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Introduction

Public-key or asymmetric cryptography allows two or more users to com-
municate in a secure way on an insecure channel, using two different keys:
a public key, which has the function to encrypt the messages, and a pri-
vate key, employed in the decryption of the ciphertexts. Because of the
importance of these keys in the protocol, their generation is a sensible is-
sue and it is often based on an underlying mathematical problem, which is
considered hard to solve by the scientific community. Among the difficult
number-theoretic problems, the Integer Factorization Problem (IFP) is one
of the most famous: given a composite integer number, recovering its factors
is commonly believed to be hard (worst-case complexity). Many asymmet-
ric algorithms such as RSA ([RSA78]), Rabin’s cryptosystem ([Rab79]) or
Goldwasser-Micali cryptosystem ([GM84]) found their mathematical secu-
rity on IFP. Due to its rather simple formulation, IFP has been extensively
examined ever since: many factorization methods have been developed to
solve this problem, such as Dixon’s algorithm ([Dix81]) or the quadratic
sieve ([Pom82]), but, at the moment, the most efficient one is the General
Number Field Sieve (GNFS), which is fully described in [LLMP93a].
The aim of this thesis is to discuss some number-theoretic techniques to
investigate IFP from new points of view.

The thesis will be organized as follows:

• in Chapter 1 we will present the factorization problem and discuss
its involvement in Public-key Cryptography. We will also recall some
of the most famous factorization methods, give a description of the
state of the art and survey the actual records on integer factorization.
Furthermore, the number-theoretic techniques we will employ belong to
three main fields: firstly we will examine relevant properties of the floor
function and the ceiling function, then we will recall some important

VII



INTRODUCTION

results in Algebraic Number Theory about ring of integers and their
ideals, while Groebner bases will be the main topic of the last part.

• Starting from the results recalled in the first chapter, in Chapter 2 we
will describe an original work on integer factorization based on some
elementary properties of the remainders of a fixed positive integer N
modulo successive numbers. We will show that it is possible to define
a formula that computes all the remainders of N starting with just
three initial consecutive remainders. Later, we will also prove that this
formula does not change even as considering the second-degree inter-
polating polynomial between the starting remainders. This interesting
regularity was originally noticed and analysed by Dr. Matteo Piva.
We will exihibit an equivalence between the integer factorization prob-
lem and the solution of the aforementioned formula and we will finally
explore the future developments of this approach, explaining with an
example how we would like to generalize this approach.

• The main theme of Chapter 3 is the General Number Field Sieve al-
gorithm, depicted in great details. We will report the classical for-
mulation of GNFS, including the Rational Factor Base, the Algebraic
Factor Base and the Quadratic Characters Base, which permit to get
a non-trivial factor of a semiprime N . Additionally, the complexity of
the algorithm will be stated and analysed, employing some functions
borrowed from Analytic Number Theory. By the end of the chapter,
the successive improvements on GNFS will be inspected, especially
the different strategies developed in the polynomial selection and in
the sieving step.

• The last two chapters will again contain some original material. In
Chapter 4 we will examine a way to generalize GNFS to bivariate
polynomials, based on a joint work with Dr. Daniele Taufer. The
structure we will handle in this chapter is the following: we will con-
sider two simple quadratic extensions of the rational numbers that do
not have any intersection between them, except for the rational num-
bers themselves, and a larger extension of degree 4 that contains both.
We will prove that the first-degree prime ideals in the smaller exten-
sions may be used to generate the same kind of ideals in the larger
one and, adding some additional hypotheses, we will show that also
the converse is true. Moreover, a potential scheme of an application to
GNFS is theorized and we will explain at the end of the chapter why
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INTRODUCTION

this approach will not completely work for our situation in its present
formulation.
Finally, Chapter 5 addresses the issue of finding some elements for
GNFS that lead to a successful factorization of N , through the solu-
tion of some multivariate systems, solved using Groebner bases. We
will provide this way an algorithm for integer factorization, also with
a very detailed example.

In Appendix A and Appendix B we will report MAGMA programs used to
test some of our algorithms.
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Chapter 1

Preliminaries

Notation. We will denote with N the set of natural numbers

N = {0, 1, 2, . . .}

and with N+ all the positive integers.

1.1 Historical Overview

One of the most ancient and famous theorems about prime numbers is the
Fundamental Theorem of Arithmetic, which was first described in Euclid’s
Elements in Book IX, [Hea56].
Theorem 1.1. Every positive integer N ∈ N+ such that N > 1 can be
represented in a unique way as a product of prime powers:

N = pe11 · p
e2
2 · · · p

ek
k ,

where k ∈ N+, p1 < p2 < . . . < pk are prime numbers and e1, e2, . . . , ek ∈ N.

A natural problem arising from this theorem is, given a positive integer num-
ber N ∈ N+, to find its prime factorization.
From a computational point of view, while there are several ways to decide
(in polynomial-time) whether an integer is a prime, it is still unknown if there
exist a non-quantum polynomial-time algorithm that finds its prime factors.
This issue is called Integer Factorization Problem (IFP). The clarification
“non-quantum” is needed, since in 1994 Schor ([Sho94]) presented an algo-
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CHAPTER 1. PRELIMINARIES

rithm for quantum computers that finds all prime factors of a given integer
in polynomial-time. Since a classical polynomial-time algorithm that solves
IFP might never be found, it is considered to be a hard problem. Due to
this hardness, IFP guarantees the security of many public-key cryptography
algorithms, starting from RSA.

1.1.1 RSA

The RSA cryptosystem was proposed in 1977 by Rivest, Shamir and Adleman
([RSA78]) and addresses the issue of secure data transmissions: suppose
Bob wants to send a message m to Alice and he does not want anyone else
to intercept the message m that he sent. In order to do so, Alice needs
to generate a pair of prime integers p and q and multiply them together
to obtain N . Then, she also need an integer 1 < e < ϕ(n) such that
gcd (e, ϕ(N)) = 1. Finally she computes d ≡ e−1 mod ϕ(N), where ϕ is
Euler’s totient function. The value e is called public exponent, the pair
(N, e) is called public key and Alice publicly shares it. On the other hand,
the value d, called private exponent, must be kept secret, as well as the
triplet (p, q, d), which is called private key. Bob can now communicate with
Alice, sending to her c ≡ me mod N . When Alice gets the ciphertext c, she
may compute cd ≡ m mod N to recover the original message. This is an
easy application of Fermat’s Little Theorem. The security of this protocol is
assured by the Integer Factorization Problem, since it is proved in [RSA78]
that finding p and q is equivalent to finding ϕ(N) knowing only N , which in
turn is equivalent to solving the congruence xe ≡ c mod N .

1.1.2 A quick review on Factorization Methods

In this section we will discuss about different factorization methods. In order
to analyse their performance we will introduce the big-O notation:
Definition 1.2. Let f, g : R→ R two functions. We write that

f(x) = O (g(x)) , for x→∞

if and only if there exists a value M ∈ N+ and x0 ∈ R such that

|f(x)| ≤Mg(x)

2



1.1. HISTORICAL OVERVIEW

for every x ≥ x0.

The problem of factoring integers is way older than RSA: while Eratosthenes
described a method to find all primes more than 2200 years ago, the most
intuitive and natural factorization algorithm was described by Fibonacci in
his Liber Abaci ([Sig03]) and is called Trial Division. This algorithm consists
in dividing the integerN by every prime between 2 and

⌊√
N
⌋
. If we consider

N to have n digits in base-2 representation, the interval in which we have to
check has width

π
(

2
n
2

)
≈ 2

n
2

n
2 log(2)

,

where π(x) is the prime-counting function, which counts all the prime num-
bers up to x and may be approximated to x

log(x) by the Prime Number
Theorem. So, the cost of trying every factor is, using the “big-O” notation,
O
(

2
n
2

)
= O

(√
N
)
. We may notice that this algorithm stops when the

smallest prime factor of N is found. A different approach to factorization is
to consider a method proposed by Fermat: the problem of the factorization
of N may be transformed in finding two integers x and y such that

x2 ≡ y2 mod N and x 6≡ ±y mod N.

In this way, we obtain that

N | (x2 − y2) = (x− y)(x+ y),

so that gcd(N, x− y) and gcd(N, x+ y) may be equal to non-trivial factors
of N . If N = p · q, we may summarize all possible cases in the following
table:

p | (x− y) p | (x+ y) q | (x− y) q | (x+ y) gcd(x− y,N) gcd(x+ y,N) Factorization
3 3 3 3 N N 7

3 3 3 7 N p 3

3 3 7 3 p N 3

3 7 3 3 N q 3

3 7 3 7 N 1 7

3 7 7 3 p q 3

7 3 3 7 q p 3

7 3 7 3 1 N 7

7 3 3 3 q N 3

Table 1.1: Output for x2 ≡ y2 mod N .

Therefore, if we find these two values x, y ∈ Z, we have 67% chances of re-
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CHAPTER 1. PRELIMINARIES

covering a prime factor of N .
These two methods allows a first distinction between the factorization algo-
rithms [BW00, p. 168-169]:

• First category algorithms are the methods that return the smallest
prime divisor of the number we need to factor. These algorithms work
well if there is a prime divisor between 7 and 40 digits and they are
extremely effective at finding divisors of less than 20 digits.

• Second category algorithms or Kraitchick family are the meth-
ods based on Fermat’s idea explained above. These algorithms do not
take into account the size of the factors of N and depend only on its
size. They are used when N has more than 100 digits and no small
factors.

First Category Algorithms

Factorization Method Execution Time Reference

Trial Division O
(
N

1
2

)
[Coh13, p. 425]

Pollard’s p− 1 Algorithm O
(
N

1
2

)
[Pol74]

Pollard’s ρ O
(
N

1
4

)
[Pol75]

Shanks’ Class Group Method O
(
N

1
4

)
[Sha71]

Lenstra’s Elliptic Curves Method (ECM) O
(
e
√

2 logN log logN
)

[LJ87]

Second Category Algorithms

Factorization Method Execution Time Reference

Lehman’s method O
(
N

1
3

)
[Leh74]

Shanks’ Square Forms Factorization (SQUFOF) O
(
N

1
4

)
[GWJ08]

Dixon’s Factorization Method O
(
e2
√

2 logN log logN
)

[Dix81]

Continued Fractions Method (CFRAC) O
(
e
√

2 logN log logN
)

[LP31]

Quadratic Sieve O
(
e
√

logN log logN
)

[Pom82]

Multiple Polynomial Quadratic Sieve (MPQS) O
(
e
√

logN log logN
)

[Sil87]

General Number Field Sieve (GNFS) O

(
e

3
√

64
9

logN(log logN)2
)

[LLMP93a]

Table 1.2: Recap of some factorization methods for N = p · q.
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1.1. HISTORICAL OVERVIEW

1.1.3 Factorization Records

As we stated above, the problem of factorization guarantees the mathemati-
cal security for the RSA protocol, therefore the RSA Laboratories on March
18, 1991 started a competition to promote the research in this topic, [RSAa].
A long list of semiprimes was published on [RSAb], known as RSA numbers
or RSA moduli and a cash prize was assigned to each of them for the success-
ful factorization. The challenge was ended in 2007, but many of the numbers
and the search for their factors still continues nowadays. We report a list of
the factored numbers:

RSA-Number Binary Digits Date of Factorization Method used Reference
RSA-100 330 1 April 1991 MPQS N/A
RSA-110 364 14 April 1992 MPQS [DL93]
RSA-120 397 9 July 1993 MPQS [DDLM93]
RSA-129 426 26 April 1994 MPQS [AGLL94]
RSA-130 430 10 April 1996 GNFS [CDEH+96]
RSA-140 463 2 February 1999 GNFS [CDL+99]
RSA-150 496 16 April 2004 GNFS [AKSU04]
RSA-155 512 22 August 1999 GNFS [CDL+00]
RSA-160 530 1 April 2003 GNFS [BBF+03]
RSA-170 563 29 December 2009 GNFS [BK10]
RSA-576 576 3 December 2003 GNFS [FK03]
RSA-180 596 8 May 2010 GNFS [DP10]
RSA-190 629 8 November 2010 GNFS [PT10]
RSA-640 640 2 November 2005 GNFS [BBFK05b]
RSA-200 663 9 May 2005 GNFS [BBFK05a]
RSA-210 696 26 September 2013 GNFS [Pop13]
RSA-704 704 2 July 2012 GNFS [BTZ12]
RSA-220 729 13 May 2016 GNFS [BGK+16]
RSA-230 762 15 August 2018 GNFS [Gro17]
RSA-768 768 12 December 2009 GNFS [KAF+10]

Table 1.3: Known factorizations of RSA moduli.

It is evident from Table 1.2 and Table 1.3 that, at the moment, the best
theoretical and practical factorization method is GNFS, that we will discuss
in Chapter 3. However, it is interesting to note that only methods of the
second category lead to a succesful factorization for RSA numbers, in ac-
cording to what we specified about the size of the numbers we deal with the
two categories of algorithms.
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CHAPTER 1. PRELIMINARIES

1.2 Preliminaries on Elementary Number Theory

In this chapter we will recall some results on selected topics in elementary
Number Theory that we will exploit in Chapter 2.

1.2.1 Basics on Floor and Ceiling

In Chapter 2 we will explore a novel approach to factorization that involves
the use of the floor and the ceiling functions, so we will now recall the
properties of these two functions. Our main reference for this section is
[GKP94]. We will add the proofs for all the statements that are not explicitly
proved in [GKP94].

1.2.2 Definitions and basic properties

Definition 1.3. The floor function is defined as

b·c : R→ Z

x 7→ max
i∈Z
{i ≤ x},

while the ceiling function is

d·e : R→ Z

x 7→ min
i∈Z
{i ≥ x}.

Using just the definitions, it is possible to highlight some useful inequalities
for the floor and the ceiling functions:
Lemma 1.4. Let x be a real number and n ∈ Z. Then,

bxc =n if and only if n ≤ x < n+ 1, (1.1)

bxc =n if and only if x− 1 < n ≤ x, (1.2)

dxe =n if and only if n− 1 < x ≤ n, (1.3)

dxe =n if and only if x ≤ n < x+ 1. (1.4)

We can even say something on inequalities that involves directly floors and
ceilings.

6



1.2. PRELIMINARIES ON ELEMENTARY NUMBER THEORY

Lemma 1.5. Let x be a real number and m ∈ Z. Then,

bxc <m if and only if x < m, (1.5)

bxc ≥m if and only if x ≥ m, (1.6)

dxe ≤m if and only if x ≤ m, (1.7)

dxe >m if and only if x > m. (1.8)

Using these simple relations it is possible to prove the following result for
the floor and the ceiling of a sum.
Proposition 1.6. For every x, y ∈ R,

bxc+ byc ≤ bx+ yc ≤ bxc+ byc+ 1, (1.9)

dxe+ dye − 1 ≤ dx+ ye ≤ dxe+ dye . (1.10)

Proof. We will prove it for the floors. Suppose bxc = a ∈ Z and byc = b ∈ Z,
then by (1.1), we obtain thata ≤ x < a+ 1

b ≤ y < b+ 1.

Summing these two inequalities, we obtain a + b ≤ x + y < a + b + 2. The
result follows applying (1.5) and (1.6) respectively.

There are also some clear links between the floor and the ceiling function:
Lemma 1.7. Let x be a real number. Then,

bxc = x if and only if x ∈ Z if and only if dxe = x, (1.11)

dxe − bxc =

1 if x ∈ R \ Z,

0 if x ∈ Z,
(1.12)

b−xc =− dxe, (1.13)

d−xe =− bxc. (1.14)

The first non-trivial result is a theorem given by McEliece:
Theorem 1.8. [GKP94, pag.71] Let f : R → R be a continuous function
such that:

• f is strictly monotonically increasing (if x1 < x2, then f(x1) < f(x2)),

7
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• if f(x0) ∈ Z, then x0 ∈ Z.

Then for every x ∈ R,

bf(x)c = bf (bxc)c and df(x)e = df (dxe)e .

Proof. We prove the theorem for the floors, since the procedure for the ceiling
is analogous and can be found in [GKP94]. If bxc = x, this means by (1.11)
that x ∈ Z and the thesis follows. We can suppose x /∈ Z: we know by (1.1)
that bxc ≤ x and since f is monotonic, f (bxc) ≤ f(x). Applying the floor
function to both sides, we obtain that

bf (bxc)c ≤ bf(x)c .

Suppose bf (bxc)c < bf(x)c, then, since f is continous, there must be an
element y ∈ R such that f(y) = bf(x)c and bxc < y ≤ x. Due to the second
property of f , since f(y) ∈ Z, then y ∈ Z, so y is an integer between bxc
and x, which cannot be. Then,

bf (bxc)c = bf(x)c .

A similar argument can be applied to monotonically decreasing functions.
Theorem 1.9. Let f : R→ R be a continuous function such that:

• f is monotonically decreasing (if x1 < x2, then f(x1) > f(x2)),

• if f(x0) ∈ Z, then x0 ∈ Z.

Then for every x ∈ R,

bf(x)c = bf (dxe)c and df(x)e = df (bxc)e .

Proof. Suppose that x /∈ Z, otherwise the theorem is obvious. We can define
g(x) = −f(x) and since f is a continuous monotonically decreasing function,
g is a continuous monotonically increasing function. Furthermore, if g(x0) =

−f(x0) ∈ Z, then also x0 is an integer. So we can apply Theorem 1.8 and
obtain that

bg(x)c = bg (bxc)c
dg(x)e = dg (dxe)e .

8



1.2. PRELIMINARIES ON ELEMENTARY NUMBER THEORY

From the first identity and using (1.13), we get that

b−f(x)c = b−f (bxc)c
df(x)e = df (bxc)e .

From the second one, using (1.14), we obtain that

d−f(x)e = d−f (dxe)e
bf(x)c = bf (dxe)c .

Consider the function

f : R→R x 7→ x+ n

m
,

with n ∈ Z and m ∈ N+. This function is of course continuous and strictly
monotonically increasing, since its derivative is 1

m > 0. Furthermore, if
x+n
m ∈ Z, this also means that x+ n ∈ mZ and so x ∈ Z. So, we can apply

Theorem 1.8 to f and find that:
Lemma 1.10. For every x ∈ R, n ∈ Z and m ∈ N+ we have that:⌊

x+ n

m

⌋
=

⌊
bxc+ n

m

⌋
, (1.15)⌈

x+ n

m

⌉
=

⌈
dxe+ n

m

⌉
. (1.16)

Another interesting property that links floors and ceilings is the following:
Proposition 1.11. Let n ∈ Z and m ∈ N+, then⌊ n

m

⌋
=

⌈
n−m+ 1

m

⌉
=

⌈
n+ 1

m

⌉
− 1, (1.17)⌈ n

m

⌉
=

⌊
n+m− 1

m

⌋
=

⌊
n− 1

m

⌋
+ 1. (1.18)

Proof. We prove the formula (1.17), since (1.18) is analogous. First of all,
if
⌈
n−m+1

m

⌉
= k ∈ Z, then by (1.3), k ≤ n−m+1

m < k + 1, which implies that
k+1 ≤ n+1

m < k+2 and again by (1.3) it becomes
⌈
n+1
m

⌉
= k+1. So the last

equality of (1.17) is proved. For the other part, since n and m are integers,
we can perform Euclid’s algorithm and obtain that n = mt + r, with t ∈ Z

9
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and 0 ≤ r < m. So, n
m = t + r

m and by the discussion on the value of the
remainder

t ≤ t+
r

m
≤ t+

m− 1

m
< t+ 1,

which by (1.1) implies
⌊
n
m

⌋
= t. In contrast, n + 1 = mt + r + 1, so that

n+1
m = t+ r+1

m and

t < t+
1

m
≤ t+

r + 1

m
≤ t+ 1,

that by (1.3) means that
⌈
n+1
m

⌉
= t+ 1, which is exactly what we wanted to

show.

Finally, we present a result on the floor and the ceiling of an integer multiple
of a real number:
Proposition 1.12. For every x ∈ R and every m ∈ N+,

bmxc =

m−1∑
i=0

⌊
x+

i

m

⌋
, (1.19)

dmxe =
m−1∑
i=0

⌈
x− i

m

⌉
. (1.20)

Proof. We will prove this proposition for floors. We will show that

n =
m−1∑
i=0

⌊
n+ i

m

⌋
,

for any n ∈ Z and any m ∈ N+. In this way, substituting bmxc instead of
n and applying (1.15), we will obtain the desired result. Fix the value for n
and m. We can apply the Euclidean division and obtain that n = qm + r,
with q ∈ Z and 0 ≤ r < m. Then for every 0 ≤ i ≤ m − 1, it follows that
n + i = qm + r + i, which divided by m gives n+i

m = q + r+i
m . We want to

find for which i,
⌊
q + r+i

m

⌋
= q. This is equivalent by (1.1) to asking whenq + r+i

m < q + 1

q + r+i
m ≥ q,

which happens when −r ≤ i < m − r. However both r and i are non-
negative, so that

⌊
q + r+i

m

⌋
= q for 0 ≤ i < m − r. We study now when

10
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⌊
q + r+i

m

⌋
= q + 1. As before using (1.1), this happens whenq + r+i

m < q + 2

q + r+i
m ≥ q + 1,

which it is reached when m − r ≤ i < 2m − r. However, since m > r, then
2m− r > m, it turns out that

⌊
q + r+i

m

⌋
= q + 1 when m− r ≤ i < m. So

m−1∑
i=0

⌊
n+ i

m

⌋
=

m−1∑
i=0

⌊(
q +

r + i

m

)⌋
= q(m− r) + (q + 1)r = qm+ r = n,

as stated.

1.2.3 Integer solutions of a General Quadratic Diophantine
Equation having as discriminant a square

In this section we will briefly explain how to find the integer solutions of a
special family of equations:
Definition 1.13. A General Quadratic Diophantine Equation defined in Z
is a general polynomial Q ∈ Z[x, y] of degree 2 equal to zero, namely

Q : ax2 + bxy + cy2 + dx+ ey + f = 0, (1.21)

where a, b, c, d, e, f ∈ Z are called coefficients and it cannot happen that
a = b = c = 0. The quantity ∆ = b2 − 4ac is called the discriminant of Q.

We will discuss now how to find all the integer solutions of Q = 0, following
[Edw96], [SSW08] and [Rob03] in the case when ∆ > 0 is a square.
Suppose that a = c = 0 in (1.21), so that the equation of Q becomes

Q : bxy + dx+ ey + f = 0. (1.22)

In this case the discriminant ∆ = b2 > 0, since b 6= 0, otherwise the equation
would be linear. So, we may multiply by b (1.22) and obtain

(bx+ e)(by + d) = ed− bf.

We may define N := ed−bf , now N can be written as N = pq, with p, q ∈ Z
into finitely many ways, due to the Fundamental Theorem of Arithmetic, so

11
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the system bx+ e = p

by + d = q,

where p and q vary between the divisors of N , contains the solutions we were
looking for: x = p−e

b

y = q−d
b .

(1.23)

Of course, we need x and y to be integers, so both p− e and q − d must be
multiples of b.
We will show now how to always reduce an equation of the form (1.21) into
one of the form (1.22), when ∆ = r2 ∈ N+. We may suppose that at least
one between a and c is not zero. Suppose it is a, otherwise we can switch x
with y so that a 6= 0. Multiplying (1.21) by 4a we get

(2ax+ by)2 − (b2 − 4ac)y2 + 4adx+ 4aey + 4af = 0

(2ax+ by + ry)(2ax+ by − ry) + 4adx+ 4aey + 4af = 0. (1.24)

Using the linear change of variablesS := 2ax+ by + ry

T := 2ax+ by − ry

x = bT+rS+rT−bS
4ar

y = S−T
2r

(1.25)

and multiplying by r, the equation (1.24) becomes

rST + (adr − abd+ 2ae)S + (abd+ adr − 2ae)T + 4afr = 0, (1.26)

which is an equation of the form (1.22) in the new variables S and T . So we
may prove the following Proposition:
Proposition 1.14. Let Q : ax2 + bxy + cy2 + dx+ ey + f = 0 be a General
Quadratic Diophantine Equation with discriminant ∆ = r2, where r ∈ Z.
Then, the integer solutions of the equation are given by the integer solutions
of x = b(q−p+2abd−4ae)+r(p+q−2adr)

4ar2

y = p−q+4ae−2abd
2r2

,

where p, q ∈ Z are divisors of N = (adr−abd+2ae)(abd+adr−2ae)−4afr2

such that p · q = N .

12



1.3. ALGEBRAIC NUMBER THEORY BACKGROUND

Proof. The solution of (1.26), using the solutions given by (1.23), areS = p+2ae−abd−adr
r

T = q+abd−adr−2ae
r ,

where p, q ∈ Z are divisors of N as defined above. Then, performing the
substitutions in (1.25) we get that

x =

(
b

(
q + abd− adr − 2ae

r

)
+ p+ 2ae− abd− adr + q + abd+

− adr − 2ae− b
(
p+ 2ae− abd− adr

r

))
1

4ar
=

=

(
b

(
q − p+ 2abd− 4ae

r

)
+ p+ q − 2adr

)
1

4ar
=

=
b (q − p+ 2abd− 4ae) + r (p+ q − 2adr)

4ar2

and

y =

(
p+ 2ae− abd− adr

r
− q + abd− adr − 2ae

r

)
1

2r
=

=
p− q + 4ae− 2abd

2r2
.

1.3 Algebraic Number Theory Background

In the following chapters we will treat in great detail the GNFS algorithm
that relies upon some Algebraic Number Theory theorems. We state some
basic definition to fix the notation. All these results are taken from [ST01],
unless otherwise specified.

1.3.1 Number Fields and Ring of Integers

Definition 1.15. A number α ∈ C is called algebraic (over Q) if there exists
a polynomial f ∈ Q[x] with deg(f) ≥ 1, such that f(α) = 0.

13
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It can be proved that the set of all algebraic numbers

A = {α ∈ C : α is an algebraic number}

is a field.
Definition 1.16. A number field K is a finite-degree field extension of Q,
namely [K : Q] is finite.

An important characterization is the following:
Theorem 1.17. If K is a number field, then there exists some θ ∈ K alge-
braic number, such that K = Q(θ).

This theorem essentially states that every number field has a defining element
in K that generates the extension. A very important subset of any number
field is the set of algebraic integers.
Definition 1.18. An element α ∈ C is called algebraic integer if there exists
a monic polynomial f ∈ Z[x] such that f(α) = 0. In other words, if there
exist a0, . . . , an−1 ∈ Z such that

αn + an−1α
n−1 + . . .+ a0 = 0.

We define also the set of all algebraic integers as

B = {α ∈ C : α is an algebraic integer} .

It turns out that the set B has a more sophisticated algebraic structure:
Theorem 1.19. The set of all algebraic integers B is a subring of the field
of all algebraic numbers A.

Instead of considering all the ring B, it is more interesting to study a par-
ticular restriction of it.
Definition 1.20. Fon any number field K, we define the ring of integers of
K, as the set

OK = K ∩B,

namely all the algebraic integers contained in K.

It easily follows from the previous definition that OK is a subring of K. A
corollary of the previous theorem can be now stated:
Corollary 1.21. If K is a number field then K = Q(θ), where θ is an
algebraic integer.

14
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Remark 1.1. Fixed an element θ ∈ B, we define

Z[θ] = {f(θ) : f(x) ∈ Z[x]} .

If we consider the number field Q(θ), the element θ is an algebraic integer,
meaning that θ ∈ OQ(θ), then Z[θ] ⊆ OQ(θ). However, usually Z[θ] 6= OQ(θ).
For example, if we consider Q(

√
5) as number field, and an element

α =
1 +
√

5

2
∈ Q(

√
5),

then α /∈ Z[
√

5], but α is a root of the polynomial f(x) = x2 − x− 1 ∈ Z[x],
therefore α ∈ OQ(

√
5). So, in this case

Z[
√

5] ( OQ(
√

5) ( Q(
√

5).

For quadratic fields, that is [K : Q] = 2, it is possible to identify directly the
ring of integers, as stated below.
Theorem 1.22. Let d ∈ Z be a squarefree integer. Then, OQ(

√
d) is equal to

• Z[
√
d] if d 6≡ 1 mod 4,

• Z
[

1+
√
d

2

]
if d ≡ 1 mod 4.

Example 1.1. In the previous example, in fact, since 5 ≡ 1 mod 4, then

OQ(
√

5) = Z

[
1 +
√

5

2

]
.

1.3.2 Norm of an element

Theorem 1.23. Let K = Q(θ) be a number field of degree n over Q. Let
f ∈ Q[x] be the minimal polynomial of K and call θ1, . . . , θn its roots. Then
there are exactly n distinct injective homomorphisms from K to C that fix
Q: for every i ∈ {1, . . . , n}

σi : K → C

θ 7→ θi.

From this theorem we obtain a useful definition:
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Definition 1.24. Keeping the same notation as the previous theorem, fix
α ∈ K, we call {σ1(α), . . . , σn(α)} the K-conjugates of α.

This notion of conjugates it is important to define a crucial quantity for
GNFS.
Definition 1.25. Given α ∈ Q(θ), we define the norm of α as the product
of all its conjugates:

N(α)Q(θ)/Q = N(α) =
n∏
i=1

σi(α).

The norm has some very useful properties that may be summarized in the
following proposition.
Proposition 1.26. (i) For every α ∈ Q(θ) \ {0}, then N(α) 6= 0.

(ii) For every α, β ∈ Q(θ), then N(αβ) = N(α)N(β).

(iii) For every α ∈ Q(θ), then N(α) ∈ Q. In particular if α ∈ OQ(θ), then
N(α) ∈ Z.

1.3.3 Ideals in the Ring of Integers

In this section we are going to explain why we will consider ideal factorization
in GNFS, instead of the standard factorization of an element in a number
field.
Notation. We denote the ideals in OK with gothic lowercase letters.

We will present some results on ring theory. Throughout this section, we
will always suppose to deal with commutative rings.
Definition 1.27. An integral domain (or just domain) D is a nonzero ring
in which, for every x, y ∈ D if x · y = 0, then either x = 0 or y = 0.
A domain R is a Unique Factorization Domain (UFD) if every non-zero
x ∈ R can be written as the product of irreducible elements p1, . . . , pn ∈ R
(n ≥ 0) and a unit u ∈ R:

x = u · p1 · p2 · · · pn

and this representation is unique, namely if q1, . . . , qs ∈ R are irreducible
and w ∈ R is a unit such that

x = w · q1 · q2 · · · qs,
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then m = s and every pi is associated to some qj for 1 ≤ i, j ≤ n.

We recall the definition of the product between ideals as well as the notion
of divisibility between ideals:
Definition 1.28. Given two ideals a, b ⊆ OK , then their product is

ab =
{
a1b1 + . . .+ anbn : a1, . . . , an ∈ a; b1, . . . , bn ∈ b;n ∈ N+

}
,

where the sums considered in the set are finite.
We can also establish a notion of ideal divisibility in the following way:

a | b if and only if a ⊇ b.

We remind that an ideal a ⊆ OK is called maximal if a is a proper ideal
of OK and there are no ideals of OK strictly between a and OK . An ideal
p 6= OK is prime if, for every a, b ⊆ OK such that ab ⊆ p, then either a ⊆ p

or b ⊆ p. This last condition may also be rewritten using the notion of ideal
divisibility as p | ab implies p | a or p | b. We also report the following
fundamental definition:
Definition 1.29. Let D be a domain. Then D is Noetherian if one of the
following equivalent properties is verified:

• Every ideal I in D is finitely generated.

• Given an ascending chain of ideals in D

I0 ⊆ I1 ⊆ . . . ⊆ In ⊆ . . . ,

there exists a N ∈ N for which In = IN for every n ≥ N .

• Every non-empty set of ideals, partially ordered by inclusion, has a
maximal element, that is, an ideal which is not properly contained in
any other ideal in the set.

One of the main properties of a Noetherian domain is expressed by the
following theorem:
Theorem 1.30. If a domain D is Noetherian, then every non-zero, non-
invertible x ∈ D is a product of a finite number of irreducible elements.

It can be proved that the ring of integers OK is Noetherian, meaning that
every element of this ring can be expressed as a product of irreducible el-
ements. To spot irreducible elements or units in the ring of integers, we
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employ the norm.
Proposition 1.31. Let OK be the ring of integers of a number field K and
let x, y ∈ OK . Then:

• x is a unit if and only if N(x) = ±1.

• If N(x) = ±p, where p ∈ N+ is a prime, then x is irreducible.

• If x and y are associate, then N(x) = ±N(y).

However, OK is not necessarily a UFD:
Example 1.2. In Q(

√
−5), we have that

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

We want to prove that all these four factors are irreducible in OQ(
√
−5), using

the known fact that every element in OQ(
√
−5) is of the form a+b

√
−5, where

a,b ∈ Z. The norm is given by

N(a+ b
√
−5) = a2 + 5b2,

so

N(2) = 4, N(3) = 9, N(1 +
√
−5) = 6 and N(1−

√
−5) = 6.

So if 2 = x · y, with x, y ∈ OQ(
√
−5) (non-unit), then N(x) = N(y) = ±2.

In the same way non-trivial factors for 3 must have norm equal to ±3, while
two irreducible divisors of 1 +

√
−5 and 1−

√
−5, must have norm equal to

±2 and ±3 respectively. So the problem is to solve

a2 + 5b2 = ±2 or ± 3.

But this Diophantine equation has no solution in Z and so all the elements
above are irreducible. Moreover these four elements are not associate, oth-
erwise N(2) = 4 would be equal to N(1 +

√
−5) = 6, but this does not

happen. So, there are at least two different ways of writing 6 as the product
of irreducible elements.

Although OK is not necessarily a UFD, the concept of unique factorization
can be extended in some sense to ideals of OK . Indeed, it is possible to prove
that OK has some important properties reguarding ideals:
Theorem 1.32. The ring of integers OK of a number field K is a Dedekind
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Domain, meaning equivalently one of the two following definitions:

1. All the followings hold:

(i) OK is a domain, with field of fractions K.

(ii) OK is Noetherian.

(iii) If α ∈ K is a root of a monic polynomial equation with coefficients
in OK , then α ∈ OK .

(iv) Every non-zero prime ideal of OK is maximal.

2. every non-zero ideal of OK can be written as a product of powers of
prime ideals, uniquely up to the order of the factors.

The following definition can be derived from the previous theorem:
Definition 1.33. Let a ⊆ OK be a non-zero ideal, then the finite quantity

N (a) = |OK/a|

is called the Norm of the ideal a.

We would like to point out some properties for this norm of ideals.
Proposition 1.34. Let K be a number field of degree n.

(i) For every a ⊆ OK non-zero ideal, then N (a) ∈ N+ and N (a) ∈ a.

(ii) For every a, b ⊆ OK non-zero ideals, then N (ab) = N (a)N (b).

(iii) If a = 〈a〉 is a principal ideal in OK , then N (a) = |NK/Q(a)|.

(iv) Let a be a non-zero ideal of OK , then if N (a) is prime, then a is a
prime ideal.

(v) Conversely, if p is a prime ideal, then there exist p ∈ N+ prime number
and m ∈ N+ such that N (p) = pm, where m ≤ n. The number m is
called the degree of the ideal p.

Remark 1.2. Suppose that a = 〈a〉 is a principal ideal in OK . Then using
the previous proposition we get that

|N(a)| = N (a).

Furthermore, we know that a factorizes into prime ideals with a given expo-
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nent, say a = pe11 · · · p
ek
k , with e1, . . . , ek ∈ N+. So,

|N(a)| = N (a) = N
(
pe11 · · · p

ek
k

)
=

= N (p1)e1 · · ·N (pk)
ek =

= pe1m1
1 · · · pekmk

k ,

where the last passage is obtained using the last point of the previous propo-
sition for suitable m1, . . . ,mk ∈ N+ and p1, . . . , pk ∈ N+ not necessarily
distinct prime numbers. In GNFS we will only consider first-degree prime
ideals, i.e. prime ideals for which m1 = . . . = mk = 1. We will develop this
theory in Chapter 3.

1.4 Groebner Bases Theory

In Chapter 5, we will use the theory of Groebner Bases to describe a new
approach for GNFS. We will now recall some of the most important results
about this topic.

1.4.1 Multivariate polynomials

We begin with giving some basic definitions and setting the notation. All
the results of this section are presented in [CLO13].
Definition 1.35. A monomial in x1, . . . , xn is a product of the form

xα1
1 · x

α2
2 · · ·x

αn
n ,

where all the exponents α1, α2, . . . , αn are positive integers. The total degree
of the monomial is α1 + α2 + . . .+ αn.
Notation. We can identify each monomial in a more direct way: calling
α = (α1, . . . , αn) ∈ (N+)n, then

xα = xα1
1 · x

α2
2 · · ·x

αn
n .

We indicate with |α| = α1 + . . .+ αn the total degree of the monomial.
Definition 1.36. Let K be a field. A polynomial f ∈ K[x1, . . . , xn] is a
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finite linear combination of monomials with coefficients in K:

f =
∑
α

aαx
α,

where aα ∈ K and the sum is defined over a finite number of α ∈ (N+)n. We
call aα the coefficient of the monomial xα. If aα 6= 0, then we say that aαxα

is a term of f and we define the total degree of f as

deg(f) = max
α∈(N+)n

{|α| : aα 6= 0} .

Definition 1.37. Let f1, . . . , fs ∈ K[x1, . . . , xn]. The ideal generated by
f1, . . . , fs is

〈f1, . . . , fs〉 =

{
s∑
i=0

hifi : h1, . . . , hs ∈ K[x1, . . . , xn]

}
.

Remark 1.3. Suppose we have f1, . . . , fs ∈ K[x1, . . . , xn] and the system

f1(x1, . . . , xn) = 0

f2(x1, . . . , xn) = 0
...

fs(x1, . . . , xn) = 0.

If we consider some polynomials h1, h2, . . . , hs ∈ K[x1, . . . , xn], we may ob-
tain the new equation

h1f1 + h2f2 + . . .+ hsfs = 0,

in which the left-side term is exactly an element of 〈f1, . . . , fs〉. Thus, we
may identify 〈f1, . . . , fs〉 with all the possible polynomial equations that arise
from the starting system. Of course if we succeed in finding a “minimal” (in
some sense) set of generators for this ideal, we obtain the “smallest” condition
we need the solutions of the system to fulfill.
We will explain now how to introduce these measurement on the polynomials.
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1.4.2 Monomial Orderings

We already said how to define a one-to-one correspondence between each
monomial in K[x1, . . . , xn] and (N+)n. So, if we establish an ordering > on
(N+)n, this leads naturally to an order for monomials, in fact if α > β, then
xα > xβ .
Definition 1.38. A monomial ordering on K[x1, . . . , xn] is any relation in
(N+)n such that:

(i) > is a total ordering on (N+)n.

(ii) For every α, β, γ ∈ (N+)n, if α > β, then α+ γ > β + γ.

(iii) > is a well-odering on (N+)n, namely for any non-empty subset
S ⊆ (N+)n, there exists α ∈ S such that α < β, for every β ∈ S.

The first condition enables us to compare every pair of monomials, so given
xα, xβ ∈ K[x1, . . . , xn] only one between

xα > xβ xα = xβ xα < xβ

can be true.
The second property preserves the multiplicative structure of monomials:
if xα > xβ , then multiplying by the same monomial xγ to both sides,
xα+γ > xβ+γ does still hold.
The last condition, finally, is equivalent to asking that every strictly decreas-
ing sequence in (N+)n

α1 > α2 > . . .

eventually terminates. This proposition assures that algorithms that act
on monomial orderings must terminate if they produce a strictly decreasing
sequence.
We will now give a brief description of the most-used monomial orderings:

• Lexicographic Order :
Definition 1.39. Let α, β ∈ (N+)n. Then we define the lexicographic
order >lex as the relation such that α >lex β if and only if the leftmost
non-zero entry of α− β is positive.

With this ordering each variable in K[x1, . . . , xn] is alphabetically or-
dered, in fact x1 >lex x2 >lex . . . >lex xn. Of course if we change the
order of the variables, also the lexicographic ordering will change.
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• Graded Lexicographic Order :
Definition 1.40. Let α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ (N+)n.
Then we define the graded lexicographic order >grlex as the relation
such that α >grlex β if and only if|α| > |β| if |α| 6= |β|

α >lex β if |α| = |β|.

This ordering initially considers the sum of the degrees of each mono-
mial, in case of tie it is equivalent to the lexicographic order. Even
in this case x1 >grlex x2 >grlex . . . >grlex xn and again the graded
lexicographic order depends on the order of the variables.

• Graded Reverse Lexicographic Order :
Definition 1.41. Let α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ (N+)n.
Then we define the graded reverse lexicographic order >grevlex as the
relation such that α >grevlex β if and only if|α| > |β| if |α| 6= |β|

the rightmost non-zero entry of α− β is negative if |α| = |β|.

Grevlex is similar to grlex, because it considers again the sum of all the
exponents of a monomial, but it breaks the ties in favor of the right-
most variable with the smaller exponent. Again all the variables are
ordered in the familiar way x1 >grevlex x2 >grevlex . . . >grevlex xn and
changing the order of the variables drastically change also the order of
grevlex.

With the notion of monomial ordering we can give new definitions reguarding
multivariate polynomials.
Definition 1.42. Let f =

∑
α aαx

α ∈ K[x1, . . . , xn] and > a monomial
ordering. The multidegree of f is

multideg(f) = max
{
α ∈ (N+)n : aα 6= 0

}
,

where the maximum is taken with respect to >.
The leading coefficient of f is

LC(f) = amultideg(f) ∈ K.
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The leading monomial of f is

LM(f) = xmultideg(f) ∈ K[x1, . . . , xn].

The leading term of f is

LT(f) = LC(f) · LM(f) = amultideg(f)x
multideg(f) ∈ K[x1, . . . , xn].

The main reason for the introduction of monomial orderings is to produce
an algorithm for the division in K[x1, . . . , xn].
Theorem 1.43. Let > be a monomial ordering in (N+)n and define F =

{f1, . . . , fs} as an ordered set of polynomials in K[x1, . . . , xn]. Then, for
every polynomial g ∈ K[x1, . . . , xn] there exist a1, . . . , as, r ∈ K[x1, . . . , xn]

such that
g = a1f1 + . . . asfs + r.

Moreover, r can be either equal to 0 or a linear combination of monomials not
divisible by any of LT(f1), . . . ,LT(fs). The polynomial r is called remainder
of the division of g by F . Furthermore if ai 6= 0, then

multideg(g) ≥ multideg(aifi),

for 1 ≤ i ≤ s.

However, this definition does not preserve some of the nice properties of
the univariate Euclidean division, such as the uniqueness of the remainder.
Therefore, as we saw in Section 1.3, a standard technique is considering ideals
instead of elements.

1.4.3 Groebner Bases

For the rest of this section suppose that we fix a monomial ordering >. A
first fundamental theorem on ideals is the following:
Theorem 1.44 (Hilbert’s Basis Theorem). Let I ⊂ K[x1, . . . , xn] be an
ideal. Then there exist f1, . . . , fs ∈ K[x1, . . . , xn] such that I = 〈f1, . . . , fs〉.

This means that every ideal in K[x1, . . . , xn] is finitely generated and its
generators are called a basis for the ideal. Clearly a basis for a fixed ideal is
not uniquely determined and among them we search for a special one.
Definition 1.45. Let I ⊂ K[x1, . . . , xn] be a non-zero ideal. The set of the
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leading terms of I is

LT(I) = {cxα : there exists f ∈ I such that LT(f) = cxα}.

This definition is needed in order to define a Groebner basis.
Definition 1.46. Let I ⊂ K[x1, . . . , xn] be an ideal different from {0}, then
a finite subset G = {g1, . . . , gs} ⊂ I is called a Groebner basis if

〈LT(g1), . . . ,LT(gs)〉 = 〈LT(I)〉

It can be proved that such a basis exists.
Proposition 1.47. Every ideal I ⊂ K[x1, . . . , xn] different from {0} has a
Groebner basis. Furthermore, any Groebner basis for an ideal I is also a
basis for I.

If we employ Grobner bases in the algorithm for divisions, it can be proved
that the remainder is uniquely determined:
Proposition 1.48. Let I ⊂ K[x1, . . . , xn] be an ideal and G = {g1, . . . , gs}
be one of its Groebner bases. Let f ∈ K[x1, . . . , xn], then there exists a unique
r ∈ K[x1, . . . , xn] such that:

• every term of r is not divisible by any element of {LT(g1), . . . ,LT(gs)},

• there exists g ∈ K[x1, . . . , xn] such that f = g + r.

An immediate consequence of this proposition is a criterion to establish when
a polynomial belongs to a given ideal:
Corollary 1.49. Let G = {g1, . . . , gs} be a Groebner basis for the ideal
I ⊂ K[x1, . . . , xn]. Let f ∈ K[x1, . . . , xn], then f ∈ I if and only if the
remainder of the division of f by G is zero.

Indeed, we would like to give a simpler condition to check whether a basis for
an ideal is also a Groebner basis. In order to do that, we need the following
definition:
Definition 1.50. Let f, g ∈ K[x1, . . . , xn] be non-zero polynomials with
α = (α1, . . . , αn) = multideg(f) and β = (β1, . . . , βn) = multideg(g). Then
the S-polynomial of f and g is the polynomial

S(f, g) =
xγ

LT(f)
· f − xγ

LT(g)
· g,

where γ = (γ1, . . . , γn) and γi = max{αi, βi} for every 1 ≤ i ≤ n.
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Using the S-polynomials it is possible to prove the following theorem:
Theorem 1.51 (Buchberger’s First Criterion). Let I ⊂ K[x1, . . . , xn] be an
ideal and G = {g1, . . . , gs} a basis for it. Then G is a Groebner basis if and
only if the remainder of the division between S(gi, gj) and G is equal to 0 for
every 1 ≤ i < j ≤ n.

Starting from this theorem, Buchberger provided also an effective algorithm
to compute a Groebner basis of an ideal ([Buc65]):
Theorem 1.52 (Buchberger’s Algorithm). Let f1, . . . , fs ∈ K[x1, . . . , xn] be
non-zero polynomials and I = 〈f1, . . . , fs〉 be the ideal generated by them.
Then a Groebner basis for I can be constructed in a finite number of steps
using Algorithm 1.1.

Algorithm 1.1 Buchberger’s Algorithm
Input: The basis F = (f1, . . . , fs) for the ideal I.
Output: A Groebner basis G = (g1, . . . , gt) fot the ideal I, with F ⊂ G.
1: G = F
2: repeat
3: G′ = G
4: for p, q ∈ G with p 6= q do
5: S = the remainder of the division between S(p, q) and G′

6: if S 6= 0 then
7: G = G ∪ {S}
8: end if
9: end for

10: until G = G′

The Groebner bases computed with Algorithm 1.1 may contain more ele-
ments than needed.
Lemma 1.53. Let G be a Groebner basis for the ideal I ⊂ K[x1, . . . , xn].
Let g ∈ G be a polynomial such that LT(g) ∈ 〈LT (G \ {g})〉. Then G \ {g}
is also a Groebner basis for I.

So we may cut out from any Groebner basis the elements that do satisfy the
previous lemma.
Definition 1.54. Aminimal Groebner basis G for an ideal I ⊂ K[x1, . . . , xn]

is a Groebner basis such that for every g ∈ G

(i) LC(g) = 1,

(ii) LT(g) /∈ 〈LT (G \ {g})〉.
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However for a fixed ideal there is more than one minimal Groebner basis.
To avoid this situation it can be defined another special Groebner basis.
Definition 1.55. A reduced Groebner basis G for an ideal I ⊂ K[x1, . . . , xn]

is a minimal Groebner basis such that for every g ∈ G, none of the monomials
of g lies in 〈LT (G \ {g})〉.

It can be proved the following:
Proposition 1.56. Let I ⊂ K[x1, . . . , xn] be an ideal. Then I has a unique
reduced Groebner basis.

Remembering what we said in Remark 1.3, in order to solve a polynomial
system, we may fix a monomial ordering and find a (reduced) Groebner basis
for the ideal generated by the equations. Then the solutions of the system
must satisfy the equations of the polynomial in the Groebner basis. We
would like to obtain polynomials that depend only on one variable, so that
it is possible to find a solution and, from that, to find the value of all the
other variables. This process is called elimination and will be discussed in
the following section.

1.4.4 Elimination Theory

We begin giving formal definitions for the procedure explained above.
Definition 1.57. Let I = 〈f1, . . . , fs〉 ⊂ K[x1, . . . , xn] be an ideal. Then for
every 0 ≤ l ≤ n, the l-th elimination ideal Il is the ideal in K[xl+1, . . . , xn]

defined by
Il = I ∩K[xl+1, . . . , xn].

If l = 0, then I0 = I, while if l = n, then In = {0}.

So, when we said that we want to remove all the variables except one from
the ideal generated by a Groebner basis, actually we were talking about
finding the n− 1-th elimination ideal. If we fix a lexicographic order, there
is more that can be said on elimination ideals.
Theorem 1.58 (The Elimination Theorem). Let I ⊂ K[x1, . . . , xn] be an
ideal and let G be a Groebner basis for I with respect to a lexicographic
ordering in which x1 > x2 > . . . > xn. Then, for every 0 ≤ l ≤ n, the set

Gl = G ∩K[xl+1, . . . , xn]

is a Groebner basis for the l-th elimination ideal.
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Moreover, if the ideal is zero-dimensional, the reduced Groebner basis of
G∩K[xn] contains one univariate polynomial. So going back to the example
of the system, it is possible to find firstly a Groebner basis using the lex-
icographic ordering for the ideal and then consider the Groebner basis for
the consecutive elimination ideals to reduce the number of variables until
we reach the univariate polynomial. Then we find a partial solution for the
system, starting from the univariate polynomial and, finally, recover all the
other solutions for the system.
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Chapter 2

An elementary approach to
factorization

In this chapter we will explain an approach to integer factorization, based
on elementary Number Theory.

2.1 Successive moduli

As usual, call N ∈ N+ the number to be factorized and let m ∈ N+ be such

that
⌊√

N
2

⌋
≤ m ≤

⌊√
N
⌋
. Suppose also that


N ≡ a0 mod m

N ≡ a1 mod (m+ 1)

N ≡ a2 mod (m+ 2),

where a0, a1, a2 ∈ N+ are the smallest non-negative integers that verify this
congruences and assume as additional requirement that

a2 ≥ a1 ≥ a0 ≥ 0.

In this setting, the first congruence can be rewritten as

N = a0 +ml with l :=

⌊
N

m

⌋
≥ 0, (2.1)
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CHAPTER 2. AN ELEMENTARY APPROACH TO FACTORIZATION

so that substituting in the second equation this one, we obtain that

a1 ≡ a0 +ml mod (m+ 1)

a1 − a0 ≡ −l mod (m+ 1).

Since a1 ≥ a0 and m+1 > a1, it follows that m+1 > a1−a0 ≥ 0, so a1−a0

is the least non-negative integer modulo m+ 1, that is congruent to −l. We
can define

k := a1 − a0 ≥ 0

and thus k ≡ −l mod (m+ 1), that means that

− l = k + (m+ 1)s with s :=

⌊
−l

m+ 1

⌋
≤ 0. (2.2)

We can iterate the same argument and consider the third equation to obtain
that

a2 ≡ a0 +ml mod (m+ 2)

a2 ≡ a0 − 2l mod (m+ 2)

a2 ≡ a0 + 2k + 2(m+ 1)s mod (m+ 2)

a2 ≡ a0 + 2k − 2s mod (m+ 2)

a2 − a0 − 2k ≡ −2s mod (m+ 2)

(a2 − a1)− (a1 − a0) ≡ −2s mod (m+ 2).

Since m+ 1 ≥ a2 and a2−a1 ≥ 0, we obtain the following inequality for this
quantity:

−m ≤ (a2 − a1)− (a1 − a0) ≤ m+ 1.

As a consequence, we can define a quantity w, that we call the world, as

w :=

a2 − 2a1 + a0 if a2 − 2a1 + a0 ≥ 0,

a2 − 2a1 + a0 +m+ 2 if a2 − 2a1 + a0 < 0.

to be the least positive integer such that w ≡ −2s mod m+ 2. So we may
write

−2s = w + (m+ 2)t with t :=

⌊
−2s

m+ 2

⌋
.
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Therefore, we have found a formula for w, which is

w = −2s− (m+ 2)t. (2.3)

We treat the two terms in the right part of the equation (2.3) separately:
the first term is equal to

−2s = −2

⌊
−l

m+ 1

⌋
= 2

⌈
l

m+ 1

⌉
,

substituting the definition of s and (1.13). Moreover

−2s = 2

⌈ ⌊
N
m

⌋
m+ 1

⌉
= 2

(⌊⌊
N
m

⌋
− 1

m+ 1

⌋
+ 1

)
,

due to the definition of l and (1.18). Finally,

−2s = 2

(⌊
N
m − 1

m+ 1

⌋
+ 1

)
= 2

(⌊
N −m
m(m+ 1)

⌋
+ 1

)
,

employing the identity (1.15). For the second term in (2.3), we use the
definition of t and the last equation, obtaining that

t =

⌊
−2s

m+ 2

⌋
=

2
(⌊

N−m
m(m+1)

⌋
+ 1
)

m+ 2

 .
We prove the following proposition:
Proposition 2.1. Let N ∈ N+ and let m be a positive integer such that⌊√

N
2

⌋
≤ m ≤

⌊√
N
⌋
. Then, for every N ≥ 50, we have that

t =

2
(⌊

N−m
m(m+1)

⌋
+ 1
)

m+ 2

 = 0.

Proof. To show that t = 0, it is enough to show that

0 ≤
2
(⌊

N−m
m(m+1)

⌋
+ 1
)

m+ 2
< 1. (2.4)
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As regards the left side of (2.4), it is clear:

2
(⌊

N−m
m(m+1)

⌋
+ 1
)

m+ 2
≥ 0,

since N > m > 0. On the other hand, we want to prove that

2
(⌊

N−m
m(m+1)

⌋
+ 1
)

m+ 2
< 1

2

(⌊
N −m
m(m+ 1)

⌋
+ 1

)
< m+ 2⌊

N −m
m(m+ 1)

⌋
<
m

2
, (2.5)

since m is a positive integer. In order to prove (2.5), we can notice that,
applying the inequality (1.1),⌊

N −m
m(m+ 1)

⌋
≤ N −m
m(m+ 1)

,

so all the pairs (N,m) ∈ (N+)2 that satisfy N−m
m(m+1) <

m
2 will also fulfill (2.5).

The last inequality becomes

N −m <
m2(m+ 1)

2

N <
m2(m+ 1)

2
+m. (2.6)

Remember that
⌊√

N
2

⌋
≤ m ≤

⌊√
N
⌋

and consider separately the two

inequalities:

• Using the first one, we can say that√
N

2
− 1 <

⌊√
N

2

⌋
≤ m,

therefore √
N

2
< m+ 1

N < 2(m+ 1)2. (2.7)
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• Considering instead the second one, we can find that

m ≤
⌊√

N
⌋
≤
√
N,

leading to
m2 ≤ N. (2.8)

Combining together (2.7) and (2.8) and since m2 is always smaller than
2(m+ 1)2 if m > 0, we obtain that

m2 ≤ N < 2(m+ 1)2. (2.9)

To find a solution for (2.5), we study when (2.6) and (2.9) hold at the same
time: N < m+ m2(m+1)

2

m2 ≤ N < 2(m+ 1)2.

If m2 ≤ 2(m + 1)2 ≤ m + m2(m+1)
2 , then the solutions of the system are

exactly all the elements in the interval (2.9). To obtain the desired bound,
we have to study when m2 ≤ m + m2(m+1)

2 , m2 ≤ 2(m + 1)2 and when
2(m + 1)2 ≤ m + m2(m+1)

2 . The first two are attained for every m ≥ 0,
while the third one holds for every m > 4.522, but remembering that m is
a positive integer, we may assume that m ≥ 5. By hypothesis if N ≥ 50, it

follows that m ≥
⌊√

N
2

⌋
≥
⌊√

50
2

⌋
= 5 and the thesis follows.

The previous proposition gives us a new equality for the world w:
Corollary 2.2. Let N ∈ N+ such that N ≥ 50 and let m ∈ N+ with⌊√

N
2

⌋
≤ m ≤

⌊√
N
⌋
, then

w = −2s = 2

(⌊
N −m
m(m+ 1)

⌋
+ 1

)
.

A more precise statement can be proved about this quantity:
Proposition 2.3. Let N ∈ N+ be a positive integer such that N ≥ 50 and

let m ∈ N+ with
⌊√

N
2

⌋
≤ m ≤

⌊√
N
⌋
, then

w ∈ {2, 4, 6}.
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If we have also that
⌊√

N
2

⌋
+ 1 ≤ m ≤

⌊√
N
⌋
− 1, then

w = 4.

Proof. We will prove that

⌊
N −m
m(m+ 1)

⌋
=


0

1

2

,

which is also equivalent (by (1.1)) to proving that

0 ≤ N −m
m(m+ 1)

< 3. (2.10)

Since N and m are both positive and m < N , we know that N−m
m(m+1) > 0.

To prove the other side, we need to write a system of inequalities as in
Proposition 2.1, where one of them is (2.9), which holds because we are
using the same hypothesis as before. The other inequality is, as explained
above,

N −m
m(m+ 1)

< 3

N −m < 3m(m+ 1)

N < 3m2 + 4m.

So, summarizing, we have to find whenN < 3m2 + 4m

m2 ≤ N < 2(m+ 1)2.

As before, we will check when the expressions in m are such that the interval
given by the second inequality is contained in the first one. In this way,
(2.10) will hold for every N and m as in the hypotesis of the proposition.
Then, m2 ≤ 3m2 + 4m and m2 ≤ 2(m+ 1)2 for every m ≥ 0, while we have
2(m + 1)2 < 3m2 + 4m for every m > 1.7, that means that (2.10) holds if
m ≥ 2, which it is always attained for N ≥ 50.
For the second part of the theorem we can proceed similarly, noting that, in
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this case, we have to prove that

1 ≤ N −m
m(m+ 1)

< 2. (2.11)

On one side,
N −m
m(m+ 1)

< 2,

it is equivalent to the condition

N −m
m(m+ 1)

< 2

N −m < 2m(m+ 1)

N < 2m2 + 3m;

on the other side
N −m
m(m+ 1)

≥ 1,

which is equal to
N ≥ m2 + 2m.

Once again this interval is properly defined, since m2 + 2m ≤ 2m2 + 3m for
every m ≥ 0. We also have to change the interval inequalities for N : an
upper bound is given by

m ≥

⌊√
N

2

⌋
+ 1 >

(√
N

2
− 1

)
+ 1 =

√
N

2

2m2 > N,

while a lower bound is

m ≤ b
√
Nc − 1 ≤

√
N − 1

(m+ 1)2 ≤ N,

so (2.9) is replaced by
(m+ 1)2 ≤ N < 2m2.

This interval is well defined when (m + 1)2 ≤ 2m2, that is verified when
m ≥ 2.41, which is again achieved for N ≥ 50. Therefore in this case the
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system is m2 + 2m ≤ N < 2m2 + 3m

(m+ 1)2 ≤ N < 2m2.

Again our aim is to check when the second interval is contained in the first
one: it is clear that 2m2 ≤ 2m2 + 3m and (m + 1)2 ≥ m2 + 2m for every
m ≥ 0. This proves that for every N ≥ 50, the relation (2.11) holds.

If we consider the world to be w = 4, we can track back our definitions and
obtain the following
Corollary 2.4. Let N ∈ N+ be a positive integer such that N ≥ 50 and let

m ∈ N+ with
⌊√

N
2

⌋
+ 1 ≤ m ≤

⌊√
N
⌋
− 1, then

N = a0 + 2m2 − (k − 2)m,

where a0 and k are defined as above.

Proof. By the previous theorem we know that the world w = 4, so Corol-
lary 2.2 assures us that s = −2. We may substitute the value of s in (2.2)
to get that l = −k + 2(m + 1) and using this value in (2.1), we obtain the
stated result.

Remark 2.1. The condition of requiring increasing remainders, that is
a2 ≥ a1 ≥ a0 ≥ 0, may be replaced by the condition of decreasing remain-
ders, i.e. a2 ≤ a1 ≤ a0 ≤ 0, and we obtain a formula similar to Proposi-
tion 2.3. It is also possible to consider a more general situation, which is
explored in Section 2.4.

2.2 A formula for successive moduli

We can now conclude our excursus on successive remainders, proving a for-
mula for all the residues of N modulo every integer greater than m.
Theorem 2.5. Let N ∈ N+ be such that N ≥ 50 and m ∈ N+ such that
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⌊√
N
2

⌋
≤ m ≤

⌊√
N
⌋
. Define


N ≡ a0 mod m

N ≡ a1 mod (m+ 1)

N ≡ a2 mod (m+ 2),

with a0, a1, a2 ∈ N the least non-negative integers that verifies these congru-
ences and such that 0 ≤ a0 ≤ a1 ≤ a2. Define also

k := a1 − a0 and

w :=

a2 − 2a1 + a0 if a2 − 2a1 + a0 ≥ 0,

a2 − 2a1 + a0 +m+ 2 if a2 − 2a1 + a0 < 0.

Then, we have the following formula: for every i ∈ N,

N ≡

a0 + ik + w
i−1∑
j=1

j

 mod (m+ i).

Proof. From (2.1), we know that N = a0 +ml. So,

N = a0 +ml ≡ a0 − l ≡ a0 + k mod (m+ 1)

which is the first step of our formula. Now, employing (2.2) and Corollary 2.2,
we can simplify the third equation and obtain

N = a0 +ml ≡ a0 − 2l mod (m+ 2)

≡ a0 + 2k + 2(m+ 1)s mod (m+ 2)

≡ a0 + 2k − 2s mod (m+ 2)

≡ a0 + 2k + w mod (m+ 2).

This proves the formula for i = 2.
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Generalising the same strategy, we get that

N = a0 +ml ≡ a0 − il mod (m+ i)

≡ a0 + i(k + (m+ 1)s) mod (m+ i)

≡ a0 + ik − i(i− 1)s mod (m+ i)

≡ a0 + ik +
i(i− 1)

2
w mod (m+ i)

≡ a0 + ik + w
i−1∑
j=1

j mod (m+ i).

Of course we may give a more precise formulation, since we already computed
the value of the world in Proposition 2.3.
Corollary 2.6. Using the same notation of the previous theorem, if⌊√

N

2

⌋
+ 1 ≤ m ≤

⌊√
N
⌋
− 1,

then for every i ∈ N

N ≡
(
a0 + ik + 2i2 − 2i

)
mod (m+ i).

Proof. From Theorem 2.5, since in this case w = 4 and w
∑i−1

j=1 j = 2i(i−1),
the result trivially follows.

Example 2.1. Suppose we consider the number N = 955191388807. If we

perform a search for them ∈ N+ in the interval
⌊√

N
2

⌋
+1 ≤ m ≤

⌊√
N
⌋
−1,

we obtain that m = 691083 satisfies the following:
N ≡ a0 := 654112 mod m

N ≡ a1 := 654115 mod (m+ 1)

N ≡ a2 := 654122 mod (m+ 2),

where 0 ≤ a0 ≤ a1 ≤ a2. Setting k := 3, it is possible to write the formula:

N ≡
(
654112 + 3i+ 2i2 − 2i

)
mod (m+ i).
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For example, for i = 724, we obtain

1703188 ≡ 319574 mod (m+ i)

which is exactly N mod (m+ i).
If we take as i = 253810, we obtain that

N ≡
(
654112 + 3i+ 2i2 − 2i

)
≡ 128839940122 ≡ 0 mod (m+ i),

in fact m + i = 944893 is a factor of N . This example gives us an idea of
what we would like to obtain from this formula.

2.3 Successive moduli in factorization

Suppose N is an odd number. Our aim is now to find a positive integer i
such that the congruence

N ≡
(
a0 + ik + 2i2 − 2i

)
≡ 0 mod (m+ i) (2.12)

holds. However solving a congruence of this kind is as difficult as solving the
congruence

N ≡ 0 mod x

for x ∈ N+. We therefore need to develop a different strategy to use this
formula.
We can define k′ := k − 2, so that (2.12) becomes

2i2 + ik′ + a0 ≡ 0 mod (m+ i),

which is equivalent to

2i2 + ik′ + a0 = x(m+ i)

2i2 + i(k′ − x) + a0 − xm = 0,

with x ∈ Z. We want to solve this last equation for i in order to find a factor
of N , so

i1/2 =
x− k′ ±

√
(k′)2 + x2 − 2xk′ − 8a0 + 8mx

4
. (2.13)
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Remember that i must be and integer, so that the following conditions have
to be verified(k′)2 + x2 − 2xk′ − 8a0 + 8mx = y2 with y ∈ Z

x− k′ ± y ≡ 0 mod 4.

Let us focus on the first one for the moment. We need to find all integer
solutions (x, y) ∈ Z2 of the General Quadratic Diophantine Equation

x2 − y2 +
(
8m− 2k′

)
x+

(
k′
)2 − 8a0 = 0

with discriminant ∆ = −4 · 1 · (−1) = 4, which is a square. So we may
apply Proposition 1.14 and obtain that the solutions of this equation are the
integers that satisfiesx = 2(p+q)−8(8m−2k′)

16 = (p+q)
8 − (4m− k′)

y = p−q
8 ,

where p and q are factors of

4
[
(8m− 2k′)2 − 4

((
k′
)2 − 8a0

)]
=

=4
[
64m2 − 32mk′ + 32a0

]
=

=128
(
2m2 −mk′ + a0

)
,

but from Corollary 2.4 the last term is equal to N , so that p and q must be
factors of 128N such that pq = 128N . However x and y must be integers, so
both p and q must be multiple of 8: in this way p+ q and p− q are multiple
of 8. However, since we don’t know the factorization of N (that we supposed
to be odd) the only possibilities left for (p, q) are (employing the fact that
the solutions are symmetric):

• (p, q) = (8, 16N),

• (p, q) = (16, 8N).

In the first case we obtain the solution:x = 1 + 2N − 4m+ k′

y = 1− 2N,
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which implies that (substituting in (2.13))

i =
1 + 2N − 4m+ k′ − k′ ± (1− 2N)

4
=

1−2m
2

N −m.

Since the first value is not an integer, the only possible value for i is the
second one, obtaining that N ≡ 0 mod N , which is obvious.
The second case instead gives rise tox = 2 +N − 4m+ k′

y = 2−N,

which again leads to

i =
2 +N − 4m+ k′ − k′ ± (2−N)

4
=

1−m
N−2m

2 .

In this case the only integer beween them is the first value, so i = 1 −m,
but again this is useless, meaning that N ≡ 0 mod 1.
Thus, to solve (2.12) it is needed to know the factorization of N in order to
obtain a non-trivial solution. This proves the following theorem:

Theorem 2.7. Let N be an odd integer and let
⌊√

N
2

⌋
+1 ≤ m ≤

⌊√
N
⌋
−1

such that 
N ≡ a0 mod m

N ≡ a1 mod (m+ 1)

N ≡ a2 mod (m+ 2)

with 0 ≤ a1 ≤ a2 ≤ a2. Call k = a1− a0, then producing the factorization of
N is equivalent to finding an integer i ∈ N+ for which

N ≡
(
a0 + ik + 2i2 − 2i

)
≡ 0 mod (m+ i).

This last theorem states that, at the moment, the strategy of using the
successive moduli does not improve significately the factorization strategy,
however it enstablishes a new non-obvious equivalent problem, which may
be interesting to study.
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2.4 Interpolation

We will now explain how interpolating polynomials can predict the remain-
ders in the same way as the formula in Corollary 2.6.

2.4.1 Successive Remainders and Interpolation

Starting again from our three values a0, a1, a2 ∈ Z and
N ≡ a0 mod m

N ≡ a1 mod (m+ 1)

N ≡ a2 mod (m+ 2),

we would like to find the interpolating polynomial f ∈ Q[x] of degree 2,
namely f must satisfy the following:

f(0) = a0

f(1) = a1

f(2) = a2.

(2.14)

The reason we need f to be a polynomial in Q[x] is that to find an interpo-
lation between nodes, we need to work in a field, so we will consider rational
coefficients. So suppose f(x) = α · x2 + β · x+ γ with α, β, γ ∈ Q, a simple
evaluation in the three points gives

γ = a0

α+ β + γ = a1

4α+ 2β + γ = a2,

which can be inverted to obtain the values for the coefficients of f :
α = a2−2a1+a0

2

β = 2a1 − 3
2a0 − a2

2

γ = a0.

(2.15)

We can now prove the following proposition:
Proposition 2.8. Let N be an odd integer and let
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⌊√
N
2

⌋
+ 1 ≤ m ≤

⌊√
N
⌋
− 1 such that


N ≡ a0 mod m

N ≡ a1 mod (m+ 1)

N ≡ a2 mod (m+ 2)

with 0 ≤ a0 ≤ a1 ≤ a2 or 0 ≤ a2 ≤ a1 ≤ a0. Then, the interpolating
polynomial f ∈ Q(x) defined as in (2.14) with coefficients as in (2.15) is
such that, for every i ∈ Z,

N ≡ f(i) mod (m+ i).

Proof. We will show that f = αx2+βx+γ has the same form of the formula in
Corollary 2.6 for the case a2 ≥ a1 ≥ a0 ≥ 0, while the case 0 ≤ a2 ≤ a1 ≤ a0

can be proved similarly and we omit the adapted proof (see Remark 2.1).
The coefficient α is equal to w

2 , which in turn, due to Proposition 2.3, gives
that α = 2. As reguards β, using the same argument,

β = 2a1 −
3

2
a0 −

a2

2
= a1 − a0 −

a0 − 2a1 + a2

2
= a1 − a0 −

w

2
= k − 2,

using the definition of k and again Proposition 2.3. This proves that

f(i) = 2i2 + (k − 2)i+ a0,

which is exactly the second term of the formula in Corollary 2.6.

So, it seems that the interpolating polynomial between three nodes expresses
the behaviour of the successive remainders of the number N .
A natural question that arises is the following: will the interpolating poly-
nomial approximates the successive remainders even if a0 ≤ a1 ≤ a2 does
not hold?
The following example shows the negative answer:
Example 2.2. Fix N = 577 · 727 = 419479. Then we consider for m only the

values between
⌊√

N
2

⌋
+ 1 = 458 and

⌊√
N
⌋
− 1 = 646. Take m = 462, so

that 
a0 = 445

a1 = 1

a2 = 23.
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Then the interpolating polynomial is f(x) = 233x2 − 677x+ 445. So

f(3) = 511 ≡ 46 mod m+ 3 and f(−2) = 2731 ≡ 426 mod m− 1,

while
N ≡ 49 mod m+ 3 and N ≡ 419 mod m− 2.

2.4.2 A conjecture on interpolating polynomials

It seems that the request of having growing remainders is necessary. Actually,
from experimental results, we state the following conjecture:

Conjecture. Let N be an odd integer and let
⌊√

N
2

⌋
+ 1 ≤ m ≤

⌊√
N
⌋
−1

such that 
N ≡ a0 mod m

N ≡ a1 mod (m+ 1)

N ≡ a2 mod (m+ 2).

Then, the interpolating polynomial f ∈ Q(x) defined as in (2.14) is such
that, for every i ∈ Z,

N ≡ f(i) mod (m+ i)

if and only if a0 ≤ a1 ≤ a2 or a0 ≥ a1 ≥ a2.

If the previous conjecture is true, then we may relax our requests and consider
just a monotonic set of three successive remainders. The approach of the
interpolating polynomial is useful to find an exact factorization, since if we
succeed in finding the roots for it, the corresponding values found for i prove
that m+ i is a divisor for N .
Example 2.3. Suppose we consider N = 955191388807. Then the interval
for m is

691083 ≤ m ≤ 977337.

We choose m = 944879, then
a0 = 9242080

a1 = 858247

a2 = 792216.
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The interpolating polynomial is

f(x) = x2 − 66034x+ 924280,

which has two integers roots

f(14) = f(66020) = 0.

This proves that N should have factors equal to m + 14 = 944893 and
m+ 66020 = 1010899 and, in fact,

944893 · 1010899 = 955191388807 = N.

This example shows the limits of this method: we may find a root for f only
when we consider three starting remainders that are in a sequence that grows
up to N or decreases to 0. In fact, in the previous example, the successive
remainders starting from m are

N ≡ 924280 mod m N ≡ 858247 mod (m+ 1)

N ≡ 792216 mod (m+ 2) N ≡ 726187 mod (m+ 3)

N ≡ 660160 mod (m+ 4) N ≡ 594135 mod (m+ 5)

N ≡ 528112 mod (m+ 6) N ≡ 462091 mod (m+ 7)

N ≡ 396072 mod (m+ 8) N ≡ 330055 mod (m+ 9)

N ≡ 264040 mod (m+ 10) N ≡ 198027 mod (m+ 11)

N ≡ 132016 mod (m+ 12) N ≡ 66007 mod (m+ 13)

N ≡ 0 mod (m+ 14)

Therefore, we were already close to one of the factors of N with the value
of m. If we choose m to be distant from the factors of N and such that
the first three remainders are monotonic, then we would obtain a different
polynomial without integer roots, so that we still have to deal with the issue
of getting a right value for m in order to obtain a factor of N using the
interpolating polynomial.
A possible application of this property could be to find a method to under-
stand when we choose m such that we are in a descending or ascending chain
of remainders leading to 0 or N respectively, so that then it is easy to find
at least one of the factors.
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Chapter 3

The General Number Field
Sieve

In this chapter we will describe the classical General Number Field Sieve
algorithm as formulated in [BLP93].
A first simpler version of this algorithm was proposed in 1988 by Pollard
([Pol93a]), who presented a factorization for the seventh Fermat Number
F7 = 2128 + 1, using the ring of integers Z[ 3

√
2] of the number field Q( 3

√
2).

This example does not employ any sieving phase, but eventually led to the
development of the (Special) Number Field Sieve ([LLMP93b]), a general-
ization of Pollard’s idea for the factorization of integers of the form re ± s,
where r, s ∈ N+ are small integers and e ∈ N+ is large. In the same article it
was also presented a first heuristic estimate for the complexity, which showed
that the algorithm was sub-exponential.
Finally, in 1993, a more complete version of the algorithm was provided
([BLP93]). It holds for all integers and was therefore called General Number
Field Sieve (for a complete history of the evolution of algorithm, we refer to
[LLMP93a] and [Pom08]). This is the version that we will entirely report
in this chapter: we will present the most important steps of the algorithm,
describing the construction of the Rational Factor Base, the Algebraic Fac-
tor Base and the Quadratic Characters Base. We will also give some hints
on the computation of the heuristic complexity of the algorithm, based on
some theorems in Analytic Number Theory. We will always refer to it as the
classical version of GNFS.
Since the description of this idea, many changes have been made, especially
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in the choice of the polynomial and the sieving phase. We will discuss these
new developments at the end of the chapter, focusing on the most important
changes with respect to the older versions of the sieve. On one hand, we will
see how to generalize the polynomials used in GNFS and some criteria to
establish if a given polynomial would lead to an adequate number of pairs in
the sieving phase; on the other side, we will also present how the techniques
of sieving have been improved in order to increase the speed of this phase.
In this thesis we will refer to classical GNFS as a starting point to develop
new strategies that will be explained in the next chapters.

3.1 Choice of the polynomial

From now on, we will call N the number we want to factorize. The first
problem in GNFS is to determine a monic irreducible polynomial f ∈ Z[x]

of degree d such that there exists m ∈ Z, which verifies f(m) ≡ 0 mod N . A
common way to create this polynomial is to fix a degree d for the polynomial
and take an m ∈ Z, such that m ≈ N

1
d in order to obtain that N = md + r,

where 0 ≤ r < md. Then we consider the base-m representation of N as

N =

d−1∑
i=0

aim
i +md,

with 0 ≤ ai < m, for every i ∈ {0, . . . , d − 1}. More generally, we can
consider the base-m representation of any kN , with k ∈ Z. The polynomial
we consider is then

f(x) = a0 + a1x+ . . .+ ad−1x
d−1 + xd,

which returns exactly the value N (or kN), when evaluated in m. Choosing
the polynomial in this way, it might (very rarely) happen that f is a reducible
polynomial, say f = gh, with g, h ∈ Z[x] and deg(g),deg(h) < d. In this
case

N = f(m) = g(m)h(m),

so that g(m) and h(m) are factors for N . If g(m) and h(m) are non-trivial,
then we have obtained a factorization for N , while if one of them, say g(m),
is equal to N and h(m) = 1, then we can take g instead of f as defining
polynomial for GNFS. We may therefore assume that f is irreducible.
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In the modern implementation of the algorithm, the condition of f being
monic has been removed and instead of a single polynomial, two bivariate
polynomials f1, f2 ∈ Z[x, y] are fixed with a common root modulo N . More-
over, some other indicators are computed (such as α-value and Murphy’s
E-score, [Mur99]) to witness the probability of having chosen “good” poly-
nomials, where f is considered good if it satisfies some properties that will
be discussed in Section 3.8.

3.1.1 Producing a difference of squares

Given f , we call θ ∈ C one of its roots and define the number field Q(θ). We
also consider Z[θ], which is a subring of its ring of integers OQ(θ). The next
proposition defines a map from Z[θ] to ZN .
Proposition 3.1. Given f ∈ Z[x] an irreducible monic polynomial, let θ ∈ C
be one of its roots and m ∈ Z a root of f modulo N . Then, the function φ

φ :Z[θ]→ ZN
a+ bθ 7→ a+ bm mod N

is a surjective ring homomorphism.

We recall from Chapter 1 that GNFS is a method of the second category,
meaning that we find two values x, y ∈ Z such that x2 ≡ y2 mod N and
x 6≡ ±y mod N . In GNFS, to provide x and y we search for a set U ⊂ Z×Z
such that∏

(a,b)∈U

(a+ bθ) = β2 ∈ Z[θ] and
∏

(a,b)∈U

(a+ bm) = y2 ∈ Z.

So if we define x = φ(β) mod N , we obtain that

x2 ≡ φ (β)2 = φ
(
β2
)

=

= φ

 ∏
(a,b)∈U

(a+ bθ)

 =
∏

(a,b)∈U

φ (a+ bθ) ≡

≡
∏

(a,b)∈U

(a+ bm) = y2 mod N,

producing the difference of squares we need (however we still must check
that x 6≡ ±y mod N). Hence the aim of GNFS is to find a set U ⊆ Z × Z
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for which ∏
(a,b)∈U

(a+ bm) (3.1)

is a square in Z and, at the same time,∏
(a,b)∈U

(a+ bθ) (3.2)

is a square in Z[θ]. For implementative needs, U will actually be a subset of
S, namely

S = {(a, b) ∈ Z× Z : gcd(a, b) = 1, |a| ≤ µ, 0 < b ≤ η} , (3.3)

where µ, η ∈ N+ are two parameters chosen at the beginning of the algorithm,
that depend on N and define the sieving region. To find U , we need to define
three special sets, called bases:

• The Rational Factor Base,

• The Algebraic Factor Base,

• The Quadratic Characters Base.

The first one addresses the issue of searching for a square in Z and will be
explained in Section 3.2, while the others face the more complicated problem
of finding a square in Z[θ] and will be discussed in Section 3.3 and Section 3.4.

3.2 The Rational Factor Base

The search for a square in the integers is a procedure employed in many fac-
torization methods, for example in Dixon’s Factorization or in the Quadratic
Sieve.
Definition 3.2. Given N ∈ N+, f ∈ Z[x] an irreducible monic polynomial
and m a root of f modulo N , we fix a threshold value B ∈ N+ and define
the Rational Factor Base R as

R =
{

(m mod pi, pi) : pi ∈ N+
∣∣ pi ≤ B and pi is prime

}
.

The set R is essentially the set of all prime numbers up to B, where the first
term of each element is noted for implementative reasons.
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3.2.1 The Rational Sieve

We search for all the elements with (a, b) ∈ S of the form a + bm, that are
smooth in R or equivalently that are B-smooth, meaning that all the prime
divisors of a+ bm are in R, namely all the prime divisors of a+ bm are not
greater than B. So for each fixed integer b ∈ {1, . . . , η}, an array of length
2µ+ 1 is initialized with the integers a+ bm for −µ ≤ a ≤ µ. Then for each
prime p ∈ R we want to track all the a’s such that a+ bm ≡ 0 mod p (and
this is why we precomputed each m mod p in the definition of R), but this
is equivalent to finding all the a in the interval such that a = −bm+ hp, for
any h ∈ Z (remember that b, m and p are fixed). So,

−µ ≤ a ≤ µ
−µ ≤ −bm+ hp ≤ µ
−µ+ bm

p
≤ h ≤ µ+ bm

p

We run h through all the integers between
⌈
−µ+bm

p

⌉
and

⌊
µ+bm
p

⌋
and identify

in the array all the a = −bm + hp. We divide each a + bm by the highest
power of p that divides it and we replace it with the quotient in the same
position of the array. We repeat this procedure for all the primes in R. At
the end of this process, if there is a position in the array that contains ±1,
then that the corresponding a + bm is smooth in R. If also gcd(a, b) = 1,
then we store this value in a set T1. At the end of the whole sieving step,
the set T1 will consist of

T1 = {(a, b) ∈ S : a+ bm is smooth in R} .

This sieving part can be speeded up by initializing − log2 (|a+ bm|) in each
position of the array and adding log2(p) each time, instead of dividing by p.
At the end of the phase, if the result in an entry of the array is approximately
close to 0, we may assume a + bm is smooth in R. We will see how the
problem of finding a subset U for which (3.1) holds is linked to the set T1 in
Section 3.5.
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3.3 The Algebraic Factor Base

Our aim for this section is to set a strategy for finding the subset U , in
order to obtain a square in Z[θ], as described in (3.2). When Z[θ] is a
Unique Factorization Domain, then we apply a similar process as done in
the previous section and obtain a square. However Z[θ] is rarely a UFD
(exactly if and only if Z[θ] = OQ(θ), [LLMP93b]), which is the case treated
by the Special Number Field Sieve. When Z[θ] is not a UFD, we use principal
ideals in Z[θ] of the form 〈a+ bθ〉. We will mainly work with first-degree
prime ideals, as defined in Chapter 1 and it is useful to state the following
theorem:
Theorem 3.3. Let f ∈ Z[x] be an irreducible monic polynomial and θ ∈ C,
one of its roots. Then, for every positive prime p there exists a bijection
between

{(r, p) : r ∈ Zp | f(r) ≡ 0 mod p}

and
{p : p is a first-degree prime ideal in Z[θ] |N (p) = p} .

Proof. Given the importance of this theorem, we will give a proof for it.
Suppose p is a first-degree prime ideal in Z[θ]. This means that the norm
N (p) = [Z[θ] : p] = p, with p ∈ N+ prime number, so that Z[θ]/p ∼= Zp. It is
therefore possible to consider the canonical projection π : Z[θ]→ Zp (which
is surjective), with kernel equal to p. If we consider the polynomial f to be
f =

∑d−1
i=0 aix

i + xd, then of course π (f(θ)) = π(0) = 0, but, on the other
hand,

0 = π (f(θ)) = π(a0 + a1θ + . . .+ ad−1x
d−1 + xd) ≡

≡ a0 + a1π(θ) + . . .+ ad−1π(θ)d−1 + π(θ)d mod p ≡
≡ f (π(θ)) mod p,

hence π(θ) = r ∈ Zp must be a root of f modulo p.
On the contrary, suppose that p is a prime number and r ∈ Zp is a root for
f modulo p. Let π′ : Z[θ]→ Zp be the surjective homomorphism that maps
θ to r mod p. Let p = kerπ′ be an ideal of Z[θ], so by the first isomorphism
theorem Z[θ]/p ∼= Zp, meaning also that |Z[θ]/p| = p, so that p is a first-
degree prime ideal of Z[θ]. It is obvious that π′ = π, leading to a bijective
correspondence between the two sets analysed.
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There are two possible scenarios: Z[θ] = OQ(θ) or the more common case
Z[θ]  OQ(θ). Suppose we are in the first case.
Recalling what we explained in Remark 1.2, if α ∈ Z[θ] and a = 〈α〉 is a
principal ideal of Z[θ], then

pm1
1 · · · p

mh
h = |N(α)| = N (a) = N

(
pe11 · · · p

ek
k

)
, (3.4)

where {p1, . . . , ph} are prime numbers, while {p1, . . . , pk} are prime ideals
and {e1, . . . , ek,m1, . . . ,mh} ∈ N+. Since in OQ(θ) every ideal has a unique
factorization into prime ideals, it is obvious that α is a square in Z[θ] if and
only if every e1, . . . , ek is even. In particular if α is a square, then also every
mi is even for every i ∈ {1, . . . , h}. However on the contrary, supposing every
mi to be even does not assure α to be a square. In fact, two undesirable
things may happen:

(i) for some pi there exist more than one prime ideal, say pi1 and pi2 , with
corresponding exponents ei1 and ei2 odd, such that

N
(
p
ei1
i1

)
·N

(
p
ei2
i2

)
= p

ei1
i · p

ei2
i = pmi

i ;

(ii) for some pi there exist an ideal pj , with corresponding exponent ej
odd, such that

N
(
p
ej
j

)
= p

ej ·u
j = pmi

j ,

with u ∈ N+.

The case (ii) can be prevented, by restricting to ideals of a special form.
Proposition 3.4. Let a, b ∈ Z be coprime. Then every prime ideal p of Z[θ]

that divides 〈a+ bθ〉 is a first-degree prime ideal.

Proof. Let p be a prime ideal that divides 〈a+ bθ〉. In particular a+ bθ ∈ p.
Since N (p) = pm, with m ∈ N+ and p a prime number, then Z[θ]/p ∼= Fpm
the finite field with pm elements. Let π : Z[θ] → Fpm be the canonical
projection, then a+ bθ ∈ p = ker(π), so π(a+ bθ) ≡ 0 mod p. Suppose now
b ≡ 0 mod p, but then 0 ≡ π(a + bθ) ≡ a + br ≡ a mod p, meaning that
also a is a multiple of p and this is not possible, since a and b are coprime.
So b 6≡ 0 mod p, implying that π(θ) ≡ −a

b mod p. This last condition is
equivalent to π (Z[θ]) = Fp, but since the projection is surjective, this implies
that m = 1, proving the desired result.
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To prevent (i), we add constraints on r, where r comes from the correspon-
dence defined earlier by Theorem 3.3.
Proposition 3.5. Let a, b ∈ Z such that gcd(a, b) = 1. Let f ∈ Z[x] be
a monic irreducible polynomial and call θ ∈ C on of its roots. Then, the
first-degree prime ideal p of Z[θ], corresponding to the pair (r, p) as in The-
orem 3.3, divides 〈a+ bθ〉 with exponent equal to

ep,r(a+ bθ) =

ordp (|N(a+ bθ)|) if a+ br ≡ 0 mod p

0 otherwise,
(3.5)

where ordp(k) is the maximum exponent of p in the factorization of k.

To prove the previous proposition, we need a useful link between the norm
of an element in Q(θ) and the polynomial defining the number field.
Proposition 3.6. Let f ∈ Z[x] be a monic irreducible polynomial of degree
d and call θ ∈ C one of its roots. Then, given for every a, binZ, with b 6= 0,

N(a+ bθ) = (−b)df
(
−a
b

)
.

Proof. Call θ = θ1, . . . , θd the conjugates of θ in Q(θ), then

N(a+ bθ) = (a+ bθ1) · (a+ bθ2) · · · (a+ bθd) =

= (−b)d
(
−a
b
− θ1

)
· · ·
(
−a
b
− θd

)
= (−b)df

(
−a
b

)
.

We can now prove Proposition 3.5:

Proof of Proposition 3.5. Consider the projection π : Z[θ] → Zp such that
π(θ) = r mod p as in the proof of Theorem 3.3, then p | 〈a + bθ〉 if and
only if 〈a + bθ〉 ⊆ p and in particular, a + bθ ∈ p. This translates into
π(a + bθ) ≡ 0 mod p, since p is the kernel of π. But the last condition
is equivalent to a + bπ(θ) ≡ a + br ≡ 0 mod p. So we have proved that
p | 〈a+ bθ〉 if and only if a+ br ≡ 0 mod p.
Remembering that, from the proof of Proposition 3.6, b 6≡ 0 mod p, it turns
out that N(a + bθ) ≡ 0 mod p if and only if f

(
−a
b

)
≡ 0 mod p, so that

a ≡ −br mod p, since, by definition, r is a root of f modulo p. Now, to
complete the result, we would like to show that the problem highlighted
previously does not occur: suppose there exist another first-degree prime
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ideal p2 6= p, corresponding to the pair (r2, p), such that p2 | 〈a+ bθ〉. But,
this is equivalent to saying that a + br2 ≡ 0 mod p and so r ≡ r2 mod p,
which is impossible since p 6= p2. Thus, for any prime p there it can be at
most one first-degree prime ideal p with norm p that divides 〈a+ bθ〉, hence,
if this happens, it must have exponent equal to the maximum power of p
that divides |N(a+ bθ)|, which is exactly ordp (|N(a+ bθ)|).

We have now established an exact correspondence between the first-degree
prime ideals p that divides principal ideals of the form 〈a + bθ〉 ⊆ Z[θ] and
the exponents ep,r when OQ(θ) = Z[θ], namely recalling (3.4), the relation
becomes

p
ep1,r1 (a+bθ)
1 · · · pepk,rk

(a+bθ)

k = |N(a+ bθ)| = N (〈a+ bθ〉) = N
(
pe11 · · · p

ek
k

)
,

(3.6)

where each ideal pi corresponds to the pair (ri, pi) using Theorem 3.3 and
each ei = epi,ri(a+ bθ) for every 1 ≤ i ≤ k. In this specific setting, a+ bθ is
a square if and only if every epi,ri(a+ bθ) is even.

We can now define another fundamental base for GNFS:
Definition 3.7. Given N ∈ N+, f ∈ Z[x] an irreducible monic polynomial
and θ ∈ C one of its roots, we fix a threshold value C ∈ N+ and define the
Algebraic Factor Base A as

A = {p : p is a first-degree prime ideal of Z[θ] with N (p) ≤ C} .

Equivalently, using Theorem 3.3,

A = {(r, p) : p ∈ {2, . . . , C} is a prime number and f(r) ≡ 0 mod p} .

It remains to deal with the more consistent case, when Z[θ] 6= OQ(θ) and will
be discussed in detail in Section 3.4.

3.3.1 The Algebraic Sieve

We say that an element a + bθ ∈ Z[θ] is smooth in A if the ideal 〈a + bθ〉
factorizes completely into first-degree prime ideals in A, which also means
that |N(a + bθ)| is C-smooth in the sense that we have already defined for
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rational numbers. We are now searching for a set

T2 = {(a, b) ∈ S : a+ bθ is smooth in A} .

The sieving is performed in a similar way as explained in Section 3.2.1, with
minor changes to adapt to ideals. First of all, fixed a value for b ∈ {1, . . . , η},
an array of length 2µ + 1 is initialized having in each entry the quantity
|N(a+bθ)|. For each p = (r, p) ∈ A, we search for the ideals 〈a+bθ〉’s that are
divisible by p, that, as we have seen in Proposition 3.5, are those satisfying
the condition a + br ≡ 0 mod p, which can be rewritten as a = −br + hp,
with h ∈ Z. Then again, since −µ ≤ a ≤ µ, we consider all the a = −br+hp,
where ⌈

−µ+ br

p

⌉
≤ h ≤

⌊
µ+ br

p

⌋
.

For all the a’s found in this way, we divide the corresponding |N(a + bθ)|
by the highest power of p that divides it and replace the entry with the
result. We repeat the process for all the elements in A. At the end of the
procedure, we look for all the elements equal to 1, which are exactly the
smooth elements we were looking for, if also gcd(a, b) = 1, we store that pair
(a, b) in the set T2. Then, we move on with the next b. As before, the sieving
can be speeded up inizializing the vector with logN(a+bθ) for every a and b
and then subtract log p, when we found a first-degree prime ideal with norm
equal to p that divides 〈a+ bθ〉. In Section 3.5 we will see how to employ T2

to find the set U we are searching for.

3.4 General Ring of Integers

We now deal with the general case when OQ(θ) 6= Z[θ]. There are some
problems in this case: in (3.6) we used the property that the factorization of
ideals in OQ(θ) = Z[θ] is unique, however if Z[θ] is different from the whole
ring of integers, then it is not a UFD anymore. First of all, we need to define
a new function that links the exponent of the factorization in prime ideals
in Z[θ] to the ones in the factorization in OQ(θ):
Proposition 3.8. For each prime ideal p of Z[θ] we can define a group
homomorphism lp : Q(θ)∗ → Z, such that the following holds:

(i) For every non-zero β ∈ Z[θ], then lp(β) ≥ 0.

(ii) If β ∈ Z[θ], with β 6= 0, then lp(β) > 0 if and only if β ∈ p.
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(iii) For all α ∈ OQ(θ), we have lp(α) = 0 for all but finitely many p and∏
p

N (p)lp(α) = |N(α)|,

where p ranges over all the prime ideals in Z[θ].

In the case when OQ(θ) = Z[θ], the function lpi for each prime ideal pi of
Z[θ] is exactly the exponent ei, using the notations of (3.6).
Corollary 3.9. Let a, b ∈ Z with (a, b) = 1 and let p be a prime ideal of
Z[θ]. If p is not a first-degree prime ideal, then lp(a + bθ) = 0. Instead, if
p = (r, p) is a first-degree prime ideal, then lp(a+ bθ) = ep,r(a+ bθ).

Proof. In Proposition 3.4 we already proved the first part of this corollary.
The second result, follows from the last point of the previous proposition,
comparing the exponents on the left and on the right sides of the equation.

In this way we have obtained again an exact correspondence between the
integer factorization of |N(a+bθ)| and the ideal factorization of 〈a+bθ〉 and
we have the following:
Proposition 3.10. Let f ∈ Z[x] be a monic irreducible polynomial and call
θ ∈ C one of its roots and let U ⊆ S, where S is defined as in (3.3). Suppose
that ∏

(a,b)∈U

(a+ bθ) = γ2 ∈ OQ(θ),

then for each first-degree prime ideal p corresponding to the pair (r, p) we
have ∑

(a,b)∈U

ep,r(a+ bθ) ≡ 0 mod 2.

Proof. Since lp is a group homomorphism, we obtain that

∑
(a,b)∈U

ep,r(a+ bθ) =
∑

(a,b)∈U

lp(a+ bθ) = lp

 ∏
(a,b)∈U

(a+ bθ)

 =

= lp(γ
2) = 2lp(γ) ≡ 0 mod 2.

Actually, one could wish the converse to hold as well, in order to find a
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sufficient condition for an element to be a square in OQ(θ), but unfortunately
this is not the case. However, the number of elements for which the converse
fail can be estimated ([BLP93, Theorem 6.7]) and we will explain a way to
overcome this situation in Section 3.4.1.

Moreover, we may highlight other four different issues for which this solution
might not be enough:

1. The ideal
〈∏

(a,b)∈U (a+ bθ)
〉

of OQ(θ) may not be the square of an
ideal, since we are working with prime ideals in Z[θ] and not in OQ(θ).

2. Even if
〈∏

(a,b)∈U (a+ bθ)
〉

= a2 for some a ideal of OQ(θ), the ideal a
may not be principal.

3. Even if
〈∏

(a,b)∈U (a+ bθ)
〉

= 〈γ2〉 for some γ ∈ OQ(θ), it is not neces-
sary that

∏
(a,b)∈U (a+ bθ) = γ2.

4. Even if
∏

(a,b)∈U (a+ bθ) = γ2 for some γ ∈ OQ(θ), it is not guaranteed
that γ ∈ Z[θ].

If OQ(θ) = Z[θ], then the first and the last conditions cannot happen. More-
over the last obstruction can be avoided by searching for a γ ∈ OQ(θ) such
that ∏

(a,b)∈U

(a+ bθ) = γ2,

instead of the request given in (3.2). We know that if γ ∈ OQ(θ), then
β = γf ′(θ) ∈ Z[θ] (as stated in [Wei98, Proposition 3-7-14]). Keeping the
condition that

∏
(a,b)∈U (a + bm) = z2 is a square in Z and using this new

definition of β, we can define

y = f ′(m)z ∈ Z and x = φ(β) ∈ ZN .

In this way, we can obtain a difference of squares, in fact:

x2 ≡ φ (β)2 = φ
(
β2
)

=

= φ

f ′(θ)2
∏

(a,b)∈U

(a+ bθ)

 = φ
(
f ′(θ)2

) ∏
(a,b)∈U

φ (a+ bθ) ≡

≡ f ′(m)2
∏

(a,b)∈U

(a+ bm) = f ′(m)2z2 = y2 mod N, (3.7)

obtaining again the desired relation.
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3.4.1 The Quadratic Characters Base

The three problems left can be addressed by using quadratic characters as
suggested by Adelman in [Adl91]. To explain this idea, we present a simpler
situation: suppose that X is a finite set of prime numbers and that l ∈ Z∗

is such that every prime in its factorization that does not belong to X has
an even exponent. Suppose also that we cannot know in advance the sign
of l and the exponents of its prime factors in X. A test for the squareness
of l can be the following: if p is an odd prime number such that p /∈ X and
p 6 | l, then we check the Legendre symbol

(
l
p

)
. If it is equal to −1, then l

is not a square; on the contrary if the symbol is always 1 for a number of
primes greater than #X it is extremely probable that l is a square. In the
same way, replacing Z with Z[θ], we can find a necessary condition for a+ bθ

being a square.
Theorem 3.11. Let f ∈ Z[x] be a monic irreducible polynomial and call
θ ∈ C one of its roots. Let U ⊆ S such that

∏
(a,b)∈U (a + bθ) = γ2 ∈ OQ(θ)

and let q be a first-degree prime ideal corresponding to the pair (s, q) such
that for every (a, b) ∈ U , we have that a+ bs 6≡ 0 mod q (that is q 6 | 〈a+ bθ〉)
and f ′(s) 6≡ 0 mod q. Then,

∏
(a,b)∈U

(
a+ bs

q

)
= 1.

Proof. Let π : Z[θ] → Z[θ]/q ∼= Fq be the canonical ring projection that
maps θ to s mod q. If we consider the Legendre symbol modulo q to be a
map ψq : Fq \ {0} → {±1}, we can now define the composition χq : ψq ◦ π,
where clearly

χq : Z[θ] \ q→ {±1}

χq (a+ bθ) =

(
a+ bs

q

)
.

As we saw in (3.7), it exists β ∈ Z[θ] such that

β2 = f ′(θ)2
∏

(a,b)∈U

(a+ bθ).
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When we apply π to β2, we obtain that

π(β2) = π

f ′(θ)2
∏

(a,b)∈U

(a+ bθ)

 = f ′(s)2
∏

(a,b)∈U

(a+ bs) 6≡ 0 mod q,

by hypothesis. Thus, we may apply χq to β2 and obtain:

χq

(
β2
)

= χq

f ′(θ)2
∏

(a,b)∈U

(a+ bθ)

 = ψq

f ′(s)2
∏

(a,b)∈U

(a+ bs)

 =

=

(
f ′(s)2

∏
(a,b)∈U (a+ bs)

q

)
=

(
f ′(s)2

q

)(∏
(a,b)∈U (a+ bs)

q

)
=

=
∏

(a,b)∈U

(
a+ bs

q

)
.

On the other side,

χq

(
β2
)

=

(
π(β)2

q

)
= 1,

so that the thesis follows.

Again we proved a necessary, but not sufficient condition for an element to
be a square in OQ(θ). Nevertheless, if a non-zero element β ∈ Z[θ] satisfies
χq(β) = 1 for a large number of first-degree prime ideals q, it is very likely
to be a square in OQ(θ). In this way all the obstructions presented above can
be bypassed. Thus, we can define the last base needed by the algorithm:
Definition 3.12. Let N ∈ N+, f ∈ Z[x] be an irreducible monic polynomial
and θ ∈ C be one of its roots. Let A be the Algebraic Factor Base as in
Definition 3.7 with threshold C = C(N) and define another threshold value
D = D(N), we define the Quadratic Characters Base Q as

Q =
{

(s, q) : f(s) ≡ 0 mod q, C < q ≤ D and f ′(s) 6≡ 0 mod q
}
.

With this definition, we collect in Q each of the first-degree prime ideals q of
Z[θ] with C < N (q) ≤ D (so that q /∈ A), corresponding to the pair (s, q)

such that f ′(s) 6≡ 0 mod q. As explained above, we use the elements in this
base to check the squareness of the products of the elements found with the
Algebraic Factor Base. We will explain this concept in the next section.
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3.5 Linear Algebra

After the Rational Sieve and the Algebraic Sieve (described in Section 3.2.1
and Section 3.3.1) we obtained two sets:

T1 = {(a, b) ∈ S : a+ bm is smooth in R}

and
T2 = {(a, b) ∈ S : a+ bθ is smooth in A} .

Recall we are looking for a set U ⊆ S such that∏
(a,b)∈U

(a+ bm) = y2 ∈ Z and
∏

(a,b)∈U

(a+ bm) = γ2 ∈ OQ(θ),

so U ⊆ T = T1 ∩ T2. We also remember the three bases and write explicitly
their elements:

• The Rational Factor Base is (essentially) the set of all prime integers
up to B:

R = {p1, . . . , pM},

with M the number of the elements in this set, i.e. M = π(B), where
in this case π is the prime-counting function.

• The Algebraic Factor Base is the set of all pairs (r, p), with p a prime
up to C and r is a root of f modulo p:

A = {(r1, p1), . . . , (rM1 , pM1)},

whereM1 is the dimension of this set. Notice that the primes pi’s with
1 ≤ i ≤M1 can be repeated.

• The Quadratic Character Base is defined as the set of all pairs (s, q),
with C < q ≤ D a prime, s a root of f modulo q and f ′(s) 6≡ 0 mod q,
then

Q = {(s1, q1), . . . , (sM2 , qM2)},

where M2 is the size of the set. Even in this case each qi (1 ≤ i ≤M2)
can appear more than once.

We call n = 1 + M + M1 + M2 and associate to each element (a, b) ∈ T , a
vector v = (v1, . . . , vn) ∈ (F2)n in the following way:

61



CHAPTER 3. THE GENERAL NUMBER FIELD SIEVE

• v1:
this value represents the sign of a+ bm and we set

v1 =

0 if a+ bm > 0

1 if a+ bm < 0.

• v2, . . . , v(1+M):
since (a, b) ∈ T , then a + bm completely factorizes into the primes in
R. But again we are interested in finding a square in Z, so we may
consider the exponents of the factorization of a + bm modulo 2: for
every 1 ≤ i ≤M

v(1+i) = ordpi(a+ bm) mod 2,

where pi ranges over all the elements in R.

• v(2+M), . . . , v(1+M+M1):
(a, b) ∈ T , so that the principal ideal 〈a + bθ〉 completely factorizes
into first-degree prime ideals in A. As we saw in Corollary 3.9, there is
a correspondence between the exponents of the ideals and ep,r(a+ bθ),
defined in (3.5) for every (r, p) first-degree prime ideal. Thus, for every
1 ≤ i ≤M1

v(1+M+i) = epi,ri(a+ bm) mod 2,

where (ri, pi) varies among all the ideals in A.

• v(2+M+M1), . . . , vn:
as we explained in Section 3.4.1 to ensure that

∏
(a,b)∈U (a + bθ) is a

square in OQ(θ), we employ the quadratic characters, so these last bits
of the vector are set as

v(1+M+M1+i) =

1 if
(
a+bsi
qi

)
= −1

0 if
(
a+bsi
qi

)
= 1,

for every 1 ≤ i ≤ M2 and where (si, qi) are all the first-degree prime
ideals in Q.

It is now possible to write such a vector for every pair (a, b) ∈ T and arrange
them in a matrix G ∈M#T×n(F2) and if #T > n, then there exists at least
one non-zero solution x ∈ (F2)#T for the homogeneous system xG = 0. The
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non-zero entries of x are exactly the pairs in T that belongs to U , in fact in
this way

∏
(a,b)∈U (a+ bm) is a positive integer, since the first bit is 0 and all

the primes appearing in its factorization have even exponents because the
successive M entries are null as well, so it is exactly a square in Z. In a
similar way

∏
(a,b)∈U (a+ bθ) is a square in OQ(θ), since the exponents in the

ideal factorizations are all even and the quadratic characters are all equal to
1.

3.6 Finding The Square Roots

After having obtained a value β2 ∈ Z[θ], we need to compute its square
root. In the original paper [BLP93], this is achieved by using the Hensel
lifting modulo several prime powers, however this computation may be very
time consuming because the integers involved in the last lifting are huge.
Couveignes proposed in [Cou93] another method that exploits the Chinese
Remainder Theorem, given the condition that the degree of f is odd. The
best efficient algorithm to compute the square root of β was given by Mont-
gomery in [Mon93] and later refined in [Ngu98]. This method is based upon
fractional ideals and the construction of a lattice, which is then reduced using
LLL algorithm.

3.7 Complexity of GNFS

We will now concisely explain the analysis of the performances of GNFS,
using results from some well-known functions developed in Analytic Number
Theory.

3.7.1 Some analytic considerations

Definition 3.13. For x ≥ 1 and y ≥ 1, define the function

ψ(x, y) = |{m ∈ N : m ≤ x and m is y-smooth}| ,

where y-smooth means that every prime factor of m is smaller than y.

Using the ψ function, we can define another important function ([Dic30]):
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Definition 3.14. For u ∈ R+, the Dickman function ρ : R+ → R+ is

ρ(u) =

limr→∞
ψ
(
r,r

1
u

)
r for u > 1

1 otherwise.

This function measures the asymptotic probability that a random value has
its largest prime factor at most r

1
u . In other words it corresponds to the

asymptotic probability that the random value is y-smooth, where u = log r
log y .

A survey of results on Dickman’s function can be found in [Nor71]. Consider
a random integer i uniformly extracted in [1, x]. The probability of i being
y-smooth is ψ(x,y)

x , so the expected number of elements we need to pick to
obtain a y-smooth value is x

ψ(x,y) . If we want to apply this process k times,
we need to consider roughly xk

ψ(x,y) elements. We would like to consider a
generalized version of this quantity and minimize it. Before doing that, we
need a famous definition:
Definition 3.15. Suppose that v, w ∈ R and 0 ≤ v ≤ 1. The L-function is
defined as

Lx[v, w] = exp
(

(w + o(1)) (log x)v (log log x)1−v
)
.

Theorem 3.16. Let g(y) be a function defined for y ≥ 2 such that g(y) ≥ 1

and g(y) = y1+o(1) for y →∞. Then, as x→∞,

xg(y)

ψ(x, y)
≥ Lx

[
1

2
,
√

2

]
uniformly for all y ≥ 2. Moreover,

xg(y)

ψ(x, y)
= Lx

[
1

2
,
√

2

]

if and only if y = Lx

[
1
2 ,
√

2
2

]
for x→∞.

Remark 3.1. This theorem is used in the analysis of many factoring algo-
rithms (see Table 1.2), in fact if an algorithm A produces x auxiliary num-
bers and hopes to find y of them which are y-smooth, then we should check
roughly xy

ψ(x,y) of these values to obtain the integers we need. If the time

to check each value is yo(1), the expected total time for this step is xy1+o(1)

ψ(x,y) .
Using Theorem 3.16 it is possible to reduce the computational time choosing
y = Lx

[
1
2 ,
√

2
2

]
, obtaining a total computational time for the sieving phase of
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Lx
[

1
2 ,
√

2
]
. Regarding the linear algebra phase of A , the matrix built after

the sieving phase has approximately y rows and y columns, so if the analysis
of this matrix has cost y2+o(1), we obtain a total computational time for A

of Lx
[

1
2 ,
√

2
]
.

This remark gives rise to the following important heuristic principle:
Conjecture. If x = x(N) is the bound on integers which are required to be
smooth by some algorithm A for factoring N , then with an optimal choice
of parameters the asymptotic run-time of A is

Lx

[
1

2
,
√

2

]
.

In the case of GNFS this heuristic complexity can be lowered as we will
report in the next section.

3.7.2 Heuristic Complexity

As we saw in Section 1.1.2, the complexity of GNFS is subexponential and its
evaluation exploits the results given by Theorem 3.16. To be more specific,
the optimal choice for the degree d of the polynomial f is thought to be
given by [BLP93, Conjecture 11.4]

d =
(

3
1
3 + o(1)

)( logN

log logN

) 1
3

as N →∞. In this setting the asymptotic run-time is

exp

(
(1 + o(1))

(
d log d+

√
(d log d)2 + 4 log

(
N

1
d

)
log log

(
N

1
d

)))
,

which may be transformed, after some manipulations, into

exp

(((
64

9

) 1
3

+ o(1)

)
(logN)

1
3 (log logN)

2
3

)
= LN

[
1

3
,

(
64

9

) 1
3

]
.

For more details about the heuristic analysis for GNFS we refer to [BLP93]
and [LLMP93b].
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3.8 Further Developments in GNFS for the Poly-
nomial Choice

The polynomial choice of GNFS has been widely investigated since the for-
mulation we presented above. We will now briefly explain the several mod-
ifications that has changed this phase of the algorithm during the last 25
years.

3.8.1 Homogeneous polynomials

The constraint of considering only monic polynomials has the advantage that
the root θ ∈ OQ(θ) and so Z[θ] has a structure such that is possible to apply
Proposition 3.8. However, this choice has the downside effect of considering
polynomials with bigger coefficients that may slow the execution time of the
algorithm. Trying to overcome this issue, in [BLP93], it is described a new
improvement of GNFS: instead of considering a monic univariate polynomial
of fixed degree d such that there exists a root m modulo N , we consider a
bivariate homogeneous irreducible polynomial F ∈ Z[x, y] of degree d

F (x, y) = cdx
d + cd−1x

d−1y + . . .+ c1xy
d−1 + c0y

d, (3.8)

such that there exist two elements m1,m2 ∈ Z for which F (m1,m2) 6= 0

and F (m1,m2) ≡ 0 mod N . In this setting, we need a new identification
theorem for first-degree prime ideals. Let ω ∈ C be a root of F (x, cd) and
call f ∈ Z[x] the polynomial f(x) = cdx

d + cd−1x
d−1 + . . . c1x + c0, then

it is a straightforward computation seeing that F (x, y) = ydf
(
x
y

)
and that

ω
cd

= θ is such that
F (θ, 1) = f(θ) = 0. In this case θ is not an algebraic integer if cd 6= ±1, but
ω has this property, since ω is a root of F (x,cd)

cd
, which is a monic polynomial.

It can be proved that A = Z[θ] ∩ Z[θ−1] is actually an order of Q(θ).
Definition 3.17. Let Q(θ) be a number field. A subring A ⊂ OQ(θ) is called
an order of Q(θ) if the index of the additive group of A with respect to the
additive group of OQ(θ) is finite, i.e.[

OQ(θ) : A
]
<∞.

In this setting, we have the following generalization of Theorem 3.3:
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Theorem 3.18. Let F ∈ Z[x, y] be an irreducible homogeneous polynomial
of degree d as in (3.8), ω ∈ C a root of F (x, cd) and θ = ω

cd
. Then, for every

p prime number, if A = Z[θ] ∩ Z[θ−1] there exists a bijection between{(
r =

r1

r2
, p

)
: (r1, r2) ∈ Z2

p

∣∣∣∣ F (r1, r2) ≡ 0 mod p

}
∪{(∞, p)}

and
{p : p is a first-degree prime ideal in A |N (p) = p} .

We will just give an idea of the function that guarantees the bijection. Con-
sider the ring homomorphism

π1 : Z[α]→ Fp
a+ bα 7→ a+ br mod p.

Then if r2 6= 0 it is possible to identify p = ker(π1) ∩ A. If r2 = 0 instead,
we consider the homomorphism

π2 : Z[α−1]→ Fp
a+ bα−1 7→ a mod p,

so that p = ker(π2) ∩ A. Notice that in this case if r2 = 0, we identify
the first-degree prime ideal with the pair (∞, p). Since we are working with
orders now, it is possible to give also a generalization of Proposition 3.8:
Proposition 3.19. Let A ⊆ OQ(θ) be an order of Q(θ). For each p of A
prime ideal we can define a group homomorphism lp : Q(θ)∗ → Z, such that
the following holds:

(i) For every non-zero β ∈ A, then lp(β) ≥ 0.

(ii) If β ∈ A, with β 6= 0, then lp(β) > 0 if and only if β ∈ p.

(iii) For all α ∈ OQ(θ), we have lp(α) = 0 for all but finitely many p and∏
p

N (p)lp(α) = |N(α)|,

where p ranges over all the prime ideals in A.

It is also possible to obtain a similar relation between the norm of elements
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in Q(θ) and the homogeneous polynomial F , as in Proposition 3.6:
Proposition 3.20. Let F ∈ Z[x, y] be a homogeneous irreducible polynomial
as in (3.8) of degree d, call ω ∈ C one of its roots and θ = ω

cd
. Then, given

a− bθ ∈ Q(θ),

N(a− bθ) =
F (a, b)

cd
.

Let a, b ∈ Z with (a, b) = 1. As before we define the exponent ep,r as the
exponent of the prime p in the factorization of F (a, b), i.e.

ep,r(a− bθ) =

ordp (a− bθ) if a− br ≡ 0 mod p

0 otherwise.

Finally, we can also retrieve the link between lp(a − bθ) and ep,r(a, b) as in
Corollary 3.9:
Corollary 3.21. Let a, b ∈ Z with (a, b) = 1 and let p be a prime ideal of
A. If p is not a first-degree prime ideal, then lp(a− bθ) = 0. Instead, if p is
a first-degree prime ideal corresponding to the pair (r, p), then

ep,r(a− bθ) =

lp(a− bθ) if r 6=∞

lp(a− bθ) + ordp(cd) if r =∞.

Therefore with homogeneous non-monic bivariate polynomials it is again
possible to establish a correspondence between norm and ideal factorization
which leads to a sieving method.

3.8.2 GNFS with multiple polynomials

Another improvement in polynomial selection was obtained considering two
polynomials instead of only one (see for example [BBKZ16] and [Mur99]).
Define two irreducible polynomials f1, f2 ∈ Z[x] and suppose that there
exists an integer m such that

f1(m) ≡ f2(m) ≡ 0 mod N,

so that m is a common root for f1 and f2 modulo N . Call θ1 and θ2, two
complex roots respectively of f1 and f2. It is therefore possible to define the
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two number fields Q(θ1) and Q(θ2). Consider two ring homomorphisms

φi : Z[θi]→ Z θi 7→ m mod N for i = 1, 2

and suppose we recover as usual a set U ⊆ S such that∏
(a,b)∈U

(a− bθ1) = β2
1∏

(a,b)∈U

(a− bθ2) = β2
2 ,

for some β1 ∈ Z[θ1] and β2 ∈ Z[θ2]. Then,

φ1

(
β2

1

)
=

∏
(a,b)∈U

(φ1 (a− bθ1)) ≡
∏

(a,b)∈U

(a− bm) mod N

φ2

(
β2

2

)
=

∏
(a,b)∈U

(φ2 (a− bθ2)) ≡
∏

(a,b)∈U

(a− bm) mod N,

so
φ1

(
β2

1

)
≡ φ2

(
β2

2

)
mod N.

In this way we remove the request of finding a square in Z, by using the
Rational Factor Base, but instead we consider two separate Algebraic Factor
Bases. Notice that the case f2(x) = x − m leads to the classical GNFS
setting. In practice, the most common situation nowadays is to use a non-
linear polynomial of degree 5/6 and another polynomial of degree 1.
In [EH96b] this process is generalized and k irreducible polynomials are
considered with a common root m ∈ Z modulo N . However, in the same
article it is experimentally proved that using two polynomials provides a
faster sieving phase rather than taking into account more polynomials.

3.8.3 How to choose polynomials

A full report of the properties that the non-linear polynomials in GNFS
should fullfil can be found in [Mur99]. We can define some tests in order
to control the “goodness” of the polynomial f before performing the sieving
phase. To check whether a polynomial is likely to perform well during GNFS,
we analyse:

• Size property
By size we refer to the magnitude of the values taken by the polynomial.
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In fact, the dimension of the coefficients of the polynomial f and its
degree d influences the sieving region Ω and the time of convergence of
the algorithm: the coefficients of f become very large at small d, while
at higher degree, the dimension of the matrix in the linear algebra phase
is bigger. We may distinguish two different types of polynomials: the
non-skewed and the skewed. The first class corresponds to polynomials
with small coefficients which allows us to consider a sieving region of
the form −K ≤ a ≤ K, 1 ≤ b ≤ K, with K ∈ N+. Instead, in skewed
polynomials we require only some of the coefficients to be small: if we
consider non-monic polynomials as in (3.8), the coefficients ad, ad−1

and ad−2 are chosen to be sensibly small and usually |ai−1| ≥ |ai| for
every 0 ≤ i ≤ d. In this case the sieving region is a rectangle S and the
ratio s > 1 between the a-length and the b-width is called skewness.

• Root property
If a polynomial F has many roots modulo small prime powers, the
probability of finding smooth values for the norm is greater than con-
sidering random integers. There are some additional techniques that
grant skewed-polynomial to have excellent root properties. This is the
main reason for their introduction. We will now explain in short how
to distinguish a polynomial with good root properties from a random
one.
Definition 3.22. Let S be a sample. Then, the quantity contp(v)

(called contribution) is the expected value of ordp(v) for values of v
that ranges through S. If the sample S is the image of a polynomial
F , we denote contp(v) as contp(F ) and it is called typical F -value.

If we consider a random element ir, the average contribution of p to ir
is

contp (ir) =
1

p− 1
.

Instead, if f ∈ Z[x] is a univariate monic polynomial, the typical f -
value is

contp(f) =
np
p− 1

, (3.9)

where np is the number of distinct roots of f modulo p, while if
F ∈ Z[x, y] is a bivariate homogeneous polynomial as in (3.8), the

70



3.8. FURTHER DEVELOPMENTS IN GNFS FOR THE POLYNOMIAL CHOICE

typical F -value is

contp(F ) = np

(
p

p2 − 1

)
, (3.10)

where again we denote with np the number of distinct roots (x, y) of
F modulo p. During the sieving phase (see Section 3.3.1), the contri-
bution of each prime p ≤ C is removed from each value being sieved,
removing log p from the previous value. So, a random element ir would
appear as

log ir −
∑
p≤C

log p

p− 1
,

while each polynomial value of the form f(x) = v or F (x, y) = v after
the sieving becomes

log v −
∑
p≤C

contp(v) · log p.

The difference between these two quantities is called the α-value of a
polynomial f (or F ) and it is defined as

α =
∑
p≤C

(
1

p− 1
− contp(v)

)
log p,

which may be specialized using (3.9) and (3.10)

α(f) =
∑
p≤C

(1− np)
log p

p− 1

α(F ) =
∑
p≤C

(
1− np

p

p+ 1

)
log p

p− 1
.

So from these formulas

log f(x) = log ir + α(f)

logF (x, y) = log ir + α(F ).

This means that each value F (x, y) = v acts like a random integer of
size F (x, y) ·eα(F ). In fact when α(F ) < 0, v has more chances of being
smooth than a random element of the same size. We see that α(F ) is
smaller when np is bigger for p small primes, namely when F has more
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roots modulo p.

• Murphy’s E-score
Suppose we are in the setting of having two homogeneous defining
polynomials for GNFS as described in Section 3.8.2 and suppose we are
working with non-skewed polynomials F1 and F2. Since the polynomial
Fj is homogeneous, we can write it in its projective coordinates as

Fj(x, y) = rdFj(cosψ, sinψ).

Our aim is to estimate Fj(cosψ, sinψ). Define

uFj (ψ) =
log |Fj(cosψ, sinψ|+ α (Fj)

logCj
,

where Cj is the smoothness bound for Fj . We divide the interval [0, π]

uniformly into K sub-intervals and set a collection of

ψi =
π

K

(
i− 1

2

)
,

for i = 1, . . . ,K. In this way ψi is the mean of the i-th interval. Now,
we can define the following quantity called Murphy’s E-score:

E(F1, F2) =
K∑
i=1

ρ (uF1(ψi)) ρ (uF2(ψi)) ,

where ρ is the Dickman function as defined in Definition 3.14. Mur-
phy’s E-value can be defined similarly for skewed polynomials. This
quantity tests the goodness of polynomials for GNFS without perform-
ing the sieving. The E-score takes into account both the root and the
size properties and compares the estimates on the possible smooth val-
ues over the sieving region. The higher the value E(F1, F2) is, the more
probable the pair (F1, F2) would lead to a sufficient number of coprime
sieving pairs to perform the sieving step in GNFS.

We are therefore interested in polynomials with small coefficients, so that we
can obtain small values when evaluated, and with many roots modulo small
prime powers. The most important and famous algorithm to obtain poly-
nomials in such a way is the so-called Kleinjung’s algorithm ([Kle06]), that
was also used to implement GNFS for the biggest RSA number factorized
so far, RSA-768 [KAF+10]. This method consists of creating many skewed
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polynomials of the form (3.8), such that the coefficients |cd| and |cd−1| are
very small, while |cd−2| is small. The other coefficients are not controlled,
but the skewness, the α-value and Murphy’s E-score are computed to anal-
yse the behaviour of the polynomials.
This algorithm, presented in 2006, is the last notable improvement in the
polynomial selection for GNFS. Other successive articles on this topic, such
as [BBKZ16] or [Cox15], are mainly based on Kleinjung’s work to obtain
some refinements on some other coefficients. However these further improve-
ments have not led to a successful factorization for a number with more than
768 binary digits.

3.9 Other sieving methods

The ideas of rational and algebraic sieve presented in Section 3.2.1 and Sec-
tion 3.3.1 are the first ones proposed in [BLP93] and are often called classical
sieving. However nowadays this procedure is no longer used, since more re-
fined and faster sieving techniques have been developed. We will shortly
describe some of them in this section.

3.9.1 Lattice Sieving

The lattice sieving was proposed by John Pollard in [Pol93b]. We fix a prime
q for which F has at least one root modulo q. This means that the elements
q we are considering are the norm of some first-degree prime ideals in the
algebraic factor base A. Suppose also that m 6≡ 0 mod q. The prime q is
called special prime. The sieving is done only on coprime pairs (a, b) ∈ Z2

such that a+ bm ≡ 0 mod q, namely we consider the set

Lq = {(a, b) : a+ bm ≡ 0 mod q | gcd(a, b) = 1} .

This set is a lattice on the (a, b) plane. Then we consider a basis for Lq

V1 = (a1, b1) and V2 = (a2, b2)

made of short vectors. In this way, for every (a, b) ∈ Lq, there exist c, d ∈ Z

(a, b) = (c · a1 + d · a2, c · b1 + d · b2).
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We can therefore consider any point of Lq as a point in the plane with coor-
dinates (c, d), which are the coordinates with respect to the basis {V1, V2}. If
gcd(a, b) = 1 it is straightforward that (c, d) = 1. However if (c, d) = 1 then
(a, b) = 1, unless a ≡ b ≡ 0 mod q. In this latter case, we may consider a

q

and b
q instead. Then, it is possible to consider only coprime pairs (c, d). The

lattice sieve then starts building a two-dimension array A in the following
way: suppose (c, d) ∈ [−µ, µ]× [1, η], then we may write

A =


−µ · · · µ 1

−µ · · · µ 2
...

. . .
...

...
−µ · · · µ η

 ,

where we indicate each entry A[c, d] as the elements (c, d) ∈ L. The sieving
array A is used twice: firstly for the factorization of a + bm, then for the
factorization of N(a + bθ). Let us consider just the first one, since the
second case is analogous. The array A is set to 0, then we sum log(p) for
those primes p that divide (a + bm), where each corresponding pair (a, b)

has a representation (c, d) in the base {V1, V2}, remembering that we are
considering only (c, d) coprime. To do so, consider the array element A[c, d],
which represents the integer

a+ bm = c · u1 + d · u2,

where

u1 = a1 + b1m

u2 = a2 + b2m.

Since V1 and V2 are elements of the lattice Lq then u1 ≡ u2 ≡ 0 mod q. In
our assumptions, since gcd(c, d) = 1, it means that gcd(u1, u2) = q. So, the
element A[c, d] is to be sieved if and only if

c · u1 + d · u2 ≡ 0 mod p,

and it cannot happen that u1 ≡ u2 ≡ 0 mod p. We treat separately the
different cases:

• Case u1 ≡ 0 mod p.
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In this case every element in the row with d ≡ u−1
2 mod p is sieved.

• Case u2 ≡ 0 mod p.
In this case every element in the column with c ≡ u−1

1 mod p is sieved.

• Case u1 6≡ 0 mod p and u2 6≡ 0 mod p.
In this case we may proceed into two different ways:

(i) Sieving by rows.
For every d ∈ {1, . . . , η}, we find the least positive integer such
that c ≡ −du2u

−1
1 mod p and sieve that element, call it A[c, d].

Then we sieve also every p elements on the same row from A[c, d].
This method is similar to that used in classical sieving and it
performs well on small primes.

(ii) Sieving by vectors.
The points to be sieved form a sub-lattice

Lqp = {(c, d) ∈ Lq : c · u1 + d · u2 ≡ 0 mod p}.

Again, if possible, we would like to find a short basis for this
lattice, call it {W1 = (c1, d1),W2 = (c2, d2)}. Then every element
of the lattice Lqp has the form for e, f ∈ Z

(c, d) = (e · c1 + f · c2, e · d1 + f · d2),

for some e, f ∈ Z. Considering only the points with gcd(e, f) = 1

allows us to find all the pairs we wanted and the corresponding
(a, b). This approach is faster for big p, however if it is not possible
to find a small basis for the lattice Lqp , we sieve by rows.

The sieve terminates when the process is repeated for every p in the rational
base. The same is done for the norm and the algebraic base.
The advantage of using this procedure of sieving is that we are considering
smaller sets of elements to be sieved (just the elements in the lattice Lq) and
we still obtain most of the pairs considered by the classical sieve. In this way
the time spent in the sieving phase can be drastically reduced. More details
on lattice sieving can be found in [GLM94].
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3.9.2 Line Sieving

A variation of lattice sieving is the line sieving. In this case b is fixed, so
that the lattice sieving is applied to the lattice Lq, with q special prime and
a is the only parameters that varies. Typically, the polynomials generated
for the line sieving are skewed polynomials designed for changing b rarely.
For a full implementation of GNFS with the line sieving, see [EH96a].

76



Chapter 4

A first attempt to a bivariate
GNFS

In this chapter we try to pass from a univariate formulation for GNFS to a
bivariate one, in a different way from the method explained in Section 3.8.1:
a suitable bivariate polynomial is considered, which defines two different
univariate polynomials of degree two, on which the classical algorithm is
applied. The simultaneous analysis of the number fields generated by these
two polynomials eventually leads to a description of the biquadratic exten-
sion they generate. A special focus is given to the relation between ideals
in the ring of integers of the degree-four extension and those of the two
quadratic number fields. Exploiting this connection, a new version of the
algorithm may be developed, avoiding computations in number fields with a
high degree. In turn, this might well translate into an overall speed up and
in a parallelizable implementation. However, at the moment we are not able
to identify a suitable polynomial class for the algorithm, in fact using small
degree polynomials of this particular shape is probably too restrictive.

4.1 A bivariate version for GNFS

Suppose that N ∈ N+ is a semiprime we need to factorize. We work in the
following setting: let us consider a polynomial F (x, y) ∈ Z[x, y] of the form

F (x, y) = x2 + y2 + c,
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where c ∈ N and suppose that there exist two values A,B ∈ Z, A 6= ±B,
such that

F (A,B) = A2 +B2 + c = N. (4.1)

Then, we define θ1 and θ2 as purely imaginary complex numbers such that

F (θ1, B) = θ2
1 +B2 + c = 0,

F (A, θ2) = θ2
2 +A2 + c = 0.

Clearly, we have that θ1 6= ±θ2 and we define the two minimal polynomials
of θ1 and θ2 in Z[z] to be

f1(z) = z2 +B2 + candf2(z) = z2 +A2 + c,

respectively. In this setting we construct the two extensions Q(θ1) and Q(θ2)

of degree 2 over Q and recall the following theorem:
Theorem 4.1. [Lan02, Theorem 4.6, p. 243] Let E be a finite extension of
a field K. There exists an element α ∈ E such that E = K(α) if and only
if there exists a finite number of fields F such that K ⊂ F ⊂ E. If E is
separable over K, then there exists such an element α.

Any extension of Q is separable, since it has characteristic 0 ([Lan02, Prop.
6.1, p.247]), so we know that there exists an element θ ∈ C such that
Q(θ1, θ2) = Q(θ) and, since it is a biquadratic extension, we also know
that this primitive element is θ = θ1 + θ2 and its minimal polynomial is
f(z) = z4 + 2(N + c)z2 + (A2 −B2)2. Thus, we are in this situation:

Q

Q(θ1) Q(θ2)

Q(θ) = Q(θ1 + θ2)

Figure 4.1: The subfield lattice generated for our bivariate version of GNFS.

We also need to define the following morphism:

ψ : Z[θ]→ ZN u+ vθ 7→ u+ v(A+B) mod N. (4.2)

This function is the analogous of the φ defined for the classic GNFS, since
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ψ(θ) = (A+B) mod N and taking the minimal polynomial of θ and substi-
tuting A+B, we obtain:

f(A+B) = (A+B)4 + 2(N + c)(A+B)2 + (A2 −B2)2

= 4N(A+B)2 ≡ 0 mod N,

so A+B plays the role of m in the classical framework.
We define the projection also for the quadratic fields as:

ψθi : Z[θi]→ Zp a+ bθi 7→ a+ br mod p,

for i = 1, 2.

4.2 The Algebraic Factor Base

In this section we will describe how to treat the ideals to build the Algebraic
Factor Base required by GNFS. We will define the correspondence between
first-degree prime ideals in Z[θ1] and Z[θ2] and those in Z[θ]. Then, we will
study a divisibility criterion for principal ideals in Z[θ].

4.2.1 The identification of first-degree prime ideals

First, we look at the relation between the first-degree prime ideals in Z[θ]

and the first-degree prime ideals in Z[θ1] and Z[θ2]. We prove the following:
Theorem 4.2. Let (r, p) be an ideal of Z[θ1] and (s, p) an ideal of Z[θ2],
where p is a prime number and r, s ∈ Zp, then (r + s, p) represents a first-
degree prime ideal of Z[θ].

Proof. By Theorem 3.3, we know that

r2 +A2 + c ≡ 0 mod p and s2 +B2 + c ≡ 0 mod p. (4.3)

We want to prove that

f(r + s) = (r + s)4 + 2(c+N)(r + s)2 + (A2 −B2)2 ≡ 0 mod p.
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Indeed, performing the computation, using (4.3) and (4.1), we get

f(r + s) = r4 + 4r3s+ 6r2s2 + 4rs3 + s4 + 2(c+N)(r2 + s2 + 2rs)+

+ (A2 −B2) ≡
≡ (−A2 − c)2 + 4rs(−A2 − c) + 6(−A2 − c)(−B2 − c)+
+ 4rs(−B2 − c) + (−B2 − c)2 + 2(c+N)(−A2 −B2 − 2c− 2rs)+

+ (A2 −B2) mod p =

= 4rs(−A2 − c−B2 +N) +A4 + c2 + 2A2c+

+ 6(A2B2 +A2c+B2c+ c2) +B4 + c2 + 2B2c− 2A2c− 2A2N+

− 2B2c− 2B2N − 4c2 − 4cN +A4 +B4 − 2A2B2 mod p =

= 2A4 + 2B4 + 4c2 + 4A2B2 + 6A2c+ 6B2c− 2A2(A2 +B2 + c)+

− 2B2(A2 +B2 + c)− 4c(A2 +B2 + c) mod p =

= 2A4 + 2B4 + 4c2 + 4A2B2 + 6A2c+ 6B2c− 2A4 − 2A2B2+

− 2A2c− 2A2B2 − 2B4 − 2B2c− 4A2c− 4B2c− 4c2 mod p =

= 0 mod p.

We will focus our study on the first-degree prime ideals of Z[θ] that come
from two first-degree prime ideals of the underlying rings Z[θ1] and Z[θ2].
Definition 4.3. We will refer to the ideal (r+s, p) ⊆ Z[θ] as the combination
of the ideals (r, p) ⊆ Z[θ1] and (s, p) ⊆ Z[θ2].

Therefore, finding all the first-degree prime ideals with the same norm p

in the two smaller extensions is equivalent to finding at least some of the
first-degree prime ideals in Z[θ] that have norm equal to p. We also claim a
slightly weaker version of the converse:
Theorem 4.4. Let (t, p) be a first-degree prime ideal in Z[θ]. If either p = 2

or t 6≡ 0 mod p, then there exists a unique pair r, s ∈ Zp such that t = r + s

and (r, p) and (s, p) are first-degree prime ideals respectively of Z[θ1] and
Z[θ2].

Proof. We treat separately the case if p = 2 and p 6= 2.

• Case: p 6= 2 and t 6≡ 0 mod p:
Since (t, p) is a first-degree prime ideal in Z[θ], this means that

f(r + s) = t4 + 2(A2 +B2 + 2c)t2 + (A2 −B2)2 ≡ 0 mod p. (4.4)
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Performing the computations in (4.4), we obtain

f(t) = t4 + 2A2t2 + 2B2t2 + 4ct2 +A4 +B4 + 2A2B2 ≡ 0 mod p.

(4.5)

We will look for a solution for f1(x) mod p: since the previous polyno-
mial is symmetric in A and B, the result for f2 will follow in the same
way. We can now notice that

(t2 +A2 + c)2 = t4 +A4 + c2 + 2t2A2 + 2A2c+ 2ct2 and

(B2 + c)2 = B4 + c4 + 2B2c,

so (4.5) becomes

(t2 +A2 + c)2 + (B2 + c)2 − 2(c2 +A2c+B2c+A2B2)+

+2t2(B2 + c) ≡ 0 mod p (4.6)

We can also notice that

(t2 +A2 + c)(B2 + c) = t2B2 + ct2 +A2B2 +Ac +B2c+ c2

(t2 +A2 + c)(B2 + c)− t2(B2 + c) = c2 +A2c+B2c+A2B2

and we substitute this last equation into (4.6), getting

(t2 +A2 + c)2 + (B2 + c)2 − 2(t2 +A2 + c)(B2 + c)+

+4t2(B2 + c) ≡ 0 mod p[
(t2 +A2 + c)− (B2 + c)

]2
+ 4t2(B2 + c) ≡ 0 mod p

−B2 − c ≡
(
t2 +A2 −B2

2t

)2

mod p.

Since 2t 6≡ 0 mod p, we can define

r =
t2 +A2 −B2

2t
,

in this way, we obtain that r2 +B2 + c = f1(r) ≡ 0 mod p, so (r, p) is
a first-degree prime ideal for Z[θ1].

81



CHAPTER 4. A FIRST ATTEMPT TO A BIVARIATE GNFS

• Case p = 2:
If p = 2, then (4.4) becomes

f(t) = t4 +A4 +B4 ≡ 0 mod 2

(t+A+B)4 ≡ 0 mod 2

t ≡ A+B mod 2.

So if r ≡ B + c mod 2 and s ≡ A+ c mod 2, we get

f1(r) ≡ B2 + c2 +B2 + c ≡ c2 + c ≡ 0 mod 2 and

f2(s) ≡ A2 + c2 +A2 + c ≡ c2 + c ≡ 0 mod 2,

since every element x ∈ F2 is such that x2 + x ≡ 0 mod 2, and also

r + s = B + c+A+ c ≡ A+B ≡ t mod 2.

The only first-degree prime ideals in Z[θ] not treated in Theorem 4.4 are
those of the form (0, p) with p 6= 2. They can be characterized by the
following proposition:
Proposition 4.5. Let (0, p) be a first-degree prime ideal of Z[θ] and let
r ∈ Zp, then the following are equivalent:

1. f1(r) ≡ 0 mod p.

2. f2(s) ≡ 0 mod p.

3. (r, p) and (−r, p) are first-degree prime ideals of Z[θ1].

4. (r, p) and (−r, p) are first-degree prime ideals of Z[θ2].

Proof. • 1 ⇐⇒ 2 and 3 ⇐⇒ 4:
From f(0) ≡ 0 mod p we get that

f(0) = (A2 −B2)2 ≡ 0 mod p =⇒ A2 ≡ B2 mod p.

Hence f1 ≡ f2 mod p, therefore r is a root of f1 modulo p if and only
if f2 has the same root.

• 3 =⇒ 1:
It follows directly using Theorem 3.3.
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• 1 =⇒ 3:
If f1(r) ≡ 0 mod p, then also f1(−r) ≡ 0 mod p, implying that (±r, p)
are the first-degree prime ideals of Z[θ1].

Remark 4.1. The above proposition is trivial for p = 2. In fact, if (0, 2) is a
first-degree prime ideal of Z[θ], then all the above equivalent condition are
satisfied for r = A2 + c = B2 + c.

According to Proposition 4.5, one of the following situations takes place,
depending on the number ν of roots of f1 modulo p:

ν = 0: (0, p) ⊆ Z[θ] cannot be found as a combination of first-degree prime
ideals of Z[θ1] and Z[θ2].

ν = 1: (0, p) ⊆ Z[θ] is the combination of (0, p) ⊆ Z[θ1] and (0, p) ⊆ Z[θ2].

ν = 2: (0, p) ⊆ Z[θ] is determined by two different combinations of first-degree
prime ideals of Z[θ1] and Z[θ2].

The following example shows that all the above cases may actually occur:
Example 4.1. Let f1 = z2 − 50 and f2 = z2 − 155 generate by combination
the quadratic fields Q[θ1] and Q[θ2], so that the composite biquadratic field
Q[θ] is generated by the polynomial f = z4 − 410z2 + 11025.

The unique first-degree prime ideal in Z[θ] with norm p = 3 is (0, 3), but
there are no such ideals neither in Z[θ1] nor in Z[θ2], then (0, 3) cannot be a
combination of any of them.

The unique first-degree prime ideal of norm p = 5 in Z[θ] is (0, 5), which is
determined uniquely as a combination of the ideals (0, 5) in Z[θ1] and (0, 5)

in Z[θ2].

There are 3 first-degree prime ideals of norm p = 7 in Z[θ]: (0, 7), (2, 7) and
(5, 7). The first-degree prime ideals of the same norm for both Z[θ1] and Z[θ2]

are (1, 7) and (6, 7). As prescribed by Theorem 4.4 we observe that (2, 7)

and (5, 7) are uniquely determined by the combinations of ((1, 7), (1, 7)) and
((6, 7), (6, 7)), whereas (0, 7) arises from the combinations of ((1, 7), (6, 7))

and ((6, 7), (1, 7)).
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4.2.2 Divisibility of principal ideals

We have proven that the first-degree prime ideals with the same norm p in
Z[θ1] and Z[θ2] generate almost every first-degree prime ideal in Z[θ] with
the same norm p. Hence, we can consider A1 and A2 to be the algebraic
factor bases in Z[θ1] and Z[θ2] respectively and from them build the algebraic
factor base A in Z[θ], by simply considering

A = {(r + s, p) | (r, p) ∈ A1 and (s, p) ∈ A2} .

In order to define a divisibility criterion for a principal ideal I in Z[θ], we
need to investigate the intersections between I and Z[θi] for i = 1, 2.
Proposition 4.6. Let a, b be non-zero integers and I = 〈a + bθ〉 ⊆ Z[θ].
Then I ∩ Z[θ1] is a principal ideal and

I ∩ Z[θ1] = 〈(a+ bθ1 + bθ2)(a+ bθ1 − bθ2)〉 .

Proof. ⊇ ) The generator of the ideal (a + bθ1 + bθ2)(a + bθ1 − bθ2) is an
element of I and it is equal to (a+ bθ1)2 − (bθ2)2, which belongs to Z[θ1].
⊆ ) Since a basis for Q(θ) is formed by {1, θ1, θ2, θ1θ2}, every x ∈ I has the
form x = (a + bθ1 + bθ2)(γ0 + γ1θ1 + γ2θ2 + γ3θ1θ2), where γi ∈ Z. Since
x ∈ Z[θ1], the coefficients of θ2 and θ1θ2 need to vanish, soaγ3 + bγ2 + bγ1 = 0

aγ2 − b(B2 + c)γ3 + bγ0 = 0.
(4.7)

On the other side, we would like to prove that

x = (a+ bθ1 + bθ2)(a+ bθ1 − bθ2)(C +Dθ1),

for some C,D ∈ Z, meaning that

γ0 + γ1θ1 + γ2θ2 + γ3θ1θ2 = (a+ bθ1 − bθ2)(C +Dθ1).
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By comparing the coefficients, we get that
γ0 = aC − bD(B2 + c)

γ1 = aD + bC

γ2 = −bC

γ3 = −bD.

We check that these coefficients verify (4.7):

a(−bD) + b(−bC) + b(aD + bC) = 0

a(−bC)− b(B2 + c)(−bD) + b
[
aC − bD(B2 + c)

]
= 0.

Thus, we may invert the system and obtain that

x = (a+ bθ1 + bθ2)(a+ bθ1 − bθ2)

(
−γ2 + γ3θ1

b

)
,

as required.

The previous proposition enables us to prove the following theorem on di-
visibility of principal ideals:
Theorem 4.7. Let a, b ∈ Z be coprime and let I = 〈a + bθ〉 be a principal
ideal in Z[θ]. Let I1 = I∩Z[θ1] and I2 = I∩Z[θ2]. If the ideals (r, p) ⊆ Z[θ1]

and (s, p) ⊆ Z[θ2] divide I1 and I2, respectively, then the first-degree prime
ideal (r + s, p) ⊆ Z[θ] divides I, unless

p 6= 2

n ≡ 0 mod p

r + s 6≡ 0 mod p.

Proof. By Theorem 4.2, (r + s, p) is a first-degree prime ideal in Z[θ], then
it is enough to show that under the aforementioned conditions we have

a+ b(r + s) ≡ 0 mod p. (4.8)

From Proposition 4.6, we find that

I1 = 〈a2 + b2(A2 −B2) + 2abθ1〉 ⊆ Z[θ1], (4.9)

I2 = 〈a2 + b2(B2 −A2) + 2abθ2〉 ⊆ Z[θ2]. (4.10)
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We treat each case separately:

• Case p = 2:
By Eq. (4.9), the generator g1 of I1 is such that

ψθ1(g1) = a2 + b2(A2 −B2) + 2abr ≡
≡ a2 + b2(A2 +B2) ≡ a+ b(r + s) mod 2.

Then (4.8) is satisfied if and only if (r, 2) divides I1.

• Case p 6= 2 ∧ a 6≡ 0 mod p:
By hypothesis (r, p) | I1 and (s, p) | I2, meaninga2 + b2(A2 −B2) + 2abr ≡ 0 mod p

a2 + b2(B2 −A2) + 2abs ≡ 0 mod p.

Summing together the above relations we get

2a2 + 2abr + 2abs = 2a[a+ b(r + s)] ≡ 0 mod p.

Since 2a 6≡ 0 mod p, this implies (4.8).

• Case p 6= 2 ∧ a ≡ 0 mod p ∧ r + s ≡ 0 mod p:
In this case (4.8) is trivially satisfied.

Thus, we conclude that (r+s, p) is a first-degree prime ideal of Z[θ] dividing
I, except for the case when p 6= 2 ∧ a ≡ 0 mod p ∧ r + s 6≡ 0 mod p.

The next example shows that, in the case highlighted by Theorem 4.7, the
combination does not maintain ideal divisibility.
Example 4.2. Let f1(z) = z2 + 4 and f2(z) = z2 − 6 generate the quadratic
fields Q(θ1) and Q(θ2), so that the composite biquadratic field Q(θ) is gen-
erated by the polynomial f(z) = z4 − 4z2 + 100.
The first-degree prime ideals of Z[θ] with norm p = 5 are (0, 5), (2, 5) and
(3, 5), while (1, 5) and (4, 5) are those of Z[θ1] and the same pairs are also
first-degree prime ideals of Z[θ2].
Suppose that I = 〈5 + θ〉 ⊆ Z[θ]. By Proposition 4.6 we have

I1 = 〈15 + 10θ1〉 ⊆ Z[θ1], I2 = 〈35 + 10θ2〉 ⊆ Z[θ2].

It is easy to see that both (1, 5) and (4, 5) divide I1 and I2. Besides, the
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combination of (1, 5) and (4, 5) is (0, 5), which divides I. However, the
other options are exactly the exceptions prescribed by Theorem 4.7, since
the combination between (1, 5) and (1, 5) is (2, 5), which does not divide I.
The same holds for (3, 5), which is the combination of (4, 5) and (4, 5).

On the other hand, whenever a first-degree prime ideal of Z[θ] dividing a
principal ideal I is obtained as a combination of two first-degree prime ide-
als, these last two ideals divide the intersections of I with Z[θ1] and Z[θ2]

respectively.
Theorem 4.8. Let I = 〈a+bθ〉 be a principal ideal in Z[θ] with gcd(a, b) = 1.
Let (t, p) be a first-degree prime ideal in Z[θ] that divides I. If there exist
two first-degree prime ideals (r, p) ⊆ Z[θ1] and (s, p) ⊆ Z[θ2] such that their
combination r + s ≡ t mod p, then (r, p) divides I1 = I ∩ Z[θ1] and (s, p)

divides I2 = I ∩ Z[θ2].

Proof. If these ideals exist, from (t, p) | I we get

0 ≡ a+ bt ≡ a+ br + bs mod p.

Let I1 and I2 be described as in (4.9) and (4.10). From the above equation
we have

a2 + b2(A2 −B2) + 2abr ≡ 0 mod p⇐⇒
a2 + b2(A2 −B2)− 2a2 − 2abs ≡ 0 mod p⇐⇒
a2 + b2(B2 −A2) + 2abs ≡ 0 mod p.

Hence, (r, p) divides I1 if and only if (s, p) divides I2, so it is sufficient to
show that (r, p) | I1. Substituting a ≡ −br− bs mod p, r2 ≡ −B2 − c mod p

and s2 ≡ −A2 − c mod p, we obtain that

a2 + b2(A2 −B2) + 2abr ≡
≡(−br − bs)2 + b2(r2 − s2) + 2br(−br − bs) ≡ 0 mod p,

therefore (r, p) | I1.

The following corollary summarizes the previous results, providing an almost-
unique decomposition of first-degree prime ideals by combination, which re-
spects divisibility of principal ideals.
Corollary 4.9. Let I = 〈a+bθ〉 be a principal ideal in Z[θ] with gcd(a, b) = 1
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and let (t, p) be a first-degree prime ideal in Z[θ] that divides I, with t 6= 0

if p 6= 2. Then there exist two unique first-degree prime ideals (r, p) ⊆ Z[θ1]

and (s, p) ⊆ Z[θ2] such that r+ s ≡ t mod p and (r, p) divides I1 = I ∩Z[θ1]

and (s, p) divides I2 = I ∩ Z[θ2].

Proof. It follows immediately from Theorem 4.4 and Theorem 4.8.

Hence we search for first-degree prime ideals in A that factorize I by check-
ing the factorization of the two smaller ideals obtained by intersecting I with
the two extensions of degree two.
Finally, we would like to retrieve the exponents of the ideals we are con-
sidering. Since those exponents are just the exponents of the corresponding
primes appearing in the norm factorization of the generator similarly to what
we saw in Corollary 3.9, it is enough to study how the norm changes between
I, I1 and I2.
Proposition 4.10. Let I = 〈a + bθ〉 be a principal ideal in Z[θ], with
gcd(a, b) = 1. Let I1 = I ∩ Z[θ1] and I2 = I ∩ Z[θ2]. Then,

NQ(θ)/Q(a+ bθ) = NQ(θ1)/Q(a2 + b2(A2 −B2) + 2abθ1)

= NQ(θ2)/Q(a2 + b2(B2 −A2) + 2abθ2).

Proof. We know that

NQ(θ)/Q(a+ bθ) = (−b4)
(
−a
b

)4
+ 2(c+N)b4

(
−a
b

)2
+ b4(A2 −B2)2

= a4 + 2(c+N)a2b2 + b4(A2 −B2)2.

We compute the norm of the other two elements in Q(θ1) and Q(θ2) over Q,
using their minimal polynomials:

NQ(θ1)/Q(a2 + b2(A2 −B2) + 2abθ1) =

= 4a2b2
(
−a

2 + b2(A2 −B2)

2ab

)2

+ 4a2b2(A2 + c)

= a4 + 2(c+N)a2b2 + b4(A2 −B2)2.

NQ(θ2)/Q(a2 + b2(B2 −A2) + 2abθ2) =

= 4a2b2
(
−a

2 + b2(B2 −A2)

2ab

)2

+ 4a2b2(B2 + c)

= a4 + 2(c+N)a2b2 + b4(A2 −B2)2.
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This last condition implies that the exponent of the first-degree prime ideal
of norm p that appears in the factorization of I in Z[θ] is exactly the same
as the exponent of the first-degree prime ideals of norm p that appear in the
factorizations of I1 in Z[θ1] and of I2 in Z[θ2].
In this way, we have completely characterized the elements in A, by using
only informations that can be read from Z[θ1] and Z[θ2].

4.3 The Quadratic Characters Base

As regards the Quadratic Character Base Q in Z[θ], this is still formed
by first-degree prime ideals. Hence, we analyse again the behaviour of the
first-degree prime ideals of Z[θ] belonging to Q, comparing to the ideals in
Z[θ1] and Z[θ2], belonging to the two Quadratic Character Bases Q1 and Q2

respectively.
Proposition 4.11. Let (r, q) be an ideal in the Quadratic Character Base
of Z[θ1] and (s, q) be an ideal in the Quadratic Character Base of Z[θ2], with
the same q (C < q ≤ D, where C and D are the same as in Definition 3.12).
Then, if r 6≡ −s mod q, (r+ s, q) represents a first-degree prime ideal in the
Quadratic Character Base of Z[θ].

Proof. Since, by Theorem 4.2, (r, q) and (s, q) are first-degree prime ideals in
Z[θ1] and Z[θ2], we only need to check the condition that f ′(r+s) 6≡ 0 mod q.
We know that f1(r) = r2 +B2 + c ≡ 0 mod q

f2(s) = s2 +A2 + c ≡ 0 mod q.

Moreover, since they are in the Quadratic Character Base, alsof ′1(r) = 2r 6≡ 0 mod q

f ′2(s) = 2s 6≡ 0 mod q.
(4.11)

Therefore, since q is an odd prime number, we have thatr 6≡ 0 mod q

s 6≡ 0 mod q.
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Now, the derivative of f is f ′(x) = 4x3 + 4(c+N)x, that computed in r+ s

gives the following:

f ′(r + s) = 4(r + s)3 + 4(c+N)(r + s) =

= 4(r + s)
[
(r + s)2 + c+N

]
=

= 4(r + s)
[
r2 + s2 + 2rs+ c+N

]
.

Now using (4.1) and (4.11) we get that

f ′(r + s) = 4(r + s)
[
r2 + s2 + 2rs+ c+A2 +B2 + c

]
=

= 4(r + s)
[
(r2 +B2 + c) + (s2 +A2 + c) + 2rs

]
≡

≡ 8rs(r + s) mod q.

So, in order to get that this quantity is different from 0, we must have that
r 6≡ −s mod q, since r and s are not divisible by q and gcd(8, q) = 1, because
q is an odd prime.

Using this proposition, we just need to compute all Legendre symbols of the
form

(
a+br+bs

q

)
for every element in the quadratic character base of Z[θ],

where r, s ∈ Zq are recovered from the first-degree prime ideals in Z[θ1] and
Z[θ2].

4.4 Further works and Limits of this approach

We presented how to find first-degree prime ideals in the ring of integers
of a special quartic extension of Q by studying first-degree prime ideals in
the ring of integers of two quadratic extensions. We also provided a precise
condition to determine when such prime ideals divide the principal ideals
considered in the GNFS algorithm. While this is interesting in an algebraic
perspective, we have tried to implement a bivariate version of GNFS hop-
ing to improve the time of convergence, at least in some cases, using these
properties. Such as the classical GNFS, a crucial part regards the choice
of the starting polynomial F (x, y) in a way that allows us to find enough
first-degree prime ideals when performing the sieving phase. However, since
we are only considering monic polynomials of degree 2 without any linear
term, when N → ∞, the size of the coefficients of F drastically increases.
As said in Section 3.8.3, this affects the chances of finding enough elements
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in the sieving phase. In fact, in the examples we made, we were not be
able to obtain enough smooth elements. We are currently working on a gen-
eralization of this process, in order to broaden our results to extensions of
any degree. In Appendix A we report a version of the Magma code used to
test this version of the algorithm. Another approach that may be worthy to
be analysed is the use of non-monic polynomials in the process, obtaining
polynomials with smaller coefficients. Nevertheless, in this case, as a down-
side effect, we should consider Theorem 3.18 to establish an identification
between first-degree prime ideals and the modular roots of the polynomials,
which may complicate the form of the field extensions we should consider.
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Chapter 5

Finding GNFS relations using
Groebner bases

We exihibit a novel approach to obtain the elements required by GNFS for
a number N ∈ N+. The setting is the same as before, but we want to
generalize the computations and gain some information about the choice of
the parameters for the algorithm. Our aim is to find some relations that arise
from the bounds we need to satisfy in GNFS, setting a system with these
equations and try to find some constraints on the solutions. We will present
a strategy to employ this system: given a suitable polynomial for GNFS, we
would like to obtain directly an element x ∈ Z[θ] such that x is a perfect
square and also φ(x) is a perfect square in Z. The system created this way
is analysed using the theory of Groebner basis and modular arithmetic to
gain some hints on the shape of its solutions.

5.1 The generation of the system

Suppose, as in GNFS, that we have a monic irreducible polynomial f ∈ Z[x]

of degree d and an elementm ∈ Z such that f(m) = N . If we write explicitly
the polynomial as

f(x) = xd+Ad−1x
d−1+Ad−2x

d−2+. . .+A1x+A0, with A0, . . . , Ad−1 ∈ Z,
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this last condition can be rewritten as:

f(m) = md +Ad−1m
d−1 +Ad−2m

d−2 + . . .+A1m+A0.

For sake of simplicity throughout all this chapter we will focus on cases when
d = 2. So in our case the polynomial is f(x) = x2 +Ax+B, where A,B ∈ Z
and the first condition to impose is

f(m) = m2 +Am+B = N. (5.1)

The condition of being irreducible can be expressed analysing the discrimi-
nant of the polynomial which is A2 − 4B: if A2 − 4B 6= C2, for any C ∈ Z,
the roots are non-integers, thus f it is irreducible in Z. So an additional
bound for the coefficients of f is

A2 − 4B 6= C2.

From now on we may suppose this is the case.
Let us call θ one of the roots of f and consider the number fieldQ(θ) and Z[θ],
the usual subring of OQ(θ) . Let α = a0 + a1θ ∈ Z[θ], with (a0, a1) ∈ Z×Z∗,
raise α to the square and reduce it modulo f to get

β : = b0 + b1θ =

= (a0 + a1θ)
2 =

= a0
2 + 2a0a1θ + a1

2θ2 =

= a0
2 −Ba1

2 + a1θ(2a0 − a1A).

Comparing the coefficients of degree 0 and 1 of the two terms of the previous
equation, we obtain the following:

b0 = a0
2 −Ba1

2 (5.2)

b1 = a1(2a0 − a1A). (5.3)

The two elements α and β represent exactly what we hope to find using
GNFS. In fact, if we call φ : Z[θ] → ZN the surjective homomorphism that
sends θ in m, we need to add the condition that φ(β) is a perfect square in
Z, so

φ(β) ≡ b0 + b1m = d1
2 mod N, (5.4)
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where d1 ∈ Z. Hence, in this case we can obtain the difference of squares
given by

d1
2 ≡ φ(α)2 mod N

and this may lead to a successful factorization for N .
Proposition 5.1. Let N ∈ N+ be a semiprime. If the integer variables
m,A,B, b0, b1, a0, a1, d1 satisfy the system

m2 +Am+B = N

b0 = a0
2 −Ba1

2

b1 = a1(2a0 − a1A)

b0 + b1m = d1
2,

(5.5)

then gcd(a0 + a1m− d1, N) and gcd(a0 + a1m+ d1, N) are the factors of N ,
found using GNFS using the polynomial f = x2 +Ax+B ∈ Z[x].

Proof. Gathering together (5.1),(5.2),(5.3) and (5.4) we obtain the system.

However, finding solutions of a non-linear system could be tough, so we
introduce the use of Groebner basis to try to solve the system in (5.5).

5.1.1 Inequalities on the parameters

In this paragraph we will find some constraints in the interval in which all
the parameters are defined. We may suppose that all the parameters in the
first equation of (5.1) are positive and of course smaller than N , in particular

0 < m ≤
⌊√

N
⌋

0 < A < N

0 < B < N.

We may also suppose that 0 ≤ φ(α) ≤ N , that may be rewritten as

0 ≤ a0 + a1m ≤ N,

noting that a1 6= 0. Specifying the dependence of a0 from a1,

− a1m ≤ a0 ≤ N − a1m. (5.6)
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Instead, considering β = b0 + b1θ and the definitions given by (5.2) and
(5.3), we may argue some considerations about these coefficients: on one
side, using also (5.6),

b0 = a2
0 −Ba1

2 ≤ max
{
a1

2(m2 −B), a1
2(m2 −B)− 2a1Nm+N2

}
,

on the other side,

b0 ≥ −Ba1
2,

concluding

−Ba1
2 ≤ b0 ≤ max

{
a1

2(m2 −B), a1
2(m2 −B)− 2a1Nm+N2

}
. (5.7)

We may use the same approach to deduce an analogous inequality for b1:

b1 = 2a0a1 − a1
2A ≤ a1 (2N − 2a1m− a1A) .

The other side of the inequality for b1 is

b1 ≥ −a1
2 (2m+A) .

Summarizing,

− a1
2 (2m+A) ≤ b1 ≤ a1 (2N − 2a1m− a1A) . (5.8)

It remains to give some considerations on d1
2, so

d1
2 = a0

2 −Ba1
2 +m(2a0a1 − a1

2A) ≤
≤ max

{
a1

2(m2 −B), a1
2(m2 −B)− 2a1Nm+N2

}
+

+ a1 (2N − 2a1m− a1A) ≤
≤ max

{
2a1mN − a1

2
(
m2 +Am+B

)
, N2 − a1

2
(
B +ma+m2

)}
≤

≤ max
{
a1N (2m− a1) , N

(
N − a1

2
)}
,

where we employed (5.1). Thus,

|d1| ≤ max
{√

a1N (2m− a1),
√
N (N − a1

2)
}
. (5.9)
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5.2 The Algorithm for finding Perfect Squares in
the Number Field

In this scenario we suppose that the polynomial f = x2 +Ax+B is known
and we also fix m ∈ Z, that satisfies f(m) = N . Thus, the variables that are
left to be found in the system (5.5) are a0, a1, b0, b1, d1 ∈ Z. We fix a value
for a1 and if we cannot find a solution for the system, we update a1 with
another value until we obtain an integer solution. As we can see in (5.5), b0
and b1 depends only on a0 and the last equation can be rewritten as

d1
2 = a0

2 −Ba1
2 +ma1(2a0 − a1A)

such that also d1 depends only on a0. Thus the system we need to solve
becomes 

d2
1 = a0

2 −Ba2
1 +ma1(2a0 − a1A)

b0 = a0
2 −Ba2

1

b1 = 2a0a1 − a2
1A

(5.10)

We can choose a monomial ordering and compute the Groebner basis Gp
(see Section 1.4) over different finite fields Fp imposing the field equations

{a0
p − a0, b0

p − b0, b1p − b1, d1
p − d1}

for different p’s, small prime numbers. In these Fp’s the system (5.10) may
have a simpler formulation and can give us some linear modular substitution
to simplify the original system in Q. We may notice that in system (5.10)
the variables d1, b0 and b1 involve only a0 in the equations, so we would like
to consider in Gp some special equations to be used as substitution. We want
to highlight every possible substitution for each variable, indicating with i(j)

the value of the variable i ∈ {a0, d1, b0, b1} at its j-th substitution.

• For a0 we would like to consider only linear equations g ∈ Gp that do
not involve any other variable,

g : a0 ≡ g0 mod p, g0 ∈ Fp.

Therefore the possible changes for a0 are of the form

a
(j)
0 = g0 + p · a(j+1)

0 .
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• As regards b0, we consider linear equations g ∈ Gp that involve at most
the variable a0

g : b0 ≡ g0 + g1 · a0 mod p, g0, g1 ∈ Fp.

The substitution is then defined as

b
(j)
0 = g0 + g1a

(k)
0 + p · b(j+1)

0 .

• In a similar way, for b1 we only take into account equations g ∈ Gp

that include only a0:

g : b1 ≡ g0 + g1 · a0 mod p, g0, g1 ∈ Fp.

The analogous substitution is

b
(j)
1 = g0 + g1a

(k)
0 + p · b(j+1)

1 .

• In the same way for d1, we will treat only equations g ∈ Gp of the form

g : b1 ≡ g0 + g1 · a0 mod p, g0, g1 ∈ Fp.

The corresponding substitution is

d
(j)
1 = g0 + g1a

(k)
0 + p · d(j+1)

1 .

Clearly, not all the relations that appear in these Groebner bases over Fp
are interesting: the field equations do not give any information, but it can
also happen that in Q, after some replacements, one of the equation could
become univariate and of degree one. We call this kind of equations linear
forms, they fix the value for a variable and it is not necessary to reduce
them anymore. During this process, we need to keep track of the various
substitutions we have performed and how the variables have been modified.
Another important aspect that we have to consider is the interval in which
every variable must be. These intervals (called Ia0 , Ib0 , Ib1 , Id1) are defined
at the beginning as in respectively (5.6), (5.7), (5.8), (5.9) and after each
substitution that have to be updated, using the reduction defined above.
After each substitution of a0, the interval Ia0 are reduced by a factor p, while
the other intervals may depend on a0. For example, suppose we perform a
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reduction on a0 of the kind:

a0 = g0 + p · a(I)
0 and Ia0 = [−a1m,N − a1m],

therefore the new interval I
a
(I)
0

becomes

−a1m− g0

p
≤ a(I)

0 ≤
N − a1m− g0

p
.

However, at some point it can happen that there will not be any linear
modular equations, meaning that in all the Groebner bases Gp over the
different Fp’s with small p, there will only be at least quadratic equation.
In this case, we try to factorize every equation and use any linear relation
found in the factorization to continue with the algorithm highlighting the
choice made. We call each of this choices a branch. To remember that, we
define the quantity BranchNum = 1 at the beginning of the algorithm and
when we need to make a choice we add to it the number of linear factors of
the equation we decided to consider minus 1. In this way, this variable will
count the number of active branches. The reduction-substitution process is
continued until the size of the intervals Ia0 , Ib0 and Ib1 are small enough to
perform a brute force choice for the equations in (5.10), meaning that we try
every integer value for the variable i in the interval Ii and see if the equations
hold in Z. If it is not possible to find an integer solution in that interval,
we need to go back and choose a different branch, so we decrease the value
of BranchNum by one and then come back to the last choice made with
other linear factors and choose one of them instead. When every branch
is analysed and no integer solution is found, this means that there are no
elements that have the property of being a perfect square in the number
field defined by f , having that particular a1. Consequently, it is necessary
to change a1 and reapply the computation again.
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Algorithm 5.1 Find solutions for (5.10)

Input: Fixed N, f = x2 +Ax+B and m s.t. f(m) = N .
1: Choose any value for a1;
2: Compute Ia0 , Ib0 , Ib1 , Id1 ;
3: BranchNum = 0;
4: Compute G, the Groebner basis over Q;
5: for p small prime do
6: Compute Gp, the Groebner basis over Fp;
7: end for
8: for p small prime do
9: for i in Gp and i not a field equation and i not a linear form in G

and deg(i) = 1 do
10: if i involves only a0 then
11: Substitute a0 = i0 + p · a0;
12: Update Ia0 ;
13: go to 4;
14: else if i involves a0 and b0 then
15: Substitute b0 = i0 + i1 · a0 + p · b0;
16: Update Ib0 ;
17: go to 4;
18: else if i involves a0 and b1 then
19: Substitute b1 = i0 + i1 · a0 + p · b1;
20: Update Ib1 ;
21: go to 4;
22: else if i involves a0 and d1 then
23: Substitute d1 = i0 + i1 · a0 + p · d1;
24: Update Id1 ;
25: go to 4;
26: end if
27: end for
28: end for
29: if Ia0 , Ib0 , Ib1 are still too “big” then
30: for p small prime do
31: for i in Gp and i not a field equation and i not a linear form in

G do
32: Factorize i;
33: if i has a factor of degree 1 then
34: BranchNum = BranchNum+ #{factors of i} − 1;
35: i = a factor of degree 1 of i;
36: go to 10
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Algorithm 5.1 Find solutions for (5.10) (Part 2)
37: else
38: There are no solutions.
39: if BranchNum 6= 0 then
40: Go back to BranchNum = BranchNum− 1 and take

another choice.
41: go to 10;
42: else
43: go to 1;
44: end if
45: end if
46: end for
47: end for
48: else
49: for (a0, b0, b1, d1) in Ia0 × Ib0 × Ib1 × Id1 do
50: Find values that satisfy all the equations in G;
51: end for;
52: if There are no integer solutions then
53: go to 38;
54: else
55: return ((a0, b0, b1, d1));
56: end if
57: end if
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5.2.1 An example of the Algorithm

Suppose we want to factorize N = 201589669 (blog2Nc = 27) using Algo-
rithm 5.1. All the computations described in this example were implemented
in Magma and are reported in Appendix B. In this case m ∈ Z and the co-
efficients A, B ∈ Z of the polynomial f are already defined, using other
strategies, as 

A = 17236

B = 712

m = 7991,

in fact f(m) = 79912 + 17236 · 7991 + 712 = 201589669 = N . First, suppose
a1 = 1. We will consider small primes p in the set {2, 3, 5}. Then we fix the
following lexicographic ordering: d1 < b0 < b1 < a0. For this particular case
in order to simplify the computations, we may suppose that each parameter
is in the interval I = [−N,N ], thus Ia0 = Ib0 = Ib1 = Id1 = I. We compute
the Groebner basis G in the field of Rationals. This corresponds to the
starting system

G :


d2

1 − a2
0 − 15982a0 + 137733588 = 0

b0 − a2
0 + 712 = 0

b1 − 2a0 + 17236 = 0.

1st Reduction: BranchNum = 1

Computing G2, the Groebner basis over F2, we obtain the following
system

G2 :


d1 + a0 = 0

b0 + a0 = 0

b1 = 0

a2
0 + a0 = 0.

The last one is a field equation, while the other ones have degree 1, so
if we choose the third one, we can perform the substitution

b1 = 2b
(I)
1 Πb1 = 2. (5.11)

2nd Reduction: BranchNum = 1
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This transforms the starting system into:

G :


d2

1 − a2
0 − 15982a0 + 137733588 = 0

b0 − a2
0 + 712 = 0

b
(I)
1 − a0 + 8618 = 0.

If we consider G3, the Groebner basis over F3, we get

G3 :


d1 = 0

b0 + a0 + 1 = 0

b
(I)
1 + 2a0 + 2 = 0

a2
0 + a0 = 0.

So, the first equation leads to

d1 = 3d
(I)
1 Πd1 = 3. (5.12)

3rd Reduction: BranchNum = 1

The system in Q becomes:

G :


9
(
d

(I)
1

)2
− a2

0 − 15982a0 + 137733588 = 0

b0 − a2
0 + 712 = 0

b
(I)
1 − a0 + 8618 = 0

Now we can compute G5, the Groebner basis over F5

G5 :



(
d

(I)
1

)2
+ a2

0 + 2a0 + 2 = 0

d
(I)
1 a0 + d

(I)
1 = 0

b0 + 4a2
0 + 2 = 0

b
(I)
1 + 4a0 + 3 = 0

a3
0 + 3a2

0 + 4a0 + 2 = 0.

So, the fourth equation can be rewritten as

b
(I)
1 = a0 + 2 + 5b

(II)
1 Πb1 = 10. (5.13)
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After this substitution, the original system becomes:
9
(
d

(I)
1

)2
− a2

0 − 15982a0 + 137733588 = 0

b0 − a2
0 + 712 = 0

b
(II)
1 + 1724 = 0.

The third equation is a linear form, so b(II)1 = −1724 and this value
is fixed, therefore we do not need to consider any substitution for it
anymore.

The next computation are obtained in the same way and we will just report
the reductions made:

4th Reduction: BranchNum = 1

d
(I)
1 = a0 + 2d

(II)
1 Πd1 = 6. (5.14)

5th Reduction: BranchNum = 1

a0 = 2a
(I)
0 Πa0 = 2. (5.15)

6th Reduction: BranchNum = 1

d
(II)
1 = 1 + a

(I)
0 + 2d

(III)
1 Πd1 = 12. (5.16)

7th Reduction: BranchNum = 1

b0 = 2b
(I)
0 Πb0 = 2. (5.17)

8th Reduction: BranchNum = 1

b
(I)
0 = 2b

(II)
0 Πb0 = 4. (5.18)

9th Reduction: BranchNum = 1

b
(II)
0 = a

(I)
0 + 2b

(III)
0 Πb0 = 8. (5.19)

10th Reduction: BranchNum = 1

b
(III)
0 = 1 + 3b

(IV)
0 Πb0 = 24. (5.20)

Notation. From this moment on, we will remove the apices from the vari-
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ables, except when describing linear substitutions. Each variable should be
considered as having its latest updated value.

The new Groebner basis G has become

G :


36d2

1 + 72d1 · a0 + 36d1 + 35a2
0 − 7955a0 + 34433406 = 0

6b0 − a2
0 + a0 + 180 = 0

b1 + 1724 = 0,

while the Groebner Bases G2, G3 and G5 are

G2 :


d2

1 + d1 = 0

b20 + b0 = 0

b1 = 0

a2
0 + a0 = 0

G3 :


d3

1 + 2d1 = 0

b30 + 2b0 = 0

b1 = 1

a2
0 + 2a0 = 0

G5 :



d2
1 + 3a2

0 + 3a0 + 3 = 0

d1 · a0 + 3d1 + a2
0 + a0 + 4 = 0

b0 + 4a2
0 + a0 = 0

b1 = 1

a3
0 + 4a2

0 + a0 + 4 = 0

We notice that we are out of linear equations. Hence, it is necessary to choose
a reducible equation with linear factors and use one of them, remembering
the choice made. We may observe that in G2 the only equation different
from a field equation is the one in b1, which is already fixed, while in G3 the
last equation can be factorized and, finally, in G5 the second and the last
equations can be both split. Focusing on the second equation in G5, we have
two different options:

a
(I)
0 ≡ 2 mod 5 or d

(III)
1 ≡ 4a

(I)
0 + 2 mod 5. (5.21)

We decide to choose the second option and we remember of this defining
BranchNum = 2. So, the next substitutions are
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11th Reduction: BranchNum = 2.

d
(III)
1 = 4a

(I)
0 + 2 + 5d

(IV)
1 Πd1 = 60. (5.22)

12th Reduction: BranchNum = 2.

b
(IV)
0 = 3a

(I)
0 + 2 + 5b

(V)
0 Πb0 = 120. (5.23)

Again we arrive at a case where there are not any linear equations in the
Groebner Bases. We can see that G3 is the same as in the previous case, so
we deal with the following two choices:

a
(I)
0 ≡ 0 mod 3 or a

(I)
0 ≡ 1 mod 3. (5.24)

We decide to take the first one and remember to increment BranchNum = 3.

13th Reduction: BranchNum = 3.

a
(I)
0 = 3a

(II)
0 Πa0 = 6. (5.25)

14th Reduction: BranchNum = 3.

a
(II)
0 = 3a

(III)
0 Πa0 = 18. (5.26)

15th Reduction: BranchNum = 3.

b
(V)
0 = 2 + 3b

(VI)
0 Πb0 = 360. (5.27)

16th Reduction: BranchNum = 3.

b
(VI)
0 = 2a

(III)
0 + 2 + 3b

(VII)
0 Πb0 = 1080. (5.28)

17th Reduction: BranchNum = 3.

b
(VII)
0 = 2a

(III)
0 + 2 + 3b

(VIII)
0 Πb0 = 3240. (5.29)

18th Reduction: BranchNum = 3.

b
(VIII)
0 = 3b

(IX)
0 Πb0 = 9720. (5.30)
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We are stuck again and the choices are

a
(III)
0 ≡ 0 mod 3 or a

(III)
0 ≡ 2 mod 3 (5.31)

and we decide to continue with the latter.

19th Reduction: BranchNum = 4.

a
(III)
0 = 2 + 3a

(IV)
0 Πa0 = 54. (5.32)

20th Reduction: BranchNum = 4.

b
(IX)
0 = 2 + 2a

(IV)
0 + 3b

(X)
0 Πb0 = 29160. (5.33)

Again we need to make a choice and in G5 there are two possibilities

a
(IV)
0 ≡ 0 mod 5 or a

(IV)
0 ≡ 4 mod 5. (5.34)

If we take the first one, the next reductions are:

21st Reduction: BranchNum = 5.

a
(IV)
0 = 5a

(V)
0 Πa0 = 270. (5.35)

22nd Reduction: BranchNum = 5.

a
(V)
0 = 3 + 5a

(VI)
0 Πa0 = 1350. (5.36)

23rd Reduction: BranchNum = 5.

b
(X)
0 = 3 + 5b

(XI)
0 Πb0 = 145800. (5.37)

24th Reduction: BranchNum = 5.

b
(XI)
0 = 3a

(VI)
0 + 1 + 5b

(XII)
0 Πb0 = 729000. (5.38)

25th Reduction: BranchNum = 5.

b
(XII)
0 = 4a

(VI)
0 + 5b

(XIII)
0 Πb0 = 3645000. (5.39)
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Again, we need to perform a choice and we have to decide between one of
the following:

a
(VI)
0 ≡ 0 mod 5 or a

(VI)
0 ≡ 3 mod 5 or a

(VI)
0 ≡ 4 mod 5.

(5.40)
Let’s focus on the first one

26th Reduction: BranchNum = 7.

a
(VI)
0 = 5a

(VII)
0 Πa0 = 6750. (5.41)

27th Reduction: BranchNum = 7.

b
(XIII)
0 = 5b

(XIV)
0 Πb0 = 18225000. (5.42)

28th Reduction: BranchNum = 7.

b
(XIV)
0 = 2a

(VII)
0 + 5b

(XV)
0 Πb0 = 91125000. (5.43)

It is worthy to report how the system in Q has become:

G :


4d21+27000d1a0+3388d1+45511875a20+11301945a0+854628=0

2b0 − a2
0 + a0 = 0

b1 + 1724 = 0.

At this moment, we should make another choice, but we have reduced the
coefficients enough. Since

⌈
log2

(
N

Πa0

)⌉
= 15 and

b0 = 91125000b
(XV)
0 + 56983500a0(VII) + 715004 =⇒ b

(XV)
0 ∈ [−215, 215]

this means that we can perform a brute force search on the integers for
(b0, a0) ∈ [−215, 215]× [−215, 215] that satisfies

2b0 = a2
0 − a0.

Due to the form of this equation, we can reduce also the interval of a0 to
be half of the one for b0, so a0 ∈ [−28, 28]. We find a total of 512 possible
solutions. For all these values of a0 we want to study the corresponding
polynomials in the variable d1 in the first equation of G and check if they
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have solutions. It results that they are all irreducible, so there is no solution
using these choices. We should decrease BranchNum and go back to (5.40)
and take another one.

26th Reduction: BranchNum = 6.

a
(VI)
0 = 3 + 5a

(V)
0 Πa0 = 6750. (5.44)

27th Reduction: BranchNum = 6.

b
(XIII)
0 = 3 + 5b

(XIV)
0 Πb0 = 18225000. (5.45)

28th Reduction: BranchNum = 6.

b
(XIV)
0 = 5b

(XV)
0 Πb0 = 91125000. (5.46)

Similarly as before, we can try to find a solution with brute force. The
Groebner basis G is

G :


4d21+27000d1a0+19588d1+45511875a20+65916195a0+24020070=0

2b0 − a2
0 − a0 = 0

b1 + 1724 = 0

Now (b0, a0) must be in the interval [−214, 214]× [−27, 27], obtaining a total
of 257 possible values. However, using these values of a0, neither of the
polynomial in the first equation of the system has a solution. So, let us go
back again to (5.40) and take the last choice available.

26th Reduction: BranchNum = 5.

a
(VI)
0 = 4 + 5a

(VII)
0 Πa0 = 6750. (5.47)

27th Reduction: BranchNum = 5.

b
(XIII)
0 = 4 + 5b

(XIV)
0 Πb0 = 18225000. (5.48)

28th Reduction: BranchNum = 5.

d
(IV)
1 = 4 + 5d

(V)
1 Πd1 = 300. (5.49)
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29th Reduction: BranchNum = 5.

a
(VI)
0 = 5a

(VII)
0 Πa0 = 33750. (5.50)

30th Reduction: BranchNum = 5.

b
(XIV)
0 = 5b

(XV)
0 Πb0 = 91125000. (5.51)

At this moment the system has become

G :


4d21+27000d1a0+5004d1+45511875a20+16845789a0+1564952=0

2b0 − 25a2
0 − 7a0 = 0

b1 + 1724 = 0

In this case the intervals where to check for the solutions are

−214 ≤ b0 ≤ 214 and − 27 ≤ a0 ≤ 27.

In this case we only find 73 possible pairs for (b0, a0), which evaluated in
the first equation of G, give exactly one non-irreducible polynomial: the pair
corresponding to the values (b0, a0) = (0, 0) transform the first equation into
the polynomial

(d1 + 622)(d1 + 629) = 0.

Therefore we have found two solutions for the system:
a

(VIII)
0 = 0

b
(XV)
0 = 0

b
(II)
1 = −1724

d
(V)
1 = −622

or


a

(VIII)
0 = 0

b
(XV)
0 = 0

b
(II)
1 = −1724

d
(V)
1 = −629

(5.52)

To recover the initial values for the variables, we need to invert all the rela-
tions used so far, obtaining

a0 = 33750a
(VIII)
0 + 6246

b0 = 91125000b
(XV)
0 + 102667500a

(VIII)
0 + 39011804

b1 = 10b
(II)
1 + 67500a

(VIII)
0 + 12496

d1 = 300d
(V)
1 + 1012500a

(VIII)
0 + 187650
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and, substituting these equations in (5.52), it follows that
a0 = 6246

b0 = 39011804

b1 = −4744

d1 = 1050 or − 1050.

As we expected, we obtained the same absolute value for d1. To find the
factors we need to compute

gcd(a0 + a1 ·m− d1, N) = gcd(6246 + 1 · 7991− 1050, N) = 13187

and

gcd(a0 + a1 ·m+ d1, N) = gcd(6246 + 1 · 7991 + 1050, N) = 15287,

in fact
N = 201589669 = 13187 · 15287.

We would like to summarize all the reductions made in this example with
the algorithm using a flow chart.
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(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

...

(5.23)

(5.24)

(5.25)

...

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

...

(5.33)

(5.34)

(5.35)

...

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

(5.51)

Solution
Found

No solution

Num = 2Branch

Num = 3Branch

Num = 4Branch

Num = 5Branch

BranchNum = 7

Num = 6Branch

BranchNum = 5

BranchNum =
BranchNum− 1

Figure 5.1: Flow chart for the reductions on N = 201589669.
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5.3 Related Systems

Suppose we have a system like in (5.10) with the additional hypothesis that
a1 = 1, so that it becomes

m2 +Am+B = N

d1
2 = a0

2 −B +m(2a0 −A)

b0 = a0
2 −B

b1 = 2a0 −A,

(5.53)

where the first equation is just the definition of the parameters A,B and
m. We saw that finding a solution for this system could be complicated, so
we need to adopt a different strategy. We may ask ourselves if there exists
another integer N 6= N , such that another system of the form of (5.10) again
with a1 = 1 can be set, so that


m2 +Am+B = N

d1
2

= a0
2 −B +m(2a0 −A)

b0 = a0
2 −B

b1 = 2a0 −A.

(5.54)

We can therefore establish a link between the two sets of variables

N = N + ∆N

m = m+ ∆m

A = A+ ∆A

B = B + ∆B

a0 = a0 + ∆a0

b0 = b0 + ∆b0

b1 = b1 + ∆b1

d1 = d1 + ∆d1.

(5.55)

In this way knowing the solutions for (5.54), we hope to recover at least some
of the values of the variables in (5.53). For example, suppose that we know
N and therefore define A,B and m. Furthermore, if we set ∆d1 = 0, when
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we recover d1 from (5.54), we will also obtain the value of d1 = d1 and the
second equation of (5.53) could be solved to get, if any, an integer value for
a0. In order to obtain a suitable element in this way, the change of variables
expressed in (5.55) does need to not depend on the variables a0, b0, b1 and
d1. However this is not as easy to achieve as we would like.
Proposition 5.2. Consider the two related systems (5.53) and (5.54). Sup-
pose that ∆N 6= 0 and ∆d1 = 0 defined as in (5.55). Then it does not exist
any N for which the change of variable (5.55) is independent from a0.

Proof. Substituting the relations from (5.55) into (5.54) with ∆d1 = 0 we
obtain

N + ∆N = m2 + (∆m)2 + 2m∆m+Am+A∆m+m∆A+

+∆A∆m+B + ∆B

d1
2 = a2

0 + 2a0∆a0 + (∆a0)2 −B −∆B + 2ma0 + 2m∆a0+

−mA−m∆A+ 2a0∆m+ 2∆m∆a0 −A∆m−∆m∆A

b0 + ∆b0 = a2
0 + 2a0∆a0 + (∆a0)2 −B −∆B

b1 + ∆b1 = 2a0 + 2∆a0 −A−∆A.

We may compare these equations with those in (5.53) and get some simpli-
fications, namely

∆N = (∆m)2 + 2m∆m+A∆m+m∆A+ ∆A∆m+ ∆B

∆B = 2a0∆a0 + (∆a0)2 + 2m∆a0 −m∆A+ 2a0∆m+ 2∆m∆a0+

−A∆m−∆m∆A

∆b0 = 2a0∆a0 + (∆a0)2 −∆B

∆b1 = 2∆a0 −∆A.

If we substitute the value of ∆B given by the second equation into the first
one, we obtain the following

∆N = (∆m)2 + 2m∆m+ 2a0∆a0 + (∆a0)2 + 2m∆a0+

+ 2a0∆m+ 2∆m∆a0 =

= (∆m+ ∆a0)2 + 2 (m∆m+ a0∆a0 +m∆a0 + a0∆m) =

= (∆m+ ∆a0)2 + 2 (∆m+ ∆a0) (m+ a0) =

= (∆m+ ∆a0) (∆m+ ∆a0 + 2m+ 2a0)
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and we remember that this quantity, by hypothesis, is different from 0, so
in particular ∆m 6= −∆a0. Performing the same substitution in the third
equation, the equivalent system becomes

∆N = (∆m+ ∆a0) (∆m+ ∆a0 + 2m+ 2a0)

∆B = 2a0∆a0 + (∆a0)2 + 2m∆a0 −m∆A+ 2a0∆m+ 2∆m∆a0+

−A∆m−∆m∆A

∆b0 = (∆A− 2∆a0) (m+ ∆m) + ∆m(A− 2a0)

∆b1 = 2∆a0 −∆A.

We may see that the only problematic variable that appears in this system is
a0, so we may set that its coefficient is equal to 0. But in the second equation
the coefficient of a0 is 2 (∆a0 + ∆m), that is null if and only if ∆m = −∆a0,
which is exactly the condition we excluded to obtain N 6= N .

This proposition implies that it is not possible to consider another N and
use it to earn information on the solutions of (5.53), because every change
of variables would depend on a0, which is not known.

5.4 Conclusion and future works

The approach described in this chapter has some evident limits: we still
need to develop a good strategy to define the polynomial f that defines the
number field; the computational cost of computing Groebner bases is not
negligible; the Algorithm 5.1 is not optimized. However this new point of
view for the elements arising from GNFS may introduce some improvements
for the sieving phase, in fact this new strategy can be seen as a criterion to
say something about the shape of the elements α and β we would like to
achieve.
We are currently working on a method to check whether we picked a wrong
branch after just few computations, avoiding to perform the brute-force step.
Another aspect we are investigating is the choice of the primes in which we
compute the Groebner bases: in fact we decided to use small primes to sim-
plify the calculations, however choosing bigger primes sensibly reduces the
width of the interval, allowing the algorithm to conclude with less reduc-
tions.
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Appendix A

MAGMA Code for the
Bivariate Version of GNFS

/∗
INPUT: l: the length of the primes
OUTPUT: p,q: two primes of length l

n: their product (n=p∗q)
∗/

function primi(_l)
repeat

repeat
p:=RandomPrime(_l);

until ((p ne 2) and (#Intseq(p,2) eq _l ));
repeat

q:=RandomPrime(_l);
until ((q ne 2) and (#Intseq(q,2) eq _l));
n:=p∗q;
if p gt q then

s:=p;
p:=q;
q:=s;

end if;
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until ((Floor(Sqrt(n/2)) lt p) and (p lt Floor(Sqrt(n))) and (Floor(
Sqrt(n)) lt q) and (q lt 2∗p));
return p,q,n;

end function;

/∗
Our optimized polynomial choice

INPUT: _N: the number we need to factorize
_R: the ring of polynomials where we need to get the result

OUTPUT: A polynomial P(x,y) of the form x^2+y^2+C and A and B,
such that P(A,B)=N

∗/

function GimmePolyAlpha(_N, _R)
Vars := MonomialsOfDegree(_R, 1);
pMAX := 2;
mm := 1;
DGbound := Floor(Sqrt(_N/3)∗(Sqrt(2)−1));
repeat

mm ∗:= pMAX;
pMAX := NextPrime(pMAX);

until mm∗pMAX gt DGbound;
pMAX := PreviousPrime(pMAX);
halfSq := Floor(Sqrt(_N/3));
Arange := [Floor(halfSq/2)..halfSq];
ReqPrimes := Remove(PrimesUpTo(pMAX), 1);
FinalLength := #ReqPrimes;
repeat

A := Random(Arange);
i := 0;
repeat

i +:= 1;
until ( i eq FinalLength+1) or (LegendreSymbol(A^2−

_N, ReqPrimes[i]) eq −1);
until i eq FinalLength+1;
k := Floor((−A+Sqrt(_N−A^2))/mm);
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B := A + k∗mm;
c := _N − A^2 − B^2;
return Vars[1]^2 + Vars[2]^2 + c, A, B, c;

end function;

/∗
This function see the polynomial p as an element of the ring R if

possible .

INPUT: p: a polynomial
R: a polynomial Ring

OUTPUT: Returns the coefficients of the polynomial p, seen as elements in
the ring R.

∗/

function CoercPoly(_p, _R)
return _R!Coefficients(_p, 1);

end function;

/∗
INPUT: m: the number chosen at the beginning

k: the threashold for the primes
OUTPUT R: the ordered set of Rational Factor Base {@ [m mod p, p] @}
∗/

function RationalFactorBase(_m, _k)
return {@ [_m mod _p, _p] : _p in PrimesUpTo(_k) @};

end function;

/∗
INPUT: f: the polynomial x^2+B^2+c that defines the first extension

g: the polynomial x^2+A^2+c that defines the second extension
k: the threashold for the primes

OUTPUT: A1: The Algebraic Factor Base {@ [r_1,p_1], ..., [r_n,p_n] @
} of the f−extension
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A2: The Algebraic Factor Base {@ [r_1,p_1], ..., [r_n,p_n] @
} of the g−extension

A: The Algebraic Factor Base {@ [r_1,p_1], ..., [r_n,p_n] @}
of the large quartic extension

∗/

function AlgebraicMultiFactorBase(_f, _g, _k)
// p = 2 is a special case
A := {@ [Integers()!(Evaluate(_f, 0)+Evaluate(_g, 0)) mod 2, 2]

@};
A1 := {@ [Integers()!(Evaluate(_f, 0)) mod 2, 2] @};
A2 := {@ [Integers()!(Evaluate(_g, 0)) mod 2, 2] @};
// p > 2
for _p in Remove(PrimesUpTo(_k), 1) do

b1, r1 := IsSquare(−Integers(_p)!Evaluate(_f, 0));
b2, r2 := IsSquare(−Integers(_p)!Evaluate(_g, 0));
if b1 and b2 then

J := {r1, −r1};
H := {r2, −r2};
for r in J do

A1 join:= {@ [Integers()!(r), _p] @};
for s in H do

A join:= {@ [Integers()!(r+s),
_p] @};

end for;
end for;
for s in H do

A2 join:= {@ [Integers()!(s), _p] @};
end for;

end if;
end for;
return A1, A2, A;

end function;

/∗
INPUT: f: the polynomial x^2+B^2+c that defines the first extension
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g: the polynomial x^2+A^2+c that defines the second extension
a,b: the interval in which we search for primes (must be greater

than k). In particular a > 2.
OUTPUT: Q: the ordered set of Quadratic Characters Base {@ [r,p] @}
∗/

function QuadraticCharacterBase(_f, _g, _a, _b)
Q:= {@ @};
for _p in PrimesInInterval(_a, _b) do

b1, r1 := IsSquare(−Integers(_p)!Evaluate(_f, 0));
b2, r2 := IsSquare(−Integers(_p)!Evaluate(_g, 0));
if b1 and b2 and (r1∗r2 ne 0) and (r1^2 ne r2^2) then

J := {r1, −r1};
H := {r2, −r2};
for r in J do

for s in H do
Q join:= {@ [Integers()!(r+s),

_p] @};
end for;

end for;
end if;

end for;
return Q;

end function;

/∗
INPUT: f: the polynomial that defines the extension

a,b: the element of the form a+b∗theta of which we need to
compute the norm

OUTPUT: N: the norm of (a+b∗theta)
∗/

function RapidNorm(_f, _a, _b)
return Integers()!((−_b)^Degree(_f)∗Evaluate(_f,−_a/_b));

end function;
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/∗
INPUT: A,B: parameters decided at the beginning

F: the polynomial that defines Q(theta)
R: Rational Factor Base for Q(theta)
A1: Algebraic Factor Base for Q(theta1)
A2: Algebraic Factor Base for Q(theta2)
AA: Algebraic Factor Base for Q(theta)
QQ: Quadratic Characters Base for Q(theta)
k: the length of the interval [−k..k]

OUTPUT: Good: a list of good (a,b) that can be factorized in the two
Bases

∗/

function MultiSieving(_A, _B, _F, _RB, _AB1, _AB2, _AB, _QB,
_k)

m := (_A + _B);
tot := 1 + #_RB + #_AB + #_QB;
Good := [];
b:=1;
while #Good le tot do

Good cat:= [ [a,b] : a in [−_k.._k] | { _X[1] : _X in
Factorization(a+b∗m) } subset {_R[2] : _R in _RB} and { _X[1] :
_X in Factorization(RapidNorm(_F, a, b)) } subset {_R[2] : _R in
_AB1} ];

b:=b+1;
Good;

end while;
return Good;

end function;

///// TEST

Q := Rationals(); //Defines the Field of Rationals Q
Acc<z> := PolynomialRing(Q); //Defines the Polynomial Ring in the

variable z over Q
R<x,y> := PolynomialRing(Q, 2); //Defines the Polynomial Ring in the

two variables x and y over Q

124



p,q,N := primi(8);
f , A, B, c := GimmePolyAlpha(N, R);
F1 := CoercPoly(Evaluate(f, [x,B]), Acc); // min pol of Q(a)
F2 := CoercPoly(Evaluate(f, [A,x]), Acc); // min pol of Q(b)
F := z^4+2∗(c+N)∗z^2+(A^2−B^2)^2; // min pol of Q(theta)=Q(a+b)

RB := RationalFactorBase(A+B, 30);
AB1, AB2, AB := AlgebraicMultiFactorBase(F1, F2, 100);
QB := QuadraticCharacterBase(F1, F2, 101, 150);

Good := MultiSieving(A, B, F, RB, AB1, AB2, AB, QB, 100);
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MAGMA Code for the System
using Groebner Bases

/∗
INPUT: _p, a number
OUTPUT: F_p, the finite field with _p elements or

Q, the field of rationals if _p is not a prime
∗/

KK:=function(_p)
if IsPrime(_p) then return GF(_p); end if;
return(Rationals());
end function;

/∗
INPUT: _p, a prime

_f, a polynomial with rational coefficients
OUTPUT: ret, the polynomial _f multiplied by the right power of _p, such

that _p does not divide any coefficient of ret
∗/

Fixx:=function(_f,_p)
local _C,_M,_ret,_c;
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_C:=Coefficients(_f);
_M:=Monomials(_f);
_ret:=0; _c:=0;
if #_C ne #_M then
print("help");
return(100000000000000000);

end if;
for i in [1..#_C] do
while (Denominator(_C[i]) mod _p^(_c+1) eq 0) do
_c:=_c+1;

end while;
end for;
_C:=[_C[i]∗_p^_c: i in [1..#_C]];

for i in [1..#_C] do
_ret:=_ret+_C[i]∗_M[i];

end for;
return(_ret);
end function;

/∗
Fix an integer we want to factorize
∗/
NN:=201589669;

/∗
Setting the system
∗/

p:=0;
QQ<d1,t,b0,b1,m,A,B,a0,a1>:=PolynomialRing(KK(p),9);

F:=t^2+A∗t+B;
alpha:=a1∗t+a0; beta:=b1∗t+b0;
rel :=NormalForm(alpha^2−beta,[F]); // alpha^2 = beta
rel0:=NormalForm(rel,[t]);
rel1:=(rel−rel0) div t;
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phialpha:=a1∗m+a0; phibeta:=b1∗m+b0;
extra:= [];

/∗
Fix the values of A,B,m and a1
∗/

Base:=[rel0,rel1 , m^2+A∗m+B−NN,phibeta−d1^2,B−712,A−17236,m
−7991,a1−1];

//Define the variables to check how they change during the substitutions
Elements:=[F,alpha,beta,d1,t,b0,b1,m,A,B,a0,a1];

/////////////////////////////////////////////////////////////
//Adding information by modular reductions (computed below)//
////////////////////////////////////////////////////////////

// b1−−>2∗b1
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[d1,t ,b0,2∗b1,m,A,B,a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t ,b0,2∗b1,m,A,B,a0,a1]);

end for;
// d1 −−> 3∗d1
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[3∗d1,t ,b0,b1,m,A,B,a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[3∗d1,t,b0,b1,m,A,B,a0,a1]);

end for;
// b1 −−> a0+2+5∗b1
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[d1,t ,b0,a0+2+5∗b1,m,A,B,a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t ,b0,a0+2+5∗b1,m,A,B,a0,a1]);

end for;
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// d1 −−> a0+2∗d1
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[a0+2∗d1,t,b0,b1,m,A,B,a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[a0+2∗d1,t,b0,b1,m,A,B,a0,a1]);

end for;
// a0 −−> 2∗a0
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[d1,t ,b0,b1,m,A,B,2∗a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t ,b0,b1,m,A,B,2∗a0,a1]);

end for;
// d1 −−> 1+a0+2∗d1
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[1+a0+2∗d1,t,b0,b1,m,A,B,a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[1+a0+2∗d1,t,b0,b1,m,A,B,a0,a1]);

end for;
//b0 −−−> 2∗b0
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[d1,t,2∗b0,b1,m,A,B,a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t,2∗b0,b1,m,A,B,a0,a1]);

end for;
//b0 −−−> 2∗b0
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[d1,t,2∗b0,b1,m,A,B,a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t,2∗b0,b1,m,A,B,a0,a1]);

end for;
//b0 −−−> a0+2∗b0
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[d1,t ,a0+2∗b0,b1,m,A,B,a0,a1]);
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end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t ,a0+2∗b0,b1,m,A,B,a0,a1]);

end for;
//b0 −−−> 1+3∗b0
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[d1,t,1+3∗b0,b1,m,A,B,a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t,1+3∗b0,b1,m,A,B,a0,a1]);

end for;
// d1 −−> 4a0+2+5∗d1 ∗∗∗∗∗CHOICE∗∗∗∗∗
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[4∗a0+2+5∗d1,t,b0,b1,m,A,B,a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[4∗a0+2+5∗d1,t,b0,b1,m,A,B,a0,a1]);

end for;
//b0 −−−> 3a0+2+5∗b0
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[d1,t,3∗a0+2+5∗b0,b1,m,A,B,a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t,3∗a0+2+5∗b0,b1,m,A,B,a0,a1]);

end for;
// a0 −−> 3∗a0 ∗∗∗∗∗CHOICE∗∗∗∗∗
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[d1,t ,b0,b1,m,A,B,3∗a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t ,b0,b1,m,A,B,3∗a0,a1]);

end for;
// a0 −−> 3∗a0
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[d1,t ,b0,b1,m,A,B,3∗a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t ,b0,b1,m,A,B,3∗a0,a1]);
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end for;
//b0 −−−> 2+3∗b0
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[d1,t,2+3∗b0,b1,m,A,B,a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t,2+3∗b0,b1,m,A,B,a0,a1]);

end for;
//b0 −−−> 2a0+2+3∗b0
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[d1,t,2∗a0+2+3∗b0,b1,m,A,B,a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t,2∗a0+2+3∗b0,b1,m,A,B,a0,a1]);

end for;
//b0 −−−> 2a0+2+3∗b0
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[d1,t,2∗a0+2+3∗b0,b1,m,A,B,a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t,2∗a0+2+3∗b0,b1,m,A,B,a0,a1]);

end for;
//b0 −−−> 3∗b0
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[d1,t,3∗b0,b1,m,A,B,a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t,3∗b0,b1,m,A,B,a0,a1]);

end for;
// a0 −−> 2+3∗a0 ∗∗∗∗∗CHOICE∗∗∗∗∗
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[d1,t ,b0,b1,m,A,B,2+3∗a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t ,b0,b1,m,A,B,2+3∗a0,a1]);

end for;
//b0 −−−> 2a0+2+3∗b0
for i in [1..#Base] do
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Base[i ]:=Evaluate(Base[i],[d1,t,2∗a0+2+3∗b0,b1,m,A,B,a0,a1]);
end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t,2∗a0+2+3∗b0,b1,m,A,B,a0,a1]);

end for;
// a0 −−> 5∗a0 ∗∗∗∗∗CHOICE∗∗∗∗∗∗
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[d1,t ,b0,b1,m,A,B,5∗a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t ,b0,b1,m,A,B,5∗a0,a1]);

end for;
// a0 −−−> 3+5∗a0
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[d1,t ,b0,b1,m,A,B,3+5∗a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t ,b0,b1,m,A,B,3+5∗a0,a1]);

end for;
//b0 −−−> 3+5∗b0
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[d1,t,3+5∗b0,b1,m,A,B,a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t,3+5∗b0,b1,m,A,B,a0,a1]);

end for;
//b0 −−−> 3a0+1+5∗b0
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[d1,t,3∗a0+1+5∗b0,b1,m,A,B,a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t,3∗a0+1+5∗b0,b1,m,A,B,a0,a1]);

end for;
//b0 −−−> 4a0+5∗b0
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[d1,t,4∗a0+5∗b0,b1,m,A,B,a0,a1]);

end for;
for i in [1..#Elements] do
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Elements[i]:=Evaluate(Elements[i],[d1,t,4∗a0+5∗b0,b1,m,A,B,a0,a1]);
end for;
/∗// a0 −−>5∗a0 ∗∗∗∗∗ WRONG CHOICE∗∗∗∗∗∗
for i in [1..#Base] do
Base[i]:=Evaluate(Base[i],[d1,t ,b0,b1,m,A,B,5∗a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t ,b0,b1,m,A,B,5∗a0,a1]);

end for;
//b0 −−−> 5∗b0
for i in [1..#Base] do
Base[i]:=Evaluate(Base[i],[d1,t,5∗b0,b1,m,A,B,a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t,5∗b0,b1,m,A,B,a0,a1]);

end for;
//b0 −−−> 2a0+5∗b0
for i in [1..#Base] do
Base[i]:=Evaluate(Base[i],[d1,t,2∗a0+5∗b0,b1,m,A,B,a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t,2∗a0+5∗b0,b1,m,A,B,a0,a1]);

end for;
∗/
/∗// a0 −−>3+5∗a0 ∗∗∗∗∗WRONG CHOICE∗∗∗∗∗∗
for i in [1..#Base] do
Base[i]:=Evaluate(Base[i],[d1,t ,b0,b1,m,A,B,3+5∗a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t ,b0,b1,m,A,B,3+5∗a0,a1]);

end for;
//b0 −−−> 3+5∗b0
for i in [1..#Base] do
Base[i]:=Evaluate(Base[i],[d1,t,3+5∗b0,b1,m,A,B,a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t,3+5∗b0,b1,m,A,B,a0,a1]);

end for;
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//b0 −−−> 5∗b0
for i in [1..#Base] do
Base[i]:=Evaluate(Base[i],[d1,t,5∗b0,b1,m,A,B,a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t,5∗b0,b1,m,A,B,a0,a1]);

end for;
∗/
// a0 −−>4+5∗a0 ∗∗∗∗∗ RIGHT CHOICE ∗∗∗∗∗∗
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[d1,t ,b0,b1,m,A,B,4+5∗a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t ,b0,b1,m,A,B,4+5∗a0,a1]);

end for;
//b0 −−−> 1+5∗b0
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[d1,t,1+5∗b0,b1,m,A,B,a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t,1+5∗b0,b1,m,A,B,a0,a1]);

end for;
//d1 −−−>4+5d1
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[4+5∗d1,t,b0,b1,m,A,B,a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[4+5∗d1,t,b0,b1,m,A,B,a0,a1]);

end for;
// a0 −−>5∗a0
for i in [1..#Base] do
Base[i ]:=Evaluate(Base[i],[d1,t ,b0,b1,m,A,B,5∗a0,a1]);

end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t ,b0,b1,m,A,B,5∗a0,a1]);

end for;
//b0 −−−> 1+5∗b0
for i in [1..#Base] do
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Base[i ]:=Evaluate(Base[i],[d1,t,1+5∗b0,b1,m,A,B,a0,a1]);
end for;
for i in [1..#Elements] do
Elements[i]:=Evaluate(Elements[i],[d1,t,1+5∗b0,b1,m,A,B,a0,a1]);

end for;

// Compute Rational Groebner Base
if p eq 0 then
J:=ideal<QQ | Base>;
time G:=GroebnerBasis(J);
G;

end if;

/////////////////////////////////////////////////////
/////////Moduli with additional equations////////////
/////////////////////////////////////////////////////

p:=2;
QQ2<d1,t,b0,b1,m,A,B,a0,a1>:=PolynomialRing(KK(p),9);
extra:=[b1^p−b1,b0^p−b0,d1^p−d1,m^p−m,a0^p−a0,a1^p−a1,A^p−A,

B^p−B];
//Compute the Groebner Base in GF(2) starting from the one calculated

before
G2:=GroebnerBasis([QQ2!Fixx(_g,p) : _g in G] cat extra);
G2;

p:=3;
QQ3<d1,t,b0,b1,m,A,B,a0,a1>:=PolynomialRing(KK(p),9);
extra:=[b1^p−b1,b0^p−b0,d1^p−d1,m^p−m,a0^p−a0,a1^p−a1,A^p−A,

B^p−B];
//Compute the Groebner Base in GF(3) starting from the one calculated

before
G3:=GroebnerBasis([QQ3!Fixx(_g,p) : _g in G] cat extra);
G3;

p:=5;
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QQ5<d1,t,b0,b1,m,A,B,a0,a1>:=PolynomialRing(KK(p),9);
extra:=[b1^p−b1,b0^p−b0,d1^p−d1,m^p−m,a0^p−a0,a1^p−a1,A^p−A,

B^p−B];
//Compute the Groebner Base in GF(5) starting from the one calculated

before
G5:=GroebnerBasis([QQ5!Fixx(_g,p) : _g in G] cat extra);
G5;

p:=7;
QQ7<d1,t,b0,b1,m,A,B,a0,a1>:=PolynomialRing(KK(p),9);
extra:=[b1^p−b1,b0^p−b0,d1^p−d1,m^p−m,a0^p−a0,a1^p−a1,A^p−A,

B^p−B];
//Compute the Groebner Base in GF(7) starting from the one calculated

before
G7:=GroebnerBasis([QQ7!Fixx(_g,p) : _g in G] cat extra);
G7;

p:=11;
QQ11<d1,t,b0,b1,m,A,B,a0,a1>:=PolynomialRing(KK(p),9);
extra:=[b1^p−b1,b0^p−b0,d1^p−d1,m^p−m,a0^p−a0,a1^p−a1,A^p−A,

B^p−B];
//Compute the Groebner Base in GF(11) starting from the one calculated

before
G11:=GroebnerBasis([QQ11!Fixx(_g,p) : _g in G] cat extra);
G11;

/////////Look for the right solution with brute force

//BranchNum=7
p:=0;
QQ<d1,t,b0,b1,m,A,B,a0,a1>:=PolynomialRing(KK(p),9);

time Solutions:=[[_b0,_a0] : _b0 in [−2^15..2^15], _a0 in [−2^8..2^8] |
Evaluate(QQ!G[2],[d1,t,_b0,b1,m,A,B,_a0,a1]) eq 0];
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//195.8 sec

for i in Solutions do
if IsIrreducible (Evaluate(QQ!G[1],[d1,t,i [1], b1,m,A,B,i [2],a1]))

eq false then
i ;
Factorization(Evaluate(QQ!G[1],[d1,t,i [1], b1,m,A,B,i [2],

a1])) ;
end if;

end for;

//BranchNum=6
p:=0;
QQ<d1,t,b0,b1,m,A,B,a0,a1>:=PolynomialRing(KK(p),9);

time Solutions:=[[_b0,_a0] : _b0 in [−2^14..2^14], _a0 in [−2^7..2^7] |
Evaluate(QQ!G[2],[d1,t,_b0,b1,m,A,B,_a0,a1]) eq 0];

//50.56 sec

for i in Solutions do
if IsIrreducible (Evaluate(QQ!G[1],[d1,t,i [1], b1,m,A,B,i [2],a1]))

eq false then
i ;
Factorization(Evaluate(QQ!G[1],[d1,t,i [1], b1,m,A,B,i [2],

a1])) ;
end if;

end for;

//BranchNum=5
p:=0;
QQ<d1,t,b0,b1,m,A,B,a0,a1>:=PolynomialRing(KK(p),9);

time Solutions:=[[_b0,_a0] : _b0 in [−2^14..2^14], _a0 in [−2^7..2^7] |
Evaluate(QQ!G[2],[d1,t,_b0,b1,m,A,B,_a0,a1]) eq 0];

//49.66

for i in Solutions do
if IsIrreducible (Evaluate(QQ!G[1],[d1,t,i [1], b1,m,A,B,i [2],a1]))
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eq false then
i ;
Factorization(Evaluate(QQ!G[1],[d1,t,i [1], b1,m,A,B,i [2],

a1])) ;
end if;

end for;
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