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Abstract

The ecological, climatic and economic influence of forests makes them an essential natural

resource to be studied, preserved, and managed. Forest inventorying using single sensor

data has a huge economic advantage over multi-sensor data. Remote sensing of forests

using high density multi-return small footprint Light Detection and Ranging (LiDAR)

data is becoming a cost-effective method to automatic estimation of forest parameters at

the Individual Tree Crown (ITC) level.

Individual tree detection and delineation techniques form the basis for ITC level pa-

rameter estimation. However SoA techniques often fail to exploit the huge amount of

three dimensional (3D) structural information in the high density LiDAR data to achieve

accurate detection and delineation of the 3D crown in dense forests, and thus, the first

contribution of the thesis is a technique that detects and delineates both dominant and

subdominant trees in dense multilayered forests. The proposed method uses novel two

dimensional (2D) and 3D features to achieve this goal.

Species knowledge at individual tree level is relevant for accurate forest parameter

estimation. Most state-of-the-art techniques use features that represent the distribution

of data points within the crown to achieve species classification. However, the performance

of such methods is low when the trees belong to the same taxonomic class (e.g., the conifer

class). High density LiDAR data contain a huge amount of fine structural information of

individual tree crowns. Thus, the second contribution of the thesis is on novel methods

for classifying conifer species using both the branch level and the crown level geometric

characteristics.

Accurate localization of trees is fundamental to calibrate the individual tree level in-

ventory data, as it allows to match reference to LiDAR data. An important biophysical

parameter for precision forestry applications is the Diameter at Breast Height (DBH).

SoA methods locate the stem directly below the tree top, and indirectly estimate DBH

using species-specific allometric models. Both approaches tend to be inaccurate and de-

pend on the forest type. Thus, in this thesis, a method for accurate stem localization and

direct DBH estimation is proposed. This is the third contribution of the thesis.

Qualitative and quantitative results of the experiments confirm the effectiveness of the

proposed methods over the SoA ones.



Keywords: Light Detection and Ranging (LiDAR), Airborne Laser Scanning (ALS),

Airborne Laser Scanning (TLS), Forest Parameter Estimation, Forestry, Remote Sensing.
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Chapter 1

Introduction

1.1 Background

The ecological, climatic and economic influence of forests makes them an essential natural

resource to be studied, preserved, and managed. Forests occupy approximately 30% of

the world’s land area, and hence are habitats for the major share of the terrestrial biodi-

versity [1]. Forests also act as huge carbon sinks by sequestering it in their biomass, thus

preventing the presence of disproportionately large amount of carbon in the atmosphere

which adversely influences the Earth’s climate (i.e., release of carbon to the atmosphere

warms up the planet). It is estimated that the percentages of above and below ground

carbon stored by forests alone are approximately 80% and 40%, respectively [2]. However,

forests are also the major source of timber and associated non-timber products which are

of huge socio-economic value to the society. Extraction of timber and associated products

results in deforestation and forest ecosystem degradation, and has negative consequences

on the downstream water flows, terrestrial biodiversity, traditional sources of livelihoods

for local people, and global climate. In fact, the share of deforestation and forest degra-

dation account for approximately 17% of carbon emissions, more than the entire global

transportation sector and second only to the energy sector [3]. Thus, it is essential to

maintain a balance between the procurement of forest resources and the resulting ecolog-

ical and climatic impacts. Any activity directed at maintaining the balance requires an

accurate and periodic inventorying of forests. Accurate inventory data serves the purpose

of national forest database generation and policy making at a regional and national scale.

On a global scale they are central to the understanding of the terrestrial biosphere [4].

Area level inventorying results in data aggregation at the species and/or spatial level(s)

resulting in bias together with an almost certain reduction in both accuracy and precision

of the estimates [5]. Hence, inventorying at the individual tree level is a good choice to

accurately derive forest information in terms of tree species distribution and associated
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parameter estimates such as tree biomass (i.e., carbon stocks) [6; 7] and stem diameter [8].

Accurate tree detection and delineation provide ecologically relevant forest data such as

canopy cover [9], above-ground biomass [10], spatial pattern of trees [11], study forest fire

behavior [12], disturbance extent mapping [13], and habitat classification [14]. However,

error in individual tree level attributes is amplified when using allometric models. Thus,

accurate extraction of parameter is critical to estimations at the individual tree level. Pre-

cision forestry, which can be defined as the practice of using modern tools and methods

to accurately determine characteristics of forests and treatments at stand, sub-stand or

individual tree level, also demands accurate fine resolution inventory data for activities

such as site/tree specific fertilization treatment and accurate supply chain planning [15].

The inventoried forest data mostly include tree count, tree/crown height, stem di-

ameter, canopy cover, basal area, leaf area index, biomass, and species. In particular,

characterization of tree species and their underlying spatial distribution are critical to

the execution of sustainable forest management, and understanding regional ecological

processes [1]. Forest parameters can be accurately estimated from data acquired from

individual trees in forests. Thus, the conventional method of accurate data collection is

to directly measure the tree attributes on the field. Although parameter estimation can

be very accurately done for small areas by measuring attributes of individual trees, the

on-site measurement of parameters for large areas is often impossible and/or very costly

in terms of human labour and time. Thus, attribute estimates of large forest areas are

economically obtained using statistical techniques [16], where a few field-measured-tree-

attribute data, randomly collected on a small forest plots, are considered representative

of large areas. Whatsoever, the accuracy of the estimates depends on factors such as, the

amount of field collected data, the forest type, the tree count, and the tree species.

Remote sensing is an efficient alternative to economically inventory forest attributes

at a range of resolutions, in a synoptic and timely manner. The different remote sens-

ing data acquisition technologies include optical sensors, Radio Detection and Ranging

(RADAR) and Light Detection and Ranging (LiDAR). Optical remote sensors capture

multi-/hyper-spectral data that contain Two Dimensional (2D) canopy level spatial and

spectral information. However, optical sensors fail to collect information on the vertical

structure of forest, including that of subdominant trees and under-story vegetation [17].

Instead, LiDAR and RADAR remote sensing can capture Three Dimensional (3D) data of

the forest vertical profile and are used to obtain information of the sub-canopy structures

[18]. Most remote sensors can be operated from spaceborne, airborne, and terrestrial plat-

forms. Spaceborne sensors have the advantage of large Field of View (FoV), however, the

large distance limits the amount of detail that can be captured. Most spaceborne sensors

belong to the optical and RADAR classes, while LiDAR based ones are operated from
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spaceborne platforms as profilers due to technological (i.e., low pulse repetition and/or

sampling rate) and distance (i.e., the speed of light is a constant) limitation. Several

spaceborne sensors are in orbit to perform Earth remote sensing with different spatial,

spectral and temporal resolutions. For example, the Moderate Resolution Imaging Spec-

troradiometer (MODIS) [19] and Advanced Land Observing Satellite Phased Array Type

L-band Synthetic Aperture Radar (ALOS-PALSAR) [20] and Geoscience Laser Altime-

ter System (GLAS) provide low to moderate resolution data, the Multispectral Scanner

(MSS) on-board Land Remote-Sensing Satellite (LANDSAT), and Synthetic Aperture

Radar (SAR) sensors on board the COnstellation of Small Satellites for the Mediter-

ranean Basin Observation (COSMO-SkyMed) provide higher resolution data (i.e., 1m -

30m) at the cost of a longer revisit times [21], and sensors such as Quickbird/IKONOS

capture high resolution data with sub-metric accuracies [22]. A more detailed data acqui-

sition of forests is done by mounting remote sensors on low flying airborne platforms (e.g.,

helicopters and drones), enabling them to capture finer resolution spatial and spectral de-

tails when compared to spaceborne platforms. Popular airborne sensors include Airborne

Visible and Infrared Imaging Spectrometer (AVIRIS), Unmanned Aerial Vehicle Synthetic

Aperture Radar (UAVSAR), and laser scanners such as the RIEGL VQ-780i. The highest

resolution remote sensing data are often captured from terrestrial platforms, however, the

limited FoV is a drawback. The huge amount of 2D and 3D information derived from

multiple remote sensors in various platforms allow accurate estimation/measurement of

forest parameters at a range of spatial, spectral, and temporal resolutions. Whatsoever,

simultaneous acquisition of data from multiple remote sensors is often costly (due to inac-

cessibility and increased acquisition cost) and sometimes impossible (due to governmental

policies). In addition, data from multiple sensors require preprocessing steps such as ho-

mogenization and registration, which are computationally expensive. In general, there is

growing interest in more detailed measurements of the forests while minimizing the cost

of data/acquisition [6; 23]. Thus the thesis contributes to the development of methods

for individual tree level forest information extraction using single sensor data such as the

high density LiDAR ones which contain accurate 2D and 3D details of forests.

LiDAR remote sensing has been used in forestry shortly after its invent in the 1960s.

The technology uses the precisely measured round-trip time of a highly directed Light

Amplification by Stimulated Emission of Radiation (LASER) beam, combined with the

sensor position and the orientation information, to capture structural and spectral data

of the scanned object. In case of forests, LiDAR acquires 3D profile data. The amount of

detail captured depends on the laser-footprint size, the sampling frequency, the scanning

frequency, and the height/distance of the sensor platform from the object. A large foot-

print, low sampling/scanning frequency, and large sensor height result in low-resolution
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data, whereas, a small footprint, high sampling/scanning frequency, and small sensor

height result in high-resolution data. LiDAR systems for forest analysis are popularly

mounted on airborne and terrestrial platforms. The former set of systems is mounted

on airborne platforms such as low flying aircrafts or helicopters, and the data collected

are referred to as Airborne Laser Scanning (ALS) data. The latter set of systems is usu-

ally mounted on tripod stands, and the data collected are referred to as Terrestrial Laser

Scanning (TLS) data. The ALS data can be used to precisely estimate the forest variables

such as the tree height, the crown span, the stem diameter, and the biomass at the stand

level (group of trees) [24] or the individual tree level [17]. Whatsoever, the amount of

details in ALS data drastically decreases for subcanopy layers. On the other hand, the

TLS data contain very fine details about the subcanopy layers including the texture of the

stem bark, and the leaf structure [25], however, the scanning geometry of TLS results in

data which contain limited information about the forest canopy layer. Thus, ALS systems

are suitable for surveying and mapping large forest areas, whereas TLS data are usually

employed for local forest inventories, and reference data generation for validating forest

parameter estimation by ALS data. Advancements in scanner and sensor technologies

in the last decade drastically increased the amount of data that can be collected from a

unit forest area. For example, modern ALS systems such as the RIEGL VQ-1560i can

record more than 50 points per meter square in a single scanning pass made at flying

height of approximately 1 km at a speed of around 100km/hr [26], and TLS systems such

as Leica HDS6100 can capture more than 25000 points per meter square at a distance

of 10m [27]. This is a huge advancement compared to initial LiDAR systems such as

the ones from the Optech which produced less than 2 points per unit meter square at a

distance of approximately 500m, and less than 100 points from close ranges. A very high

resolution point cloud data contain a huge amount of detail of the forest structure, that

can be exploited to study forests at the individual tree level. The high density LiDAR

scanning data contain comprehensive details of the spatial and spectral characteristics of

the forests at the individual tree level including that of crown, stem, branch, and leaves.

The availability of such data is triggering a paradigm shift in operational forest parameter

estimation from the area, to the individual tree level [28; 29]. This calls for the need to

develop automatic species classification and forest parameter estimation techniques that

can maximally exploit the information in the data.

1.2 Motivation and Objectives

Recent high density small footprint LiDAR systems acquire data with a huge amount

of tree level 3D structural information which can be used to accurately classify species



Novel Contribution of the Thesis 15

and estimate forest parameters. However, individual tree detection and delineation in

LiDAR point cloud itself is a challenging problem especially in thick and complex forests,

mainly due to reduced point density in subcanopy layers, over-toppling (i.e., dominant

tree crowns often fully/partially topple over subdominant ones which make the latter un-

detectable in the canopy layer), and partial mixing of proximal tree crowns [18]. In this

case, novel methods exploiting the 3D forest structural information in LiDAR data that

are robust to partial crown mixing and point density variation, need to be developed in

order to accurately detect and 3D delineate both dominant and subdominant trees. At

present, most of the forest inventorying is performed at the area-level by using generalized

field measurements (i.e., over an area). However, area-level inventorying methods lack a

built-in species discrimination component which is critical to accurate forest parameter

estimation and precision forestry [30]. The characterization of tree species and their spa-

tial distribution is critical for sustainable forest management and understanding regional

ecological processes. An important requirement of accurate individual tree level inventory

is that individual trees are detected and delineated accurately [6]. State-of-the-art ALS

data based automatic individual tree level inventorying methods have failed to challenge

area-based ones, mostly due to lack of accurate single tree detection and delineation ca-

pabilities in multi-layered and complex forests [28]. Hence, there is a growing interest in

developing methods that can accurately detect and delineate individual trees. [23; 31]

Thus, the objectives of the thesis are to exploit the 3D structural information in high

density LiDAR data to: a) accurately detect and 3D delineate individual tree crowns, b)

classify individual tree species, and c) accurately estimate the stem location and the stem

DBH.

1.3 Novel Contribution of the Thesis

The aim of the thesis is to develop fully automatic methods for extracting forest param-

eters at the individual tree level, by exploiting the 3D structural information in the high

density LiDAR point cloud. The specific contributions of the thesis are the following:

1. An automatic tree detection and 3D crown delineation technique for multistoried

forests using both 2D and 3D structural information in high density ALS data.

2. An efficient tree species classification techniques that exploit the internal and external

crown structural information in high density ALS/TLS data.

3. An efficient approach to accurate stem localization, and direct estimation of Diameter

at Breast Height (DBH) using 3D stem modeling in high density ALS data.
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In the following subsection, a brief description of the method and novelty for each contri-

bution is described.

Individual tree detection and 3D crown delineation in ALS data

High density small footprint multi-return/full-waveform ALS scanners capture a huge

amount of structural data of individual trees in forests. The increasing availability of

the high density data has provided the possibility of shifting operational forest parameter

estimation from area/stand level to the individual tree level. However, accurate tree

detection and 3D crown delineation are critical to accurate Individual Tree Crown (ITC)

level analysis [6]. Several techniques that can detect and delineate 3D tree crowns exist

in the literature. However, their performance in detecting subdominant trees is often

low in multilayered forests due to crown proximity and reduced point density in the sub-

canopy layers [23; 6; 18]. Thus, the first contribution of this thesis is a novel technique

that detects and 3D delineates: a) the dominant crowns, and b) the subdominant trees

which are invisible at the canopy layer due to overtopping-by/proximity-to larger or taller

crowns. The method uses the 2D canopy level information to identify three dimensional

(3D) candidate point cloud segments which are then separately projected into a novel

space to detect and delineate both dominant and subdominant trees. The novelties of

the proposed method include: a) dominant and subdominant tree crown detection with

minimal omission and commission errors, and b) an accurate 3D crown delineation for

both dominant and subdominant trees, in multistoried coniferous forest. The effectiveness

of the proposed technique is demonstrated in the experiments on a high density (50

points/m2) small footprint multi-return LiDAR dataset of a multistoried forests in the

southern Alps located in Trentino, Italy.

Tree species classification using high density LiDAR data

Species knowledge is indispensable for accurate estimation of forest parameters. Every

species has unique general crown structural characteristics that can be modeled and ex-

ploited to classify different species [32; 33]. Tree species differ in their leaf area, foliage dis-

tribution, and branching patterns, resulting in divergent crown structures [34; 35; 32; 33].

High density small footprint multi-return LiDAR data contain a lot of details on the

internal and the external crown structure. Methods that model point distribution [36],

return intensity [27] and crown shape [37] to achieve species classification exist in the

literature. In particular, high density ALS data contains structural details of branches

which are the building blocks of tree crown [35; 34]. However there has been no or mini-

mal efforts towards the development of methods that can harness the potential of branch

level structural differences to achieve species classification. Thus, in this thesis, we pro-
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pose novel approaches to conifer species classification by modeling both the internal (i.e.,

branch level) and the external crown characteristics. The key contributions include: a) a

robust model for internal crown structure modeling of conifers using the LiDAR data; 2) a

robust set of efficient and scale invariant geometric features, representing the branch-level

characteristics, derived using the proposed internal crown structure model; and 3) species

independent feature extraction using a data-driven technique. All experiments were con-

ducted on a set of conifers belonging to major European species including Norway Spruce,

European Larch, Scot Pine and Scot Silver. The results confirm the effectiveness of the

proposed methods over the SoA ones in classifying conifer species.

Stem localization and direct estimation of DBH in ALS data

The accurate estimation of stem location improves the accuracy of crown delineation and

accuracy assessment of any parameter estimated at the tree level. Most stem localization

methods based on the 2D canopy level information work on the unrealistic assumption

that the stem is located directly below the highest point of the tree. Although many

3D stem detection algorithms exist in the state of the art, most of them require the

stem section in the lower crown to have enough sample. However, in dense forests, the

number of points in the lower section of the crown is often very small. Thus we propose

a stem detection technique which models the stem based on the growth direction of the

branches in the upper sections of the crown. In a branch point-cloud cluster, the point

farthest from branch tip is very likely to be associated with the stem. The set of all

such points is referred to as stem points, and they can approximately define the 3D

stem. We model the 3D stem by regression fitting a cone on the stem points. Also, most

SoA methods estimate the DBH using species-specific allometric models. However, the

proposed method measures (i.e., directly estimates) the DBH from the parameters of the

fitted cone without species knowledge. The main contributions are: a) a novel approach

to estimate the stem position of conifer based branch direction, and b) an approach

to directly estimate DBH by 3D shape based modeling of stem. All experiments were

conducted on a set of manually delineated conifers belonging to three different conifer

species (i.e., Norway Spruce, European Larch, the Swiss Pine) for which both the stem

location and the DBH are known. The experimental results prove the method to perform

better in stem localization, and DBH estimation with respect to the SoA methods.

1.4 Structure of the Thesis

The current chapter is a brief overview on forest information extraction from high density

LiDAR remote sensing data. The chapter also gives a short description of the various
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challenges in this context, the proposed solutions, and the key novelties. The rest of the

thesis is organized into seven chapters.

Chapter 2 is on the fundamentals of airborne and terrestrial laser scanning, and key

notions that benefit the understanding of the thesis. The remaining chapters illustrate

details about the challenges addressed in the context of forest remote sensing using high

density LiDAR data, and novel solutions.

Chapter 3 briefly recalls the SoA and related works in individual tree detection, tree

species classification, and biophysical parameter estimation using high density LiDAR

data.

Chapter 4 presents the need for single tree detection and delineation, and also the

challenges involved. Further, the section describes in detail the proposed individual tree

detection and 3D crown delineation method for multilayered conifer forests using high

density ALS data.

Chapter 5 and chapter 6 focuses on tree species classification using high density ALS

data. The method proposed in chapter 5 uses crown geometric information for conifer

species classification, while, a novel data-driven approach to tree species classification is

proposed in Chapter 6. Chapter 7 is on the proposed approach to tree species classification

by crown geometric modeling in high density multi-scan TLS data.

Chapter 8 discusses the need for accurate stem localization in the context of biophys-

ical parameter estimation at the individual tree level, and describes the proposed stem

localization and direct DBH estimation method in detail.

Each chapter provides an introduction to the specific topics and a short review of the

SoA that leads to the research gaps that are addressed in the thesis.



Chapter 2

LiDAR Fundamentals

The chapter recollects some fundamentals on LiDAR remote sensing. The concept of laser

ranging, LiDAR profiling and LiDAR scanning are described in the first few sections. The

thesis presents automatic techniques separately using ALS and TLS data, and thus later

sections describe in details their data capturing process.

Remote Sensing (RS) encompasses a variety of technologies that remotely acquire spa-

tial, spectral, and temporal information about an object/area of interest by analyzing the

interaction of electromagnetic radiations with it. The main elements of remote sensing

system are: a) an electromagnetic wave transmitter, b) interaction of wave with the ob-

ject/area of interest, and c) the electromagnetic wave receiver which records the returned

energy [38]. The properties of the received wave differ from the transmitted one based

on the characteristics of object/area that it interacts, and the state of the wave propa-

gation medium. Thus, the recorded data can be analysed for deriving information about

the study area/object. Remote sensing technology is widely exploited for studying and

monitoring terrestrial entities such as forest [19], ocean [39], and the atmosphere [40].

Remote sensing systems are broadly classified as active and passive, based on the electro-

magnetic energy source used for illuminating the object/area. The former set of systems

uses artificial energy sources such as lasers or radio wave transmitters, while the latter

set constitutes of scanner and radiometers which exploit the energy coming from natural

sources such as the Sun. For Earth remote sensing applications, the sensors are mounted

on space-borne [41], airborne [42] and terrestrial platforms [43]. In this thesis, we focus

on the forest remote sensing using LiDAR data acquired from airborne and terrestrial

platforms.
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2.1 Basics of LiDAR Remote Sensing

Also referred to as laser altimetry, LiDAR is an active remote sensing technique that uses

laser light to characterize an object/area of interest. The major elements of the LiDAR

remote sensing include: a) a transmitter that fires a finite-length/intensity-modulated

laser pulse at the object/area of interest, b) pulse interaction with the object/area of

interest, and c) pulse energy getting reflected back to an optical sensor/receiver [44]. The

return pulse energy Pret is determined based on LiDAR transmission equation, and the

time of return is dependent on the distance of the object from the sensor i.e., referred to

as range. The transmission equation of LiDAR is given as [45],

Pret =
ρM2

LD
2
rD

2
tar

4R2
L(RLγ +D)2

Pt (2.1)

Where ρ being the reflectivity of the surface, ML ∈ [0, 1] is the loss factor, Dr is the

receiver antenna/sensor-aperture diameter, Dtar as the target object/area diameter, RL

is the range, γ is the beam divergence, D is the diameter of laser-exit aperture, and Pt
is the transmitted power. At large distances, the D is insignificant compared to RLγ.

Hence (2.1) reduces to (2.2).

Pret =
ρM2

LD
2
rD

2
tar

4R4
Lγ

2
Pt (2.2)

A laser based transmitter-receiver system can be designed by using the aforementioned

transmission equation, and can be used for range measurement of an object/area of in-

terest. In the following sections, we discuss in detail the concept of laser ranging, LiDAR

profiling, and LiDAR scanning, which are fundamental for understanding the thesis.

2.2 Laser Ranging

Ranging refers to calculating the shortest distance between the laser transmitter/receiver

(Tx/Rx) and the object/area of interest. LiDAR based ranging is performed by measuring

the time lag between the laser transmission and reception ∆t (for pulsed lasers), and phase

lag between the transmitted and received wave ∆φ (for continuous waveform lasers) [44].

In pulsed laser systems, the range RL is proportional to ∆t and is calculated using (2.3),

where c is the speed of light.

RL =
c

2
∆t (2.3)

While in the continuous waveform laser systems, the laser light is intensity modulated

with a sinusoidal signal of wavelength λIM , and the range RL is obtained by exploiting
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(a) (b)

Figure 2.1: (a) The footprint created by the spreading of transmitted laser beam, (b) the Lambertian

surface corresponding to a point reflector at the footprint center.

the phase difference between the transmitted and return wave phase ∆φ. The range

is calculated in a continuous waveform systems using (2.4), where fIM is the frequency

corresponding λIM .

RL =
c

2
.
T

2π
∆φ =

1

4π
.
c

fIM
∆φ =

λIM
4π

∆φ (2.4)

The time (for pulsed laser systems) and phase (for continuous waveform laser systems)

lag measurements are done using very precise electronic systems to minimize the error in

the calculated range. It is worth noting that, range resolution in a continuous waveform

laser system can also be improved by using shorter λIM , and hence is an advantage of

continuous waveform systems over pulsed ones. Whatsoever, high power requirement and

limited unambiguous range are issues associated with the continuous waveform systems,

that limits its use to close range applications. For both pulsed and continuous waveform

systems a higher ranging precision can be obtained using triangulation method by using

the angle of intersection between two laser beams produced by either separate laser or

formed by splitting of the single laser beam.
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Figure 2.2: Laser ranging

2.3 LiDAR Profiling

By periodically performing laser ranging from a space borne or an airborne platform mov-

ing over the object/area of interest, the ranging instruments can be used to capture One

Dimensional (1D) data at nadir points (which are uniformly separated) in the ground pro-

jection of the platform trajectory. The data so collected is referred to as the LiDAR/laser

profiler data. LiDAR profiling done from a moving airborne or space based platform at

height h from the sea level enables them in capturing the terrain profile of larger areas

on the surface of Earth (Fig. 2.3). Alternatively, LiDAR profiling done from a terrestrial

platform allows capturing the local terrain profile [46], and hence is popularly used in

land surveying applications [44]. Here, the height difference between the laser ranger and

the ground point is measured as the product of the slant range and the vertical angle of

the ranger.

LiDAR Profiling of Forests

Periodic laser ranging performed from a low flying platform has been originally used for

acquiring the surface topography, even in the presence of a thick canopy. Here, the laser

pulse is fired vertically down towards the nadir point of the platform and the return(s)

are used to define the characteristics of the object/area at the point, such as the land

cover class and the surface elevation. The knowledge of the position and the altitude of

the flying platform at each ranging instance allows determining the topography along the
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Figure 2.3: LiDAR profiling

ground projection of the platform trajectory. Profiler data acquired from multiple flights

conducted with optimally selected trajectories over an area of interest can determine the

3D surface topography of the area. The laser pulse fired vertically from an airborne

platform towards forest interacts with its vertical profile and hence get partially reflected

back to the sensor. Each pulse provides at least one ranging and set of associated attribute

measurements (e.g., the intensity and the scan angle) that characterizes the forest that

falls within the laser footprint. LiDAR profiling of forest has been used to estimate tree

height [47], canopy density [48], and biomass [49], along with forest area topography [50].

Despite huge distances and associated lower scan density, space based LiDAR profilers

such as the large footprint space-borne full waveform profiling GLAS (onboard ICESat)

and Advanced Geoscience Laser Altimeter System (AGLAS) (onboard ICESat-2) have

also been successfully used to estimate the global canopy height [51]. The canopy matrices

generated from GLAS and or AGLAS data are used to estimate aboveground biomass

[52], and carbon [53]. Whatsoever, the performance of space based profiles is adversely

affected by the atmospheric conditions, the low pulse width (which acts as a low pass filter

which limits vertical resolution) and the low pulse energy (considering the large distance

between the platform and the target). However, recent space-borne missions such as

Global Ecosystem Dynamics Investigation LiDAR (GEDI) has onboard LiDAR systems

capable of generating footprints as small as 25 m and high pulse firing rates as high as

242 times per second with a pulse power of 10 m, that can perform a more comprehensive

sampling on even dense canopies.
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2.4 LiDAR Scanning

The laser ranging instrument can be transformed into a laser scanner by using a scanning

mechanism framework. The idea behind laser scanning is to collect data point(s) for a

series of locations on the target object/area using the laser ranging technique. These data

points when jointly considered can represent the surface topography and attributes of the

object/area in 3D. Laser scanning is achieved by repeated/simultaneous laser ranging at

a series of target locations from a linearly moving platform. Usually, a framework of

custom optics and supporting mechanical structures is used to deflect laser pulse in the

across-track direction to the direction of the platform motion. More specifically, a rotating

mirror/prism placed at an inclination of 45◦ to the casted laser beam is used to cause the

deflection [44]. The beam can be deflected along the whole length of the horizon in the

across-track direction (i.e., the direction perpendicular to the movement of the platform,

in the incident beam plane) by adjusting the orientation of the mirror. However, laser

scanning in a terrestrial framework is usually performed at smaller deflection angles in

order to reduce problems of low power at regions away from nadir, and large variations

in footprint size. Thus the maximum deflection angle, and hence the FoV, is limited

to smaller angular intervals by using a multi faced mirror. The rate of rotation of the

mirror/prism determines the scanning frequency. Fig. 2.4 shows the basic laser scanning

technique, with LiDAR transmitter (Tx)/receiver (Rx) system at a distance of h from

the target surface producing a swath s. The scanning happens across the direction of the

platform motion.

Figure 2.4: Laser scanning

The amplitude distribution (in time) of the pulse energy reflected back to the optical
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sensor is based on the interaction of the pulse with object(s) in its path e.g. branches

of a tree located at different heights. The peaks in the returned waveform correspond to

the maximum energy reflections that happened along the path, and hence are the most

informative sections of the distribution. Discrete return LiDAR systems detect only the

peaks in the returns, and usually record one (first or last), two (first and last), few (e.g.,

four, eight) returns, depending on the application requirements. However, the alternate

class referred to as the full waveform LiDAR systems record the amount of energy returned

to the sensor for a series of very fine time intervals. Although it is memory intensive, the

data collected have very high vertical resolution.

The number of pulses that is fired per second is referred to as the pulse rate, and

determines the horizontal resolution of a LiDAR system. i.e., a higher pulse rate increases

the horizontal resolution of the system by capturing more data points along the scan

direction, and vice versa. Although it is safer (in terms of error) to have a single pulse

in the air, the recent advancements in the precision pulse generation and return time

measurement electronics allow multiple pulses to be in the air simultaneously. However,

to do so, the measuring distance intervals should be greater than the range-ambiguity

interval which is the speed of light divided by the pulse rate. The angular accuracy of the

system also affects the horizontal accuracy. Although a high resolution angular encoder

can provide a very precise angle measurement, the effective horizontal resolution of a

LiDAR system is often limited by the laser beam diameter and beam divergence. The

size of the footprint is also a factor affecting the accuracy of the measurements. However,

the precision of the measured data depends mostly on the footprint size as the return

signal is an average of the total reflections happening from within the footprint. For a

particular footprint size, the averaging of overlapping point data improves the horizontal

accuracy.

LiDAR scanning can be performed from airborne and terrestrial platforms, and are

referred to as the ALS and the TLS, respectively. In this thesis, we focus our attention

on information extraction from the airborne and the terrestrial laser scanner data.

2.4.1 Airborne Laser Scanning

Airborne Laser Scanning (ALS) performs LiDAR scanning from a stable low flying air-

borne platform such as helicopter, aeroplane and drone, to capture 3D details of an

object/area on the Earth surface, from an aerial perspective. The basic modules of an

ALS system are: a) a laser scanner that fires laser pulse towards the target object/area

and detects the reflected pulse(s), b) the Global Positioning System (GPS) which pro-

vides accurate 3D positional information of the platform, c) an Inertial Measurement Unit

(IMU) which continuously records the orientation details (i.e., the pitch , the roll, and
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the yaw) of the platform, and d) an on-board computer interface that controls the laser

scanning and data recording configurations.

The transmitted laser pulse travels the minimum distance at the nadir point, and

the distance increases away from the nadir (for a flat terrain). Thus, ALS data are

acquired strip-wise over the target area mainly to minimize the range errors. The pulse-

energy-loss increases for larger scan angles, hence inducing data errors. In addition, the

flying platforms are often not very stable in the air in terms of orientation and height.

This instability also results in data errors. Accurate position and orientation data at

the ranging instance allow correcting the positional errors in the data. In the case of

ALS, accurate 3D positional information and the orientation information are derived from

the using a GPS receiver, and the IMU, respectively. A Differential Global Positioning

System (DGPS) which uses a reference signal from a base station is preferred to obtain

maximum accuracy [44]. The on-board computer collects the scanner data, the GPS,

and the IMU data continuously. Processing of the points can be done in an on-the-fly

or post-acquisition fashion. The density of points collected in a single scanning pass is

dependent on the pulse rate, the scanning frequency, the flying height, and the number of

returns stored [54]. Increased accuracies can be obtained by using ground control points

during strip adjustments aimed at stitching together different strips [45].

Figure 2.5: Airborne laser scanning

Airborne Laser Scanning of Forests

Airborne laser scanning conducted over forests reveals the 3D structure of forests by

capturing data of the forest vertical profile. ALS laser beam footprint is usually very

small and thus spans very fine sections of the tree crown, which makes the scanners useful
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for acquiring data at the resolution of individual tree structures. Multi-return and full

waveform systems capture huge amount of point sample along the vertical profile of tree

crowns. In particular, the small footprint multi-return/full waveform systems capture

very fine 3D tree crown structural characteristics (because of high range resolution). The

first return usually corresponds to reflections from the canopy layer and the last return

corresponds to the ground reflections (Fig. 2.6). The intermediate returns correspond

to reflections from the middle layers of the forest (i.e., between the canopy layer and

the ground). The intensity component corresponding to individual data point provides

some spectral information depending on the laser wavelength. In forestry applications,

the wavelength of the laser pulses is in the near-infrared part of the spectrum is typically

1040 nm or 1065 nm [44].

Figure 2.6: The laser beam scattering mechanism for an individual tree

.

The data collected by an ALS are a set of points in the 3D Euclidean space, with

associated attributes such as scan angle, return number, scan direction and the point

source ID. Compared to single-return systems which captures only one return against a

fired pulse, multi-return/continuous waveform LiDAR systems can capture more than one

return against a single pulse fired, resulting in a larger set of point data sample. Each

data point also has a associate spectral attribute (i.e., intensity) that that is dependent

on the frequency of the laser involved. Modern scanners have been able to scan in two

or more channels (frequencies of the laser). Multispectral scanners have the capability to

simultaneously capture the spectral responses using more than one laser frequencies, and

hence are getting a lot of attention in tree species classification and forest inventorying

[55].
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2.4.2 Terrestrial Laser Scanning

Unlike ALS, the Terrestrial Laser Scanners (TLS) are instruments that capture 3D data

of the area around a fixed position on the Earth surface. The principal components of a

TLS scanner are: a) laser generator, b) a mirror that can be rotated along the vertical and

the horizontal axis, c) the reflected beam receiving optics, and d) the range finder. Fig.

2.7a shows the principal components of the TLS instrument. TLS performs scanning in

an automated manner by using a predetermined scanning pattern as mentioned in section

2.4. The beam width, and thus the horizontal resolution, in a TLS acquisition varies as a

function of the initial beam diameter, the beam divergence, and the target distance. The

horizontal resolution can be improved by employing smaller angular steps for the same

scanning frequency.

(a) (b)

Figure 2.7: (a) TLS instrument and (b) Terrestrial laser scanning

Data collected from a TLS can be scanned to one of the three coordinate system:

a) Scanner, b) Project, c) Global. The scanner and the project coordinate systems are

established for individual and multiple scans, respectively. Thus they are beneficial for

local studies. Co-registering the data in the scanner/project coordinate systems to a

global coordinate system such as the WGS84 allow the data to be used for studies using

information from other remote sensors, and also at a wider geographic scale [44].

The terrestrial acquisitions are affected by the topography of the area due to the

varying ranges of the objects measured (from the scanning perspective) by the sensor. For

example, the number of points captured linearly decreases with an increase in distance

between the object and the scanner. In this case, a relatively homogeneous point density in

different direction is ensured by partitioning the entire scan-area in smaller angular steps.

The scanning is done accordingly to achieve a similar point density in each division. For

complex landscapes, calculating optimal scan step along the horizontal and the vertical

directions are critical to obtaining a homogeneous scan (Fig. 2.8).
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Figure 2.8: Scan partitioning

(a) (b)

Figure 2.9: (a) Single-scan framework and (b) Multi-scan framework

Terrestrial Laser Scanning of Forests

The ability of the TLS to capture huge number of point sample of its surrounding objects

is heavily exploited in forest studies at the individual tree level. For forest remote sensing,

a TLS scanner is placed in a location which causes minimum occlusion of the surrounding

trees in order to acquire maximum amount of detail. The data acquired using a TLS

system differs from an ALS one in terms of acquisition geometry, and also the captured

details are mostly complementary to each other [44]. For example, the TLS captures

details of the lower crown section and the understory vegetation, however fails often in

capturing canopy level details. Whereas most data captured by an ALS system are limited

to the upper crown section.

TLS data are acquired using a single-scan or a multi-scan framework. The former

framework restricts the data collection to the field of view of a single sensor. As a result,

only a section of the surrounding trees are scanned (Fig. 2.9a). However, the latter

framework merges data acquired from multiple scans performed from locations, allowing

capturing of tree data from multiple perspectives. This allows a very comprehensive and

uniform data acquisition on individual trees (Fig. 2.9b). The data collected by TLS are
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a also a set of points in the 3D Euclidean space as is the case with ALS.



Chapter 3

State of the Art in Forest Remote

Sensing using LiDAR data

The chapter provides the state of the art and related studies in LiDAR-based individual

tree detection, species classification and forest parameter estimation.

Forest inventorying is performed using Area Based Methods (ABM) and ITC based

methods [56]. The former relies on summary statistics calculated from the LiDAR data

over an area to derive forest parameters, whereas the latter uses the delineated 3D point

cloud of individual trees for species classification and forest parameter estimation. For

example, Fig. 3.1 shows the schematic diagram illustrating key differences in height

calculation between the ABM and the ITC methods. The major advantage of ITC level

data over area based ones is the possibility to produce species-specific forest parameter

estimates at fine resolutions. In addition, ITC methods have a better compatibility to

reference field-inventoried data (which is always obtained from individual trees). Studies

comparing ABM and ITC based approaches in the context of height estimates and forest

carbon mapping [29] highlight the potential of the ITC based approaches to give improved

performance over area based ones, as individual tree detection and delineation capabilities

improve. The increasing availability of denser data from small footprint (i.e., 10-30 cm)

systems [45] at declining acquisition cost [57] motivated development of methods to extract

information at the ITC level. Hyyppa [58] and Persson [59] were among the first to confirm

the possibility of deriving forest parameters and species information at the ITC level.

The thesis concentrates on exploring individual tree level based species classification

and forest parameter estimation methods. Thus, section 3.1 discusses the state-of-the-art

individual tree detection and delineation approaches which are fundamental to ITC based

forest studies. Section 3.2 and section 3.3 recalls the state-of-the-art method in species

classification, and forest parameter estimation techniques, respectively.
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(a) (b)

Figure 3.1: Schematic diagram illustrating the key differences in height calculation between the ABM

and the ITC method.

3.1 Individual Tree Detection and Crown Delineation

In the framework of forest analysis, the tree detection refers to identifying the ground

location of the tree stem, while the crown delineation refers to identifying the tree crown

boundary in 3D. Canopy Height Model (CHM) [60] based approaches have been con-

ventionality and widely used for crown detection and delineation mainly due to their

simplicity. In these approaches, crown delineation is performed by segmenting CHM,

based on treetops detected using local maxima [60] or level set [61] method. The ras-

terization artefacts in the CHM combined with the irregularities in crown shape affect

the crown detection and delineation accuracies, and hence are smoothened out using a

Gaussian low-pass filter [62], [63]. Thus, optimal smoothing parameters are critical for

accurate tree detection and delineation. They are often estimated by modeling topolog-

ical relation of crown segments with one another [64], rule-based splitting and merging

of crown segments [65], or methods based on local extrema calculated from combinations

of normalised scale invariant CHM derivatives [62]. In case of mixed/multilayered forests

with variable crown size (and thus no single optimal resolution), adaptively varying filter

window size improved crown detection accuracy [60; 66]. Alternatively, multistage object-

based approach to tree delineation using region growing approaches are also developed

[67; 68]. However, the approach demands an overhead of fine-tuning of the search radius

and merge conditions for optimal results. Although CHM based treetop detection tech-

niques when used singlehandedly can detect and delineate most of the dominant crowns,

they often fail to detect subdominant crowns. This is because of the partial (or complete)

obstruction of their crown by the dominant ones, in addition to often being less prominent

in the CHM.

The limited ability of CHM based methods in accurately representing tree crowns
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motivated researcher to exploit the 3D information along the height profile. Exploiting

the full potential of LiDAR data, several studies delineate tree crowns directly in the point

cloud space. The simple k-means clustering applied to normalized point cloud, with seed

points identified through CHM segmentation, highlighted the possibility of an accurate

3D crown delineation [69]. In an attempt to improve delineation of trees with irregular

canopy size, Lee et al. applied region growing for generating initial 3D segments, and

performed agglomerative clustering to accurately segment individual tree crowns [70]. A

RANdom Sample Consensus (RANSAC) based geometric model fitting which iteratively

determines the best set of points for a tree proved to perform well with sparse forests with

variable tree heights [71]. In some studies, the horizontal spacing between tree crowns

[72] and the variation in vertical density profiles of CHM segments [73] are exploited to

delineate tree crowns. Methods performing 3D layerwise analysis on tree point cloud

to mitigate the problem of reduced point density in the understory also exist in the

literature [74]. For example, layer-wise segments derived through clustering of the point

cloud segments in every layer are stacked together and inspected for overlap to detect

potential tree crowns [75]. Voxel-based approaches also proposed in the literature. For

example, Wang et al. delineated tree crowns using features derived from point cloud

segments in every horizontal layer along the tree height. Each layer is divided into cells,

and the points within each study cell are resampled into the local voxel space (within), to

derive the projection images [76]. In a more recently proposed voxel-based approach, the

complementary information derived from the treetop and the stem location are exploited

for 3D tree crown delineation [77]. In a comparison study on different state-of-the-art

crown delineation methods (performed on the same dataset), the accuracy varied from

study to study from 25% to 90% [31]. The results prove that the accuracy is highly

influenced by the crown delineation method. It is also proven that, in addition to forest

type [78], spatial arrangement [79] and variation in tree size [80], forest structural diversity

[81] also impacts the detection and delineation accuracies. It has been inferred that high

stand density and large forest heterogeneity have adverse effects on delineation accuracy

[31]. The point cloud density is also proved to have an impact on the accuracy of tree

detection and delineation [82]. For example, decreased point density in the subcanopy

layers results in less information about the subdominant and understory vegetation, and

thus causes low detection and delineation performance .

Despite the availability of high density data, SoA methods are lacking in the ability

to accurately detect and delineate both dominant and subdominant trees [75; 31; 78; 83].

Wang et al. proposed a hierarchical morphological approach to 2D crown data derived

from voxel layers analysis along the forest vertical profile to delineate dominant and

subdominant crowns in the 3D space [84]. Vega et al., proposed a multi-scale segmentation
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at the point level, followed by a multi-criteria analysis of the segments for accurate crown

localization and delineation. However, the accuracy associated with the subdominant

tree detection is low mainly due to poor point density below the canopy layer [85]. In

a bottom-up approach to detect and delineate tree crowns, Lu et al., first extracted tree

trunks by exploiting the intensity difference between trunk and other parts of the tree,

and assigning the remaining points to the trunk clusters based on a set of proximity rules

(with respect to stem) [86]. Among studies using full waveform LiDAR data, [87], the ones

based on ellipsoidal k-means clustering proved to provide good accuracies in multilayered

forest. Here, the cluster centers of dominant trees are obtained from the CHM segments,

while that of the subdominant trees are obtained in an iterative way using uniform seed

placement which however often causes inaccuracies [88]. Paris et al. delineated dominant

and subdominant tree crowns by a radial-sector-wise analysis of the vertical profile of the

tree crown [18]. However, the method relies only on the crown boundary visible at the

canopy layer to delineate crown, and hence it does not fully utilize the 3D information in

the LiDAR data.

Whatsoever, efficient and robust (to various forest types/conditions) methods that

can accurately detect and delineate 3D tree crowns in high density airborne LiDAR data

are lacking, making ITC based methods less suitable for operational forest inventorying.

Thus, statistical approaches to estimate tree count are also proposed for analyzing complex

and multistoried forests. For example, Maltamo et al. [89] used a theoretical distribution

to predict the stem number and the DBH of subdominant trees which are not visible in

the canopy layer. The parameters of the distribution were calculated from a truncated

diameter distribution of dominant trees [89]. With a similar objective, but under the

assumption that the relative height of trees in a homogeneous Poisson stand determines

the probability of observing them from the air, some authors estimated the subdominant

stem count [90],[91], and predicted stem-diameter distribution without the knowledge of

tree position [92]. Prior information of tree shape, when used in the MAP estimation of

the position, the size, and the crown shape, also improves tree detection accuracy [93].

Nonetheless, statistical modeling of tree level parameters can be useful for: a) estimating

the understory biophysical parameter in case of low point density, and b) correcting errors

in the crown level parameters derived from the pure ITC technique.

TLS based Individual tree detection and delineation are mostly bottom-up approaches,

due to the availability of huge amount of information about the lower sections of the tree

(e.g., stem), due to hemispherical scanning performed from a ground platform. Tree

detection in TLS data is based on the assumption that there is only one central truck for

a tree, which is often modeled as elongated cylindrical structure [94]. Several tree trunk

detection [94] and modeling [95] approaches are available in the literature. Many authors
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delineated the stem, the branch skeleton, and the foliage of individual trees, by training

the system to recognize individual components by using Gaussian mixture model fitting

[96], 3D morphological analysis [97], and intensity of the LiDAR returns [98], and in the

process delineated the individual tree crowns. Yang et al. first delineated individual

tree trucks by clustering the segments detected using limited radius cylinders on every

horizontal division of the tree point cloud. Crown delineation is achieved by allocating the

remaining points to nearest tree trunks using a hierarchical minimum cut operator [99]. In

any case, TLS data is primarily used in forestry for reference data collection, considering

its ability to provide extremely accurate tree attributes such as the tree position and the

DBH at sample plots [100; 101].

3.2 Tree Species Classification

Remote sensing based species classification has been traditionally performed by exploiting

the spectral information in high resolution multispectral and hyperspectral data. However,

the use of 3D spatial information in tree species classification problems has been gaining

popularity with the increasing availability of high density LiDAR data [102; 103]. Törmä

[102] was among the first to test the usability of low density small footprint single return

airborne LiDAR data for deriving species proportions in forest stands. However, despite

using a set of 28 descriptive statistical point cloud features for characterizing the species

distribution, the maximum accuracy reported is only 59.3% due to limited information of

the vertical forest profile. A similar low classification accuracy is also reported by Moffiet

et al. [103] by deriving a different set of descriptive statistical point cloud features from

single return LiDAR data. Several researchers also investigated the effectiveness of using

small footprint high density multi-return LiDAR data for species classification. Pyysalo

and Hyyppä [104] proved that the profile of distance of small footprint high density multi-

return LiDAR data points from the stem along the vertical direction provides hints on

the tree species. In [105], the height difference between the first and the last pulse from

multi-return LiDAR systems is identified as a good feature for differentiating deciduous

trees from conifers during leaf-off conditions. The underlying assumption here is that

the last laser return is reflected from within the deciduous tree crown, while the same

would get reflected back from crown-top in case of conifers. Holmgren et al. distinguished

Norway Spruce from Scots Pine (both conifers) in small footprint high density LiDAR data

using features derived from laser return proportions and point height distributions, and

achieved an overall accuracy of 95.0% [106]. By generating moment and percentile features

from the points, Orka et al. [107] classified spruce and birch trees in an unmanaged

forest. Improved species classification performance is obtained by exploiting the high
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vertical resolution of the 3D positional data in small footprint full waveform LiDAR data

[108; 109]. By classifying spruce, larch and beech trees, Holmgren and Persson [110] and

Hofle et al. [111] proved the potential of point data attributes such as the echo width

and the backscatter cross section derived from the full waveform LiDAR point cloud (by

modelling the waveform as a series of Gaussian components) in species classification.

Studies have also demonstrated the potential of LiDAR data for classifying tree species

in subtropical forest [109], boreal forests in the Nordic countries and Canada [107; 112],

temperate forests in Europe [83; 36], and North America [113; 114].

Based on the fact that crown shape is species dependent, geometric model fitting tech-

niques are also proposed as an effective species classification approach by some authors.

For example, Kim et al. showed that height percentile value and features derived from

fitting simple geometric shapes such as the cylinder, the cone and the sphere, on the

tree crown are very useful for classifying deciduous and evergreen trees [115]. However,

the use of leaf-off and leaf-on data increase computational complexity and operational

cost. Vauhkonen et al. [116] successfully employed alpha shape based ITC matrices to

achieve species classification of pine, spruce and birch. In [117], Ko et al. pointed out

the importance of internal crown geometric features derived from LiDAR to perform tree

species classification. They derived six geometric features, including two internal and four

external crown structural features, from small footprint high point density multi-return

airborne LiDAR data to achieve species classification. The classification of pine (conif-

erous), poplar (coniferous) and maple (broad-leaved) trees achieved an overall accuracy

close to 90.0%. Whatsoever, it is worth noting that the study reports low classification

accuracies within the conifer class. This is because the Merge and Split K-means based

model used in the study is not able to accurately model the individual conifer branch

clusters and hence produces inaccurate features which ultimately lead to poor classifi-

cation performance. In [118], the authors have demonstrated that advantage of jointly

employing point-space distribution and laser return-intensity features, along with internal

and external crown geometric features for species classification in a boreal context.

In addition to structural information, the intensity of the backscattered laser beam

gives spectral information that proved to be used for classifying tree species [119; 120].

Brandtberg et al. [62] tested the potential for intensity information for ITC level species

classification using leaf-off data, and inferred that the return beam intensity has a depen-

dency on the branch thickness and the reflectance properties of the bark. With leaf-on

data, the mean return intensity is found to be influenced by crown structural parameters

such as the crown density and gaps within the crown [121]. Whatsoever, the dependence

of the return intensity on the scan angle, the flying height, and topography often induces

variance in the data [27; 54; 122]. Thus strategies are proposed by several authors to
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reduce the variance induced by the scan angle and the height factor [123; 122]. The use

of leaf-on and leaf-off data provided additional information related to change in spec-

tral reflectance of a tree, and is hence proved to be useful for species classification [37].

Many authors also considered the joint use of structural and spectral information in high

density LiDAR data by deriving ITC matrices from both height and intensity attributes

[27; 124; 125]. Recent approaches are oriented towards single sensor solution to species

classification by using spatially and spectrally rich data from systems such as multispectal

LiDAR [126].

By performing scanning from a ground-based platform, the so-called Terrestrial Laser

Scanner (TLS) captures denser point clouds containing finer details of tree-structures in-

cluding stem, crown, and leaves. In one of the initial attempts on species classification

using TLS, Othmani et al. [127] derived surface texture properties of tree stem to dif-

ferentiate between hornbeam, oak, spruce, beech, and the pine. However, the method

demands an extremely high point density which are often infeasible to obtain in an oper-

ational survey. By deriving nine TLS features related to a tree stem and crown geometry,

Lin et al. [25] attempted classifying between spruce, pine, aspen, and oak. Here, despite

deriving unique features from the stem, the crown, the branch, and the leaf levels, the

total accuracy obtained was just over 75%. This poor accuracy could be attributed to the

inaccurate modeling of tree structure, and poor selection of features. In another endeavor

to exploit TLS data for tree species classification, Lin et al. [25] derived 10 features at

various levels starting from the overall crown shape to the leaf characteristics. However,

despite branch being the building block of crown, only one feature (i.e., branch slope) is

used to model the branch characteristics, resulting in a sub-optimal model, and thus an

overall classification performance of 77.5% only.

Despite the fact that multi-sensor data assimilation is a costly and complex affair, some

researchers studied the effect of combining complementary information for an accurate for-

est inventory [128; 129]. High resolution Near Infrared (NIR) images have been identified

as a valuable source of complementary information for improving the performance of Li-

DAR based conifer-deciduous classification [130]. Some authors [131], [132] studied the

use of high resolution multispectral images to derive species-specific details. However,

the low spectral resolution of these data is a bottleneck for an efficient species classifica-

tion. Instead, the fine spectral sampling achieved by hyperspectral sensors enables the

discrimination of several species but at a lower spatial resolution. Hyperspectral data

have been used in several studies alongside airborne LiDAR data [133], [134]. Sugumaran

et al. used LiDAR and hyperspectral data jointly for tree species classification in urban

scenarios [135]. In [136], the effectiveness of combining data from LiDAR, SAR, Landsat

ETM+, and Quickbird data for forest parameter estimation was investigated. Their joint
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use was found to be more effective than using LiDAR data only. However, the same study

points out that LiDAR is the best single sensor for estimating the canopy height and the

biomass of trees with good accuracy. This understanding has been a motivation for many

studies on species classification using only LiDAR data [115], [117], [137].

3.3 Forest Parameter Estimation

Since the 1990s, a large number of scientific studies for extracting the biophysical infor-

mation at the ITC level from LIDAR data has been proposed. The various parameters

that are extracted include tree count [58; 83], tree height [58; 59], crown span [138; 139],

crown volume [140], crown base height [141], stem volume [17; 36], DBH [142; 36], above

ground biomass [143], and other parameters related to forest structure [144; 145].

Accurate stem location is a critical aspect to forest parameter estimation at the ITC

level as it affects both 3D tree crown delineation and their linkage with the field data.

The assumption in many stem detection studies is that the stem location is the ground

projection of the treetop [31; 146; 147]. CHM is a 2D image of the canopy surface derived

from the first return component of a multi-return LiDAR data. All CHM based treetop

detection algorithms work under the assumption that the peaks in the CHM correspond to

the treetops [59; 148; 149]. However, the resolution of the CHM, and the smoothening filter

size have a large impact on the treetop detection accuracy and need to be optimized using

area-based estimate of stem number [150] and/or crown radius [151]. Whatsoever, the

single peak assumption is reasonable only for trees which generally have a tapered upper

crown (e.g., conifers). Also, often a single tree crown may contain multiple peaks. These

multiple treetops will be recorded against a single tree, resulting in reduced performance

[31; 152]. The state of the art also includes object based methods to detect individual trees

[67; 153]. However, methods which work directly on the point cloud were found to be more

accurate in treetop detection as there is no error induced from CHM smoothening [154;

155; 156]. A general observation with point cloud is that the LiDAR point distribution

(i.e., the histogram) along the height of the tree is minimum near the stem section [157].

This feature of the stem, modeled as a local dip in the histogram, combined with a

region growing segmentation, is useful in delineating the stem [158]. Reitberger et al.,

identified potential stem points using a three step procedure: the first step discards the

ground points, the second step identifies the crown base section in the point cloud and

performs a 2D hierarchical clustering to identify points belonging the stem, and the final

step eliminates clusters resulting from understory vegetation using a RANSAC based

technique [83]. Histogram-based methods assume that there is at least a branch free

section of the tree stem between the crown and the ground. The intensity of the laser
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return is a measure of surface properties such as the texture and the roughness [86].

These properties are different for stem, leaf, and branch and are recorded as intensity

variation in laser returns. In an intensity normalized data, high return intensity points

usually correspond to tree stem and thus they are often leveraged to delineate stems [86].

Vertical slice-wise boundary detection technique, as in [159], that derives the horizontal

span of the crown in each slice also allows detecting and delineating the 3D stem. The

assumption here is that the ground projection of the data in horizontal slices containing

only the stem will generate a 2D boundary spanning a relatively small area than the other

section of the crown. Hybrid techniques for treetop detection were also proposed by some

authors by combining the ALS data with a variety of a priori information [93; 160].

DBH is a biophysical parameter that is essential for accurately estimating forest biomass

[161; 162] and modeling of carbon water relation [163]. Several methods based on low

density ITC data indirectly estimate the DBH by deriving allometric relations with tree

level variables such as tree height and/or crown span [17; 164]. However, the fact that

such methods require apriori species knowledge, is a problem in operational DBH esti-

mation. An alternative approach is to use supervised machine learning approaches (e.g.,

Support Vector Regression (SVR)) [165]. However, training data are sometimes diffi-

cult to retrieve. High density small foot-print multi-return LiDAR data contain accurate

structural details which can be used to directly measure several tree level attributes. This

is evident from the success of methods that delineate structural components of trees such

as the crown [166], stem [83], and branches [167]. In this light, Rahman et al. [168]

attempted measuring the DBH based on the variance of point distribution around a 3D

line fitted on points corresponding to tree trunk. A direct estimation of the DBH on the

point cloud is also proposed in [169] by analyzing the data point distances to a suitable

tree skeleton. The methods assume that there is a section of stem in the lower crown sec-

tion which is not occluded by branches/foliage. However, conifers such as Norway Spruce

mostly have branches along its entire height profile.
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Chapter 4

Individual Tree Detection and 3D

Crown Delineation

Accurate crown detection and delineation of dominant and subdominant trees are cru-

cial for accurate inventorying of forests at the individual tree level. State-of-the-art tree

detection and crown delineation methods have good performance mostly with dominant

trees, whereas exhibits a reduced performance when dealing with subdominant trees. In

this chapter, we propose a novel approach to accurately detect and delineate both dom-

inant and subdominant tree crowns in conifer-dominated multistoried forests using high

density small footprint high density ALS data. Here, 3D candidate cloud segments delin-

eated using a CHM segmentation technique are projected onto a novel 3D space where both

dominant and subdominant tree crowns can be accurately detected and delineated. Tree

crowns are detected using 2D features derived from the projected data. The delineation

of crown is performed at the voxel level with the help of both 2D features and 3D texture

information derived from the cloud segment. The texture information is modeled by us-

ing 3D Grey Level Co-occurrence Matrix (GLCM). The performance evaluation was done

on a set of six circular plots for which reference data are available. The high detection

and delineation accuracies obtained over the state of the art prove the performance of the

proposed method.

Part of the chapter appears in:

1. Harikumar, A., Bovolo, F., and Bruzzone, L.,’A local projection based approach to individual tree detection and 3D

Crown Delineation in multistoried coniferous forests using high density airborne LiDAR data.’, IEEE Transactions

on Geoscience and Remote Sensing, Vol. 57, No. 2, pp. 1168 - 1182, Feb 2019.
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4.1 Introduction

Accurate tree detection and crown delineation are fundamental to the ITC level forest

biophysical parameter estimation [6]. However, the crown overlap and proximity make it

a challenging task in the context of ALS data. Also, the amount of structural information

in ALS data dwindles towards the subdominant forest layers. This dwindling further

amplifies the challenges in crown detection and delineation in subdominant forest layers.

Errors in detecting and delineating tree crowns affect the accuracy of any downstream

operation including tree species classification and parameter estimation [88]. Tree detec-

tion and delineation in subdominant layers are important as trees in the layer as they: a)

contribute to the forest biomass, and thus neglecting them results in errors in the biomass

estimates, b) are part of forests and thus modeling them is necessary to understand the

forest environment, and c) include young and or naturally dwarf trees.

Figure 4.1: CHM based tree detection and crown delineation. The dominant and subdominant trees are

shown in green and red, respectively.

Most state-of-the-art 2D and 3D crown detection and delineation algorithms (see sec-

tion 3.1) work effectively in the case of trees in the dominant layers, however they show

a reduced performance for trees in subdominant forest layers [85; 18]. In general, 2D

CHM based approaches have a greater ability to delineate crowns in the dominant lay-

ers, while the 3D methods exploit the vertical profile information in ALS data and hence

have a greater potential over 2D counterpart to delineate crowns even in subdominant

layers. However, state-of-the-art 3D methods also often show suboptimal detection and

delineation performance in the subdominant forest layers (see section 3.1).

Whatsoever, methods that can accurately detect both dominant and subdominant

trees using high density ALS data are lacking in the literature. In particular One major

challenge when using ITD is the under-detection of smaller trees [23]. Thus, here we

present an automatic technique that can: a) detect and delineate both dominant and

subdominant tree crowns in multistoried coniferous forest with minimal omission and

commission errors, and b) accurately estimate the DBH. The proposed method uses both

layer-wise 2D and volumetric 3D information in the ALS data to detect and delineate
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trees.

4.2 Proposed Tree Detection and Delineation Method

In this chapter, we propose a novel method for detecting and delineating both dominant

and subdominant trees in a multistoried coniferous forest by combining 2D and 3D in-

formation derived from ALS data. Here, the focus is on coniferous forests as: 1) they

constitute close to 80% of the European forest and 2) they are important from both eco-

nomic and ecological point of view. 3D candidiate tree crowns are extracted from the

point cloud based on CHM segment boundaries extracted using a state-of-the-art tech-

nique. We reasonably assume that each 3D segment (which is henceforth referred as the

3D candidate segment) contains one dominant tree crown only, however, may contain a

number of subdominant tree crowns. All LiDAR points in a 3D candidate segment are

then projected onto a novel 3D Euclidean space, where detection and delineation of dom-

inant and subdominant tree crowns are performed. The high level block scheme of the

proposed method is shown in Fig. 4.2.

4.2.1 CHM Segmentation

Let P = {pi ∈ R3, i = 1, 2, ..., N} be the set of N LiDAR points in the input point

cloud. TCHM = {tj ∈ R3, j = 1, 2, ..., T} is the set of 3D tree top locations, where T

is the total number of tree tops detected by the level set method [61] applied to the

CHM. Segmentation is performed on the CHM by using the marker-controlled compact

watershed algorithm [170] with TCHM as seeds. The compactness of segments is controlled

using q ∈ [0, inf] [170]. Each CHM segment Ci(i = 1, 2, 3..., T ) corresponds to the 2D

boundaries of a 3D candidate segment with one dominant tree and Si(i = 0, 1, 2, 3..., S)

possible subdominant trees. The section of the 3D point cloud corresponding to individual

CHM segments (i.e., 3D candidate segment) is extracted and analysed for: a) detecting

the Si subdominant tree crowns, and b) accurately delineating the dominant, and the Si
subdominant tree crowns.

4.2.2 Data Projection

Analyzing the 3D candidate segments to accurately detect and delineate tree crowns in

the original 3D Euclidean space is challenging as: a) the subdominant trees have smaller

crowns, and are often close to the dominant ones, thus making it difficult to identify and

delineate them; b) there is no or minimal difference in the crown-structural/volumetric-

textural properties of a dominant tree and any proximal subdominant one; This makes it
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Figure 4.2: Block scheme of the proposed crown detection and delineation approach.

difficult to directly distinguish them using structural information in LiDAR data. Thus,

we develop a technique that transforms the 3D candidate segment such that: a) smaller

trees in it can be detected independently on their size and/or proximity to the dominant

one; and b) a volumetric structure/textural modification is induced on the dominant tree

crown without affecting its local branch structure, and any subdominant tree structure.

For each 3D candidate segment, we consider the neighborhood spanned by a cylinder

with the axis along the dominant tree stem direction, and the radius r as the distance

of the point farthest from the stem axis, and measured in a direction perpendicular to

it. Here, the dominant tree stem is assumed to be vertically below the highest point

pv = [xv, yv, zv] in the 3D candidate segment. Any LiDAR point pi = [xi, yi, zi] within

the cylinder can then be uniquely projected into the novel space, spanned by the basis

variables d, l, and z, using the projection equations (4.1), (4.2), and (4.3), which are

designed to satisfy the transformation requirements.

d =
√

(xv − xi)2 + (yv − yi)2 (4.1)

l = 2πrθ (4.2)
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: Perspective and top view of solid cylinder placement on the original point cloud space (a,d),

cylinder roll-out (b,e), and projected space (c,f).

z = z (4.3)

where, {xv,yv} and {xi,yi} are the set of horizontal spatial coordinates of pv and pi,

respectively. Here, d is the shortest distance between a LiDAR point pi and the stem,

l is the length of the arc with radius r, θ is the smallest angle between the pi and the

reference plane Lr and z is the height of a point from the X-Y plane [171]. Interestingly, the

transformation is equivalent to rolling out the space inside a solid cylinder into a cuboidal

space (Fig. 4.3). It is worth noting that the transformation increases the distance between

a pair of points (i.e., stretches the space) nearer to the axis of the cylinder, than to those

located farther away from the axis. The amount of stretching is controlled by r; a larger

r causes more stretching than a smaller r. In the case of conifers, branches grow outward

from the central stem in directions nearly perpendicular to it. Thus, when the opening is

performed along the stem of the dominant conifer, the section of every branch closer to the

stem are pulled apart more than the section further away (see Fig. 4.3a-4.3c). It is worth

mentioning that, in the projected space, the branches seem to emerge from a plane rather
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than a line (i.e., stem). This adds up as an advantage of the projection, allowing the entire

3D candidate segment to be visualized and analyzed from a single-point perspective (Fig.

4.3c).

In the proposed transformation, the negative direction of Lr decides the vertical section

where the cylinder is opened. Lr is selected such that it does not cross any subdominant

tree crown. This is because any subdominant tree with part of the crown falling on either

side of Lr (in the original space) is ripped apart to the either side of the rectangular

cuboid (in the projected space). This undesirable situation leads to overestimation of

subdominant tree count, hence reducing the crown delineation performance. Accordingly,

we propose a Principal Component Analysis (PCA) based method which uses only the

x and y components of the data for identifying the optimal reference plane direction.

The assumption here is that conifers have a near-symmetrical crown, i.e., the spread of

crown around the stem is near-symmetrical. However, the presence of subdominant trees

disrupts this symmetry, and results in: a) data points further away from the main crown;

and b) localized increase of point density (due to greater biomass per unit volume). In

both the symmetry disrupting situations, the first principal component (PC1) is directed

towards the subdominant trees, while the second principal component (PC2) points in

an orthogonal direction. We choose Lr to be in the direction opposite to the resultant of

PC1 and PC2, as it is very unlikely for that plane to pass through any of the subdominant

tree point cloud even in complex situations where more than one subdominant tree exists

in a 3D candidate segment. Fig. 4.4a shows an ideal 3D candidate segment containing

one subdominant tree while Fig. 4.4e shows four subdominant trees near the dominant

one. It can be observed that opening the point cloud along Lr derived as above, does not

divide/rip apart the subdominant tree, in both the situations.

We also use the PCA analysis for detecting the presence of subdominant trees in a 3D

candidate segment (as some 3D candidate segments may not have subdominant trees.)

Let dmin and dmax be the distance of the points in the cloud that is maximally away

from the stem in the direction of Lr and PC1, respectively. We identify these points by:

a) fitting a maximally compact 2D convex hull on the x and y coordinate data of the

point cloud, and b) finding the boundary points that are closest to, the line connecting

the treetop point and its intersection in the convex hull boundary (in the respective

direction). We consider the ratio of dmin

dmax
as an indicator of the presence of subdominant

trees. A ratio close to 1 means that the distances in the two directions are similar,

and hence the absence of a subdominant tree is assumed. Smaller ratios mean that the

distances in the two directions are highly unequal, and hence refers to the presence of

subdominant trees in the direction of PC1. Further analysis using data transformation

is performed on 3D candidate segments for which the presence of subdominant trees
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.4: Subdominant tree growth scenarios: (a,e) the top view, (b,f) the side view, (c,g) the reference

plane direction estimation, and (d,h) the projected point cloud. Cases with one (simple case), and four

(complex case) subdominant trees are illustrated.

is detected. The data transformation is advantageous for differentiating the dominant

from subdominant tree crowns as it: a) deforms mostly the shape of the dominant tree

crown, while maintaining the local crown structure; b) does not (or minimally) deforms

the subdominant tree crowns; and c) allows observing the points associated with all the

dominant tree branches from a single-point perspective. Fig. 4.4 shows the original and

projected 3D data corresponding to an example candidate tree CHM segment, for simple

(i.e., with 1 subdominant tree) and complex (i.e., with 4 subdominant trees) situations.

The red boundary line in Fig. 4.4a,4.4e represents the CHM segment boundaries.

4.2.3 Candidate Segment 3D Feature Extraction

We perform the texture analysis in the transformed space at the voxel level, where the

optimal voxel size is obtained by using a semivariogram analysis. The sill location in
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a semivariogram corresponds to the distance beyond which the correlation is minimum,

and hence the distance at the sill is taken as the optimal voxel dimension. It is worth

recalling here that the projection operation is equivalent to rolling out the space inside

a solid cylinder (enclosing the 3D candidate segment data) placed along the stem of the

dominant tree (Fig. 4.3). It should be noted that the intermediate stage (Fig. 5.1b,4.3e)

is shown only to help visualize the spatial relationship between the initial and final states

of the data. The rolling out affects mostly the dominant tree data, while the structure

of subdominant trees is preserved. In the projected space, the branches of the dominant

tree appear to grown straight up from the background plane, while the subdominant

trees have their branches growing out from the respective stem locations. This induces a

change in volumetric texture properties of the dominant tree crown, while maintaining the

texture of the subdominant tree crowns. We exploit this variation in texture properties

to delineate dominant and subdominant trees in the projected point cloud data.

In this chapter, we use the Grey Level Co-occurrence Matrix (GLCM) texture features

calculated on the number of points in each voxel. By considering the number of voxel-

pairs with similar point count in a particular direction and within a fixed neighborhood,

3D GLCM is derived and used to extract voxel-level texture information. Hence, for every

voxel cell and a direction, a GLCM matrix is generated. Branches in the projected space

often have slightly different vertical and horizontal tilts, resulting in directional variation

in the local structure/texture. Thus, we derive GLCM matrices for 13 different directions,

and averaged element-wise to get a single GLCM matrix [172]. In order to quantify tex-

ture variations from each averaged GLCM matrix, four Haralick texture features including

energy, correlation, contrast, and homogeneity are calculated [173]. Although the feature

extraction can also be performed on GLCM matrices generated with different neighbor-

hood size and voxel distance, we restrict our analysis to the first order neighborhood and

unit distance, respectively.

4.2.4 Candidate Segment 2D Feature Extraction and Boundary Detection

The l and z dimensions of each data point provide information about its position with

respect to Lr, while d gives information about the distance of a point from the dominant

tree stem. A 2D representation of the spatial variation in d on the l − z plane helps to

detect and delineate dominant and subdominant trees. The 3D data can be converted to

a 2D representation by forming a square grid which spans the l − z plane, and assigning

values to each grid cell by selecting the largest d value falling within the respective cell.

The grid size is chosen to be the same as that of the semivariogram. We refer to the

2D representation as the Candidate Segment Surface Model (CSSM), as it essentially

models the spatial variation of the maximum d values in the projected data. It is worth
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noting that the CSSM generation process is similar to that of the forest CHM in the

original point cloud space, where the points with the maximum d values in each grid

determine the exterior crown boundary instead. In general subdominant tree crowns, and

thus the corresponding data points, exist farther from the stem of the dominant tree. As

a result, the sections of CSSM representing the subdominant tree crowns have relatively

larger d values compared to the dominant crown sections (Fig. 4.4d, and 4.4h). The

presence of subdominant trees often results in an increase in biomass volume (due to

leaves, branches, and stem) and in turn causes a local increase in LiDAR point density. It

is worth recollecting here that the subdominant tree point cloud within the 3D candidate

segment mostly remains unaffected by the projection, while the dominant tree point cloud

(within the 3D candidate segment) is rolled out along its stem axis. As a result, the point

density of the region spanned by dominant tree crown in the (l-z) plane is lowered by

approximately half, while the density of the subdominant tree remains unaffected (Fig.

4.4b, and 4.4d). By using the number of LiDAR points (rather than the largest d within a

grid) as the selected parameter, one can generate the Candidate Segment Density Model

(CSDM).

We detect subdominant trees crown boundary by performing the simple k-means seg-

mentation on the Gaussian smoothed candidate segment features. The number of clusters

is set to 2 to extract the dominant, and the subdominant crown segments. We identify

the foreground cluster (which represents the subdominant crowns) based on the mean

values of pixels belonging to the cluster in the CSSM and CDSM. A larger mean value

is found in the cluster containing the subdominant tree(s), and is selected as the fore-

ground cluster. Each foreground segment boundary closely follows the subdominant tree

crown boundary in the l− z plane. For each segment boundary the local maximum in its

upper half corresponds to the subdominant tree top, while the maximum extent of the

segment along the l axis represents the maximum crown radius. Sometimes the segments

of multiple subdominant trees merge due to crown proximity, creating a merged segment.

However, in any case, the merge happens mostly below a certain crown height (due to the

tapered-top characteristic shape of conifers), hence creating a local minimum between two

local maxima. In these situations, the position of the local minima on either side of the

local maximum determines the crown span. We implement this analysis by: a) identifying

the upper half (along z) of the boundary segment, and assigning minimum values to re-

maining sections along l not spanned by the segment boundary; b) fitting a curve passing

through all the upper envelope points; and c) detecting the local maximum/maxima and

local minimum/minima of the fitted curve. This information about the position of the

local maximum combined with the two local minima on its both sides, is used to create

an approximate shape of the subdominant tree. In our case, we use an elliptical shape,
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as it can model tree crowns effectively. The major axis length (ae) and minor axis length

(be) of the ellipse are assumed to be the local maximum height (i.e., the subdominant tree

height), and the horizontal distance between the local minima on either sides of the local

maximum (i.e., the subdominant tree crown width). The center of the ellipse is placed at

half the height of a local maximum. The ellipse is used as an input to accurate detection

and delineation of the 3D tree crown.

4.2.5 Dominant and Subdominant Tree Crown Detection and Delineation

We achieve crown delineation in the projected 3D space by performing segmentation of the

voxels based on the texture properties. The segmentation is performed on the so-called

multispectral scalar image which is obtained by pixel by pixel averaging of the gradient

image obtained against the individual texture features [174]. Whatsoever, the point den-

sity within the tree crown in the original space decreases from the exterior of the crown

towards the stem, and also from the top of the crown towards the bottom. Consequently,

in the projected space, the point density decreases in the direction of the positive d axis

and decreases in the direction of decreasing z axis. In other words, the point density

varies within a tree crown. This can affect the performance of most volumetric segmen-

tation (i.e., 3D segmentation) techniques. However, the point density variation within

a horizontal layer along d is small. Thus, we perform segmentation on the interpolated

image of the layer-wise texture data. The number of layers along d is defined by the voxel

size.

All voxels whose centers are located below a threshold dt = dminr
dmax

belong to the dom-

inant crown, While the remaining voxels contain the subdominant crown(s). Individual

subdominant crown(s) is extracted at the voxel level by stacking the group of all struc-

turally similar voxel cells from different d layers. For each tree, segments from all d layers

that has the major portion of its area falling within the respective elliptical boundary

(derived from 2D analysis of candidate segment in Sec. 4.2.4) are stacked. We perform

multivariate marker-controlled watershed algorithm [174] on interpolated texture feature

maps to identify such segments in individual d layers. A spatial Gaussian filtering is

applied to each texture layer in order to smoothen out any local irregularity and to avoid

oversegmentation. The stacked voxel segments define the 3D crown of the subdominant

tree(s) in the projected space. Every data point inside the projected segment is then

assigned to one of the voxel cells, based on the proximity of a point to the center of a

voxel cell. The index of points belonging to the individual stacked-voxel segments define

the point cloud of a tree in the original space. Any unassigned point is assigned to one of

the tree cloud segments based on proximity.

However, CHM based segmentation may result in a subdominant tree crown being split
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between 3D candidate segments (Fig. 4.5a) (i.e., section of the subdominant tree crown

is allocated to different proximal 3D candidate segments) and hence will be detected and

delineated as separate trees in the respective 3D candidate segments (Fig. 4.5b). This

results in an overestimation of subdominant tree count, and an underestimation of the

crown size. To address this issue, we merge subdominant tree clusters if they have: a)

similar crown boundary parameters on data points in the G most external d slices of the

3D candidate segment. These are the ones corresponding to the largest d values. Here

we consider G = 2 to include enough points for crown segment boundary estimation (i.e.,

∪(dD, dD−1) (Fig. 4.5c). Elliptical crown boundary parameters ae and be are calculated

as in section 4.2.4 and used for similarity estimation; and b) the Euclidean distance ptS
between the highest point in the respective slices is small. For each subdominant tree

cluster, we represent these parameter values as a 3D vector td = [ae be p
t
s]. Clusters pairs

with the Euclidean difference between corresponding td vectors less than a threshold are

merged. It is worth noting that the proposed split-crown merging technique works also

for complex situations where a crown is split into more than two parts.

We consider the horizontal position of the highest point in the delineated point cloud

as the location of the tree. The maximum radius of a delineated crown is calculated as

the perpendicular distance of the point that is maximally away from the line connecting

the highest point in the subdominant tree segment and its projection on the ground.

4.3 Experiments and Results

4.3.1 Study Area and Dataset

The study area is a multistoried coniferous forest in the southern Italian Alps, in the

municipality of Pellizzano located in the Trentino region in Italy. The altitude of this

mountainous terrain ranges from 900 m to 2000m above sea level. The area has an extent

of 3200 ha with the geographic center point of 46017′31.00′′ N and 10045′56.49′′ E. High

density ALS data were acquired between 7th and 9th of September 2012 using a Riegl

MS-Q680 sensor. The acquisition was performed from an airborne platform flying at an

average height of 660m above ground level with a speed of around 180km/hr. The pulse

repetition frequency was 400 KHz and recorded a maximum of four returns for each laser

pulse fired. The major tree species include the Norway Spruce (Picea abies), the European

Larch (Larix decidua), and the Silver Fir (Abies alba).

The experiments were conducted on a set of 6 plots (Fig. 4.6) containing both dominant

and subdominant trees. The radius of each plot is 25m. The plot centers were measured

using a survey grade differential GPS, which provided a root mean square error of 0.25m

in a separate validation. The position of trees within a plot was measured with respect
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(a)

(b)

(c)

Figure 4.5: (a) Top and side view of two proximal 3D candidate segments (CS1 and CS2) with a split

subdominant tree crown, and (b) shows the corresponding projected 3D candidate segment, and (c)

∪(dD, dD−1).

to the center of the plot using an ultrasound instrument with high measurement accuracy

of 0.25m. The height, the DBH (at 1.3m above the ground), and the species are also

available from an in situ survey. Basic statistics of the DBH and the crown radius, for

individual plots are given in Table 4.1. The height of individual trees was estimated using

regression models (4.4) based on a set of reference trees for which height is also known.

hi = α0 + α1ln(DBH i) + ε (4.4)
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where hi is the height of ith tree, DBH i is the DBH of the ith tree, and ε is the error

term in the regression function. The α0 and α1 are regression parameters [88]. Regression

models were derived for each species in the dataset separately. The estimated height is

used for correcting/rectifying the positional errors of trees [175]. Each delineated tree i

derived using the proposed and the state-of-the-art method is linked to a tree j in the

reference data based on the distance dij obtained using (4.5). For the case with multiple

trees satisfying the distance criteria, the most proximal tree is linked to the reference

data. Only clusters which fall completely within the boundary of the plot are included for

the validation. However, a few trees near the plot boundary which satisfy the inclusion

condition are not used in the validation due to lack of field data, i.e., such cases counted

to a total of seven trees.

dij =
√

(r2
xy + (rz/3)2) (4.5)

where the rz is the vertical distance, and rxy is the horizontal distance between the

highest point in the delineated tree i and the nearest reference tree j. A delineated tree

is linked to a reference tree only if dij is less than 1.5m + 2DBH, in order to allow for

positioning and height errors or else is considered as a Commission Error (CE) [88]. The

DBH estimation for every tree is performed using the model (4.6) that employs the tree

height and the crown diameter as the independent variables.

DBHi = f(b0 + b1

√
hi + b2

√
di)

2
+ var(ε) (4.6)

where DBHi is the estimated DBH (in millimeter) of the ith tree, and hi and di are the

tree height (in decimeter) and the crown diameter (in decimeter), respectively. The b0, b1

and b2 are model parameters. The coefficients of the model used for Norway Spruce are

b0 = −3.524, b1 = 0.729 and b2 = 1.345, whereas for other species the model coefficients

are b0 = −3.733, b1 = 0.807, and b2 = 1.144 [176]. As non-linear transformations were

used for the dependent variables, the DBH estimates will be biased, and the effect is miti-

gated by bias correction [177]. The attenuation bias (due to crown diameter measurement

errors) associated with the Norway Spruce model and other species models are negligible,

and are observed to be -0.065 and -0.072, respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: (a)-(f) High density LiDAR data CHM representations of the plots with individual tree tops

(in red) and respective maximum crown extents (white dotted circles). The points represent the crown

center, and is colored based on the DBH value. Small to large DBHs are represented in shades from

yellow to red.

Table 4.1: Statistics of the structural characteristics of the trees in the dataset considered for automatic

segmentation.

Plot #Trees
DBH (cm) Crown Radius (m)

Range Mean Range Mean

H1 40 9.0 - 76.0 39.6 1.3 - 7.0 3.7

H2 32 9.0 - 78.0 44.0 2.0 - 7.5 5.2

H3 30 16.0 - 77.0 35.5 2.6 - 7.8 4.4

H4 25 20.0 - 92.0 53.4 3.7 - 7.7 5.8

H5 45 25.0 - 67.0 35.1 2.1 - 6.9 4.2

H6 38 9.1 - 81.0 33.6 1.3 - 6.8 3.6
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4.3.2 Experimental Results and Discussion

(a) (b)

Figure 4.7: Projected point cloud of a 3D candidate tree segment: a) with a subdominant tree, and b)

without any subdominant tree.

The performance quantification was conducted on the six plots to investigate the opera-

tional effectiveness of the proposed method. The dominant tree tops detected using the

level set algorithm are used as the markers for the marker-controlled compact watershed

segmentation on CHM, which in turn is used to delineate 3D candidate segments. The

compactness parameter q is set to 1 as it was found to be optimal for minimizing the

over-segmentation errors [170]. The spatial resolution of the CHM was chosen on the ba-

sis of the average number of LiDAR points/m2, while the 2D Gaussian filter parameters

were tuned to minimize false peaks in the CHM. In our case, the CHM resolution and

the Gaussian filter size are selected to be 0.25 and 5 x 5, respectively. Fig. 4.8 shows the

watershed segments for plot H1. The watershed segment boundaries are used to generate

the 3D candidate segments, i.e., all points within a CHM boundary are assigned to the

respective segment. However, CHM smoothening results in points to remain unassigned

near/outside the CHM boundaries. Thus, unassigned points are assigned to the nearest

candidate segment. Fig. 4.10 shows the candidate tree segments for four scenarios with

one, and four subdominant trees, respectively. Each candidate data segment is then pro-

jected into the proposed space to detect subdominant trees. Fig. 4.7a and Fig. 4.7b

show the 3D visualization of the projected data with and without a subdominant tree,

respectively. Here, large d values associated with the subdominant trees are shown in

shades of red, while the low values correspond to the background/dominant tree crown

points, and appears in shades of yellow and green.

The projected space is divided into voxels. The optimal voxel size is obtained against

the range of an exponentially fitted semivariogram. However, the range is set to 0.5m for
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the case in which semivariance does not saturate. Fig. 4.11(a-d) show the projected point

cloud of dominant segments with one, two, three and four subdominant trees, respectively.

For each projected segment, the CSM is computed on the d values (Fig. 4.12). The crown

of subdominant trees maximally stretches along the z direction (i.e., along the height of

the tree). We exploit these characteristics to minimize the local variation of d in the

l − z plane, and reduce false peak detection, by using a rectangular spatial filter with

the longer side along the z axis. For our dataset, the 6 x 3 rectangular Gaussian filter

with σ = 1 was found to optimal in removing false peaks caused due to locally protruding

branch points. The location of a subdominant tree top (red dots in Fig. 4.13) combined

with the nearest valley points on its either (blue dots in Fig. 4.13) side are used to define

the boundary of the subdominant tree. Fig. 4.14 shows the elliptical boundaries of the

subdominant crowns detected in the projected space for cases with one, two, three, and

four trees.

Figure 4.8: The candidate tree segments for the plot H1 are shown as color-filled polygons.

The delineation of subdominant tree crowns is performed by exploiting the tree top lo-

cation, and the 2D crown boundary information modeled from the CSM using the ellipse.

The projected space is divided into dmax/v voxel layers, where dmax is the maximum d

value of points in P , and v is the voxel size derived using the semivariogram. Texture

segmentation of each voxel slice/layer is done using a marker-controlled watershed algo-

rithm as: a) it allows detecting spatially confined and homogeneous local segments even

in the presence of large variance in the data, b) the situation is similar to the case of

crown segmentation in a CHM (for which it is largely used), and c) it is simple. Here,

the gradient magnitude is used as the segmentation function, the foreground markers

are obtained by using the opening-by-reconstruction and the closing-by-reconstruction

morphological operations, and the background markers are obtained by considering the

watershed ridge lines obtained from the binarization (using Otsu’s method [178]) of the
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original image with the foreground markers superimposed. All segments falling to the sub-

dominant voxel layers and within the respective ellipse are separately stacked to identify

the 3D subdominant crown segment(s). Fig. 4.15 shows the voxel layer segments stacked

together to obtain the 3D crown segment of subdominant trees for different subdomi-

nant growth situations. All voxel layer interpolated texture feature maps are separately

smoothened using the rectangular Gaussian filter with σ = 1. Point cloud segment of the

subdominant tree(s) are obtained by identifying the projected points contained by the 3D

voxel set. The mapping to the original space is done using a unique index that is assigned

to every data point. Subdominant tree clusters with td < 1.8 are merged into a single

cluster. The value of td was obtained using the trial and error method. The objective

here was to minimize CE for a set of manually selected 3D candidate segments in the 6

plots for which subdominant crown split occurred.

We compared the proposed method with a point cloud based tree detection and delin-

eation technique, henceforth referred to as the SoA method [18]. The method uses level

set analysis on CHM to detect dominant tree apexes, and perform an angular analysis

around them to delineate individual crown boundaries. The crown boundary for a tree

is derived based on the first local minimum detected on the angular sectors considered

around the apex. Further, a sector-wise analysis is performed on the delineated 3D dom-

inant tree segments to detect and delineate any subdominant crown [18]. The dominant

and subdominant trees were detected and delineated by employing angular sector-splits

of 4 and 8, respectively. The quantization steps for vertical profile analysis is set to 29,

and was estimated using the method in [18].

Table 4.2 shows the detection accuracies obtained by the proposed method, and the

SoA method, for the six sample plots. The proposed method improves the overall detec-

tion accuracies by around 5% when compared to the SoA method. The overall accuracy

of the proposed tree detection method varies from 88.0% to 96.8% for the six automat-

ically segmented plots. The better performance of the proposed method can be mainly

attributed to the projection technique which selectively induces a structural change in

dominant tree cloud, thus improving the separability between the dominant and the sub-

dominant cloud segments. This possibility is lacking in the SoA method which is based

on a more complex sector-wise analysis that tends to result in tree crown being shared be-

tween 3D candidate segments. Thus, the algorithm will identify part of the subdominant

crowns in each candidate segment, (and detect it as separate trees) resulting in larger CE

(see table 4.2). Whereas, the proposed method minimizes the crown splits by suitably

selecting the direction of the reference plane in the projection. The proposed method

performs the crown detection analysis in the 3D space, rather than on a projected 2D

space as it is the case with the SoA method. Thus it allows the maximum exploration
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of the structural information in the ALS data. For this reason the method can better

detect small subdominant trees which are lost when using other methods. Hence reduc-

ing the Omission Errors (OE). Fig. 4.9 shows the histogram of the detected trees by

the range of DBH class. The proposed and the SoA method show similar performance

for subdominant trees with DBH greater than 40. However, the proposed method was

able to detect a larger number of smaller trees (i.e., with DBH less than or equal to 40),

when compared to the SoA method. Whatsoever, the performance on detecting trees

with DBH less than 20cm is minimum for both the proposed and the SoA methods. This

low performance can is attributed to the low point cloud density in lower forest layers. In

any case, the proposed method correctly detected a larger number of trees, which proves

its effectiveness.

Table 4.2: DET, CE and OE obtained with the proposed and SoA methods.

Plot ID Trees

Proposed Method State-of-the-art Method

DET CE OE DET CE OE

H1 40 38 (95.0%) 2 (5.0%) 2 (5.0%) 35 (87.5%) 4 (10.0%) 5 (12.5%)

H2 32 31 (96.8%) 1 (3.0%) 1 (3.0%) 29 (90.0%) 3 (9.3%) 3 (9.3%)

H3 30 27 (90.0%) 2 (6.6%) 3 (10.0%) 28 (93.3%) 4 (13.3%) 2 (6.6%)

H4 25 22 (88.0%) 2 (8.0%) 3 (12.0%) 21 (84.0%) 2 (8.0%) 3 (12.0%)

H5 45 40 (88.8%) 3 (6.6%) 5 (11.1%) 38 (84.4%) 3 (6.6%) 7 (15.5%)

H6 38 36 (94.7%) 3 (7.8%) 2 (5.2%) 33 (86.8%) 4 (10.5%) 5 (13.1%)

Total 210 194 (92.3%) 13 (6.1%) 16 (7.6%) 184 (87.6%) 20 (9.5%) 25 (11.9%)

Figure 4.9: Overall detection accuracy obtained on the 6 plots, across different DBH classes.

Fig 4.10 - 4.16 shows the step-wise mechanism for crown delineation performed on 3D

candidate segments of various complexities. It can be seen that the algorithm is able

to detect both dominant and subdominant trees for simple (1 tree in the 3D candidate
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segment) and complex (more than 1 tree in the 3D candidate segment) growth scenarios.

The crown delineation performance evaluation was performed on the correctly detected

trees. Table. 4.3 shows the Mean Error (ME), the Mean Absolute Error (MAE), and the

Mean Squared Error (MSE) of the DBH estimates obtained using the proposed, and the

SoA method, on the 6 plots. As expected, the proposed method is able to better estimate

the DBH of the trees. However, both the proposed and the SoA method underestimate

DBH in average. This can be attributed to the low point density in the subdominant

layer, and Gaussian smoothing done on the 2D and 3D features. The relatively lower

ME, MAE and RMSE provided to the proposed method confirm the average ability of

the proposed technique to mitigate the omission errors. The same analysis have been

conducted by dividing the dominant-subdominant pairs in 3 groups of delineation com-

plexity defined in terms of proximity among the trees: Group 1 includes the pairs with

dominant-subdominant tree distance in the range 0m - 2.5m; Group 2 includes the ones

with distance in 2.5m - 5.0m, and Group 3 is the set with pairs of trees being more than

5.0m far from each other. For both the proposed and the SoA method the DBH estima-

tion error is found to be larger for trees with smaller distance (i.e., the ones in PL1). As

we move to less complex situations (Groups 1 and 2) the estimation mean error in DBH

decreases. Table 4.4 shows the ME, MAE, and RMSE associated with the three groups,

for the proposed and the state-of-the-art method. This is in accordance with the fact that

the crown delineation accuracy improves as the trees are further away from one another,

due to smaller overlap. However, the proposed method performs better in these cases as

well by resulting in a ME that is less than half the one provided by the SoA method.

Table 4.3: The ME, the MAE, and the RMSE accuracy of estimated DBH for the proposed and the

state-of-the-art method.

Method ME MAE RMSE

Proposed -0.4 cm 5.5 cm 7.3 cm

SoA -0.2 cm 5.8 cm 7.9 cm

In general, the proposed approach accepts the reality of underdetection of subdomi-

nant trees, and shifts the conceptual analysis from tree object to tree-approximate object

referred to as candidate segment. Two major problems with the state-of-the-art methods

include the crown overlap and occlusion effect and point density variance. The proposed

method mitigates the former problem (i.e., crown overlap) using a novel data projection

that facilitates the feature extraction from point cloud segments representing individual

trees. The method exploits the slice-wise 2D feature extraction together with the locally

extracted 3D voxel level features to address the latter issue in airborne LiDAR data.
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Table 4.4: The ME, the MAE, and the RMSE accuracy of estimated DBH for the proposed and the

state-of-the-art method by delineation complexity.

Dominant to Subdominant
Distance Method ME MAE RMSE

Group 1
(0.0-2.5 m)

Proposed -0.6 cm 5.8 cm 7.7 cm

SoA -0.3 cm 5.9 cm 8.2 cm

Group 2
(2.5-5.0 m)

Proposed -1.0 cm 5.8 cm 7.5 cm

SoA -0.7 cm 6.7 cm 7.9 cm

Group 3
(> 5.0m)

Proposed -0.2 cm 5.5 cm 5.9 cm

SoA -0.2 cm 5.9 cm 6.1 cm

Whatsoever, the candidate segments are extracted using CHM segmentation, and hence

error in segmentation at the candidate segment level is propagated in the down-the-lane

analysis. For this reason, the method is most optimal for conifer forests which generally

gives minimal crown segmentation errors due to the tapered crown shape of conifers, than

for temperate or boreal forest with generally more broadleaved trees.

4.4 Conclusion

In this chapter, a novel local projection based tree detection and 3D crown delineation

is proposed for high density ALS data. The proposed method detects both dominant

and subdominant trees in multistoried conifer forests. 3D candidate segments are first

extracted and then separately analyzed in the projected space to detect and delineate both

dominant and subdominant trees. The tree crowns are delineated in 3D by exploiting the

projection-induced texture variation extracted using GLCM features. The average crown

detection accuracies obtained is 92.3% and the RMSE errors associated with the DBH

estimates is 7.3cm. Possible future works include leveraging on the intensity information

in ALS data, and using datasets with larger point density which include more texture

information (e.g., the Terrestrial Laser Scanning data), to improve tree detection and

crown delineation. The performance of the method need to be evaluated for boreal and

temperate forest in order to study the possibility to generalize the method to the use in

forests with various characteristics.
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Figure 4.10: Point cloud of 3D candidate segments in the original space with: (a) one, (b) two, (c) three,

and (d) four subdominant trees. The colorbar shows the distance of a point to the projection axis.

Figure 4.11: Projected point cloud of the 3D candidate segment with: (a) one, (b) two, (c) three, and

(d) four subdominant trees.

Figure 4.12: The CSSM map derived from the projected 3D candidate segment data with: (a) one, (b)

two, (c) three, and (d) four subdominant trees.

Figure 4.13: The segmented projected 3D candidate segment map with: (a) one, (b) two, (c) three, and

(d) four subdominant trees. The local maxima (red dots) and local minima (blue dots) derived from the

foreground segment (yellow) are used to define the elliptical boundary.
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Figure 4.14: Elliptical tree crown boundary obtained on the projected 3D candidate segment map binary

images with: (a) one, (b) two, (c) three, and (d) four subdominant trees. The elliptical crown boundaries

derived from CSM for subdominant trees are shown in unique colors.

Figure 4.15: Stacked segments from different voxel layers for: (a) one, (b) two, (c) three, and (d) four

subdominant trees.

Figure 4.16: The tree point cloud segments for: (a) one, (b) two, (c) three, and (d) four subdominant

trees.



Chapter 5

Tree Species Classification using

Crown Geometric Information in

ALS Data

Tree species information is crucial to precision forest management and related studies.

The structural details of the forest vertical profile can reveal key information on tree

species. In this chapter, we propose a novel method for conifer species classification based

on the use of geometric features describing both the internal and external structure of

the crown. The Internal Crown Geometric Features (IGFs) are defined based on a novel

internal branch structure model which uses 3D region growing and Principal Component

Analysis (PCA) to delineate conifer branches accurately. IGFs are used together with Ex-

ternal Crown Geometric Features (EGFs) that capture the overall crown characteristics

to perform conifer species classification. Three different Support Vector Machines (SVM)

have been considered for classification performance evaluation. The experimental analysis

conducted on high density ALS data acquired over a portion of the Trentino region in Italy

proves the effectiveness of the proposed method.

5.1 Introduction

Tree species knowledge is fundamental for activities such as ecological [1], biodiversity

[179],and climate change studies [180]. Small footprint multi-return airborne LiDAR

Part of the chapter appears in:

1. Harikumar, A., Bovolo, F., and Bruzzone, L., ’An internal crown geometric model for conifer species classification

with high density LiDAR data.’, IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, No. 5, pp. 2924

2940, Feb 2017.
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scanners (see section 2.4.1) such as the Leica ALS80 and the RIEGL LMS-Q680i, can

produce dense point clouds of forest structures. For example, in multi-return mode, the

Leica ALS80 can record more than 50 sample/m2 in a single scanning pass conducted

from a height of about 1km and at a ground speed of 100 km/h. Hence data acquired

by these systems contain a large amount of information on the tree crown including that

of the branches. The large amount of spatial information acquired over forests allows to

perform an accurate classification of tree species [181] and to better estimate parameters

such as tree height, crown area, and biomass [182]. A review of the literate (section 3.2)

confirms that most ALS data based methods are developed for classifying trees belonging

to different taxonomical classes [183], [118]. However, methods for identifying the species

of a tree belonging to the same taxonomic class (e.g., conifers) are lacking. Accordingly,

here we focus on developing an effective technique for extracting crown structural infor-

mation using small footprint high point density multi-return ALS data. In particular, we

focus on conifers as they are very important from an ecological point of view and also

dominate the European forests.

In this chapter, we introduce a novel method that utilizes the structural/geometric

information present in small footprint high point density multi-return ALS data for iden-

tifying the species of a tree belonging to the conifer class (i.e., Pinopsida). Conifer species

classification using ALS data is challenging due to the high similarity in their external

crown shape (i.e., the external crown characteristics). Concerning the internal crown

characteristics (i.e., the branch structure inside crown), conifers have a linear main stem

with branches growing outward from the stem, in an approximately linear fashion, almost

perpendicular to the stem. The separation between conifer branches increases as we move

from the stem toward the external part of the crown. This makes the branches more dis-

tinguishable near the exterior of the tree crown (Fig. 5.1). However, each conifer species

shows specific stem/branch attributes that makes it different from the others. Accord-

ingly, we developed a robust method that: 1) models the internal structure of a coniferous

tree from the ALS data; 2) defines robust, efficient and scale invariant geometric features

representing the branch level characteristics of conifers based on the proposed internal

crown structure model; 3) demonstrates the relevance of internal crown geometric fea-

tures; and 4) performs effective conifer species classification. Experimental analysis was

conducted on a dataset acquired by an airborne high density ALS system by conducting

multiple passes over a study area located in the north west part of the Trentino region

in Italy. Validation was concentrated on four major European conifer species, i.e., the

Norway Spruce (NS), the European Larch (EL), the Swiss Pine (SP) and the Silver Fir

(SF). However, the method can be extended to the classification of other conifer species.

In our experiments, linear Sparse C-SVM, non-linear C-SVM, and non-linear multi-kernel
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(a) (b) (c) (d)

Figure 5.1: Examples of the four different coniferous species considered in the study; (a) Norway Spruce

(Picea Abies), (b) European Larch (Larix Decidua), (c) Swiss Pine (Pinus Cembra), and (d) Silver Fir

(Abies Alba).

C-SVM (MK C-SVM) classifiers were used. Linear Sparse C-SVM is used for feature

relevance analysis. This is because linear Sparse C-SVM has the capability to assign

larger weights (i.e., hyperplane parameters) for relevant features, while smaller weights

are assigned to the remaining features. Accuracy assessment was conducted by comparing

classification results achieved by the three above mentioned classifiers.

The rest of the chapter is organized as follows. Section 5.2 describes the proposed

method to model the internal branch structure and briefly illustrates the theory of SVM

classifiers involved in the experiments. Section 5.3 introduces the dataset and the study

area, and provides experimental results. Section 5.4 draws the conclusion of this work.

5.2 Conifer Species Crown Structure Characterization and Clas-

sification

Here, we propose an effective method for conifer species classification based on the struc-

tural properties of conifers derived from small footprint high point density multi-return

ALS data. The approach assumes that the LiDAR point clouds corresponding to individ-

ual conifer trees have been isolated (see example in Fig. 5.3a). Any method available in

the literature (e.g., [184], [185], [186]) can be employed to this purpose. Starting from the

individual tree LiDAR point cloud, two sets of crown geometric features are derived that

describe the tree crown from two complementary perspectives: i) the external one; and ii)

the internal one. The former set includes six External Crown Geometric Features (EGFs)

that capture the external behaviours of crown structural characteristic of conifers. The
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latter set includes six novel Internal Crown Geometric Features (IGFs) that model the

internal behaviour of conifers crown. This is achieved by exploiting the branch structure.

The twelve features are used for conifer species classification. In our experiments SVM

has been employed to this end with different kernels and architectures [187], [188]. The

block scheme of the proposed approach is given in Fig. 5.2.

Figure 5.2: Block scheme of the proposed approach to conifer species classification.

5.2.1 Internal Crown Structure Characterization

In order to properly model the internal crown structure of conifers crown, let us observe

that: i) conifers have a linear/vertical central stem; ii) branches grow from the stem

outward; and iii) branches are linear and compact and have a direction which is almost

perpendicular to the stem and reach the maximum distance from each other at branch

tips [35]. The internal crown structural characteristics of conifers can be defined by

studying the basic branch parameters. [34; 35]. Thus, we propose to identify individual

branches of conifers. Conifers have a monopodial growth form (a single, straight trunk

with side branches) with strong apical dominance [189], and as a result branches have an
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approximately ellipsoidal shape. For this shape, length, width, compactness, density, and

symmetry attributes are the basic parameters that can be used to define the structural

characteristics of branches, and thus are used in this study.

We have assumed the following notations to describe LiDAR data at the tree level. Let

P = {p1, p2 . . . , pN} be the LiDAR point cloud representing a single tree, where pn ∈ P is

the spatial position of each point belonging to the tree in the small footprint high density

multi-return LiDAR cloud. pn is fully described in a 3D Euclidean feature space by its

xn, yn and zn Cartesian coordinates. Let MT be the central stem and B the total number

of branches that constitutes the conifer skeleton. In the LiDAR point cloud of a single

tree, each branch can be modeled as a cluster of points (referred to as branch cluster) cb
= {pn;n ∈ Ib}, where Ib is the index set of all the LiDAR points belonging to cb. The

set CB = {cb, b ∈ [1, B]} of B branch clusters obtained by grouping LiDAR points in P

represents the entire conifer tree crown. It is worth noting that the laser sampling can be

non uniform from the spatial point of view (thus different trees may show a large difference

in the numbers of LiDAR sample) and that the number of reflections is relatively large

near the external part of the tree crown and relatively smaller towards its interior (i.e.,

near the stem).

Considering these properties, we developed a conifer branch modelling technique that

applies 3D region growing [190] to the data and identifies LiDAR points associated with

each branch. However, the accuracy of region growing (and in-turn the accuracy of the

internal crown structural model), highly depends on the seed point initialization. Here,

we consider the LiDAR points most proximal to the actual conifer branch tips as the

optimal seed points for three reasons: 1) the structural properties of conifer branches

(i.e., compact and having tapering tips) allow an accurate identification of branch tips in

high density LiDAR data; 2) conifers branch tips are prominent in high density LiDAR

point cloud; 3) maximum separation between branches occurs at the branch tip (i.e., near

the exterior of the crown), and this ensures that the seed points are uniformly separated

or at least not confusingly close to each other. We refer to the region growing seed points

as the branch tip points.

In case of conifers, it is highly likely that the boundary points of LiDAR point cloud

are also the branch tip points. In this chapter, branch tip detection is achieved by the

boundary detection algorithms in [191]. The algorithm finds the indices of those LiDAR

points which define the smallest surface enveloping the entire point cloud. The compact-

ness of the surface is controlled by a variance parameter that can take values between 0

and 1. When the parameter is set to 0, the surface becomes the least compact, and the

surface becomes the most compact when the parameter is set to 1. Due to high density

of LiDAR points, often multiple points near the same branch tips are selected as bound-
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(a) (b) (c)

Figure 5.3: Internal crown structure modelling of conifers. (a) Input LiDAR point cloud for a tree (green

dots). (b) The convex hull formed on the cloud. (c) Detected branch tips points (red dots).

ary points. However, only the most distant point (among the multiple boundary points)

from the stem is considered as the optimal branch tip point. The space spanned by the

candidate boundary points is dependent on the species. Moreover, the branch width/size

varies along the height of the tree, i.e., the lower branches are larger and wider than the

branches near the tree top. Hence we use an adaptive thresholding calculated using an

inverse linear function of the branch tip point value zi. The adaptive threshold takes

into account also the variation in branch width/size along the height of the tree, i.e., the

lower branches are larger and wider than the branches near the tree top. A convex hull

formed from the boundary points is shown in Fig. 5.3b, and the boundary points after

thresholding are shown in Fig. 5.3c.

The branch tips obtained using the boundary detection technique in [191] are the most

external LiDAR points in every branch cluster. To define branches, a region growing is

performed by progressively grouping LiDAR points, seeding from the identified branch

tip points, according to a proximity criterion in the Euclidean space. The proximity

calculation is performed on a four dimensional vector including the spatial coordinates of

the LiDAR points, and the neighbourhood point density Sn. The neighbourhood point

density Sn of the nth LiDAR point sample pn and can be calculated for each LiDAR point

as:
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Sn =
YB∑K
i=0Dni

(5.1)

where YB is the number of nearest neighbours (a constant) of the nth LiDAR point

pn ∈ P , and Dni is the Euclidean distance between the nth and the ith LiDAR point. Thus,

Sn will be large for those points which have close neighbours and viceversa. However, the

LiDAR point density becomes considerably low towards the interior of the tree [192],

[193], and as a result the inter-point distance (i.e., Dni) becomes large, resulting in low

Sn value. In effect, the closer to the stem, the more unreliable is the 3D region growing

procedure. Hence, the growth process is stopped when the inter-point density difference

becomes larger than a certain threshold. This threshold has been derived empirically by

experimental analysis accomplished on a large set of conifers. Thus, sample close to the

stem are not assigned to any branch cluster yet. Branch clusters with small number of

points (i.e., < 10 points) were found to provide unrealistic branches and hence are not

modeled. Such branch clusters mainly occur near the tree tops (due to small branch

length) and also near the bottom (due to low point density).

Each incomplete branch cluster is usually highly correlated and linear in the 3D Eu-

clidean space. This is evident since its overall shape can be approximated with a highly

oblige ellipsoid (Fig. 5.5). Accordingly, the geometrical properties of individual branches

can be approximated to the ones of the ellipsoid. To estimate the parameters of the bth

ellipsoid, Principal Component Analysis (PCA) is applied to the LiDAR points of branch

clusters cb, b = [1, . . . , B] (e.g., yellow points in Fig. 5.5) thus obtaining three principal

components (PCs). PC1 is the axis along which data show the maximum variance and

thus it is usually directed towards the stem of the tree. The angle between PC1 and the

stem corresponds to the slope of the branch. PC2 and PC3 (i.e., the second and third

largest variance components) provide information about the branch’s horizontal and ver-

tical width. Eigenvalues λb1, λb2 and λb3 associated with the three PCA axis represent the

ellipsoidal dimensions and thus the branch cluster dimensions. For each branch cluster,

a regression line can be fitted in the 3D Euclidean space, which closely represents the

wooden part of the branch. We refer to this as the branch line and it gives an approxi-

mate direction of the branch. For the purpose of cluster completion, all the points near

the stem that were not allocated previously, are now assigned to one of the B branch

clusters based on the proximity of the point to the branch line. Such points are very

small in number and do not have much influence on the branch parameters.

The branch lines together with the stem provide a representation of the internal crown

structure of a conifer (i.e., the conifer skeleton) (Fig. 5.4). Accordingly, the skeleton

can be used to extract Internal Crown Geometrical Features (IGFs) that model the tree

branch structure and are useful in distinguishing species.
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Figure 5.4: Conifer branch skeleton

Here, we define a set of six IGFs at tree level that depends on six corresponding branch-

level features that derive from the proposed internal crown model. The set of branch-level

features is as follows:

(a) Branch length Lb: distance between the bth branch tip and the tree stem computed

along the direction of its respective PC1.

(b) Branch slope αb: angle between the direction of the PC1 of the bth branch cluster

and the stem.

(c) Branch compactness Kb: average of the perpendicular distance of LiDAR points in

the branch to the corresponding branch line.

(d) Branch width Wb: calculated as the Eigenvalue along PC2 i.e., λb2.

(e) Branch symmetry Sb: ratio between eigenvalues λb2 and λb3. If the value is 1, the

symmetry of the branch is considered to be maximum, whereas when the value tends

to ∞ (i.e., λb2 >> λb3) the branch is considered to be completely asymmetric or flat.

(f) Branch density Db: number of LiDAR points associated with the bth branch cluster

cb. Although, the feature does not capture the actual branch density, the feature

value is directly correlated to the actual branch density.
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The six IGFs are calculated for each branch and a feature-wise averaging is performed,

thus obtaining values of the six features at the tree level. These features form half the

number of feature that are given as input to the classifier in the final step of the proposed

approach. Table 5.1 gives the analytical definition of the six tree level IGFs derived from

the internal branch structure model. Trees at various stages of their growth will have

different branch lengths and hence we normalize the features such as Bl, Bk and Bw by

the Tree Height HT . The average branch density Bn is divided by N in order to filter out

variations caused by point cloud density.

Table 5.1: Proposed internal crown geometric features

Feature Id Description Equation

Bα Average branch slope
B∑
b=1

αb

B

Bl Average branch length
B∑
b=1

Lb

B·HT

Bk Average branch compactness
B∑
b=1

Kb

B·HT

Bw Average branch width
B∑
b=1

Wb

B·HT =

B∑
b=1

λb2

B·HT

Bs Average branch symmetry
B∑
b=1

Sb

B =

B∑
b=1

λb2
λb3

B

Bn Average branch density
B∑
b=1

Db

B·N

5.2.2 External Crown Structure Characterization

High density LiDAR data also provide detailed level knowledge about the external shape of

tree crown (Fig. 5.3a). Among the state-of-the-art algorithms for extracting information

about the external crown geometry, shape fitting and convex hull based are the most

popular. EGFs, which are derived using parameters of a regression-fitted geometric shape

[194] and convex hull [195], obtained against the point cloud of a tree, are effective for

tree species classification [117]. Fitting geometric shapes allows to have an idea of the
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Figure 5.5: Illustration of the proposed branch model and of the related parameters.

general crown shape, whereas convex hull (based on the hull parameter αhull) provides

the smallest 3D surface that contains all the data points of a tree and thus provides

information such as the crown volume, the surface area and the density. Conifer species

have a similar typical conical crown shape that in some studies has been described with

a generalized cone or paraboloid [196] [197]. For this study, we assume a simple cone

shape and focus on features that are derived after shape-fitting. Whatsoever, considering

the similar conical crown shape of conifers, it is expected that external crown geometrical

features (EGFs) are less informative than IGFs, for species classification.

In order to fit a cone to the LiDAR point cloud of a tree, four cone parameters need to

be estimated. These include the three coordinates of the cone vertex Vc = [xc, yc, zc], and

the cone angle a = tan(α) = rc
hc

, where the angle α is the opening angle (semi-vertical

angle),and rc and hc are the base radius and height of the cone (i.e. conifer in this case)

respectively [198]. The general equation of a cone can be written as

(xi − xc)2 + (yi − yc)2 = (zi − zc)2a2,∀i ∈ [1, N ] (5.2)

where, xi, yi, zi are Euclidean coordinates of the ith LiDAR point sample in the tree.

The parameters of the best fitting cone (Fig. 5.6a) can be obtained by fulfilling the least

square condition:
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â = argmin
a

N∑
i=1

ε2i = argmin
a

N∑
i=1

(ai − a)2

where,

ai =

√
(xi − xc)2 + (yi − yc)2

(zi − zc)2

(5.3)

â is the optimal parameter value, obtained by fulfilling the least square condition,

defining the best-fit cone that represents the external crown shape for the tree approxi-

mately. The initial vertex coordinates can be chosen to be the spatial coordinates of the

highest LiDAR data point in the cloud. The optimal vertex can be different from the ini-

tial coordinate and is updated accordingly with ai (see equation 5.3) . Among the several

EGFs available in the literature, we selected the six least correlated EGFs mentioned in

[117]. The features are derived from the parameters of best fitting cone and convex hull.

For each tree LiDAR point cloud. They include the following parameters:

(a) Volume of convex hull Vhull, divided by the number of points within the tree crown

N .

(b) Difference between the convex hull volume and the fitted cone volume Vcone, to the

convex hull volume.

(c) Regression error RMSEcone associated with the cone fitting. It can be computed by

solving the
(
ATA

)−1
ATQ, where A is the matrix derived from the derivatives of the

Taylor expansion (which is applied to linearize the non-linear equation of the cone)

of ai around the cone vertex, Vc. The equation of a can be derived from (5.2), and

Q is (a1, a2, a3, ..., aN). The regression error associated with the least square cone

fitting is a species dependent feature, as it does not consider only the general shape

of the tree, but also the point density and distribution inside the canopy of the tree.

(d) Average of the distance of each point dn, to the closest facet of the convex hull.

(e) Standard deviation of distances from each point to the closest facet of the convex

hull.

(f) Ratio between the crown height HC and tree height HT .

Table 5.2 summarizes the considered external crown geometric features and provide

their equations.
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Table 5.2: External crown geometric features

Feature Id Description Equation

Tv
Volume of the convex hull by the number of points within

the crown [199].
Vhull
N

Td
Difference between the convex hull and fitted cone

volumes compared to the convex hull volume [199].
Vhull−Vcone

Vhull

Tε
Root mean squared error from regression fitting of cone

[199].
RMSECone

N

Tl
Average of distance dn of each LiDAR point to the closest

facet of convex hull [199]

N∑
n=1

dn

N

Tσ
Standard deviation of orthogonal distances from each

point to the convex hull [199].

√
N∑
n=1

(pn−Tl)2

HT

Th Crown height divide by Tree height [199] HC
HT

5.2.3 Conifer Species Classification

In the last step, IGFs (Table 5.1) and EGFs (Table 5.2) are given as input to an auto-

matic classifier that associates each tree with its species. Although any classifier could be

employed, we use the Support Vector Machine (SVM) as it is very efficient and versatile

[200] and has been successfully used in remote sensing applications. Three different SVM

configurations has been used. Sparse C-SVM with linear kernel enhances the magnitude of

feature weights (i.e., the weights of the relevant features are accentuated while the weights

of the non relevant ones are attenuated) and thus is good to understand feature relative rel-

evance. Both single and multi-kernel SVM architectures using both linear and non-linear

kernels have been considered with the objective of achieving the highest classification

accuracy and hence used for feature quality assessment in this chapter.The rest of the

section briefly summarizes the theory of the above mentioned classifiers. Let F = {~vi}NG

i=1

be the set of training feature vectors. NG is the total number of training sample and ~vi ∈
Rf , f is the number of features. Let U = {ui}NG

i=1 be the set of corresponding class labels

in the training set, where ui ∈ {-1 1}. In our case, the input vector ~vi is defined as the

normalized set of IGFs and EGFs, i.e., ~vi = [Bα, Bl, Bk, Bw, Bs, Bn, Tv, Td, Tε, Tl, Tσ, Th].
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(a) (b)

Figure 5.6: Representation of (a) the regression cone fitting on the LiDAR point cloud of a Norway

Spruce tree, and (b) shows the convex hull obtained for the same tree

.

The SVM aims at estimating an optimal separating hyperplane defined by the param-

eters ~w and e, which are the weight vector and the bias, respectively [188]. The estimates

of ~w and e, for the C-SVM and MK C-SVM are obtained by solving the optimization

problem in (5.4).

min
~w,ξ,e

1

2
t+ C

NG∑
i=1

ξi,

subject to ui(~w
Tf(vi) + e) ≥ 1− ξi,∀i = 1, . . . , NG,

ξi ≥ 0,

(5.4)

The function f(v) for the C-SVM is a single kernel K(v, v′), whereas for the MK

C-SVM it is a multiple kernel
Mk∑
m=1

dmK(v, v′), where Mk is the number of kernels, and

Mk∑
m=1

dm = 1. K(., .) is a given positive definite kernel associated with a reproducing kernel

Hilbert space. In our case we use Radial Basis Function (RBF) kernel for both C-SVM

and MK C-SVM. The terms ξ and C in (5.4) are the slack variables and the tuning

parameter, respectively. Linear Sparse C-SVM performs classification by exploiting the

sparsity in the input feature space, and emphasises the relevance of features (i.e., their

weights), while reducing the relevance of noisy and/or correlated features. In the case of
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Sparse C-SVM, the optimal feature selection and the SVM learning processes are achieved

simultaneously. Although popular in other fields, Sparse C-SVM has not been widely used

in remote sensing and hence we provide some details on it. The estimates of ~w and e are

obtained by solving the optimization problem in (5.5).

min
~w,ξ,e,t

1

2
t+ C

NG∑
i=1

ξi,

subject to ui(~w
Tf(vi) + e) ≥ 1− ξi,∀i = 1, . . . , NG,

ξi ≥ 0,

||~w||22 ≤ t

||~w||21 ≤ gt

(5.5)

The Sparse C-SVM formulation shown in (5.5) is the same as that of the C-SVM or

MK C-SVM (5.4) except for the two additional constraints on ~w. The (5.5) is rather

a simplified version of the original optimization problem in [187]. The simplification of

the problem is achieved by replacing the cardinality constraint in the original problem

with a weaker non-convex constraint, i.e., ||~w||21 ≤
√
g||~w||22 [187]. This weaker non-convex

constraint can be further relaxed to a convex form by bounding the norm L2 constraint on

~w by a variable t, and the L1 norm constraint on ~w by gt, where t is a constant. Hence, the

aforementioned non-convex constraint can be split into the following constraints ||~w||22 ≤ t

and ||~w||21 ≤ gt [187]. The L1 constraint on weight vector ~w allows it to be Sparse (i.e.,

some values of ~w could be 0), while the L2 constraint minimizes the number of elements of

~w to be shrunk to zeros. Hence, only few relevant features are considered while generating

the hyperplane. The individual elements of ~w quantify the relative importance of a feature

with respect to the others.

Fig. 5.7 shows an illustration of the hyperplanes obtained with a standard linear SVM

and a linear Sparse C-SVM for a 2-class 2D problem. C-SVM considers both the features

1 and 2 to define the hyperplane, whereas linear Sparse C-SVM creates the hyperplane

based on the feature 1 only. Similar considerations hold for a higher dimensional feature

space. Using a subset of the original features makes the process computationally more

efficient, at the cost of a small decrease in the classification accuracy w.r.t. C-SVM or MK

C-SVM. If a multi-class problem needs to be solved, one-against-one or one-against-all

approaches can be employed as for standard linear SVM [201].
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Figure 5.7: Illustration of the hyperplanes formed by the C-SVM and the Sparse C-SVM in an R2 space.

The Sparse C-SVM ignores one dimension (i.e. Feature 2).

5.3 Experiments and Results

5.3.1 Study Area and Data Set

The study area is located in the Italian Alps, in the municipality of Pellizzano at about

40 km northwest of Trento (a city in the North of Italy). The area contains valleys

and mountainous terrains. The approximate extent of the area is about 3200 ha, and

the altitude varies from 900 to 2000 m above the sea level. The forest in this region

is heterogeneous with both coniferous and broad-leaf species. The dominant coniferous

species include the Norway Spruce (Picea Abies), the European Larch (Larix Decidua),

the Swiss Pine (Pinus cembra) and the Silver Fir (Abies Alba). Minority coniferous species

are European Black Pine (Pinus Nigra) and Scots Pine (Pinus Sylvestris). Among the

broadleaf species European Beech (Fagus sylvatica L.) dominates over Sycamore Maple

(Acer Pseudoplatanus L.), Hop Hornbeam (Ostrya Carpinifolia Scop.), Field Elm (Ulmus

Campestris), and Sessile Oak (Quercus Petraea Liebl). Here attention is devoted only

to the four major coniferous species. The ALS data were acquired between 7th and 9th

September 2012 from an airborne platform flying at an altitude of 660 m with a speed

of 100 Km/Hr. The acquisition sensor is a Riegl LMSQ680i. The frequency of the laser

scanner is 400 KHz and up to four returns were recorded. The point density varies from

10-50 points per meter squared due to the mountainous terrain of the study area. The

flight was repeated several times to generate a dense point cloud with density varying from

50 to 200 points/m2. As expected, a high density point cloud is observed below the flight

path (i.e., near nadir) whereas the density of the point cloud decreases off-nadir. The

density of LiDAR points is maximum in the crown region and reduces toward the interior
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section of the trees. Further, point density is maximum near the tree top and minimum

at the bottom. The ground sample collection was conducted in the same month as that

of the data acquisition. Among them, a set of 200 reference trees, manually delineated

from the point cloud, was created, that includes 50 trees each of the Norway Spruce (NS),

the European Larch (EL), the Swiss Pine (SP) and the Silver Fir (SF) species. On the

one hand, the NS, EL, and SF are relatively tall trees and are geometrically more similar

to the assumed conifer characteristics. On the other hand, the SP is shorter with slightly

different characteristics. SP class is included in the study as: a) it is one of the major

species in Europe, and 2) it allows to evaluate the robustness of the proposed modelling

technique. Table 5.3 shows the tree and crown height statistics of the tree sample. In

order to validate the effectiveness of the proposed internal crown model and of the features

derived from it, the crown of trees in the reference set was manually detected. In this way,

the validation procedure does not suffer from: 1) propagation of error due to automatic

tree delineation techniques and, 2) the presence of structurally damaged trees (as this is

not investigated in this research). However, for operational use, automatic segmentation

methods [182], [104], [186] can be employed, followed by a noise filtering to avoid isolated

points around the crown. LiDAR points corresponding to understory vegetation were

manually removed (but automatic methods from the literature can be employed as well

[202], [186]) since they do not follow the conifer crown model. Selected trees show in

average 12000 points from multiple scanning passes.

Table 5.3: Basic statistics of the structural characteristics of the sample conifer on the considered dataset

Tree Number Tree height (m) Crown height (m)

Species of Trees Max Min Mean Max Min Mean

NS 50 44.97 22.36 31.51 35.0 19.0 26.31

EL 50 37.64 16.92 28.32 30.0 15.0 21.84

SP 50 39.57 13.49 30.35 34.0 10.0 24.52

SF 50 23.66 10.51 17.56 20.0 9.56 15.53

5.3.2 Experimental Results and Discussion

A direct evaluation of the performance of the proposed internal crown modelling technique

would require reference information at the branch level. This is not feasible for the ALS

dataset used in the study as: a) the data were acquired almost 9 years ago and any

field data collected now would be incompatible with the ALS data, and b) it is very

expensive in terms of time and money to perform an accurate branch level field-data

collection. Thus, we adopted a validation set that includes qualitative analysis and an
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indirect quantitative assessment. The results obtained using the proposed internal crown

model are compared with the ones obtained by relying on a state-of-the-art (SoA) one.

Merge and Split K-means clustering approach to internal crown structure modelling is

used as the SoA method [117]. It applies k-means clustering to LiDAR data with random

seed initialization, and performs a merging and splitting operations on the cluster to

identify final valid branch clusters. In our experiments, the k has been set to be equal

to the number of branch-tips identified using the proposed technique. For each tree,

the branch tips were identified using the convex hull based technique with the variance

parameter αhull set to 0.5. The threshold (at crown bottom height) for multiple branch tip

removal was set to 2.0, 3.8, 2.8 and 1.9 for NS, EL, SP and SF, respectively. In this way,

we give clear advantage to the reference technique that has not the intrinsic capability

to estimate the number of expected branches. The reader is referred to [117] for further

details on the merge and split k-means based branch detection approach. In our method,

the branch clusters were identified using the region growing performed on the point cloud,

starting from the identified seed points. The growing is stopped when the neighbourhood

threshold density becomes lower than the 0.3% of the density near the branch tip (where

the density is likely to be the maximum). K was set to 5 for all the cases.

From the qualitative point of view, a visual comparison of the internal crown model

obtained with the proposed model and with the SoA one was conducted for several trees

in the reference set. Figures 5.8, 5.9, 5.10, 5.11 show examples of: a) the tree LiDAR

point cloud, b) the branch model obtained with the SoA approach, and c) the branch

model obtained with the proposed approach, for each of the four considered species. It

can be observed that the proposed model is able to better capture the branch structure

for all the considered species. This becomes more clear in the upper right part of Fig.

5.8. It can be observed that all the branch clusters have been correctly captured by the

proposed method, whereas the SoA method fails to do so. The poor modelling capability

of the SoA model is mainly caused due to isotropic groping preferences and random

initialization of the k-means clustering. This choice, combined with the complexity of

the LiDAR point cloud, often make it difficult to identify valid branch clusters. The

proposed model overcomes the drawbacks by employing the convex hull based technique.

Recalling that IGFs are attributes associated to the branches, their reliability depends

on the branch model accuracy. Accordingly, it is expected that IGFs extracted from the

SoA branch model are less reliable than the ones extracted from the proposed one while

classifying species.

In order to quantitatively assess the above statement, IGFs were extracted by employ-

ing both the proposed and the SoA internal crown model. The EGFs were computed as

well. An indirect quantitative validation of both the internal crown structural model and
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(a) (b) (c)

Figure 5.8: Example of results on a Norway Spruce tree, (a) show the raw LiDAR data, (b) the results

obtained by the SoA model, (c) the results obtained by the proposed model.

(a) (b) (c)

Figure 5.9: Example of results on a European Larch tree, (a) show the raw LiDAR data, (b) the results

obtained by the SoA model, (c) the results obtained by the proposed model.
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(a) (b) (c)

Figure 5.10: Example of results on a Swiss Pine tree, (a) show the raw LiDAR data, (b) the results

obtained by the SoA model, (c) the results obtained by the proposed model.

(a) (b) (c)

Figure 5.11: Example of results on a Silver Fir tree, (a) show the raw LiDAR data, (b) the results

obtained by the SoA model, (c) the results obtained by the proposed model.
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(a)

(b)

(c)

(d)

(e)

Figure 5.12: The Sparse C-SVM weights obtained when employing: (a) only EGFs, (b) only IGFs

computed on the SoA model (c) only IGFs computed on the proposed model, (d) the IGFs from the SoA

model together with the EGFs, and (e) the IGFs from the proposed model together with the EGFs.
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the proposed IGFs was achieved by analyzing: i) the feature weights estimated during

the Sparse C-SVM training phase; and ii) the Sparse C-SVM, C-SVM and MK C-SVM

classification accuracy. The experiments were conducted on the following feature com-

binations: i) External Crown Geometric Features (EGFs); ii) IGFs extracted from the

state-of-the-art model (IGFs-SoA); iii) IGFs extracted from the proposed internal crown

model (IGFs-proposed); iv) IGFs extracted from the state-of-the-art model and the EGFs

(IGFs-SoA and EGFs); and v) IGFs extracted by the proposed internal crown model and

the EGFs (IGFs-proposed and EGFs). For all the cases the better the performance, the

better is the considered set of features and thus the corresponding internal crown model.

The feature extraction step requires about 15 seconds for each tree on a 64-bit Windows

10 machine with 8.00 GB of RAM and IntelXeonCPU E3-1240 V2. Thus, for operational

use, the performance can be improved using parallel computing.

For all the classifiers, the training was conducted by means of a 4-fold cross-validation.

The 60% of the total sample (i.e., 120 trees) were employed in the cross-validation proce-

dure, and the remaining 40% (i.e., 80 trees) was used for validation. The validation set

was selected such that 20 trees for each of the four species were included. Considering

that the sample dataset size is small, the process was repeated 20 times and the results

are analysed as the average over the 20 runs. The training procedure aimed at estimating:

i) the optimal C parameter for each classifier, and ii) the optimal kernel parameters for

C-SVM and MK C-SVM. Here an RBF kernel was used, thus the spread γ of the kernel(s)

was estimated. For Sparse C-SVM, C values were considered in the range [10−6, 106] with

an exponential step of 101. For all combination of features, the best average accuracy on

the validation set was found for C = 105. For C-SVM, C was considered in the range

[2−15, 215] with an exponential step of 21, whereas γ varied in the range [0.001, 10] with

an exponential step of 101. The best average accuracy was achieved with C = 28 and

γ = 0.01 for the EGFs, the IGF-SOA and the IGF-Proposed feature sets, and with C =

29 and γ = 0.01 for the remaining sets. For MK C-SVM, C was considered in the range

[2−15, 215] with an exponential step of 21 (like for the C-SVM), and a total of 9 RBF

kernels were selected. The 9 corresponding γ values were selected by using the C-SVM

optimal γ value as a guideline. Accordingly, γ values for MK C-SVM were selected close

to 0.01 (i.e., 0.002, 0.004, 0.006 ,0.008, 0.010, 0.012, 0.014, 0.016 and 0.018). It is worth

noting that the input data are from a single source and hence large variations in γ are

not expected. The optimal C for MK C-SVM was found to be 210. Feature values were

normalized before giving them as input to the classifiers [203].

Let us first analyse the feature relevance obtained as the weights of the trained Sparse

C-SVM (linear soft margin, implemented using CVX [204]). The feature weights are a

result of the class separability analysis performed by the Sparse C-SVM, i.e., a higher
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feature weight shows that the feature is relatively more relevant when compared to the

others [205]. The weight values for most EGFs are small and thus they are less relevant

for conifer species classification (Fig. 5.12a). This behavior was expected as conifers have

very similar external crown characteristics. Nonetheless, the cone fit error (Tε) and the

average distance of LiDAR points to the closest facade of the convex hull (Tl) showed to be

promising features and this agrees with our observation that the crown shape and the point

density variation around the stem are slightly different for different species. Fig. 5.12c

shows the normalized features weights obtained in the proposed set up. The Sparse C-

SVM assigned maximum weights to the branch width Bw and average branch compactness

Bk. This is in alignment with our visual examination (a close look at Fig. 5.8, 5.9, 5.10,

5.11 shows that each tree species shows a unique branch width and branch compactness).

Both Bw and Bk are independent of variations in both the point cloud density and the

maturity of the tree, and hence are good features for species classification. While the

average branch slope Bα, the average branch length Bl, the average branch symmetry

Bs, and the average branch density Bn, were assigned lower weights. This implies that

the Bl and Bα are less useful features at least for discriminating the species considered

in this study. In case of Bα, the low weight value is a result of variation in branch slopes

along its height. The low weight values for Bl is connected to the fact that trees of the

same species and similar height can vary in their crown diameter, and thus show different

branch lengths. Although, the average branch symmetry was expected to be a good

feature to classify tree species, the results proved that they are less relevant for the four

species considered in this study. This is attributed to the fact that branches of different

species have similar ratio values. For example, the Norway Spruce and the Silver Fir

seem to have different branch sizes. However the ratio between the branch width and the

branch height is very similar. The average branch density is a good feature for species

classification if the ALS sampling density is uniform throughout the acquisition, However

in our case, the large variation in the point cloud density, due to combined effect of target

material, range variation, and footprint size on the return power (see (2.2)), makes it

less relevant with the current set of species. I.e., the relevance of features will differ for

different set of species.

It is worth noting at this point that the weight values show only the relative importance

of the features, and hence a direct comparison of the values across experiments involving

different set of features is meaningless. For example, while classifying between Norway

Spruce and European Larch, the branch width attribute has the maximum weight (this

is in accordance with the fact that, birch has wider branches than spruce), while between

Norway Spruce and Scot Pine, the branch density attribute is more relevant. However by

jointly providing as input the IGFs-proposed and the EGFs to the Sparse C-SVM, it is
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possible to compare the importance of the IGFs-proposed and the EGFs. The Fig. 5.12e

shows the weight obtained for this feature combination. It is evident that the EGFs have

been identified as relatively less important than the IGFs-proposed.

The normalized weight values obtained for the IGFs-SoA are shown in Fig. 5.12b.

The features Bk and Bw have higher values and hence are more relevant. This is in line

with our expectation for the same reasons mentioned previously. Bl, Bα, Bs and Bn have

relatively smaller weights. We also tested the case in which the IGFs-SoA along with the

EGFs were provided as input to the Sparse C-SVM. The Fig. 5.12d shows the normalized

feature weights. As one can see, the EGFs were assigned higher weight values than any

of the features in the IGFs-SoA set. The box-plots in Fig. 5.13 confirm the quantitative

separability analysis. It can be seen that the highest weights are assigned to those features

with non-overlapping means and minimum variance.

Since EGFs are extracted independently of branch geometric model, they can act

as a benchmark for feature quality comparison between the IGFs-SoA and the IGFs-

proposed features. By comparing weight assignments for the IGFs-SoA and the EGFs,

and IGF-proposed and the EGFs, one can see that the IGFs-SoA have been identified as

poor features in comparison to the EGFs whereas the IGFs-proposed proved to be better

features than the same EGFs.

Let us now compare the average classification accuracy computed over the 20 runs and

obtained on the five feature sets by using the Sparse C-SVM, the C-SVM (LIBSVM [206])

and the MK C-SVM (SimpleMKL Matlab tool [207]). Table 5.4 summarizes quantitative

results. It is clear from Table 5.4 that the classification performance is higher when using

the IGFs-proposed set rather than the IGFs-SoA feature set, both with and without the

EGFs. This means that the proposed model is more accurate than the SoA one. Therefore

the features derived from the proposed internal crown model are more effective.

Table 5.4: Average classification accuracy on the validation set for different sets of features.

Feature Set

Classification Accuracy (%)

Sparse

C-SVM
C-SVM

MK

C-SVM

EGFs 68.5 72.2 71.5

IGFs-SoA 75.8 79.2 79.7

IGF-proposed 81.2 86.0 86.6

IGFs-SoA and EGFs 80.9 86.9 87.7

IGF-proposed and EGFs 85.3 89.1 89.5
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Furthermore, Table 5.4 points out that the MK C-SVM performs better w.r.t the Sparse

C-SVM and C-SVM. Thus, we evaluate the species classification performance based on the

accuracy provided by the MK C-SVM. As expected, the use of the EGFs only led to lower

performance, i.e., an overall accuracy of 71.5%. An increment of performance of about

8.0% and 15.0% was achieved when using the IGFs-SoA and the IGFs-proposed feature

sets, respectively. It is worth noting that the use of the proposed internal structural model

significantly increased the overall classification accuracy, with respect to the use of features

derived from the state-of-the-art one. This improvement confirms the effectiveness of

both of the proposed internal structural model and the proposed IGFs. When both the

IGFs and the EGFs are given as input to the Sparse C-SVM, the classification accuracy

increases further reaching 87.7% with the IGFs-SoA features, and 89.5% with the IGFs-

proposed features. The accuracy improvement achieved by the joint use of EGFs and

IGFs is of about 8.0% and 3.0% when the state-of-the-art and the proposed model are

used, respectively. Tables 5.5 and 5.6 show the confusion matrix (including user’s accuracy

(U.A.) and producer’s accuracy (P.A.)) for the IGFs-SoA and the EGFs, and the IGFs-

proposed and the EGFs experiments, respectively. The best result over the 20 runs was

selected. As one can see, the number of errors is smaller for all the species when using

the IGFs-proposed feature set.

Table 5.5: MK C-SVM confusion matrix of the best case over 20 runs on using the IGFs-SoA and the

EGFs feature set.

Classification
Field Data

U.A.%
NS EL SP SF

NS 17 0 2 1 85.0

EL 0 19 1 0 95.0

SP 1 0 19 0 95.0

SF 2 0 1 17 85.0

P.A.% 85.0 100.0 100.0 82.6 O.A. 90.0 %

In general, state-of-the-art methods (see section (3.2)) derive internal geometric infor-

mation from the ALS data with no or minimal use of aprori information on tree crown

structure which can greatly benefit in accurate crown modeling / feature extraction. Thus,

the proposed method prove the importance of including aprori information on the gen-

eral structural characteristics of trees in accurately modeling internal geometric features

and, hence in accurately identifying tree species at the ITC level. However, it is worth

noting that the relevance of geometric features might differ for different set of species,

as key structural differences might be different for different set of species and or forest
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Table 5.6: MK C-SVM confusion matrix of the best case over 20 runs on using the IGFs-proposed and

the EGFs feature set.

Classification
Field Data

U.A.%
NS EL SP SF

NS 18 1 0 1 90.0

EL 0 19 0 1 95.0

SP 0 0 20 0 100.0

SF 2 0 0 18 90.0

P.A.% 90.0 95.0 100.0 90.0 O.A. 93.7 %

types. The study also proves that the internal structural features are more relevant than

external ones for classification of tree species belonging to the same taxonomical class,

and hence stressing on the need for future research to better model the internal crown

structure.

5.4 Conclusion

In this chapter, we proposed a method for modelling the internal crown structure of the

conifers from small footprint high point density multi-return airborne LiDAR point clouds.

The internal crown structure modelling is performed using a set of six novel features ca-

pable of characterizing the individual branch. The six proposed features are jointly used

with six external crown geometric features taken from the literature for improving the

classification accuracy by modelling also the external crown geometry of the trees. Ac-

curacy assessment was performed by using three different SVM classifier including the

Sparse C-SVM, the C-SVM, and the MK C-SVM. A set of five experiments were con-

ducted to study the individual and the joint performance achieved by using the proposed

and standard features taken from the literature. All experiments were conducted on a set

of 200 tree sample belonging to the four major European conifer species (i.e., the Norway

Spruce, the European Larch, the Swiss Pine, and the Silver Fir). Experimental results

point out that the proposed internal crown model leads to the generation of more effective

features with respect to the state-of-the-art one. Furthermore, the joint use of the pro-

posed internal crown geometric features together with standard external crown geometric

features provides sharply higher classification accuracies in conifer species classification

than the use of external crown geometric features only. This proves the effectiveness of

the proposed method that makes it possible to obtain satisfactory results in species clas-

sification without the use of any multispectral or hyperspectral image. As future works,
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(a)

(b)

(c)

Figure 5.13: Box plot analysis of (a) EGFs, (b) IGFs-SoA and (c) IGFs-proposed, for Norway Spruce

(red color), European Larch (green color), Swiss Pine (light blue color) and Silver Fir (purple color),

respectively.

we plan to design additional internal crown geometric features to improve conifer species

classification accuracy and to consider the effects of crown-overlap and under-story vege-

tation on the modelling process and hence on the final classification accuracy. Moreover,

we plan to extend the method to characterize partially damaged trees (e.g., trees with

missing branches and/or having unsymmetrical crown shapes). Also the performance of

the method on other forest types such as boreal and temperate needs to be evaluated.



Chapter 6

A Data Driven Approach to Tree

Species Classification in ALS Data

In this chapter, a data-driven tree species classification approach that maximally exploits

the structural information in small footprint high density multi-return ALS data is pro-

posed. The idea here is to perform a volumetric analysis of single-tree-point-cloud in

order to extract robust features that characterize both the key internal and the external

crown structure. The method captures the spatial distribution of the LiDAR points within

the crown by generating a feature vector representing the three-dimensional (3D) crown

information. Each element in the feature vector uniquely corresponds to an Elementary

Quantization Volume (EQV) of the crown. Three strategies have been defined to generate

unique EQVs that model different representations of the crown components. The classi-

fication is performed by using a Support Vector Machines (C-SVM) classifier using the

histogram intersection kernel that has the enhanced ability to give maximum preference to

the key features in high dimensional feature space. All the experiments were performed on

a set of 200 trees belonging to Norway Spruce, European Larch, Swiss Pine, and Silver Fir

(i.e., 50 trees per species). The classifier is trained using 120 trees and tested on an inde-

pendent set of 80 trees. The proposed method outperforms the classification performance

of the state-of-the-art method used for comparison.

Part of the chapter appears in:

1. Harikumar, A., Paris, C., Bovolo, F., and Bruzzone, L., ’A novel data-driven approach to tree species classification

using high density multireturn airborne lidar data.’, In SPIE Remote Sensing, International Society for Optics and

Photonics, 2018 Sep, Berlin, Germany.
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6.1 Introduction

Species knowledge at individual tree level can augment the accuracy of forest inventory,

facilitate ecological [1], biodiversity [179], and climate change studies [180]. Every tree

species has unique structural characteristics that can be used to classify them [32; 33]. A

wide variety of species dependent structural features can be derived manually from ALS

data both at stand level and the individual tree level. For instance, Holmgren et. al. [121]

derived 20 statistical features from the spatial attributes of point cloud to classify the three

major Nordic species. Increased number of manual features are derived from individual

tree point cloud by Lin et. al. (42 features from 4 characteristic groups) [125], and Li et.

al. (extracted 79 Features from 2 characteristic groups). In general, features proposed in

the literature (see section 3.2) lack generality as most of them are designed for a specific

forest type, species and sensor, i.e., the relevance of such features depends on the forest

type and the species/sensor type. Thus, we propose an automatic data-driven feature

extraction approach that fully takes advantage of the structural information provided by

airborne LiDAR data, in order to derive features that are independent of the forest type,

species and sensor for individual tree species classification.

In the proposed approach we approximate the entire crown using a cylinder, and di-

vide it into smaller Elementary Quantization Volumes (EQVs) that allow a detailed/fine

analysis of its structure. Every EQV contains a section of the crown/data points. Thus

for each EQV, features that are representative of the crown section (e.g., the point count)

can be derived from the attributes of the enclosed points. Three different elementary

volume quantization strategies are proposed and compared in the experiments. However,

quantization created a large number of features which, lead to large dimensional feature

space, and is often problematic in parametric classification problems due to Huges effect

[208]. Here, we perform species classification on the normalized set of features derived

from the EQVs using a non-linear Support Vector Machines (C-SVM) classifier based on

the histogram intersection kernel which has the ability to accurately manage the rele-

vances of the input features to obtain maximum classification performance. A sensitivity

analysis on the crown division parameters allows selecting the best elementary volume

and its dimension for the considered tree species.

The structure of the rest of the chapter is as follows. The proposed method to tree

species classification is elaborated in section 6.2. The details about the dataset, the

experiments, and the results are mentioned in section 6.3. Finally, section 6.4 concludes

the chapter.



Proposed Method 91

6.2 Proposed Method

The proposed method assumes that a set of segmented individual tree crowns delineated

using any existing state-of-the-art techniques [59; 166] is available. For each segmented

crown, the proposed method first captures the spatial distribution of the LiDAR points

within the crown by quantizing the crown-volume into EQVs. The attribute(s) of an EQV

is used to accurately characterize the local crown structure. A feature vector that repre-

sents the 3D crown structure(s) is derived by progressively stacking the EQV attributes

and used as input to a C-SVM classifier to generate the conifer species map. Fig. 6.1

shows the architecture of the proposed approach.

Figure 6.1: Flowchart of the proposed conifer species classification method.

6.2.1 Problem Formulation

Let P = {pi}, i = [1, N ] be the set of LiDAR points corresponding to the segmented

point cloud representing an individual tree, where pi is fully described in a 3D Euclidean

feature space by its xi, yi and zi Cartesian coordinates. Let pv be the highest point in

the cloud, and gv be its projection of the XY plane. Let Lt be the line connecting pv
and gv, which represents the vertical axis of the tree point cloud. The maximum radius

rt of the tree crown is considered as the shortest distance between the point pe and Lt,

where pe is the farthest point from Lt. In this chapter, a cylinder is considered for crown

span modeling, considering its ability to approximately represent the bounding volume

of the crown structure. The cylinder with the axis Lt and the base radius rt can include

the entire point cloud of a tree with height ht. Fig. 6.2 shows the cylindrical parametric

model used to define the bounding volume of the delineated LiDAR point cloud associated

with a conifer.

6.2.2 Feature Extraction

The distribution of points in the space provides information about several crown structural

characteristics. Thus, we derive a feature vector that includes maximum information
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Figure 6.2: Cylindrical parametric model used to define the bounding volume of the segmented tree point

clouds.

about the spatial variation of attribute(s) (e.g., the point density) within the point cloud.

We define the space spanned by the cylinder using the angular A ∈ [0, 2π], radial R

∈ [0,∞] and height H ∈ [0,∞] dimensions. Any point in the space can be defined by the

vector ~Si = [αi ri hi], where αi ∈ A, ri ∈ R, and hi ∈ H.

We extract detailed crown structural information in the point cloud by quantizing

the space spanned by the cylinder along the A, the R and the H dimensions to derive

smaller 3D volumes called as the EQVs (Fig. 6.3). Each quantization strategy captures

a unique perspective of the crown. The first strategy performs quantization along the A

and H dimensions and is referred to as EQ1. Here the cylindrical volume (around Lt) is

simultaneously quantized into AN angular sections and HN height divisions (Fig. 6.3a).

This is useful for studying crown characteristics such as branch proximity/density (with

one another) at different angular height EQVs around the tree stem. The second strategy

EQ2 performs quantizations of the cylindrical space around Lt into RN radial sectors

and the HN height divisions simultaneously (Fig. 6.3b). This kind of quantization allows

capturing the density variations along the radial direction of the crown, at different height-

divisions. The third strategy EQ3 simultaneously quantizes the cylinder into RN radial,

AN angular, and HN height divisions. Thus, it can be considered as the combination of

EQ1 and EQ2. Quantization along each dimension can be done in a Tree Independent

(TSI) or Tree Dependent (TSD) way. In the former, the EQV size along each dimension

is made absolute (i.e.,tree independent). The absolute EQV size can be calculated using

(6.1) where rmax and hmax are the maximum radius and height in the considered set of



Proposed Method 93

trees. While the latter method determines the EQV size based on the maximum crown

span of each tree, i.e., in a relative (i.e.,tree dependent) fashion. The relative EQV size

can be calculated using (6.2).

δαTSI = AN , δr
TSI =

rmax
RN

, and δhTSI =
hmax
HN

(6.1)

δαTSD =
2π

AN
, δrTSD =

rt
RN

, and δhTSD =
ht
HN

(6.2)

Irrespective of the method, the number of height sections V generated after quantiza-

tion is equal to AN , RN , and ANRN for the EQ1, the EQ2, and the EQ3 quantization

strategies, respectively. Each EQV EQV i, i ∈ [1, V HN ], includes a unique set of points

which is representative of the section of the crown that it encloses. One or more at-

tribute(s) aEQV can be derived from EQV i to represent the properties of the considered

crown section. We refer to the set of EQVs spanning the same space in the A and R

dimensions as the Height Section. The attribute vector ~aEQV v
of the vth height section

Uv, v ∈ [1, V ] (similar colored cells in Fig. 6.4a) is obtained by progressively stack-

ing the aiEQV v
, i ∈ Iv of the the individual EQVs in the height section into a vector

~aEQV v
= [a1

EQV v
, a2

EQV v
, · · · aHN

EQV v
]. Here, Iv is the set of indices of EQVs in the height

section Uv. The feature vector VT is obtained by stacking individual ~aEQV v
, v ∈ [0, V ]

(Fig. 6.4b).

In our case, the point count is selected as aEQV as it accurately represents the internal

crown structure. However, the density of LiDAR data is different for each tree due to

the geometric side effects of ALS scanning. Thus, the feature attribute VT needs to be

normalized. The first normalization strategy is the is a height section normalization, and

is referred to as the Height norm. Here the normalization is performed independently for

each attribute vector ~aUv belonging to individual height sections Uv, v ∈ [1, V ] in VT . The

attribute vector associated to the vth height section ~aUv can be defined as ~aEQV V
, v ∈ [1, V ].

VT = [~aU1 ,~aU2 , · · · ~aUV
],where ~aUv =

[
~aEQV v

max(~aEQV v
)

]
(6.3)

The second normalization, hereafter referred as Max norm, normalizes the VT based

on the maximum attribute value in the single tree feature vector as follows,

VT =

[
[~aU1 ,~aU2 ,~aU3 , ... ~aUV

]

max([~aU1 ,~aU2 ,~aU3 , ... ~aUV
])

]
,where ~aUv = ~aEQV v

(6.4)
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(a) (b) (c)

Figure 6.3: The proposed division strategies proposed includes, (a) EQ1 , (b) EQ2, and (c) EQ3 quan-

tization

(a) (b)

Figure 6.4: (a) Height sections generated from the EQ1 quantization are shown in unique colors, and (b)

The final feature vector obtained by stacking individual height sections.

6.2.3 Conifer Species Classification

The feature vector, where each element represents the point density of individual EQVs,

encompasses the entire crown structural information. The features are automatically

weighted using a generalized linear classifiers such as the C-SVM that focuses on finding

the optimal separating hyperplane between the feature vectors of any two classes of in-
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terest, while providing a measure of feature relevance [209]. The objective function of the

SVM has the following dual form,

maximize
ζ

l∑
i=1

ζi −
l∑

i=1

l∑
i=1

ζiζjyiyjKhist(vi, v
′
j)

subject to
l∑

i=1

ζiyi = 0, C ≥ ζi ≥ 0.

(6.5)

Here xi, i = [1 : l] and yi, i = [1 : l] are the training sample, and the corresponding

labels, respectively. l is the number of training sample and ζ is the Lagrangian multiplier.

In this case, a histogram intersection kernel [210] Kint(., .) is used considering its improved

ability over other kernels (such as the RBF) to: a) assign maximum weights to key

features, and b) reduce computational load in the feature projection step. The optimal

hyperplane parameters α can be estimated by solving the maximization problem framed

in (6.5).

6.3 Experiments and Results

6.3.1 Study Area and Dataset

The study area is a mountainous forest terrain in the municipality of Pellizzano located at

about 40 km northwest of the city of Trento in Italy. The forest is mainly dominated by

conifers and includes species such as Norway Spruce (Picea Abies), European Larch (Larix

Decidua), Swiss Pine (Pinus Cembra), and Silver Fir (Abies Alba). The ALS data were

acquired between 7th and 9th September 2012 using a Riegl LMSQ680i sensor operated at

a scanning frequency of 400 KHz from an airborne platform flown at an altitude of 660

m with a speed of 100 Km/hr allowing acquisition of 10 - 50 points/m2. The variation

in point density is a result of altitude variation from 900 to 2000 m and the effect of

scan direction. The flight was repeated several times to obtain very high density cloud

of 50 to 200 points/m2. All experiments were conducted on a set of 200 conifers, with 50

trees each belonging to Norway Spruce, European Larch, Swiss Pine, and Silver Fir. The

classifier is trained using 120 trees and tested on an independent set of 80 trees (20 per

species).

6.3.2 Experimental Results and Discussion

The shape and dimension of the EQVs are unique for each of the proposed quantization

strategy. For all experiments, the angular δα, the radial δr, and the height δh steps are

obtained based on the quantization parameters (i.e., AN , RN and HN). Here, AN ∈ [5, 45]
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(incremented by 5) and RN ∈ [2, 16] (incremented by 1) and HN ∈ [50, 160] (incremented

by 10) define the range for searching the optimal quantization parameters. rmax and

hmax are the maximum width and height of the crowns in the dataset, and are 9.1m and

43.5m, respectively. In the experiments, we tested the EQ1, EQ2, and EQ3 quantization

strategies using both the TSI and the TSD strategies. Finer divisions are avoided as less

meaningful features representing smaller sections of the crown objects are generated. The

optimal division parameters are estimated by performing a sensitivity analysis based on

the species classification accuracy obtained on the independent set of 80 trees.

To assess the effectiveness of the proposed approach, we compare the method with

a state-of-the-art (SoA) reference method which uses both internal and external crown

geometric features to perform species classification [167]. The technique uses the point-

proximity in the Euclidean space to identify point cloud segments that represent individual

branches in the crown by employing a region growing technique. The growth stopping

distance is ds is set to be 0.25m, and is selected as the average of proximal-point-pair

distance in the maximum density neighborhood (1m radius circle) of the crown. The six

internal crown geometric features derived from individual clusters are used to derive the

average internal crown characteristics. The seed point for region growing are obtained

using a 3D convex hull with the shrinkage factor α = 0.5 as in Harikumar et. al. [167].

Six external geometric features are also derived from parameters of regression fitted cone,

and the 3D convex hull. Both the internal and external geometric features are provided

as input to a C-SVM classifier to achieve classification. For both the proposed and the

SoA method, the multiclass situation was handled using the one-versus-one classification

strategy. The training and testing data corresponded to 60% and 40% of the total data.

The test was carried out using the leave-one-out strategy in 5 fold cross-validation.

Table 6.1 shows the classification accuracy obtained for the different quantization

strategies. Considering that δα in (6.1) and (6.2) are complementary to one another

due to the constrained space in the A dimension i.e., A ∈ [0, 2π], we considered δα as

a TSI dimension throughout all experiments. However, there is no such relation for δr

and δh and thus all the possible TSI-TSD combinations are tested. Table 6.1 shows the

optimal quantization parameters derived from sensitivity analysis for the different quan-

tization strategies. The maximum overall accuracy of 98.7% is obtained corresponding to

the EQ2 quantization with Max norm, where δh and δα are derived in a tree independent

fashion, and δR derived in the tree dependent way. The high accuracy is mainly due

to the inclusion of the relative height information of the trees in defining the cylindrical

space dimensions, and hence including it in the feature vector. The importance of height

information in the feature generation is also evident from the reduced performance for all

the quantization strategies using the height based normalization which ignores the height
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information. Table 6.2 shows the Producer Accuracy (PA), User Accuracy (UA), FScore

(FS) and Overall Accuracy (OA), of the best-case scenario observed in 10 runs for the

proposed method (PM) and the state-of-the-art (SoA) method.

Table 6.1: Optimal quantization parameters derived from sensitivity analysis for the different quantization

strategies. δα is tree independent for all the strategies, while δR and δH can be selected to be tree

independent/dependent.

Quantization Strategy Height Norm Max Norm

TSI TSD
RN AN HN Accuracy(%) RN AN HN Accuracy(%)

EQ1

δα δh - 25 90 56.2 - 40 150 56.2

δα δh - - 5 150 61.2 - 15 110 56.2

EQ2

δα δr,δh 2 - 90 96.2 3 - 70 97.5

δr,δα δh 4 - 70 97.5 2 - 70 97.5

δh,δα δr 2 - 60 95.0 3 - 60 98.7

δα,δr,δh - 5 - 120 96.2 4 - 150 97.5

EQ3

- δr,δh 8 40 70 61.2 8 20 70 70.0

δr,δα δh 5 20 60 66.2 6 25 70 66.5

δh,δα δr 6 25 80 61.2 4 20 90 70.2

δα,δr,δh - 4 20 70 60.0 5 35 80 65.0

Table 6.2: Producer Accuracy (PA%), User Accuracy(UA%), Fscore (FS%) and Overall Accuracy (OA)

of the best case observed in 10 runs for: (a) the Proposed Method (PM), (b) the State-of-the-art Method

(SoA).

Tree Species
PM SoA

PA% UA % FS% PA% UA% FS%

Norway Spruce 95.2 100.0 1.00 90.0 95.0 0.90

European Larch 100.0 100.2 1.00 95.0 86.3 0.95

Swiss Pine 100.0 100.0 1.00 85.0 94.4 1.00

Silver Fir 100.0 95.0 0.97 100.0 100.0 0.90

OA% 98.7 93.7

In general, the proposed method addresses the problem of deriving effective crown geo-

metric features for tree species classification. Here the optimal features are automatically

derived from data rather than relying on a species, area, and forest-specific method/-

model. This proposed data-centric way of deriving geometric features facilitates accurate
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species classification for any set of species, area, and forest type.

6.4 Conclusion

In this chapter, a data-driven approach to tree species classification for high resolution

multireturn ALS data is proposed. The individual tree crown span is approximated using

a cylindrical parametric model. The space enclosed by the cylinder is quantized into finer

Elementary Quantization Volumes (EQVs) to perform a detailed structural analysis of the

crown. Three quantization strategies including the angular EQ1, the radial EQ2, and the

radial-angular EQ3 have been compared. A feature vector is obtained by progressively

stacking the an attribute derived from the point-data enclosed by the individual EQVs.

For each quantization strategy the feature vector was obtained by using a tree independent

and tree dependent way. The variation in classification performance for two different

feature vector normalization methods, including the global and height section norm, is

also evaluated. The result obtained on a set of 200 trees belonging to four different conifer

species proves that the EQ2 quantization strategy with global normalization of the feature

vector is optimal for classification of the considered tree species. Here an improvement of

5% in the classification accuracy is achieved with respect to the SoA method.



Chapter 7

Crown Geometric Modeling based

Tree Species Classification in

Multiscan TLS data

Terrestrial Laser Scanning (TLS) remote sensing systems acquire a huge number of point

sample that contain very accurate and detailed three dimensional (3D) information of tree

structures, and thus of individual tree species. The proposed method leverages on the fine

internal and external crown structural information in TLS data to achieve species classi-

fication. We remove noise and stem points in TLS data using a novel voxel neighbourhood

density-based technique. Internal and external crown geometric features derived from the

branch level, and the crown level, respectively, are provided to a non-linear Support Vec-

tor Machines (SVM) to achieve species classification, and evaluate feature relevance. All

experiments were conducted on a set of 75 manually delineated trees belonging to spruce,

pine, and birch species.

7.1 Introduction

An accurate individual tree level species information is indispensable for an accurate and

comprehensively mapping of forest properties [211]. Errors in species classification can

result in erroneous conclusion on forest ecological studies [1], actuate wrong management

decisions on wood procurement, and bias forest conservation policies. Terrestrial Laser

Part of the chapter appears in:

1. Harikumar, A., Xinlian, L. and Bovolo, F. ’An approach to tree species classification using voxel neighborhood

density based subsampling of multiscan terrestrial LiDAR data.’, Geoscience and Remote Sensing Symposium

(IGARSS), IEEE, 2018 Jul, Valencia, Spain.
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Scanners (TLS) capture dense point cloud containing fine details of tree-structures includ-

ing stem, crown, and leaf from a ground perspective, often making TLS a reliable means

to reference data collection at the individual tree level [212]. TLS data are successfully

used to derive accurate estimates of tree parameters including diameter at breast height

(DBH), [213], leaf area density [214], vertical crown profile [215], tree growth [216], and

biomass [217]. In particular, high density TLS data contains structural details of branches

which are the building blocks of tree crown [35; 34]. However there has been no or minimal

efforts towards the development of methods that can harness the potential of branch level

structural differences to achieve species classification (see section 3.2). Also the difference

in TLS data-acquisition perspective over ALS has consequences in the resulting point dis-

tribution modes, hence limiting the applicability of ALS-data-based methods (at least in

their original form) in extracting structural information from TLS data [25]. Thus, there

is a need to develop novel TLS data based methods that can accurately and efficiently

model the internal crown geometry, for species classification.

Thus, in this chapter, we propose a novel technique that accurately models both the

internal and external crown characteristics from multiscan TLS data, even at reduced

point densities. Six novel branch geometric features derived from geometric-shape-fitting

on the branch points are used to define the internal crown characteristics. The external

crown geometry is characterized using a set of six state-of-the-art features that are derived

from the entire tree point cloud. The rest of the chapter is organized as follows. Section

7.2 describes the proposed method. The experiments and results are reported in section

7.3. Section 7.4 concludes the chapter.

7.2 Proposed Tree Species Classification Method

The chapter proposes an approach to tree species classification using both internal and

external crown structural information derived from very high density multiscan TLS data

of an individual tree. The proposed method assumes that: a) branches are basic build-

ing blocks of individual crowns; and every species has a unique (sub)branch geometric

characteristics (Fig. 7.4); b) they have a leaved section and a non-leaved wooden branch

section; c) branches are dense towards their inner section as density decreases towards

their boundaries; thus the overall branch geometry can be defined using points in the

inner section.

Data Subsampling

Input TLS point cloud is subsampled in order to: a) remove isolated and noisy points; b)

remove the points corresponding to the stem and the non-leaved branch sections; c) reduce
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Figure 7.1: Block scheme of the proposed crown geometry based species classification approach.

the overall number of points to mitigate computational overhead. Subsampling is achieved

by voxelizing the entire 3D Euclidean space spanned by the point cloud, and considering

only the data points within voxels which have six immediate non-empty voxels-neighbours

in their first order neighborhood. A voxel cell is referred to as non-empty when there is

at least one data point within it or on its boundaries.

(a) (b) (c)

Figure 7.2: a) Original point cloud, b) Voxelization, c) Subsampled point cloud, for an example Spruce

tree.

7.2.1 Internal Crown Geometric Characterization

The subsampled TLS point cloud is constituted of P = {p1, p2 . . . , pN} LiDAR points

where pn ∈ P is the spatial position of each point. Here, pn is fully described in a 3D

Euclidean feature space by its xn, yn and zn Cartesian coordinates. B is the total number

of branches in the crown. Each branch can be modeled as a cluster of points (referred to

as branch cluster) cb = {pn;n ∈ Ib}, where Ib is the index set of all the LiDAR points
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belonging to cb.

a) Branch Modeling: Individual branch clusters are obtained by performing region

growing, seeding from the (sub)branch tips identified using a convex-hull based technique

[167]. The convex hull vertices are the (sub)branch tips, and α ∈ [0, 1] controls the

compactness of the hull, with 1 and 0 being most and least compact, respectively. The

region growing controlled by the growth stop parameter t is performed starting from

individual branch tips to identify branch clusters in P . It is worth recollecting here that a

branch cluster represents the branch geometry approximately. We model a (sub)branch b

represented by cluster cb using the ellipsoid. The ellipsoid has enough degrees of freedom to

model the strong differences in the geometry of branches between coniferous and deciduous

trees (Fig. 7.3). Further, it satisfies the fundamental assumptions that, the branches of

most tree species are: a) tapered towards the exterior crown; b) leafless or with less leaves

toward the interior of the crown/stem. The general equation of an ellipsoid is given in

(7.1).

Ax2 +By2 + Cz2 + 2Dxy + 2Exz + 2Fyz + 2Gx

+2Hy + 2Iz = 1
(7.1)

The parameter vector ~vb = [A B C D E F G H]T of the ellipsoid can be obtained from

least square fitting, i.e., (ΩTΩ)
−1

ΩT l. Here Ω is the design matrix [218] obtained using

the branch cluster, and l is a unit vector.

Figure 7.3: Proposed branch model. The Green and the Red points represent the LiDAR points and

branch tips, respectively.

b) Internal Crown Geometric Features (IGFs): We use nine parameters of the re-

gression fitted ellipse to extract six geometric properties of a branch. The parameters
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Figure 7.4: Least square fitted ellipse obtained for branches of Spruce (conifer), Pine (conifer), and Birch

(deciduous),

include, the three coordinates of branch center Sb = [sbxs
b
ys
b
z], the three semi-axis dimen-

sions (sl, sw, sh), and the three semi-axis directions (vl, vb, vh). On the one hand, the angle

made by vl with the horizontal plane is the branch slope αb, while on the other hand twice

its dimension (i.e.,2sl) is the branch length lb. The sum of ratio of semi-axis dimensions

along the horizontal and vertical branch planes kb is a measure of branch compactness

along vl. A kb closer to 0 corresponds to a compact branch along vl, and larger values

occur for branches with greater spread along vl. The spread of the branch along the vb is

the branch width. The symmetry of the branch pb along the vl is measured as the ratio

of semi-axis dimensions along vb and vh. Branches that are highly symmetric along vl
produce values closer to 1. The number of points corresponding to a branch cluster quan-

tify the density of the branch db. The median value for each geometric feature is taken

as the IGFs for a tree. The IGFs are described in Table 7.1, where M(.) is the median

operator. It is worth noting that the Bl and Bk are divided by the tree height HT , and

Bn is divided by N , to achieve feature value normalization. Fig. 7.4 shows examples of

the least square fitted ellipsoids for example branch clusters (i.e., branches) with different

geometric shapes.

7.2.2 External Crown Geometric Characterization

The external crown geometry is captured using six state-of-the-art EGFs derived from

parameters of: a) regression fitted cone, b) convex hull, on the tree point cloud. The

EGFs used include: 1) Convex hull volume to the number of points N within the crown

(Tv); 2) Difference between the volume of the convex hull and the fitted cones (Td); 3) Root

mean square error associated with the regression cone fitting (Tε); 4) Standard deviation

of orthogonal distances from each data point the convex hull (T ); 5) Ratio of the crown

height HC and the tree height HT ; and 6) Average proximity of data points to the nearest

convex hull facet (Tl). Table 7.2 shows the EGFs.
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Table 7.1: Proposed internal crown geometric features

Feature Id Description Equation

Bα
Overall branch

slope
M(αb), b ∈ [1, B]

Bl
Overall branch

length

M( lb
HT

) = M( 2sl
HT

),

b ∈ [1, B]

Bk
Overall branch

compactness

M( kbHT ) = M( sb+shsl
),

b ∈ [1, B]

Bw
Overall branch

width

M( wbHT ) = M(
Sbb
HT

),

b ∈ [1, B]

Bs
Overall branch

symmetry

M(pb) = M(
Sbb
Sbh

),

b ∈ [1, B]

Bn
Overall branch

density
M( dbNb ), b ∈ [1, B]

7.2.3 Species Classification

The performance of the classification is evaluated by providing the twelve geometric fea-

tures (i.e., the six IGFs and the six EGFs) to a Support Vector Machines (SVM) classifier.

The feature weights W = {wi, i ∈ [1, F ]} are associated with the optimal SVM hyperplane

are the feature relative relevance. Here, wi is the feature weight of the ith feature, and F

is the number of features.

7.3 Experiments and Results

7.3.1 Study Area and Dataset

The high density multiscan TLS data used in the experiments is of a boreal forest in Evo

located at the south of Finland, with geographic center point at 61019′ N and 25011′ E.

The major species include both conifers and deciduous trees, i.e., the Scots Pine (SP),

the Norway Spruce (NS) and the Silver Birches (SB). The data was acquired in July
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Table 7.2: External crown geometric features

Feature Id Description Equation

Tv

Volume of the convex hull

by the total number of

points.

Vhull
N

Td

Volumes difference between

the cone and the covex hull

to the convex hull volume.

Vhull−Vcone
Vhull

Tε
Regression cone fit error. RMSECone

N

Tl

Average of distance dn of

each LiDAR point to the

closest facet of convex hull

N∑
n=1

dn

N

Tσ

Standard deviation of

orthogonal distances from

each point to the convex

hull.

√
N∑
n=1

(pn−Tl)2

HT

Th

Crown height divide by

Tree height
HC
HT

2014 using Leica HDS6100 with a distance measurement accuracy and point spacing of

±2mm and 15.7mm, respectively, at 25 meters. The beam diameter at exit is 3mm, with

a divergence as low as 2mrad. A total of 75 manually delineated trees, with 25 trees each

belonging to SP, NS and SB, are used to evaluate the species classification performance.

7.3.2 Experimental Result and Discussion

The voxel size for data pruning was set to 10cm based on the point density of the TLS

data. The branch tips are identified using the parameter α of the convex hull that was

optimally set to 0.5 by testing on a large set of trees. The α tuning criteria used here

is the minimization of the omission and commission errors associated with the branch

tip detection. The threshold distance t for the region growing was taken as the mini-
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Figure 7.5: The pruned point cloud, the detected branch clusters, and the regression fit ellipsoids (NS

tree).

mum distance between two points within the voxel with the lowest point density in the

subsampled data.

The classification was done using a non linear SVM (with RBF kernel) using 60% and

40% of the data for training and testing, respectively. The C and γ of the RBF kernel were

optimally selected as 26 and 0.01, respectively. We compare the classification performance

of the proposed method with a state-of-the-art technique which models the internal crown

characteristics using a Principal Component Analysis based branch modeling technique

[167]. The confusion matrix for the best case scenarios (in 25 trials) for the proposed and

state-of-the-art species classification techniques are provided in Table 7.3. The overall

accuracy (OA) obtained for the proposed method and the state-of-the-art method is 80.0%

and 73.3%, respectively. Here, PA and UA corresponds to the user accuracy and the

producer accuracy, respectively. Fig. 7.6 shows the relevance of the six IGFs and the

six EGFs. The w values obtained from SVM shows that the IGFs are more relevant

than the EGFs in species classification. Biologically, different tree species have unique

branch geometic shapes [32; 33]. However, accurately modeling the branches to model the

difference is challenging. The higher relevance of IGFs over EGFs proves the ability of the

proposed features to accurately model the difference in overall branch shape for different

species. Although, the overall branch slope Bα is a good characteristic for classifying the

considered spices, the large variation in branch slope across different heights makes it a

feature of low importance. The overall branch length Bl largely varies in different trees

due to presence of broken branches and lack of branches in some sections of tree, making

it a less relevant feature in this case. However, the higher weights on the Bw and Bs is in
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accordance with the fact that the branch width and symmetry of branches are different

for Spruce, Pine, and Birch. However, it is worth noting that the relevance of geometric

features might differ for different set of species, as key structural differences might be

different for different set of species and forest types. In other words, the feature relevance

depends on the species/forest type. The proposed method is a clear demonstration for

the forest community, on the usability of structural information in TLS data for species

classification.

Table 7.3: Confusion matrix for the best case accuracy.

Class

Proposed method State-of-the-art method

Reference UA Reference UA

NS SP SF (%) NS SP SF (%)

NS 9 1 0 90.0 8 2 0 80.0

SP 2 8 0 80.0 1 7 2 70.0

SF 3 0 7 70.0 2 1 7 50.0

PA (%) 64.2 88.8 100.0 OA (%): 80.0 72.7 70.0 77.7 OA (%): 73.3

Figure 7.6: The relevance of crown geometric features

7.4 Conclusion

The chapter proposes a species classification technique using individual tree TLS data.

A novel voxel neighborhood based data subsampling is performed to mitigate noise and

redundancy. Six novel IGFs, and six state-of-the-art EGFS derived from the individual

tree point cloud are used to perform species classification. A maximum accuracy of 80.0%

is obtained in classifying Spruce, Pine, and Birch species. Future work includes the use

of 3D texture information in the TLS data to improve species classification accuracy.
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Chapter 8

Stem Localization and DBH

Estimation in ALS data

Accurate stem location and stem Diameter at Breast Height (DBH) are critical to accurate

biophysical parameter estimation at the individual tree level. High density small footprint

multi-return Airborne Laser Scanning (ALS) data contain structural information of crown

structures including foliage, branches and stem. Here, we identify data point sample which

are likely to be reflected from the conifer stem surface using a state-of-the-art internal

crown geometric modeling technique. The location of the stem is accurately estimated by

analyzing horizontal divisions of the crown. The 3D conifer stem is best approximated by

fitting a geometric shape on the stem surface points, and the DBH is directly estimated

from the parameters of the fitted model. The experiments were conducted on a set of 60

trees belonging to three dominant European conifer species. The estimated stem location

and DBH prove the method to be accurate.

8.1 Introduction

A systematic and periodic collection of accurate individual tree parameters such as the

tree/crown height, the stem location, the stem Diameter at Breast Height (DBH), and the

biomass on forests is highly essential to study the ecosystem, biodiversity, resources, and

health of forests. By using remote sensors on airborne platforms, it is possible to collect

a huge amount of forest data at the individual tree level. Remote sensing has become a

highly appreciated inventory technique, due to the ability to periodically, economically,

Part of the chapter appears in:

1. Harikumar, A., Bovolo, F., and Bruzzone, L., ’An approach to conifer stem location and modeling in high density

airborne LiDAR data’, Proc. SPIE 10427, SPIE Conference on Image and Signal Processing for Remote Sensing

XXIII, Warsaw, Poland, 11-13 September 2017.
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and accurately collect individual tree level data over large forest areas. Light Detection

and Ranging (LiDAR) remote sensing is one of the very few technologies that allows 3-

dimensional (3D) data acquisition of tree structures. A high density multi-return ALS

system acquires fine 3D structural data by combining the round-trip time of a highly

directed laser beam, the orientation data from an Inertial Navigation System (INS), and

the position information from the Global Positioning System (GPS). State-of-the-art ALS

systems such as the Lieca ALS680i can capture up to 8 discrete returns or waveform-

data against a single laser pulse, generating dense and accurate point sample (about 50

points/m2) that contain a lot of structural information of foliage, branches and stem.

Accurate stem location is fundamental for the calibration of the individual tree level

inventory data, as it is the main matching criterion between reference and Airborne Laser

Scanning (ALS) data of individual trees. The stem location is the stem center at the base

of the tree, and is usually measured by field campaigns. Matching techniques as in [2] can

be used to link a reference stem location with an estimated one. However, this requires

the stem location to be accurately estimated from the ALS data. The 2D Canopy Height

Model (CHM) based techniques estimate the stem location on the assumption that the

stem exists directly below the treetop which are detected based on local maxima in the

CHM [59]. However often: a) conifer stem grows tilted, and b) a longer branch tip near the

tree top is mistaken for the real tree top leading to poor positioning. Techniques that ex-

ploit 3D information in ALS data also exist. For example, by hierarchically clustering the

LiDAR points below the crown-base height using a histogram analysis, and reconstructing

the stem with a robust Random Sample Consensus (RANSAC) based estimation of the

stem points, Reitberger et al., located stems with accuracies close to a meter [83]. The

assumption here is that the point density is maximum near the canopy and decreases

towards the ground. Lu et. al. [86] exploited the higher reflectance associated with the

stem points to select them and used them as seeds in a bottom-up segmentation approach

to identify the stem. However, reflectance is often not a reliable attribute for detecting

the stem.

State-of-the-art methods (see section 3.3) estimate DBH in an indirect fashion by

using species-specific allometric models to characterize the relationship between crown

parameters and the DBH. Whatsoever, allometric models are designed based on the data

of a particular forest area and type and hence often show reduced performance in different

areas and types of forests. Given the large amount of structural information in ALS, there

is a scope to estimate DBH in a more direct fashion. One such approach is to exploit the

stem and internal crown structure (e.g. the branch direction with respect to the stem) in

ALS data to estimate DBH. Thus, we propose a method that can: a) accurately estimate

the position of stem even in the presence of occluding branches/foliage, and b) directly
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estimate DBH from the 3D model of stem without prior knowledge of species.

The rest of the chapter is organized as follows. Section 8.2 describes the proposed

methodology. The experiment performed and the the analysis of results are stated in

Section 8.3. Section 8.4 concludes the chapter.

8.2 Proposed Method

The proposed method assumes that the point cloud associated with individual trees are

extracted using any state-of-the-art crown delineation technique such as in [166]. For

each tree, the LiDAR data points representing the stem are identified and are used to

accurately estimate the stem location and the DBH. The flow chart of the proposed 3D

stem detection and modeling technique is provided in Fig. 8.1.

Figure 8.1: Block scheme of the proposed stem localization and modeling approach.

(a)

Figure 8.2: Internal crown structure model showing the branch tips (red dots) and the corresponding

stem points (yellow dots).
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8.2.1 Internal Crown Structure Modeling

The modeling of the internal crown relies on the following general structural characteristics

of conifers: a) straight and circular (in horizontal cross-section) stem with maximum

diameter at the base which decreases towards the top, and b) linear and compact branches

that grow from the stem outward in directions approximately perpendicular to it. Let

P = {pi ∈ R3, i = 1, 2, ..., N} be the set of N LiDAR points in the input tree point cloud,

where pi is the 3D Cartesian coordinate set {xi, yi, zi} of the ith point in the Euclidean

space. Every point in P is uniquely associated to one of the B branches bi, i ∈ [1, B]. The

cloud of points rb associated with the branch bi is referred to as the branch cluster. Here,

the B branch clusters are detected using a region growing technique recently proposed

in the literature [167]. For each cluster, the growing starts from the branch tips point,

proceeds towards the stem, and stops when the local point neighborhood density Gn

calculated using (8.1) falls below a threshold. Any unassigned point is assigned to the

nearest cluster based on the proximity in the Euclidean space.

Gn =
YB∑K
i=0Dni

(8.1)

Here YB is the number of nearest neighbors which is considered as a constant. The

individual branch tips pbt , t ∈ [1 B] (i.e., seed points) are detected using a convex hull

based technique [167]. The assumption is that the boundary points of a convex hull fitted

to the entire point cloud of a conifer correspond to the branch tips. Fig. 8.2 shows a

representation of the proposed branch model.

8.2.2 Stem Points Detection

We refer to data points corresponding to the laser reflections from the surface of the stem

(or the ones very near to it), and branch-stem junctions (i.e., the section of a branch

meeting the stem) as the stem points. For every conifer branch bi, the point in rbi that

is maximally away from the respective branch tip is very likely to be a stem point. The

set of stem points Sp= {pi}, i ∈ Im, where Im is the set of indexes of the points that are

farthest from the respective branch tip of the B branch clusters, closely represent the 3D

stem. However, stem points that are: a) below 25% of tree height HT , (considering the

low point density in the lower section of the crown), and b) more than a threshold distance

Tr away from the regression fitted line on Sc (to remove incorrectly detected stem points

that are further away from the stem), are not used in stem position and DBH estimation.

We choose Tr as half the maximum DBH (at 1.3 m) estimate among all the trees in the

dataset, derived using the generic allometric model (8.2) [176],



Proposed Method 113

DBHi = f(b0 + b1

√
hi + b2

√
di)

2
+ var(ε) (8.2)

where DBHi is the estimated DBH (in mm) of the ith tree, and hi and di are the tree

height (in dm) and the crown diameter (in dm), respectively. As non-linear transforma-

tions were used for the dependent variables, the DBH estimates will be biased, and the

effect are mitigated by bias correction [177; 176].

8.2.3 Stem Localization

As mentioned before, conifer stems often grow tilted and hence multiple stem centers

need to be estimated along the tree hight profile in order to define the 3D stem location

and slope. Here, we estimate a set of stem centers Sc = {si} , i ∈ [1, B] derived from

Ns equal-height section of the vertical crown profile. We consider the median of the stem

points si in every height-section as the stem center in the respective section. A regression

fitted line VA on Sc follows the axis of the stem. The stem location is obtained as the

point where the regression fitted line crosses the horizontal plane. The angle between the

regression fitted line and the Z-axis is defined as the tilt of the stem, and is a addition

detail derivable of the proposed approach.

Figure 8.3: Branch clusters corresponding to the stem points in a height section are shown in unique

colors. The Black dot at the center is the estimated stem location within the section.

8.2.4 Stem Modeling

The stem points are also representative for the 3D stem. Thus, we model the stem using

a 3D cone that optimally fits all the stem points on its surface. The conical model is
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chosen as it is one of the simplest geometric shape that approximates the stem. The

cone is specified by eight parameters: the Euclidean position parameters of a point pm =

[xm ym zm] on the vertex of the cone, the three axis direction vector ~Vc = [u v w] pointing

along the direction of decreasing cone radius, and the cone apex angle α. Optimal cone

parameters can be found by minimizing D, which is the sum of all distances of each b

stem points to the cone [219].

D =
b∑
i=1

ei cos(α/2) + fi sin(α/2)− t (8.3)

Subjected to the constraints:

zm = s0 − uxm − vym (8.4)

w = 1 (8.5)

where, ei is the distance of the point pi from the line along ~Vc, fi is the distance of the

point pi from the plane specified by p0 and ~Vc, and the constant t is the distance from the

point pm perpendicular to the nearest local cone surface. The constraint (8.4) forces the

best fit cone to contain the circle centered at the point at height Zm/2 in the cone axis,

with radius equal to the mean distance of the points to the axis. In other words, (8.4)

forces the cone axis to be closely aligned with the centroid of the point cloud. Here the

s0 = z − r tan(α/2), where z is the mean of z values of the LiDAR points, and r is the

mean of R ∈ {ri, i = [0 N ]}, where ri =
√
x2
i + y2

i . The constraint (8.5) ensures that

the axis of the cone is proximal to the positive z axis. The optimal cone parameters are

obtained using a Gauss-Newton algorithm [219].

8.2.5 DBH Estimation

The fitted cone with base radius r is an approximation of the 3D conifer stem. The point

at the cone apex pm together with the stem points determine the direction vector ~Vc of

the fitted cone. Fig. 8.4a and 8.4b shows the fitted cones for a straight and a titled stem,

respectively. For all cases, the diameter at breast height SDBH is calculated at a distance

η from the base of the cone using (8.6).

SDBH = 2r

(
zm − η
zm

)
(8.6)
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(a) (b)

Figure 8.4: Cone fitted on the stem points for (a) straight and (b) tilted stem. The cone apex and stem

points are shown as red and yellow dots, respectively.

8.3 Experiments and Results

(a) (b) (c)

Figure 8.5: (a) The LiDAR point cloud of conifer, (b) The branch tips detected (red dots) using 3D

convex hull fit. (c) Stem points (brown dots) in a sample height-section (brown dots).
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(a) (b)

Figure 8.6: The stem axis obtained using (a) the proposed (red dotted line) and the state of the art

method (blue dotted line). The stem model in (b) is used to obtain the DBH.

8.3.1 Study Area and Dataset

The study area is a mountanious forest terrain (with altitude varying from 900 to 2000 m)

in the municipality of Pellizzano located north of the city of Trento in Italy. The forest

in the area is dominated by conifers and include species such as Norway Spruce (Picea

Abies), the European Larch (Larix Decidua), and the Swiss Pine (Pinus Cembra). The

high density ALS data of the forest were acquired using a Riegl LMSQ680i sensor between

7th and 9th September 2012. The instrument was operated at a scanning frequency of

400 KHz from an airborne platform flown at an altitude of 660 m with a speed of 100

Km/Hr. This allowed acquisition of 10 - 50 points per meter squared in a single scan.

The laser beam width of less than 0.5 mrad restricted the maximum laser footprint span

to approximately 0.3 m. The flight was repeated several times to obtain very high density

cloud of 50 to 200 points/m2. A set of 60 trees belonging to the three conifer species,

with average point density of more than 25 points per meter cube, and for which the

stem location and Diameter at Breast Height (DBH) were recorded from field visits, were

manually segmented and used in our experiments as ground truth data. The trees are

divided into low density (≤ 20 point/m2) and high density (> 20 point/m2) datasets

based on the maximum point density. These datasets used to test the robustness of

the proposed method to variation in LiDAR point density which affects the number of

available stem-points.
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8.3.2 Experimental Result and Discussion

The αhull ∈ [0, 1] parameter of the convex hull was optimally selected to be 0.5, to minimize

the omission and commission errors associated with branch tip detection. The region

growing threshold distance τ was set as 0.2 for all trees and was decided based on the

LiDAR data point density, and YB was set to 5. Figure 8.5 shows the branch tips, the

branch clusters, and the stem points, obtained for an example Norway Spruce. Ns is

selected to be 10 in order to incorporate stem points from all around the stem (as, at any

height, it is rare to have branches growing in all directions), which in turn improves stem

point estimation.

The stem location estimated from the proposed method is compared with that obtained

from the CHM Local maxima based method [59] which assumes the stem location Hp to be

directly below the highest point in the tree segment (Fig. 8.6). The CHM resolution and

variance of Gaussian smoothening filter were selected to be 0.1 and 1, respectively. The

criteria for the resolution and variance selection is to minimize false tree top detection.

The error in the stem location estimates were quantified using the Root Mean Squared

Error (RMSE) on a high point density and a low point density dataset and is shown in

Table 8.1 for both the proposed and state-of-the-art methods. The proposed method,

by relying on the direction of branches, better approximates the stem axis, and hence

accurately determines the stem position. This is evident from the fact that the RMSE

error in stem location is lower than the one of the state-of-the-art method for both high-

density (i.e., 1.10 vs. 1.52) and low-density (i.e., 1.39 vs 1.56) data sets, respectively).

The proposed method improved RMSE error of high density dataset of 0.29m w.r.t. the

low density one. In addition, RMSE behaviors have been observed as a function of the

stem tilt. As expected the proposed method is more robust to tilt variations as RMSE

increased at a slower rate (i.e., 0.11) w.r.t. the one of SoA method (i.e., 0.18).

To model the stem, a cone is fitted on the stem points. The initial cone parameters ~Vc
and Pc are set as the direction vector of the regression fitted line, and the point that is at

a distance HT from origin (towards positive z axis) in the direction of the regression fitted

line. All stem points at a threshold distance (i.e., Tr) of more than 0.6m from the stem

are noisy points and hence are not considered for modeling. The value was set based on

the maximum radius of the stems in the dataset, derived using the generic model (8.2).

The DBH of a tree SDBH is directly estimated by using the base radius zm of the fitted

cone using (8.6). The value of η is set to 0.48 m, which is the maximum estimated tree

radius in the considered dataset (Fig. 8.6).

The proposed method shows maximum performance in the case of the high density

dataset. and error increases with decreasing point density, i.e., MSE in DBH estimation

is 3.80cm for the high density, whereas the MSE error almost doubled for the low density
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dataset. This is due to the larger number of stem surface points (scanned by the laser

scanner by increasing scan frequency or decreasing flying height). Also, the estimation

results show that the proposed method overestimates the real stem DBH. This is due

to: a) the reduced vertical resolution accuracy of the LiDAR point which in our case

is 2cm, and b) the inclusion of points belonging to the branch stem junction into the

stem points. We compared the accuracy of the proposed method with a state-of-the-art

technique which uses both tree and crown level parameters to estimate the DBH [36].

The features include tree height, crown height, crown area (calculated from the CHM),

and crown volume (calculated using the 3D convex hull with αhull as the hull parameter).

Table 8.2 shows the Mean Absolute Error (MAE), the Mean Squared Error (MSE), and

the Coefficient of estimation (R2), associated with DBH estimates obtained using the

proposed and the state-of-the-art estimation methods, for the low density and the high

density datasets.

Although the proposed method shows slightly lower performance than the SoA method,

the fact that the DBH estimation is done without the knowledge of the tree species is

a huge advantage in operational forest inventorying. Also, unlike indirect allometric

equation based DBH estimation methods, the proposed method provides an added-value

to forest inventory at the single tree level by allowing a more direct DBH estimation

independent of species and forest type. The proposed method can improve the accuracy

of forest inventorying by providing accurate stem location and 3D tilt estimates.

Table 8.1: Stem localization errors obtained for the proposed and the state-of-the-art method for high

density and low density datasets.

Method
High Density (m) Low Density (m)

RMSE RMSE

Proposed 1.1 1.3

SoA 1.5 1.5

Table 8.2: DBH estimation errors obtained for the proposed and the state-of-the-art method for high

density and low density datasets

Method
High Density (cm) Low Density (cm)

MSE MAE R2 MSE MAE R2

Proposed 4.3 0.3 0.8 7.3 0.4 0.6

SoA 3.2 0.2 0.8 5.9 0.3 0.8
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8.4 Conclusion

A novel high density airborne LiDAR data based stem localization and modeling technique

is proposed. The approach uses a state-of-the-art LiDAR data based branch modeling

technique to identify conifer branch point-clusters. Stem points are identified as the set

of points farthest from the branch tip points. A cone, whose parameters are optimally

derived using 3D stem point locations, is used to model the stem. The stem location, and

DBH estimation obtained by the proposed technique are found to provide smaller errors,

compared to the respective state-of-the-art reference method. Future works aims at using

other attributes of the points such as the scan angle, and intensity of laser return for

improving stem point detection accuracy. Also the performance of the method on other

forest types such as boreal and temperate needs to be evaluated.
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Conclusions and Future

Developments

The thesis introduces individual tree level methods to automatic extraction of species

information and estimation of biophysical parameters by exploiting the 3D structural

information in high density LiDAR data. The proposed methods are particularly relevant

in the context of precision forestry applications which demand accurate information at

the individual tree level. The focus was given on extracting forest information from high

density data collected from aerial and terrestrial platforms. The thesis contains five novel

contributions that improved the performance of forest information extraction over the

state of the art.

Accurate tree crown detection and 3D delineation are critical to both accurate clas-

sification of tree species and estimation of biophysical parameters. Thus, as the first

contribution of the thesis, we proposed a method to accurately detect and 3D delineate

trees in multi-layered forests by using small footprint high density multi-return airborne

LiDAR data. The method uses both 2D and 3D features representing the crown structural

information, derived from the high density LiDAR data to achieve accurate detection and

delineation. The results prove the usefulness of modeling the crown structural character-

istics to achieve accurate crown detection and 3D delineation. The credit to the improved

performance goes to the novel projection technique that performs an action equivalent to

opening the crown segments along the stem of the dominant tree in the segment, which

allows an effective representation of the crown profile data. Hence, the method shows

improved performance over the state of the art in detecting and delineating subdominant

crowns.

The second, third and fourth contributions of the thesis are directed to addressing

the challenges in accurate tree species classification. In particular, the focus was on

classifying trees belonging to the same taxonomic class, and thus showing similar crown

characteristics e.g., most species of conifers have an approximately conical crown. Thus

in all the contributions, a fine level characterization of the tree crown is proposed. The

second and third contributions are species classification techniques in high density ALS
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data. The former uses a set of internal (i.e., branch level) and external crown features to

achieve species classification, while the latter uses species independent features that are

obtained in a data-driven fashion. Considering the huge amount of structural information

in TLS data, the fourth contribution is a method that uses a shape fitting technique for

internal and external crown characterization. The results obtained for all the methods

prove them to have improved performance when compared to the state-of-the-art ones.

The fifth and last contribution of the thesis is an accurate stem localization and DBH

estimation technique for high density ALS data. Here, the stem localization is performed

by modeling individual branches, and obtaining inner most points that are very likely to

represent the stem, from individual branch point cloud clusters. The results confirm that

the direction of branch growth can be exploited to obtain accurate stem location. Unlike

the state-of-the-art methods which indirectly estimate the DBH using species specific

allometric models, the proposed method directly estimate the DBH from a 3D model

derived from stem points. Although the performance of the proposed method is slightly

lower than the state-of-the-art one, the ability to accurately obtain DBH without species

knowledge is a huge advantage in operational forest inventorying.

Although all the proposed methods provide improved results over the state of the

art, there are possibilities for further improvement which need to be considered in future

developments. The methods proposed in the thesis are restricted to the use of struc-

tural information in high density LiDAR data. However, other attributes such as the

normalized intensity of return, scan angle, and return number also contain information

of species and can be considered to derive additional information and improve crown

detection and delineation, species classification, and biophysical parameter estimation.

Continuous wave LiDAR data contain fine vertical profile details of the crown, that can

improve performance of the proposed methods. Similarly, the use of spectral information

in multispectral LiDAR data can also improve the accuracy of the proposed methods.

In particular, the species classification performance can be considerably improved as the

spectral characteristics of different species of trees are unique. Also, testing with different

forest types and point densities will enable us to evaluate the robustness of the proposed

methods. Accurate estimation of change in forest parameters from multi-temporal LiDAR

data is another interesting area be studied.
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[126] X. Yu, J. Hyyppä, P. Litkey, H. Kaartinen, M. Vastaranta, and M. Holopainen, “Single-sensor solution to tree species

classification using multispectral airborne laser scanning,” Remote Sensing, vol. 9, no. 2, p. 108, 2017.

[127] A. Othmani, L. F. L. Y. Voon, C. Stolz, and A. Piboule, “Single tree species classification from terrestrial laser

scanning data for forest inventory,” Pattern Recognit. Lett., vol. 34, no. 16, pp. 2144–2150, 2013.

[128] N. C. Coops, T. Hilker, M. A. Wulder, B. St-Onge, G. Newnham, A. Siggins, and J. T. Trofymow, “Estimating

canopy structure of douglas-fir forest stands from discrete-return lidar,” Trees, vol. 21, no. 3, p. 295, 2007.

[129] J. Holmgren, Å. Persson, and U. Söderman, “Species identification of individual trees by combining high resolution

lidar data with multi-spectral images,” Int. J. Remote Sens., vol. 29, no. 5, pp. 1537–1552, 2008.
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