
DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE
ICT International Doctoral School

Decision Support of Security
Assessment of Software

Vulnerabilities in Industrial
Practice

Ivan Pashchenko

Advisor

Prof. Fabio Massacci

Università degli Studi di Trento

External reviewers

Dr. Achim D. Brucker

Prof. Paolo Tonella

September 2019

Acknowledgements

On the path towards this thesis, I met many great people who guided, supported, and
taught me. I am very grateful to all of you and I believe that without you this thesis and
my PhD would not be possible. Thank you all for being with me.

My special words are dedicated to my advisor, whom I value, proud of, and always
respectively refer to as Professor Massacci (University of Trento, Italy). I want to thank
you a lot for being exacting enough and honest with me. Under your supervision I have
grown both as a researcher and as a person.

The applicable industrial part of this work would not be possible without the Vulas
team of the SAP Security Research (SAP Labs France): Henrik Plate, Serena Elisa Ponta,
and Antonino Sabetta. While working with you I always felt myself being on a team.
Thank you for teaching me the practical thinking and for providing me with the unique
opportunity to impact on the workflow of hundreds of SAP employees.

I want to thank Prof. Bruno Crispo (University of Trento, Italy), Dr Achim D.
Brucker (University of Exeter, United Kingdom), and Prof. Paolo Tonella (Università
della Svizzera Italiana, Switzerland) for being the PhD defense committee members. This
dissertation greatly benefited from your valuable comments.

I want to thank PhD students of DISI, and especially my former colleagues Dr Stanislav
Dashevskyi and Dr Katsiarina Labunets. You supported me since the very first steps of
my way towards PhD. Thank you for your patience and your priceless advice for both
research and social sides of being a PhD student.

I want to thank all my friends who timely distracted me from working. The activities
you involved me in have always recharged and inspired me for the new steps of my research.

My special gratitude goes to my parents. Although you were distant, I always felt
your presence and your support. And I especially want to underline dearest and most
valuable person in my life, Ismagilova Zilia, who went with me through all the happy and
challenging moments of the path towards this thesis.

Abstract

Software vulnerabilities are a well-known problem in current software projects.
The situation becomes even more complicated, due to the ever-increasing
complexity of the interconnections between both commercial and free open-
source software (FOSS) projects. In this dissertation, we are aiming to fa-
cilitate the security assessment process in an industrial context.

We start from the level of the own code of an individual software project,
for which we propose a differential benchmarking approach for automatic
assessment of static analysis security testing tools. We have demonstrated
this approach, using 70 revisions of four major versions of Apache Tomcat
with 62 distinct vulnerability fixes as a ground-truth set to test 7 tools.

Since modern software projects often import functionality via software de-
pendencies, that can also introduce vulnerabilities into the dependent project,
we propose a methodology for counting actually vulnerable dependencies. We
have evaluated the methodology on the set of 200 most used industry-relevant
FOSS libraries, that resulted in 10905 distinct library instances when con-
sidering all the library versions.

Finally, we have investigated the situation on the level of the FOSS
ecosystem. Here we have studied decision-making strategies of developers
for selecting and updating dependencies, as well as the influence of security
concerns on the developers’ decisions from quantitative and qualitative per-
spectives. For the qualitative study we have run 15 semi-structured interviews
with software developers from 15 companies located in 7 countries.

Keywords
Software Vulnerabilities, Benchmarking, Dependency Management, FOSS
Ecosystem, Empirical Study

Contents

1 Introduction 1

1.1 The Problem . 2

1.2 Contributions . 3

1.3 Thesis Structure . 4

2 State of the Art 7

2.1 Own Code . 7

2.1.1 Collections of synthetic test cases . 9

2.1.2 Databases of real-world bugs . 9

2.1.3 Existing benchmarking approaches . 10

2.1.4 Automatic generation of benchmarks . 11

2.2 Project Level . 11

2.2.1 Accounting for Deployment . 11

2.2.2 Accounting for Transitivities . 12

2.2.3 Vulnerability Matching Approaches . 13

2.2.4 Accounting for Own Dependencies . 15

2.2.5 Maintenance of Software Libraries . 15

2.3 Quantitative Studies . 16

2.4 Qualitative Studies . 16

3 Delta-Bench 19

3.1 Introduction . 19

3.2 Benchmark construction . 20

3.3 Data selection for evaluation . 24

3.4 RQ1: Alerts Isolation . 26

3.5 RQ2: Background Noise Impact . 28

3.6 Threats to validity . 31

3.7 Conclusions . 32

i

4 Dependency Methodology 35
4.1 Introduction . 35
4.2 Terminology . 37
4.3 Motivating Example . 41
4.4 Methodology . 42
4.5 Data collection . 48
4.6 Ecosystem View . 50
4.7 Developer View . 58

4.7.1 Requirements for an Industrial Practice 58
4.7.2 Simulation of the Vuln4Real methodology on an individual software library 60

4.8 Threats to Validity . 60
4.9 Conclusions . 64

5 Ecosystem: Quantitative Study 67
5.1 Introduction . 67
5.2 Terminology . 68
5.3 Technical Debt . 69
5.4 Data selection . 70
5.5 Code Changes . 71
5.6 FOSS Changes . 74
5.7 Leverage . 77
5.8 Threats to Validity . 80
5.9 Conclusions . 81

6 Ecosystem: Qualitative Study 85
6.1 Introduction . 85
6.2 Theory . 86

6.2.1 Data Collection . 87
6.2.2 Interview process . 89

6.3 Data analysis . 90
6.3.1 Interview coding . 90
6.3.2 Evidence from the Interviews . 92

6.4 Analysis summary . 98
6.5 Threats . 99
6.6 Conclusions . 100

7 Conclusions and Future Work 101

Bibliography 103

ii

List of Tables

2.1 Comparison of features of the existing benchmarks . 8
2.2 Aspects considered in the related works . 12
2.3 Approaches for Identification of Vulnerable Dependencies 13

3.1 Software projects used for evaluation in this paper . 24
3.2 The SAST tools tested for this research . 26
3.3 Relative Rankings by benchmark choice . 29
3.4 Averages of file-level alerts . 30
3.5 Averages of Precision, Recall and Negative Precision on file-level 30

4.2 Descriptive statistics of the library sample . 48
4.4 The effect of direct dead dependencies (RQ3) . 54
4.5 The effect of transitive dead dependencies (RQ3) . 55
4.6 The influence of quantity of software dependencies on the number of vulnerabilities in the

analysed libraries . 56
4.7 The influence of dependency sizes on the number of vulnerabilities in the analysed libraries 56
4.8 Ecosystem view - results . 58
4.9 Impact of the proposed methodology on the view of a single developer 61
4.10 Possible errors at each step of the Vuln4Real methodology 62

5.1 Descriptive statistics of the library sample . 70
5.2 Linear model fit to check the correlation between ρ and release time 75

6.1 Interviewees in our sample . 88
6.3 List of codes . 91
6.3 List of codes . 92
6.4 A fragment of the co-occurrence table for the “developers’ perception” category. 93
6.5 A fragment of the co-occurrence table for the “issues” category. 95
6.6 A fragment of the co-occurrence table for the “process” category. 96
6.7 A fragment of the co-occurrence table for the “dependencies” category. 97

iii

List of Figures

3.1 Directly running the tool on the vulnerable version 21
3.2 Considering different alerts on vulnerable and fixed versions 21
3.3 Comparing vulnerability fixes with non-security changes from the Apache Tomcat

source code repository . 27

4.1 Dependency tree . 39
4.2 Dead dependency . 40
4.3 What Appears with State of the Art Methods . 40
4.4 Reality With Proper Processing . 41
4.5 Deployed (the true positives) vs Development-only (the false positives) vulnerable

dependencies per library instance . 50
4.6 The comparison of the actual number of vulnerable dependencies that could be di-

rectly fixed by developers of the analysed libraries (true positives) and the fraction
of such dependencies revealed by Vuln4Real (the false negatives) 51

4.7 Own and third-party dependencies of the analysed libraries 53
4.8 Direct and transitive dependencies according to SoA and Vuln4Real 54

5.1 Cumulative size of code changes in time . 72
5.2 Kernel density estimation plots for angles of library evolution vectors 74
5.3 Kernel density estimation plots for lengths of library evolution vectors 76
5.4 The risk of leverage in comparison to the own size of a library 77
5.5 Velocity vector plots for the changes of size in a software library 78
5.6 Leverage vs ρ . 79
5.7 Leverage vs θ for libraries with own_size ≤ 100 KLoCs 82
5.8 Leverage vs θ for libraries with own_size > 100 KLoCs 83

6.1 Research Stream . 87

v

Chapter 1

Introduction

The inclusion of free open-source software (FOSS) components in commercial products is
a consolidated practice in the software industry: as much as 80% of the code of the aver-
age commercial product comes from FOSS [81]. By incorporating community-developed
functionalities, software vendors reduce dramatically development and maintenance costs
and can concentrate their investments on differentiating capabilities.

Unfortunately, the software industry is facing the difficult challenge of reconciling
the cost saving opportunity represented by the availability of mature, high-quality FOSS
components [65, 75, 81], with the need of maintaining a secure software supply chain and
an effective vulnerability management process. Security flaws expose systems to attacks
that may have a significant cost for the affected companies and, more generally, for our
society (around 4 million dollars on average per incident, up ' 30% from 2013, according
to a report published in 2016 [83]). An analysis of more than 1000 applications performed
by BlackDuck showed that 96% of the commercial solutions considered depended on FOSS
components, and more than 60% of them included versions that were publicly known to
be vulnerable and for which a more recent, non-vulnerable version existed [81].

As information security is a complete process, in this dissertation we consider various
levels of granularity of interdependence of software projects. First, we look at a software
project as a separately shipped unit, i.e., not connected with other projects. Then we
make a step aside and consider relations of a software project with other FOSS projects.
More specifically, we consider the bugs and security vulnerabilities that may be introduced
into a software project while importing already implemented functionality distributed via
separately packaged software libraries. Finally, we refer to a general interdependence
between FOSS software projects and consider them as an interconnected ecosystem. In
the next section we specify the problems addressed within this dissertation to facilitate

1

1.1. THE PROBLEM CHAPTER 1. INTRODUCTION

the security assessment process of software projects at each level of granularity.

1.1 The Problem

To automate vulnerability identification in the own code of software projects, develop-
ment teams may use static analysis security testing (SAST) tools. However, such tools
are known to demonstrate different efficiency depending on the usage scenario [6], and
therefore, have to be evaluated on their ability to identify vulnerabilities specific to a
particular software project. This leads us to the following problem:

Problem 1: Static analysis security testing tools may be evaluated using synthetic micro
benchmarks and benchmarks based on real-world software. However, the existing SAST
tool benchmarks have the limitations, like the lack of vulnerability realism or uncertain
ground truth. Hence, the state-of-the-art benchmarking approaches do not provide the
way to automatically select the best static analysis tool, that caters to industrial needs.

Nowadays software projects often import some functionality from other libraries by
including those libraries into their projects as software dependencies [81]. Since secu-
rity vulnerabilities may be also introduced by the third-party components of a software
project [36,49], we identify the second research problem as follows:

Problem 2: Past dependency studies did not consider several key distinctions between
(i) development-only and deployed dependencies (the former are not part of the final,
running software system), (ii) outdated and “dead” libraries (the transitive dependencies
of the latter would never be updated), (iii) dependencies under and out of direct control
of the developer (as the latter require complicated and costly mitigation strategies), (iv)
information obtained from natural-language advisories (e.g., Common Vulnerabilities and
Exposures1) and information extracted from code analysis (the former might contain
over-approximation errors). All these aspects expose automatic dependency analysis to
misleading over-inflated results, that reduce the value of the analysis reports. Hence,
there exists a need of reporting only the dependencies affected by security vulnerabilities,
relevant to the analysed project.

Thanks to the modern development strategies and tools that facilitate dependency
management, current software projects are highly interconnected. I.e., they do not evolve
stand-alone, but rather consider the requirements of their users (e.g., dependent projects)
and the development way of their dependencies. Hence, we may talk about both commer-

1https://cve.mitre.org/

2

https://cve.mitre.org/

CHAPTER 1. INTRODUCTION 1.2. CONTRIBUTIONS

cial and FOSS projects as an ecosystem, which we have been also interested to study from
both quantitative and qualitative points of view. More specifically, we have identified the
following problems of the FOSS ecosystem:

Problem 3 (quantitative point of view): Both commercial and FOSS projects may
introduce technical debt by adopting software dependencies whose improper maintenance
may result in serious security incidents, like the Equifax data breach, where over 100’000
credit card records were leaked due to the vulnerability introduced into the project by an
outdated software dependency2. From this perspective, the FOSS ecosystem acts similar
to financial markets, where widespread and high values of leverages led to a financial
crisis. However, it is not known if current financial models can be applied to the FOSS
ecosystem to predict the risk of technical bankruptcy or to calculate the thresholds for soft-
ware developers to work on new functionality for their libraries, to reduce their technical
debt, or to quit the maintenance.

Problem 4 (qualitative point of view): Current empirical studies provide very little
insights on the developers’ perception of FOSS dependencies: they either report some de-
velopers’ feedback as a support to the proposed metrics [19,49] or focus the data collection
within one software development company [9,80]. Hence, they do not provide any evidence
on how developers currently address the issues introduced by software dependencies.

1.2 Contributions

Considering the problems listed above, this dissertation has the following contributions:

A differential approach for automatic comparison of static analysis security testing
tools on the basis of historical vulnerability fixes in real-world software projects. To
test our approach, we used 7 state of the art SAST tools against 70 revisions of four
major versions of Apache Tomcat spanning 62 distinct Common Vulnerabilities and
Exposures (CVE) fixes and vulnerable files totalling over 100K lines of code as the
source of ground truth vulnerabilities.

Amethodology for extracting and counting vulnerable dependencies in software projects.
The methodology takes into account the industrial usage of third-party components,
and therefore, caters to the needs of actual software developers. To understand the
industrial impact of a more precise methodology, we considered the 200 most pop-
ular FOSS Java libraries used by SAP in its own software. Our analysis included

2https://blogs.apache.org/foundation/entry/media-alert-the-apache-software

3

https://blogs.apache.org/foundation/entry/media-alert-the-apache-software

1.3. THESIS STRUCTURE CHAPTER 1. INTRODUCTION

10905 distinct GAVs (group, artifact, version) in Maven when considering all the
library versions.

A quantitative study of the levels of technical debt and leverage in the FOSS ecosys-
tem. The analysis presented in the study suggests the possibility of modelling and
predicting the technical bankruptcy risks in the FOSS ecosystem. For the study
we have used the set of 10905 library versions of the most popular Java libraries
from the set of libraries that we considered for the validation of the methodology
for counting actually vulnerable dependencies.

A qualitative study of the developers’ perception of software dependencies. We have
run 15 semi-structured interviews with software developers coming from 15 compa-
nies located in 7 different countries to understand whether our qualitative findings
correspond to the day-by-day management of dependencies in industrial context.

Part of the work was performed in collaboration with an industrial partner - SAP.
However, this thesis represents the research carried out by the author and does not nec-
essarily represent the official position or research interests of SAP.

1.3 Thesis Structure

This thesis is structured as follows:
Chapter 2 provides an overview on the state-of-the-art approaches for benchmarking

static analysis security testing tools, counting vulnerable dependencies, and modelling the
FOSS ecosystem. Additionally, the chapter presents the studies that report developers’
information needs. This chapter is partially published as the related works, background,
and motivation sections of the research papers.

Chapter 3 presents the Delta-Bench, a differential benchmark for comparing static
analysis security testing tools (Fortify SCA, Coverity, SonarQube, etc.), using historical
fixes in real-world software as a ground-truth vulnerability source. This chapter was
partially published in the following papers:

[77] Ivan Pashchenko, Stanislav Dashevskyi, and Fabio Massacci. "Delta-bench: dif-
ferential benchmark for static analysis security testing tools." In Proceedings of the
11th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, pp. 163-168, 2017.

[76] Ivan Pashchenko. "FOSS version differentiation as a benchmark for static analysis

4

CHAPTER 1. INTRODUCTION 1.3. THESIS STRUCTURE

security testing tools." In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, pp. 1056-1058. ACM, 2017.

Chapter 4 describes the methodology for counting actually vulnerable dependencies,
that addresses the over-inflation problem of academic and industrial approaches for re-
porting vulnerable dependencies in FOSS software, and therefore, caters to the needs of
industrial practice for correct allocation of development and audit resources. The chapter
is partially published in:

[78] Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, and Fabio
Massacci. "Vulnerable open source dependencies: counting those that matter." In
Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, p. 42. ACM, 2018.

The full version of Chapter 4 was submitted to:

Fabio Massacci, Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta.
"Vuln4Real: A Methodology For Counting Actually Vulnerable Dependencies." Sub-
mitted to ACM Transaction on Software Engineering.

Chapter 5 presents the levels of technical debt and leverage in the FOSS ecosystem and
provides a preliminary evidence of a possibility of applying financial models to the ecosys-
tem of FOSS projects to estimate the risks of technical bankruptcy (the situation, when
developers of FOSS projects abandon maintenance of their projects, since they do not see
any added value), and therefore, avoid (or at least minimize) negative consequences.

Fabio Massacci and Ivan Pashchenko. “Technical Debt and the Risk of Leverage in
the Open Source Software Ecosystem.” Working paper. To be submitted to journal.

Chapter 6 reports the results of the empirical study done with the aim to validate
the actual usefulness of the proposed approaches and underlined problems in the previous
chapters of this thesis. The study is based on the semi-structured interviews with profes-
sional software developers on their perception of software dependencies. The chapter is
planned to be submitted to:

Ivan Pashchenko, Ly Vu Duc, and Fabio Massacci. “FOSS Dependencies: A Qualita-
tive Study on Developers’ Perseption.” Working paper. To be submitted to journal.

Finally, Chapter 7 reflects on the main contributions of this work, and provides dis-
cussion on the future work.

5

1.3. THESIS STRUCTURE CHAPTER 1. INTRODUCTION

6

Chapter 2

State of the Art

In this chapter we provide an overview of how state-of-the-art studies approach the prob-
lems addressed in this dissertation. In section 2.1 we describe the existing ways of bench-
marking SAST tools. Then in section 2.2 we provide the overview of the approaches for
counting vulnerable dependencies. Finally, in sections 2.3 and 2.4 we present the current
studies of the FOSS ecosystem from the quantitative and qualitative perspectives.

2.1 Own Code: Existing SAST tool benchmarks

The current approach for comparing performance of static analysis security testing tools
(SAST) is to run a tool on a code fragment with a known bug or security vulnerability
and evaluate the tool on its ability to identify the presence of the error, i.e., true positive
(TP) / false negative (FN) evaluation. Similarly, the static analyser can be run on a fixed
code fragment to evaluate its ability to avoid generation of alerts on a safe fragment of
code, i.e., false positive (FP) / true negative (TN) evaluation.

Both TP/FN and FP/TN evaluations are quite straightforward in case there exists
a set of safe (or fixed) and vulnerable code fragments, where the exact lines of code
introducing the vulnerability are identified: a tool should produce some alerts pointing to
the vulnerable lines of code and do not produce any alerts for the safe code fragment.

Unfortunately, creation of a database for evaluation of SAST tools often requires sig-
nificant manual efforts (i.e., it took over 8 years and 5 large-scale public events for security
researchers and software developers to create Software Assurance Reference Dataset1). On
the other hand, various SAST tools may have different outputs [1]: one tool may report
actual lines of code, while another tool may indicate the presence of a problematic data

1https://samate.nist.gov/SARD/

7

https://samate.nist.gov/SARD/

2.1. OWN CODE CHAPTER 2. STATE OF THE ART

Table 2.1: Comparison of features of the existing benchmarks
“3” means, that a benchmark provides a certain feature, while “na” shows that a certain feature is not
applicable for it. We use a specific scale to distinguish TP/FN and FP/TN component size features: “+”
means, that the size of an average component is smaller than 100 lines of code, “++” stands for average
component sizes in a range from 100 to 1000 lines of code (possibly spread through several files), and
“+++” shows that test case may include large files containing more than 1000 lines of code.

[73] [28] [100] [55] [47] [1] [41] [94] [6] [50] [27] [79] Ours

Automatic testcase gen-
eration

3 3 3 3

Signature/ pattern inde-
pendence

na na na na na na na na na 3

Evaluation methodology 3 3 3 3 3

Automatic TP/FN clas-
sification

3 3 3 3 3 3 3 3

Automatic FP/TN clas-
sification

3 na na na na na 3 na 3

TP/FN component size ++ +++ + +++ + + + + ++ +++ ++ ++ +++
FP/TN component size ++ +++ No

TN
+++ No

TN
No
TN

No
TN

No
TN

++ +++ na ++ +++

flow, and therefore, point to the lines of code where it starts (source) or finishes (sink).
Hence, automatic comparison of tool alerts and identification of whether they are related
to the actually vulnerable lines of code are not trivial.

To summarize, a thorough SAST tool evaluation requires the following:

• a large and reliable set of both buggy/vulnerable and fixed/safe code fragments;
• a benchmarking approach to distinguish the performance of the evaluated SAST

tools.

Table 2.1 presents the comparison of features of the existing benchmarks. We do
not find any benchmark, that works without a signature or a pattern of a vulnerability.
Hence, the existing benchmarks are quite specific and require manual work to be extended
for other vulnerability types. Moreover, we observe, that only few existing benchmarks
support automatic testcase generation, which implies significant manual efforts in case
one decides to extend a benchmark or adapt it for a specific use case. Majority of existing
benchmarks (8 out of 12) consists of separated testcases and do not provide any method-
ology for evaluating SAST tools. Although 7 out of 12 benchmarks support automatic
TP/TN classification of findings, only 2 of them provide a way to automatically perform
FP/TN classification. The last feature is very important for the industrial usage of SAST
tools, since they are well known to generate false positive alerts [86].

8

CHAPTER 2. STATE OF THE ART 2.1. OWN CODE

2.1.1 Collections of synthetic test cases

A large part of existing benchmarks for software analysis tools is based on “synthetic”
software. For instance, Wilander and Kamkar [100] prepared a micro benchmark consist-
ing from just one C file, containing 23 insecure and 21 safe API calls. Kratkiewicz [47]
presented a synthetic set of 291 files, each representing a different buffer overflow vulner-
ability case in C programs. Shiraishi et al. [94] proposed a set of 1276 test suites, which
cover 51 defect types in C programs.

In 2008 NIST initiated the Software Assurance Metrics And Tool Evaluation (SA-
MATE) project dedicated to improving software assurance by developing methods for
enabling software analysis tool evaluation, measuring the effectiveness of tools and tech-
niques, and identifying gaps in the existing tools and methods. The first large-scale public
event named Static Analysis Tool Exposition (SATE), aiming to accumulate test data,
was also conducted in 2008. From 2008 to 2016 there were five different stages of the
event [10,70–73]. One of the main outcomes of this project is the creation of the Software
Assurance Reference Dataset (SARD), which contains more than 180k test cases from 3
Stand-alone suites, 38 test suites, and 18 applications for SAST tool comparison.

Another initiative for creating a large-scale collection of test suites for SAST tool
benchmarking was done by NSA Center for Assurance Software (CAS). This resulted in
the Juliet [1] test suite, which contains more than 86k buildable test cases, each containing
only one malicious flaw.

While such artificial test suits allow us to clearly distinguish the vulnerable code and
increase the maintainability of a benchmark, such test cases do not represent the complex-
ity of real-world software, which may significantly change the results of the evaluation.

2.1.2 Databases of real-world bugs

Extraction of real-world bugs requires development expertise for locating and fixing them,
and therefore, the very first benchmarks were presented by large software companies. For
example, Hutchins et al. [38] presented the benchmark suite developed by Siemens. It
consists of 7 small programs written in C. However, the bugs in the benchmark were
introduced manually by the authors. In contrast, Emanuelsson and Nilsson [28] used
the real historical security vulnerabilities in the Erickson software to benchmark static
analysis tools. However, they did not make the benchmark available.

The software-artifact infrastructure repository (SIR) [26] is one of the early attempts
to provide an open database of realistic bugs. It consists of 81 test cases, written in Java,
C, C++, and C#. However, most of the defects in SIR are hand-seeded or obtained from

9

2.1. OWN CODE CHAPTER 2. STATE OF THE ART

mutation, and therefore, SIR may not be fully considered as a database of real bugs. The
iBugs [22] and Defects4J [42] are the databases of real bugs for Java programs. iBugs
contains 223 bugs with an exposing test case, while Defects4J provides 357 real bugs for 5
large real-world programs. While these databases allow benchmarking of software analysis
tools on the real bugs, they contain a limited number of bug types. In particular, they
do not focus on security, and therefore, cannot be used for assessing SAST tools.

An academic initiative to develop 8 Java web applications, that intentionally con-
tain security vulnerabilities resulted in Stanford SecuriBench [55] benchmark, that covers
SQL-injection, XSS, Path traversal, and HTTP splitting vulnerability types. Kupsch and
Miller [50] performed manual analysis of the large FOSS project Condor, and identified
15 vulnerabilities. Then they used these vulnerabilities to evaluate two commercial static
analysis tools. Reis and Abreu [88] mined 248 FOSS projects stored in Github to build a
database of vulnerability. However, creation and maintenance of such collections of test
cases is expensive, since it requires significant manual effort of software developers and se-
curity researchers. Moreover, such test suite often provides only a set of code fragments to
be used for SAST analysis and do not facilitate tool evaluation, hence separate approaches
are required to use the proposed benchmarks (i.e., [99] for the Juliet test suite).

2.1.3 Existing benchmarking approaches

There exist several studies that survey various features of SAST tools. For example, Li
and Cui [54] provided a technical description of seven open source tools. The authors
shared their experience with three of them in terms of false positive and false negative
rates, after applying these tools against their own test code. Emanuelsson and Nils-
son [28] described four commercial tools (CodePro, Coverity, FlexeLint, and Klockwork),
providing case studies on their evaluation at the Ericsson company. Shiraishi et al. [94]
performed an evaluation of 3 SAST tools, using generally used metrics detection rate and
false positive rate, as well as productivity and cost efficiency of used tools. Oyetoyan et
al. [74] performed evaluation of 5 open source tools (FindBugs, FindSecBugs, SonarQube,
JLint, and Lapse+) and a “mainstream commercial tool”, using SARD as a set of testcases
to run the SAST tools. The authors used the following metrics to report the tool per-
formance: #True Positives (TP), #False Positives (FP), #Discriminations, #Incidental
flaws, Precision, Recall, and Discrimination rate.

Johns and Jodeit [41] introduced a common methodology for systematic evaluation
of SAST tools using a benchmark composed of small programs that contain artificially
injected vulnerabilities. The methodology references such characteristics as quality of

10

CHAPTER 2. STATE OF THE ART 2.2. PROJECT LEVEL

the analysis, precision and scalability of the tools, set of known vulnerability types, and
usability of the tools.

Antunes and Vieira [6] proposed an approach for assessing vulnerability testing tools by
their performance on web services. They constructed VDBenchWS-pd and PTBenchWS-
ud benchmarks and evaluated 8 static analysis and penetration testing tools.

Such comparisons provide valuable insights for researchers and security practitioners.
Unfortunately, they cannot be easily generalized to a large population of SAST tools and
source code bases, hence, it may be difficult to use them for tool selection in practice.

2.1.4 Automatic generation of benchmarks

A possible way to adapt real-world software for benchmarking purposes is to modify the
original source code of an application to increase the potential coverage of SAST tools.
Examples are mutation [40] and metamorphic [15] testing. Although such techniques may
expand the applicability of static analysis tools to real-world software, they do not help
automatic warning classification and do not solve a problem on how to compare outputs
of different SAST tools [1].

Authors [79] propose EvilCoder, an approach for introducing software vulnerabilities
by detecting and removing security mechanisms in real programs.

The solution proposed by Dolan-Gavitt et al. [27] (LAVA) suggests an artificial injec-
tion of vulnerabilities into the source code of real applications. Although this technique
allows benchmarks to be created automatically, it does not allow false positive evaluation
of SAST tools [27, §VIII]. The current implementation of LAVA is limited only to one
vulnerability type (buffer overflow), and some vulnerability types cannot be injected using
LAVA approach (e.g., logic errors, crypto flaws, and side-channel vulnerabilities).

2.2 Project Level: Counting Vulnerable Dependencies

Table 2.2 compares the existing approaches for analyzing software dependencies according
to the considered aspects.

2.2.1 Accounting for Deployment

Kula et al. [49] studied whether developers update dependencies of their projects. They
report 81,5% of the studied projects to have outdated dependencies, and 69% of the project

2As we reuse the vulnerability matching procedure introduced by Ponta et al. [84].

11

2.2. PROJECT LEVEL CHAPTER 2. STATE OF THE ART

Table 2.2: Aspects considered in the related works
Rel work Only deployed Includes transitive Vuln mapping Dep groups Dead deps
[101] 3 Name-based
[36] 3 Name-based
[51] 3 3 Manual

[19]
Name-based
+ manual

[102] 3

[49] Manual

[45]
3(no re-
solution)

Ours 3 3 Code-based2 3 3

owners to be unaware of vulnerable dependencies in their projects. Although the authors
provide a thorough insight into developers’ motivation, the reported developers’ quotes
reveal that the paper actually included development-only dependencies in its study:

“. . . In this case, it’s a test dependency, so the vulnerability doesn’t really
apply . . . ”

“. . . It’s only a test scoped dependency which means that it’s not a transitive
dependency for users of XXX so there is no harm done”

As a result vulnerable dependency count presented in [49] may have been over-inflated
(see the motivating example of Figures 4.3 and 4.4).

Several other works [14, 19, 36, 101] do not mention explicitly that they consider only
deployed dependencies. Hence, their results and conclusions may be affected by low-
priority non-exploitable vulnerabilities in development-only dependencies of the analysed
projects.

2.2.2 Accounting for Transitivities

Transitive dependencies are known to be the source of vulnerabilities in software projects.
For example, the first large scale study of JavaScript open source projects done by
Lauinger et al. [51] underlines the finding that transitive dependencies of a project are
more likely to be vulnerable, since developers (i) may not be aware about their existence
and (ii) they have less control on them.

Since analysis of transitive dependencies requires one to follow the dependency tree
construction and resolution procedures of a dependency management system, the analysis

12

CHAPTER 2. STATE OF THE ART 2.2. PROJECT LEVEL

Table 2.3: Approaches for Identification of Vulnerable Dependencies

Name Approach Advantages Disadvantages
[57] name-based

matching
High performance Prone to FP and FN

[14]

[4]
semantic-web
name matching

High performance Prone to FP and FN (5% more than OWASP Depen-
dency Check)

[84]
Patch-base
matching

High precision Manual effort required to create vulnerability database

may be both implementation-wise complicated and computation intense. This might be
a reason for several recent studies [19,45,49,102] to not consider transitive dependencies.

For example, Wittern et al. [102] in their study of the npm ecosystem did not follow
the dependency tree construction algorithm and instead only considered the (direct) de-
pendencies specified in the package.json files. Similarly, both Kula et al. [49] and Cox et
al. [19] extracted dependencies from project configuration pom.xml files in their studies
of the Maven ecosystem. This means that the studies reported results only for direct de-
pendencies and did not apply resolution procedure of the analysed dependency managers.

Kikas et al. [45] in their study of the dependency network structure and evolution of
the JavaScript, Ruby, and Rust ecosystems considered both direct and transitive depen-
dencies. However, the authors did not resolve versions for transitive dependencies, since
the implementation of the resolution procedure of the dependency management systems
required too many resources for their study.

2.2.3 Vulnerability Matching Approaches

Table 2.3 presents the approaches that are currently used to identify whether a certain
library is affected by a security vulnerability.

The main source of vulnerabilities in software components is the National Vulnerability
Database (NVD3) that uses the Common Platform Enumeration (CPE) standard for
enumerating the affected components. The NVD represents the most complete, public
source of vulnerabilities4 albeit it does not cover all OSS projects with the same accuracy.

3https://nvd.nist.gov/
4Other sources of vulnerabilities are software-specific advisories and bug tracking systems which are

used to report and solve security issues. Some of them might be product or vendor specific, e.g. MSFA
for Mozilla’s Firefox browser.

13

https://nvd.nist.gov/

2.2. PROJECT LEVEL CHAPTER 2. STATE OF THE ART

Moreover, CPE names, used to denote the affected software, use a different granularity
and convention than software package repository coordinates.

False negatives easily result from the fact that the NVD is not complete and whenever
the assigned CPEs are not listing all required softwares (e.g., in some cases the NVD
assigns vulnerabilities to products rather than the responsible libraries). For example, a
vulnerability only affecting the poi-ooxml artifact within the Apache Poi project, would
be assigned to the entire project in the NVD, thereby resulting in false positives when-
ever an application only uses ‘Poi’ artifacts other than poi-ooxml. This might be further
exacerbated since the NVD might use an over-approximation rule ’X and all previous ver-
sions’ for marking vulnerable versions (See, for example, [68,69] for the study of browser
vulnerabilities and the large presence of false positives).

OWASP Dependency Check5 is a tool, that provides the functionality to automatically
extract a list of project dependencies and check if this list contains any libraries with
known security vulnerabilities. The tool allows automatic matching of a library with
an associated CVE by comparing the name of a library with a CPE version indicated
in the description of a vulnerability (CVE) in NVD. Although such approach has high
performance, it fully relies on the information present in the NVD.

Cadariu et al. [14] enhanced the OWASP Dependency Check tool to create a Vul-
nerability Alert Service (VAS) to provide the information about vulnerable dependencies
used by clients of the Software Improvement Group (SIG). However, the authors discov-
ered that the matching mechanism based on comparing library names with CPEs yields
many false positives. Moreover, at the time of publication of [14] VAS was capable only
to provide information regarding direct dependencies, while vulnerabilities may be also
introduced via transitive dependencies [36].

Alqahtani et al. [4] used a semantic-web approach for mapping CVE descriptions from
NVD database to the corresponding Maven identifiers. However, the precision of the
approach is 5% lower when compared to OWASP Dependency Check (and consequently
to VAS). Hence, the results reported in [4] may inaccurately estimate the number of
vulnerable dependencies in the FOSS projects being affected by both FP and FN.

We rely on the works from Plate et al. [82] and Ponta et al. [84], who propose a precise
approach to use the patch-based mapping of vulnerabilities onto the affected components
(see Section 4.4).

5https://www.owasp.org/index.php/OWASP_Dependency_Check

14

https://www.owasp.org/index.php/OWASP_Dependency_Check

CHAPTER 2. STATE OF THE ART 2.2. PROJECT LEVEL

2.2.4 Accounting for Own Dependencies

To the best of our knowledge, current dependency studies do not consider the fact that
certain software libraries belong to the same project that uses them.

Although the concept seems intuitively simple, failure to distinguish own and third-
party dependencies may incorrectly present as an insecure ecosystem with several vul-
nerable dependencies (a “dependency hell” [64]) what in reality is just a project that
has broken its components into several libraries. An update of one of those dependen-
cies would automatically bring the new versions of all other dependencies from the same
project. Hence, some transitive dependencies may actually be controlled directly from
the project under analysis (only by changing versions of direct dependencies).

2.2.5 Maintenance of Software Libraries

If an outdated direct dependency is affected by a known vulnerability, the simplest solution
to mitigate this vulnerability is to update the dependent library to use the fixed version
of the dependency [87]. However, this becomes impossible, if an OSS library becomes
dead [49]:

“. . . our project has been inactive and production has been halted for indefinite
time”

Automatic detection of the point in time, where a particular project becomes dead
may be tricky. The recent work by Coelho et al. [18] presented a machine learning based
approach that uses standard metrics (number of commits, pull requests, contributors, etc.)
extracted from Github to classify, whether maintenance of a particular project becomes
dead. However, such features are particular to Github and may not be available for the
libraries stored in other places.

Other academic approaches rely on the time of the latest commit in a certain software
project. For example, Khondhu et al. [44] in their study of SourceForge projects define
a project to become dormant if the latest commit occurred more than one year ago.
The same time threshold is used by Mens et al. [63], Izquierdo et al. [39], and Coelho et
al. [17]. However, the one-year threshold used by the above mentioned studies is arbitrary.
Moreover, various software projects have different development strategies, and therefore,
should have different intervals between commits and releases. Hence, the time threshold
to count project as dead should vary depending on a project development strategy.

15

2.3. QUANTITATIVE STUDIES CHAPTER 2. STATE OF THE ART

2.3 FOSS Ecosystem: Quantitative studies

Several technical studies [19,36,49,51,78] showed that FOSS dependencies, although being
widely used by both commercial and FOSS projects, are not often maintained properly:
a large share of projects (up to 81%) have outdated dependencies. Several of them (69%)
are not aware that some of those dependencies introduce serious bugs and security vul-
nerabilities [49]. As Allman [3] drew parallels between technical and monetary debts, one
may relate dependencies in FOSS to the well-studied financial leverage instruments whose
excessive use might cause a financial crisis. However, we do not find a study that would
try to model the situation in a FOSS ecosystem in this perspective.

Manikas and Hansen [60] presented a systematic literature review of 90 papers on the
studies regarding software ecosystems. Although the number of software ecosystem re-
search papers is increasing, the majority of studies are report papers. Hence, the authors
reported the lack of analytic studies of software ecosystems. This statement is supported
by another extensive literature review of 213 papers on software ecosystems [58]. Similar
results are found by Manikas [59] in a more recent literature review of 56 empirical stud-
ies spanning over 55 software ecosystems: there exists a lack of deeper investigation of
technical and collaborative aspects.

Boucharas et al. [12] proposed a standards-setting approach to software product and
software supply network modelling. Although this allows developers to anticipate upcom-
ing changes in the software ecosystems, the approach aims at development within one
company, and therefore, does not suit the purpose of modelling FOSS infrastructure.

Bonaccorsi and Rossi [11] proposed a simple model that helps software developers to
decide on whether to include FOSS components into their projects based on the value of
the component. However, the proposed model does not consider the actual value of FOSS
libraries, but rather count the value of receiving additional support from the developers
of an FOSS community.

2.4 FOSS Ecosystem: Qualitative Studies

Several studies describe information needs of software developers. Such research studies
aimed at finding the needs of industrial practitioners, and are, therefore, very important
for academic researchers. I.e., they allow them to identify practical problems and focus
research activities on solving them.

One of the first studies in this area was done by Sillito and Murphy [95]. The authors
reported the results of their field study on the information, that developers need to change

16

CHAPTER 2. STATE OF THE ART 2.4. QUALITATIVE STUDIES

source code of their project. Ko and DeLine [46] used a speak aloud protocol. I.e., the
authors collected information from developers’ communications, while they were working
on real tasks. In this way the study found 21 information needs of software developers.
However, both studies focused on developers working on the code of their own projects
and did not include the concept of a software project in an ecosystem of other projects.

Phillips et al. [80] performed an interview study at a large software development com-
pany to identify information needs that support integration decision-making in parallel
development. The authors report awareness of software developers about software de-
pendencies, and their impact on the software integration process. However, the study
included only 7 developers from one company and was not focused on software dependen-
cies, and therefore, provides only initial incites on the topic of developers perception of
software dependencies.

Begel et al. [9] reported results of a survey done with Microsoft engineers on inter-
team coordination. Similarly, Haenni et al. [33] made a survey of software developers
in the OSS ecosystem to identify their information needs with respect to their upstream
and downstream projects. The authors underlined the finding, that due to a lack of
specialized tools, developers use non-specific ways to find such information. Although
the studies report the need of software developers to have specialized tools that provide
them with the information regarding inter-project collaboration, they do not provide any
insights on the kind of information needed by developers in terms of fixing bugs and
software vulnerabilities introduced by software dependencies.

Cox et al. [19] conducted 5 interviews with software developers to validate the pro-
posed metric of dependency freshness. Although the study provides some insights on the
developers’ opinions regarding software updates, the number of interviews is too small to
be generalized for all software developers.

Kula et al. [49] is the only study we are aware of, that reports the developer opinions
regarding security vulnerabilities in the dependencies of their projects. However, the au-
thors did not do an empirical study, but rather reported several interesting citations from
the developer feedback on the reports regarding the existence of vulnerable dependencies
in their projects.

17

2.4. QUALITATIVE STUDIES CHAPTER 2. STATE OF THE ART

18

Chapter 3

Delta-Bench: Differential Benchmark
for Static Analysis Security Testing
Tools

In this chapter we aim to address the limitations of the existing SAST tool benchmarks:
lack of vulnerability realism, uncertain ground truth, and large amount of alerts not
related to analyzed vulnerability. For this purpose we propose Delta-Bench – a novel
approach for the automatic construction of benchmarks for SAST tools based on differ-
encing vulnerable and fixed versions in Free and Open Source (FOSS) repositories. To
test our approach, we used 7 state of the art SAST tools against 70 revisions of four major
versions of Apache Tomcat spanning 62 distinct Common Vulnerabilities and Exposures
(CVE) fixes and vulnerable files totalling over 100K lines of code as the source of ground
truth vulnerabilities. Delta-Bench allows SAST tools to be automatically evaluated on
the real-world historical vulnerabilities using only the alerts that a tool produced for the
analyzed vulnerability.

3.1 Introduction

Designing a benchmark with real-world software is a challenging task [1]. Therefore,
existing approaches either insert bugs artificially [21, 27], or use historical bugs from
software repositories [42]. Artificial bug injection is often difficult to verify (see [21, p.2]),
whilst historical vulnerabilities may represent only a subset of the ground truth.

Purely synthetic benchmarks [41] eliminate the above problems by isolating vulnera-
bilities into atomic tests that represent small applications, so that each of them contains

19

3.2. BENCHMARK CONSTRUCTION CHAPTER 3. DELTA-BENCH

only the code relevant to a vulnerability to be tested or a deliberately inserted FP, and
some other closely related code which may be required for the vulnerable code to compile.

Still, for practical purposes one would like to know how a tool scales when moving
from synthetic to real-world software. The biggest problem of using real-world software for
benchmarking is that the code usually contains several “issues” simultaneously. Hence,
the tool may produce many alarms not related to the vulnerability type for which we
would like to use the software as a benchmark (Background Noise). Some of those alerts
may be wrong but others may be “true” for other issues (see the discussion on the Juliet
test suite [1, p.2]).

Developers perceive these large amounts of alerts to be a “pain in the neck” that
goes along with the practical usage of static analysis security testing (SAST) tools [16].
Therefore, we aim to devise a methodology for benchmarking SAST tools that would
combine both benefits of synthetic benchmarks and real-world software and answer the
following research questions (RQ):

• RQ1: Can we “isolate” SAST tool alerts relevant to the ground truth vulnerability
of a particular testcase?

• RQ2: How do the SAST tool alerts generated due to code issues not relevant for the
ground truth vulnerability of a particular testcase affect the results of a benchmark?

3.2 Benchmark construction

Similarly to Livshits and Lam [56], and Delaitre et al. [25], we intend to use large FOSS
projects – these projects are well documented, their source code is publicly available, and
their software repositories contain many historical vulnerabilities. Therefore, they can be
used for identifying the ground truth – the expected correct output of a tool.

In a software repository we typically have available:
• Cfixed – the source code of a revision of a software project that was created to fix a

security vulnerability.
• Cvuln – the source code of the last vulnerable revision that precedes the Cfixed.
Figure 3.1 demonstrates a typical situation regarding the alerts of a SAST tool when

running it on Cvuln. Ideally, the tool output for Cvuln should contain only alerts related
to the vulnerability (TP area of the (a) square in Figure 3.1). A tool may not identify all
the code related to the vulnerability in Cvuln (FN area in the (a) square in Figure 3.1).

SAST tools tend to generate many false alerts [86], so the tool output may contain

20

CHAPTER 3. DELTA-BENCH 3.2. BENCHMARK CONSTRUCTION

The tool output after analyzing a vulnerable version would likely contain many alerts not related to the
analyzed vulnerability

Figure 3.1: Directly running the tool on the vulnerable version

The alerts not related to the analyzed vulnerability should be also present in the tool output on a fixed
version. Hence, the alert subtraction may significantly decrease the amount of irrelevant alerts.

Figure 3.2: Considering different alerts on vulnerable and fixed versions

false positive alerts (FPS) related to the vulnerable set of files in the squared area (b)1.
In case of a specific synthetic benchmark there would be no other alerts, since a typical
synthetic test case is focused and compact (i.e., contains only one vulnerability).

Unfortunately, real-world software projects usually contain many “issues” distributed
between all the project files. Hence, a SAST tool would generate many more alerts (the
FPall area in the (c) square). The false alerts FPall may be distracting, and therefore,
unwanted by developers [16].

Some of the alerts may correspond to other flaws present in a project but unrelated
to the vulnerable code fragment of the benchmark test. As these alerts are likely to be

1We consider such alerts as false positives, since we concentrate only on one vulnerability at a time.

21

3.2. BENCHMARK CONSTRUCTION CHAPTER 3. DELTA-BENCH

present in the tool outputs for both Cvuln and Cfixed, we call them Background Noise. The
successful fix of a vulnerability implies that the source code does not contain the vulnerable
code anymore. Hence, the tool output on Cfixed should not contain alerts related to the
vulnerability and observed in Cvuln. We can then subtract common alerts and evaluate the
“actual” tool performance considering only the alerts relevant to the analyzed vulnerability
(i.e., Signal). Figure 3.2 shows the alert distribution in the vulnerable code base after
eliminating the alerts common for Cvuln and Cfixed.

The above intuition corresponds to our proposed process to generate a benchmark:
1. Determine the ground truth:

• Identify a project that provides sufficient information about security fixes, so
they can be identified in the source code (e.g., Common Vulnerabilities and
Exposures (CVE) entries in the Git logs).
• For each fixed vulnerability, identify a pair 〈Cvuln, Cfixed〉 – this information can

be obtained either from the repository commit logs, vulnerability databases,
or security notes.
• Extract the source code constructs (files, and lines of code) modified during a

fix (thus, likely vulnerable): we use the diff tool of a version control system.
2. Separate the Background Noise from the alerts related to the specific vulnerability

– Signal :
• Run a tool on a vulnerable version of the software Cvuln, and on the fixed

version Cfixed (the fix must be the only difference between the two versions);
• The Signal are the alerts differing between the tool outputs on Cvuln and Cfixed.

Metrics (TP, FP, etc.) are only calculated on the alerts related to Signal. As
Background Noise we consider the lines of code from the same files that were
reported for both Cvuln and Cfixed.

The next step in the process is to assess the tool alerts and classify them as true or
false positives.

Unfortunately, various tools may return different code lines for the same issue [1].
Moreover, a security fix may not touch the exact vulnerable line, but may modify a line
that is relevant to the vulnerable one and is located “closely” to it (i.e., within the same
method). An insertion of a sanitization mechanism for the user input may be an example
of such a fix. Hence, a direct comparison of the lines reported by a tool with the code
lines changed during a security fix would be misleading.

In this chapter we use files as a first approximation for alert classification: a TP is a file
that has been changed during the security fix and for which there exists an alert pointing
to that file. We extended our approach to work with methods, and plan to extend it to

22

CHAPTER 3. DELTA-BENCH 3.2. BENCHMARK CONSTRUCTION

Algorithm 1: Differential tool assessment
input : A vulnerable revision Cvuln and a fixed revision Cfixed

output: Differential assessment of tool alerts on file-level
// identification of the ground truth

1 GTF ← {file|file ∈ diff(Cfixed, Cvuln)} // diff(C1, C2) is a diff tool of a version
control system

2 BackgroundNoise← ∅ ;
// Alerts(C) represents a tool output after running on C and returns a set of

< file, line >.
3 for each < file, lile >∈ Alerts(Cfixed) do

// Adjust(file, line, C1, C2) converts positions of lines in C1 into relative
positions in C2

4 line∗ ← Adjust(file, line, Cfixed, Cvuln);
5 if < file, line∗ >∈ Alerts(Cvuln) then
6 BackgroundNoise← BackgroundNoise∪

{< file, line∗ >};
7 end
8 end
9 Signal← Alerts(Cvuln)\BackgroundNoise;
// identification of a set of correct alerts

10 TP∆ ← ∅;
11 for each < file, line >∈ Signal do
12 if file ∈ GTF then
13 TP∆ ← TP∆ ∪ {file};
14 end
15 end

// classification of all the remaining alerts
16 FN∆ ← GTF\TP∆;
17 FP∆ ← Alerts(Cvuln)\GTF ;
18 TN∆ ← file(Cvuln)\(GTF ∪ TP∆);

23

3.3. DATA SELECTION FOR EVALUATION CHAPTER 3. DELTA-BENCH

Table 3.1: Software projects used for evaluation in this paper
The table shows the characteristics of an average vulnerable version (Cvuln) extracted from both Scanstud
and Apache Tomcat: the total number of files in the revision, the number of vulnerable files, and the
Prevalence rate (the ratio of vulnerable files in the revision). For Scanstud each vulnerable revision
consists of one vulnerable file, while for Apache Tomcat an average revision may contain more than 1600
files with only 2-3 actually vulnerable files.

#Files #Vuln files Prevalence Rate
µ (± σ) µ (± σ) µ (± σ)

Scanstud 1 (± 0) 1.0 (± 0.0) 1.000 (± 0.000)
Tomcat 1626 (± 318) 2.5 (± 3.3) 0.001 (± 0.002)

hunks (sequences of lines common to two files, interspersed with groups of differing lines2)
and program slices.

Algorithm 1 shows how to filter Background Noise and classify the “clean” tool alerts.
Since a line of code in a vulnerable revision may have a different position in a fixed
revision, we have to convert the positions of the identified lines obtained after running
a tool on the fixed version, in order to make the set of code lines comparable (we used
lhdiff [7] for this purpose).

3.3 Data selection for evaluation

First, we select an appropriate synthetic benchmark, as well as a real-world software
project to compare their discriminative power, i.e., the difference in results when com-
paring the performance of various tools. To have a fair comparison, both the synthetic
benchmark and the project should be written in the same programming language (we
selected Java, which is the most popular programming language since 20043).

We used Scanstud by Johns and Jodeit [41] as a synthetic benchmark, since it contains
a large number of tests and provides both “vulnerable” and “fixed” versions of each test.

We used Apache Tomcat as a real-world application, since it is mainly written in Java,
and contains a large number of historical vulnerabilities that can be easily identified in its
source code repository. This project has more than 800 thousands of lines of code, more
than 15 thousands of commits and 30 unique contributors.

2https://www.gnu.org/software/diffutils/manual/html_node/Hunks.html
3According to the two indexes used by IEEE Spectrum (http://spectrum.ieee.org/) to assess popu-

larity of a programming language: (i) Tiobe index (http://www.tiobe.com/tiobe-index/), which com-
bines data about search queries from 25 most popular websites of Alexa; and (ii) PYPL index
(http://pypl.github.io/PYPL.html), which uses Google search queries.

24

https://www.gnu.org/software/diffutils/manual/html_node/Hunks.html

CHAPTER 3. DELTA-BENCH 3.3. DATA SELECTION FOR EVALUATION

To demonstrate our approach we identified 38 vulnerable-fixed file pairs from Scanstud.
From Apache Tomcat we extracted 70 revisions with 62 distinct CVEs, which contain 178
vulnerable files out of the total amount of 113842 files. There are some common CVEs for
different versions of the project. A revision was selected if it was possible (i) to precisely
identify that the particular CVE was fixed, and (ii) to successfully build the project
version. Table 3.1 shows the averages and standard deviations of total number of files,
number of vulnerable files, and the prevalence rate in one experimental unit extracted from
both Apache Tomcat and Scanstud, and Table 3.3 lists the vulnerability types present in
both code bases.

To select SAST tools for benchmarking we considered the lists created by OWASP4

and SAMATE5. Out of these lists we selected the tools that (1) support Java, (2) are
specifically created for finding security vulnerabilities, and (3) can be easily automated.
From the commercial tools, we could obtain an academic license for Fortify SCA (Check-
marx asked for several thousands euros a year). Table 3.2 contains the list of the selected
SAST tools. All the tools were used in their default configuration. Due to the licensing
issues, we obfuscate the real names of the tools while presenting their results.

We could not use all the tools from Table 3.2 for evaluation. One tool generated
many issues both on Scanstud and Tomcat, but there were no security issues among
them. FindBugs identified 21 out of 38 issues on Scanstud, but was not able to spot any
vulnerabilities in Tomcat. This might happen because Tomcat contains many different
vulnerability types, not all supported by FindBugs. However, the most likely reason is
that Apache Tomcat developers actually used FindBugs (and also Coverity)6, hence they
may have already fixed the reported issues before committing code to the repository. We
assume that this also caused the absence of alerts from three other tools on Tomcat.
Moreover, two of them are unable to identify the vulnerability types present in Scanstud.

Instead, Tool A and Tool B use smart algorithms of data and control flow analysis
and are constantly updated, and therefore, they identified some vulnerabilities in both
Scanstud and Apache Tomcat. Hence, we will use them to demonstrate the evaluation of
our approach.

4OWASP Source Code Analysis Tools list: https://www.owasp.org/index.php/Source_Code_
Analysis_Tools

5SAMATE Source Code Security Analyzers list: https://samate.nist.gov/index.php/Source_
Code_Security_Analyzers.html

6FindBugs is integrated into Apache Tomcat build scripts. Also, Apache Tomcat is listed among the
projects that use Coverity Scan service (https://scan.coverity.com/projects/apache-tomcat).

25

https://www.owasp.org/index.php/Source_Code_Analysis_Tools
https://www.owasp.org/index.php/Source_Code_Analysis_Tools
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html

3.4. RQ1: ALERTS ISOLATION CHAPTER 3. DELTA-BENCH

Table 3.2: The SAST tools tested for this research

SAST License Version Description
FindBugs Free 3.01 Supports any JVM language and can detect 113 dif-

ferent vulnerability types.
Fortify
SCA

Commercial 4.42 Supports 23 programming languages and detects over
700 vulnerabilities.

Jlint Free 3.1.2 Works only with Java language. It helps to find more
than 50 semantic and syntactic bugs.

OWASP
LAPSE+

Free 2.8.1 Works only with Java language. The tool can identify
12 vulnerability types.

OWASP
YASCA

Free 2.2 Supports 14 programming languages and aggregates
results from 11 static analysis tools.

PMD Free 5.5.1 Supports 20 programming languages and facilitates
finding more than 25 bug types.

SonarQubeFree 5.6 Supports 20 programming languages and covers
OWASP Top 10 vulnerability types.

3.4 RQ1: Can we isolate SAST tool alerts relevant to
the ground truth vulnerability in a real-world soft-
ware project?

Similarly to the Defects4J benchmark proposed by Just et al. [42], our benchmark con-
struction methodology depends on “what else” happens during vulnerability fixes. Vul-
nerability fixes must not contain other changes that are not relevant to the purpose of the
fix (e.g., refactorings or new features). Regular bug fixing may involve several files and
several little “polishing” touches in several parts of the code base [37, 43]. If this was the
case for security bugs, our ground truth could hardly be classified as such, as it would
include a large amount of irrelevant changes.

Several studies observed that for disciplined projects such as Google Chrome, Mozilla’s
Firefox [67], and Apache Commons [53] the majority of security fixes are rather “local”,
which allows us to assume that in many cases the vulnerable code consists of closely
related chunks located within a single file (or a handful of files).

To check if our assumption holds for Apache Tomcat, we performed a comparative

26

CHAPTER 3. DELTA-BENCH 3.4. RQ1: ALERTS ISOLATION

The cumulative distribution function (CDF) for CVE fixes demonstrates that CVE fixes tend to be much
more local than all other fixes in terms of changed files. Also in terms of changed lines CVE fixes are
more local than all other fixes: CDF for changed lines during usual fixes is sharper than CDF for changed
lines during CVE fixes.

Figure 3.3: Comparing vulnerability fixes with non-security changes from the Apache
Tomcat source code repository

analysis of known security fixes versus other commits not related to vulnerabilities (Figure
3.3). The distributions of the numbers of changed files and lines of code suggest that non-
security changes are likely to be significantly larger (e.g., may spread to hundreds of files
and involve thousands of lines), while security fixes are rather “local” (mostly a couple of
files and less than 100 lines). Hence, it is not likely that security fixes from our
sample would contain irrelevant changes and we can isolate SAST tool alerts
relevant to the ground truth vulnerability in a real-world software project.

27

3.5. RQ2: BACKGROUND NOISE IMPACT CHAPTER 3. DELTA-BENCH

3.5 RQ2: How do the SAST tool alerts generated due
to code issues not relevant for the ground truth vul-
nerability of a particular testcase affect the results
of a benchmark?

From the perspective of “finding a vulnerable file”, SAST tools are conceptually similar
to defect predictors [34]. They provide the likelihood of the presence of software defects
in a file (or a method) based on source code metrics (e.g., the size of the source code,
cyclomatic complexity, etc.), development history (code churn, number of contributors,
etc.), or other features. For example, Neuhaus et al. [66] used the information about past
vulnerabilities in software components of Mozilla Firefox to identify the components that
will likely cause vulnerabilities in the future; whereas, Shin et al. [93] assessed the defect
prediction capabilities of traditional source code metrics versus developer activity metrics.

Whilst defect predictors mostly use statistical methods for identifying the relationships
between the source code features and software defects, SAST tools use semantic-based
information, and should have better performance [98].

Obviously, Tool A and Tool B (the two tools from Table 3.2 selected for evaluation)
did not produce any Background Noise on Scanstud. Hence, we will report only one result
for Scanstud, while there will be two results for Apache Tomcat.

At first we assessed whether a tool is able to identify a particular type of a security
vulnerability. A tool succeeded, if there is at least one correct alert (i.e., at least one TP).
Table 3.3 reports SAST tool performances by vulnerability types extracted from Scanstud
and Apache Tomcat.

On Scanstud Tool B identified all 38 vulnerabilities, while Tool A found only 10 vul-
nerabilities (7 Cross-Site Scripting and 3 SQL injection). The analysis of SAST tool alerts
in Apache Tomcat by vulnerability types showed different results. According to the Di-
rect approach (running a tool on the vulnerable version) for alert classification, Tool A
was able to find almost all vulnerabilities, while Tool B missed some of them. However,
after removing the Background Noise the difference in tool performances changed sig-
nificantly: Tool A still identified the majority of the vulnerabilities, but Tool B spotted
only several of them. Some TP were made by chance, and they were filtered by Delta-
Bench (removing the Background Noise according to the Algorithm 1). The significant
change happened for Bypass, Cross-Site Scripting, Directory Traversal, and Information
Disclosure vulnerability types.

Table 3.4 shows the average results for each tool. There is a significant difference in

28

CHAPTER 3. DELTA-BENCH 3.5. RQ2: BACKGROUND NOISE IMPACT

Table 3.3: Relative Rankings by benchmark choice
The last column illustrates the relative performance of the two best tools in Table 3.2 first by running
them on the vulnerable version (Direct row) versus the relative performance captured by Delta-Bench by
removing the Background Noise according to the Algorithm 1 (Delta-Bench row).

Vuln type Total vulns Benchmark Tool A Tool B Ranking
Cross-Site
Scripting

35 Scanstud 7 35 A� B

SQL
injection

3 Scanstud 3 3 A = B

Bypass 12
Direct 12 10 A ≥ B
Delta-Bench 12 1 A� B

Cross-Site
Scripting

11
Direct 11 6 A > B

Delta-Bench 10 2 A� B

Denial of
Service

15
Direct 15 11 A > B

Delta-Bench 13 8 A > B

Directory
Traversal

3
Direct 3 2 A ≥ B
Delta-Bench 3 0 A� B

Exec code 2
Direct 2 2 A = B

Delta-Bench 2 0 A > B

Information
Disclosure

23
Direct 22 23 A ≤ B
Delta-Bench 22 13 A� B

Session
Fixation

1
Direct 1 1 A = B

Delta-Bench 1 0 A ≥ B
Text

Injection
3

Direct 3 3 A = B

Delta-Bench 2 0 A ≥ B

the relative ranking of the tools. On Scanstud Tool B was able to spot all the vulnerable
files, while Tool A missed some of them. Hence, Tool B performs better in terms of both
TP and FN. By design, synthetic benchmarks have no non-vulnerable files in Cvuln, hence
the “n/a” for FP in Table 3.4 for Scanstud.

According to the Direct approach on Tomcat, Tool A produced more TP , less FN
and FP comparing to Tool B, which shows that Tool A performs better. Delta-Bench in-
creased the difference between the two tools, and therefore, made it possible to distinguish
the two tools better. However, there is an inversion in the amount of FP : Tool B shows
more FP according to the Direct approach, and Tool A shows more FP according to the
Delta-Bench. This happens due to the fact, that Tool B produced much more warnings
(i.e., Background Noise) than Tool A. Therefore, when we subtracted this Background
Noise from the tool alerts, this eliminated the majority of FP produced by Tool B.

29

3.5. RQ2: BACKGROUND NOISE IMPACT CHAPTER 3. DELTA-BENCH

Table 3.4: Averages of file-level alerts
There is a difference between tool performances on Scanstud and real-world benchmarks: Tool B shows
better results on Scanstud, but on real-world software Tool A performs better. Delta-Bench allows us to
see this difference even better: the distance between means of tool metrics becomes bigger. In some cases
there even occurs inversions, i.e., Tool B produces more false positives when executed on the vulnerable
version (Direct row), while after subtracting BackgroundNoise Tool A starts to produce more False
alarms (Delta-Bench row).

Metric Benchmark
Mean of # Files

Ranking
Tool A Tool B

TP
Scanstud 0.3 1.0 A < B

Direct 2.2 1.7 A > B

Delta-Bench 1.8 1.2 A > B

FN
Scanstud 0.7 0.0 A > B

Direct 0.4 0.9 A < B

Delta-Bench 0.7 1.4 A < B

FP
Scanstud n/a n/a One file
Direct 554.0 677.0 A < B

Delta-Bench 402.0 254.0 A > B

Signal
Scanstud 0.3 1.0 A < B

Delta-Bench 403.0 252.0 A > B

Background
Noise

Scanstud 0.0 0.0 A = B

Delta-Bench 152.0 426.0 A < B

Table 3.5: Averages of Precision, Recall and Negative Precision on file-level
Running tools on different types of benchmarks showed different performances in terms of Precision,
Recall, and Negative Precision. Noise removal allows a better discrimination between tools, since the
distance between metrics becomes more pronounced.

Metric Benchmark Tool A Tool B Result

Precision
Scanstud 0.3 1.0 A < B

Direct 0.0039 0.0025 A > B

Delta-Bench 0.0065 0.0044 A > B

Recall
Scanstud 0.3 1.0 A < B

Direct 0.9 0.7 A > B

Delta-Bench 0.7 0.4 A > B

Negative
Precision

Scanstud n/a n/a No TN
Direct 0.9998 0.9995 A > B

Delta-Bench 0.9995 0.9991 A > B

Table 3.5 shows the averages of Precision, Recall, and Negative Precision7 for Tool

7Negative Precision demonstrates the ability of a tool to distinguish negative examples (i.e., testcases
or parts of the code not related to the specified vulnerability) and is calculated in the same way as

30

CHAPTER 3. DELTA-BENCH 3.6. THREATS TO VALIDITY

A and Tool B. As it was mentioned for the average tool alerts (Table 3.4), the tools
perform differently when executed on synthetic and real-world software. This is also
visible for Precision and Recall. By design, there were only vulnerable files for Cvuln in
Scanstud, and therefore, we cannot report any results for Negative Precision. Similarly
to the observations on the average tool alerts, Delta-Bench allows tools to be better
differentiated than the Direct approach.

Shaha et al. [89] in their study of bug reports showed that low-severity bugs can be
very important (e.g., due to classification errors), therefore for our analysis we considered
all warnings regardless of their severity, as we believe they can be also a subject to similar
classification errors.

We also selected only the alerts with the top two severity levels. Both tools produced
a negligible amount of TP, when limited to high severity alerts. As it was mentioned
in section 3.3, Tomcat developers used other SAST tools, and therefore, they may have
already fixed all the issues pointed out by the high severity alerts produced by those tools.
Claim: The improvement of the results obtained due to the application of the Delta-
Bench approach allows us to conclude, that Background Noise obfuscates tool evaluations
and even sometimes leads to opposite results (i.e., the inversions of the tool performance
on the Information Disclosure vulnerability type in Table 3.3).

3.6 Threats to validity

Our results may be affected by errors in the data collection process, the accuracy of the
information about security fixes in Apache Tomcat, and the mechanism for extracting
either ground truth or code fragments pointed by alerts.

Bias in the data collection: although static analysis tools produce different kinds of
output, we bring them to a common denominator by reducing the output to vulnerability
warnings mapped to the source code locations. In this way we might overlook some other
features of tools that, for example, can enhance user experience and may influence the
selection. However, we focus on benchmarking of SAST tools from the security point of
view, and therefore, we believe the actual ability of SAST tools to identify vulnerable
code to be their most important feature.

Bias in the information about vulnerability fixes: there are few fixes that span over
several commits (e.g., CVE-2009-3555), for which we used only the last commit that
concluded the fix to reconstruct the vulnerable code fragment. It might be possible, that

Precision, where TP corresponds to absence of alerts in a safe fragment of code.

31

3.7. CONCLUSIONS CHAPTER 3. DELTA-BENCH

both ground truth and warning code fragments that we extract do not reflect the full
vulnerable code sample. Such revisions contain partial fixes of the original vulnerability
that may confuse a SAST tool, since a tool may (falsely) recognize an accepted partial fix
to be complete. However, such cases are very important in industrial practice, since the
incorrect decision of completeness of a vulnerability fix may leave a zero-day vulnerability.
And therefore, the ability of SAST tool to distinguish partial fixes and point software
developers on the part of code still affected by the vulnerability is highly important.
Hence, we have used such cases in our empirical evaluation.

Bias in code base selection: Our private communications with an industrial SAST
specialist suggest that such tools may be optimized towards finding vulnerabilities specific
to web applications (e.g., XSS or SQLi), and therefore, some of selected SAST tools may
not be effective in identification of vulnerability types extracted from Apache Tomcat.
However, being a web server, Apache Tomcat still has a handful of vulnerabilities specific
to web applications. Also, we have chosen the most popular SAST tools that claim to
be capable of identification of vulnerability types used in our evaluation. Moreover, both
tools A and B produced TP alerts for all the selected vulnerability types. Hence, we
believe that this threat is limited.

Bias in SAST tool selection: we present results obtained only from two SAST tools.
However, we use these tools to demonstrate the methodology without making claims
about the overall performance of these tools and only show how different benchmarking
methods may change the results. As for the future work we plan to use Delta-Bench for
an empirical study of a large number of SAST tools on vulnerable-fixed revision pairs
extracted from different real-world software projects.

3.7 Conclusions

We propose Delta-Bench – a novel approach that uses fixes of historical vulnerabilities
from the existing FOSS projects as a ground-truth set of vulnerabilities to automatically
construct benchmarks for SAST tools by (suitably) differencing SAST alerts from vul-
nerable and fixed versions. The approach allows us to evaluate SAST tools using only
the alerts that a tool produced for the analyzed vulnerability (without considering the
Background Noise). For benchmark construction Delta-Bench requires only a pair of
vulnerable and fixed versions of a software code as an input.

We demonstrated Delta-Bench on a synthetic benchmark Scanstud and a set of his-
torical vulnerabilities extracted from Apache Tomcat. Our experiments already showed
significant insights between the two tools: we found that a relative tool ranking may be

32

CHAPTER 3. DELTA-BENCH 3.7. CONCLUSIONS

reverted by a different benchmarking method.
As for the future work, we plan to demonstrate Delta-Bench by using it for evaluation

of different commercial and FOSS SAST tools, and on a larger set of real-world software
projects as a source of historical vulnerabilities (beyond Java). In this chapter we show
the results only at a file-level granularity. We have already extended Delta-Bench to work
with methods, and are starting to extend it to hunks and program slices. The approach
could be also applied to other types of bugs provided the assumption on the locality of
fixes also applies to those bugs (as we have shown in Section 3.4 for security bugs).

By using Delta-Bench software development companies may select the most appropri-
ate tool for their projects and tool developers improve SAST tools for sharper results.

33

3.7. CONCLUSIONS CHAPTER 3. DELTA-BENCH

34

Chapter 4

A Methodology for Counting Actually
Vulnerable Dependencies

In this chapter we present the methodology for counting vulnerable dependencies, that
addresses the over-inflation problem of academic and industrial approaches for reporting
vulnerable dependencies in OSS software, and therefore, caters to the needs of industrial
practice for correct allocation of development and audit resources. Careful analysis of
deployed dependencies, aggregation of dependencies by their projects, and distinction of
halted dependencies allow us to obtain a counting method that avoids over-inflation. To
understand the industrial impact of a more precise approach, we considered the 200 most
popular OSS Java libraries used by SAP in its own software. Our analysis included 10905
distinct GAVs (group, artifact, version) in Maven when considering all the library versions.
Our study shows that the correct counting allows software development companies to
receive actionable information about their library dependencies, and therefore, correctly
allocate costly development and audit resources, which are spent inefficiently in case of
distorted measurements.

4.1 Introduction

Current dependency analysis methodologies are based on assumptions that are not valid
in an industrial context. They may not distinguish dependency scopes [49] which may
lead to reporting non-exploitable vulnerabilities, or consider only direct dependencies [19]
although security issues may be introduced transitively [51]. Moreover, dependency anal-
ysis methodologies miss several important factors. For example, some dependencies are
maintained and released together (they may belong to the same project), and therefore,

35

4.1. INTRODUCTION CHAPTER 4. DEPENDENCY METHODOLOGY

should be treated as a single unit, while constructing dependency trees and reporting
results of a dependency study. Another example is the presence of dependencies whose
development had been suspended for an unspecified time. Such a dependency may turn
to be harmful for a dependent project in case of a vulnerability discovery as there might
be no new release that fixes the issue1.

Hence, the current approaches may present a distorted view of the situation with
vulnerable dependencies:

1. Inflation of unexploitable vulnerabilities - a non-negligible number of development-
only dependencies could not be possibly exploited;

2. Underestimation of transitive vulnerabilities - transitive dependencies may as well
introduce vulnerabilities;

3. Imprecise vulnerability mapping - manual or name-based vulnerability mapping is
error-prone, and therefore, not reliable;

4. Misrepresentation as somebody’s else problem - separately considered dependencies
that belong to same projects reduce visibility of the nodes that can be directly
changed from an analysed library;

5. Misreporting that nobody is in charge - the mitigation strategy should consider the
fact that maintenance of a library has halted.

In this chapter we make the following contributions:
• The Vuln4Real methodology, that caters to the needs of industrial practice, for

reliable measurement of vulnerable dependencies in free open-source software;
• A tool to perform large-scale studies of (Maven-based) FOSS libraries and to deter-

mine whether any of their dependencies are affected by known vulnerabilities;
• An empirical study of 10905 library instances of the 200 Java Maven-based FOSS

libraries that are most frequently used in SAP software. The study is designed
to offer two views of the FOSS ecosystem: the traditional academic view and the
industrial view of a project developer. This allows us to present the Vuln4Real
impact from both academic and industrial perspectives.

We found that Vuln4Real changes the academic perception of the situation regard-
ing software dependencies, by showing that the developers of the analysed libraries can
(and should) fix 80% of vulnerable dependencies by simply updating the direct dependen-
cies of their projects, in contrast to the state-of-the-art approaches (by updating direct

1For example, there is no fixed version available for the dead library org.springframework:spring-dao
with CVE-2014-1904. Although the latest version of the Spring framework does not depend on the spring-
dao library, the dead library is present in Maven Central and 43 other libraries still use it (as reported
by mvnrepository.com).

36

CHAPTER 4. DEPENDENCY METHODOLOGY 4.2. TERMINOLOGY

dependencies, developers can fix only 37% of vulnerable dependencies)2. The proposed
methodology also identifies and removes alerts for 27% of vulnerable direct and 21% of
vulnerable transitive dependencies, that could not be exploited. Our study indicates that,
under a conservative model to characterize dead dependencies, 13.2% of the total number
of dependencies are dead, and therefore, may not receive updates (including security fixes).
Such dependencies should be used with caution, since mitigations of their vulnerabilities
may be costly.

The simulation of the proposed methodology on an individual software library shows
that an industrial developers benefits from the correct resolution of the dependency anal-
ysis results: in average Vuln4Real allows an individual developer to receive 27% less false
alerts. Also, it helps planning the mitigation activities by showing, which safe versions
of the affected dependencies the developer can adopt directly and for which vulnerable
libraries more complicated mitigations should be considered.

4.2 Terminology

In this chapter we rely on the terminology established among practitioners and used in
well-known dependency management tools such as Apache Ivy3 and Apache Maven4:

• A library is a separately distributed software component, which typically consists
of a logically grouped set of classes (objects) or methods (functions). To avoid any
ambiguity, we refer to a specific version of a library as a library instance.

• A dependency5 is a library instance, some functionality of which is used by another
library instance (the dependent library instance).

• A dependency is direct if it is directly invoked from the dependent library instance.

• A dependency tree6 is a representation of a software library instance and its depen-
dencies where each node is a library instance and edges connect dependent library

2The developers are capable of fixing all the vulnerable dependencies of their projects, although
mitigation of a vulnerability in a transitive dependency may require its transformation into a direct
dependency, which is against the core idea of the automated dependency management approach.

3http://ant.apache.org/ivy/history/latest-milestone/ivyfile/dependency.html
4https://maven.apache.org/pom.html#Dependencies
5For the sake of consistency with the terminology used in Maven, we use the term ‘dependency’ to

denote a node (not an edge) of a dependency tree.
6Although dependency relations mathematically represent a graph (one dependency may have several

dependent library instances), we use the term dependency tree to be consistent with an industrial usage:
after the resolution step, dependencies of a library instance are typically presented in a form of a tree.

37

http://ant.apache.org/ivy/history/latest-milestone/ivyfile/dependency.html
https://maven.apache.org/pom.html#Dependencies

4.2. TERMINOLOGY CHAPTER 4. DEPENDENCY METHODOLOGY

instances to their direct dependencies.

• A transitive dependency is connected to the root library instance of a dependency
tree through a path with more than one edge.

• A project is a set of libraries developed and/or maintained together by a group of
developers. Dependencies belonging to the same project of the dependent library
instance are within-project dependencies, while library instances maintained within
other projects are third-party dependencies.

• A deployed dependency is delivered with the application or system that uses it,
while a development-only dependency is only used at the time of development (e.g.,
for testing) but is not a part of the artifact that is eventually released and operated
in a production environment.

• A library instance is outdated if there exists a more recent instance of this library at
the time of analysis. A dead library is such that the next estimated release time has
been passed by far based on the interval of past releases (see Step 4 of Section 4.4).

To illustrate how this terminology is used in practice, we refer to Figure 4.1, which
depicts the dependency tree for a library instance m1. The library instance under analysis
m1 is the root, m2, x1, and y1 are direct dependencies, while u1, y2, and z1 are transitive
dependencies. Library instances m1, m2 and y1, y2 are within-project dependencies of
projects M and Y respectively, while library instances x1, y1, y2, u1, and z1 are third-
party dependencies of project M.

Suppose now that m2, y2, and z1 are affected by known security vulnerabilities.
• Although from the perspective of the build system, within-project dependency m2

is just a direct dependency, in practice, it is a piece of vulnerable code shipped as
part of project M . Hence, the vulnerability should be fixed as part of the project
development, i.e., by directly changing its source code.
• Developers of M can variate the version of y2 by selecting a suitable y1: if a fixed

version of y1 is released, they should update project M to use it.
• Usage of dependency z1 cannot be controlled without transforming the (transitive)

dependency z1 into a direct dependency of the project. Since this would break the
“black-box” dependency management principle, such a solution is not likely to be
adopted. As a matter of fact, it is a responsibility of the developers of project Y to
keep the version of the dependency z1 up-to-date.

38

CHAPTER 4. DEPENDENCY METHODOLOGY 4.3. MOTIVATING EXAMPLE

m1

u1

m2

x1
y1

y2

z1

M

Y

root: m1
within-project dependencies: m1,
m2; y1, y2
3rd party libraries: x1, y1, y2, u1, z1
direct dependencies: m2, x1, y1
transitive dependencies: u1, y2, z1

Z

X

U

Figure 4.1: Dependency tree

Even if library dependencies are not affected by known vulnerabilities, presence of
dead dependencies may lead to costly mitigations in future: if a security vulnerability
is discovered in a library that is no longer actively developed, there may be no version
of this library that fixes the vulnerability7. Hence, being a dependency, this library will
introduce the vulnerability to all its dependents.

Additionally, a dead dependency may transitively introduce outdated dependencies
and expose the root library instance to bugs and security vulnerabilities (Figure 4.2): the
root library instance m1 depends on the last version of dead dependency x1, which, in
turn, uses an “alive” dependency u1. Although both versions v1 and v2 of library m1 use
the latest available version of direct dependency x1, outdated transitive dependency u1
would be also present.

39

4.3. MOTIVATING EXAMPLE CHAPTER 4. DEPENDENCY METHODOLOGY

m1

x1

u1

v1

v1

v1 v2 v3

v2

t0 t1
Library m1 has a halted dependency x1. In case a vulnerability is discovered in x1 or its dependency u1,
there would be no version of x1 that fixes such a vulnerability or adopts a fixed version of u1.

Figure 4.2: Dead dependency

The figure presents the Apache xalan:xalan dependency migration plot calculated according to the approach
presented in [49]. State of the art methodologies for counting the usage of vulnerable libraries over-
inflate the actual risks as they count vulnerabilities that are by construction not-exploitable being part of
development and test libraries. Hence, they may present a misleading picture of a dependency usage.

Figure 4.3: What Appears with State of the Art Methods

40

CHAPTER 4. DEPENDENCY METHODOLOGY 4.3. MOTIVATING EXAMPLE

The figure shows the changed dependency usage plot for xalan:xalan library after removing test usages
of this library. Three libraries did not adopt the safe version of the analyzed dependency for the simple
reason that maintenance and development of those libraries halted.

Figure 4.4: Reality With Proper Processing

4.3 Motivating Example

Figure 4.3 shows the dependency migration analysis [49] of the xalan:xalan library. The
number of appearances of each library version in the dependency trees of the analyzed
libraries is reported on the ordinates for each year.

In the span of 12 years different versions of xalan:xalan appear in 197 dependency
trees of the analyzed libraries in our dataset (See further Section 4.5). The versions of
xalan:xalan prior to 2.7.2 are affected by CVE-2014-0107. The red dashed line shows
the variation of the number of analyzed libraries that depend on a vulnerable version of
xalan:xalan in time, while the green solid line represents the variation for the analyzed
libraries that adopted the safe version 2.7.2.

7There may be cases, when a certain library does not receive new commits for a long time, but its
developers still quickly react on arising issues. For example, although there were no releases of the Apache
commons-collection library for 7 years, its developers quickly provided a fix for a vulnerability discovered
in 2015 and released it within a new version. Alternatively, another organization may decide to fork an
abandonded library and fix the arising security issues, as, for example, Apache Software Foundation did
for the beanshel:bsh library. However, such outcomes are not guaranteed, since library developers may
decide to move on and no other organization may want to support it (e.g., Apache moved from Axis to
Axis2 project, but, according to mvnrepository.com, 176 libraries still depend on the vulnerable axis:axis
library).

41

4.4. METHODOLOGY CHAPTER 4. DEPENDENCY METHODOLOGY

Figure 4.4 shows the dependency migration plot after considering the five issues of the
current state-of-the-art dependency analysis approaches (See Section 4.1). By removing
development-only versions, and eliminating the cases where xalan:xalan itself was part
of the analyzed project, we observe a reduction of the number of (falsely-reported) usages
of the vulnerable versions (the peak on Figure 4.3).

The presence of dead dependencies has a major impact on a library maintenance
strategy. Indeed, in Figure 4.4, the only three libraries that depend on the vulnerable
version of xalan:xalan even after more than two years since the release of the safe version,
depend on vulnerable version of xalan:xalan via direct dead dependencies. In this case,
a different mitigation strategy might be needed: (i) contribute to the dead library, i.e., to
develop its new release; or (ii) fork the dead library and continue its maintenance as part
of the dependent library.

4.4 Methodology

Table 4.4 overviews the Vuln4Real methodology for counting vulnerable dependencies.

Step 1: Extraction of a dependency tree for a library
INPUT Source code of an analysed library

OUTPUT Resolved dependency tree for an analysed library
PROCEDURE Identify dependencies of an analysed library and represent them in a form of a de-

pendency tree:
• Employ the mechanism of a dependency management system to construct

dependency tree of a library
• Apply the dependency management system resolution procedure to resolve

version conflicts
• Extract the resolved dependency tree

Step 2: Identification of development-only dependencies
INPUT Resolved dependency tree for an analysed library

OUTPUT The set of development-only dependencies
PROCEDURE Identify dependencies of the library, that are used only during development of this

library and are not shipped with this library:
• Extract dependency scopes
• Mark dependencies in scopes, that are not shipped with the analysed library

as test. For example, in Maven dependencies with scope test are not shipped
with the library, npm has a set of devDependencies that are used only for
development purposes, and in pip such dependencies are specified as extra
requirements.

42

CHAPTER 4. DEPENDENCY METHODOLOGY 4.4. METHODOLOGY

Step 3: Identification of within-project dependencies
INPUT Resolved dependency tree for an analysed library

OUTPUT The set of groups of within-project dependencies
PROCEDURE Identify within-project dependencies:

• Identify dependencies that are maintained and released simultaneously. In
Maven the libraries that have a common groupid are parts of a single multi-
module project, while in npm and pip dependencies are joined into monorepos.

Step 4: Identification of dead dependencies
INPUT Resolved dependency tree for an analysed library

OUTPUT The set of dead dependencies
PROCEDURE Identify dependencies of the analysed library, that are no longer maintained:

• Refer to the dependency repository to extract the release times for all depen-
dency instances

• Use release times to estimate the expected time of the next release
• In case the time of observation does not exceed the estimated time, count such

dependency as maintained, otherwise count it as dead

Step 5: Identification of dependencies with known vulnerabilities
INPUT Resolved dependency tree for an analysed library

OUTPUT The set of dependencies with known vulnerabilities
PROCEDURE Employ code-base matching procedure to check whether a dependency is affected by

a known security vulnerability:
• Analyse the patches that fix vulnerabilities in open-source software dependen-

cies according to the code-base approach introduced by Plate et al. [82]
• Use this to compare the nodes of the dependency tree to check whether one

of them is affected by a known vulnerability

Step 6: Path extraction
INPUT The dependency tree of an analysed library, the sets of development-only dependen-

cies, groups of within-project dependencies, dead dependencies, and dependencies
with known vulnerabilities

OUTPUT Dependency analysis report

43

4.4. METHODOLOGY CHAPTER 4. DEPENDENCY METHODOLOGY

PROCEDURE We use the following algorithm to construct paths from vulnerable nodes to the
analysed libraries:
• Remove development-only dependencies (Step 2) and their subtrees from the

dependency tree
• Use the output from Step 5 to identify nodes affected by known vulnerabilities
• For each node in the dependency tree from Step 1, extract the shortest path

between the vulnerable dependency and the analysed library
• Substitute a group of consecutive within-project dependencies in the path with

the closest to the vulnerable node dependency from the group.
• Use the output of Step 4 to identify dead dependencies.

Step 1: Extraction of a dependency tree for a library

The extraction of a dependency tree for a library includes two steps:

• full dependency tree construction that contains all the dependencies as they are
specified in the configuration files of the dependency tree nodes;
• resolution of conflicts between dependency versions when the full dependency tree

contains several different instances of the same library.

In many cases a dependency management system provides the functionality to extract
the dependency tree for a specific library instance and to resolve the conflicts. For exam-
ple, to have a dependency tree of a Maven based library instance, one may execute the de-
pendency:tree goal of the Apache Maven Dependency Plug-in8 and the dependency:resolve
goal to have the version conflicts resolved. The JavaScript packet manager npm provides
the npm ls <package-name> command to display the dependency tree of a specified pack-
age9. Alternatively, there exists the dependency-tree plug-in10, that also handles version
resolution conflicts. Although the Python package manager pip does not provide a default
functionality to display the dependency trees, tools like pipdeptree11 or pipenv 12 support
this. Those tools do not provide the functionality for resolving version conflicts, however
the current resolution procedure is simple - pip performs the breadth-first traversal of the
dependency tree and picks the first instance of a library it encounters13.

8https://maven.apache.org/plugins/maven-dependency-plugin/index.html
9https://docs.npmjs.com/cli/ls.html

10https://www.npmjs.com/package/dependency-tree
11https://pypi.org/project/pipdeptree/
12https://pypi.org/project/pipenv/
13https://github.com/pypa/pip/issues/988

44

https://maven.apache.org/plugins/maven-dependency-plugin/index.html
https://docs.npmjs.com/cli/ls.html
https://www.npmjs.com/package/dependency-tree
https://pypi.org/project/pipdeptree/
https://pypi.org/project/pipenv/
https://github.com/pypa/pip/issues/988

CHAPTER 4. DEPENDENCY METHODOLOGY 4.4. METHODOLOGY

Step 2: Identification of development-only dependencies

We identify development-only dependencies as follows:
• we rely on the dependency management system (or project configuration files) to

provide us with additional information about the dependency type14;
• we use this information to classify dependencies in the dependency tree.
For example, in Maven we extract the dependency scope: the dependencies with scope

test are used only for development purposes. In npm development-only dependencies are
collected within the devDependencies section of the configuration file, while in pip such
dependencies are specified as extraRequirements.

Step 3: Identification of within-project dependencies

To identify dependencies that are maintained and released simultaneously, we perform
the following procedure:
• we refer to the development practices adopted by the developers within the corre-

sponding dependency management systems;
• we use these practices to identify a project that includes the analysed dependency

and other within-project libraries of this project.
Maven libraries are grouped into multi-module projects where each module is released

as a separate artifact. According to the Maven naming conventions15, within-project
dependencies of a multi-module project have the same groupId. Hence, within-project de-
pendencies can be easily identified by comparing their groupIds. JavaScript and Python
developers may follow the monorepo development strategy, when several software libraries
are stored in the same repository16. Such library groups do not share a common identifier,
however, they still can be distinguished by analysing monorepos separately. Although in
these cases the step of identification of within-project dependencies would require addi-
tional efforts, it allows library developers to receive the meaningful (and correct) presen-
tation of the dependency analysis results.

Step 4: Identification of dead dependencies

Some libraries may have varying time intervals between releases due to different release
strategies adopted within development teams, as well as the maturity of a certain library:

14Such information is always available, albeit in possibly different formats.
15https://maven.apache.org/guides/mini/guide-naming-conventions.html
16The monorepo development strategy is widely adopted by large software development companies,

such as Google [85], Facebook [29], and Microsoft [35]

45

https://maven.apache.org/guides/mini/guide-naming-conventions.html

4.4. METHODOLOGY CHAPTER 4. DEPENDENCY METHODOLOGY

at earlier stages of development it needs to have more updates than an established library
with a long development history. An example of a mature library is the Apache commons-

logging package. Released on 2007-11-26 version 1.1.1 was the latest available version for
more than 5 years till the release of version 1.1.2 on 2013-03-16.

Since the time difference between recent releases should have bigger impact on the
Last release interval comparing to the time difference between older releases, the typ-
ical statistical model that describes such a process is a simple Exponential Smoothing
model [13]:

Release interval = α
n∑
i=0

{
(1− α)i ∗ Release timen−i

}
Expected release date = Last release + Release interval

where Release timei is the time interval needed to release the i-th version of a library,
0 < α < 1 is the smoothing parameter that shows how fast the influence of previous time
intervals decreases17. We estimate the Expected release date for a library by adding the
Last release interval to the release date of the latest available version of the library. Then
we determine the status of the library as follows:
• next release date < TIME : the library is dead
• next release date ≥ TIME : the library is alive
TIME represents the date, for which the library status is calculated. In our study,

for each analyzed library instance we will identify its release date and use it to calculate
whether any of the dependencies were dead. To know the current status, TIME should
be equal to the current date.

The proposed model based on release dates is conservative, since it provides the lower
bound for the estimation of the Expected release date for a library. Hence, it is more likely
to be affected by FP, i.e., to classify a library as dead when it is still under development.
However, such finding would mean that a library does not receive a fix for a long period
of time, during which a zero day vulnerability remains exploitable. Hence, even in case
of “false positives”, our model provides valuable information for software developers.

Step 5: Identification of dependencies with known vulnerabilities

To avoid the FP and FN inflation introduced by name-based vulnerability matching ([4,
14, 57]), we leverage on precise code-based approaches to vulnerability detection such as

17The observation of released dates for the analyzed libraries suggests, that the last three releases have
the major impact on the Expected release date of a library, and therefore, in this chapter we count α = 0.6.
For libraries with less than 3 releases, we take the Last release interval equal 3 months.

46

CHAPTER 4. DEPENDENCY METHODOLOGY 4.5. DATA COLLECTION

Ponta et al. [84] and Dashevskyi et al. [24]. Starting from known vulnerabilities from
the NVD, advisories, bug tracking systems, etc., the commit fixing the vulnerability
is identified manually and analyzed resulting in a list of code changes. All software
constructs (e.g., constructors, methods) included in such list are the so-called vulnerable
code. The creation of such knowledge is a one-time effort for each vulnerability. Then,
for every analyzed project, the list of all within-project libraries of the project and all its
dependencies is collected by performing a code-level matching of the vulnerable fragment
following the approach of [84]. Whenever the vulnerable code fragment is contained within
a dependency, the corresponding vulnerability is automatically reported for our analysis.

Step 6: Path construction

We use the resulting dependency tree and the outputs of the steps 2-5 of the proposed
methodology to identify whether the dependencies belong to one of the following groups:

• development-only dependencies;
• within-project dependencies;
• dead dependencies;
• dependencies with known vulnerabilities.

Vulnerable dependencies represent the most valuable assets, hence, we perform the
final aggregation of the results in the opposite direction, i.e., considering the paths from
vulnerable dependencies to libraries under analysis:

• we group all within-project dependencies within one path and substitute them in
the path with the library instance, closest to the vulnerable dependency.

Consider the example of a dependency tree from Figure 4.1: let dependencies x1 and z1
be affected by known security vulnerabilities. Initially there are two paths from vulnerable
dependencies to the analyzed root library: (x1, m1) and (z1, y2, y1, m1). In the second
path library instances y1 and y2 belong to the same project Y , hence, they are grouped.
So, the analysis results in two vulnerable paths: (x1, m1) and (z1, y2, m1).

47

4.5. DATA COLLECTION CHAPTER 4. DEPENDENCY METHODOLOGY

Table 4.2: Descriptive statistics of the library sample
We considered the 200 most popular FOSS Java libraries used by SAP in its own software, which resulted
in 10905 distinct GAVs when considering all library versions.

µ σ min max Q1 Q2 Q3
#GAVs 54.52 49.24 1.0 248 15.0 35.0 87.0
#deps 10.91 16.98 0.0 127 0.0 3.0 15.0

#direct 4.26 6.80 0.0 51 0.0 2.0 6.0
#trans 6.65 12.01 0.0 82 0.0 1.0 8.0

#vuln deps 1.46 2.86 0.0 26 0.0 0.0 2.0
#direct 0.54 1.32 0.0 9 0.0 0.0 0.0
#trans 0.92 2.16 0.0 17 0.0 0.0 1.0

#usages 55.96 508.41 1.0 29 472 1.0 5.0 23.0

4.5 Data collection

Considering the popularity and industrial relevance of Java18, in the following we demon-
strate the proposed methodology on Java projects.

Over the past decade, Apache Maven established itself as a standard solution in the
Java ecosystem for dependency management and other tasks related to build processes.
Other solutions exist, such as Apache Ivy and Gradle (which is gaining popularity)19,
however Maven still has the largest share of users20. Hence, we use it to demonstrate the
proposed mitigations for each problem described in Section 4.3.

In Maven the name of a component is standardized21 and represented as groupId :artifactId :version.
Hence:
• a “project” may be referenced as Maven groupId
• a “library” corresponds to groupId :artifactId (GA)
• a “library instance” corresponds to the name of Maven component groupId :artifactId :version

(GAV)
Processing of a full Maven Central repository with almost 2,7 million GAVs would be

18Java is estimated to be the most popular programming language since 2004, according to the two
indexes used by IEEE Spectrum (http://spectrum.ieee.org/) to assess popularity of a programming
language: (i) Tiobe index (http://www.tiobe.com/tiobe-index/), which combines data about search
queries from 25 most popular websites of Alexa; and (ii) PYPL index (http://pypl.github.io/PYPL.
html), which uses Google search queries.

19https://gradle.org/
20https://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-2016/
21https://maven.apache.org/guides/mini/guide-naming-conventions.html

48

http://spectrum.ieee.org/
http://www.tiobe.com/tiobe-index/
http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html
https://gradle.org/
https://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-2016/
https://maven.apache.org/guides/mini/guide-naming-conventions.html

CHAPTER 4. DEPENDENCY METHODOLOGY 4.5. DATA COLLECTION

impractical and especially would include artifacts of no relevance in industrial practice.
Hence, for this chapter we take a sample from Maven Central, as explained below.
Library selection - incorrect way. Initially, we followed the approach of [90] and
selected the number of library instance usages as a proxy for its popularity. By usage
we understood the number of direct dependent library instances of a library instance of
interest22.

However, when we extracted the list of top 100 most used libraries, the resulting
list had an unbalanced usage distribution: scala and spring-framework projects were over-
represented, while some well-known projects, like Apache Tomcat, were not present in the
list. A possible reason may be in the large difference in numbers of within-project libraries
in different projects: if a project has 100 within-project libraries and they directly depend
on a certain library instance, then this library instance would be “used” 100 times, while
in reality there is only one usage.

This approach may have potentially allowed us to receive a “good” list of libraries,
if as a proxy for popularity we used the number of dependent projects. However, such
information is not easily available (to obtain it, we would have to build dependency trees
for all library instances in Maven Central), so we had to find another way to construct
the list of libraries for our study.
Library selection - the way we followed. To ensure industrial relevance of our study,
we selected the top 200 FOSS libraries used by a set of more than 500 Java projects
developed at SAP; these include actual SAP products and software developed by the
company for internal use. Those libraries comprise, for instance, org.slf4j:slf4j-api and
org.apache.httpcomponents:httpclient, and correspond to 10905 library instances when con-
sidering all versions (see Table 5.1 for descriptive statistics of the selected sample).

To automate our dependency study we implemented a tool that:
• wraps dependency:tree and dependency:resolve Maven commands, which helps us

get a more manageable (and a machine-readable) representation of the results of
the resolution mechanism. This allows us to construct the resolved dependency tree
for each library instance.
• uses the code-based approach of [84] to annotate dependency trees with the vul-

nerability data at our disposal. In particular, when a vulnerable library instance
is found among the dependencies of an analyzed root library, our tool produces in
the output (i) the identifier of the vulnerability, (ii) the library instance import-
ing it, and (iii) the complete dependency path leading from the root library to the
vulnerable dependency.

22We used the data from MVNrepository (https://mvnrepository.com/).

49

https://mvnrepository.com/

4.6. ECOSYSTEM VIEW CHAPTER 4. DEPENDENCY METHODOLOGY

The number of deployed vulnerable dependencies (the true positives) per library are shown above the X-
axis, while the number of development-only vulnerable dependencies (the false positives) are shown below
the X-axis.

Figure 4.5: Deployed (the true positives) vs Development-only (the false positives) vul-
nerable dependencies per library instance

• applies path simplifications and produces the results in the form of a human-readable
report.

4.6 Evaluation: Ecosystem View

In this Section we present how Vuln4Real influences the results of a dependency study for
the complete sample of selected libraries by answering the following research questions:

• RQ1: How effective is the proposed methodology in removing false positive alerts?
• RQ2: How effective is Vuln4Real in revealing direct within-project dependencies of

the analysed libraries?
• RQ3: How different is the view of dependencies provided by the proposed method-

ology in comparison to the state-of-the-art approach (SoA)?
• RQ4: How effective is the proposed methodology in finding dead dependencies?
• RQ5: Can the number of dependencies be used as a predictor for a number of

vulnerabilities in a library?

To answer the research questions we have collected both direct and transitive depen-
dencies of the library instances. First, we treated them according to a SoA approach
affected by all the dependency presentation issues (See Section 4.1), which corresponds
to approaches presented in, for example, [49] or [19]. Then we applied Vuln4Real and
compared the number of vulnerable/non-vulnerable dependencies calculated according to
both approaches.

50

CHAPTER 4. DEPENDENCY METHODOLOGY 4.6. ECOSYSTEM VIEW

Above the X-axis we show the total number of direct vulnerable dependencies and their within-project
dependencies. They are directly introduced into the analysed libraries by importing the functionality from
vulnerable projects. Below the X-axis we show the fraction of vulnerable within-project dependencies of
the direct dependencies of the analysed libraries, i.e., the false negative alerts revealed by Vuln4Real.

Figure 4.6: The comparison of the actual number of vulnerable dependencies that could
be directly fixed by developers of the analysed libraries (true positives) and the fraction
of such dependencies revealed by Vuln4Real (the false negatives)

RQ1: How effective is the proposed methodology in removing false
positive alerts?

Vulnerabilities in development-only dependencies cannot be exploited, and therefore, the
alerts reporting them are not useful for software developers of the analysed libraries, so
we count them as false positives. Figure 4.5 shows the per library instance comparison be-
tween the number of deployed vulnerable dependencies (true positives) and development-
only23 vulnerable dependencies (false positives). The results are ordered by the own size
(number of lines of code) of the analysed library instances.

We observe, that development-only vulnerable dependencies are widely used within
the analysed libraries and for some library instances their amount exceeds the number of
deployed dependencies. Hence, following the SoA approach, software developers would
have to face a big number of false alerts (for some library instances their amount exceeds
the actual true positive alerts by up to 3 times). Their analysis may require significant
amount of highly expensive developers’ time and, as a result, decrease the value and trust
in the dependency analysis findings. Instead, the proposed methodology allows software
developers to receive trustworthy dependency analysis reports.

When considering only deployed dependencies, the number of both non-vulnerable and
vulnerable direct dependencies decreased by 45% and 27%, respectively24. At the same

23To identify development-only dependencies in Maven we have used both test and provided scopes,
since dependencies in both scopes do not appear as transitive dependencies in the dependency trees of
the dependent libraries.

24Such difference may be due to the fact, that development-only dependencies are of less interest to
both security researchers and hackers, and therefore, there are less vulnerabilities discovered in such

51

4.6. ECOSYSTEM VIEW CHAPTER 4. DEPENDENCY METHODOLOGY

time, our methodology being applied to transitive dependencies allowed us to reveal 21%
of development-only vulnerable transitive dependencies.

RQ2: How effective is Vuln4Real in revealing direct within-project
dependencies of the analysed libraries?

To make an application safe, its developers need to be sure that they address all the
vulnerable dependencies. SoA approach suggests that direct dependencies of a software
project are within the full control of its developers. However, such approach misses the
fact that within-project dependencies should also be considered to correctly report the
number of controlled dependencies in the analysed projects.

The dependency grouping procedure shortens the dependency paths (by grouping de-
pendencies belonging to same projects), so some direct vulnerable dependencies appear to
be within-project dependencies of the analysed libraries, while some vulnerable transitive
dependencies appear to be direct dependencies of the analysed libraries.

Vulnerable within-project dependencies. Since the analysed library instances
may as well be parts of multimodule projects, while reporting the results it is also impor-
tant to correctly distinguish between the “true” number of third-party and within-project
dependencies of the analysed libraries as the latter should be fixed by the developers of
those libraries by directly changing their code.

Figure 4.7 presents the difference between the within-project dependencies and the
third-party direct dependencies of the analysed libraries. Although the mean number of
third-party direct dependencies (Direct3rdP ty = 4, 38) is almost two times bigger than the
mean number of within-project dependencies (Directwithin−project = 2, 53), we observe,
that within-project dependencies introduce as much as 21% of direct vulnerabilities.

Vulnerable direct dependencies. Figure 4.6 shows the per library instance com-
parison of the number of direct and the number of revealed vulnerable dependencies.

We observe, that many direct vulnerable dependencies were presented as transitive
for the developers of the analysed libraries. This may influence developers to select a
wrong mitigation strategy, i.e., to wait for the dependencies to adopt the fixed versions
of vulnerable dependencies, instead of fixing them directly from the analysed projects.
Hence, the SoA way of presenting the vulnerable dependencies that can be fixed by
updating direct dependencies of the analysed libraries is affected by FN. For several
libraries the amount of FN alerts equal to the number of TPs. Hence, Vuln4Real allows us
to reveal direct vulnerable dependencies, which were falsely hided by the SoA approach.

libraries.

52

CHAPTER 4. DEPENDENCY METHODOLOGY 4.6. ECOSYSTEM VIEW

Figure 4.7: Own and third-party dependencies of the analysed libraries

After grouping within-project dependencies, we observe, that 80% of vulnerable third-
party dependencies are direct (in contrast with 37% reported by SoA), and therefore,
could (and should) be fixed by the developers of the analysed library instances.

RQ3: How different is the view of dependencies provided by the
proposed methodology in comparison to SoA?

Figure 4.8 allows us to visually compare the amount of dependencies reported by SoA and
Vuln4Real. Each category of dependencies is presented as a rectangular area, where the
center has the mean numbers of vulnerable and not vulnerable dependencies as coordinates
and the height and width are the respective 95% confidence intervals.

Results presented according to the SoA approach suggest that there are more transi-
tive dependencies and they introduce more vulnerabilities (µ = 0.78), rather than direct
dependencies (µ = 0.73) per library instance.

In contrast, our methodology dramatically changes this picture. Filtering out deployed
dependencies decreased the mean number of non vulnerable dependencies from µSoA =

12.26 to µdeployed = 6.20 and the mean number of vulnerable dependencies withing the

53

4.6. ECOSYSTEM VIEW CHAPTER 4. DEPENDENCY METHODOLOGY

Figure 4.8: Direct and transitive dependencies according to SoA and Vuln4Real

analysed library sample from µSoA = 1.71 to µdeployed = 1.70. Furthermore, after the
grouping procedure, the mean number of both vulnerable (µ = 0.73) and non vulnerable
(µ = 5.07) direct dependencies has become bigger than the mean number of vulnerable
(µ = 1.16) and non vulnerable (µ = 5.76) transitive dependencies.

Table 4.4: The effect of direct dead dependencies (RQ3)
13.2 % of dependencies of the analyzed library instances are dead, while 2 % of them are affected by known
vulnerabilities.

deployed & controlled
& 3rdPty

dead

total µ CI total µ CI
vuln 10038 1.48 [1.42, 1.54] 88 0.013 [0.010, 0.016]
¬vuln 35389 5.23 [5.10, 5.36] 5350 0.79 [0.760, 0.821]

54

CHAPTER 4. DEPENDENCY METHODOLOGY 4.6. ECOSYSTEM VIEW

Table 4.5: The effect of transitive dead dependencies (RQ3)
Direct dead dependencies introduced 12 vulnerable dependencies transitively.

deployed & controlled
& 3rdPty

dead transitive via dead

total µ CI total µ CI total µ CI
vuln 1975 0.29 [0.27, 0.32] 77 0.011 [0.009, 0.014] 12 17.7E−4 [6.1E−4, 29.3E−4]
¬vuln 17013 2.51 [2.39, 2.64] 3006 0.444 [0.417, 0.471] 645 0.09 [0.08, 0.11]

RQ4: How effective is the proposed methodology in finding dead
dependencies?

To answer RQ4 we considered only deployed dependencies, grouped according to the
software projects they belong to (Tables 4.4 and 4.5). We found that 12,0% of the overall
number of direct dependencies and 16.2% of transitive dependencies in our sample are
dead. Some of them (88 direct and 77 transitive out of 8521 dead dependencies) are
affected by known security vulnerabilities. Although this number is not big, each case of
a dead dependency is very important. Such dependencies do not have a fixed version, and
therefore, a costly mitigation is needed to fix such vulnerabilities.

Additionally, within the sample of 10905 analyzed libraries, we found twelve library
instances that have transitive vulnerable dependencies via a dead direct dependency.
All these dependencies are outdated and there exist safe versions of them. However,
these safe versions would not be adopted by dead libraries, and therefore, developers of
analyzed libraries have to apply a non-trivial mitigation strategy: to artificially convert
those dependencies into direct dependencies of their libraries.

Vuln4Real allowed us to identify that 13.2% of the dependencies in our sample are
dead, while 2% of them are affected by known vulnerabilities. Moreover, direct dead
dependencies also transitively introduced 645 dependencies, 12 of which are vulnerable.

RQ5: Can the number of dependencies be used as a predictor for
a number of vulnerabilities in a library?

Although several studies name transitive dependencies as one of the main vulnerability
sources [36,51], Vuln4Real changes the distributions of vulnerabilities between direct and
transitive dependencies. Hence, we have been interested in studying the influence of
software dependencies on the number of vulnerabilities in the analysed libraries.

To do this, we count the number of vulnerabilities in an analysed library instance
V to be a function of its own code, within-project dependencies, direct, and transitive

55

4.6. ECOSYSTEM VIEW CHAPTER 4. DEPENDENCY METHODOLOGY

Table 4.6: The influence of quantity of software dependencies on the number of vulnera-
bilities in the analysed libraries

#vulns SoA #vulns direct #vulns trans
estimate std error estimate std error estimate std error

root 0.0147 0.027
Not Applicabledirect deps 0.068 0.003

transitive deps 0.161 0.002
within-project deps

Not Applicable
0.159 0.002 -0.020 0.001

3rdPty direct deps -0.023 0.003 0.084 0.001
transitive -0.003 0.005 0.024 0.002

Table 4.7: The influence of dependency sizes on the number of vulnerabilities in the
analysed libraries

#vulns SoA #vulns direct #vulns trans
estimate std error estimate std error estimate std error

root size 0.106 0.004
Not Applicabledirect dep size 0.364 0.003

transitive dep size -0.010 0.018
within-project dep size

Not Applicable
-0.166 0.011 -0.192 0.006

3rdPty direct dep size 0.318 0.003 -0.012 0.002
transitive dep size -0.068 0.005 0.356 0.003

56

CHAPTER 4. DEPENDENCY METHODOLOGY 4.6. ECOSYSTEM VIEW

dependencies :

V ∼ own code + within-project dep + direct dep + trans dep (4.1)

Then we compute the linear model for (4.1) and estimate coefficients for each of the
supposed ‘predictors’. Table 4.6 presents the estimated coefficients and their descrip-
tive statistics, when we have considered the quantity of dependencies to be the values of
the independent variables for the linear model. The SoA approach does not distinguish
within-project dependencies, hence, we have used the root of the dependency tree (the
analysed library instance) to represent the own code in (4.1). The p-value � 0.05 for all
the predictors, hence they all have a statistically significant influence on the dependent
variable (number of vulnerabilities). The model for estimating the number of vulnera-
bilities according to the SoA approach has R2

SoA = 0.604 and stochastically distributed
residual errors, hence, is appropriate for description of the situation with dependencies.

We use the results returned according to the Vuln4Real methodology to model the
number of vulnerabilities in direct and transitive dependencies. We used both root and
the number of within-project dependencies of the analysed library to represent the own
code, however, the root estimates for both models (direct and transitive vulnerabilities)
have p-value > 0.05, and therefore, we have excluded it. Other predictors are significant
(p-values � 0.05). The models have R2

vulns direct = 0.571 and R2
vulns trans = 0.475,

residual errors are stochastically distributed. Therefore, the number of dependencies can
be used for predicting both the number of direct and transitive dependencies.

However, considering only the quantity of dependencies may not reflect the fact that
various dependencies bring different values to the analysed libraries. Hence, we have also
considered the dependency sizes. For this purpose we extracted the number of lines of
code in the java files of involved library instances. We referred to Maven Central to
extract the source code of the involved library instances. In case the source code of a
particular dependency was not available in Maven Cenral, we ignored such dependency
and its dependent library. Hence, 8275 library instances (instead of 10905) left for the
regression analysis. The results are presented in Table 4.7.

The regression analysis suggests, that the number of dependencies have a significant
impact on the number of vulnerabilities in a software library.

57

4.7. DEVELOPER VIEW CHAPTER 4. DEPENDENCY METHODOLOGY

Table 4.8: Ecosystem view - results

RQ Finding
RQ1 The Vuln4Real methodology has allowed us to remove alerts about 27% of direct

and 21% of transitive dependencies with known vulnerabilities, that cannot be
exploited.

RQ2 Vuln4Real reveals that as much as 21% of direct dependencies affected by known
security vulnerabilities are within-project dependencies of the analysed libraries,
hence, developers of analysed libraries should fix them directly by changing their
code. Also, according to the SoA approach, it may seem that developers of the
analysed libraries have direct control of only 37% of the vulnerable dependencies,
while in reality they are responsible for fixing 80% of the deployed vulnerable
dependencies.

RQ3 The Vuln4Real methodology removes the appalling feeling of an unmanageable
‘dependency hell’.

RQ4 Analysis according to Vuln4Real shows, that 13.2% of the dependencies in our
sample are dead, while 2% of them are affected by known security vulnerabilities.
Direct dead dependencies also transitively introduced 645 dependencies, 12 of
which are vulnerable.

RQ5 The number of dependencies have a significant impact on the number of vulner-
abilities in a software library, hence, it can be used to model and predict the
probability of a dependency to introduce a security vulnerability into a depen-
dent library instance.

4.7 Evaluation: Developer View

4.7.1 Requirements for an Industrial Practice

In an industrial setting, the practical negative impact of using an inadequate measurement
method can be substantial. Ensuring a healthy supply chain of third-party dependencies
(of which the large majority is FOSS) is a continuing effort that spans the development
and the operational phases of a product lifetime.

As part of SAP’s secure development life-cycle, all development projects go through
several validation steps and each single finding has to be audited, assessed, and miti-
gated. After the product is released to customers, and for its entire operational lifetime,
its own security and the security of its third-party dependencies are continuously mon-

58

CHAPTER 4. DEPENDENCY METHODOLOGY 4.7. DEVELOPER VIEW

itored. When a vulnerability is detected in one of the dependencies, timely mitigations
need to be developed and deployed to all affected systems. In the case of FOSS de-
pendencies, these mitigations may consist of dependency updates, or in ad-hoc fixes in
the product that relies on the affected library or in the dependency itself (through a
company-internal fork that can be temporary or persistent). When the product portfo-
lio of a company includes thousands of products, whose support period can extend to
decades, wrong assessments lead to inadequate risk management and inefficient alloca-
tion of resources, which ultimately translate to increased chances of security incidents and
financial loss.

The distinction between deployed and non-deployed components allows quick and
reliable pre-filtering of not exploitable vulnerable dependencies, since they are not part
of the deployed product. From our analysis of a sample of over 550 FOSS libraries used
by SAP projects, as many as 20% of all the dependencies are non-deployed. Any metrics
reporting the “danger” of using FOSS libraries that do not discriminate between those
two classes would lead to a wrong allocation of costly development and audit resources.

The granularity at which dependencies are analyzed and the reliability with which
vulnerabilities affecting them are detected are essential to obtaining a meaningful view
of the (security) health of the dependencies of a project. Approaches that use imprecise
vulnerability detection methods and that ignore the interdependencies among the individ-
ual nodes of the dependency tree yield a distorted view, which requires tedious, manual
reviews to be correctly interpreted and that cause precious resources to be wasted. Fail-
ing to group dependency nodes that belong to the same group (e.g., to the same FOSS
project), and that are updated together, makes the update of certain libraries appear
more problematic than it is. The vulnerability may affect a node that is deep in the
dependency tree, while the node that the application developer would need to update
might be much shallower (e.g., it could even be a direct dependency). More in general,
imprecise approaches to vulnerability management undermine the trust of developers on
automated analysis because the dependencies identified as problematic do not correspond
to those that must be actually acted upon to address the reported issues. As a conse-
quence, despite the promises of automation, considerable additional human effort and
expert judgment is required to determine the appropriate mitigation strategy.

Finally, determining precisely whether a dependency could be upgraded to a non-
vulnerable version or not (because such a version does not exist, and perhaps will never
exist, if the dependency is no longer maintained) is the key to choosing the correct mit-
igation strategy. Addressing vulnerabilities in FOSS components that are alive, but for
which a fixed release does not exist yet, requires to act fast, so that an emergency solution

59

4.8. THREATS TO VALIDITY CHAPTER 4. DEPENDENCY METHODOLOGY

can be rolled-out as fast as possible to all customers. Being temporary and urgent, such
mitigation might not be optimal. An upgrade to a non-vulnerable version of the depen-
dency will eventually be done. Conversely, if a vulnerability affects a dependency that is
no longer maintained, fixing the code of the dependency would effectively mean creating
a company-internal fork, whose long-term support could require substantial additional
investments and maintenance effort.

4.7.2 Simulation of the Vuln4Real methodology on an individual
software library

To identify a typical industrial library, we have extracted the number of direct depen-
dencies for each SAP software project in the proprietary Nexus repository. We assume
that the number of direct FOSS dependencies in a typical industrial library is equal to
the mean number of direct dependencies that SAP projects have, which we found to be
equal 11. Then we have artificially constructed dependency trees for 100 software projects
according to Algorithm 2.

Table 4.9 shows the effect of Vuln4Real for a typical industrial library. We observe that
the mean number of vulnerable dependencies decreased from 11 to 8. This corresponds to
the effect of the proposed methodology observed on the ecosystem level, i.e., the reported
number of vulnerable dependencies becomes smaller due to filtering out (falsely reported)
findings of development-only dependencies with known security vulnerabilities.

The simulation shows that according to the SoA approach the developer of an average
software library would be notified that the majority of vulnerable dependencies are coming
from transitive dependencies (6 out of 10). However, our methodology changes this view:
only two vulnerabilities are introduced by transitive dependencies, while six are coming
from direct dependencies. Moreover, one out of the six vulnerable direct dependencies is
the within-project dependency of the simulated library. Additionally, Vuln4Real reports
presence of seven dead dependencies.

Hence, we can conclude that the proposed methodology has a positive impact on the
correct resolution of dependency analysis results of a single industrial library.

4.8 Threats to Validity

Threats to internal validity concern the external factors not considered in our study:
The selection of FOSS libraries is based on the number of usages from within SAP.

Such selection criterion may yield a sample not representative of what libraries are most

60

CHAPTER 4. DEPENDENCY METHODOLOGY 4.8. THREATS TO VALIDITY

Algorithm 2: Effect of the proposed methodology on an individual library
input : Sample of analysed libraries AnalysedLibs, sets of deployed dependencies, grouped

dependencies, and dead dependencies
output: Effect of the Vuln4Real methodology on a software library

1 V uln_Paths← ∅ // Output according to the standard approach
2 V uln_Paths_filtered← ∅ // Output according to Vuln4Real
3 Dead_deps← ∅ ;
4 i = 0 ;
5 while i < 100 do

// Random selection of 12 libraries
6 l = 0;
7 Libs← ∅ ;
8 while l < 12 do
9 lib← {Random(lib)|lib ∈ AnalysedLibs)} // random selection of a library

10 lib_version← {Random(version)|version ∈ lib} // random selection of a library
version

11 Libs← Libs ∪ lib_version ;
12 l = l + 1;
13 end

// Calculation of the results according to the standard approach
14 V uln_Paths← V ulnPaths(Libs) ;

// Calculation of the results according to the proposed methodology
15 V uln_Paths_filtered← DeployedOnly(V uln_Paths) // Leave only deployed deps
16 V uln_Paths_filtered← Group(V uln_Paths_filtered) // Group coupled deps
17 Dead_deps← Dead(V uln_Paths_filtered) // Get dead deps
18 i = i+ 1 ;
19 end

Table 4.9: Impact of the proposed methodology on the view of a single developer
Issues SoA Ours

CI CI ∆µ SoA
No problem [103, 123] [106, 126] +3

in dead deps – [6, 8] +7
Problem

total [10, 12] [7, 9] -3
in your code [0.3, 0.6] [0.3, 0.6] 0

in your within-project deps – [1, 2] +1
in your direct deps [4, 5] [4, 5] +1

in your transitive deps [5, 7] [1, 2] -4
in dead deps – [0.1, 0.3] +0.2

61

4.8. THREATS TO VALIDITY CHAPTER 4. DEPENDENCY METHODOLOGY

Table 4.10: Possible errors at each step of the Vuln4Real methodology

name of step FP FN Reason
1 Extraction of a dependency tree We employ actual mechanisms of

a dependency management system
to extract dependencies and re-
solve version conflicts.

2 Identification of development-only
dependencies

7 FN may happen if some of depen-
dencies are specified as excluded,
and therefore, not shipped with the
dependent library instance.

3 Identification of within-project de-
pendencies

7 7 In case of Maven both FP and FN
are possible if a project do not fol-
low Maven name conventions.

4 Identification of dead dependencies 7 A library may be falsely classified
as dead due to an unusually long
release time interval.

5 Identification of dependencies with
known vulnerabilities

Generally, Vuln4Real is not af-
fected by any errors at this step.
However, the code-centric vulnera-
bility mapping approach [84] used
in this study may not be applied
for some vulnerable library in-
stances (for example, vulnerabili-
ties whose fixes do not involve code
changes or vulnerabilities that are
due to the deserialization of un-
trusted data).

6 Path extraction This step implies only postprocess-
ing of the results, and therefore, is
not affected by any errors, besides
the implementation mistakes (that
we tried our best to reduce).

62

CHAPTER 4. DEPENDENCY METHODOLOGY 4.8. THREATS TO VALIDITY

relevant for other industrial companies or FOSS developers. To check the popularity of
the studied libraries within the FOSS community, we obtained the information about
library usages from MVNRepository and the number of FOSS contributors that claimed
to use the selected libraries from BlackDuck Openhub25. The results obtained from both
sources suggested us that selected libraries are popular within the FOSS developers. Since
SAP is a large multinational software development company with a significant number of
Java projects, we believe that the threat of industrial non-representativeness is minimal.

The vulnerability database used for our case study may not cover all known vulnera-
bilities. To minimize this threat SAP conducted an internal study of the vulnerability
dataset, which concluded that it covers 90% of all NVD vulnerabilities reported for FOSS
projects developed in Java. The coverage is closer to 100% when considering the FOSS
projects most relevant for SAP. Hence, we believe that this threat has minimal influence
on the results of our analysis.

The proposed conservative model for identification of whether a certain dependency
has become dead may introduce some misclassifications. To examine the reliability of
the proposed model, we randomly selected 100 distinct library instances identified to be
dead. Then we manually looked for any available information of whether a new version
of a dead library is planned to be released. For this purpose, for every dead library we
checked (when possible) (i) their software repositories, (ii) release pages, or (iii) other
available resources returned by Google searches. The manual analysis did not reveal any
libraries falsely reported to be dead.

Threats to external validity concern the generalization of results of a case study:
Currently we considered only Maven based projects. We used Apache Maven, because

it provides very comfortable way to handle dependency management and is wildly used
within both FOSS and commercial projects. Clearly, dependency analysis can be enlarged
to other build automation systems, like Ant or Gradle. Although our tool depends sig-
nificantly on Apache Maven, the methodology that we present in this chapter is language
independent and it only relies on the availability of a dependency management mecha-
nism, such as those provided for Java (Maven, Gradle), Javascript (npm), Python (pip),
PHP (pear), and so forth.

We use Maven groupIds as an approximation for a project. This may potentially lead
to an incorrect grouping of libraries because some projects may use the same cross-project
groupIds, or conversely, different groupIds to identify their components. The former threat
has a minimal impact, since the Maven naming convention of assigning different group
identifiers to distinct projects is quite well established. We observed the latter case for test

25https://www.openhub.net/

63

4.9. CONCLUSIONS CHAPTER 4. DEPENDENCY METHODOLOGY

or example libraries, e.g., org.apache.activemq has a subgroup org.apache.activemq.tooling. We
considered two groupIds as equal if one of the two includes the other groupId (as in the
activemq example). The projects that cannot be distinguished only by groupId could be
distinguished using additional atributes, such as Repository, ProjectID, and others (which
might be specific to certain language ecosystems).

Table 4.10 shows the potential impact of the threats to validity discussed above on
each step of Vuln4Real.

4.9 Conclusions

In this chapter we have proposed the Vuln4Real methodology for a reliable measurement
of vulnerable dependencies in FOSS libraries. In particular, the proposed methodology
extends the state-of-the art approaches to analysing software dependencies by applying
several steps, such as (i) filtering development-only dependencies, (ii) grouping depen-
dencies on their belonging to software projects, and (iii) determining whether a certain
dependency is dead.

To demonstrate Vuln4Real, we selected 200 most used FOSS Maven based libraries
from within SAP. To perform the analysis we have built a tool that leverages the func-
tionality of Apache Maven to extract the library dependencies and applies the Vuln4Real
postprocessing steps.

The results of our study demonstrate that the proposed methodology changes the view
on the situation regarding software dependencies:
• it removes alerts about 27% of direct and 21% of transitive dependencies with known

vulnerabilities, that cannot be exploited;
• the proposed methodology reveals that as much as 21% of direct dependencies af-

fected by known security vulnerabilities are within-project dependencies of the anal-
ysed libraries, hence, their developers should directly fix such vulnerabilities in the
code of their projects.
• according to the SoA approach, it may seem that developers of the analysed libraries

have direct control of only 37% of the vulnerable dependencies, while in reality they
are responsible for fixing 80% of the deployed vulnerable dependencies.
• the results of the dependency study suggest that 13.2% of the total number of

dependencies are not receiving updates, and therefore, may not have a fixed version
if a security issue is discovered. Such dependencies should be used with caution,
since mitigations of their bugs and bugs of their dependencies may be costly;

64

CHAPTER 4. DEPENDENCY METHODOLOGY 4.9. CONCLUSIONS

• the library simulation shows that Vuln4Real has a positive impact on the correct
resolution of dependency analysis results of a single industrial library.

As future directions of our research we plan to identify a precise model for automatic
identification of whether a certain library is dead and to complement the existing stud-
ies on the reasons why developers do not update dependencies with an investigation of
developers’ behavior with regard to security-related updates.

65

4.9. CONCLUSIONS CHAPTER 4. DEPENDENCY METHODOLOGY

66

Chapter 5

Technical Debt and the Risk of
Leverage in the Free Open Source
Software Ecosystem

5.1 Introduction

The notion of technical debt [20] captures the cost of reworks caused by a quick inclusion of
a functionality into a software project, instead of its proper (but often time-consuming)
quality assessment. Such a concept is widely adopted by both commercial and Open
Source Software (FOSS) that import functionality from third-party components as de-
pendencies of their projects.

Dependency management systems, like Apache Maven1 or Gradle2, make the proce-
dure of managing software dependencies fully automated, and therefore, extremely easy
to use. However, as reported by several studies [49,78], the black-box approach to depen-
dency management also hides bugs and security vulnerabilities introduced via dependen-
cies, and therefore, prevents developers from proper maintenance (i.e., timely updates)
of their dependencies. This may end up in severe security incidents, as the one occurred
with Equifax, where over 100’000 credit card records were leaked due to the vulnerability
introduced into the project by an outdated software dependency3.

As Allman [3] drew parallels between technical and monetary debts, one may relate
dependencies in FOSS to the well-studied financial leverage instruments whose excessive

1https://maven.apache.org/
2https://gradle.org/
3https://blogs.apache.org/foundation/entry/media-alert-the-apache-software

67

https://maven.apache.org/
https://gradle.org/
https://blogs.apache.org/foundation/entry/media-alert-the-apache-software

5.2. TERMINOLOGY CHAPTER 5. ECOSYSTEM: QUANTITATIVE STUDY

use might cause a financial crisis (for example, in [52,92]).
In this chapter, we show the level of technical debt and leverage in the FOSS ecosystem

on the sample of 200 most used FOSS Java Maven-based libraries by the proprietary
projects of a multinational software company, which correspond to 10905 distinct library
instances, when considering all the library versions. Our analysis of the code development
process suggests the possibility of applying financial models to the ecosystem of FOSS
projects to estimate the risks of technical bankruptcy, and therefore, avoid (or at least
minimize) negative consequences.

5.2 Terminology

In this paper we rely on the terminology established among practitioners (e.g., the users
of Apache Maven) and consolidated by Pashchenko et al. [78]:

• A library is a separately distributed software component, which typically consists
of a logically grouped set of classes (objects) or methods (functions). To avoid any
ambiguity, we refer to a specific version of a library as a library instance.

• A dependency is a library instance, some functionality of which is used by another
library instance (the dependent library instance).

• A dependency tree is a representation of a software library instance and its depen-
dencies where each node is a library instance and edges connect dependent library
instances to their direct dependencies.

• A direct dependency is directly invoked from the dependent library instance, while
a transitive dependency is connected to the root library instance of a dependency
tree through a path with more than one edge.

• A project is a set of libraries developed and/or maintained together by a group of
developers. Dependencies belonging to the same project of the dependent library
instance are own dependencies, while library instances maintained by other projects
are third-party dependencies.

Additionally, for each library instance in our sample we identify the following dimen-
sions that characterize a library

• Own size (`own) as the number of lines of own code in the files of a library.

68

CHAPTER 5. ECOSYSTEM: QUANTITATIVE STUDY 5.3. TECHNICAL DEBT

• Dependency size (`dep) as the sum of the lines of code of (third-party) direct and
transitive dependencies of a library.

• Total size (`total) as the sum of own and dependency sizes of a library.

• Leverage (`dep/`own) as the relation between own and third parties’ code.

5.3 Technical Debt in the FOSS ecosystem

Technical and monetary debts share several common concepts [3]:

• the debt has to be eventually paid;

• there exists some interest (an extra cost), when the debt is paid back;

• in case a debt cannot be turned back, there is a very high cost that exposes the
borrower to bankruptcy, i.e., to abandon the affected activity.

According to the recent literature review [5], most of the academic studies consider the
not well-written own code of a project as a source of a technical debt for a software project.
However, current projects actively rely on software dependencies: the dependency size of
a project may exceed its own size by as much as 400% [81].

Since developers are only responsible for fixing bugs and security vulnerabilities within
own code of their project, (FOSS) dependencies seem to be very attractive: while software
projects import functionality of their dependencies, the technical debt of this code stays
with the developers of those projects. This may create a misleading feeling of a ‘freebie’
functionality both in terms of technical debt and development cost.

However, real-world software projects face the issue of keeping their dependencies up-
to-date [19, 78]. This issue is due to the cost of upgrading project dependencies, that
may introduce incompatible (breaking [36]) changes in its newer version. In this case
developers of a dependent project have to refactor its own code and perform a thorough
testing, i.e., spend some development effort (or, in other words, pay the cost of upgrading).
If developers decide to postpone the upgrade of a dependency, it exposes the dependent
projects to bugs and vulnerabilities fixed in the dependency from the time of the release
of the adopted version4. Hence, the technical debt of the dependent project increases.

Even if a software project keeps its dependencies up-to-date, this still does not elim-
inate the technical debt completely. Since software developers want to have as less bugs

4In some cases, dependent projects keep using outdated components for more than 10 years [23].

69

5.4. DATA SELECTION CHAPTER 5. ECOSYSTEM: QUANTITATIVE STUDY

Table 5.1: Descriptive statistics of the library sample
We considered the 200 most popular FOSS Java libraries used by a multinational software company in its
own software, which resulted in 10905 distinct library versions.

mean median st.dev min max Q1 Q3

#lib versions 54.52 35.00 49.24 1.0 248 15.00 87.00
lib version size (KLoC) 47.20 17.92 75.41 2.0 496 5.73 44.43
#direct deps 4.26 2.00 6.80 0.0 51 0.00 6.00
dep size (KLoC) 262.80 164.30 314.70 2.0 2338 62.29 309.60

as possible, they logically select stable versions of software dependencies, i.e., released
versions5. In this case the technical debt connected with the dependency code exists due
to intermediate commits introduced by the dependency contributors from the time of the
last release. Although for most cases, the relatively short size of a time interval between
releases allows software developers to ignore such technical debt, some FOSS libraries
have a release interval spanning over several years (e.g., the updated version 1.1.2 of the
library commons-logging.commons-logging.1.1.1 was released after 6 years). Such technical
debt cannot be safely ignored by developers of the dependent projects.

5.4 Data selection

For the study of the FOSS ecosystem, we have selected the top 200 FOSS Maven based
libraries used by a set of over 500 Java projects (actual products and software developed
by the company for internal use) developed at a large software manufacturer. The resulted
set corresponds to 10905 library instances when considering all versions and includes such
widely used libraries, like org.slf4j:slf4j-api and org.apache.httpcomponents:httpclient. Table
5.1 presents the descriptive statistics of the selected library sample.

We use the information directly available from the dependency management system.
The FOSS libraries distributed via Apache Maven are published on the Maven Central
Software Repository6, that keeps all the publicly released versions of its libraries, i.e., their
packages (for example, jar), project object model files (pom-files), and, often, some extra
information, such as source code of a library or its documentation (JavaDoc). Maven
also provides a Dependency plug-in, that allows us to retrieve a list of dependencies of a
particular library instance. In this study, we use only direct dependencies, since we want
to focus on the dependencies directly controlled by developers of the analyzed libraries.

5This option is also supported by dependency management systems.
6http://central.maven.org/maven2/

70

http://central.maven.org/maven2/

CHAPTER 5. ECOSYSTEM: QUANTITATIVE STUDY 5.5. CODE CHANGES

Algorithm 3: Extract own size of a library version
input : A folder dir with the source code of a library
output: The number of lines of code in a library num_locs

1 file_list← getAllF ileNames(dir) // Get the list of all file names in the folder dir

2 num_locs← 0;
3 for file|file ∈ file_list do

// Counting the number of lines in a file
4 lines← readAllLines(file) // Load content of a file
5 if isCodeF ile(file) then

// Including only code containing files
6 for line ∈ lines do

// Counting only lines that are not empty and are not comments
7 if line <> ∅ and isNotComment(line) then
8 num_locs← num_locs+ 1;
9 end

10 end
11 end
12 end

We follow Algorithm 3 to identify the own size of a library instance. To calculate the
size of library dependencies, we recursively apply the Algorithm 3 to each dependency
and then sum the resulting number of lines of code (LoCs). For several library instances
(or their dependencies) there was no source code available, so we had to remove them
from our analysis. The final list comprises 8464 library instances.

5.5 Code Changes in FOSS Ecosystem: Random Pro-
cess

After an FOSS project is started and code changes (development cost) are required,
developers can abandon development and maintenance if their (security) technical debt is
too high, fixing the bugs is too complex and prospects do not look promising (or developers
simply lose interest in such development). Mirroring a duality of what happens in the
financial literature with dropping prices (or raising supply costs) [52], developers will
suffer the equivalent of a technical bankruptcy when the required code changes will raise
sufficiently. At technical bankruptcy, a library value becomes negligible7. De facto, the

7This is a simplification as the code can be reused in other projects. We do not introduce such option
here to keep the mathematical model simple.

71

5.5. CODE CHANGES CHAPTER 5. ECOSYSTEM: QUANTITATIVE STUDY

Each line in the figure shows the evolution of the cumulative size of code changes (both in own and
dependency sizes) for a library in our sample from the time of the first release of this library. The
majority of libraries have small deviations of total library size, while some libraries either increase or
decrease their total size.

Figure 5.1: Cumulative size of code changes in time

library’s ownership is left to the library’s users who will incur the bankruptcy costs8. If
development cost continues to raise, at some point the library will be abandoned, which
would eventually expose the dependents of such libraries to a high number of bugs and
security vulnerabilities.

To understand the nature of the FOSS code development process, we have studied
how the total size of the libraries in our sample changes between releases.

Developers of some libraries maintain several versions of the library at the same time.
For example, the developers of Apache Tomcat9 project supported four versions (7.0.x,
8.0.x, 8.5.x, and 9.0.x) of org.apache.tomcat:tomcat-catalina library for the last three years
(starting from March, 2016). Hence, we constructed chains of consecutive releases for
libraries in our sample according to Algorithm 4.

Figure 5.1 presents the evolution of cumulative changes of total sizes for the FOSS
8For example, SAP would have to compensate damage to the affected customers, in case of a security

breach due to a vulnerability exploitation in a third-party component of a company product. Hence, SAP
has to provide appropriate maintenance (including upgrades and patch creation) of all the third-party
components shipped along with its proprietary projects [23].

9http://tomcat.apache.org/

72

http://tomcat.apache.org/

CHAPTER 5. ECOSYSTEM: QUANTITATIVE STUDY 5.5. CODE CHANGES

Algorithm 4: Extract consecutive release chains from a library set
input : A set of library names libraries
output: A set of lists of consecutive releases releases

1 releases← [];
2 for library ∈ libraries do
3 cur_lib = library.getGA() // Use groupId:artifactId as identificator for the

current library
4 releases[cur_lib]← [];
5 branches← []// Prepare a list for storing library branches
6 for i ∈ range(0, len(library)) do
7 lib_version← library[i] // get i-th library instance of a library
8 if releases[cur_lib] == ∅ then
9 releases[cur_lib]← [lib_version];

10 end
11 lib_v_id = cur_lib+ lib_version[0] // Calculate id of a library version
12 if lib_v_id ∈ branches then
13 releases[lib_v_id].append(lib_version);
14 else
15 if lib_version < releases[cur_lib][−1] then
16 branches.append(lib_v_id);
17 releases[lib_v_id] = [lib_version];
18 else
19 releases[cur_lib].append(lib_version);
20 end
21 end
22 end
23 end

libraries in our sample. Although several libraries significantly increased their total size
(up to 2 million LoCs), most of the observed libraries tend to have small deviations of the
total size (<20K LoCs). Also, developers of several libraries constantly consolidated code
of their libraries, which resulted in the reduction of the total sizes of up to 50K LoCs.

This observation suggests that applicability of financial models [8, 52, 62, 92, 96] that
describe ecosystems, where participants exchange financial assets to leverage their bene-
fits, is promising to be investigated for FOSS projects. These models suggest that if such
leverage exceeds a certain threshold there might be a crisis for the whole ecosystem.

73

5.6. FOSS CHANGES CHAPTER 5. ECOSYSTEM: QUANTITATIVE STUDY

5.6 Changes in FOSS Ecosystem: Dependency Adop-
tion

Dependency-
removing

Self-development Self-optimizationDependency-
adoption

θ = 0
∘

θ = 90
∘

θ = 180
∘

θ = 270
∘

The picks at the KDE for the angles of library evolution plots suggest that developers of libraries with
own code size smaller than 100 KLoCs tend to operate with their dependencies: they mostly adopt new
dependencies and sometimes consolidate them.

The KDE of the library evolution vectors for the libraries bigger than 100 KLoCs suggest, that developers
of such libraries tend to increase the size of own code of their libraries while importing some functionality
from new dependencies (both adopting new dependencies and upgrading currently used ones).

Figure 5.2: Kernel density estimation plots for angles of library evolution vectors

To understand which libraries are most vulnerable to leverage risk, we propose to use
change velocity vectors (see Section 4.2) to characterize changes between two consecutive
releases of a library:

Definition 1

74

CHAPTER 5. ECOSYSTEM: QUANTITATIVE STUDY 5.6. FOSS CHANGES

Table 5.2: Linear model fit to check the correlation between ρ and release time
Regression fit parameters for libraries with own_size ≤ 100 KLoCs: root mean squared error = 95.7;
R2 = 0.15; R2

adjusted = 0.15. Regression fit parameters for libraries with own_size > 100 KLoCs: root
mean squared error = 29.5; R2 = 0.24; R2

adjusted = 0.24.

time_rel ∼ ρ
own_size+dep_size

estimate stand.err. t-stat p-value
own_size ≤ 100KLoCs 26.51 2.50 10.62 5.61*10−26

own_size > 100KLoCs 44.38 6.80 6.52 2.26*10−10

Change Velocity Vector 〈∆`dep,∆`own〉 characterizes how a library changes between
releases r0 and r1 with respect to its own and dependency sizes:

〈∆`dep,∆`own〉 = 〈`dep(r1)− `dep(r0), `own(r1)− `own(r0)〉 (5.1)

In particular, the library development behavior can be described using polar coordi-
nates of the change velocity vector. I.e., considering different values of the change velocity
angle θ (the angle between the change velocity vector and the x-axis), we identify four
main directions of a library evolution as shown in the top of Figure 5.2:

• Dependency adoption (θ = 0o) - software developers increase the size of library
dependencies, while not changing its own size: ∆`dep > 0,∆`own → 0

• Self-development (θ = 90o) - developers do not change the dependency size, while
increasing its own size: ∆`dep → 0,∆`own > 0

• Dependency removing (θ = 180o) - software developers decrease the dependency
size, while not changing its own size: ∆`dep < 0,∆`own → 0

• Self-optimization (θ = 270o) - developers do not change the dependency size, while
decreasing its own size: ∆`dep → 0,∆`own < 0

Combination of these library evolution directions can describe every change of a library.
For example, if both own and dependency sizes increase between two consecutive releases
of a library (θ ∈ (0o, 90o)), one may say, that its developers both adopt new dependencies
and perform self-development of the library.

Intuitively, the radial distance ρ of the change velocity vector may serve as an indicator
for a distance of a library from the point of becoming halted. To check the correlation
between ρ and the time that developers need to release a library (rel_time), we have
used the linear regression model. The direct fit of the linear model rel_time ∼ ρ did not

75

5.6. FOSS CHANGES CHAPTER 5. ECOSYSTEM: QUANTITATIVE STUDY

We observe, that libraries with smaller own size (<100 KLoCs) have almost 4 times longer library evolu-
tion vectors than the libraries with big code base (>100 KLoCs), and therefore, have a higher probability
of becoming halted.

Figure 5.3: Kernel density estimation plots for lengths of library evolution vectors

show significant correlation between the variables (p− value� 0.05). However, we found
that the release time of a library and ρ has correlation, when the total size of the library
is considered: rel_time ∼ ρ

own_size+dep_size . Table 5.2 shows the fitting results of linear
models for libraries with own_size ≤ 100KLoCs and own_size > 100KLoCs.

The R2 of the linear model fit does not allow us to conclude that ρ could be used as a
single predictor of rel_time. However, the results of the fit suggest that there is a positive
relation between these variables (both estimates are positive): as ρ increases, so increases
the probability for a library to become halted. Depending on such a library may have
unpleasant consequences [78]: in case a vulnerability is discovered in a halted dependency,
there would be no new version that fixes it, hence the developers of the dependent project
would have to apply a costly mitigation strategy. Additionally, a halted library may
transitively introduce security vulnerability into its dependent library as there would be
no version of a library, that adopts the fixed version of the transitive dependency.

Using the change velocity vectors for the libraries in our sample, we observe the fol-
lowing:

76

CHAPTER 5. ECOSYSTEM: QUANTITATIVE STUDY 5.7. LEVERAGE

The developers of relatively small software libraries (with own size smaller than 100 KLoCs) operate with
a huge leverage: sometimes, the dependency size for such libraries is four orders of magnitude greater
than their own code size. In other words, they ship mostly somebody else’s code. The leverage of large
libraries (> 100 KLoCs) does not exceed their size of more than an order of magnitude (in few cases)
and is typically much smaller than the size of their own code.

Figure 5.4: The risk of leverage in comparison to the own size of a library

• Analysis of the change velocity angles θ (Figure 5.2): the developers of small libraries
(≤ 100KLoCs) either adopt or remove software dependencies. The developers of big
libraries (> 100KLoCs) also change software dependencies, but they often modify
own code of their libraries at the same time.

• Analysis of the change velocity radial distances ρ (Figure 5.3): small software li-
braries (≤ 100KLoCs) have three times longer change velocity vectors comparing
to the big libraries (> 100KLoCs), and therefore, have higher probability of be-
coming halted.

5.7 Code Changes in FOSS Ecosystem: Leverage

As we observe from Table 5.1, FOSS developers widely adopt dependencies to reduce
their development effort. Figure 5.4 shows the comparison of own and dependency sizes
in the analyzed sample of software libraries. We observe that library instances use a large
code base of dependencies, that may 10000 times exceed their own size. This especially
applies to the software libraries with a relatively small code base (less than 100 KLoCs).
The increase of the own size of a library leads to the decrease of the relative size of their
dependencies. For the selected library sample, the libraries with the own size bigger than
150 KLoCs have 100 times smaller size of software dependencies.

77

5.7. LEVERAGE CHAPTER 5. ECOSYSTEM: QUANTITATIVE STUDY

Velocity plots for the changes of size in a software library support our finding regarding the randomness
and the riskiness of the FOSS code development process: for small libraries with less than 100KLoCs both
own and dependency size changes may have various values from less than 1% up to 100% of a code base.

Figure 5.5: Velocity vector plots for the changes of size in a software library

Figure 5.5 shows the velocity plots of changes in own size of software libraries from
our sample. We observe that library instances may have a variety of changes in code sizes
from less than 1% of the own code base up to the size of a change equal to the own size
of a library instance with an average of ∆`own = 234.76 LoCs (st.dev = 3.02 KLoCs) for
libraries with own sizes smaller than 100 KLoCs and an average of ∆`own = 598.91 LoCs
(st.dev = 28.79 KLoCs) for bigger libraries (>100 KLoCs).

Much larger changes (several magnitude larger than their own code base in several
cases) are due to changes in their dependencies. We observe that huge changes in size of
dependencies are typical for library instances with own size less than 100 KLoCs (average
∆`dep = 505.96 KLoCs, st.dev = 62.06 KLoCs), while bigger libraries do not have changes
in software dependencies that exceed their own size (average ∆`dep = 1.65 KLoCs, st.dev =

25.68 KLoCs).
Since ρ and θ characterize the size and type of change of a library between two con-

secutive releases and leverage is a measure of the size of “borrowed” functionality, we are
interested to know whether these metrics could be used to assess the quality of the own
code of the library from the security point of view. As a criteria for such an assessment,

78

CHAPTER 5. ECOSYSTEM: QUANTITATIVE STUDY 5.7. LEVERAGE

Figure 5.6: Leverage vs ρ

79

5.8. THREATS TO VALIDITYCHAPTER 5. ECOSYSTEM: QUANTITATIVE STUDY

we use presence of a security vulnerability that affects the analysed library. However, a
vulnerability may originate both from library dependencies and its own code. Since many
software dependencies are affected by security vulnerabilities (see Chapter 4), they may
bias the assessment of the quality of the own code of a library. Hence, we will consider
only vulnerabilities that affect own code of analysed libraries for the quality assessment.

To identify whether own code of an analysed library is affected by security vulnerabil-
ity, we used the publicly available data of the Snyk database10 that is constantly updated
and for July 2019 contains data about more than 2100 vulnerabilities in the libraries dis-
tributed via Apache Maven dependency management system. Each entry in the database
contains the information about a security vulnerability; the library own code of which is
affected by the vulnerability; and the range of affected library versions.

Figure 5.6 shows the leverage-ρ ratio for the libraries in our sample. We observe, that
small libraries (own code ≤ 100 KLoCs) with both high (leverage > 300) and low (leverage
< 1) leverage, as well as big libraries (own code > 100) with high leverage (more than 3)
have safe own code.

Figure 5.7 shows the relation between leverage and type of library changes (θ). We
observe, that small libraries (own code ≤ 100 KLoCs) with θ ∈ [−45; 225] are more
likely to be vulnerable. Such libraries either include/remove functionality from software
dependencies or increase their own code base, and therefore, are likely to be under active
development. In contract, there are less vulnerable small libraries with θ ∈ (225; 315).
Such libraries decrease the size of their own code, and therefore, they are likely to review
the already developed functionality instead of developing new features (i.e., to be mature).
Visual analysis of leverage–θ relation plots for libraries with own code > 100 KLoCs
(Figure 5.8) suggests that in case of a big library there always exists a chance that its
own code is affected by a security vulnerability.

5.8 Threats to Validity

The internal validity may be influenced by the fact that we have based the FOSS library
selection for this study on their popularity from within a company. We surveyed the usage
data of the selected sample from MVNRepository.com11 and the number of users from
BlackDuck Openhub12. Since both sources showed that libraries in our sample are also
popular among the FOSS developers, we believe, the internal validity threat of our study

10https://snyk.io/vuln
11https://mvnrepository.com/
12https://www.openhub.net/

80

https://snyk.io/vuln
https://mvnrepository.com/
https://www.openhub.net/

CHAPTER 5. ECOSYSTEM: QUANTITATIVE STUDY 5.9. CONCLUSIONS

is minimal.
The generalization of the presented results may be exposed to an external validity

threat since we considered only Maven based libraries. In this study, we aimed at cre-
ating awareness regarding the effects of technical debt and leverage within the software
ecosystem. Since Maven has the largest share of users between the developers in the Java
ecosystem13, our results reflect the practice of the majority of Java developers. Also, our
study is easy to replicate for other dependency management systems.

5.9 Conclusions and Future Work

In this chapter we have used the 200 industry-relevant FOSS libraries, that resulted in
10905 library instances when considered all library versions, to show the level of leverage
and technical debt in the ecosystem of FOSS projects. Our analysis of the code develop-
ment process suggests that application of financial models for the FOSS ecosystem may
be promising, since such models may help estimation of risks of technical bankruptcy,
i.e., a crisis situation when FOSS developers halt maintenance of software libraries and
dependent projects loose interest in using FOSS dependencies.

As a future work, we plan to adjust the existing financial models to the FOSS ecosys-
tem and use the data from the real-world FOSS software libraries to calculate the thresh-
olds for software developers to work on new functionality for their libraries, to reduce
their technical debt, or to quit the development process.

13https://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-2016/

81

 https://zeroturnaround.com/ rebellabs/java-tools-and-technologies-landscape-2016/

5.9. CONCLUSIONS CHAPTER 5. ECOSYSTEM: QUANTITATIVE STUDY

Figure 5.7: Leverage vs θ for libraries with own_size ≤ 100 KLoCs

82

CHAPTER 5. ECOSYSTEM: QUANTITATIVE STUDY 5.9. CONCLUSIONS

Figure 5.8: Leverage vs θ for libraries with own_size > 100 KLoCs

83

5.9. CONCLUSIONS CHAPTER 5. ECOSYSTEM: QUANTITATIVE STUDY

84

Chapter 6

Developers’ perception of software
dependencies

In this chapter we present the results of our qualitative study of the FOSS ecosystem. For
the study we have run 15 semi-structured interviews with software developers of 4 most
popular programming languages (C/C++, Java, JavaScript, Python) to understand their
perception of software dependencies.

6.1 Introduction

Vulnerable dependencies are a known problem in the nowadays software ecosystems [49,
78]. Usually software developers introduce dependencies, when they need to add a new
functionality into their projects. And then they have to maintain those dependencies as
a part of the software development life cycle of their projects. However, current empir-
ical studies provide some limited insights on the developers’ strategies for selection and
management of FOSS dependencies: they either report some developers’ feedback as a
support to the proposed metrics [19, 49] or focus the data collection within one software
development company [9,80]. Moreover, we do not find any empirical study, that reports
the influence of security concerns on the developers’ decisions.

Hence, we were interested in finding the decision making strategies that software de-
velopers follow for selecting and updating software dependencies, as well as the influence
of security concerns on their decisions:

• RQ1: How do security concerns influence developer strategies for selecting software
dependencies to include in their projects?

85

6.2. THEORY CHAPTER 6. ECOSYSTEM: QUALITATIVE STUDY

• RQ2: How do security concerns influence developer decisions of updating depen-
dencies versus using the same versions?

Additionally, we have investigated the questions of whether software developers use
any automatic tools to support the dependency management process:

• RQ3: Which methods and/or techniques do developers apply, while managing soft-
ware dependencies?

• RQ4: How do developers mitigate bugs and vulnerabilities in dependencies that do
not have fixed versions?

In this chapter we present the empirical study based on the semi-structured inter-
views with 15 professional software developers. The interviewees have at least 3 years of
professional experience at various positions spanning from regular software developers to
company CTOs. They come from 15 companies located in 7 different countries, such as
Germany, Italy, The Netherlands, Russia, Slovenia, United Kingdom, and Vietnam.

We have found, that developers are more worried about security, rather than function-
ality issues introduced by software dependencies. They report, that dependency manage-
ment requires many resources and the current dependency analysis tools are not usable,
since the tools do not suit developers’ work flow. The interviewed professionals consider
code analysis tools to be similar to the dependency analysis tools. Two developers even
expressed the desire to have the results of static analysis and dependency analysis tools
to be combined into one report.

6.2 Qualitative Theory Construction

In this study we have adopted the Grounded Theory approach proposed by Glaser and
Strauss [32, Ch.6]. Figure 6.1 summarizes the approach we used. It follows the principle
of emergence [31], according to which data gain their relevance in the analysis through a
systematic generation and iterative conceptualization of codes, concepts and categories.
Data is analyzed, broken into manageable pieces (codes) and compared for similarities and
differences. Similar concepts are grouped together under the same conceptual heading
(category). Categories are developed in terms of their properties and dimensions and
finally they provide the structure of the theory [97].

86

CHAPTER 6. ECOSYSTEM: QUALITATIVE STUDY 6.2. THEORY

Research problem
identification

Data collection
(Interview

transcripts)

Coding process:
Open Coding

Selective Coding

-iterative process
-constant comparison
-data saturation

Codes (Success
Criteria)

Categories and
Relations between

Categories

Preliminary
Theory

Figure 6.1: Research Stream

6.2.1 Data Collection

The core part of this study is the information received from software developers on their
perception of software dependencies. We could involve various techniques for collection
of such knowledge, such as online surveys or controlled experiments. However, these
methods imply forcing the investigator point of view, and therefore, may blur the real
developers’ opinions. Since in our study we were looking for the actual (and sometimes
hidden) perceptions of industrial professionals on software dependencies, the method of
semi-structured interviews suited best our goals [103].
Interviewee selection - failed attempt. First, to invite software developers for the
interviews, we decided to reach developers of the most popular open-source Java projects.
For this purpose we created a search on Github by the key word "Java" and selected the
top 20 most starred projects. Then we used our tool for the dependency study (See §6.2.1
for details) to generate dependency analysis reports for those projects. We sent these
reports to the main contributors (or owners) of the selected projects and asked them to
provide their feedback on the reports as well as to dedicate some time for an interview.
Unfortunately, this activity did not provide us with the sufficient number of interviewees,
because there was only one response.

As suggested by B.Adams [2], the most likely reason for the fact, that software de-
velopers of the most popular Github projects ignored us, is that they may be overloaded
by the various research studies. I.e., the developer selection approach we followed is very

87

6.2. THEORY CHAPTER 6. ECOSYSTEM: QUALITATIVE STUDY

tempting for researchers. Hence, developers of popular research projects may receive
many emails with different requests for participation in various scientific studies. So, they
treat such kind of requests as spam and ignore it. In our case the request for the study
contained also an attachment. And in the light of constantly increasing threat of ran-
somware, the such kind of emails looked very suspicious. So, we had to select a different
strategy for hiring interviewees.

Table 6.1: Interviewees in our sample
The interviewed developers come from 15 countries and various company types, i.e., large enterprises
(LE), small/medium enterprises (SME), programming language user groups (UG), and FOSS projects.

position company location
professional
experience, years

primary
languages

I1 CTO SME Germany 3+ Python,
JavaScript

I2 Moderator UG Italy 10+ Java
I3 Developer LE Italy 10+ Java, JavaScript
I4 CEO SME Slovenia 7+ Python,

JavaScript
I5 Developer SME The Netherlands 3+ Python
I6 Freelancer SME Russia 3+ Python,

JavaScript
I7 Developer SME Germany 5+ Python,

JavaScript
I8 Developer LE Russia 4+ Python,

JavaScript
I9 CTO SME Italy 4+ JavaScript
I10 Developer LE Germany 10+ C/C++
I11 Developer LE Vietnam 5+ C/C++
I12 Developer SME Germany 4+ Java, Python
I13 Team leader LE Russia 10+ C#, JavaScript
I14 Developer SME Russia 4+ Java, C#
I15 FOSS Project

Leader
FOSS project UK 10+ Python, C/C++

Interviewee selection - the way we followed. As an alternative source for finding soft-
ware developers we referred to local developers’ communities, in particular Speck&Tech1,
Java Virtual Machine User Group in Trentino Alto Adige Südtirol2, EIT Digital Alumni3.

1https://speckand.tech/
2http://www.jugtaas.org/
3https://alumni.eitdigital.eu/

88

https://speckand.tech/
http://www.jugtaas.org/
https://alumni.eitdigital.eu/

CHAPTER 6. ECOSYSTEM: QUALITATIVE STUDY 6.2. THEORY

We used the public channels for these groups to post our call for interviews. Additionally
we applied the snowball sampling approach [30] to increase the number of interviewees,
by asking the respondents to also invite their friends for the interviews.

Table 6.1 presents the interviewees in our sample. For our study we recruited soft-
ware developers, that are professionals in one of the following programming languages:
C/C++, C#, Java, JavaScript, or Python. The interviewees have at least 3 years of pro-
fessional working experience (with more than 10 years for 4 developers) and hold various
positions, spanning from regular and senior developers to team leaders and CTOs. They
work either as freelancers or come from both small companies and large corporations. In
total we interviewed 15 software developers coming from 15 companies located in 7 coun-
tries. Hence, the subjects can be seen as a small, but representative selection of software
developers that work with software dependencies.

Although all interviewed software developers use software dependencies in their projects,
different development communities may influence the way how developers perceive soft-
ware dependencies. One may argue that the interviewees in our sample have very different
perceptions on dependency management question, since we have interviewed software de-
velopers of four programming languages (See Table 6.1) and there exist several dependency
managers for one language: for example, Apache Maven, Gradle, Apache Ant, and Apache
Ivy are the dependency managers used by Java projects. However, Java developers in our
sample use Maven, which corresponds with the recent study by S.Maple [61] that reports
Maven to have the largest share of users. JavaScript and Python have default depen-
dency managers npm and pip consequently. C/C++ languages are a bit different, since
they do not have a preferred dependency manager. Although there exist several alterna-
tives, C/C++ developers mostly import third-party code by simply copying it into their
projects. Hence, although there exist many various dependency management alternatives
for each programming language, in practice one dependency management strategy is used
by the majority of developers of each programming language.

6.2.2 Interview process

To collect primary data, we had interview sessions with software developers lasting ap-
proximately 30 minutes. We met personally the interviewees who reside in Trento, while
we scheduled remote meetings via Skype4 or Webex5. Although we did not specify any
fixed structure for the interviews and allowed software developers to define the flow of the

4https://www.skype.com/en/
5https://www.webex.com/

89

https://www.skype.com/en/
https://www.webex.com/

6.3. DATA ANALYSIS CHAPTER 6. ECOSYSTEM: QUALITATIVE STUDY

discussion, all our interviews included the following parts:
Introduction - an interviewer describes the context and mentions some details regarding

the background and motivation for the interviews. I.e., we used the development of
the dependency analysis tool [78] as the background and the goal “to make it suitable
for the needs of real-world developers” as the motivation. We have also specified
that we are looking for the personal experience of a software developer on
the topic of software dependencies;

Developer’s self presentation - a developer describes us her professional experience
and the context of her current activities;

Selection of new dependencies - a developer tells us about the process of selection
and including new dependencies into her software projects;

Updating of software dependencies - an interviewee explains the motivations and
insights of updating software dependencies in her projects. I.e., when it is the right
time to update, how often she updates software dependencies, and if there is any
routine or regulation regarding the dependency update process in her organisation;

Usage of some automatic tool for dependency analysis - a developer describes an
automatic tool (if it is used), that facilitates dependency analysis process in her
projects, and provides some general details about the integration of this tool into
her development process;

Mitigation of issues introduced by software dependencies - an interviewee describes
how she addresses issues, like bugs or security vulnerabilities, introduced by software
dependencies;

Other general comments regarding dependency management - at this stage we
ask for some general perceptions, comments or recommendations, that a developer
may give regarding the process of dependency management and, in particular, about
the security issues introduced by software dependencies.

6.3 Data analysis

6.3.1 Interview coding

The first phase of analysis (open coding) consists of collating the key point statements
from each focus group transcript; a code summarizing the key points in a few words is
assigned to each key point statement.

The author of this dissertation and one other PhD student from the security research
group of the University of Trento independently followed the “iterative process” described

90

CHAPTER 6. ECOSYSTEM: QUALITATIVE STUDY 6.3. DATA ANALYSIS

by Saldaña [91] to code the transcribed interviews6. Then they looked together at the
resulted codes and agreed on the common code structure, which was reviewed by the PhD
students supervisor not involved into the preliminary coding process. The final set of codes
comprises 25 items and is listed in Table 6.3. We have grouped the codes on their topics,
which resulted in 6 categories: developers’ perception, programming language, issues,
process, dependencies, and general topic.

Table 6.3: List of codes

category code code meaning

developers’
perception

it was a problem Developer perceives something as a problem
not a problem Developer assumes something not to be a problem
recommendation Developer extremely likes something and recom-

mends this for others

programming
language

C/C++ Developer talks about C or C++
Java Developer talks about Java
JavaScript Developer talks about JavaScript
Python Developer talks about Python

issues

broken A dependency breaks the build of software project
or causes compatibility issues

bugs Unexpected software behavior, that causes
crashes, failures, errors, etc.

lack of resource Lack of resource (human, time, information, cost)
license issues Issues related to license of software (e.g., license

compatibility)
no fix available There is no fixed version of a dependency or there

is even no guideline on how to fix bug/vulnerabil-
ity

process

automation Substitution of a manual task execution with a
script or a tool

code analysis tool An automated tool, that checks for the issues in
the code of a software project (e.g., static analysis
tools)

company integra-
tion process

Description of a company strategy for releas-
ing/development/continuous integration process

6We used Atlas.ti software to perform interview coding.

91

6.3. DATA ANALYSIS CHAPTER 6. ECOSYSTEM: QUALITATIVE STUDY

Table 6.3: List of codes

category code code meaning

dependency tool An automated tool, that facilitates dependency
management

manual A task performance without applying automated
tools

dependencies

dependency main-
tenance

Fixing bugs/vulnerabilities via changing code of a
software project and/or its dependencies

dependency man-
agement

Including/Analyzing/Removing/Testing/Updating
software dependencies and/or manipulating with
their versions via changing configurations of the
project

direct dependen-
cies

Dependencies directly referenced from within the
project

seeking for infor-
mation

Sources of information for dependency selection,
vulnerable dependency identification, dependency
internals, technical explanation about how to fix
dependency problems, dependency characteristics
(e.g., its reputation), supported by community of
developers (e.g., contributors in Github), official
software websites.

transitive depen-
dencies

Dependencies indirectly referenced from within
the project

general topic
functionality Developers are talking about adding/deleting/im-

proving some functionality
requirements Requirements of users of a software project
security Developers are talking about conditions or tasks

related to information security

6.3.2 Evidence from the Interviews

We start analysis of the interview data by examining the popularity of the topics touched
by developers during the interviews. We observe, that the developers in our sample
mentioned more often (hence, more interested in) the following topics: dependency man-

92

CHAPTER 6. ECOSYSTEM: QUALITATIVE STUDY 6.3. DATA ANALYSIS

agement (506 mentions), security (360 mentions), it was a problem (339 mentions), and
bugs (267 mentions). At the same time, the least important topics for them are direct
dependencies (23 mentions), requirements and license issues (38 mentions each), code
analysis tools (47 mentions), and transitive dependencies (66 mentions). This suggests
us, that software developers are aware about the possible issues (including security bugs)
that dependencies may introduce into their projects. On the other hand, the small num-
ber of occurrences of the codes, like direct or transitive dependencies, may signalise that
developers do not consider all the details of the dependency management process:

“That’s our not so well secure approach to the problem. If there’s something
we really know to be broken – we fix it. Otherwise it’s kind of left to itself.”

Then we analyse the codes, that are mentioned together. For this purpose we have
extracted the co-occurrence table of the interview codes [48]: each column and row of
the table corresponds to an interview code, while each cell contains the number of code
co-occurrences. To identify the cells with significantly high number of co-occurrences,
we calculated the mean and standard deviation for the code co-occurrences (µ = 5.95,
σ = 8.41) in the table and highlighted with red the cells, where the number exceeds µ by
at least the value of σ (highlighted if the value in the cell exceeds 14.36).

RQ1: How do security concerns influence developer strategies for selecting
software dependencies to include in their projects?

Table 6.4 shows the fragment of the co-occurrence table for the developers’ perception
category.

Table 6.4: A fragment of the co-occurrence table for the “developers’ perception” category.
C/C++ Java JS Python broken bugs lack

of re-
source

dep
mainte-
nance

dep
mgmnt

seeking
for
info

trans
deps

func-
tionality

security

it was a problem 15 18 27 39 12 23 17 8 62 10 11 15 30
not a problem 2 16 22 30 4 20 3 6 34 5 1 2 29
recommendation 3 4 6 4 0 3 1 2 11 3 4 7 6

The developers consider dependency management process as problematic: they have
mentioned issues during the dependency management process twice more often (62 times),
rather than concluding, that it was not a problem (34 times). This observation remains
stable, when considering developers of each programming language we have studied.

“There are a lot of dependencies in Java, especially the transitive dependencies.
And this is the principal problem – because in Java there’s a building system

93

6.3. DATA ANALYSIS CHAPTER 6. ECOSYSTEM: QUALITATIVE STUDY

used, like Maven or Gradle. And they bring a lot of transitive dependencies
into your project. In principle, you may have used just 2 dependencies on the
first level, but you end up with 20, 30 or even more indirect dependencies.”

The developers told us their perception about the security topic 2.7 times more often
rather than about functionality (65 vs 24 mentions), which means, they are aware about
security vulnerabilities that may be introduced by dependencies. Considering the devel-
opers’ perception regarding the security code, the developers in our sample have almost
equally treated security as a problem and not as a problem (30 and 29 times respec-
tively). Similar proportion of mentions we observe regarding the code bugs (23 and 20
times respectively).

An unexpected issue regarding software dependencies, that we discovered during the
interviews, was the license issues. We observe, that this issue is important for C/C++
and Java developers of medium and big companies. Surprisingly, JavaScript and Python
developers do not have any concerns regarding the licensing issues of dependencies.

“From our perspective – the dependency issues are not only the security issues,
but also license issues. Because it’s not only for the vulnerabilities of the code,
but also the license issues. In Enterprise, if you sell some software, and inside
your software you have an restricted license, like GPLv3, you could have a lot
of legal issues, because of the owner of the library may discover that and you
may have a lot of legal problems.”

While selecting new dependencies for their software projects, developers look at various
sources of information and take into account several different metrics, such as (i) how well
this dependency is known and used; (ii) how fast library maintainers fix issues; (iii)
understandability of the code of the library:

“First, I am looking for something trustable, that everybody knows.”

“From the security side, the first question for the code – when I see it, I need to
understand it. Because if I do not understand it (and, unfortunately, majority
of libraries are written in this way). So the question – if I understand the
logic. If it is a kind of a “spaghetti code” – this decreases chances for a library
to be used.”

“If I see some bug, that, I think, the developers should have been fixed, but
the bug still remains open for one year, or developers do not respond – this
means, developers do not support the project. And I would have to face the
problems alone.”

94

CHAPTER 6. ECOSYSTEM: QUALITATIVE STUDY 6.3. DATA ANALYSIS

RQ2: How do security concerns influence developer decisions of updating
dependencies versus using the same versions?

The fragment of the co-occurrence table for the issues category is shown in Figure 6.5.

Table 6.5: A fragment of the co-occurrence table for the “issues” category.
dep main-
tenance

dep
mgmnt

direct
deps

seeking
for info

trans
deps

functio-
nality

requirements security

broken 2 15 0 0 2 3 0 3
bugs 8 35 2 15 3 8 3 34
lack of resource 6 24 1 0 0 1 0 15
license issues 0 4 0 3 1 5 0 1
no fix available 9 3 0 2 0 2 0 9

The most important and discussed issue for the developers in our sample were bugs.
Most of mentions of this code we received from the Python developers (29 mentions):

“When we see that a new library has a bug. On the example of our service,
we contact developers, say that there is a bug. They fix it. And we update
version.”

When the developers spoke about bugs, quite often they discussed security bugs or
vulnerabilities (34 mentions):

“Most of the time the most important reason for that is security. Software
sometime some kind of vulnerability and they have a security fix in a later
version. When the customer, they are saying - wow, this software we are using,
they have something like a security fix. They do not care what the security
fix will be. It will be back to the developer to increase the software version to
fix that.”

We observe, that when software is developed for internal usage, developers are more
concerned about functionality, rather than security vulnerabilities:

“Honestly, since we are developing the software for the internal usage, there
is no access for users from outside. So, for the security, for the bugs related
to security, i.e., unauthorized access or something else, we do not have serious
requirements. We do not pay so much attention. We pay attention more to
the stability of operations and solving business tasks.”

Another very important problem for software developers was the lack of resources.
The interview analysis shows, that developers experience it, when they are discussing
dependency management or security topics:

95

6.3. DATA ANALYSIS CHAPTER 6. ECOSYSTEM: QUALITATIVE STUDY

“. . . Because our project is huge. We tried once, and 1000 tests became down.
To fix it - we just do not have time for that.”

Often, developers mention, that they do not want to upgrade dependencies in their
projects due to the possibility of breaking their projects:

“Developers usually underline in a separate item breaking changes. Some
changes, that are breaking accustomed way of working with this library. If
they are present, then we do not install it. Because the simple update should
not force us to change our code significantly.”

RQ3: Which methods and/or techniques do developers apply, while man-
aging software dependencies?

Figure 6.6 shows the fragment of the co-occurrence table for the ‘process’ category.

Table 6.6: A fragment of the co-occurrence table for the “process” category.
auto-
mation

code
analysis
tool

company
integration
process

dep
tool

manual dep
mainte-
nance

dep
mgmnt

seeking
for info

functio-
nality

requi-
rements

security

automation 0 6 9 10 3 1 15 5 0 0 14
code analysis
tool

6 0 6 3 0 0 5 2 0 0 9

company
integration
process

9 6 0 7 3 1 23 8 6 4 19

dep tool 10 3 7 0 5 3 23 7 2 0 13
manual 3 0 3 2 0 5 10 4 0 0 6

Describing process, the developers paid a lot of attention to dependency management
and security of their company integration process :

“How it works. We have, let’s say, we don’t have any regulations. We have
a rule. Well, not a rule, but general understanding, that packets should be
up-to-date. And this is how we work.”

For the big companies there is a division between third-party libraries and external
FOSS libraries. Usually, the developers of big companies first try to use the internal
libraries:

“. . . when the company is big there are many teams and each of them may
develop some functionality, which you can then just connect.”

The interviewees have mentioned, that they tried to use some dependency analysis
tools. Although sometimes developers mentioned and even recommended us to check
some dependency analysis tools, very often, those tools did not suit their needs:

96

CHAPTER 6. ECOSYSTEM: QUALITATIVE STUDY 6.3. DATA ANALYSIS

“I just don’t use them, because they just do not fit my work flow. It does not
just fit what I need to be doing.”

Hence, we find several cases, when developers complained about the automation part in
respect to both collection of the information regarding software dependencies and creation
of false alerts from the automatic dependency analysis tools:

“I had one and it tend to spamming and I turned it off. For example, reporting
minor vulnerabilities, so I was kind of annoyed of them.”

Regarding the automatic tools, we discovered an interesting correlation: some devel-
opers considered code analysis tools (i.e., static or dynamic analysis tools) to be similar
to dependency analysis tools.

“Python has, at least what I know, two libraries. First is bandit. It follows
for the vulnerabilities in your own project. . . . Second library is called Safety.
It checks for dependencies.”

Several developers even gave us a surprising recommendation to augment the reports
from a code analysis tool (for example, SonarQube) with alerts generated by a code
analysis tool:

“Maybe it’s possible to plug the results of dependency analysis to SonarQube?
So we can use it later on in our continuous integration and we would be able
to do continuous code analysis. It would be cool to have this.”

RQ4: How do developers mitigate bugs and vulnerabilities in dependencies
that do not have fixed versions?

The co-occurrence table for the ‘dependencies’ category is shown in Figure 6.7.

Table 6.7: A fragment of the co-occurrence table for the “dependencies” category.
it was
a prob-
lem

not a
prob-
lem

recommen-
dation

broken bugs lack
of re-
source

automa-
tion

company
integra-
tion
process

dep
tool

functio-
nality

requi-
rements

security

dep main-
tenace

8 6 2 2 8 6 1 1 3 2 0 6

dep
mgmnt

62 34 11 15 35 24 15 23 23 21 9 47

direct deps 1 0 0 0 2 1 0 0 0 0 0 3
seeking for
info

10 5 3 0 15 0 5 8 7 14 2 19

trans deps 11 1 4 2 3 0 2 0 1 3 0 5

97

6.4. ANALYSIS SUMMARY CHAPTER 6. ECOSYSTEM: QUALITATIVE STUDY

Besides, the widely mentioned topic of dependency management, several experienced
developers mentioned, that they actually participate in the dependency maintenance pro-
cess, i.e., they actually contribute to the dependencies of their software projects:

“So if we can fix it by ourselves, then we, for sure, fix it and publish it. This
is also one of our rules. An unspoken one.”

However, the developers of small companies do not feel themselves to be skilled enough
to fix security vulnerabilities:

“It’s a crucial fix. If you do not do it properly, then people think that it’s fixed
and maybe you introduce some other bugs and stuff like that. I’d say that it’s
really the last resort if you have to.”

6.4 Analysis summary

Selection of software dependencies:

• While selecting a new dependency, software developers are more concerned about
security, rather than functionality. However, they have mentioned almost equal
number of times potential security issues and functionality bugs as a problem and
not as a problem.

• The developers of each programming languages considered in this study (C/C++,
Java, JavaScript, or Python) treat the dependency management process as a prob-
lem due to7 (i) the potentially introduced security vulnerabilities and bugs, (ii)
lack of resource for proper dependency management, (iii) high number of transitive
dependencies, and the (iv) lack of proper dependency information sources.

• When talking about issues, the C/C++ and Java developers of medium and big
companies concern about licensing issues. They do not select software dependencies
that violate license policies of their companies.

• When selecting new dependencies to include into software projects, developers (i)
consider how well this dependency is known and used; (ii) check the repository of
the software library; (iii) check how fast library maintainers fix issues; (iv) check the
release notes of the library; (v) check if the code of the library is understandable.

7We report the reasons in decreasing order according to the number of mentions.

98

CHAPTER 6. ECOSYSTEM: QUALITATIVE STUDY 6.5. THREATS

Updating software dependencies:

• Software developers in our sample count bugs (including security bugs and vulnera-
bilities) to be the most important issue that motivates them to update dependencies.

• However, security concerns are not important for software developers in case they
are developing software for internal purposes.

• The breaking changes in the dependencies and lack of resources were the main reason
for developers to postpone the update of their dependencies.

Automatic tools for dependency management:

• The developers count currently existing dependency analysis tools being not satis-
factory for their needs, although they are trying to use them.

• Software developers perceive code and dependency analysis tools to be similar. Some
of the developers shared with us their will to have code and dependency analysis
results to be combined together in one report.

Mitigation of bugs and vulnerabilities that do not have fixes:

• Experienced software developers occasionally contribute to their dependencies by
fixing bugs or vulnerabilities, however, the less skilled developers do not feel them-
selves comfortable enough for doing this.

6.5 Threats to Validity

The internal validity of our study may be influenced by the fact, that we recruited soft-
ware developers for our study without using any material rewards, only on the basis of
their interest to the topic. In our study we aimed to receive information from professional
industrial specialist, who have good salaries and solid social allowance. Hence, we could
not think of any better reward for them, than a possibility to improve the development
practice by sharing their experience and to tell us their opinions on their problems. More-
over, very often, the developers were motivated by the fact, that we had already had a
prototype of a tool, that we could use to produce some dependency analysis reports for
their projects. We believe, that this strategy allowed us to receive the especially valuable
feedback from the field specialists, who have appropriate level of knowledge of the topic.

The generalization of the results of our study may be affected by the fact, that we
considered developers of only four programming languages: C/C++, Java, JavaScript,

99

6.6. CONCLUSIONS CHAPTER 6. ECOSYSTEM: QUALITATIVE STUDY

and Python. However, according to both the Tiobe index8, which combines data about
search queries from 25 most popular websites of Alexa and the PYPL index9, which uses
Google search queries, these programming languages are the most popular ones. Hence,
we believe, that the experience of developers from our sample can give an intuition of the
developers’ perception of software dependencies.

6.6 Conclusions

In this chapter we have presented the results of the qualitative empirical study of the
developers’ perception of software dependencies. For the study we have run 15 semi-
structured interviews, each lasted 30’, with software developers from 15 companies located
in 7 different countries.

To analyse the interviews, the author of this thesis and the other PhD student from the
security research group of the University of Trento independently performed the “coding”
of the interviews, and then they agreed on the resulted set of codes. The final set of codes
was reviewed and approved by their supervisor, not involved into the coding process. This
activity resulted in 25 codes, that were grouped into 6 categories: developers’ perception,
programming language, issues, process, dependencies,and general topic.

We summarise the main findings of our qualitative study as follows:

• The developers are more concerned about security rather than functionality issues,
when selecting and managing software dependencies. On the other hand, developers,
that create projects only for internal use, are not concern about security issues.

• Bugs (including security bugs and vulnerabilities) in software dependencies are the
biggest motivator for software developers to update dependencies of their projects.
While breaking changes and lack of resources are the top reasons to postpone the
adoption of the fixed versions.

• The developers count currently existing dependency analysis tools being not satis-
factory for their needs, although they are trying to use them.

8http://www.tiobe.com/tiobe-index/
9http://pypl.github.io/PYPL.html

100

http://www.tiobe.com/tiobe-index/

Chapter 7

Conclusions and Future Work

This dissertation has shown the way to facilitate the security assessment process of both
own code and third-party components of software projects in industrial context.

For the part connected with the own code we propose Delta-Bench, an automatic
approach for benchmarking static analysis security testing tools. Delta-Bench allows
software developers to select the SAST tool, that works best for their project. To achieve
this purpose, the proposed benchmarking approach uses the set of historical vulnerability
fixes (possibly, extracted from the development history of the project under analysis) to
extract the ground-truth for tool evaluation (Chapter 3).

Regarding the security of third-party components used by software projects, we de-
signed a methodology for extracting third-party components used within the project,
identifying dependencies affected by known vulnerabilities, and post-processing the results
in order to report only the findings relevant to the developers of the analysed projects
(Chapter 4). In this way, we use the information of the known vulnerabilities that affect
FOSS components, to provide the actionable reports for software development companies
to plan the correct allocation of resources for fixing issues coming from the dependencies
of their projects.

The dependency analysis methodology raised the interest of SAP, our industrial part-
ner. To facilitate the dependency analysis, we have developed a tool driven by the ideas
of the proposed methodology. We plan to structure the code of the tool and release it as
an open source project. Research-wise, we also continue our collaboration to extend our
ideas from identification of security issues to their automatic mitigation.

Our empirical study of the FOSS ecosystem allowed us to estimate the levels of techni-
cal debt and leverage in the FOSS projects. Our preliminary analysis of the code develop-
ment process suggests us the possibility to apply the current financial models to estimate

101

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

the risks (and predict) of technical bankruptcy - a situation, when FOSS developers loose
interest in maintaining their software libraries, which may eventually lead projects, that
depend on such libraries, to become exposed to bugs and security vulnerabilities.

As a future work, we may try to adjust the currently existing financial models to
estimate the thresholds for developers to develop new functionality in their projects, to
update dependencies of their projects (i.e., reduce the technical debt), or to abandon
maintenance of their software libraries.

To validate the industrial relevance of the proposed approaches, we have performed an
empirical study, where we interviewed software developers on their perception of software
dependencies. The results of this study have demonstrated, that developers consider code
and dependency analysis processes to be related. Two developers even told us, that they
would like to see the results of the code and dependency analysis to be joined within
one report. We have found, that the interviewed developers are aware of the dependency
analysis tools, however, these tools do not always suit their work flow.

We have presented the results from 15 highly experienced software developers that
work in 15 companies in 7 different countries, which is already a fair number to make some
conclusions. However, we plan to include the opinions of at least 10 more developers to
make the results of the study even more credible. We have recruited additional developers,
while presenting our research at the Java User Group (JUG) meeting in Bolzano as well
as at the JUG meeting and the Speck&Tech event in Trento in February, 2019.

102

Bibliography

[1] National Security Agency Center for Assured Software (NSA CAS). Juliet Test
Suite v1.2 for Java user guide, 2012.

[2] B. Adams. Developers of popular software projects are overloaded by the requests
from academic researchers. Suggested during a personal communication with the
authors at ESEM’2018, 2018.

[3] Eric Allman. Managing technical debt. Commun. ACM, 55(5), 2012.

[4] Sultan S Alqahtani, Ellis E Eghan, and Juergen Rilling. Tracing known security
vulnerabilities in software repositories–a semantic web enabled modeling approach.
Sci. Comp. Program., 121:153–175, 2016.

[5] Areti Ampatzoglou, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, and Paris
Avgeriou. The financial aspect of managing technical debt: A systematic literature
review. Inf. and Softw. Tech. Journ., 64:52–73, 2015.

[6] Nuno Antunes and Marco Vieira. Assessing and comparing vulnerability detection
tools for web services: Benchmarking approach and examples. Trans. Serv. Comput.,
8(2):269–283, 2015.

[7] Muhammad Asaduzzamad, Roy K. Chanchal, Kevin A. Schneider, and Massimiliano
Di Penta. Lhdiff: A language-independent hybrid approach for tracking source code
lines. Proc. of ICSME’13, 2013.

[8] Avner Bar-Ilan and William C Strange. The timing and intensity of investment.
Journ. of Macroeconomics, 21(1), 1999.

[9] Andrew Begel, Yit Phang Khoo, and Thomas Zimmermann. Codebook: discovering
and exploiting relationships in software repositories. In Proc. of ICSE’10, volume 1,
pages 125–134. IEEE, 2010.

103

BIBLIOGRAPHY BIBLIOGRAPHY

[10] Paul E. Black and Athos Ribeiro. SATE V Ockham sound analysis criteria. Tech-
nical report, NIST SP, 2016.

[11] Andrea Bonaccorsi and Cristina Rossi. Why open source software can succeed. RP,
32(7), 2003.

[12] Vasilis Boucharas, Slinger Jansen, and Sjaak Brinkkemper. Formalizing software
ecosystem modeling. In In Proc. of IWOCE’09, pages 41–50, New York, NY, USA,
2009. ACM.

[13] Robert Goodell Brown. Statistical forecasting for inventory control. McGraw/Hill,
1959.

[14] Mircea Cadariu, Eric Bouwers, Joost Visser, and Arie van Deursen. Tracking known
security vulnerabilities in proprietary software systems. In Proc. of SANER’15,
pages 516–519. IEEE, 2015.

[15] Tsong Y. Chen, Shing C. Cheung, and Shiu Ming Yiu. Metamorphic testing: a new
approach for generating next test cases. Technical report, HKUST-CS98-01, Hong
Kong University of Science and Technology, 1998.

[16] Maria Christakis and Christian Bird. What developers want and need from program
analysis: An empirical study. In Proc. of ASE’16, 2016.

[17] Jailton Coelho and Marco Tulio Valente. Why modern open source projects fail. In
Proc. of FSE’17, pages 186–196. ACM, 2017.

[18] Jailton Coelho, Marco Tulio Valente, Luciana L Silva, and Emad Shihab. Identifying
unmaintained projects in github. In Proc. of ESEM’18, page 15. ACM, 2018.

[19] Joël Cox, Eric Bouwers, Marko van Eekelen, and Joost Visser. Measuring depen-
dency freshness in software systems. In Proc. of ICSE’15, ICSE ’15, pages 109–118,
Piscataway, NJ, USA, 2015. IEEE Press.

[20] Ward Cunningham. The wycash portfolio management system. ACM SIGPLAN
OOPS Messenger, 4(2), 1993.

[21] Johannes Dahse and Thorsten Holz. Static detection of second-order vulnerabilities
in web applications. In Proc. of USENIX’14, 2014.

[22] Valentin Dallmeier and Thomas Zimmermann. Extraction of bug localization bench-
marks from history. In Proc. of ASE’07, pages 433–436. ACM, 2007.

104

BIBLIOGRAPHY BIBLIOGRAPHY

[23] Stanislav Dashevskyi, Achim D Brucker, and Fabio Massacci. On the effort for
security maintenance of free and open source components. Proc. of WEIS’18, 2018.

[24] Stanislav Dashevskyi, Achim D Brucker, and Fabio Massacci. A screening test for
disclosed vulnerabilities in foss components. TSE, 2018.

[25] Aurelien Delaitre, Vadim Okun, and Erin Fong. Of massive static analysis data. In
Proc. of SERE’13, 2013.

[26] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting controlled
experimentation with testing techniques: An infrastructure and its potential impact.
Emp. Soft. Eng. Journ., 10(4):405–435, 2005.

[27] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti,
Wil Robertson, Frederick Ulrich, and Ryan Whelan. Lava: Large-scale automated
vulnerability addition. In Proc. of SSP’16, 2016.

[28] Pär Emanuelsson and Ulf Nilsson. A comparative study of industrial static analysis
tools. ENTCS, 216:5–21, 2008.

[29] Durham Goode. Scaling mercurial at facebook. Online: https://code.fb.com/core-
data/scaling-mercurial-at-facebook/, 2014.

[30] Leo A Goodman. Snowball sampling. AOMS, pages 148–170, 1961.

[31] Robert Wayne Gregory, Mark Keil, Jan Muntermann, and Magnus Mähring. Para-
doxes and the nature of ambidexterity in it transformation programs. ISR, 26(1):57–
80, 2015.

[32] Greg Guest, Kathleen MMacQueen, and Emily E Namey. Applied thematic analysis.
sage, 2011.

[33] Nicole Haenni, Mircea Lungu, Niko Schwarz, and Oscar Nierstrasz. Categorizing
developer information needs in software ecosystems. In Proc. of WEA’13, pages
1–5. ACM, 2013.

[34] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell. A
systematic literature review on fault prediction performance in software engineering.
TSE, 38(6):1276–1304, 2012.

[35] Rain Brian Harrys. The largest git repo on the planet. Online:
https://devblogs.microsoft.com/bharry/the-largest-git-repo-on-the-planet/, 2017.

105

BIBLIOGRAPHY BIBLIOGRAPHY

[36] JI Hejderup. In dependencies we trust: How vulnerable are dependencies in software
modules? 2015.

[37] Kim Herzig, Sascha Just, and Andreas Zeller. The impact of tangled code changes
on defect prediction models. Emp. Soft. Eng., 21(2):303–336, 2016.

[38] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. Experiments
of the effectiveness of dataflow-and controlflow-based test adequacy criteria. In Proc.
of ICSE’94, pages 191–200. IEEE Computer Society Press, 1994.

[39] Javier Luis Cánovas Izquierdo, Valerio Cosentino, and Jordi Cabot. An empirical
study on the maturity of the eclipse modeling ecosystem. In Proc. of MODELS’17,
pages 292–302. IEEE, 2017.

[40] Yue Jia and Mark Harman. An analysis and survey of the development of mutation
testing. TSE, 37(5):649–678, 2011.

[41] Martin Johns and Moritz Jodeit. Scanstud: a methodology for systematic, fine-
grained evaluation of static analysis tools. In Proc. of ICSTW’11, 2011.

[42] René Just, Darioush Jalali, and Michael D. Ernst. Defects4J: A database of existing
faults to enable controlled testing studies for Java programs. In Proc. of ISSTA’14,
2014.

[43] David Kawrykow and Martin P. Robillard. Non-essential changes in version histo-
ries. In Proc. of ICSE’11, 2011.

[44] Jymit Khondhu, Andrea Capiluppi, and Klaas-Jan Stol. Is it all lost? a study of
inactive open source projects. In In Proc. of IFIP OSS’13, pages 61–79. Springer,
2013.

[45] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. Structure and
evolution of package dependency networks. In Proc. of MSR’17, pages 102–112.
IEEE, 2017.

[46] Andrew J Ko, Robert DeLine, and Gina Venolia. Information needs in collocated
software development teams. In Proc. of ICSE’07, pages 344–353. IEEE Press, 2007.

[47] Kendra J Kratkiewicz. Evaluating static analysis tools for detecting buffer overflows
in c code. Technical report, DTIC Document, 2005.

106

BIBLIOGRAPHY BIBLIOGRAPHY

[48] Paul R Kroeger. Analyzing grammar: An introduction. Cambridge University Press,
2005.

[49] Raula Gaikovina Kula, Daniel M. German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. Do developers update their library dependencies? Emp. Soft. Eng. Journ.,
May 2017.

[50] James A Kupsch and Barton P Miller. Manual vs. automated vulnerability assess-
ment: A case study. In Proc. of MIST’09, pages 83–97, 2009.

[51] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo
Wilson, and Engin Kirda. Thou shalt not depend on me: Analysing the use of
outdated javascript libraries on the web. In Proc. of NDSS’17, 2017.

[52] Hayne E Leland. Corporate debt value, bond covenants, and optimal capital struc-
ture. Journ. of Finance, 49(4), 1994.

[53] Daoyuan Li, Li Li, Dongsun Kim, Tegawendé F Bissyandé, David Lo, and Yves Le
Traon. Watch out for this commit! a study of influential software changes. arXiv
preprint arXiv:1606.03266, 2016.

[54] Peng Li and Baojiang Cui. A comparative study on software vulnerability static
analysis techniques and tools. In Proc. of ICITIS’10, 2010.

[55] Benjamin Livshits. Stanford securibench. Online: http://suif. stanford. edu/livshit-
s/securibench, 2005.

[56] Benjamin V. Livshits and Monica S. Lam. Finding security vulnerabilities in Java
applications with static analysis. In Proc. of USENIX’13, 2005.

[57] SS Jeremy Long. Owasp dependency check, 2015.

[58] Konstantinos Manikas. Revisiting software ecosystems research: A longitudinal
literature study. Journ. of Sys. and Soft., 117:84–103, 2016.

[59] Konstantinos Manikas. Supporting the evolution of research in software ecosystems:
reviewing the empirical literature. In Proc. of ICSOB’16, pages 63–78. Springer,
2016.

[60] Konstantinos Manikas and Klaus Marius Hansen. Software ecosystems–a systematic
literature review. Journ. of Sys. and Soft., 86(5):1294–1306, 2013.

107

BIBLIOGRAPHY BIBLIOGRAPHY

[61] Simon Maple. Java tools and technologies landscape report 2016. Online:
https://jrebel.com/rebellabs/java-tools-and-technologies-landscape-2016/, 2016.

[62] David C Mauer and Sudipto Sarkar. Real options, agency conflicts, and optimal
capital structure. JBF, 29(6), 2005.

[63] Tom Mens, Mathieu Goeminne, Uzma Raja, and Alexander Serebrenik. Surviv-
ability of software projects in gnome–a replication study. Proc. of SATToSE’14,
page 79, 2014.

[64] Dirk Merkel. Docker: lightweight linux containers for consistent development and
deployment. LJ, 2014(239):2, 2014.

[65] Parastoo Mohagheghi and Reidar Conradi. Quality, productivity and economic
benefits of software reuse: a review of industrial studies. Emp. Soft. Eng. Journ.,
12(5):471–516, 2007.

[66] Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas Zeller.
Predicting vulnerable software components. In Proc. of CCS’07, 2007.

[67] Viet Hung Nguyen, Stanislav Dashevskyi, and Fabio Massacci. An automatic
method for assessing the versions affected by a vulnerability. Emp. Soft. Eng.,
21(6):2268–2297, 2015.

[68] Viet Hung Nguyen, Stanislav Dashevskyi, and Fabio Massacci. An automatic
method for assessing the versions affected by a vulnerability. Emp. Soft. Eng. Journ.,
21(6):2268–2297, 2016.

[69] Viet Hung Nguyen and Fabio Massacci. The (un) reliability of nvd vulnerable
versions data: An empirical experiment on google chrome vulnerabilities. In Proc.
of ASIACCS’13, pages 493–498. ACM, 2013.

[70] Vadim Okun, Aurelien Delaitre, and Paul E. Black. The second static analysis tool
exposition (SATE) 2009. NIST SP, pages 500–287, 2010.

[71] Vadim Okun, Aurelien Delaitre, and Paul E. Black. Report on the third static
analysis tool exposition (SATE 2010). NIST SP, pages 500–283, 2011.

[72] Vadim Okun, Aurelien Delaitre, and Paul E. Black. Report on the static analysis
tool exposition (SATE) IV. NIST SP, 500:297, 2013.

108

BIBLIOGRAPHY BIBLIOGRAPHY

[73] Vadim Okun, Romain Gaucher, and Paul E. Black. Static analysis tool exposition
(SATE) 2008. NIST SP, 5(00-2):79, 2009.

[74] Tosin Daniel Oyetoyan, Bisera Milosheska, Mari Grini, and Daniela Soares Cruzes.
Myths and facts about static application security testing tools: An action research
at telenor digital. In Proc. of XP’18, pages 86–103. Springer, 2018.

[75] David Lorge Parnas. On the criteria to be used in decomposing systems into mod-
ules. Commun. ACM, 15(12):1053–1058, 1972.

[76] Ivan Pashchenko. Foss version differentiation as a benchmark for static analysis
security testing tools. In Proc. of FSE’17, pages 1056–1058. ACM, 2017.

[77] Ivan Pashchenko, Stanislav Dashevskyi, and Fabio Massacci. Delta-bench: differ-
ential benchmark for static analysis security testing tools. In Proc. of ESEM’17,
pages 163–168. IEEE Press, 2017.

[78] Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, and Fabio
Massacci. Vulnerable open source dependencies: counting those that matter. In
Proc. of ESEM’18, page 42. ACM, 2018.

[79] Jannik Pewny and Thorsten Holz. Evilcoder: automated bug insertion. In Proc. of
ACSAC’16, pages 214–225. ACM, 2016.

[80] Shaun Phillips, Guenther Ruhe, and Jonathan Sillito. Information needs for inte-
gration decisions in the release process of large-scale parallel development. In Proc.
of CSCW’12, pages 1371–1380. ACM, 2012.

[81] Mike Pittenger. Open source security analysis: The state of open source security in
commercial applications. Technical report, Black Duck Software, 2016.

[82] Henrik Plate, Serena Elisa Ponta, and Antonino Sabetta. Impact assessment for
vulnerabilities in open-source software libraries. In Proc. of ICSME’15, pages 411–
420. IEEE, 2015.

[83] L Ponemon. Ponemon institute cost of a data breach study, 2016.

[84] Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta. Beyond metadata: Code-
centric and usage-based analysis of known vulnerabilities in open-source software.
In 2018 IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2018.

109

BIBLIOGRAPHY BIBLIOGRAPHY

[85] Rachel Potvin and Josh Levenberg. Why google stores billions of lines of code in a
single repository. Commun. ACM, 59(7):78–87, 2016.

[86] Latifa Rabai, Arfa Ben, Barry Cohen, and Ali Mili. Programming language use in
us academia and industry. Inf. in Education, 14(2):143, 2015.

[87] Donald J Reifer, Victor R Basili, Barry W Boehm, and Betsy Clark. Eight lessons
learned during cots-based systems maintenance. IEEE Softw. Journ., 20(5):94–96,
2003.

[88] Sofia Reis and Rui Abreu. Secbench: A database of real security vulnerabilities. In
SecSE@ ESORICS, pages 69–85, 2017.

[89] Ripon K. Saha, Julia Lawall, Sarfraz Khurshid, and Dewayne E. Perry. Are these
bugs really normal? In Proc. of MSR’15, 2015.

[90] Hitesh Sajnani, Vaibhav Saini, Joel Ossher, and Cristina V Lopes. Is popularity
a measure of quality? an analysis of maven components. In Proc. of ICSME’14,
pages 231–240. IEEE, 2014.

[91] Johnny Saldaña. The coding manual for qualitative researchers. Sage, 2015.

[92] Sudipto Sarkar. Optimal size, optimal timing and optimal financing of an invest-
ment. Journ. of Macroeconomics, 33(4), 2011.

[93] Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A. Osborne. Evaluating
complexity, code churn, and developer activity metrics as indicators of software
vulnerabilities. TSE, 37(6):772–787, 2011.

[94] Shinichi Shiraishi, Veena Mohan, and Hemalatha Marimuthu. Test suites for bench-
marks of static analysis tools. In Proc. of ISSREW’15, pages 12–15. IEEE, 2015.

[95] Jonathan Sillito, Gail C Murphy, and Kris De Volder. Questions programmers ask
during software evolution tasks. In Proc. of FSE’14, pages 23–34. ACM, 2006.

[96] Nancy L Stokey. The Economics of Inaction: Stochastic Control models with fixed
costs. Princeton University Press, 2008.

[97] Anselm Strauss and Juliet Corbin. Basics of qualitative research. sage, 1990.

[98] Hao Tang, Tian Lan, Dan Hao, and Lu Zhang. Enhancing defect prediction with
static defect analysis. In Proc. of INTERNETWARE’15, 2015.

110

BIBLIOGRAPHY BIBLIOGRAPHY

[99] Andreas Wagner and Johannes Sametinger. Using the juliet test suite to compare
static security scanners. In Proc. of SECRYPT’14, pages 1–9. IEEE, 2014.

[100] John Wilander and Mariam Kamkar. A comparison of publicly available tools for
static intrusion prevention. 2002.

[101] Jeff Williams and Arshan Dabirsiaghi. The unfortunate reality of insecure libraries.
Asp. Sec., pages 1–26, 2012.

[102] Erik Wittern, Philippe Suter, and Shriram Rajagopalan. A look at the dynamics of
the javascript package ecosystem. In Proc. of MSR’16, pages 351–361. IEEE, 2016.

[103] Robert K Yin. Qualitative research from start to finish. Guilford Publications, 2015.

111

	Introduction
	The Problem
	Contributions
	Thesis Structure

	State of the Art
	Own Code
	Collections of synthetic test cases
	Databases of real-world bugs
	Existing benchmarking approaches
	Automatic generation of benchmarks

	Project Level
	Accounting for Deployment
	Accounting for Transitivities
	Vulnerability Matching Approaches
	Accounting for Own Dependencies
	Maintenance of Software Libraries

	Quantitative Studies
	Qualitative Studies

	Delta-Bench
	Introduction
	Benchmark construction
	Data selection for evaluation
	RQ1: Alerts Isolation
	RQ2: Background Noise Impact
	Threats to validity
	Conclusions

	Dependency Methodology
	Introduction
	Terminology
	Motivating Example
	Methodology
	Data collection
	Ecosystem View
	Developer View
	Requirements for an Industrial Practice
	Simulation of the Vuln4Real methodology on an individual software library

	Threats to Validity
	Conclusions

	Ecosystem: Quantitative Study
	Introduction
	Terminology
	Technical Debt
	Data selection
	Code Changes
	FOSS Changes
	Leverage
	Threats to Validity
	Conclusions

	Ecosystem: Qualitative Study
	Introduction
	Theory
	Data Collection
	Interview process

	Data analysis
	Interview coding
	Evidence from the Interviews

	Analysis summary
	Threats
	Conclusions

	Conclusions and Future Work
	Bibliography

