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Abstract

Nowadays, the field of wheeled robotics is undergoing an impressive growth and

development. Different hardware and software components are being developed

and applied in various contexts, including assistive robotics, industrial robotics,

automotive, ...

Motion Planning is a fundamental aspect for the development of autonomous

wheeled mobile robots. The capability of planning safe, smooth trajectories, and

to locally adjust them in real-time to deal with contingent situations and avoid

collisions is an essential requirement to allow robots to work and perform activities

in public spaces shared with humans. Moreover, in general, efficiency is a key

constraint for this kind of applications, given the limited computational power

usually available on robotic platforms. In this thesis, we focus on the development of

efficient algorithms to solve different kind of motion planning problems. Specifically,

in the first part of the thesis, we propose a complete planning system for an

assistive robot supporting the navigation of older users. The developed planner

generates paths connecting different locations on the map, that are smooth and

specifically tailored to optimize the comfort perceived by the human users. During

the navigation, the system applies an efficient model to predict the behaviours of

the surrounding pedestrians, and to locally adapt the reference path to minimise

the probability of collisions. Finally, the motion planner is integrated with an

“high-level” reasoning component, to generate and propose complete activities, like

the visit to a museum or a shopping mall, specifically tailored to the preferences,

needs and requirements of each user. In the second part of the thesis, we show how

the efficient solutions and building blocks developed for the assistive robots, can be

adapted and applied also to a completely different context, such as the generation

of optimal trajectories for an autonomous racing vehicle.

This research has received funding from the European Unions Horizon 2020 Research

and Innovation Programme - Societal Challenge 1 (DG CONNECT/H) under grant

agreement n◦ 643644 “ACANTO - A CyberphysicAl social NeTwOrk using robot

friends”.
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1
Introduction

Nowadays, robotics and automation are undergoing an impressive growth and

development. Their application encompasses an endless number of different contexts,

from industrial automation, to assistive robotics, to automotive.

All these applications display a number of different challenges and open problems,

regarding a large number of different research fields. Among them, a fundamental

problem, common to all the various robotic applications, is the capability of the

robot to move autonomously from a certain initial configuration, to reach a dif-

ferent, given final configuration. To accomplish this task, the robot is required to

automatically determine the sequence of movements, i.e. the trajectory, to follow,

considering both environmental and physical constraints. While the formers depend

on the obstacles in the environment and on the geometry of the robot, the latter

are for example kinematic constraints (e.g. the impossibility to turn on the spot

for a car-like vehicle).

The main objective of this thesis is the development of efficient motion planning

algorithms, both to synthesise a global path, and to replan local modifications to

apply on-the-fly in real-time to avoid collisions with unforeseen static and dynamic

obstacles. We propose efficient approaches and solutions, all based on a set of

common and characterising basic algorithms and techniques, composing a set of

building blocks that are adequately adapted and combined together to solve the

different problems at hand.

Specifically, we focus on two different kinds of applications:

1



1.1. Assistive Robotics

• Assistive robotics: path planning with a careful consideration and optimiz-

ation of the comfort and satisfaction perceived by the assisted user. Dynamic

adjustment of the original path to avoid collisions and ensure a safe navigation

in public spaces shared with other people.

• Automotive: synthesis of minimum time trajectories for autonomous racing

vehicles.

1.1 Assistive Robotics

During the last decade, Western societies have experienced an increase in life

expectancies and a simultaneous collapse of birth rates, that have brought to a

rapid ageing of the population (in Figure 1.1 are shown the trend projections of

population pyramids for the years 2020 and 2050). This phenomenon poses a

fundamental challenge to modern societies: guaranteeing older adults an acceptable

level of quality of life, while ensuring the economical sustainability of the National

Health Systems. For these reasons, the concept of “active ageing” has been

developed [1]:

Active ageing is the process of optimizing opportunities for health,

participation and security in order to enhance quality of life as people

age.

Indeed, “active” older people represent an important resource, as they provide

a fundamental support to their families, peers and communities.

However, often a reduction of physical capabilities lead older adults to remain

more and more time at home, causing isolation, depression, reduced fitness and

increased mobility problems [1]. These in turn produce several detrimental effects:

the lack of physical exercise leads often to the development of chronic diseases,

such as diabetes. Moreover, reduced mobility increases the number of falls, that

for older people represent an increasing cause of injury, requiring extended and

costly periods of rehabilitation, and an higher risk of dying. Isolation, due to both

the reduction of mobility, and the lost of family members and friends, leads to a

decline of both physical and cognitive capabilities.

For these reasons, a number of research projects have been developed, to apply

the latest technologies in the fields of both ICT and robotics to assist elder and

2
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Figure 1.1: Trend distribution of population by age in more developed regions
in year 2020 (top) and 2050 (bottom). Data Source: United Nations, World
Population Prospects: The 2017 Revision.
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1.1. Assistive Robotics

impaired people, in order to increase their quality of life, and to give them the

possibility of living and actively ageing in their own homes. Within the field of

assistive robotics, a fundamental role is played by robots assisting the ambulation

and allowing older adults to move autonomously. Indeed, these kind of robotic

platforms represent an effective tool for older people to maintain an acceptable

level of physical and social activity.

1.1.1 ACANTO

ACANTO is an European research project aiming to develop a smart assistive

walker, the FriWalk. Its aim is to spur older users to maintain a good life style, and

to regularly perform physical and social activities. The FriWalk is a tool providing a

complete support to the user, during the execution of social and physical activities,

and capable of assisting users with reduced mobility or cognitive capabilities. Its

development is based on the adaptation of a standard rollator, with the addition of

a sensing system to perceive the surrounding environment, and a set of actuators

to provide it with navigation capabilities. In Figure 1.2 is shown a prototype of

the smart robotic walker FriWalk developed within the ACANTO project.

In the next sections, we provide an overview of the main planning technologies

and algorithms developed within the context of the ACANTO project, that are an

important contribution of this thesis.

In addition to the planning system, other fundamental challenges, that are

beyond the scope of this thesis, had to be solved for the development of a smart

assistive rollator supporting the navigation of older users. In particular, we required

a path following controller capable of sharing the responsibility for the guidance

of the vehicle with the user [2, 3, 4, 5], and a robust indoor localisation system

allowing the robot to know its exact position on the map [6, 7, 8].

Planning System

The planning system is a fundamental software component for a navigation assistive

robot. It is responsible for the planning of activities and tasks at different levels:

• at the lowest level of abstraction, to support older users during the visit of a

public space and the execution of social activities, it is necessary to integrate

the navigation module with a tool capable of generating paths between pairs

4



Chapter 1. Introduction

Figure 1.2: Example of the FriWalk robotic walker developed within the ACANTO
project [9]

of points on the map. The generated paths should be comfortable to follow by

older users with the support of the smart rollator. To determine the best path

to follow, the planning system has to take into account user specific needs and

preferences. To that hand, the ACANTO software infrastructure provides a

shared knowledge base, containing all the information and profiles associated

with each user. During the autonomous robot navigation, or while carrying

an older user along the planned path, it may be necessary to apply local

modifications, to overcome unforeseen events, e.g. the presence of pedestrians

or obstacles hindering the original path. In case of users with reduced

cognitive capabilities, or in situations where the robot is required to move

autonomously between different locations on the map, the navigation system

has to be able to apply local modifications to the reference trajectory, in

order to avoid collisions. Thus, the global motion planner must be integrated

with a reactive planner, capable of handling these scenarios.

• on a higher level, the smart rollator requires a planning system capable of

5



1.2. Automotive

suggesting to the users a complete activity (e.g. visit to a museum, shopping

mall, etc.), considering their requirements and preferences. This requires the

capability of a “high-level”, abstract reasoning. Therefore, together with the

low level motion planner, an high level planner is needed to determine the

best sequence of activities to propose to the user, that will then be refined

into a sequence of paths by the low level motion planning algorithm.

Over the years, many different approaches have been proposed to solve the

motion planning problem for a robot. Given an initial and a final configuration,

the motion planner finds an “optimal” trajectory connecting them, given the kin-

ematic and dynamic constraints of the mechanical platform, and the map with

all the obstacles that must be avoided. Also the problem of planning a sequence

of generic, “high–level” actions to reach a specific goal, given a set of constraints

and preferences, has been studied within the artificial intelligence community, and

interesting solutions have been proposed.

However, for the implementation of a complete activity planning system for

an assistive robot, the adoption of traditional motion planners is not sufficient,

since they do not allow the modelling of tasks (e.g. which places to visit, how long,

in which sequence) and “high–level” user constraints, essential to plan activities

adequate for the user. On the other hand, high-level task planners generate abstract

plans, composed by sequences of complex actions that cannot be directly used by

the controller of the robot. Thus, the output of the task planner has to be refined

into an executable plan. The refined plan consists in a path that must respect

the same constraints and requirements of the original, abstract plan, but also the

physical constraints of the robot.

1.2 Automotive

A large amount of research is focusing on the application of new ICT technologies

and tools for automotive applications. Advanced Driving Assistance Systems such

as collision avoidance, lane keeping and autonomous driving are becoming more

and more popular in modern cars. Some of these features are offered already in

relatively low cost markets segments; it is expected that others will soon be. A

key component for the implementation of these systems is the ability to plan (or

6



Chapter 1. Introduction

re-plan) in a short time a trajectory that satisfies all the dynamic constraints of

the vehicle.

For all these reasons, different problems regarding different automotive applic-

ations have been studied with increasing interest during the last years. One of

them, becoming more and more relevant, is the automatic driving of cars at their

limits, i.e. for autonomous racing. In Figure 1.3 is shown an example of a fully

autonomous racing car, the Roborace Robocar.

Figure 1.3: The Roborace autonomous racing car: Robocar [10]

In this context, the motion planning problem consists in the determination of

the optimal trajectory to follow, minimizing the overall travel time. Within this

thesis, we show how it is possible to adapt and reuse the same basic building blocks

applied for the solution of planning problems in the field of assistive robotics, and

to combine them with other efficient techniques, in order to solve the problem

of trajectory optimization for racing cars. We show how to apply the same kind

of motion primitives (based on clothoid curves), and to decompose the original

problem into a geometric and a trajectory optimization subproblem. Finally, we

propose a complete solution for the generation of the minimum time lap on a given

racing track. In addition, we develop a solution for the efficient online, real-time

7



1.3. Structure of the Thesis

local replanning and modification of the global trajectory to overcome unforeseen

obstacles.

1.3 Structure of the Thesis

The thesis is organised as follows. Chapter 2 introduces background knowledge

and definitions on motion planning. Then, Chapter 3 presents a detailed literature

review on the different kind of planning problems tackled by this thesis. Following,

Chapter 4 contains a description of clothoid curves, a family of curves that we

adopt as the basic motion primitives composing the paths that are generated by all

the motion planning solutions proposed in this thesis. We propose a set of relevant

problems involving these curves, together with efficient solutions for each of them.

The remainder of the thesis is organised into two different parts.

The first part deals with the development of a complete planning solution

for assistive robotics applications. In Chapter 5, we present an efficient solution

for the generation of a smooth path specifically tailored to optimize the comfort

perceived by the human during the navigation with the support of the assistive

rollator. In Chapter 6, we develop a reactive planning solution, capable of locally

adjusting the global reference path during the navigation, to avoid collisions with

unforeseen static obstacles, and with the surrounding, moving pedestrians. To

develop a solution both safe and efficient, we apply and approximate a model of

human walking behaviour, the Headed Social Force Model, to determine the best

local modification to apply, minimising the probability of collision while trying to

minimise the amount of deviation from the original path. In Chapter 7, we show

to integrate the global and reactive planning solutions developed in the previous

chapters with a task planner providing high-level, abstract reasoning capabilities, to

generate and propose to the user complete activities such as the visit to a museum

or a shopping mall. These activities are synthesised considering the requirements,

needs and preferences specific for each user.

The second part of the thesis, on the other hand, is focused on the application

of the same efficient algorithms developed and applied in the first part of the thesis,

and founded on the use of clothoid curves as the basic motion primitives, to generate

time optimal trajectories for a racing vehicle on a track. In Chapter 8, we illustrate

efficient solutions to compute the optimal manoeuvre for a given path composed

8



Chapter 1. Introduction

of clothoid curves, explicitly considering a model of the vehicle with non–linear

dynamics, aerodynamic drag effects, bounds on the control and constraints on the

acceleration and speed. In Chapters 9 and 10, we show how to efficiently combine

the solutions to the geometric and dynamic sub-problems, i.e. efficient generation

of a path composed of clothoid arcs connecting two configurations, and efficient

computation of the optimal manoeuvre, to generate the optimal trajectory on a

given racing track, and to locally re-plan the reference trajectory in the presence of

unforeseen obstacles along the way in real-time.

1.4 Scientific Contributions and List of Publications

This thesis proposes several contributions to the state-of-the-art in the field of

motion planning, regarding different scopes and applications. In this section,

we provide an overview of the main contributions of the thesis, and the list of

peer-reviewed publications relevant for each of these contributions.

1. The development of an efficient motion planning solution for assistive robots,

mainly focused on the optimization of the comfort perceived by the human

users. This work has been presented and published at the IEEE Conference

on Control Applications (CCA), 2016 [11].

2. The development of an efficient solution to reactively adjust the reference path

during the navigation of an environment shared with other humans, through

an efficient modelling of candidate human trajectories and an analytical

computation of the probabilities of collision. This work has been presented

at the IEEE International Conference on Robotics and Automation (ICRA),

2018, and has been published on the IEEE Robotics and Automation Letters

(RA-L) [12].

3. The development of an activity planner, focused on the close collaboration

of the high-level reasoning component with the low-level global and reactive

planning modules, to generate optimised activities tailored on the specific

constraints, preferences and requirements of the user. The low-level planning

components are then used to refine the high-level sequence of tasks composing

an activity, to a sequence of paths that the user can follow with the support of

9



1.4. Scientific Contributions and List of Publications

the assistive rollator. This work has been submitted to the IEEE Transactions

on Industrial Informatics (TII), and is still undergoing the review process [13].

4. The extension and adaptation of the efficient building blocks developed for

the motion planning for assistive robotics, and its application to determine

the optimal trajectory for a racing vehicle on a track. Part of this work has

been presented and published at the 55th IEEE Conference on Decision and

Control (CDC), 2016 [14].

5. The development of an efficient solution for the local replanning of the optimal

trajectory for a racing vehicle moving on a track, to avoid new, unforeseen,

obstacles. This work has been presented and published at the IEEE European

Control Conference (ECC), 2018 [15].

10



2
Background

In this chapter we will provide all the definitions and background knowledge relevant

for this thesis.

2.1 Motion Planning Definitions

World The representation of the space where the robot and the obstacles lie.

Usually, the world is either 2D (R2) or 3D (R3). The world is denoted by the

symbol W .

Robot From the perspective of motion planning, a robot is seen as a physical

body modelled geometrically, and that can be controlled via the motion plan. The

pose of each joint composing the robot can be expressed using a set of parameters.

The set of all the parameters determining the global state of the robot is known as

its configuration. In general, a robot has associated some constraints limiting the

set of feasible configurations. Notice that with this definition, a robot in terms of

motion planning may not be an actual robot, but it could model any collection of

moving bodies, and could be applied also for different applications, e.g. simulation

of humans in virtual reality, molecules, etc. The rigid body associated with a robot

is usually denoted by A.

Obstacles Obstacles represent physical bodies that are occupying some portions

of the world, therefore rendering some robot configurations unfeasible. For example,

11



2.1. Motion Planning Definitions

obstacles may models walls, furniture, etc. Usually, the set of rigid bodies associated

with the obstacles are denoted by B1, . . . ,Bn.

Configuration Space In general, motion planners do not search a path directly

in the world space W , but they work on the configuration space, that is the space

of all the possible parameters for the different configurations of a robot. This space

is usually denoted as C. Moreover, letW = Rm represents the world space, O ⊂ W
the obstacle region, A(q) ⊂ W the region of the world occupied by the robot while

in configuration q ∈ C, then we define:

Cfree = {q ∈ C | A(q) ∩ O = ∅}

and

Cobs = C \ Cfree

Path A path in the configuration space is a continuous function τ such that:

τ : [0, 1]→ C

In addition, if τ lies entirely in the free configuration space, i.e.

τ : [0, 1]→ Cfree

then τ is a collision-free path

Motion Planning Problem Given the initial configuration of the robot

qI ∈ Cfree, the goal configuration of the robot qG ∈ Cfree, the free and obstacle

configurations spaces Cfree and Cobs, the motion planning problem requires to find a

collision-free path τ such that τ(0) = qI and τ(1) = qG (see Figure 2.1).

Trajectory Let’s define a time parametrisation of a path as a strictly increasing

function

s : [0, T ]→ [0, 1]

12



Chapter 2. Background

Figure 2.1: The motion planning problem consists in finding a path connecting the start
with the goal within the Cfree space.

with s(0) = 0 and s(T ) = 1, that gives the position on the path for each time

instant t ∈ [0, T ].

A trajectory Π is a path τ endowed with a time parametrisation s

Π : [0, T ]→ C

where Π(t) = τ(s(t)).

2.2 Motion Planning Algorithms

In [16], it has been shown that the motion planning problem is PSPACE-hard.

In the literature, there exist several solutions that are correct and complete to

solve the motion planning problem. Unfortunately, for all of these algorithms,

the computational complexity is exponential with respect to the dimension of

the configuration space [17, 18]. Over the years, various different algorithmic

approaches have been proposed to solve real-life problems in reasonable amounts of

time. Different notions of completeness can be applied to different kind of motion
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planning algorithms. A complete algorithm guarantees that it will be able to find a

solution to the problem, if a feasible solution exists. Weaker notions of completeness

are resolution completeness, i.e. the guarantee to find a feasible solution, when one

exists, up to the resolution of the discretization, and probabilistic completeness, i.e.

the guarantee that if a problem is feasible, a solution will be found with probability

one when the running time tends to infinity.

In general, motion planning algorithms are classified into two main different

families, distinguished by the way in which the configuration space is modelled:

• combinatorial: explicit representation of the configuration space.

• sampling based: implicit representation of the configuration space.

Combinatorial Motion Planning

Combinatorial Motion Planning algorithms are based on an explicit representation

of the free configuration space Cfree. These kind of algorithms seeks to identify and

model the topology of Cfree and Cobs. Usually, the configuration space is represented

as a graph, named “roadmap”, where nodes represent regions connected regions

of Cfree, and edges model the connectivity between adjacent regions. The explicit

representation of Cfree renders combinatorial motion planning algorithms complete,

i.e. if a problem is feasible, in the end the algorithm will produce a valid solution.

However, this kind of algorithms are computationally extremely expensive (due to

the inherently high complexity of motion planning), and are therefore applicable

only to small, low dimensional problems. Among this class of algorithms, common

solutions inspired from computational geometry are the vertical cell decomposition

approach, the visibility graph approach and the maximum clearance approach

(based on the construction of a Voronoi diagram).

For practical applications, to reduce the computational times, some approxim-

ated solutions have been developed. These approaches are based on a discretised

representation of Cobs, with some given resolution. Among them, quite popular is

the quad-tree decomposition approach (for 2D worlds, in 3D worlds oct-tree are

used instead). The discretization of the configuration space renders this family of

planners resolution complete, meaning that they are guaranteed to find a solution if

the problem is feasible and does not require the path to pass closer to any obstacle

than the chosen resolution.

14



Chapter 2. Background

Sampling Based Motion Planning

Sampling Based Motion Planning algorithms, on the other hand, are based on

an implicit representation of the configuration space. In general, sampling based

algorithms incrementally explore the configuration space by sampling configurations

within Cfree, and by connecting them to build graphs or trees of feasible paths. In

general, since sampling based algorithms do not consider explicitly the configuration

space, the task of determining whether a given configuration or path connecting

two configurations is collision-free is delegated to a black-box collision detection

module. For complex configuration spaces, the collision detection is in general

one of the main bottlenecks for this family of algorithms. For this reason, usually

extremely efficient data structures are adopted, and approximated, conservative

approaches are applied to produce solutions with acceptable computational times.

Sampling based algorithms can be classified into two different families:

• Single-query: the algorithm needs to compute just a single path between

a start configuration and a goal configuration. Therefore, this family of

algorithms are mainly focused on exploring the regions of the configuration

space that are of interest for a particular instance of the problem. Among

single-query algorithms, popular solutions are based on the Rapidly-Exploring

Random Tree (RRT) approach [19], that is probabilistically complete. An

important extension of RRT, named RRT* [20], in addition to probabilistic

completeness, guarantees also probabilistic optimality, meaning that, as the

running time tends to infinity, the produced solution will converge to the

optimum with probability one. To achieve this result, differently from the

classical RRT algorithm, RRT* dynamically updates and “rewires” some

subtrees of the current search tree, whenever shortest paths are found.

• Multi-queries: the algorithm is required to solve many queries between

different pairs of configurations on the same configuration space. Thus, to

improve the efficiency when answering queries, an expensive preprocessing

phase is applied, to explore the whole configuration space and to generate

a roadmap of feasible paths, trying to approximate the connectivity of Cfree.

Among multi-query algorithms, the most populares are based on probabilistic

roadmaps (PRM) [21, 22].
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3
Related Work

In this chapter, we present state-of-the-art research related with the different

kinds of planning problems that we are required to solve to produce the planning

system for an assistive robot, and for the generation of time-optimal trajectories for

autonomous racing cars. The various problems solved within the thesis are quite

heterogeneous, and are therefore related with different research communities and

different relevant literature. The remainder of this chapter, therefore, is organised

in four different sections, covering the different families of problems tackled in

the thesis. More in details, the first section is dedicated to the global motion

planning, and focuses on existing algorithms to produce smooth and comfortable

paths between pairs of given robot configurations. The second focuses on recently

emerging trends in the field of “human-aware” motion planning, i.e. effective

strategies to navigate a robot in environments populated by humans. The third

section focuses on high-level reasoning techniques, dealing with the selection of

an optimal subset of point of interest to visit on an abstract representation of the

environment, given some specific constraints. Finally, the fourth section deals with

the generation and dynamic adjustment of optimal time manoeuvres for racing

vehicles.

3.1 Motion planning in static environments

The motion planner on board of the FriWalk is required to generate a collision-free,

smooth path that is optimised and tailored to be comfortably followed by an human

during the assisted navigation of a public space. Therefore, the generated path
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should be short and smooth at the same time (i.e. avoid abrupt changes of direction

and minimize lateral accelerations).

In literature, there are various solutions to generate smooth paths for nonholo-

nomic, wheeled robotic vehicles but, in general, they are not focused on assistive

robots, and are not modelling comfort indexes related to human users. These

solutions can be roughly classified into two different categories.

On one hand, a large number of approaches are based on the decomposition

of the problem into two distinct sub-problems, i.e. the generation of an initial

“guess” solution ignoring the nonholonomic constraints, by using simple motion

primitives (e.g. straight line segments) to connect the starting position with the

goal, and on the successive refinement and smoothing of the path by means of

more complex, smoother curves, such as Bezier splines, to achieve solutions with

continuous tangent (G1-splines) or even curvature (G2-splines). The first problem,

that is the generation of a simple path (i.e. a sequence of waypoints) connecting

the starting position with the goal, can be solved using standard combinatorial

based or sampling based motion planning algorithms (see Chapter 2). Regarding

the second problem, i.e. the generation of a smooth path starting from a sequence

of waypoints, common approaches are based on their interpolation or fitting using

Bezier curves or polynomial splines [23, 24], or on the simulation of a vehicle moving

along the sequence of waypoints to obtain a smooth solution [25].

On the other hand, alternative approaches are based on the direct generation

of smooth paths during the exploration of the configuration space and the search

for a feasible route connecting the start location with the goal. A possible solution

is based on the direct application of sampling based motion planning algorithms

such as RRT and RRT* [26, 27, 28, 29, 30], that allow the use of complex motion

primitives during the construction of the search tree. While these approaches

allow the direct generation of a smooth, feasible solution, the direct application of

complex motion primitives that are computationally costly to generate, renders

these kind of approaches applicable only for small problems and simple motion

primitives, or for problems where higher computational times are acceptable. To

reduce the computational cost deriving from a direct application of complex motion

primitives, another widespread approach is based on the discretisation of the search

space, to produce a lattice of configurations that are connected by a discrete set of

precomputed motion primitives [31, 32, 33, 34].
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While all of these solutions are capable of producing smooth G1 or even G2

continuous paths, that can be followed by a nonholonomic robot, they do not

explicitly take into account the comfort perceived by a human user following the

path that, as shown in Chapter 5, is related with the overall jerk. Moreover,

solutions relying on the direct application of complex motion primitives, while

being more robust and guaranteeing the feasibility of the generated path, often

require elevated computational times, that are not applicable for our purposes.

Indeed, for our motion planning system to be applicable on a robotic assistant for

an elder user performing a social activity within a public space, the generation of a

valid solution should take a few seconds at worst.

3.2 Socially acceptable navigation in human populated environ-

ments

Given the importance of being able to avoid unforeseen static and moving obstacles

to develop robots capable of navigating autonomously in a public environment,

over the years an increasing number of solutions have been developed, to tackle

this problem in different scenarios and under different assumptions. Since we are

dealing with assistive robotics applications, our robot is moving mainly in public

spaces, so usually dynamic obstacles correspond to other pedestrians moving in the

same area. In general, through the sensing system available on board of the robot,

it is possible to determine the position and velocity of surrounding humans quite

accurately. Unfortunately, it is not possible to know in advance their intentions

and goals. Therefore, usually, the predicted future state for each nearby pedestrian

is modelled as a random variable, associated with a certain probability distribution.

We discuss now some solutions that are relevant and related to this problem. In [35],

the reactive avoidance problem is formalised as a chance constrained optimisation,

and an efficient, approximated solution is proposed. However, this approximation

is valid for “small” robots and Gaussian distributions of the uncertainties on the

obstacle future positions. In [36], the set of velocities causing a collision with

an obstacle before a given time is determined. Other solutions are based on the

construction of a probabilistic occupancy map, and on the search of a safe path using

Probabilistic Roadmaps [37]. While these solutions try to model in probabilistic

terms the future states of surrounding obstacles, none of the mentioned techniques
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take explicitly into consideration the fact that these moving obstacles are actually

humans, and therefore that it would be possible to apply existing human motion

models to obtain more accurate predictions of their behaviours.

More directly related to our approach, based on an explicit consideration of

human motion, are solutions that model the trajectory followed by pedestrians in a

specific environment as Gaussian Processes [37], interactive Gaussian processes [38]

or Hidden Markov Models [39]. The probabilistic information on the future position

of the obstacles is used in different ways to find probabilistically safe trajectories.

In this line of work, a large number of prior observations in a specific environment

is used to fit the model parameters. For example, Risk-RRT [40] is based on the

modelling of possible trajectories using a mixture of Gaussian Processes, and on the

search of the solution using an adaptation of the RRT path planning algorithm [19].

The disadvantage of this kind of solutions is that they are applicable only to the

specific scenarios for which the probabilistic model has been constructed (e.g. a

corridor, a room, etc.). Whenever a different scenario has to be tackled, a new

dataset of observations has to be constructed and used to produce a new, effective

model. Our efforts are toward solutions that are more generally applicable and not

bound to some specific scenario.

More accurate models describing human motion are considered in a different

line of papers [41, 42]. The idea is in these cases to use Monte Carlo simulations

to predict the future positions of the obstacles. This solution comes at the cost

of a non-negligible computation time, which could potentially compromise the

possibility of a real-time execution.

Besides, none of these solutions take into explicit consideration the smoothness

of the path followed by the robot. Since in our context the synthesised path has

to be followed not only by the robot, but also by the assisted human, an explicit

consideration of the comfort perceived by the user is required while applying local

adjustments to the global, reference path.

Furthermore, a correct understanding of how people move in a crowded envir-

onment is key to the reactive planner presented in this thesis. The widely known

Social Force Model (SFM) [43] assumes that a person is supposed to be able to

move freely in any direction at any time, acting like a mass particle subjected

to external forces. On the contrary, empirical evidence shows that, most of the

time, pedestrians tend to move forward, i.e. their velocity vector is most often
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aligned with their heading, due to the biomechanics of humans. This phenomenon

has been observed by several studies [44, 45, 46], which come to the conclusion

that a nonholonomic model, e.g. unicycle-like or car-like models, may be more

appropriate to describe human motion. The adoption of such models gives a nice

interpretation of the mechanism underlying the formation of human trajectories,

i.e. the minimisation of the derivative of the path curvature, the jerk [45]. In [47]

the Headed Social Force Model (HSFM) is proposed to enhance the traditional

SFM by explicitly accounting for the pedestrians’ heading and thus retrieving the

smoothness of the trajectories.

3.3 Activity Planning: linking high and low-level planning

The objective of the activity planner installed on the FriWalk is to determine, given

the constraints, preferences and requirements of the user, a sequence of goals to

visit, to maximize the value of the proposed activity. A strict interaction with the

motion planner is fundamental for a correct characterisation of the properties and

physical parameters associated with each action composing an activity.

Therefore, our activity planning problem bears important similarities with a

family of optimisation problems known as Multi-Goal Path and Motion Planning.

The objective of these problems is to determine the optimal path visiting a given set

of goal locations. Existing solutions are based on the reduction of the problem to a

Travelling Salesman Problem, solved exactly for small problems, or approximatively.

For example, in [48], a Minimum Spanning Tree greedy approach is employed,

and the edges of the tree are iteratively refined by lower-level motion planners

until they become feasible. Other solutions presenting a strong synergy between

high-level logical reasoning and low-level dynamic motion planning are applied

in the literature for various applications, e.g. in [49] a multi-layered approach is

adopted for the planning for ground and flying robots with consideration for the

vehicles’ dynamics.

Another family of planning and optimisation problems related to the activity

planner are the Partial Satisfaction Planning (PSP) [50], the Orienteering Problem

(OP) [51], and in particular the Tourist Trip Design Problem (TTDP), whose ob-

jective is to determine a subset of the available points of interest to visit according

to the preferences of the tourists, in order to maximise their satisfaction, given an
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upper bound on the overall duration of the activity. Most state-of-the-art techniques

to solve the Orienteering-Problem and its variants are based on the application of

metaheuristic optimisation algorithms [52]. A rather complete survey on variants

of the TTDP and possible solutions can be found in [53]. Unfortunately, to the best

of our knowledge, there exist no solutions in literature capable of handling the kind

of optimisation problems required by the activity planning system that we seek to

develop, involving multiple probabilistic constraints. Indeed, the TSP is focused

on the visit of all the nodes of the graph minimising the overall distance, whereas

we are interested in maximising the total score achieved by visiting only a subset

of the nodes that meet the user preferences, given deterministic and stochastic

constraints. Most of the existing TTDP solutions handle exclusively deterministic

constraints, others consider just a single stochastic bound. This represents a large

limitation of these metaheuristic approaches, rendering them unsuitable to tackle

the activity planning problem that we are required to solve, involving the effective

handling of a number of probabilistic constraints.

Up to now, we have presented main research trends and relevant literature

concerning the different problems that we have to face in order to develop a complete

planning framework for assistive robotics. The remainder of this chapter, instead,

deals with existing state-of-the-art research in the field of time-optimal trajectory

planning for autonomous racing cars, that is the main focus of the second part of

the thesis.

3.4 Time-optimal trajectory planning for racing cars

In his famous work Dubins [54] set the stage for the solution of path planning

problems for vehicles moving at constant speed, with limited curvature radii and

described by a kinematic model. More recently, Sanfelice et al. [55] applied the

Pontryagin Maximum Principle to generalise Dubins results. Despite the recognised

importance of these contributions, their applicability is limited in all cases in which

dynamic effects, acceleration bounds and slipping constraints cannot be neglected

(e.g., high speed vehicles or aggressive manoeuvres).

Several different techniques have been developed capable of effectively taking

into account dynamic effects while optimising the global trajectory on a given
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racing track. These techniques can be roughly classified into two different categories.

On one hand, many solutions are based on the application of complex nonlinear

optimisation tools and on the formalisation of the problem as an optimal control

or as a geometric optimisation problem. On the other hand, we find solutions

based on a direct, incremental exploration of the configuration space, inspired and

adapted from the classical path planning algorithms presented in Chapter 2.

When modelling the minimum lap time problem as an optimal control (OCP),

dynamic equations governing the motion of the system are translated into con-

straints to satisfy. The solution of the obtained OCP can be based both on indirect

or on direct methods. Indirect methods are based on the Pontryagin Maximum

Principle [56], giving the necessary conditions for optimality, that are translated

into a set of differential equations with boundary conditions. The resulting problem

is therefore a two-points boundary value problem (TPBVP), associated with a

cost functional to optimise, and can be solved using several numerical techniques.

Solutions based on this approach can be found for example in [57, 58, 59, 60]. On

the other hand, direct methods are based on the direct translation of the OCP

into a discrete, constrained nonlinear programming problem (NLP), solved by

standard numerical algorithms. Solutions based on a direct method are presented

in [61, 62], while [63] reports a detailed comparison between the two methods.

The major drawbacks of this kind of tools is the difficulty in the set-up, in the

selection of the different parameters, and the lack of any convergence guarantee.

In addition, this approaches lack the flexibility to easily model more complex

scenarios, for example the presence of an obstacle along the way, that introduces

a non-convex, binary choice in the optimisation problem, i.e. on whether to pass

on the left or right side. Therefore, over the years, also different and alternative

approaches have been developed, based on the fast generation and selection of

feasible kinematic trajectories with a direct search over the configuration space,

using and adapting classical path planning search algorithms, such as RRT or

RRT* [64, 26, 20], and by incorporating information on the dynamic properties

and constraints [65, 66, 67, 68, 69]. The main weaknesses of these approaches are

the elevated computational times required to yield a solution of high quality, and

the necessity of sampling and efficiently determining nearest sets of configurations

in non-metric and non-smooth spaces.

Regarding the real-time update of the reference trajectory in response to
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unexpected mutations of the environment (e.g. the presence of an unforeseen

obstacle), in general, a hierarchical two-level scheme is applied. On the higher

level, a path planner determines the adjustments to the reference path and, then,

a low level tracking controller is employed to follow this path[70, 71, 72]. The

main drawbacks of these kind of approaches is that either they apply a simple

vehicle model to reduce the computational time or, otherwise, they require too high

computational resources to be computed on board of the vehicle in real-time, and

are therefore not well suited for autonomous racing. Other approaches, where a

one-level scheme is applied, and obstacle avoidance and control are solved together,

are for example [70, 73], where the problem is modelled as an NLP, but the solution

requires prohibitively long solve times, or [74], that achieves low compuational

times and is therefore applicable for real-time applications, but it assumes to know

in advance on which side the obstacle should be overtaken, that is quite a strong

assumption. In addition, a hierarchical Model Predictive Control (MPC) solution

has been applied to control miniature racing cars and avoid obstacles lying on the

lane [75].
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Part I

Assistive Robotics Applications
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Introduction

The first part of the thesis focuses on the different kind of low and high-level planning

problems that we are required to solve for the development of a complete planning

system for an assistive robot. The following diagram illustrates the different

interacting components that are part of the software infrastructure deployed on

the robotic rollator to provide it with navigation assistance capabilities.

Activity Planner

Global
Motion
Planner

Reactive
Replanner

Low-Level 
Navigation support

Robot Navigation

High-Level
Activity Selection

Robot Control and
Perception

Robot Controller
HMI Robot Perception

Knowledge Base
User Profiles

Enviroment Data

Low Level

From a bottom-up perspective, at the lower level, the robotic vehicle has been

equipped with a sensing and actuation system, to allow it to localise itself within a
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known environment, and to navigate autonomously or in cooperation with the user.

While this part of the research is outside the scope of this thesis, we will provide a

brief description of the general principles and choices that have been made during

the development of the assisitive robot. The localisation of the vehicle during the

navigation is performed by means of a camera mounted in front of the vehicle,

and a set of visual markers (QR codes) placed on the ground, whose absolute

coordinates are known and used, together with odometry data obtained from

optical encoders mounted on the wheels, to yield highly accurate self-positioning

information. Regarding the actual robot navigation, different guidance solutions

have been developed, with main focus on the effective sharing of authority between

the assistive walker and the elder, that, depending on his cognitive capabilities, can

be given more or less authority and freedom during the execution of the navigation

task.

At the intermediate level of the software infrastructure we find the low-level

planning components, i.e. the motion planning and the reactive planning modules.

The motion planning takes as input the known map of the environment, the initial

position of the robot and the desired goal destination, and generates a collision free,

safe path specifically tailored to be comfortably followed by an human. The aim of

the reactive planner, on the other hand, is to locally and dynamically adjust the

global path generated by the motion planner on real-time during the navigation, to

cope with unforeseen external factors that render the execution of the original plan

infeasible. The state of the surrounding environment is provided by the low-level

sensing system, and contains information on the position of static obstacles and

position and velocity of approaching pedestrians. Through this information, the

algorithm is able to monitor the risk of collision with the surrounding obstacles

while moving along the reference path. Whenever the probability of an accident

exceeds a certain threshold value, a local replanning is applied, to adjust the

reference trajectory and render it safe again.

Common building blocks

All the different kind of motion planning problems that we are required to solve,

share some common core building blocks, depicted in the following diagram, that

are integrated and combined together in different ways, depending on the specific
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problem at hand.

Geometric
Module

- Geometric interpolation
- Spline manipulation

Collision Detection
Module

- Model of the environment
- Efficient test for collision of
  splines/paths

Optimisation
Module

- Efficient cost computation
  for splines/paths

Firstly, we need an effective way to generate, manipulate and adjust (portions

of) a geometric path to be followed by the robot. Secondly, once a geometric

path has been computed, the planning algorithm needs to check whether the path

is feasible, i.e. whether there are no collisions with any of the known obstacles.

Thirdly, to produce an “optimal” solution, once a path has been synthesised, we

need some efficient way to evaluate its quality/cost, depending on the properties of

the path that are of interest for the specific problem under consideration.

For the purposes of this thesis, we employ a well known family of curves as the

basic motion primitive composing all the paths synthesised and manipulated by

the different developed algorithms, i.e. clothoid curves. The main functionalities

exposed by the geometric module are the capability of smoothly interpolating pairs

of robot poses with G1 or G2 continuity. Concerning the collision detection module,

it has to provide an effective way to represent the boundaries of the environment

and the obstacles within, and, when queried with a geometric path, to determine

whether it lies entirely within the boundaries of the map and is not in collision

with any obstacle. Since this operation may be performed many times while the

motion planning algorithm explores the environment and produces a large number

of candidate paths, the computational efficiency of the developed solution is of

fundamental importance and plays a fundamental role in the performance of the

planning system. The third module, responsible for the evaluation of the path

score, is instead dependent on the specific problem at hand: for the generation of

the global path, the score depends on the comfort perceived by the user, that is a

function of both the length and the overall smoothness (related with the jerk) of

the path. On the other hand, within the reactive replanning module, that has to

determine the best adjustment to apply to the reference path, the cost assigned

to each alternative path depends both on the probability of collision and on the

amount of deviation from the reference.
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High Level

At the top level of the depicted software architecture lies the activity planner.

It works on an abstraction of the environment, that is represented as a graph,

with nodes corresponding to known attractions and points of interest, and edges

corresponding to connections between this locations. Therefore, each edge maps

to a specific navigation action between a pair of points of interest, and is thus

associated with some random variables modelling in probability physical properties

associated with that specific action (e.g. travel length, travel time, ...), that are

characterized by means of a large number of simulations run on the map of the

environment (and adjustable with real data collected during the execution of these

actions).

The next chapter of the thesis provides a detailed explanation of the different

algorithms and strategies developed to build the geometric and collision detection

modules, that are the main building blocks on which the low-level global and

reactive planning algorithm are based. Then, the successive three chapters of the

thesis present an extensive description and formalisation of the main components

characterising the assistive robotics planning architecture (i.e. the motion planner,

the reactive replanner and the activity planner), and a discussion of the developed

solutions and algorithms, supported by an extensive experimental validation.
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4
Clothoid Curves

This chapter is devoted to review the definition and properties of clothoid curves,

that are the basic motion primitives adopted for all the developed global and

local motion planning algorithms. Based on the recent developments and new

state-of-the-art algorithms to efficiently solve different kind of problems involving

the interpolation of clothoids with different constraints, appropriate strategies and

solutions have been applied to integrate and apply these curves to solve different

kinds of motion planning problems.

A clothoid, known also under the names of Euler spiral and Cornu spiral, is a

curve in the plane with the property that the curvature varies linearly with respect

to the arc length.

A clothoid arc can be represented as a parametric function of the arc-length s

via the Fresnel Integrals [76], and is characterised by six real parameters: (x0, y0),

the initial point, θ0, the initial angle, κ, κ′ the curvatures and the length L. The

space coordinates of a point on the clothoid at arc-length s, the corresponding

angle and curvature are given by:

x(s) = x0 +

∫ s

0

cos

(
1

2
κ′t2 + κt+ θ0

)
dt (4.1)

y(s) = y0 +

∫ s

0

sin

(
1

2
κ′t2 + κt+ θ0

)
dt (4.2)

θ(s) =
1

2
κ′s2 + κs+ θ0, (4.3)

k(s) = κ′s+ κ. (4.4)
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Figure 4.1: An example of a clothoid arc and its parameters.

By using the Fresnel Generalised Integrals, defined as:

Xj(a, b, c) =

∫ 1

0

τ j cos
(a

2
τ 2 + bτ + c

)
dτ,

Yj(a, b, c) =

∫ 1

0

τ j sin
(a

2
τ 2 + bτ + c

)
dτ,

and given the following identities, obtained by a simple change of variables:∫ s

0

τ j cos
(a

2
τ 2 + bτ + c

)
dτ = s1+jXj(as

2, bs, c),∫ s

0

τ j sin
(a

2
τ 2 + bτ + c

)
dτ = s1+jYj(as

2, bs, c),

equations (4.1) and (4.2) can be rewritten as:

x(s) = x0 + sX0(s2κ′, sκ, θi)

y(s) = x0 + s Y0(s2κ′, sκ, θi).

In Figure 4.1 is shown an example of a clothoid arc and its parameters.

4.1 Computational Issues

The dependence on the Fresnel Generalized Integrals for the definition of the

parametric equations of a clothoid arc in equations (4.1) and (4.2) renders it

difficult to efficiently solve a number of interesting problems involving this family

of curves. For these reason, a number of different works has been developed to find

computationally efficient and numerically robust solutions to these problems. The
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remainder of this section is devoted to the presentation of some of these problems

involving clothoid curves that are relevant for motion planning applications, and

that are used in different ways to solve the various planning problems presented

in the next chapters of this thesis. An open source library implementing all the

algorithms and efficient solutions discussed in this chapter is available online, at [77].

4.1.1 G1 and G2 Hermite interpolation problems

G1 Hermite interpolation problem The G1 Hermite Interpolation Problem

requires to find the clothoid arc interpolating a given initial position (x0, y0) and

orientation θ0 with a given final position (x1, y1) and orientation θ1. More formally,

we need to solve the following system:

x′(s) = cos θ(s), x(0) = x0, x(L) = x1,

y′(s) = sin θ(s), y(0) = y0, y(L) = y1,

θ′(s) = k(s), θ(0) = θ0, θ(L) = θ1,

where L > 0 is the total length of the curve. An efficient, numerically robust solution

to this problem is discussed in [76]. The paper shows how this problem can be

solved with a single clothoid curve. The problem is thus to find the three unknown

parameters κ, κ′ and L of this curve, and is solved by reducing the original nonlinear

system of three equations and three unknowns to a single nonlinear equation. A

root of this nonlinear equation is found using the Newton-Rhapson technique; with

the good initial guess proposed in the paper, convergence is achieved in at most

four iterations (with a tolerance of 10−10). The found solutions can finally be used

to compute the three unknown parameters.

G2 Hermite interpolation problem The G2 Hermite Interpolation Problem

requires to find the clothoid arc interpolating a given initial position (x0, y0),

orientation θ0 and curvature κ0 with a given final position (x1, y1), orientation θ1
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and curvature κ1. More formally, we need to solve the following system:

x′(s) = cos θ(s), x(0) = x0, x(L) = x1,

y′(s) = sin θ(s), y(0) = y0, y(L) = y1,

θ′(s) = k(s), θ(0) = θ0, θ(L) = θ1,

k′(s) = u(s), k(0) = κ0, k(L) = κ1,

where L > 0 is the total length of the curve and u(s) is a piecewise constant function

to be determined that can be interpreted as a control variable, representing the

κ′ parameter associated with each clothoid curve composing the solution. Indeed,

differently from the G1 interpolation problem, the G2 cannot generally be solved

with a single arc, but instead requires up to three arcs. In [78] a numerically robust

and efficient solution to this problem is proposed. The original nonlinear system

is composed by eight equations and ten unknowns, but for the computation of a

solution it is reduced to a system of two equations with four unknowns, solved with

just a few iterations of Newton-Rhapson. The system is underconstrained, but the

feasibility of the problem is strictly dependent on the correct choice of the two free

parameters. Thus, a relevant part of the paper is dedicated to the analysis of the

correct selection of the values for these parameters.

4.1.2 Intersection of clothoid arcs

Another fundamental issue to adopt clothoid curves as the basic motion primitives

for motion planning applications, is the problem of efficiently determining the

intersection between pairs of clothoid arcs, and between clothoid arcs and other

geometric primitives, such as line segments or polygons. The computation of

intersections involving clothoid curves is a challenging task. Indeed, clothoids are

spiral curves revolving around the point at infinity. For this reason, the direct

application of the Newton-Rhapson method to determine intersections may fail; for

example, depending on the initial guess, it may converge to a wrong solution, or,

in the presence of multiple solutions, some of them may get undetected. Moreover,

the repeated application of Newton methods from a large number of different initial

points along the curve is computationally heavy. For these reasons, an efficient

solution to this problem is based on a first decomposition of the curve into smaller

subcurves with constant curvature signs; each of them is then inscribed into a set
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of triangles. The original problem is thus simplified to an intersection between

triangles: if a triangle of the first curve overlaps a triangle of the second curve,

then the Newton method is applied only on the corresponding subarcs. Often

we are required to test for intersection pairs of clothoid splines, i.e. sequences of

clothoid arcs joining with G1 or G2 continuity. In these circumstances, the number

of subarcs resulting from the decomposition may be quite large, so, to speed up

the computation, it is convenient to organise the resulting set of triangles into a

hierarchical spatial partitioning data structure.

Triangle construction

To inscribe a clothoid arc into a triangle, first it must be split into subarcs with

constant curvature sign, so that each of them is convex or concave. Notice that, each

clothoid arc can have at most one change of sign in the curvature, for s = −κ/κ′.
If s ∈ [0, L], i.e. the inflection point lies within the arc, a split is applied at this

point to obtain two clothoid subarcs.

Each of the clothoid subsegments satisfying the constraint on the curvature

sign has to be furtherly split into subarcs such that the travelled angle is less than

a chosen parameter αmax. To enclose a clothoid subarc inside a triangle, αmax has

to be smaller than π. However, in practice, to improve the quality of the solution,

and determine a set of triangles with a good fitting of the original curve, much

lower values of αmax are chosen (e.g., we usually adopt the values π/8 or π/16).

Given each clothoid subsegment originating from (x0, y0) with initial orientation

θ0 and terminating in (x1, y1) with final orientation θ1, the circumscribing triangle

is constructed by selecting the two endpoints of the arc as two vertices, i.e. P0 ,

(x0, y0), P1 , (x1, y1). The third vertex P2 , (x2, y2) of the triangle P0P1P2 is

determined as the intersection of the tangent lines in P0 and in P1. The tangent at

P0 is y = m0x+ q0, where m0 = tan(θ0) and q0 = y0 −m0x0. In the same way, the

tangent at P1 is y = m1x+q1, where m1 = tan(θ1) and q1 = y1−m1x1. Henceforth,

the point P2 has coordinates:

P2 =

(
− q0 − q1

m0 −m1

,
m0q1 −m1q0

m0 −m1

)
, (4.5)
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Efficient spatial partitioning: AABB trees

In the previous section we illustrated how it is possible to cover a clothoid arc

with a set of triangles. However, for large clothoid splines, the number of triangles

grows quickly. The determination of all the intersections between two splines

requires a test for overlap between all pairs of triangles of the two splines. The

computational time is thus quadratic in the number of triangles (i.e. in the size of

the splines), and becomes prohibitive for various real-time applications. For this

reason, it convenient to organise the sets of triangles into efficient data structures.

In particular, we use Bounding Volume Hierarchies, with Axis Aligned Bounding

Boxes (AABB) as Bounding Volume Primitives, [79]. Bounding volume primitives

are simple volumes encapsulating more complex objects. The idea is that, by using

simple bounding shapes, the test for intersection is computationally cheap, and

a first, broad-phase, collision detection test can be performed, to filter out and

reduce the number of more complex, accurate and costly intersections.

The construction is done by determining the minimum and maximum coordin-

ates of the triangle P0P1Pm. The intersection can be determined with at most

4 comparisons, by checking whether one of the two AABBs lies completely on

one side of the other. Let p1 and p2 be two AABB bounding primitives, where

p1 lies between (xmin
1 , ymin

1 ) and (xmax
1 , ymax

1 ), and analogously for p2. There is no

overlapping if(
xmax

1 < xmin
2

)
∨
(
xmax

2 < xmin
1

)
∨
(
ymax

1 < ymin
2

)
∨
(
ymax

2 < ymin
1

)
.

Once the AABBs are constructed around each triangle, we organize them in

a hierarchical tree structure, called AABB tree, where each node represents a

bounding box. The children of a node are contained inside the parent. A leaf is

associated to each of the original triangles, see Figure 4.2. The construction of the

tree is performed with a top-down approach: first the AABB enclosing the set of

all boxes is determined. The successive splitting is based on spatial considerations:

the splitting axis is chosen as the longest side of the parent box dimensions. The

mean coordinate along this axis is selected as the threshold value to partition the

current set of boxes into two subsets. We compare the position of the centroid of

each box with the splitting axis coordinate found at the previous step to classify a

box into one of the two new subsets. The procedure is recursively applied to each
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of these two subsets to generate two subtrees, corresponding to the two children of

the current root node. The recursion terminates when the current set of boxes is

empty or contains a single element, that corresponds to a leaf node, associated with

a single triangle. The pseudo-code is shown in Algorithm 1. Given two AABB trees

associated with two clothoid splines, the determination of the pairs of intersecting

triangles can be performed by a recursive traversal of the two trees. First the

bounding boxes associated with the root nodes are tested for intersection. If the test

fails, the two curves are not intersecting, and the algorithm terminates. Otherwise,

the test for intersection is repeated recursively on all the pairs of children nodes

of the two trees. If the test for intersection succeeds, the traversal of the trees

continues until pairs of leaf nodes are reached. At this point, the more accurate (but

more expensive) triangle-triangle intersection test is performed [80]. For all pairs

of intersecting triangles, the actual clothoid-clothoid intersection test is performed

on the corresponding clothoid segments. The pseudo-code is shown in Algorithm 1.

The complexity of building an AABB tree is O(n log n) on average and O(n2) in the

worst case [81], whereas the complexity of a collision detection or an intersection

test is on average O(m log n), where n,m are the number of primitives of the two

trees. In the worst case, the cost increases to O(nm). Without this algorithm the

complexity of an intersection test would be always O(nm), because each primitive

of the first tree must be compared with all the primitives of the second tree.

In Table 4.1 are reported the computational times required for finding the

intersection of two clothoid splines (with n and m triangles, respectively) with

and without the adoption of the hierarchical partitioning strategy. The results are

obtained on a 2.9GHz Intel Core i7 with 16Gb ram. It is clear how the hierarchical

approach is much more efficient, especially for large problems involving many

triangles.

Size (n,m) (54, 53) (265, 344) (340, 333)
AABB tree 0.2 ms 2 ms 2 ms
plain 3.5 ms 170 ms 132 ms

Table 4.1: Comparison of the computational times to determine intersections
between pairs of clothoid splines, with and without the spatial partitioning strategy,
for different problem sizes.
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Figure 4.2: Bounding boxes constructed over the clothoid spline (left) organised as
an AABB tree (right). The different colours match the boxes and the triangles of
the left with the corresponding node at the right.
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Algorithm 1: AABB tree construction and intersection

1 BuildTree (Boxes);
2 begin
3 if Boxes = ∅ then return nil;
4 if #Boxes = 1 then return (Boxes1, nil, nil);
5 root← Bbox(Boxes); /* finds global Bbox */

6 w ← Width(root); h← Height(root) ;
7 if w > h then
8 split← meanx(Boxes); /* splits vertically */

9 B1 ← {b ∈ Boxes s.t. centroidx(b) < split};
10 B2 ← {b ∈ Boxes s.t. centroidx(b) ≥ split};
11 return (root, BuildTree (B1), BuildTree (B2));

12 else
/* same as above but horizontally */

13 end

14 end

15 Intersect (T1,T2 );
16 begin
17 if (T1 = nil) or (T2 = nil) then return ∅;
18 if isLeaf (T1) and isLeaf (T2) then
19 if TriInt ( getT (T1)),getT (T2)) then return (getT(T1), getT(T2));
20 return ∅;
21 end
22 res← ∅; /* N.B: Children(leaf) returns leaf itself */

23 foreach c1 ∈ Children(T1) do
24 foreach c2 ∈ Children(T2) do res← res ∪ Intersect(c1, c2) ;
25 end
26 return res; /* returns pairs of overlapping triangles */

27 end
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Motion Planning

5.1 General Overview

In this chapter, we introduce the problem of motion planning for assistive robotics.

The development of a motion planner tailored for robots employed to support and

assist elder humans during the navigation of complex environments is a challenging

task, that requires the consideration of different aspects. Like in the case of a

classical motion planning problem, the generated path has to connect the initial

and the final configurations, to lie entirely in the free configuration space and to be

feasible, given the physical constraints of the robot. In addition, this specific kind

of motion planning problems require an explicit and careful consideration of the

geometry and smoothness of the produced path, that has to be followed by human

users with the support of the robotic assistant. Therefore, additional constraints

and a more complex objective function need to be considered, in order to maximize

their perceived comfort.

Specifically, a number of studies has been conducted over the years to analyse

the (lack of) comfort of humans moving on ground vehicles, such as cars or trains.

It has been recognised how the discomfort increases with body accelerations and

jerk. These terms, in the context of a mobile robot following a given reference

trajectory, are in turn related with the curvature of the path and its discontinuities.

Therefore, for the generation of a path optimizing the user comfort, both its length

and jerk should be minimized.

Another important requirement for a motion planning module deployed on a

robot providing assistance to an elder user, is the limited amount of time available to
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generate a solution. Indeed, in order to render the system trustable and compelling

from the point of view of the user, the generation of a plan should take no longer

than a few seconds.

To develop an efficient solution to this challenging task, it is convenient to

isolate two different sub-problems: 1) generation of a collision free sequence of

waypoints to reach the destination, and 2) synthesis of a path joining the waypoints,

respecting the physical constraints, and minimizing the cost function associated

with the problem. These two sub-problems can be solved separately during different

phases of execution of an iterative algorithm, discussed in the next sections.

5.2 Problem Statement

This section is devoted to present the model of the robot, the cost function combining

a set of discomfort indices to be minimised, and from these a formalization of the

motion planning problem at hand.

5.2.1 Platform Model

The large majority of assistive robots can be modelled from a control perspective

as unicycle–like or car–like vehicles. With reference to Figure 5.1, let 〈W 〉 =

{Ow, Xw, Yw, Zw} be a fixed right-handed reference frame, whose plane Π =

Xw × Yw is the plane of motion of the vehicle, Zw pointing outwards the plane Π

and let Ow be the origin of the reference frame. Let x = [x, y, θ]T ∈ R2× S be the

kinematic configuration of the platform, where (x, y) are the coordinates of the

mid–point of the rear wheels axle in Π and θ is the orientation of the vehicle w.r.t.

the Xw axis (see Figure 5.1). Assume that the kinematic model of the mechanical

platform can be assimilated to a unicycle–like vehicle, described byẋẏ
θ̇

 =

v cos(θ)

v sin(θ)

ω

 (5.1)

where v and ω are the forward and the angular velocities.

As previously mentioned, a fundamental aspect of a motion planner tailored

for assistive robots, is the explicit consideration and optimization of the comfort
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Figure 5.1: The reference system for the trajectory planning with clothoidal
elements. [Published in [11]]

experienced by the user. This, in turn, translates to a minimization of the acceler-

ations and jerk, determined by the geometry of the generated path, that should

be continuous at least up to the curvature [82]. Since the unicycle model in (5.1)

does not satisfy this requirement, we propose a dynamic extension of the unicycle

model, whose kinematic ODEs in the cartesian xy-coordinates are given by:
ẋ

ẏ

θ̇
˙̄δ

 =


cos(θ)

sin(θ)

δ̄

0

 v +


0

0

0

1

 ω̄, (5.2)

where δ̄ can be interpreted as the steering angle and ω̄ its velocity.

The same model can also be applied if our vehicle is natively a car–like vehicle
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with rear traction, described by
ẋ

ẏ

θ̇

δ̇

 =


cos(θ)

sin(θ)

tan(δ)/l

0

 v +


0

0

0

1

ωδ, (5.3)

where δ is the actual steering angle, ωδ is the normalised angular velocity of the

steering wheel and l > 0 is the wheelbase. In this case, the kinematic model (5.3)

can be easily reduced to the model (5.2) by using the auxiliary control input

ω̄ =
(
δ2 + 1

)
ωδ,

and assuming that tan(δ) ≈ δ̄ (see [83, 84]).

In [45], a large number of real trajectories followed by groups of people moving

in a real environment is analysed. The results show how these trajectories are well

approximated by the optimal solution of model (5.2).

5.2.2 Comfort

During the last years, a relevant amount of research has been dedicated to an

accurate modelling and a deep understanding of the trajectories followed by walk-

ing humans. An important research direction regards the determination of the

functional that a person optimises while walking, and of a suitable dynamic system

to describe it. While convincing results on the latter problem are available in the

form of a system of differential equations that governs the human locomotion, the

optimised functional is much more difficult to understand and model accurately.

One possible formulation, based on model (5.2), has been developed in [45], where

it is shown that an human tends to move with a constant longitudinal velocity

along its reference trajectory. In addition, this trajectory is determined by optim-

ising a functional representing the minimum square of the jerk, that is defined

as the derivative of the acceleration. An extended experimental validation has

shown the effectiveness of the proposed human model, matching the ground truth

measurements taken from real pedestrians very satisfactorily.

The expression of the jerk in terms of the velocity v and the curvature k is
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j = v2k̇. For the optimal curve resulting from the human motion model, i.e., the

clothoid, the curvature is a linear function of the arc-length s (see chapter 4).

Thus we specialise the expression of the jerk combining the information of the

curvature, which yields j = v2κ′. By assuming the velocity to be constant, according

to [45], we can consider as a measure of the trajectory jerk the square of κ′. As a

consequence, a possible cost index that can be considered for the human comfort is

the minimisation of the jerk, i.e.

T1 = f1(κ′2),

where f1(·) is a suitable function to be defined. While the jerk is obviously relevant,

other comfort indices could be considered as well. From the previous analysis,

a minimisation of the overall curvature can also be a suitable cost index to be

minimised to increase the comfort, which can be denoted as:

T2 = f2(κ, κ′).

Finally, according to [82], the minimisation of the path length could be considered

as a relevant comfort index, i.e.

T3 = f3(κ, κ′),

where T3 is equal to the time optimal path, the velocity v being assumed constant.

5.2.3 Problem Formulation

This subsection is dedicated to the formal definition of the motion planning problem

that we are required to solve.

First of all, the cost index to optimize contemplates different aspects:

• the overall length of the path

• the time required to walk to the destination

• the comfort along the path

Indeed, to maximize the satisfaction of the user, the overall length of the

path, and also the expected travel time, should be minimized, while preserving
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the smoothness and perceived comfort. Mathematically, the objective of this

optimization problem can be stated as the weighted sum of the three terms:

min J = w1

∫
γ

ds+ w2

∫
γ

dt+ w3

∫
γ

c(s) ds (5.4)

where the first term represents the overall path length, the second the travel

time and the third the discomfort index.

The problem that we are solving, is thus to determine a collision-free path

connecting two given positions with a spline of clothoid curves, optimizing the cost

function (5.4).

5.3 Proposed Solution

As mentioned in the introduction of this chapter, given the particular kind of

application, a fundamental aspect that we need to consider is the computational

time required to determine a solution, that should be limited to at most a few

seconds. For this reason, our solution is based on the identification and separate

solution of two different sub-problems:

• Generation of a reference route, modelled as a spline of line segments, determ-

ining a collision-free “corridor“ within the known map of the environment

• Selection of a sequence of waypoints along the reference route, and interpola-

tion with a spline of clothoids characterised by G2 continuity and minimizing

the target functional

5.3.1 Route planning

The generation of the reference collision-free route, i.e. a spline of line segments

connecting the start and the goal location, while avoiding collisions with the

obstacles, can be implemented using standard motion planning algorithms, both

combinatorial and sampling based. These route represent a sort of reference

“corridor”, along which the complete path will be sought. The use of simple motion

primitives, based on straight line segments, to compose a collision-free non-smooth

corridor from the start to the goal location on the map, allows this first phase of

the algorithm to be completed very quickly. This point is fundamental to render
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the whole approach applicable within the context of assistive robotics, that, as

previously mentioned, requires the computation of a solution in a limited amount

of time.

In particular, we have applied a well-known sampling based motion planning

algorithm, that is a variant of the RRT*, called Informed-RRT* (I-RRT*) [85].

Initially, while a feasible solution has not been found, this algorithm behaves

identically to RRT*. A new point xnew is sampled within the free configuration

space during each iteration of the algorithm, and is connected to its closest node

xnearest among the subset of nodes of the tree that are directly reachable from

xnew (i.e., the subpath associated with the new edge of the tree must lie in the

free configuration space). When a node is inserted, the path and the cost to reach

neighbour nodes already in the tree by passing through this new node are computed.

For all the neighbours for which this new path is collision free, and its cost is lower

than the current cost, a “rewiring” operation is performed, i.e., the new node is set

as their parent, and the costs of the associated subtrees are updated accordingly.

Differently from traditional RRT*, when a solution has been found I-RRT* does not

sample all the possible regions of the free space anymore, but it samples possible

candidates only within an elliptical region of the configuration space for which an

heuristically calculated total-cost is lower than the current optimal cost.

The pseudocode illustrating the main steps of this algorithm is shown in

Algorithm 2. In Figure 5.2, on the top-left is shown (in blue) the tree constructed

after a few iterations of the I-RRT* algorithm.

5.3.2 Path generation

An heuristic algorithm is then applied to this spline of line segments, to extract

a set of waypoints, that are interpolated with a spline of clothoids optimizing

the comfort index. If some portions of the generated spline are in collision with

some obstacles, the number of waypoints placed in those zones of the map is

increased, to force the interpolated path to stay closer to the reference, collision

free route path. This process is repeated iteratively until a valid solution is found,

or the number of attempts exceeds the maximum allowed value. As shown in

Algorithm 3, the sequence of waypoints is generated initially from the sequence of

points composing the segment spline. A filtering is applied to remove superfluous,
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Algorithm 2: Generation of a route (spline of segments) from a given starting
position to a given goal, using I-RRT*.
Data: map, start, goal
Result: Route from start to goal

1 function GenerateRoute
2 tree← initTree(start, goal)
3 ellipse← initEllipse(start, goal)
4 termConditions← initTermConditions()
5 while (not termConditions) do
6 samplePos← sampleNextPosEllipse(map, ellipse)
7 parentFound← findParent(samplePos,map, tree, parent,minCost)
8 if parentFound then
9 newNode← insertNewNode(samplePos, tree, parent,minCost)

10 rewireNeighbours(newNode,map, tree)
11 if goalInRange(samplePos, goal,map) then
12 connectGoal(node, goalNode, tree)
13 end
14 updateEllipse(ellipse)

15 end
16 termConditions← updateTermConditions(termConditions)

17 end
18 route← extractRoute(tree)
19 return route

20 end

aligned intermediate points (line 2). Then, a certain number of waypoints is inserted

near to the location where there is a change of direction in the segment spline,

to force the interpolated path to stay close to the reference route (line 13). The

distance between consecutive waypoints is a parameter of the algorithm. If the

clothoid connecting two waypoints was in collision during the previous iteration,

the distance between consecutive waypoints is reduced, depending on the current

number of attempts (line 11). Finally, the sequence of waypoints is interpolated.

If the resulting clothoid spline is not colliding with any obstacle, the algorithm

terminates, otherwise, the indexes of the colliding segments are stored and used to

perform a new iteration of the algorithm.

Figure 5.2 shows the outcome of the different stages of the algorithm, from

the selection of the initial route by means of the I-RRT* algorithm, to its filtering

and waypoint selection, and finally to the G2 interpolation by means of a clothoid
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spline.

Algorithm 3: Generate a collision-free spline of clothoids interpolating a
segment spline
Data: map: map of environment, points: spline of line segments
Result: Smooth path interpolating the given waypoints

1 function GeneratePath
2 points← Filter(points)
3 collisionSegments← ∅
4 for i ∈ 1 . . . attempts do
5 waypoints← ∅
6 for j ∈ 2 . . .Length(points) do
7 p1← points[j − 1]
8 p2← points[j]
9 step← STEP SIZE

10 if (j − 1) ∈ collisionSegments then
11 step← (2/3)i−1 STEP SIZE COLLISION
12 end
13 waypoints← waypoints ∪ GenIntermPts(p1, p2, stepLen)

14 end
15 spline← InterpolateSpline(waypoints)
16 collisionSegments← Collision(spline,map)
17 if Empty(collisionSegments) then
18 return spline
19 end
20 points← waypoints

21 end
22 return ∅
23 end

G2 Spline Interpolation

As discussed in the previous section, once a sequence of waypoints has been

generated, we interpolate it using a spline of clothoids with G2 continuity. This is

a sequence of n clothoid arcs, where the curvature is a continuous piecewise linear

function of the arc-length. Such a curve C is given by a finite collection of real

parameters 0 = s0 < s1 < . . . < sn and (pi, θi, κi, κ
′
i) with pi = (xi, yi) ∈ R2 and

i = 0, 1, . . . , n − 1. For each i, C is a clothoid over [si, si+1]. For a G2 clothoid

spline, each pair of consecutive segments i and i+1 satisfies the following continuity
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conditions:
Hi,0 = xi + LiX0

(
κ′iL

2
i , κiLi, θi

)
− xi+1 = 0,

Hi,1 = yi + LiY0

(
κ′iL

2
i , κiLi, θi

)
− yi+1 = 0,

Hi,2 =
1

2
κ′iL

2
i + κiLi + θi − θi+1 = 0,

Hi,3 = κ′iLi + κi − κi+1 = 0,

(5.5)

where Li = si+1 − si > 0 and i = 0, 1, . . . , n− 1.

The first two equations enforce that the coordinates of the final point on segment

i coincide with the coordinates of the first point on segment i+ 1. The third and

the fourth equations, instead, enforce that the final tangent and curvature of

segment i is equal to the initial tangent and curvature of segment i+ 1. All the

constraints (5.5) can be expressed in vector form, by introducing the function

Hi(θi, κi, κ
′
i, Li, θi+1, κi+1) = 0 ∈ R4 for i = 0, 1, . . . , n − 1. For each clothoid

composing the spline, only two of the six parameters are fixed, i.e. the initial

coordinates x0 and y0, while the other four parameters are free, and need to be

determined. To obtain a G2 interpolating spline, all the constraints (5.5) need to

be satisfied. Therefore, the optimization problem to be solved contains 4N + 2

free parameters, where N is the number of waypoints. Indeed, there are N + 1

angles θi and curvatures ki, and N curvature slopes k′i and lengths Li. On the other

hand, there are 4N constraints (the functions Hi). As a consequence, the nonlinear

system of constraints (5.5) is not completely determined; this provides us with

the possibility to optimize a cost functional related to the human comfort during

the solution of the interpolation problem. The algorithm to solve the G1 Hermite

Interpolation Problem with clothoids illustrated in chapter 4 allows an efficient

solution to the first three equations of (5.5). Since the sequence of waypoints is

taken as input, the value of all the coordinates xi and yi is fixed and known in

advance. Thus, the only free parameters that need to be determined to construct

the interpolating spline are the orientations θi of the clothoid spline at each of the

waypoints. In addition, the original nonlinear system can be reduced to a single

equation per clothoid segment, to enforce the continuity of the curvature.

In order to optimize the human comfort, we need to define and add to the

non-linear problem a comfort index to be optimised, as explained in Section 5.2.2.

Specifically, we consider three different functionals Tj(θ0, θ1, . . . , θn), j = 1, 2, 3,

depending on the free variables of the problem, i.e., the unknown angles θi:
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• Minimise the jerk, which is, in this case, equivalent to the minimisation of

the variation of the curvature:

T1 =
n−1∑
i=0

κ′i(θi, θi+1)2; (5.6)

• Minimise the integral of the curvature squared,

T2 =
n−1∑
i=0

∫ Li

0

(κi(θi, θi+1) + sκ′i(θi, θi+1))2 ds (5.7)

• Minimise the total length of the curve:

T3 =
n−1∑
i=0

Li(θi, θi+1). (5.8)

Each functional (5.6), (5.7), (5.8) with the constraints (5.5) defines an optimal

problem

Minimise Tj(θ0, θ1, . . . , θN)

Subject to Hi(θi, κi, κ
′
i, Li, θi+1, κi+1) = 0.

where j = 1, 2, 3 and i = 0, . . . , n − 1, that can be solved using Non-Linear

Programming (NLP).

We solve the NLP problem using the IPOPT software [86]. To improve the

efficiency of the algorithm, it is possible to explicitly provide the derivatives of the

target and the constraints (i.e., gradient and Jacobian). This has been done by

analytically differentiating the equations of the G1 algorithm, i.e., the derivative

with respect to the angles θi and θi+1 [87].

5.3.3 Path feasibility

Once the clothoid spline trajectory passing through the set of planned points is

synthesised, its feasibility, i.e., the fact that is confined in the free space, has to be

carefully considered. To reduce the computational times, and simplify the test for

collision, we approximate the shape of the rollator by inscribing it into a circle. In
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this way, it is sufficient to “buffer” the obstacles, that is, to increase their size by

the radius of the robot. This process can be performed only once, at the beginning

of the execution of the algorithm. After this processing, collision detection can be

achieved by just checking whether the clothoid spline corresponding to the path

of the robot collides with any of the enlarged obstacles. The clothoid spline is

split and approximated with a sequence of triangles, that are organized into an

AABB tree. Also the boundaries of the obstacles, represented as line segments,

are organized into an AABB tree, so that tests for intersection can be performed

extremely efficiently, as discussed in Chapter 4.

5.4 Experimental Validation

In this section we propose paths synthesis on the map of the Department of

Information Engineering and Computer Science of the University of Trento. The

map of the building is represented by a set of polygons corresponding to obstacles

and walls.

To compare the proposed solution with existing approaches, we have imple-

mented different algorithms to generate the initial sequence of waypoints, and to

smooth and interpolate them into a feasible path, and tested them by running a

large number of experiments on different pairs of start and goal locations randomly

chosen on the map.

The sequence of waypoints joining source and destination has been generated

using two different algorithms. The first is based on the decomposition of the

map into the well known quad-tree cells [88]. Cells on the boundary between

the free space and the obstacles are recursively subdivided into four subcells,

until their size is below a fixed resolution parameter. A graph representing free

adjacent cells is built, and the shortest path between two nodes is found using the

Dijkstra’s algorithm [89]. The second algorithm is the Informed RRT∗ presented in

Section 5.3.1, that we have selected as the route planning algorithm to integrate in

our solution.

The sequence of points constituting the plan obtained with any of the two is

then further processed by removing redundant points aligned on straight lines,

and inserting some points before and after each curve, in order to add degrees of

freedom for the clothoid spline in the close proximity of a change of direction, as

49



5.4. Experimental Validation

Table 5.1: Comparison of different discomfort indices and planning algorithms on
the two different paths of Figure 5.3. [Published in [11]]

I-RRT∗ Dijkstra
Target Time [s] Length [m] Target Time [s] Length [m]

Path1

T1 0.002 0.90 67.75 4.52 2.39 69.24
T2 1.00 1.19 67.66 5.42 2.27 68.46
T3 67.66 1.10 67.66 68.44 2.16 68.44

Path2

T1 0.19 2.87 116.54 77.79 8.78 121.35
T2 1.57 2.89 116.44 25.22 8.20 121.33
T3 116.43 2.76 116.43 121.33 8.78 121.33

explained in Section 5.3.2.

Figure 5.3 reports, for a visual comparison, two paths (namely Path1 and

Path2) generated using the Dijkstra’s algorithm and the I-RRT∗ minimising the

T1 discomfort index (minimum jerk trajectories). The solution with Dijkstra’s

algorithm looks less natural with respect to the paths generated using I-RRT∗.

This is due both to the discrete set of configurations available and to the particular

structure of quad-trees, having a higher number of cells along the boundaries of the

obstacles. For a quantitative comparison between the different solutions, Table 5.1

reports the discomfort index target value, the computation time and the path

length for all of the three discomfort indices reported applied to the two sample

paths reported in Figure 5.3. The solution based on I-RRT∗ is the one with the

best performance for all cases.

Figure 5.4 shows the curvature of the paths interpolated with the three different

cost functionals. The curvatures are overlapping almost everywhere over the path,

implying that the constraints imposed by the curvature continuity dominates the

path synthesis, except for the initial and the final part of the path. Indeed, the

initial and the final curvature are 0 when the adopted functional is T2 (overall

curvature minimisation). Independently from the chosen functional, the range of

values of the curvature is much higher for paths generated using Dijkstra, which

provides an insight for the results reported in Table 5.1.

The method here proposed has been further compared with a quite popular

solution in the literature, which is based on the application of the elastic bands

(El.B.) [25] to smooth the path, make it more compact and to remove redundant

points. This approach is based on the concept of bubbles of free space around

discrete configurations composing the path (provided by either Dijkstra’s algorithm
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Table 5.2: Comparison of the results with and without elastic bands for path 1
and the minimisation of the jerk T1, using both clothoid splines with curvature
continuity and cubic splines.

I-RRT∗ Dijkstra
Target Time [s] Length [m] Target Time [s] Length [m]

No El.B.-T1 0.002 0.90 67.75 4.52 2.39 69.24
El.B.-cubics − 0.21 68.54 − 0.305 69.43
El.B.-T1 3.30 12.67 65.48 10.26 21.31 65.37

or I-RRT∗), which are moved away from obstacles and toward each other (similarly

to an elastic band), by means of virtual forces. The obtained points are then

usually interpolated with standard cubic splines. Table 5.2 reports a comparison

between the previous clothoid trajectories (No El.B.-T1) with El.B. with cubics

for Path 1 of Figure 5.3 minimising the trajectory jerk (T1 discomfort index). It

can be seen that the solution with El.B. interpolated with cubics is faster than

No El.B.-T1, but it results into higher lengths and into a much higher discomfort.

Figure 5.5 reports a comparison of the curvature for the El.B. with cubics and with

clothoid splines for both the Dijkstra’s algorithm and the I-RRT∗. It can be seen

how El.B.-T1 produces lower discomfort with respect to the cubic interpolation,

that is however higher than the original solution (see Table 5.2). Interestingly,

El.B.-T1 produces shorter paths than No El.B.-T1.
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Figure 5.2: [Top-left] The tree constructed after a few iterations of I-RRT* (in
blue), and the optimal route found so far (dotted red). [Top-Right] The filtered
I-RRT* route (dashed blue). [Bottom] The uniformly distributed waypoints along
the filtered route, and the resulting interpolated smooth clothoid spline.
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RRT*
Dijkstra
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Path 1

x[m]
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10m

Figure 5.3: Comparison of two pairs of clothoid paths generated with I-RRT∗ and
Dijkstra’s algorithm on the map of the Department of Information Engineering
and Computer Science of the University of Trento. [Published in [11]]
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Figure 5.4: (a): Plot of the curvatures for Path 1 of Figure 5.3 generated with
I-RRT∗ for the different discomfort indices. (b): Plot of the curvatures for Path 1
of Figure 5.3 generated with the Dijkstra’s algorithm for the different discomfort
indices. [Published in [11]]
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Figure 5.5: (a): Path 1 with I-RRT∗ and elastic bands smoothing for clothoid
trajectories (target T1) or cubic splines. (b): Path 1 with the Dijkstra’s algorithm
and elastic bands smoothing for clothoid trajectories (target T1) or cubic splines.
[Published in [11]]
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6
Reactive Planning

6.1 General Overview

In the previous chapters we have presented a motion planning algorithm specifically

tailored to the generation of paths optimizing the comfort perceived by the user.

This algorithm can be used to generate a complete path connecting a starting

position on the map with a goal position, and avoiding collisions with all the

obstacles, under the assumption that the layout of the map (walls, corridors, ...)

is fully known. During the navigation of the global reference path, an unforeseen

obstacle may be encountered, rendering the planned trajectory unfeasible. Indeed,

additional geometric and dynamic constraints are introduced by the occasional

presence of static or dynamic obstacles, such as other human beings standing by

or walking in the neighbourhood of the robot. In such circumstances, a specific

module, the reactive planner, intervenes to determine a local modification that

can be applied to the reference trajectory to render it feasible again. The reactive

planner should seek a solution minimising the deviation, and joining the global

reference shortly after the obstacle. Moreover, the requirements of smoothness and

comfort, of fundamental importance during the generation of the global plan, need

to be accounted for also by the reactive planner.

A few important assumptions underlie the design of the reactive planner.

First, we assume the prior knowledge of an optimal global plan that avoids static

obstacles. Therefore, the reactive planner always has an available solution: stay

on the reference path, slow down or stop when dynamic obstacles come across

and wait until they pass by. If an obstruction that cannot be overcome by the
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Figure 6.1: The FriWalk with the sensing system and embedded hardware. The
vision system, consisting of a RGB-D sensor and a standard webcam, are visible
within the orange circle.

reactive planner becomes permanent, the problem is escalated to the global motion

planner, which modifies the reference path leveraging its long range information

(e.g., deriving from fixed surveillance cameras), to generate a new, feasible route.

Second, the vehicle is equipped with a sensing system able to reveal obstacles and

anomalies in the surroundings (primarily, people walking in the proximity of the

path, as in [90]). As an example, the FriWalk uses an an RGB-D camera [91] (see

Figure 6.1).

There are several aspects that the developed reactive planner needs to consider.

First of all, the plan has to be collision free to a reasonable extent (low speed

collisions are not dangerous but are annoying and undermine the user’s trust in

the system). Secondly, it has to be socially acceptable and comfortable to follow.

Moreover, the trajectory re-planning has to be computed in real-time and using

the lean hardware available on a mobile robot.

6.2 Proposed Approach

To satisfy all the given requirements, we decided to base our reactive planner on

the use of a human motion model, the Headed Social Force Model (HSFM), to
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predict the behaviours of surrounding pedestrians. Since the possible consequences

of accidents are not critical, we adopt a probabilistic formulation: the reactive

planner seeks local modifications to the original plan that avoid all the obstacles

with an high probability, while minimising the deviation from the reference path.

Contrary to previous works [41, 42], the proposed approach is not based on

run-time simulations. Indeed, we propose a solution to analytically compute the

probability of collisions, that drastically reduces the required amount of computation.

The analytical model used by the proposed algorithm is derived from the HSFM.

The HFSM tuning parameters are identified analysing a large amount of data,

which are generated from simulations or observations on the field. The proposed

analysis is based on the observation that each trajectory generated by the HFSM

can be closely approximated using clothoid curves.

When the system detects a pedestrian, it generates a number of possible

trajectories, each one associated with a possible destination and with a possible

velocity profile. In addition, to each of these trajectories is associated a probability,

that derives from the likelihood that the user will (approximately) follow that

specific trajectory. The planning algorithm considers alternative paths for the

vehicle, and for each computes the intersections with the possible curves taken by

the pedestrian. By considering the probability associated with each of these curves,

the planner computes the total probability of a collision; this information is used to

identify a trajectory for the robot that has a small probability of collision (below a

given threshold), that minimises the deviation from the main reference.

The use of the HSFM produces realistic predictions of the behaviour of the

nearby pedestrians, enabling the robot to avoid them. The proposed analytic

computation allows us to compute the solution efficiently and in real-time. In our

experiments, we report a computation time for the planner in the order of a few

milliseconds on a standard embedded PC.

6.3 Pedestrian Modelling

The HSFM [47] is a recently introduced model to describe the motion of pedestrians

in a social environment. In this model, the i-th individual is represented by a

particle with mass mi, whose position expressed in the world reference frame

〈W 〉 is denoted by ri = [xi, yi]
>. In order to model the pedestrians’ heading,
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it is convenient to attach a body frame 〈B〉 to each individual, i.e. a reference

frame centred at the pedestrian’s position and whose x-axis is aligned with the

pedestrian’s forward direction of motion. Let qi = [θi, ωi]
> be the vector containing

the i-th pedestrian’s heading and angular velocity are θi (angle between the x-axis

of the body frame and that of the global reference frame) and ωi = θ̇i, respectively.

Denote by vBi = [vfi , v
o
i ]
> the velocity vector expressed in the body frame. The

components vfi and voi of vector vBi correspond to the projection of the velocity

vector vi along the forward direction and the orthogonal direction, respectively.

Then, similarly to [92], the human locomotion model becomes

ṙi = Ro(θi)v
B
i , v̇Bi =

1

mi

uBi , and q̇i = Aqi + biu
θ
i , (6.1)

where Ro(θi) is the 2D rotation matrix of angle θi,

A =

[
0 1

0 0

]
, bi =

[
0
1
Ii

]
, (6.2)

and Ii denotes the moment of inertia of pedestrian i. In the model (6.1), the

inputs are uBi = [ufi , u
o
i ]
>, whose entries are the forces acting along the forward

direction and the orthogonal direction, respectively, as well as the torque uθi about

the vertical axis. In this model, if we set voi (0) = 0 and uoi (t) = 0, for all t, the

dynamic unicycle model is recovered, hence the model features a nonholonomic

behaviour.

As in the SFM [43], the HSFM model inputs ufi , u
o
i and uθi are computed on

the basis of external forces (see Figure 6.2). Two terms are considered: the first is

f0
i and accounts for the pedestrian’s desire to move with a given velocity vector

v0i, i.e.

f0
i = mi

v0i− vi
τi

(6.3)

where τi > 0 is a parameter determining the rate of change of the velocity vector.

The second term f ei is the sum of the forces generated by the environment, e.g.

fixed obstacles, walls, furnitures, etc., and other pedestrians in the environments.

Then, ufi is given by the projection of f0
i + f ei along the pedestrian forward direction,

uoi has the damped dynamic uoi = ko(f ei )>roi −kdvoi depending on the external forces

f ei projected onto the orthogonal of the pedestrian’s direction roi and scaled by a
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Figure 6.2: Force decomposition in the Headed Social Force Model. [47]

gain parameter ko > 0. The term −kdvoi , with kd > 0, drives to zero the sideward

velocity voi when the sideward force is zero. Denoting with f 0
i and θ0

i the magnitude

and the phase in the global reference frame of f0
i , the input uθi is computed as

uθi = −kθ(θi− θ0
i )−kωωi, where kθ and kω are designed in order to achieve suitable

dynamics of the heading. In [47], those tuning constants are set as kθ = Iik
λf 0

i

and kω = Ii(1 + α)

√
kλf0i
α

, where kλ > 0 is used to tune the rate of convergence of

θi towards θ0
i , whereas α > 1 is the ratio of the desired two poles of that dynamic.

The underlying idea is that the higher is the convergence rate, the faster the change

in the pedestrian’s heading.

6.3.1 Approximation of the HSFM trajectories with clothoids

The complexity of the HSFM does not allow us to directly use it in our reactive

planner, due to the elevated computational cost required to solve a set of differential

equations on–line. Moreover, the uncertainty about the model parameters of the

actual person encountered, together with the fact that we can only detect a moving

obstacle within a range of about 3 meters (due to limited sensing capabilities),

justify a model simplification. In such a short space, we have observed that the

trajectories produced by the HSFM can be well approximated by the concatenation

of only two clothoid arcs. As noted above, this is in perfect accordance with the

findings of Laumond et al. [45].
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In Figure 6.3 are shown a set of HSFM trajectories starting from the origin,

and reaching different goals at a distance of 3 meters (solid blue arrows), and

the corresponding clothoid approximations (dotted red arrows). The original

trajectories present an initial curved path, during which the pedestrian aligns

his heading with the goal, and a successive straight motion to the goal. The

curvature of an HSFM trajectory, therefore, presents an initial phase, during

which the value monotonically decreases, and a second phase where the curvature

is 0 (i.e. motion on a straight line). For this reason, a good approximation

of each candidate HSFM trajectory in the considered scenario can be achieved

by using just two clothoid segments: the first to model the turning part with

monotonically decreasing curvature, and the second to model the straight motion

(modelled by a degenerate clothoid where both κ and κ′ are 0). In Figure 6.4 is

shown a comparison of the curvature profiles for an HSFM trajectory (solid blue),

and the corresponding approximation with two clothoid segments (dashed red).

While it would be possible to use more than two clothoid segments to achieve a

better fitting, the application of only two clothoid segments is enough to capture

the shape and profile on the considered HSFM trajectories and readily obtain a

good approximation. Moreover, the construction of the approximation with just

two segments allows an extremely efficient computation, that is a fundamental

requirement to satisfy the real-time constraints posed by the problem, given that,

due to the uncertainty in the surrounding pedestrians behaviour, for each of them

tens of alternative possible trajectories have to be generated, in order to avoid

possible collisions.

Therefore, the construction of this approximated trajectory requires us to find

the parameters of two clothoids, starting in P0 and ending in P2, that meet in

the middle at point P1 with curvature continuity, such that the second segment

is a straight line (see Figure 6.5 for reference). Our method seeks the path that

joins the two positions P0 and P2, i.e. the current position of the sensed pedestrian

and the hypothesised final position. At P0 we measure the xy-position, that is,

P0 = (x0, y0), and an initial angle β0. The second segment must be a straight line

that meets the given final point P2 = (x2, y2), hence the curvatures κ′ and κ must

be zero. To model the different shapes of the resulting spline as in Figure 6.5, we

use a tuning parameter p ∈ (0, 1) and define the length L2 of the straight line as

a percentage of the Euclidean distance between P0 and P2. In other words, we
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Figure 6.5: Ten different two-segments clothoid splines that join with curvature
continuity a starting point P0 and reach a final (target) point P2. The points labelled
with P1 are the connection points between first and second segment, respectively
proper clothoid and straight line. The splines are modelled with ten different values
of the percentage p ranging from 0% to 100% with step 10%. In green it is shown a
bounding polygon E0E1 . . . E4 that contains all the possible splines with a constant
offset. [Published in [12]]

set L2 = p · dist(P0, P2). The tuning coefficient p is assigned on the basis of the

physical characteristics of the modelled pedestrian (more on this in the rest of

this section). At the joining point P1, which is unknown, we require G2 geometric

continuity (up to the second derivative), which means that at the junction points

the curvature is continuous. As a consequence, an additional constraint between

the segments connecting Pi to Pi+1 is defined and it requires that

Hi,0 := xi + LiX0

(
κ′iL

2
i , κiLi, βi

)
− xi+1, (6.4)

Hi,1 := yi + LiY0

(
κ′iL

2
i , κiLi, βi

)
− yi+1, (6.5)

Hi,2 :=
1

2
κ′iL

2
i + κiLi + βi − βi+1, (6.6)

Hi,3 := κ′iLi + κi − κi+1, (6.7)

must be equal to zero. The subscript i for i = 0, 1 refers to a condition relative to the

point Pi, while the lengths of the two arcs are modelled with L1 and L2 respectively.

Equations (6.4) and (6.5) ensure point-wise continuity, whereas (6.6) and (6.7)

stand for the angle and curvature, and X0 and Y0 are the Fresnel Generalized

Integrals defined in Chapter 4. By imposing the angles and curvatures in P1 and P2

to be equal (since P1P2 corresponds to a line segment), we can simplify the original
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system, yielding to the single non-linear equation H1,3, and to the unknowns L1,

κ′ and κ0 as a function of β1. This equation can be viewed as a function of the

unknown parameter β1 resulting from the G1 solution: we can write it as

h(β1) = κ′(β1)L1(β1) + κ0(β1) = 0. (6.8)

In other words, with the G1 solution, we can simplify the nonlinear system to a

function of one variable β1, as in (6.8), and solve it using a few iterations of Newton

method. In summary, the solution strategy to synthesise a path between P0 and P2

with two clothoids calls first the G1 algorithm, then finds, via the Newton method,

the value of β1 that solves (6.8). Experimental evidence shows that the problem

requires few iterations of the Newton method to converge in most of the cases.

6.3.2 Fitting the clothoid spline to the HSFM parameters

With the technique discussed above, we can approximate a short-horizon trajectory

of the HSMF model with a simple two-segments spline of clothoids. The different

shapes of this spline are created varying the percentage parameter p previously

mentioned, which models the behaviour of the pedestrian. The choice of p depends

on the parameters of the HSFM, which in turn model the pedestrian behaviour. In

order to find this relation, we have simulated many trajectories between different

pair of points P0 and P2 by changing all the HSFM parameters [47]. The result

of this analysis is that the HSFM parameters that most affect the shape of the

trajectory (and hence the choice of p) are: the reaction time of the pedestrian τ ,

which is slower for young people and higher for more aged people; the parameter

ko that models the orthogonal force, i.e. the step-aside trajectory; the values of the

pedestrian heading dynamic behaviour kλ and α, which determine if the curvature

profile of the generated trajectory is loose or sharp. The metric adopted to compare

the HSFM trajectory with the clothoid splines is the Root Mean Square Error

(RMSE) based on the Euclidean distance. The adoption of this metric allowed

us to construct the experimental map that associates to the N different vectors

(τ, ko, kλ, α, β2) the optimal percentage p yielding the minimum RMSE. This process

yields a look-up table that maps each configuration of the HSFM parameters to

the optimal value of p. A possible way to synthesise this table is to perform a

polynomial fitting in the sense of the least squares. The required function ϕ, is
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a map ϕ : R5 7→ [0, 1] such that p = ϕ(τ, ko, kλ, α, β2). It is worthwhile to note

that β2 is not a parameter of the HSFM but represents the final heading of the

pedestrian in position P2 and hence affects her/his trajectory.

Since the problem is not ill conditioned, we can use a low degree d for the

polynomial. By choosing d = 0, we found for a large number of trajectories an

approximate map ϕ equal to a constant popt = 88% within a tolerance of 0.5 m,

which is a conservative assumption, considering the hindrance of a person and

the presence of social constraints [93, 94]. In plain words, this means that we can

approximate a large number of pedestrian behaviours by a sequence of two clothoids

with a fixed parameter p. We obtained this result by executing random simulations

for N = 160 000 sets of parameters, and for 10 possible final destinations P2 chosen

at a distance of 3 metres from P0 on an arc of circle for an angle between 0 and

π/2, and extended by symmetry arguments on the whole range (−π/2, π/2). In all

these cases the deviation of the HSFM trajectory with exact parameters from the

curves with constant p was below 0.5 [m] (using the RMSE metric), which is the

approximate hindrance (the diameter) of the pedestrian. An advantage of using a

constant p is that we do not need to identify the physical HSFM parameters of the

obstacle and do not need to store a look up table or to evaluate the map φ at the

parameters τ, ko, kλ, α, β2. This value of p corresponds to a good representative of

average human behaviours, and the possible deviations of actual human types can

be accounted for by increasing the volume of the obstacle when detecting a collision.

We deem this approximation acceptable in the face of the drastic simplification in

the computation time.

6.4 Formalisation of the Re-Planning

The result of the previous section can be summarised in the following terms:

the short term motion of a pedestrian can be represented by a sequence of two

clothoids characterised by a parameter p. Assuming that the final destination of

the pedestrian is known, it is possible to generate a specific curve along which

she/he is likely to move in a near future. In the discussion below we will make this

assumption, while at the end of the section we will discuss how it can be removed.

Even when the path is known, in order to plan a trajectory, we also need to

know how the pedestrian will move along the curve over time. Our assumption is
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that the pedestrian H moves with a constant velocity v
(h)
0γ according to the linear

ODE

ḣ(t) = v
(h)
0γ , h(0) = h0, ⇒ h(t) = h0 + v

(h)
0γ t, (6.9)

where h(t) is the curvilinear abscissa of the obstacle over the generated clothoid path.

The constant velocity v
(h)
0γ is chosen randomly inside the interval [v

(h)
0 min, v

(h)
0 max] with

known density pγ(v
(h)
0γ ) (which derives from consecutive pedestrian measurements

performed by the on-board sensor). Notice that the constant velocity assumption,

quite popular in the field [95, 39, 96], is effective, since the interaction between the

vehicle and the pedestrian acts in a short amount of time. The constant velocity

cumulative distribution function is P(v
(h)
0γ < v) =

∫ v
v
(h)
0min

pγ(v
(h)
0γ )dv

(h)
0γ . Because of

the pedestrian hindrance, the space around its centre of mass is described with

a conservative offset ±δh around the abscissa h(t), hence the obstacle occupies

the interval [h(t) − δh, h(t) + δh] at time t. We model the walker vehicle W in

the same manner of the obstacle, with hindrance specified by δw (as observed

above, a conservative estimate of the hindrance can include the possible uncertainty

introduced by a constant choice of the parameter p). Its curvilinear abscissa is

identified with the variable w (see Figure 6.6). Each of the two agents W and

H, moves on a sequence of smoothly joined clothoids. The curve followed by

the pedestrian is a spline made up of two segments (see Section 6.3), while for

the vehicle it is the candidate path. To handle the two paths and speed-up the

computation of the intersections, we decompose each of them into a sequence of

triangles organised with the AABB tree structure discussed in Chapter 4. To model

the physical hindrance given by δw (respectively δh for the pedestrian), the spline

has two parallel curves at the left and at the right (see Figure 6.6). We call a

clothoid tunnel the clothoid spline and its two offset curves.

As a final remark, we are assuming, without loss of generality, that the velocity

of the vehicle W is constant along the planned path, and that it is a decision

variable.

6.4.1 The velocity diagram

We now discuss a tool (the velocity diagram), which can be used to detect collisions

and to select the optimal velocity of the vehicle W . In a standard intersection event,

the routine to find the collision considering the encumbrance will return a sequence
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Figure 6.6: Projection scheme of the geometric intersection points into the curvilin-
ear abscissas of the walker and of the pedestrian. Those abscissas are then mapped
to the corresponding time instants. [Published in [12]]

of 4 points {A,B,C,D} that are the vertexes of a generalised quadrilateral, as

depicted in Figure 6.6. It is possible to find situation in which the collision is not

described by 4 points. For instance, when trajectories are almost tangent, a smaller

number of points points will be found. However, these are simply degenerate cases

in which some of the points of the generalised quadrilateral coincide. For each

of the four geometric intersection points, we are interested in the corresponding

curvilinear abscissas, corresponding to the entry and exit points of the collision zone.

They are called wmin 1 and wmax 2 for the walker and hmin 1, hmax 2 for the pedestrian

(see Figure 6.6). Due to the agents hindrance, it is not enough to simply consider

these coordinates. Therefore we define wmin = wmin 1 − δw, wmax = wmax 2 + δw and

hmin = hmin 1−δh, hmax = hmax 2 +δh for the walker and the pedestrian, respectively.

Given the curvilinear abscissas, computing the travelling time is an easy step,

since by hypothesis both velocities are constant. These time instants are called

accordingly to the name of the abscissas, i.e. respectively twmin, twmax for the

walker, and thmin, thmax for the pedestrian. It is convenient to name the time
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intervals as ∆Th := [thmin, thmax] and ∆Tw := [twmin, twmax]. A collision happens if

and only if the intersection ∆Th ∩∆Tw 6= ∅, i.e. the vehicle and the pedestrian are

in the same region at the same time. Those quantities lead naturally to a space-time

representation, dubbed velocity diagram, in which the horizontal axis represents the

time and the vertical axis the curvilinear abscissa w(t) of the walker for a specified

path. The velocities, being constant, are thus straight lines from the origin. More

interestingly, the collision zone in space and time can be approximated with an

octagon, as in Figure 6.7. The function ts = Ξ(v
(h)
0γ , v

(w)
0 ) returns the minimum

0
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0
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Figure 6.7: The velocity diagram for a single intersection of trajectories: the red
area represents the collision zone in terms of space and time. Green lines are
walker’s velocities that follow the pedestrian, red lines are walker’s velocities that
will cause a collision, and blue lines are velocity that allow the walker to overtake
the obstacle. [Published in [12]]

time required to wait to avoid the collision with fixed v
(w)
0 . This is clearly zero if

∆Th ∩∆Tw = ∅. After the amount of time ts, the vehicle can move with velocity

v
(w)
0 and be sure to avoid the pedestrian. It has to be noted that the function Ξ(·) is

solved by computing intersections between segments on the velocity diagram, hence

it is computationally extremely light. Moreover, the constant velocity assumption

68



Chapter 6. Reactive Planning

on v
(w)
0 has been selected for simplicity and for the particular application at hand,

since the user cannot be accelerated. Nevertheless, in a more general framework,

time varying velocity profiles satisfying velocity constraints could be selected.

The previous graphical solution computes the stop time ts for a given v
(w)
0 and

v
(h)
0γ , where the latter is only known statistically. Therefore, we define the following

cost index

Jt =

∫ v
(h)
0max

v
(h)
0min

Ξ(v
(h)
0γ , v

(w)
0 ) pγ(v

(h)
0γ )dv

(h)
0γ , (6.10)

which represents the average minimum time the vehicle has to wait to avoid the

collision and it is a function of the chosen velocity v
(w)
0 . Notice that a change in

v
(h)
0γ , corresponds to a translation and a scale of the polygon in Figure 6.7. The

velocity v
(w)
0 of the vehicle is then selected from a discrete set of values contained in

[v
(w)
0 min, v

(w)
0 max] such that (6.10) is minimised. Since in most of the cases the value

of Ξ(·) will be zero, there will be multiple minima, say Vw. Hence, the selected v
(w)
0

will be the closest to a desired comfortable velocity v
(w)
d , i.e.

Jv = arg min
v∈Vw

∣∣∣∣v − v(w)
d

∣∣∣∣. (6.11)

The depicted algorithm determines the optimal v
(w)
0 in the sense of (6.10) and (6.11)

along the selected path and assuming the pedestrian moves from its actual position

P0 to a well defined desired position P2. If it is possible to modulate the velocity, we

can accelerate the vehicle in order to overtake the obstacle (blue line in Figure 6.7).

Otherwise, if we do not have enough escaping velocity, it is possible to slow down

or stop and let the obstacle pass (green lines in Figure 6.7). All the described

computations are performed graphically on the velocity diagram, and a solution

always exists: in the worst case, the vehicle stops. However, if for a specific problem

the stop time ts is too high, the probability of having a collision (related to Jt)

is too high or if the performance are too poor (a too high cost for Jv), a local

re-planning is needed, which is the purpose of the next section.

6.4.2 Relaxing the assumptions

In the previous section, we made the important assumption that the final point P2

of the pedestrian is known. We can relax this assumption introducing an additional
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random variable for P2. Different papers in the literature give suggestions on the

possible probability distributions for P2 accounting for the social conventions [95, 97].

The analytical computation based on the velocity diagram discussed above can be

repeated as a function of P2, producing a re-formulation of the performance index

in (6.10) in which the position of P2 appears as an additional random variable p2

to integrate on, and the distribution pγ(v
(h)
0γ ) is replaced by the joint distribution

of p2 and v
(h)
0γ . As far as p2 is assumed independent from v

(h)
0γ , the computation of

the integral is straightforward. Notice that the presence of multiple probabilistic

destinations similarly affects any other possible simulation-based planner. In the

same way, we can deal with a possible variability of the velocity of W . Indeed, while

we can “suggest” a possible velocity to the user in different ways (e.g., through

haptic devices or a GUI), it is not guaranteed that s/he will closely follow the

suggestion, hence random variations around our selected velocity are a possibility.

6.4.3 Local Re-planning

The strategy adopted for the trajectory re-planning is based on a decomposition

of the problem into dynamic planning, where the velocity profiles on the path

are computed as explained in the previous section, and geometric planning, that

will be presented in this section. When a re-planning is requested, the algorithm

selects an initial point Q0 with position (x0, y0), angle β0 and curvature κ0, and a

final point Q2 with position (x2, y2), angle β2 and curvature κ2 along the reference

path; the re-planned trajectory will depart from Q0 and will rejoin it at Q2. The

algorithm seeks a new point Q1 in the proximity of the obstacle to pivot on, in

order to find the best trajectory (see Figure 6.8). The connecting curve is a spline

of clothoid curves that exhibits G2 continuity. The different choices of point Q1

can be explored via a deterministic search (as herein done) or by using stochastic

methods. For the vast majority of reasonable application scenarios, the method

reliably produces a solution. In the extreme cases where it may fail, its efficiency

leaves time to slow down the vehicle and back off to different emergency solutions,

e.g. stop on the spot. In principle, the algorithm presented below operates with any

pair of entry and exit points Q0, Q2 on the reference path. An obvious requirement

is that Q0 and Q2 be located before and after the obstacle. The low computational

cost of the algorithm allows us to test different possible choices or, again, back off
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dynamic
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Q0

Q2

fixed obstacle

Q1

Figure 6.8: A sketch of the local re-planning method, in red the global trajectory
that is no longer feasible because of the obstacle (purple circle). In green the
optimal escaping manoeuvre, in black feasible candidates for different choices of Q1

located deterministically aside from the obstacle trajectory. [Published in [12]]

to an emergency strategy if the spline identified by the algorithm fails to satisfy

the geometric or the dynamic constraints. However, the application of reasonable

heuristics on the selection of Q0 and Q2 limits the occurrence of this anomaly. It

is useful to observe that if the obstacle is very close to the vehicle, the back off

solutions are likely to be adopted. An intuitive and straightforward heuristic choice

is to select Q0 as the current robot position, and Q2 as a configuration that is

located at a reasonably far distance from the obstacle. Once a path is found, the

optimal vehicle velocity v
(w)
0 minimising Jt and Jv in (6.10) and (6.11), respectively,

is computed.

6.5 Experimental Validation

Our reactive-planning has been validated in two ways. Firstly, through a set of soft-

ware simulations, where the trajectories of the dynamic obstacles (i.e. pedestrians)

are captured from a real scenario recorded at ETH [98], or computed dynamically

according to the Headed Social Force Model (the initial and final pose of each

dynamic obstacle can be generated randomly), while the emulated sensing system
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allows the simulated walker to generate candidate obstacle trajectories according to

the clothoid models discussed in Section 6.3. Secondly, with a direct implementation

on our robotic walker FriWalk. We have conducted many experiments, both in

simulation with real and synthetic data, and also on the field. The next section

illustrates some of the outcomes of these experiments.

6.5.1 Software simulations

In the first part of this section, we present two situations where a pair of pedestrians

cross the walker’s trajectory, in one case they walk both in the same direction, in

the other they come from opposite sides, see Figure 6.9 (left). In green is depicted
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Figure 6.9: A comparison between the proposed approach and the application of
Risk-RRT for the dynamic re-planning. [Published in [12]]

the trajectory generated by our reactive planner with the method herein discussed,

while in blue the solution provided by the Risk-RRT algorithm [40], which is a state-

of-the-art approach for this kind of problem. In the first test case (Figure 6.9, top

left), our method produces a smooth deviation from the reference and reconnects to

it passing behind the pedestrians. The approach based on Risk-RRT produces an
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unnatural loop and then reconnects to the original path. In the second case, both

methods give similar natural solution (Figure 6.9, bottom left). However, when the

curvature profile of the trajectories is considered, the one obtained by Risk-RRT

(blue line in Figure 6.9, right) exhibits a piecewise constant behaviour with frequent

jumps to three possible values: this is an undesirable property, causing problems to

both the control and the tracking modules deployed on the robot, and reducing the

comfort perceived by the user of the navigation assistive robot. In fact, curvature

discontinuities and sharp variations induce high spikes in the jerk profile. On the

other hand, our method exploits the property that clothoids have linear curvature

w.r.t. the arc length, resulting thus in a regular piecewise linear curve (green line

in Figure 6.9, right). These comments apply to most of the 100 tests simulated.

For a quantitative comparison, on paths of about 15 [m] length, the average value

of the squared deviation integral from the reference path was of 0.43 for HSFM and

10.56 for Risk-RRT, while the average of the curvature squared integral was 0.46

and 10.67 respectively. The length of the Risk-RRT path was generally 15% longer

than the HSFM path. Moreover, the proposed algorithm has been thoroughly

tested on a large number of different simulated scenarios, where the trajectories

followed by each of the pedestrians were either real human trajectories from the

ETH dataset [98], or computed during the simulation according to the HSFM

model. In Figure 6.10 are reported six different scenarios, and the trajectories

followed by the robot (in green) and by the dynamic obstacles (in red). It is worth

to notice that, during the simulations, the planner takes into account only a limited

number of pedestrians moving nearby, in front of the walker. This behaviour is

mimicking the actual human behaviour in crowded shared space: indeed, a number

of studies have shown how pedestrians take their motion decisions based on the

number of walking people in the surroundings [93, 99, 100, 101, 94], which has

been also modelled in the literature as the Information Process Space [102, 103],

that may be considered as their “field of attention”. Moreover, due to the physical

limitations of the sensing system available on the robot, consisting in an RGB-D

camera with a limited field of view, no more than three or four pedestrians can be

detected simultaneously. In addition, groups of pedestrians walking together can

be treated as a single entity, i.e. a social group that cannot be split by the robot,

by modelling them as a single dynamic obstacle to be avoided.
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Figure 6.10: A comparison between the proposed approach and the application of
Risk-RRT for the dynamic re-planning.

6.5.2 Walker implementation

We have conducted various experiments at the University of Trento, by implementing

on the FriWalk the presented reactive planner. The results are in accordance with

the computer simulations described so far. We worked first in a structured scenario,

equipped with the OptiTrack positioning system that tracks precisely the actual

movements of the walker and of the pedestrians. This allowed us to record the
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experimental data with high accuracy, and to fully test the re-planning algorithm

assuming an accurate sensing system. Then, we tested the algorithm in a second,

unstructured, scenario, using only the walker’s RGB-D camera, without any external

service. The computational times on the on–board hardware (based on an Intel

I7 5557 Nuc with 8GB of RAM) show that it is possible to employ the proposed

reactive planner for real time applications. In fact, we registered a mean execution

time of 3 ms for a standard escaping manoeuvre with 5 candidates Q1 points (as

depicted in Figure 6.8), the minimum time was about 1 ms and the maximum

11 ms. The acquisition of the moving obstacles was performed using an Asus Xtion

Pro RGB-D sensor, with sampling time of 100 ms, while the re-planning module

was executed with a period of 300 ms. Figures 6.11, 6.12, and 6.13 depict the

results of some of the experiments: whenever an human enters the field of view of

the FriWalk, and it determines the unfeasibility of the original path, a new, safe

trajectory is generated by the reactive re-planner.

The experimental validation, conducted both in simulation and on the real

robot, shows the validity of the proposed approach, that is capable of avoiding

collisions with moving pedestrians in a shared space, intervening both on the current

maximum speed and, locally, on the geometry of the reference path. The safety of

the system is guaranteed by the ongoing availability of a safe, emergency manoeuvre:

due to the low velocity of the robot, it is always possible to halt the motion before

a collision, and let the other pedestrian pass by, in the extreme circumstances that

may prevent the algorithm to find a feasible avoidance manoeuvre. In practice,

this scenario occurred extremely rarely during the experiments, only whenever the

environment was densely crowded, or due to the sudden and close range appearance

of a pedestrian within the field of view of the robot.
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Figure 6.11: Experimental validation of the reactive planner on the FriWalk. [Part
1]
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Figure 6.12: Experimental re-planning example with the FriWalk. [Part 2]

Figure 6.13: Photos of the reactive planner running on the FriWalk.
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7
Activity Planning

7.1 General Overview

In the previous chapters, we have illustrated efficient solutions for the motion

planning and the reactive replanning specifically focused on assistive robots. These

can be considered as the low-level planning components, responsible for the assist-

ance of the user during the navigation between two given locations. However, to

develop a fully functional planning system for a robotic assistive platform, also an

“high-level” planning component is necessary. The aim of this high-level planner is

to provide the users with a set of choices regarding possible activities and tasks to

perform, based on their specific interests and profiles, and to automatically select a

sequence of locations to visit in order to fulfil an activity.

Therefore, in this chapter we propose a comprehensive planning solution to

generate a sequence of activities to be executed in a public space by an older adult

with the direct assistance of the robotic walker. The proposed approach is based

on a close interaction between the high-level component (activity planning) and

the low-level components (motion and reactive planning), with the objective of

selecting a subset of intermediate goals (modelled as points of interest, POIs), and

of generating a feasible trajectory visiting all of them.

Indeed, it is our belief that the problem of activity planning has a number of

unique characteristics, which make it difficult to solve using either high-level or

low-level methods alone. High-level methods allow us to model “complex” activities

capturing points of interest, user preferences and constraints. In spite of that,

the operation in an “open” human and unstructured environment makes the use
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of simple abstract models such as state machines or transition systems fairly

inadequate. On the other hand, motion planners of different kind are not sufficient

to model and capture the complexity of human activities, required for the synthesis

of the optimal sequence of high-level tasks (e.g. the visit to some points of interest).

An effective solution is therefore necessarily based on a proper convergence between

high-level and low-level planning.

We consider scenarios such as shopping malls, museums, etc., where the en-

vironment comprises a set of POIs that can be visited by the user gaining some

reward. Users have individual preferences and constraints, which may have a

different level of criticality (modelled by associating an acceptable probability of

violation for each of the constraints). The planner decides a sequence of actions,

each one corresponding to a motion from a start to an end point. An action is

probabilistically characterised in terms of execution time, travelled distance and

other parameters. This is done offline by executing a path planner in a large

number of simulated conditions. The probabilistic description of each action recasts

the activity planning problem as a Chance Constrained Stochastic Programming

(CCSP) with integer decision variables. Our approach is therefore based on the

explicit representation of the problem as a CCSP optimization, that allows us to

consider multiple probabilistic constraints. When considering problems with a

limited size, exact algorithms give the optimal solution within an acceptable time.

In general, the exact solution of such a problem with a large number of nodes is

intractable. For this reason, we discuss also a hierarchical decomposition technique

that allows us to find good suboptimal solutions in a short time for moderately

large problems.

7.2 The Activity Planning Problem

The objective of the activity planner is the synthesis of a plan for an activity that

will be executed by an older adult with the support of a robotic assistant. The

activity takes place in a large public space such as a museum or a shopping mall

which contains a collection of points of interest (POI s). We assume that the map

and the position of the POIs are known in advance, for instance, a museum can

provide a map of the exposition rooms labelled with the list of the items of the

collection. We assume reasonable, and also feasible from a computational point of
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view, to consider up to around one hundred of POIs. As an example, consider in

Figure 7.2 the POIs given by the green dots and their connections (paths). Aim

of the activity planner is to select a subset of these POIs and produce a plan, for

instance the optimal sequence may be P1, P4, P2 and P3. The user profile defines

preferences and constraints specific to each user. In particular, the visit of a POI

yields an utility to the users that depends on their interests and preferences. A

possible way to implement this is by associating a POI with a number of tags, and

defining an affinity value with each tag in the user profile. The “score” associated

with visiting a POI could be defined as the sum of the affinity values for each tag

associated with the POI. In this setting, a possible objective of the planner is to

maximise the total score achieved during the activity (i.e., the sum of the scores

of all the visited POIs). Additional goals could be related to the user physical

condition; for instance, we could have a performance metric related to the distance

walked or to the calories burnt. The activity plan has to consider a number of

different constraints, which can be roughly classified as follows:

1. Environment constraints: due to the geometric configuration of the en-

vironment, the robot assistant can move only in certain areas (passageways),

while the presence of fixed obstacles can impose constraints on the traject-

ory that can be followed. Some of the geometric constraints posed by the

environment can change over time. For instance, at some time a passageway

can be obstructed by a crowd or be temporarily unavailable due to cleaning

operations. Thus, given a pair of POIs, they can be directly connected or

not, depending on their position.

2. Physical constraints: in a configuration in which the user pushes a robotic

walker with actuation on the front wheels, the user–walker ensemble can be

modelled as a car-like vehicle with rear wheel drive. Instead, if the front

wheels are free and the actuation is on the rear, then the ensemble can be

modelled as a unicycle-like vehicle [45]. In any case, the motion is subject

to nonholonomic constraints, which need to be accounted for when making

planning decisions.

3. User constraints: the user profile encodes constraints regarding the user’s

physical or psychological conditions. As an example, the user could have
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limitations on the maximum time he/she is allowed to walk before taking a

break or, on the contrary, be required to walk for at least a given distance

every day. Other constraints can be on the presence of a toilette or of a seat

within easy reach. The user constraints do not necessarily have the same

level of criticality. For instance, for a user it could be mandatory to avoid

crowded areas, while it could be only desirable to take frequent stops during

the walk. The way we model criticality is by allowing some of the constraints

to be missed with a given probability, whereas mandatory constraints have to

be met with probability 1. As also shown in Figure 7.1, the user constraints

are in this phase provided by a doctor, formal or informal caregiver, a relative

or by the user directly and properly inserted into the user profile.

7.3 Proposed Approach

Our approach is based on a clear separation of concerns between motion planning

(i.e., how to physically move the robot between two configurations respecting

physical and kinematic constraints) and activity planning (i.e., decide the optimal

sequence of high-level actions composing an activity). The activity (e.g., go

shopping or visit a museum) can be suggested to the user by an external component

(an Activity Recommendation System) accounting for her/his preferences, or simply

by a doctor or a friend. We split the solution in two phases: in the first, we perform

an offline preprocessing of the known environment (map and POIs), to determine

the stochastic physical parameters associated with each motion between pairs of

connected POIs (e.g. length, travel time). In the second, performed online, we build

the (sub-) optimal user-specific plan that satisfies all the constraints, and execute

it with the support of the motion planner. The way the activity planner and the

motion planner interact is illustrated in Figure 7.1. The first step is to generate and

characterise an alphabet of actions. An action Yi,j simply corresponds to moving

between POI number i (denoted as POIi) and POI number j (POIj). An action

has a duration T (Yi,j), which depends on the velocity of the user (who ultimately

propels the robot) and on the path followed. On its turn, the path depends on

the condition of the environment. For these reasons, T (Yi,j) is modelled as a

random variable and its probability distributions are found through simulations. A

geometric representation of the environment defining the locations of the POIs and
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Figure 7.1: The structure of the framework for the activity planner

including information about the (known) layout of the area (a group of buildings,

a park, etc.) and of the static obstacles (such as fences and walls) is used as a

base model for all the simulations. This static map is randomly populated with

dynamic elements, like crowds or temporarily inaccessible areas. An example of

these simulations is shown in Figure 7.2, where the blue star represents a particular

path obtained in presence of an obstacle along the natural pathway. The dynamic

elements, different for each simulation, are generated according to an estimated

probability distribution based on statistical observations on the real environment.

The simulations can be classified according to different operating scenarios, where

a scenario is associated with an average density of dynamic entities (e.g., number

of people, number and extension of inaccessible areas, etc.). Another classification

is made considering the type of user, ranging from “healthy” users who can exceed

an average speed of 1m/s, to heavily impaired users who move at 0.5m/s or less.

During each simulation, the motion planner identifies the optimal path joining

POIi and POIj , avoiding collisions with all the obstacles (both static and dynamic),

and optimising the user comfort, as discussed in Chapter 5.

By analysing the data extracted from the simulations, it is possible to find the

probability distribution of T (Yi,j) for each type of users and for each operating

scenario. In the same way, it is possible to find the probability distribution of the

distance travelled D (Yi,j) and of the calories spent C (Yi,j). All the information

related to the action Yi,j is stored in the knowledge base.

When the activity planner is required to produce a plan at run-time, the system

retrieves all the information related to the planning domain and merges it with

the user profile and choices. The sensors deployed in the environment are queried
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P1 P2 P3

P4

Figure 7.2: An example of the simulated trajectories among pairs of POIs. The
blue star indicates a particular path that avoids a (temporarily) forbidden area.

to estimate the current operating scenario for each of the possible actions. The

probability distributions are then retrieved and an instance of the planning problem

can be formalised, as discussed in the next section, and transformed into a standard

format, that can be treated by off-the-shelf optimisation tools. The use of high-level

formalisms allows us to avoid strong commitments to a specific solver. By using

the suboptimal techniques described below, it is possible to produce good solutions

in a matter of a few seconds. The produced plan consists of a sequence of actions

that can be handed over to the motion planner in order to be executed.

Except for a number of cases associated with a small probability, the motion

planner will then be able to produce a path meeting the user’s preferences and

constraints. In the unlikely situation in which no acceptable plan can be produced,

it is possible to raise an exception and produce a new activity plan that accounts

for the new, contingent conditions encountered on the field. In this case, a new

activity plan must be produced, which is a modification of the original plan. We

must update the current status, by removing the infeasible edges from the list

of possible actions, by ignoring the already visited POIs and by updating the

remaining resources like the total time or distance travelled, in order to satisfy the

constraints. This new problem has the same structure of the original one, but a

smaller size.

7.4 Problem Formalisation

Using the approach described in Section 7.3, we abstract the map as a graph where

the nodes are the POIs and the edges are the actions Yi,j connecting POIi and
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POIj . As discussed above, the current scenario is identified using the remote sensors

readings. The Boolean variable vector p represents the POIs, where the element pi

is equal to 1 if the point POIi is visited, and 0 otherwise. In addition, we introduce

the binary variables Yi,j taking 1 if and only if the action Yi,j is selected in the

plan. The visit of a POI or the traversal of an edge can be modelled naturally

using Boolean variables, where the variables take the value true or false depending

on whether a node is visited or not, or an edge is traversed or not. The presence of

integer decision variables leads naturally to an Integer Programming problem.

The objective function of the problem is normally related to the score accumu-

lated with the visit of each point of interest. Suppose that the reward associated

with POIi is for the considered user ci, then the objective function will contain the

term
∑

i cipi = cTp. In addition, if the activity is intended to improve the physical

condition of the user, the objective function could contain terms related to the dis-

tance walked, i.e.
∑

i,j Yi,jE (D (Yi,j)), or the calories burnt, i.e.
∑

i,j Yi,jE (C (Yi,j)),
where E (·) denotes the expected value.

The next step is to introduce the user profile, which will produce additional

hard and soft constraints. The hard constraints are modelled as linear inequalities

on specific user requirements, e.g. maximum allowable walked distance, minimum

calories, etc. They involve some of the decision variables p and Yi,j for certain

indexes i, j and the corresponding nodes and edges. For instance, if a person cannot

walk for more than 15 minutes, we could have constraints of the form: Yi,j = 1 =⇒
T (Yi,j) ≤ 15, which can be written in algebraic form as Yi,j · T (Yi,j) ≤ 15. If the

constraint is not critical it takes the form: Yi,j = 1 =⇒ P (T (Yi,j) ≤ 15) ≥ 1− α
(or, equivalently, P (Yi,j · T (Yi,j) ≤ 15) ≥ 1−α), where α quantifies the probability

of violation. Another set of constraints is needed to enforce a sequential structure

to the visit of the different POIs and to avoid sub-tours, that are isolated loops

disconnected from the actual solution path. We employ an effective approach based

on lazy constraints for sub-tour elimination [104]. This kind of approach is widely

used to efficiently solve limited size instances of the Travelling Salesman Problem.

Lazy Constraints are natively supported by many standard solvers, e.g. Cplex,

Gurobi, GLPK. The number of sub-tours in a graph is exponential in the size, so the

idea is to initially ignore all the constraints required to forbid solutions presenting

sub-tours. During the search of the optimal solution, sub-tour constraints are

instead dynamically generated only when necessary. Indeed, when a new solution is

84



Chapter 7. Activity Planning

generated, the absence of sub-tours is ensured. When a sub-tour is detected, a new

lazy constraint is generated. It takes the form
∑

i,j Yi,j ≤ dim− 1, where dim is the

number of edges in the sub-tour, while the sum is done over the indices (i, j) of the

edges that are part of the sub-tour. The problem can be solved also without the

lazy constraints, by considering additional variables and static constraints. To this

end, we introduce the integer variables t, of the same dimension of p, that represent

the order of the sequence of the visited POIs. These variables are introduced to

avoid loops in the solution, by requiring Yi,j = 1 =⇒ tj = ti + 1. This constraint

can be written in algebraic form as (Yi,j−1)m+ 1 ≤ tj− ti ≤ (1−Yi,j)m+ 1, where

m is a large and positive constant. Whenever Yi,j = 1, the constraint is active,

since the inequality becomes 1 ≤ tj − ti ≤ 1, implying that tj = ti + 1. On the

contrary, if Yi,j = 0 then −m+ 1 ≤ tj − ti ≤ m+ 1, that is never active (since m is

a large constant). In Section 7.6 we show a quantitative comparison of these two

methods, based on lazy constraints or on the introduction of additional variables.

Finally, to make the problem consistent, we need some additional constraints.

First, we need to define an initial and a final POI (which can be trivially the entry

and exit points of the environment). Second, for all intermediate points we need to

have an incoming and an outgoing edge: pi = 1 =⇒ ∃j, h s.t. Yj,i = 1 ∧ Yi,h = 1.

These constraints can be equivalently written as: pi =
∑

j Yj,i, pi =
∑

h Yi,h.

All the constraints discussed above, except for the probabilistic ones, have a

linear algebraic structure (which would lead us to an integer linear program). The

presence of probabilities for the non-critical constraints disrupts this structure,

transforming the problem into a form of Chance-Constrained Stochastic Program-

ming (CCSP) [105]. Indeed, such probabilistic constraints can be expressed as

P (·) ≥ 1− α, where the argument is a linear inequality. Combining such inequalit-

ies, we can write the probabilistic constraints as the product of a matrix with a

subset of the decision variables. The term 1− α is the criticality level decided by

the user for that requirement. In conclusion, we have modelled the problem as a

CCSP with a linear objective function, a set of linear inequalities and additional

stochastic constraints. We call x the vector of all the integer decision variables to

be optimised (p, Y and t), and we collect all the inequalities coming from soft,

hard and consistency constraints in Ax ≤ b. In this way, it is possible to recast

85



7.5. Proposed solutions of the Problem

the complete optimisation problem in canonical form:

max
x∈Nn

cTx s.t. Ax ≤ b,
P
(
D̃x ≤ v

)
≥ 1−α.

(7.1)

where x ∈ Nn, c ∈ Rn, A ∈ Rk×n, D̃ ∈ RN×n
+ , is the matrix that collects

the probabilistic properties of nodes and edges, v ∈ RN
+ , b ∈ Rk and α ∈ (0, 1)N .

Finally, P
(
D̃x ≤ v

)
≥ 1−α is the term that formalises the non-critical constraints,

which can be satisfied in a probabilistic measure only. As a remark, n denotes the

number of optimisation variables, k the number of deterministic constraints, N the

number of probabilistic constraints.

7.5 Proposed solutions of the Problem

The CCSP optimisation problem (7.1) is an effective approach for solving optimisa-

tion problems under uncertainties [106]. In general, a CCSP is hard to solve, since it

is not possible to directly apply off-the-shelf numeric solvers, due to the presence of

probabilistic constraints [107, 108]. However, in particular cases, if the distribution

of the random matrix D̃ shares some mild mathematical properties (e.g. Gaussian

pdf), the problem can be reformulated as a deterministic Integer Programming (e.g.

an instance of a Second Order Cone Programming). In the general case, i.e. when

the distribution is not known, the problem can be approximated with the Sample

Average Approximation (SAA) approach within an interval of confidence [105].

Although it would be possible to solve the probabilistic inequality D̃x ≤ v in joint

probability [108], we consider instead the inequality as a set of individual chance

constraints, since they have heterogeneous origins. After this first simplification

step, we can deal with a scalar quantity for each probabilistic constraint, that is

P
(
d(i)Tx ≤ v(i)

)
≥ 1− α(i), for i = 1, 2, . . . , N , where d(i) is the ith row of D̃ and

α(i) is the criticality level associated with constraint i.

7.5.1 First Solution: Second Order Cone Programming

Under the hypothesis that d(i) is a random vector independent and normally

distributed, d(i) ∼ N (µ,Σ), it is possible to convert the CCSP (7.1) into a

deterministic Second Order Cone Programming (SOCP). This formulation preserves
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convexity of the relaxed problem and is efficiently solved by many numeric tools (e.g.

CPLEX, Gurobi, Fico-Xpress, and others). Let d(i)Tx ≤ v(i), if d(i) ∼ N (µ,Σ),

then d(i)Tx− v(i) is distributed as N (µTx− v(i),xTΣx). Therefore

P
(
d(i)Tx ≤ v(i)

)
= Φ

(
v(i) − µTx√
xTΣx

)
, (7.2)

where Φ is the standard Gaussian cumulative distribution function (see [109]). We

are interested in (7.2) greater than 1−α(i), thus, by inverting the previous relation,

we obtain the deterministic bound:

v(i) − µTx ≥ Φ−1
(
1− α(i)

) ∣∣∣∣∣∣∣∣√Σx

∣∣∣∣∣∣∣∣
2

, (7.3)

which represents a quadratic cone constraint. We have thus restated problem (7.1),

for i = 1, 2, . . . , N , as

max
x∈Nn

cTx s.t.

Ax ≤ b,
v(i) − µTx ≥ Φ−1

(
1− α(i)

) ∣∣∣∣∣∣∣∣√Σx

∣∣∣∣∣∣∣∣
2

.

(7.4)

7.5.2 Second Solution: Sample Average Approximation

As stated previously, if the distribution of the random matrix D̃ is not known,

not available, or cannot be handled efficiently, it is possible to approximate the

problem (7.1) with the Sample Average Approximation (SAA) [108]. We start by

formulating an equivalent version of (7.1) in terms of the probability of violation

of the stochastic constraint:

max
x∈Nn

cTx s.t. Ax ≤ b,
P
(
D̃x > v

)
≤ α.

(7.5)

As discussed above, we can consider the stochastic constraint as a set of individual

scalar probabilistic inequalities, e.g. P
(
d(i)Tx > v(i)

)
≤ α(i), for i = 1, . . . , N .

At this stage we consider {d̂(i,j)}Mj=1 to be M independent identically distributed

samples of the random vector d(i). Let p̂
(i)
M (x) be the proportion of times that
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(d̂(i,j))Tx > v(i), in other words:

p̂
(i)
M (x) =

1

M

M∑
j=1

1(0,∞)((d̂
(i,j))Tx− v(i)), (7.6)

where 1(0,∞) : R → {0, 1} is the indicator function that evaluates to 1 if the

argument is positive and zero otherwise. The optimisation problem associated to

the M samples d̂(i,j) is

max
x∈Nn

cTx s.t. Ax ≤ b,
p̂

(i)
M (x) ≤ γ(i),

(7.7)

for i = 1, 2, . . . , N and γ(i) ∈ [0, 1] the criticality level of the SAA problem. We

can express the inequality p̂
(i)
M ≤ γ(i) by introducing new Boolean slack variables

z ∈ {0, 1}N×M , and approximate problem (7.1) with the SAA problem:

max
x∈Nn

cTx s.t. Ax ≤ b,
(d̂(i,j))Tx+ v(i)z(i,j) ≤ v(i),
1

M
1Tz(i) ≤ γ(i),

(7.8)

for i = 1, . . . , N and j = 1, . . . ,M . More in depth, in order to satisfy (d̂(i,j))Tx+

v(i)z(i,j) ≤ v(i), if there is no violation, then (d̂(i,j))Tx ≤ v(i) and z(i,j) is set to

0. On the other hand, if there is a violation, only z(i,j) = 1 makes the inequality

true. The last inequality of (7.8) counts the violations and ensures that the average

frequency is below the criticality level γ(i).

Remark 1 According to [108] the criticality level γ = [γ(1), . . . , γ(N)]T may be

different from α = [α(1), . . . , α(N)]T , however it is proven that for γ = α the

solution of the approximated problem (7.8) converges to the solution of the original

problem (7.1) with probability 1 as the size M of the samples increases. In the

literature, to the best of the Authors’ knowledge, there is not a rule to choose a

proper value for M . Authors in [108] suggest an empirical strategy which consists

in choosing γ = α/2, solving many instances of problem (7.8) with different (small)

values of M and keeping the best solution. This is easier than performing a single

instance of (7.8) with a large number of samples M . Suggested values for M are in
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Figure 7.3: A portion of the museum with the abstract graph of the connections
among the POIs. Inside each room, the corresponding subgraph is complete.

the range 50-120.

7.5.3 Hierarchical Decomposition and Optimisation

The above discussed SOCP and SAA approaches used to solve the activity planning

can become computationally prohibitive if the number of points of interest and of

their connections is large. On the other hand, if the size of a SOCP or SAA problem

is small, solvers are capable of finding the optimal solution in small amounts ot time.

The proposed idea is therefore to solve many small instances of different SOCP or

SAA problems as building blocks for a global optimisation. In order to keep the

whole computational time in the order of a few tens of seconds, we introduce a

hierarchical decomposition of the nodes of the graph associated to the problem.

We cluster the points of interest and connect those clusters with few edges. The

idea is that a cluster is a portion of the museum with a certain number of rooms,

each with some POIs, see Figure 7.3. In cases where such natural clustering is

not straightforward (e.g. rooms, floor, etc.), it is always possible to partition an

open space on the basis of the (relative) distances of the POIs. As discussed in the

experimental section, the optimisation problem combining the results of the smaller

subproblems can be solved very quickly, in the order of hundredths of a second.

The cluster can represent a physical portion of the map, that should be visited as

a single unit. In Figure 7.4 we show the complete graph (left) and its clustered

version (right). The hierarchical decomposition allows us to shrink the full problem

of Figure 7.4 into a small graph with 4 nodes and 6 edges. This high-level problem

has to optimise the total score of the visited POIs and is constrained by some

user requirements, for instance total time and maximum distance walked. These

constraints are reflected in the single SOCP or SAA instances associated with each
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Figure 7.4: Left: the complete graph where all the POIs are connected with all
other POIs. This case is computationally prohibitive if the number of POIs or
connections is large. Right: the clustered version of the problem; each of the 4
clusters has the shape of the graph depicted in Figure 7.3.

cluster: we solve each problem multiple times with varying local constraints. In

this way, the high level optimisation consists in finding for each cluster the optimal

amount of time and walked distance that produce the best global score. We test the

single subproblem on a discretisation of NC ∈ N possible constraints (e.g. times,

distances), thus the final global solution will be only suboptimal: the finer the

discretisation, the better the approximation of the global solution. For instance, if

the total allowable amount of time for the visit is 3 hours, we optimise the visit of

each cluster with different time constraints, say for a maximum of 30, 60 and 90

minutes. It is important to notice that this decomposition allows us to tackle all

the subproblems independently, which opens the way to a complete parallelisation.

This decomposition has the advantage that the solutions of the small subproblems

can be stored and used later to compose user-tailored plans.

The remainder of this section is dedicated to the mathematical formulation of the

high-level hierarchical problem. Let nχ be the number of clusters, then we define

the matrices D,T ∈ Rnχ×NC of the local constraints. The elements of the matrices

are defined as follows: Dij (respectively Tij) is the jth maximum allowed walked

distance (respectively dwell time) for cluster i. Analogously, S ∈ Rnχ×NC is the

matrix of the optimal scores associated to each subproblem and each discretisation.

Finally, let χ ∈ {0, 1}nχ×NC be the Boolean matrix such that χij represents the
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visit of cluster i with constraints j. The high level problem is therefore modelled

as the following Integer Programming:

max
χ

nχ∑
i=1

NC∑
j=1

Sijχij s.t.

nχ∑
i=1

NC∑
j=1

Tijχij ≤ Tmax,

nχ∑
i=1

NC∑
j=1

Dijχij ≤ Dmax,

NC∑
j=1

χij ≤ 1 i = 1, . . . , nχ.

(7.9)

The last NC equations are necessary to guarantee that each cluster is selected at

most once.

7.6 Experimental Validation

In this section we present a numerical evaluation of the discussed activity planner,

performed through the solution of a large number of different planning instances.

Since the proposed application is to find the optimal plan for the visit to public

spaces, such as museums or shopping malls, the first part of this section presents

a concrete example of application of the developed activity planner to a concrete

map inspired from a real museum. Then, in the second part of the section, we

perform an extensive validation on a large number of synthetic, plausible scenarios

of increasing size and complexity.

7.6.1 Realistic Scenario

To show a realistic example of applicability of our activity planner, we are consider-

ing now a map inspired from a real science museum (i.e., the MUSE in the city of

Trento, Italy∗), with different areas dedicated to different topics and categories of

POIs. The considered layout is composed of two separate floors, connected by lifts.

In Figure 7.5 is shown the map of the environment, with different thematic areas

and a number of points of interest within each area. The scores given by the user

to the various POIs (circles) are proportional to the size of the POIs (radius of the

∗https://www.muse.it/en/Pages/default.aspx
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Figure 7.5: Map of the two (ground and first) floors of the museum. The synthesised
activity plan is depicted as the blue/magenta solid line, with the direction indicated
by the arrow. There are lifts (orange squares) to move the user from a floor to
the other. The various thematic areas are sketched with a representative logo, like
plants in the greenhouse and dinosaurs for the fossils. The POIs are represented as
filled circles: the radius is proportional to the score ranging from 0 to 5; the visit
time corresponds to the filling colour, ranging from light to dark grey, according to
the colormap depicted in the legend.

circle), while the estimated visit time is proportional to the darkness of the filling, as

reported in the legend colormap. An example of a synthesised optimal activity plan

is displayed over the map. This plan corresponds to a constraint on the maximum

length of the path of 1000 meters and a maximum visit time of two hours, both

to be respected within 95% probability. The plan starts at the entrance of the

museum (ground floor) and proceeds towards the lift (orange square in the top map

of Figure 7.5) that brings to the first floor. Next, a few POIs about the mammals

are visited, but more attention is paid to the area of fishes and dinosaurs. Finally,

the panoramic balcony over the tropical greenhouse is reached before moving back

to the ground floor using the lift. Then, the plan proceeds inside the greenhouse,

where only the most rewarding POIs are visited. It can be noticed how some of the

POIs are skipped even if they are on the way, due to their high visit time and low

score. The final part of the plan is spent at the sensorial zone and within the kids

area, before ending the visit. The computational time for this museum example
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⋆

Figure 7.6: Re-planned path due to the unavailability of the fishes’ exposition w.r.t.
the original plan of Figure 7.5.

is about 22 seconds and the solver converges to the actual optimal solution. The

overall length is 482 meters within 95% probability, while the overall visit time

is four seconds below the upper limit of two hours within 95% probability, thus

showing that in this case the problem is dominated by the time constraint. To

show a case of replanning under unforeseen events, which is discussed at the end of

Section 7.3, let us suppose that the programmed visit at the area of fishes cannot

be carried out due to a maintenance service. The original plan becomes unfeasible,

therefore the activity planner is invoked to produce an alternative plan (shown

with the dashed black and red line in Figure 7.6). The re-planned activity adds

a POI in the dinosaurs’ area on the first floor, while the remaining part of the

plan on the ground floor remains unaltered. The computational time required to

synthesise the new plan is around 5 seconds.

7.6.2 Extensive Validation

In this section, we perform an extensive validation of the activity planner, by

generating a large number of likely abstract map layouts. The environment is

divided into clusters, representing specific physical areas (such as floors, sections

of the museum, ...). Each cluster is composed by a sequence of rooms and each

room contains points of interest. The layout is depicted, as a graph, in Figure 7.3

and in Figure 7.4. The points of interest within a room are all connected (i.e.,

the graph is complete) and the rooms are linked with an entrance and an exit

point. The global constraints are the maximum visit time and the maximum walked

distance. We solve this scenario with eight different techniques (see Table 7.1),

discussed above: the SOCP and SAA problems, solved completely (full problem)
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and with the hierarchical decomposition (identified with “ h”). The experiments

are carried out with and without the lazy constraints (identified with “ ns”, i.e.

without sub-tour elimination constraints), as described in Section 7.4. We consider

three base scenarios: Museum A consists of a museum with 4 clusters, 4 rooms

per cluster and 4 POIs per room; Museum B has 5 clusters, 5 rooms per cluster

and 5 POIs per room; finally, Museum C has 5 clusters, 8 rooms per cluster and 10

POIs per room. The experiments for each museum have been repeated 300 times,

with different random parameters: scores and visit times of the POIs uniformly

distributed, travelling times normally distributed, for a total of 900 different tested

scenarios.

For the hierarchical decomposition, we choose two discretisations of NC : in

Table 7.1 NC = 9(= 3× 3), that is with 3 values for the time and 3 values for the

distance, while in Table 7.2 NC = 30(= 6× 5). As highlighted in Section 7.5.3, the

finer is the discretisation, the better is the solution, at the price of an increased

computation time, as clearly evidenced by the higher computational times reported

in Table 7.2 with respect to the corresponding hierarchical solutions in Table 7.1.

The optimal scores for each combination of local constraints is obtained from the

solution of the CCSP problem (7.1), which can be solved by method SOCP (7.4)

or by SAA (7.8). There are four tuning parameters in the problem: NC , α,

γ and M . The number of discretisations NC can be chosen according to the

available computational resources. The criticality levels α and γ do not affect the

performance and represent the risk that a constraint is not satisfied. The user

chooses the value α (in the examples α is chosen constant α1 for α = 0.05), whereas

Remark 1 discusses the choice of γ = α/2. For the SAA problem, the fourth

parameter, M , can be chosen in the range 50−120 as explained in Remark 1. After

extensive experiments we have found out that M = 75 gives a good compromise

between accuracy (w.r.t. SOCP equivalent) and performance. Therefore, in the

proposed examples, we generate a number of M = 75 random samples (from an

estimated Gaussian distribution) that model various scenarios. The first step of the

hierarchical solution is to solve the nχ ×NC (i.e. number of clusters times number

of different discretisation) SOCP/SAA subproblems, obtaining the optimal scores

S. Then we solve the high level problem (7.9) to find the (suboptimal) global

solution. The Integer Programming solver used in the simulation is Gurobi with

Julia interface. It is worthwhile to note that since we apply standard numerical
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algorithms, the completeness, complexity and time performance are inherited by

the solver. The computational times are reported in Table 7.1, with the standard

deviations in bracket. To keep the computational time contained, we set a timeout

of 30 seconds for the solution time of the solver and we take the best solution so

far computed, if it exists. Notice that the computational times include also the

time required to solve the high level problem (7.9) (in the hierarchical case), which

is negligible as it takes tens of milliseconds, and the time required to build the

problem, that for big problems is not negligible.

The quality of the solution can be measured by comparing the result of the

actual integer programming problem with its continuous relaxation. Since the latter

is convex, any type of solver for SAA (linear program) or SOCP (second-order

cone programming) produces the global optimum. Indeed, the non-convexity of the

activity planning problem depends only on the integrality constraint of the decision

variables. The optimal solution of the relaxed problem provides a conservative

upper bound solution of the original problem, which can be used as means to

evaluate the quality of the computed solution. During the solution process for this

category of problems, the solver computes a sequence of relaxed versions of the

problem, determining a non-increasing sequence of upper bounds for the optimal

solution. The solver stops either when the gap between upper bound and current

optimal solution reaches 0 or when a time out expires. In our case, the optimum

is always achieved within a 30s time-out for both the small and medium sized

scenarios, which correspond to a normalised score of 100% in Table 7.1. For the

large sized problems, the time-out expires but the gap between the solution and

the upper bound given by the relaxed problem is smaller than 15% on average.

The solution quality is satisfactory from a practical point of view, even for a large

amount of 400 POIs, which is way beyond the typical size of the problem for the

envisioned application.

From these experiments we conclude the following remarks: the SOCP is in

general faster than the SAA in the hierarchical subproblems; the number of 75

samples used for the SAA approximation gives in most cases the same result of

the SOCP equivalent; with a small number of discretisations NC we readily obtain

a good sub-optimum final target; the hierarchical approach allows us to solve in

a reasonable amount of time larger problems that cannot be solved directly, and

to obtain acceptable solutions (see the statistics of Museum C). As discussed in
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Table 7.1: Results for the three museums, mean times in seconds, std deviation in
bracket, score in percent w.r.t. best found.

Museum A Museum B Museum C
Problem time score time score time score
saa 6 (1) 100 14 (5) 100 355 (55) 100
saa h 21 (3) 77 66 (8) 72 320 (40) 80
saa ns 20 (10) 100 111 (59) 100 426 (82) 98
saa ns h 30 (3) 77 108 (14) 72 990 (253) 80
socp 5 (4) 100 21 (11) 100 344 (55) 100
socp h 10 (1) 77 31 (4) 72 191 (31) 80
socp ns 19 (14) 100 104 (57) 100 413 (73) 91
socp ns h 21 (3) 77 80 (15) 72 652 (200) 80

Table 7.2: Results for the three museums, mean times in seconds, std. deviation in
bracket, score in percent w.r.t. best found.

Museum A Museum B Museum C
Problem time score time score time score
saa h 75 (8) 96 260 (24) 96 1633 (84) 82
saa ns h 104 (10) 96 394 (42) 96 2922 (341) 82
socp h 34 (4) 96 118 (15) 96 1259 (49) 82
socp ns h 70 (8) 96 274 (36) 96 2245 (231) 82

Section 7.5.3, the hierarchical decomposition opens the way to the parallel solution

of the subproblems. Moreover, the stored partial results can be reused for people

with similar profiles.
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Assistive Robotics Applications:

Conclusions

In this first part of the thesis, we discussed the main issues related to the de-

velopment of a complete planning framework for assistive robotics deployed in

public spaces, such as museums, shopping malls, etc. and capable of providing

a complete support during the execution of social activities. We identified three

main interacting components: at the low level, there are the global and the reactive

motion planner, responsible respectively for the generation of a global reference

path between two assigned locations on the known map, and for its dynamic,

real-time adjustment during the navigation to overcome unforeseen events, such

as the presence of dynamic obstacles interfering with the reference trajectory. At

the high level, there is the activity planner, responsible for the synthesis and the

suggestion to the user of social activities to perform according to his/her profiles

and constraints.

Motion and Reactive Planning

The motion planner seeks to generate smooth, natural and human-like paths

optimising the comfort perceived by the user, by first determining a collision-free,

minimum length route from the start to the goal location, and then by interpolating

a sequence of waypoints along this route by a clothoid spline with G2 continuity,

in order to yield smooth paths. We defined a non-linear optimisation problem,

minimising the overall jerk, that is directly related to the actual functional optimised

by humans while walking.

During the navigation, the reactive planner predicts a set of probabilistic

trajectories for the surrounding pedestrians, generated based on a simple, but

accurate and extremely efficient short horizon approximation of a real human

motion model, the HSFM. If the probability of collision with some of these dynamic

obstacles is above a given threshold level, a set of alternative, local adjustments

to the local trajectory, both in terms of reference velocity and path geometry

(preserving the original properties of G2 continuity and smoothness) are considered.

The smallest local adjustment yielding to a probability of collision below the
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threshold is chosen as the new reference trajectory. It is worth to notice that,

whenever an alternative feasible solution cannot be found, e.g. in overcrowded

scenarios, there is always a feasible, backup strategy that the robot can apply: to

stop and let the dynamic obstacle move away. The purpose of the reactive planner

is to reduce the number of this uncomfortable, complete stops of the vehicle to a

minimum. Indeed, in the experiments, this backup strategy was employed only

sporadically, only in densely populated environments, whenever a safe, feasible

local adjustment was nonviable.

Activity Planning

The activity planner, based on the preferences and constraints specific for each

user, synthesises a sequence of tasks defining a social activity to be performed by

the elder with the support of the assistive robot. From the point of view of the

robot, tasks consist in motions between points of interest (POIs) to be visited.

Therefore, the environment is modelled by the activity planner as a graph, where

the nodes correspond to the POIs, while edges represent motions between pairs of

nodes. The probabilistic distributions of the physical parameters associated with

each edge of the graph, such as the length and travel time, are estimated according

to a large number of simulations performed in different realistic scenarios. This

information could be complemented by additional data provided by some sensors

deployed in the environment, such as surveillance cameras, that could be employed

to estimate the amount of crowdedness. Therefore, an instance of an activity

planning problem is modelled as a Chance Constrained Stochastic Programming:

probabilistic constraints are provided regarding the physical parameters associated

with the plan (e.g. the overall duration should be lower than 60 minutes with a

probability of 95%). To define the objective of the optimisation problem by taking

into account the preferences of the user, to each POI is associated a certain score,

depending on its category. The target of the problem is therefore the maximisation

of the overall score given by the user to the POIs that belong to the plan.
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Automotive Applications
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Introduction

The second part of the thesis shows how the different core building blocks specifically

developed during the implementation of the planning infrastructure for an assistive

robot, can be adapted and applied to a completely different context, that is

the synthesis of an optimal-time trajectory for an autonomous racing car, and

its dynamic adjustment to cope with external factors such as the presence of

unforeseen obstacles along the lane. We report here the same diagram illustrated in

the introduction to the first part of the thesis, showing the different, core building

blocks used in different ways to solve the different kind of motion planning problems.

Geometric
Module

- Geometric interpolation
- Spline manipulation

Collision Detection
Module

- Model of the environment
- Efficient test for collision of
  splines/paths

Optimisation
Module

- Efficient cost computation
  for splines/paths

As discussed in the next chapter, splines of clothoid curves provide a good

approximation for the optimal trajectory of a racing vehicle. Therefore, the first two

core building blocks (i.e. the geometric module and the collision detection module)

developed and discussed in the first part of the thesis, are still applicable and will

be used also for this second part. Indeed, the only missing module required by the

global and local trajectory planner is the one responsible for the determination of

the cost to assign to a given path. In this setting, we want to minimise the travel

time for a car moving along a given spline (knowing the initial velocity and the

parameters of the vehicle).

This is the focus of the next chapter of the thesis, where an efficient solution

will be presented to compute the time-optimal manoeuvre for a car moving along a

given clothoid spline. Then, the successive two chapters deal with the determination

of optimal trajectories for autonomous racing cars, and on the reactive re-planning

of such trajectories, respectively.
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8
Trajectory Optimization on Clothoids

In this chapter we show how it is possible to obtain good approximations of the

optimal trajectory for a racing vehicle by using a spline of clothoid curves, that

allow us to apply the same kind of efficient algorithms presented in Chapter 4,

and extensively applied also in the first part of the thesis. In addition, we discuss

efficient solutions to compute the optimal (i.e. minimum time) trajectory to travel

a path modelled as a clothoid spline, considering a dynamic model of the vehicle

with bounds on the longitudinal acceleration, lateral slipping and aerodynamic

drag.

8.1 Model of the Vehicle

The use of actual vehicle dynamics in analytic methods is often very difficult, hence

simplified models are usually adopted to render the optimal trajectory synthesis a

tractable problem. As observed by Fraichard et al. [84], one of the most widely

adopted assumptions is to consider only trajectories with a continuous curvature,

due to the continuous actuation of the driver on the steering wheel. The simplest

possible cases of zero curvature, i.e. straight line, and constant curvature, i.e. arc

of circle, are sometimes used for path synthesis. For example, the optimal path

synthesis for the Dubins car [54] comprises exactly a sequence of lines and circles.

However, a more general, but still tractable, path description with piecewise linear

functions for path curvature, i.e., clothoids, can be used to synthesise optimal paths

for a wider set of vehicle models (indeed, the arc of circle and the straight lines are

special cases of clothoids). For instance, an actual car vehicle having the velocity
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8.1. Model of the Vehicle

modelled as a linear ODE and limitations of the lateral velocity produces exactly a

clothoid. Similar results can be obtained also for the classic model of a car-like

robot, whose kinematic model in the cartesian xy-coordinates is given by:
ẋ

ẏ

ψ̇
˙̄δ

 =


cosψ

sinψ
tan δ̄
l

0

 v +


0

0

0

1

 ω̄, (8.1)

where ψ is the orientation (yaw angle) of the vehicle with respect to a right-handed

reference frame having the Z axis perpendicular to the (X, Y ) plane of motion, δ̄

is the steering angle, v is the forward velocity of the vehicle, ω̄ is the normalised

angular velocity of the steering wheel and l > 0 is the wheelbase. For this model,

[84] shows that the car-like robot time optimal trajectory is given by a sequence

of clothoids whenever the velocity v is considered constant. In [83, 110] it has

been shown that even with a varying velocity v, the curvature of the path for the

model (8.1) can be safely approximated by a curve presenting a piecewise linear

curvature, which corresponds to the definition of a clothoid or of a sequence of

clothoids.

Using the auxiliary control input ω = (δ2 + 1) ω̄, assuming that tan δ̄ = δ, the

original model (8.1) can be described with this new set of ODEs [83]


ṡ

ṅ

α̇

δ̇

v̇

 =



v cosα

1− nk(s)

v sinα
v

l
tan δ − ṡk(s)

ω

a− c0v − c1v
2


. (8.2)

where s(t) is the curvilinear abscissa (a customary choice for trajectory planning

problems), n is the normal displacement of the vehicle with respect to the reference

trajectory at the abscissa s(t) (see Figure 8.1), α(t) is the angle of the local tangent

to the clothoid path with respect to the longitudinal direction of the vehicle named

Xv−axis, a(t) is the longitudinal acceleration of the vehicle, c0 > 0 and c1 > 0 are

the laminar friction and the aerodynamic drag coefficients and k(s) = κ+ κ′s is
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Chapter 8. Trajectory Optimization on Clothoids
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Figure 8.1: Curvilinear coordinates (s, n, α) defined with respect to a clothoid
reference trajectory. X and Y represent the absolute frame axes, V (t) is the
absolute velocity of vehicle centre of mass, which is tangent to the trajectory, and
β(t) is the chassis slip angle. Finally, α(t) is the orientation of the vehicle w.r.t.
reference line (i.e. clothoid) local tangent. [Published in [14]]

the curvature of the reference clothoid having κ, κ′ ∈ R as curvature parameters.

8.2 Optimal Trajectory

The vehicle accelerations have to satisfy both longitudinal and lateral constraints.

The former derive from the limited power of the engine and can be expressed

as −a ≤ a(t) ≤ a. The latter, instead, derive from the limited friction of the

tyres on the ground. These constraints are commonly modelled by the so called

friction ellipse (see Figure 8.1), which limits the feasible manoeuvres of the vehicle by

modelling the lateral acceleration al(t) = k(s)v2(s) and the longitudinal acceleration

a(t), as follows: (
vv̇

ax

)2

+

(
k(s)v2(s)

ay

)2

≤ 1, (8.3)

where ax and ay are the maximum accelerations allowed for the longitudinal and

lateral accelerations, respectively. The limits on a(t) are introduced by means of

the ODE vv̇. In the computation of the optimal control, to obtain an analytic
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8.2. Optimal Trajectory

closed form solution, the ellipse is simplified with a rectangle, i.e. |k(s)v2(s)| ≤ ay.

Using the rectangle inscribed in the ellipse, the generated solution is conservative

and has an optimal time that is higher with respect to the true optimum, obtained

using the whole ellipse. On the other hand, the application of more restrictive

bounds guarantees the satisfaction of the original constraints.

An efficient solution for this optimal control problem is discussed in [111, 83, 110].

The approach is based on the execution of five steps. During each of this steps,

the original clothoid segments are split into subsegments, in correspondence with

switching points, i.e. points where some of the constraints become active or inactive.

During each stage, each segment is labelled with a status, depending on the kind of

active constraints. The final solution will then consist of arcs run at maximum accel-

eration, minimum acceleration and at the maximum acceleration profile compatible

with the constraints (also this case can be expressed analytically [111]).

• Preprocessing: during this phase, segments are partitioned and classified

depending on whether only longitudinal constraints are possible, or also

lateral constraints may be active.

• Saturation Analysis: after the preprocessing step, there may be some

segments classified as having the lateral constraint active, but for which

it would be actually impossible to reach the corresponding velocity limit,

e.g. due to a physical limitation of the actuators, or due to the friction and

aerodynamic drag. During this phase, the segments are furtherly split and

the classification is updated accordingly, considering also the longitudinal

constraints. Therefore, at the end of this phase, all the segments for which

the lateral constraint may be active in the final solution are labelled correctly.

• Forward Sweep: in this phase, the velocity is integrated forward in space,

starting from the first segment, using the maximum acceleration allowed for

each segment, and saturating the new velocity whenever it becomes larger

than the maximum allowed velocity computed during the previous steps.

• Backward Sweep: during this phase, the velocity profile is analysed starting

from the last segment, and moving backwards to the first. To remove

discontinuities in the velocity profile, whenever the starting velocity of the

new segment is smaller the final velocity of the previous segment, the optimal
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Chapter 8. Trajectory Optimization on Clothoids

braking control is computed, and the segments and the velocity profile are

updated accordingly.

• Boundary Conditions: at the end of the backward sweep phase, we have

determined the optimal travel time on the given path, and the maximum

allowed initial and final velocity. The last phase of the algorithm consists in

the application of the boundary conditions, i.e. the prescribed initial and

final velocity. If this values are greater than the maximum allowed velocities,

the problem is unfeasible. Otherwise, the velocity profile is updated by

integrating and applying the new values for the initial and final velocity,

considering the acceleration limits and the velocity profile computed during

the previous steps of the algorithm.

In Figure 8.2 is shown an example of a velocity profile generated after the execution

of each step of the algorithm.
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8.2. Optimal Trajectory
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Figure 8.2: The output velocity profile generated by the different phases of the
optimization algorithm.
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9
Minimum Time Trajectory

9.1 General Overview

In this chapter we present an efficient approach for the planning of trajectories for

autonomous racing cars, trying to minimize the travel time.

Since we are considering racing vehicles, the trajectory starts from a given

position at the beginning of the track, while the final configuration is not fixed,

but is instead chosen freely along the finish line. Moreover, the planned trajectory

has to always remain within the boundaries of the track. The vehicle is a car–like,

and is described by a dynamic model that considers bounds on the longitudinal

acceleration, lateral slipping and aerodynamic drag, as illustrated in Chapter 8. In

addition, other geometric constraints can derive from the occasional presence of

an obstacle on the lane. As discussed in Chapter 8, our approach is based on the

generation of paths consisting in sequences of clothoids.

The proposed approach is based on a modular solution in which three different

problems are identified and solved separately. The first problem is, given two

points in the Euclidean space, two vectors expressing the direction of the velocity

vector and two curvature values at these endpoints, to find a clothoid spline linking

the two points and satisfying the imposed constraints. The second problem is,

given a segment of clothoid, to verify that it respects the geometric constraints,

i.e. that it is fully contained in the boundaries of the track, and not in collision

with any obstacle. The third problem is, given a path made by a sequence of

interconnected clothoids, and a car–like vehicle described by its dynamic model,

to find the optimal acceleration profile to move the vehicle from the start to the
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9.2. Optimal Trajectory Planning Algorithm

end of the path in minimum time. We have already illustrated the basic, efficient

building blocks that are required to solve all these three different problems. Indeed,

the first and the second problems correspond to a G2 Hermite interpolation and

to a test for intersection involving clothoids; efficient solutions for both of them

have been already illustrated in Chapter 4, and applied also for the development of

motion planning solutions for assistive robotics. On the other hand, an efficient

solution to the last problem, i.e. the determination of the minimum time solution

given a clothoid spline and the parameters of the vehicle, has been presented in

Chapter 8.

To find a complete solution to the general problem, we will therefore propose an

algorithm that combines and uses all these three modules to identify the “optimal

lap” on a racing track.

Inspired from tree based search algorithms commonly adopted in the field

of motion planning, our solution is based on the growth of a tree of solutions

incrementally expanding until the end of the track is reached. During the expansion

of the tree, a set of different candidate trajectories are generated and compared

using the travel time as cost function. After each iteration of the algorithm, only a

small subset of best solutions are retained in the search tree. At the end of the

search, the best solution is elected as the reference trajectory.

9.2 Optimal Trajectory Planning Algorithm

The proposed modular approach is based on a “master” algorithm based on an

iterative search, with a dynamic cost function (representing the minimum travel

time solution).

At the beginning of the algorithm, the projected reference position along the

centre line is set to the start line of the circuit, and a node corresponding to the

initial configuration of the vehicle is inserted into the tree. Then, a set of waylines,

orthogonal to the lane, placed at different lookahead distances (measured along the

centre line) with respect to the current car position are generated. For each wayline,

a set of points is sampled at a uniform distance, then, for each of these points, a

“tentacle”, consisting in a G2 clothoid spline, is grown from each of the current tree

leaves (see Figure 9.1). After the generation of each tentacle, collision detection is

performed by first building the corresponding tree of axis-aligned bounding boxes,
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Chapter 9. Minimum Time Trajectory

and by detecting possible intersections with the boundaries of the track, or with

known obstacles lying along the lane. Among the set of all the feasible tentacles

reaching a certain point along a wayline, we keep only the one with the lowest

overall travel time. The computation of this information entails the invocation of

the third submodule. For each node of the tree we keep track of the arrival velocity

and the minimum optimal time to reach it. In this way, the computation of the

minimum final time at the end of a tentacle can be performed incrementally, going

back along the tree of nodes by one level at each step, and trying to compute the

velocity profile along the corresponding subpath. The initial velocity is set to the

arrival velocity associated with the initial point of the subpath. The procedure is

repeated on longer and longer subpaths (up to the root of the tree), until we find a

feasible velocity profile. The minimum time is then the sum of the time to reach

the initial point of the subpath, plus the optimal time to cover the subpath.

When all the sampled points along the waylines have been processed, to each

of them is associated the best tentacle connecting it to the current search tree (if

at least one feasible connection exists), and the leaf node in the search tree from

whom the tentacle originates. At this point, the algorithm proceeds by moving

forward the current projected reference on the centre line by a certain step, and by

determining for each of the current tentacles the pose, velocity and arrival time

corresponding to that projection on the centre line (i.e. the point along the tentacle

closest to the reference point on the centre line). A new node is generated in

correspondence with this pose, velocity and arrival time, and stored in the search

tree. Once all the new “frontier” nodes have been added to the tree, a new iteration

of the algorithm begins, and the same procedure is applied until the end of the

lane is reached.

The pseudocode illustrating this solution is presented in Algorithm 4.

9.3 Experimental Validation

In order to validate the effectiveness of the proposed modular solution, we apply it

to four different real racing circuits, that are Silverstone (Great Britain), Monza

(Italy), Monaco and Valencia (Spain), sampled from public on-line maps.

We compare our solution with a state-of-the-art approach for the synthesis of

a time optimal trajectory on a racing circuit, based on the formalisation of the
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9.3. Experimental Validation

Algorithm 4: Pseudocode of the proposed algorithm to determine the min-
imum time trajectory for a racing car on a given track

1 function FindPath
2 n0 = (x0, y0, θ0, κ0, v0 0, {})
3 s = 0
4 tentacles = {}
5 frontier = {n0}
6 while s < path.length do
7 forall (id, dst) ∈ nextwaylines(s) do
8 forall src ∈ frontier do
9 p = path(src, dst)

10 if ¬collision(p) then
11 vp = velProfile(src, p)
12 if cost(tentacles[id]) > vp.totalT ime then
13 tentacles[id] = (src.path, p, vp)
14 end

15 end

16 end

17 end
18 frontier = {}
19 s = s+ s0
20 ref = midlane(s)
21 forall t ∈ tentacles do
22 proj = projection(t, ref )
23 vel = velocity(t.vp, proj)
24 t = time(t.vp, proj)
25 n = (proj.x, proj.y, proj.θ, proj.κ, vel, t, proj.path)
26 push(frontier, nc)

27 end

28 end
29 optT ime = inf
30 optPath = {}
31 forall node ∈ frontier do
32 if n.time < optT ime then
33 optT ime = n.time
34 optPath = n.path

35 end

36 end
37 return (optT ime, optPath)

38 end
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Figure 9.1: Example of candidate “tentacles” grown by the algorithm, connecting a
starting node (magenta circle) with sample points at different lookahead distances.

problem as an Optimal Control, and on its solution by means of the numerical

OCP solver Pins. This software is based on an indirect method with penalties

and barriers to handle generic mixed state and control constraints [112, 113, 63].

Model (8.2) is used to define the OCP, therefore there is no imposed trajectory.

We fix the initial position on the centre line, at the beginning of the track, and the

initial velocity at 50 km/h. We use the same approximated friction ellipse (8.3)

with lateral acceleration |k(s)v2(s)| ≤ ay considered by our algorithm. In Figure 9.2

is shown a comparison of the output of our algorithm and Pins on a portion of the

circuit of Monza. In Table 9.1 are reported the computational times and the lap

times on the different circuits.

It can be see that our solution is close to the optimal one, generated by

the numerical solver, in terms of travel time, but there is some gap. Also the

performance in terms of computational time for the numeric solver is lower (but

comparable) with respect to our approach.

However, an advantage of the proposed method is its robustness and flexibility.

Indeed, to ensure the convergence of the numeric solver, a good tuning of the
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Comp. Time [s] Travel Time [s]
Pins Ours Pins Ours

Silverstone 61.16 109.41 75.15 76.86
Monza 61.52 88.00 74.68 75.72
Montecarlo 49.11 57.37 57.32 58.61
Valencia 51.73 79.87 65.63 66.44

Table 9.1: Comparison of the OCP numerical solver Pins and the proposed algorithm

parameters and of the weights is necessary to allow the algorithm to converge and

to find an optimal solution. In addition, our approach allows far more flexibility in

the modelling of the environment. For instance, the addition of a set of obstacles

placed along the lane is trivial using our algorithm, and, as explained in Chapter 4,

by using adequate spatial partitioning data structures to represent the environment,

the impact on the computational time is almost negligible. To validate this claim,

we perform a large number of tests with random obstacles placed along the lane,

and the algorithm is able to produce a valid solution with computational times

that are a few seconds higher with respect to the ones reported in Table 9.1. In

Figure 9.3 is shown an example of how the original path is modified by the presence

of an obstacle along the way. In addition, another important advantage of the

proposed solution lies in the fact that the processing of each tentacle is independent

from the others, therefore the algorithm is well tailored to be massively parallelised

on modern hardware providing a large number of computing cores.
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Figure 9.2: Comparison of the result of the numeric OCP solver Pins (dashed line)
and of the present algorithm (solid line) on a portion of the circuit of Monza.
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Figure 9.3: An obstacle is posed along the lane, the solid line represents the optimal
trajectory without the obstacle, the dotted line is the optimised trajectory that
avoids the obstacle.
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10
Optimal Trajectory Replanning

10.1 General Overview

In the previous chapter we have presented an efficient and robust solution to find a

minimum time trajectory on a track for a racing vehicle. In this chapter, instead,

we address the problem of how to reactively re-plan on-line local modifications to

the global, minimum time reference trajectory to avoid collisions with obstacles

lying along the road. Since by assumption the vehicle is moving along a pre-defined

trajectory, the proposed technique seeks to minimise the amount of local deviation

and ensures that the new trajectory joins the previously planned one shortly after

the obstacle.

We consider the same kind of dynamic and geometric constraints applied for

the generation of the global trajectory in Chapter 9. The occasional presence of

obstacles and of slower vehicles generates additional geometric constraints.

Our approach is based on the assumptions that the geometry of the track

(i.e. road or lane limits) is known, that the vehicle is equipped with a sensing

system able to reveal obstacles and anomalous conditions in the surroundings (e.g.,

slippery areas on the road), and that the trajectory re-planning has to be executed

in real–time and adapted every time an unforeseen situation is detected. Another

fundamental aspect that we are considering is the fact that the algorithm should

run on a lean hardware, in order to reduce the costs and simplify the system

engineering.

We apply an approach similar to the one presented in Chapter 9 to generate a

global minimum time trajectory. The idea is to decompose the general planning
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Chapter 10. Optimal Trajectory Replanning

problem into a geometric and a dynamic optimisation component, handled separ-

ately by different algorithms.

When an obstacle is detected, the algorithm selects a point P0 on the optimal

trajectory with position (x0, y0), angle θ0, curvature κ0 and speed v0 and a point

P2, with position (x2, y2), angle θ2, curvature κ2. The re-planned trajectory will

depart from the reference at point P0 and will rejoin it at point P2. Notably, the

speed in P2 cannot be assigned, because, in general, it may not be reachable, e.g.

if the global trajectory is time optimal. The algorithm seeks a new point P1 in the

proximity of the obstacle to pivot on to generate a set of candidate, alternative

trajectories (see Figure 10.1). For each candidate point, a geometric subproblem is

solved to find the corresponding path and to verify its feasibility (the re-planned

spline has to be contained within the track limits). For each candidate path, a

dynamic optimisation is executed to find the time optimal manoeuvre, if it exists,

using the semi-analytic solution presented in Chapter 8.

10.2 Proposed Approach

For safety reasons, the reactive replanning algorithm first tries to compute an

emergency braking manoeuvre, to determine whether it is possible to stop the

vehicle before crashing into the obstacle, moving along the prescribed reference

trajectory. This can be computed by determining the optimal velocity profile on

the subpath from the current location of the car to the location of the obstacle,

and imposing the final velocity to 0.

After the computation of an emergency manoeuvre, the algorithm tries to

determine a local deviation from the reference trajectory that allows the vehicle to

overtake the obstacle, as shown in Figure 10.1.

10.2.1 Reactive Replanning

The first important aspect that we need to consider is how to properly select the

points P0 and P2, corresponding to the locations where the replanned trajectory

joins the reference. In principle, the algorithm presented in this chapter operates

with any pair of entry and exit points P0–P2 on the global trajectory. An obvious

requirement is that P0 and P2 should be located before and after the obstacle. The
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w

w

w

w

P0

P2

P1

Figure 10.1: Structure of the track with a sketch of the used notation. The waylines
w divide the track into sectors. In red the global trajectory that is now unfeasible
due to the obstacle (purple circle). In green the optimal escaping manoeuvre, in
black feasible candidates for different choices of P1. [Published in [15]]

low computational cost of the algorithm allows us to test different possible choices

or back off to an emergency strategy if the spline identified by the algorithm fails to

satisfy the geometric or the dynamic constraints. However, the application of reas-

onable heuristics on the selection of P0 and P2 limits the occurrence of this anomaly.

An intuitive and straightforward way to select the points P0 and P2 is to identify

them as the intersections of the global trajectory with a finite set of waylines

superimposed to the track (see Figure 10.1). The distance between consecutive

waylines can be tailored to the geometric features of the track and to the dynamic

properties of the vehicle. For instance, waylines can be closer in curved sectors

of the track and farther in straight sectors. When an obstacle is detected, P0 can

be chosen coincident with the current position of the vehicle. P2 can be chosen

on the intersection between the global trajectory and the first wayline beyond the

obstacle.

Geometric Problem

The reactive replanner has to generate local deviations to the global trajectory

preserving the G2 continuity constraint.

As an useful remainder for the reader, we will report here the equations to

enforce G2 continuity for clothoid segments connecting Pi to Pi+1, discussed in
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Chapter 4:

Hi,0 := xi + LiX0

(
κ′iL

2
i , κiLi, θi

)
− xi+1, (10.1)

Hi,1 := yi + LiY0

(
κ′iL

2
i , κiLi, θi

)
− yi+1, (10.2)

Hi,2 := (1/2)κ′iL
2
i + κiLi + θi − θi+1, (10.3)

Hi,3 := κ′iLi + κi − κi+1. (10.4)

To enforce G2 continuity, all the equations Hi,j(θi, κi, κ
′
i, Li, θi+1, κi+1) for

j = 0, 1, 2, 3 must be equal to 0.

While for points P0 and P2 both the position, the tangent and the curvature

are given, at the intermediate point P1 only the position is fixed, while the tangent

and the curvature need to be chosen suitably by our algorithm. To reduce the

computational cost, we resort to the G2 Hermite Interpolation routine only twice,

once all the parameters have been fixed, and the final interpolation has to be

performed. We rely instead on the more efficient G1 Hermite Interpolation routine

to determine the missing parameters. The idea is to construct two clothoid arcs

neglecting the curvature at P0 and P2, but with G2 continuity at P1. We then

use the resulting angle and curvature at P1, to generate the complete, G2 spline

interpolating the path from P0 to P1 and from P1 to P2.

In our case, the G1 interpolation problem between P0 an P1 can be seen as

a function of one unknown variable θ1, since all the other parameters are fixed.

Therefore we obtain κ′0(θ1), κ0(θ1) and L0(θ1). Analogously, the G1 interpolation

problem between P1 an P2 yields the functions κ′1(θ1), κ1(θ1) and L1(θ1). Since

θ1 corresponds to both the final orientation of the first segment and the initial

orientation of the second segment, the resulting arcs match with G1 continuity in

P1. Thus, we have a family of splines made by two clothoids parametrised with

θ1, and we can adjust this value in order to satisfy the G2 constraint, i.e. the

curvatures of the two arcs should match in P1. This condition is

h(θ1) := κ′0(θ1)L0(θ1) + κ0(θ1)− κ1(θ1) = 0, (10.5)

which is simply equation (10.4) specialised to our scope. To find an angle θ1 that
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satisfies h(θ1) = 0, a standard Newton–Raphson scheme suffices. This approach

works well in practice, and convergence is achieved in just 2 or 3 iterations. Once the

tangent and curvature at P1 have been determined, two G2 Hermite Interpolation

problems are solved between P0 and P1, and between P1 and P2, to generate a

clothoid spline smoothly joining the original reference trajectory with G2 continuity.

For each of the candidate alternative paths, we check if it is collision free and,

in such case, we evaluate its time optimal speed profile. The whole computation

process is extremely efficient, so it is possible to generate many different escaping

manoeuvres and select the one with minimum travel time, as shown in Figure 10.1,

where the green curve is selected among the set of black curves.

10.2.2 Replanning Algorithm

The pseudo-code of the proposed approach is shown in Algorithm 5.

The input is given by the initial and final configurations of the vehicle, thus

position, angle and curvature, and by the initial velocity. The final velocity is

neglected, since it is almost impossible to reconnect to the global trajectory with

the optimal speed. Since the algorithm loops on all the available waypoints, they

are also part of the input. The output is given by the best escaping manoeuvre

computed by the reactive re-planning (if one exists). Notice that Algorithm 5

can be used also to safely stop the vehicle if an overtaking manoeuvre does not

exist. The first part of the algorithm involves the search of the missing angle and

curvature at P1, namely θ1 and κ1, and is done by solving equation (10.5) (see line 4

and Algorithm 6). This computation requires to solve the G1 interpolation problem

for the two clothoids that connect P0 to P1 and P1 to P2. The resulting values for

θ1 and κ1 are then used by the g2Hip function to compute the final smooth spline

that connects P0 to P2 with G2 continuity. The spline is also checked for collisions

with the obstacle and the track limits. If the spline is valid, the time optimal speed

profile is computed (fixing the initial velocity to the current velocity of the vehicle).

When all the possible trajectories have been processed, the algorithm terminates

and returns the solution with the lowest travel time.
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Algorithm 5: Find a collision free partial path

1 Function AvoidObstacle
Input : conf0, initial config. of the vehicle (x0, y0, θ0, κ0);

conf2, final config. of the vehicle (x2, y2, θ2, κ2);
v0, initial velocity of the vehicle;
waypoints, intermediate waypoints.

Output : {time, traj}, collision free traj. with lowest cost.

2 time← ∞; traj← [ ];

3 foreach wp ∈ waypoints do
4 [θ1, κ1]← findThetaKappa(conf0,conf2,wp);
5 spline1 ← g2Hip(conf0,{wp, θ1, κ1});
6 if not collisionFree(spline1) then continue;
7 spline2 ← g2Hip({wp, θ1, κ1},conf2);
8 if not collisionFree(spline2) then continue;
9 currTraj← [spline1, spline2];

10 {ok, currMan} ← minTime(currTraj,v0);
11 if not ok then continue;
12 [currTime]← time(currMan);
13 if currTime < time then
14 time← currTime; traj← currTraj
15 end

16 end
17 return {time, traj};

Algorithm 6: Find intermediate angle and curvature

1 Function FindThetaKappa
Input : conf0, initial config. of the vehicle (x0, y0, θ0, κ0);

conf2, final config. of the vehicle (x2, y2, θ2, κ2);
wp, intermediate waypoint (x1, y1);
{maxiter, tol}, termination criteria

Output : {θ1, κ1}
2 θ1 ← (θ0 + θ2)/2;
3 for iter from 1 to maxiter do
4 [κ̄, κ̄′, L, κ̄θ1 , κ̄

′
θ1
, Lθ1 ]0 ← g1Hip(x0,y0,θ0,x1,y1,θ1);

5 [κ, κ′, L, κθ1 , κ
′
θ1
, Lθ1 ]1 ← g1Hip(x1,y1,θ1,x2,y2,θ2);

6 h← κ̄0 + κ̄′0L0 − κ1;
7 h′ ← κ̄0θ1 + κ̄′0θ1L0 + κ̄′0L0θ1 − κ1θ1 ;

8 if |h| < tol then return {θ1, κ1} ;
9 θ1 ← θ1 − h/h′;

10 end
11 return {}
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10.3 Experimental Validation

To validate the proposed approach, we applied it to adjust given time optimal

trajectories (computed as discussed in Chapter 9) on given racing tracks to overcome

some unexpected obstacles lying along the way.

As an example, in Figure 10.3 is shown an example of an escaping manoeuvre

generated to avoid a circular obstacle of radius 5 m placed on the track. This

example is based on the Formula 1 track of Silverstone, as shown in Figure 10.2.

We tested our solution on a large number of test cases on the same racing

circuits used in Chapter 9, by randomly placing obstacles on different portions of

the track, and by applying our algorithm to adjust the optimal reference trajectory

accordingly. The proposed replanning algorithm is very fast (in the order of a few

milliseconds on a Core I5 2.3 GHz machine, for all the experiments), and applicable

for real-time adjustments of the reference trajectory.

The present method could be extended to consider also simple moving obstacles,

for example by applying an approach similar to the one developed in Chapter 6,

and by determining a safe combination of path geometry and velocity profile.

Moreover, in the case of obstacles moving at much slower velocities in comparison

with the controlled car, a simple and conservative, but valid approach, is to

expand the obstacle along its motion direction, in such a way to cover and render

inaccessible the entire portion of the road that it sweeps during the completion of

the overtaking manoeuvre. Unfortunately, on the other hand, this solution by itself

is not sufficient to handle the overtaking of another racing vehicle. Indeed, in this

scenario, the simplifying assumption that the other vehicle would passively move

along its reference trajectory, without trying to defend its position by impeding the

manoeuvre of the overtaking car, would be really strong and unrealistic. Indeed, to

effectively handle this scenario, an higher-level, strategic planner would be required

to determine the best tactics and sequence of moves to perform, for example by

applying classical game theoretical models. This problem is outside of the scope of

this thesis, but represents an interesting opportunity for future research.
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Figure 10.2: The circuit track of Silverstone, UK. In red the portion of the track
that is zoomed in Figure 10.3. [Published in [15]]
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Reactive Re-planning
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50m

Figure 10.3: Re-planning in the presence of an obstacle. The original trajectory (in
blue dashed) is no more feasible because of the obstacle. The re-planning (solid red
line) can be done between two points on the waylines P0 and P2, because before P0

and after P2 the trajectory is close to the old one without the obstacle and allows
a smooth reconnection. [Published in [15]]
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Automotive Applications: Conclusions

This second part of the thesis was focused to show the adaptability and applicability

of the core building blocks and algorithms developed in the first part of the thesis,

specifically tailored to the implementation of a complete planning framework

for assistive robotic applications, to a completely different context, such as the

generation of optimal trajectories for racing vehicles driving at their limits. The

software infrastructure that we developed to plan time-optimal trajectories for

racing cars requires the interaction of three core components: a “geometric” module,

responsible for the generation of a smooth path connecting two given poses. A

“collision-detection” module, that, given the geometry of the road and a path,

determines whether the path lies entirely within the road, and whether it intersects

with any obstacle. Finally, a “trajectory optimisation” module, that, given a path

and the parameters of both the vehicle and the road, determines the optimal

velocity profile allowing the vehicle to travel the reference path in minimum time.

To implement the first two modules, we resorted to the solutions developed and

presented in the first part of the thesis, i.e. clothoid spline interpolation algorithms

to synthesise smooth paths connecting pairs of given configurations, and spatial

partitioning data structures to effectively determine possible intersections between

a path and obstacles or road boundaries. On the other hand, we applied an existing

state-of-the-art solution to determine the optimal manoeuvre for a vehicle moving

on a clothoid spline in minimum time. Finally, we showed how it is possible to

combine these three core modules both to synthesise an optimal reference global

trajectory, and to dynamically adjust it in real-time to overcome the presence of

unpredicted obstacles obstructing the way.

122



11
Conclusions and Future Work

In this thesis, we proposed a set of efficient algorithms and approaches to solve

different kind of planning problems, always focusing on the computational efficiency,

to produce solutions that are applicable also for mobile robotic platforms providing

limited amounts of computational power. We identified common subproblems

shared by the different kind of problems at hand, such as the smooth geometric

interpolation of two given configurations, or the efficient check for collision, and we

applied and developed efficient solutions for each of them.

11.1 Assistive Robotics

We developed a path panning solution specifically tailored to provide support to

older and disabled users during the navigation of public spaces. Our approach is

based on the separate solution of two different subproblems, i.e. the generation of

a sequence of reference waypoints, and the smooth interpolation of these waypoints

to produce paths optimising the comfort perceived by the user. The latter goal is

achieved by using a nonholonomic car–like model that naturally generates smooth

curves (clothoid splines), and by optimising a cost functional directly related with

different dimensions of the user comfort.

Then, we presented an efficient solution to reactively modify the planned

global path, in order to avoid pedestrians during the navigation in an environment

populated by humans. The proposed key idea is the adoption of the HSFM, a model

mathematically expressing human motion behaviours, to probabilistically predict

possible paths followed by the pedestrians. We have shown how to approximate such
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paths using splines of clothoid curves. The uncertainty on the velocity followed

by the pedestrians, on the points that he wants to reach and on the possible

deviations of the user from the suggested speed are modelled as stochastic variables.

Therefore, we define a probabilistic performance index and seek the velocity profile

that minimises it over all the predicted trajectories. Different alternative deviations

from the reference are considered, and the one minimising the performance index

and the deviation from the global plan is selected.

Finally, we developed a solution based on the strong cooperation between the

low-level motion planning modules and the high-level activity planning module, to

produce detailed activity plans that fit the users’ interests, maximise their experience

and meet their physical and psychological requirements. This is an essential asset for

a robot offering assistance for the navigation of complex environments and for the

execution of social activities. The motion planning modules are used to characterise

elementary motion actions and to turn an activity plan into an actual sequence of

motions implementable by the user-robot ensemble. The activity planning module,

on the other hand, is used to generate the optimal concatenation of motion actions.

Since each action is characterised in probabilistic terms and we associate failure

probabilities to non mandatory requirements, our problem turns out to be a Chance

Constrained Stochastic Programming with integer decision variables. In addition,

we propose a suboptimal, hierarchical technique that produces very good solutions

in a matter of few seconds also for moderately large environments.

The planning solutions developed for ACANTO, and mainly focusing on assistive

robotics, can actually be generalised and adopted also for different applications.

Indeed, as an example, we applied the proposed reactive replanning system also

to robots employed in an autonomous warehouse, for the transportation of pallets

between different locations. The application of our replanning system, allowed

the robot to navigate in an environment shared with human operators, without

the need to stop every time when the reference path was occluded. In the same

way, the framework proposed for the planning of activities, based on a strict

collaboration between the low-level and the high-level planning components, and on

the statistical characterisation of the physical parameters associated with motion

actions, has been applied within the context of autonomous warehousing. In this

case, we integrated our low-level planning system with an external task planner

and scheduler, to organise the handling and movement of the different pallets, in
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order to maximize the number of satisfied requests.

11.2 Automotive Applications

We showed how it is possible to solve the challenging problem of determining the

time optimal trajectory for a car–like dynamic model of a racing vehicle on a

given track, by decomposing it into three smaller subproblems, that are efficiently

solved by dedicated modules. The two geometric subproblems of interpolating

two given configurations by a clothoid spline, and of detecting potential collisions

with the boundaries of the track, are exactly the same that we had to deal with

during the development of motion planning solutions for assistive robotics, and for

which we already developed efficient solutions. We presented an efficient, state-of-

the-art solution for the third subproblem, consisting in the determination of the

optimal control for a car–like dynamic model moving on a clothoid spline, with

bounds on the velocity, longitudinal acceleration, lateral slipping and aerodynamic

drag. We proposed then a “master” algorithm, combining the three modules and

applying an incremental search to generate the optimal lap. Finally, we presented

an algorithm to find a minimum time deviation from the global, time optimal

trajectory for a robotic car to avoid unforeseen obstacles lying on the track. We

applied the same kind of modular decomposition adopted for the generation of

the global trajectory. The approach is based on the deterministic generation of a

set of alternative candidate paths, synthesized by sampling points on a “wayline”

collocated in proximity of the obstacle, and on the selection of the minimum-time

feasible solution. This algorithm is very efficient, taking just a few milliseconds to

compute a solution, and can be realistically implemented on an embedded platform.

11.3 Future Work

Several possible research directions lie before us for further exploration and exploit-

ation. In particular, a research topic of particular relevance regards the reactive

re-planning strategy adopted to modify the global reference trajectory during the

autonomous navigation in an environment populated by other humans. Indeed,

in this thesis we have proposed a robust and efficient solution, assuming that all

the responsibility for the avoidance of collisions has to be taken by the robot.
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However, an interesting and challenging approach, is based on the recognition

of the possibility that also the pedestrians that we are trying to avoid may be

collaboratively and actively trying to adjust their trajectory in order to avoid the

robot (at least up to some degree). In this setting, we are required first of all to

understand whether the pedestrian is actively collaborating, or if we need to assume

the full responsibility for the avoidance. In a collaborative setting, the robot has

to understand the intentions of the human, establish a policy to accomplish the

avoidance manoeuvre accordingly (e.g. pass on the left), and determine adjustments

to the reference trajectory in accordance with this policy. The process has to be

repeated iteratively, until a consensus is reached by the robot and the pedestrian

on a common, shared avoidance strategy.

Another interesting extension applicable to various of the proposed motion

planning approaches, is the possibility to massively parallelise the solution of a

large number of different subproblem instances (e.g. the interpolation of pairs of

configurations with clothoid curves), and to distribute the computational burden

to a large number of processors. Indeed, with the development of general-purpose

computing on GPUs, the deployment and adoption of this kind of hardware

platforms on robotics and automotive systems is becoming more and more popular,

also thanks to the development of ad-hoc embedded boards equipped with GPU

cores.
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for autonomous ground vehicles,” in Advances in Electrical and Electronics

Engineering - IAENG Special Edition of the World Congress on Engineering

and Computer Science 2008, IEEE, oct 2008.

[25] S. Quinlan and O. Khatib, “Elastic bands: connecting path planning and

control,” in [1993] Proceedings IEEE International Conference on Robotics

and Automation, IEEE Comput. Soc. Press.

[26] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime

motion planning using the RRT*,” in International Conference on Robotics

and Automation (ICRA), pp. 1478–1483, IEEE Press, 2011.

[27] S. Karaman and E. Frazzoli, “Optimal kinodynamic motion planning using

incremental sampling-based methods,” in 49th IEEE Conference on Decision

and Control (CDC), IEEE, dec 2010.

[28] D. J. Webb and J. van den Berg, “Kinodynamic RRT*: Asymptotically

optimal motion planning for robots with linear dynamics,” in 2013 IEEE

International Conference on Robotics and Automation, IEEE, may 2013.

129



Bibliography

[29] S. Karaman and E. Frazzoli, “Sampling-based optimal motion planning for

non-holonomic dynamical systems,” in 2013 IEEE International Conference

on Robotics and Automation, IEEE, may 2013.

[30] K. Yang, S. Moon, S. Yoo, J. Kang, N. L. Doh, H. B. Kim, and S. Joo, “Spline-

based rrt path planner for non-holonomic robots,” Journal of Intelligent &

Robotic Systems, vol. 73, no. 1, pp. 763–782, 2014.

[31] M. Likhachev and D. Ferguson, “Planning long dynamically feasible man-

euvers for autonomous vehicles,” The International Journal of Robotics

Research, vol. 28, pp. 933–945, jun 2009.

[32] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained

mobile robot motion planning in state lattices,” Journal of Field Robotics,

vol. 26, pp. 308–333, mar 2009.

[33] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger,

D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston, S. Klumpp,

D. Langer, A. Levandowski, J. Levinson, J. Marcil, D. Orenstein, J. Paefgen,

I. Penny, A. Petrovskaya, M. Pflueger, G. Stanek, D. Stavens, A. Vogt, and

S. Thrun, “Junior: The stanford entry in the urban challenge,” in Springer

Tracts in Advanced Robotics, pp. 91–123, Springer Berlin Heidelberg, 2009.

[34] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Practical search

techniques in path planning for autonomous driving,” Ann Arbor, vol. 1001,

no. 48105, pp. 18–80, 2008.

[35] N. E. Du Toit and J. W. Burdick, “Probabilistic collision checking with

chance constraints,” IEEE Trans. on Robotics, no. 4, pp. 809–815, 2011.

[36] F. Large, D. Vasquez, T. Fraichard, and C. Laugier, “Avoiding cars and

pedestrians using velocity obstacles and motion prediction,” in Intelligent

Vehicles Symposium, 2004 IEEE, pp. 375–379, IEEE, 2004.

[37] A. Alempijevic, R. Fitch, and N. Kirchner, “Bootstrapping navigation and

path planning using human positional traces,” in Robotics and Automation

(ICRA), IEEE Int. Conf. on, pp. 1242–1247, IEEE, 2013.

130



Bibliography

[38] P. Trautman, J. Ma, R. M. Murray, and A. Krause, “Robot navigation in

dense human crowds: Statistical models and experimental studies of human–

robot cooperation,” The International Journal of Robotics Research, vol. 34,

no. 3, pp. 335–356, 2015.

[39] Q. Zhu, “Hidden markov model for dynamic obstacle avoidance of mobile

robot navigation,” IEEE Transactions on Robotics and Automation, vol. 7,

pp. 390–397, Jun 1991.

[40] C. Fulgenzi, C. Tay, A. Spalanzani, and C. Laugier, “Probabilistic navigation

in dynamic environment using rapidly-exploring random trees and gaus-

sian processes,” in Intelligent Robots and Systems. IROS 2008. IEEE/RSJ

International Conference on, pp. 1056–1062, IEEE, 2008.

[41] D. Althoff, J. J. Kuffner, D. Wollherr, and M. Buss, “Safety assessment of

robot trajectories for navigation in uncertain and dynamic environments,”

Autonomous Robots, vol. 32, pp. 285–302, Apr 2012.

[42] A. Colombo, D. Fontanelli, D. Gandhi, A. DeAngeli, L. Palopoli, S. Sedwards,

and A. Legay, “Behavioural templates improve robot motion planning with

social force model in human environments,” in Proc. IEEE Int. Conf. on

Emerging Technologies & Factory Automation (ETFA), (Cagliari, Italy),

pp. 1–6, IEEE, 10-13 Sep. 2013.

[43] D. Helbing, I. Farkas, and T. Vicsek, “Simulating dynamical features of

escape panic,” Nature, vol. 407, pp. 487–490, September 2000.

[44] G. Arechavaleta, J.-P. Laumond, H. Hicheur, and A. Berthoz, “On the

nonholonomic nature of human locomotion,” Autonomous Robots, vol. 25,

no. 1-2, pp. 25–35, 2008.

[45] G. Arechavaleta, J.-P. Laumond, H. Hicheur, and A. Berthoz, “An optimality

principle governing human walking,” IEEE Transactions on Robotics, vol. 24,

pp. 5–14, Feb 2008.

[46] G. Ferrer and A. Sanfeliu, “Proactive kinodynamic planning using the exten-

ded social force model and human motion prediction in urban environments,”

131



Bibliography

in 2014 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems, pp. 1730–1735, IEEE, 2014.

[47] F. Farina, D. Fontanelli, A. Garulli, A. Giannitrapani, and D. Prattichizzo,

“Walking ahead: The headed social force model,” PLOS ONE, vol. 12, pp. 1–23,

01 2017.

[48] M. Saha, T. Roughgarden, J.-C. Latombe, and G. Sánchez-Ante, “Planning

tours of robotic arms among partitioned goals,” The International Journal

of Robotics Research, vol. 25, no. 3, pp. 207–223, 2006.

[49] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Motion planning with dynamics

by a synergistic combination of layers of planning,” IEEE Transactions on

Robotics, vol. 26, pp. 469–482, June 2010.

[50] M. Van Den Briel, R. Sanchez, M. B. Do, and S. Kambhampati, “Effective

approaches for partial satisfaction (over-subscription) planning,” in AAAI,

pp. 562–569, 2004.

[51] A. Gunawan, H. C. Lau, and P. Vansteenwegen, “Orienteering problem: A

survey of recent variants, solution approaches and applications,” European

Journal of Operational Research, vol. 255, no. 2, pp. 315–332, 2016.

[52] M. Schilde, K. F. Doerner, R. F. Hartl, and G. Kiechle, “Metaheuristics

for the bi-objective orienteering problem,” Swarm Intelligence, vol. 3, no. 3,

pp. 179–201, 2009.

[53] D. Gavalas, C. Konstantopoulos, K. Mastakas, and G. Pantziou, “A survey

on algorithmic approaches for solving tourist trip design problems,” Journal

of Heuristics, vol. 20, no. 3, pp. 291–328, 2014.

[54] L. E. Dubins, “On curves of minimal length with a constraint on average

curvature, and with prescribed initial and terminal positions and tangents,”

American Journal of mathematics, pp. 497–516, 1957.

[55] R. Sanfelice, S. Yong, and E. Frazzoli, “On minimum-time paths of bounded

curvature with position-dependent constraints,” Automatica, vol. 50, no. 2,

pp. 537–546, 2014.

132



Bibliography

[56] L. S. Pontryagin, Mathematical theory of optimal processes. Routledge, 2018.

[57] J. Hendrikx, T. Meijlink, and R. Kriens, “Application of optimal control

theory to inverse simulation of car handling,” Vehicle System Dynamics,

vol. 26, no. 6, pp. 449–461, 1996.

[58] D. Tavernini, M. Massaro, E. Velenis, D. I. Katzourakis, and R. Lot, “Min-

imum time cornering: the effect of road surface and car transmission layout,”

Vehicle System Dynamics, vol. 51, no. 10, pp. 1533–1547, 2013.

[59] R. Lot and F. Biral, “A curvilinear abscissa approach for the lap time

optimization of racing vehicles,” IFAC Proceedings Volumes, vol. 47, no. 3,

pp. 7559–7565, 2014.

[60] N. Dal Bianco, R. Lot, and M. Gadola, “Minimum time optimal control

simulation of a gp2 race car,” Proceedings of the Institution of Mechanical

Engineers, Part D: Journal of Automobile Engineering, vol. 232, no. 9,

pp. 1180–1195, 2018.

[61] G. Perantoni and D. J. Limebeer, “Optimal control for a formula one car with

variable parameters,” Vehicle System Dynamics, vol. 52, no. 5, pp. 653–678,

2014.

[62] K. Berntorp, B. Olofsson, K. Lundahl, and L. Nielsen, “Models and method-

ology for optimal trajectory generation in safety-critical road–vehicle man-

oeuvres,” Vehicle System Dynamics, vol. 52, no. 10, pp. 1304–1332, 2014.

[63] N. Dal Bianco, E. Bertolazzi, F. Biral, and M. Massaro, “Comparison of

direct and indirect methods for minimum lap time optimal control problems,”

Vehicle System Dynamics, vol. 57, no. 5, pp. 665–696, 2019.

[64] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to

single-query path planning,” in Robotics and Automation, 2000. Proceedings.

ICRA’00. IEEE International Conference on, vol. 2, pp. 995–1001, IEEE,

2000.

[65] C. Urmson et al., “Autonomous driving in urban environments: Boss and the

urban challenge,” Journal of Field Robotics, vol. 25, no. 8, pp. 425–466, 2008.

133



Bibliography

[66] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning for

autonomous vehicles in unknown semi-structured environments,” The Inter-

national Journal of Robotics Research, vol. 29, no. 5, pp. 485–501, 2010.

[67] Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J. How, and G. Fiore, “Real-time

motion planning with applications to autonomous urban driving,” Control

Systems Technology, IEEE Transactions on, vol. 17, pp. 1105–1118, Sept

2009.

[68] J. hwan Jeon, R. V. Cowlagi, S. C. Peters, S. Karaman, E. Frazzoli, P. Tsio-

tras, and K. Iagnemma, “Optimal motion planning with the half-car dynam-

ical model for autonomous high-speed driving,” in 2013 American Control

Conference, pp. 188–193, IEEE, 2013.

[69] A. Arab, K. Yu, J. Yi, and D. Song, “Motion planning for aggressive autonom-

ous vehicle maneuvers,” in 2016 IEEE International Conference on Automa-

tion Science and Engineering (CASE), pp. 221–226, IEEE, 2016.

[70] Y. Gao, T. Lin, F. Borrelli, E. Tseng, and D. Hrovat, “Predictive control of

autonomous ground vehicles with obstacle avoidance on slippery roads,” in

ASME 2010 dynamic systems and control conference, pp. 265–272, American

Society of Mechanical Engineers, 2010.

[71] A. Gray, Y. Gao, T. Lin, J. K. Hedrick, H. E. Tseng, and F. Borrelli,

“Predictive control for agile semi-autonomous ground vehicles using motion

primitives,” in 2012 American Control Conference (ACC), pp. 4239–4244,

IEEE, 2012.

[72] E. Frazzoli, M. A. Dahleh, and E. Feron, “Maneuver-based motion planning

for nonlinear systems with symmetries,” IEEE transactions on robotics,

vol. 21, no. 6, pp. 1077–1091, 2005.

[73] E. Velenis, P. Tsiotras, and J. Lu, “Modeling aggressive maneuvers on loose

surfaces: The cases of trail-braking and pendulum-turn,” in 2007 European

Control Conference (ECC), pp. 1233–1240, IEEE, 2007.

[74] J. V. Frasch, A. Gray, M. Zanon, H. J. Ferreau, S. Sager, F. Borrelli, and

M. Diehl, “An auto-generated nonlinear mpc algorithm for real-time obstacle

134



Bibliography

avoidance of ground vehicles,” in 2013 European Control Conference (ECC),

pp. 4136–4141, IEEE, 2013.

[75] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based autonomous

racing of 1: 43 scale rc cars,” Optimal Control Applications and Methods,

vol. 36, no. 5, pp. 628–647, 2015.

[76] E. Bertolazzi and M. Frego, “G1 fitting with clothoids,” Mathematical Methods

in the Applied Sciences, vol. 38, no. 5, pp. 881–897, 2015.

[77] E. Bertolazzi, M. Frego, and P. Bevilacqua, “Clothoids.” https://github.

com/ebertolazzi/Clothoids.

[78] E. Bertolazzi and M. Frego, “On the G2 Hermite interpolation problem with

clothoids,” Journal of Computational and Applied Mathematics, vol. 341,

pp. 99–116, 2018.

[79] C. Ericson, Real-Time Collision Detection. Boca Raton, FL, USA: CRC

Press, Inc., 2004.

[80] P. Guigue and O. Devillers, “Fast and robust triangle-triangle overlap test

using orientation predicates,” Journal of Graphics Tools, vol. 8, no. 1, pp. 25–

32, 2003.

[81] Y. Xing, X. P. Liu, and S. Xu, “Efficient collision detection based on aabb

trees and sort algorithm,” in IEEE ICCA 2010, pp. 328–332, June 2010.

[82] S. Gulati, C. Jhurani, B. Kuipers, and R. Longoria, “A framework for planning

comfortable and customizable motion of an assistive mobile robot,” in 2009

IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE,

oct 2009.

[83] M. Frego, E. Bertolazzi, F. Biral, D. Fontanelli, and L. Palopoli, “Semi-

analytical minimum time solutions for a vehicle following clothoid-based

trajectory subject to velocity constraints,” in 2016 European Control Confer-

ence (ECC), pp. 2221–2227, IEEE, June 2016.

[84] T. Fraichard and A. Scheuer, “From reeds and shepp’s to continuous-curvature

paths,” Robotics, IEEE Transactions on, vol. 20, pp. 1025–1035, Dec 2004.

135

https://github.com/ebertolazzi/Clothoids
https://github.com/ebertolazzi/Clothoids


Bibliography

[85] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed rrt*: Optimal

sampling-based path planning focused via direct sampling of an admiss-

ible ellipsoidal heuristic,” in 2014 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pp. 2997–3004, IEEE, 2014.

[86] A. Wchter and L. T. Biegler, “On the implementation of an interior-point filter

line-search algorithm for large-scale nonlinear programming,” Mathematical

Programming, vol. 106, pp. 25–57, apr 2005.

[87] E. Bertolazzi and M. Frego, “Interpolating clothoid splines with curvature

continuity,” Mathematical Methods in the Applied Sciences, vol. 41, no. 4,

pp. 1723–1737, 2017.

[88] C. R. Dyer, “The space efficiency of quadtrees,” Computer Graphics and

Image Processing, vol. 19, p. 89, may 1982.

[89] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Nu-

merische Mathematik, vol. 1, pp. 269–271, dec 1959.

[90] L. Palopoli, A. Argyros, J. Birchbauer, A. Colombo, D. Fontanelli, et al.,

“Navigation assistance and guidance of older adults across complex public

spaces: the dali approach,” Intelligent Service Robotics, vol. 8, no. 2, pp. 77–

92, 2015.

[91] P. Panteleris and A. A. Argyros, “Vision-based slam and moving objects

tracking for the perceptual support of a smart walker platform,” in ECCV

Workshops (3), pp. 407–423, 2014.

[92] K. Mombaur, A. Truong, and J.-P. Laumond, “From human to humanoid

locomotion – an inverse optimal control approach,” Autonomous robots,

vol. 28, no. 3, pp. 369–383, 2010.

[93] I. Nishitani, T. Matsumura, M. Ozawa, A. Yorozu, and M. Takahashi,

“Human-centered x–y–t space path planning for mobile robot in dynamic

environments,” Robotics and Autonomous Systems, vol. 66, no. Supplement

C, pp. 18–26, 2015.

136



Bibliography

[94] C.-P. Lam, C.-T. Chou, K.-H. Chiang, and L.-C. Fu, “Human-centered robot

navigation–towards a harmoniously human–robot coexisting environment,”

IEEE Trans. on Robotics, vol. 27, no. 1, pp. 99–112, 2011.

[95] M. Luber, J. A. Stork, G. D. Tipaldi, and K. O. Arras, “People tracking with

human motion predictions from social forces,” in Proc. IEEE ICRA 2010,

(Anchorage, USA), 2010.

[96] N. E. Du Toit and J. W. Burdick, “Robot motion planning in dynamic,

uncertain environments,” IEEE Transactions on Robotics, vol. 28, no. 1,

pp. 101–115, 2012.

[97] M. Bennewitz, W. Burgard, G. Cielniak, and S. Thrun, “Learning motion

patterns of people for compliant robot motion,” The International Journal

of Robotics Research, vol. 24, no. 1, pp. 31–48, 2005.

[98] S. Pellegrini, A. Ess, K. Schindler, and L. van Gool, “You’ll never walk

alone: Modeling social behavior for multi-target tracking,” in 2009 IEEE

12th International Conference on Computer Vision, pp. 261–268, Sept. 2009.

http://www.vision.ee.ethz.ch/datasets/index.en.html.
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