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Abstract	

Functional	connectivity	represents	a	powerful	approach	to	describe	the	intrinsic	activity	
of	the	brain.	It	reveals	the	organization	and	correlations	among	anatomically	separated	
regions	supporting	similar	cognitive	and	sensory	processes.	Using	 functional	Magnetic	
Resonance	 Imaging	(fMRI),	 the	recurrent	spatial	characteristics	of	 these	patterns	have	
been	extensively	explored	in	the	adult	brain	and	their	disruption	has	been	found	to	be	
associated	 with	 psychiatric	 and	 developmental	 disorders.	 Unveiling	 the	 processes	 of	
emergence	of	resting	state	networks	at	a	very	early	stage	of	life	could	shed	light	on	the	
neuronal	origins	of	these	diseases.	However,	the	study	of	the	inception	and	development	
of	functional	connectivity	in	the	newborn	brain	poses	exceptional	challenges,	due	to	the	
complexity	of	dealing	with	non-compliant	subjects.	To	this	end,	cortical	activity	at	birth	
can	be	investigated	using	functional	Near	Infrared	Spectroscopy	(fNIRS)	that	represents	
a	promising	non-invasive	neuroimaging	method	for	developmental	studies.		
In	the	present	thesis,	I	applied	fNIRS	to	assess	functional	connectivity	in	term	neonates.	
The	first	part	of	the	dissertation	is	dedicated	to	investigating	the	maturation	of	a	specific	
resting	state	network,	 the	Default	Mode	Network,	within	 the	 first	48	hours	of	 life.	The	
study	 aimed	 to	 examine	 its	 emergence,	 for	 the	 first	 time,	 using	 optical	 imaging	 on	
newborns	immediately	after	birth.	While	the	majority	of	fMRI	literature	focused	on	large-
scale	spatial	patterns,	 I	 took	a	different	approach	measuring	an	 intrinsic	and	 localized	
fingerprint	feature	of	the	network,	consistently	detected	in	adult	subjects.		
In	the	second	part	of	the	dissertation,	I	aimed	at	improving	the	anatomical	representation	
of	brain	connectivity,	inferred	only	from	signals	collected	at	the	scalp.	Thus,	I	developed	
and	validated	a	method	for	the	reconstruction	of	spatially	distributed	functional	signals	
on	a	dedicate	template	for	term	newborn	subjects.	The	intent	is	to	promote	the	shift	from	
a	sensor	space	description	(one	signal	for	each	channel)	to	a	source	space	representation	
in	which	 the	 origin	 of	 the	 signal	 is	 reconstructed	with	 better	 anatomical	 fidelity.	 The	
reliability	 of	 the	 reconstruction	method	was	 tested	 on	 synthetic	 and	 real	 data.	 In	 the	
former	case,	I	simulated	spatially	correlated	neural	activity	in	the	cortex,	thus	enabling	
assessment	of	the	reconstructed	images	against	a	ground-truth	map.		
Analyses	 of	 functional	 connectivity	 in	 both	 sensor	 and	 source	 space	 showed	 that	 the	
Default	Mode	Network	is	still	immature	at	birth,	with	a	lack	of	homotopic	correlation	in	
the	lateral	parietal	cortices,	and	no	evidence	of	anticorrelation	with	the	Dorsal	Attention	
Network,	a	well	established	feature	in	the	adult	brain.	
Overall	the	work	presented	in	the	thesis	contributes	to	the	understanding	of	functional	
connectivity	in	the	infant’s	brain	and	provides	useful	tools	for	source-based	connectivity	
analysis	and	for	probe	design	and	optimization.			
			
	
	
Keywords:	functional	connectivity,	fNIRS,	image	reconstruction,	neonates,	optical	imaging.		
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Preface	

	

The	 human	 brain	 can	 be	 depicted	 as	 a	 fascinating	 complex	 system	 consisting	 of	

functionally	 specialized	 regions	 continuously	 sharing	 information	 with	 each	 other.	

Unveiling	the	structure	of	these	complex	networks	might	provide	a	key	to	understand	the	

functional	organization	of	the	brain	and	the	interplay	between	functional	segregation	and	

integration.	Since	the	19th	century,	imaging	techniques	have	been	developed	to	explore	

and	measure	brain	dynamics	non-invasively,	 thus	providing	a	new,	powerful	means	of	

investigation.	Considerable	progresses	have	been	made	in	this	direction	since	the	advent	

of	functional	Magnetic	Resonance	Imaging	(fMRI)	that	paved	the	way	to	the	description	

of	 the	brain	organization	 through	 the	 functional	 interactions	between	 its	 components.	

Functional	connectivity	is	defined	as	the	temporal	synchronization	between	spontaneous	

fluctuations	of	neuronal	activity,	registered	at	rest.	Thus,	in	the	absence	of	external	inputs	

to	 the	subject,	 the	 intrinsic	brain	activity	can	be	captured.	 In	 this	natural	condition,	as	

extensively	demonstrated	 in	numerous	 fMRI	 studies,	 correlations	 among	 anatomically	

separated	regions	emerge	in	the	form	of	spatial	patterns,	which	have	been	consistently	

described	 in	 adults.	 In	 healthy	 subjects,	 the	 resting	 state	 networks	 (RSNs)	 present	

recurrent	characteristics	while	changes	in	their	topology	have	been	associated	with	the	

onset	of	various	neurological	or	psychiatric	diseases.		Thus,	the	investigation	of	functional	

connectivity	may	prove	to	be	important	in	order	to	understand	the	neural	basis	of	certain	

disorders.	 In	 particular,	 there	 is	 a	 growing	 interest	 in	 the	 study	of	 a	 specific	RSN,	 the	

Default	Mode	Network	(DMN),	which	has	a	potential	role	as	a	marker	for	developmental	

disorders,	such	as	hyperactivity	disorder	or	autism.	For	this	reason,	the	exploration	of	the	

inception	of	functional	connectivity	at	a	very	early	stage	of	life	-	when	the	brain	is	highly	

plastic	 -	 may	 be	 decisive	 to	 plan	 early	 interventions.	 However,	 infants	 represent	 a	

challenging	population	to	be	investigated:	most	of	the	neuroimaging	modalities	employed	

in	adults	cannot	be	straightforwardly	extended	to	non-compliant	and	non-verbal	subjects.	

To	this	purpose,	functional	Near	Infrared	Spectroscopy	(fNIRS)	represents	a	promising	

option.	This	technique	takes	advantage	of	the	relative	transparency	of	human	tissues	to	
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light	 in	 the	 near	 infrared	 range	 (650	 –	 1000	 nm)	 to	 investigate	 brain	 activity	 in	 a	

completely	non-invasive	way.	Introducing	light	through	the	intact	skull,	optical	imaging	

capitalizes	on	the	absorption	properties	of	the	tissues	to	compute	the	localized	variation	

in	concentration	of	hemoglobin,	in	its	oxygenated	and	deoxygenated	form.	These	changes	

are	 associated	 with	 the	 vascular	 response	 to	 fluctuations	 in	 the	 underlying	 neuronal	

activity.	 During	 the	 measurement,	 sources	 are	 positioned	 adjacent	 to	 the	 scalp,	

introducing	light	through	the	intact	skull.	Detectors,	placed	few	centimetres	away	from	

sources,	register	light	that	diffuses	through	the	cortex.	The	pair	of	corresponding	source	

and	 detector	 is	 referred	 to	 as	 channel.	 Considering	 the	 peculiar	 possibility	 to	 obtain	

measurements	at	the	bedside	and	its	non-invasiveness,	fNIRS	is	extremely	advantageous	

in	 developmental	 studies.	 However,	 especially	 in	 resting	 state	 studies	 in	 infants,	

functional	connectivity	is	usually	inferred	only	from	signals	collected	at	sensor	position,	

one	for	each	channel,	resulting	in	a	coarse	description	of	the	brain	dynamics.		

In	my	PhD	project,	I	used	fNIRS	to	explore	functional	connectivity	in	the	neonates’	brain	

from	 multiple	 perspectives.	 Firstly,	 I	 conducted	 a	 functional	 connectivity	 study	 on	 a	

sample	 of	 term	 newborns,	 recruiting	 subjects	 at	 the	 Rovereto’s	 Hospital	 (Italy).	

Specifically,	I	investigated	the	inception	of	the	DMN	focusing	on	specific	features	of	this	

network.	Additionally,	I	developed	methods	to	map	functionally	connectivity	patterns	on	

a	 finely-grained	 anatomical	 template,	 thus	 moving	 from	 a	 sensor-based	 analysis	 to	 a	

source-based	 representation	 with	 improved	 anatomical	 localization.	 Importantly,	 I	

devised	 a	 strategy,	 based	 on	 synthetic	 data,	 to	 validate	 my	 reconstruction	 approach	

against	a	ground-truth.	

My	thesis	is	organized	as	follows.			

Chapter	1	is	dedicated	to	introducing	the	concept	of	functional	connectivity.	Firstly,	the	

structure	and	plasticity	of	the	brain	immediately	after	birth	are	briefly	explained,	in	order	

to	highlight	the	importance	of	this	specific	stage	of	development.	Then,	the	approach	of	

functional	 connectivity	 to	 explore	 the	 brain	 functional	 organization	 is	 presented.	 The	

focus	is	directed	on	the	study	of	emerging	resting	state	networks,	and	particularly	of	the	

DMN.	 The	 literature	 on	 the	 maturation	 of	 DMN	 at	 this	 stage	 of	 life	 is	 reviewed	 and	

discussed,	to	provide	a	framework	to	my	work.	Lastly,	the	tailored	approach	I	chose	to	

investigate	the	state	of	DMN	at	birth	is	described.		

In	 Chapter	 2,	 the	 fNIRS	 technique	 is	 introduced	 as	 an	 alternative	 neuroimaging	

methodology	to	fMRI	for	the	study	of	functional	connectivity	in	developmental	age.	The	
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physical	principles	of	optical	imaging	and	the	different	instruments	in	use	are	explained.	

The	advantages	and	limitations	of	fNIRS	in	studies	on	neonates	are	illustrated	through	the	

comparison	with	other	neuroimaging	modalities.	 In	 this	section,	 the	problem	of	 image	

reconstruction	is	illustrated,	and	the	forward	and	inverse	problems	are	mathematically	

described.		

Chapter	3	is	dedicated	to	presenting	a	resting	state	study	I	conducted	using	fNIRS	on	term	

neonates.	The	aim	of	the	work	was	to	investigate	whether	it	is	already	possible	to	detect	

a	mature	DMN	at	birth.	Specifically,	all	subjects	were	scanned	within	their	first	two	days	

of	life.	We	hypothesize	the	capability	to	identify	the	emergence	of	the	network	exploiting	

a	localized	feature	consistently	registered	in	adults.	The	areas	of	interest	are	probed	with	

a	sparse	20-channels	array.	In	this	chapter	the	experimental	details	of	the	study,	as	well	

as	the	results,	are	illustrated.		

Finally,	 the	 study	 behind	 Chapter	 4	 arises	 from	 the	 opportunity	 to	 improve	 the	

description	 of	 functional	 connectivity,	 usually	 obtained	 in	 the	 sensor	 space,	 with	 a	

representation	 in	 the	 sources	 space.	 To	 this	 purpose,	 the	 reconstruction	 of	 spatially	

distributed	 functional	 signals	 is	 validated	 on	 a	 dedicated	 anatomical	 template	 with	

synthetic	signals	and	real	datasets,	including	the	one	presented	in	Chapter	3	and	a	second	

one	 provided	 by	 collaborators	 from	 University	 of	 Tokyo	 (Prof.	 Gentaro	 Taga	 and	 his	

research	group).	The	process	is	tested	under	different	experimental	conditions,	in	order	

to	 establish	 the	 impact	 of	 various	 factors	 that	 are	 determinant	 during	 acquisitions	 on	

infants.		

Finally,	the	future	perspectives	of	my	work	are	summarised	and	discussed.	
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1 					Shedding	light	on	the	newborn’s	brain:	a	challenge	
 

	

The	very	first	stage	of	life	is	critically	decisive	for	the	development	of	the	human	brain.	

Due	to	its	extreme	plasticity,	the	neonate’s	brain	undergoes	rapid	changes	that	may	be	

determinant	 for	 the	 future	 growth	 of	 the	 individual.	 Understanding	 structure	 and	

organization	of	 this	biological	evolving	system	during	the	 first	days	and	months	of	 life	

remains	a	challenge.	Recent	advances	in	neuroimaging	methodologies,	such	as	Magnetic	

Resonance	 Imaging	 (MRI)	 or	 Near	 Infrared	 Spectroscopy	 (NIRS),	 provide	 a	 powerful	

means	to	acquire	structural	and	functional	information	on	the	adult	human	brain	in	vivo	
and	non-invasively.	Extension	of	 these	methods	 to	 the	 study	of	 the	baby’s	brain	holds	

considerable	promise	to	discern	the	principles	governing	the	brain	development	during	

the	very	early	phase	of	life.	A	recent	special	issue	of	the	Neuroimage	Journal	(Huang	H.,	

Huppi	 P.,	 He	 Y.,	 2019)	 explored	 progresses	 and	 future	 perspectives	 in	 the	 baby	 brain	

imaging,	demonstrating	the	increasing	attention	to	the	topic	by	the	scientific	community.	

This	chapter	is	intended	to	present	the	state	of	art	of	newborns’	brain	investigation	with	

neuroimaging	methods,	 focusing	 on	 the	 emergence	 and	 development	 of	 its	 functional	

organization.		

	

1.1 The	infant	brain,	a	complex	and	vulnerable	system	
	

The	 study	of	 the	human	early	brain	development	 represents	 a	 fascinating	 as	much	 as	

challenging	 research	 field.	 The	postnatal	 brain	 can	be	 conceptualized	 as	 an	 extremely	

complex	system	because	of	its	continuous	evolution	and	rearrangement.	The	formation	

of	 neural	 circuits	 effectively	 starts	 in	 the	 first	 trimester	 of	 pregnancy	 through	 intense	

neurogenesis	 and	 neural	migration	 (Bystron,	 Blakemore,	&	Rakic,	 2008).	 The	 process	

intensifies	during	the	mid	and	late	gestational	period	when	an	abundant	synaptogenesis	

and	axonal	growth	are	the	predominant	mechanisms	(Webb,	Monk,	&	Nelson,	2001).	By	

the	end	of	pregnancy,	the	most	of	white	matter	connections	have	been	settled,	forming	an	
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almost	 complete	 structural	 connectome.	 Synaptogenesis	 continues	 after	 birth,	 with	 a	

peak	level	of	synapses	reached	at	2	to	3	years	of	age,	followed	by	gradual	and	selective	

pruning	(elimination	of	redundant	synapses),	a	process	that	is	thought	to	rebalance	the	

excessive	number	of	connections	and	to	shape	mature	neural	circuits	(Keunen,	Counsell,	

&	 Benders,	 2017).	 Genetically	 programmed	 events,	 as	 well	 as	 external	 stimuli	 and	

experiences	are	responsible	for	the	reshaping	of	the	system	architecture.	Thus,	different	

kind	of	processes	contribute	-	within	a	constantly	changing	context	-	to	the	formation	and	

organization	of	neural		circuits	(Stiles	&	Jernigan,	2010).	The	plasticity	that	characterizes	

the	brain	at	this	stage	enables	rapid	structural	and	functional	transformation,	but	at	the	

same	 time	makes	 it	vulnerable	 to	maladaptation	(Gao,	Lin,	Grewen,	&	Gilmore,	2017),	

with	 the	 subsequent	 risk	of	 a	 severe	 impairment	of	 the	normal	 growth	of	 the	 system.	

Unveiling	 the	 principles	 of	 the	 brain	 organization	 in	 the	 infancy	may	 be	 important	 to	

understand	abnormal	development.	Indeed,	it	has	been	demonstrated	that	neuronal	and	

psychiatric	disorders,	like	Autism	or	Schizophrenia,	may	originate	at	early	stages	of	brain	

maturation	(Beardslee,	Chien,	&	Bell,	2011):	in	such	cases,	recognizing	the	risk	and	being	

able	to	program	an	intervention	during	critical	periods	is	of	crucial	importance	(Figure	

1.1).	

	

	

 

 

Figure	1.1	The	illustration	schematically	emphasizes	the	strong	dependence	of	brain	development	on	gene-
environment	interaction,	and	highlights	how	an	early	intervention,	in	a	narrow	time	window,	could	increase	
the	probability	for	the	subject	to	restore	a	normal	trajectory	of	brain	development.	(The	figure	has	been	
inspired	by	(Gao	et	al.,	2017))	
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1.2 Functional	connectivity	approach	to	study	the	brain	
 

Different	imaging	modalities	can	be	applied	to	study	function	and	structure	of	the	brain.	

In	particular,	functional	neuroimaging	refers	to	a	specific	category	of	techniques	able	to	

measure	 localized	physiological	changes	related	 to	neural	activity.	 	Some	of	 them	take	

advantage	of	variation	in	cerebral	blood	flow	to	detect	“activated”	areas	of	the	brain;	on	

the	 contrary,	 some	 others	 rely	 on	 electrical	 or	magnetic	 effects.	 In	 last	 decades,	 with	

technical	advancements	of	imaging	modalities	(for	instance,	in	terms	of	instrumentation,	

or	of	spatial	and	temporal	resolution),	it	has	been	possible	to	gain	precious	insights	into	

the	formation	and	emergence	of	neural	patterns	and	networks	at	different	scales	(Sporns,	

Tononi,	&	Kötter,	2005).	At	the	dawn	of	imaging	neuroscience,	the	attention	focused	on	

strengthening	the	theory	about	the	centrality	of	functional	segregation	as	a	fundamental	

principle	 in	 brain	 organization.	 The	 segregation	 idea	 is	 grounded	 on	 specialization	 of	

anatomically	 separated	brain	areas	 for	 certain	 functions	 (Friston,	2011).	Recently,	 the	

interest	has	shifted	toward	the	comprehension	of	functional	integration,	to	understand	

the	connection	between	distinct	areas	and	how	they	communicate	with	each	other.	The	

field	has	experienced	a	leap	forward	with	the	diffusion,	in	the	last	decades,	of	functional	

magnetic	resonance	imaging	(fMRI).	fMRI	represents	a	powerful	and	non-invasive	tool	to	

investigate	neural	activity	in	vivo.	Briefly,	the	method	works	under	the	assumption	that	
regional	variations	in	blood	flow	are	linked	to	different	levels	of	neural	activity.	As	it	will	

be	 explained	 later	 in	 section	 2.2,	 the	 activation	 of	 a	 cortical	 area	 determines	 a	 local	

increment	 of	 blood	 flow,	 thus	 increasing	 the	 fraction	 of	 oxygenated	 hemoglobin	 over	

deoxygenated	 hemoglobin,	 with	 respect	 to	 baseline	 conditions.	 Exploiting	 the	

paramagnetic	 property	 of	 deoxyhemoglobin,	 fMRI	 uses	 the	 blood	 oxygenation	 level-

dependent	(BOLD)	contrast	to	gain	information	on	brain	activity	(Logothetis	&	Pfeuffer,	

2004;	Raichle	&	Mintun,	2006).		Since	its	inception,	fMRI	has	been	instrumental	for	the	

mapping	of	task-related	brain	responses,	i.e.	region-specific	activations	evoked	by	specific	

stimuli.	Here,	instead,	we	will	dwell	especially	on	a	more	recent	field	of	study	opened	by	

investigation	 of	 the	 brain	 “at	 rest”	 -	 in	 the	 absence	 of	 any	 external	 stimuli	 or	 task	

performance	 requests.	 In	 these	 cases,	 the	 subject	 lays	 still	 in	 the	 scanner	 for	 several	

minutes,	without	any	presented	stimulus,	while	fMRI	signals	are	acquired	on	a	continuous	

basis.	 In	 1995	 Biswal	 et	 al.	 (Biswal,	 Yetkin,	 Haughton,	 &	 Hyde,	 1995)	 published	 the	

seminal	observation	that	spontaneous	fluctuations	of	the	BOLD	signal,	recorded	by	fMRI	
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in	 the	 brain	 at	 rest,	 could	 not	 be	 classified	 as	 simple	 noise,	 but	 presented	 significant	

correlation	between	functionally	related	regions.	This	finding	has	paved	the	way	to	the	

study	of	the	brain	“functional	connectivity”	and	its	organization	in	distributed	networks	

of	functionally	interconnected	regions.		

We	 generally	 refer	 to	 the	 expression	 “functional	 connectivity”	 (FC)	 to	 account	 for	 the	

estimation	 of	 the	 statistical	 interdependence	 of	 neuronal	 activity	 of	 anatomically	

separated	 brain	 regions	 (Friston,	 2011).	 Thus,	 the	 study	 of	 functional	 connectivity	

enables	mapping	the	large-scale	cerebral	organization	and	is	thought	to	give	information	

on	 the	 level	 of	 communication	 between	 cerebral	 areas.	 Interestingly,	 correlated	

spontaneous	 activity	 is	 organized	 in	 groups	 of	 anatomically	 separated	 brain	 regions.	

These	emerging	spatial	patterns	have	been	consistently	observed	in	individuals	and	are	

usually	 referred	 to	 as	 resting-state	 networks	 (RSN)	 or	 intrinsic	 networks	 (Beckmann,	

DeLuca,	Devlin,	&	Smith,	2005;	Damoiseaux	et	al.,	2006;	De	Luca,	Beckmann,	De	Stefano,	

Matthews,	&	Smith,	2006;	S.	M.	Smith	et	al.,	2009;	van	den	Heuvel	&	Hulshoff	Pol,	2010).	

Functional	connectivity	studies	have	robustly	identified	a	number	of	distinct	resting-state	

networks	in	the	adult	human	brain	(De	Luca,	Smith,	De	Stefano,	Federico,	&	Matthews,	

2005).	 Furthermore,	 the	 description	 of	 homologous	 networks	 in	 other	 species,	 like	

rodents	or	monkeys,	indicates	that	RSNs	represent	a	core	feature	of	the	mammalian	brain	

organization	 (Becerra,	 Pendse,	 Chang,	 Bishop,	 &	 Borsook,	 2011;	 Vincent	 et	 al.,	 2007).	

Most	of	the	observed	functional	RSNs	overlap	with	activation	networks	involving	areas	

with	similar	functions,	simultaneously	emerging	during	task-based	experiments.	Motor	

and	 visual	 networks,	 associated	 to	 analogous	 regions	 of	 the	 cortex,	 provide	 shining	

examples.	Moreover,	the	pattern	formed	of	the	superior	temporal	insular	and	postcentral	

cortex	consists	of	areas	usually	involved	in	auditory	functions	and	the	group	of	regions	

consisting	 of	 dorsolateral	 prefrontal	 cortex	 and	 superior	 parietal	 cortex	 are	 active	

together	during	memory	tasks	(Figure	1.2	illustrates	the	organization	of	some	of	the	most	

studied	 RSNs).	 Contribution	 to	 the	 BOLD	 signal	 correlation	 is	 only	 given	 by	 low	

frequencies,	in	the	range	[0.01	–	0.1	Hz]	and	this	explains	the	reason	why	we	usually	refer	

to	“slow	fluctuations”	of	spontaneous	activity.	In	this	way,	noise	due	to	scanner	drifts	(<	

0.01	Hz)	and	physiological	components	–	like	respiration	(~	0.3	Hz)	and	cardiac	(~	1.0	

Hz)	-	are	discarded.		

Extraction	of	 functional	connectivity	networks	 from	resting	state	measurements	 is	not	
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trivial,	 due	 to	 the	 absence	 of	 a	 task	 that	 could	 represent	 a	 reference	 for	 the	 analysis.	

Different	approaches	can	be	used	to	recognize	the	emergence	of	spatial	patterns	and	infer	

the	functional	connectivity	of	the	brain	system.	The	most	immediate	is	known	as	seed-

based	correlation	analysis	-	or	Region	of	Interest	based-analysis	(ROI)	-	and	is	based	on	

the	simple	computation	of	correlation	between	the	so	called	seed	,	which	is	the	BOLD	time	
course	representative	of	a	single	voxel	or	of	a	small	region,	and	all	 the	other	voxels	or	

nodes	of	the	brain.	The	resulting	information	is	a	map,	showing	regions	of	the	brain	that	

present	 coherent	neural	activity	with	 respect	 to	 the	 chosen	seed:	we	 refer	 to	 these	as	

functionally	 correlated	 areas.	 The	 connectivity	 matrix,	 which	 defines	 correlations	

between	 all	 possible	 seed	 regions	 in	 the	 brain,	 is	 widely	 used	 to	 explore	 global	

connectivity.	The	ROI-based	approach	was	used	to	support	the	very	first	evidence	of	RSN	

(Biswal	et	al.,	1995),		and		has	been	widely	used	in	functional	connectivity	studies	for	its	

intuitive	interpretation.	However,	its	dependence	on	an	a	priori	hypothesis	(the	choice	of	
a	specific	region	of	reference)	could	represent	a	disadvantage.	Indeed,	the	analysis	allows	

to	consider	only	one	seed	at	time	and	to	evaluate	one	network	at	time.	Moreover,	seed	

positioning	may	be	affected	by	anatomical	and	functional	differences	among	individual	

subjects.		

Data-driven	 analysis	 methods,	 like	 Independent	 Component	 Analysis	 (ICA),	 offer	 the	

possibility	 to	 avoid	 an	 a	 priori	 choice	 and	 unveil	 the	 data	 structure	 (van	 de	 Ven,	
Formisano,	Prvulovic,	Roeder,	&	Linden,	2004).	In	this	case,	the	signal	is	decomposed	into	

statistically	 independent	 components,	 each	 one	 with	 an	 associated	 spatial	 map	 –	 the	

functional	 network	 -	 and	 a	 time	 course.	 In	 this	way,	 the	 procedure	 allows	 to	 identify	

simultaneously	all	possible	measurable	spatial	patterns.		The	origin	of	the	coherence	can	

have	neural	bases,	be	attributable	to	physiological	noise	or	just	represent	a	mere	result	of	

neuroimaging	artifacts.	Differently	from	seed-based	methods,	the	ICA	algorithm	does	not	

rely	on	specific	hypothesis	regarding	the	region	of	interest	and	can	be	used	to	identify	and	

remove	 components	 related	 with	 noise.	 On	 the	 other	 hand,	 the	 interpretation	 of	

components	 is	 often	 not	 unique,	 and	 the	 identified	 networks	 may	 depend	 on	 input	

parameters,	like	the	total	number	of	components	the	algorithm	should	discern	(Lv	et	al.,	

2018).	ICA	and	ROI-based	are	not	the	only	available	approaches	to	the	analysis	of	spatial	

connected	patterns,	but	they	are	the	most	representative	and	widespread	ones;	the	choice	

to	 specifically	 present	 them	 also	 depends	 on	 the	 necessity	 to	 illustrate	 and	 compare	

previous	results	in	literature.		
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Spatial	patterns	measured	at	rest	are	strongly	consistent	among	individuals	and	different	

analysis	methods	 (Joel,	 Caffo,	 van	 Zijl,	 &	 Pekar,	 2011),	 pointing	 out	 a	 solid	 functional	

interaction	between	anatomically	separated	brain	regions	(Figure	1.2).		

 

Figure	1.2	In	figure,	some	of	the	most	commonly	described	resting	state	spatial	networks	in	literature	are	
shown.	Here,	results	from	ICA	analysis	show:	the	Default	Mode	Network	(1),	the	sensorimotor	network	(2),	
mesial	visual	network	(3),	executive	control	network	(4),	fronto-parietal	networks	(5-6),	auditory	network	
(7),	temporo	parietal	network	(8).	The	figure	is	taken	from	(Rosazza	&	Minati,	2011).	

 

Hence,	 functional	 connectivity	 is	 a	 robust	 concept	 to	 describe	 architecture’s	 cerebral	

organization	 in	healthy	 subjects.	Consequently,	 functional	 connectivity	 could	also	be	a	

powerful	 tool	 to	 reveal	 alterations	 linked	 to	 neurological	 and	 psychiatric	 disease.	

Disconnectivity	phenomena,	in	the	form	of	decreases	in	correlation,	have	been	registered	

within	specific	networks	(M.	D.	Fox	&	Greicius,	2010).	To	name	but	a	few,	decreases	in	

connectivity	of	the	Default	Mode	Network	have	been	measured	in	Alzheimer	disease	and	

schizophrenia	 (Supekar,	 Menon,	 Rubin,	 Musen,	 &	 Greicius,	 2008)(Liang	 et	 al.,	 2006);	

aberrant	connectivity	within	the	Salience	Network	–	composed	of	the	anterior	insula	and	
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dorsal	anterior	cingulate	cortex	-	has	been	shown	in	frontotemporal	dementia	(Seeley,	

Crawford,	 Zhou,	 Miller,	 &	 Greicius,	 2009),	 and	 within	 the	 somatosensory	 network	 in	

multiple	 sclerosis	 (Lowe	 et	 al.,	 2002).	 Whether	 these	 alterations	 in	 functional	

connectivity	are	disease-specific	and	sufficiently	robust	and	reproducible	to	represent	a	

viable	diagnostic	or	prognostic	marker	remains	the	object	of	active	investigation.	

 

1.3 	Functional	connectivity	at	a	very	early	stage	of	development	
	

An	increasing	number	of	studies	highlighted	the	pivotal	role	of	functional	connectivity	in	

developmental	 disorders.	 Various	 papers	 have	 focused	 on	RSNs	 alterations	 in	 autistic	

subjects,	 finding	weaker	connectivity	within	 the	Default	Mode	Network	 (Redcay	et	al.,	

2013;	Weng	 et	 al.,	 2010);	 on	 the	 other	 hand,	 in	 	 subjects	 affected	 by	 attention-deficit	

hyperactivity	disorder	(ADHD),	alteration	in	Default	Mode	Network	arises	together	with	

an	increased	connectivity	in	the	salience	network	(Castellanos	&	Aoki,	2016;	L.	Wang	et	

al.,	 2009).	 Hence,	 investigation	 of	 functional	 connectivity	 at	 an	 early	 stage	 of	 life	 and	

during	 early	 brain	 development	 may	 provide	 a	 key	 to	 interpret	 the	 neuro-functional	

mechanisms	 underlying	 these	 impairments	 and	 a	 tool	 to	 help	 planning	 interventions	

during	the	critical	period.		

In	last	years,	significant	insights	into	the	development	of	resting	state	brain	connectivity	

have	been	derived	 from	research	on	both	prenatal	 and	post-natal	 life	 stage	with	 fMRI	

methods.	 For	 instance,	 a	 few	 studies	 on	healthy	 fetuses	 (Schöpf,	Kasprian,	Brugger,	&	

Prayer,	 2012;	 Thomason	 et	 al.,	 2013)	 revealed	 the	 emergence	 of	 bilateral	 functional	

networks	 since	 24	weeks’	 gestational	 age,	 observing	 an	 increase	 of	 inter-hemispheric	

connections	toward	birth	age,	from	a	medial	to	lateral	direction	(Thomason	et	al.,	2013,	

2015).	 Research	 in	 prenatal	 period,	 implemented	 only	 recently,	 help	 to	 give	 some	

background	to	previous	studies	on	postnatal	age.	

The	first	paper	on	functional	connectivity	in	the	early	period	after	birth	was	published	a	

decade	ago	(Fransson	et	al.,	2007).	Fransson	and	colleagues	studied	a	small	population	of	

sedated	 preterm	 infants,	 scanned	 using	 fMRI	methods,	 and	were	 able	 to	 identify	 five	

functional	networks	(out	of	at	least	eight	described	in	adults)	in	visual	cortex,	bilateral	

sensorimotor	 and	 auditory	 regions,	 precuneus	 area,	 lateral	 parietal	 and	 dorsolateral	

prefrontal	cortex.	Consistent	results	were	found	in	a	subsequent	study	on	term,	naturally	

sleeping,	infants;	even	though	the	sedation	seemed	not	to	affect	outcomes	(Fransson	et	
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al.,	 2009),	 it	 appears	 as	 a	 strong	 limitation	of	 the	 technique.	 Later,	 in	 preterm	 infants	

scanned	at	term-equivalent	age,	a	full	repertoire	of	the	major	resting	state	networks	in	

adults,	 including	 executive	 control	 and	 the	 most	 studied	 default	 mode	 network,	 was	

reported	(Doria	et	al.,	2010).	Therefore,	it	emerged	that	functional	patterns	evolved	from	

immature	and	fragmentary	RSNs	in	preterm	infants	(Smyser	et	al.,	2010a)	into	facsimiles	

–	 at	 different	 levels	 of	 similarity	 -	 of	 adult	 complex	 networks	 after	 ex	 utero	 brain	
development.	Although	contradicting	results	on	bilaterality	and	symmetry	of	RSNs	have	

been	reported	(Liu,	Flax,	Guise,	Sukul,	&	Benasich,	2008),	these	works	shed	light	on	the	

evidence	that	several	of	the	most	recurrent	resting	state	networks,	already	described	in	

adults,	 start	maturing	 during	 the	 last	 trimester	 of	 gestation,	 before	 the	 acquisition	 of	

cognitive	competencies.	However,	the	dynamics	of	growth	differs	from	one	network	to	

another.	Specifically,	it	appears	that	the	development	of	functional	networks	is	associated	

not	 only	 to	 already	 established	 genetic	 mechanisms	 (such	 as	 synaptogenesis	 or	

myelination),	but	also	to	the	behavioural	functions	to	which	they	are	associated.	As	proof	

of	 this,	 networks	 involved	 in	 auditory	 or	 visual	 processes	 are	 fully	 matured	 at	 birth,	

revealing	a	structure	comparable	to	the	adult	one,	while	networks	linked	to	higher	order	

functions	could	appear	still	fragmented	at	the	end	of	the	first	postnatal	year	(Gao	et	al.,	

2014;	Keunen	et	al.,	2017).	Even	though	studies	presented	above	start	delineating	 the	

general	 development	 within	 the	 first	 two	 years	 of	 life,	 the	 organization	 of	 functional	

connectivity	 immediately	after	birth	–	which	represents	the	critical	period	window	for	

interventions	–	has	not	been	completely	defined.	In	particular,	we	will	focus	on	the	Default	

Mode	Network,	one	of	the	most	observed	RSNs	in	adults,	which	has	been	associated	with	

developmental	disorders	(as	highlighted	at	the	beginning	of	the	section).	Surprisingly,	the	

literature	on	this	topic	depicts	an	inconsistent	scenario,	thus	prompting	further	research	

and	exploration	of	new	methods	and	tools.	

	

	
	

1.3.1 Focus	on	Default	Mode	Network	after	birth	
	

The	 Default	Mode	Network	 (DMN)	was	 first	 identified	 as	 a	 group	 of	 brain	 areas	 that	

simultaneously	decreased	their	activity	(or	“deactivated”)	during	specific	task	conditions	

with	respect	to	rest	condition	(Fransson,	2005;	M.	D.	Greicius,	Krasnow,	Reiss,	&	Menon,	
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2003;	Shine	&	Breakspear,	2018;	Uddin,	Clare	Kelly,	Biswal,	Xavier	Castellanos,	&	Milham,	

2009).	The	definition,	based	on	activation/deactivation	mechanisms,	depended	on	 the	

close	link	of	analyses	and	interpretations	to	a	task-based	reference	model.	After	resting	

state	fMRI	methods	were	established,	it	appeared	that	this	set	of	regions	usually	present	

correlated	 spontaneous	 activity,	 and	may	 form	a	 brain	 system	per	 se.	 The	 anatomical	
configuration	 of	 the	 network	 is	 considerably	 consistent	 in	 literature,	 regardless	 of	

neuroimaging	approaches	or	analysis	methods	used.	 It	comprises	the	bilateral	parietal	

cortex,	 precuneus/posterior	 cingulate	 cortex	 and	 lateral	 and	medial	 prefrontal	 cortex	

(Raichle	et	al.,	2001;	van	den	Heuvel,	Mandl,	Kahn,	&	Hulshoff	Pol,	2009).		

DMN	has	been	associated	with	spontaneous	cognition	and	introspective	thoughts.	Indeed,	

regions	 involved	 in	 the	 network	 show	 increased	 activity	 during	 passive	 cognitive	

processes,	but	decreased	activation	during	externally	goal-directed	activities	(Buckner,	

Andrews-Hanna,	&	Schacter,	2008;	Raichle	et	al.,	2001).	Subsequent	studies	have	shown	

that	 a	 variety	 of	 situations	 involving	 active	 tasks	 engage	 the	 DMN	 areas.	 By	 way	 of	

example,	recall	of	past	events,	imagination	about	the	future	(prospection)	and	conceiving	

the	 viewpoint	 of	 others	 (theory	 of	 mind)	 reflect	 the	 emergence	 of	 the	 set	 of	 regions	

classified	 within	 the	 DMN	 (Buckner	 &	 Carroll,	 2007).	 The	 strength	 of	 connections	

between	 regions	 of	 networks	 decreases	 in	 deep	 sleep,	 as	 confirmed	 by	

Electroencephalogram	 (EEG)	 measurements,	 reflecting	 maybe	 alterations	 in	

consciousness	(Horovitz	et	al.,	2009).	This	suggests	a	strong	relationship	of	detected	DMN	

with	intrinsic	brain	states.		

Recently,	neuroscience	research	is	devoting	closer	attention	to	understanding	the	role	of	

this	network	in	the	functional	architecture	of	the	healthy	brain	and	the	effects	of	diseases	

on	its	organization.	In	adults,	evidences	of	disruption,	abnormal	reduction	or	increase	in	

DMN	connections	have	been	found	in	schizophrenia,	Alzheimer’s	disease	and	depression	

(M.	 Greicius,	 2008).	 Moreover,	 the	 study	 of	 this	 network	 have	 an	 impact	 also	 on	

neurodevelopmental	disorders.	Nevertheless,	 for	decades	 the	majority	of	 literature	on	

DMN	 has	 focused	 on	 adult	 subjects.	 Reaching	 a	 deep	 comprehension	 of	 the	 stage	 of	

development	 at	 which	 the	 Default	 Mode	 Network	 emerges	 and	 how	 it	 evolves	 could	

provide	 insights	 into	 the	explanation	of	neuronal	origins	of	 these	disorder	 (Gao	et	 al.,	

2009)	and,	more	importantly,	could	help	programming	early	intervention.		

Even	though	the	field	is	in	its	infancy,	some	studies	have	been	conducted	with	the	aim	to	

unravel	developmental	mechanisms	of	functional	connectivity	in	the	very	first	years	of	
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life	(Gao	et	al.,	2011,	2013;	J.	K.	Smith	et	al.,	2014).	Nevertheless,	to	date,	we	still	do	not	

have	a	clear	grasp	of	the	state	of	DMN	immediately	after	the	birth.	In	one	of	the	first	whole-

brain	studies	in	newborns,	Fransson	and	colleagues	scanned	a	small	sample	of	preterm	

neonates	of	41	weeks	of	age	(Fransson	et	al.,	2007).		

	

 
Figure	 1.3	 Results	 from	 different	 connectivity	 studies.	 On	 the	 left,	 a	 group	 analysis	 on	 early	 preterm	
neonates	 scanned	 at	 term	equivalent	 age	 is	 reported	 (Fransson	 et	 al.,	 2007).	 ICA	 analysis	 revealed	 the	
presence	of	 five	main	networks.	The	one	 (D)	 in	yellow	 is	 considered	a	predecessor	of	DMN,	because	 it	
partially	 resembles	 the	 spatial	pattern	observed	 in	adults.	On	 the	 right,	Doria	et	 al.	 (Doria	et	 al.,	 2010)	
compared	spontaneous	activity	patterns	–	corresponding	to	independent	components	from	ICA	–	obtained	
in	early	preterm,	preterm	and	term	equivalent	to	those	from	term	controls	ones.	They	were	able	to	detect	
several	resting	state	networks:	medial	visual	(A),	lateral	visual	(B),	auditory	(C),	somatosensory	(D),	motor	
(E),	 cerebellum	 (F),	 brainstem	 and	 thalami	 (G),	 default	mode	 (H),	 dorsal	 visual	 stream	 (left	 and	 right	
components)	(I	and	J),	and	executive	control	(K).	The	DMN	(highlighted	 in	yellow)	varies	with	age,	but	
shows	a	complete	pattern	in	term	equivalent	and	term	controls	subjects.		

 

Their	analyses	of	resting	state	data	from	slightly	sedated	and	sleeping	infants	failed	to	

discern	a	complete	spatial	pattern	of	Default	Mode	Network.	However,	strong	functional	

connectivity	between	the	bilateral	parietal	cortex	and	the	precuneus/posterior	cingulate	

cortex	was	detected.	This	configuration	resembled	in	a	certain	way	the	posterior	part	of	

the	pattern	registered	in	adults	and	it	was	identified	as	a	“proto”	default	mode	network,	

to	remark	the	incomplete	similarity	with	the	adult	one	(Figure	1.3).		
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This	result	was	confirmed	by	subsequent	work,	in	which	the	analyses	were	replicated	on	

a	larger	set	of	term,	naturally	sleeping	infants,	to	test	the	effects	of	the	relative	immaturity	

of	the	preterm	brain	(Fransson	et	al.,	2009).	Additionally,	an	incomplete	pattern	of	DMN	

was	observed	 in	2	weeks-old	 subjects,	whereas	 a	more	 complex	 and	 similar	 to	 adults	

network	architecture	was	detected	in	2	years-olds	(Gao	et	al.,	2009).	This	could	support	

the	 idea	 that	 Default	 Mode	 Network	 is	 experience-dependent	 and	 matures	 gradually	

through	 infancy,	 in	 parallel	 with	 the	 development	 of	 cognitive	 competences.	 On	 the	

contrary,	 Doria	 and	 others	 (2010)	 suggested	 that	 the	 complex	 network	 of	 DMN	may	

develop	even	before	term	(Figure	1.3).	They	collected	BOLD	resting-state	fMRI	data	from	

infants	at	29	to	43	weeks	Post	Menstrual	Age	(PMA)	and	divided	them	in	three	subsets	

(early	 preterm,	 preterm	 and	 term-equivalent).	 Data-	 and	 hypothesis-	 driven	 analyses	

demonstrated	that	DMN	develops	from	an	immature	and	incomplete	network	in	preterm	

infants	into	a	very	similar	version	of	the	adult	network	at	term	(Doria	et	al.,	2010).	The	

discordant	results	could	be	due	to	a	different	analysis	pipeline.	 Indeed,	 in	their	works,	

Fransson	and	others	(2007,	2009)	used	probabilistic	ICA	without	a	precise	time-resolved	

anatomical	 template	 brain,	 while	 Doria	 and	 colleagues	 performed	 accurate	 co-

registration	 before	 ICA	 computation.	 In	 the	 latter	 case,	 the	 use	 of	 a	 4D	 template	 for	

registration	of	correlation	maps	might	have	improved	the	ability	to	reliably	delineate	the	

development	of	the	DMN.	

	

	

1.3.2 A	new	approach	to	the	study	of	DMN	in	neonate:	motivation	of	the	
study	

	

The	state	of	art	reveals	a	discordant	scenario	about	the	capability	to	detect	a	mature	DMN	

at	a	very	early	stage	of	life	and	suggests	the	urgency	of	further	investigation	in	the	field.	

To	date,	almost	all	attempts	to	inspect	the	emergence	of	the	network	are	directed	at	the	

investigation	 of	 a	 spatial	 pattern,	which	 is	well	 known	 from	measurements	 in	 adults.	

However,	 the	 confounding	 scenario	 delineated	 before	 raises	 some	 doubts	 about	 the	

effectiveness	of	an	investigation	only	based	on	the	quest	of	a	complete	spatial	pattern.		

The	core	of	the	present	thesis	work	revolves	around	the	study	of	the	DMN	in	term	infants	

within	two	days	from	birth	using	functional	Near	Infrared	Spectroscopy,	a	technique	that	

measures	a	hemodynamic	readout	akin	to	the	BOLD	signal	in	fMRI,	but	is	more	amenable	
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to	non-compliant	subjects	 like	 the	newborn	baby.	 	We	hypothesize	 that	exploration	of	

DMN	 can	 be	 conducted	 through	 its	 interaction	 with	 other	 networks.	 We	 would	 take	

advantage	 of	 a	 priori	 information	 from	 adult	 subjects.	 Generally,	 positive	 correlations	
have	 been	 observed	 between	 functionally	 related	 brain	 regions,	 and	 negative	 ones	

between	brain	regions	showing	theoretically	opposed	functional	roles	(M.	D.	Greicius	et	

al.,	2003;	Kelly,	Uddin,	Biswal,	Castellanos,	&	Milham,	2008).	More	specifically,	regions	

showing	an	increase	of	activity	during	attention-demanding	tasks	(task-positive	regions)	

are	positively	correlated	among	themselves,	and	negatively	correlated	with	regions	that	

exhibit	decreases	in	activity	(task-negative	regions)	(M.	D.	Fox,	Zhang,	Snyder,	&	Raichle,	

2009).	Resting	state	fMRI	studies	(M.	D.	Fox	et	al.,	2005;	Fransson,	2005)	highlighted	a	

remarkable	 presence	 of	 anticorrelated	 spontaneous	 activity	 between	 these	 networks,	

even	without	 any	 task.	 Specifically,	 negative	 correlations	have	been	detected	between	

DMN	and	dorsal	 attention	network	 in	 adults	 at	 rest	 (Figure	1.4).	The	dorsal	 attention	

network	(DAN)	is	bilaterally	organized	and	includes	the	intraparietal	sulcus	(IPS)	and	the	

frontal	eye	fields	(FEF)	in	each	hemisphere	(Corbetta	&	Shulman,	2002).	While	DMN	is	

linked	 to	 internally	 directed	 processes,	 DAN	 controls	 cognitive	 functions	 linked	 to	

external	attention-demanding	stimuli.		

The	 observed	 opposing	 relationship	 between	 spontaneous	 fluctuations	 is	 therefore	

coherent	with	the	contrasting	neural	functions	of	the	two	networks	(Corbetta	&	Shulman,	

2002),	 and	 can	 be	 interpreted	 as	 an	 adaptive	 mechanism	 able	 to	 balance	 the	 switch	

between	introspective	and	extrospectively	oriented	processes	(Dixon,	Andrews-Hanna,	

Spreng,	Irving,	&	Christoff,	2016;	M.	D.	Fox	et	al.,	2005).	The	consistency	and	variability	of	

this	behaviour	has	been	widely	investigated	(Dixon	et	al.,	2016)	in	healthy	adults	(Keller	

et	al.,	2015)	and	in	developmental	period	from	childhood	to	young	adulthood	(Chai,	Ofen,	

Gabrieli,	 &	 Whitfield-Gabrieli,	 2014).	 The	 interaction	 between	 these	 networks	 in	

paediatric	 population	 has	 been	 addressed	 by	 only	 one	 study	 (Gao	 et	 al.,	 2013).	

Specifically,	 Gao	 and	 others	 analysed	 resting	 state	 fMRI	 data	 from	 a	 large	 cohort	 of	

paediatric	subjects,	divided	by	age	in	three	subsets	(3	weeks,	1-year	and	2-years	old).	A	

seed-based	analysis	was	conducted,	using	the	posterior	cingulate	cortex	(PCC)	and	the	

intraparietal	 sulcus	 (IPS)	 as	 seed	 regions	 for	 the	 Default	 and	 Dorsal	 networks,	

respectively.	While	the	study	failed	in	detecting	negative	network	interactions	in	3-week	

old	 subjects,	 synchronization	 between	 the	 networks	 was	 observed	 at	 1	 year,	 with	 a	
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remarkable	 increase	 in	 the	 second	 year	 of	 life.	 This	 result,	 consistent	 with	 previous	

findings	(Gao	et	al.,	2009),	suggests	that	networks	structure	might	be	immature	at	birth.	

	

	

 

Figure	1.4	Negative	correlations	at	rest	between	areas	of	dorsal	attention	network	-	which	comprises	the	
intra-parietal	sulcus	(IPS),	frontal	eye	field	(FEF)	and	middle	temporal	region	(MT)	–	indicated	with	hot	
colours	and	areas	of	Default	Mode	Network	–	which	comprises	lateral	parietal	cortex	(LP),	medial	prefrontal	
cortex	(MPF)	and	posterior	cingulate	(PCC)	-	indicated	with	cold	colours.	Figure	is	taken	from	the	review	
of	(M.	D.	Fox	&	Raichle,	2007)		

 

Alternatively,	these	patterns	and	their	interaction	may	be	present	at	birth	in	an	embryonic	

form,	but	approaches	based	on	mapping	the	spatially-extended	networks	in	their	entirety	

may	not	be	effective	in	a	pediatric	population.	Indeed,	studies	performed	during	the	first	

two	postnatal	years	show	that	the	two	networks	(DMN	and	DAN)	develop	together,	and	

so	 does	 their	 interaction,	 thus	 indicating	 a	 strong	 interdependence	 already	 at	 their	

inception.	 Hence,	 interactions	 between	 the	 systems	 underlying	 these	 networks	 may	

develop	before	mature,	adult-like	spatial	patterns	for	the	DMN	and	the	DAN	are	observed.	

	

To	the	best	of	our	knowledge,	no	direct	assessment	in	newborns	has	been	performed	yet.	

Indeed,	functional	neuroimaging	studies	in	infant	remain	challenging.	Neonates	represent	

an	extremely	vulnerable	and	non-compliant	population.	While	fMRI	has	been	established	

as	the	“gold	standard”	for	neuroimaging,	ushering	in	a	new	era	in	developmental	studies,	

it	presents	substantial	disadvantages	for	the	investigation	of	infants.	To	name	but	a	few,	

the	 request	of	 immobilization	during	 the	 scan,	 obtained	by	 restraint	or	 sedation,	 loud	

scanner	 noise	 and	 safety	 issues	 in	 a	 non-verbal	 population	 represent	 important	
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limitations.	All	these	factors,	which	will	be	tackled	in	detail	below,	motivate	our	choice	of	

a	different	technique	to	probe	at	term	neonates.				
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2 					Principles	of	functional	Near	Infrared	Spectroscopy		
 

	

A	promising	alternative	to	fMRI	for	probing	infants’	brain	is	offered	by	functional	Near	–	

Infrared	 Spectroscopy	 (fNIRS).	 This	 recent	 technique	 exploits	 principles	 of	 optical	

spectroscopy	 to	 measure	 the	 hemodynamic	 response	 of	 the	 human	 brain	 to	 external	

stimuli.	 fNIRS	uses	optical	 fibres	 to	 inject	 (sources)	and	collect	 (detector)	 light	 to	and	

from	tissues.	Light	is	introduced	at	the	scalp	and	penetrates	the	skull	and	cerebrospinal	

fluid	 to	 reach	 cerebral	 cortex.	 Finally,	 it	 is	 registered,	 in	 a	 reflectance	 geometry,	 by	 a	

photodetector	positioned	at	a	fixed	distance	from	the	source.	Physical	effects	due	to	the	

interaction	with	biological	tissues	will	cause	light	attenuation,	from	which	concentration	

changes	of	molecules	involved	in	hemodynamic	response	process	will	be	computed.	With	

these	 basis,	 it	 is	 possible	 to	 non-invasively	 probe	 brain	 activity	 in	 humans	 (Bunce,	

Izzetoglu,	Izzetoglu,	Onaral,	&	Pourrezaei,	2006).	

In	the	present	section,	the	general	history,	theoretical	principles	and	comparisons	with	

other	neuroimaging	modalities	will	be	overviewed,	in	order	to	present	advantages	and	

potential	 issues	 for	 the	 use	 of	 fNIRS	 in	 cognitive	 science,	 with	 an	 emphasis	 on	

developmental	studies.	

	

	

2.1 Optical	imaging	evolution	
	

“On	December	28,	1976	our	family	menu	featured	a	grilled	chuck	roast,	the	poor	academic’s	
substitute	for	steak.	This	very	American	cut	of	beef	still	contains	part	of	the	shoulder	blade	of	
the	steer,	a	flat	piece	of	bone	perhaps	3	or	4	mm	thick,	about	the	same	as	the	human	skull.	[…]	

We	held	the	pink	object	up	against	the	light	and	noticed	that	the	shadow	of	a	finger	could	easily	
be	noted	in	the	diffuse	red	light	coming	through	the	bone.	If	red	light	could,	then	certainly	NIR	

light	at	the	longer	wavelengths	would	penetrate	the	human	skull	and	provide	access	to	the	
brain.”	

Jöbsis,	1979	(Jöbsis-vanderVliet,	1999)	
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As	highlighted	by	Scholkmann	in	his	review,	the	use	of	transmitted	light	through	the	body	

as	a	tool	to	probe	human	tissues	started	in	the	1800	(Scholkmann	et	al.,	2014).	Halfway	

through	the	century,	scientists	were	capable	to	describe	spectra	of	oxyhemoglobin	(HbO)	

and	 deoxyhemoglobin	 (HHb)	 (Perutz,	 1995),	 which	 both	 play	 a	 central	 role	 in	 light	

absorption,	as	we	will	see	in	section	2.2.	However,	only	in	1977,	with	the	publication	of	

his	seminal	paper	(Jobsis,	1977),	Jöbsis	used	the	fundamentals	of	spectroscopy	to	lay	the	

foundation	for	a	new	neuroimaging	technique.	The	guiding	principle	relies	on	the	relative	

transparency	 of	 biological	 tissues	 to	 light	 in	 the	 near	 infrared	 range	 of	 the	 optical	

spectrum	 -	 the	 so-called	 “biological	 window”.	 Under	 this	 assumption,	 Jöbsis	

demonstrated	 the	 feasibility	 to	record	cerebral	activity	 in	vivo,	 from	measurements	of	
concentrations	of	oxyhemoglobin	and	deoxyhemoglobin.	First	evidences	were	obtained	

by	 trans-illuminating	 the	 head	 of	 an	 anesthetized	 cat	 and	 human	 adult	 voluntary	

hyperventilating	(Jobsis,	1977):	the	era	of	near	infrared	spectroscopy	(NIRS)	applications	

had	 just	started.	Since	1980,	 first	prototypes	of	NIRS	machines	(usually	single-channel	

systems)	 were	 used	 to	 measure	 oxygenation	 and	 hemodynamic	 brain	 parameters	 in	

animals	(Giannini,	Ferrari,	Carpi,	&	Fasella,	1982),	human	adults	(Ferrari,	Giannini,	Sideri,	

&	 Zanette,	 1985)	 and	 later	 newborn	 infants	 (Ferrari,	 de	 Marchis,	 &	 Giannini,	 1986).	

Interestingly,	 in	 1993,	 four	 studies	 on	 the	 application	 of	NIRS	principles	 to	 functional	

brain	 imaging	 were	 almost	 simultaneously	 published	 by	 different	 research	 groups	

(Chance,	 Zhuang,	 UnAh,	 Alter,	 &	 Lipton,	 1993;	 Hoshi	 &	 Tamura,	 1993;	 Kato,	 Kamei,	

Takashima,	&	Ozaki,	1993;	Villringer,	Planck,	Hock,	Schleinkofer,	&	Dirnagl,	1993).	For	the	

first	 time,	a	single-channel	 fNIRS	was	employed	to	probe	cortical	oxygenation	changes	

(regularly	registering	an	increase	in	HbO	and	decrease	in	HHb),	in	response	to	various	

cognitive	 tasks.	 Soon,	 the	 technique	 was	 extended	 to	 investigate	 more	 brain	 regions	

simultaneously,	 to	 obtain	 spatially	 resolved	map	of	 cerebral	 activity,	 for	 research	 and	

clinical	purposes.	Over	time	fNIRS	instrumentations	rapidly	evolved,	with	a	substantial	

increase	in	the	number	of	available	measurements	channels.	In	parallel,	a	great	effort	was	

made	to	describe,	from	a	theoretical	and	experimental	standpoint,	how	the	light	spread	

in	 the	 brain.	 Studies	 on	 phantoms	 and	 simulated	 head	 models,	 combined	 with	

technological	advances	enabling	production	of	high-density	machines	with	hundreds	of	

channels,	paved	the	way	to	a	tomographic	approach	and	to	the	optical	reconstruction	of	

three-dimensional	 volumes.	 To	 date,	 wearable	 and	 wireless	 devices	 have	 further	
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enhanced	the	portability	of	the	technique,	strengthening	the	potential	of	optical	imaging,	

which	has	been	established	as	a	popular	neuroimaging	tool	in	several	research	fields.		

	

2.2 	Measuring	activity	in	the	brain	using	fNIRS		
	

Functional	optical	imaging	exploits	changes	in	optical	properties	of	biological	tissues	that	

occur	in	response	to	external	stimuli.	In	more	detail:	a	certain	amount	of	energy	in	the	

form	 of	 adenosine	 triphosphate	 (ATP)	 is	 necessary	 to	 support	 the	 sequence	 of	

physiological	 events	 localized	 in	 brain	 areas	 involved	 in	 stimulus	 processing.	 ATP	 is	

mostly	produced	by	a	mechanism	that	needs	glucose	and	oxygen,	constantly	delivered	to	

the	tissues	by	blood	supply.	During	neuronal	activation,	a	considerable	supply	of	energy	

is	required	to	support	the	electrochemical	processes;	the	greater	amount	of	oxygen	and	

glucose	consumed	determines	a	localized	vascular	response,	with	increases	in	cerebral	

blood	 flow	 (CBF)	 and	 cerebral	 blood	 volume	 (CBV).	 This	 process	 is	 driven	 by	

neurovascular	coupling.	The	brain	region	engaged	by	the	stimulation	is	provided,	within	

a	few	seconds	from	the	activation,	by	a	supply	of	oxygen	–	transported	by	the	hemoglobin	

–	and	glucose.	It	would	be	plausible	to	think	that	the	demand	of	oxygen	from	blood	cells	

leads	 to	 an	 increase	 in	 deoxyhemoglobin	 (HHb)	 concentration	 with	 a	 subsequent	

decrease	 in	 oxyhemoglobin	 (HbO)	 concentration.	 However,	 the	 quantity	 of	 total	

transferred	oxygen	 is	higher	 than	 that	 consumed	 in	 the	process,	with	a	net	 imbalance	

between	 the	 CBF	 and	 oxygen	 consumption	 (P.	 T.	 Fox	 &	 Raichle,	 1986).	 This	 excess	

translates	into	a	relative	increase	of	oxygenated	form	of	hemoglobin	and	a	decrease	of	

deoxygenated	one,	which	characterizes	in	a	recognisable	way	the	hemodynamic	response.	

The	relation	between	physiological	changes	and	neural	activation	is	the	guiding	principle	

of	some	brain	imaging	methods	(Buxton,	Wong,	&	Frank,	1998).	In	the	case	of	MRI,	the	

magnetic	properties	of	hemoglobin	depend	on	the	oxygenation	state	of	its	iron-containing	

heme	 group.	 As	 a	 result,	 the	 mismatch	 in	 magnetic	 susceptibility	 between	 the	 blood	

compartment	and	the	brain	tissue	is	different	for	oxygenated	and	deoxygenated	blood.	

Hence,	 the	 activation-induced	 hemodynamic	 response	 modulates	 the	 local	 Magnetic	

Resonance	 signal:	 this	 is	 the	 basis	 of	 the	 blood	 oxygenation	 level-dependent	 (BOLD)	

signal	measured	from	fMRI.				
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Optical	 imaging	 allows	 to	 determine	 the	 localized	 hemodynamic	 response	 from	 the	

computation	of	concentration	variations	in	time	of	oxy-	and	deoxy-	hemoglobin,	which	

present	different	optical	properties.	The	information	is	inferred	from	the	attenuation	of	a	

beam	 of	 light,	 which	 is	 injected	 and	 subsequently	 detected	 at	 the	 scalp	 level.	 Light	

delivered	 into	 the	biological	 tissue	undergoes	different	 processes.	 Photons	 interacting	

with	the	medium	can	be	absorbed,	e.g.	depositing	their	energy	in	chromophores	like	the	

heme	group	of	hemoglobin;	alternatively,	photons	can	be	scattered	(inelastically).	The	

processes	undergone	by	photons	during	their	propagation	into	tissues	depend	on	their	

wavelength	 and	 optical	 properties	 of	 the	 tissue.	 The	 human	 tissue	 turns	 out	 to	 be	

relatively	 transparent	 to	 near	 infrared	 light.	 Indeed,	 observing	 its	 absorption	 spectra	
(Figure	2.1),	it	appears	that,	in	the	near	infrared	spectral	range	(650-950	nm),	absorption	

coefficients1	are	low,	allowing	light	to	travel	for	several	centimetres	in	the	tissue.	Water,	

which	 is	 one	 of	 the	 most	 important	 constituents	 of	 biological	 tissue,	 shows	 strong	

absorption	in	the	ultraviolet	part	of	the	spectrum,	or	at	longer	wavelengths,	mostly	in	the	

medium	 and	 far	 infrared	 range.	 Among	 all	 absorbers	 in	 the	 near	 infrared,	 the	

chromophores	 of	 HbO	 and	 HHb	 are	 the	 most	 important	 ones,	 even	 if	 weak.	 Other	

absorbers	include	melanin	and	lipids,	but	we	can	safely	assume	that	their	concentrations	

and	properties	are	not	affected	significantly	by	neural	activation.	Conversely,	changes	in	

relative	 concentration	 of	 oxy-	 and	 deoxyhemoglobin	 have	 an	 effect	 on	 the	 optical	

response	of	the	tissue.	A	focus	on	the	optical	window	reveals	that,	at	its	boundaries,	HbO	

and	HHb	have	opposite	behaviours,	except	the	so-called	isosbestic	point,	at	which	they	

exhibit	the	same	absorption	coefficient.	In	order	to	differentiate	their	contributions,	it	is	

necessary	to	investigate	the	tissue	with	light	at	two	wavelengths,	chosen	at	opposite	sides	

of	the	isosbestic	point.	From	measurements	of	light	attenuation,	changes	of	concentration	

of	the	two	chromophores	can	be	calculated	using	the	Modified	Beer	Lambert	Law	(MBLL)	

(section	2.3).	Considering	the	characteristics	of	biological	tissues,	a	major	contribution	to	

the	photon	path	is	represented	by	scattering	events,	which	happen	more	frequently	with	

respect	to	absorption,	with	an	estimated	proportion	of	100:1	(Delpy	&	Cope,	1997).	The	

capability	 of	 light	 to	 penetrate	 tissues	 guarantees	 the	 feasibility	 of	 optical	 imaging	 to	

                                            

1	Absorption	and	scattering	coefficient	defined	optical	properties	of	a	medium.	These	quantities	
indicate,	respectively,	the	mean	free	path	travelled	by	the	photon	before	being	absorbed	or	
scattered.	They	are	expressed	in	mm-1.	
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investigate	in	vivo	brain	activity:	light	injected	at	the	scalp	level	travels	a	few	centimetres	
deep	 into	 tissues	passing	 through	 the	 skull	 and	 the	 cerebrospinal	 fluid	 (CSF)	 to	 reach	

cortical	regions.	Laser	diodes	or	light	emitting	diodes	are	typically	used	as	light	sources,	

while	 photomultipliers	 or	 avalanche	 photo-diodes	 enable	 sensitive	 measurement	 of	

attenuated	light	diffusing	back	to	the	scalp.	The	penetration	depth	depends	on	the	relative	

positions	of	source	and	detector	–	which	form	what	is	referred	to	as	a	channel.	Photon	
migration	 models	 have	 been	 applied	 to	 estimate	 the	 value	 of	 penetration	 depth,	

approximatively	from	a	third	to	half	the	distance	between	source	and	detector,	in	adults	

heads	(Cui,	Kumar,	&	Chance,	2005).	

The	definition	of	the	optimal	distance	between	source	and	detector	is	not	trivial,	because	

its	choice	is	based	on	a	number	of	factors,	such	as	age	of	the	subject	or	brain	area	to	probe.	

Generally,	in	infants,	this	distance	varies	from	2	to	3	cm,	while	in	adults	usually	increases	

-from	3	to	5	cm-	due	to	different	anatomical	characteristics	(e.g.	the	thickness	of	scalp	and	

skull).	Light	travels	through	the	scalp	and	diverse	layers	of	tissues	before	reaching	the	

cortex	 and	 on	 its	 way	 back	 to	 the	 detector.	 Thus,	 the	 signal	 collected	 contains	

hemodynamic	 response	 from	 the	cortical	 arear,	physiological	 and	measurement	noise,	

but	also	superficial	physiological	contributions.	If	the	distance	between	coupled	source	

and	detector	is	less	than	1	cm,	the	resulting	signal	does	not	contain	cortical	information	

anymore,	but	it	is	informative	only	of	the	physiological	activity	in	the	superficial	layers	of	

the	 head.	 On	 the	 contrary,	 an	 increase	 in	 the	 channel	 distance	 beyond	 the	 optimal	

separation	 induces	a	remarkable	decrease	 in	 the	signal	quality	(lower	Signal	To	Noise	

Ratio	value)	(Calderon-Arnulphi,	Alaraj,	&	Slavin,	2009).		

	

	



 
 

20 

 

Figure	2.1	Absorption	spectra	of	principal	components	of	human	tissue.	In	the	highlighted	optical	window,	
oxy-	 and	 deoxy-hemoglobin	 are	 the	 most	 important	 absorbers.	 Indeed,	 collagen,	 lipid	 and	 melanin	
concentration	are	constant	in	time,	while	cytochrome	oxydase	is	present	in	negligible	quantities.	Water,	
which	is	an	important	component	of	tissues,	shows	peaks	outside	the	near	infrared	range.	Figure	has	been	
adapted	from	(Scholkmann	et	al.,	2014)	

	

Because	of	scattering	events,	part	of	the	photons	injected	at	a	point	source	is	scattered	

backwards	towards	the	scalp,	where	it	can	be	detected,	following	a	“banana-shaped”	path	

(Figure	2.2).	These	photons	can	provide	information	on	the	tissue	they	pass	through	in	

their	journey	from	source	to	detector.	

More	than	one	light	source	can	be	associated	to	each	detector,	enabling	measurements	in	

different	regions	or	at	different	distances.	The	arrangement	of	all	sources	and	detectors	

(forming	 the	 so-called	 optical	 probe)	 is	 usually	 bundled	 in	 a	 cap	 or	 strip,	 which	 is	

designed	according	to	measurements	needs	and	to	fit	the	subject’s	head.	The	disposition	

of	available	optodes	is	crucial	for	the	investigation	of	the	right	brain	areas	of	interest.		
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Figure	2.2	Light	is	introduced	from	a	source	at	the	scalp	and	travels	through	scalp,	skull,	CSF	before	reaching	
the	brain.	The	figure	shows	events	of	scattering	that	affect	the	photon	path	(resembling	a	random	walk	
path).	Illustration,	not	in	scale,	highlights	the	interaction	of	HbO	and	HHb	chromophores	with	light	that	will	
cause	 the	 attenuation	 recorded	 at	 the	 detector.	 The	 characteristic	 shape	 of	 the	 diffuse	 beam	 has	 been	
reproduced.	

	

2.3 	Modified	Beer	Lambert	Law		
	

Local	changes	in	blood	oxygenation	can	be	informative	about	the	neural	activity	and	its	

evolution	in	time.	After	irradiating	the	tissue,	optical	imaging	uses	measurements	of	light	

that	 diffuses	 back	 to	 the	 scalp	 to	 compute	 the	 concentrations	 of	 oxy-	 and	 deoxy-

hemoglobin.	The	Beer	–	Lambert	Law	relates	the	final	attenuation	of	light	to	concentration	

of	the	chromophore	and	path	travelled	from	the	radiation	in	the	tissue.	

Let’s	imagine	to	illuminate	a	volume	of	a	non-scattering	medium	(the	chromophore)	of	

thickness	d	using	a	beam	of	light	with	incoming	intensity	𝐼t.	The	medium	partially	absorbs	
the	radiation,	thus	the	attenuation	of	the	outgoing	intensity	I	can	be	modelled	as	follows:		
	

	 𝐼 = 	 𝐼t𝑒wxy(z)∙| = 𝐼t𝑒w}∙~(z)∙|	 Eq.	1	

	

where	the	absorption	coefficient	𝜇�	can	be	expressed	as	the	product	of	concentration	c	of	

the	illuminated	chromophore	and	the	molar	extinction	coefficient	𝜀,	which	depends	on	
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the	wavelength	in	use.	The	distance	travelled	in	the	medium	by	the	light	represents	the	

optical	distance,	indicated	with	d.		
The	 attenuation,	 or	 optical	 density	 (OD),	 is	 the	 logarithm	 of	 the	 ratio	 between	 the	

intensity	of	light	introduced	𝐼t	and	the	intensity	I	detected:	
	

	 𝑂𝐷 = 	−𝑙𝑜𝑔
𝐼
𝐼t
= 𝑐 ∙ 𝜀(𝜆) ∙ 𝑑	

	

Eq.	2	

	

However,	the	biological	tissue	is	a	highly	scattering	medium;	thus,	it	is	necessary	to	take	

also	into	account	the	contribution	of	the	diffusion	process	in	light	propagation.	For	these	

reason,	Delpy	et	al.	(Delpy	et	al.,	1988)	formulated	the	Modified	Beer	Lambert	Law,	which	

describes	the	relationship	between	attenuation,	properties	of	the	chromophore	and	both	

absorption	and	scattering	events:		

	

	 𝐼 = 	 𝐼t𝑒w(xy(z)�x�(z))∙|	

	

Eq.	3	

	

where	 𝜇�(𝜆)	 indicates	 the	 scattering	 coefficient.	 By	 grouping	 separately	 the	 effects	 of	

absorption	and	scattering,	it	is	possible	to	model	the	process:	

	

	 𝑂𝐷 = 	−𝑐 ∙ 𝜀(𝜆) ∙ 𝑑 ∙ 𝐷𝑃𝐹(𝜆) + 𝐺(𝜆)	

	

Eq.	4	

	

where	DPF		is	the	differential	path-length	factor,	introduced	to	take	into	consideration	the	
longer	paths	(with	respect	to	source-detector	distance)	travelled	by	the	photon	due	to	

scattering	events.	In	fNIRS	measurements,	the	latter	process	is	responsible	of	the	fact	that	

a	number	of	photons,	after	various	scattering	events,	are	scattered	backwards	toward	the	

scalp,	where	they	can	be	detected	(reflectance	geometry).	Instead,	G(𝜆)	is	defined	as	the	
losses	term	and	depends	on	𝜇�(𝜆)	and	d.	
In	order	to	capture	the	changes	of	concentrations	due	to	brain	activity,	the	variation	in	

time	of	OD	has	to	be	computed.	For	small	physiological	changes,	𝐺(𝜆)	and	𝐷𝑃𝐹(𝜆)	can	be	
assumed	constant.	Calculating	the	difference	between	OD	at	time	t1	and	t2,	the	MBLL	can	

be	expressed	as:	
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	 ∆𝑂𝐷 = 	𝑂𝐷�� −	𝑂𝐷�� = ∆𝑐	 ∙ 𝜀(𝜆) ∙ 𝑑 ∙ 	𝐷𝑃𝐹(𝜆)	

	

Eq.	5	

	

and	consequently:	

	 ∆𝑐	 = 	−	
∆𝑂𝐷

𝜀(𝜆) ∙ 𝑑 ∙ 	𝐷𝑃𝐹(𝜆)
	

Eq.	6	

	

At	 the	 end,	 changes	 in	 concentration	 of	 the	 chromophore	 depends	 on	 the	 specific	

wavelength.		

As	 explained	 before,	within	 the	 “biological	window”,	 hemoglobin	 represents	 the	main	

absorber	in	biological	tissue,	but	it	could	be	present	in	two	different	oxygenation	states,	

with	different	absorption	properties.	Introducing	HbO	and	HHb	as	specific	chromophore	

references,	MBLL	equation	can	be	written	as:	
	

	 ∆𝑂𝐷 = �𝜀(𝜆)���∆[𝐻𝑏𝑂] +	𝜀(𝜆)���∆[𝐻𝐻𝑏]� ∙ 𝑑	 ∙ 𝐷𝑃𝐹(𝜆)	

	

Eq.	7	

	

In	 order	 to	 solve	 the	 problem	 and	 obtain	 the	 unknown	 variations	 of	 oxy-	 and	 deoxy-	

haemoglobin	concentration,	two	wavelengths	are	necessary.	In	matrix	form:		
	

	

�							∆[𝐻𝐻𝑏] 	
∆[𝐻𝑏𝑂] 	� = 	𝑑

w�  𝜀
(𝜆�)��� 𝜀(𝜆�)���

𝜀(𝜆¡)��� 𝜀(𝜆¡)���
¢
w�

𝑋	

⎣
⎢
⎢
⎢
⎡
					

∆𝑂𝐷(𝜆�)
𝐷𝑃𝐹(𝜆�)

	

∆𝑂𝐷(𝜆¡)
𝐷𝑃𝐹(𝜆¡)

	
⎦
⎥
⎥
⎥
⎤
	

	

Eq.	8	

	

	

	

Distance	 between	 source	 and	 detector	 d	 is	well	 known	while	𝐷𝑃𝐹	 are	 available	 from	
tabulations.	Thus,	concentrations	of	HbO	and	HHb	at	the	two	chosen	wavelengths	can	be	

obtained	using	measurements	of	attenuated	intensity	obtained	at	the	scalp.			
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2.4 fNIRS	instrumentations	
	

The	different	NIRS	instrumentations	on	the	market	can	be	classified	in	three	categories	

on	the	basis	of	the	illumination	scheme	used:	continuous	wave	(CW),	frequency-domain	

(FD)	and	time-domain	(TD)	modality.	Potentialities	and	limitations	of	each	modality	will	

be	briefly	described.	

	

	

2.4.1 Continuous	wave	fNIRS	
 

The	most	 common	 CW	 technique	 injects	 light	 of	 constant	 intensity	 and	measures	 the	

attenuation	of	 transmitted	 light.	To	date,	 continuous	wave	 instrumentations	represent	

the	majority	of	the	available	devices	on	the	market,	due	to	their	ease	of	use,	portability	

and	affordability.	Systems	are	equipped	with	a	variable	number	of	sources	(laser	diodes	

or	LED’s)	and	detectors	(avalanche	photodiodes).	The	sampling	rate	usually	varies	in	a	

range	between	5	and	10	Hz	(even	though	in	same	cases	can	reach	hundreds	of	Hz)	and	a	

multiplexing	technology	–	in	time	and/or	frequency-	allows	discrimination	of	signals	from	

different	sources	and	at	different	wavelengths.	In	the	first	case,	diodes	are	switched	on	

and	 off	 in	 specific	 time	 intervals;	 in	 the	 second,	 light	 is	 modulated	 with	 different	

frequencies	when	all	diodes	are	turned	on	(Scholkmann	et	al.,	2014).	However,	assuming	

the	contribution	of	scattering	constant	in	time,	in	continuous	wave	modality	only	changes	

in	concentration	of	HbO	and	HHb	can	be	computed	(see	Eq.	8).	A	complete	overview	of	

the	development	of	CW	devices	is	reported	in	(Ferrari	&	Quaresima,	2012).		

	

	

2.4.2 Frequency-domain	fNIRS	
 

The	 peculiarity	 of	 frequency-domain	 systems	 is	 the	 use	 of	 intensity-modulated	 light	

sources	 (sinusoidal,	 10	 –	 100	 MHz).	 From	 the	 computation	 of	 the	 attenuated	 mean	

intensity,	the	modulated	amplitude	and	the	phase	shift	of	the	light	collected	at	detector	

position,	 absolute	 values	 of	 absorption	 and	 reduced	 scattering	 coefficients	 can	 be	

estimated	using	multidistance	systems. 
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Thus,	 one	 of	 the	 advantages	 of	 FD	 modality	 is	 the	 capability	 to	 differentiate	 the	

information	on	optical	properties:	the	absorption	coefficient	provides	information	about	

constituents	of	the	media,	while	the	scattering	coefficient	informs	on	its	structure.	Using	

the	 resulting	 values,	 it	 is	 possible	 to	 compute	 absolute	 values	 of	 the	 chromophores	

concentrations	(Fantini,	1995;	Wolf	et	al.,	2008a).	FD	systems	are	able	to	provide	more	

parameters	with	respects	to	CW	machines,	with	a	better	signal	SNR.	However,	it	should	

be	 considered	 the	 impact	 of	 the	 higher	 cost	 and,	 sometimes,	 of	 the	 fewer	 available	

channels	that	could	determine	a	worsening	 in	experimental	conditions	with	respect	to	

CW	instrumentations	(see	description	of	ISS	Imagent	machine	in	section	3.3.1).		

	

	

2.4.3 Time-domain	fNIRS	
 

Spectroscopy	in	the	time	domain	relies	on	the	measurement	of	the	photon	time	of	flight	

distribution	(or	 temporal	point	spread	 function,	TPSF).	After	 the	 introduction	 into	 the	

tissue	of	a	very	short	pulse	of	light	(~	100	ps,	generally	using	lasers),	the	shape	of	time	of	

flight	distribution	of	the	photons	contains	information	about	the	interaction	between	light	

and	medium.	Absorption	is	responsible	for	the	attenuation,	while	scattering	broadens	the	

TPSF	 (Torricelli	 et	 al.,	 2014).	 In	 this	way,	 absolute	 values	 of	 absorption	 and	 reduced	

scattering	 coefficient	 can	 be	 computed,	 similarly	 to	 multidistance	 FD-fNIRS	 systems.	

Moreover,	 studying	 the	 time	 of	 arrival	 of	 the	 photons	 gives	 information	 about	 the	

penetration	depth:	photons	arrived	later	have	undergone	more	scattering	events,	so	they	

have	a	higher	probability	to	have	investigated	deeper	areas	of	the	brain.	On	the	contrary,	

Figure	2.3	Schematic	illustration	of	different	modalities	of	fNIRS.	Light	is	injected	(𝐼t)	in	a	medium	of	width	
d	characterized	by	optical	properties	characterized	by		absorption	𝜇�(𝜆)and	scattering	𝜇�(𝜆)coefficients.	
Intensity	of	emitted	light	I	is	detected	in	reflectance	geometry.	In	frequency	domain	also	phase	delay	j	is	
measured.	The	figure	is	taken	from	(Scholkmann	and	Wolf,	2012).		
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photons	arriving	early	more	likely	carry	information	about	the	superficial	tissue	layers.	

The	 approach	 guarantees	 high	 sensitivity	 (due	 to	 the	 photon	 counting	modality)	 and	

direct	information	on	depth	penetration;	however,	relatively	expensive	and	less	portable	

instrumentations	 may	 represent	 significant	 disadvantages	 for	 its	 use	 in	 a	 clinical	

environment.		

	

2.5 Neuroimaging	techniques	for	infant	brain:	why	optical	imaging?	
	

The	 main	 interest	 guiding	 the	 present	 thesis	 work	 is	 the	 investigation	 of	 functional	

connectivity	in	the	infant	brain	at	rest.	The	choice	of	the	most	suitable	method	to	conduct	

studies	in	this	field	is	not	taken	for	granted	as	much	as	one	could	think.	Indeed,	several	

neuroimaging	 techniques	are	available	 for	resting	state	studies	on	adults,	but	many	of	

them	cannot	be	straightforwardly	applied	to	infants	(Aslin	&	Mehler,	2005;	Aslin,	Shukla,	

&	 Emberson,	 2015).	 Briefly	 overviewing	 the	 peculiar	 technical	 specifications	 of	 most	

popular	neuroimaging	 approaches	will	 help	

to	 point	 out	 relative	 fNIRS	 advantages	 and	

limitations.		

Generally,	measurement	of	 cerebral	 activity	

can	be	conducted	directly,	using	electrical	or	

magnetic	fields	generated	by	neurons-	in	the	

case	 of	 EEG	 and	 magnetoencephalography	

(MEG)	 or	 indirectly	 measuring	 the	

hemodynamic	response,	like	fMRI	and	fNIRS,	

or	 the	 metabolic	 response,	 like	 positron	

emission	tomography	(PET).		

In	the	last	decade,	a	considerable	number	of	

resting	 state	 studies	 in	 newborns	 has	 been	

conducted	 using	 fMRI.	 This	 methodology	

enables	 non-invasive	 measurement	 with	

good	 spatial	 resolution	 (~	 mm)	 and	 has	

understandably	 become	 the	 reference	

standard	 for	 the	 neuroscience	 community.	

With	 a	 robust	 and	 reproducible	 signal,	 this	

Figure 2.4	 Representation	 of	 a	 qualitative	
comparison	 between	 different	 neuroimaging	
methods	in	use,	on	the	basis	of	various	technical	
parameters.	 With	 a	 low	 degree	 of	 tolerance	
required	 from	 the	 infant	 subject	 and	 a	 good	
trade-off	 between	 spatial	 and	 temporal	
resolution,	 fNIRS	 represents	 a	 promising	
alternative	to	the	most	popular	fMRI	and	EEG	for	
developmental	 studies.	 The	 figure	 has	 been	
inspired	by	(Lloyd-Fox	et	al.,	2015)	



 
 

27 

technique	 is	 capable	 to	 simultaneously	map	multiple	 networks,	 thus	 providing	 a	 rich	

description	of	spatially	distributed	whole	brain	activity.	However,	a	 limited	acquisition	

rate	 determines	 a	 lower	 temporal	 resolution	 for	 fMRI	 compared	 to	 fNIRS	 that,	 on	 the	

contrary,	acquires	data	up	to	hundreds	of	Hertz	(Huppert,	Hoge,	Diamond,	Franceschini,	

&	 Boas,	 2006).	 This	 produces	 a	 more	 detailed	 temporal	 description	 of	 hemodynamic	

response	 in	 optical	 imaging.	 Furthermore,	 fMRI	 presents	 disadvantages	 during	

acquisition	 that	 should	 not	 be	 underestimated,	 in	 particular	 for	 conducting	 studies	

involving	human	paediatric	population.	Firstly,	fMRI	necessitates	the	baby	to	remain	still	

and	restrained	for	at	least	20	min.	In	many	studies	(Souweidane	et	al.,	1999;	Yamada	et	

al.,	2003),	sedation	is	used	to	complete	the	measurements	and	this	condition	is	not	always	

acceptable,	especially	in	healthy	infants.	Acquisitions	in	such	a	vulnerable	population	are	

usually	conducted	during	natural	sleep	of	subjects,	that	could	be	disturbed	by	the	acoustic	

noise	generated	from	MRI	machine	gradients	(Mohammadi-Nejad	et	al.,	2018).	Moreover,	

it	 is	 problematic	 to	manage	 the	 safety	 issues	 regarding	 the	MR	 scanner	 in	 non-verbal	

subjects.	Sudden	movements	are	frequent	during	the	newborns’	sleep;	dealing	with	these	

movement	artifacts	is	difficult,	also	because	of	the	limited	tolerance	of	available	motion	

correction	 algorithm	 to	 head	 displacements	 in	 resting	 state	 scans	 (Aslin	 et	 al.,	 2015).	

Finally,	availability	of	research	MR	scanners	in	paediatric	wards	is	extremely	limited,	and	

transportation	of	the	subjects	to	radiological	division	represents	a	challenge	for	preterm	

and	term	newborns	(White,	Liao,	Ferradal,	Inder,	&	Culver,	2012).	Thus,	the	technique	is	

not	 completely	 suitable	 for	 studies	 included	 in	 a	 standard	 screening	 program	 or	 for	

frequent	and	repeated	measurements	on	the	same	infant.		

PET	 belongs	 to	 the	 family	 of	 indirect	 techniques,	 like	 fMRI,	 but	 is	 definitively	 more	

invasive.	Indeed,	it	requires	the	injection	in	the	body	of	a	radioactive	tracer	and,	exploiting	

the	decay	process,	measures	photons	that	are	emitted.	 It	 is	 in	general	used	for	clinical	

studies	-	only	one	paper	on	early	newborns	has	been	reported	(Thorngren-Jerneck	et	al.,	

2001)	-	and	is	not	appropriate	at	all	for	investigating	paediatric	healthy	population.		

On	the	other	hand,	due	to	its	non-invasiveness	and	high	temporal	resolution	(~	ms),	EEG	

is	widely	 used	 for	 developmental	 studies	 especially	 in	 awake	 children,	while	 still	 less	

employed	 for	 resting-state	 functional	 investigations	 at	 birth	 (Orekhova	 et	 al.,	 2014;	

Tokariev,	Videman,	Palva,	&	Vanhatalo,	2016).	Cerebral	communication	is	regulated	by	

electrical	signals	between	neural	cells.	EEG	directly	monitors	the	electrical	brain	activity	

by	 a	 number	 of	 electrodes	 placed	 at	 the	 scalp	 and	 distributed	 following	 specific	
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anatomical	references.	EEG	measurements	modality	resembles	the	fNIRS	procedure	and	

guarantees	harmless	and	comfortable	acquisitions.	However,	the	low	spatial	resolution	

represents	 the	essential	drawback	of	 the	 technique:	at	 the	scalp	 the	 total	 contribution	

from	thousands	of	neuronal	electrical	signals	is	registered.	Thus,	the	capability	to	localize	

the	cortical	origin	of	brain	activity	is	limited.		

Ultimately,	a	word	on	MEG.	This	technique	measures	the	feeble	magnetic	fields	generated	

by	 electrical	 currents	 associated	 with	 neuronal	 activity,	 similarly	 to	 EGG,	 a	 direct	

measurements	 of	 brain	 activity.	 Despite	 the	 better	 spatial	 resolution,	MEG,	 like	 fMRI,	

requires	a	high	 level	of	 subject’s	 tolerance	and	suffers	 from	high	cost	of	 the	recording	

instrument	(Lloyd-Fox	et	al.,	2015;	Mohammadi-Nejad	et	al.,	2018).		

To	sum	up,	with	its	good	trade-off	between	spatial	and	temporal	resolution,	relative	low-

cost	 and	 ease	 of	 use	 in	 a	 non-compliant	 population,	 fNIRS	 represents	 a	 promising	

alternative	for	probing	infants	at	a	very	early	stage	of	life.	As	any	other	technique,	some	

limiting	factors	are	present.	Above	all,	spatial	resolution	of	~2-3	cm	is	lower	than	fMRI	(~	

mm)	 and	 the	 depth	 of	 penetration	 depends	 on	 the	 thickness	 and	 specific	 optical	

properties	 of	 superficial	 tissues	 (Fukui,	 Ajichi,	 &	 Okada,	 2003).	 For	most	 devices	 the	

number	of	channels	is	modest	(typically	tens)	and	a	sparse	array	hampers	the	ability	to	

explore	extended	networks.	Moreover,	fNIRS	can	only	detect	activity	from	the	surface	of	

the	 cortex,	 leaving	 out	 of	 range	 all	 medial-brain	 regions	 (like	 the	 hippocampus).	 In	

addition,	the	fNIRS	signal	is	contaminated	by	non-neural	contributes	from	scalp,	skull	and	

superficial	veins	that	are	crossed	twice	by	the	detected	photons	(Aslin	et	al.,	2015).	Lastly,	

it	 is	 not	 always	 possible	 to	 obtain	 a	 subject	 specific	 co-registered	 anatomical	 image.	

Considering	the	lower	spatial	resolution	and	the	difficulty	to	cover	and	explore	the	whole-

brain	dynamics,	fNIRS	is	unlikely	to	replace	the	versatility	of	fMRI	for	basic	research,	but	

offers	substantial	advantages	for	large	screening	studies	in	vulnerable	populations.	First,	

it	 is	 silent	 and	 portable.	 This	 is	 fundamental	 for	measurements	 on	 preterm	 and	 term	

newborns	because	allows	comfortable	bedside	acquisitions	in	neonatal	unit	care,	without	

any	 acoustic	 noise	 (White	 et	 al.,	 2012).	 From	 a	 practical	 point	 of	 view,	 the	 cap	 fixes	

sources	and	detectors	to	the	scalp	without	requirement	of	rigid	head	stabilization,	thus	

enabling	measurement	with	 fewer	 constrictions	 on	 subjects	 than	 fMRI.	 This	 consents	

long-time	 continuous	 measurements	 (monitoring)	 and	 repeated	 acquisitions	 within	

short	intervals	(Wolf	et	al.,	2008b).	fNIRS	can	also	estimate	concentration	changes	in	both	

oxy-	 and	 deoxy-hemoglobin,	 adding	 further	 information	 to	 the	 BOLD	 fMRI	 signal.	
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Moreover,	 infants	are	very	suitable	 for	 fNIRS	techniques	because	of	their	smaller	head	

size,	thinner	skull	and	minimal	hair,	all	of	which	increase	sensitivity	compared	to	adults.	

Technological	 advances	 in	 instrumentations	 ensure	 the	 possibility	 to	 obtain	 a	 dense	

probe	 with	 higher	 number	 of	 channels	 enabling	 multiple	 source-detectors	

measurements.	 High-density	 arrays	 of	 diffuse	 optical	 tomography	 (DOT)	 allow	 the	

regression	of	contributions	of	superficial	layers,	with	a	more	reliable	resulting	signal,	and	

the	 computation	 of	 volumetric	 images	 providing	 informative	 maps	 of	 hemodynamic	

activity.	As	qualitatively	evidenced	in	Figure	2.4,	spatial	resolution	is	higher	with	respect	

to	 the	 typical	 fNIRS	 systems	 and	 almost	 comparable	 to	 fMRI	 (Eggebrecht	 et	 al.,	 2012;	

Hassanpour	et	al.,	2014).	DOT	presents	all	advantages	of	optical	imaging	and	is	optimal	

to	probe	 infant	brain	 functions	at	bedside,	 in	 regular	nurseries	or	 intensive	care	units	

(Ferradal	et	al.,	2015;	White	et	al.,	2012);	nevertheless,	DOT	systems	in	use	often	cannot	

guarantee	 a	 complete	 coverage	 of	 the	 head	 because	 of	 difficulties	 to	 manage	 the	

ergonomics	of	the	cap.		

	

	

2.6 	Image	reconstruction	problem	in	optical	imaging	
 

As	highlighted	in	section	2.5,	one	of	the	major	drawbacks	of	optical	neuroimaging	is	the	

lack	of	anatomical	reference	and	a	subsequent	non-immediate	reconstruction	of	cortical	

origins	 of	 the	 signal.	 However,	 using	 a	 reference	 anatomy	 and	 with	 the	 information	

provided	 by	multiple	 channels,	 it	 is	 possible	 to	 produce	 images	 of	 estimated	 cortical	

activations.	 In	 the	 first	 place,	 the	 process	 requires	 the	 ability	 to	 describe	 how	 light	

propagates	in	tissues,	starting	from	a	specific	arrangement	of	sources	and	detector	onto	

the	scalp.	The	process	of	modelling	light	transmission	from	sources	to	detectors	is	defined	

as	photon	migration.	After	having	established	the	conditions	that	model	the	phenomenon,	
we	can	predict	variations	in	measurements	at	each	channel,	given	a	localized	change	in	a	

baseline	set	of	optical	properties.	The	relationship	between	change	in	optical	properties	

and	change	in	measurements	can	be	linearly	approximated	by	a	sensitivity	matrix	that	is	

computed	from	the	photon	migration	models	(forward	model).	Image	reconstruction	can	
be	performed	by	solving	 the	 inverse	model,	which	describes	 the	 relationship	between	
changes	in	detected	signals	and	changes	in	optical	properties	of	the	tissue,	and	is	generally	

regarded	as	an	ill-posed	problem.		
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2.6.1 	Modelling	light	propagation:	the	forward	problem	
	

The	simplified	method	previously	illustrated	(section	2.3)	can	be	considered	valid	under	

the	 assumption	 of	 constant	 scattering	 in	 a	medium	 that	 therefore	 is	 approximated	 as	

homogeneous.	 Unfortunately,	 the	 human	 brain,	 constituted	 of	 various	 layers	 with	

different	optical	properties,	cannot	be	straightforwardly	assumed	as	homogeneous.	The	

description	of	photon	migration	in	the	tissue	is	a	complex	problem	that	requires	some	

approximations.	The	process	could	be	accurately	modelled	using	the	transport	theory,	a	

more	 direct	 approach	with	 respect	 to	 the	Maxwell’s	 equations	 (Vilain,	 2014).	 To	 this	

purpose,	the	Radiative	Transport	Equation	(RTE)	represents	a	realistic	physical	model	

based	on	energy	conservation	(Lihong	V.	Wang	&	Wu,	2009):		
	

	 1
𝑐
𝜕𝐿(𝒓, 𝒔, 𝑡)

𝜕𝑡
= −𝒔 ∙ ∇𝐿(𝒓, 𝒔, 𝑡) − (𝜇� + 𝜇�) ∙ 𝐿(𝒓, 𝒔, 𝑡)

+	𝜇� ° 𝐿(𝒓, 𝒔′, 𝑡) ∙ 𝑃(𝒔², 𝒔)𝑑Ω² + 𝑆(𝒓, 𝒔, 𝑡)
	

µ¶
	

	

Eq.	9	

	

The	term	at	the	left	side	of	the	equation	describes	the	energy	change	over	time,	with	c	

indicating	the	speed	of	light	and	𝐿(𝒓, 𝒔, 𝑡)	the	radiance	at	position	r	oriented	as	the	unit	

vector	s;	the	term		−𝒔 ∙ ∇𝐿(𝒓, 𝒔, 𝑡)	is	due	to	energy	flow;	−(𝜇� + 𝜇�) ∙ 𝐿(𝒓, 𝒔, 𝑡)	indicates	

the	 loss	 of	 energy	 due	 to	 absorption	 and	 scattering	 contributions;	 +𝜇� ∫ 𝐿(𝒓, 𝒔, 𝑡) ∙	
µ¶

𝑃(𝒔², 𝒔)𝑑Ω²	is	an	increase	of	energy	from	radiation	scattered	in	the	direction	s	with	the	

term	𝑃(𝒔², 𝒔)	representing	the	phase	function,	thus	the	probability	that	a	photon	coming	

from	the	directions	s	is	scattered	in	the	direction	𝒔²	into	a	solid	angle	𝑑Ω²;	lastly,	+𝑆(𝒓, 𝒔, 𝑡)	

is	 the	 contribution	 from	 a	 source	 in	 the	 volume	 at	 the	 position	 r.	 However,	 the	 RTE	

equation	is	still	too	complex	and	requires	an	onerous	computational	effort	to	be	solved.		

In	the	case	of	biological	tissues,	under	the	assumptions	of	albedo2	~	1	and	radiance	almost	

isotropic	after	a	small	number	of	scattering	events,	light	propagation	can	be	modelled	by	

the	 diffusion	 approximation	 of	 the	 RTE	 equation.	 Here,	 truncating	 the	 expansion	 in	

spherical	harmonics	of	the	radiance	at	the	first	order	it	is	possible	to	obtain:			

                                            

2 The	albedo	indicates	the	ratio	between	scattering	coefficient	and	the	sum	of	scattering	and	absorption	
coefficient.		
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	 𝐿(𝒓, 𝒔, 𝑡) =
1
4𝜋

Φ(𝒓, 𝑡) +
3
4𝜋

𝑱(𝒓, 𝑡) ∙ 𝒔	

	

Eq.	10	

	

	

where	Φ(𝒓, 𝑡)	is	the	photon	fluence	and	𝑱(𝒓, 𝑡)	is	the	photon	flux	(energy	flow	per	unit	

area	per	unit	time).	In	a	highly	scattering	medium	like	biological	tissue,	changes	in	photon	

flux	are	small	during	the	transport	mean	free	time,	and	the	photon	flux	can	be	described	

using	Fick’s	law:		
	 𝑱(𝒓, 𝑡) = 	

1
3(𝜇�² + 𝜇�)

∇Φ(𝒓, 𝑡)	

	

Eq.	11	

	

where	𝜇�²	is	the	reduced	scattering	coefficient,	depending	on	the	scattering	coefficient	and	

anisotropy	value.		

Assuming	this	and	indicating	D	=	 �
»(x�¼�xy)

,	after	the	substitution	of	the	terms	in	RTE	the	

diffusion	equation	(DE)	has	the	form:		

	

	 𝜕Φ(𝒓, 𝑡)
𝑐𝜕𝑡

+ 𝜇�Φ(𝒓, 𝑡) − 𝐷∇¡Φ(𝒓, 𝑡) = 𝑆(𝒓, 𝑡)	
Eq.	12	

	

	

In	the	presence	of	very	simple	geometries,	DE	can	be	solved	through	analytical	methods,	

using	Green’s	functions.	However,	the	human	head	is	a	complex	multi-layered	object,	for	

which	 the	 solution	 of	 light	 propagation	 models	 needs	 numerical	 methods.	 A	

representative	example	is	the	Finite	Element	Model	(FEM),	which	approximates	solutions	

for	a	volumetric	finite	mesh,	subdividing	the	whole	object	of	interest	into	subsets	–	the	

finite	elements	–	modelled	by	simpler	equations	(Arridge,	Schweiger,	Hiraoka,	&	Delpy,	

1993).		Various	other	methods	have	been	described	in	literature,	such	as	the	boundary	

element	 method	 (BEM)	 (Arridge	 et	 al.,	 1993)	 or	 finite	 difference	 method	 (Pogue,	

Patterson,	Jiang,	&	Paulsen,	1995)	and	automatic	software	solvers	have	been	developed.		

Alternatively,	 statistical	methods	 like	Monte	 Carlo	 can	 simulate	 the	 path	 travelled	 by	

single	photons	into	the	medium,	without	any	assumption	on	diffusion	(Fang,	2010).	For	

this	reason,	this	method	is	highly	reliable,	in	particular	way	in	correspondence	of	tissues	

boundaries	or	regions	with	very	low	scattering	(such	as	CSF).	The	only	disadvantage	is	

the	computational	cost	that	can	be	highly	demanding	(Fang	&	Boas,	2009).	
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2.6.2 Inverse	problem	
	

According	 to	 Arridge	 (Arridge	 &	 Schweiger,	 1997),	 the	 forward	 problem	 in	 optical	

imaging	is	expressed	as	follows:	

Given	a	distribution	of	light	sources	q	on	the	boundary	¶V	of	an	object	V	and	a	distribution	

of	optical	parameters	p	within	V,	find	the	resulting	measurement	set		𝑴	on	¶V.		

			

	 𝑴 = 𝐹(𝒑)	

	

Eq.	13	

where	F		is	a	nonlinear	mapping	operator	which	allows	to	move	from	the	space	of	optical	
parameters	(referred	to	as	source	space)	to	the	space	of	measurements	(or	sensor	space).	

Specifically,	 F	 is	 the	 model	 of	 photon	 propagation,	 which	 allows	 the	 prediction	 of	

measurements	 in	 the	 forward	 model	 process	 once	 given	 a	 well-known	 set	 of	 optical	

parameters.			

In	a	similar	way,	the	inverse	problem	can	be	stated	as	follows:		

Given	a	distribution	of	light	sources	q	and	a	distribution	of	measurements		𝑴	on	¶V	derive	

the	optical	parameters	distribution	p	within	V.	
	
	 𝒑 = 𝐹w�(𝑴)	 Eq.	14	

	

where	the	nonlinear	operator	𝐹w�	here	allows	the	mapping	from	the	measurements	space	

(signals	collected	at	the	scalp)	to	the	tissue	parameters	one.		

With	a	perturbative	approach	(Arridge	&	Hebden,	1997),	if	we	have	an	estimate	solution	

𝒑t	that	is	close	to	the	searched	solution	𝒑,	Eq.	13	can	be	expanded	in	a	Taylor	series	in	𝒑t:	
	

	

	

𝑴 = 𝐹(𝒑t) + 𝐹²(𝒑t)(𝒑 − 𝒑t) + (𝒑 − 𝒑t)¿𝐹²²(𝒑t)(𝒑 − 𝒑t) +⋯	 Eq.	15	

	

where	𝐹²	and	𝐹²²	are	the	first	and	second	order	derivatives,	respectively.	In	the	discrete	

case,	these	derivatives	are	represented	by	the	Jacobian	matrix	J	and	the	Hessian	matrix	H.		

Setting	DM	=	M	-	𝐌t=	𝐹(𝒑) − 	𝐹(𝒑t)	and	∆𝒑 = 𝒑 −	𝒑𝟎:	
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	 ∆𝑴 = 𝐽∆𝒑 +	∆𝒑¿𝑯∆𝒑 +⋯	

	

Eq.	16	

	

Neglecting	higher	order	 terms,	 a	 linear	 approximation	of	 the	 forward	problem	can	be	

performed.	 At	 this	 point,	 solving	 the	 inverse	 problem	 consists	 in	 the	 inversion	 of	 the	

Jacobian	matrix	(or	sensitivity	matrix):	

	

	 ∆𝐩 = 𝑱w𝟏∆𝑴	

	

	

Eq.	17	

	

Assuming	only	absorption	variation	related	to	changes	in	hemoglobin	concentration,	∆𝒑	

can	be	reduced	to	Δ𝝁�	(variation	of	absorption	coefficient).	
	

Considering	small	spatial	variations	of	the	absorption	coefficient,	the	non-linearity	of	the	

diffusion	absorption	equation	can	be	overcome	using	the	Rytov	approximation	(Madsen,	

2013).	Thus,	the	perturbation	in	photon	fluence,	collected	at	detector	d	if	only	source	s	is	
turned	on,	is	given	by:	
	

	 ∆𝑂𝐷(𝒓𝒔, 𝒓𝒅) =
1

Φt(𝒓𝒔, 𝒓𝒅)
°Φ�(𝒓𝒔, 𝒓	)	Δ𝝁�(𝒓)Φ|(𝒓, 𝒓𝒅)𝑑𝒓	
	

Ê
	

Eq.	18	

	

where	𝒓𝒔	and	𝒓𝒅	represent,	respectively,	positions	of	light	source	and	detector	in	the	3D	

volume	of	 the	head.	 The	Monte	Carlo	method	 is	 used	 to	 obtain	 the	 fluence	Φt(𝒓𝒔, 𝒓𝒅)	

estimated	when	only	 source	 s	 is	 on	 (Fang	&	Boas,	 2009).	 	 The	product	 of	 the	 fluence	

distribution	Φ�(𝒓𝒔, 𝒓𝒅)	from	the	position	of	the	light	source	and	the	fluence	distribution	

Φ|(𝒓, 𝒓𝒅)	from	the	position	of	the	detector	is	given	by	the	three-points	Green’s	function	

of	diffusion	absorption	equation:		

	

	 𝐺(𝒓𝒔, 𝒓, 𝒓𝒅) = Φ�(𝒓𝒔, 𝒓	)Φ|(𝒓, 𝒓𝒅)	 Eq.	19	

	

where	𝒓	represents	the	position	of	a	generic	point	in	the	3D	volume	of	the	head.	From	

now	on,	we	will	 refer	 to	 the	above	Green’s	 function	as	 the	sensitivity	profile,	which	 is	
computed	for	each	source-detector	pair.		

With	the	previous	assumption	on	absorption	perturbation	∆𝝁𝒂,	the	forward	problem	can	

be	discretized	and	linearized.	For	a	volume	of	N	voxels	(index	n),	S	sources	(index	s)	and	
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D	detectors	(index	d)	placed	onto	the	scalp,	the	variation	in	photon	fluence,	registered	at	
detector	d	if	only	source	s	is	on,	is	given	by:	
	

∆𝑂𝐷|� =
1

Φ|,t
� Ì𝐺|,Í� ∆𝜇�Î

Ï

ÍÐt

	

	

Eq.	20	

When	all	S	sources	are	turned	on,	the	total	change	in	fluence	collected	at	detector	d	will	
result	from	the	sum	of	all	perturbation	contributions.		

Eq.	20	can	be	rewritten	in	the	linear	matrix	form	(Tremblay	et	al.,	2018):		
	

	 ∆𝐎𝐃
(m × 1)

=
	

𝐉
(m × n)

∆𝛍𝐚
(n × 1)

	
Eq.	21	

	

where	∆𝐎𝐃	is	the	optical	density	vector	of	measurements,	for	every	m	channel,	and	∆𝝁𝒂	

is	 the	 absorption	 coefficient	 variation	 in	 the	 volume	 of	 n	 voxels.	 Each	 element	 of	 the	
Jacobian	 𝐉	matrix,	 known	 also	 as	 sensitivity	matrix,	 is	 computed	 by	 combining	 all	 the	
Green’s	functions.		

At	this	point,	the	only	missing	step	to	complete	the	inverse	model	is	the	computation	of	

the	inverse	of	the	Jacobian	matrix	𝐉w𝟏.	Since	J	matrix	is	far	from	being	square,	the	inverse	

cannot	be	directly	obtained.	In	order	to	invert	the	J	matrix,	 it	 is	necessary	to	use	some	

regularization	procedures	(Engl,	Hanke,	&	Neubauer,	1996)(Engl	et	al.,	1996;	Neumaier,	

1998).	 The	 most	 common	 used	 approach	 is	 the	 Tikhonov	 regularization	 (Tikhonov,	

Goncharsky,	 Stepanov,	 &	 Yagola,	 1995)	 applied	 to	 the	 Moore-Penrose	 pseudoinverse	

definition.	In	this	way,	the	estimated	∆�̂��	is:	

	

	 ∆𝝁Ø� = 𝐉Ù(𝐉𝐉Ù + 	k𝛔∆𝐎𝐃¡ )w�Δ𝐎𝐃	 Eq.	22	

	

where	k	is	a	scalar	regularization	parameter	and	𝝈∆𝐎𝐃¡ 	is	the	measurements	covariance	

matrix,	assumed	to	be	diagonal	(Caffini,	2009).	The	number	of	sources	is	usually	largely	

superior	to	the	number	of	sensors,	thus	the	inversion	problem	still	remains	strongly	ill-

posed.		

	

In	order	to	solve	the	inverse	problem,	a	detailed	knowledge	of	the	optical	properties	and	

anatomy	should	be	provided	(Boas	&	Dale,	2005;	Guven,	Yazici,	Intes,	&	Chance,	2005).	
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The	model	reliability	is	then	dependent	on	two	main	factors.	First,	geometric	features	of	

the	object	in	which	photon	path	is	simulated,	for	instance	when	the	Monte	Carlo	approach	

in	used.	In	this	case,	models	required	for	simulations	consist	in	voxelized	or	volumetric	

mesh-based	objects.	 	Second,	the	goodness	of	the	registration	of	sources	and	detectors	

position	onto	 the	 object.	Here,	 the	 challenge	 is	 the	production	of	 rigorous	multilayers	

head	 models	 in	 which	 properties	 of	 different	 layers	 reflect	 the	 structure	 and	 optical	

characteristics	of	a	real	in	vivo	brain.	An	efficient	option	is	to	realize	volumetric	mesh-
based	models	starting	from	subject-specific	MRI	structural	images.	Especially	for	infants	

studies	 these	 structural	models	 are	 usually	 not	 available	 and	 optical	 head	models	 are	

usually	obtained	from	MRI	atlases	that	are	used	to	produce	segmented	3D	meshes.	

	

2.7 	Open	issues		
	

In	conclusion,	 this	chapter	aimed	 to	present	principles	and	 technical	characteristics	of	

optical	imaging,	and	to	describe	its	advantages,	as	well	as	limitations,	in	the	investigation	

of	neonates’	brain.	The	good	spatial	and	temporal	resolution	trade-off,	as	well	as	some	

practical	aspects	related	to	dealing	with	a	vulnerable	and	non-compliant	population,	are	

decisive	benefits.	 Indeed,	 the	possibility	 to	 obtain	 long-term	and	 silent	measurements	

makes	the	technique	ideal	to	perform	functional	connectivity	studies	at	a	very	early	stage	

of	life.		

In	Chapter	3,	the	emergence	of	Default	Mode	Network	is	explored	in	term	newborns	with	

a	frequency-domain	fNIRS	instrument.	Subjects	are	scanned	bedside	within	the	first	48	

hours	of	life.	In	our	approach,	we	focused	only	on	a	specific	part	of	the	DMN	(section	1.3.2)	

-	without	the	need	of	a	full	coverage	of	the	brain	-	and	its	anticorrelation	with	adjacent	

elements	of	the	Dorsal	Attention	Network.	Functional	connectivity	is	examined	through	a	

correlation	channel-based	analysis.	Indeed,	typically	fNIRS	signals,	collected	by	optodes	

at	 the	scalp,	are	analysed	directly.	Almost	all	 the	 few	studies	on	 infants	–	 immediately	

after	 birth	 -	 reported	 in	 literature,	 provide	 a	 similar	 course-grained	 description	 of	

functional	connectivity.	Therefore,	the	interpretation	of	brain	connectivity	relies	on	a	two	

dimensional	description,	obtained	from	channels	acquisitions	distributed	onto	the	head	

(sensor	space).	Thus,	the	question	arises	–	how	to	enrich	the	above	picture,	and	improve	
anatomical	localization	of	brain	activity?		
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As	highlighted	in	section	2.6,	even	though	optical	imaging	does	not	provide	anatomical	

information,	the	process	of	image	reconstruction	allows	the	definition	of	internal	optical	

properties	of	tissues	from	intensity	measurements	acquired	at	the	scalp.	In	lay	terms,	the	

method	gives	the	opportunity	to	enhance	the	two	dimensional	description,	with	a	three-

dimensional	map	of	the	origins	of	hemodynamic	response	(source	space).	To	date,	only	
two	resting-state	fNIRS	studies	in	newborns	shifted	the	analysis	from	sensor	to	source	

space.	White	 et	 al.	 (White	 et	 al.,	 2012)	used	DOT	measurements	 in	preterm	and	 term	

infants	 to	 reconstruct	 functional	 connectivity	 maps.	 Using	 a	 high-density	

instrumentation,	with	106	channels,	they	investigated	primarily	the	occipital	cortex.	The	

method	 showed	 great	 potential	 also	 for	 clinical	 applications.	 Indeed,	 image	

reconstruction	reliably	reflected	lesions	due	to	occipital	stroke	that	fMRI,	acquired	for	the	

whole	sample,	revealed	in	one	subject.	A	few	years	later,	a	different	study	on	full	term	

infants	used	an	arrangement	of	almost	300	channels	to	probe	a	more	extended	brain	area,	

which	included	occipital,	temporal	and	parietal	regions	(Ferradal	et	al.,	2015).	As	in	the	

previous	 work,	 each	 participant	 was	 scanned	 using	 DOT	 and,	 subsequently,	 fMRI	

methods.	The	high	degree	of	spatial	agreement	between	connectivity	maps	–	obtained	

respectively	 from	 fMRI	and	 reconstructed	DOT	data	of	 term	newborns	 -confirmed	 the	

reliability	of	the	process.	However,	in	both	works	mentioned	above,	realistic	head	models	

were	 realized	 from	 subject-specific	 structural	 MRI	 images.	 This	 procedure	 is	

impracticable	for	large	monitoring	studies	and	undermines	the	benefits	of	the	portability	

of	 fNIRS.	 Moreover,	 even	 if	 the	 fMRI	 technique	 represents	 the	 reference	 point	 for	

functional	neuroimaging,	it	should	be	recognized	the	lack	of	a	ground	truth	for	functional	

connectivity	patterns,	and	it	remains	unclear	to	what	extent	the	resulting	correlation	map	

is	 influenced	 by	 different	 factors	 occurring	 in	 fNIRS	 measurements.	 	 To	 tackle	 this	

problem,	I	developed	an	approach	based	of	the	reconstruction	of	functional	connectivity	

in	 the	 source	 space	 that	 is	 described	 in	 Chapter	 4,	 alongside	with	 its	 validation	with	

synthetic	and	real	data.	
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3 				Investigation	of	functional	connectivity	in	the	
neonate’s	brain	using	functional	Near	Infrared	

Spectroscopy	
 

	

	

Aim	 of	 the	 present	 chapter	 is	 to	 present	 a	 functional	 connectivity	 study	 on	 neonates,	

scanned	 within	 their	 first	 two	 days	 of	 life.	 In	 particular,	 the	 work	 focused	 on	 the	

investigation	of	the	emergence	of	the	Default	Mode	Network	using	optical	imaging.	The	

DMN	 is	 anatomically	 distributed,	 and	 comprises	 regions,	 like	 the	 Precuneus,	 that	 are	

hardly	 accessible	 to	 fNIRS.	Here,	we	 have	 developed	 a	 probe	 that	 covers	 symmetrical	

regions	 of	 the	 parietal	 cortex.	 We	 aim	 to	 assess	 the	 presence	 of	 significant	

interhemispheric	correlations	between	the	 left	and	right	Lateral	Parietal	(LP)	cortices,	

key	 components	 of	 the	 DMN.	 Moreover,	 we	 entertained	 the	 hypothesis	 that	

anticorrelations	 between	 LP	 and	 the	 Intra-Parietal	 Sulcus,	 an	 element	 of	 the	 Dorsal	

Attention	network,	may	already	exist	at	birth.	This	 feature	 is	consistently	described	 in	

adults,	and	its	observation	would	provide	evidence	of	a	mature	functional	connectivity	

structure	 of	 the	 DMN	 in	 our	 group	 of	 subjects.	 To	 this	 end,	 we	 explicitly	 account	 for		

negative	correlations,	often	discarded	in	the	analysis	of	resting	state	data.	In	this	chapter,	

we	report	an	analysis	in	the	space	of	channels,	to	compare	our	results	to	previous	studies.	

An	extension	of	the	analysis	to	the	source	space	is	reported	in	Chapter	4.	

 

3.1 Introduction		
 

The	 non-invasive	 use	 of	 light	 to	 probe	 the	 brain	with	 fNIRS	 is	 a	 novel	 and	 promising	

methodology	 for	 studies	 in	 developmental	 age.	 As	 extensively	 discussed	 in	 Chapter	 1,	

fNIRS	 instrumentation	 is	 silent	 and	portable,	 allowing	measurements	 in	 neonatal	 unit	

care	without	 strict	 requirements	 on	baby	 compliance.	Moreover,	 neonate	 subjects	 are	

peculiarly	suitable	for	optical	imaging	because	they	have	a	thinner	scalp	and	less	hair	than	

adults,	and	bone	calcification	of	the	skull	is	still	incomplete	thus	increasing	the	amount	of	
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light	that	reaches	cortical	tissues	(Engstro	et	al.,	2009).		

Previous	studies,	conducted	both	in	adult	and	infant	subjects,	assessed	the	capability	of	

optical	 imaging	 to	 efficiently	 describe	 resting	 state	 connectivity.	 Initially,	 functional	

connectivity	in	motor	and	visual	areas	have	been	registered	with	fNIRS	in	a	small	sample	

of	 healthy	 adult	 participants	 (White	 et	 al.,	 2009).	 Using	 seed-based	 correlations,	 the	

authors	observed	symmetrical	functional	responses,	reflecting	spatial	characteristics	of	

maps	previously	 described	with	 fMRI	 (Damoiseaux	 et	 al.,	 2006;	De	 Luca	 et	 al.,	 2005).	

These	 results	were	 later	 confirmed	by	 Lu	 and	others	 (Lu	 et	 al.,	 2010)	 in	 a	 study	 that	

probed	the	same	areas.	Data-	and	hypothesis-driven	analyses	at	the	group	level	confirmed	

the	capability	of	fNIRS	to	reproduce	the	expected	interhemispheric	correlations	and	its	

feasibility	for	resting-state	brain	network	detection.	In	addition	to	seed-based	correlation,	

independent	component	analysis	(White	et	al.,	2012;	Zhang	et	al.,	2010)	and	whole-brain	

correlation	 analysis	 (Sasai	 et	 al.,	 2012)	 highlighted	 the	 consistency	 of	 fNIRS	 spatial	

patterns	of	correlating	regions	with	fMRI	maps	extracted	from	the	same	areas.		

As	discussed	in	Chapter	1,	fMRI	is,	to	date,	the	reference	neuroimaging	technique	for	the	

inference	of	functional	connectivity.	Therefore,	a	valid	strategy	to	test	the	reliability	of	the	

resting	state	fNIRS	method	is	the	comparison	of	 its	outcomes	with	fMRI-based	studies,	

using	both	methods	 to	acquire	 the	same	data	(Niu	&	He,	2014).	Particularly,	 the	well-

known	 network	 of	 Default	 Mode,	 as	 well	 as	 Dorsal	 Attention	 Frontoparietal	 Control,	

emerged	 from	 simultaneous	 fNIRS/fMRI	 acquisitions	 over	 the	 frontal,	 temporal	 and	

occipital	 cortices	 (Sasai	 et	 al.,	 2012).	 The	 experimental	 agreement,	 validated	 from	

different	 techniques,	 confirmed	 that	 resting	 state	 fNIRS	 signals	 are	 able	 to	 reflect	

spontaneous	hemodynamic	fluctuations	from	cortical	regions	and	can	be	used	as	a	valid	

tool	to	investigate	dynamics	of	brain	activity.		

The	demonstration	of	the	feasibility	of	fNIRS	for	functional	connectivity	studies	in	adults	

is	encouraging	for	the	extension	of	the	technique	to	the	investigation	of	resting	state	in	

newborns.	Exploring	brain	dynamics	of	sleeping	term	infants,	Taga	and	others	(Taga	et	

al.,	2000)	measured	spontaneous	fluctuations	in	the	cerebral	oxygenation	state.	With	a	

successful	 observation	 of	 functional	 connectivity	 at	 rest,	 they	 paved	 the	 way	 to	

measurements	 at	 different	 stages	 of	 development	 (Homae	 et	 al.,	 2010).	 Indeed,	 the	

analysis	of	fNIRS	data	from	a	cohort	of	neonates,	3-months	and	6-months	old	subjects,	

revealed	 the	 capability	 of	 optical	 imaging	 to	 capture	 changes	 in	 cortical	 organization	

during	 development.	 Specifically,	 some	 cortical	 regions,	 as	 the	 temporal,	 parietal	 and	
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occipital,	showed	an	increase	of	functional	connectivity	from	birth	to	6	months.	On	the	

other	hand,	regions	such	as	the	frontal	areas,	revealed	a	decrease	in	regional	correlation,	

likely	 due	 to	 pruning	 of	 connections	 during	 development.	 Moreover,	 thanks	 to	 its	

portability,	fNIRS	has	a	potential	as	a	bedside	clinical	tool	because	it	allows	measurements	

to	be	carried	out	in	the	nursery	or	in	neonatal	intensive	care	units	(Ferradal	et	al.,	2015;	

White	et	al.,	2012).	This	enables	the	acquisition	of	scans	on	both	term	and	preterm	infants	

in	their	personal	cradles	while	sleeping,	within	the	very	first	few	days	or	even	hours	of	

life,	which	is	a	substantial	improvement	compared	to	other	available	techniques.	

Here,	we	 used	 fNIRS	 to	 investigate	 the	 inception	 of	 DMN	 in	 the	 developmental	 brain.	

Indeed,	its	investigation	at	an	early	stage	of	life	may	provide	important	insights	into	the	

neuro-functional	mechanisms	underlying	developmental	disorders	(Castellanos	&	Aoki,	

2016;	Redcay	et	al.,	2013).	The	network	has	been	described	extensively	in	adults	–	both	

healthy	subjects	and	patients	-	and	explored	in	adolescences	(McCormick	&	Telzer,	2018).	

However,	 whether	 a	 DMN-like	 network	 exists	 at	 birth	 remains	 controversial	 and	 the	

subject	of	 active	 investigation.	The	majority	of	 studies	on	 resting	 state	 connectivity	 in	

early	infants	–	with	particular	attention	to	the	inception	and	evolution	of	DMN	–	have	been	

performed	 using	 fMRI,	 in	 the	 attempt	 of	 registering	 the	 same	 spatial	 pattern	 already	

defined	in	adults.	In	this	study,	we	tested	the	hypothesis	of	an	effective	existence	of	DMN	

at	 term	 age,	 avoiding	 the	 research	 of	 a	 recurrent	 spatial	 pattern	 and	 proposing	 an	

alternative	approach,	based	on	an	a	priori	information	of	the	relationship	between	DMN	
and	 task-positive	 networks.	 In	 fact,	 functional	 connectivity	 inferred	 at	 rest	 unveils	 an	

interaction	between	DMN	and,	Dorsal	Attention	Network	(DAN)	in	the	form	of	negative	

correlations	(M.	D.	Fox	et	al.,	2005),	suggesting	an	inverse	temporal	modulation	(M.	D.	

Fox,	Corbetta,	Snyder,	Vincent,	&	Raichle,	2006).		

Under	 these	 assumptions,	 we	 focused	 on	 the	 capability	 to	 detect	 a	 signature	 of	 DMN	

immediately	after	birth.	Further,	we	hypothesized	that	negative	correlations,	like	those	

observed	between	DMN	and	DAN	in	adults,	may	already	exist	at	a	very	early	stage	of	life.	

Therefore,	 the	 detection	 of	 interhemispheric	 homotopic	 correlations	 between	 the	

symmetrical	parietal	 regions	of	DMN,	 coupled	with	 the	 finding	of	 an	 intrahemispheric	

anti-correlation	 involving	 IPS	 within	 the	 DAN	 (and	 a	 consequent	 interhemispheric	

correlation	between	respective	IPS),	could	account	for	the	presence	of	DMN	in	an	early	

post-natal	brain.	If	confirmed,	this	study	could	provide	evidence	of	the	emergence	(or	lack	

thereof)	of	a	DMN	in	the	newborn	brain.			
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To	date,	to	the	best	of	our	knowledge,	no	resting	state	fNIRS	studies	on	infants	have	yet	

focused	precisely	on	the	exploration	of	default	mode	network	at	this	very	early	stage	of	

development,	specifically	in	the	first	two	days	of	life.	Here,	we	present	and	discuss	results	

from	a	functional	connectivity	study	on	a	sample	of	neonates	subjects,	all	of	them	scanned	

within	the	first	48	hours	of	life,	in	a	period	which	falls	into	the	critical	window	for	early	

intervention.	
 

3.2 Choice	of	participants	
 

The	recruitment	of	the	infant	subjects,	which	we	personally	carried	out,	represented	the	

most	 challenging	 and	 time-consuming	 factor	 of	 the	 present	 study	 and	 lasted	

approximately	 nine	 months.	 Considering	 the	 critical	 age	 of	 participants,	 the	 ethics	

commission	 of	 the	 University	 of	 Trento	 approved	 a	 rigid	 protocol	 for	 this	 study.	 The	

protocol	dictated	 that	no	direct	 contact	with	 future	parents	 could	be	made	before	 the	

hospitalization	in	the	maternity	ward.	For	this	reason,	the	cohort	could	be	recruited	only	

after	birth.	Before	presenting	aims	and	methods	of	the	study	to	the	family,	we	performed	

a	check	of	the	medical	records.	First,	we	evaluated	the	Apgar	score	of	the	infant.	The	Apgar	

index	 quantifies	 the	 health	 of	 a	 neonate	 from	 the	 evaluation	 of	 five	 criteria	

(Appearance,	Pulse,	Grimace,	Activity,	Respiration)	and	can	vary	from	a	minimum	of	1	to	

a	maximum	of	10.	The	test	is	repeated	1	minute	(Apgar	1)	and	5	minutes	(Apgar	5)	after	

birth.	A	low	value	indicates	that	the	neonate	needs	additional	medical	attention	(Apgar,	

2015).	Only	healthy	newborns	with	normal		Apgar	Scores	(7	and	above)	were	selected.	

We	 also	 excluded	 mothers	 who	 experienced	 a	 high-risk	 pregnancy	 and	 /	 or	 serious	

pathologies	(for	instance,	entailing	intake	of	antibiotics).		

Thirty	healthy	full-term	infants	were	scanned	in	the	nursery	of	Santa	Maria	del	Carmine	

Hospital,	in	Rovereto	(Italy).	However,	this	number	does	not	include	recruited	subjects	

on	 whom	 it	 was	 impossible	 to	 perform	 the	measurement	 (for	 instance,	 because	 of	 a	

prolonged	state	of	awakening,	or	continuous	crying	for	discomfort,	possibly	induced	by	

the	fNIRS	cap).	In	the	next	paragraphs,	the	reasons	behind	the	exclusion	of	a	consistent	

part	of	the	scanned	participants	will	be	introduced.		
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3.3 Probe	design	and	data	collection	
 

The	intent	of	the	work	is	to	investigate	of	the	DMN	in	newborns	studying	the	emergence	

of	 a	 localized	 feature.	 Therefore,	 we	 defined	 a	 specific	 arrangement	 of	 sources	 and	

detectors	with	the	aim	to	make	the	best	use	of	the	limited	number	of	available	channels,	

in	order	to	ensure	extended	and	homogeneous	coverage	of	parietal	areas	and	IPS.	Sources	

and	detectors	were	arranged	in	2	hexagonal	modules	(	
	

Figure	 3.1a):this	 geometric	 disposition	 provided	 an	 optimal	 coverage	 of	 an	 almost	

rectangular	area	(White	et	al.,	2012).	Twenty	channels	in	total,	10	for	each	hemisphere,	

probed	regions	of	interest.	The	distance	between	coupled	sources	and	detectors	was	fixed	

at	 20	 mm.	 We	 considered	 the	 10-20	 EEG	 system	 as	 reference	 for	 probe	 positioning	

(Jurcak,	Tsuzuki,	&	Dan,	2007).	Sources	2	and	16	were	placed,	respectively,	coincident	

with	C3	and	C4	points	while	detectors	2	and	4	as	close	as	possible	to	P3	and	P4	points	(	
	

Figure	 3.1b),	 following	 the	 correspondence	 of	 10-20	 system	 points	 to	 cortical	 areas	 in	

infant	brain		(Kabdebon	et	al.,	2014).	We	inserted	source	and	detector	fiber	bundles	in	a	

custom-built	elastic	cotton	bonnet.	Using	the	head	of	a	realistic	doll	as	model,	we	manually	

realized	different	prototypes	of	the	cap	before	sewing	the	final	one	(	

Figure	3.2).	The	shape	of	the	cap	was	inspired	by	a	typical	EEG	cap	for	infants.	Optodes	

were	inserted	in	holes	that	we	cut	in	the	fabric,	and	cap’s	seams	have	been	designed	in	

order	to	not	coincide	with	sources	and	detectors	positions.	

The	imaging	cap	circumference	of	34	cm	reflected	the	average	size	of	a	term	(40	week	

PMA)	neonate	head.	A	bigger	version	(36	cm)	and	a	smaller	version	(32	cm)	of	the	cap	

were	 also	 realized,	 to	 adjust	 to	different	 sizes	of	 the	baby’s	head.	The	 elastic	material	

enabled	us	to	easily	adjust	to	the	variability	we	experienced	in	head	circumferences.	We	

used	holes	over	the	ears	and	the	Cz	point	as	references	for	a	standard	positioning	of	the	

cap	for	measurements.	A	silicon	strip	attached	in	the	frontal	region	of	the	cap	facilitated	

fixing	and	prevented	any	slipping	of	the	fabric	on	the	hairless	baby	forehead.		
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Figure	3.1	Planar	representation	of	the	hexagonal	geometry,	ideal	to	maximize	coverage	of	a	rectangular	
area.	The	sixteen	sources	are	drawn	in	red,	while	 the	 four	detectors	 in	blue.	The	central	position	of	 the	
detectors	maximizes	the	number	of	channels	available	for	measurements.		Green	lines	indicate	connection	
of	sources	and	detectors	to	define	a	channel	(a).	Projection	of	the	planar	arrangement	onto	the	scalp	of	a	
dedicated	Atlas.	Proportions	are	realistic	because	the	Atlas	used	refers	specifically	to	a	40	weeks	neonate	
head	(b).		

	

Resting	 state	 data	 were	 recorded	 in	 the	 maternity	 ward	 of	 the	 Rovereto	 Hospital,	

preferably	within	one	hour	after	feeding.	Total	scanning	duration	ranged	from	7	minutes	

to	15	minutes,	depending	on	the	infants’	compliance.	In	general,	subjects	were	scanned	

while	sleeping	in	their	cradles	in	a	dimly	illuminated	room,	to	create	the	most	comfortable	

environment	for	their	rest.	We	acquired	measurements	on	neonates	in	a	quiet	or	active	

sleep;	acquisitions	were	interrupted	as	soon	as	the	subject	showed	signs	of	wakefulness.	

Even	though	we	did	not	directly	monitor	the	sleep	state	(using,	for	example,	quantitative	

EEG	 measurements),	 sleep	 patterns	 were	 controlled	 based	 on	 behavioral	 criteria.	

According	 to	 the	scoring	system	 for	states	of	 sleep	 in	 infants	(Grigg-damberger,	2016;	

Stefanski	et	al.,	1984),	different	stages	of	sleep	are	recognizable	by	the	eyes	being	closed,	

small	body	movements	–	like	jerky	startles	–	and	occasional	sucking	or	chewing;	rapid	

eye	movements	could	be	observed.	
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Figure	3.2	Different	phases	in	the	process	of	imaging	cap	building,	from	a	preliminary	prototype	realized	in	
an	exploratory	stage	(a)	to	the	final	imaging	cap	(b).	The	head	doll	is	consistent	with	the	average	head	size	
of	a	typical	full-term	newborn.	The	model	we	used	for	acquisitions	has	been	realized	on	the	base	of	an	EEG	
cap.	

	

A	state	of	wakefulness	is	instead	observable	in	subjects	(at	rest	or	active)	with	eyes	open	

and	 alert	 aspect,	 regardless	 of	 body	movements.	 Based	 on	 these	 criteria,	 acquisitions	

were	stopped	if	subject	showed	half-open	or	open	eyes.		

No	medical	sedation	was	administered.	Moreover,	a	camera	pointed	toward	the	subject’s	

face	allowed	an	online	monitoring	of	 the	acquisition,	 recording	video	and	audio	of	 the	

acquisition	in	place.	Later	inspection	of	recorded	videos	confirmed	potential	participant’s	

awake	 state	 or	 the	 presence	 of	 environmental	 noises,	 which	were	 critical	 criteria	 for	

subject	exclusion	from	the	study.		

In	 general,	 during	 the	 newborn’s	 sleep,	 sudden	 movements	 are	 frequent	 and	 this	

condition	 could	 cause	 an	 uncoupling	 between	 cap	 and	 scalp.	 In	 order	 to	 prevent	

movement	artifacts,	an	operator	held	the	cap	for	the	entire	duration	of	 the	acquisition	

(Figure	 3.3).	 Indeed,	 the	 designed	 cap	 was	 equipped	 with	 thin,	 non-elastic	 side-ties.	

However,	we	verified	 that	 tying	 the	 strings	 together	under	 the	 chin	was	an	 inefficient	

solution	to	guarantee	a	good	quality	acquisition	as	well	as	a	risk	factor	for	the	subject.	In	

order	 to	 avoid	 influencing	 the	 sleep	 state	 and,	 consequently,	 the	 resting	 state	

measurement,	we	excluded	the	possibility	that	a	parent	or	the	operator	hold	the	infant.	

This	would	have	introduced	an	affective	touch	component	in	the	study,	compromising	its	

replicability.	Although	 in	 literature	 there	are	no	 studies	on	 the	 correlation	of	 affective	
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touch	and	functional	connectivity	patterns	measured	in	newborns,	for	good	measure	our	

experimental	setup	involved	minimum	physical	contact	with	the	subject.	

		

A	curtain	separated	operator	and	subject	from	the	rest	of	the	room.	Infant’s	parents	could	

monitor	the	scanning	through	online	video	recording,	remaining	silent	during	the	entire	

duration.	Each	measurement	required	at	least	two	operators,	for	direct	monitoring	of	the	

infants	and	for	the	control	of	instrumental	parameters.		

	

 
Figure	3.3	Setup	of	a	resting	state	measurement.	The	subject	rests	 in	his/her	cradle	while	one	operator	
holds	the	cap	during	the	entire	acquisition	period,	trying	to	follow	possible	head	movements.	This	helps	to	
prevent	the	head-cap	uncoupling	that	causes	movement	artifacts.	Neonates’	brain	activity	is	recorded	in	a	
dimly	lit	room.	The	only	source	of	light	(artificial)	comes	from	a	screen	on	the	side	of	the	cradle	and	enabled	
video	 recording	 from	 a	 camera	 placed	 above	 the	 screen	 and	 directed	 toward	 the	 baby’s	 face.	 	 Infant’s	
parents	signed	the	consent	to	the	use	of	the	picture.	

 

3.3.1 fNIRS	instrumentation		
 

For	this	study,	we	recorded	hemodynamic	activity	using	a	frequency-domain	NIRS	system	

(ISS	ImagentTM,	Champaign,	Illinois)	with	16	laser	diodes	–	emitting	at	690	and	830	nm	-	

and	4	photomultiplier	tubes3.	The	system	operates	with	a	sample	frequency	of	15.625	Hz,	

registering	 three	 different	 components	 of	 the	 signal	 detected	 at	 the	 scalp:	 AC	 and	DC	

components	 and	 the	 phase	 shift.	 Light	 sources	 are	modulated	 at	 high	 frequency	 (110	

                                            

3 The	instrumental	impossibility	to	realize	multidistance	measurements	prevented	us	from	the	
computation	of	absolute	optical	parameters. 
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MHz).	Moreover,	alternately	switching	“on/off”	cycles	on	light	emitters	ensures	a	correct	

recognition	of	 the	signal	coming	 from	each	source.	 	Generally,	 the	user	can	choose	the	

number	of	sources	simultaneously	emitting	light,	considering	that	each	set	is	“on”	for	20	

ms.	 In	 our	 case,	 using	 the	 machine	 option	 “switch-16”,	 two	 sources	 emit	 light	

simultaneously	while	the	four	detectors	acquire	signal.		

It	can	be	useful	to	specify	that	for	the	analyses	we	used	DC	signals.		

	

3.4 Data	quality	assessment:	evaluation	of	noise	sources	
	

In	order	to	define	a	reliable	dataset	for	functional	connectivity	analyses,	we	established	

rigid	criteria	for	evaluation	of	data	quality.	First	of	all,	we	individuated	possible	influences	

of	noise	on	measured	signals.	In	general,	different	sources	of	noise	can	contaminate	the	

time	 series,	 hindering	 the	 identification	 of	 the	 hemodynamic	 response.	 Noise	 due	 to	

instrumentation,	physiological	oscillations	or	head	movements	can	affect	data	quality.		

Physiological	noise	represents	the	main	contribution	to	the	signal	recorded	with	optical	

imaging	 systems.	 Cardiac	 pulsation,	 respiration,	 slow	 and	 very-slow	 fluctuations	 are	

detectable	in	the	scalp	and	all	the	cerebral	tissues	crossed	by	the	incident	light.	However,	

the	technique	is	more	sensitive	to	physiological	oscillations	from	superficial	layers	(which	

are	also	traversed	twice,	in	and	out).	These	confounding	components	of	the	signal	should	

be	 removed,	 in	 order	 to	 disclose	 the	 hemodynamic	 response.	 On	 the	 other	 hand,	

physiological	 parameters	 to	 which	 fNIRS	 is	 sensitive	 can	 be	 exploited	 to	 assess	 data	

quality.	 We	 considered	 the	 presence	 of	 heart	 beat	 in	 the	 raw	 signal	 as	 a	 sign	 of	 the	

reliability	of	data	and,	 if	 this	does	not	happen,	a	sufficient	reason	to	exclude	the	single	

measurement	 from	the	sample	(an	example	 is	 reported	 in	Figure	3.4).	 In	addition,	we	

employed	a	second	criterion	to	evaluate	the	acceptance	of	the	data:	in	frequency	domain	

fNIRS	machines,	a	low	standard	deviation	of	the	phase	data	confirms	the	preservation	of	

the	lock-in	mechanism,	providing	a	further	evidence	of	the	accuracy	of	the	acquisition.		

All	 data	 incorporate	 a	 component	 of	 noise,	 which	 includes	 both	 instrumental	 and	

experimental	 contributions	 (Huppert,	 Diamond,	 Franceschini,	 &	 Boas,	 2009).	 High	

frequencies	characterizing	machine	noise	can	be	 removed	using	a	 low	pass	 filter	 (this	

aspect	 will	 be	 discussed	 in	 section	 3.6).	 Moreover,	 experiments	were	 performed	 in	 a	

poorly-lit	environment	to	mitigate	contamination	from	other	sources.		
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Motion	artifacts	represent	another	important	source	of	uncertainty	in	the	data.	In	optical	

imaging,	 artifacts	 usually	 occur	 when	 a	 movement	 of	 the	 head	 causes	 a	 temporary	

uncoupling	of	sources	and	detectors	to	the	scalp,	or	a	displacement	of	the	probe	on	the	

head,	 thus	 introducing	 a	 net	 discontinuity	 in	 the	 time	 series.	 Involuntary	 and	 sudden	

movements	 characterize	 neonates	 sleep	 and	 this,	 combined	 with	 the	 difficulty	 of	

guaranteeing	perfect	fixing	of	the	optodes	to	the	head,	increases	the	chance	of	an	imaging	

cap	shift.	Motion	artifacts	result	in	rapid	changes	in	the	signal	(Figure	3.4)	and,	in	general,	

involve	simultaneously	almost	all	channels.	 In	order	to	assess	data	quality,	we	visually	

inspected	raw	time	series	and	extracted,	periods	-	at	least	5	minutes	long	-	with	no	evident	

artifacts.	Despite	the	operator’s	attention	in	following	the	baby’s	movements,	we	had	to	

discard	irreversibly	damaged	data,	due	to	repeated	movement	artifacts	–	with	too	short	

“clean”	periods	–	or	due	to	the	loss	of	a	consistent	number	of	channels	after	the	movement.	

In	 the	 latter	 case,	 the	 uncoupling	 persisted	 until	 the	 end	 of	 acquisition.	 Moreover,	

considering	 the	 probe	 arrangement	 geometry,	 the	 misplacement	 of	 one	 detector	

determined	the	loss	of	half	of	channels	for	hemisphere,	so	the	rate	of	discarded	data	was	

quite	high.		
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Figure	 3.4	 Example	 of	 non-filtered	 time	 series	 (subject	 23)	 affected	 by	 several	 movement	 artifacts,	
appearing	as	sudden	changes.	Black	arrows	indicate	artifacts.	The	red	square	encloses	the	period	of	the	
signal	considered	clean	and	accepted	for	further	analyses	(∼	5	min).	Zooming	of	a	random	section	of	the	
time	course	highlights	a	clear	presence	of	the	heartbeat.		

 

3.5 	Definition	of	the	final	dataset	
	

The	 first	 ten	 –	 out	 of	 thirty	 -	 acquisitions	 had	 to	 be	 discarded	 due	 to	 an	 insufficient	

securing	of	the	cap	to	the	subjects’	head.	Indeed,	the	final	procedure,	illustrated	in	section	

3.3,	was	the	result	of	numerous	attempts,	before	we	found	a	reliable	and	reproducible	

method.		

Eight	-	out	of	the	remaining	twenty	-	subjects	showed	sufficient	quality	according	to	the	

criteria	we	had	fixed,	and	were	included	in	the	final	analyses	(6	males,	2	females,	39.8	±	
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1.1	average	weeks	Post	Menstrual	Age	-	PMA)4.	From	the	final	dataset	(twenty	subjects),	

we	excluded	twelve	participants	due	to	several	reasons:	heavy	movement	artifacts	(n	=	

7),	noisy	environment	that	affected	the	rest	of	subjects	(n	=	2),	evident	twilight	sleep	(n	

=	2)	or	incorrect	probe	positioning	(n	=	1).		

In	Table	1,	available	information	about	the	clinical	and	demographic	history	of	included	

neonates	are	reported.	Each	subject	was	scanned	once	within	the	first	two	days	of	life.	All	

neonates’	mothers	were	 in	 good	health	 and	non-smokers.	Moreover,	 informal	 consent	

was	obtained	for	each	neonate	and	signed	by	at	least	one	parent	prior	to	the	acquisition.	

Following	 the	 protocol,	 the	 data	 of	 the	 subjects	 were	 anonymized	 and	 linked	 to	

demographic	information	only	through	a	code.	

 

 

Table	1	–	Demographic	and	clinic	subjects’	information	

Id	 Sex	 GA	

(weeks)	

GA	

(days)	

Head	

(cm)	

Weight	

(g)	

AP	1/	AP	

5	

CA	

(h:min)	

Delivery	

14	 M	 38	 6	 33.5	 2970	 9	/	10	 21:18	 C	

15	 M	 41	 1	 36.5	 3960	 8	/	9	 17:01	 C	

23	 F	 39	 3	 34.5	 2970	 10	/	10	 20:03	 C	

24	 F	 41	 1	 33.0	 3120	 9	/	10	 14:07	 V	

26	 M	 39	 2	 35.0	 3500	 10	/	10	 22:14	 V	

27	 M	 38	 6	 33.0	 3360	 9	/	10	 47:26	 V	

29	 M	 39	 1	 34.0	 3050	 10	/	10	 42:34	 V	

30	 M	 41	 1	 33.5	 3230	 9	/	10	 20:18	 V	

	
Id	=	subject	identification	code;	GA	=	gestational	age;	AP	=	Apgar	score;	CA	=	chronological	age;	Delivery	
indicates	caesarean	section	(C)	or	vaginal	(V)	birth.	

	

                                            

4 In	literature,	an	extensive	terminology	is	used	to	determine	postnatal	age	of	an	infant	and	the	
awareness	on	the	correct	definition	is	necessary	to	the	interpretation	of	the	dataset.	With	the	
expression	“gestational	age”	it	is	usually	indicated	the	time	between	the	first	day	of	the	mother’s	
last	menstrual	period	and	the	day	of	the	birth	of	the	baby.	It	is	generally	expressed	in	weeks	and	
days.	Instead,	the	expression	“post-menstrual	age”	referred	to	gestational	age	plus	the	time	
elapsed	after	birth	(which	is	known	as	“chronological	age”)	(PERINATAL	CARE	PERINATAL	
CARE	Seventh	Edition	Guidelines	for	Guidelines	for,	2012).  
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3.6 Pre-processing	and	functional	connectivity	analysis	
	

We	used	the	Modified	Beer-Lambert	Law	(MBBL,	discussed	in	section	1.6)	to	compute	

hemoglobin	 concentration	 signals	 from	 attenuation	 of	 light	 recorded	 (Cope	 &	 Delpy,	

1988).	 We	 used	 tabulated	 values	 for	 molar	 extinction	 coefficients	 (Prahl,	 1999).	 At	

wavelength	830	nm	εHBO	=	415	and	εHHb	=	2141.8;	at	690	nm	εHBO	=	1008	and	εHHb	=	778	

(molar	extinction	coefficients	are	expressed	in	l ∙ cmw� ∙ molw�).	Differential	path	length	

factors	were	obtained	from	a	dedicated	study	on	newborn	infants	(Duncan	et	al.,	1995):	

4.64	at	830	nm	and	5.41	at	690	nm.		

In	 order	 to	 remove	 cardiac	 (~	 2	 Hz	 in	 infants)	 and	 respiration	 (~	 0.6	 Hz	 in	 infants)	

contributes	from	the	total	signal,	we	filtered	resulting	concentration	data	to	the	frequency	

band	of	0.01	–	0.1	Hz.	This	choice	of	range	of	frequencies,	which	is	typical	for	resting	state	

studies,	 allows	 discarding	 confounding	 physiological	 contributes	 and	 also	 high	

frequencies	due	to	instrumental	noise,	while	retaining	the	low	frequency	fluctuations	that	

define	functional	connectivity.	In	order	to	perform	further	comparisons,	channels’	time	

series	were	transformed	into	z-scores	subtracting	the	mean	value	and	then	dividing	by	

the	standard	deviation.		

Finally,	 for	 functional	 connectivity	 analysis,	we	 considered	 z-scored	 time	 series	 of	 the	

filtered	 oxy-hemoglobin	 and	 deoxy-hemoglobin.	 The	 duration	 of	 individual	

measurements	 depended	 on	 the	 degree	 of	 infant	 tolerance	 and	 quality	 of	 sleep.	 We	

registered	a	high	variability	 in	 length	of	good	data	quality	sections,	ranging	from	4701	

time	points	 (∼	5	min)	 to	9001	 (∼	10	min).	 In	an	attempt	 to	 compare	 time	courses	of	

different	durations	without	discarding	any	information,	we	temporally	concatenated	z-

scored	signals	of	the	respective	channels	from	the	eight	subjects.	This	approach	is	usually	

employed	in	fMRI	to	investigate	functional	connectivity	using	Independent	Component	

Analysis	(ICA)	(Cole,	Smith,	&	Beckmann,	2010),	but	it	have	been	used	also	for	different	

group-level	statistical	analyses	on	fNIRS	time	series	(S	Tak,	Uga,	Flandin,	Dan,	&	Penny,	

2016;	Sungho	Tak	&	Ye,	2013;	Tong,	Bergethon,	&	Frederick,	2011).	Thus,	concatenating	

oxy-hemoglobin	(or	deoxy-hemoglobin)	z-scored	signals,	we	obtained	20	representative	

time	 series,	 one	 for	 each	 channel,	 respectively.	 Lastly,	 correlation	 matrices	 were	

computed	from	the	r	Pearson’s	correlation	coefficient	between	all	the	resulting	channels’	

time	series	pairs	(r	varied	 in	 the	range	 [-1,1]),	 for	both	HbO	and	HHb,	 to	describe	 the	

group-level	 dynamics	 of	 functional	 connectivity.	 Each	 row	 (or	 column)	 of	 the	 matrix	
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returns	the	r-value	of	correlation	between	the	time	course	of	a	single	channel	and	the	time	

course	of	all	the	remaining	channels.		

In	addition,	we	reported	a	second	popular	approach,	which	exploits	the	average	behavior	

of	the	subjects’	set	of	interest	(Cai,	Dong,	&	Niu,	2018;	J.	Wang,	Dong,	&	Niu,	2017).	To	

obtain	a	coherent	sample,	we	extracted	from	each	signal	a	clean	portion	of	exactly	4701	

time	points,	which	corresponds	to	the	shortest	clean	portion	of	a	time	series.	In	this	way,	

we	obtained	eight	time	series	with	the	same	length	for	the	eight	subjects.	Here,	group-

level	 functional	 connectivity	 was	 calculated	 from	 the	 average	 of	 Fisher	 transformed	

correlations	for	each	subject.		

Bearing	in	mind	the	research	question	focused	of	the	opposite	relationship	between	two	

networks,	we	considered	both	positive	and	negative	correlation	values,	without	applying	

a	threshold.		

	

3.7 Results	
	

In	this	section,	we	report	results	from	correlation	analyses	on	the	subset	of	eight	subjects	

that	met	 the	 rigid	 exclusion	 criteria.	 The	 20-channels	 probe,	 used	 for	 acquisitions	 on	

neonates,	was	designed	to	cover	the	LP	cortices,	part	of	the	DMN,	and	the	IPS,	which	is	

part	 of	 DAN.	 The	 measurements	 aimed	 to	 test	 the	 presence	 of	 homotopic	 positive	

correlations	and	negative	correlations	between	the	two	ipsilateral	areas	of	interest.		

In	previous	resting	state	fNIRS	studies,	only	variation	in	HbO	were	presented,	due	to	a	

better	 quality	 of	 the	 signal	 with	 respect	 to	 HHb	 (Homae,	Watanabe,	 Nakano,	 &	 Taga,	

2007).	Here,	for	the	sake	of	completeness,	we	show	results	for	both	signals.		

First,	we	reported	results	of	analyses	on	concatenated	HbO	time	series	(Figure	3.6).	For	

an	easier	interpretation,	we	referred	to	channel	numbering	illustrated	in	Figure	5,	which	

is	coherent	with	the	matrices’	digits.	The	correlation	matrix	showed	a	clear	differentiation	

of	behavior	for	hemispheres.	The	first	10	channels	(in	the	right	hemisphere)	exhibited	

positive	 intrahemispheric	 temporal	 correlations.	 The	 resulting	 dynamics	 within	 the	

hemisphere	was	almost	uniform,	with	strong	correlations	between	two	different	channel	

pairs	(10-4	and	6-3	channel),	with	values	of	0.87	and	0.85	respectively.	
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Figure	3.5	Channel	disposition	for	right	and	left	hemisphere.	The	grey	circles	indicates	positions	halfway	
between	 source	 and	 detector	 coordinates	 onto	 the	 scalp,	 in	 correspondence	 of	 the	 highest	 depth	
penetration.	Channels	2-3	and	19-20	are	positioned,	respectively,	over	the	right	and	left	IPS	area;	pairs	of	
channels	7-8	and	14-15	cover,	the	respective	LP	regions.		

	

The	 left	 hemisphere	 exhibited	 an	 equally	uniform	behavior,	with	positive	 correlations	

(except	 for	 channels	 pair	 18-15	 that	 showed	 a	 low	 negative	 correlation	 of	 -0.16).	

Interestingly,	the	correlation	values	registered	between	channels	16	and	13	and	channels	

20	and	14	were	both	very	high	(respectively	of	0.91	and	0.84).		However,	the	two	pairs	of	

channels	that	showed	high	correlation	within	the	left	hemisphere	did	not	correspond	to	

those	previously	cited	for	the	right	side.	Despite	similar	dynamics,	a	paired	sample	t-test	

confirmed	 a	 significant	 difference	 (p	 <	 0.001)	 between	 the	 mean	 left	 and	 right	

hemisphere	 intrahemispheric	 correlations	 	 in	 oxy-hemoglobin	 signal.	 Interestingly,	 no	

differences	at	specific	channels	level	have	been	found.		

Global	distribution	of	r	values,	represented	in	the	histogram,	confirmed	the	presence	of	

very	 weak	 negative	 correlations	 (minimum	 value	 at	 r	 =	 -0.23),	 which	 characterized	

predominantly	 the	 interhemispheric	 communication.	 Interestingly,	 analyses	 did	 not	

highlight	 homotopic	 interhemispheric	 correlations.	Moreover,	we	 did	 not	 register	 any	

competitive	 relationship	 between	 the	 two	 distinct	 areas	 of	 interest,	 within	 the	 same	

hemisphere.	 In	 order	 to	 point	 this	 effect,	 we	 visualized	 results	 of	 the	 seed	 based	

correlation	analysis	(Figure	3.6).	We	chose	to	employ	the	most	representative	channels	

as	seeds	–	basically,	those	ones	probing	the	underlying	areas	corresponding	to	C3,	C4,	P3	

and	P4	reference	points	(see		
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Figure	 3.1).	 Here,	 the	 separation	 of	 dynamics	 between	 the	 two	 hemispheres	 is	 clearly	

highlighted.		

We	repeated	the	same	analyses	on	concatenate	z-scored	deoxy-hemoglobin	time	courses.	

Results,	 in	 Figure	 3.7,	 are	 in	 complete	 agreement	with	 those	 already	 showed	 for	 oxy-

hemoglobin	 signals.	 Registered	 negative	 correlation	 remained	 weak	 (-	 0.33)	 and	 the	

emerging	pattern	accurately	reflected	the	ones	from	HbO.	In	the	average	description	of	

the	phenomenon,	we	 lost	 the	effect	of	negative	correlations,	which	appeared	strong	at	

individual	level	in	the	majority	of	subjects	(Figure	3.8	and	Figure	3.9).				

The	additional	analysis	on	time	series	with	the	same	number	of	time	points	corroborates	

previous	observations	(Figure	3.10).		

	

3.8 Discussion	
	

In	the	present	study,	we	aimed	to	assess	aspects	of	the	DMN	in	neonates	in	a	subgroup	of	

subjects	 selected	 according	 to	 strict	 quality	 criteria,	 to	minimize	 the	 risk	 of	 spurious	

correlations	arising,	e.g.,	by	motion	or	physiological	noise.	The	understanding	of	the	stage	

of	development	at	which	the	network	emerges	could	provide	insights	into	the	evolution	

of	functional	connectivity	and	contribute	to	explain	neuronal	origins	of	diseases	related	

to	its	disruption	(de	Lacy,	Doherty,	King,	Rachakonda,	&	Calhoun,	2017;	Gao	et	al.,	2009;	

Padmanabhan,	Lynch,	Schaer,	&	Menon,	2017).	Our	research	is	based	on	the	assumption	

that	 the	 existence	 of	 DMN	 in	 newborns	 is	 connected	 to	 the	 capability	 of	 detecting	 a	

landmark	of	the	network,	already	consistently	observed	in	older	populations	(M.	D.	Fox	

et	 al.,	 2005,	 2009).	 In	 general,	 in	 adults,	 positive	 correlations	 have	 been	 registered	

between	 functionally	 related	brain	 regions,	 as	well	 as	negative	between	brain	 regions	

showing	theoretically	opposed	functional	roles	(M.	D.	Greicius	et	al.,	2003)	(Kelly	et	al.,	

2008).	 Specifically,	 positive	 homotopic	 correlations	 have	 been	 observed	 in	

interhemispheric	 parietal	 areas,	 while	 spontaneous	 anti-correlated	 activity	 have	 been	

reported	between	specific	areas	of	DMN	and	DAN	(Corbetta	&	Shulman,	2002)	at	rest.	The	

reliability	and	variability	of	this	behavior	have	been	widely	investigated	in	healthy	adults	

(Dixon	et	al.,	2016;	Keller	et	al.,	2015;	Vincent,	Kahn,	Snyder,	Raichle,	&	Buckner,	2008)	

and	in	the	developmental	period	from	childhood	to	young	adulthood	(Chai	et	al.,	2014).		
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Figure	 3.6	 Correlation	 analyses	 on	 concatenated	 time	 course	 obtained	 from	 oxy-hemoglobin	 signals.	
Correlation	matrix	(left)	and	correlation	values	distribution	(right)	are	reported	on	the	top.	Digits	indicated	
in	the	matrix	represent	measurement	channels:	from	1	to	10	on	the	right	hemisphere,	from	11	to	20	on	the	
left	hemisphere.	Values	of	correlation	vary	in	the	range	[-1,	1]	and	are	represented	with	a	divergent	scale	
map.	Diagonal	values	were	excluded	from	the	correlation	values	distribution.	Below,	lateral	and	top	views	
of	 the	 brain	 illustrate	 seed	 based	 correlation	 results.	 Chosen	 seeds	 are,	 in	 order:	 channel	 2,	 channel	 6,	
channel	16,	channel	20.	
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Figure	 3.7	 Correlation	 analyses	 on	 concatenated	 time	 course	 obtained	 from	 deoxy-hemoglobin	 signals.	
Correlation	matrix	(left)	and	correlation	values	distribution	(right)	are	reported	on	the	top.	Digits	indicated	
in	the	matrix	represent	measurement	channels:	from	1	to	10	on	the	right	hemisphere,	from	11	to	20	on	the	
left	hemisphere.	Values	of	correlation	vary	in	the	range	[-1,	1]	and	are	represented	with	a	divergent	scale	
map.	Diagonal	values	were	excluded	from	the	correlation	values	distribution.	Below,	lateral	and	top	views	
of	 the	 brain	 illustrate	 seed	 based	 correlation	 results.	 Chosen	 seeds	 are,	 in	 order:	 channel	 2,	 channel	 6,	
channel	16,	channel	20. 	
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Figure	3.8	Correlation	values	distributions	calculated	from	oxy-hemoglobin	signals	for	each	of	the	8	subjects	
included	in	the	analysis.	Diagonal	elements	of	the	correlation	matrix	were	excluded	from	the	representation	
of	correlation	values	distribution.	

 

 

 

Figure	 3.9	 Correlation	 values	 distributions	 calculated	 from	 deoxy-hemoglobin	 signals	 for	 each	 subject.	
Diagonal	elements	of	the	correlation	matrix	were	excluded	from	the	representation	of	correlation	values	
distribution.	
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Figure	3.10	Correlation	analyses	obtained	averaging	the	Fisher’s	z	score	of	the	single	subjects.	To	represent	
matrices,	we	computed	the	inverse	transformation	from	Fisher’s	z	to	Pearson’s	r-value.	 	Diagonal	values	
were	excluded	from	the	representation	of	the	correlation	values	distribution.	

		

Hence,	we	hypothesize	that,	if	a	mature	DMN	is	already	present	at	this	stage,	we	should	

observe	 interhemispheric	 correlation	 between	 homotopic	 parietal	 regions,	 and	

intrahemispheric	anticorrelations	between	components	of	the	DMN	and	DAN	covered	by	

our	probe.	We	did	not	find	evidence	of	either	in	our	dataset,	at	least	at	the	level	of	channel-	

based	analysis.	

Some	 resting	 state	 studies	 have	 recently	 raised	 concerns	 about	 the	 interpretation	 of	

negative	 correlations.	 It	 has	 been	 suggested	 that	 anti-correlations	 could	 appear	 as	 a	

consequence	 of	 a	 specific	 pre-processing	 method,	 commonly	 used	 in	 fMRI	 analyses	

(Buckner	et	al.,	2008;	Murphy,	Birn,	Handwerker,	Jones,	&	Bandettini,	2009).	The	debate	

on	their	explanation	is	based	on	the	possibility	to	link	the	emergence	of	anticorrelations	

to	artifactual	effects	induced	by	the	global	signal	regression	(GSR)	(M.	D.	Greicius	et	al.,	
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2003;	Murphy	et	al.,	2009;	Uddin	et	al.,	2009).	This	procedure	removes	the	spontaneous	

fluctuations	of	the	BOLD	signal	that	are	common	to	the	entire	brain	and	that	are	referred	

to	as	global	signal	(M.	D.	Fox	et	al.,	2009).	The	main	contributions	to	global	signal	come	
from	physiological	non-neuronal	 confounds,	but	 components	with	neuronal	origin	can	

also	be	present.	The	existence	of	a	shared	global	component	is	reflected	in	an	excess	of	

positive	correlations	in	raw	fMRI	data.	Thus,	the	effect	of	Global	Signal	Regression	(GSR)	

consists	in	the	shifting	of	correlation	distributions	towards	negative	values	and	after	the	

pre-processing	the	resulting	Pearson’s	distribution	appears	centered	at	zero	(Murphy	&	

Fox,	2017).	Therefore,	negative	correlations	are	strengthened	and	their	effect	is	enhanced	

even	in	group-analyses.	There	is	still	an	on-going	discussion	and	further	studies	will	help	

to	 clarify	 the	 goodness	 of	 the	 method.	 In	 order	 to	 avoid	 the	 potential	 pitfalls	 of	 this	

procedure	and	to	describe	genuinely	anti-correlated	processes,	in	our	work	we	studied	

the	emergence	of	anti-correlated	activity	without	using	a	GSR	method.		

Analyzing	the	average	cerebral	dynamics	of	the	sample,	we	did	not	detect	strong	negative	

correlations	within	or	between	hemispheres	-	to	be	exact	between	LP	areas	of	DMN	and	

IPS	in	DAN.	The	lack	of	specific	interactions	between	the	two	networks	could	refer	to	an	

immature	 development	 of	 one	 or	 both	 patterns	 or	 even	 to	 an	 immaturity	 of	 their	

interaction.	In	 literature,	the	majority	of	works	on	the	inception	and	maturation	of	the	

whole	brain	functional	connectivity	come	from	fMRI-based	measurements.	Nonetheless,	

delineating	a	coherent	evolution	trajectory	for	the	DMN	spatial	pattern	is	not	trivial,	due	

to	contrasting	descriptions	of	its	state	at	birth.	While	some	studies	reported	the	capability	

of	detecting	a	complete	spatial	pattern	 in	 term	newborns	(Doria	et	al.,	2010),	 in	other	

seminal	works	(Fransson	et	al.,	2009,	2007)	a	new	terminology	had	to	be	introduced	–	

proto	DMN	-	to	indicate	the	only	partial	resemblance	of	the	neonate	pattern	to	the	adult	
one.		

The	state	of	the	networks	could	also	be	interpreted	taking	into	account	the	underlining	

behavior,	generally	associated	with	neural	activity.	 Indeed,	 the	competitive	correlation	

between	the	DMN	and	DAN,	respectively,	is	considered	as	a	“recurring	switch	between	an	

introspective	versus	an	extrospectively	oriented	state-of-mind”	(Fransson,	2005).	In	this	

regard,	 the	 first	 behavioral	 evidences	 of	 an	 interconnection	 between	 internal	 and	

attention	processes	have	been	noticed	after	3	months	of	age	(Rothbart	&	Posner,	2001).	

Indeed,	the	strategy	to	calm	the	weeping	of	infants	(a	mechanism	associated	to	DMN)	by	

distracting	them	with	an	external	stimulus	(related	to	attentional	processes),	like	a	toy,	
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worked	only	 from	the	reported	age.	 In	 this	case,	 the	negative	correlation	results	 in	an	

inhibitory	process,	from	a	behavioral	approach.		

Ultimately,	our	results	are	in	accordance	with	a	previous	fMRI	study	(Gao	et	al.,	2013).	

The	authors	explored	the	evolution	of	the	interactions	between	DMN	and	DAN	in	2	weeks,	

1	year	and	2	years	old	infants	and	found	its	appearance	only	at	the	first	year	of	age.	To	

sum	 up,	 to	 date,	 no	 resting	 state	 fNIRS	 studies	 have	 yet	 focused	 precisely	 on	 the	

exploration	of	default	mode	network	at	this	stage,	specifically	in	the	first	two	days	of	life.	

Our	 study	 confirmed	 previous	 findings	 on	 the	 absence	 of	 an	 opposite	 relationship	

between	 the	 two	 networks	 under	 investigation.	 However,	 the	 lack	 of	 a	 consensus	 in	

literature	 on	 the	 maturation	 of	 DMN	 at	 birth	 precludes	 a	 direct	 connection	 of	 the	

outcomes	with	the	level	of	development	of	the	network.		

In	 addition,	 our	 study	 finds	 no	 evidence	 of	 homotopic	 interhemispheric	 functional	

connectivity	in	the	parietal	areas	covered	bilaterally	by	our	probe.	This	result	is	consistent	

with	previous	observations	from	a	longitudinal	resting	state	fNIRS	study	on	4	days	old	

neonates,	3	months	and	6	months	old	infants	(Homae	et	al.,	2010).	By	probing	the	frontal,	

temporal,	parietal,	and	occipital	areas	with	94	channels	at	a	fixed	distance,	those	authors	

found	no	evidence	of	bilateral	organization	of	functional	activity	at	very	early	stage	and	

starts	to	emerge	only	at	three	months.	On	the	other	hand,	bilateral	correlations	between	

homotopic	counterparts	have	been	detected	with	optical	 imaging	 in	both	preterm	and	

term	subjects	 in	 the	visual	cortex	(White	et	al.,	2012)	and	 in	 the	middle	 temporal	and	

auditory	areas	(Ferradal	et	al.,	2015).	These	results,	consistent	with	some	fMRI	findings	

(Fransson	et	al.,	2009,	2007),	have	been	obtained	using	diffuse	optical	tomography.	DOT	

makes	use	of	a	large	number	of	channels,	thus	affording	higher	spatial	resolution	and,	in	

general,	better	filtering	of	superficial	noise.	Indeed,	the	inclusion	of	source-detector	pair	

with	a	 short	 separation	distance,	 thus	only	 sensitive	 to	 superficial	 tissues,	 enables	 the	

removal	of	confounding	effects	of	scalp	hemodynamics.	However,	it	should	be	noted	that,	

for	the	latter	process,	the	optimal	short-separation	distance,	measured	in	term	infants,	is	

only	2.15	mm	(Brigadoi	&	Cooper,	2015).	To	date,	the	instruments	on	the	market	are	still	

unable	 to	 satisfy	 this	 condition,	 therefore	 scalp	 contaminations	 cannot	 be	 completely	

removed,	even	though	DOT	may	provide	more	accurate	depth	information	thanks	to	the	

use	of	overlapping	channels.		

Furthermore,	we	detected	a	surprisingly	uniform	dynamics	within	each	hemisphere.	The	

result	may	be	attributed	 to	a	course-grained	description	of	 the	 functional	connectivity	
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with	a	channel-based	analysis.	It	appears	as	if	the	discrete	grid	of	channels	could	hinder,	

to	some	extent,	details	of	functional	information.	This	raises	the	question:	can	we	enrich	

the	channel-based	characterization	of	resting	state	connectivity?	Of	course,	the	inverse	

reconstruction	 of	 cortical	 origins	 of	 hemodynamic	 signal	 is	 well	 established	 in	 high-

density	 optical	 systems.	 However,	 to	 what	 extent	 the	 procedure	 is	 affected	 by	

experimental	conditions	in	functional	connectivity	studies	is	an	open	issue	that	will	be	

discussed	in	the	next	Chapter.	

	

The	 present	 study	 would	 benefit	 from	 further	 improvements.	 Firstly,	 it	 would	 be	

important	to	increase	the	number	of	participants.	Certainly,	the	sample	we	investigated	

is	small:	as	often	happens	in	 infant	studies,	 the	drop	out	rate	 is	very	high,	 involving	in	

average	 at	 least	 the	 40%	 of	 the	 initial	 data	 set	 (Lloyd-Fox,	 Blasi,	 &	 Elwell,	 2010).	 In	

addition,	 we	 included	 only	 subjects	 that	 satisfied	 rigid	 inclusion	 criteria,	 to	 avoid	

introducing	spurious	correlations	in	our	analyses.	Thus,	results	can	be	considered	reliable	

even	 if	 a	 higher	 statistics	 is	 necessary	 to	 consolidate	 our	 conclusions.	 Moreover,	

monitoring	 of	 the	 sleep	 stage	 through	 simultaneous	 EEG	measurements	 may	 help	 to	

reduce	the	variability	among	subjects.		
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4 					From	sensor	to	source	space:	a	validation	study	
 

	

Resting	state	studies	conducted	with	fNIRS	often	limit	the	description	of	the	functional	

dynamics	only	to	a	sensor-based	analysis.	This	approach	results	in	coarse-grained	maps	

of	 connectivity.	 In	 the	 present	 Chapter,	 we	 validate	 the	 process	 of	 reconstruction	 of	

spatially	distributed	signals.	The	method	has	been	tested	on	synthetic	and	real	resting	

state	datasets,	simulating	the	variation	of	experimental	factors,	such	as	probe	(size	and	

geometry),	original	pattern	of	correlations	and	level	of	noise	in	the	signal.			
 

4.1 Introduction		
 

Despite	 the	 numerous	 technical	 advantages	 of	 fNIRS	 application	 to	 functional	

connectivity	developmental	studies,	optical	imaging	comes	with	multiple	challenges.	One	

of	the	most	critical	issues	concerns	the	definition	of	an	optimal	probe	design.	Ideally,	in	

order	 to	 comprehensively	describe	 the	global	dynamics,	 the	 full	 coverage	of	 the	brain	

should	 be	 provided.	 To	 this	 purpose,	 a	 high	 number	 of	 optodes,	 organized	 in	 densely	

packed	arrays	 is	necessary.	Recently,	extended	geometries	allowing	the	overlapping	of	

measurement	channels	have	been	achieved	in	studies	on	adults	(Eggebrecht	et	al.,	2014,	

2012),	thanks	to	the	advantages	of	diffuse	optical	tomography	(DOT)	(Joseph,	Huppert,	

Franceschini,	&	Boas,	2006;	Koch	et	al.,	2010;	Zeff,	White,	Dehghani,	Schlaggar,	&	Culver,	

2007).	This	method	exploits	 long	and	short	distance	measurements	to	 improve	depth-

sensitivity	 and	 to	 separate	 the	 confounding	 superficial	 contributions	 from	 the	 deep	

cortical	component	of	the	signal,	collected	at	the	scalp	(G.	E.	Strangman,	Li,	&	Zhang,	2013;	

White	&	Culver,	2010).	To	date,	high	density	caps,	ensuring	whole-brain	coverage,	have	

been	 used	 for	monitoring	 cortical	 hemodynamic	 in	 an	 early	 preterm	 (Galderisi	 et	 al.,	

2016)	and		a	term	newborn	(Singh	et	al.,	2014)	-	testing	in	both	cases,	only	one	patient.	

However,	 the	 very	 few	 functional	 connectivity	 studies	 that	 focused	 on	 such	 a	 specific	

population	did	not	guarantee	the	 investigation	of	the	entire	brain.	For	 instance,	arrays	
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with	 limited	spatial	extension,	but	 formed	of	multidistance	overlapping	channels,	have	

been	employed	to	explore	connectivity	in	small	cohorts	of	preterm	and	term	infants,	at	

first	only	in	occipital	regions	(White	et	al.,	2012)	and	later,	also	in	temporal	and	inferior	

parietal	cortices	(Ferradal	et	al.,	2015).	Alternatively,	available	sources	and	detectors	can	

be	distributed	in	sparse	arrangements,	with	fixed	channel	distance.	This	approach	have	

been	 employed	 to	 inspect	 frontal,	 temporal,	 parietal	 and	 occipital	 regions	 in	 preterm	

newborns	 (Fuchino	 et	 al.,	 2013),	 term	 neonates	 and	 infants	 of	 3-	 and	 6-months	 old	

(Homae	 et	 al.,	 2010)	 during	 natural	 sleep	with	 an	 almost	 comprehensive	 coverage	 of	

brain.	In	these	works,	the	connectivity	is	usually	inferred	from	fNIRS	signals	collected	by	

sources	and	detectors	distributed	onto	the	scalp.	The	functional	analysis	conducted	in	the	

sensor	 space	 typically	 results	 in	 a	 coarse-grained	 description	 of	 activity	 distribution,	

which	represents	a	critical	limiting	factor.		However,	with	an	acceptable	spatial	resolution,	

usually	achieved	using	DOT	configurations,	it	is	possible	to	recover	a	global	description	of	

absorption	 variations	 and	 to	 reconstruct	 the	 information	 for	 each	 node	 or	 voxel	 of	 a	

digital	reference	brain.	Thus,	 the	analyses	can	be	shifted	 in	 the	so-called	source	space,	
where	 the	 hemodynamic	 response	 has	 its	 origin.	 In	 resting	 state	 studies,	 the	 process	

allows	the	definition	of	three-dimensional	functional	connectivity	visualizations,	similar	

to	 those	 obtained	 from	 fMRI	 data.	 These	 maps	 could	 complement	 the	 channel-based	

description,	 informing	 in	 a	 comprehensive	 way	 on	 the	 anatomical	 localization	 of	

activations	and	facilitating	the	interpretation	of	the	results.		

In	 order	 to	 obtain	 a	 three-dimensional	 image	 reconstruction,	 it	 is	 firstly	 necessary	 to	

define	a	model	of	photon	migration	capable	of	simulating	the	light	propagation	through	

the	 head.	 A	 forward	 model	 allows	 the	 prediction	 of	 changes	 in	 scalp	 measurements	

assuming	a	prior	knowledge	of	changes	 in	optical	properties	of	 the	head,	 thus	relating	

source	 space	 to	 sensor	 space.	 Different	 discrete	 approaches,	 such	 as	 Finite	 Element	

Method	or	numerical	Monte	Carlo	simulation,	can	be	used	to	solve	the	photon	migration	

problem	 (Arridge	&	 Schotland,	 2009;	Boas,	 Culver,	 Stott,	&	Dunn,	 2002;	 Fang	&	Boas,	

2009).	 However,	 the	 accuracy	 of	 the	 forward	 solution	 strictly	 depends	 also	 on	 the	

accuracy	of	the	geometry	used	to	model	the	real	head	and	on	the	relative	set	of	optical	

properties	associated	to	each	brain	tissue.	The	optimal	choice	would	consist	in	a	subject-

specific,	multi-layered	anatomical	structure,	obtained	via	Magnetic	Resonance	 Imaging	

(MRI),	where	to	individuate	sources	and	detectors	positions	(Boas	&	Dale,	2005;	Perdue,	

Fang,	 &	 Diamond,	 2012).	 However,	 this	 approach	 is	 often	 unrealistic	 for	 vulnerable	
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populations,	such	as	infants.	In	addition,	the	request	of	individual	MRI	acquisitions	would	

cancel	the	practical	advantages	of	optical	imaging	that	make	the	technique	preferable	in	

specific	conditions.	For	these	reasons,	in	most	cases	atlas	head	models	represent	a	good	

compromise.	Given	all	these	elements,	the	image	reconstruction	process	can	be	obtained	

by	solving	the	inverse	problem:	changes	in	optical	properties	of	the	head	are	computed	

from	changes	in	measurements	collected	at	the	scalp	level.	This	leads	to	a	mathematically	

ill-posed	inverse	problem	that	necessitates	of	regularization	methods	to	be	solved	(see	

section	 2.6.2).	 This	 process	 has	 been	 implemented	 and	widely	 applied	 to	 reconstruct	

oxygenation	 changes,	 especially	 in	 adult	 head	 (Cooper	 et	 al.,	 2012).	 However,	 the	

potential	 of	 this	 procedure	 has	 not	 exploited	 extensively	 in	 functional	 connectivity	

studies.	Understanding	the	impact	of	external	factors	on	the	method	is	useful	to	assess	

the	reconstruction	of	the	information	in	the	source	space,	 in	particular	for	research	on	

infants,	which	are	the	most	suitable	subjects	for	resting	state	fNIRS	investigation.	

	

In	 this	 Chapter,	 we	 present	 work	 on	 the	 validation	 of	 the	 reconstruction	 of	 spatially	

distributed	functional	signals	on	a	dedicated	anatomical	template,	applied	to	functional	

connectivity	 studies	 in	 infants.	 The	 aim	 is	 to	 assess	 the	 reliability	 of	 a	 source-based	

functional	connectivity	representation,	able	to	enrich	the	popular	sensor-based	analysis	

approach.	Specifically,	we	studied	the	impact	of	different	experimental	factors,	like	probe	

size	 and	 geometry,	 and	 Signal-to	 Noise	 ratio	 (SNR)	 on	 the	 inverse	 reconstruction	 of	

optical	 data	 acquired	 on	 infants.	 This	 analysis	 provides	 guidance	 to	 optimize	 probe	

design,	 and	 to	 appreciate	 the	 factors	 that	 determine	 the	 reliability	 of	 the	 method.	

However,	 the	 assessment	 of	 the	 quality	 of	 the	 reconstructed	 spatial	 patterns	 is	

challenging,	due	to	the	 lack	of	a	benchmark.	To	this	purpose,	we	simulated	absorption	

changes	at	the	cortical	level	in	order	to	define	a	ground-truth.	Specifically,	we	generated	

a	 synthetic	 pattern	 of	 correlated	 activity	 fluctuations	 resembling	 the	 Default	 Mode	

Network	(DMN),	in	the	presence	of	various	levels	of	noise.	In	addition,	we	explored	the	

influence	 of	 the	 presence	 of	 negative	 correlations	 on	 the	 reconstruction	 process,	

introducing	in	the	analyses	the	contribution	of	anticorrelations	to	the	synthetic	spatial	

pattern.	 After	 this	 introductory	 validation,	 we	 applied	 the	 implemented	 tool	 to	

reconstruct	two	real	functional	connectivity	datasets.	
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4.2 Computational	validation	
	

4.2.1 Anatomical	Model	

	

The	 first	 step	 for	a	definition	of	 the	 inverse	reconstruction	process	 is	 the	choice	of	an	

appropriate	head	model,	able	to	reflect	cerebral	structures	and	properties	of	the	sample	

under	investigation.		

Our	entire	research	is	focused	on	the	study	of	neonates.	However,	at	this	very	early	stage	

of	life,	the	cerebral	structure	evolves	quickly.	Thus,	working	with	an	atlas	that	reproduces	

the	anatomical	characteristic	of	brain,	referring	to	a	narrow	period	of	time	after	birth,	is	

a	 great	 advantage.	 To	 this	 purpose,	we	 used	 a	 4D	 atlas	 (Brigadoi,	 Aljabar,	 Kuklisova-

Murgasova,	Arridge,	&	Cooper,	2014),	a	 tool	particularly	suitable	to	studies	on	 infants.	

The	atlas	was	produced	using	MRI	images	recorded	on	142	infants	from	29	weeks	to	47	

weeks	PMA	(post	menstrual	age)	(Kuklisova-Murgasova	et	al.,	2011),	thus	reflecting	the	

structural	 changes	occurring	 in	 this	 	 time	window.	Therefore,	 for	each	week	PMA,	 the	

package	provides:	

	

• a	multi-layered	tissue	mask,	segmented	into	6	tissues:	extra-cerebral	tissue	(ECT,	

including	 scalp	 and	 skull	 tissues),	 cerebrospinal	 fluid	 (CSF),	 gray	matter	 (GM),	

white	matter	 (WM),	 cerebellum	 and	 brainstem.	 For	 each	 layer,	 absorption	 and	

scattering	coefficient	values	are	available;	

• a	high-density,	volumetric,	tetrahedral	multi-layered	mesh;	

• surface	meshes	for	the	ECT,	GM	and	WM	layers;	

• cranial	landmarks,	corresponding	to	inion	(Iz),	nasion	(Nz)	and	left	and	right	pre-

auricular	points	(ALAl	and	ARAr).	

• 10-5	 EEG	 system	 coordinates	 (Oostenveld	 &	 Praamstra,	 2001)	 on	 the	 scalp	

surface.	Usually,	this	EEG-based	system	is	also	used	in	fNIRS	studies	as	reference	

for	sources	and	detectors	positioning	(Jurcak	et	al.,	2007).		

	

Here,	the	4D	age-matched	optical	head	geometry	represents	the	ideal	anatomical	model	

for	 image	 reconstruction	 in	 the	 sample	 of	 interest.	 For	 testing	 the	 reliability	 of	 the	

reconstruction	in	a	consistent	population,	in	this	study	we	employed	the	40th	weeks	Atlas	

that	reflects	the	characteristics	of	typical	term	newborns	(Figure	4.1).		
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4.2.2 Probe	design		

	

Considering	as	reference	 the	scalp	of	 the	40th	week’s	Atlas,	we	designed	 four	different	

optical	probe	configurations	to	explore	conditions	and	constraints	that	influence	the	final	

reconstructed	image.		

First,	a	full	coverage	of	the	head	has	been	mimicked	with	an	extended	and	dense	probe	to	

provide	a	reference	for	more	restricted	probes.	This	ideal	configuration	was	defined	by	

placing	 sources	 and	 detectors	 in	 correspondence	 of	 the	 10-5	 EEG	 system	 points	

(Oostenveld	&	Praamstra,	2001).	At	first,	we	associated	a	source	to	the	Cz	point;	starting	

from	Cz,	we	distributed	alternatively	detectors	and	sources	towards	both	nasion	(Nz)	and	

inion	directions	(Iz).	Once	completed	the	central	curve,	allocation	of	simulated	optodes	

Figure	4.1	Features	of	the	dedicated	4D	Atlas	used	for	simulations.	In	this	panel,	components	of	the	atlas	
at	40	weeks	are	reported:	a)	the	multi-layered	tissue	mask,	b)	multi-layered	tetrahedral	volumetric	mesh,	
c)	surface	mesh	for	grey	matter,	d)	surface	mesh	for	white	matter,	e)	surface	mesh	for	scalp.	



 
 

66 

continued	from	the	center	to	right	and	left	directions,	following	the	reference	curves.	We	

excluded	points	below	T7	and	T8	because	not	useful	to	our	exploration.	As	follows,	we	

obtained	 a	 large	 probe	 of	 124	 sources	 and	 133	 detectors,	 symmetrically	 arranged	

between	 hemispheres.	 By	 definition,	 distances	 of	 adjacent	 reference	 points,	 in	 10-5	

system,	correspond	to	the	10%	and	5%	of	the	total	distance	of	the	curves	defined	onto	the	

scalp,	 in	 front-back	 or	 right-left	 directions.	 Therefore,	 the	 final	mesh	 fence	was	 not	 a	

uniform	structure	with	fixed	distance	values	between	optodes.	From	all	possible	pairs,	we	

selected	only	channels	with	source-detector	distance	in	a	realistic	range	of	[18-28	mm].	

Eventually,	997	channels	formed	the	resulting	configuration	(Figure	4.3).	This	probe	is	

definitely	unrealistic	because,	to	date,	no	instrumentation	is	able	to	guarantee	such	a	high	

number	of	channel	for	the	investigation	of	newborns’	brain	activity	(Ferradal	et	al.,	2015).	

Nevertheless,	the	resulting	configuration	aimed	at	illustrating	the	effect	of	a	compact	and	

extended	coverage	of	the	scalp	in	the	image	registration	process,	simulating	the	best-case	

possible	scenario.	

The	 second	 arrangement	 was	 obtained	 from	 a	 specific	 subset	 of	 the	 first	 one.	 We	

maintained	the	geometry	of	the	largest	probe.	Here,	we	chose	a	subgroup	of	12	sources	

and	12	detectors	–	placed	symmetrically	through	the	hemispheres	–	capable	of	covering	

the	parietal	areas.	Such	areas	are	supposed	to	be	involved	

in	 the	 emergence	 of	DMN.	 Considering	 only	 pairs	 in	 the	

above-cited	range	of	distances,	we	defined	a	probe	of	32	

channels.	 The	 first	 two	 optodes	 arrangements	 were	

simulated	in	order	to	test	the	impact	of	the	size	of	the	array	

on	the	final	reconstruction,	provided	an	ideal	geometry	–	

with	 a	 large	 number	 of	 overlapping	 measurement	

channels.	

The	 remaining	 configurations	 were	 reproduced	 starting	

from	sources	and	detectors	arrangements	already	used	for	

the	acquisition	of	real	resting	state	datasets	on	newborns.		

The	geometry	of	the	third	probe	was	initially	designed	for	

the	 study	previously	described	 in	Chapter	3,	 in	order	 to	

investigate	parietal	areas	of	DMN	with	twenty	channels	at	

our	disposal.	Sources	and	detectors	were	arranged	in	two	

hexagonal	geometries,	with	10	channels	for	each	hemisphere,	at	a	fixed	source	–	detectors	

Figure	4.2	Picture	of	a	step	of	planar	
probe	 projection	 process	 onto	 the	
scalp	 mesh,	 using	 Blender.	 We	
worked	 with	 the	 two	 hexagonal	
components	 of	 the	 probe	 (one	 for	
hemisphere)	 separately.	 Scalp	 was	
segmented	 and	 the	 projection	
involved	only	lateral	regions.	
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distance	of	20	mm.	First	and	second	probe	configurations	were	created	choosing	points	

with	well-known	coordinates	(all	10-5	points	coordinates	onto	the	scalp	are	included	in	

the	Atlas).	In	this	case,	the	planar	distribution	of	the	optodes	was	defined	beforehand	and	

then	the	two-dimensional	geometry	was	mapped	onto	the	curved	3D	surface	of	the	scalp	

using	 Blender	 software.	 Blender	 is	 a	 free	 and	 open-source	 software	 for	 computer	

graphics.	It	is	used	for	creating	video	games,	animated	film	and	3D	printed	models	and	

includes	toolsets	for	UV	unwrapping,	texturing	and	3D	printing	(to	name	a	few)	5.	Even	if	

the	software	is	not	dedicated	to	neuroimaging	purposes,	it	is	highly	versatile	and	allows	

the	mapping	of	 2D	 flat	 objects	 on	 volumetric	meshes.	 The	 advantage	of	Blender,	with	

respect	to	other	available	tools	such	as	AtlasViewer	in	Homer2	(Aasted	et	al.,	2015)	is	the	

request	 of	 only	 2	 points	 for	 the	 projection.	 	 We	 produced	 two	 distinct	 hexagonal	

arrangements	 and	 mapped	 one	 hemisphere	 at	 a	 time	 (Figure	 4.2).	 Four	 symmetric	

optodes	were	anchored	to	C3,	P3	of	10-5	EEG	system	(Jurcak	et	al.,	2007)–	and,	on	the	

opposite	 hemisphere,	 to	 C4	 and	 P4	 –	 and	 a	 dedicated	 wrapping	 algorithm	 has	 been	

applied.		

Finally,	 the	 last	 configuration	 reflected	 the	 probe	 used	 in	 a	 different	 resting	 state	

investigation	on	4-days	old	 term	neonates	by	 (Homae	et	 al.,	 2010).	 Frontal,	 temporal,	

parietal	and	occipital	areas	of	each	hemisphere	were	investigated	with	a	sparse	probe	of	

94	channels,	characterized	by	a	source-detector	distance	fixed	at	∼2	cm.	In	this	case,	the	

coverage	 of	 the	 brain	 is	 certainly	 more	 extended,	 with	 only	 a	 gap	 in	 the	 center.	

Considering	the	average	age	of	the	sample,	also	in	this	case	the	40th	week	of	4D	Atlas	can	

be	 considered	 a	 highly	 representative	 head	model.	 Sources	 and	 detectors	 coordinates	

onto	the	head	mesh	were	provided	from	the	authors	of	the	work	and	are	illustrated	in	

Figure	4.3.	

	

	

	

	

	

                                            

5	More	information	on	the	website:	www.blender.org.	
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4.2.3 Choice	of	optical	properties		

	

The	assignment	of	appropriate	optical	properties	to	each	node	of	the	mesh	is	a	crucial	

step	to	guarantee	a	reliable	computational	model.	Optical	 features	referring	to	distinct	

layers	of	tissues	vary	according	to	the	nature	of	the	sample	used	to	measure	them	(Choi	

et	 al.,	 2004).	 Of	 course,	 in	 vitro	 (or	 post	 mortem)	 and	 in	 vivo	 measurements	 return	
dissimilar	values	due	to	a	number	of	physiological	factors,	such	as	the	variation	of	blood	

content,	structural	changes	or	difference	in	temperature.	From	a	technical	point	of	view,	

even	 though	 continuous	 wave	 instrumentations	 are	 widely	 diffused	 for	 near-infrared	

studies,	they	are	not	feasible	to	determine	absolute	and	separated	values	for	absorption	

and	reduced	scattering	coefficients.	Thus,	hemoglobin	concentrations,	from	which	optical	

properties	will	 be	derived,	 are	 generally	 estimated	 through	multi-distance,	 frequency-

domain	 or	 time-domain	 approach.	 However,	 despite	 the	 vast	 amount	 of	 available	

literature	on	fNIRS	cognitive	studies	on	infants,	a	limited	number	of	papers	have	focused	

on	the	assessment	of	in	vivo	optical	properties	of	the	newborn’s	head.	Moreover,	some	of	

these	 works	 produced	 a	 single	 average	 value	 of	 absorption	 and	 reduced	 scattering	

coefficients	for	the	neonate	brain	(Zhao,	Ding,	Hou,	Zhou,	&	Chance,	2005;	Zucchelli	et	al.,	

2017)	that	does	not	fit	with	our	need	of	a	detailed	description	of	each	layer	of	the	head	

(corresponding	to	the	different	components	of	the	atlas	segmentation).	Another	aspect	to	

be	 reckoned	 with	 is	 the	 age	 of	 the	 subject:	 values	 obtained	 from	 an	 early	 preterm	

population	(Ijichi	et	al.,	2005),	would	not	be	representative	in	our	case.	In	view	of	this,	we	

used	 optical	 properties	 obtained	 by	 measurements	 at	 a	 single	 wavelength	 (800	 nm)	

(Fukui	et	al.,	2003)	and	already	reported	in	other	studies	(Brigadoi	et	al.,	2014;	Dehaes	et	

al.,	2013). 
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Figure	4.3	Probes	construction	for	simulations.	The	large	extended	probe	(997	channels)	and	its	subset	(32	
channels)	were	defined	from	the	10-5	reference	coordinates,	associating	alternatively	a	source	(in	red)	or	
a	 detector	 (in	 blue)	 to	 well-known	 points	 of	 the	 system.	 Optodes	 positions	 for	 the	 first	 realistic	
configuration	 (20	 channels)	 were	 obtained	 after	 a	mapping	 of	 a	 linear	 geometry	 onto	 the	 Atlas	 scalp.	
Coordinates	of	the	last	arrangement	were	provided	by	the	authors	of	the	study	(Homae	et	al.,	2010).	Green	
lines	 connect	 only	 those	pairs	 of	 source-detector	 at	 a	 distance	 in	 the	 range	 [18-28	mm],	 indicating	 the	
presence	of	a	channel.	It	should	be	noted	that	the	last	two	probes	were	characterized	by	a	fixed	source-
detector	distance	(20	mm).	
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Optical	features	assigned	to	each	layer	of	the	Atlas	head	mesh	are	reported	in	Table	1.	We	

averaged	scalp	and	skull	properties	 to	obtain	a	unique	ECT	value.	The	same	refractive	

index	(n	=	1.3)	and	anisotropy	coefficient	value	(g	=	0.9)	–	parameters	required	from	

Monte	 Carlo	 simulations	 -	 were	 assigned	 to	 each	 different	 tissue.	 Brainstem	 and	

cerebellum	properties	were	approximated	to	the	white	matter	values.		

	
Table	2	–	Optical	properties	assigned	to	the	six	layers	of	the	head	model	and	used	for	the	photon	

migration	simulations.	

	 𝝁𝒂	

(1/mm)	

𝝁𝒔	

(1/mm)	

g	 n	

ECT	 0.017	 17.50	 0.9	 1.3	

CSF	 0.004	 0.32	 0.9	 1.3	

Gray	matter		 0.048	 5	 0.9	 1.3	

White	matter	 0.037	 10	 0.9	 1.3	

Brainstem	 0.037	 10	 0.9	 1.3	

Cerebellum	 0.037	 10	 0.9	 1.3	

									

	

4.2.4 Photon	migration	simulations		

	

In	 order	 to	 simulate	 how	 light	 spreads	 in	 the	 brain,	 we	 generated	 the	 statistical	

distribution	of	photons	in	the	human	head	model,	with	a	Monte	Carlo	method	(Wilson	&	

Adam,	1983).	Using	Monte	Carlo,	we	were	able	to	obtain	the	probability	distribution	by	

modelling	a	large	number	of	photons	trajectories	in	a	multi-layered	medium	and	keeping	

track	of	their	paths,	one	by	one.	Monte	Carlo	follows	a	basic	algorithm,	which	is	repeated	

until	certain	conditions	are	satisfied	(Fang	&	Boas,	2009).	To	start,	direction	of	the	photon	

and	the	initial	position	have	to	be	defined.	Light	is	injected	perpendicularly	to	the	head	

surface	 through	 optodes,	 modelled	 as	 pencil	 beams.	 Therefore,	 the	 initial	 position	

corresponds	to	sources	and	detectors	coordinates	onto	the	surface	of	the	volumetric	head	

mesh	(Figure	4.1,	b).	Being	a	tetrahedral	mesh,	it	is	organized	in	nodes,	element	and	faces.	

At	first,	the	algorithm	recognizes	the	element	enclosing	the	light	source.	When	the	photon	

enters	the	medium	passing	through	the	first	element,	the	length	travelled	before	the	next	

scattering	event	 (scattering	 length)	 and	a	 scattering	angle	 are	 computed	on	 the	basis,	
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respectively,	of	an	exponential	distribution	and	the	Heyney–Greenstein	phase	 function	

(describing	the	probability	of	scattering	at	a	specific	angle)	(L.	Wang,	Jacques,	&	Zheng,	

1995).	The	absorption	acts	by	reducing	the	weight	of	the	photon	–	at	the	beginning	set	at	

1–	with	the	Beer-Lambert	Law,	where	the	absorption	coefficient	is	the	one	associated	to	

the	 current	 element.	 The	 resulting	 photon	 weight	 is	 distributed	 to	 the	 nodes	 of	 the	

element	 enclosing	 the	 photon.	 Along	 its	 trajectory,	 the	 photon	 will	 move	 from	 one	

element	to	another	until	the	entire	scattering	length	has	been	travelled.	The	subsequent	

scattering	event	determines	a	deviation	in	the	trajectory	of	the	photon.	The	process	stops	

when	the	photon	exits	the	medium.	Thus,	the	information	about	the	photon	fluence	within	

the	medium	comes	from	photon	weights	recorded	at	all	the	nodes	belonging	to	elements	

crossed	 by	 the	 photon.	 The	 last	 leg	 of	 the	 path	 is	 the	 detector	 position,	 where	 the	

algorithm	returns	the	exiting	photon	flux.	At	the	end,	this	quantity	is	divided	by	the	total	

number	 of	 simulated	 photons,	 in	 order	 to	 be	 calibrated.	 The	 final	 photon	 fluence	 is	

corrected	imposing	the	sum	of	exiting	photon	flux	and	absorbed	photons	equal	to	the	total	

number	of	simulated	photons	(Boas	et	al.,	2002).	

We	launched	10à	photons	at	both	sources	and	detectors	positions.	To	each	node	of	the	

tetrahedral	mesh	is	associated	a	value	of	absorption	and	scattering	coefficient,	specified	

in	Table	2.	We	run	 this	process	 in	MATLAB	using	a	Mesh-based	Monte	Carlo	software	

package	(MMC,	v2016.1)	(Fang,	2010).	The	great	advantage	of	MMC,	when	compared	to	

other	 similar	 solvers,	 is	 the	 capability	 to	 handle	 complex	heterogeneous	domains	 and	

meshes	with	complex	element	shapes,	such	as	tetrahedral	ones.	Moreover,	the	method	

guarantees	 high	 efficiency	 in	 producing	 accurate	 solutions	 in	 objects	 with	 curved	

boundaries,	for	instance	the	human	head	model.	The	refractive	index	was	set	equal	to	1.3	

for	all	tissues.		
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Figure	 4.4	 	 From	 source	 and	 detector	 positions	 to	 cortical	 sensitivities.	 Starting	 from	 the	 optodes	
coordinates	 onto	 the	 scalp	 of	 the	 Atlas	 (40th	weeks),	 the	Monte	 Carlo	 simulations	were	 run.	 Resulting	
volumetric	sensitivities	were	obtained	and	are	reported	in	the	second	column.	The	cut	aims	to	show	in	a	
clear	way	how	light	diffuses		into	the	brain,	from	the	scalp	to	the	cortical	layer.	The	volumetric	information	
is	then	projected	onto	the	cortex,	as	shown	in	the	third	column.	The	representations	are	reported	for	the	
different	probes	of	997	channels	(A),	32	channels	(B),	20	channels	(C)	and	94	channels	(D).	The	maps	of	
volumetric	and	cortical	sensitivities	are	logarithmic.	
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4.2.5 Sensitivity	maps		

	

As	extensively	explained	in	section	2.6.1	and	2.6.2,	by	simulating	photons	migration	from	

each	optodes	 coordinates	we	 could	 estimate	 the	Green’s	 functions	 (see	Eq.	 19)	 of	 the	

photon	fluence	for	sources	and	detectors	position	(Custo	et	al.,	2010).	Sensitivity	profiles	

of	every	fNIRS	channel	were	computed	as	the	normalized6	node-wise	product	of	relative	

sources	and	detectors	corrected	fluence	distributions.		

Thus,	 from	 the	 resulting	 contributes,	 we	 obtained	 the	 complete	 Jacobian	 –	 usually	

referred	 to	 as	 sensitivity	 matrix.	 Rows	 of	 the	 sensitivity	 matrix	 represented	 single	

measurements	profiles	and	provided	information	on	the	spreading	of	light,	ascribed	to	a	

specific	channel;	on	the	other	hand,	columns	represented	sensitivity	of	the	whole	brain	to	

a	 specific	 node	 of	 the	 head	mesh.	 At	 the	 end,	 four	 different	 sensitivity	matrices	were	

estimated,	one	for	each	probe	configuration.		

The	 resulting	 Jacobian	matrix	 gives	 volumetric	 information.	 However,	 from	 this	 stage	

forward,	we	constrained	the	process	to	the	cortex,	projecting	the	three-dimensional	map	

onto	 the	 superficial	 grey	 matter	 mesh.	 To	 this	 end,	 we	 associated	 each	 node	 of	 the	

volumetric	 head	 mesh	 to	 the	 node	 of	 the	 grey	 matter	 mesh	 placed	 at	 the	 minimum	

distance.	This	mapping	was	at	the	basis	of	the	projection	process.	Indeed,	the	sensitivity	

of	the	superficial	mesh	was	defined,	in	each	point,	as	the	sum	of	the	sensitivity	values	of	

the	correspondent	three-dimensional	mesh	nodes.	The	choice	of	constraining	the	analysis	

the	surface	allowed	to	improve	the	quality	of	the	final	reconstruction	(Boas	&	Dale,	2005)	

and	decreased	the	computational	cost.	In	fact,	the	number	of	nodes	of	grey	matter	mesh	

of	the	Atlas,	for	a	term	neonate,	is	almost	70	times	smaller	than	the	number	of	head	mesh	

nodes.	Resulting	sensitivity	matrices,	expressed	as	the	product	of	number	of	channels	per	

number	of	grey	matter	mesh’s	nodes,	are	definitely	more	manageable	(Figure	4.4).		

	

	

	

                                            

6 First,	the	single	fluences	have	been	corrected	by	dividing	each	one	for	the	total	number	of	photons	used	
for	the	simulation.	The	sensitivity	profiles	have	been	obtained	by	dividing	the	product	of	the	corrected	
fluences	by	half	of	the	sum	of	the	maximum	values,	respectively,		of	relative	source	and	detector	corrected	
fluences.	
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4.2.6 Synthetic	cortical	activations	

	

In	general,	evaluating	the	goodness	of	a	reconstruction	without	knowledge	of	the	spatial	

origin	 of	 hemodynamic	 responses	 is	 a	 challenging	process.	 Thus,	 a	 solid	 ground-truth	

reference	is	necessary	to	compare	the	results	of	the	reconstruction.	Since	our	research	

interest	focused	on	the	emergence	of	DMN	in	newborns,	we	created	a	synthetic	pattern	of	

correlated	activations,	which	resembles	 the	network	under	 investigation.	To	do	 this,	a	

time	course	simulating	the	absorption	changes	has	to	be	associated	with	each	point	of	the	

grey	matter	mesh	in	regions	corresponding	to	the	DMN.		

	

First,	we	localized	the	foci	of	activation,	representing	the	center	of	regions	involved	in	the	

spatial	pattern.	We	manually	selected	six	symmetrical	reference	points	-	three	for	each	
hemisphere	-	respectively	in	the	prefrontal,	in	the	lateral	parietal	and	over	the	precuneus	

areas	of	 the	grey	matter	mesh.	Cortical	nodes	 involved	 in	our	synthetic	network	were	

located	inside	spheres,	centered	on	the	reference	points.	Sphere	radii	were	set	to	3	mm	

for	parietal	and	prefrontal	nodes	and	to	1.5	mm	for	sulcus	activations.		

We	 simulated	 synthetic	 absorption	 changes	 using	 NeuroSim	 (Welvaert,	 Durnez,	

Moerkerke,	Verdoolaege,	&	Rosseel,	2011),	a	R	package	generally	adopted	for	simulating	

fMRI	BOLD	time	series	(Bordier,	Nicolini,	&	Bifone,	2017).	This	tool	generates	time	series,	

discerning	two	major	components	of	the	signal	that	are	separately	modeled:	noise	and	

activation.	 The	 latter	 can	 be	 obtained	 from	 an	 experimental	 design	 or	 a	 resting	 state	

condition.	To	every	node	 involved	 in	 the	pattern	of	 activations,	we	assigned	 the	 same	

resting	state	signal	–	created	using	the	simTSrestingstate	function.	Our	artificial	DMN	is	
now	mapped	 out,	 resulting	 in	 correlation	=	 1	 (resulting	 from	 identical	 time	 courses)	

between	 involved	mesh	 points	 and	 correlation	=	 0	 elsewhere.	 In	 order	 to	 reproduce	

realistic	experimental	conditions,	we	injected,	in	each	node	of	the	mesh,	noise	time	series	

that	were	 independently	 generated	 from	 a	mixture	 of	 system	 and	 physiological	 noise	

contributions.	In	detail,	a	physiological	noise	source	is	responsible	for	possible	artifacts	

due	 to	respiratory	rate	and	heartbeat.	Thus,	 it	 is	defined	by	sine	and	cosine	 functions,	

modulated	with	respiratory	and	cardiac	 frequencies	 -	 respectively	at	0.65	and	2	Hz	 in	

neonates.	On	the	other	hand,	system’s	noise	is	modeled	as	Gaussian	distributed	noise.	A	

visual	representation	of	the	time	series	allocation	in	each	node	of	the	mesh	is	reported	in	

Figure	4.5.	Noise	and	resting	state	time	series	consisted	both	of	12.000	time	points,	at	a	
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sample	frequency	of	15.625	Hz	(∼	13	min),	to	replicate	the	duration	of	a	real	successful	

resting	state	acquisition	on	neonate	(based	on	the	experiment	presented	in	Chapter	3).	

The	resulting	pattern	of	correlations	is	illustrated	in	Figure	4.6.	

Deciphering	to	what	extent	the	existence	of	anticorrelated	signals	could	affect	the	inverse	

reconstruction	 process	 is	 crucial	 to	 assess	 the	 reliability	 of	 the	method	 for	 functional	

connectivity	studies.	Therefore,	we	created	a	second	pattern	of	activations,	in	particular	

simulating	 the	 competitive	 relationship	 between	 DMN	 and	 part	 of	 dorsal	 attention	

network	(DAN).	To	obtain	this,	we	added	to	the	previous	spatial	pattern	the	contributions	

of	areas	showing	a	negative	correlation	with	DMN	regions.	Two	new	 foci	of	activation	

were	individuated	on	the	grey	matter	mesh,	one	for	each	hemisphere,	localized	in	cortical	

regions	corresponding	to	intra	parietal	sulcus	(IPS).	Absorption	perturbation	involved	all	

cortical	nodes	within	a	 sphere	of	2	mm	radius,	 centered	on	 the	new	reference	points.	

Resting	state	and	noise	time	series	were	introduced	with	the	procedure	described	above.	

However,	with	the	aim	to	produce	anticorrelations,	here	we	injected	a	resting	state	time	

course	 in	 exact	 phase	 opposition	with	 respect	 to	 the	 one	 previously	 used	 (pattern	 of	

correlation	and	anticorrelation	illustrated	in	Figure	4.6).			
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Figure	4.5	Generation	of	a	synthetic	set	of	activations	in	a	term	neonate’s	brain	(4D	Atlas).	Noise	(in	the	
blue	 rectangle)	 and	 resting	 state	 time	 series	 of	 12000	 time	 points	were	 	 generated	 using	 Neurosim	 R	
package.	 The	 noise	 time	 course	 has	 been	 associated	 to	 each	 node	 of	 the	 grey	 matter	 mesh;	 only	 in	
correspondence	of	the	nodes	involved	in	the	correlation	pattern	we	added	the	resting	state	time	course	to	
the	noise	(the	resulting	time	series,	at	SNR	=	30,	is	framed	in	green).	The	baseline	of	both	noise	and	signal	
time	series	were	set	at	100.	On	the	left,	the	red	area	represents	a	localized	activation	(set	of	adjacent	nodes	
to	which	correlated	time	series	were	associated).	

	

In	order	to	explore	effects	of	level	of	system	noise,	we	modulated	the	Signal	to	Noise	Ratio	

(SNR)	 of	 the	 total	 time	 course,	 which	 is	 defined	 as	 the	 ratio	 between	 the	 average	

magnitude	of	the	signal	(resting	state	time	course)	and	the	standard	deviation	of	the	noise	

(Figure	4.5).	We	created	absorption	variations	at	several	levels	of	noise,	but	only	three	of	

them	were	considered	for	the	analyses	–	as	they	are	the	most	representative.	We	showed	

how	the	quality	of	resulting	reconstruction	of	functional	connectivity	maps	might	vary	in	

presence	of	high	quality	of	source’s	signal	(SNR	=	30),	realistic	signals	(SNR	=	10)	and	

very	noisy	signals	(SNR	=	1).	
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To	 sum	up,	 in	order	 to	 assess	 the	 reliability	of	 the	process	we	 chose	probe	geometry,	

pattern	configuration	and	level	of	noise	as	variable	parameters	for	our	model.		

	

	

 
 
Figure	4.6	Patterns	of	synthetic	positive	and	negative	correlations.	On	the	left,	 the	first	set	of	correlated	
activations	 reproduces	 the	 characteristic	 spatial	 pattern	 of	 Default	 Mode	 Network,	 with	 distinct	 and	
symmetric	clusters	of	activations	localized	above	the	prefrontal,	parietal	and	precuneus	cortical	regions.	On	
the	right,	the	second	pattern	includes	two	additional	regional	of	interest	above	the	intra-parietal	sulcus	of	
the	Dorsal	Attentional	Network,	emulating	the	relationship	(in	the	form	of	negative	correlations)	between	
the	two	different	networks.	

 

4.2.7 Real	data	

 

In	 addition	 to	 the	 validation	 of	 the	method	 in	 a	 synthetic	 environment,	we	 tested	 the	

inverse	reconstruction	method	using	real	acquisitions	on	newborns.		

	

First	real	dataset	

The	first	dataset	consisted	of	eight	resting	state	measurements,	acquired	on	term	infants	

with	the	20-channels	probe	and	has	been	thoroughly	described	in	Chapter	3.	It	is	worth	

recalling	that	the	set	of	time	courses	admitted	to	final	connectivity	analyses	met	rigorous	

inclusion	 criteria.	 Good	 positioning	 of	 the	 probe,	 quietness	 and	 low	 ambient	 light	

conditions	 were	 guaranteed	 during	 the	 acquisitions.	 Moreover,	 time-courses	 with	

minimal	artifacts	were	selected	and	processed,	 in	order	 to	avoid	motion	artifacts.	The	
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relationship	between	DMN	and	DAN	at	rest	was	explored	using	a	seed-based	connectivity	

analysis	in	the	sensor	space	on	representative	oxy-	and	deoxy-	hemoglobin	time	series,	

obtained	from	the	concatenation	of	the	single	z-scored	signals,	within	the	sample	of	eight	

participants.	Results	obtained	from	the	analyses	in	the	space	of	channels	are	reported	in	

section	3.7.		

	

Second	real	dataset	

Collaborators	from	University	of	Tokyo	provided	the	second	dataset.	Results	of	channel-

based	analyses	performed	on	these	subjects	have	been	already	discussed	in	a	published	

work	(Homae	et	al.,	2010).	The	sample	consisted	of	 fifteen	neonates,	with	age	ranging	

from	 2	 to	 11	 days	 (mean	 4.3	 days).	 They	 were	 scanned	 in	 Tokyo	 Women’s	 Medical	

University	during	natural	sleep,	with	a	multichannel	continuous-wave	 instrumentation	

using	two	NIRS	wavelengths	(785	and	830	nm).	Signals	underwent	band-pass	filtering	in	

the	frequency	range	of	[0.005	–	1	Hz].	For	each	subject’s	acquisition,	time	series	of	the	

duration	of	3	minutes	were	extracted	and	used	to	obtain	seed-based	correlation	analyses	

(r-Pearson	value)	in	the	sensor	space.		In	the	description	of	the	dataset	acquisition,	it	is	

well	 specified	 that	 no	 motion	 artifacts	 were	 detected.	 In	 addition,	 behavioral	 factors	

confirmed	 the	deep	sleep	of	 the	 infants	 (not	disturbed	by	 sudden	movements	or	non-

nutritive	sucking).	All	these	elements	together	suggested	a	reliable	quality	of	the	dataset.		

	

4.2.8 Inverse	image	reconstruction	problem	

	

Dealing	 with	 synthetic	 absorption	 variations,	 we	 needed	 to	 implement	 the	 simulated	

fluence	 measurements	 at	 the	 scalp,	 combining	 the	 sensitivity	 matrix	 and	 absorption	

variations.	For	small	changes	of	absorption	coefficient,	small	changes	in	fluences	at	the	

scalp	level	can	be	calculated	using	the	linear	equation	(see	Eq.	21):	

	
∆𝐎𝐃

(m × 1)
=
	

𝐉
(m × n)

∆𝛍𝐚
(n × 1)

	

	

where	m	is	the	number	of	channel,	depending	on	the	probe	configuration	in	use	and	n	is	
the	total	number	of	nodes	of	the	atlas	mesh.	We	constrained	the	process	to	the	cortical	
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surface,	thus	n	here	refers	to	the	size	of	the	grey	matter	mesh	(a	superficial	mesh)	of	the	
4D	Atlas	for	the	40th	week.		

In	order	to	generate	as	realistic	synthetic	time	series	as	possible,	we	introduced	system	

and	 physiological	 noise	 components.	 For	 this	 reason,	we	 filtered	 the	 data	 obtained	 at	

optodes	level	to	the	frequency	band	of	0.01	–	0.1	Hz,	as	we	did	in	the	case	of	real	data.		

	

On	the	other	hand,	starting	from	real	raw	intensity	signals	collected	at	the	scalp,	it	was	

necessary	 to	 extract	 absorbance	 variations.	 For	 the	 first	 dataset,	 the	 values	 were	

extracted,	for	both	wavelengths,	from	individual	signals,	using	the	relationships:		

	

∆𝐴z� = 	 𝜀âãä(𝜆�) 	 ∙ 	∆𝐶
²
âãä +	𝜀|æâãä(𝜆�) 	 ∙ 	∆𝐶²|æâãä		

∆𝐴z� = 	 𝜀âãä(𝜆¡) 	 ∙ 	∆𝐶
²
âãä +	𝜀|æâãä(𝜆¡) 	 ∙ 	∆𝐶²|æâãä	

	

where	𝜆�	and	𝜆¡	are	the	specific	NIRS	wavelengths	of	the	instrumentation	in	use,	in	this	

case,	 830	 nm	 and	 690	 nm,	 respectively	 ;	 ∆𝐶²	 indicates	 changes	 in	 concentration	 we	

estimated	from	attenuation	of	light	recorded	at	the	scalp;	values	of	extinction	coefficients	

are	 tabulated	 in	 (Prahl,	 1999)	 and	 ,	 specifically,	 𝜀âãä(𝜆�)	=	 415,	 𝜀|æâãä(𝜆�)	=	 2141.8,	

𝜀âãä(𝜆¡)=1008,	𝜀|æâãä(𝜆¡)	=	778	(molar	extinction	coefficients	are	expressed	in	l ∙ cmw� ∙

molw�).		

In	 the	case	of	 Japanese	dataset,	absorbance	measures	were	obtained	directly	 from	the	

machine.		

	

Once	 we	 obtained	 the	 simulated	 raw	 fluences	 at	 the	 scalp	 or	 the	 real	 absorbance	

variations,	at	the	level	of	the	sensor	space,	we	were	able	to	solve	the	inverse	model	to	

reconstruct	original	elements	of	the	source	space.	The	inversion	of	the	𝐉		 	matrix	has	been	

accomplished	using	the	regularization	methods	reported	in	Chapter	2.		

Thus,	cortical	activations	are	reconstructed	from	the	relation	expressed	in	Eq.	22:	

	

∆𝛍Øç = 𝐉	𝐓
	(𝐉	𝐉	𝐓

	 + 	k𝛔∆𝐎𝐃¡ )w�Δ𝐎𝐃	

	

in	which	𝝈∆𝐎𝐃¡ 	 is	 the	diagonal	measurement	 covariance	matrix	and	 the	parameter	k	 is	

defined	as	𝛼 ∙ max	(𝑑𝑖𝑎𝑔(𝐉𝐉Ù)),	where	𝛼=0.01	(Boas	&	Dale,	2005).	At	the	end,	we	were	
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able	 to	 define	 a	 map	 of	 absorption	 variations,	 which	 theoretically	 reflects	 the	 neural	

activity.		

	

4.2.9 Reconstructions	comparison:	quantitative	metrics		

 

Exploiting	 the	 availability	 of	 the	 ground-truth	 pattern,	 we	 defined	 some	 quantitative	

metrics	to	describe	more	accurately	the	influence	of	different	experimental	factors	on	the	

results.		We	chose	to	investigate	the	variations	in	the	position,	extension	and	shape	of	the	

reconstructed	 pattern	 with	 respect	 to	 the	 ones	 defined	 in	 the	 ground-truth,	 with	 or	

without	anticorrelations.		

First,	considering	one	component	of	the	correlation	pattern	at	a	time,	we	computed	the	

Euclidean	distance	in	the	3D	space	between	the	centroids	of	original	(ground-truth)	and	

reconstructed	components,	in	order	to	detect	potential	shifts	due	to	the	reconstruction	

process.		

The	extension	of	the	regions	was	evaluated	computing	the	sum	of	the	areas	of	the	mesh	

including	nodes	that	showed	a	correlation	higher	than	the	threshold.	In	the	count,	mesh	

triangles	were	included	only	if	all	the	three	component	nodes	satisfied	this	condition.	The	

difference	between	each	original	component	and	the	corresponding	reconstructed	one	

was	considered.	Moreover,	we	estimated	the	ratio	of	nodes	in	common	between	ground-

truth	and	reconstructed	components		by	calculating	the	Jaccard	index	(Jaccard	&	Zurich,	

1901).	This	index	measures	the	similarity	between	finite	sets	of	nodes	and	is	defined	as	

the	size	of	the	intersection	of	the	two	sets	of	interest	divided	by	the	size	of	their	union	

(the	index	varies	in	the	range	[0,1]).		

Alterations	 in	 the	shape	of	 reconstructed	areas	with	respect	 to	 the	original	ones	were	

estimated	by	computing	the	Hausdorff	distance	(Huttenlocher,	Klanderman,	&	Rucklidge,	

1993),	which	is	defined	as	the	largest		distance	of	the	first	set	of	points	to	the	nearest	point	

of	the	second	set.		

The	average	of	the	quantitative	metrics	over	the	different	components	was	used	to	assess	

the	reliability	of	the	reconstruction	of	the	whole	pattern.	

We	note	that	the	reconstructed	correlation	patterns	depended	on	the	choice	of	threshold,	

as	 they	 include	 a	 set	 of	 nodes	 exhibiting	 correlation	 above	 a	 certain	 value.	 Thus,	 to	

investigate	the	effect	of	the	threshold	choice	on	the	connectivity	maps,	we	computed	the	

metrics	for	20	different	values	of	threshold.			
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4.2.10 Functional	connectivity	maps		
 

The	reliability	of	the	process	was	evaluated	by	comparing	the	synthetic	spatial	patterns	

that	were	originally	 injected	and	the	reconstructed	ones.	Functional	connectivity	maps	

were	 defined	 using	 a	 seed-based	 analysis.	 Above	 the	 regions	 of	 interest,	we	 localized	

reference	 points	 that	 became	 the	 centers	 of	 a	 sphere	with	 radius	 1.5	mm.	 Seed	 time	

courses,	for	each	region	of	interest,	were	derived	from	the	average	of	all	the	time	series	

associated	to	cortical	nodes	in	this	sphere.		

Connectivity	 maps	 were	 computed	 from	 the	 correlations	 between	 seed	 and	 all	 time	

courses	 associated	 to	 cortical	 nodes.	 We	 obtained	 functional	 maps	 from	 original	

activations	 (we	 injected	 directly	 into	 the	 cortex)	 and	 reconstructed	 activations.	 The	

former	represented	the	ground-truth	we	used	for	assessing	the	goodness	of	the	method.	

The	 reconstruction	 of	 real	 data	 allowed	 the	 comparison	 between	 the	 sensor-based	

description,	 reported	 in	 Chapter	 3,	 and	 the	 source-based	 representation	 here	

implemented.		

The	rationale	of	the	process	is	briefly	schematized	in	Figure	4.7.	

 

4.3 Results	
 

In	the	present	section,	outcomes	of	the	process	of	reconstruction	will	be	illustrated.		

Four	different	probes	were	defined	onto	the	scalp	of	the	Atlas	(40th		week):	a	997	channels	

with	full	coverage	of	the	brain	with	a	high,	although	impractical,	density	of	sensors;	a	32	

channel	 probe	 with	 the	 same	 	 geometry	 of	 the	 extended	 one,	 in	 term	 of	 density	 of	

channels,	but	with	coverage	of	parietal	areas	of	DMN;	a	20-channels	probe	designed	to	

cover	the	LP	regions	of	DMN	and	IPS	within	DAN;	a	94	channels	array,	original	employed	

for	 the	 investigation	 of	 frontal,	 temporal,	 parietal	 and	 occipital	 areas.	 A	 clear	

representation	of	the	available	configurations	is	reported	in	Figure	4.8.	
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Figure	4.7	Schematics	of	the	process	of	functional	connectivity	maps	reconstruction	using	the	20-channels	

probe.	

	

For	the	four	probe	configurations,	we	computed	the	volumetric	spatial	sensitivity	(Figure	

4.9).	At	each	node	of	the	head	mesh,	the	map	gives	information	on	the	amount	of	photons	

that	 have	 passed	 through	 that	 specific	 position	 on	 their	 way	 to	 the	 detector.	 This	

representation	is	powerful	because	it	provides	a	visualization	of	the	light	diffusion	into	

the	brain.	In	particular,	the	top	view	highlights	the	inability	of	fNIRS	light	to	reach	deep	

cortical	regions.	On	the	other	hand,	the	projection	of	the	sensitivity	matrix	onto	the	cortex	

emphasizes	the	actual	region	under	investigation	with	the	specific	optodes	arrangement	

in	use	(Figure	4.10).	
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Figure	4.8	The	four	probe	configurations	used	to	test	the	reconstructions	reliability	on	synthetic	and	real	
data.	Sources	and	detectors	positions	are	shown,	respectively,	in	red	and	blue	onto	the	scalp	of	the	Atlas.	
The	a)	is	formed	of	997	channels,	arranged	in	a	dense	and	extended	array	able	to	cover	the	whole	brain	
using	 overlapping	 and	multidistance	 source-detector	 pairs.	With	 12	 sources	 and	 12	 detectors	 densely	
packed	in	32	channels,	the	b)	covers	only	the	parietal	regions	of	the	DMN.	The	c)	reproduces	the	20	channels	
probe	employed	to	investigate	the	DMN	in	term	newborns.	Source	–	detector	distance	is	fixed	at	20	mm.	
Lastly,	the	d)	reflects	characteristics	of	probe	used	to	collect	data	from	the	University	of	Tokyo	(Homae	et	
al.,	2010).	
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Figure	4.9	Logarithmic	representation	of	the	volumetric	sensitivity	for	the	four	probes:	997	channels	(a),	
32	channels	(b),	20	channels	(c),	94	channels	(d).	
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Figure	4.10	Logarithmic	representation	of	the	cortical	sensitivity	for	the	four	probes:	997	channels	(a),	32	
channels	(b),	20	channels	(c),	94	channels	(d).	
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4.3.1 Reconstruction	of	synthetic	data	
 

Synthetic	absorption	variations	were	spatially	organized	 in	order	 to	emulate	 the	DMN	

pattern.	All	of	the	available	arrangements	were	able	to	cover,	at	least	partially,	regions	of	

the	 network	 of	 interest.	 It	 is	worth	 noting	 that	 beyond	 the	 spatial	 extension,	 a	major	

difference	between	the	four	arrangements	that	we	used	is	the	source-detector	separation	

(that	can	vary	within	a	range	of	distances	or	can	be	set	at	a	fixed	value)	and	the	existence	

(or	not)	of	overlapping	channels.		

	

In	Figure	4.11,	we	show	the	reconstruction	of	the	original	pattern	of	correlation	injected	

into	 the	cortex	at	different	 levels	of	SNR,	with	 the	 largest	arrangement	of	 sources	and	

detectors.	The	correlation	was	estimated	using	a	seed	placed	in	the	right	parietal	region.	

As	highlighted	by	the	projection	of	the	volumetric	sensitivity	onto	the	grey	matter,	the	

probe	 allowed	 investigating	 the	whole	 brain	 uniformly.	With	 SNR	30,	we	 obtained	 an	

accurate	reconstruction	of	the	ground-truth	pattern.	It	was	possible	to	discern	different	

loci	of	activations,	which	maintained	their	original	shape	and	position,	even	though	they	

appeared	 enlarged,	 if	 compared	 to	 the	 original	 ones.	 Interestingly,	 a	 halo	 of	 negative	

correlations	surrounded	the	distinct	correlated	regions.	In	the	rest	of	the	brain,	random	

spots	of	extremely	weak	correlation	and	anticorrelation	accounted	for	the	presence	of	a	

very	low	noise.	Observing	the	reconstructed	correlations	pattern	from	signals	at	SNR	10,	

the	effect	of	the	noise	was	notable.	In	any	case,	the	entire	simulated	DMN	was	still	fully	

recognizable,	but	the	value	of	average	correlation	was	lower.	In	the	case	of	a	very	high	

contribution	of	noise,	we	observed	a	resulting	random	pattern	of	positive	and	negative	

correlations.	Here,	original	characteristics	of	the	network	were	completely	buried	under	

the	noise.			

	

Figure	 4.12	 presents	 outcomes	 of	 the	 process,	 when	 specific	 cerebral	 regions	 were	

investigated	with	a	high	density	but	spatially	limited	probe,	positioned	exactly	above	the	

area	of	interest	(in	this	case,	lateral	parietal	components	of	the	synthetic	DMN).	With	SNR	

=	30,	it	appeared	clear	that	the	different	arrangement	had	an	effect	on	the	reconstruction.	

Despite	the	clear	presence	of	the	two	correlated	sources	of	activation,	the	shape	was	no	

longer	 entirely	 preserved.	 Indeed,	 borders	 became	 irregular	 and	 fuzzy.	 This	 time,	 the	

negative	 artefactual	 correlations	 did	 not	 encircle	 systematically	 the	 activations,	 but	
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appeared	 fragmented.	 	We	observed	similar	dynamics	 in	reconstructions	at	SNR	=	10,	

except	 that	 the	 higher	 weight	 of	 the	 noise	 led	 to	 a	 decrease	 of	 the	 average	 value	 of	

correlation	and	a	weaker	effect	of	negative	correlations.	Again,	the	sharp	decrease	of	the	

SNR,	in	the	last	case,	prevented	detection,	even	partially,	of	the	original	pattern.	

	

The	 synthetic	 pattern	 was	 also	 reconstructed	 with	 the	 probe	 geometry	 used	 for	 our	

experiment	(Figure	4.13).	The	probe	covered,	by	a	large	margin,	the	parietal	activations,	

which	were	roughly	reconstructed.	It	was	still	possible	to	recognize	the	presence	of	two	

main	correlated	contributions,	but,	 in	 the	resulting	maps,	 the	shape	of	activations	was	

consistently	enlarged,	 in	both	SNR	=	30	and	SNR	=	10.	Even	at	high	SNR,	 it	should	be	

noted	 the	 presence	 of	 a	 compact	 band	 of	 negative	 correlations,	 adjacent	 to	 the	 set	 of	

positive	correlated	nodes.	The	effect	of	noise	is	critical	in	the	last	case	where,	at	SNR	=	1,	

image	reconstruction	 failed.	 Indeed,	 the	outcome	seems	to	suggest	 the	emergence	of	a	

spatial	pattern	of	correlation	(negative	and	positive)	that	did	not	reflect,	at	all,	the	original	

one.		

	

The	94	–channels	probe	was	designed	to	cover	the	prefrontal	cortex	and	a	large	part	of	

the	parietal	cortex,	including	most	of	the	LP	and	the	IPS	(Figure	4.14).	This	configuration	

allowed	testing	the	combination	of	an	extended	coverage	with	a	low-density	distribution	

of	 sources	 and	detectors,	without	 overlapping	 channels.	 This	probe	 configuration	was	

used	to	acquire	resting	state	data	in	4	day	old	babies	(Homae	et	al.,	2010)	by	Prof.	Taga’s	

group,	and	its	simulation	will	make	it	possible	to	attempt	reconstruction	of	this	dataset	

(see	section	4.3.3).	If	compared	to	the	outcomes	obtained	with	the	ideal	probe	(see	Figure	

4.11),	an	enlargement	of	the	reconstructed	correlation	foci	is	apparent,	especially	in	the	

frontal	region.	Similarly,	the	spurious	negative	correlations	arise,	in	particular	at	SNR	30,	

closely	localized	around	the	cluster	of	nodes	positively	correlated.		

	

We	 tested	 the	 process	 of	 image	 reconstruction	 keeping	 intact	 the	 modalities	 above	

described,	 but	 introducing	 at	 the	 scalp	 a	 different	 synthetic	 configuration	 of	 spatially	

distributed	 activations.	We	 simulated	 the	 competitive	 relationship	 between	 DMN	 and	

DAN,	adding	to	the	previous	pattern	two	symmetric	foci	of	activations,	anticorrelated	with	

the	 rest	 of	 the	 network.	 The	 summary	 table	 in	 Figure	 4.15	 illustrates	 the	 resulting	

connectivity	maps	 obtained	with	 different	 probes,	 and	 varying	 the	 level	 of	 noise.	 The	
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extended	 coverage	 of	 the	 brain	 confirmed	 its	 capability	 to	 reconstruct	 correctly	 the	

original	activations,	preserving	not	only	the	position	and	the	shape	but	also	the	sign	of	

correlation.	Indeed,	negative	contributions	appeared	clearly	distinguishable	at	acceptable	

levels	of	noise.	It	is	worth	noting	that	at	SNR	=	30	systematic	spots	of	positive	correlations	

appeared	around	the	cluster	of	negative	correlations,	in	addition	to	the	opposite	behavior	

already	noted	with	the	previous	configuration.	Again,	working	with	minimum	SNR,	the	

reconstruction	of	random	noise	is	observed.	As	expected,	the	32-channels	probe	is	unable	

to	detect	changes	in	absorption	coefficient	located	in	IPS	area,	thus	the	outcome	in	this	

case	is	comparable	to	the	one	showed	in	Figure	4.12.	 	The	last	row	of	the	chart	shows	

effects	 of	 a	 low-density	 arrangement	 on	 the	 process.	 At	 maximum	 SNR,	 the	 map	 of	

functional	connections	seemed	to	be	characterized	by	a	sharp	bimodal	behavior.	Indeed,	

positive	 correlated	 structures	 permeated	 the	 posterior	 half	 part	 of	 the	 entire	 area	 to	

which	 probe	 is	 sensitive.	 On	 the	 other	 hand,	 an	 extended	 component	 of	 negative	

correlations	 expanded	 in	 the	 superior	 anterior	 side.	 The	 original	 shape	 and	 size	 of	

activations	were	not	recognizable	anymore	and	it	was	evident	a	decrease	of	accuracy	in	

the	final	reconstruction.	Interestingly,	the	resulting	pattern	obtained	with	very	low	SNR	

is	highly	consistent	with	the	previous	computed	without	anticorrelations	in	the	starting	

configuration.		
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       Figure	4.11	Spatial	maps	of	reconstructed	pattern	of	correlations	obtained	at	different	 levels	of	SNR,	
using	a	probe	of	997	channels.	At	the	top	on	the	left,	 the	original	configuration	introduced	in	the	cortex	
represents	 the	 ground-truth	 for	 comparisons.	 The	 pattern	 clearly	 emulates	 the	 DMN.	 On	 the	 right,	 a	
logarithmic	map	of	the	cortical	sensitivity	of	the	probe	is	illustrated.	Note	that	logarithmic	sensitivity	below	
100	is	shown	in	white.	Each	connectivity	map	has	been	masked	in	the	same	way.	Parietal	seed	used	for	
correlation	analysis	is	indicated	in	yellow.	
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Figure	4.12	Spatial	maps	of	reconstructed	pattern	of	correlations	obtained	at	different	levels	of	SNR	using	
a	probe	of	32	channels.	At	the	top	on	the	left,	the	original	configuration	introduced	in	the	cortex	represents	
the	ground-truth	for	comparisons.	The	pattern	clearly	emulates	the	DMN.	On	the	right,	a	logarithmic	map	
of	the	cortical	sensitivity	of	the	probe	is	illustrated.	Note	that	logarithmic	sensitivity	below	100	is	shown	in	
white.	Each	connectivity	map	has	been	masked	in	the	same	way.	Parietal	seed	used	for	correlation	analysis	
is	indicated	in	yellow.	
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Figure	4.13	Spatial	maps	of	reconstructed	pattern	of	correlations	obtained	at	different	levels	of	SNR	using	
a	probe	of	20	channels.	At	the	top	on	the	left,	the	original	configuration	introduced	in	the	cortex	represents	
the	ground-truth	for	comparisons.	The	pattern	clearly	emulates	the	DMN.	On	the	right,	a	logarithmic	map	
of	the	cortical	sensitivity	of	the	probe	is	illustrated.	Note	that	logarithmic	sensitivity	below	100	is	shown	in	
white.	Each	connectivity	map	has	been	masked	in	the	same	way.	Parietal	seed	used	for	correlation	analysis	
is	indicated	in	yellow.	
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Figure	4.14	Spatial	maps	of	reconstructed	pattern	of	correlations	obtained	at	different	levels	of	SNR	using	
a	probe	of	94	channels.	At	the	top	on	the	left,	the	original	configuration	introduced	in	the	cortex	represents	
the	ground-truth	for	comparisons.	The	pattern	clearly	emulates	the	DMN.	On	the	right,	a	logarithmic	map	
of	the	cortical	sensitivity	of	the	probe	is	illustrated.	Note	that	logarithmic	sensitivity	below	100	is	shown	in	
white.	Each	connectivity	map	has	been	masked	in	the	same	way.	Parietal	seed	used	for	correlation	analysis	
is	indicated	in	yellow.	
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Figure	4.15	Overview	of	resulting	connectivity	maps,	reconstructed	from	a	ground-truth	of	correlated	and	
anticorrelated	activations.	The	outcomes	varying	probe	size	and	geometry	and	SNR	levels	are	shown.	
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4.3.2 Quantitative	metrics	
	

In	order	to	test	the	goodness	of	the	reconstruction	process,	we	quantitatively	compared	

the	reconstructed	functional	connectivity	maps	with	the	ground-truth	pattern,	originally	

introduced	 at	 cortical	 level.	 Considering	 one	 activation	 at	 a	 time,	 we	 computed	 the	

distance	 between	 original	 and	 reconstructed	 regions’	 centroids	 and	 the	 difference	

between	 correspondent	 areas.	 Moreover,	 Hausdorff	 distance	 and	 Jaccard	 index	 were	

estimated.	All	 the	previously	described	metrics	depend	on	the	correlation	threshold	 in	

use.	For	this	reason,	we	conducted	a	preliminary	exploration	of	the	effects	of	the	threshold	

choice	on	results.	Here,	these	are	reported	in	the	case	of	the	optimal	largest	probe	(997	

channels),	investigating	the	ground-truth	pattern	without	negative	correlations.	For	each	

metric	 and	 each	 threshold,	 we	 showed	 the	 average	 value	 calculated	 among	 all	 the	

activations	within	the	pattern.		

It	can	be	noted	that	metrics	at	SNR	30	and	SNR	10	showed	similar	behaviors.	In	this	cases,	

the	 reconstructed	 activations	 preserved	 their	 original	 positions	 (Figure	 4.16),	 if	 the	

correlation	 threshold	 was	 greater	 than	 0.4.	 The	 suboptimal	 performances	 below	 this	

threshold,	 shown	 in	 Figure	4.16,	were	 also	 noticed	 computing	 the	difference	between	

areas	 of	 original	 and	 reconstructed	 activations	 (Figure	 4.17).	 It	 can	 be	 noted	 that	 for	

thresholds	 greater	 than	 0.6,	 at	 SNR	 10,	 negative	 values	 are	 registered,	 suggesting	 a	

considerable	 area’s	 reduction	 of	 the	 reconstructed	 activation.	 The	 observation	 of	 the	

Jaccard	index	trade	(Figure	4.18)	confirmed	this	peculiarity	of	data	at	SNR	10:	indeed	the	

percentage	of	nodes	in	common	between	original	and	reconstructed	regions	decreased	at	

very	 low	 or	 very	 high	 threshold	 values.	 Lastly,	 the	 shape	 variation	 is	 relatively	

independent	of	the	threshold	in	the	range	[0.4	–	0.7]	(Figure	4.19).	On	the	contrary,	at	

SNR	1	all	metrics	showed	stable	but	uninformative	reconstruction,	due	to	the	high	noise	

level.		

This	is	consistent	with	the	idea	that	there	exists	a	range	of	thresholds	whereby	the	optimal	

trade-off	 between	 removal	 of	 spurious	 correlations	 and	 preservation	 of	 informative	

correlations	 is	 achieved.	 Indeed,	weak	 correlations	are	 strongly	 affected	by	noise,	 and	

may	confound	reconstruction.	Hence,	thresholding	is	expected	to	improve	the	ability	to	

delineate	genuine	activations.	However,	excessive	thresholding	may	remove	informative	

correlations	as	well,	thus	negatively	affecting	reconstruction.	In	our	preliminary	analysis,	
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we	found	that	the	optimal	threshold	falls	in	the	range	[0.4-0.7].	Importantly,	within	this	

range,	the	results	do	not	critically	depend	on	the	specific	value	of	threshold.	In	the	light	of	

these	observations,	we	computed	the	metrics	of	Table	3,	applying	a	threshold	of	0.5.	We	

noted	that	this	is	the	same	threshold	used	in	previous	papers	(Homae	et	al.,	2010)	–	for		

positive	correlation	patterns.		

	

Also,	 we	 only	 show	 results	 for	 the	 case	 SNR=10,	 which	 is	 the	 closest	 to	 realistic	

experimental	conditions.		

	

	

	

 
Figure	4.16	Euclidean	distance	between	centroids	of	original	and	reconstructed	activations,	 reported	at	
different	SNR	values.	The	results	refer	to	the	ground-truth	pattern	without	negative	correlations,	detected	
from	the	largest	probe	of	997	channels.	
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Figure	 4.17	 Differences	 between	 areas	 of	 original	 activations	 and	 correspondent	 reconstructed	 ones,	
reported	 at	 different	 SNR	 values.	 The	 results	 refer	 to	 the	 ground-truth	 pattern	 without	 negative	
correlations,	detected	from	the	largest	probe	of	997	channels.	

 

 
Figure	4.18	Jaccard	index	variation	estimated,	at	different	SNR	values,	on	the	sets	of	nodes	included	in	the	
original	and	reconstructed	correspondent	activations.	The	results	refer	to	the	ground-truth	pattern	without	
negative	correlations,	detected	from	the	largest	probe	of	997	channels.	
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Figure	4.19	Hausdorff	 distance	 estimated,	 at	 different	 SNR	values,	 between	 correspondent	 original	 and	
reconstructed	 activations.	 The	 results	 refer	 to	 the	 ground-truth	 pattern	 without	 negative	 correlations,	
detected	from	the	largest	probe	of	997	channels.	

 

Table	4	shows	the	same	metrics	for	the	reconstruction	of	the	anticorrelated	activations.	

In	the	case	of	the	32-channels	probe,	the	area	of	sensitivity	did	not	cover	the	IPS	region,	

and	it	was	not	possible	to	define	reconstructed	negative	correlated	regions.	
	

Table	3	–	Results	of	quantitative	metrics	obtained	using	different	probe	configurations	for	SNR	10	

data	at	 threshold	0.5.	The	pattern	 formed	of	positive	correlated	areas	represented	 the	ground	

truth.	

 	
Centroids	

distance	(mm)	
	

	
D	Areas	
(mm2)	

	
Hausdorff	

distance	(mm)	

	
Jaccard	Index	

997	channels	 0.88	±	0.17	 46.38	±	27.15	 1.9	±	0.52	 0.7	±	0.02	

32	channels	 0.93	±	0.67	 33.20	±	28.18	 6.21	±	3.24	 0.7	±	0.01	

20	channels	 2.65	±	1.98	 251.87	±	156.52	 3.65	±	1.77	 0.51	±	0.22	

94	channels	 2.56	±	0.38	 208.44	±	82.78	 3.8	±	1.28	 0.46	±	0.03	
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Table	4	Results	of	quantitative	metrics	obtained	using	different	probe	configurations	for	SNR	10	

data	at	threshold	0.5.	

 	
Centroids	

distance	(mm)	
	

	
D	Areas	
(mm2)	

	
Hausdorff	

distance	(mm)	

	
Jaccard	Index	

997	channels	 1.39	±	0.05	 45.73	±	14.39	 2.41	±	0.07	 0.54	±	0.01	

32	channels	 - 	 - 	 - 	 - 	

20	channels	 5.73	±	0.38	 446.31	±	9.85	 9.12	±	0.30	 0.2	±	0.02	

94	channels	 2.32	±	0.98	 159.11±	81.6	 	3.61	±	1.92	 0.3	±	0.03	

 

 

4.3.3 Dataset	reconstructions	
	

Combining	the	variation	of	concentrations	in	both	HbO	and	HHb,	weighted	by	the	relative	

extinction	 coefficients,	 we	 could	 infer	 the	 reconstruction	 of	 connectivity	 maps	 in	 the	

source	space,	starting	from	real	fNIRS	data	acquired	on	term	neonates	and	described	in	

the	previous	chapter.	The	information	was		projected	onto	the	cortex	of	the	40th	week	of	

the	Atlas,	which	reflects	the	examined	population.	A	seed-based	analysis	was	performed	

in	order	to	characterize	the	connectivity	between	all	cortical	nodes	with	a	small	region	of	

interest	(or	seed).		

Figure	4.20	and	Figure	4.21	show	a	direct	comparison	of	the	two	approaches	using	data	

from	 the	 first	 dataset	 of	 eight	 subjects,	 using	 a	 probe	 of	 20	 channels.	 Observing	 the	

representation	of	spatially	distributed	functional	contributions,	the	remarkable	similarity	

between	the	maps	referring	to	the	two	different	wavelengths	is	evident.		However,	each	

one	 is	 affected	 differently	 by	 the	 HbO	 and	 HHb	 components,	 even	 if	 it	 is	 difficult	 to	

differentiate	rigorously	the	contributions.	Considering	the	research	question	guiding	the	

experimental	measurements,	we	presented	outcomes	using	two	representative	seeds	of	

interest	in	the	right	hemisphere:	one	above	the	parietal	area	of	DMN	(Figure	4.21)	and	

the	other	over	the	IPS	within	the	DAN	(Figure	4.20).	The	cortical	representation	clearly	

showed	the	absence	of	communication	between	the	two	hemispheres.	Moreover,	it	is	able	

to	account	for	a	very	weak	correlation	of	the	seed	with	one	channel	of	the	opposite		
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Figure	4.20	Comparison	between	channels-based	maps	from	concentration	values	and	source	space	maps.	
The	seed	is	placed	above	the	intra	parietal	sulcus	area.	

	
	

Figure	4.21	Comparison	between	channels-based	maps	from	concentration	values	and	source	space	maps.	
The	seed	is	placed	above	the	parietal	region.		
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Figure	4.22	Comparison	between	sensor	(center)	and	source	based	analysis	of	the	second	dataset	at	830	
nm	wavelength.	The	panel	 in	 the	center	shows	results	of	 the	correlation	analysis	 for	4	distinct	seed	 for	
hemisphere.	The	seeds	we	used	are,	from	the	top:	(left	column)	Fp1,	T3,	P3,	(right	column)	Fp2,	T4,	P4	and	
inion.	Red	lines	in	the	sensor	analysis	indicate	only	correlations	–	averaged	in	the	entire	sample-	higher	
than	0.5.	No	correlation	threshold	has	been	applied	to	volumetric	maps.		

Courtesy	of	Prof.	Fumitaka	Homae	that	ran	the	reconstruction	using	our	software.			

 

hemisphere,	visible	 in	the	HHb	map	in	Figure	4.21.	Surprisingly,	 in	the	Figure	4.20	the	

effect	of	the	low	anticorrelation	between	the	seed	and	the	majority	of	the	channels	in	left	

hemisphere	appeared	reduced	in	the	reconstructed	sources.	On	the	other	hand,	the	strong	

correlation	between	the	two	channels	in	both	HbO	and	HHb	in	Figure	4.21	is	defined	with	

good	localization.	Independently	of	the	seed	used,	we	registered	a	recurrent	emergence	

	



 
 

101 

of	areas	of	spurious	anticorrelation	in	the	proximity	of	the	seed	region,	where	the	value	

of	positive	correlation	is	higher.	

In	 Figure	 4.22	 and	 Figure	 4.23,	 results	 of	 the	 connectivity	 analyses	 in	 the	 sensor	 and	

source	space	for	the	second	dataset	are	illustrated.	Volumetric	maps	obtained	using	seeds	

in	Fp1	and	Fp2	were	both	able	to	return	the	compact	area	of	positive	correlations	above	

the	frontal	region.		

	

	

 

Figure	4.23		Comparison	between	sensor	(center)	and	source	based	analysis	of	the	second	dataset	at	785	
nm	wavelength.	The	panel	 in	 the	center	shows	results	of	 the	correlation	analysis	 for	4	distinct	seed	 for	
hemisphere.	Seeds	used	are,	in	order	from	the	top:	(left	column)	Fp1,	T3,	P3,	(right	column)	Fp2,	T4,	P4	and	
inion.	Red	lines	in	the	sensor	analysis	indicate	only	correlations	–	averaged	in	the	entire	sample-	higher	
than	0.5.	No	correlation	threshold	has	been	applied	to	volumetric	maps.		

Courtesy	of	Prof.	Fumitaka	Homae	that	run	the	analyses	using	our	software.			
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Specifically,	 in	 the	 case	 of	 temporal	 and	 occipital	 seeds	 the	 lack	 of	 interhemispheric	

connectivity	 was	 well	 represented	 also	 in	 the	 reconstructed	maps.	When	 seeds	 were	

chosen	 in	 the	parietal	 areas,	 the	 three-dimensional	descriptions	accounted	 for	 a	more	

extended	 correlated	 regions.	 This	 could	 be	 partially	 due	 to	 a	 different	 correlation	

threshold	between	sensor	and	source	space	representations:	in	the	sensor	space	red	lines	

indicated	only	correlation	with	the	chosen	seed	higher	than	0.5.	As	we	expected,	results	

at	785	nm	and	830	nm	were	very	similar.	

 

4.4 Discussion	
 

In	 recent	 years,	 fNIRS	 has	 been	 established	 as	 a	 powerful	 mean	 to	 investigate	 brain	

dynamics,	 in	 particular	 in	 vulnerable	 and	 non-verbal	 populations,	 such	 as	 neonates.	

Specifically,	the	technique	is	 ideal	to	perform,	at	a	very	early	stage	of	 life,	resting-state	

studies	 that	 require,	among	others,	a	 silent	environment	and	a	 total	non-invasiveness.	

However,	functional	connectivity	in	neonates	is	usually	inferred	from	a	discrete	channel-

based	 analysis,	 using	 optical	 signals	 collected	 at	 the	 scalp.	 This	 provides	 a	 coarse	

description	of	the	phenomenon,	limiting	a	global	visualization	of	the	cortical	dynamics.	

Moreover,	direct	comparisons	with	connectivity	maps	obtained	from	fMRI,	which	remains	

the	main	reference	for	resting	state	studies,	are	also	hampered.	Therefore,	recovering	as	

much	as	possible	of	 the	available	 spatial	 information	 is	 a	 critical	 issue	 to	 improve	 the	

efficacy	of	the	technique.	To	this	purpose,	the	enhancement	of	the	sensor	space	analysis	

with	a	volumetric	description	in	the	source	space	should	be	promoted.	However,	to	what	

extent	the	variability	of	different	experimental	conditions	may	influence	the	computation	

of	functional	connectivity	from	reconstructed	sources	remains	unclear.		

In	this	study,	we	validated	the	procedure	for	the	reconstruction	of	spatially	distributed	

functional	 signals	 onto	 a	 dedicated	 anatomical	 template	 for	 newborns.	 As	 with	 other	

neuroimaging	 inverse	problems	(such	as	 in	electro-	or	magneto-	encephalography),	 in	

fNIRS	we	do	not	have	the	capability	to	know	the	real	distribution	of	sources	and	original	

emerging	patterns.	To	remedy	the	lack	of	knowledge	of	the	ground-truth,	we	generated	

simulated	data	for	assessing	the	reliability	of	the	method.	We	associated	the	variability	in	

experimental	conditions	to	the	changes	of	specific	parameters.	The	amount	of	noise	in	the	

signal	(expressed	 in	 form	of	SNR),	pattern	of	correlation	and	probe	geometry	were	all	
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modulated	through	synthetic	processes.	We	varied	one	parameter	at	time	to	estimate	the	

influence	of	each	condition	on	the	image	reconstruction.		

At	first,	we	assessed	the	impact	of	different	sensor	arrangement	on	the	reconstruction	of	

a	spatial	pattern	of	positive	correlations,	which	emulates	the	DMN.	To	this	purpose,	the	

first	 configuration	 contemplated	 was	 highly	 unrealistic,	 because	 capable	 to	 cover	 the	

whole	brain	using	almost	one	 thousand	channels.	 Indeed,	 the	state	of	art	 for	neonates	

measurements	 is	 represented	 by	 a	 cap	 positioned	 onto	 only	 occipital,	 temporal	 and	

parietal	cortices	with	approximately	300	channels	(Ferradal	et	al.,	2015).	Nonetheless,	

our	ideal	arrangement	aimed	to	test	the	method	in	the	best-case	scenario,	to	disclose	the	

potentiality	of	the	procedure.	Focusing	on	results	from	injected	signals	with	a	very	high	

and	acceptable	SNR	(respectively,	30	and	10)	it	is	evident	that	the	estimation	of	cortical	

connectivity	 maps	 was	 highly	 precise	 and	 reliable.	 The	 final	 functional	 description	

appeared	 remarkably	 comparable	 to	 the	 ground-truth	 functional	 map,	 in	 terms	 of	

position,	 shape	 and	 total	 areas	 of	 activations.	 This	 observation	was	 confirmed	 by	 the	

quantitative	 metrics	 we	 computed,	 which	 showed,	 in	 this	 case,	 minimal	 shift	 of	 the	

reconstructed	activations,		low	variation	in	shape	and		high	ratio	of	nodes	shared	with	the	

ground-truth.	 If	 compared	with	 the	other	probe	configurations,	 the	997	channel	array	

showed	lowest	values	of	centroid	and	Hausdorff	distances.	The	32	channels	probe	seems	

to	result	in	a	smaller	difference	in	area,	but	it	should	be	noted	that	the	standard	error	of	

the	mean	 is	much	 larger	 for	 this	probe.	We	might	associate	 the	goodness	of	 the	result	

mainly	to	the	presence	of	overlapping	and	multi-distance	source-detector	pairs	that,	as	

already	 demonstrated	 (Boas	 &	 Dale,	 2005;	 Durduran,	 Choe,	 Baker,	 &	 Yodh,	 2010),	

generally	improve	the	image	reconstruction,	also	because	it	facilitates	depth	localization.	

A	 large	 coverage	 of	 the	 head	 plays	 a	 key	 role	 on	 the	 quality	 of	 the	 reconstruction.	

However,	this	condition	is	not	sufficient,	as	suggested	by	the	outcomes	in	the	case	of	an	

extended	probe	with	low-density	optodes	arrangement	(using	94	measurements).	Here,	

the	 reconstruction	 presented	 a	 larger	 shift	 of	 the	 position	 with	 respect	 to	 the	 997-

channelss	probe	and	a	general	worsening	of	the	quantitative	metrics,	due	to	the	lack	of	

overlapping	channels.	Surprisingly,	we	did	not	register	a	strong	 improvement	 from	20	

channels	 to	94	channels	array:	 this	may	be	associated	to	a	suboptimal	coverage	of	 the	

areas	of	interest	from	the	94	probe,	which	in	origin	was	not	specifically	designed	to	study	

the	DMN.		
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In	general,	reducing	the	actual	area	under	investigation	had	an	impact	on	the	accuracy	of	

the	reconstruction	process.		The	32-sensors	array,	in	fact,	preserved	an	adequate	density	

of	channels	per	unit	of	space,	but	it	was	able	to	investigate	precisely	only	the	lateral	areas	

of	 the	DMN.	 In	 this	 case,	 the	disposition	of	 optodes	was	 still	 valid	 to	 return	a	 reliable	

functional	connectivity	map,	but	we	observed	a	less	precise	localization	of	the	two	lateral	

activations.	 Moreover,	 their	 shape	 was	 less	 accurate,	 as	 confirmed	 from	 the	 highest	

Hausdorff	distance,	showing	blurred	edges.	We	referred	to	this	phenomenon	as	a	sort	of	

edge	effect	to	highlight	the	dependence	on	the	size	of	the	probe,	but	it	is	still	difficult	to	
comment	on	the	physical	origin	of	this	result.	At	last,	we	tested	the	impact	of	a	low-density	

channel	 structure,	 keeping	 limited	 the	 brain	 coverage.	 This	 time,	 channel	 disposition	

corresponded	 to	 those	 used	 in	 previous	 experimental	 acquisitions.	 Here,	 as	 it	 often	

happens,	 the	need	of	 the	arrangement	 to	be	 sensitive	 to	 specific	 areas	of	 interest	–	 to	

capture	 the	 relationship	 between	DMN	 and	DAN	 -	 and	 the	 small	 number	 of	 available	

sources	 and	 detectors	 prevented	 the	 use	 of	 overlapping	 and	 multi-distance	

measurements.	 The	 lower	 spatial	 resolution	 affected	 noticeably	 the	 results,	 further	

reducing	the	specificity	of	the	connectivity	dynamics	description	in	the	source	space.	In	

Figure	4.13,	 the	emergence	of	a	symmetric	pattern	of	correlated	regions	was	still	very	

clear,	but	the	localization	of	spatial	information	was	inaccurate.	The	effect	was	evident	

from	the	strong	increase	in	the	difference	of	areas	computed	for	the	20	channels	probe.	

This	 suggests	 a	 remarkable	 enlargement	 of	 the	 average	 activations	 areas	 and	 a	

suboptimal	 reconstructed	 functional	 connectivity	 map.	 In	 the	 last	 case,	 the	 map	 of	

functional	connectivity,	reconstructed	in	the	source	space,	derived	from	a	sparse	system	

of	 sensors.	Consequently,	due	 to	 the	 lack	of	 the	measurements’	 overlapping,	 the	 same	

information	coming	from	a	single	channel	is	spread	to	a	substantial	number	of	nodes	of	

the	grey	matter	mesh.	A	clear	example	is	showed	in	the	Figure	4.13,	where	at	SNR	=	10	

the	contributions	projected	from	two	distinct	channels	looked	well	separated.	The	same	

effect	is	observable	in	Figure	4.15,	in	correspondence	of	LP	region.	In	the	four	different	

probes,	 further	 evidences	 about	 the	 issue	 emerged	 observing	 the	 outcomes	 at	 very	

disadvantageous	 conditions	 (SNR	 =	 1).	 In	 this	 case,	 the	 detected	 signal	 is	 almost	

completely	 hidden	 under	 the	 noise	 component.	 Therefore,	 the	 method	 returned	

reconstructions	of	Gaussian	noise	patterns,	in	the	form	of	alternate	positive	and	negative	

small	clusters	of	correlations.	In	our	interpretation,	size	and	randomness	of	these	arrays	

might	 be	 linked	 directly	 to	 the	 features	 of	 the	 probe.	 The	 unreliability	 of	 the	
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reconstruction	was	confirmed	by	the	metrics,	which	indicate	a	completely	uninformative	

reconstruction,	independently	of	the	chosen	threshold.		

	

It	is	important	to	specify	that,	although	the	reconstruction	was	projected	on	the	surface,	

it	did	take	into	account	depth	information.	Hence,	the	performance	of	probes	enabling			

	multi-distance	 and	overlapping	 channels	measurements	was	better,	with	DOT	probes	

providing	more	accurate	and	informative	results.		

	

The	final	map	indicated	that	with	disadvantageous	conditions	–	such	as	noisy	time	series	

and	sparse	limited	probe	–	results	could	be	misleading	and,	without	a	knowledge	of	the	

ground-truth,	might	be	considered	as	a	functional	pattern	of	connectivity	per	se.	In	this	
direction,	 our	 study	 stressed	 the	 critical	 role	 of	 experimental	 factors	 for	 a	 reliable	

interpretation	of	source	space	descriptions.	

	

Regardless	of	the	differences	in	sensors’	array,	we	observed	the	appearance	of	artifactual	

negative	 correlations,	 in	 the	 largest	 probes	 in	 form	 of	 a	well-defined	 halo	 around	 the	

positive	 activations,	 and	with	 a	 sparser	 distribution	 and	 diffused	 shape	 in	 the	 others.	

Initially,	we	hypothesized	that	the	localized	inversion	of	the	sign	of	correlation	could	be	

attributed	to	the	sharp	form	of	step	function,	which	defines	absorption	coefficient	changes	

and,	 consequently,	 spatial	 distribution	 of	 correlated	 signals.	 This	 effect	 was	 evident	

especially	in	the	case	of	very	high	SNR	signal	and	became	attenuated	by	the	noise	in	SNR	

=	10.	Its	presence	is	consistent	in	the	close	proximity	to	compact	set	of	nodes	with	highly	

correlated	activity.	In	order	to	test	the	impact	of	spurious	anticorrelations,	we	computed	

quantitative	metrics	specifically	on	the	negative	correlated	activations.	As	expected,	we	

registered	a	sharp	worsening	of	the	values	especially	for	the	20	channels	probe,	as	already	

observed	 in	 functional	 connectivity	 maps.	 However,	 the	 particular	 localization	 made	

these	spurious	contributions	highly	recognizable,	reducing	the	risk	of	a	misinterpretation.		

Especially	 in	 fMRI-based	works,	 the	 detection	 of	 negative	 correlations	 is	 an	 essential	

component	 in	 the	 study	of	 functional	 connectivity.	 Its	 emergence	 in	 the	 reconstructed	

sources,	 from	 the	 original	 positive	 correlated	 pattern,	 raised	 our	 interest	 in	

understanding	 the	capability	of	 the	method	 to	discern	 the	negative	correlations	 in	 the	

ground-truth,	when	present.	To	 this	end,	we	generated	a	 second	spatial	 configuration,	

which	 simulated	 the	 competitive	 relationship	 between	 DMN	 and	 DAN,	 already	
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investigated	in	Chapter	3.	We	observed	that	the	anticorrelations	are	well-	preserved	in	

the	reconstruction,	with	a	level	of	accuracy	that	varies	in	a	similar	way	than	the	positive	

ones	above	described.	As	expected,	with	the	32	channels	probe,	no	new	effect	was	found,	

confirming	the	very	confined	sensitivity	of	this	array.	This	leads	us	to	comment	on	the	

crucial	 choice	 of	 optodes	 disposition	 in	 the	 process	 of	 probe	 design.	 Of	 course,	 the	

decision	 on	 the	 final	 arrangement	 of	 sources	 and	 detectors	 depends	 on	 a	 trade-off	

between	the	necessity	 to	cover	specific	areas	and	the	attempt	to	realize	a	structure	as	

compact	as	possible,	preferably	equipped	with	overlapping	channels.	On	the	other	hand,	

increasing	the	density	at	the	cost	of	the	size	could	be	risky.	For	these	reasons,	a	detailed	

knowledge	of	the	brain	regions	actually	investigated	is	necessary.	The	cortical	sensitivity	

maps	 resulting	 from	 Monte	 Carlo	 simulations	 represented	 a	 powerful	 means	 in	 this	

regard,	providing	prior	information	on	the	brain	regions	probed	and	facilitating	the	stage	

of	design	of	the	experiment.	Further	improvements	could	be	certainly	made	-	such	as	a	

more	intuitive	way	to	define	the	probe	onto	the	atlas.	In	any	case,	probe	optimization	is	

one	 of	 the	most	 pivotal	 challenges	 that	 recently	 involved	 the	 fNIRS	 community	 –	 the	

number	of	dedicated	tools	released	in	the	last	years	represents	a	practical	confirmation	

(to	name	but	a	few	(Aasted	et	al.,	2015;	Brigadoi,	Salvagnin,	Fischetti,	&	Cooper,	2018;	

Zimeo	Morais,	Balardin,	&	Sato,	2018)).		

The	 core	 of	 the	 present	 study	 is	 represented	 by	 the	 computational	 approach	 used	 to	

validate	the	reconstruction	process.	The	test	involved	synthetic	data	and	a	dedicated	head	

model,	which	is	a	procedure	widely	established	in	literature	(Brigadoi	et	al.,	2015;	Cooper	

et	al.,	2012;	Leamy,	Ward,	&	Sweeney,	2011;	Pinti	et	al.,	2017).	However,	the	efficacy	of	

the	model	also	depends	on	the	reliability	of	the	simulated	elements.	In	our	case,	we	used	

an	atlas	that	specifically	reflects	the	characteristic	of	the	population	of	interest.	The	4D	

Atlas	 is	 today’s	most	 valid	 alternative	 for	 information	on	anatomical	 structures	 to	 the	

subject-specific	fMRI.	Indeed,	the	latter	is	an	impractical	solution	for	monitoring	studies	

on	 healthy	 newborns	 and	 its	 use	would	 undermine	 all	 the	 advantages	 offered	 by	 the	

optical	imaging.	An	accurate	head	model	is	necessary	to	solve	the	forward	model,	but	also	

the	assignment	of	optical	properties	to	each	layer	of	the	segmented	atlas	could	have	an	

impact	on	the	result.	In	our	case,	we	worked	with	simulated	data	(and,	subsequently,	we	

proposed	the	same	model	for	real	data)	using	optical	properties	at	only	one	wavelength	

(800	nm).	This	choice	does	not	represent	a	limitation	because,	as	already	demonstrated	

(Custo	 et	 al.,	 2010;	 G.	 Strangman,	 Franceschini,	 &	 Boas,	 2003),	 the	 small	 variation	 of	



 
 

107 

optical	properties	due	to	different	wavelengths	results	in	negligible	effects	compared	to	

other	factors,	such	as	the	probe	geometry	and	the	probe	placement.		

Finally,	after	having	obtained	encouraging	results	using	simulated	data,	we	applied	the	

pipeline	 for	 image	 reconstruction	 on	 two	 different	 datasets	 of	 real	 resting	 state	

measurements	on	newborns.	The	first	one	was	formed	by	the	cohort	of	term	neonates	we	

acquired	at	the	Hospital	of	Rovereto,	presented	in	detail	in	Chapter	3.	The	second	dataset	

was	consistent	with	the	first	one	for	age	of	subjects	and	modality	of	acquisitions	(even	

though	 the	 subjects	 were	 slightly	 older),	 but	 offered	 the	 possibility	 to	 examine	

reconstruction	of	 functional	connectivity	maps	using	a	more	extended	probe.	For	both	

neonates’	 samples,	 only	 analyses	 in	 the	 sensor	 space	 -	 performed	 with	 a	 seed-based	

method	-	were	available	and,	in	the	second	case,	already	published.	It	is	worth	pointing	

out	 that	 real	 data	 showed	 good	 quality	 overall.	 To	 this	 regard,	 the	 factors	 taken	 in	

consideration	were	different.	For	each	sample,	we	extracted	time	courses	without	motion	

artifacts,	acquired	on	subjects	in	a	deep	sleep	stage	(ensured	on	the	basis	of	behavioral	

parameters)	 in	a	dim	 lit	 environment,	with	 the	probe	well-positioned	above	 the	head.	

These	 observations	 persuaded	 us	 of	 the	 reliability	 of	 the	 data.	 As	 the	 previous	 tests	

suggested,	the	prerequisite	for	the	application	of	the	method	is	not	dealing	with	highly	

noisy	 time	 series.	 The	 reconstructed	 functional	 connectivity	 maps	 confirmed	 the	

capability	 of	 the	 source	 analysis	 to	 accurately	 provide	 anatomical	 reference	 to	 the	

connectivity	obtained	in	the	sensor	space.	The	visualization	was	improved,	facilitating	the	

interpretation	of	the	connectivity	distribution	and	the	comparison	with	other	techniques.	

However,	especially	in	the	distribution	of	reconstructed	sources	of	the	first	dataset,	we	

observed	the	emergence	of	spurious	anticorrelations,	not	detected	in	the	sensor	space.	

While	their	origin	is	not	completely	clear,	they	may	arise	from	the	limited	coverage	of	the	

probe	 and	 the	 sparsity	 of	 its	 channels.	 These	 artefacts	 may	 substantially	 confound	

interpretation	of	the	data.	In	the	future,	we	aim	to	expand	the	study	by	including	more	

probe	 configurations	 and	 adding	 different	 pattern	 configurations,	 to	 improve	 the	

specificity	of	the	method.	Moreover,	we	intend	to	define	a	procedure	to	identify	specific	

user-defined	anatomical	references.	Of	course,	in	the	seed-based	correlation	analysis,	the	

seed	is	defined	by	the	average	time	series	among	a	set	of	adjacent	nodes,	and	therefore	

the	error	is	reduced.	However,	we	would	like	to	better	exploit	the	advantage	of	the	choice	

of	a	specific	node	onto	the	cortex,	enabled	by	source	space	representation.		
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In	conclusion,	evaluation	of	source	 localization	accuracy,	using	both	synthetic	and	real	

data,	confirmed	the	reliability	of	the	reconstruction	method	for	functional	connectivity	

studies	 in	 infants,	but	only	under	 specific	 conditions.	The	assessment	of	 the	 impact	of	

distinct	external	factors	on	the	process	should	make	it	possible	to	establish	criteria	for	

the	anatomical	 reconstruction	 in	order	 to	promote	an	enrichment	of	 the	sensor	based	

description	with	the	analysis	in	the	source	space.





	

 

	

5 					Conclusions	and	future	directions	

 

In	 the	 last	decade,	optical	systems	based	on	 fNIRS	principles	have	been	established	as	

powerful	 tools	 to	 explore	 the	 brain	 functional	 architecture.	 Thanks	 to	 its	 technical	

characteristics,	 this	 technique	 is	 extremely	 suitable	 for	 cognitive	 and	 clinical	

investigations	in	developmental	neuroscience.	 	 Indeed,	the	possibility	to	perform	quiet	

and	 totally	 non-invasive	 measurements,	 as	 well	 as	 portability	 and	 good	 spatial	 and	

temporal	resolution	tradeoffs,	are	highly	advantageous	features	for	vulnerable	and	non-

verbal	 populations,	 such	 as	 newborns.	 Despite	 the	 urgent	 quest	 to	 understand	 the	

mechanisms	underlying	 inception	and	evolution	of	brain	 functional	connectivity	at	 the	

very	first	stage	of	life,	the	field	is	still	in	its	infancy.	This	entire	dissertation	focused	on	the	

application	of	fNIRS	technique	to	study	functional	organization	of	healthy	term	neonate’s	

brain.	The	topic	of	interest	has	been	addressed	from	two	main	standpoints.			

On	 one	 side,	 a	 peculiar	 aspect	 of	 resting	 state	 functional	 connectivity	 has	 been	

investigated.	 Indeed,	 for	 the	 first	 time,	 optical	 imaging	 has	 been	 exploited	 to	 study	

specifically	the	emergence	of	Default	Mode	Network	within	the	first	two	days	of	life.	In	

this	thesis,	the	state	of	the	network	after	birth	has	been	explored	capitalizing	on	a	specific	

signature,	which	has	been	consistently	observed	 in	adults.	This	approach,	which	 takes	

into	 account	 both	 positive	 and	 negative	 correlations,	 could	 be	 implemented	 using	 the	

limited	number	of	channels	available	on	our	instrument,	which	did	not	allow	coverage	of	

the	 entire	 DMN.	 Channel-based	 analysis	 clearly	 showed	 the	 lack	 of	 homotopic	

correlations	 in	 the	 parietal	 components	 of	 the	 DMN.	 Moreover,	 no	 intrahemispheric	

anticorrelation	between	 the	LP	and	 IPS	 cortices	was	observed,	 thus	 corroborating	 the	

idea	 that	a	mature	DMN	has	not	yet	developed	at	birth.	 Importantly,	our	analysis	was	

performed	in	a	small	but	selected	group	of	subjects,	avoiding	potential	sources	of	artifacts	

that	might	 introduce	 spurious	 correlations	and	confound	 the	 interpretation.	Given	 the	

small	number	of	subjects	included	in	our	study,	we	did	not	perform	additional	analyses	–	
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for	 instance,	 of	 the	 potential	 dependence	 of	 functional	 connectivity	 on	 the	 sex	 of	 the	

subjects	or	on	their	age	(expressed	in	days).		

	

On	the	other	side,	a	consistent	section	of	the	thesis	has	been	dedicated	to	the	validation	

of	a	method	for	the	reconstruction	of	functional	maps	in	the	space	of	sources.	This	study	

has	been	prompted	by	 the	need	 to	enrich	 the	description	of	 the	 typical	 channel-based	

connectivity,	popular	in	resting	state	works	on	infants.	Indeed,	shifting	the	analysis	from	

a	 sensor	 to	 a	 source	 space	 can	 improve	 the	 anatomical	 description	 of	 functional	

connectivity	 and	 facilitate	 comparison	with	previous	 studies	performed	with	different	

techniques,	such	as	fMRI.	One	of	the	aims	of	this	work	was	to	clarify	to	what	extent	the	

process	 of	 image	 reconstruction	 from	 signals	 collected	 at	 the	 scalp	 is	 influenced	 by	

external	 factors,	 like	noise	or	probe	design.	 In	order	 to	provide	a	ground-truth	 for	 the	

assessment	of	the	reconstruction,	we	generated	synthetic	datasets	mimicking	features	of	

the	DMN,	including	both	positive	and	negative	correlations.	This	analysis	defined	useful	

guidelines	 for	 reliable	 reconstruction	of	 the	data.	We	 found	 that	 the	both	density	 and	

extension	of	the	optical	probe	dramatically	impact	the	source	reconstruction.	Indeed,	low	

density	 of	 optodes	 or	 lack	 of	 overlapping	 channels	 can	 substantially	 blur	 the	

reconstructed	data.	Moreover,	partial	coverage	of	the	scalp	can	cause	massive	artifacts,	

with	the	emergence	of	spurious	negative	correlations	and	edge	effects.	However,	results	

obtained	with	synthetic	data	showed	that,	with	a	 judicious	choice	of	probe	design	and	

sufficient	 SNR,	 reliable	 patterns	 of	 positive	 and	 negative	 correlations	 can	 be	

reconstructed,	 thus	 providing	 a	 means	 to	 study	 homotopic	 connectivity	 and	 the	

relationship	between	DMN	and	DAN.		

	

We	applied	this	source	reconstruction	scheme	to	independent	real	datasets,	acquired	on	

two	 groups	 of	 term	 neonates	 with	 different	 probes,	 to	 obtain	 anatomically	 resolved	

functional	 connectivity	 maps.	 These	 maps	 improved	 visualization	 and	 confirmed	 our	

sensor-space	 analysis,	 showing	 no	 evidence	 of	 interhemispheric	 correlations	 in	 the	

parietal	 cortices,	 and	 no	 anticorrelations	 between	 LP	 and	 IPS	 at	 this	 age.	 These	

observations,	 derived	 from	 our	 dataset	 of	 2	 days-old	 subjects,	 were	 confirmed	 by	 an	

independent	dataset	acquired	on	4-days	old	neonates	and	suggest	that	the	DMN	is	still	

immature	at	birth.	It	is	worth	recalling	that	the	interest	towards	the	investigation	of	the	

early	emergence	of	the	DMN	was	induced	by	the	confounding	scenario	offered	by	the	fMRI	
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literature	on	the	topic.	Our	work	corroborates	previous	observations,	on	term	newborns,	

of	 a	 fragmented	 network	 that	 includes	 only	 medial	 prefrontal	 cortex	 and	 posterior	

cingulate	(Gao,	Alcauter,	Elton,	et	al.,	2015;	Gao	et	al.,	2009;	Smyser	et	al.,	2010b).	Other	

studies	have	shown	that	interhemispheric	communication	and	synchronization	between	

anatomically	distant	regions	within	the	DMN,	as	well	as	within	DAN,	increases	after	birth,	

reaching	a	mature	state	only	at	one	year	of	age	(Gao,	Alcauter,	Elton,	et	al.,	2015;	Gao,	

Alcauter,	 Smith,	 Gilmore,	 &	 Lin,	 2015).	 These	 results	 suggest	 that	 developmental	

trajectories	of	 functional	 connectivity	are	closely	connected	 to	 the	development	of	 the	

underlying	cognitive	functions.	Indeed,	complete	configurations	of	visual,	sensorimotor	

and	 auditory	 networks	 have	 been	 detected	 at	 birth.	 Conversely,	 networks	 involved	 in	

higher	order	cognitive	functions,	like	the	salience	network,	responsible	for	the	integration	

of	 complex	 functions	 associated	 with	 social	 behavior	 and	 communication,	 show	

incomplete	 spatial	 patterns	 until	 the	 beginning	 of	 the	 second	 year	 of	 age.	 Thus,	 it	 is	

plausible	that	the	DMN,	which	is	thought	to	be	involved	in	self-awareness	and	sense	of	

consciousness,	is	not	fully	developed	at	birth	and	reaches	full	maturation	only	later	in	the	

development.		

	

In	 light	 of	 the	 results	 presented	 in	 this	 thesis,	 several	 follow-up	 investigations	 can	 be	

envisaged.	Longitudinal	monitoring	of	the	very	early	stage	of	development,	with	repeated	

sessions	in	the	weeks	after	birth	and	up	to	the	first	year	of	 life,	would	enable	carefully	

tracing	the	developmental	trajectory	of	the	DMN.	Moreover,	a	 longitudinal	study	could	

address	the	question	as	to	whether	extrinsic	features	of	the	DMN,	like	its	interplay	with	

the	 DAN,	 mature	 independently	 of	 its	 intrinsic	 features,	 like	 homotopic	 parietal	

correlations	 and	 long-distance	 connectivity.	 Ultimately,	 accurate	 mapping	 of	 this	

maturation	 process	 could	 provide	 a	 benchmark	 for	 studies	 aimed	 at	 understanding	

neurodevelopmental	conditions,	in	which	the	developmental	trajectory	goes	awry.	While	

some	of	the	work	presented	in	this	dissertation	may	help	pave	the	way	to	pursue	such	an	

ambitious	project,	is	also	clearly	shows	that	employment	of	DOT	instrumentation	with	a	

large	number	of	channels,	enabling	ample	coverage	of	the	scalp,	would	be	crucial	to	avoid	

confounding	 artifacts	 and	 to	 improve	 the	 reliability	 of	 source-space	 functional	

connectivity	maps.	To	set	these	conclusions	on	firmer	bases,	we	plan	to	extend	and	refine	

the	computational	model,	in	order	to	provide	guidance	to	tailor	and	optimize	probes	for	

specific	purposes.		
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Finally,	we	note	 that	 the	 field	suffers	 from	a	 lack	of	standardization	 in	acquisition	and	

analysis	 processes,	 which	 substantially	 hampers	 comparison	 of	 different	 studies.	 It	 is	

therefore	 desirable	 that	 the	 entire	 scientific	 community	 strives	 to	 build	 solid	

methodological	 guidelines,	 in	 order	 to	 facilitate	 data	 reproducibility	 and	 shared	

procedures.	From	this	perspective,	we	hope	that	the	present	work	may	provide	tools	to	

assist	 optimal	 probe	 design	 and	 for	 the	 anatomical	 reconstruction	 of	 functional	

connectivity	derived	from	fNIRS.		
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