2.
7Ocelot hyper-parameters: λl and λh penalize respectively the supervised label loss and the infringement of

the structural constraints

http://gofdr.tianlab.cn
https://github.com/yuxjiang/CAFA2

Results 49

and the remaining one for evaluation. The folds were constructed by distributing
functional and interaction annotations among them in a balanced manner using a
greedy procedure. Interactions were split similarly.

In addition, we also compared Ocelot against DeepGO [Kulmanov et al., 2018],
a state-of-the-art deep learning approach that exploits sequence and PPI data. In
contrast to the other methods, the results for DeepGO were obtained from its web
interface8. Having no control over the ontology used by DeepGO, we had to limit the
comparison to the overall perfomance computed on the terms in common between
our and DeepGO’s ontologies.

Performance measures. Following the CAFA2 procedure, predicted annotations
were evaluated using both protein-centric and term-centric performance measures
[Jiang et al., 2016a]. Protein-centric measures include the Fmax and Smin scores, we
also evaluated the predicted annotations using the F1 score, i.e. the Fmax score with
τ fixed to 0.5. We used the Area under the Receiver Operating Characteristic Curve
(AUC) for the term-centric evaluation.

Discussion. The overall performance of all predictors can be found in Figure 4.2.
At a high level, all prediction methods tend to perform better than both the simple
BLAST baseline, as expected, and GoFDRyeast. This is hardly surprising: despite
being configured to consider even distantly related homologues (by tweaking the
PSI-BLAST parameters, as mentioned above), GoFDRyeast could not transfer any
annotations to 1133 targets, as no alignment could be found in the yeast-only train-
ing set. Allowing GoFDR to access extra-genomic sequences solves this issue, as
shown by the improved performance of GoFDRU90 over GoFDRyeast.

On the other hand, Ocelot, Ocelotnoppi, and Ocelotindep, perform as well
or better than GoFDRU90 in terms of Fmax and Smin. The overall performance on
BP and MF are rather close, while for CC the Ocelot-based methods offer a large
improvement: the Fmax and Smin of Ocelot are approximately 9% better (resp.
higher and lower) than those of GoFDRU90.

More marked improvements can be observed in the F1 plots. The kernel-based
methods perform as well or better than GoFDRU90 in all GO domains. This holds
despite the task being very class unbalanced (especially at the lower levels of the hier-
archy), and the decision threshold being fixed at 0.5. In CC and MF, the biggest con-
tribution comes from the hierarchy consistency rules. In contrast, consistency to the

8The DeepGO package does not provide a procedure for training the model on our yeast dataset. The predictions
were retrived from http://deepgo.bio2vec.net/deepgo/ on 14th June 2018.

http://deepgo.bio2vec.net/deepgo/

50 Combining Learning and Constraints

BP CC MF
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.
56

9

0.
76

8

0.
61

3

0.
52

2

0.
74

9

0.
60

1

0.
57

4

0.
72

1

0.
61

5

0.
56

4

0.
68

1

0.
59

7

0.
41

8 0.
49

5

0.
51

2

0.
28

1

0.
50

1

0.
27

9

Fmax

BP CC MF
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.
46

9

0.
39

3

0.
40

5

0.
51

1

0.
43

1

0.
40

80.
46

3 0.
51

3

0.
40

8

0.
48

0.
47

8

0.
39

7

0.
60

7

0.
62

8

0.
51

4

0.
62

1

0.
59

7

0.
58

6

Smin

BP CC MF
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.
54

9

0.
71

7

0.
69

9

0.
46

7

0.
69

4

0.
69

1

0.
45

9

0.
63

9

0.
61

3

0.
45

7 0.
51

1

0.
46

2

0.
37

9

0.
40

3 0.
47

1

0.
20

4 0.
26

3

0.
28

5

F1

BP CC MF
0.0

0.2

0.4

0.6

0.8 0.
88

1 0.
94

7

0.
92

4

0.
84

4 0.
91

5

0.
91

2

0.
89

8

0.
89

2

0.
93

4

0.
80

9

0.
77

5

0.
80

6

0.
68

1

0.
65

5 0.
71

20.
79

8 0.
85

8

0.
85

3

AUROC

Ocelot Ocelot-go Ocelot-indep GoFDR-uniref GoFDR-yeast Homology

Figure 4.2: Overall performance of all prediction methods on the Yeast dataset. From
top to bottom: Fmax, Smin, F1, and AUROC.

protein–protein interaction network seems to be the biggest factor for BP: Ocelot
offers an 8% F1 improvement over Ocelotindep, Ocelotnoppi and GoFDRU90.

A breakdown of the performance at different term depths is provided in Fig-
ure 4.3. The general trend is the same as above: all methods outperform the baseline
and GoFDRyeast, and Ocelot with the full set of rules has the overall best perfor-
mance. In all cases, the performance of the Ocelotindep is comparable to that of
Ocelot at the top levels, however it quickly degrades with term depth. This im-
plies that the consistency rules are successfully propagating the correct predictions
down the hierarchy. This is especially evident for the cellular component domain.
For the molecular function domain, the bottom levels are predicted as good as the
top ones, and much better than the intermediate levels. This is actually an artifact
of the sparsity in annotations at the lowest levels (recall that we dropped terms with

Results 51

1 2 3 4 5 6 7 8
0.3

0.4

0.5

0.6

0.7

0.8

F m
ax

Biological Process

1 2 3 4 5 6
0.3

0.4

0.5

0.6

0.7

0.8

0.9
Cellular Component

Ocelot Ocelot-go Ocelot-indep GoFDR-uniref GoFDR-yeast Homology

1 2 3 4 5 6 7 8 9
0.4

0.5

0.6

0.7

0.8

0.9
Molecular Function

1 2 3 4 5 6 7 8
0.30

0.35

0.40

0.45

0.50

0.55

0.60

S m
in

1 2 3 4 5 6

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8

0.2

0.3

0.4

0.5

0.6

0.7

F1

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8
0.65

0.70

0.75

0.80

0.85

0.90

AU
RO

C

1 2 3 4 5 6

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9

0.75

0.80

0.85

0.90

0.95

Figure 4.3: Breakdown of the performance of all methods at different GO term depth.
From left to right: biological process, cellular component, and molecular function. From top to
bottom: Fmax, Smin, F1 and AUROC.

less than 20 annotations, which drastically reduces the number of terms which are
predicted in the lowest levels, especially for MF).

Few examples can help highlighting the role of the rules to enforce consistency in
predictions. For example, the taxonomical consistency fixes some false-negative clas-
sifications for the MAS2 protein, which is correctly re-assigned to the mitochondrion
and mitochondrial-part. When also considering the consistency with respect of
the PPI predictions, the protein-complex localization is also correctly predicted
for the same protein. Note that the boost in performance given by the PPI rules is

52 Combining Learning and Constraints

BP CC MF
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.
59

8

0.
78

9

0.
68

5

0.
53

0.
71

2

0.
45

6

0.
43

1 0.
50

8

0.
53

20.
57

9

0.
69

9

0.
62

5

0.
31

2

0.
54

5

0.
36

1

Fmax

BP CC MF
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.
44

3

0.
37

9

0.
33

8

0.
5

0.
48

3

0.
50

1

0.
60

4

0.
63

2

0.
52

3

0.
47

9

0.
47

9

0.
40

7

0.
61

2

0.
58

8

0.
56

4

Smin

BP CC MF
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.
55

3

0.
69

4

0.
63

5

0.
43

3 0.
49

8

0.
35

20.
40

6

0.
43

1

0.
53

3

0.
49

1 0.
54

5

0.
50

5

0.
21

1 0.
25

1

0.
25

7

F1

BP CC MF
0.0

0.2

0.4

0.6

0.8 0.
88

1 0.
94

1

0.
90

9

0.
90

8

0.
93

7

0.
9

0.
69

0.
67

2 0.
75

90.
81

8

0.
80

4

0.
84

4

0.
78

5 0.
84

7

0.
82

9

AUROC

Ocelot DeepGO GoFDR-yeast GoFDR-uniref Homology

Figure 4.4: Overall performance of DeepGO, Ocelot, GoFDR and the baseline on the
Yeast dataset. From top to bottom: Fmax, Smin, F1, and AUC.

achieved regardless of the fact that interactions are predicted and not observed. On
the other hand PPI prediction performance (equal to 0.69 F1) is not affected by the
introduction of the GO rules. As already mentioned, this is an expected result as
PPI prediction is a comparatively simpler task, and information tends to propagate
from simpler tasks to more complex ones. A similar result has been observed in
multi-level interaction prediction, where propagation goes from the protein to the
domain and residue level but not viceversa [Saccà et al., 2014].

We also compare Ocelot to DeepGO, a state-of-the-art deep learning-based
predictor [Kulmanov et al., 2018]. Since we could not train DeepGO on our ontology,
we compare the methods only on the terms shared by our and DeepGO’s ontology.
The results are shown in Figure 4.4. The results confirm the ones obtained by
Kulmanov et al. [2018], where DeepGO outperforms GoFDR in terms of AUC. On

Conclusion 53

the other hand, Ocelot and DeepGO perform comparably, in terms of AUC, with
some slight variation between different aspects. Note that this holds regardless of the
fact that DeepGO was trained on many more sequences than Ocelot, and that it
uses true interaction data. In contrast, Ocelot has only access to yeast sequences,
and only to predicted protein interactions. Most importantly, Ocelot outperforms
DeepGO on all aspects for all other performance measures (Fmax, Smin, and F1). The
performance of DeepGO is especially poor under the F1 metric, showing that the
predictor is not suitably calibrated against the natural decision threshold τ “ 0.5.

4.4 Conclusion

We introduced Ocelot, a predictive system capable of jointly predicting functional
and protein-protein interaction annotations for all proteins of a given genome. The
system combines kernel machine classifiers for binary and pairwise classification with
a fuzzy logic layer enforcing consistency constraints along the GO hierarchy and
between functional terms and interaction predictions. We evaluated the system on
the Yeast genome, showing how the rule enforcement layer manages to substantially
improve predictive performance in functional annotation, achieving results which
are on par or better (depending on the GO domain and performance measure)
than those of a state-of-the-art sequence-based approach fed with annotations from
multiple genomes.

Ocelot can be extended in a number of directions. The system is currently
conceived for intra-genome annotation. As a further research direction, Ocelot
could be integrated with multiple kernel learning (MKL) approaches Sonnenburg
et al. [2006]; Gönen and Alpaydın [2011]. Indeed, preliminary results conducted
in Masera [2015] showed that single kernel performs differently with respect to the
GO domain, highlighting how the average kernel may be a sub-optimal choice. A
second major extension consists of adapting it to process multiple genomes simul-
taneously. This requires to incorporate both novel specialized predictors, like an
orthology-based annotator [Pearson, 2013], and additional inter-genome rules, e.g.
encouraging (predicted) orthologues to interact with the same partners. A third
research direction consists in broadening the type of annotations provided by the
system, by e.g. generalizing interaction prediction to the prediction of biochemical
pathways [Gabaldón and Huynen, 2004]. Care must be taken in encoding appropri-
ate rules in order to ensure consistent predictions without excessively biasing the
annotation.

54 Combining Learning and Constraints

Chapter 5

Consistent Hierarchical-Multilabel
Classification with Artificial
Neural Networks

In the previous chapter we introduced Ocelot, a predictive pipeline that exploits
Semantic Based Regularization, to perform genome-wide protein annotation. The
system shows good results in the intra-organism setting, outperforming the state-of-
the-art. However the kernel machinery has intrinsic scaling limitations. Indeed both
explicit and implicit representation of the feature space come with large drawbacks
when both the number of examples and features are very large. More-over, Ocelot
penalizes the infringement of the hierarchical constraint, but does not guarantee the
consistency of the prediction, and Obozinski et al. [2008] showed that users are more
likely to discard inconsistent predictions.

The introduction of powerful GPU architectures brought artificial neural net-
works (ANNs) back to the limelight [Krizhevsky et al., 2012; Hinton et al., 2012;
Srivastava et al., 2014]. The possibility to scale the learning process with highly-
parallel computing frameworks allowed the community to tackle completely new
problems or old problems with completely new and complex ANNs’ topologies.
However, ANN-based methods that account for hierarchical-multilabel classifica-
tion (HMC) have not yet evolved consequently. Attempts to integrate ANNs and
HMC have been conducted by Cerri et al. [2014, 2015]. They propose HMC-LMLP,
a local model where for each term in the hierarchy an ANN is trained, that is fed
with both the original input and with the output of models built for the parent
terms. The performance are comparable with CLUS-HMC, however, because of the
many models trained, the proposed approach is not scalable with deep learning ar-

56 Consistent Hierarchical-Multilabel Classification with Neural Networks

(a) (b)

Figure 5.1: From hierarchy to AWX. a: Hierarchical tree structure. Sub-tree of the Fun-
Cat [Ruepp et al., 2004] annotation tree. b: Adjacency scheme described by E1 starting from the
adjacent tree.

chitectures that require a considerable amount of time for training. To the best of
our knowledge there are no better models that exploit ANNs in the training process
to specifically tackle the HMC problem.

In this chapter we present AWX (Adjacency Wrapping matriX), a novel ANN
output component. We aim at filling the gap between HMC and ANNs left open in
the last years, enabling HMC tasks to be tackled with the power of deep learning ap-
proaches. The proposed method incorporates the knowledge on the output-domain
directly in the learning process, in form of a matrix that propagates the signals
coming from the previous layers. The information flows from the leaves, up to the
root, allowing a joint optimization of the predictions. We propose and discuss two
approaches to combine the incoming signals, the first is based on the max function,
while the second on `-norms. AWX can be incorporated on top of any ANN, guar-
anteeing the consistency of the results with respect to the true path rule (TPR, see
Section 3.1 for details). Moreover, we propose a generalization of the TPR to the
continuous case and we prove that AWX is consistent with both definitions. Finally
AWX is evaluated on ten benchmark datasets and compared against clus-HMC [Vens
et al., 2008], that is the state-of-the-art, HMC-LMLP [Cerri et al., 2014, 2015] and
the simple multi-layer perceptron MLP.

5.1 Model description

This section describes the AWX hierarchical output layer that we propose in this
paper, using the notation introduced in Section 3.1. Consider an artificial neural
network with L hidden layers and the DAG representing the hierarchy H “ pT , Eq.
Let

E 1 “ txtu, tvy|tu P F , tu “ tv _ tv P ancestorsptuqu.

Model description 57

Note that for each xtu, tvy P E 1 holds that tu P F . Let R be a |F | ˆm matrix that
represents the information in E 1, where ri,j “ 1 iff xti, tjy P E 1 and 0 otherwise.
Fig. 5.1b shows an example of the topology described by E 1.

Now, let yL, WL and b denote respectively the output, the weight matrix and
the bias vector of the last hidden layer in the network and ri the i-th column vector
of R. The AWX hierarchical layer is then described by the following equation

z “ WL
¨ yL ` bL ,

ŷi “ maxpri ˝ pfpz1q, . . . , fpz|F |qq
T
q

(5.1)

where ˝ is the symbol of the Hadamard product, max is the function returning the
maximum component of a vector, and f is an activation function f : IR Ñ r0, 1s
(e.g. the sigmoid function). This constraint on the activation function is required
to guarantee the consistency of the predicted hierarchy as we will show in Section
5.2.1.

Being R binary by definition, the Hadamard product in Equation 5.1, acts as a
mask, selecting the entries of z corresponding to the non-zero elements of ri.

The max represents a straightforward way of propagating the predictions through
the hierarchy, but it complicates the learning process. Indeed, the error can be back-
propagated only through the maximum component of ri, leading to local minima.
The max function can be approximated by the `-norm of the incoming signals as
follows

ŷi “

$

&

%

||ri ˝ fpzq||`, if ă 1
1, otherwise.

(5.2)

The higher `, the more similar the results will be to the ones obtained by the max,
the closer is ` to 1 the more each component of the vector contributes to the result.
Figure 5.2 shows a two-dimensional example, and we can see that with ` “ 5 the
norm is already a good approximation of the max. On the other hand, we can notice

0.0 0.5 1.0
0.0

0.5

1.0
 = 1

0.0 0.5 1.0

 = 2

0.0 0.5 1.0

 = 3

0.0 0.5 1.0

 = 5

0.0 0.5 1.0

 = 10

0.0 0.5 1.0

max

Figure 5.2: Comparison of max and `-norms. Shape of the function z “ ||px, yqT ||` at different
values of l and the comparison with the max function. Darker colors corresponds to lower values
of z, while brighter ones to higher.

58 Consistent Hierarchical-Multilabel Classification with Neural Networks

T3 T4 T5

T1

T6

T2

T0

T8T7

= 0.99y ̂
T0

= 0.91y ̂
T2

= 0.42y ̂
T6

= 0.35y ̂
T8

= 0.22y ̂
T1

(a) gTPR-compliant annotation.

T3 T4 T5

T1

T6

T2

T0

T8T7

= 0.99y ̂
T0

= 0.42y ̂
T2

= 0.55y ̂
T6

= 0.91y ̂
T8

= 0.22y ̂
T1

(b) Not gTPR-compliant annotation.

Figure 5.3: Generalized true path rule example. Examples of hierarchical multilabel annota-
tions, where the intensity of filling color is proportional to the confidence of the prediction. In the
right hierarchy ŷT8 ą ŷT6 ą ŷT2, so the prediction violates the gTPR. Note that with τ “ 0.4 the
annotation would be consistent with the simple TPR.

that, even if the input is in r0, 1s, the output exceeds the range and must therefore
be clipped to 1. Especially with ` close to 1, the `-norm diverges from the max,
giving output values that can be much higher than the single components of the
input vector.

5.2 Generalized TPR

In section 3.1 we introduced and formalized the TPR. As a brief memorandum:

Definition 3. The labelling function y observes the TPR iff

@tu P T , tu P ypxiq ùñ ancestorsptuq Ă ypxiq.

The above definition holds for binary annotations, but, as mentioned in Sec-
tion 3.1.3, hierarchical classifiers often do not set thresholds and predictions are
evaluated based only on the output scores order. We introduce here a generalized
notion of TPR, namely the generalized TPR (gTPR), that expands the TPR to this
setting. Intuitively it can be defined by imposing a partial order over the DAG of
predictions’ scores. In this way the TPR is respected for each global threshold.

Definition 4. The gTPR is respected iff @xtu, tvy P E is true that ŷv ě ŷu.

This means that for each each couple of terms in a is a relation, the prediction
scores for the parent term must be grater or equal to the one of the child. In the
extreme case of predictions that have only binary values, the gTPR clearly coincide
with the TPR.

Generalized TPR 59

5.2.1 The gTPR holds for AWX

In this section we prove the consistency of the AWX output layer with respect to
the gTPR, introduced in Section 5.2.

We want to show that @ ă tu, tv ąP E, ŷv ě ŷu holds for ŷv, ŷu in Equation 5.1.

Proof. Note that Eq. 5.1 can be rewritten as ŷv “ maxpCvq, where

Cv “ tfpzuq| ă tu, tv ąP E
1
u

is the set of the contributions to the predictions coming from the leaf terms. In the
special case of leaf terms, tu P F , by construction, Cu “ tfpzuqu therefore ŷu “ fpzuq.
We can express the statement of the thesis as @ ă tu, tv ąP E,

ŷv “ maxpCvq ě maxpCuq “ ŷu (5.3)

Being the max function monotonic, the above inequality holds if Cu Ď Cv.
Consider the base case xtu, tvy P E such that tu P F . It clearly holds that

Cu “ tfpzuqu Ď Cv, because if xtu, tvy P E then xtu, tvy P E 1 and therefore fpzuq P Cv.
Now consider two generic terms in a ”is a” relation xtu, tvy P E and their contri-

butions sets Cu and Cv. By design

@ tk P F , xtk, tuy P E 1 ùñ xtk, tvy P E
1

and therefore
tfpzkq|xtk, tuy P E

1
u Ď tfpzkq|xtk, tvy P E

1
u

Cu Ď Cv,
and Equation 5.3 holds.

The reasoning proceeds similarly for the estimator ŷi in Equation 5.2, but in
order to guarantee the consistency the input must be in r0,`8q since the `-norm is
monotonic only in that interval.

5.2.2 Implementation

The model has been implemented within the Keras [Chollet et al., 2015] framework
and a public version of the code is available at https://github.com/lucamasera/
AWX. The choice of Keras was driven by the will of integrating AWX into deep-
learning architectures, and at the time of writing Keras represents a widely-used
framework in the area.

An important aspect to consider is that AWX is independent from the underlying
network, and can therefore been applied to any ANN that requires a consistent
hierarchical output.

https://github.com/lucamasera/AWX
https://github.com/lucamasera/AWX

60 Consistent Hierarchical-Multilabel Classification with Neural Networks

Dataset d
FunCat GO

|T | |F | |T | |F |
Cellcycle 77 499 324 4122 2041

Church 27 499 324 4122 2041

Derisi 63 499 324 4116 2037

Eisen 79 461 296 3570 1707

Expr 551 499 324 4128 2043

Gasch1 173 499 324 4122 2041

Gasch2 52 499 324 4128 2043

Hom 47034 499 324 4128 2043

Seq 478 499 324 4130 2044

Spo 80 499 296 4116 2037

Table 5.1: Details of the benchmark datasets used in the experiments. d, |T | and |F | are
respectively the dimensionality of the dataset, the number of terms and how many of them are
leaves.

5.3 Experimental setting

In order to assess the performance of the proposed model, an extensive comparison
was performed on the standard benchmark datasets1. The datasets cover different
experiments [Vens et al., 2008] conducted on S. cerevisiae annotated with two on-
tologies, i.e. FunCat and GO. For each dataset are provided the train, the validation
and the test splits of size respectively of circa 1600, 800, and 1200. The only ex-
ception is the Eisen dataset where, the examples per split are circa 1000, 500, and
800. FunCat is structured as a tree with almost 500 term, while GO is composed
by three DAGs, comprising more then 4000 terms. The details of the datasets are
reported in Table 5.1 while Figure 2 reports the distribution of terms and leaves per
level. Despite having many more terms and being deeper, most of the GO terms lay
above the sixth level, depicting an highly unbalance structure with just few branches
reaching the deepest levels.

Table 5.2: ANN architecture used in the experiments.

fully connectedpsize=1000, activation “ relu, l2 “ 10´3q
awxpactivation “ sigmoid, l2 “ 10´3q

AWX has been tested both with the formulation in Eq. 5.1 (AWXMAX) and with
1https://dtai.cs.kuleuven.be/clus/hmcdatasets/

https://dtai.cs.kuleuven.be/clus/hmcdatasets/

Experimental setting 61

1 2 3 4 5 6
depth

0

50

100

150
te

rm
s

FUN

1 2 3 4 5 6 7 8 9 10 11
depth

0

250

500

750

1000

te
rm

s

GO

Figure 5.4: Terms and leaves distribution by depth. The figures show the distribution of
terms and leaves by level. Each dataset has a blue marker for the number of terms and an orange
one for the number of leaves.

the one of Eq. 5.2 (AWX`“k with k P t1, 2, 3uq. The overall scheme of the network
employed in the experiments is reported in Table 5.2 and consists in just an hidden
layer with 1000 units and AWX as output layer. The model has been trained with
the ADAM optimizer algorithm [Kingma and Ba, 2014] (lr “ 10´5, β1 “ 0.9, and
β2 “ 0.999) and loss function

L “
1
N

N
ÿ

i

yilogpŷiq ` p1´ yiqlogp1´ ŷiq

for a maximum of 1000 epochs. An early stopping criterion with zero patience
has been set on the validation set, such that, as soon as the performance on the
validation test degrades, the learning is stopped.

The results of the four tested variants (AWX`“1, AWX`“2, AWX`“3, AWXMAX)
have been evaluated with the metrics shown in Section 3.1.3 and compared against
three other methods.

1. HMC-clus [Vens et al., 2008]: state-of-the-art model based on decision trees.
The results reported are taken from the original work.

2. HMC-LMLP [Cerri et al., 2014, 2015]: The model is trained level by level,
enriching the input space with the output of the previous level. As for HMC-
clus, the reported results are taken from the original paper.

3. MLPleaves : ANN trained only on the leaf terms with the same parameters of
AWX. The prediction for the non-leaf terms are obtained by taking the max of
the predictions for underlying terms in the hierarchy.

The comparison with MLPleaves is crucial, because it highlights the impact of jointly
learning the whole hierarchy with respect to inferring the prediction after the learn-
ing phase.

62 Consistent Hierarchical-Multilabel Classification with Neural Networks

Both AWX and MLPleaves are based on ANNs, so, in order to mitigate the ef-
fect of the random initialization of the weight matrix, the learning process has been
repeated 10 times. We report the average results of the 10 iterations and the stan-
dard deviation ranges are reported in the caption of the tables. We performed a
t-test with α “ 0.05 to assess the significativity of the difference with respect to the
state-of-the-art and marked with * the results that passed the test.

No parameter tuning has been performed for the trained methods and the vali-
dation split has been used only for the early stopping criterion.

5.4 Results

In this section are reported and discussed the results obtained by the proposed
method on ten benchmark datasets. Besides the comparison with the state-of-the-
art, we will show the impact of AWX highlighting the differences with respect to
MLPleaves.

Table 5.3 reports the micro-averaged area under the precision recall curve (AUCpPRq).
AWX`“1 has a clear edge over the competitors, in both the ontologies. With the
FunCat annotation, it is significantly better then CLUS-HMC six out of ten times
and worse just in the Hom dataset, while with GO it wins nine out of ten times.
AWX`“1 clearly outperforms also the other AWX versions and MLPleaves in all the
datasets. We can notice that the performance tends to decrease for higher values
of `, and reaches the minimum with AWXMAX. This can be explained by the dis-
tribution of the example-annotation: due to the TPR, the terms placed close to
the root are more likely to be associated with more examples then the lower terms.
With ` “ 1 each leaf, among the descendants, contributes equally to the prediction,
boosting the prediction values of the upper terms.

Of great interest is the comparison between MLPleaves and AWXMAX. We can
notice that AWXMAX, despite being the worst performing version of AWX, always
outperforms MLPleaves. Remember that the main difference between the two ar-
chitectures is that with AWXMAX prediction are propagated at learning time and
consequently optimized, while in MLPleaves the predictions of the non-leaf terms are
inferred offline.

Table 5.4 reports the macro-averaged area under the precision recall curves (AUCPR).
Unfortunately HMC-LMLP does not provide the score for this metric, but AWX
clearly outperforms CLUS-HMC, both with the FunCat and with the GO annota-
tions. We can notice that the differences are significant in all the datasets, with
the exception of Hom, where the variance of the computed results is above 0.04

Results 63

Table 5.3: Performance of AWX with AUCpPRq. Bold values show the best preform-
ing method on the dataset. The standard deviation of the computed methods is in the range
r0.001, 0.005s and r0.002, 0.008s respectively for FunCat and GO, with the only exception of Hom,
where is an order of magnitude bigger.

CLUS-HMC HMC-LMLP MLPleaves AWX`“1 AWX`“2 AWX`“3 AWXMAX

Fu
nC

at

Cellcycle 0.172 0.185 0.148* 0.205* 0.189* 0.181* 0.174
Church 0.170 0.164 0.102* 0.173 0.150* 0.136* 0.127*
Derisi 0.175 0.170 0.112* 0.175 0.152* 0.142* 0.136*
Eisen 0.204 0.208 0.196* 0.252* 0.243* 0.234* 0.225*
Expr 0.210 0.196 0.201 0.262* 0.236* 0.229* 0.223*
Gasch1 0.205 0.196 0.182 0.238* 0.227* 0.217* 0.209
Gasch2 0.195 0.184 0.150* 0.211* 0.195 0.186 0.178*
Hom 0.254 0.192 0.100* 0.107* 0.109* 0.106* 0.127*
Seq 0.211 0.195 0.188* 0.253* 0.234* 0.227* 0.218
Spo 0.186 0.172 0.117* 0.179 0.159* 0.150* 0.143*

G
O

Cellcycle 0.357 0.365 0.315* 0.441* 0.406* 0.385* 0.362
Church 0.348 0.347 0.272* 0.440* 0.378* 0.355* 0.329
Derisi 0.355 0.349 0.274* 0.424* 0.376* 0.352 0.335*
Eisen 0.380 0.403 0.347* 0.481* 0.449* 0.426* 0.410*
Expr 0.368 0.384 0.357* 0.480* 0.437* 0.418* 0.407*
Gasch1 0.371 0.384 0.346* 0.468* 0.437* 0.416* 0.401*
Gasch2 0.365 0.369 0.328* 0.454* 0.417* 0.394* 0.379
Hom 0.401 0.203* 0.264* 0.256* 0.242* 0.238*
Seq 0.386 0.384 0.347* 0.472* 0.429* 0.412* 0.397*
Spo 0.352 0.345 0.278* 0.420* 0.378* 0.355 0.336

with FunCat and 0.007 with GO. Within AWX is instead more difficult to identify
a version that performs clearly better then the others, their performance are almost
indistinguishable. Focusing on the differences between MLPleaves and AWXMAX, we
can see that the former is outperformed fourteen out of twenty times by the lat-
ter. The advantage of the AWX layer in this case is not as visible as in terms of
AUCpPRq, because AUCPR gives equal weight to the curve for each class, ignoring
the number of annotated examples. Within our setting, where most of the classes
have few examples, this evaluation metric tends to flatten the results, and may not
be a good indicator of the performance.

Table 5.5 reports the weighted-average of the area under the precision recall
curves (AUCPRw). AWX has solid performance also considering this evaluation
metric, outperforming significantly CLUS-HMC in most of the datasets. HMC-
LMLP provides results only for the FunCat-annotated datasets, but appears to be
not competitive with our method. Within the proposed variants of AWX, ` “ 2 has

64 Consistent Hierarchical-Multilabel Classification with Neural Networks

Table 5.4: Performance of AWX with AUCPR. Bold values show the best preforming method
on the dataset. HMC-LMLP provides no results for this metric, so it has been removed from the
table. The standard deviation of the computed methods is in the range r0.001, 0.005s for both
FunCat and GO, with the only exception of Hom, where it is an order of magnitude bigger.

CLUS-HMC MLPleaves AWX`“1 AWX`“2 AWX`“3 AWXMAX

Fu
nC

at

Cellcycle 0.034 0.068* 0.075* 0.076* 0.077* 0.076*
Church 0.029 0.040* 0.040* 0.041* 0.040* 0.041*
Derisi 0.033 0.047* 0.047* 0.048* 0.049* 0.048*
Eisen 0.052 0.095* 0.103* 0.104* 0.106* 0.106*
Expr 0.052 0.114* 0.120* 0.121* 0.121* 0.120*
Gasch1 0.049 0.101* 0.108* 0.110* 0.111* 0.109*
Gasch2 0.039 0.069* 0.080* 0.078* 0.077* 0.078*
Hom 0.089 0.116 0.095 0.086 0.112 0.164

Seq 0.053 0.126* 0.121* 0.126* 0.126* 0.124*
Spo 0.035 0.043* 0.045* 0.045* 0.045* 0.045*

G
O

Cellcycle 0.021 0.057* 0.059* 0.057* 0.057* 0.057*
Church 0.018 0.034* 0.030* 0.032* 0.031* 0.031*
Derisi 0.019 0.038* 0.041* 0.040* 0.040* 0.039*
Eisen 0.036 0.082* 0.091* 0.089* 0.088* 0.088*
Expr 0.029 0.092* 0.104* 0.102* 0.104* 0.102*
Gasch1 0.030 0.076* 0.086* 0.086* 0.086* 0.085*
Gasch2 0.024 0.065* 0.067* 0.066* 0.067* 0.066*
Hom 0.051 0.071 0.042 0.046 0.042 0.053
Seq 0.036 0.130* 0.130* 0.130* 0.128* 0.128*
Spo 0.026 0.037* 0.038* 0.039* 0.040* 0.038*

an edge over ` “ 1 and MAX, while is almost indistinguishable from ` “ 3. Moreover,
comparing AWXMAX and MLPleaves, we can see that the former is systematically
better then the latter.

The results reported for AWX (in all its variants) and MLP were not obtained
tuning the parameters on the validation sets, but rather setting them a priori.
The lack of parameter-tuning is clear on the Hom dataset. With all the considered
evaluation metrics, this dataset significantly diverges with respect to the others. This
behaviour is common also to CLUS-HMC, but unlikely the proposed methods, it has
the best performance on this dataset. An explanation of this anomaly can be found
in Table 5.1, where we can see the difference in the dimensionality. Hom dataset
features are indeed two order of magnitude more then the second biggest dataset,
i.e. Expr. The sub-optimal choice of the model parameters and the dimensionality
could therefore explain the deviation of this dataset from the performance trend,
and these aspects should be explored in the future.

Conclusion 65

Table 5.5: Performance of AWX with AUCPRw. Bold values show the best preforming
method on the dataset. HMC-LMLP provides no data for the GO datasets. The standard deviation
of the computed methods is in the range r0.001, 0.005s for both FunCat and GO, with the only
exception of Hom, where it is an order of magnitude bigger.

CLUS-HMC HMC-LMLP MLPleaves AWX`“1 AWX`“2 AWX`“3 AWXMAX

Fu
nC

at

Cellcycle 0.142 0.145 0.186* 0.200* 0.204* 0.205* 0.203*
Church 0.129 0.118 0.132 0.139* 0.139* 0.139* 0.138
Derisi 0.137 0.127 0.144* 0.150* 0.152* 0.152* 0.151*
Eisen 0.183 0.163 0.229* 0.246* 0.254* 0.254* 0.252*
Expr 0.179 0.167 0.239* 0.260* 0.260* 0.258* 0.255*
Gasch1 0.176 0.157 0.217* 0.234* 0.241* 0.240* 0.237*
Gasch2 0.156 0.142 0.183* 0.200* 0.202* 0.202* 0.200 *
Hom 0.240 0.159 0.185 0.185 0.188 0.193 0.222
Seq 0.183 0.112 0.232* 0.260* 0.263* 0.262* 0.258*
Spo 0.153 0.129 0.152 0.159 0.161* 0.161* 0.160*

G
O

Cellcycle 0.335 0.372* 0.379* 0.384* 0.385* 0.380*
Church 0.316 0.325* 0.328* 0.331* 0.329* 0.327*
Derisi 0.321 0.331* 0.334* 0.338* 0.337* 0.336*
Eisen 0.362 0.402* 0.418* 0.426* 0.423* 0.418*
Expr 0.353 0.407* 0.424* 0.430* 0.430* 0.427*
Gasch1 0.353 0.397* 0.410* 0.421* 0.419* 0.416*
Gasch2 0.347 0.379* 0.386* 0.394* 0.393* 0.388*
Hom 0.389 0.354* 0.342* 0.349 0.345* 0.356
Seq 0.373 0.408* 0.431* 0.436* 0.434* 0.430*
Spo 0.324 0.333* 0.332 0.339* 0.339* 0.338*

AWX has solid overall performance. AUCpPRq is the most challenging evaluation
metric, where the improvement over the state-of-the-art is smaller, while with the
last two metrics, AWX appears to have a clear advantage. The choice of the value
for ` depends on the metric we want to optimize, indeed AWX performs the best
with ` “ 1 considering AUCpPRq, while if we consider AUCPR or AUCPRw values
of ` “ 2 or ` “ 3 have an edge over the others. The direct comparison between
MLPleaves and AWXMAX is clearly in favour of the latter, which wins almost on all
the datasets. This highlights the clear impact of the proposed approach, that allows
a jointly optimization of all the classes in the datasets.

5.5 Conclusion

In this chapter we have proposed a generalization to the continuous domain of
the true path rule and presented a novel ANN layer, named AWX. The aim of this

66 Consistent Hierarchical-Multilabel Classification with Neural Networks

component is to allow the user to compute consistent hierarchical predictions on top
of any deep learning architecture. Despite the simplicity of the proposed approach, it
appears clear that AWX has an edge over the state-of-the-art method CLUS-HMC.
Significant improvements can be seen almost on all the datasets for the macro and
weighted averaged area under the precision recall curves evaluation metric, while
the advantage in terms of AUCpPRq is significant in six out of ten datasets.

Part of improvement could be attributed to the power and flexibility of ANN
over decision trees, but we have shown that AWX systematically outperforms also
HMC-LMLP, based on ANN, and MLPleaves, that has exactly the same architecture
as AWX, but with sigmoid output layer just for the leaf terms.

Further work should be focused to test the proposed methods with real-world
challenging datasets, integrating AWX in deep learning architectures. As future re-
search, it would be interesting to investigate the performance of AWX with semantic-
based metrics, both globally or considering only the leaf terms.

Chapter 6

Binary Classification from
Unknown Multilabel Annotation
Space

The binary classification task occurs when “the input is to be classified into one,
and only one, of two non-overlapping classes” [Sokolova and Lapalme, 2009]. In
the case in which the classification rule is known only by a set of samples, the task
represents one of the basic supervised tasks in machine learning, widely addressed in
the literature [Quinlan, 1986; Cortes and Vapnik, 1995; Freund and Schapire, 1997;
Breiman, 2001]. The effectiveness of each model, however, depends critically on the
fact that the model is correct, namely its form represents the underlying generative
phenomenon, provided the right choice of parameters. In this case, all the available
data can be used to fit the model and an unbiased global model can be identified.

As noted by Hand and Vinciotti: “However, the truth is that the model is hardly
ever correct, and is sometimes ill-specified. There are almost always aspects of the
relationships between the predictor variables and the response which are not reflected
in the assumed model form” [Hand and Vinciotti, 2003]. In other terms, in the
majority of the cases the assumption of correctness of the model is not true and can
therefore mislead global learning algorithms. An important example of this scenario
is disease diagnosis, which consists in determining whether a patient is affected by a
disease, given his medical record. Disease can occur in various facets, with different
symptoms and disorders. Take for example the family of autoimmune diseases, and
a classifier that predict whether or not a patient is affected by it. A multi-target
predictor that takes into consideration all sub categories would be the preferable
one, but the lack of training data or the intrinsic incompleteness of the annotation

68 Unknown Multilabel Annotation Space

space could make this approach not viable. Forced to binary classification, it is very
difficult for global learning algorithms to distinguish sick patients from healthy ones
due to the uneven distribution of examples. Hence, there is a clear need to treat
these problem with local learning algorithms.

The notion of locality in learning has a long history. Local models appeared
first in density-estimation [Parzen, 1962] and regression models [Nadaraya, 1964;
Watson, 1964], where kernels were used to control the influence of the samples to
the overall model. The classical k-Nearest Neighbors classifier [Cover and Hart,
1967] is inherently a local method. In Nearest Neighbor and derived methods the
attention focuses on ways of defining the distances or metrics to be used to find the
set of neighbors and on the transformations of the space [Wang and Sun, 2014; Dutta
and Ghosh, 2016]. Moreover, theoretical results on k-Nearest Neighbors [Fukunaga
and Hostetler, 1975] gave a glimpse of the power of local models and, more generally,
Bottou and Vapnik [1992] established a fundamental result demonstrating that the
local versions of base learners have better bounds on the generalization errors. The
Vapnik and Bottou result leaves us with an effective strategy to improve classifiers
by adding locality.

A straightforward way to achieve locality is to restrict the application of the
learning method to local subsets of the samples. Following this approach local
versions of the Support Vector Machine (SVM) has gained attention and empirically
proved to be competitive [Segata and Blanzieri, 2010] and theoretically proved to be
consistent [Hable, 2013]. Another way to achieve locality is to define functions that
weights the effect of samples over the model whereas the learning step is performed
on the whole dataset. This is the approach used in Radial Basis Function networks
[Poggio and Girosi, 1990] and, most notably, in the popular SVM with RBF, i.e.
gaussian kernels [Scholkopf et al., 1997].

Deep learning approaches [LeCun et al., 2015], in which general-use features are
learnt and then used as an input of other layers within a multilayer perceptron ar-
chitecture, have attracted a growing attention since the substantial improvement of
their learning procedure [Hinton et al., 2006; Bengio et al., 2007; Poultney et al.,
2006]. In these approaches, which proved to be very successful in several applica-
tions, different layers of simple processing units are stacked. The layers compute
features of growing richness, the emphasis being on the actual deep representation
discovered in the process and encoded in the parameters [Bengio et al., 2013]. The
way the features are learnt in deep learning architectures can vary [Schmidhuber,
2015]. We mention here auto-encoders [Vincent et al., 2010] that map the input
vectors onto themselves. Some of the approaches incorporates locality aspects, like

69

for example the classical convolutional neural networks [LeCun et al., 1998] where
topological information about the features is exploited. A thorough discussion of
locality in the fast-growing literature on deep learning is beyond the scope of this
thesis. However, to the best of our knowledge, no explicit attempt to incorporate
subsampling-based local models in features definition, in order to exploit the advan-
tages guaranteed by the result of Vapnik and Bottou, has been presented yet.

In this chapter we present a novel approach to binary classification that is based
on the idea of locality, and combine it with a classifier architecture typical of deep
approaches. The main idea is to use a number of models to define linear separators,
combine them with a confidence function that incorporates the information about
the position of the samples and that uses the results as input of a single-layer
perceptron. The rationale of the approach, which is motivated by the theoretical
bound on local models given by Vapnik and Bottou, is to leverage the notion of
locality to achieve good features that can be used in multi-layered classifiers.

In order to test the effectiveness of this idea, we defined a “concept” classifier
called Very Simple Classifier (VSC) [Masera and Blanzieri, 2019b] that incorporates
an extreme version of the approach. In the case of VSC the local models are built
using just 2 samples, the confidence function is based on geometric considerations
and we show that it modulates locality in a way that is based on the generalized
Chebichev inequality. Finally the parameters of the final perceptron are found with a
regularized pseudo inverse. VSC is tested on a battery of benchmark datasets against
relevant competitors. Despite its simplicity, the results of VSC are surprisingly good,
showing that VSC is competitive with MLP and it outperforms other classifiers in
the binary classification task. An exploration in the parameter space completes the
comparison with MLP.

The chapter is organized as follows. The remaining of the introduction is de-
voted to a brief notational introduction to the binary classification task. Section 6.1
presents the details of VSC whose empirical evaluation is presented in Section 6.2.
Finally, we draw our conclusions.

Binary Classification Task

Let us assume to have an input normed space Rn and a set (of labels) L “ t´1, 1u,
and N samples pxi,yiq P S ˆ L for i “ 1, . . . , N such that the xi are i.i.d. variables
of an unknown distribution fpxq. Let yi “ ypxiq with y : S Ñ L be an unknown
function that associates the sample xi with its label yi. Hence, the binary classifica-
tion is the task of finding an estimator function ẙ : S Ñ L such that the expectation
of the loss function Ef pLpẙpxq, ypxqqq is minimized, where L : L ˆ L Ñ R. The

70 Unknown Multilabel Annotation Space

Algorithm 2: VSC learning algorithm
Data: training data X, labels y, number of hyperplanes k, regularization factor λ

P Ð select k pairs of examples of opposite class
foreach j ď k do

hj Ð compute max margins hyperplanes for pj P P
foreach i ď |X| do

foreach j ď k do
X1ri, js Ð tanhpxx̂i,hjyq Cpj

pxiq
w Ð pX1TX1 ` λIq´1X1Ty

typical choice of the loss function L is the 0{1 loss, i.e. Lpu, vq “ 1 if u “ v and 0
otherwise.

6.1 Very Simple Classifier

From a structural point of view, VSC is similar to a three-layer MLP with n ` 1
nodes in the first layer, k ` 1 nodes in the second, and just one in the third. The
extra nodes in the first and second layer are used as biases. Procedurally VSC
introduces significant novel differences based on subsampling and locality. The main
steps of VSC are (I) the pair selection procedure, (II) the pre-computation of the
separating hyperplanes, (III) the confidence measure for the hyperplanes, and (IV)
the regularized weights learning.

As shown by the pseudo-code in Algorithm 2, the learning procedure starts with
the selection of k pairs of examples p :“ px`p ,x´p q such that ypx`p q “ 1 and ypx´p q “
´1. Given the “concept” nature of the VSC, these pairs are selected randomly among
the training set examples. The sampled pairs are then used to compute k separating
hyperplanes (to be described in Section 6.1.1). Following the parallel with the MLP,
the precomputed hyperplanes are used as fixed weights for the network between
the first and the second layer. The activation function of the second layer is an
hyperbolic tangent which is down-weighted by a confidence measure (to be defined
in Section 6.1.2). Being the weights fixed, the output of the second layer can be
computed without further learning procedures. With the matrix of the outputs X1

and the labels for the training set, the weights between the second and the third
layer can be easily learned with the product of pseudo inverting the matrix X1 with
the vector of labels y.

The following sections have the purpose to give the reader further details and the
rationale of the VSC steps.

Very Simple Classifier 71

Figure 6.1: Schematic representation of the hyperplane selection.

6.1.1 Hyperplane selection

Given a pair of samples p :“ px`p ,x´p q in the input space, a good separating hyper-
plane is the one that maximizes the margin. In this simple condition the maximum
margin separating-hyperplane hp is uniquely identified as the hyperplane perpen-
dicular to vp “ x`p ´ x´p and passing for their center cp “ px`p ` x´p q{2.

hp “ pv1
p, . . . ,vnp , xvp, cpyqT

where x¨, ¨y is the inner product. There are, however, infinite formulations for this
hyperplane. The canonical formulation for hp by VSC is the hyperplane with unitary
norm.

6.1.2 Hyperplane confidence

Each hyperplane selected at the previous stage depends only on 2 training samples,
it is therefore important to add a confidence measure to limit its influence area. Let
x`p and x´p be the samples used to build the hyperplane, and let x be the point to
be classified with hp. Then the confidence measure Cp : Rn Ñ p0, 1q is

Cppxq “ σ

ˆ

d

||x`p ´ x||2
`

d

||x´p ´ x||2
´

2d
d2

˙

where d “ ||x`p ´ x´p ||{2 and σ is the sigmoid function σpxq “ 1{p1` e´xq. In the
implementation a small ε “ 0.01 was added to each denominator in order to avoid

72 Unknown Multilabel Annotation Space

9

-10 -5 0 5 10

-5

0

5

0.0

0.5

1.0

0.5

1.0

Fig. 4: The figure shows the heat map generated by the confidence measure with xp̀ “ p´5, 0q and xṕ “ p5, 0q.
Figure 6.2: Shape of the confidence measure. The figure shows the heat map generated by
the confidence measure with xp̀ “ p´5, 0q and xṕ “ p5, 0q.

divisions by zero. In subsection 6.1.4 the formal characterization for this function
will be made explicit, but the geometric intuition is that the confidence of hp for
the point x is high if x is close to x`p or to x´p . The value of d plays the role of
smoothing the confidence around x`p and x´p , such that the higher the value of d,
the wider and smoother the confidence region will be.

6.1.3 Learning the hyperplane weights

Once the hyperplanes H of the first layer have been selected, we can construct the
matrix X1:

X1
“ px1i,jq “

`

tanhpxx̂i,hjyq Cpjpxiq
˘

where x̂ “ p1,x1, . . . ,xnqT . X1 is an N ˆ k matrix where each entry x1i,j is the
result of the prediction for i-th training example xi with only the j-th hyperplane
hj and the confidence measure. The weights for each hyperplane could be obtained
by inverting the matrix X1. In most cases, however, k ‰ N , thus X1 is not square
and invertible. In order to compute the hyperplanes weights VSC takes advantage
of the regularized pseudoinverse, also referred to as Tichonov regularization. This

Very Simple Classifier 73

choice is common in RBF networks and it has been used more recently in Extreme
Learning machines (ELM) Huang et al. [2006] where the emphasis is on the speed
of the computation. Thus

w “ pX1TX1
` λIq´1X1Ty

where I is the identity matrix of size NˆN . The effect of λ is to smooth the decision
boundary, otherwise very prone to overfit: the higher the λ, the higher will be the
regularization. In order to enhance the expressiveness of the VSC, a bias is added
to this computation by adding 1 at the beginning of each line of the matrix X1. The
decision function for the VSC is thus:

yVSCpxq “ sign
˜

ÿ

pPP

wptanhpxx̂,hpyq Cppxq
¸

`w0.

6.1.4 Characterization of the confidence in terms of Chebichev inequal-
ity

Given x1,x2,x P Rn and x a multivariated random variable on Rn, one of the
generalization of the Chebichev inequality due to Grenader, as reported in Zhou
and Hu [2012], can be written for the random variable x1 ´ x as:

Prp||x1 ´ x|| ě εq ď
Ep||x1 ´ x||

2q

ε2
.

If we choose to set ε as

ε “ ε1 “
||x1 ´ x||
||x1 ´ x2||

a

Ep||x1 ´ x||2q

2 (6.1)

than the inequality becomes:

Prp||x1 ´ x|| ě ε1q ď 4 ||x1 ´ x2||
2

||x1 ´ x||2

or equivalently

Prp||x1 ´ x|| ă ε1q ě 1´ 4 ||x1 ´ x2||
2

||x1 ´ x||2
.

This inequality can be also written considering the point x2 and the corresponding
ε2. Summing up the two inequalities

2 ě Prp||x1 ´ x|| ă ε1q ` Prp||x2 ´ x|| ă ε2q ě

2´ 4 ||x1 ´ x2||
2

||x1 ´ x||2
´ 4 ||x1 ´ x2||

2

||x2 ´ x||2

74 Unknown Multilabel Annotation Space

and dividing by 2||x1 ´ x2|| we obtain

1
||x1 ´ x2||

ě
1

||x1 ´ x2||
¨
Prp||x1 ´ x|| ă ε1q ` Prp||x2 ´ x|| ă ε2q

2 ě

ě
1

||x1 ´ x2||
´ 2 ||x1 ´ x2||

||x1 ´ x||2
´ 2 ||x1 ´ x2||

||x2 ´ x||2
.

If we set x1 “ x`p and x2 “ x´p in Equation 6.1 with corresponding ε`p

ε`p “
||x`p ´ x||
||x`p ´ x´p ||

b

Ep||x`p ´ x||2q

2

and analogous ε´p , and considering that the sigmoid is a monotonically increasing
function we have

Cppxq ě σ

ˆ

´
Prp||x`p ´ x|| ă ε`p q ` Prp||x´p ´ x|| ă ε´p q

d

˙

.

The argument of the sigmoid function in the second term is at most zero, so that
the bound does not guarantee that the confidence is bigger than 1{2. However,
by considering the numerator approaching zero in the case of low probability of
observing points relatively near to the pair, the bound can provide a lower bound to
the confidence. In fact, an hyperplane spans a whole subspace and so its contribution
to the prediction of a point x should be higher for a small probability to observe
points relatively near to the pair that generated the hyperplane. In other terms, the
data are less “local” and the confidence of the hyperplane contribution as a global
predictor should be higher. Moreover, by considering the denominator increasing,
the higher the distance between the points of the pair the higher is the confidence,
this means that the two points are far apart and the simple model built with them,
namely the max-margin classifier, should be applied in a wide range.

The above bound guarantees that the model is applied also non locally when the
condition apply. This helps to clarify that VSC incorporates locality in a negative
sense, by increasing the confidence of models that have chances of being less local.
This prevents the direct application of the bound for local versions. Models that
are local, however, are still applied locally for geometric considerations. In fact, the
confidence is very high near the points of the pairs and it has a saddle point equal
to 1{2 in the center of the pair.

Results 75

6.2 Results

6.2.1 Experimental setup

VSC has been implemented in Python 2.7 following the scikit-learn standards. This
choice allowed us to conveniently compare the VSC with other 9 well-known classi-
fiers implemented in the scikit-learn suite Pedregosa et al. [2011], i.e. MLP, SVM
with linear, polynomial and RBF kernels, AdaBoost, näıve Bayes, decision tree,
random forests, and k-nearest neighbours classifiers. Moreover, we compared the
performances of VSC with the ones of the Python implementation1 of ELM Huang
et al. [2006].

The experiments have been conducted on 22 datasets retrieved from the Keel
archive Alcalá et al. [2011] with the only criteria of being binary classification prob-
lems with no categorical features. At the time of download (January, 2016), all
the available datasets that satisfy the requirements have been taken into account.
Given the relatively small size of the above datasets we added a more challenging
real-world dataset Uzilov et al. [2006], whose results are discussed separately. The
details of the datasets are reported in Table 6.1. The data have been normalized
with a standard normalization by removing the mean and scaling to unit variance for
each feature. The performances have been assessed with a 10-fold stratified cross
validation. An internal 5-fold cross validation has been performed to assess the
models’ parameters. For each classifier has been used a grid search on the 5 values
reported in Table 6.2. The F1 score has been preferred to the accuracy metric for
presenting the results for its better robustness to unbalanced classes.

F1 “ 2 ¨ Precision ¨Recall
Precision`Recall

The statistical significance is assessed with a paired two-tailed t-test with significance
level α “ 0.05.

The evaluation of the VSC has been organized in two main experiments, which
will be explained in the following subsections.

6.2.2 Experiment 1

Experiment 1 has the goal of comparing the performance of VSC with those obtained
by the competitors on all the datasets. Table 6.3 reports the complete results, and a
graphical representation of the statistically-significant results is shown in Figure 6.3.
Moreover, Table 6.4 reports the rankings obtained by the classifiers on the datasets.

1https://github.com/dclambert/Python-ELM

https://github.com/dclambert/Python-ELM

76 Unknown Multilabel Annotation Space

Examples # Features Pos (%) Ref

appendicitis 106 7 (7/ 0) 80 Alcalá et al. [2011]
banana* 5300 2 (2/ 0) 55 Alcalá et al. [2011]
bands 365 19 (13/ 6) 63 Alcalá et al. [2011]
bupa 345 6 (1/ 5) 58 Alcalá et al. [2011]
coil2000 9822 85 (0/85) 94 Alcalá et al. [2011]
haberman 306 3 (0/ 3) 74 Alcalá et al. [2011]
heart 270 13 (1/12) 56 Alcalá et al. [2011]
hepatitis 80 19 (2/17) 84 Alcalá et al. [2011]
ionosphere 351 33 (32/ 1) 64 Alcalá et al. [2011]
magic 19020 10 (10/ 0) 65 Alcalá et al. [2011]
mammographic 830 5 (0/ 5) 51 Alcalá et al. [2011]
monk-2* 432 6 (0/ 6) 53 Alcalá et al. [2011]
phoneme 5404 5 (5/ 0) 71 Alcalá et al. [2011]
pima* 768 8 (8/ 0) 65 Alcalá et al. [2011]
ring* 7400 20 (20/ 0) 51 Alcalá et al. [2011]
sonar 208 60 (60/ 0) 53 Alcalá et al. [2011]
spambase 4597 57 (57/ 0) 61 Alcalá et al. [2011]
spectfheart 267 44 (0/44) 79 Alcalá et al. [2011]
titanic 2201 3 (3/ 0) 68 Alcalá et al. [2011]
twonorm* 7400 20 (20/ 0) 50 Alcalá et al. [2011]
wdbc 569 30 (30/ 0) 63 Alcalá et al. [2011]
wisconsin 683 9 (0/ 9) 65 Alcalá et al. [2011]

cod-rna 488565 8 (8/ 0) 66 Uzilov et al. [2006]

Table 6.1: Details of the used datasets. Between brackets the number of continuous and
discrete features respectively. (*) Synthetic datasets.

If the average F1 measures on the 10 folds diverge less than 0.001, then the same
rank is assigned to the classifiers.

In order to test the effect of the confidence measure in VSC, we performed ad-
ditional runs on the same 22 datasets of a modified version of VSC with confidence
identically forced to 1, namely Cppxq ” 1. In order to investigate just the impact
of the confidence measure, all the other parameters have been fixed to a default
parameter of k “ 100 hyperplanes and regularization factor λ “ 1. The result is
showed in Figure 6.3b. With the exception of 7 datasets VSC outperforms the mod-
ified VSC. In particular, the only dataset in which the VSC is outperformed by the
modified version with statistical significance is monk-2, which is a synthetic dataset
with discrete features that, as shown in Table 6.3, is particularly hard for VSC.

From the analysis of Table 6.4, VSC emerges as the classifier with the second-
best overall ranking, preceded just by the SVM with RBF kernel. VSC has solid
performances among the 22 datasets taken into consideration, outperforming (with
statistical significance) the competitors 64 times, and being worse in just 21 cases.
VSC obtains the best performance in just 2 datasets but in 13 datasets VSC is never

Results 77

Classifier Parameter Values

VSC
λ 0.001, 0.01, 0.1, 1, 10
k 25, 50, 100, 250, 500

SVM RBF
C 0.001, 0.01, 0.1, 1, 10
γ 1{n

MLP
activation tanh, logistic, relu

hidden nodes 25, 50, 100, 250, 500

AdaBoost
estimators 25, 50, 100, 250, 500
learning rate 0.001, 0.01, 0.1, 1, 10

K-NN K 1, 2, 5, 10, 25, 50
Random Forest # estimators 5, 10, 25, 50, 100
SVM linear C 0.001, 0.01, 0.1, 1, 10

SVM poly
pol. degree 2, 3
C 0.001, 0.01, 0.1, 1, 10

ELM # hidden nodes 25, 50, 100, 250, 500

Table 6.2: Parameters’ values used in the grid search. Näıve Bayes and decision tree have
no parameter to be cross-validated.

significantly worse of the competitors. Moreover, with the exception of 4 datasets
(ionosphere, mammographic, monk-2, and sonar), VSC is always significantly better
more times than the other way around.

Having identified the SVM with RBF kernel as the main competitor of VSC, we
tested both methods on the more challenging dataset of cod-rna [Uzilov et al., 2006].
Given the size of the dataset, no parameter selection has been conducted and the
default parameter of the models have been used. In particular the parameters for
VSC are k “ 100 and λ “ 10, while SVM has been trained with C “ 1 and γ “ 1{n.
Also in this experiment the results are very close, with the SVM with RBF kernel
and VSC obtaining an F1 score of 0.970 and VSC 0.965 respectively.

6.2.3 Experiment 2

Experiment 2 has the goal of studying how the performance of the VSC changes with
the variation of the parameters k and λ, with a special focus on their relationship.
The values chosen for this investigation are K “ t25, 50, 100, 250, 500u and Λ “

t0.1, 1, 10u. The results on each of the 22 datasets are normalized with respect to
the corresponding performance of VSC with λ “ 1 and k “ 100 and are shown in
Figure 6.4a. In order to assess the impact of sub-sampling pairs of samples with
different classes we run a modified version of VSC. Instead of sampling pairs from
the data, the modified VSC randomly selects points uniformly in the ranges of the
features and then builds the hyper-planes. In this case the data are used only for
computing the ranges, in particular, without using the information on their class.

78 Unknown Multilabel Annotation Space

V
SC

SV
M

R
B

F

M
LP

A
da

B
oo

st

K
-N

N

R
an

do
m

Fo
re

st
SV

M
lin

ea
r

SV
M

po
ly

EL
M

N
äı

ve
B

ay
es

D
ec

isi
on

Tr
ee

appendicitis 0.926 0.915 0.899 0.926 0.922 0.912 0.907 0.929 0.808İ 0.901 0.867İ

banana 0.916 0.918 0.911 0.767İ 0.911İ 0.904İ 0.711İ 0.668İ 0.913 0.710İ 0.885İ

bands 0.705 0.741 0.686 0.720 0.730 0.697 0.748 0.722 0.700 0.080İ 0.547İ

bupa 0.735 0.770 0.764 0.761 0.696 0.774 0.752 0.723 0.716 0.511İ 0.705
coil2000 0.969 0.969 0.969 0.969 0.969 0.963İ 0.969 0.969 0.969 0.101İ 0.937İ

haberman 0.852 0.831 0.844 0.842 0.854 0.806İ 0.847 0.843 0.817İ 0.841İ 0.727İ

heart 0.858 0.870 0.871 0.861 0.867 0.848 0.864 0.859 0.827 0.858 0.768İ

hepatitis 0.894 0.876 0.884 0.918 0.889 0.913 0.860 0.921 0.840 0.637İ 0.842İ

ionosphere 0.927 0.958Ÿ 0.947Ÿ 0.948 0.924 0.936 0.907 0.926 0.898 0.910 0.903
magic 0.900 0.908Ÿ 0.905Ÿ 0.888İ 0.885İ 0.911Ÿ 0.848İ 0.877İ 0.886İ 0.813İ 0.860İ

mammographic 0.817 0.847Ÿ 0.818 0.850Ÿ 0.812 0.806 0.803 0.803 0.814 0.813 0.778İ

monk-2 0.931 0.972Ÿ 0.990Ÿ 1.000Ÿ 0.909 0.986Ÿ 0.809İ 0.769İ 0.891İ 0.868 1.000Ÿ

phoneme 0.916 0.923Ÿ 0.896İ 0.876İ 0.933Ÿ 0.937Ÿ 0.843İ 0.859İ 0.908 0.821İ 0.911
pima 0.834 0.829 0.831 0.827 0.833 0.815 0.832 0.820İ 0.812İ 0.816 0.764İ

ring 0.974 0.979Ÿ 0.973 0.970 0.842İ 0.949İ 0.786İ 0.968İ 0.915İ 0.980Ÿ 0.882İ

sonar 0.544 0.649 0.671 0.744Ÿ 0.718 0.722Ÿ 0.665 0.715Ÿ 0.540 0.564 0.634
spambase 0.945 0.946 0.949 0.952 0.917İ 0.954Ÿ 0.940İ 0.931İ 0.806İ 0.829İ 0.914İ

spectfheart 0.873 0.880 0.869 0.856 0.889 0.880 0.874 0.877 0.856 0.744İ 0.848
titanic 0.862 0.860 0.853İ 0.848İ 0.858 0.863 0.847İ 0.852İ 0.865 0.842İ 0.862
twonorm 0.978 0.978 0.978 0.972İ 0.977 0.971İ 0.978 0.977 0.952İ 0.979 0.843İ

wdbc 0.971 0.984 0.982 0.981 0.974 0.970 0.982Ÿ 0.968 0.908İ 0.944İ 0.949İ

wisconsin 0.976 0.975 0.975 0.968İ 0.973 0.973 0.977 0.967 0.968 0.971 0.958İ

Average 0.878 0.890 0.885 0.884 0.876 0.886 0.852 0.861 0.846 0.752 0.836
Median 0.908 0.912 0.897 0.882 0.889 0.911 0.848 0.868 0.860 0.825 0.861

Table 6.3: Average results of Experiment 1. Experimental F1 measure obtained on the ana-
lyzed datasets. The best results for each dataset are marked in bold. Results that are statistically
better and worse with respect to our method are marked with Ÿ and with İ respectively.

The runs were with the same set of parameters as above, and the results, which are
normalized as before, are shown in Figure 6.4b.

In Figure 6.4a, the boxplot corresponding to VSC with λ “ 1 and k “ 100 is
a single line due to the normalization. Variations of k from 100 corresponds for
λ “ 1 to very limited variations of the performance. There is some sensitivity of
the results when λ is small: in particular with k “ 500 and λ “ 0.1 VSC shows
the worst variation. At higher values of λ the effect of k appears to be mitigated,
and when λ “ 10 high values of k produces results that are even better of the ones
obtained with the initial choice of the parameters.

In Figure 6.4b are reported the results obtained by changing the pairs selection
step such that the pairs that drive the hyper-planes construction are not sub-sampled
from the dataset, they are instead uniformly sampled in the range of the data. We

Results 79

Avg ap
pe

nd
ic

iti
s

ba
na

na
ba

nd
s

bu
pa

co
il2

00
0

ha
be

rm
an

he
ar

t

he
pa

tit
is

io
no

sp
he

re
m

ag
ic

m
am

m
og

ra
ph

ic
m

on
k-

2
ph

on
em

e
pi

m
a

rin
g

so
na

r

sp
am

ba
se

sp
ec

tf
he

ar
t

tit
an

ic
tw

on
or

m
w

db
c

w
isc

on
sin

VSC 4.14 2 2 6 6 1 2 7 4 5 4 4 6 4 1 3 10 5 6 3 2 6 2

SVM RBF 3.27 5 1 2 2 1 8 2 7 1 2 2 5 3 5 2 7 4 2 5 2 1 3
MLP 4.23 9 4 9 3 1 4 1 6 3 3 3 3 7 4 4 5 3 7 7 2 2 3
AdaBoost 4.59 2 8 5 4 1 6 5 2 2 5 1 1 8 6 5 1 2 8 9 8 4 8
K-NN 4.86 4 4 3 10 1 1 3 5 7 7 7 7 2 2 10 3 8 1 6 6 5 5
Random For. 5.18 6 6 8 1 9 10 9 3 4 1 8 4 1 9 7 2 1 2 2 9 7 5
SVM linear 6.00 7 9 1 5 1 3 4 8 9 10 9 10 10 3 11 6 6 5 10 2 2 1
SVM poly 6.32 1 11 4 7 1 5 6 1 6 8 9 11 9 7 6 4 7 4 8 6 8 10
ELM 7.86 11 3 7 8 1 9 10 10 11 6 5 8 6 10 8 11 11 8 1 10 11 8
Näıve Bayes 8.59 8 10 11 11 11 7 7 11 8 11 6 9 11 8 1 9 10 11 11 1 10 7
Dec. Tree 8.82 10 7 10 9 10 11 11 9 10 9 11 1 5 11 9 8 9 10 3 11 9 11

Table 6.4: Ranks the classifiers in Experiment 1. Rankings of the classifiers on the datasets
ordered by average F1 score on the 10 folds. If the scores diverge less than 0.001, then the same
rank is assigned to the classifiers.

can see that renouncing to the pairs’ sub-sampling in the training data produces a
slight, but systematic, decrease in the performances and an increase in the variability.
Notice also the increased number of outliers in the low part of the plot. This modified
version of VSC resemble the ELM approach, where the first layer of the multi-layer
architecture is set to random noise. By comparing the results of VSC and ELM in
Table 6.3 with those in Figure 6.4b, we can see that the confidence measure added to
the separating hyper-planes plays a key role in the performance. Indeed the results
obtained with this modifies version of VSC are still comparable with the original,
while ELM’s results are not even close. With high values of λ and k the performances
increase suggesting that “extreme” version of VSC could be worth exploring; we may
pay, however, the price of choosing the parameters within a context of more variable
performance.

6.2.4 Discussion

Despite the simplicity of the method, VSC obtains very competitive results on the
pool of analyzed datasets, which vary for size, number of features, and origin of the
data. Under some aspects VSC may be similar to the extreme learning machines;
however the in-sample pair selection, although naive, shows relevant advantages over
the random weights initialization. Moreover, with Experiment 1, the effectiveness
of the confidence measure can be appreciated. This highlights the importance of

80 Unknown Multilabel Annotation Space

0.0 0.2 0.4 0.6 0.8 1.0

F1 competitors

0.0

0.2

0.4

0.6

0.8

1.0

F1
 V

S
C

RBF

MLP

AdaBoost

K Neighbors

Random Forest

SVM linear

SVM poly

ELM

Naive Bayes

Decision Tree

(a)

0.6 0.7 0.8 0.9 1.0
F1 VSC no confidence

0.6

0.7

0.8

0.9

1.0

F1
 V

SC

(b)

Figure 6.3: Results of Experiment 1. The left plot shows the statistically significant data of
Table 6.3. The datasets in which VSC outperforms the competitor are marked in blue. The red
marks, on the contrary, the datasets for which the competitor achieves better results. The symbol
identifies the competitor. The right plot shows the impact of the confidence measure. The datasets
in which VSC has F1 higher than the VSC with modified confidence are marked in blue. The red
marks, on the contrary, are the datasets for which the modified confidence is better. The filled
marks represent results statistically significant.

25 50 10
0

25
0

50
0 25 50 10
0

25
0

50
0 25 50 10
0

25
0

50
0

k

0.7

0.8

0.9

1.0

1.1

1.2

1.3

F1
/F

1 V
S
C

(λ
=

1,
k

=
10

0)

0.1 1 10
λ

(a) VSC

25 50 10
0

25
0

50
0 25 50 10
0

25
0

50
0 25 50 10
0

25
0

50
0

k

0.7

0.8

0.9

1.0

1.1

1.2

1.3

F1
/F

1 V
S
C

(λ
=

1,
k

=
10

0)

0.1 1 10
λ

(b) VSC with uniformly sampled pairs

Figure 6.4: Results of Experiment 2. Box plots of the performance of VSC on the 22 datasets
by varying the regularization parameter λ and the number of hyper-planes k. For each dataset,
the F1 values are normalized with the F1 score of the VSCpλ “ 1, k “ 100q on the same dataset.

Conclusion 81

limiting locally the influence of features that are non-global by construction.
As expected, it is difficult to find a clear winner in the challenge of general purpose

classifier, because there is no general purpose classification task. Each problem has
its own peculiarities and therefore certain classifiers fit better the data then others.
The SVM with RBF kernel, which is also a local method, seems to have an edge
on the VSC and the other analyzed competitors, corroborating the hypothesis that
locality plays an important role in the performance in the general case. On the
other hand SVM models have no fixed size and can reach high size, especially with
RBF kernel, if the ideal decision boundary is complex, leading to slow prediction
times. VSC on this aspects offers a fixed size model, whose dimension depends on
the parameters imposed by the user.

The current version of VSC involves the inversion of the NˆN matrix, whose size
depends on the size of the problem. With the increasing size of the current datasets
this can quickly become a problem, but this learning step can be replaced by a L2
regularized regression. This change would allow us to tackle bigger problems and
extend the model to multi-label classification by learning simultaneously the weights
for each label.

SVM with RBF kernel obtains better average ranking with respect to VSC, but
both methods have very comparable overall performances. Indeed, despite having a
relevant difference in the average F1 value, the median on the same metric is very
close. This difference is driven by the bad averaged results obtained by VSC on the
sonar dataset, which are however not significantly worse than the one obtained by
SVM RBF.

From the experiments, we can therefore appreciate the very good adaptability of
the VSC, which obtains good and competitive results on most of the datasets.

6.3 Conclusion

We have presented VSC, a “concept” classifier designed to test the idea that features
which are based on the notion of locality can be effectively incorporated in a multi-
layer perceptron architecture. Max-margin hyper-planes are defined on a subset of
the pairs of the samples with different classes and a confidence measure character-
ized in terms of Chebichev inequality is defined. Results of runs with different values
of the regularization parameter and number of pairs show the effectiveness of the
approach in terms of quality of the results. The competitors are overperformed with
the exception of SVM with RBF kernel, confirming the theoretical assumptions.
The effectiveness of the confidence measure is also empirically verified.

82 Unknown Multilabel Annotation Space

The motivation of the work was to investigate the possibility that locality can pro-
duce features of high quality to be included in more complex architectures. Further
studies will be important to evaluate the scalability in terms of size and dimensional-
ity of the datasets. The results, however, are very encouraging and future work will
be devoted to the identification of pair selection strategies that can maximize the
effectiveness of the approach and the integration with deep learning. In particular
we believe that VSC can be effectively be incorporated in such frameworks as an
initial layer where no explicit order, spatial or temporally, is present in the input
features.

Chapter 7

Gene Regulatory Network
Expansion by Stratified variable
Subsetting and Ranking
Aggregation

Biological processes are often regulated at the transcriptional level, via gene regu-
latory networks (GRN) [Hasty et al., 2001a] comprising regulatory genes, known as
transcription factors, and regulated genes. So far, in most cases, only a small frac-
tion of the genes involved in a GRN are known, and usually collected in Local Gene
Networks (LGNs) that are subsets of genes known to be causally connected. These
genes are discovered through ad hoc experiments testing in vivo the hypothesis that
a given gene participates in a specific biological process. Thus, there is a urgent
need to fill this knowledge gap in order to have a better picture of most biologi-
cal processes and translate biology into medical, biotechnological, and agricultural
applications. A major contribution in this field has come from the new sequencing
technologies, which dramatically increased the sequence output capacity and equally
decreased the cost per sequenced base1.

In this chapter, we present NES2RA [Asnicar, Masera et al., 2016] (Network
Expansion by Stratified Subsetting and Ranking Aggregation) a method for find-
ing candidate genes for expanding GRN. NES2RA generalizes our previous pro-
posal NESRA [Asnicar et al., 2015a] with the main difference being that it is now
possible to model with a probability the presence of the genes of the network to
be expanded in the subsets, namely the sampling is stratified. Both NESRA and

1Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP) Avail-
able at: www.genome.gov/sequencingcosts. Accessed January 2019.

www.genome.gov/sequencingcosts

84 Gene Regulatory Network Expansion by Stratified Subsetting

NES2RA are based on the PC-algorithm that we run on our gene@home project [As-
nicar et al., 2015b], developed on the BOINC platform [Anderson, 2004a]. We
evaluate NES2RA on real data on model organisms (Arabidopsis thaliana and Es-
cherichia coli), and compare it against NESRA and ARACNE.

7.1 Related Work

The PC-algorithm [Spirtes and Glymour, 1991a] discovers causal relationships among
variables by systematically testing the conditional independence of two nodes given
subsets of their adjacent nodes. The computational cost of the PC-algorithm is
exponential in the number of nodes, but it behaves reasonably in the case of sparse,
scale-free networks [Maathuis et al., 2010], like biological networks [Barabási, 2003].
The PC-algorithm has been comprehensively presented and evaluated by Kalisch
and Bühlmann [2007] and applied to gene network reconstruction [Maathuis et al.,
2010]. The PC-algorithm has also been successfully employed in other network in-
ference approaches [Tan et al., 2008, 2011; Wang et al., 2010; Zhang et al., 2012].
The results of the PC-algorithm depend on the order of the nodes in the input file;
the order-independent version is called PC-stable [Colombo and Maathuis, 2012].

At the time of writing, other popular methods for network inference (NI) are
the BAyesian Network inference with Java Objects (BANJO [Hartemink, 2005]),
Network Inference by Reverse-engineering (NIR [Gardner et al., 2003]), and the Al-
gorithm for the Reconstruction of Accurate Cellular NEtworks (ARACNE [Margolin
et al., 2006a,b]). The last one has been empirically proved to be the state-of-the-
art NI method [Allen et al., 2012]. The available reconstruction methods applied
to genome wide data are computationally demanding due to the huge size of the
solution space [Kalisch and Bühlmann, 2007]. Moreover, as we will see here, these
methods are not accurate enough in order to use the results to perform a network
expansion [Marbach et al., 2012].

7.2 NES2RA

NES2RA is an improved and generalized version of NESRA [Asnicar et al., 2015a],
which considers as input data the LGN and the probability of each gene of the
LGN to be included in the subsets, the set of parameters to be used, and the gene
expression levels for the considered organisms. The inclusion of the LGN in the
subsetting step improves the quality of the results (as we will see in Section 7.4),
because the composition of each subset is influenced by the LGN nodes added.

NES2RA 85

Gene expression
data

Va
ria

bl
e

su
bs

et
tin

g

C
an

di
da

te
ge

ne
s

lis
tLGN with

probabilities

Parameter set R
an

ki
ng

s
ag

gr
eg

at
orPC++

Po
st

pr
oc

es
sin

g

PC++

PC++

.
.

.

PC++

Po
st

pr
oc

es
sin

g

PC++

PC++

.
.

.

BOINC

PC++

Po
st

pr
oc

es
sin

g

PC++

PC++

.
.

.

Figure 7.1: NES2RA workflow.

The vector of probabilities is a representation of the knowledge of the user (e.g., a
biologist) about the presence of specific genes in the network. Probability 1 means
that the gene is definitely in the network, whereas probability 0 means that there
is no knowledge about the presence of the gene in the network. Depending on
the probabilities the genes will be included in the data for the run of the PC-
algorithm. If all the probabilities are zero NES2RA coincides with its previous
version NESRA [Asnicar et al., 2015a]. The high-level structure of NES2RA is
described in Figure 7.1 and Algorithm 3.

Algorithm 3: Pseudo-code of NES2RA.
Data: S set of candidate transcripts, SLGN set of LGN transcripts, E expression data, a vector

Π “ pπ1, . . . , πl, . . . , π|SLGN|q of the probabilities of each gl P SLGN to be in the LGN.
Input: I set of number of iterations, D set of the subset dimensions, A set of the significance levels

α, k maximum length of the candidate gene lists
Result: ordered list of candidate transcripts

LÐH // L set of ordered lists

foreach α P A do
foreach d P D do

foreach i P I do
LÐ LY RP(S, SLGN, E, Π, i, d, α) // call Algorithm 4

LÐ top(L, k) // cut each list in L to the first k elements
return Ranking aggregation(L)

The ranking procedure (RP) presented in Algorithm 4 is composed of three main
steps, which respectively: (1) create the subsets, (2) execute several calls of the
skeleton procedure of the PC-algorithm (Algorithm 1), and finally, (3) compute
the transcripts frequency that defines the order of each ranking.

The RP takes as parameters the number of iterations i, the dimension of the sub-
set d, the significance level α for the skeleton, and the probability vector Π for the

86 Gene Regulatory Network Expansion by Stratified Subsetting

genes of the LGN. The output of the skeleton depends on the order of the inputs.
Hence iterating i times its application mitigates this effect, reaching a more stable
solution. The RP returns a ranked list of k elements that is partially computed on
the gene@home BOINC project, while the frequencies calculation and the rankings
aggregation are executed off-line. The novelty of NES2RA is in Step 1 of the rank-
ing procedure (Algorithm 4), where we take into consideration the knowledge of the
LGN with its associated probabilities.

NES2RA systematically and iteratively applies subsetting on the whole data set
in order to randomly select genes that will be processed with the skeleton proce-
dure. The subsetting is controlled by the iterations i and subset size d parameters.
In NES2RA the subsetting is stratified, and the genes of the LGN can have an
increased probability of being in the subsets. In fact, for a given pair of subset size
d and iteration i, a first selection, controlled by the probability vector Π, specifies
which genes of the LGN are present in the subsets. The genes of the LGN that are
not selected in the first selection are considered, together with the other candidate
genes, for a second selection with uniform probability. Finally, a third selection re-
stricted to the genes not already present in the current subset, permits to complete
the last subset whenever not yet of the desired dimension d.

The overall effect of the probability vector Π in Algorithm 4 is such that the
probability of a gene g to be present in the h-th subset of genes Th,i at the i-th
iteration is given by:

P pg P Th,iq “

$

’

&

’

%

πl ` p1´ πlq d´
ř|SLGN|
m“1 πm

|S|´
ř|SLGN|
m“1 πm

, if g “ gl P SLGN

d´
ř|SLGN|
m“1 πm

|S|´
ř|SLGN|
m“1 πm

, if g P SzSLGN

(7.1)

where S is the set of candidate genes, SLGN is the set of genes of the LGN, d with
|SLGN| ă d ď |S| is the subset dimension, πl is the l-th component of Π corresponding
to the probability of the gl gene of the LGN to be selected in the first selection, and
ř|LGN|
m“1 πm is the expected number of LGN genes selected after the first selection.

The last subset of each iteration is a special case: the third selection can intervene
for its completion and the formula above does not hold anymore in a rigorous way.
The exact correction of the fractional term of Equation 7.1 requires a more detailed
analysis that is beyond the current aim to illustrate the effect of Π.

The probability of a gene gl P SLGN of being in a subset is the convex combination
of the probability of being in the subset of a gene that is not in the LGN, controlled
by the parameter πl. For a gene gl of the LGN, if πl “ 1 then P pgl P Th,iq|πl“1 “ 1

NES2RA 87

Algorithm 4: NES2RA ranking procedure (RP).
Data: S set of candidate transcripts, SLGN set of LGN transcripts, E expression data,

Π “ pπ1, . . . , πl, . . . , π|SLGN|q probability vector for each gl P SLGN

Input: i ě 1 number of iterations, d subset dimension, α significance level
Result: l, ordered list of candidate transcripts

foreach g P S do
pg Ð 0, fg Ð 0

/* Step 1: Subsets creation */
foreach j, 1 ď j ď i do

hÐ 1, Stemp Ð SzSLGN

while Stemp ‰ H do
foreach gl P SLGN do

with probability πl: Th,j Ð Th,j Y tglu

Stemp Ð Stemp Y pSLGNzTh,jq

while |Th,j | ă d do
uniformly random select g P Stemp
Th,j Ð Th,j Y tgu

Stemp Ð Stempztgu
pg Ð pg ` 1

if Stemp “ H and |Th,j | ă d then
while |Th,j | ă t do

uniformly random select g P SzTh,j
Th,j Ð Th,j Y tgu

pg Ð pg ` 1

hÐ h` 1

Nj Ð h

/* Step 2: skeleton */
foreach j, 1 ď j ď i do

foreach h, 1 ď h ď Nj do
Rh,j Ð skeletonpTh,j , E, αq // Algorithm 1

/* Step 3: Frequency computations */
foreach g P S do

foreach q P SLGN do
foreach j, 1 ď j ď i do

foreach h, 1 ď h ď Nj do
if g P AdjRh,j pqq then

lÐ l Y tgu // adjacent nodes of q in Rh,j

fg Ð fg ` 1

f 1g Ð fg{ppg ˚ |SLGN|q // Normalized frequency

return l ordered w.r.t. f 1g

88 Gene Regulatory Network Expansion by Stratified Subsetting

and the l-th gene is present in all the subsets. Alternatively, if πl “ 0 then

P pgl P Th,iq|πl“0 “
d´

ř|SLGN|
m“1 πm

|S| ´
ř|SLGN|
m“1 πm

,

namely the same probability of a gene that is not in the LGN. The probability of
Equation 7.1 can be written as:

P pgl P Th,iq “ πl ` p1´ πlqP pgl P Th,iq|πl“0q “

“ πlp1´ P pgl P Th,iq|πl“0q ` P pgl P Th,iq|πl“0.

Setting πl permits to modulate the probability of the presence of each gene gl in the
subsets. In the case πl “ 0 for all the genes of the LGN the probability becomes
P pg P Th,iq “ d { |S| for each gene and NES2RA corresponds to NESRA where the
probability of presence of the genes of the LGN in the subsets is the same of the
other genes.

The number of executions of the skeleton procedures (Algorithm 1) that are
generated in NES2RA by the parameter d are:

OPC “E p#runs at iteration jq “
S

|S| ´
ř|SLGN|
m“1 πm

d´
ř|SLGN|
m“1 πm

W

ˆ P

˜

č

h

Th,jzSLGN ‰ H

¸

`

`
|S| ´

ř|SLGN|
m“1 πm

d´
ř|SLGN|
m“1 πm

ˆ P

˜

č

h

Th,jzSLGN “ H

¸

(7.2)

skeleton executions. Note that this formula is independent from the specific iter-
ation j.

For each pair d, i, NES2RA executes a number of skeleton procedures, given by
Equation 7.2. The results of these executions are combined in a single list of genes,
ranked by their number of appearances. The skeleton procedure produces a graph,
providing the causal relationships between nodes, but not their directions. The
PC-algorithm estimates the orientation of the edges after the skeleton procedure,
and the orientation steps do not remove or add any edge. The execution of the
skeleton procedure indeed produces the most important information that we want
to exploit in NES2RA: the existence of an edge between two nodes. Such edge, in
fact, represents the existence of a causal relationship between the two nodes, even
though we do not know its direction.

Finally, NES2RA produces the list of candidate genes by applying different rank-
ing aggregation methods on the ranked lists. These methods comprise a base tech-
nique, i.e. the number of appearances, and more sophisticated methods, namely

NES2RA on the gene@home BOINC project 89

Borda Count [Borda, 1781] and MC4 heuristic [Lin, 2010]. The method we consid-
ered as baseline is the number of appearances, that counts how many rankings have a
certain gene, i.e. the more a gene is present, the higher its position in the aggregated
rank is. The Borda Count method consists in constructing a matrix Apm,nq with
m rows and n columns, corresponding to the genes and the rankings, respectively.
The element aij is the rank of gene i on ranking j, and a statistic for each gene
is computed on the rows of the matrix. The two statistics that we used are the
mean (BC-mean) and the minimum (BC-min) of the elements. MC4 heuristic is an
aggregator based on Markov chains. It consists in computing the transition matrix
of the pairwise comparison of all the rankings for each gene. A step in the Markov
chain assigns a higher probability to a gene q if rankpqq ă rankppq for a majority of
the lists that ranked both p and q [Dwork et al., 2001b]. So that, the steady state of
the chain assigns higher probability to the genes with higher ranks. To avoid a non
unique stationary distribution, MC4 has as parameter the significance level αMC4

for which we considered two values: 0.05 and 0.01.
Both NESRA and NES2RA exploit the gene@home project for computing the

first two steps of ranking procedure.

7.3 NES2RA on the gene@home BOINC project

Nowadays, the literature reports several successful research projects that exploit
the power of volunteer grid computing in order to achieve their goals [Anderson
et al., 2002; Das et al., 2007]. BOINC, for instance, is an open-source framework
particularly convenient for projects that require a large amount of computation, but
do not have access to suitable resources. NES2RA requires OPC executions (see
Equation 7.2 in Appendix) that can be easily parallelized. Therefore, we decided to
exploit the gene@home [Asnicar et al., 2015b] BOINC project, hosted by the TN-
Grid platform2, to distribute the computation of the skeleton procedure (Step 2 of
Algorithm 4).

Every BOINC project is composed by several components, such as the work
generator and the validator. The aim of the former is to create the workunits that
will be then distributed to the volunteers, while the latter validates the results of the
finished workunits. The validator performs a bitwise comparison of two workunits
that have been computed by two different machines. This step is required to ensure
the consistency of the results. We designed and developed our custom work generator
using the Python language and two C++ wrappers to interface the work generator

2http://gene.disi.unitn.it/test/

http://gene.disi.unitn.it/test/

90 Gene Regulatory Network Expansion by Stratified Subsetting

Algorithm 5: Partial correlations function.
Input: i, j analyzed variables, k separation set
Result: ρi,j|k

lÐ |k|; M Ð ri, j, k1, . . . , kls; dÐ |M |

Initialize the dˆ d matrix ρ s.t. ρrusrvs Ð correlationpM rus,M rvsq

for n “ 1 to l do
for u “ 0 to l ´ n do

for v “ u` 1 to d´ n do

ρrusrvs Ð
ρrusrvs ´ ρrusrd´ ns ¨ ρrvsrd´ ns

a

p1´ ρ2rusrd´ nsqp1´ ρ2rvsrd´ nsq

return ρr0sr1s

and the Python scripts with the BOINC framework. The subsets creation (Step 1
of Algorithm 4) is implemented in the work generator. Each workunit corresponds
to many runs of the skeleton procedure (Step 2 of Algorithm 4), and the duration
is estimated in order to inform the volunteers about execution times, a fundamental
aspect in any BOINC project.

The core of gene@home is the client application. To date, it is available for
both 32 and 64 bit architectures, for three operating systems: Linux, Windows,
and Mac OS X. The original implementation of the skeleton procedure, present
in the pcalg R package [Kalisch et al., 2012; Hauser and Bühlmann, 2012], is not
suitable for high-performance volunteer-computing projects due to both its software
requirements, i.e. the R interpreter and numerous R packages, and its low speed
and high memory consumption. To the best of our knowledge, no alternative open-
source implementation of the skeleton procedure is available, thus we implemented
our C++ version, namely PC++3. The PC++ implementation makes use of effi-
cient data structures and avoids the storing of the separation sets, which are not
needed in NES2RA, to reduce the memory usage. Moreover, the original recur-
sive computation of the partial correlation (Proposition 2 [Kalisch and Bühlmann,
2007]) has been replaced with an iterative version based on dynamic programming
technique [Cormen et al., 2001], shown in Algorithm 5. This solution reduces the
complexity of the computation from Op3lq to Opl3q, where l corresponds to the size
of the separation sets. These optimizations and the possibility to natively integrate
PC++ into the BOINC client application drastically decreased the computational
time and memory usage.

In Table 7.1 we report the detailed comparison between the PC++ and the
skeleton procedure of the pcalg package, conducted on the Escherichia coli data

3Publicly available at https://bitbucket.org/francesco-asnicar/pc-boinc

https://bitbucket.org/francesco-asnicar/pc-boinc

Evaluation 91

Table 7.1: Performance comparison between skeleton and PC++. Comparison between
skeleton and PC++ in terms of running time and memory usage on the E. coli data set using
different subset sizes.

d “ 50 d “ 100 d “ 200 d “ 500 d “ 4065

skeleton
time (s) 86.13 924.96 15470.62 169869.69

timed out
RAM (MB) 95.23 104.83 145.88 200.11

PC++
time (s) 0.36 3.82 69.59 716.88 94525.63

RAM (MB) 5.85 7.85 13.73 35.51 506.75

set. From the results in Table 7.1 we can appreciate that the PC++ implementation
gained a speed-up of more than 200 and decreased in the memory usage of an order
of magnitude4. For a fair comparison, we modified the original skeleton procedure
to avoid storing the separation sets. No data is available for the skeleton on
subset size d “ 4065, because it reached the two-weeks time limit we imposed. We
estimated the execution time of skeleton for d “ 4065 via a regression analysis on
the other subset sizes, in more than 200 days.

The post-processing phase in NES2RA consists in a two-step pipeline. The
workunits results are firstly combined on the volunteers’ local machines by the client
applications, in order to reduce the size of the data to be uploaded. Lastly, the
partially aggregated results are aggregated on the server.

7.4 Evaluation

In this section we report the results of three different experiments that assess the per-
formance of NES2RA. The aim of the first experiment is to biologically evaluate the
results of NES2RA in comparison with NESRA, ARACNE, and the PC-algorithm.
The second experiment, instead, has the goal to analyze the impact of the proba-
bility vector Π on the final expansion list. Finally, we analyze the computational
aspects of NES2RA executed by the gene@home project.

The data set considered in the first experiment is composed by gene expression
hybridizations for the Arabidopsis thaliana plant model organism, namely microar-
ray expression values publicly available in the Plex database [Dash et al., 2012].
The data set comprises 393 hybridization experiments of the GeneChip Arabidopsis
ATH1 Genome Array that encompass 22810 probe sets. The LGN that we used for
A. thaliana is the Flower Organ Specification Gene Regulatory Network (FOS). The

4The experiments were executed on an Intel R© CoreTM i5-4590 processor at 3.30 GHz, with 8 GB of RAM
running a 64 bit Linux with the 3.19.0-32 kernel.

92 Gene Regulatory Network Expansion by Stratified Subsetting

FOS gene network has been characterized and validated in vivo by the use of spe-
cific mutants [Espinosa-Soto et al., 2004], and it is composed by 15 genes connected
by 54 causal relationships [Sanchez-Corrales et al., 2010]. In this case the presence
of the genes in the network is certain and so the vector Π of NES2RA has all its
components set to 1.

The second experiment has been conducted on the bacterial model organism
Escherichia coli. The data set contains 4065 genes for 2470 hybridizations and it
is publicly available in the COLOMBOS [Meysman et al., 2014] database. The
LGN considered is a transcription factor network called gadW collected from the
EcoCyc [Keseler et al., 2013] database. The gadW LGN is composed of 13 nodes
connected by 12 edges, and it is involved in the acid resistance system of E. coli. In
this experiment we compared the results of NES2RA using two probability vectors:
ΠH and ΠL. The former has just the probability of the hub node, the gadW gene,
set to 1 while the probabilities of all the other genes are set to 0. The latter instead,
has all the entries set to 1. The same experimental setup has been used to assess
the computational aspects of NES2RA.

We assessed the biological validity of the results by performing a bibliographic
research, classifying genes in four different classes, as follows:

Class 1 collects genes reported to be biologically or functionally related to the genes
in the LGN;

Class 2 contains genes not reported to be directly related with the input network,
but reported to be related to genes of Class 1;

Class 3 comprises all the genes described in the literature that were reported not
to be related with the input network or with the genes of Class 1;

Class 4 are genes for which no description was found in the available literature.

When we found a gene belonging to Class 1 or Class 2 we considered it to be a true
positive, while a gene falling in Class 3 or Class 4 was considered a false positive.
The precision of the genes in the candidate output list is the ratio between the
number of true positives and the sum of true positives and false positives. Other
measures, like F1 and Recall, can not be computed on real organisms data sets
because no complete ground truth is available. We can only exploit the manually
curated classification that we have performed for the resulting genes provided by
the methods considered.

Table 7.2 reports an example of the candidate genes list for the FOS LGN of
A. thaliana, produced by NES2RA. The list has a precision value of 80% and it

Evaluation 93

Table 7.2: Candidate genes list of the FOS LGN of A. thaliana produced by NES2RA.

Rank AffyID Gene Annotation Class

1 259089 at AT3G04960 Similar to unknown protein Class 1 [Lee et al., 2005]
2 248496 at AT5G50790 ATSWEET10 Class 3 [Chen et al., 2012]
3 265441 at AT2G20870 Cell wall protein precursor Class 1 [Cai et al., 2007]
4 255644 at AT4G00870 Basic helix-loop-helix (bHLH)

family protein
Class 2 [Hu et al., 2003]

5 261375 at AT1G53160 SPL4 (SQUAMOSA
PROMOTER BINDING
PROTEIN-LIKE 4)

Class 1 [Lal et al., 2011]

6 249939 at AT5G22430 Similar to unknown protein Class 1 [Zik and Irish, 2003]
7 255448 at AT4G02810 FAF1 (FANTASTIC FOUR 1) Class 1 [Wahl et al., 2010]
8 245842 at AT1G58430 RXF26 Class 1 [Shi et al., 2011]
9 256259 at AT3G12460 DEDDy 3’-5’ exonuclease

domain-containing protein
Class 4

10 260355 at AT1G69180 CRC (CRABS CLAW) Class 1 [Lee et al., 2005]

Table 7.3: NES2RA precision performance using different aggregation methods. Results
for NESRA BC-mean and ARACNE have been computed in [Asnicar et al., 2015a]

Method k=5 k=10 k=20 k=55

NES2RA N of appearances 0.57 0.57 0.57 0.51

NES2RA BC-mean 0.80 0.90 0.75 0.51

NES2RA BC-min 0.80 0.88 0.80 0.51

NES2RA MC4 (αMC4 “ 0.05) 0.80 0.90 0.75 0.51

NES2RA MC4 (αMC4 “ 0.01) 0.80 0.90 0.75 0.51

NESRA BC-mean 0.90˘ 0.098 0.65˘ 0.049 0.63˘ 0.038 0.43˘ 0.016

ARACNE 0.20 0.30 0.35 0.45

has been obtained aggregating 60 different ranked lists using the MC4 method with
the parameter αMC4 “ 0.01. The values considered for this run are: I “ t100, 250,
500, 1000, 1500, 2000u, D “ t50, 100, 250, 500, 750, 1000, 1250, 1500, 1750, 2000u,
and A “ t0.05u. The gene AT3G12460, ranked in position 9, is considered as a false
positive. However, only a biological wet-lab validation could rule out if it is actually
involved in the FOS LGN.

Table 7.3 shows the precision values of NES2RA using the same set of experi-
ments presented in Table IV by Asnicar et al. [2015a]. Using the very same set of
parameters for NES2RA we aggregated only the six rankings that have the same
values as in NESRA [Asnicar et al., 2015a]: iterations I “ t100, 500, 2000u, subset
dimensions D “ t1000, 2000u and A “ t0.05u. It is possible to see that the best

94 Gene Regulatory Network Expansion by Stratified Subsetting

performances are obtained with list lengths of k “ 5, 10, and 20. In particular, if
we compare these results of NES2RA with the results of NESRA (Table 7.3) we
can see that NES2RA has better precision when considering longer lists (k “ 55).
Moreover, NES2RA prove to have better precision when compared with ARACNE.
NES2RA can be also compared with the PC-algorithm and the PC-stable using
their precision values reported in [Asnicar et al., 2015a], which are 0.39 ˘ 0.03 and
0.43, respectively. It can be seen that NES2RA outperforms both the PC-algorithm
and the PC-stable in the task of finding candidates for GNE.

Although, the PC-algorithm, PC-stable, and ARACNE are used for a NI task,
here we compared them to a GNE approach. In order to do such a comparison we
obtained a pseudo-expansion list by running each method on the whole data set of
A. thaliana. Their results were then filtered w.r.t. the FOS LGN, selecting only the
edges connected with at least a node in the LGN. Then, when possible, the results
were sorted according to the p-value provided by the methods.

Table 7.4 reports the results obtained with different probability vectors to expand
the gadW LGN of E. coli with parameters A “ t0.01, 0.05u, D “ t100, 200u, and
I “ t80, 100, 500, 1000, 1500, 2000u. Here NESRA can also be interpreted as a special
case of NES2RA where the probability vector Π is set to 0 for each gene in the LGN.
Additionally, we analysed the results of ARACNE on the same data set for the same
LGN, using the same analysis applied in Asnicar et al. [2015a]. Interestingly, both
NESRA and NES2RA produce a higher quality expansion list, in particular when
considering only the first five genes in the output lists. We manually curated the
classification of the genes found, and report in bold the genes are classified as either
Class 1 or Class 2, and in italics the ones belonging to either Class 3 or Class 4. It
can be noticed that the injection of prior knowledge in form of presence probability
in the subsets, positively impacts the final quality of the expansion list. Indeed, as
we can see from Table 7.4, the more prior-knowledge is used, the more precise the
expansion lists are, reaching up to 90% precision.

Table 7.5, Table 7.6, and Table 7.7 report the BOINC statistics regarding the
experiments conducted on the E. coli data set. The FLOPs for the workunits have
been computed on the basis of the computation time and the FLOPS of the hosts
machines, determined by BOINC running a Whetstone benchmark [Curnow and
Wichmann, 1976]. In the gene@home project, each workunit is computed twice in
order to be able to validate the results, as explained in Section 7.3. Thus, the actual
FLOPs required for a NES2RA experiment would be half of the ones reported in
Table 7.5. By comparing the average throughput of gene@home and the FLOPs
required for executing NES2RA we see that, by exploiting the volunteer computa-

Evaluation 95

Table 7.4: Ranked lists of the gadW LGN of E. coli. True positives are shown in bold, false
positives in italics. Below the gene name are reported the references to the bibliography.

1
2

3
4

5

N
E

SR
A

h
d

eD
yb

aS
yh

iM
yb

aT
cf

a

[M
as

ud
a

an
d

C
hu

rc
h,

20
03

]
[L

u
et

al
.,

20
13

]
[T

uc
ke

r
et

al
.,

20
02

]
[T

uc
ke

r
et

al
.,

20
02

]
[T

uc
ke

r
et

al
.,

20
02

]

N
E

S2
R

A
Π

H
h

d
eD

yh
iM

yb
aS

yb
aT

cf
a

[M
as

ud
a

an
d

C
hu

rc
h,

20
03

]
[T

uc
ke

r
et

al
.,

20
02

]
[L

u
et

al
.,

20
13

]
[T

uc
ke

r
et

al
.,

20
02

]
[T

uc
ke

r
et

al
.,

20
02

]

N
E

S2
R

A
Π

L
h

d
eD

yh
iM

cb
p

A
yb

aT
ap

p
C

[M
as

ud
a

an
d

C
hu

rc
h,

20
03

]
[T

uc
ke

r
et

al
.,

20
02

]
[T

uc
ke

r
et

al
.,

20
02

]
[T

uc
ke

r
et

al
.,

20
02

]
[H

ay
es

et
al

.,
20

06
]

A
R

A
C

N
E

h
d

eD
yb

aS
dp

s
ai

dB
sr

a
[M

as
ud

a
an

d
C

hu
rc

h,
20

03
]

[L
u

et
al

.,
20

13
]

[D
uk

an
an

d
To

ua
ti

,
19

96
;G

un
dl

ac
h

an
d

W
in

te
r,

20
14

]

[V
ol

ke
rt

an
d

N
gu

ye
n,

19
84

]
[A

ki
ra

,1
98

6;
Iz

ut
su

et
al

.,
20

01
]

6
7

8
9

10

N
E

SR
A

cb
p

M
ai

dB
kc

h
cb

p
A

yj
bQ

[T
uc

ke
r

et
al

.,
20

02
]

[V
ol

ke
rt

an
d

N
gu

ye
n,

19
84

]
[M

ilk
m

an
,1

99
4]

[T
uc

ke
r

et
al

.,
20

02
]

[K
im

et
al

.,
20

10
]

N
E

S2
R

A
Π

H
cb

p
A

kc
h

yc
aC

cb
p

M
,c

ue
R

[T
uc

ke
r

et
al

.,
20

02
]

[M
ilk

m
an

,1
99

4]
[T

uc
ke

r
et

al
.,

20
02

]
[T

uc
ke

r
et

al
.,

20
02

;
St

oy
an

ov
et

al
.,

20
01

]

N
E

S2
R

A
Π

L
yb

aS
ai

dB
hy

aF
hy

aA
hy

aC

[L
u

et
al

.,
20

13
]

[V
ol

ke
rt

an
d

N
gu

ye
n,

19
84

]
[H

ay
es

et
al

.,
20

06
]

[H
ay

es
et

al
.,

20
06

]
[H

ay
es

et
al

.,
20

06
]

A
R

A
C

N
E

cb
p

A
yb

aT
el

aB
ye

gP
ta

lA
[T

uc
ke

r
et

al
.,

20
02

]
[T

uc
ke

r
et

al
.,

20
02

]
[Y

os
hi

da
et

al
.,

20
12

]
[K

um
ar

et
al

.,
20

16
]

[W
eb

er
et

al
.,

20
06

]

96 Gene Regulatory Network Expansion by Stratified Subsetting

Table 7.5: Cumulative BOINC statistics for the E. coli experiments.

#RP runs Workunits Hosts Hosts GigaFLOPS Tot. PetaFLOP

NESRA 24 6424 141 2.76˘ 0.65 177.59

NES2RA ΠH 24 6528 138 2.98˘ 0.88 173.57

NES2RA ΠL 24 7150 151 2.85˘ 0.68 156.80

Table 7.6: Statistics of the workunits computational costs. Statistics computed on the
E. coli data set.

GigaFLOP per workunit

Min Max Avg ˘ SD RSD

NESRA 0.04 186.65 13.67 ˘ 19.03 1.39

NES2RA ΠH 1.00 134.57 13.21 ˘ 16.90 1.28

NES2RA ΠL 0.04 228.68 10.86 ˘ 15.17 1.40

tional power, we could execute a NES2RA experiment in about 2.5 days. The real
execution time, however, may vary depending on several factors, such as the number
of different experiments running at the same time on gene@home. Moreover, the
double validation required by the gene@home project can increase the completion
time of an experiment. Table 7.6 reports a summary of the workunit computational
costs for the experiments conducted on E. coli. Table 7 presents the details of the
computational effort requested by a run of NES2RA, for each combination of the
parameters A, D, and I. The number of the workunits is

P

OPC ˚
i

100

T

were OPC

is computed with Equation 7.2 where the second term is zero, in this case. The
computational effort requested for each run of the RP function, varies within the
same run as it is apparent consider the minimum and the maximum GigaFLOPS
values. It is also worth to note that the pair pα, dq determines the computational
cost required by a single PC++ execution.

7.5 Conclusion

We presented NES2RA, our novel approach for generating ranked candidate genes
lists, which expands known LGNs starting from gene expression data. It exploits it-
erated variable subsetting and ranking aggregation, as our previous proposal NESRA [As-
nicar et al., 2015a], allowing the user to integrate the available prior knowledge on
the network that has to be expanded. This makes possible to model the biologist

Conclusion 97

Table 7.7: Detailed BOINC statistics for NES2RA ΠL on the E. coli data set.

α d i Workunits
GigaFLOP per workunit GigaFLOP

Min Max Avg ˘ SD RSD Sum per PC++

0.01

100

80 38 0.66 3.39 2.52 ˘ 0.54 0.21 191.75 0.05

100 47 0.68 5.28 2.65 ˘ 0.63 0.24 248.78 0.05

500 235 0.68 6.11 2.52 ˘ 0.60 0.24 1186.04 0.05

1000 470 0.66 8.41 2.64 ˘ 1.00 0.38 2493.82 0.05

1500 705 0.63 8.67 2.45 ˘ 0.95 0.39 3461.11 0.05

2000 940 0.04 28.07 2.32 ˘ 1.18 0.51 4492.96 0.05

200

80 18 3.17 14.93 11.51 ˘ 2.54 0.22 414.29 0.24

100 22 6.13 18.32 12.05 ˘ 3.00 0.25 530.25 0.24

500 110 3.17 18.13 9.92 ˘ 2.82 0.28 2182.22 0.20

1000 220 3.11 24.72 10.38 ˘ 3.10 0.30 4567.99 0.21

1500 330 2.91 40.92 10.64 ˘ 6.14 0.58 7024.33 0.21

2000 440 1.18 40.47 9.96 ˘ 4.44 0.45 8771.42 0.20

0.05

100

80 38 1.50 11.06 5.65 ˘ 1.39 0.25 429.41 0.11

100 47 1.48 11.16 5.82 ˘ 1.46 0.25 547.30 0.12

500 235 1.49 10.94 4.64 ˘ 1.30 0.28 2180.19 0.09

1000 470 2.01 19.22 5.16 ˘ 1.96 0.38 4863.63 0.10

1500 705 1.40 13.00 4.77 ˘ 1.88 0.39 6719.52 0.10

2000 940 1.44 228.68 4.99 ˘ 5.37 1.08 9403.84 0.10

200

80 18 14.49 115.36 46.83 ˘ 17.49 0.37 1686.03 0.96

100 22 23.18 56.14 40.58 ˘ 9.21 0.23 1785.45 0.81

500 110 12.21 88.43 38.44 ˘ 10.90 0.28 8571.81 0.78

1000 220 12.19 98.01 38.79 ˘ 13.43 0.35 17184.80 0.78

1500 330 12.02 93.27 41.20 ˘ 15.54 0.38 27358.36 0.83

2000 440 5.45 134.84 43.28 ˘ 14.84 0.34 40513.54 0.92

knowledge about the presence of certain genes in the LGN that is translated into a
higher probability of presence of these genes in the variable subsets generated. The
injection of such prior knowledge shows encouraging results. NES2RA relies on the
computational power provided by the gene@home BOINC project, hosted by the
TN-Grid platform [Asnicar et al., 2015b]. We exploit the gene@home project for
extensive executions of the PC++ algorithm, while all the post-processing, ranking,
and aggregation analyses are performed off-line. The parallel nature of our approach

98 Gene Regulatory Network Expansion by Stratified Subsetting

together with the efficient implementation of the PC-algorithm (namely, PC++),
allow us to easily distribute the computational work using the gene@home project.
We evaluated the performances of NES2RA on the FOS LGN of the model plant
Arabidopsis thaliana. NES2RA outperforms both ARACNE, which is been proven
to be a state-of-the-art NI method [Allen et al., 2012], and our previous proposal
NESRA [Asnicar et al., 2015a]. The runs on the gadW network of Escherichia coli
confirmed the good results and permitted the assessment of the computational load
of our application. Considering the performances of NES2RA, its ability to scale
with respect to the size of the input data, and the quality of the results, we plan to
perform an extensive evaluation using different types of data that encompass sev-
eral organisms, which include the bacterial model organism Escherichia coli and the
eukaryote organism Vitis vinifera.

Chapter 8

OneGenE: Regulatory Gene
Network Expansion via
Distributed Volunteer Computing
on BOINC

In order to overcome some of the limitations of the original PC algorithm, Asnicar
et al. [2015a] suggested that by subsetting the input variables and then combining
the results of the subsets, it could allow to address both bigger genomes (i.e., larger
number of genes) and also increase the precision of the results. In the previous
chapter we showed that by employing a stratified subsetting strategy, in which the
appearance of the input genes in the subsets is ruled by a confidence value provided
as input, can further increase the quality of the results. In this last case, the task
can informally be defined as of Gene Network Expansion (GNE), namely finding
the genes that are connected to a given Local Gene Network (LGN). The result-
ing algorithm, Network Expansion Stratified Subsetting and Ranking Aggregation
(NES2RA), was applied to four networks of Vitis vinifera data [Malacarne et al.,
2018].

Since 2014 we have been running a distributed-computation project, called gene@home,
for the specific task of GNE [Cavecchia et al., 2017]. The gene@home project has
hosted the runs of both NESRA and NES2RA and is now hosting the OneGenE
computation. The gene@home project runs on TN-Grid1 an infrastructure based on
BOINC [Anderson, 2004b], an open-source and popular framework for distributed
volunteer computing, in which we distribute to the clients host a C++ implemen-

1https://gene.disi.unitn.it/test/

100 OneGene

tation of the skeleton function of the PC algorithm (PC++). The overall com-
putational power provided by the users to the project (with a peak of more than
20 TFLOPS as of 20/09/2018) allows us to highly scale-up on both the number
and the dimension of the GNE tasks. In particular, it has become now feasible to
systematically expand each single gene of a genome with up to 30K genes, produc-
ing a resource for both biologists and bioinformaticians that can be further used
for real-time LGN expansion, gene regulatory network inference, and interactive
browsing.

The contribution of this chapter is two-fold. On the one side we present the algo-
rithm One Gene Expansion (OneGenE) [Asnicar, Masera et al., 2019], its rationale,
and the way we plan to use the resulting expansions. In particular, we will see to
what extent OneGenE can be used to mimic in real-time the results computed by
NES2RA. On the other side we give details about the gene@home project and the
current implementation of OneGenE, its performance and the management that
we did in order to run it.

Finally, in order to validate our approach, we present the application of One-
GenE to the expression data of Pseudomonas aeruginosa, a bacterium responsible
for fatal infections and capable of developing antibiotic-resistance.

8.1 OneGenE

OneGenE is a novel method to compute ranked candidate gene lists that expand
known local gene regulatory networks given expression data. As its predecessor
NES2RA, OneGenE is based on the systematic and iterative application of the
skeleton function of the PC algorithm on subsets of the input data, but it aims
to overcome the main criticality of NES2RA, i.e. large latency, by pre-computing
partial results on the BOINC platform.

Figure 8.1 shows the blocks scheme of the OneGenE architecture, highlighting
the different platforms and the two computational stages:

• Pre-computation step: candidate expansion lists are pre-computed for each
gene of the target organism (Algorithm 6) exploiting the BOINC platform;

• Real-time interaction: the user provides an input LGN and OneGenE
computes on-the-fly the final candidate expansion list, by aggregating the pre-
computed intermediate results by means of state-of-the-art ranking aggregators
(Algorithm 7).

The input of the pipeline consists in a n ˆ m gene expression data matrix E,

OneGenE 101

Va
ria

bl
e

su
bs

et
tin

g
Va

ria
bl

e
su

bs
et

tin
g

Va
ria

bl
e

su
bs

et
tin

g

W
or

k
di

sp
at

ch
er

PC++

Po
st

pr
oc

es
si

ng

PC++

PC++

. .
 .

PC++

Po
st

pr
oc

es
si

ng

PC++

PC++

. .
 .

PC++

Pa
rti

al
 a

gg
re

ga
tio

n

PC++

PC++

. .
 .

PC-IM(, ,)gn E θ1

Po
st

pr
oc

es
si

ng

Gene expression
data E

Parameters Θ

Candidate gene
lists of g1

Candidate gene
lists of g2

Candidate gene
lists of gn

LGN to be expanded
 �LGN

List selection

Ranking
aggregation

Final candidate gene
expansion list l⋆

LGN

b

Gene expression
data E

Parameters Θ

Input gene gn
Candidate

gene list ln,1

Candidate
gene list ln,2

Candidate
gene list ln,p

Computed
server side
Computed on
BOINC
Computed in
batch
Computed on
demand

a

PC-IM(, ,)g1 E Θ

PC-IM(, ,)g2 E Θ

PC-IM(gn, E, Θ)

Figure 8.1: Blocks scheme of the OneGenE architecture. Subfigure a shows the detail of the
computation for a single gene g, while Subfigure b shows the overview of OneGenE, highlighting
the two computational stages.

where n “ |S| is the number of transcripts S and m the number of conditions, and
a set of parameter tuples

Θ “ tpα, d, iq | α P A, d P D, i P Iu,

where A,D and I are respectively the sets of alpha values, tile sizes (namely subset
sizes), and number of iterations. For each transcript g in S, p instances of PC-IM
(Figure 8.1a) are executed on the BOINC platform, where p “ |Θ| “ |A| ¨ |D| ¨ |I|.
One PC-IM is a special case of NES2RA, that receives as input-LGN a single gene
g with probability vector Π “ 1, i.e. the gene g is present in each subset. Unlike
NES2RA, no ranking aggregator is applied at this stage, so each PC-IM returns
a candidate expansion list lg,θ for each tuple of parameters θ “ pα, d, iq for θ P Θ.
The candidate gene expansion lists are stored on a local server, and, once all the
intermediate results have been computed, OneGenE is ready to be queried by the
user with input LGNs.

Let SLGN be the set of transcripts in an input LGN and lg,θ is the candidate
expansion list of the gene g with the parameter tuple θ. The final candidate gene
expansion list is obtained by combining the set of partial results

L “ tlg,θ | g P SLGN , θ P Θu

by means of a ranking aggregator (see Section 2.5).

102 OneGene

Algorithm 6: OneGenE: Precomputation Step.
Data: S set of transcripts, E expression data.
Input: I set of values of number of iterations, D set of values of the subset dimension, A set of

values of the significance level α
Result: a set of ordered lists of candidate transcripts

LÐH // L set of ordered lists

foreach g P S do
foreach θ “ pα, d, iq P AˆD ˆ I do

// lg,θ Ð RP(S, {g}, E,1, i, d, α) call NES2RA Ranking Procedure (Algorithm 4)
namely:

foreach j ď i do
Randomly generate a minimal collection of subsets of dimension d of S such that g is in
every subset and each transcript is in at least one subset

foreach subset do
Run the PC-skeleton function (Alg. 1) on the expression data E restricted to the
transcripts of the subset and generate a network.

foreach γ adjacent to g in the networks do
fγ Ð #networks s.t. γ, g are adjacent
f 1γ Ð fγ{p#subsets that contain γ)

lg,θ Ð genes ordered with respect to f 1γ
// The gene g is present in the subsets with probability 1 so RP takes the

name of PC-IM and the call above could be denoted as lg,θ Ð PC-IM
(S,{g},E,i,d,α)

L Ð LY lg,θ

return L

8.2 Implementation

Since year 2014 CNR-IMEM, in collaboration with the University of Trento, has
run TN-Grid, a computing infrastructure based on the BOINC platform. TN-Grid
is hosting gene@home, a project developed with the Edmund Mach Foundation
[Cavecchia et al., 2017] with the goal to expand genetic regulatory networks with
putative causal relationships by analyzing gene expression data, using the NESRA
and NES2RA algorithms. The gene@home project is now also running OneGenE.

8.2.1 Performance

As shown in Section 8.1, the OneGenE application running on the gene@home
BOINC server, has the following main sets of parameters: I (number of iterations),
D (the subset dimensions, i.e. the tile sizes), and A (the set of α to be used in the
statistical test of the PC algorithm). These parameters need to be carefully chosen
by balancing the execution speed of the application, the accuracy of the results and

Implementation 103

Algorithm 7: OneGenE: Real time interaction
Data: L “ tlg,θu a set of ordered lists of candidate transcripts
Input: k maximum length of the lists
Result: ordered list of candidate transcripts

while true do
Ltemp ÐH // Ltemp set of ordered lists
User enters/selects/edits SLGN set of LGN transcripts // Lists selection
foreach lg,θ P L such that g P SLGN do

Ltemp Ð Ltemp Y tlg,θ }

Ltemp Ð top(Ltemp, k) // cut each list in Ltemp to the first k elements

visualize l˚LGN=Ranking aggregation(Ltemp)

the statistical errors, and their values depends on the expression dataset in input.
Additionally, the parameter n pc, the number of PC algorithm executions collected
in a single workunit (the BOINC unit of work that is distributed to the volunteers),
and the cut off, a way of shortening the size of the output file by removing the lesser
present interactions found in the ranked output list of each single workunit, have
to be selected in order to optimize server and client performance and the overall
network bandwidth. Due to the large running times expected for completing a
OneGenE run, it is crucial to identify the optimal parameter values at the very
early stages of the computational experiment.

The OneGenE experiments are intrinsically slow. The core application, ini-
tially written in the R language, was first rewritten in C++ (obtaining a substantial
execution speed increase), adapted to BOINC using its API, compiled for differ-
ent computing platforms (Windows x32/x64, Linux x32/x64, Mac OS and Linux
ARM), and made publicly available to the volunteers2. One of the BOINC volun-
teers (Daniel Frużyński, Motorola Solutions Systems Polska Sp.z.o.o), in his spare
time, made significant performance improvements to the code, profiling it using
Callgrind (Valgrind/Linux) [Developers, 2010], by

• removing two top bottlenecks in code (range check, better I/O performance);

• rewriting of the correlation function, focusing on unaligned load/store instruc-
tions and unnecessary memory writes;

• introducing templated versions of most performance-critical functions;

• adding SIMD (Single instruction, multiple data), SSE-AVX-FMA hardware-
related optimization;

2https://bitbucket.org/francesco-asnicar/pc-boinc

https://bitbucket.org/francesco-asnicar/pc-boinc

104 OneGene

Table 8.1: Optimization of the executable of the OneGenE application. The table shows
the results computed on the E. coli dataset, reporting in the last column the relative gain computed
w.r.t. the previous version in the table.

version SIMD Organism # of Transcripts # of Conditions α Tile size Time (s) Rel. gain

0.09 — E. coli 4065 2470 0.05 200 51.80 —
0.10 sse2 E. coli 4065 2470 0.05 200 26.29 1.97
0.11 sse2 E. coli 4065 2470 0.05 200 16.62 1.58
1.00 sse2 E. coli 4065 2470 0.05 200 10.60 1.57

Table 8.2: Benchmark table for the OneGenE application. The benchmark have been
computed with application version 1.00, considering the E. coli and P. aeruginosa organisms,
showing how the execution time is influenced by the tile size and α parameters.

Organism # of Transcripts # of Conditions Tile size α Time (s) ETA (years)

E. coli 4065 2470 100 0.05 2.4 1.6
E. coli 4065 2470 200 0.05 10.6 3.6
E. coli 4065 2470 100 0.01 0.9 0.6
E. coli 4065 2470 200 0.01 4.0 1.4
E. coli 4065 2470 500 0.05 180.1 26.1
E. coli 4065 2470 1000 0.05 609.4 49.0
P. aeruginosa 5524 238 100 0.05 0.4 0.5
P. aeruginosa 5524 238 500 0.05 0.5 0.1
P. aeruginosa 5524 238 1000 0.05 1.0 0.1
P. aeruginosa 5524 238 1500 0.05 2.0 0.2
P. aeruginosa 5524 238 2000 0.05 3.6 0.2

• using Gray code (reflected binary code, RBC, [Frank, 1953]) for generating
combinations (version 1.0).

Table 8.1 shows the achieved relative speed-ups, for versions 0.09-1.00 of the appli-
cation executable, where version 1.00 is the one currently running on gene@home.

8.2.2 Benchmarks

The benchmarks have been executed on the bacterial model organism E. coli using
the COLOMBOS dataset [Moretto et al., 2016] and on P. aeruginosa, the latter will
be the considered for further analysis and discussed in Section 8.3.1.

Among the parameters of a BOINC workunit, an important one is the estimate
of the computing time, which allows the server to perform efficient scheduling and
assign the so-called credits (virtual reward for the volunteers) in a fair way. If a

Implementation 105

Figure 8.2: Computing status page of the gene@home project.

volunteer participates in many BOINC projects, appropriate compute time estimate
allows the BOINC client to better choose it’s scheduling parameters (cache, priority,
resource shares), thus minimizing deadline misses. The calculation is usually done
by running a small number of randomly generated PC algorithm executions on a
benchmark machine, getting the execution time and calculating the needed FLOPS
with the formula running time ˚ host flops ˚ scale factor. We therefore built up a
benchmark table for a small set of Prokaryotes (Table 8.2).

The reference machine used for the benchmark is an Intel I7-4770k workstation
running Linux, with 8GB RAM, Hyper-threading enabled, and a theoretical compu-
tational power of 4374.07 MFLOPS and 16809.68 MIPS (average values given by the
BOINC client using standard Whetstone/Dhrystone synthetic benchmark system).
Benchmarks were run using only one thread, keeping the others free. The Time
column shows the averaged time needed for completing five single PC++. The ETA
column (calculated by assuming 1000 as number of iterations) gives an estimate of
the time needed for completing a OneGenE pre-computation step for all g P S
using all the eight threads of the reference machine. For E. coli dataset, there is a
significant change of the execution time by increasing just the tile size parameter
from 100 to 1000.

The speed of our flow-controlled work generator (one of the Boinc server key

106 OneGene

20
18

-0
9-

01
20

18
-0

9-
02

20
18

-0
9-

03
20

18
-0

9-
04

20
18

-0
9-

05
20

18
-0

9-
06

20
18

-0
9-

07
20

18
-0

9-
08

20
18

-0
9-

09
20

18
-0

9-
10

20
18

-0
9-

11
20

18
-0

9-
12

20
18

-0
9-

13
20

18
-0

9-
14

20
18

-0
9-

15
20

18
-0

9-
16

20
18

-0
9-

17
20

18
-0

9-
18

20
18

-0
9-

19
20

18
-0

9-
20

20
18

-0
9-

21
20

18
-0

9-
22

20
18

-0
9-

23
20

18
-0

9-
24

20
18

-0
9-

25
20

18
-0

9-
26

20
18

-0
9-

27
20

18
-0

9-
28

20
18

-0
9-

29
20

18
-0

9-
30

20
18

-1
0-

01
20

18
-1

0-
02

20
18

-1
0-

03
20

18
-1

0-
04

20
18

-1
0-

05
20

18
-1

0-
06

20
18

-1
0-

07
20

18
-1

0-
08

20
18

-1
0-

09
20

18
-1

0-
10

20
18

-1
0-

11
20

18
-1

0-
12

20
18

-1
0-

13
20

18
-1

0-
14

20
18

-1
0-

15
20

18
-1

0-
16

20
18

-1
0-

17
20

18
-1

0-
18

20
18

-1
0-

19
20

18
-1

0-
20

20
18

-1
0-

21
20

18
-1

0-
22

20
18

-1
0-

23
20

18
-1

0-
24

20
18

-1
0-

25
20

18
-1

0-
26

20
18

-1
0-

27
20

18
-1

0-
28

20
18

-1
0-

29
20

18
-1

0-
30

20
18

-1
0-

31

0

5

10

15

20

25

30

35

40

TF
LO

PS

Formula BOINC challenge
Annual average load: 11.6

Figure 8.3: Estimated FLOPS per day for gene@home project. Data are courtesy of Willy
de Zutter (https://boincstats.com/)

components, the one that actually builds the workunits, written in the Python
language) depends only on the number of transcripts of the dataset and the tile
size. In the specific case of P. aeruginosa, being the workunit’s computational time
that short (as seen in Table 8.2), the work generator was not able to make enough
workunits to satisfy the volunteers’ requests for jobs. This led to a decrease of the
BOINC system computational power.

8.2.3 Computational power and drawbacks

The use of a volunteer-based distributed computing system, like the BOINC frame-
work, has some drawbacks. Any workunit is sent to at least two different volunteers,
with a deadline (4 days in our set up). The returned results, i.e. the application out-
put files containing the expansion list, are considered correct only if returned before
the deadline and if at least two of them are bit-wise identical (homogeneous redun-
dancy), if not they are sent to other volunteers. This procedure, while obviously
minimizing client-side computational errors, practically halves our theoretical com-
puting power. Moreover, for expanding a single transcript, the system distributes
several workunits, and the slowest one to be completed determines the overall com-
putation time. Another issue is that BOINC is a volatile resource, only relying on
volunteers, therefore the overall available computing power is difficult to predict
and to maintain in time. However, being active in solving volunteer’s problems and
taking care of communications issues we were able to involve a large number of vol-
unteers, many of them with a large number of powerful computers (a snapshot of the
server’s status page is shown in Figure 8.2). In the last year we achieved an average
power of 11.6 TFLOPS (using about 350 of our reference computer), and this value
could be further increased by upgrading our server resources. Figure 8.3 shows the

https://boincstats.com/

Pseudomonas aeruginosa 107

computing power of TN-Grid in a 60 days range. The high peak around 2018-09-16
is due to a competition among volunteers that attracted a significant number of them
to the project, just for the duration of the competition (3 days), this peak value is
now very close to our theoretical power limit, without using non-volatile resources,
such as HPC.

8.3 Pseudomonas aeruginosa

The bacterial organism Pseudomonas aeruginosa is an ubiquitous species that can
be an opportunistic pathogen causing acute and chronic infections in patients with
a compromised immune system. In particular, patients affected by Cystic Fibrosis
(CF) are susceptible to airways infections mainly caused by P. aeruginosa. About
30% of babies affected by CF encounter this pathogen within their first year of
life and can experience acute infections. This percentage increase up to 50% if we
consider instead a span of time within their three years of life. One of the main
reasons that make P. aeruginosa a dangerous bacteria lies in its genome plasticity
and ability to acquire resistances, in particular to antibiotics. About 70% of adult
CF patients that are colonized by P. aeruginosa still decease [Moradali et al., 2017].

In this work we retrieve from the COLOMBOS database [Moretto et al., 2016]
an expression dataset of P. aeruginosa and in particular of the strain PAO1. The
expression dataset retrieved is a collection of gene expression values collected from
public resources, like Gene Expression Omnibus e ArrayExpress, and incorporates
several different types of data, like RNA-seq and microarray. These data undergo:
(1) a quality-control step whose aim is to ensure that gene expression measures are
consistent; and (2) a normalization step that allows comparison between gene and
different experiments.

The retrieved expression dataset is composed of 5,654 genes and for each of them
there are 561 expression measures. Expression values here are defined as the log-
ratio with respect to a house-keeping gene (i.e., a gene known to be not affected
by the experiment and for which its expression is considered basal). The log-ratio
normalization can be defined as: log2pG{Bq, where G represents the gene expression
value of the gene G, and B represent the gene expression value of the basal gene
G. This normalization allows the comparison of gene expression measures obtained
with different techniques and technologies as in this way it is reported the magnitude
of the expression of the a gene with respect to a reference, and not its actual value
that can depend on the experiment conditions.

The retrieved dataset has been further cleaned by removing the experiments

108 OneGene

that do not have expression values for more than 25% of the genes of P. aeruginosa
PAO1 strain, reducing the original collection of 561 experiments to 238 experiments.
After the removal of experiments with missing values, we checked genes for missing
expression values removing such genes that still had missing expression values for
more than 25% of the experiments, removing 130 genes from the initial set yelding a
dataset of 5,524 genes. Experiments and genes retained after these two cleaning steps
that still had missing values, for statistical stability reasons of the PC algorithm,
we replaced the missing values with the median computed on the available values.

For the experiments, performed on the cleaned expression dataset of P. aerug-
inosa PAO1 strain, we used the following parameters: I “ t5000, 10000u, D “

t750, 1000, 1250, 1500u, and A “ t0.01, 0.05u. These set of parameters for the One-
GenE algorithm result in a total of 16 expansion lists for each gene, which were
subsequently aggregated by means of five different aggregators: MC4 [Dwork et al.,
2001a], BC-mean, BC-median, RankAggreg [Pihur et al., 2009], and RobustRank-
Aggreg [Kolde et al., 2012].

8.3.1 Experimental results

For the experiments we decided to study a well-known biological pathway in Bacteria
called quorum-sensing. Quorum-sensing is a form of “communication” used by Bac-
teria that allows them to regulate gene expression of cell density-dependent genes.
P. aeruginosa has two known quorum-sensing systems regulated by las and rhl gene
families, respectively. These two quorum-sensing gene families regulates the expres-
sion of many factors, and among them they can control virulence, pathogenicity, and
biofilm development [Li et al., 2007]. Our experiments focused on four P. aeruginosa
genes belonging to the two quorum-sensing networks: lasI, lasR, rhlI, and rhlR.

Table 8.3 shows the top 10 genes of final candidate expansion lists for NES2RA
and OneGenE, executed with the same set of parameters and aggregated using
different ranking aggregators, and Figure 8.4 highlights the similarity of these lists
by means of the averaged and plain Jaccard dissimilarities [Greene et al., 2014].

One of the main goal of OneGenE is to overcome the high latency of NES2RA,
thus we are interested in being able to recreate the NES2RA candidate expansion
lists as precisely as possible. According to Figure 8.4, Borda-Count mean is the best
ranking aggregator in this scope. This results was highly expected, because in the
post-processing of NES2RA genes found connected to the LGN are normalized by its
size. In other words, if we consider each gene in SLGN as independent, the resulting
expansion list of NES2RA is the average of the contributions of the connected genes.

We performed a bibliographic research of the obtained candidate expansion list in

Pseudomonas aeruginosa 109

Table 8.3: Top 10 candidate genes OneGenE. Top 10 candidate genes for lasI, lasR, rhlI, and
rhlR networks by ranking aggregator. Bold genes correspond to class 1 results, i.e. genes related
to Quorum Sensing (true positives); while the other are class 2 and class 3. The last line report
the percentage of true positives (TP) for each list.

N
E

S2
R

A
O

ne
G

en
E

M
C

4
B

C
-M

ea
n

B
C

-M
ed

ia
n

R
an

kA
gg

re
g

R
ob

us
tR

an
k

1
rs

aL
[R

am
pi

on
i

et
al

.,
20

07
]

ap
rI

[W
ag

ne
r

et
al

.,
20

04
]

rs
aL

[R
am

pi
on

i
et

al
.,

20
07

]
rs

aL
[R

am
pi

on
i

et
al

.,
20

07
]

cl
pP

2
rs

aL
[R

am
pi

on
i

et
al

.,
20

07
]

2
cl

pP
2

rh
lA

[P
es

ci
et

al
.,

19
97

]
cl

pP
2

cl
pP

2
rs

aL
[R

am
pi

on
i

et
al

.,
20

07
]

ap
rI

[W
ag

ne
r

et
al

.,
20

04
]

3
ap

rI
[W

ag
ne

r
et

al
.,

20
04

]
P

A
01

22
[G

ilb
er

t
et

al
.,

20
09

]
xc

pP
[C

ha
po

n
H

er
vé

et
al

.,
19

97
]

xc
pP

[C
ha

po
n

H
er

vé
et

al
.,

19
97

]
PA

25
92

xc
pP

[C
ha

po
n

H
er

vé
et

al
.,

19
97

]

4
xc

pP
[C

ha
po

n
H

er
vé

et
al

.,
19

97
]

la
sA

[T
od

er
et

al
.,

19
94

]
ap

rI
[W

ag
ne

r
et

al
.,

20
04

]
ap

rI
[W

ag
ne

r
et

al
.,

20
04

]
PA

34
96

P
A

01
22

[G
ilb

er
t

et
al

.,
20

09
]

5
PA

50
61

rh
lB

[P
ea

rs
on

et
al

.,
19

97
]

PA
50

61
PA

50
61

xc
pP

[C
ha

po
n

H
er

vé
et

al
.,

19
97

]
rh

lA
[P

es
ci

et
al

.,
19

97
]

6
la

sA
[T

od
er

et
al

.,
19

94
]

PA
33

47
ta

l
ta

l
PA

30
10

cl
pP

2

7
PA

25
92

cl
pP

2
la

sA
[T

od
er

et
al

.,
19

94
]

la
sA

[T
od

er
et

al
.,

19
94

]
PA

51
78

m
sc

L

8
PA

43
12

PA
41

41
P

A
01

22
[G

ilb
er

t
et

al
.,

20
09

]
P

A
01

22
[G

ilb
er

t
et

al
.,

20
09

]
PA

12
45

pr
fA

9
PA

35
29

PA
30

10
PA

43
12

PA
43

12
P

A
01

22
[G

ilb
er

t
et

al
.,

20
09

]
PA

33
47

10
PA

34
96

xc
pP

[C
ha

po
n

H
er

vé
et

al
.,

19
97

]
PA

35
29

PA
35

29
ap

rI
[W

ag
ne

r
et

al
.,

20
04

]
rh

lB
[P

ea
rs

on
et

al
.,

19
97

]

T
P

40
%

60
%

50
%

50
%

40
%

60
%

110 OneGene

MC4
BC-mean

BC-median

RankAggreg

RobustRank
0.0

0.2

0.4

0.6

0.8

1.0

sc
or

e

Jaccard
Average Jaccard

Figure 8.4: Output similarity by aggregator. Jaccard and Averaged Jaccard coefficients be-
tween NES2RA candidate expansion list and OneGenE with different ranking aggregators.

order to assess the biological relevance of the results. Table 8.3 reports the collected
information, such that

• class 1: are genes with known relations with the input LGN (marked in bold);

• class 2: are known genes, but there are no evidence of relations with the input
LGN (reported as gene names in italic);

• class 3: are unknown genes (reported with their gene ID).

In the evaluation we consider the worst case, where all the unknown relations are
wrong, so both class 2 and class 3 are considered not correct and only class 1
results are true positives. Interestingly, all the OneGenE candidate expansion lists
match or outperform the results of NES2RA. In particular, we can notice that
both MC4 and RobustRankAggreg, that have the lowest values of list similarity
w.r.t. NES2RA, are instead retrieving the best candidate expansion lists.

The gene network expansion approach has the aim of suggesting to biologists
potentially relevant genes found to be connected to the provided set of genes of
interest. In biology, it is hardly the case for which we have a full knowledge about
the function of each gene in a given organism. So, if we look at the expansion lists
obtained we can notice that there is one gene (clpP2) always appearing in all lists,
but that it has never been studied before whether it plays a role with respect to

Conclusion 111

the quorum-sensing network. In the literature, the clpP2 gene has been previously
reported to be involved in protein degradation of malformed proteins. This can
suggests that: (1) it is possible that by studying this particular gene we can find
a new interaction within the quorum-sensing network’s genes, or (2) it is possible
that P. aeruginosa was under a condition of stress (at least for the quorum-sensing
network genes) when the experiments were conducted.

8.4 Conclusion

The expansion of gene regulatory networks is a task that can benefit from the
application of causal discovery methods such as the PC algorithm. Here we built on
our previous proposals of subsetting (NESRA) and stratified subsetting (NES2RA)
of variables for permitting the application of the PC algorithm to problems with an
higher number of variables. The main idea is to systematically expand each gene of
a genome and then let the user query with a local gene network and presenting the
aggregation of the lists. We called this approach OneGenE.

The implementation of the pre-computation step of OneGenE runs on a BOINC-
based distributed architecture that has proven to be reliable and scalable to permit a
systematic expansion of each gene of an entire genome. We gave details of the man-
agement of the system and we argue that it represents a viable way for addressing
the application of OneGenE to other genomes.

We tested the aggregation part of OneGenE and we have shown that its appli-
cation to P. aeruginosa produces in the case of the quorum-sensing network satisfac-
tory results. In particular, the aggregation of the expansion lists of the involved gene
not only is able mimic the behavior of NES2RA but, with the most sophisticated
ranking aggregation technique, is able to improve on it. However, the test is rather
limited and further extensive testing would be needed in order to draw definitive
conclusions on the comparison of the methods.

Further work is required in order to systematically applying OneGenE to other
organisms and to provide a user-friendly web interface to browse and aggregate the
results.

112 OneGene

Chapter 9

Conclusions

Proteins are the workhorse molecules of life, playing key roles in all biological pro-
cesses. An accurate functional annotation of these macro molecules and their re-
lations is therefore crucial to unveil the deepest mechanisms of life. To this end
next generation sequencing technologies came both as an opportunity and a chal-
lenge, leading to a paradigm shift in biology research. Biologist have now access to
previously unimaginable amount of data, but are forced to exploit computational
tools to unveil the information hidden in the data. In this thesis we explored the
intrinsic multi-target nature of this data, providing new predictive tools to deal with
them. The common ground among the proposed tools is the possibility to exploit
the flux of information among target-variables or examples in order to increase the
prediction quality.

Chapter 4 presents Ocelot, a predictive pipeline for protein function prediction
(PFP). Ocelot is based on Semantic Based Regularization [Diligenti et al., 2012,
2017], a kernel method developed to incorporate relational knowledge in form first
order logic (FOL) rules in the learning process. We built two set of rules, the first
one reflecting the taxonomic structure imposed by the gene ontology annotation
space, the second one binding interacting proteins with target variables. Ocelot
has been applied genome-wide on the eukaryotic model organism Saccharomyces
cerevisiae after removing homologies to asses its performance. We compared it
against GoFDR [Gong et al., 2016] and DeepGO [Kulmanov et al., 2018]. As baseline
we used the BLAST-based classifier provided by [Jiang et al., 2016a] and two versions
of Ocelot, one without protein-interaction rules and one with no rules at all.
Ocelot outperform the competitors, both the one that trained only the yeast
data, and the one that have access to UNIREF90 [Suzek et al., 2015]. Moreover,
the comparison with the baselines shows that the incorporation of prior knowledge
in form of FOL rules effectively constrains the learning process, especially when

114 Conclusions

the natural threshold τ “ 0.5 is chosen. Ocelot is a solid predictive pipeline for
intra-genome annotation, but we are planning to expand the set of rules in order to
adapt it to the simultaneous annotation of multiple genomes, or the prediction of
biochemical pathways.

Artificial neural networks (ANNs) have shown excellent predictive performance,
but previous works specifically facing hierarchical-multilabel classification (HMC)
[Cerri et al., 2014, 2015] are far from optimal. In chapter 5 we present AWX [Masera
and Blanzieri, 2019a], an ANN output layer specifically developed to provide hier-
archically consistent multilabel predictions. AWX jointly predicts and optimize the
whole target hierarchy: leaf-terms have learned weights and are directly predicted,
while inner nodes are predicted by combining the leaf-term scores by means of the
max function or l-norms. By doing this, the prediction for the terms close to the root
(typically easier to predict), is forced to flow through the leaf-terms, which are by far
more difficult to predict. We introduced a generalization of the true path rule (TPR)
to continuous prediction to guarantee hierarchical consistency independently to the
chose threshold value τ and we proved that AWX is consistent both under the TPR
and its generalized version. To assess AWX performance we evaluated it on differ-
ent biological benchmark datasets, annotated both with GO (DAG structure) and
FunCat (tree structure). AWX outperformed the state-of-the-art Clus-HMC [Vens
et al., 2008] and the previous ANN-based approach, namely HMC-MLP. But more
importantly, we showed that the AWX architecture effectively exchanges informa-
tion among target variables, as demonstrated by the comparison with the baseline
method MLPlevaes that is constantly outperformed by AWX. We released the code
of AWX as a component of Keras, a popular framework for ANN programming, so
that it could be easily integrated in any ANN architecture that requires a consistent
hierarchical multilabel prediction.

In Chapter 6 we face the problem of having a multi-target prediction task in the
data, that is however not reflected by a binary annotation space. We present VSC
[Masera and Blanzieri, 2019b] as a possible solution, a “concept” classifier designed
to test the idea that features based on the notion of locality can be effectively
incorporated in an ANN architecture. VSC defines max-margin hyperplanes for
a subset of opposite-class pairs and a confidence measure characterized in terms
of Chebichev inequality. The confidence measure weights the contribution of the
computer hyper planes given the target example, giving more importance to those
planes that are “closer” to the target example. We experimentally evaluated VSC
on 22 benchmark datasets. The impact of the locality-based confidence measure
was assessed by introducing a baseline version of VSC where the confidence was

115

fixed to 1, while the general performance were compared against 10 general-purpose
binary classifiers. The evaluation showed that VSC effectively incorporates the
concept of locality by means of the confidence measure obtaining significantly better
results. VSC proved to be a valid binary classifier against the tested competitors,
outperforming them with the exception of SVM with RBF kernel. This is however
not contradictory with our thesis, since RBF kernel is also a local method.

Chapter 7 presents NES2RA [Asnicar, Masera et al., 2016], an evolution of its
predecessor NESRA [Asnicar et al., 2015a], a predictive pipeline designed to search
for candidates to expand known gene regulatory networks (GRN). Both approaches
subdivide the whole set of genes of the input organism in (almost) disjoint subsets,
reconstruct a causal network for each subset and then combine the results with
ranking aggregators. NES2RA enriches its predecessor by allowing the researcher
to modulate the appearance probability of the genes to be expanded thanks to a
probability vector. The rationale is to increase the focus on the target genes by
increasing their chances to be part of the separation set, i.e. set of genes that is
used to test the conditional independence. GRNs, also for model organisms are
yet only partially known, therefore no gold truth is available to perform a system-
atic evaluation of the proposed approaches. In order to assess the quality of the
predictions, a literature validation was performed for two GRNs, one belonging to
Arabidopsis thaliana, the other for Escherichia coli. NES2RA outperformed its pre-
decessor NESRA and ARACNE [Margolin et al., 2006a], predicting correctly 9 out
10 possible candidates to expand both the considered networks. In collaboration
with Edmund Mach Foundation, we successfully applied NES2RA to four GRN of
Vitis vinifera related to climat change [Malacarne et al., 2018]. In the same article
we compare NES2RA with simple correlation, highlighting the advantages of con-
sidering simultaneously subsets of genes (separation sets) when deciding over the
independence of a pair of genes.

The BOINC-based project gene@home provides NES2RA with more then 10
TFLOPS of average computational power, but the computation of a single can-
didate expansion list may require from few hours to days, making NES2RA not
suitable for preliminary exploratory researches. In order to overcome this high la-
tency, we developed OneGenE [Asnicar, Masera et al., 2019], where candidate
expansion lists are precomputed for each transcript t in an organism using πt “ 1
and then combined on demand to expand target networks. We tested OneGenE
on the bacterial organism Pseudomonas aeuruginosa and performed a literature re-
search to validate the expansion of a subset of the Quorum sensing network. Both
the MC4 [Dwork et al., 2001a] and RobustRank [Kolde et al., 2012] ranking aggre-

116 Conclusions

gators provide solid results, with 60% true positive in the first 10 retrieved results,
outperforming even NES2RA (40% of true positives). OneGenE has been already
precomputed genome-wide for Pseudomonas aeuruginosa, Escherichia coli, Vitis
vinifera, and is currently under execution the expansion of the human expression
data of the FANTOM 5 project [Forrest et al., 2014]. Given the positive results
obtained in by the preliminary evaluation on Pseudomonas aeuruginosa, we hope in
the next future to release the precomputed data and develop a web-resource where
researchers can easily expand gene networks of interest.

Chapter 10

Publications

International Journals

Teso, Stefano; Masera, Luca; Diligenti, Michelangelo, and Passerini, Andrea. Com-
bining learning and constraints for genome-wide protein annotation. BMC Bioin-
formatics, 20(1):338, 2019

Malacarne, Giulia; Pilati, Stefania; Valentini, Samuel; Asnicar, Francesco; Moretto,
Marco; Sonego, Paolo; Masera, Luca; Cavecchia, Valter; Blanzieri, Enrico, and Moser,
Claudio. Discovering causal relationships in grapevine expression data to expand
gene networks. a case study: Four networks related to climate change. Frontiers in
Plant Science, 9:1385, 2018

Asnicar, Francesco; Masera, Luca; Coller, Emanuela; Gallo, Caterina; Sella, Nadir;
Tolio, Thomas; Morettin, Paolo; Erculiani, Luca; Galante, Francesca; Semeniuta,
Stanislau; Malacarne, Giulia; Engelen, Kristof; Argentini, Andrea; Cavecchia, Val-
ter; Moser, Claudio, and Blanzieri, Enrico. NES2RA: Network Expansion by Strat-
ified Variable Subsetting and Ranking Aggregation. The International Journal of
High Performance Computing Applications, 32(3):380–392, aug 2016

International Conferences

Asnicar, Francesco; Masera, Luca; Pistore, Davide; Valtentini, Samuel; Cavecchia,
Valter, and Blanzieri, Enrico. OneGene: Regulatory Gene Network Expansion via
Distributed Volunteer Computing on BOINC. In 27th Euromicro International Con-
ference on Parallel, Distributed and Network-Based Processing, 2019

Masera, Luca and Blanzieri, Enrico. Very Simple Classifier: a Concept Binary

118 Publications

Classifier to Investigate Features Based on Subsampling and Locality. In European
Symposium on Artificial Neural Networks, Computational Intelligence and Machine
Learning, 2019, 2019b

Masera, Luca and Blanzieri, Enrico. AWX: An Integrated Approach to Hierarchical-
Multilabel Classification. In Machine Learning and Knowledge Discovery in Databases
2018, Proceedings, Part I, pages 322–336. Springer International Publishing, 2019a

Asnicar, Francesco; Erculiani, Luca; Galante, Francesca; Gallo, Caterina; Masera,
Luca; Morettin, Paolo; Sella, Nadir; Semeniuta, Stanislau; Tolio, Thomas; Malacarne,
Giulia; Engelen, Kristoff; Argentini, Andrea; Cavecchia, Valter; Moser, Claudio, and
Blanzieri, Enrico. Discovering candidates for gene network expansion by distributed
volunteer computing. In 2015 IEEE Trustcom/BigDataSE/ISPA, volume 3, pages
248–253, Aug 2015a

Asnicar, Francesco; Sella, Nadir; Masera, Luca; Morettin, Paolo; Tolio, Thomas;
Semeniuta, Stanislau; Moser, Claudio; Blanzieri, Enrico, and Cavecchia, Valter.
TN-Grid and gene@home project: Volunteer Computing for Bioinformatics. In
BOINC: FAST 2015, Second International Conference BOINC-based High Perfor-
mance Computing: Fundamental Research and Development, pages 1–15, 2015b

Cavecchia, Valter; Asnicar, Francesco; Masera, Luca; Blanzieri, Enrico, and Moser,
Claudio. GENE@HOME: Improving and optimizing the scientific pipeline. In Pro-
ceedings of the XIII International Scientific Conference on Optoelectronic Equipment
and Devices in Systems of Pattern Recognition, Image and Symbol Information Pro-
cessing, Kursk, Russia, may 16-19 2017

Chapter 11

Released Software

During my PhD activity I implemented and released the following pieces of software.

AWX

AWX is implemented within the Keras framework, because of its popularity and
modularity. AWX can indeed be stacked on top of any NN architecture, and provide
the user with a consistent hierarchical-multilabel prediction.

The code is publicly available at https://github.com/lucamasera/AWX.

NES2RA

We developed a stand-alone version of the NES2RA pipeline. It relies on PC++,
the efficient C++ implementation of the skeleton function.

The code is publicly available at https://github.com/lucamasera/NESSRA.

https://github.com/lucamasera/AWX
https://github.com/lucamasera/NESSRA

Bibliography

Akira, Wada. Analysis of Escherichia coli ribosomal proteins by an improved two dimensional gel electrophoresis.
I. Detection of four new proteins. Journal of Biochemistry, 100(6):1583–1594, 1986.

Alberts, Bruce; Bray, Dennis; Hopkin, Karen; Johnson, Alexander D; Lewis, Julian; Raff, Martin; Roberts, Keith,
and Walter, Peter. Essential cell biology. Garland Science, 2015.

Alcalá, J.; Fernández, A.; Luengo, J.; Derrac, J.; Garćıa, S.; Sánchez, L., and Herrera, F. Keel data-mining
software tool: Data set repository, integration of algorithms and experimental analysis framework. Journal of
Multiple-Valued Logic and Soft Computing, 17(2-3):255–287, 2011.

Allen, J. D. and others, . Comparing statistical methods for constructing large scale gene networks. PLoS ONE, 7
(1):e29348, 2012.

Aloraini, Adel and ElSawy, Karim M. Potential breast anticancer drug targets revealed by differential gene regulatory
network analysis and molecular docking: Neoadjuvant docetaxel drug as a case study. Cancer informatics, 17:
1176935118755354, 2018.

Altschul, Stephen F; Gish, Warren; Miller, Webb; Myers, Eugene W, and Lipman, David J. Basic local alignment
search tool. Journal of molecular biology, 215(3):403–410, 1990.

Altschul, Stephen F; Madden, Thomas L; Schäffer, Alejandro A; Zhang, Jinghui; Zhang, Zheng; Miller, Webb, and
Lipman, David J. Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic
acids research, 25(17):3389–3402, 1997.

Anderson, David P. BOINC: A system for public-resource computing and storage. In Proceedings of the 5th
IEEE/ACM International Workshop on Grid Computing, GRID ’04, pages 4–10, Washington, DC, USA, 2004a.
IEEE Computer Society. ISBN 0-7695-2256-4.

Anderson, David P. BOINC: A system for public-resource computing and storage. In Proceedings of the 5th
IEEE/ACM International Workshop on Grid Computing, GRID ’04, pages 4–10, Washington, DC, USA, 2004b.
IEEE Computer Society. ISBN 0-7695-2256-4.

Anderson, David P and others, . SETI@home: an experiment in public-resource computing. Communications of
the ACM, 45(11):56–61, 2002.

Anderson, Neil G. Co-immunoprecipitation. In Protein Targeting Protocols, pages 35–45. Springer, 1998.

Ashburner, M; Blake, J A; Botstein, D; Butler, H; Cherry, J M; Davis, A P; Dolinski, K; Dwight, S S; Eppig, J T;
Harris, M A, and others, . Gene ontology: tool for the unification of biology. the gene ontology consortium. Nat
Genet, 25(1):25–9, May 2000.

Asnicar, Francesco; Erculiani, Luca; Galante, Francesca; Gallo, Caterina; Masera, Luca; Morettin, Paolo; Sella,
Nadir; Semeniuta, Stanislau; Tolio, Thomas; Malacarne, Giulia; Engelen, Kristoff; Argentini, Andrea; Cavecchia,
Valter; Moser, Claudio, and Blanzieri, Enrico. Discovering candidates for gene network expansion by distributed
volunteer computing. In 2015 IEEE Trustcom/BigDataSE/ISPA, volume 3, pages 248–253, Aug 2015a.

122 Bibliography

Asnicar, Francesco; Sella, Nadir; Masera, Luca; Morettin, Paolo; Tolio, Thomas; Semeniuta, Stanislau; Moser,
Claudio; Blanzieri, Enrico, and Cavecchia, Valter. TN-Grid and gene@home project: Volunteer Computing
for Bioinformatics. In BOINC: FAST 2015, Second International Conference BOINC-based High Performance
Computing: Fundamental Research and Development, pages 1–15, 2015b.

Asnicar, Francesco; Masera, Luca; Coller, Emanuela; Gallo, Caterina; Sella, Nadir; Tolio, Thomas; Morettin,
Paolo; Erculiani, Luca; Galante, Francesca; Semeniuta, Stanislau; Malacarne, Giulia; Engelen, Kristof; Argentini,
Andrea; Cavecchia, Valter; Moser, Claudio, and Blanzieri, Enrico. NES2RA: Network Expansion by Stratified
Variable Subsetting and Ranking Aggregation. The International Journal of High Performance Computing
Applications, 32(3):380–392, aug 2016.

Asnicar, Francesco; Masera, Luca; Pistore, Davide; Valtentini, Samuel; Cavecchia, Valter, and Blanzieri, Enrico.
OneGene: Regulatory Gene Network Expansion via Distributed Volunteer Computing on BOINC. In 27th
Euromicro International Conference on Parallel, Distributed and Network-Based Processing, 2019.

Bacciu, Davide; Etchells, Terence A.; Lisboa, Paulo J. G., and Whittaker, Joe. Efficient identification of indepen-
dence networks using mutual information. Computational Statistics, 28(2):621–646, Apr 2013. ISSN 1613-9658.
doi: 10.1007/s00180-012-0320-6. URL https://doi.org/10.1007/s00180-012-0320-6.

Bantscheff, Marcus; Schirle, Markus; Sweetman, Gavain; Rick, Jens, and Kuster, Bernhard. Quantitative mass
spectrometry in proteomics: a critical review. Analytical and bioanalytical chemistry, 389(4):1017–1031, 2007.

Barabási, Albert-László. Linked: how everything is connected to everything and what it means for business, science
and everyday life. New York: Penguin, 2003.

Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H., and others, . Greedy layer-wise training of deep networks.
Advances in neural information processing systems, 19:153, 2007.

Bengio, Y.; Courville, A., and Vincent, P. Representation learning: A review and new perspectives. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 35(8):1798–1828, 2013.

Blohm, Philipp; Frishman, Goar; Smialowski, Pawel; Goebels, Florian; Wachinger, Benedikt; Ruepp, Andreas, and
Frishman, Dmitrij. Negatome 2.0: a database of non-interacting proteins derived by literature mining, manual
annotation and protein structure analysis. Nucleic acids research, page gkt1079, 2013.

Borda, J.C. Mémoire sur les élections au Scrutin. Histoire de l’ Académie Royale des Sciences, 1781.

Borgwardt, Karsten M. Kernel Methods in Bioinformatics, pages 317–334. Springer, Berlin, Heidelberg, 2011.

Borgwardt, Karsten M; Ong, Cheng Soon; Schönauer, Stefan; Vishwanathan, SVN; Smola, Alex J, and Kriegel,
Hans-Peter. Protein function prediction via graph kernels. Bioinformatics, 21(suppl 1):i47–i56, 2005.

Bottou, L.n and Vapnik, V. Local learning algorithms. Neural computation, 4(6):888–900, 1992.

Breiman, L. Random forests. Machine learning, 45(1):5–32, 2001.

Brown, Patrick O and Botstein, David. Exploring the new world of the genome with dna microarrays. Nature
genetics, 21(1s):33, 1999.

Butte, Atul J; Tamayo, Pablo; Slonim, Donna; Golub, Todd R, and Kohane, Isaac S. Discovering functional
relationships between rna expression and chemotherapeutic susceptibility using relevance networks. Proceedings
of the National Academy of Sciences, 97(22):12182–12186, 2000.

Cai, X. and others, . A Putative CCAAT-Binding Transcription Factor Is A Regulator of Flowering Timing in
Arabidopsis. Plant Physiol., 145(1):98–105, Sep 2007.

Cavecchia, Valter; Asnicar, Francesco; Masera, Luca; Blanzieri, Enrico, and Moser, Claudio. GENE@HOME:
Improving and optimizing the scientific pipeline. In Proceedings of the XIII International Scientific Conference
on Optoelectronic Equipment and Devices in Systems of Pattern Recognition, Image and Symbol Information
Processing, Kursk, Russia, may 16-19 2017.

https://doi.org/10.1007/s00180-012-0320-6

Bibliography 123

Cerri, Ricardo; Barros, Rodrigo C., and de Carvalho, André C.P.L.F. Hierarchical multi-label classification using
local neural networks. J. Comput. Syst. Sci., 80(1):39–56, 2014. ISSN 00220000.

Cerri, Ricardo; Barros, Rodrigo C., and de Carvalho, Andre C. P. L. F. Hierarchical classification of Gene Ontology-
based protein functions with neural networks. 2015 Int. Jt. Conf. Neural Networks, pages 1–8, 2015.

Chapon Hervé, Virginie; Akrim, Mohammed; Latifi, Amel; Williams, Paul; Lazdunski, Andrée, and Bally, Marc.
Regulation of the xcp secretion pathway by multiple quorum-sensing modulons in pseudomonas aeruginosa.
Molecular Microbiology, 24(6):1169–1178, 6 1997. ISSN 1365-2958.

Chatr Aryamontri, Andrew; Breitkreutz, Bobby-Joe; Oughtred, Rose; Boucher, Lorrie; Heinicke, Sven; Chen, Daici;
Stark, Chris; Breitkreutz, Ashton; Kolas, Nadine; O’Donnell, Lara, and others, . The biogrid interaction database:
2015 update. Nucleic acids research, 43(D1):D470–D478, 2015.

Chen, L. Q. and others, . Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science,
335(6065):207–211, Jan 2012.

Cherry, J Michael; Hong, Eurie L; Amundsen, Craig; Balakrishnan, Rama; Binkley, Gail; Chan, Esther T; Christie,
Karen R; Costanzo, Maria C; Dwight, Selina S; Engel, Stacia R, and others, . Saccharomyces genome database:
the genomics resource of budding yeast. Nucleic acids research, 40(D1):D700–D705, 2012.

Chollet, François and others, . Keras, 2015.

Colombo, Diego and Maathuis, Marloes H. Order-independent constraint-based causal structure learning. arXiv
preprint arXiv:1211.3295, 2012.

Colombo, Diego and Maathuis, Marloes H. Order-independent constraint-based causal structure learning. The
Journal of Machine Learning Research, 15(1):3741–3782, 2014.

Cormen, Thomas H. and others, . Introduction to algorithms, volume 6. MIT press Cambridge, 2001.

Cortes, C. and Vapnik, V. Support-vector networks. Machine learning, 20(3):273–297, 1995.

Cover, T. and Hart, P. Nearest neighbor pattern classification. Information Theory, IEEE Transactions on, 13(1):
21–27, January 1967.

Csermely, Peter; Korcsmáros, Tamás; Kiss, Huba JM; London, Gábor, and Nussinov, Ruth. Structure and dynamics
of molecular networks: A novel paradigm of drug discovery. Pharmacology & Therapeutics, 138(3):333–408, 2013.

Curnow, Harold J and Wichmann, Brian A. A synthetic benchmark. The Computer Journal, 19(1):43–49, 1976.

Das, Rhiju and others, . Structure prediction for CASP7 targets using extensive all-atom refinement with
Rosetta@home. Proteins: Structure, Function, and Bioinformatics, 69(S8):118–128, 2007.

Dash, S. and others, . PLEXdb: gene expression resources for plants and plant pathogens. Nucleic Acids Res., 40
(Database issue):D1194–1201, Jan 2012.

Dayhoff, Margaret O and Schwartz, Robert M. A model of evolutionary change in proteins. In In Atlas of protein
sequence and structure. Citeseer, 1978.

Deng, Jia; Dong, Wei; Socher, Richard; Li, Li-Jia; Li, Kai, and Fei-Fei, Li. Imagenet: A large-scale hierarchical
image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages
248–255. Ieee, 2009.

Dessimoz, Christophe; Skunca, Nives, and Thomas, Paul D. Cafa and the open world of protein function predictions.
Trends Genet, 29(11):609–10, 2013.

Developers, Valgrind. Callgrind: a call-graph generating cache and branch prediction profiler, 2010.

Diligenti, Michelangelo; Gori, Marco; Maggini, Marco, and Rigutini, Leonardo. Bridging logic and kernel machines.
Machine learning, 86(1):57–88, 2012.

124 Bibliography

Diligenti, Michelangelo; Gori, Marco, and Saccà, Claudio. Semantic-based regularization for learning and inference.
Artificial Intelligence, 244:143–165, 2017.

Dukan, SAM and Touati, Daniele. Hypochlorous acid stress in Escherichia coli: resistance, DNA damage, and
comparison with hydrogen peroxide stress. Journal of Bacteriology, 178(21):6145–6150, 1996.

Dutta, S.t and Ghosh, A. On some transformations of high dimension, low sample size data for nearest neighbor
classification. Machine Learning, 102(1):57–83, 2016.

Dwork, Cynthia; Kumar, Ravi; Naor, Moni, and Sivakumar, D. Rank aggregation methods for the web. In
Proceedings of the 10th International Conference on World Wide Web, WWW ’01, pages 613–622, New York,
NY, USA, 2001a. ACM. ISBN 1-58113-348-0.

Dwork, Cynthia; Kumar, Ravi; Naor, Moni, and Sivakumar, Dandapani. Rank aggregation methods for the web.
In Proceedings of the 10th international conference on World Wide Web, pages 613–622. ACM, 2001b.

Emmert-Streib, Frank; Dehmer, Matthias, and Haibe-Kains, Benjamin. Gene regulatory networks and their appli-
cations: understanding biological and medical problems in terms of networks. Frontiers in cell and developmental
biology, 2:38, 2014.

Engh, Richard A and Huber, Robert. Accurate bond and angle parameters for x-ray protein structure refinement.
Acta Crystallographica Section A, 47(4):392–400, 1991.

Espinosa-Soto, C. and others, . A Gene Regulatory Network Model for Cell-Fate Determination during Arabidopsis
thaliana Flower Development That Is Robust and Recovers Experimental Gene Expression Profiles. Plant Cell,
16(11):2923–2939, Nov 2004.

Fang, Hai and Gough, Julian. A domain-centric solution to functional genomics via dcgo predictor. BMC bioinfor-
matics, 14(3):S9, 2013.

Forrest, Alistair RR; Kawaji, Hideya; Rehli, Michael; Baillie, J Kenneth; De Hoon, Michiel JL; Haberle, Vanja;
Lassmann, Timo; Kulakovskiy, Ivan V; Lizio, Marina; Itoh, Masayoshi, and others, . A promoter-level mammalian
expression atlas. Nature, 507(7493):462, 2014.

Franceschini, Andrea; Szklarczyk, Damian; Frankild, Sune; Kuhn, Michael; Simonovic, Milan; Roth, Alexander; Lin,
Jianyi; Minguez, Pablo; Bork, Peer; von Mering, Christian, and others, . String v9. 1: protein-protein interaction
networks, with increased coverage and integration. Nucleic acids research, 41(D1):D808–D815, 2013.

Frank, Gray. Pulse code communication, March 17 1953. US Patent 2,632,058.

Freund, Y. and Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting.
Journal of computer and system sciences, 55(1):119–139, 1997.

Friedberg, Iddo. Automated protein function prediction–the genomic challenge. Briefings in Bioinformatics, 7(3):
225–242, 2006.

Fu, Limin; Niu, Beifang; Zhu, Zhengwei; Wu, Sitao, and Li, Weizhong. Cd-hit: accelerated for clustering the
next-generation sequencing data. Bioinformatics, 28(23):3150–3152, 2012.

Fukunaga, K. and Hostetler, L. k-nearest-neighbor bayes-risk estimation. Information Theory, IEEE Transactions
on, 21(3):285–293, May 1975.

Gabaldón, T and Huynen, M A. Prediction of protein function and pathways in the genome era. Cell Mol Life Sci,
61(7-8):930–44, Apr 2004.

Gardner, T. S. and others, . Inferring genetic networks and identifying compound mode of action via expression
profiling. Science, 301(5629):102–105, Jul 2003.

Gasch, Audrey P; Spellman, Paul T; Kao, Camilla M; Carmel-Harel, Orna; Eisen, Michael B; Storz, Gisela; Botstein,
David, and Brown, Patrick O. Genomic expression programs in the response of yeast cells to environmental
changes. Molecular biology of the cell, 11(12):4241–4257, 2000.

Bibliography 125

Gene Ontology Consortium, . Creating the gene ontology resource: design and implementation. Genome Res., 11
(8):1425–33, 2001. ISSN 1088-9051.

Getoor, Lise and Taskar, Ben, editors. Introduction to statistical relational learning. MIT Press, 2007.

Gilbert, Kerrigan B.; Kim, Tae Hoon; Gupta, Rashmi; Greenberg, E. Peter, and Schuster, Martin. Global position
analysis of the pseudomonas aeruginosa quorum-sensing transcription factor lasr. Molecular Microbiology, 73(6):
1072–1085, 9 2009. ISSN 1365-2958.

Gönen, Mehmet and Alpaydın, Ethem. Multiple kernel learning algorithms. Journal of machine learning research,
12(Jul):2211–2268, 2011.

Gong, Qingtian; Ning, Wei, and Tian, Weidong. GoFDR: A Sequence Alignment Based Method for Predicting
Protein Functions. Methods, 93:3–14, 2015. ISSN 1095-9130.

Gong, Qingtian; Ning, Wei, and Tian, Weidong. Gofdr: A sequence alignment based method for predicting protein
functions. Methods, 93:3–14, 2016.

Greene, Derek; O’Callaghan, Derek, and Cunningham, Pádraig. How many topics? stability analysis for topic
models. CoRR, abs/1404.4606, 2014.

Gundlach, Jasmin and Winter, Jeannette. Evolution of Escherichia coli for maximum HOCl resistance through
constitutive expression of the OxyR regulon. Microbiology, 160(8):1690–1704, 2014.

Hable, R. Universal consistency of localized versions of regularized kernel methods. The Journal of Machine
Learning Research, 14(1):153–186, 2013.

Hamp, Tobias; Goldberg, Tatyana, and Rost, Burkhard. Accelerating the original profile kernel. PloS one, 8(6):
e68459, 2013a.

Hamp, Tobias; Kassner, Rebecca; Seemayer, Stefan; Vicedo, Esmeralda; Schaefer, Christian; Achten, Dominik;
Auer, Florian; Boehm, Ariane; Braun, Tatjana; Hecht, Maximilian, and others, . Homology-based inference sets
the bar high for protein function prediction. BMC bioinformatics, 14(3):S7, 2013b.

Hand, D. and Vinciotti, V. Local versus global models for classification problems: fitting models where it matters.
The American Statistician, 57(2):124–131, 2003.

Hartemink, A. J. Reverse engineering gene regulatory networks. Nat. Biotechnol., 23(5):554–555, May 2005.

Hasty, J. and others, . Computational studies of gene regulatory networks: in numero molecular biology. Nat. Rev.
Genet., 2(4):268–279, Apr 2001a.

Hasty, Jeff; McMillen, David; Isaacs, Farren, and Collins, James J. Computational studies of gene regulatory
networks: in numero molecular biology. Nature Reviews Genetics, 2(4):268, 2001b.

Hauser, Alain and Bühlmann, Peter. Characterization and greedy learning of interventional Markov equivalence
classes of directed acyclic graphs. Journal of Machine Learning Research, 13:2409–2464, 2012.

Hayes, Everett T and others, . Oxygen limitation modulates pH regulation of catabolism and hydrogenases, mul-
tidrug transporters, and envelope composition in Escherichia coli K-12. BMC Microbiology, 6(1):1, 2006.

He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing, and Sun, Jian. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision,
pages 1026–1034, 2015.

Hinton, G. E; Osindero, S., and Teh, Y. A fast learning algorithm for deep belief nets. Neural computation, 18(7):
1527–1554, 2006.

Hinton, Geoffrey; Deng, Li; Yu, Dong; Dahl, George E; Mohamed, Abdel-rahman; Jaitly, Navdeep; Senior, Andrew;
Vanhoucke, Vincent; Nguyen, Patrick; Sainath, Tara N, and others, . Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6):82–97,
2012.

126 Bibliography

Hochreiter, Sepp. The vanishing gradient problem during learning recurrent neural nets and problem solutions.
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 6(02):107–116, 1998.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.

Hopkins, Andrew L. Network pharmacology: the next paradigm in drug discovery. Nature chemical biology, 4(11):
682–690, 2008.

Hu, W. and others, . Isolation, sequence analysis, and expression studies of florally expressed cDNAs in Arabidopsis.
Plant Mol. Biol., 53(4):545–563, Nov 2003.

Huang, G.; Zhu, Q., and Siew, C. Extreme learning machine: theory and applications. Neurocomputing, 70(1):
489–501, 2006.

Huynh-Thu, Vân Anh and Sanguinetti, Guido. Gene regulatory network inference: an introductory survey. In Gene
Regulatory Networks, pages 1–23. Springer, 2019.

Imoto, Seiya; Tamada, Yoshinori; Savoie, Christopher J, and Miyanoaa, Satoru. Analysis of gene networks for
drug target discovery and validation. In Target Discovery and Validation Reviews and Protocols, pages 33–56.
Springer, 2007.

Izutsu, Kaori and others, . Escherichia coli ribosome-associated protein SRA, whose copy number increases during
stationary phase. Journal of Bacteriology, 183(9):2765–2773, 2001.

Jain, Anil K and Farrokhnia, Farshid. Unsupervised texture segmentation using gabor filters. Pattern recognition,
24(12):1167–1186, 1991.

Jiang, Yuxiang; Oron, Tal Ronnen; Clark, Wyatt T; Bankapur, Asma R; D’Andrea, Daniel; Lepore, Rosalba; Funk,
Christopher S; Kahanda, Indika; Verspoor, Karin M; Ben-Hur, Asa, and others, . An expanded evaluation of
protein function prediction methods shows an improvement in accuracy. Genome biology, 17(1):184, 2016a.

Jiang, Yuxiang and others, . An expanded evaluation of protein function prediction methods shows an improvement
in accuracy. Genome biology, pages 1–17, 2016b. ISSN 1474-760X.

Joachims, Thorsten; Hofmann, Thomas; Yue, Yisong, and Yu, Chun-Nam. Predicting structured objects with
support vector machines. Communications of the ACM, 52(11):97–104, 2009.

Kalisch, Markus and Bühlmann, Peter. Estimating high-dimensional directed acyclic graphs with the pc-algorithm.
J. Mach. Learn. Res., 8:613–636, May 2007. ISSN 1532-4435.

Kalisch, Markus and others, . Causal Inference Using Graphical Models with the R Package pcalg. Journal of
Statistical Software, 47(11):1–26, 2012.

Keseler, I. M. and others, . EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res.,
41(Database issue):D605–612, Jan 2013.

Keskin, Ozlem; Gursoy, Attila; Ma, Buyong; Nussinov, Ruth, and others, . Principles of protein-protein interactions:
what are the preferred ways for proteins to interact? Chemical reviews, 108(4):1225–1244, 2008.

Kim, Juhan and others, . Three serendipitous pathways in E. coli can bypass a block in pyridoxal-5’-phosphate
synthesis. Molecular Systems Biology, 6(1), 2010.

Kingma, D. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Kolde, Raivo; Laur, Sven; Adler, Priit, and Vilo, Jaak. Robust rank aggregation for gene list integration and
meta-analysis. Bioinformatics, 28(4):573–580, 2012.

Kondor, Risi Imre and Lafferty, John D. Diffusion kernels on graphs and other discrete input spaces. In Proceedings
of the Nineteenth International Conference on Machine Learning, ICML ’02, pages 315–322, San Francisco, CA,
USA, 2002. Morgan Kaufmann Publishers Inc. ISBN 1-55860-873-7.

Bibliography 127

Krizhevsky, Alex; Sutskever, Ilya, and Hinton, Geoffrey E. Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

Kuang, Rui; Ie, Eugene; Wang, Ke; Wang, Kai; Siddiqi, Mahira; Freund, Yoav, and Leslie, Christina. Profile-based
string kernels for remote homology detection and motif extraction. J Bioinform Comput Biol, 3(03):527–550,
2005.

Kulmanov, Maxat; Khan, Mohammed Asif, and Hoehndorf, Robert. Deepgo: predicting protein functions from
sequence and interactions using a deep ontology-aware classifier. Bioinformatics, 34(4):660–668, 2018.

Kumar, Ashwani and others, . Conditional Epistatic Interaction Maps Reveal Global Functional Rewiring of Genome
Integrity Pathways in Escherichia coli. Cell Reports, 2016.

Lal, S.; Pacis, L. B., and Smith, H. M. Regulation of the SQUAMOSA PROMOTER-BINDING PROTEIN-
LIKE genes/microRNA156 Module by the Homeodomain proteins PENNYWISE and POUND-FOOLISH in
Arabidopsis. Mol Plant, 4(6):1123–1132, Nov 2011.

Le, Thuc Duy; Zhang, Kun; Kıcıman, Emre; Hyvärinen, Aapo, and Liu, Lin. Preface: The 2018 acm sigkdd
workshop on causal discovery. In Proceedings of 2018 ACM SIGKDD Workshop on Causal Discovery, pages 1–3,
2018.

Leclerc, Robert D. Survival of the sparsest: robust gene networks are parsimonious. Molecular Systems Biology, 4
(1), 2008. ISSN 1744-4292.

LeCun, Y.; Bottou, L.; Bengio, Y., and Haffner, P. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998.

LeCun, Y.; Bengio, Y., and Hinton, G. Deep learning. Nature, 521(7553):436–444, 2015.

Lee, David; Redfern, Oliver, and Orengo, Christine. Predicting protein function from sequence and structure. Nature
Reviews Molecular Cell Biology, 8(12):995–1005, 2007.

Lee, J.Y. and others, . Activation of CRABS CLAW in the Nectaries and Carpels of Arabidopsis. The Plant Cell,
17(1):25–36, 2005.

Lee, Tong Ihn and Young, Richard A. Transcriptional regulation and its misregulation in disease. Cell, 152(6):
1237–1251, 2013.

Li, Luen-Luen; Malone, Jane E., and Iglewski, Barbara H. Regulation of the pseudomonas aeruginosa quorum-
sensing regulator vqsr. Journal of Bacteriology, 189(12):4367–4374, 2007. ISSN 0021-9193.

Li, Zhanchao; Liu, Zhiqing; Zhong, Wenqian; Huang, Menghua; Wu, Na; Xie, Yun; Dai, Zong, and Zou, Xiaoyong.
Large-scale identification of human protein function using topological features of interaction network. Scientific
reports, 6, 2016.

Lin, S. Rank Aggregation Methods. Wiley Interdisciplinary Reviews: Computational Statistics, 2(5):555–570, 2010.

Lombraña González, D; Harutyunyan, A; Segal, B; Zacharov, I; McIntosh, E; Jones, PL; Giovannozzi, M; Rivkin,
L; Marquina, MA; Skands, P, and others, . Lhc@home: A volunteer computing system for massive numerical
simulations of beam dynamics and high energy physics events. In Conf. Proc., volume 1205201, pages 505–507,
2012.

Lu, Peilong and others, . L-glutamine provides acid resistance for Escherichia coli through enzymatic release of
ammonia. Cell Research, 23(5):635–644, 2013.

Maas, Andrew L; Hannun, Awni Y, and Ng, Andrew Y. Rectifier nonlinearities improve neural network acoustic
models. In Proc. icml, volume 30, page 3, 2013.

Maathuis, Marloes H; Colombo, Diego; Kalisch, Markus, and Bühlmann, Peter. Predicting causal effects in large-
scale systems from observational data. Nature Methods, 7(4):247, 2010.

128 Bibliography

Malacarne, Giulia; Pilati, Stefania; Valentini, Samuel; Asnicar, Francesco; Moretto, Marco; Sonego, Paolo; Masera,
Luca; Cavecchia, Valter; Blanzieri, Enrico, and Moser, Claudio. Discovering causal relationships in grapevine
expression data to expand gene networks. a case study: Four networks related to climate change. Frontiers in
Plant Science, 9:1385, 2018.

Marbach, D. and others, . Wisdom of crowds for robust gene network inference. Nat. Methods, 9(8):796–804, Aug
2012.

Margolin, A. A. and others, . Reverse engineering cellular networks. Nat Protoc, 1(2):662–671, 2006a.

Margolin, A. A. and others, . ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a
Mammalian Cellular Context. BMC Bioinformatics, 7(Suppl 1):S7, 2006b.

Masera, Luca. Multiple protein feature prediction with statistical relational learning. arXiv preprint
arXiv:1609.08391, 2015.

Masera, Luca and Blanzieri, Enrico. AWX: An Integrated Approach to Hierarchical-Multilabel Classification. In
Machine Learning and Knowledge Discovery in Databases 2018, Proceedings, Part I, pages 322–336. Springer
International Publishing, 2019a.

Masera, Luca and Blanzieri, Enrico. Very Simple Classifier: a Concept Binary Classifier to Investigate Features
Based on Subsampling and Locality. In European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, 2019, 2019b.

Massjouni, Naveed; Rivera, Corban G, and Murali, TM. Virgo: computational prediction of gene functions. Nucleic
acids research, 34(suppl 2):W340–W344, 2006.

Masuda, Nobuhisa and Church, George M. Regulatory network of acid resistance genes in Escherichia coli. Molecular
Microbiology, 48(3):699–712, 2003.

Meysman, P. and others, . COLOMBOS v2.0: an ever expanding collection of bacterial expression compendia.
Nucleic Acids Res., 42(Database issue):D649–653, Jan 2014.

Milkman, Roger. An Escherichia coli homologue of eukaryotic potassium channel proteins. Proceedings of the
National Academy of Sciences, 91(9):3510–3514, 1994.

Mitchell, Alex; Chang, Hsin-Yu; Daugherty, Louise; Fraser, Matthew; Hunter, Sarah; Lopez, Rodrigo; McAnulla,
Craig; McMenamin, Conor; Nuka, Gift; Pesseat, Sebastien, and others, . The interpro protein families database:
the classification resource after 15 years. Nucleic acids research, 43(D1):D213–D221, 2015.

Monasterio, V.; Castro, J., and Carro, J. Denis: Solving cardiac electrophysiological simulations with volunteer
computing. PLoS One, 13(10):e0205568, 2018. ISSN 1932-6203.

Moradali, M. Fata; Ghods, Shirin, and Rehm, Bernd H. A. Pseudomonas aeruginosa lifestyle: A paradigm for
adaptation, survival, and persistence. Frontiers in Cellular and Infection Microbiology, 7:39, 2017. ISSN 2235-
2988.

Moretto, Marco; Sonego, Paolo; Dierckxsens, Nicolas; Brilli, Matteo; Bianco, Luca; Ledezma-Tejeida, Daniela;
Gama-Castro, Socorro; Galardini, Marco; Romualdi, Chiara; Laukens, Kris; Collado-Vides, Julio; Meysman,
Pieter, and Engelen, Kristof. Colombos v3.0: leveraging gene expression compendia for cross-species analyses.
Nucleic Acids Research, 44(D1):D620–D623, 2016.

Murzin, Alexey G; Brenner, Steven E; Hubbard, Tim, and Chothia, Cyrus. Scop: a structural classification of
proteins database for the investigation of sequences and structures. Journal of molecular biology, 247(4):536–540,
1995.

Nadaraya, E. On estimating regression. Theory of Probability & Its Applications, 9(1):141–142, 1964.

Nair, Vinod and Hinton, Geoffrey E. Rectified linear units improve restricted boltzmann machines. In Proceedings
of the 27th international conference on machine learning (ICML-10), pages 807–814, 2010.

Bibliography 129

Needleman, Saul B and Wunsch, Christian D. A general method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of molecular biology, 48(3):443–453, 1970.

Novák, Vilém. First-order fuzzy logic. Studia Logica, 46(1):87–109, 1987.

Obozinski, Guillaume; Lanckriet, Gert; Grant, Charles; Jordan, Michael I, and Noble, William Stafford. Consisten
probabilistic outputs for protein function prediction. Genome biology, 9(65):1–19, 2008. ISSN 14604140.

Oldham, Michael C; Horvath, Steve, and Geschwind, Daniel H. Conservation and evolution of gene coexpression
networks in human and chimpanzee brains. Proceedings of the National Academy of Sciences, 103(47):17973–
17978, 2006.

Opgen-Rhein, Rainer and Strimmer, Korbinian. From correlation to causation networks: a simple approximate
learning algorithm and its application to high-dimensional plant gene expression data. BMC systems biology, 1
(1):37, 2007.

Park, Yungki and Marcotte, Edward M. Revisiting the negative example sampling problem for predicting protein–
protein interactions. Bioinformatics, 27(21):3024–3028, 2011.

Parzen, E. On estimation of a probability density function and mode. The annals of mathematical statistics, 33(3):
1065–1076, 1962.

Pearl, Judea. Causality. Cambridge university press, 2009.

Pearson, J P; Pesci, E C, and Iglewski, B H. Roles of pseudomonas aeruginosa las and rhl quorum sensing systems in
control of elastase and rhamnolipid biosynthesis genes. Journal of Bacteriology, 179(18):5756–5767, 1997. ISSN
0021-9193.

Pearson, William R. An introduction to sequence similarity (”homology”) searching. Curr Protoc Bioinformatics,
Jun 2013.

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M., and Duchesnay,
E. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Pesci, E C; Pearson, J P; Seed, P C, and Iglewski, B H. Regulation of las and rhl quorum sensing in pseudomonas
aeruginosa. Journal of Bacteriology, 179(10):3127–3132, 1997. ISSN 0021-9193.

Pihur, Vasyl; Datta, Susmita, and Datta, Somnath. Rankaggreg, an r package for weighted rank aggregation. BMC
Bioinformatics, 10(1):62, Feb 2009. ISSN 1471-2105.

Poggio, T. and Girosi, F. Networks for approximation and learning. Proceedings of the IEEE, 78(9):1481–1497, Sep
1990.

Poultney, C.; Chopra, S.; LeCun, Y., and others, . Efficient learning of sparse representations with an energy-based
model. In Advances in neural information processing systems, pages 1137–1144, 2006.

Pu, Shuye; Wong, Jessica; Turner, Brian; Cho, Emerson, and Wodak, Shoshana J. Up-to-date catalogues of yeast
protein complexes. Nucleic acids research, 37(3):825–831, 2009.

Quinlan, J. R. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

Radivojac, Predrag; Clark, Wyatt T; Oron, Tal Ronnen; Schnoes, Alexandra M; Wittkop, Tobias; Sokolov, Artem;
Graim, Kiley; Funk, Christopher; Verspoor, Karin; Ben-Hur, Asa; Pandey, Gaurav, and Yunes, Jeffrey M. A
large-scale evaluation of computational protein function prediction. Nature Methods, 10(3):221–227, 2013. ISSN
1548-7091.

Raghu, Vineet K.; Poon, Allen, and Benos, Panayiotis V. Evaluation of causal structure learning methods on mixed
data types. In Proceedings of 2018 ACM SIGKDD Workshop on Causal Disocvery, volume 92 of Proceedings of
Machine Learning Research, pages 48–65, London, UK, 20 Aug 2018. PMLR.

130 Bibliography

Ralaivola, Liva; Swamidass, Sanjay J; Saigo, Hiroto, and Baldi, Pierre. Graph kernels for chemical informatics.
Neural networks, 18(8):1093–1110, 2005.

Rampioni, Giordano; Schuster, Martin; Greenberg, Everett Peter; Bertani, Iris; Grasso, Marco; Venturi, Vittorio;
Zennaro, Elisabetta, and Leoni, Livia. Rsal provides quorum sensing homeostasis and functions as a global
regulator of gene expression in pseudomonas aeruginosa. Molecular Microbiology, 66(6):1557–1565, 12 2007.
ISSN 1365-2958.

Rentzsch, Robert and Orengo, Christine A. Protein function prediction–the power of multiplicity. Trends in
biotechnology, 27(4):210–219, 2009.

Reuter, Jason A; Spacek, Damek V, and Snyder, Michael P. High-throughput sequencing technologies. Molecular
cell, 58(4):586–597, 2015.

Rosenblatt, Frank. The perceptron: a probabilistic model for information storage and organization in the brain.
Psychological review, 65(6):386, 1958.

Rost, Burkhard; Liu, Jinfeng; Nair, Rajesh; Wrzeszczynski, Kazimierz O, and Ofran, Yanay. Automatic prediction
of protein function. Cellular and Molecular Life Sciences CMLS, 60(12):2637–2650, 2003.

Ruepp, Andreas; Zollner, Alfred; Maier, Dieter; Albermann, Kaj; Hani, Jean; Mokrejs, Martin; Tetko, Igor;
Güldener, Ulrich; Mannhaupt, Gertrud; Münsterkötter, Martin, and Mewes, H. Werner. The FunCat, a func-
tional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Research,
32(18):5539–5545, 2004. ISSN 03051048.

Rumelhart, David E; Hinton, Geoffrey E, and Williams, Ronald J. Learning representations by back-propagating
errors. nature, 323(6088):533, 1986.

Saccà, Claudio; Teso, Stefano; Diligenti, Michelangelo, and Passerini, Andrea. Improved multi-level protein–protein
interaction prediction with semantic-based regularization. BMC bioinformatics, 15(1):103, 2014.

Sanchez-Corrales, Y. E. and others, . The Arabidopsis thaliana flower organ specification gene regulatory network
determines a robust differentiation process. J. Theor. Biol., 264(3):971–983, Jun 2010.

Sanger, Frederick. The free amino groups of insulin. Biochemical Journal, 39(5):507, 1945.

Sanger, Frederick; Nicklen, Steven, and Coulson, Alan R. Dna sequencing with chain-terminating inhibitors. Pro-
ceedings of the national academy of sciences, 74(12):5463–5467, 1977.

Schmidhuber, Jürgen. Deep learning in neural networks: An overview. Neural Networks, 61:85–117, 2015.

Scholkopf, B.; Sung, Kah-Kay; Burges, C.J.C.; Girosi, F.; Niyogi, P.; Poggio, T., and Vapnik, V. Comparing support
vector machines with gaussian kernels to radial basis function classifiers. Signal Processing, IEEE Transactions
on, 45(11):2758–2765, Nov 1997. ISSN 1053-587X.

Scholkopf, Bernhard and Smola, Alexander J. Learning with kernels: support vector machines, regularization,
optimization, and beyond. MIT press, 2001.

Schölkopf, Bernhard; Herbrich, Ralf, and Smola, Alex J. A generalized representer theorem. In Computational
learning theory, pages 416–426. Springer, 2001.

Schriml, Lynn Marie; Arze, Cesar; Nadendla, Suvarna; Chang, Yu-Wei Wayne; Mazaitis, Mark; Felix, Victor; Feng,
Gang, and Kibbe, Warren Alden. Disease ontology: a backbone for disease semantic integration. Nucleic acids
research, 40(D1):D940–D946, 2011.

Segata, N. and Blanzieri, E. Fast and scalable local kernel machines. Journal of Machine Learning Research, 11:
1883–1926, 2010.

Sen, Prithviraj; Namata, Galileo; Bilgic, Mustafa; Getoor, Lise; Galligher, Brian, and Eliassi-Rad, Tina. Collective
classification in network data. AI magazine, 29(3):93, 2008.

Bibliography 131

Shi, J. X. and others, . SHINE Transcription Factors Act Redundantly to Pattern the Archetypal Surface of
Arabidopsis Flower Organs. PLoS Genet., 7(5):e1001388, May 2011.

Škunca, Nives; Bošnjak, Matko; Krǐsko, Anita; Panov, Panče; Džeroski, Sašo; Šmuc, Tomislav, and Supek, Fran.
Phyletic profiling with cliques of orthologs is enhanced by signatures of paralogy relationships. PLoS computa-
tional biology, 9(1):e1002852, 2013.

Smith, Temple F and Waterman, Michael S. Comparison of biosequences. Advances in applied mathematics, 2(4):
482–489, 1981.

Sokolov, Artem and Ben-Hur, Asa. Hierarchical classification of gene ontology terms using the gostruct method.
Journal of bioinformatics and computational biology, 8(02):357–376, 2010.

Sokolov, Artem; Funk, Christopher; Graim, Kiley; Verspoor, Karin, and Ben-Hur, Asa. Combining heterogeneous
data sources for accurate functional annotation of proteins. BMC bioinformatics, 14(3):S10, 2013.

Sokolova, M. and Lapalme, G. A systematic analysis of performance measures for classification tasks. Information
Processing & Management, 45(4):427–437, 2009.

Sonnenburg, Sören; Rätsch, Gunnar; Schäfer, Christin, and Schölkopf, Bernhard. Large scale multiple kernel
learning. Journal of Machine Learning Research, 7(Jul):1531–1565, 2006.

Soricut, Radu and Marcu, Daniel. Sentence level discourse parsing using syntactic and lexical information. In Pro-
ceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics
on Human Language Technology-Volume 1, pages 149–156. Association for Computational Linguistics, 2003.

Sorower, Mohammad S. A literature survey on algorithms for multi-label learning. Oregon State University,
Corvallis, 18, 2010.

Spellman, Paul T; Sherlock, Gavin; Zhang, Michael Q; Iyer, Vishwanath R; Anders, Kirk; Eisen, Michael B; Brown,
Patrick O; Botstein, David, and Futcher, Bruce. Comprehensive identification of cell cycle–regulated genes of the
yeast saccharomyces cerevisiae by microarray hybridization. Molecular biology of the cell, 9(12):3273–3297, 1998.

Spirtes, P. and Glymour, C. An algorithm for fast recovery of sparse causal graphs. Social Science Computer
Review, 9:62–72, 1991a.

Spirtes, Peter and Glymour, Clark. An algorithm for fast recovery of sparse causal graphs. Social Science Computer
Review, 9(1):62–72, 1991b.

Srivastava, Nitish; Hinton, Geoffrey; Krizhevsky, Alex; Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout: A
simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1):
1929–1958, 2014.

Stoyanov, Jivko V; Hobman, Jon L, and Brown, Nigel L. CueR (YbbI) of Escherichia coli is a MerR family regulator
controlling expression of the copper exporter CopA. Molecular Microbiology, 39(2):502–512, 2001.

Stuart, Joshua M; Segal, Eran; Koller, Daphne, and Kim, Stuart K. A gene-coexpression network for global discovery
of conserved genetic modules. science, 302(5643):249–255, 2003.

Sturm, Irene; Lapuschkin, Sebastian; Samek, Wojciech, and Müller, Klaus-Robert. Interpretable deep neural net-
works for single-trial eeg classification. Journal of neuroscience methods, 274:141–145, 2016.

Sun, Aixin and Lim, Ee-Peng. Hierarchical text classification and evaluation. In Data Mining, 2001. ICDM 2001,
Proceedings IEEE International Conference on, pages 521–528. IEEE, 2001.

Suzek, Baris E.; Wang, Yuqi; Huang, Hongzhan; McGarvey, Peter B., and Wu, Cathy H. Uniref clusters: a
comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics, 31(6):926–
932, 2015.

132 Bibliography

Tan, M. and others, . Combining multiple types of biological data in constraint-based learning of gene regulatory
networks. In Computational Intelligence in Bioinformatics and Computational Biology, 2008. CIBCB ’08. IEEE
Symposium on, pages 90–97, Sept 2008.

Tan, M. and others, . Influence of prior knowledge in constraint-based learning of gene regulatory networks.
IEEE/ACM Trans Comput Biol Bioinform, 8(1):130–142, 2011.

Teso, Stefano; Masera, Luca; Diligenti, Michelangelo, and Passerini, Andrea. Combining learning and constraints
for genome-wide protein annotation. BMC Bioinformatics, 20(1):338, 2019.

Toder, D S; Ferrell, S J; Nezezon, J L; Rust, L, and Iglewski, B H. lasa and lasb genes of pseudomonas aeruginosa:
analysis of transcription and gene product activity. Infection and Immunity, 62(4):1320–1327, 1994. ISSN 0019-
9567.

Triguero, Isaac and Vens, Celine. Labelling strategies for hierarchical multi-label classification techniques. Pattern
Recognit., pages 1–14, 2015. ISSN 00313203.

Tucker, Don L; Tucker, Nancy, and Conway, Tyrrell. Gene Expression Profiling of the pH Response in Escherichia
coli. Journal of Bacteriology, 184(23):6551–6558, 2002.

Uzilov, Andrew V; Keegan, Joshua M, and Mathews, David H. Detection of non-coding rnas on the basis of predicted
secondary structure formation free energy change. BMC bioinformatics, 7(1):173, 2006.

Valentini, Giorgio and Masulli, Francesco. Ensembles of learning machines. In Italian Workshop on Neural Nets,
pages 3–20. Springer, 2002.

Vens, Celine; Struyf, Jan; Schietgat, Leander; Džeroski, Sašo, and Blockeel, Hendrik. Decision trees for hierarchical
multi-label classification. Mach. Learn., 73(2):185–214, 2008. ISSN 08856125.

Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y., and Manzagol, P. Stacked denoising autoencoders: Learning
useful representations in a deep network with a local denoising criterion. The Journal of Machine Learning
Research, 11:3371–3408, 2010.

Volkert, Michael R and Nguyen, Dinh C. Induction of specific Escherichia coli genes by sublethal treatments with
alkylating agents. Proceedings of the National Academy of Sciences, 81(13):4110–4114, 1984.

Waegeman, Willem; Dembczyński, Krzysztof, and Hüllermeier, Eyke. Multi-target prediction: a unifying view on
problems and methods. Data Mining and Knowledge Discovery, pages 1–32, 2018.

Wagner, Victoria E.; Gillis, Richard J., and Iglewski, Barbara H. Transcriptome analysis of quorum-sensing regula-
tion and virulence factor expression in pseudomonas aeruginosa. Vaccine, 22:S15 – S20, 2004. ISSN 0264-410X.
Immunological Approaches against Nosocomial Infections.

Wahl, V. and others, . The FANTASTIC FOUR proteins influence shoot meristem size in Arabidopsis thaliana.
BMC Plant Biology, 10(1):285, 2010.

Wang, F. and Sun, Jimeng. Survey on distance metric learning and dimensionality reduction in data mining. Data
Mining and Knowledge Discovery, 29(2):534–564, 2014.

Wang, M. and others, . Inferring large-scale gene regulatory networks using a low-order constraint-based algorithm.
Mol Biosyst, 6(6):988–998, Jun 2010.

Wang, Zhong; Gerstein, Mark, and Snyder, Michael. Rna-seq: a revolutionary tool for transcriptomics. Nature
reviews genetics, 10(1):57, 2009.

Watson, G. Smooth regression analysis. Sankhyā: The Indian Journal of Statistics, Series A, pages 359–372, 1964.

Watson, James D; Crick, Francis HC, and others, . Molecular structure of nucleic acids. Nature, 171(4356):737–738,
1953.

Bibliography 133

Weber, Arnim; Kögl, Stephanie A, and Jung, Kirsten. Time-Dependent Proteome Alterations under Osmotic Stress
during Aerobic and Anaerobic Growth in Escherichia coli. Journal of Bacteriology, 188(20):7165–7175, 2006.

Werbos, Paul. Beyond regression: new tools for prediction and analysis in the behavioral sciences. 01 1974.

Yip, Kevin Y; Kim, Philip M; McDermott, Drew, and Gerstein, Mark. Multi-level learning: improving the prediction
of protein, domain and residue interactions by allowing information flow between levels. BMC bioinformatics, 10
(1):241, 2009.

Yoshida, Hideji and others, . YqjD is an Inner Membrane Protein Associated with Stationary-Phase Ribosomes in
Escherichia coli. Journal of Bacteriology, 194(16):4178–4183, 2012.

Youngs, Noah; Penfold-Brown, Duncan; Bonneau, Richard, and Shasha, Dennis. Negative example selection for
protein function prediction: the nogo database. PLoS Comput Biol, 10(6):e1003644, 2014.

Yu, Guoxian; Fu, Guangyuan; Wang, Jun, and Zhu, Hailong. Predicting protein function via semantic integration of
multiple networks. IEEE/ACM transactions on computational biology and bioinformatics, 13(2):220–232, 2016.

Zadeh, Lofti A. Fuzzy sets. Information and Control, 8:338–353, 1965.

Zeiler, Md and Fergus, Rob. Visualizing and understanding convolutional networks. Comput. Vision–ECCV 2014,
8689:818–833, 2014. ISSN 978-3-319-10589-5.

Zhang, Min Ling and Zhou, Zhi Hua. A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng.,
26(8):1819–1837, 2014. ISSN 10414347.

Zhang, Quanshi; Wu, Ying Nian, and Zhu, Song-Chun. Interpretable convolutional neural networks. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 8827–8836, 2018.

Zhang, X. and others, . Inferring gene regulatory networks from gene expression data by path consistency algorithm
based on conditional mutual information. Bioinformatics, 28(1):98–104, Jan 2012.

Zhou, L. and Hu, Z. Chebyshev’s inequality for banach-space-valued random elements. Statistics & Probability
Letters, 82(5):925–931, 2012.

Zhu, Xiaojin. Semi-supervised learning literature survey. Computer Science, University of Wisconsin-Madison, 2:
3, 2006.

Zik, M. and Irish, V. F. Global identification of target genes regulated by APETALA3 and PISTILLATA floral
homeotic gene action. Plant Cell, 15(1):207–222, Jan 2003.

	Introduction
	Contributions
	Structure of the Thesis
	Personal Contributions

	Background
	Biological Background
	From DNA to Protein
	Regulation of Gene Expression
	Transcriptomics technologies
	Protein Structure
	Gene Ontology

	Kernel Methods
	Semantic Based Regularization

	Artificial Neural Networks
	PC Algorithm
	Ranking aggregators
	BOINC

	Multi Target Prediction
	Hierarchical Multilabel Classification
	Formalization
	True Path Rule
	Evaluation metrics

	Candidate Discovery for Network Expansion
	Formalization

	Combining Learning and Logical Constraints for Hierarchical Multilabel Classification of Protein Functions
	Related Work
	Model Description
	Overview of the Prediction Pipeline
	Rules

	Results
	Data Processing
	Empirical analysis

	Conclusion

	Consistent Hierarchical-Multilabel Classification with Artificial Neural Networks
	Model description
	Generalized TPR
	The gTPR holds for AWX
	Implementation

	Experimental setting
	Results
	Conclusion

	Binary Classification from Unknown Multilabel Annotation Space
	Very Simple Classifier
	Hyperplane selection
	Hyperplane confidence
	Learning the hyperplane weights
	Characterization of the confidence in terms of Chebichev inequality

	Results
	Experimental setup
	Experiment 1
	Experiment 2
	Discussion

	Conclusion

	Gene Regulatory Network Expansion by Stratified variable Subsetting and Ranking Aggregation
	Related Work
	NES2RA
	NES2RA on the gene@home BOINC project
	Evaluation
	Conclusion

	OneGenE: Regulatory Gene Network Expansion via Distributed Volunteer Computing on BOINC
	OneGenE
	Implementation
	Performance
	Benchmarks
	Computational power and drawbacks

	Pseudomonas aeruginosa
	Experimental results

	Conclusion

	Conclusions
	Publications
	Released Software
	Bibliography

