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[. . . ] If this should be verified, it
would lead to the surprising result
that dark matter exists in much
greater density than luminous matter.

FRITZ ZWICKY — 1933
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Abstract

Using quantum Monte Carlo Methods, we compute the differential cross sec-
tions for elastic scattering of dark matter (DM) particles off light nuclei,
up to A = 6 (d, 3H, 3He, 4He, and 6Li). DM-nucleon one- and two-body
currents are obtained to next-to-leading order in chiral effective theory, and
they are derived from a DM-quark and DM-gluon effective interaction. The
nuclear ground states wave functions are obtained from a phenomenological
nuclear Hamiltonian, composed of the Argonne v18 two-body interaction and
the three-body Urbana IX. In this framework, we study the impact of one-
and two-body currents and discuss the size of nuclear uncertainties. This
work evaluates for the first time two-body effects in A = 4, 6 systems and
provides the nuclear structure input that can be used to assess the sensitivity
of future experimental searches of (light) dark matter, especially relevant for
possible experimental targets such as 3He and 4He.
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Introduction

One of the main open problems in physics is understanding the matter and

energy content of our universe and their origin. Present accurate data [1],

coming from the Wilkinson microwave anisotropy probe (WMAP), shows

that the universe is composed of only 4.6% ordinary, baryonic matter. Most

of the mass is in the form of dark energy (71.4%), and 24% is non-relativistic,

non-baryonic, dark matter (DM).

The nature of DM is unknown, and the scientific community has dedicated

many efforts and resources to dark matter searches. Unfortunately, searches

for a DM signal from direct, indirect, and accelerator experiments have not

yet been successful and all current evidence for DM existence, though ex-

tremely strong, only comes from astrophysics and cosmology.

Despite its incredible successes, the Standard Model (SM) cannot explain

the existence of DM. Nonetheless, particle physics plays a vital role in this

search, proposing theories beyond the standard model (BSM) that include a

new, or multiple, types of elementary particles. Many candidates have been

proposed over the years [2, 3], however, with time commonalities started

to emerge, especially regarding mass and cross section of the particle species

considered. For DM to be a cold relic, for example, its mass cannot be lighter
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than 1 − 100 keV [2]. In addition, to reproduce the dark matter density in

our universe, the DM particle self-annihilation cross section has to be around

the weak scale.

A promising class of these candidates falls under the description of weakly

interactive massive particles (WIMP). This kind of particle is, as the name

suggests, massive (with a mass usually ranging from the GeV to TeV scale)

and interacts only via gravitational and weak force. WIMPs have motivated

many experiments, in direct detection searches, aimed at measuring DM

signals via nuclear recoils.

Though the majority of these experiments use heavy nuclei, there is a

growing interest in using light nuclei to extend the range of DM mass to the

sub-GeV scale [4].

In this thesis, we focus on attempting a prediction of the cross section for

DM scattering off a variety of light nuclei, namely d, 3H, 3He, 4He and 6Li.

Light nuclei are interesting for both theoretical and experimental reasons.

In direct detection experiments, light nuclear masses (helium is a promising

target candidate [5–9], also for directional detection [10]) offer better a kine-

matic match to light DM particles; the sensitivity of existing experiments,

that use heavy nuclei as targets, decreases sharply for DM masses below 1

GeV. In addition, accurate ab initio nuclear calculations can be performed

for the mentioned light nuclei.

In the framework of effective field theory (EFT), we start from DM-

quark and DM-gluon interactions and derive DM-nucleons interactions using

chiral EFT. The interactions are then used together with quantum Monte

Carlo (QMC) nuclear calculations, to compute the matrix elements and total
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cross section for elastic scattering off the nuclei mentioned above. Especially

relevant for this work, MC methods have been used in recent years to study

the impact of two body currents, in β decays [11], electron scattering [12, 13]

and neutral-current neutrino scattering [13, 14].

This approach allows for a direct match of cross sections to the interaction

at high energy scales and could provide the nuclear input needed in the

interpretation of future experimental searches, in the case of 3He and 4He.

Our calculations can give the differential cross section and event rate for

DM-nucleus elastic scattering, for any arbitrary set of Wilson coefficients

in the effective high energy Lagrangian, that in turn can be determined in

particular models for the interaction.

The present work is organized as follows:

In Chapter 1 we briefly introduce dark matter and its experimental

evidence, the WIMP paradigm, and the main present and future efforts in

direct detection searches that use light nuclei as potential targets.

In Chapter 2 we present the effective Lagrangian for the interaction

between DM-quarks and DM-gluons. We summarize the derivation of DM-

nucleon interaction using chiral perturbation theory and present the one-and

two body current, up to next-to-leading-order (NLO) in the chiral expansion,

for the case of scalar interaction.

In Chapter 3 the variational Monte Carlo (VMC) method used to per-

form nuclear calculations is presented. We give a detailed description of the

nuclear Hamiltonian and the accurate wave functions used in the VMC.

In Chapter 4 we present the results for elastic scattering cross section
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and the relative contribution of the currents arising at NLO, i.e. radius and

two body correction.

In Chapter 5 we present the conclusions of our work and discuss future

perspectives.



Chapter 1

Dark matter

In the elusive quest of detecting DM and shedding light on its nature, many

candidates and mechanisms have been proposed (Fig. 1.1). In the last three

decades, the main and long-standing paradigm is that DM is mostly cold,

and made up of non-baryonic particles not included in the standard model.

The modern Lambda-CDM model can account for how our universe went

from a very smooth initial state (where fluctuations were extremely small,

as can be seen from the cosmic microwave background), to the large-scale

structure of galaxies and clusters of galaxies, as observed at present times.

Inside this model, many candidates have been proposed over the years, to

account for the observed relic density of dark matter.

In this Chapter, we will summarize the main evidence for DM, present

the class of DM particles that go under the name of WIMPs, weakly inter-

acting massive particles, and their direct detection. While past and present

experiments in direct detection use heavy nuclei as targets, we will focus on

the main motivations for using light nuclei, on which we base this work.
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1.1 Evidence for dark matter

We briefly outline the main cosmological and astrophysical evidence for the

existence of dark matter in our universe:

• Motion of galaxies — Historically, the presence of non-luminous mat-

ter in the universe was proposed to explain the discrepancy between

the motion of galaxies and the visible mass, deduced from the measure

of luminosity. The observed mass was not sufficient to keep the sys-

tem gravitationally bound. F. Zwicky was one of the first to infer, in

1933, that most of the matter in galaxy clusters is dark. He based his

conclusion on the velocity distribution of galaxies in the Coma cluster.

• Large scale structure — Our universe exhibits structure, at scales of

fractions to the size of the observable universe, like galaxy superclusters,

filaments, and voids. It seems that it is not possible to reproduce

the evolution of observed structure in numerical simulations, without

accounting for the dark matter content of our universe.

• Galaxy rotation curves – The observed stellar rotational velocity, in

galaxies, is roughly constant as the distance from the galactic center

increases. This result is in apparent contradiction with Newton’s law

of gravity, that would instead predict a decrease in radial velocities.

Dark matter can account for the observations, if we postulate that it

is distributed around each galaxy, forming a spherical halo.

• Gravitational lensing – Since massive objects deflect light, the gravi-

tational lensing effect can be used to derive the total mass contained
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in an observed region. A famous measurement is given by the Bullet

Cluster [15], consisting of two separated galaxy clusters, merging into

a bigger one. It was found that the visible mass of this system only

accounts for 2% of its total mass, so dark matter is needed to explain

the discrepancy.

• Cosmic Microwave Background (CMB) – The CMB gives information,

among others, about the total matter-energy content of our universe,

and the percentage of baryonic matter in our universe. The most recent

data from WMAP shows that only approximately 4.6% of the total

mass/energy of the universe is in the form of ordinary, baryonic matter.

The rest is in the form of dark matter and dark energy.

• Big Bang Nucleosynthesis (BBN) – The standard model of BBN ex-

plains how, in the time of the universe from 0.1s to 104s, the bulk of the

observed 4He and 2H, as well as 3He and 6Li, were produced. Histori-

cally, BBN was used to estimate the fractional contribution of baryons

to the critical density of the universe and can be used to constrain

properties and production mechanisms of DM particles.
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Figure 1.1: Overview of dark matter candidates, as a function of mass and
cross section. Figure taken from [3].
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1.2 Weakly Interactive Massive Particle

WIPMs, in the form of non-baryonic cold DM, have been one of the leading

paradigms in dark matter for many decades [2]. Their motivation initially

originated by the so-called “wimp miracle”. Starting with a full thermal and

chemical equilibrium between DM and SM particles, in the very early uni-

verse, WIMPs eventually froze out of equilibrium as the universe expanded.

DM particles ceased to annihilate, when their annihilation rate Γ became

less than the expansion rate of the universe H:

Γ = nχ〈σannv〉 . H, (1.1)

where nχ is the DM particles number density, σann the pair annihilation cross

section, v the relative velocity, and 〈〉 denotes a thermal average. Surpris-

ingly, one obtains the correct density of Ωχh
2 = 0.12 [16] if

〈σannv〉 ≈ 3× 10−26cm3/s, (1.2)

which in turn gives a cross section that would arise from a weak interaction,

for typical non-relativistic values of v. This would be the case, for example,

of a neutrino with a mass of several GeV annihilating through a Z boson

exchange.

While DM candidates span many orders of magnitude both in mass and

cross section, as can be seen in Fig. 1.1, WIMPs occupy a convenient region

in the parameter space, as they could in principle be detected in various ways.

In general, three different strategies are available in experimental searches of
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WIMPs (schematically represented in Fig. 1.2, according to the direction of

the time axis for the interaction between DM and SM particles):

• Direct Detection, based on the observation of elastic scattering of WIMPs

off nuclei, and the measure of the corresponding recoil energies. This

is typically done in deep underground detectors, as the backgrounds

in this kind of experiments are mostly given by cosmic ray muons and

radioactivity.

• Indirect Detection, the detection of annihilation or decay products.

Current searches focus mainly on antimatter, photons, and neutrinos,

and can be used to constrain the value of DM self-annihilation cross

section.

• Collider searches, that aim to measure a missing momentum caused by

DM particles leaving the detector. They are done for the most part at

the Large Hadron Collider.

1.3 Direct Detection: a case for light nuclei

Experimental efforts aimed at detecting WIMPs through their interaction

with nuclei have been focused on heavy nuclei such as Ge and Xe, for the

spin-independent case; in this case, the total cross section scales roughly as

the square of the mass of the nucleus, due to coherence effects. Heavy nuclei

are natural targets for DM particle candidates with masses from 10s of GeV

to TeV, and the sensitivity is best for mχ ∼ mN .
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Figure 1.2: Handles on DM detection. Different detection channels, accord-
ing to the time axis direction. SM indicates Standard Model particles, χ DM
particle.

As the sensitivity of direct detection experiment increased (as shown

in Fig. 1.3 for spin-independent DM-nucleon cross section), many regions of

the mass-cross section parameter space were ruled out. Nonetheless, the sen-

sitivity is significantly reduced both in the high-mass and low-mass regimes.

The interaction rates depend on the interaction cross section, times the

WIMP flux at our position in the galaxy. The flux is determined by the local

density of DM of 0.39 GeV/cm3 and its velocity. As the local density is fixed,

the flux decreases as ∝ 1/mχ as the mass increases. On the other hand, the

sensitivity of current experiments sharply degrades for light nuclei. The main

technical challenge in direct detection experiments come from the smallness

of the recoil energy. Considering a DM particle scattering of a nucleus, energy
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and momentum conservation limit the maximum recoil energy:

ER =
q2

2mN

≤
2µ2

χNv
2
χ

mN

, (1.3)

where µ is the reduced mass of the DM-nucleon system.

In fact, the kinematic mismatch between the target mass and DM mass

makes the total exchanged momentum and recoil energy too low to be mea-

sured, if DM is light.

This is the motivation for the recent interest in alternative strategies for

DM direct detection [4], that aim to detect sub-GeV DM particles, using

light nuclei.

Figure 1.3: Experimental limits for WIMP spin-independent scattering cross
section. Figure taken from [17].

An interesting class of proposed experiments focus on Helium as a nuclear

target [5–9]. In particular, superfluid 4He is a promising candidate as it
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has a relatively good kinematic match to light DM, compared to Xe and

Ge. It also has different signal channels: the recoil energy can be detected

through the excitation of quasiparticles like phonons and rotons, and these

excitations are long-lived and maintain information about recoils. A recently

proposed experiment that exploits the favorable features of superfluid 4He

with calorimetric readout, presented in [9], could already probe dark matter

masses as low as 60 MeV.



Chapter 2

Interaction

It is an interesting feature of nature, that apparently there is interesting

physics at all scales: from the age of the universe to the lifespan of a Z

boson, from the size of galaxies to nuclei. It is also a fortunate fact of life

that we can often neglect what happens at most scales and concentrate on

those relevant for the physical phenomena we are interested in.

In principle, if we had a fundamental theory, we could “simply” solve it

and calculate any quantity we are interested in. In practice that is often

impossible, as for example is the case of QCD. Even when it is possible, it is

usually not necessary. Intuitively, studying physical quantities that are very

small or very large compared to some parameter, we can get an approximate

description of the physics simply neglecting the small parameters and effec-

tively consider the large ones as infinite. The subleading effect can then be

considered as a small perturbation around our approximation.

The approach described is known as an effective theory (ET), historically

it has served physics and physicists well and it has been systematized in
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recent decades, especially in the application to effective quantum field theory

(QFT). ETs are also extremely useful when the physics is unknown at some

scale much higher than the one we are interested in.

In this work, this tool is used to both build an effective interaction for

beyond standard model physics, including dark matter in our case, and in

the context of chiral perturbation theory (χPT) to derive a DM-nucleon

interaction.

The approach used is the following: starting from DM-quark and DM-

gluon effective interactions, we derive non-relativistic (NR) interactions for

DM-nucleon in the framework of chiral EFT [18–24]. These interactions can

be used in ab initio nuclear calculations for few- and many-body systems.

This allows us to match the (unknown) physics beyond the standard model,

to our calculations for nuclear cross section and, more generally, to the phe-

nomenology of direct, indirect, and collider DM searches.

Several approaches have been used to address the problem of studying

the physics of DM-nucleus interactions, and they are based on the possible,

different choices of the degrees of freedom of the system. In a top-down order,

here are examples of the main approaches to the problem at hand:

• non-relativistic DM-nucleus interactions [25]. Using a simple NR effec-

tive theory, [25] builds a minimal set of operators for spin-dependent

and spin-independent interaction between dark matter particles and

nuclei. This is the simplest effective theory, that corresponds to many

underlying microscopic DM theories, whose small number of operators

can be tested in direct detection experiments.
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• non-relativistic DM-nucleon interactions [26]. Deriving all possible

Galilean-invariant operators for the interaction of dark matter and nu-

cleons (up to second order in the exchanged momentum), Fitzpatrick et

al. performed shell-model calculations of nuclear responses for a variety

of nuclear targets;

• non-relativistic DM-nucleon interactions derived from DM-quark and

DM-gluon effective interactions [23, 27]. This is the approach adopted

in the present work;

• first-principle, lattice-QCD calculations of matrix elements, for scalar,

axial, and tensor currents [28, 29].

In this chapter, we first present an effective Lagrangian for the interaction

of DM with quarks and gluons. Focusing then on the scalar case, we briefly

summarize the chiral expansion of DM-pion and DM-nucleon interactions

and introduce a power counting to identify the leading contributions. Finally,

we present the one- and two-body currents for isoscalar and isovector DM-

nucleon interaction, up to NLO.

2.1 Effective Lagrangian

Considering the interaction between DM and standard model particles, we

make minimal assumptions on its nature and its coupling to the SM. We can

build a model-independent interaction, where we extend the SM to include a

DM particle as an additional degree of freedom (see Ref. [24]). Introducing a

new energy scale Λ̃, related to the mass of the mediator or a new interaction
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mechanism, BSM physics can be incorporated into a set effective operators

organized according to their dimension. In our case, Λ̃ is taken to be an

energy scale above the QCD scale of about 1 GeV. Such an EFT can in turn

model physics at much higher energy, beyond the electroweak scale.

The operators considered in the context of dark matter effective theories

have dimension greater than 4 and usually vary in the range from dimension

5, which is the case of Higgs portal DM, to dimension 7[24, 30]. The total

number of all possible dimension 6 and 7 effective operators relevant in the

context of DM direct detection is quite large. A review can be found in

Ref. [31].

Here we only give an example of how an EFT can be built, only consid-

ering a small subset of dimension 6 and 7 operators, suppressed by Λ̃2 and

Λ̃3 respectively, and take them to have the following form:

O = χ̄Γχχψ̄Γψψ, (2.1)

with Dirac bilinears Γχ/ψ ∈ {1, γ5, γµ, γµγ5, σµν}, DM fields χ and χ̄, and

quark fields ψ and ψ̄. We assume that the DM particle is a spin-1/2 Dirac

fermion, such as the neutralino (for the scalar interaction we are interested in,

the extension to scalar, vector or Majorana DM particles is straightforward).

The general form of the effective Lagrangian commonly used for DM-

quark and DM-gluon includes the possible combination of Dirac bilinears

that give rise to scalar (S), pseudoscalar (P), vector (V), axial-vector (A)
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and tensor (T) interaction. It has the following form:

Leff = LS + LP + LV + LA + LT + LG, (2.2)

where

LS =
1

Λ̃3

∑
q

[
cSSq χ̄χmq q̄q + cPSq χ̄iγ5χmq q̄q

]
, (2.3)

LP =
1

Λ̃3

∑
q

[
cSPq χ̄χmq q̄iγ

5q + cPPq χ̄iγ5χmq q̄iγ
5q
]
, (2.4)

LV =
1

Λ̃2

∑
q

[
cV Vq χ̄γµχq̄γµq + cAVq χ̄γµγ5χq̄γµq

]
, (2.5)

LA =
1

Λ̃2

∑
q

[
+cV Aq χ̄γµχq̄γµγ

5q + cAAq χ̄γµγ5χq̄γµγ
5q
]
, (2.6)

LT =
1

Λ̃2

∑
q

[
cTTq χ̄σµνχq̄σµνq + c̃TTq χ̄σµνiγ5χq̄σµνq

]
, (2.7)

LG =
1

Λ̃3

[
cSg χ̄χαSG

a
µνG

µν
a + cPg χ̄iγ

5χαSG
a
µνG

µν
a

+c̃Sg χ̄χαSG
a
µνG̃

µν
a + c̃Pg χ̄iγ

5χαSG
a
µνG̃

µν
a

]
.

(2.8)

For convenience, the quark masses are included in the definition of scalar

and pseudoscalar operators. The dimensionless Wilson coefficients cq and cg

are free parameters of the theory and contain all information about short-

distance physics above the scale Λ̃.
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2.2 Scalar interaction

In this section, we focus on the scalar interaction between the DM particle

and standard model fields. Scalar interactions arise naturally in many ex-

tension of the SM; one notable example is via the exchange of Higgs and

squarks [32] (supersymmetric counterpart of a quark) in supersymmetric

models, as shown in Fig. 2.1.

H, h

χ χ

qq

q̃

q

χ χ

q

Figure 2.1: Feynman diagrams contributing to spin-independent neutralino-
quark scattering.

The scalar case also has the interesting feature that two-body currents

appear already at next-to-leading order in the chiral expansion while for

the other currents derived from Eq. (2.2), they only appear at higher or-

ders. The effective Lagrangian describing scalar-mediated DM-quark and

DM-gluon interactions is built from dimension-7 operators [19] and is con-

tained in Eq. (2.2) (for convenience of notation, we drop the labels SS, S in

the Wilson coefficients):

LSeff =
1

Λ̃3

( ∑
q=u,d,s

cqχ̄χmq q̄q + cGχ̄χαsG
a
µνG

µν
a

)
, (2.9)

where we only consider light quark field q, αs is the strong coupling constant,
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and Gµν is the gluon field strength tensor.

We now need to match this scalar Lagrangian to a DM-nucleon effec-

tive interaction, non-perturbatively, at an energy scale corresponding to the

chiral-symmetry-breaking scale of ∼ 1 GeV. In order to do that we use chiral

perturbation theory [33–35], the effective theory that allows us to study the

low-energy dynamics of QCD. χPT is a powerful tool that encapsulate the

non-perturbative nature of QCD into a set of low energy constants (LECs),

that can be determined from experimental data or calculated using lattice

QCD.

In this work we will focus mainly on the isoscalar and isovector DM-quark

interactions, derived in the context of SU(2) χPT, following the derivation

in [23, 36]. The full SU(3) derivation can be found in [19]. While we do

not account for the effect of strange bosons, that require SU(3) χPT, we will

briefly comment on their effect in Chapter 4.

The scalar terms in Eq. (2.9) break the chiral symmetry of QCD in the

same way as the quark masses do. The external scalar source can then be

included using the spurion trick, as in ordinary chiral perturbation theory,

where the mass matrix M is replaced by

mu(1− cu/Λ̃
3χ̄χ) 0

0 md(1− cd/Λ̃
3χ̄χ)

 . (2.10)

At the level of pions and nucleons, the interactions become

Lπχ,q =
cπq

Λ̃3
π2χ̄χ, (2.11)
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Lχ,N =
cNis
Λ̃3
N̄Nχ̄χ+

cNiv
Λ̃3
N̄τ 3Nχ̄χ, (2.12)

where we have introduced pion and nucleon fields.

cπq =
m2
π

2

cumu + cdmd

mu +md

≡ m2
π

2
cis (2.13)

cNis = −4m2
πc1cis (2.14)

cNiv = B (md −mu) c52
cdmd − cumu

md −mu

≡ B (md −mu) c5civ (2.15)

The low energy constants c1 and c5 are related to the nucleon σ term and

strong proton-neutron mass splitting, respectively. Eq. (2.13) and Eq. (2.15)

define the effective isoscalar and isovector couplings, linear combinations of

cu and cd Wilson coefficients.

The maximum momentum transfer in elastic scattering between DM and

light nuclei, as shown in Eq. (4.5), is of the order of tens of MeV, small

compared to the chiral-symmetry-breaking scale. For simplicity, we will con-

sider it the same as typical nuclear binding momentum p ∼ mπ, and in-

troduce a power counting scheme, to order in powers of p/Λχ the possible

diagrams that can be constructed out of DM-pions and DM-nucleons interac-

tions in Eq. (2.11) and Eq. (2.12). We use the standard χPT power counting

for irreducible diagrams, which is the following:

• p4/(4π)2 for each loop,



22 CHAPTER 2. INTERACTION

(a)

(b) (c)

Figure 2.2: Diagrams contributing to DM-nucleus scattering up to NLO.
Solid black lines denote nucleons; dashed lines denote pions. (a) Leading
order interaction. (b) One-body NLO interaction. (c) Two-body NLO inter-
action.

• 1/p for each nucleon propagator,

• 1/p2 for each pion propagator.

For reducible diagrams in Fig. 2.2, that only contain nucleon propaga-

tors, the above power counting needs to be modified, as first shown by Wein-

berg [37–39]. In those diagrams, the nucleon energy becomes of O(p2/mN).

We then replace, in those diagrams, one power or p with p → p2/mN . This

way, the nucleon propagator becomes mN/p and loops scale as p5/((4π)2mN).

With this counting scheme, the diagrams contributing up to NLO are

shown in Fig. 2.2. Fig. 2.2a is the LO interaction, while Figs. 2.2b and 2.2c

are one- and two-body NLO interactions, respectively.

We now finally present the expression for one- and two-body currents,

at the nucleon level. In Fig. 2.3, we denote with pi and k (p′
i and k′)

incoming (outgoing) momenta, respectively for nucleons and DM particles.
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The exchanged momentum is q = k′ − k = pi − p′
i.

With this convention for momenta, the elastic scattering is schematically

N(pi) + χ(k) → N(p′
i) + χ(k′), (2.16)

where the index i refers to the ith nucleon.

χ(k) χ(k′)

N(pi) N(p′
i)

Figure 2.3: Schematics of DM-nucleon scattering. The time direction goes
from left to right, with primed momenta denote outgoing particles. N indi-
cates nucleons, χ indicates DM particles.

With the definition of isoscalar and isovector effective couplings, the mo-

mentum space expressions for the one-body current is:

J (1)(qi) =
cis

Λ̃3

[
σπN − 9g2Aπm

3
π

4(4πfπ)
2F

(
|qi|
2mπ

)]
− civ

Λ̃3

δmN

4
τ zi (2.17)

F (x) =
−x+ (1 + 2x2) arctan x

3x
, (2.18)

where σπN = mu+md

2
〈p|ūu+ d̄d|p〉 is the nucleon σ term and

δmN = (mn −mp)strong the strong mass splitting, that constitute the LO one-

body contribution. Their numerical values used in this work are taken from

Refs. [40] (obtained from a Roy-Steiner analysis of pion-nucleon scattering)
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and [41]. They are, respectively,

σπN = (59.1± 3.5) MeV, δmN = (2.32± 0.17) MeV . (2.19)

The momentum dependent part of Eq. (2.17) appears at NLO, and for

small exchanged momenta is proportional to F (|qi|/2mπ ∼ q2
i |/4m2

π.

Its size, relative to the leading order, depends on the choice of the σ term

and our numerical results can be easily extended to other values coming, for

example, from lattice QCD calculations [42].

The two-body current, also appearing at NLO (Fig. 2.2c), is given by

J (2)
ππ (qi, qj) = − cis

Λ̃3

(
gA
2Fπ

)2

m2
πτi · τj

σi · qiσj · qj
(q2
i +m2

π)(q
2
j +m2

π)
. (2.20)

This currents, once transformed to coordinate space, are used to calculate

the differential cross section shown in the next chapter. The sum of one- and

two-body currents is:

J(q) =
∑
i

eiq·riJ (1)(q) +
∑
i<j

J (2)
ππ (q; ri, rj) , (2.21)

where the expression for the Fourier transform of J (2)
ππ (qi, qj) is given in the

Appendix.



Chapter 3

Method

In this work, we are interested in the nuclear aspects of DM elastic scattering.

In order to calculate the differential cross sections for this process, we need

to choose an interaction between the nucleons, and a method to calculate

the relevant matrix elements between nuclear states. DM particles are non-

relativistic and the maximum energy transferred we consider is less than

100 MeV, much less than the mass of the nucleons and the binding energy of

the nuclei. Choosing nucleons as degrees of freedom, instead of quarks and

gluons, is then appropriate for the process considered.

In this regime, many-body methods can be used to calculate properties of

nuclei and in particular, the standard methods used in nuclear physics have

been applied in the context DM-nucleus scattering. For example, in heavy

nuclei, state-of-the art shell model calculations have been performed [22, 43],

providing the nuclear structure factors relevant for experimental targets.

For lighter systems, with A < 4, direct methods can be applied to the

solution of the Schrödinger equation. Ref. [23], that is the main work which
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we can compare our result to, solves the Faddeev equations for systems with

A = 2, 3.

In this chapter, we focus on the class of quantum Monte Carlo (QMC)

methods, that in recent years have proven to be extremely successful in de-

scribing properties of nuclei [44–46], from light to medium-heavy. In par-

ticular, we will present the variational Monte Carlo (VMC) method, the

phenomenological interaction we adopt for two- and three-nucleon, and the

accurate nuclear wave functions used to calculate the differential cross sec-

tion. We also give the calculated ground state energies E and proton point

radii rp for the nuclei of interest, from d to 6Li.

3.1 Monte Carlo Methods

When considering a system of interacting nucleons, solving the Schrödinger

equation is a formidable task. Even considering the simpler problem of calcu-

lating expectation values of operators of the form (neglecting for the moment

spin and isospin degrees of freedom)

〈Ô〉 = 〈ψ|Ô|ψ〉
〈ψ|ψ〉

=

∫
dRψ∗Ôψ∫
dRψ∗ψ

=

∫
dR

|ψ|2∫
dR|ψ|2

Ôψ
ψ

, (3.1)

R = {r1, . . . , rA} , (3.2)

naïve integration methods cannot be used in practice, because the numerical

error grows exponentially with the dimensionality of the system.

Stochastic integration, on the other hand, allows us to calculate the de-



3.1. MONTE CARLO METHODS 27

sired expectation value, provided we can generate configurations {Ri}, sam-

pled from the normalized and positive-definite probability distribution func-

tion

f(R) =
|ψ(R)|2∫
dR|ψ(R)|2

. (3.3)

Considering N independent samples, the expectation value in Eq. (3.1)

simply becomes

〈Ô〉 ' 1

N

N∑
i=1

Ôψ(Ri)

ψ(Ri)
. (3.4)

Thanks to the central limit theorem [47], if the samples are statistically

independent, the numerical error on the estimate of the integral decreases as

the inverse square root of the number of samples (σ ∼ 1/
√
N). The error

can in principle be made arbitrary small increasing the computation time.

General purpose methods exist for generating configurations from a given

probability distribution function. In this work we adopt the Metropolis algo-

rithm [48], based on the concept of Markov chain, in which one generates sets

of configurations Ri, each one depending only on the previous one, in such

a way that the set of configurations has the desired distribution function f

as its equilibrium distribution.

This algorithm follows from a factorization of the transition matrix M , used

to generate new configurations Ri+1 starting from Ri, into a proposal and

acceptance

M (Ri,Ri+1) = T (Ri,Ri+1)A (Ri,Ri+1) , (3.5)

and it produces configurations distributed according to Eq. (3.3), regardless

of the specific choice of T and the details of the probability distribution
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function.

A constructive way of generating such configurations is iterating the fol-

lowing:

1. From a symmetric proposal T (Ri,Ri+1), generate a new configuration

Ri+1

2. Calculate the acceptance probability

A (Ri,Ri+1) = min

[
1,

T (Ri,Ri+1) f (Ri+1)

T (Ri+1,Ri) f(Ri)

]

3. Accept the new configuration Ri+1 with probability A(Ri,Ri+1)

• if A ≥ 1, accept Ri+1

• if A < 1, generate a uniform random number η ∈ [0, 1] and accept

Ri+1 if η < A.

It is also convenient that, in the definitions of the acceptance probability A,

the normalization in Eq. (3.3) cancels out.

The stochastic integration we presented can be used to evaluate the energy

in the case Ô = Ĥ, together with the variational theorem, to find approx-

imate wave functions for the ground state of the system. This approach is

called variational Monte Carlo (VMC).

Constructing a trial wave function |ψ〉 with embedded variational pa-

rameters {αi}, one can find the values of the parameters that minimize the

energy:

EV =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

, (3.6)
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and find a good approximation for the nuclear ground state.

Thanks to the variational principle, the energy of any trial wave function

is always greater than that of the ground state, and the equality holds for

|ψ〉 = |ψ0〉

This can be easily proven by expanding the trial wave functions on a basis

of eigenstates of Ĥ:

Ĥ|ψn〉 = En|ψn〉, (3.7)

|ψ〉 =
∑
n

cn|ψn〉. (3.8)

Since En ≥ E0, we obtain the following inequality:

EV =

∑
nEn|cn|

2∑
n|cn|

2 ≥ E0

∑
n|cn|

2∑
n|cn|

2 = E0. (3.9)

It is clear that the equality holds only if c0 = 1 and cn = 0 for n > 0.

We will now give the details of the phenomenological Hamiltonian and

the wave function used in the calculations.

3.2 Nuclear Hamiltonian

Regarding the choice of the interaction between nucleons, we use a non-

relativistic nuclear Hamiltonian in configuration-space, consisting of a two-

body Argonne v18 potential [49], and a three-body Urbana IX potential [50].

The Argonne potential is a local, finite, NN potential, with explicit charge

dependence and a complete electromagnetic interaction. We choose to per-
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form calculations in coordinate space, since the Argonne potential is one of

the most used potential in few and many body nuclear calculations. The

VMC calculations could also be a starting point for future diffusion Monte

Carlo calculations.

This phenomenological Hamiltonian has been fit to experimental data

from the Nijmegen database[51, 52]. It fits both pp and np scattering, low-

energy nn scattering and binding energies of light nuclei, with a χ2/Ndata ∼ 1,

up to energy in the laboratory frame of about 350 MeV.

The total Hamiltonian takes the form

Ĥ =
∑
i

T̂i +
∑
i<j

v̂ij +
∑
i<j<k

v̂ijk . (3.10)

where kinetic energy operator of the ith nucleon is usually written as a sum

of charge-independent and charge-symmetry breaking terms, to account for

the mass difference between protons and neutrons:

T̂i = −~2

4

[(
1

mp

+
1

mn

)
+

(
1

mp

− 1

mn

)
τ zi

]
∇2
i , (3.11)

τ zi is the third component of the isospin.

The two-body Argonne v18 potential can be written as a sum of 18 oper-

ators

v̂ij =
18∑
p=1

vp (rij) Ô
p
ij = v̂γij + v̂πij + v̂Sij + v̂Iij (3.12)

which are divided into electromagnetic (EM), a long-range one-pion-exchange

(OPE) and phenomenological short- and intermediate-range strong-interaction

parts.



3.2. NUCLEAR HAMILTONIAN 31

The complete EM interaction vγij contains Coulomb, Darwin-Foldy, vac-

uum polarization and magnetic moment terms with finite-size effects, that

keep terms finite at rij = 0.

The OPE part has the following structure:

v̂πij = f 2
[
Xijτi · τj + X̃ijTij

]
. (3.13)

It includes the effect of the mass difference between mπ0 and mπ± . The

pion-nucleon coupling constant is f 2 = 0.075 and the radial functions are

(using units ~ = c = 1)

Xij =
1

3

(
X0

ij + 2X±
ij

)
, (3.14)

X̃ij =
1

3

(
X0

ij −X±
ij

)
, (3.15)

where

Xm
ij =

(
m

ms

)2
1

3
m [Y (mrij)σi · σj + T (mrij)Sij] . (3.16)

σi and τ are Pauli matrices operating on the spin and isospin of the nucleons.

Sij = 3σi · r̂ijσj · r̂ij −σi ·σj is the tensor operator and Tij = 3τ zi τ
z
j − τi · τj

is the isotensor operator.

The pion and tensor radial functions are the Yukawa and OPE ten-

sor potential, respectively, together with a short-range cutoff of parameter

c = 2.1 fm−1

Y (x) =
e−x

x
ξ(r), (3.17)
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T (x) =

(
1 +

3

x
+

3

x2

)
Y (x)ξ(r), (3.18)

ξ(r) = 1− exp
(
−cr2

)
. (3.19)

In the region in which r is less than 2 fm, the tensor part dominates the

OPE, as Tπ(r) � Yπ(r).

The remaining interaction, divided into intermediate- and short-range

parts, is composed of 18 operators

v̂I+Sij = v̂Iij + v̂Sij =
18∑
p=1

[
IpT 2 (mrij) +

(
P p +Qpr +Rpr2

)
W (r)

]
Ôp
ij. (3.20)

The radial part of the short-range interaction is a quadratic function of

r, multiplying a Wood-Saxon potential of radius r0 = 0.5 fm and parameter

a = 0.2 fm

W (r) =
[
1 + e(r−r0)/a

]−1
. (3.21)

Ip, P p, Qp and Rp are a set of constants, fitted to the Nijmegen data

mentioned above.

Finally, the operators appearing in Eq. (3.20) include 14 charge inde-

pendent (CI) (they are the same as the Argonne v14 potential), 3 charge

dependent (CD) and one charge symmetry breaking (CSB) terms.

ÔCI
ij =

[
1,σi · σj, Sij,L · S,L2,L2 (σi · σj) , (L · S)2

]
⊗ [1, τi · τj] (3.22)
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ÔCD
ij = [1,σi · σj, Sij]⊗ Tij (3.23)

ÔCSB
ij = τ zi + τ zj (3.24)

In this expression, Lij is the relative angular momentum of the pair ij

and Sij is the total spin of the pair.

Lij =
1

2i
(ri − rj)× (∇i −∇j) , (3.25)

Sij =
1

2
(σi + σj) . (3.26)

The major contribution to the NN interaction comes from the first 8

terms of Eq. (3.22), as they are necessary to fit S and P wave data in singlet

and triplet isospin states.

The three-body NNN Urbana IX is the last of the Urbana series of semi

phenomenological potentials [53]. First used together with Argonne v18, this

interaction consists of two-pion-exchange and a short-range phenomenologi-

cal component:

v̂ijk = V̂ 2π,P
ijk + V̂ R

ijk. (3.27)

The first term, originally introduced by Fujita and Miyazawa [54], is a

P-wave component, corresponding to an intermediate excited ∆ resonance

produced by two-pion exchanges between nucleons i− j and j− k. It can be

written as a cyclic sum of Xij terms in Eq. (3.16), where the average pion
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mass m = [(1/3)mπ0 + (2/3)mπ± ]

V̂ 2π,P
ijk =

∑
cyc

AP2π
{
Xπ

ij,X
π
jk

}
{τi · τj, τj · τk}

+
1

4
AP2π

[
Xπ

ij,X
π
jk

]
[τi · τj, τj · τk] .

(3.28)

The remaining term is a central, repulsive phenomenological term, needed

to compensate the overbinding in nuclei. Again, it can be expressed as a

cyclic sum, in terms of the OPE in Eq. (3.18)

V̂ R
ijk =

∑
cyc

ART
2 (mrij)T

2 (mrjk) . (3.29)

The parameters are fitted to reproduce the ground state energy of light

nuclei and properties of nuclear matter. In particular, the central term was

introduced to compensate the overbinding in nuclei and the large equilibrium

density of nuclear matter. Their values are A2π = −0.0293 MeV and AR =

0.0048 MeV.

3.3 Wave functions

As we have seen in the first part of this chapter, the quality of the trial wave

function used in VMC is extremely important. The general form for the wave

function adopted in nuclear physics is obtained by separating long-range and

short-range contributions [44]. This way, we introduce a correlation operator

F acting on a completely antisymmetric wave function |Φ〉 that governs the
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long-range behavior and possesses the right quantum number for the system.

|ψ〉 = F|Φ〉 = S
A∏
i<j

[
1 + Ûij +

A∑
k 6=i,j

Ûijk

][∏
i<j

fc(rij)

]
|Φ(JMTT3)〉 . (3.30)

S is a symmetrization operator, acting on two- and three-body correlation

operators. fc(rij) is a central, symmetric, and mostly short ranged correla-

tion. The two body [44, 55] correlator is chosen as a sum of radial functions,

multiplying the operators in the Argonne v18 that give the greater overall

contributions:

Ûij =
∑
p

fp(rij)Ô
p
ij , (3.31)

Ôp
ij = [1,σi · σj, Sij]⊗ [1, τi · τj] . (3.32)

The functions fp, as well as fc, only depend on the inter-particle distance

rij and are obtained solving coupled differential equations for the correspond-

ing channel in the two-body potential. They also have the correct asymptotic

boundary conditions, when the system is separated into clusters [44].

Similarly, the three-body correlations are included [55] and are propor-

tional to the NNN interaction, as suggested by perturbation theory:

Ûijk = εv̂ijk (rij, rjk, rki) . (3.33)

r̄ are scaled inter-particle distances, and the parameter ε is small and nega-

tive.
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The long-range part of the wave function is translationally invariant, fully

antisymmetric and has quantum numbers J, M, T and Tz. For light nuclei,

|Φ〉 is a sum of Slater determinants of single-particle orbitals. The variational

wave function presented is usually used in Monte Carlo calculations as a

starting point for a propagation in imaginary time, for example in Green

Function Monte Carlo and various other flavors of Diffusion Monte Carlo

(DMC). The general idea of DMC is based on the formal solution of the

many-body, time dependent, Schrödinger equation (~=1):

i
∂

∂t
|ψ(t)〉 =

(
Ĥ − ET

)
|ψ(t)〉 ⇒ |ψ(t+dt)〉 = e

−i
(
Ĥ−ET

)
dt|ψ(t)〉, (3.34)

that, using the substitution τ = it, yields

|ψ(τ + dτ)〉 = e
−
(
Ĥ−ET

)
dτ |ψ(τ)〉. (3.35)

As it is clear using the expansion Eq. (3.8) of the wave function on a complete

basis of autostates of Ĥ, the imaginary time evolution of Eq. (3.35) becomes:

|ψ(τ)〉 =
∞∑
n=0

cne
−(En−ET )τ |ϕn〉 . (3.36)

By taking the limit τ → ∞, excited states are exponentially suppressed,

with respect to the ground state. With this method then, one can improve

the quality of the ground state wave function by eliminating contributions

coming from excited states.

In this work, we will only use variational wave functions, since results

for light nuclei [11, 61] suggest that, for electroweak matrix elements, an
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AZ(Jπ;T )
E (MeV) 〈r2p[r2n]〉1/2 (fm)

VMC Expt. VMC Expt.
2H(1+; 0) -2.2249(2) -2.2246 1.966(1) 1.96
3H(1

2

+
; 1
2
) -8.26(1) -8.482 1.611(1) [1.744(1)] 1.58

3He(1
2

+
; 1
2
) -7.52(1) -7.718 1.770(1) [1.628(1)] 1.76

4He(0+; 0) -27.55(3) -28.30 1.444(1) 1.462(6)
6Li(1+; 0) -28.57(3) -31.99 2.405(5) 2.45(4)

Table 3.1: VMC results for A ≤ 6 nuclear ground state energies and point
radii, compared to experimental values[56–60]. VMC statistical errors and
experimental errors are shown in parentheses, errors of less than 1 in the last
decimal place are omitted.

additional imaginary time propagation only improves on VMC results at the

few percent level. It would be interesting to prove this assumption in future

work.

The wave function in Eq. (3.30) can already accurately describe a vari-

ety of nuclear properties. In Table 3.1 we give the calculated ground state

energies and proton point radii. With the exception of 6Li variational en-

ergy, which differs from the experimental value by about 10%, all the other

calculated values fall within 2–3% of the experimental value.

Table 3.2 contains the contribution to the total energy of kinetic, two-

and three-body potential energy. While these quantities are non-observable,

it is useful to consider them when comparing our results with others in the

literature, that use different nuclear potentials and wave functions.
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Z(Jπ;T ) 〈T 〉 〈vij〉 〈vijk〉
2H(1+; 0) 19.80(2) -22.02(2)
3H(1

2

+
; 1
2
) 49.74(5) -57.01(4) -0.998(2)

3He(1
2

+
; 1
2
) 48.95(3) -55.50(3) -0.974(3)

4He(0+; 0) 110.5(1) -132.8(2) -5.26(3)
6Li(1+; 0) 148.4(4) -171.7(4) -5.29(3)

Table 3.2: VMC expectation values of kinetic, two- and three-body potential
energy.

3.4 Cross section and event rate

After introducing the variational Monte Carlo method and the phenomeno-

logical potential for the interaction between the nucleons, we can now turn

to the computation of experimental observables. We will write the relevant

quantities for dark matter direct detection (DD), i.e. the differential cross

section for elastic scattering, in terms of matrix elements of the currents de-

rived in Chapter 2, and the differential event rate rate. These quantities are

calculated in a non-relativistic regime, since the typical speed of dark matter

particles, in our position in the galaxy, is of the order of v ∼ 10−3c and the

momentum exchanged we consider ranges from 0 to 100 MeV.

For the scalar case we consider, we can express the differential cross sec-

tion as [62]:

dσ

dq2
=

1

4πv2χ

1

2j + 1
×

j∑
mj ,m′

j=−j

∣∣∣〈ψjm′
j
|J(q)|ψjmj

〉
∣∣∣2 , (3.37)

using matrix elements of the current in Eq. (2.21) for each given nucleus,

with a ground state characterized by a total spin j and polarization mj. We
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adopt a non-relativistic state normalization for the DM particle and nucleus.

vχ denotes the velocity of the DM particle.

This cross section can then be used to calculate the differential recoil

rate, that can be measured in experiments, and is expressed as (counts per

day)/kg/keV:

dR

dER

=
1

mN

ρχ
mχ

∫
vmin(ER)

d3v |v| fE(v)
dσ

dER

(v, ER) , (3.38)

where ρχ is the local DM energy density and vmin =
√
mNER/2µ2. In prin-

ciple, there is no upper limit of integration in Eq. (3.38), but in practice it is

limited by the escape velocity of DM in our galaxy. An additional assump-

tion needs to be made about the velocity distribution in the Earth’s frame

fE(v), where the usual choice is a Maxwell-Boltzmann distribution.



Chapter 4

Results

In this Chapter, we present and expand on the results, already published

in [27], for the calculations for the differential cross section and one- and

two-body contributions appearing at NLO. Using the VMC method and

phenomenological wave functions described in Chapter 3, we study the effects

of the currents derived in Chapter 2 on the cross section for scattering of DM

particles off the following light nuclei d, 3H, 3He, 4He and 6Li.

The cross section in Eq. (3.37) can be conveniently expanded, as in

Ref. [23], as a sum of nuclear response functions F (ν)
a,i . The label ν refers

to the chiral order, the label a distinguishes between isoscalar and isovector

contributions, and we use the label i = {r, 2b} for the so-called “nucleon

radius” correction and the contributions of two-body currents. The nucleon

radius arises in the one-body current at NLO, and gives the momentum-

dependent correction in Eq. (2.17), proportional to F
(

|qi|
2mπ

)
.

With this choice of nuclear response functions and neglecting the contri-
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butions from cs and cG, the differential cross section is:

dσ

dq2
=
c2is
Λ̃6

σ2
πNA

2

4πv2χ
×∣∣∣∣F (0)

is (q2) + F (1)
is,2b(q

2) + F (1)
is,r(q

2)− civ
cis

δmN

4σπN
F (0)

iv (q2)

∣∣∣∣2 . (4.1)

The isoscalar coupling, the pion nucleon σ term, and the number of nu-

cleons A are factorized in order to have F (0)
is (0) = 1. At LO, the cross section

for the isoscalar case is c2is
Λ̃6

σ2
πNA

2

4πv2χ
, since the scalar current simply counts the

number of nucleons.

Without loss of generality, we can focus for the moment on the case cis 6= 0

and set civ,s,G/cis = 0. These additional couplings do not introduce indepen-

dent nuclear responses, for the cross section for the general case civ,s,G 6= 0

can be obtained from Eq. (2.17) using

F (0)
iv (q2) =

2Z − A

A
×F (0)

is (q2) (4.2)

and rescaling F (0)
is (q2) in Eq. (4.1) by the factor

1 +

(
cs
cis

)
σs − σ̇s q

2

σπN
−
(
cG
cis

)
8πmG

N

9σπN
. (4.3)

σ̇s = (0.3± 0.2)GeV−2 is taken from the dispersive extraction in Ref. [63],

as it cannot be obtained in SU2 χPT. The gluon part in Eq. (4.3) contains

order (2) contributions, given by σπN and σs:

mG
N = mN − σπN − σs. (4.4)
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In our calculations, we consider the momentum transfer q in the range

0 − 100 MeV. In the non-relativistic limit, appropriate for a value of local

DM velocity v ∼ 10−3c, the exchanged momentum is limited from above and

is given by

|q| ≤ |qmax| = 2µv(esc) , (4.5)

where µ = mNmχ/(mN +mχ) is the reduced mass of the DM-nucleus system

and v(esc) ≈ 544 km/s [64] is the escape velocity of DM in our galaxy. Con-

sidering a DM particle candidate with a mass mχ ≈ 1 GeV, the maximum

momentum transfer ranges from a few to tens of MeV, for the light nuclei we

are interested in.

The value of the cutoff Λ applied to regularize the two-body current (see

the Appendix A) varies in a range from 500 MeV to 10 GeV, to explore the

uncertainty related to the choice of the cutoff.

We will present the results for the differential cross section and, for each

nucleus, compare the contribution for ν = 0, 1. The relative contributions of

NLO currents are also assessed. While our results do not show the uncer-

tainty related to the σ term and strong proton-neutron mass splitting, we

will briefly comment on the effect of these hadronic quantities.

4.1 Cross section

In Fig. 4.1, we show the isoscalar nuclear response function, at LO and

NLO, for nuclei from d to 6Li. We consider for the moment the limit of

high cutoff Λ for the two-body current. Starting at LO, we can see that the

response function is equal to 1, because of the normalization we adopted.
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At larger momentum, the response functions decrease. NLO contributions

slightly increase the total cross section at low momenta. As q increases, the

cross section is reduced, since the contributions from two-body and radius

correction are of opposite sign, and the latter is greater. For the isoscalar

case, this behavior is consistent for all the nuclei considered here. The results

are identical for the nuclei with A = 3 and only 3He is shown in Fig. 4.1. The

overall effect of NLO contributions is small and accounts for a few percent

change of the response functions in the range of momenta considered and for

all the nuclei.

Considering the isovector case, in Fig. 4.2 we show the LO contribution,

since no contributions appear at NLO. The isovector interaction, at q = 0,

counts the number of protons minus the number of neutrons. The only

nonzero contributions are found in 3H and 3He, and are of opposite sign.

Even though the isovector response function seems suppressed by a factor

δmN/4σπN compared to the isoscalar one, their relative size depends also on

the ratio civ/cis and could easily be enhanced in specific DM models.
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Figure 4.1: Isoscalar response function, for nuclei from A=2 to 6. Dashed
blue lines correspond to LO calculations, and orange solid ones correspond
to NLO.
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Figure 4.2: Isovector response function, for nuclei from A=2 to 6.
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4.2 Radius correction

We now consider the relative contribution to the total cross section, of the

one-body current appearing at NLO. We refer to is as radius correction,

defined as [23]:

∆(r) =
|F (0+1)

is (q2)|
2
− |F (0)

is (q2) + F (1)
is,2b(q

2)|
2

|F (0+1)
is (q2)|

2 , (4.6)

where F (0+1)
is (q2) is the sum of all the isoscalar terms on the right-hand side

of Eq. (4.1). The definition in Eq. (4.6) is a good measure of the relative

importance of radius corrections and it captures the percentual contribution

of NLO contributions with respect to the total cross section.

Our calculations show only minor difference between the various nuclei,

due to the small two-body contribution. In Fig. 4.3 we present the radius

correction for 4He, we note that it vanishes at q = 0 and grows to about 6%

at q = 100 MeV.

Comparing our results with [23], we find contributions about three times

larger.

Other than the full nuclear calculations, performed with VMC and ac-

curate wave functions, we can derive a simple approximation for Eq. (4.6).

Expanding Eq. (4.6) in a Taylor series for small F (1)
is,2b(q

2) and F (1)
is,r(q

2) NLO

corrections, the expression reduces to

∆(r) ∼
2F (1)

is,r(q
2)

F (0+1)
is (q2)

∼ − 2

σπN

9g2Aπm
3
π

4(4πfπ)
2F

(
|q|
2mπ

)
. (4.7)

Nuclear effects enter at higher order in the expansion and through the
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Figure 4.3: Percentual radius correction for 4He.

two-body current, Eq. (4.7) is determined by the momentum dependence

of Eq. (2.17). We find Eq. (4.7) in good agreement with the full nuclear

calculation, for the value of q considered.

4.3 Two-body contribution

In a similar fashion to Eq. (4.6), we define the relative contribution of two-

body currents as [23]:

∆(2b) =
|F (0+1)

is (q2)|
2
− |F (0)

is (q2) + F (1)
is,r(q

2)|
2

|F (0+1)
is (q2)|

2 . (4.8)

We first consider the case of high cutoff, for the two-body currents. Our

results in Fig. 4.4 show that, for all the nuclei considered, two-body contri-

butions are of modest size. They range from about 2% up to about 4%.
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Figure 4.4: Percentual two-body correction to the total cross section for
various nuclei, at Λ = 10 GeV.

As already noted for the total cross section, 3H and 3He give similar re-

sults. While the two-body correction generally increases with the exchanged

momentum q and the number of nucleons A, d does not follow this trend.

The effect of two body currents in d is larger than in A = 3 nuclei, a result

that is in agreement with what was previously found in [23].

It is important to stress that our results are valid only considering the

isoscalar case. Different regions of the parameters space, in the case civ,s,G 6=

0, can be explored using the rescaling introduced in Eq. (4.3).

So far we only presented calculations for the two-body currents in the
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Figure 4.5: Percentual two-body correction to the total cross section for
various nuclei, at Λ = 500 MeV.

limit of infinite cutoff Λ in Eq. (A.3), we now study the effect of the short-

distance regulator introduced in the Fourier transforms (see the Appendix)

of two-body currents.

In general, to study the dependence of nuclear matrix elements on the

cutoff applied to the currents, different approaches are possible. In [23], cur-

rents and nuclear wave functions are derived from chiral EFT, so that the

same cutoff can be used for both. On the other hand, using phenomeno-

logical Hamiltonians, one does not have “strong” low-energy constants that

allow for a variation of the cutoff when obtaining the nuclear wave function.
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In [11], where an approach similar to the present work was used to perform

β-decay calculations, the strategy used was to fix the cutoff in the currents,

fit the “weak” low-energy constants in order to reproduce some observable,

and predict properties of larger nuclei with A = 6− 12.

However, dealing with scalar mediated DM, up to NLO there are no new

low-energy constants in the currents and this approach is not viable. So we

study the cutoff dependence of the fractional two-body corrections, simply

calculating them for different values of Λ. We show the values of ∆(2b) as a

function of the exchanged momentum, at Λ = 500 MeV and Λ = 10 GeV,

in Fig. 4.4 and Fig. 4.5, respectively. In Fig. 4.6 we show the two-body

contribution for q = 0, for a range of values of the cutoff and for all the

nuclei considered.

The two-body contributions are strongly dependent on the cutoff, for

values up to 1 GeV, and they start to saturate at large values, around 2 GeV.

It is possible that this behavior is caused by the hard core of the Argonne

v18 potential: the “effective” cutoff is very high and could explain the huge

variation for low values of Λ.

While for d ∆(2b) is positive for all values of Λ, the other nuclei change

sign as the cutoff increases: at Λ ∼ 700 MeV in A = 3 nuclei and 6Li, and at

Λ ∼ 800 MeV for 4He. This behavior can be explained by a large cancellation

between the operators in Eq. (A.3). At q = 0, only two operators give

nonzero contributions:
O1 ∼ σ1 · σ2 ,

O2 ∼ σ1 · r̂ σ2 · r̂.
(4.9)

In Table 4.1, we give the value of the two contributions, for d and 4He,
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Figure 4.6: Cutoff dependence of the two-body contribution at q = 0.

and their sum.

They are of opposite sign and one order of magnitude bigger than their

sum, making the total two-body contribution strongly dependent on the

choice of the cutoff.

While we presented calculations only for interaction derived in SU(2)

χPT, considering SU(3) allows for running of strange heavier mesons in the

loop in Fig. 2.2b, and the exchange of two η mesons in Fig. 2.2c. Even though

the full calculations is not presented here, we found a suppression caused

by the operatorial structure as well as the shorter range of the η-mediated

interaction, as in[19]. The two-body contribution in Eq. (4.6) is not altered
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Nucleus Λ [MeV] ∆(2b) (%)
O1 O2 O1 +O2

d 500 -3.4 4.2 0.7
10000 -4.9 7.9 3.0

4He 500 -13.2 10.7 -2.4
10000 -19.2 21.9 2.7

Table 4.1: Percentual two-body correction to the total cross section for non-
vanishing operators contributing at q = 0.

appreciably for natural choices of the coupling of DM to the strange quark;

even though one can imagine scenarios in which a combinations of Wilson

coefficients leads to an enhancement, they are not addressed here.

In our calculations the statistical uncertainty coming from the Monte

Carlo calculations is small, and the biggest source of uncertainty comes from

the cutoff dependence in the two-body current. The use of chiral nuclear

potential, consistent with one- and two-body currents (in the spirit of [23]),

could mitigate the cutoff dependence and help reduce the systematic uncer-

tainty in our results.

In addition to that, more profound reasons could explain the large depen-

dence of the scalar two-body currents on the cutoff. Recent results presented

in [65] regarding neutrinoless double-beta decay show the need to introduce,

at LO, a short-range operator. This new counterterm is necessary to absorb

a divergence in the scattering amplitudes, for the process nn → ppee. The

divergence is caused by the neutrino potential part proportional to 1/q2, act-

ing on the 1S0 wave.

In the context of this work a counterterm might be need to cure the cutoff

dependence, as the two-body current we used has the same scaling of 1/q2 in



4.3. TWO-BODY CONTRIBUTION 53

the limit of large exchanged momentum. A detailed study of the correctness

of the power counting used in this work is then certainly warranted, and

would shed light on the problematic dependence of our results on the cutoff

used.

To conclude, it is also important to note that the choice of the value for

the nucleon σ term affects the relative size of NLO correction with respect

to the LO. In this work, we used a value taken from a Roy-Steiner analysis

of pion-nucleon scattering [40], however, smaller values have been found in

recent lattice-QCD calculations. For example, using the value in [42] would

increase the relative size of NLO contributions, as is clear from Eq. (2.17)

and Eq. (2.20), together with the factorization adopted in the total cross

section.
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Conclusions and outlook

5.1 Conclusions

In this work, we have studied the cross section for elastic scattering of dark

matter particles, off a variety of light nuclei (d, 3H, 3He, 4He, and 6Li). The

nuclei under consideration, up to A = 6, present a variety of spin and isospin

structure. This study is motivated by the growing interest in light nuclei

as targets in DM direct detection experiments, and by the role played by

two-body currents.

Our calculations, performed using quantum Monte Carlo methods, fol-

lowed a hybrid approach. The ground state nuclear wave functions are ob-

tained from a phenomenological Hamiltonian composed of two- and three-

body nuclear interactions, the Argonne v18 and Urbana IX, respectively. The

interaction between DM and nucleons is derived in the context of chiral per-

turbation theory, up to NLO, starting from a scalar effective Lagrangian for

DM-quark and DM-gluons, parameterized by four Wilson coefficients.
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Restricting the calculations to exchanged momenta up to 100 MeV, ap-

propriate for the nuclei considered, we have studied the effect of the NLO

contributions to the differential cross section, considering both the nucleon

“scalar radius” and two-body currents.

We find that their size is smaller than what suggested by chiral power

counting, and is at the few percent level. In particular, the nucleon scalar

radius correction is zero at q = 0, approximately -2% at q = 60 MeV and -6%

at q = 100 MeV. This results is equivalent for all the nuclei considered and

does not suffer from uncertainties due to the nuclear structure calculations.

Our results can be compared to Ref. [66], when considering only the one-body

current (corresponding to the operator Ô1 in the NREFT basis of Ref. [26]).

Our results are in good qualitative agreement, for 3He and 4He.

The two-body currents give a contribution of 2–3% at q = 0 for all the

nuclei considered, and slightly grow with q. We find a qualitative agreement

with [23] in the cases of A = 2 and A = 3, and we give for the first time an

estimate of their contribution in systems with A = 4 and A = 6.

The two-body current has an uncertainty associated with the variation of

the cutoff. Even considering values of the cutoff between Λ = 500 MeV and

Λ = 2 GeV, we can determine the differential cross section with an accuracy

of a few percent. Our results, together with Refs. [23, 66], are already relevant

for the assessment of the sensitivity in future experimental searches.
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5.2 Outlook

This work is based on a hybrid approach and uses a phenomenological Hamil-

tonian for NN and NNN interactions, while using chiral currents for the

DM-nucleon interaction. It would certainly be interesting to perform fully

consistent calculations, using a chiral nuclear potential to obtain the nuclear

wave functions. This would allow for a variation of the cutoff, both for ground

state wave functions and two-body currents.

Quantum Monte Carlo methods based on the VMC and additional propa-

gation in imaginary time of the wave function, allow performing calculations

for medium-heavy nuclei. Calculations for such nuclei would be interesting

in assessing the size of two-body currents as the dimension of the system

grows.

While not addressed in this work, it is worth studying the applicability of

Weinberg power counting for the various channels of DM-nucleon two-body,

as briefly mentioned in Chapter 4.

Finally, it would be interesting to explore the connection between our

results and lattice QCD calculations [28, 29]. Recent results suggest that

the cross section for scalar interaction in light nuclei is affected by meson-

exchange currents only at the few percent level [29], in agreement with the

present work.
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Appendix A

Fourier Transforms

A.1 Scalar

We perform QMC calculations in coordinate space, so we need to Fourier

transform the one- and two-body DM-nucleon currents we presented in Chap-

ter 2. While transforming the currents, we introduce a Gaussian regulator

with cutoff parameter Λ, to tame the short-distance singularities:

SΛ(k
2) = e−

k2

2Λ2 . (A.1)

The two-body current is then obtained from

J (2)
ππ (q; r1, r2) =

∫
d3k1

(2π)3
d3k2

(2π)3
eik1·r1eik2·r2SΛ(k

2
1)SΛ(k

2
2)

× (2π)3δ(3)(k1 + k2 − q)J (2)
ππ (k1,k2). (A.2)

This integration can be performed analitically, with the exception of one
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integration over an auxiliary variable y. The coordinate space expression for

the two-body current in coordinate space reads

J (2)
ππ (q; r1, r2) = − 1

Λ3

(
gA
2Fπ

)2

cism
2
πτ1 · τ2

1

2
eiq·R

∫ 1

−1

dye−iq·ry/2

×

[
(σ1 · q)(σ2 · q)

1− y2

4
s(r, y) + (σ1 · q)(σ2 · r̂)

(
−i1 + y

2

)
∂

∂r
s(r, y)

+ (σ1 · r̂)(σ2 · q)
(
i
1− y

2

)
∂

∂r
s(r, y) + (σ1 · σ2)

1

r

∂

∂r
s(r, y)

+ (σ1 · r̂)(σ2 · r̂)r
∂

∂r

1

r

∂

∂r
s(r, y)

]
,

(A.3)

where r = r2 − r1, R = r2+r1
2

, and the radial functions have the following

expressions:

s(r, y) =
eL

2/Λ2

8πLΛr

[
erfc

(
L

Λ
+

Λr

2

)
eLr
(
L

Λ
+

Λr

2

)
− erfc

(
L

Λ
− Λr

2

)
e−Lr

(
L

Λ
− Λr

2

)]
,

(A.4)

∂

∂r
s(r, y) =

eL
2/Λ2

8πΛ2r2

[
erfc

(
L

Λ
+

Λr

2

)
eLr
(
−1 + Lr +

Λ2r2

2

)

+ erfc
(
L

Λ
− Λr

2

)
e−Lr

(
1 + Lr − Λ2r2

2

)]
− e−Λ2r2/4

4π3/2Λr
,

(A.5)
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r
∂

∂r

1

r

∂

∂r
s(r, y) =

eL
2/Λ2

8πΛ2r3

[
erfc

(
L

Λ
+

Λr

2

)
eLr
(
3− 3Lr + L2r2 − Λ2r2

2
+
LrΛ2r2

2

)

+ erfc
(
L

Λ
− Λr

2

)
e−Lr

(
−3− 3Lr − L2r2 +

Λ2r2

2
+
LrΛ2r2

2

)]

+
3e−Λ2r2/4

4π3/2Λr2
,

(A.6)

r2
∂

∂r

1

r

∂

∂r

1

r

∂

∂r
s(r, y) =

eL
2/Λ2

8πΛ2r4

×

[
erfc

(
L

Λ
+

Λr

2

)
eLr
(
−10 + 10Lr − 5L2r2 + L3r3 − LrΛ2r2 +

L2r2Λ2r2

2

)

+ erfc
(
L

Λ
− Λr

2

)
e−Lr

(
10 + 10Lr + 5L2r2 + L3r3 − LrΛ2r2 − L2r2Λ2r2

2

)]

− e−Λ2r2/4(10 + L2r2 + Λ2r2)

4π3/2Λr3
,

(A.7)

L(q; y) =

√
m2 + (1− y2)

q2

4
. (A.8)

In the limit of Λ → ∞ the radial functions reduce to

s(r, y) =
e−Lr

8πL
, (A.9)

∂

∂r
s(r, y) = −e

−Lr

8π
, (A.10)
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r
∂

∂r

1

r

∂

∂r
s(r, y) =

e−Lr(1 + Lr)

8πr
, (A.11)

r2
∂

∂r

1

r

∂

∂r

1

r

∂

∂r
s(r, y) = −e

−LrL(2 + Lr)

8πr
. (A.12)

In the limit of Λ → ∞ and q = 0, in the above expressions, L(q; y) → m.

We can see that the expression reduces to Eqs. (5.8) and (5.9) in Ref. [19]

by taking the limit of q = 0 and Λ → ∞ in the above expression, that

correctly reduces to

1

8πr
[(σ1 · r̂)(σ2 · r̂)(1 +mr)− (σ1 · σ2)] e

−mr . (A.13)
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