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Abstract

Unravelling the functioning of the complex processes involved in living

systems is a challenging task. Enzymes are involved in almost all of the

chemical processes taking place within the cell. They accelerate chemical

reactions by forming a complex with the substrate and therefore lowering

the reaction activation energy. The characterisation of the enzyme function

at the molecular level is a fundamental step, which has several implications

and applications in modern biotechnologies. This thesis investigates sta-

tistical and relational learning techniques for the characterisation of the

enzyme function. The problem is tackled from two sides: the analysis of

the enzyme structure and its interactions with other molecules, and the

mining of relevant features from the enzyme mutation data. From the first

side a pure statistical learning approach is proposed for directly predicting

enzyme functional residues. This approach is shown to improve over the

current state of the art on several benchmark datasets. The engineered

predictors resulting from this investigation are now available to the public

of researchers through the CatANalyst web server. Further improvement

of the approach is pursued by proposing a supervised clustering technique

for collectively predicting all the residues belonging to the same functional

site. On the “learning from mutations” side, the focus shifts to the ex-

pressivity and interpretability of the learnt models. This thesis proposes

novel statistical relational approaches for mining hierarchical features for

multiple related tasks. The resistance of viral enzyme mutants to groups

of related inhibitors is modelled in a multitask setting. Learnt models are

refined on a group or per-task basis at different levels of the hierarchy. The



proposed hierarchical approach is shown to provide statistically significant

improvements over both single and multitask alternatives. Moreover it has

the ability to provide explanation of the models which are themselves hi-

erarchical. A task clustering approach is also proposed for inferring the

structure of tasks when it is unknown. Finally, a relational approach is

proposed for exploiting the learnt relational rules for generating novel mu-

tations with specific characteristics. This allows to drastically reduce the

space of possible mutations to be experimentally assessed. Promising pre-

liminary results are obtained, which highlight the potential of the approach

in guiding mutant engineering and in predicting the viral enzyme evolution.

These findings can pave the way to further research directions in functional

interpretation of biological data by means of machine learning techniques.

Keywords

[machine learning, bioinformatics, protein function identification, inductive

logic programming, statistical relational learning, enzyme functional sites]
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Chapter 1

Introduction

The beginning of the genomic era made it possible for scientists to compare

the genome sequences of different organisms and species. These genome se-

quences can have different size and complexities depending on the organism

they belong to, from viruses and bacteria, to plants and mammals.

The availability of the human genome sequence has emphasised how far

we still are from understanding the relationship between the structure of

the molecules and their function.

By analysing the human genome and genomes of simpler organisms re-

searchers observed that the number of genes is not proportional to the size

or the complexity of an organism. This observation led to the paradox

that, for instance, the human genome contains some tens of thousands

of genes [110], encoding approximately the same number of well charac-

terised proteins, but apparently, the number of protein functions seems to

be higher. This sort of paradox can be explained by hypothesising that

one gene codes for more than one protein (an example is given by the al-

ternative splicing mechanism) and that the same protein is able to perform

more than one function. Hence, identifying the function or the functions

that a protein performs is one of the big challenges characterising the post-

genomic era.
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1.1. MOTIVATIONS CHAPTER 1. INTRODUCTION

Small variations of the same protein can be present within different

organs of the same organism and between different species. This makes

the protein function identification still more challenging and the analysis

and mining of such a large quantity of biological data requires the use of

automated approaches.

Computational methods can play a key role in “omics” projects aiming

at giving a functional interpretation to the information contained in the

genomes. The birth of a discipline like bioinformatics is the evidence of

the importance of computational approaches in genomics and proteomics

projects.

1.1 Motivations

The goal of protein bioinformatics is to assist experimental bi-

ology in assigning a function or suggesting functional hypothesis

for all known proteins. The task is formidable. A simple calcula-

tion shows that we cannot possibly study each and every biologi-

cal molecule of the universe. Therefore, we need fast and reliable

computational methods to extrapolate the knowledge accumulated

on a subset of cases to the rest of the protein universe.

Anna Tramontano in “The Ten Most Wanted Solutions in Protein Bioinformatics”

Bioinformatics is a recently born discipline. Its aim is to analyse the

information contained in the biological molecules — nucleic acids and pro-

teins — by means of computational methods. Past research in bioinfor-

matics has been devoted to the production and understanding of genomic

data, but recently it is increasingly permeating other fields of biology like

functional and structural genomics and proteomics.

Protein bioinformatics has the main objective to discover the molecu-

lar mechanisms that rule the correct operation of a protein or, in case of

2
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pathologies, which lead to an altered or null protein function. Through the

knowledge of these mechanisms it is possible to understand the complex

processes involved in living systems and possibly correct dysfunctional be-

haviours. Such research is quite complex to carry out as a protein function

involves a combination of several factors, many of which are still unknown.

Knowing the protein three-dimensional structure is of primary impor-

tance for understanding its role and its function. The three-dimensional

shape allows the protein to correctly interact with other molecules and

macromolecules. The function that the protein carries out varies on the

basis of the spatial conformation it assumes. The three-dimensional struc-

ture of a protein can be experimentally determined. Two quite expensive

techniques are used with this aim: the X-ray crystallography [53] and the

Nuclear Magnetic Resonance (NMR) [144].

Large scale genomics projects [81] are providing a huge amount of pro-

tein sequential and, at a lower but increasing rate, structural informa-

tion [24,27]. At the beginning of november 2010 the Universal Protein Re-

source database (UniprotKB) [131] counted for more than twelve millions

of synthesised proteins. Figure 1.1 shows the growth of the database in the

last years for the manually annotated and reviewed sequences (Swiss-Prot)

and the automatically annotated and not reviewed sequences (TrEMBL).

At the same date, the database of protein structures, Protein Data

Bank (PDB) [14], maintained by the Research Collaboratory for Struc-

tural Bioinformatics (RCSB), reported more than 64000 deposited protein

structures. A large portion of such proteins have their function still un-

determined, as it is often not straightforward to understand the details

of a protein function even when its three-dimensional structure is known.

The task requires a time-consuming trial-and-error process of hypothesis

formulation and verification by targeted experiments such as site-directed

mutagenesis [73].

3
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(a) Growth of UniprotKB/Swiss-Prot released sequences.

(b) Growth of UniprotKB/TrEMBL released sequences.

Figure 1.1: Growth of UniprotKB released sequences.

Considering the rate at which protein sequences are synthesised and

protein structures are solved (see Figure 1.2), the gap with respect to

functionally characterised proteins is destined to increase over time. Auto-

matic approaches for the detection of a protein function can be very useful

4
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in narrowing this gap.

Number of searchable structures per year.Number of searchable structures per year.Number of searchable structures per year.

Note: searchable structures vary over time as some become obsolete and are removed from the database.Note: searchable structures vary over time as some become obsolete and are removed from the database.Note: searchable structures vary over time as some become obsolete and are removed from the database.

Year Yearly Total

2010 6591 64201
2009 6969 57610
2008 6577 50641
2007 6809 44064
2006 6059 37255
2005 5021 31196
2004 4832 26175
2003 3835 21343
2002 2770 17508
2001 2598 14738
2000 2391 12140
1999 2116 9749
1998 1842 7633
1997 1372 5791
1996 964 4419
1995 851 3455
1994 1201 2604
1993 631 1403
1992 156 772
1991 167 616
1990 132 449
1989 61 317
1988 50 256
1987 18 206
1986 16 188
1985 18 172
1984 21 154
1983 34 133
1982 28 99
1981 14 71
1980 6 57
1979 10 51
1978 4 41
1977 24 37
1976 13 13
1975 0 0
1974 0 0
1973 0 0
1972 0 0

2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972

0 17500 35000 52500 70000

Yearly Total

Figure 1.2: Growth of PDB released protein structures per year.

The most used approaches for the functional characterisation of genes

and their proteins implement homology-based strategies. Novel protein

function is inferred by aligning the sequences or by superimposing the struc-

tures with already annotated proteins. By using automatic approaches

5
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exploiting the sequence and structural comparison of new proteins with

manually annotated ones, it is possible to assign a function to a large

number of proteins in a fraction of the time and cost needed for a lab-

oratory study. Unfortunately those simple approaches have shown their

limitations in various context (see Section 1.3). Furthermore, an anno-

tated homologue of the target protein needs to be available preventing the

homology transfer applicability to novel folds and the increasing lack of

functional annotations makes this strategy even less effective.

Machine learning techniques provided a valid alternative to homology-

based methods. They allow for the development of predictors that are able

to abstract from the single case and learn an accurate statistical or logical

model based on known examples (supervised learning).

In this thesis the focus is on the characterisation of the molecular func-

tion of enzymes. Enzymes are those proteins whose role is to accelerate

chemical processes inside a cell. The identification of the enzyme function

is a required step for the innovation of biotechnologies used in the agri-

culture and food fields, as well as in the pharmacological and biochemical

fields. New enzymes can be produced for their application in agriculture

and food biotechnological processes as, for instance, enzymatic sensors for

food control, or in water depuration and soil treatment and disinfection.

From the pharmacological side, understanding the mechanisms of enzymes

operation is fundamental for making an antibiotic an effective drug. En-

zymes present in pathogenic bacteria must be able to form a complex and

therefore to inhibit proteins that are essential for the bacterium life.

An enzyme function is defined by a topological region — called func-

tional or active site — composed of amino acid residues located in specific

positions of the three-dimensional disposition taken by the protein chain.

The understanding of the enzyme molecular function has two prerequisites.

The first is to discover its functional sites and characterise their proper-

6
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ties. The second is to characterise the properties of the single amino acids

involved and the way in which they interact among each other and with

other molecules, e.g. drugs.

Two “wet laboratory” approaches are typically used for gaining insights

about an enzyme molecular function: inhibition studies and random mu-

tagenesis. By inhibiting one amino acid at a time and then by observing

variations in the enzyme activity it is possible to infer a putative functional

role of the inhibited residues. In principle, the inhibition of a functional

residue should correspond to a decrease and sometimes to a complete loss

of the enzyme biological activity. Random mutagenesis aims at generating

a number of mutants of the same enzyme (the wild type). While directed

mutagenesis requires the knowledge of the sequence or the structure of the

protein, random mutagenesis can be applied without knowing any informa-

tion and allows for the creation of a library of mutants to be screened. The

induced mutations can lead to inactive mutants, more convenient mutants

showing an improved biological activity or, they can be neutral mutations

not affecting the enzyme activity. By analysing the common patterns of

mutation and their correlation with the observed mutant activity it is pos-

sible to formulate hypotheses on the functional sites and the amino acids

involved in them.

The analysis and mining of information from mutation data is also ex-

tremely important in molecular genetics studies aiming at developing ef-

fective cures to a number of diseases that stem from specific protein de-

fects [143]. Diseases like the cystic fibrosis, cancer and Human Immunode-

ficiency Virus (HIV) infection all depend in some way on specific mutations

taking place into specific proteins, especially enzymes — for the cystic fi-

brosis even a single mutation over a total of 1500 amino acids. The HIV

case is an emblematic example of infection that encompasses many aspects

of protein structure and function. Stopping an HIV infection requires to

7
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understand these many aspects. The virus has a high mutation rate and

it is prone to the development of the resistance to specific drugs. Hence,

the analysis of the virus mutations and the discovery of those residues that

are necessary for the virus proteins proper functioning, is extremely impor-

tant. Moreover, drug resistance development is often the result of multiple

mutations occurring along the primary sequence. The correlation among

mutations and their relationship with the resistance to a drug should be

also taken into consideration.

Geometrical and statistical approaches are crucial for understanding the

relationship between molecular structures and their function. Geometrical

approaches are needed for managing and analysing structural properties

of the molecules and their interactions. Statistical approaches are needed

for handling and analysing large quantity of data, with the aim of ex-

trapolating rules that can be generalised to novel cases. In particular,

machine learning techniques can be used for identifying spatial regions

hosting protein binding and functional sites. They can also be very useful

in determining each one of the functional residues or reducing the number

of candidates to be experimentally verified.

In the last years, the most promising machine learning techniques have

evolved in the direction of learning from structured objects — such as

sequences and graphs — and performing structured prediction. Among

the supervised learning techniques, kernel methods [123] and especially

Support Vector Machines (SVMs) [23, 43] have been successfully applied

to several bioinformatics applications [76].

Statistical Relational Learning (SRL) [64] techniques also shown to be

particularly suitable for learning and mining data in bioinformatics appli-

cations. They combine the advantages of Inductive Logic Programming

(ILP) and statistical learning, namely the ability to learn a model of the

concepts that can be readily interpreted by a human domain-expert, and

8
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the robustness principles of the statistical learning theory.

The aim of this thesis is to investigate and develop effective and ad-

vanced machine learning techniques for helping in characterising enzyme

molecular functions and understanding the mechanisms allowing the pro-

teins to operate. For instance, machine learning approaches for mining

features that are relevant for causing the enzyme functioning or the en-

zyme malfunction, can be very useful. They can suggest the reason why a

mutant shows an improved or reduced activity on a certain drug or, why

an enzyme is resistant to a certain drug and/or not resistant to another

one. For instance, by modelling the presence of a mutation close to the

functional site that changes a structural amino acid, like a proline, into a

large and basic amino acid, like arginine or lysine.

1.2 The Protein Function Identification Problem

In the previous section the problem of the protein function understanding

and its complexity has been introduced, but what is a protein and how can

we define its function?

In this section a short introduction to the underlying biological aspects

needed to understand the rest of the work will be given.

1.2.1 Quick Primer on the Biological Aspects

The complex processes involved in living systems are the result of the

harmonic action of molecules and macromolecules, mainly proteins. The

cell is a complex biochemical machinery and proteins are its “functional

devices”.

Proteins are synthesised according to rules written in the genome. Over-

simplifying the complex mechanisms involved, the process can be roughly

schematised in the so called Central Dogma of molecular biology: “from

9
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DNA to RNA to protein” (Figure 1.3).

DNA RNA Protein

duplication transcription translation

Figure 1.3: The Central Dogma of molecular biology.

Each gene in a cell genome is a deoxyribonucleic acid (DNA) fragment,

which codes for a protein. Hence, genes “building blocks” are nucleotides,

made of the union of a sugar (deoxyribose) and one of the four bases:

adenine (A), guanine (G), cytosine (C), and thymine (T). The sequence

in which the nucleotides are placed along the DNA strand determines the

properties of the different genes.

Each one of the triplets of a gene sequence in the alphabet ΣN =

{A,C, T,G} codes for one of the twenty amino acid in nature, in the al-

phabet

ΣP = {A,C,D,E, F,G,H, I,K, L,M,N, P,Q,R, S, T, V,W, Y },

according to the universally accepted Genetic Code [106].

Amino acids are the “building blocks” of proteins. They are organic

molecules characterised by two functional groups: an aminic group (NH2)

and an acidic group, the carboxylic group (COOH), which together give

the name of “amino acid”.

The two functional groups are held together by a carbon atom, known

as alpha carbon (Cα). A further chain of atoms, bound to the Cα, makes

the amino acid side-chain (R), which differentiates from the main chain

(see Figure 1.4) and is the part whose composition confers specificity to

the amino acid: all of the twenty amino acids have the same main chain

but their side-chains are made of different atoms, ranging from a single
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hydrogen atom, as in the case of a glycine, to more complex structures of

benzene rings, as for a tyrosine.

H N C C OH

H

R

H

side-chain

main-chain

carboxylic group
amino group

alpha carbon

O

Monday, 22 March 2010

Figure 1.4: Amino acid.

Table 1.2.1 also shows the classical 20 symbol alphabet with the three-

letter and the corresponding one-letter abbreviations for the amino acids.

Since the twenty amino acids differ on the basis of the chemical properties

of their side chain (which can be polar, apolar, acid or basic), different al-

phabets can be used that group them according to functional and chemical

properties (see Table 1.2.1).

A protein is composed of one or more chains of amino acids held together

by a peptide bond, a covalent bond between the carboxylic and the amino

group of two consecutive amino acids. The formation of a peptide bond

between to amino acids (see Figure 1.5) produces a free water molecule.

The result is a polypeptide chain of residues of amino acids. The se-

quence of the residues along the chain is the protein primary structure. The

amino acids along the chain, due to their three-dimensional structure, can

arrange into often repetitive and bound structures, called secondary struc-

ture elements (SSE), for example β-sheets and α-helices (see Figure 1.6).

The tertiary structure, is the result of the chain folding process, due to:

(a) the space the amino acid side-chains take up and, (b) the weak forces

of attraction and repulsion — e.g. hydrophobicity and hydrophilicity —

among either the side-chain groups and the fluid in which the polypeptide

11
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Classical Alphabet Chemical Alphabet Functional Alphabet Hydrophobicity Alphabet

(|Σ| = 20) (|Σ| = 8) (|Σ| = 3) (|Σ| = 2)

AA Symbol Symbol Meaning Symbol Meaning Symbol Meaning

Ala A L aliphatic H hydrophobic O hydrophobic

Arg R B basic C charged (+) I hydrophilic

Asn N M amidic P polar I hydrophilic

Asp D A acidic C charged (-) I hydrophilic

Cys C S sulphuric P polar I hydrophilic

Gln Q M amidic P polar I hydrophilic

Glu E A acidic C charged (-) I hydrophilic

Gly G L aliphatic P polar I hydrophilic

His H B basic C charged (+) I hydrophilic

Ile I L aliphatic H hydrophobic O hydrophobic

Leu L L aliphatic H hydrophobic O hydrophobic

Lys K B basic C charged (+) I hydrophilic

Met M S sulphuric H hydrophobic O hydrophobic

Phe F R aromatic H hydrophobic O hydrophobic

Pro P I iminic H hydrophobic O hydrophobic

Ser S H hydroxylic P polar I hydrophilic

Thr T H hydroxylic P polar I hydrophilic

Trp W R aromatic H hydrophobic O hydrophobic

Tyr Y R aromatic P polar I hydrophilic

Val V L aliphatic H hydrophobic O hydrophobic

Table 1.1: Amino acid alphabets.

H N C C OH

H

R

H O

H N C C OH

H

R

H O

H N C C

H

R

H O

N C C OH

H

R

H O

OH H

Monday, 22 March 2010

Figure 1.5: Peptide bond formation.
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Figure 1.6: Structure of an α-helix and a β-sheet.

chain is dip into. Finally the quaternary structure is the composition of

a number of polypeptide chains belonging to the same protein, in other

words, it is the whole set of subunits that compose an oligomer. The four

levels of a protein structure are visualised in Figure 1.7.

Figure 1.7: The levels of a protein structure (adapted from a courtesy of the National

Human Genome Research Institute)
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1.2.2 Defining a Protein Function

There is no single or fully standardised way of defining a protein function.

A protein function can be defined at the molecular, biological or cellular

scale and, at each level, further levels of detail can be considered. Further-

more, a protein function has many other distinctive aspects that depend on

the environment in which the protein operates and which conditions affects

its behaviour [61]. For example, the same enzyme can perform different

functions depending on whether it is located in the liver or in the eye.

Proteins inside the cell perform several different functions. Three fun-

damental examples are storage proteins, structural proteins and enzymes.

At the biological level we can distinguish among enzymes, transport pro-

teins (haemoglobin), hormones and proteins involved in defence against

germs (antibodies), in structural support or body movement (contractile

proteins) [143].

A quite successful attempt to standardise the protein function definition

at the different scales is represented by the Gene Ontology (GO) [29].

Concepts in the GO, called GO terms, are organised in a directed acyclic

graph (DAG) structure. GO terms are connected on the base of a general-

to-specific relation.

This thesis focuses on one of the aspects of a protein function definition:

the molecular function. At the molecular level a protein function is defined

by a topological region of the protein called functional site, which is a

functional domain in the protein three-dimensional structure. Functional

domains can have a multiplicity of roles within a protein. For example in

enzymes, functional domains are also called active or catalytic sites, while

in other kind of proteins they correspond to binding sites with another

macromolecule.

In this thesis the attention is concentrated on enzymes. Enzymes are
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proteins able to accelerate chemical processes inside a cell. The enzyme

works by forming complexes with the reactants and in doing so it lowers the

activation energy of the reactions thus increasing their rate. This process is

the catalysis. An enzyme has usually the structure of a globular protein and

the 3D disposition of the residue chain is somewhat specific. The residues

take up well-defined positions which are essential for the recognition and

binding of specific substrates, in other words, for the biological activity

of the enzyme. The residues that are directly involved in the catalytic

process (e.g. nucleophiles, proton-donors) constitute the active site, while

residues in the surrounding space play the role of attracting and orienting

the molecule to bind and constitute the binding domain.

The Enzyme Commission (EC) Nomenclature, proposed by the Inter-

national Union of Biochemists (IUB), is the first example of an enzyme

molecular function categorisation. The classification has the aim to stan-

dardise the definition of the enzyme function by assigning reactions to a

hierarchy of four categories from general to specific, namely the class, the

superfamily, the family and the subfamily (Figure 1.8).

Enzymes are grouped in six functional classes in the EC Nomenclature,

based on the type of the catalysed reaction:

1. oxidoreductases, for oxidation-reduction reactions;

2. transferases, for the transfer of functional groups;

3. hydrolases, for hydrolysis reactions;

4. lyases, for breaking chemical bonds;

5. isomerases, for isomeration reactions;

6. ligases, for chemical bonds formation.
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EC A . B . C . D

class

superfamily

family

subfamily

EC 2 . 1 . 4 . 1

transferases

trasferring one-carbon groups

amidinotransferases

glycine amidinotransferase

Figure 1.8: Enzyme Classification number.

The pie chart in figure 1.9 shows the results obtained by querying the

UniprotKB with the keyword “enzyme”. The chart highlights the number

of synthesised enzymes currently in the Uniprot divided by EC class.

In order to perform their function, many enzymes need to be bound

to an additional non-protein component called cofactor. Cofactors can be

grouped in:

(a) coenzymes, i.e. dissociable cofactors that are usually organic;

(b) prosthetic groups, i.e. non dissociable cofactors.

Common examples of cofactors are metal ions. The enzyme lacking the

cofactor is inactive and it is called apoenzyme, while the enzyme with the

cofactor is active and it is called holoenzyme.
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Figure 1.9: Pie chart of the results of the “enzyme” query to the UniprotKB.

1.3 Traditional Approaches to Protein Function Iden-

tification

Traditional approaches for the functional characterisation of genes and

their proteins implement homology-based strategies. Novel protein func-

tion is inferred by aligning the sequences or by superimposing the structures

with already annotated proteins and then by transferring the annotation

from the most similar to the novel one.

Typically, sequence databases are searched for finding a significant se-

quence similarity to another protein whose function has been experimen-

tally characterised. Basic Local Alignment Search Tool (BLAST) [28] is a

popular tool for searching a query sequence against a database of known

protein sequences and discovering sequence similarities. For this reason the

word “BLASTing” is often used nowadays referring to this search process.

The biological rationale for the homology-based transfer is as simple as

powerful: very similar sequences most probably share a common ancestor

(they are homologous) and therefore, given this evolutionary relationship,

have identical or very similar function.
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The protein structure is even more informative than the amino acid

sequence alone. Knowing the protein structure is fundamental for under-

standing the biochemical mechanisms by which the protein performs its

function. Whenever the tertiary structure of a novel protein with unknown

function is available, the structural similarity to other proteins can allow

the functional annotation transfer [61]. For instance, two protein struc-

tures with the same fold can have an identical or similar function even if

the two protein sequences have little similarity [25]. That is because the

protein tertiary structure tends to be more preserved than the primary

structure along evolution.

By using automatic approaches exploiting the sequence and structural

similarity of new proteins with manually annotated ones, it is possible

to assign a function to a large number of proteins in a fraction of the

time and cost needed by a laboratory study [58]. Unfortunately those

simple approaches have shown their unreliability for functional annotation

even in presence of a high sequence or structural identity percentage and

other limitations in various context. First, an annotated homologue of the

target protein needs to be available preventing their applicability to novel

folds. Furthermore, if a protein has more than one domain a detected

evolutionary relationship, even based on a high sequence similarity with

another protein, can be limited to only one of the domains, leading to an

erroneous annotation [135]. Even considering the 3D structure similarity,

there are cases in which proteins with similar overall tertiary structure can

have different active sites, i.e. different functions [101, 133], and proteins

with different overall tertiary structure can show the same function and

similar active sites. Finally, the increasing lack of functional annotations

makes the homology-based strategies even less effective as it becomes even

more difficult to find an annotated reference sequence for novel proteins.

Machine learning techniques provide a valid alternative to homology-
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based methods in cases in which the homology-based transfer cannot be

applied. These methods are able to abstract from the single case and to

learn accurate statistical or logical models based on observations. In recent

years they have been successfully applied for predicting enzyme functional

sites and functional residues.

1.4 Review on Machine Learning Techniques

Machine learning primary aim is to provide effective algorithms for training

a machine in automatically acquiring useful and accurate models from the

experience.

A plethora of machine learning algorithms have been proposed in re-

cent years, with different peculiarities concerning the problem formalisa-

tion they approach, the underlying method used, and how efficiently they

are able to solve a learning task.

The following sections present a rapid excursus on the learning paradigms,

tasks, and algorithms that are of interest for this thesis.

1.4.1 Learning Paradigms and Learning Tasks

Machine learning is a wide field that includes many different approaches for

solving different learning problems: from medical diagnosis and financial

analysis, to speech recognition and text categorisation or image analysis

and computer vision. In recent years these algorithms have been also suc-

cessfully applied to solve several bioinformatics applications [88].

Different learning paradigms exist. Among them there are the super-

vised learning and the unsupervised learning. In this thesis particular

attention is devoted to these two learning paradigms.
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Supervised Learning

In supervised learning, we are given a set of examples (x(i), y(i)) ∈ X ×
Y with i = 1, ...,m, where X is the input space and Y is the output

space. The learning problem is to derive a model h : X → Y for the

unknown input-output relationship. This is achieved combining fitting

of the training data with some constraints on the hypothesis space, in

order to avoid overfitting and generalise to unseen instances. A typical

approach consists of penalising overly complex hypotheses, a procedure

called “regularisation”.

The error in fitting training data is formalised as the empirical risk:

Emp[h(·) 6= y] =
1

m

m∑
i=1

l(y(i), h(x(i))) (1.1)

where l : Y × Y → R is a loss function, which returns values according to

the “goodness” of the prediction h(x) with respect to the real output y. If

we consider the 0-1 loss, which is defined as:

l(y, ŷ) =

0 if y 6= ŷ

1 otherwise
(1.2)

where ŷ = h(x), the empirical risk corresponds to the number of misclas-

sified instances of the training set.

Figure 1.10, adapted from [129], schematises the learning supervised by

examples. A new example x is assigned to y according to the learnt model

h.

Depending on the nature of the output space Y , we can distinguish

among different learning tasks. The most common are:

• classification Y = {y1, ..., yl} is a discrete set of labels. Among the

classification tasks a further distinction can be done:
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– binary classification whenever l = 2, typically Y = {+1,−1}
a new example is classified in one of two classes (as positive or

negative);

– multiclass classification whenever l > 2.

• regression Y = R is a continuous set.

The rest of the thesis focuses on classification problems. Classification and

regression are standard supervised learning problems in which the outputs

are simple scalars. The output space Y can be also characterised by more

complex and structured objects like, sequences, trees or graphs (see section

1.4.2).

Hypothesis H

h : X 7→ Y

Labeled data

(x(i), y(i))

Learning
find h ∈ H
s.t. y(i) ≈ h(x(i))

Prediction y = h(x)

new datum

x

Figure 1.10: Supervised learning (taken from [129]).

Multitask Learning [34] is a particular example of supervised learning

paradigm consisting in learning a model for a task and other related tasks

at the same time. It deals with the problem of exploiting information

on related tasks in order to improve the predictive performance and it is

considered a kind of inductive transfer.

In this setting given a set T of learning tasks and, for each t ∈ T , a set

of examples Dt = {(x(i)
t , y

(i)
t )} with i = 1, ...,mt, the learning problem is to
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derive simultaneously a model ht for each t ∈ T such that ht(x
(i)
t ) ≈ y

(i)
t

while retaining the capability of the models to generalise to unseen data.

Indeed, the primary aim of multitask learning is to improve the generalisa-

tion performance of a learnt model leveraging additional information from

related tasks.

Unsupervised Learning

In unsupervised learning input data x(i) with i = 1, ...,m, have no super-

vised target outputs. The objective is to learn how data are organised,

reveal patterns from them or build a representation that can be used for

further analyses [65]. Clustering falls in this category.

Given a set D of m inputs, the problem is to find a set C ⊆ P(D) such

that

C = {Cj ∈ P(D)|
⋃
j

Cj = D ∧
⋂
j

Cj = ∅}

Consequently a partial clustering can be defined as:

CP = {Cj ∈ P(D)|
⋃
j

Cj ⊆ D ∧
⋂
j

Cj = ∅}

The hierarchical clustering is a popular approach to clustering, which is

of interest in the present thesis. This clustering technique, differently from

partitioning approaches, does not require to specify a priori the number

of desired clusters. The algorithm can proceed with a bottom-up strategy,

by starting with singletons and recursively aggregating pair of clusters.

Alternatively, a top-down strategy can be followed by splitting an initial

cluster with all the examples recursively into smaller clusters. Merging or

splitting two clusters require to define inter-cluster similarity or distance

measures (the linkage function).

The results is a hierarchy of clusters that is usually depicted using a tree

structure, the dendrogram. By cutting at different levels of the dendro-
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gram, i.e. at different similarity thresholds, a different clustering — with

different number of clusters — can be obtained.

The hierarchical clustering can provide noticeable additional informa-

tion on the structure of the data.

1.4.2 Primer on Support Vector and Kernel Machines

Among the supervised learning techniques kernel methods [123] and espe-

cially SVMs [23, 43] have been successfully applied to many problems in

computational biology [124].

Some examples are translation initiation site recognition in DNA genes

[152], promoter region-based classification of genes [109], protein-protein

interaction [20], functional classification from microarray expression data

[108], protein function classification [21].

Support Vector Machines

SVMs are learning algorithms based on principles of the statistical learning

theory [139]. They aim at linearly separating examples with a large margin,

possibly accounting for margin errors [42].

Suppose that X = Rn, i.e. examples are represented as vectors of fea-

tures, and that we can define an inner product 〈·, ·〉 on X . An SVM learns

the parameters of an hyperplane separating positive and negative exam-

ples. In Figure 1.11(a) examples of separating hyperplanes are shown.

The functional margin γi of an example with respect to an hyperplane

〈~w, ~x〉 + b = 0 is the product yi(〈~w, ~xi〉 + b). Its geometrical definition

〈 ~w
||~w|| , ~xi〉+

b
||~w|| corresponds to the distance of ~xi from the hyperplane. The

margin of a separating hyperplane is the minimum margin among the mar-

gins of the training set. Separating hyperplanes with different margins are

shown in Figure 1.11(a). Figure 1.11(b) shows the separating hyperplane
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that realises the maximum margin γ over the training set. Results from

the statistical learning theory state that the h that grants the lowest bound

on the generalisation error is the one that maximises the separation among

positive and negative examples.
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(b) Maximal separating hyperplane.

Finding the maximal margin hyperplane translates into solving the fol-

lowing optimisation problem (hard margin):

min~w,b
1
2 ||~w||

2

subject to yi(〈~w, ~x〉+ b) ≥ 1 ∀i = 1, ...,m

(1.3)

where b ∈ R and ~w ∈ Rn. Note that, this primal formulation is obtained

after a rescaling of ~w in a way that the points lying on 〈~w, ~x〉 + b = ±γ
now lie on 〈~w, ~x〉+ b = ±1.

This quadratic convex optimisation problem has a unique global opti-

mum. Given the learnt hyperplane, the decision function is simply:

h(~x) = sgn(〈~w, ~x〉+ b) (1.4)

Solving 1.3 in its dual form can be more convenient and leads to con-

siderations that allow for the extension of the algorithm to non linearly
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separable training sets and more complex input data. By deriving the

Langrangian of the primal optimisation problem in 1.3, we first obtain:

L(~w, b, ~α) =
1

2
||~w||2 −

m∑
i=1

αi(yi(〈~w, ~x〉+ b)− 1) (1.5)

where αi ≥ 0 are the langrangian multipliers for incorporating the linear

constraints. By differentiating the Langrangian with respect to the primal

variables and setting the derivatives to be equal to 0, we obtain:

∂L(~w, b, ~α)

∂ ~w
= 0⇒ ~w =

m∑
i=1

αiyi~xi (1.6)

∂L(~w, b, ~α)

∂b
=

m∑
i=1

αiyi = 0 (1.7)

Substituting 1.6 and 1.7 in the primal Langrangian 1.5 we obtain the dual

form of the optimisation problem 1.3:

maxα∈Rm

∑m
i=1 αi − 1

2

∑m
i,j=1 yiyjαiαj〈~xi, ~xj〉

subject to αi ≥ 0 ∀i = 1, ...,m

∑m
i=1 yiαi = 0

(1.8)

In this dual formulation training data appear only in the so called Gram

matrix, of their inner products. By substituting 1.6 in 1.4, the decision

function becomes:

h(~x) = sgn(
m∑
i=1

αiyi〈~xi, ~x〉+ b)

The Karush-Khun-Tucker conditions state that the optimal solution

α∗i (~w
∗, b∗) satisfies the following relation:

α∗i (yi(〈~w∗, ~xi〉+ b∗)− 1) = 0 i = 1, ...,m (1.9)
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This implies that if α∗i = 0, the training input ~xi is not affecting ~w∗ other-

wise yi(〈~w∗, ~xi〉 + b∗) − 1 must be equal to 0, hence ~xi lies on the frontier

distant 1 from the maximal hyperplane. The latter points ~xi are the support

vectors and are the only ones of interest for characterising the separating

function. In Figure 1.11(b) the support vectors and the maximum margin

hyperplane are highlighted in orange.

Soft Margin SVM

With the aim of improving the generalisation and separability in case of

noisy data, the primal optimisation problem 1.3 can be rewritten relaxing

the constraints for taking into account classification errors. Regularisation

can be introduced in the objective function. The resulting optimisation

problem is:

minw,b,ξ
1
2 ||w||

2 + C
∑m

i=1 ξi

subject to yi(〈w, x〉+ b) ≥ 1− ξi ∀i = 1, ...,m

(1.10)

where ξi ≥ 0 are slack variables for constraints relaxation and C is the

regularisation parameter that measures the tradeoff between the misclas-

sification error and the margin maximisation. As C grows, margin errors

are more penalised. Therefore, for C →∞ the problem approximates the

solution with the hard margin. Figure 1.11 show how solving a soft margin

problem could result in larger margins and possibly better generalisation.

In some cases this regularisation can allow to solve the inseparability

of noisy data. In the next section, it is discussed how the inseparability

can be solved mapping the input data in a feature space where the inner

product provides a measure of similarity between input examples and a

separating function based on these properties.
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Figure 1.11: Soft margin SVM.

Kernel Methods

In many real-world problems dependencies aimed at making predictions are

better captured by nonlinear models. Kernels are largely used in learning

algorithms because they allow for an implicit mapping of objects of the

input space in a larger feature space where a linear separation can be used

(see Figure 1.12).

In the input space a kernel function k : X × X → R can be used as a

similarity measure. k corresponds to an inner product in a high dimensional

feature space which is in general different from the input space X . Thus k

implicitly builds a mapping φ : X → H where

k(x, x′) = 〈φ(x), φ(x′)〉 (1.11)

generalising the notion of inner product to arbitrary domains [123, 125].

This is called the kernel trick.

In the previous section we have seen as in the dual formulation of the

support vector learning optimisation problem, input data appear only in
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ϕ

Friday, 26 November 2010

Figure 1.12: Mapping in a new feature space.

the inner product, the Gram matrix. Now it easy to see that the inner

product can be substituted with a kernel function applied to an arbitrary

input domain. This leads to the following decision function:

h(x) = sgn(
m∑
i=1

αiyik(xi, x) + b)

A kernel function is symmetric and positive semi-definite (Mercer’s con-

ditions [139]). This positive definiteness grants some properties: closure

under sum, direct sum, multiplication by a scalar, product, tensor product,

zero extension, point-wise limits and exponentiation [43,69].

This properties are worth because they allow for the definition of more

complex kernel functions as a combination of simpler kernel function.

Polynomial kernels map the input space vectors into feature vectors con-

taining the same input features plus those representing their conjunctions.

It can be defined as:

k(~x, ~z) = (〈~x, ~z〉+ c)d (1.12)

where c and d are parameters. d is the degree of the polynomial kernel. If

we assume a dimension n of the input space X, the feature space dimension
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becomes
(
n+d
d

)
, corresponding to all the possible monomial up to the degree

d (a demonstration by induction can be found in [125]).

Kernels for Structured Data

Thanks to the kernel trick, algorithms like SVMs can be applied not only

to data that can be easily embedded in a Euclidean space, but also on

structured objects — like trees, graphs and strings — provided that an

appropriate kernel function can be defined on them. A survey of kernels

for structured data can be found in [62].

Special attention has been devoted to convolution kernels [69]. Convo-

lution Kernels are based on the idea that given a relation R between a

composite object and its parts, the similarity between two objects can be

evaluated composing similarity values between their parts, calculated by

defining appropriate kernels on them.

More formally let x ∈ X be a structured object composed by D “parts”

(x1, ..., xD) ∈ X1 × X2 × ... × XD. We define R as the relation between

the object and its “parts” and the corresponding decomposition relation

R−1(x) = {(x1, ..., xD) : R((x1, ..., xD), x)}. A convolution kernel on two

structured objects is given by:

k(x, x′) =
∑

(x1,...,xD)∈R−1(x)

∑
(x1,...,xD)

′∈R−1(x′)

D∏
i=1

ki(xi, x
′
i) (1.13)

Convolution kernels have been defined for structures like, sequences,

trees and graphs [62]. A typical approach consists into evaluate the simi-

larity between these structured objects in terms of number of common sub-

structures [41, 63, 97]. Some examples are k-mers in strings [92], random

walks in graphs [63], subtrees [41] or tree fragments [97] in tree structures.
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Predicting Structured Data

Predicting structured data means learning functional dependencies be-

tween arbitrary input and output domains. Given a function F : X ×Y →
R, h is chosen such that h(x) = arg maxy∈Y F (x, y).

In this context the output y has a structure, like a string, a tree or

a graph [4]. Typical application for structured output prediction include

RNA secondary structure prediction [49], named entity recognition [119],

sequence alignment learning [150] and part of speech tagging [36]. In all

these cases the output is a string. Another example is the parsing problem

in natural language processing [136] in which the input x is a sentence

while output y is a tree.

Given a novel input x, the prediction involves to search the output y

that maximises F when paired with x. The structured output prediction

problem is usually separated into a learning and a search problem. The

main issue in this learning setting is given by the large number of output

values y, which is usually exponential in the size of the input x. Therefore,

in some cases one has to resort to heuristic optimisation strategies. By

exploiting characteristics of the specific learning problem, it is possible to

devise algorithms for efficiently approximating the optimal solution, e.g.

based on dynamic programming.

Kernel machines have been adapted to structure-output prediction [136]

by addressing the following optimisation problem:

minw,ξ
1
2 ||w||

2 + C
m

∑m
i=1 ξi

s.t. 〈w, φ(xi, yi)〉 − 〈w, φ(xi, ŷ)〉 ≥ ∆(yi, ŷ)− ξi ∀ŷ ∈ Y \ yi i = 1, ...,m

(1.14)

∆(y, y′) is the loss function and represents the cost of misclassifying y

for y′,φ(x, y) is a joint feature map on input-output pairs. A measure of
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similarity ∆ must be defined also on the output space, which is usually

problem specific.

For many prediction problems this computation is intractable, due to

the exponential number of constraints appearing in the Quadratic Pro-

gramming (QP) problem in (1.14). Thus, learning w and computing h(x)

in an efficient way are the main issues.

In [136] by exploiting the structure of maximum-margin problem, a

cutting-plane algorithm is proposed. The algorithm is an iterative proce-

dure that at each step adds to the optimisation problem (that initially has

an empty set of constraints) one of the most violated constraints until con-

vergence to an approximate solution (examples are used in [136] and [150]

for protein alignment models). Thus at each iteration a smaller size QP is

solved.

1.4.3 Primer on ILP and Statistical Relational Learning

While statistical learning mainly focuses on propositional or attribute-value

representation of the data and the features induced during learning, rela-

tional learning approaches allow to retain the relational structure of the

data. This section introduces concepts and terminology from relational

learning and statistical relational learning.

Relational Learning and Hypothesis Search

In Inductive Logic Programming (ILP) [100], training examples and back-

ground knowledge, as well as the features that are induced during learn-

ing, are represented in first-order logic. More specifically, definite clauses,

which form the basis for the programming language Prolog, are used as

the representation language.

A definite clause is an expression of the form h← b1, ..., bn, where h and

the bi are atoms. Atoms are expressions of the form p(t1, ..., tn) where p/n
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is a predicate symbol of arity n and the ti are terms. Terms are constants

(denoted by lower case), variables (denoted by upper case), or structured

terms. Structured terms are expressions of the form f(t1, ..., tk), where f/k

is a functor symbol of arity k and t1, ..., tk are terms. The atom h is also

called the head of the clause, and b1, ..., bn its body. Intuitively, a clause

represents that the head h will hold whenever the body b1, ..., bn holds.

As an example, consider the atom mut(A, h, C, y) indicating a mutation

that results in the replacement of the amino acid “Histidine” by the amino

acid “Tyrosine”. The constants “h” and “y” represent “Histidine” and

“Tyrosine”, respectively. A and C are variables that are matched against

a particular example; A indicates an example identifier and C the position

at which the mutation occurs. Furthermore, consider the clause

resistant(A, nrti)← mut(A, h, C, y), position(C, 208)

encoding that a mutation resulting in a change from “Histidine” to “Ty-

rosine” and occurring at position 208 entails resistance to the drug nrti.

Such a clause can be matched against an example by grounding, and if the

matching operation is successful the clause is said to cover the example.

Let D be a set of positive and possibly negative examples in the form

of true and false facts and a background knowledge B as a set of definite

clauses. The learning problem consists of searching for a set of definite

clauses, the hypothesis H∗ = {ci, ..., cm}, covering all or most positive

examples, and none or few negative ones if available. First-order clauses

can therefore be interpreted as relational features or rules that characterise

the target concept. An example is classified as positive by the hypothesis

if it is covered by one of its clauses. More formally, B ∪ H |= x, which

means that the example is logically entailed by the hypothesis and the

background knowledge.

Finding H∗ consists of solving the maximisation problem:
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H∗ = max
H∈H

S(H,D,B) (1.15)

where S is a scoring function for evaluating the candidate hypothesis,

e.g. the accuracy.

There are different approaches to searching for an (approximately) op-

timal set of clauses within a pre-defined hypothesis space H called the lan-

guage bias. A central idea in most ILP systems is to structure the search

space H according to generality. A hypothesis G ∈ H is called more general

than another hypothesis S ∈ H, denoted G � S, if all examples covered by

S are also covered by G. The generality relation induces a lattice on the

hypothesis space H, and thus provides a way to systematically search H.

A popular approach is to search the lattice top-down, that is, from general

to specific hypotheses, using a refinement operator. A refinement operator

ρ takes a clause c and returns all specialisation c′ ∈ ρ(c) of the clause that

fall within the language bias. In the simplest case, these specialisation (or

refinements) are obtained by simply appending a literal to the clause c. For

example, the clause c′ =← mut(A, h, C, y), position(C, 208) is a refinement

of the clause c =← mut(A, h, C, y). Note that c will match any example

matched by c′; thus, a hypothesis in which the clause c is replaced by the

clause c′ becomes more specific.

Top-down search based on refinement operators is the main principle

underlying many ILP algorithms. For instance, incremental rule learners

such as the well-known FOIL algorithm greedily search for a set of clauses

that covers all positive examples by performing a hill-climbing search in

the hypothesis space using a refinement operator [115].

The main advantages of logic-based learning with respect to other ma-

chine learning techniques is the expressivity and interpretability of the

learnt models and the possibility to make use of specific background knowl-

edge. Models can be readily interpreted by human experts and provide
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direct explanations for the predictions. Furthermore, they provide the

ability to deal with complex structured data and to learn relations among

substructures.

Statistical Relational Learning

Statistical Relational Learning (SRL) techniques (see [64] for a broad intro-

duction) combine the advantages of Inductive Logic Programming (ILP)

and Statistical Learning, namely the ability to learn a model of the con-

cepts that can be readily interpreted by a human domain-expert and, the

robustness principles of the statistical learning theory. These characteris-

tics make these techniques very appealing for bioinformatic tasks.

In [87] a framework for the integration of the two approaches is defined.

It consists in solving an integrated optimisation problem:

max
H∈H

max
f∈FH

S(f,D,B). (1.16)

Here, H denotes the logical hypothesis space under consideration, i.e. the

set of all possible sets of clauses. f is a function chosen in the set of all

possible functions FH that can be represented based on the hypothesis

H and it maps input examples into the outputs f(x;H,B) : X → Y . S

denotes a scoring function that measures the predictive performance of f

on the training data D, and B the available logical background knowledge.

The learning problem consists of jointly optimising the logical hypoth-

esis H and the function f(x;H,B) [87]. Indeed, an outer and an inner

optimisation problems can be identified in this formulation. In the follow-

ing, we will refer to the outer optimisation problem as hypothesis learning

and the inner optimisation problem as function learning.

Hypothesis learning implies searching in a discrete space of candidate

solutions, which is a complex task. Thus, heuristic strategies are employed.

In contrast, function learning takes place in a continuous space, for which

34



CHAPTER 1. INTRODUCTION 1.4. MACHINE LEARNING TECHNIQUES

principled search techniques are available. It is thus unclear whether scor-

ing functions employed for function learning are also suitable for hypoth-

esis learning. Statistical relational learning systems often employ different

scoring functions for learning the logical model structure and the statistical

part of the model. Problem (1.16) should therefore be generalised to the

following formulation:

max
H∈H

SO

(
arg max
f∈FH

SI(f,D,B),D,B
)

(1.17)

where SO and SI are the scoring functions used for hypothesis and function

learning respectively (see [87] for a more detailed discussion).

An simple example of defining of function f and SI is to replace the

logical coverage notion with:

f(x;H,B) =

1 if B ∪H |= p(x)

−1 otherwise
(1.18)

and to define a scoring function that corresponds to the opposite of the

empirical risk:

SI(f,D,B) = − 1

m

m∑
i=1

I[f(xi;H,B) 6= yi] (1.19)

where the indicator function compute the 0-1 loss. The same considera-

tions made in the previous sections can be applied for solving this inner

optimisation problem.

The defined SRL framework fits a number of settings proposed in the

literature as discussed in [87]. For example Stochastic Logic Programs [99],

Bayesian Logic Programs [79], Markov Logic Networks [83] and kFOIL [86].
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1.4.4 Measuring and Comparing the Performance of Learning

Algorithms

Evaluating the performance of a learning algorithm and comparing it with

those of other learning algorithms requires to define performance measures.

Here is a list of the most used in machine learning that are also used for

evaluating the approaches proposed in this thesis:

• Accuracy = t++t−

t++f++t−+f−

• Precision = t+

t++f+ (P)

• Recall or Sensitivity or TP rate = t+

t++f− (R)

• FP rate (1-specificity) = f+

t−+f+ (FPR)

• F1 measure, F1 = 2×Precision×Recall
Precision+Recall (F1)

• Matthews Correlation Coefficient = t+t−−f+f−√
(t++f+)(t++f−)(t−+f−)(t−+f+)

(MCC)

• Area Under the Receiver Operator Characteristic (ROC) Curve (AU-

CROC)

• Area Under the Recall/Precision Curve (AUCRP)

where t+, t−, f+, f− are the true positives, true negatives, false positives

and false negatives respectively. F1 is the harmonic mean between Recall

and Precision, giving equal weight to the two complementary measures.

ROC and RP curves and their areas provide a broader picture of a classifier

performance, as they do not require to choose a fixed decision threshold

to discriminate positive and negative examples, but evaluate all possible

thresholds. For highly skewed datasets, the area under the RP curve is

more informative than the area under the ROC [48].
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1.5 Aspects of Innovation

By drawing on solving the problem of determining the molecular function

of an enzyme, this thesis aims at investigating and developing effective and

advanced machine learning approaches that could help in the identification

of novel protein functions and understanding the mechanisms allowing an

enzyme to operate.

The proposed approaches face satellite tasks all aiming at solving the

complex problem of protein function discovery and characterisation, ap-

proaching it from two main different viewpoints: the target protein struc-

ture and its interactions with other molecules, and the analysis of the target

protein mutation data.

The first main contribution of the thesis is the realisation of a predictor

of functional residues and the active site they belong to, starting from either

sequence or structural information. The identification of enzyme functional

residues is fundamental in applications like molecular docking and de novo

drug design, the engineering of new drugs fitting a certain function. The

prediction of functional residues can be very useful for guiding site-directed

mutagenesis experiments or inhibition studies. Both techniques are used

to validate a formulated hypothesis about the protein molecular function

and eventually produce enzyme mutants with improved activities.

The predictors take a discriminative learning approach and are based

on support vector classifiers. The proposed structure-based predictor is

able to significantly improve state-of-the-art predictive performance on the

functional residue learning task [158]. This result is obtained thanks to

the development of an effective representation of the structural informa-

tion that models spherical regions around candidate residues and extracts

statistics on the properties of their content. The statistically significant

improvement is obtained on six different benchmark datasets that, in the
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whole, cover a set of more than seven-hundred enzymes in the PDB.

With the aim of collectively predicting all the residues belonging to the

same functional site, a structured-output learning approach is proposed

[162]. The problem of detecting functional sites in the protein is formulated

as the problem of identifying groups of functional residues composing them.

Two slightly different distance-based supervised clustering approaches

are devised for sequence and structure-based prediction. In the case of

sequence-based prediction training proteins are employed to learn a proper

distance function between residues. The learning stage simply consists of

training a pairwise support vector machine to obtain a classification func-

tion predicting for each pair of residues whether they belong to the same

site. For structure-based prediction the distance function is the Euclidian

distance between residues. Residue weights are also considered, that cor-

respond to their catalytic propensity as predicted by the previously built

state-of-the-art support vector predictor.

In both prediction settings, after the learning stage, a partial cluster-

ing is returned by searching for maximum-weight cliques in the resulting

weighted graph representation of proteins. A stochastic local search algo-

rithm based on tabu search is employed to efficiently generate approximate

solutions.

The rationale for the approach is that given a reasonable pairwise simi-

larity measure, the algorithm should isolate few densely connected compo-

nents which correspond to the desired solution while discarding most of the

nodes in the graph. The proposed method is shown to achieve significant

improvements over the support vector classifier performance alone. There-

fore, in the case of structure-based prediction, it further improves over the

state-of-the-art performance on the largest available benchmark dataset.

This thesis also presents CatANalyst a web server, freely accessible at

http://catanalyst.disi.unitn.it
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which provides the described functional residue prediction service to the

public of researchers.

The CatANalyst predictor is shown to be useful in real case studies.

First, for discovering residues that could affect the enzyme active site.

This is done by analysing mutants of an amidase enzyme [45], generated

by random mutagenesis experiments, and correlating their functional site

predictions with those of the wild type enzyme. Second, for directly pre-

dicting functional residues of the same enzyme starting from its predicted

3D model [154].

The second main contribution of the thesis is in the investigation of sta-

tistical relational learning approaches for mining relevant feature from the

protein mutation data — for example those of the reverse transcriptase,

an HIV enzyme which is essential for the success of the viral propagation.

Mutagenesis data produced need to be analysed to gain insights about the

properties of a functional site and of the residues involved. The mined

information can be used to engineer mutants of the enzyme with an im-

proved activity on a certain substrate or, as in the case of HIV, to predict

the virus evolution and its response to specific drugs and devise the appro-

priate countermeasures.

Two statistical relational learning approaches are proposed. The first

one is a hierarchical multitask statistical relational approach [155]. kFOIL

is chosen as statistical relational learner, which combines techniques from

inductive logic programming —– specifically, the FOIL algorithm [115] –—

with kernel methods.

A hierarchical extension of the multitask kFOIL algorithm is proposed

for mining relevant relational features explaining the resistance of enzyme

mutants to certain inhibitors, as in the case of HIV reverse transcriptase.

The activity or resistance of an enzyme and its mutants is usually experi-

mentally evaluated on a number of different substrates (drugs). Exploiting
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the information on related classification tasks can be useful for improving

predictive performance. Multitask classification is here useful for learning

models that are general and can benefit from tasks relatedness. Drugs are

usually organised in groups depending on their phisico-chemical charac-

teristics or their target sites. In order to exploit these relationships, the

kFOIL extension proposes a hierarchical approach that first learns a core

logic representation common to all tasks, and then refines it by speciali-

sation on a per-task basis. The approach can be generalised to a deeper

hierarchy of tasks, for instance, when learning the resistance of a mutant

to an inhibitor or a specific class of inhibitors. Experimental results show

the advantage of the hierarchical version over both single and multi task

alternatives and its potential usefulness in providing explanatory features

for the domain.

A clustering approach is also proposed for learning the latent structure

among related tasks when this is not known [156]. Task clustering allows to

further improve the predictive performance. The major advantage of this

hierarchical strategy is the ability to provide explanations for the learnt

models which are themselves hierarchical: a subset of relational features

relevant to all tasks can be identified together with more specific task-

dependent ones.

A relational learning approach is also proposed [160], which aims at

employing the mined features for engineering novel enzymes with useful

functions. First, mutation data are used to learn a set of relational rules

characterising the resistance to a certain inhibitor. Then, these rules are

used for generating a set of candidate mutations that are most probable to

confer drug resistance. At the author’s knowledge this is the first attempt

to learn relational features of mutations affecting a protein behaviour and

use them for generating novel relevant mutations. The approach is tested

on a dataset of HIV drug resistance mutations, comparing it to a baseline
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random generator. Statistically significant improvements are obtained on

both categories of nucleoside and non-nucleoside HIV reverse transcriptase

inhibitors. The promising preliminary results suggest that the proposed

approach for learning mutations has a potential in guiding mutant engi-

neering, as well as in predicting virus evolution in order to try and devise

appropriate countermeasures. The approach can be generalised to learn

mutants characterised by more complex rules correlating multiple muta-

tions as those learnt with the kFOIL.

It is worth to underline that all the techniques proposed in this the-

sis can be potentially applied to many other learning problems and they

are not confined to the enzyme characterisation. The same discriminative

learning approaches and representation implemented in CatANalyst can

be, for instance, used for predicting binding residues at the interfaces of

protein-protein interactions. The structured output learning approach is

actually shown to be effective also for predicting metal binding sites. The

hierarchical relational learning approach can be easily applied to other

learning tasks. In particular it is shown to be useful for classifying protein

structures into folds. Finally, the generative approach, aims in general at

modifying complex structures to improve certain properties, by exploiting

statistical relational learning techniques to efficiently constraint the search

space.

1.6 Structure of the Thesis

The rest of thesis is composed of two main parts. The first part focuses on

the prediction of enzyme functional residues and functional sites they be-

long to. Chapter 2 introduces the problem of functional site identification

in enzymes and Chapter 2.2 presents the most popular approaches used for

the detection of functional residues and functional sites. The proposed ap-
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proaches are presented in the subsequent chapters. First, a support vector

learning approach is described (Chapter 3) and the web server CatANalyst

implementing it is presented (Chapter 5). Chapter 4 reports details on the

distance-based supervised clustering approach for the collective prediction

of the functional residues and the active site they belong to.

The second part focuses on mining relevant relational features from

enzyme mutation data to gain insights about the characteristics of residues

that can affect an enzyme function. First, an introduction to the topic of

learning from mutations is given (Chapter 6), followed by an overview

of the state-of-the-art methods for learning from mutation data (Chapter

6.2). Subsequent chapters presents two related approaches. The first, in

Chapter 7, proposes a hierarchical multitask statistical relational learning

approach for learning from mutation data exploiting the tasks relatedness

and structure. The second, in Chapter 8, starting from a relational model

of a mutation or a mutant aims at generating novel instances satisfying the

learnt model.
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Functional Residue Prediction





Chapter 2

Identifying Functionally Important

Residues

In this part of the manuscript the focus is on the prediction of residues

composing an active site. The aim is characterising the function of en-

zymes, but the proposed approach can be easily generalised to the other

kind of proteins.

2.1 Introduction and Background

Enzymes are those proteins whose role is to catalyse chemical reactions

inside a cell. The enzyme works by forming complexes with the reactants

and in doing so it lowers the activation energy of the reactions thus increas-

ing their rate. This process is the catalysis. The simplest reaction one can

think of works in the following way: the enzyme (E) forms a complex with

the reactant, namely a substrate (S), which is usually a small molecule.

The resulting complex (ES) is then transformed into (EP) the product of

the reaction (P) plus the free enzyme (E), which is again ready for reacting

with another molecule (S).

E + S ⇐⇒ ES ⇐⇒ EP ⇐⇒ E + P
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By analysing enzyme crystal structures, two constant elements of the

molecular conformation of the active sites emerge. The first is the presence

of a “pocket”, which is devoted to receive the substrate for modifying

it. The second is the presence of chemical groups with catalytic function

located in specific positions of the molecule.

These residues that are directly involved in the catalytic process consti-

tute the active site, while residues in the surrounding space play the role of

attracting and orienting the molecule to bind, and constitute the binding

domain. The first kind of residues is of interest in the present study. In

the following they are referred to as functional or catalytic residues. For

instance, two enzymes that are able to bind the same substrate can modify

it in different ways. This implies that they have different active sites and

perform different functions.

A graph representation of a catalytic triad in an enzyme is shown in

Figure 2.1. The vertices of the graph represent amino acids connected in a

chain by peptide bonds (grey edges). Functional residues are highlighted

in red. Even if they are far apart along the primary sequence:

Dr . . . D2D1A1B1B2 . . . BnA2C1C2 . . . CmA3E1E2 . . . Es

they become close one to each other when the polypeptide chain folds in

the tertiary structure. The proximity in the 3D space allows the residues

to reciprocally interact and/or to interact with the substrate and other

molecules, for example water.

Identifying the characteristics that allow to discriminate a functional

residue from a non-functional one is quite difficult. Local structural infor-

mation can be useful for characterising the catalytic core in which func-

tional residues are typically buried. Residue conservation can be another

important discriminative feature. Usually functional residues are more

conserved than other across evolution because the protein function should
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Figure 2.1: Active site schematisation.

be preserved.

In order to accomplish their biological function, enzymes often interact

also with different types of external molecules, called cofactors (see sec-

tion 1.2.2). Some examples of cofactors are: metal ions, prosthetic groups

and various organic compounds.

The present study adheres to the definition of enzyme catalytic residue

proposed in [7], and here reported. A residue is functional if one of the

following cases is verified:

1. the residue is directly involved in the catalytic mechanism (e.g. nu-

cleophiles, proton-donors).

2. the residue exerts an effect on another residue or water molecule which

is directly involved in the catalytic mechanism which aids catalysis

(e.g. by electrostatic or acid–base action).

3. the residue stabilises a proposed transition-state intermediate.
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4. the residue exerts an effect on a substrate or cofactor which aids catal-

ysis, e.g. by polarising a bond which is to be broken. Includes steric

and electrostatic effects.

Therefore, according to this definition solely binding substrates, cofactors

or metals, which are often involved in enzymatic reactions, does not charac-

terise a residue as catalytic. The same definition is applied in the Catalytic

Site Atlas (CSA) [113], the reference database for functional residue anno-

tations.

Metal ions are a category of cofactors that require special attention

in this context. Many of them are crucial for the catalytic activity of an

enzyme. Other are important for stabilising its three-dimensional structure

and inducing conformational changes as in other metalloproteins [16].

In methylmalonyl coa decarboxylase [13] the nichel ion has the structural

role of holding the chains together as shown in Figure 2.2(a). The catalytic

pockets are located in different places of the polypeptide chains highlighted

with purple circles.

In a metalloenzyme like the carbonic anhydrase (E.C. 4.2.1.1) — which

catalyses the conversion of carbon dioxide (CO2) and water in bicarbonate

(H2CO3) — a zinc ion is essential for the catalytic mechanisms (see Figure

2.2(b)). The zinc ion in the active site is coordinated by three hystidine

residues. The zinc ion polarises the water molecule and in this way allows

for the acceleration of the nucleophilic attack of the carbon dioxide.

Predicting metal binding sites and the residues that compose them is a

a task strictly related to the identification of enzyme catalytic sites. In the

example given above, the hystidines just coordinate the zinc ion, which has

a catalytic role. The three hystidine residues are part of a metal binding

site but their are not functional residues.

Discriminating among functional and metal binding residues is quite

difficult and the two tasks have been always tackled separately.
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(a) Methylmalonyl coa decarboxylase (PDB code

1EF8)

(b) Human carbonic anhydrase (PDB code

1CA2)

Figure 2.2: Roles of metal ions in enzymes. (a) The metal binding site and the catalytic

sites are located in different parts of the polypeptide chain. The nichel ion has a structural

role. (b) The zinc ion binding site is located in the catalytic pocket, which also contain a

water molecule.

In this part of the thesis two approaches are proposed for the identifica-

tion of functional residues and the active sites they belong to respectively.

The approaches are depicted in Figure 2.3.

All of them are based on support vector learning. The first one realises

a standard binary classification tasks for predicting whether a residue has

a functional role within a protein. A linear classifier is built based on

features extracted from the protein sequence and structural information.

The structure based approach exploits the protein structural information

by representing the spherical neighbourhood of a residue. The last one is

an approach for the collective prediction of functional residues in the same

active site. It exploits engineered features and classifiers developed for the

previous approaches and, building upon them, it mines densely connected
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Figure 2.3: Three different proposed approaches for active site identification.

clusters of functional residues in the protein. The approach is also applied

to the related task of predicting metal binding sites.
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2.2 State of the Art

Traditional approaches to functional site identification use homology-based

strategies. Novel protein function is inferred by aligning the sequences or

by superimposing the structures with already annotated proteins.

The research work in [154] is an example of approach tipically used by

biologists for discovering active sites in a protein based on in vitro experi-

ments guided by homology with other annotated proteins. The hypothesis

being investigated is the presence in an amidase enzyme (EC 3.5.1.4) of a

catalytic site similar to that of nitrilases (EC 3.5.5.1). The hypothesis is

suggested by laboratory experiments and by the predicted model of three-

dimensional structure of the enzyme, and then confirmed by site-directed

mutagenesis experiments and by inhibition studies. Characterising the

enzyme functional site requires months of study and the expertise of re-

searchers and biologists on a single target protein at a time. Automatic

approaches can significantly speed up the whole process.

In [96], active sites of non annotated proteins in the Pfam database [58],

which contains about 8,200 protein families, are predicted by using a rule-

based technique which exploits the homology and sequence similarity with

other annotated proteins. The methodology is based on the transfer of

experimentally determined active site data to other sequences within the

same Pfam family. The authors show that it is possible to gain functional

annotation of a large number of sequences in the Pfam database (enzymatic

families) for which the residues responsible for catalysis have not been

determined.

By using family-based resources like Pfam, which cluster sequences into

evolutionary families, it is possible to annotate a large number of proteins.

However, even within the same family proteins can perform many differ-

ent functions, and an accurate annotation is not possible without man-
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ual validation and automatic approaches for the detection of the specific

function-discriminating residues [90]. A further issue that could rise, even

with a high percentage of sequence identity, is the erroneous annotation of

multi-domain sequences [135].

By knowing the protein three-dimensional structure it is possible to

overcome many of the problems rose by sequence similarity, as it is better

preserved with respect to the sequence during evolution. However, an

annotated homologue of the target protein needs to be available, preventing

the applicability of homology-based strategies to novel folds.

A number of researchers have recently tackled the problem of func-

tional residues prediction. In [95] we can see the first general approach to

structure searches based on local characteristics of the active site rather

than exclusively on the overall fold similarity. The authors showed that

a three-dimensional signature consisting of only a few functionally impor-

tant residues can be diagnostic of membership in a superfamily of enzymes

which can represent a first step in the inference of some functional proper-

ties. This membership results not only from fold similarity but also from

the disposition of residues involved in a conserved function.

In [82], the authors propose a methodology for predicting active sites

from the protein structure. The proposed methodology combines statistical

analysis with the extraction of information from the shapes of the theo-

retical titration curves calculated for the ionizable residues in a protein.

The authors observe that residues with significantly perturbed predicted

titration behaviour tend to occur in the active site of an enzyme and in

binding sites of proteins. This phenomenon is observed to such a great

extent that the mentioned residues serve as revealing markers of reactivity

and recognition. The algorithm is able to identify these perturbed residues

(positive residues) and searches for clusters of two or more such residues

in physical proximity. These clusters are considered accurate predictors of
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interaction sites. The method, as the authors underline, is independent

from structural comparisons thus can be applied to proteins with few or

no known close homologues.

In [103] the authors generated three-dimensional templates of protein

active sites with rigid prosthetic groups. Their approach is based on the

simultaneous alignment of several protein structures, and relies on local

atomic-level similarities based on multiple comparisons. The generated

patterns include 3D atomic coordinates, position of chemical groups, and

cavity locations. However the approach remains limited to the subset of

proteins having rigid prosthetic groups.

Machine learning approaches to the automatic identification of protein

functional residues have been investigated in recent years. The problem

has been mostly formalised as a binary classification task at the residue

level. These algorithms provide a valid alternative when the homology-

based transfer cannot be applied, thanks to their capacity of providing the

contribution of specific attributes to the classification. They can be very

useful for suggesting candidate residues to be experimentally verified and

potentially allowing automatic annotation of functional residues.

Petrova and Wu [111] and Youn et al. [149] have addressed the functional

residue prediction with a Support Vector Machine (SVM) fed with both

protein sequence and structural properties. Capra and Singh [31] relied on

an information-theoretic approach for estimating sequence conservation.

The authors show that conservation of sequentially close residues improves

predictive performance, especially when catalytic residues are involved.

In [59], carefully crafted conservation scores were shown to play a major

role in predictive performance. Closeness centrality measures [37] have

been used in [128] to improve catalytic residue prediction by using neural

networks trained with a genetic algorithm. A review on approaches and

applications for structure-based protein function prediction can be found

53



2.2. STATE OF THE ART CHAPTER 2. IDENTIFYING FUNCTIONAL SITES

in [66]. A recent study [151] showed that sequence information alone could

provide results similar to those obtained by previous structure-based meth-

ods. This seems to indicate that much work has still to be done in order to

fully exploit the information contained in protein three-dimensional struc-

tures. Recent approaches investigated the use of topological [145], electro-

static [142] and graph theoretic [2] structured-based features for predicting

ligand binding sites or protein functional sites. THEMATICS [105] elec-

trostatic features and geometric features are combined with sequence con-

servation features in a maximum likelihood approach called Partial Order

Optimum Likelihood (POOL) [134]. The authors underline the key role

of THEMATICS features which are extracted from the residue theoretical

titration curves.

Few servers for functional residue prediction exist. They mostly rely on

primary sequence only (CPred [151], FRpred [59]) or evolutionary analysis

(INTREPID [122]). However, correctly identifying functional residues is

an extremely challenging task even when the protein tertiary structure is

known. Available structure-based online predictors focus on the identifica-

tion of the pocket in which active site residues could be located [89], or allow

for searching the protein structure for a limited set of three-dimensional

motifs [67]. THEMATICS approach is an example of structure-based pre-

dictor that characterises each single residue with electrostatic features ex-

tracted from the titration curves [142].

Prediction of metal binding sites is a task closely related to the func-

tional residue prediction task. Both problems are fundamental for under-

standing the role of residues in the active site. Residues are sometimes

involved in the catalytic process and also in binding a metal ion, in other

cases binding a catalytic metal ion does not implies that the residue has a

functional role.

The task of metal binding site prediction has been mostly addressed
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as a binary classification task at the residue level: given a protein se-

quence, predict for each residue whether it is involved in a metal binding

site [107], [126]. Most existing approaches for modelling the full metal bind-

ing geometry assume knowledge of the 3D structure of the protein [3, 54]

and focus on detecting apo-proteins, i.e. proteins solved without the ion.

A recent attempt [60] to predict metal binding geometry from sequence

formulates the problem as a structured-output task. The proposed solu-

tion is a search algorithm greedily assigning residues to ions (or a default

nil ion if predicted as free) guided by a scoring function trained to rank

correct moves higher than incorrect ones. The algorithm is guaranteed to

find the solution maximising the overall score, given the matroid structure

of the problem. However, the scoring function is learnt from examples and

there is no guarantee that it correctly approximates the true underlying

function.
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Chapter 3

A Support Vector Learning

Approach

This chapter describes a support vector learning approach for functional

residue prediction [158]. It shows how to effectively employ the protein 3D

structure information by modelling the structural neighbourhood of can-

didate residues, represented as a sphere centred on the residue side chain.

Such neighbourhood information is encoded with statistics on the prop-

erties of its content, such as physico-chemical properties, atomic density,

flexibility, presence of water molecules.

A support vector machine is trained combining the structural neigh-

bourhood features with evolutionary enriched sequence information as well

as previously developed 3D features [111]. The structure-based method

achieves improvements over both sequence-based and structure-based state-

of-the-art predictors, as measured on a set of benchmark datasets with

varying characteristics, and structural neighbourhood information is shown

to be responsible for such improvements.

The additional investigation of the role of ligand information in presence

of heterogen molecules, playing possible catalytic or structural roles, shows

that exploiting such information in both sequence-based and structure-

based active site predictions is an interesting direction for further research.
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3.1 The Learning Task

Functional residue prediction can be cast into a binary classification task

at the residue level, namely predicting for each residue of a given protein,

whether it is directly involved in the catalysis or not. The learning task

is addressed with an SVM and devising a residue vectorial representation

that exploits information related to the properties of the local structure

surrounding a residue.

3.2 Engineering Residue Features

Different sets of features are extracted from both primary and tertiary

protein structure in order to represent candidate residues. Tables 3.1 and

3.2 summarise extracted sequence and structural features respectively.

3.2.1 Features Extracted from the Sequence

The features extracted from the primary sequence encode characteristics

of the target residues and evolutionary information (see Table 3.1):

Features Description

1D1 Target amino acid name

1D2 Target amino acid type

1D3 Conservation profiles

Table 3.1: Sequence-based Features Representation: features extracted from the protein

sequence

1D1 encodes the amino acid name of the residue.

1D2 encodes the amino acid type of the residue based on its physico-

chemical properties: H, R, K, E, D as charged; Q, T, S, N, C, Y,

W as polar and G, F, L, M, A, I, P, V as hydrophobic [7].
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1D3 encodes evolutionary information in the form of multiple alignment

profiles.

1D1 and 1D2 are categorical (or nominal) attributes, and are encoded

one-hot: each attribute is encoded with a vector of bits of size equal to the

number of possible attribute values; value k is encoded with a vector hav-

ing one at position k, and zero at all other positions. 1D3 is a real vector of

conservation profiles computed from multiple alignments. We performed

a two iteration Position-Specific Iterative Blast Search (PSI-Blast) [1] on

a database of non-redundant protein sequences (nr) (downloadable from

ftp://ftp.ncbi.nlm.nih.gov/blast/db/). A threshold of 5 · 10−3 on the ex-

pectation value was employed for both initial iteration and extending hits.

We enriched the profile extracted from the multiple alignment with two

values indicating its informativeness and reliability, namely profile entropy

and weight of the conservation profile with respect to pseudocounts.

3.2.2 Modelling a Residue Structural Neighbourhood

We represent a residue in the 3D space as a single representative point, the

centroid of its side-chain atoms (point SC in Figure 3.1), since such atoms

are more likely to be involved in the catalysis. The single representative

point of a glycine residue is the carbon-alpha (Cα) atom.

Given such a 3D representation of residues, we define the structural

neighbourhood of a residue x as the set of residues and molecules contained

in the volume of a sphere centred on x (x will be a target residue in our

setting).

One can consider spherical regions of different radius. The radius of the

sphere is fixed to a maximum of 8 Å which is the maximum interaction

distance between a residue and a water molecule. The rationale behind

this choice is that the interaction with a water molecule is very important
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Figure 3.1: A residue 3D representation: point SC is the side-chain centroid, which we

used as the residue representative point.

for the catalysis in enzymes like the hydrolases.

As an example, Figure 3.2 shows the crystal structure of L-arginine

glycine amidinotransferase (PDB code 1JDW), a mitochondrial enzyme

involved in the creatine biosynthesis. The catalytic pocket is highlighted

and the catalytic triad of residues is shown: ASP254, CYS407, HIS303 [73].

The cysteine is the nucleophile and binds the carbon on the substrate

(arginine) side chain. The histidine activates the substrate to deprotonate

CYS407 and deprotonates glycine, while the aspartic acid primes the histi-

dine by activating water, a cofactor or a residue. In Figure 3.3(a) we show

the 8 Å sphere centred on the HYS303 residue: the sphere contains all

active site residues (shown in green). In Figure 3.3(b) we show the same

sphere with residues represented with their side-chain centroids.
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Figure 3.2: The L-arginine:glycine amidinotransferase (1JDW) and its highlighted cat-

alytic pocket.
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(a) Active site 8 Å sphere of L-arginine:glycine amidino-
transferase (1JDW) centered on catalytic residue HYS303.
The three catalytic residues are shown in green.

(b) Side-chain centroids within the 8 Å sphere of L-
arginine:glycine amidinotransferase (1JDW) centered on
HYS303. The three catalytic residues are shown in green.

1

Figure 3.3: A residue structural neighbourhood.

3.2.3 Features Extracted from the Structure

Features characterising a residue can be extracted from the protein struc-

ture if available. We showed (see section 3.3) that extracting features from

a residue neighbourhood, thus exploiting the locality of the protein struc-

ture, can be useful to discriminate between functional and non functional

residues. Table 3.2 summarises the scalar features we extracted from the

residue 3D neighbourhood. The first group contains statistics on the prop-

erties of the neighbourhood content, while the second encodes information

on possible ligands contained in the neighbourhood. Each row in the table

corresponds to an attribute or a set of attributes encoding the properties

specified in the description. In the following we provide a detailed descrip-

tion of such features.

In Figure 3.4 we provide an example of feature vector extracted from

the 3D-structural neighbourhood of the target residue (GLU 988 of the

PDB protein structure 1A26).
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Features Description

3D1 Physical and chemical properties (amino acid attributes)

3D2 Amino acidic composition

3D3 Charge/Neutrality

3D4 Water molecule quantity

3D5 Atomic density

3D6 Flexibility B-factor

3D7 Disulphide bond

3D8 Heterogens

3D9 Cofactor binding

Table 3.2: Structured-based Features Representation: scalar features extracted from the

residue structural neighbourhood.

Statistics of the Residue Structural Neighbourhood Properties

The first set of features encodes aggregate values representing properties

of the atoms included in the sphere.

3D1 encodes chemical and physical properties of the residue neighbour-

hood. This set of attributes represents properties such as hydropho-

bicity, polarity, polarizability and Van der Waals volume of the neigh-

bouring residues. They are encoded in a three bin distribution (nor-

malised number of residues with low, medium, high hydrophobicity,

polarity, polarizability and Van der Waals volume) according to the

indices reported in the Amino Acid Index Database [77]. The same

encoding was used in [22] for protein function classification.

3D2 encodes the amino acid composition of the 3D sphere, represented as

the frequency of occurrence of each one of the twenty amino acids.

3D3 represents charge or neutrality of the 3D sphere, encoded into three

values: the number of positively charged residues, the number of neg-

atively charged residues and their sum.
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3D4 encodes the quantity of water in the sphere, measured as the number

of water molecules within the sphere radius. This group of attributes

is motivated by the fact that an active site is usually located in a

hydrophobic core of the protein, while on the surface the quantity

of water is higher and the residues exposed to the solvent are not

hydrophobic.

3D5 measures the atomic density of the sphere, calculated as the total

number of atoms it contains.

3D6 represents the residue temperature factor (B-factor), as a measure of

the residue flexibility. It is calculated as the average of the atomic

B-factors of atoms composing the residue, normalised over the whole

protein. As the temperature factor could depend on the crystal struc-

ture, normalising over the whole protein helps to exclude the varia-

tions that can be present among different protein crystal structures.

Note that in [111] an unnormalized version of the residue B-factor was

employed instead.

Ligand Features

In oxidising environments, cysteines tend to form covalent bonds called

disulphide bridges, which help stabilising the 3D structure of the protein.

Disulphide bonded cysteines are usually not involved in the catalytic pro-

cess: in the PW dataset of 79 enzymes the only exception is given by a

protein disulphide isomerase (PDB code 1MEK). It has two catalytic cys-

teine residues in a thioredoxin domain similar to one of the well-known

thioredoxin proteins. We encoded information on bridges by a flag (3D7)

indicating whether the target residue is a disulphide bonded cysteine.

Enzymes often employ cofactors in order to help interacting with the

substrate. Therefore, the presence of a cofactor in the structural neigh-
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bourhood of a certain residue is an indication that the area could be an

active site. On the other hand, many heterogens bind residues for struc-

tural rather than catalytic purposes, like NI in the methylmalonyl coa

decarboxylase (PDB code 1EF8) [13] which is involved in trimerization.

The Het-PDB Navi database [148] provides information on a large set

of small molecules found in the protein structures of the PDB. For exam-

ple information about the reaction in which the cofactors, substrates and

products are involved, and the cofactor interface propensity. A description

of the mechanisms of the catalysis is included in the CSA functional anno-

tations whenever such information is available. It describes the role of the

cofactors and which are the substrates and products of the reaction.

In the dataset that we used for the feature engineering, 51 out of 79 en-

zyme structures contain heterogen molecules. For the remaining structures

we can not say whether they are apoenzymes or they just do not require

any help from cofactors during the catalysis. In the former case, methods

for predicting metal-binding sites in apo protein structures [3] may be used

to identify the presence of possible cofactors.

In Figure 3.5 we show a histogram of the most frequent heterogens we

found in the PW dataset. Each one of those heterogens appears at least

in two protein structures. All the details about the heterogens and their 3

letter code in PDB can be found in the Het-PDB Navi database [148].

According to our analysis on this set of proteins, most of those hetero-

gens have a demonstrated or putative role in the catalytic process (ZN,

NAG, NAD, BME, MG, MN, U5P, ADP, HEM, FAD, MPD), while for

others this role can be clearly ruled out (CL, NA, K, MAN), or it is just

uncertain (PO4, SO4, POP).

In order to correctly encode discriminant features related to the presence

of cofactors, we divided the heterogen molecules into groups (at least the

71 we found in the PDB dataset, excluding DNA molecules) based on their
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physico-chemical, functional, spatial or shape characteristics.

As an example, in this dataset of 79 enzymes ZN usually has a verified

role within the active site, thus we considered it as a primarily catalytic

cofactor. Actually among the whole set of known enzymes there are cases,

such as the DNA glycosylase, having a zinc-finger in which ZN has a struc-

tural role. We believe other features of the residue 3D neighbourhood (e.g.

four cysteine residues in the same sphere around a ZN atom) should help

discriminating functional from non functional residues in these cases.

We analysed the distances of the heterogens from the catalytic residues,

representing each heterogen by the centroid of the atoms composing it. We

observed that the role mentioned in the literature is correctly reflected by

the distribution of the distances from the catalytic residues. Figure 3.6

reports histograms of the distance of each one of the most frequent hetero-

gen from catalytic residues. The first three rows contain heterogens having

a role in the catalytic site: the peak of the frequencies is around values

between 3 Å and about 15 Å depending on the space occupancy of the

molecule. One exception is given by the N-acetyl-D-glucosamine (NAG)

which is a monosaccharide that takes part in enzymatic processes like gly-

cosilation: its average distance from the protein will make its presence

in the residues neighbourhood quite a rare event. The fourth row of his-

tograms relates to non-catalytic heterogens: the frequency peak is shifted

around values greater than 15 Å, even for single ions such as CL, NA and

K. Finally, the last row contains heterogens for which the distribution of

distances does not allow to indicate a clear proximity or remoteness with

respect to the catalytic site. In fact they appear as part of protein sites

which are not annotated as catalytic.

By merging the above-mentioned literature-based information with our

analysis of the distances from catalytic residues, we derived the final clas-

sification into three groups reported in Table 3.3.
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Class Heterogens

catalytic FE2, MN, CU1, MG, ZN3, ZN, HEM, HEG, HEC, SRM,

MPD, MRD, FOK, PLP, P5P, PHS, OWQ, NO3, FS4,

SF4, PVL, PYR, SEG, DHZ, FMT, HAD, CIT, ACN,

PAC, ACT, 2PE, CNA, U5P, IKT, PGC, PGH, IMU,

F6P, IMP, EEB, GLP, FBP, UD1, FCN, AZA, CRB,

DHS, BME, ATP, ADP, GSH, FAD, FMN, SAM, AMP,

NAD, GDP, GTP, GMP, MHF, NDP, NAG, NRI

non-catalytic K, NA, NI, FE, CA, CL, SAC, FCY, PCA, MES, MAN

uncertain PO4, PI, IPS, POP, SO4, SUL, GOL

Table 3.3: Classification of the heterogens into three groups.

We encoded this information as a set of attributes (3D8) describing the

presence of heterogen molecules in the 3D neighbourhood of a residue.

Following Table 3.3, this set includes three features counting the number

of potentially catalytic, non-catalytic and uncertain heterogen molecules

respectively.

According to the catalytic residue definition given in [7], which guides

the annotation of the residues as functional in the CSA database, residues

which bind a substrate or a cofactor are not annotated as catalytic unless

they are in some way directly involved in the catalytic process. This con-

sideration can be particularly useful to discriminate among residues with a

high catalytic propensity (e.g. CYS, HIS) that bind cofactors for structural

reasons. We represented this information as an additional feature (3D9)

encoding the presence of a bond between the target residue and a cofactor.

We used a distance threshold of 3 Å for detecting bonds.
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3.3 Experimental Results

Functional residue prediction can be cast into a binary classification task

at the residue level, namely predicting for each residue of a given protein,

whether it is directly involved in the catalysis or not.

3.3.1 Datasets

We performed a detailed analysis and feature engineering on a dataset

(PW) of 79 enzymes selected by Petrova and Wu [111] for their structural

and functional heterogeneity with respect to their SCOP fold classifica-

tion, EC numbers and BLAST sequence similarity. The dataset contains

enzymes from all the six classes in the EC Nomenclature. We collected se-

quential and three-dimensional data for a total of 23,635 residues from the

enzymes PDB files. Few residues were removed with respect to the 23,664

extracted in [111] due to uncertain correspondence in the mapping between

the two datasets or due to conflicts between the residues reported in the

PDB structure file and in the FASTA sequence from Uniprot [131]. Only

254 out of 23,635 residues are labeled as functional in the CSA. Hence the

dataset is strongly unbalanced with a ratio between positive and negative

examples of about 1:92.

We also conducted a broad experimental evaluation of the obtained fea-

tures on a set of larger benchmark datasets which were proposed by previ-

ous sequence and structured-based approaches. Three benchmark datasets

with varying homology level were proposed in [149]: a SCOP fold dataset

(EF fold), a SCOP family dataset (EF family) and a SCOP superfamily

dataset (EF superfamily). Two additional datasets were included to study

the performance of our approach in the presence of low homology: the HA

SCOP superfamily dataset from [37] and the independent test set T-124

proposed in [151]. The characteristics of these five datasets are summarised
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in [151]. Finally we included the dataset of 160 proteins (POOL-160) used

in [134] in order to compare with their approach.

Dataset Normalisation

Attribute values were normalised in the [-1,+1] range applying the follow-

ing linear transformation: value′ = 2 · value−minmax−min − 1. While this implies

a lower data sparsity with respect to a [0,1] normalisation, preliminary

experiments showed that it achieved better overall results. Missing values

were managed by replacing categorical attributes with their modes and nu-

merical attributes with their means, both computed from the distributions

of observed values in the dataset.

3.3.2 Experimental Setting

All experiments were carried out using the SVM light [74] software (down-

loadable from http://svmlight.joachims.org/). Our experimental evalua-

tion is based on a 10-fold cross-validation procedure stratified at the pro-

tein level, that is, assuring that all residues of a certain protein always

appear together in the same fold.

We fixed the regularisation parameter (parameter c in the SVM light im-

plementation) to 1, and tuned the cost factor (parameter j in the SVM light

implementation), which outweighs the error on positive examples with re-

spect to that on negative ones, on each fold of the 10-fold cross-validation

by an inner cross-validation procedure inside its training set. Tuning the

cost factor is particularly important for this application due to the strong

imbalance between the number of positive and negative examples. Pre-

vious works [128, 151] addressed such a problem by subsampling negative

examples according to a certain ratio and training the classifier on the

reduced set.
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Our aim was to exploit information related to the properties of the

local structure surrounding a residue. We added these features to those

already used in [111], which aim at modelling properties of the target

residue plus its relationship with the whole region containing it. Such

combined representation allowed us to obtain significant improvements, as

detailed in the following.

Table 3.4 reports a legend of the abbreviations we employed for the

different sets of attributes that we tried. These sets of features include

also the set of 24 attributes proposed in [111].

Abbreviation Description

SVM P51D the attributes extracted from the protein sequence among the

24 in [111]

SVM P24 the whole set of 24 attributes proposed in [111]

SVM P7 the optimal set of 7 attributes selected among the 24 in [111]

SVM 1Di−j, 3Dk−r the attributes from 1Di to 1Dj and/or from 3Dk to 3Dr as

described in section Methods, with i, j = 1, 2, 3 and k, r =

1, ..., 9

Table 3.4: Legend of abbreviations for the different sets of attributes tried in the experi-

ments.

We evaluated the statistical significance of the performance differences

between the various settings by paired Wilcoxon tests on the F1 measure

reported for each fold. We employed a confidence level α of 0.05.

3.3.3 Results of Different Feature Sets

We conducted a set of experiments aimed at elucidating the role of the

different feature sets on the PW dataset. Preliminary experiments showed

that polynomial (second and third degree) or Gaussian kernels did not

significantly improve performance with respect to simpler linear kernels.

All reported results thus refer to the latter type of kernel. Table 3.5 reports
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a summary of experimental comparisons for different sets of sequence- and

structure-based features we used.

The first set of experiments refers to a sequence-based functional residue

predictor, where each residue is characterised by features extracted from

the protein sequence only (see Table 3.1). In Table 3.5, row 1 reports ex-

perimental results obtained by using our sequence-based attributes only,

including the multiple alignment conservation profiles. We also experi-

mented windows of conservation profiles of size varying between 1 and

10, where size w implies a window of w residues on each side of the tar-

get residue along the primary sequence, in addition to the profile of the

target residue itself. Including such windows only provides a slight im-

provement (with w = 7) while drastically reducing the classifier efficiency.

Furthermore, the features proved harmful when combined with structural

information, possibly because the large number of features they introduced

covered the signal coming from other more informative ones [161].

Rows 2 and 3 report additional results on sets of attributes extracted

from sequence information only. The set SVM P51D is a group of five

attributes from [111] which includes the 1D1 and 1D2 attributes (see Ta-

ble 3.1) and a conservation score from the Scorecons server [138], plus its

entropy and relative entropy values, in place of our conservation profile.

The results are comparable with those obtained with conservation profiles.

Results combining all the available features extracted from the protein

sequence are reported in row 3 (SVM P51D 1D1−3).

Results in the rows from the fourth on include additional information

provided by structural features. In rows 4 and 5 we employed the two

sets of attributes proposed in [111], i.e. the subset of the 7 optimal ones

(SVM P7) and the entire set of 24 attributes (SVM P24) respectively.

Note that we obtained performance improvements over the original results

in [111] (achieving F1=13% and MCC=23% for the P24 feature set) by
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tuning the cost factor for false positives versus false negatives, as compared

to random sub-sampling negative examples in order to obtain a balanced

set.

Table 3.6 reports F1 measures of our best combination of sequence-

based features, the sequence and structure based features from [111], plus

our additional set of structural neighbourhood features, excluding those

coming from ligand information.
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SVM P5 1D1−3 23 24 25 24 27 24

SVM P24 21 24 24 23 30 23

SVM P24 1D1−3, 3D1−6 26 ◦ • 28 ◦ • 27 ◦ • 28 ◦ • 34 ◦ 27 ◦ •

Table 3.6: Statistical comparisons of our best set of sequence-based features

(SVM P5 1D1−3), the set of sequence- and structure-based features employed in Petrova

and Wu [111] (SVM P24), and their combination with our additional set of structural

neighbourhood features (SVM P24 1D1−3, 3D1−6), excluding those coming from ligand

information. Cross-validated F1 measures (%) and results of a paired Wilcoxon test

(α = 0.05) on the statistical significance of the performance differences are reported

for all benchmark datasets employed in this study. A white circle indicates a statisti-

cally significant improvement of the classifier in the row over the sequence-based classifier

(SVM P5 1D1−3), while a black bullet indicates a statistical significant improvement over

the Petrova and Wu features (SVM P24).

Results are reported for all test datasets described in section 3.3.1. The

first relevant finding is that appropriate sequence-based features taking

into account evolutionary information (SVM P51D 1D1−3) achieve perfor-

mance which are comparable to carefully crafted structure-based ones [111]

(SVM P24). The difference is never statistically significant in all tested

datasets. This confirms the finding of [151] that state-of-the-art sequence-
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based predictors have performance comparable with recent structured-

based approaches. Selecting the appropriate and discriminant structural

attributes for functional residue prediction is thus not a trivial task.

On the one hand, using features extracted from primary sequence alone

allows us to apply the predictor to the much larger set of sequentially but

not necessarily structurally determined proteins. On the other hand, as we

already discussed in the introduction and also stated in the review of [66],

the availability of structural information should be able to significantly con-

tribute in solving the task. Indeed, adding three-dimensional information

in the form of properties of the residue structural neighbourhood allowed

us to achieve significant improvements, as detailed below.

Row 6 in Table 3.5 reports results of the combination of our conserva-

tion profiles (1D3) with all the sequence and structural attributes in [111].

Row 7 reports the result obtained by adding structural attributes encod-

ing statistics of the residue three-dimensional neighbourhood properties

(3D1−6) without including the attributes related to the ligands (3D7−9).

Such results are always significantly better than those of sequence-based

classifiers according to the statistical tests (see Table 3.6). Furthermore,

performance improvements with respect to previous structure-based results

(SVM P24) are significant in all but the smallest test set.

Finally, row 8 reports the performance obtained by including all the

available ligand-based features, which allow to achieve further improve-

ments and correctly predict some especially tough cases (detailed below),

paving the way to an interesting research direction. Additional files 3 and

4 report detailed results and predictions for this classifier.

In order to better understand which are the features contributing the

most to the classifier performance, we analysed the weight vector ~w de-

scribing the separating hyperplane learnt by the SVM. The ~w components

with higher absolute value are associated to the most discriminant features
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of the classifier. In Figure 3.7 we represent the weight vector of a classifier

trained on the PW dataset. Among the most relevant properties there are

features related to the relative position on the protein surface (cleft rank,

cleft Vol SA, cleft Area SA, nearest cleft distance), features related to the

conservation along the primary sequence (conservation score, entropy and

relative entropy plus some other features from the conservation profiles

1D3) and also features describing the structural residue neighbourhood.

For instance, the fractions of amino acids with low and medium hydropho-

bicity are quite discriminative in opposite directions. The same holds for

low and medium Van der Waals volume. Other discriminative features in-

clude the atomic density of the residue sphere and the features related to

its amino acidic composition: in particular the number of ASN, CYS and

GLN residues, but also that of MET, PHE and TRP ones.

Further analyses on the effect of different sets of features on prediction

errors provide some interesting insights on their usefulness and reliability.

The quality of multiple alignments strongly influences the performance of

sequence-based classifiers. On the proteins for which PSI Blast did not

provide good alignments we observed poor performance. In those cases

structural features help in compensating such deficiencies. The inclusion

of ligand features allows the correct prediction of many catalytic residues

which have low catalytic propensity, like the glycine in the methylglyoxal

synthase (PDB code 1B93) and the glycine in the human glutathione syn-

thetase (PDB code 2HGS). The latter is one of the emblematic cases of

the importance of ligand features, as in the absence of those features only

one of its four catalytic residues is correctly predicted. In the phospho-

fructokinase (PDB code 1PFK) the encoding of ligand features helps to

correctly predict the two arginine residues of the active site. By looking at

the three-dimensional structure of the protein, the active site seems to be

exposed rather than located in a hydrophobic core. This implies that ac-
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tive site residues have associated structural features which may differ from

those typical of the other catalytic residues in the dataset. On the other

hand, we also observed few cases in which the addition of ligand features

worsens predictions. This happens mainly when no heterogen appears in

the crystal structure, possibly because the enzyme was solved in its apo

form. We are planning to verify such conjecture by applying techniques

for detecting binding sites in 3D structures [3].

Note that while the presence of a heterogen provides a clear hint that the

area could contain an active site, it is not by itself sufficient to determine

the set of catalytic residues. Out of the 365 heterogen-binding residues in

the dataset, only 62 were actually labelled as catalytic. If we restrict to the

subset of heterogens which tend to occur near catalytic sites in enzymes,

the fraction becomes 51 out of 285. As detailed in [7], the sole fact of

binding a substrate or cofactor does not classify a residue as catalytic. It

also has to perform some specific activity such as proton abstraction from

substrate, cofactor or water activation. For instance, the above-mentioned

phosphofructokinase (PDB code 1PFK) contains three heterogens: ADP,

beta-fructose diphosphate (FBP), and a magnesium ion; of the 15 residues

which bind one of them, only four are actually catalytic. In this case the

predictor manages to selectively exploit ligand information in identifying

two active arginine residues, one of which does not directly bind any het-

erogen, with a single additional FBP-bound arginine incorrectly predicted

as catalytic. Given that information on binding residues helps detecting

active ones, it would be interesting to predict it when missing, either be-

cause sequence information alone is available, or because the 3D-structure

does not contain the bound cofactor and/or substrate. Indeed, both bind-

ing and active residues should be identified in order to fully characterise

the functional domain. We believe that combining active and binding site

prediction in a single collective model, as already done with profile-HMM
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for specific functional domains [15], is a promising research direction, which

can rely on a number of works for predicting binding sites from both se-

quence [93,126] and structural information [3, 54].

3.3.4 Comparison with Other Methods

We conducted a broad range of experiments on multiple benchmark datasets

(see section 3.3.1), and compared the results with the most recent methods

for both sequence-based and structure-based prediction. Considered that

none of the other methods directly encodes information on heterogens, we

excluded such features from our set in all these comparisons.

Method Datasets of competing methods

HA superfamily [37] EF fold [149] EF superfamily [149] EF family [149] PW [111] T-124 [151]

CRpred R 54.0 48.2 52.1 58.3 53.7 50.1

P 14.9 17.0 17.0 18.6 17.5 14.7

SVM P24 1D1−3, 3D1−6

Equal P R 67.4 64.6 66.2 61.3 69.7 54.8

Equal R P 21.0 24.1 23.9 20.5 22.5 15.5

Table 3.7: Comparison with the CRpred [151] sequence-based approach on six benchmark

datasets. For each dataset we report recall obtained by our predictor at a precision equal

to that of the competing method and precision at equal recall. Results are obtained

without including ligand information.

Table 3.7 shows experimental comparisons with the state-of-the-art se-

quence based predictor CRpred [151] on a number of datasets. Adhering

to the setting in [151], we employed a 10-fold cross-validation procedure for

all datasets but the T-124 one, for which we trained a single predictor on

the entire EF fold dataset and tested it on the T-124 one. Our structural

neighbourhood features allow to consistently improve performance on all

datasets, as measured by recall at equal precision, and precision at equal

recall. The ROC and RP curves for the two low homology datasets HA
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Method Datasets of competing methods

HA superfamily [37] EF fold [149] EF superfamily [149] EF family [149]

Competing R 29.3 51.1 53.9 57.0

methods P 16.5 17.1 16.9 18.5

SVM P24 1D1−3, 3D1−6

Equal P R 63.4 64.2 67.3 61.7

Equal R P 30.9 22.1 22.5 20.9

Table 3.8: Comparison with the structure-based approaches by Chea et al. [37] and Youn

et al. [149] on their benchmark datasets. For each dataset we report the recall obtained

by our predictor at a precision equal to that of the competing method and the precision

at equal recall. Results are obtained without including ligand information.

superfamily and EF fold are shown in Figure 3.8, while those for the other

datasets are reported in Figures 3.9, 3.10 and 3.11.

Previous results [151] suggested that appropriate sequence-based fea-

tures managed to match performance of different structure-based predic-

tors on the same datasets, a result we also observed in our early experiments

on the PW dataset. Conversely, the improvements we achieve here show

that structural information can indeed be effectively employed in predic-

tions. Nonetheless, further research is needed in order to fully exploit it,

as our results using heterogen information seem to indicate.

Table 3.8 reports comparisons with the structure-based predictors from

Chea et al. [37] and Youn et al. [149] for each of the benchmark datasets.

Results, again measuring recall at equal precision and precision at equal

recall, clearly indicate that our structural features consistently improve

over the different methods on all datasets.

Table 3.9 reports experimental comparisons with an additional structure-

based predictor recently developed by Tang et al. [128] and tested on the

PW dataset: the GANN method employs a neural network trained using

a genetic algorithm. It includes a highly discriminant feature measuring
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network centrality, which accounts for the tendency of catalytic residues to

have multiple interactions with other residues. The F1 and MCC measures

of the two methods do not allow to draw clear conclusions, with our method

achieving better F1 and worse MCC with respect to GANN. However, the

availability of the detailed predictions of the cross-validation allows us to

evaluate the overall threshold independent performance by areas under the

ROC and RP curves. Both of them clearly show the advantages of our

structural features.

Performance %

Method P R FPR F1 MCC AUCROC AUCRP

Tang et al. (GANN)1 192 73 3.8 312 36 0.9313 0.3556

SVM P24 1D1−3, 3D1−6 28 46 1.4 34 34 0.9635 0.3723

asubsampling of negative examples with a ratio of 1:6 w.r.t. positives
bdirectly computed

Table 3.9: Comparison with the structure-based approach by Tang et al. [128] on the

PW dataset. Results include both performance measures at fixed decision threshold and

average areas under ROC and RP curves. Results are obtained without including ligand

information.

Finally, we compared with the recent structure-based predictor POOL [134]

(Partial Order Optimum Likelihood), which combines effective electrostatic

features from THEMATICS [105] with geometric and sequence conserva-

tion features in a maximum likelihood approach. Averaged ROC curves

are reported in Figure 3.12. We compared our method and the POOL

predictor with different sets of features as taken from [134]. The point

representing Petrova and Wu results was also included in the graph. Our

method achieves superior recall for all possible values of the false positive

rate. We also conducted experiments on the dataset of 160 proteins pro-

posed by the POOL authors [134]. In Table 3.10 we compare our results

with the results of the best classifier (POOL(T )×POOL(G)×POOL(C))
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reported in [134] at equal recall and at equal precision. Averaged Recall

(AvgR) and Precision (AvgP) are computed as in [134] as averages at the

protein level. The area under our averaged ROC curve is 0.9523 as com-

pared to 0.925 achieved by the best set of features for POOL.

Performance %

Method/Dataset AvgP AvgR AUCROC

1. POOL(T)POOL(G)POOL(C)/allprotein [134] 19.07 64.68 0.925

2. SVM P24 1D1−3, 3D1−6 at Equal Precision 19.07 78.10 0.948

3. SVM P24 1D1−3, 3D1−6 at Equal Recall 26.61 64.68 0.948

Table 3.10: Comparison with the best results reported for the POOL structured-based

method (Tong et al. [134]) on their benchmark dataset of 160 proteins. Performance

measures include: the average per-protein precision at equal recall, the average recall

at equal precision, and the average area under the ROC curve (AUCROC). Results are

obtained without including ligand information.

3.4 Engineering Active Site Features: Kernels on Struc-

tures

In order to further investigate the discriminative potential of the features

extracted from the 3D residue neighbourhood we also experimented a struc-

tured kernel.

3.4.1 3D Kernel on Shapes

Geometric shapes extracted according to spatial considerations can be

viewed as features characterising a residue structural neighbourhood. Pla-

nar shapes, for instance, can be viewed as substructures of the 3D space

surrounding a residue and characterising its interactions with the other

residues.
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We employed a 3D decomposition kernel on planar shapes in the 3D

space. This kernel was proposed in [35] for the classification of small

molecules.The 3D kernel is defined as a convolution kernel on three-dimensional

shapes of order n ≥ 2, for example, a line is a shape of order 2, a triangle is

a shape of order 3. Hence, a shape is defined by a sequence of n·(n−1)
2 edges.

The kernel on a pair of shapes is then defined as the product over all edges

in the shapes of the product of a Dirac kernel on the edge labels of each

shape and a Gaussian kernel over the atom distances. We adapted it to

the functional residue prediction task by extracting specific shapes from

the residue structural neighbourhood.

Among the different design choices we tried, the best performing one

was the set of planar shapes of two (segment) and three (triangle) vertices

in the 3D neighbourhood of a residue. One of the vertices was the target

residue itself, and the others were residues evolutionary conserved over

one of the hydrophobic, charged or polar classes. Labelling these residues

with their class types — charged (Ch), hydrophobic (Hy) or polar (Po)

—, allowed us to reduce the sparseness of the whole set of shapes, thus

increasing the likeliness of shape matches during the kernel evaluations.

We represented the three-dimensional neighbourhood of a residue as: (a)

a cloud of points corresponding to the side-chain centroids of the residues,

labeled with Ch, Hy or Po according to their class; (b) a graph where each

pair of vertices in the cloud is connected by an edge if their distance is less

than 5 Å.

From these two representations we extracted different sets of shapes to

be used along with the 3D decomposition kernel: (1) shapes only composed

of residues with conserved class, (2) shapes containing the target residue,

and (3) shapes containing connected residues only (i.e. pairwise distances

less than 5 Å). We consider the class of a residue conserved when the sum

of the profile entries corresponding to amino acids belonging to it is greater
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than 0.5. In Figure 3.13 two triangular shapes centred on the target residue

HYS 303 are shown.

The 3D kernel measures the similarity between two residues in terms of

the shapes which are shared between their respective 3D neighbourhoods.

While providing reasonable performance when used alone, with an aver-

age F1 of 22% and an average MCC of 25%, such shapes failed to improve

performance in combination with the remaining sequence- and structure-

based features.

In a preliminary work tree kernels were also applied on structures ex-

tracted from the 3D neighbourhood to predict whether a spherical regions

has the characteristics to potentially host an active site [157]. Good re-

sults were obtained by learning in conjunction with polynomial kernels

on a reduced set of hydrolases but, when applied to several different en-

zyme families, as for the other approaches discussed in this chapter, this

approach was not able to give results comparable with the state of the art.

These results confirm that effectively exploiting three-dimensional infor-

mation for modelling catalytic residues is a hard task, and further research

is needed.
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Feature Value

3D1

aa with LOW hydrophobicity 2/9

aa with MEDIUM hydrophobicity 3/9

aa with HIGH hydrophobicity 4/9

aa with LOW Van der Waals vol 2/9

aa with MEDIUM Van der Waals vol 3/9

aa with HIGH Van der Waals vol 4/9

aa with LOW polarity 5/9

aa with MEDIUM polarity 2/9

aa with HIGH polarity 2/9

aa with LOW polarizability 2/9

aa with MEDIUM polarizability 3/9

aa with HIGH polarizability 4/9

3D2

ALA 1

ARG 0

ASN 0

ASP 0

CYS 0

GLN 0

GLU 1

GLY 1

HIS 0

ILE 1

LEU 1

LYS 1

MET 1

PHE 1

PRO 0

SER 0

THR 0

TRP 0

TYR 1

VAL 0

3D3

aa with positive charge 1

aa with negative charge 1

aa with positive/negative charge 2

3D4 number of H2O molecules 4

3D5 number of atoms 58

3D6 normalised B factor 0.304

3D7 disulf bond 0

3D8

ccofact dist 1

scofact dist 0

dcofact dist 0

3D9 cofactor bond 1

Figure 3.4: An example of feature vector extracted from the three-dimensional neighbour-

hood of the (catalytic) residue GLU 988 in the poly(adp-ribose) polymerase (1A26).
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Figure 3.5: Histogram of the frequencies of heterogen molecules in the PW dataset (79

enzymes). Only the heterogens appearing in more than one protein structure are reported.
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Figure 3.6: Histograms of the distances of the most frequent heterogens from catalytic

residues in the PW dataset.
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Figure 3.7: Vector of the feature weights ~w of a classifier trained on the PW dataset.
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Figure 1: ROC and Recall/Precision curves of the predictions on two low homology benchmark datasets.

2

Figure 3.8: ROC and Recall/Precision curves of the predictions on two low homology

benchmark datasets.
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Figure 3.9: Local ROC curves of the predictions on different benchmark datasets.
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Figure 3.10: Global ROC curves of the predictions on different benchmark datasets.
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Figure 3.11: Recall/Precision curves of the predictions on different benchmark datasets.
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Figure 3.12: ROC curves superimposed with those reported in [134] on the PW dataset.

Figure 3.13: Two examples of triangular shapes extracted from the HYS303 three-

dimensional neighbourhood.
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Chapter 4

Toward a Collective Learning

Approach

In the previous chapters the problem of active site prediction has been

addressed as a binary classification task at the residue level: given a protein

sequence, to predict for each residue whether it is involved in the active

site.

This chapter addresses the problem of collectively predicting all the

residues involved in functional sites [162]. The approach is also applied

to the prediction of the geometry of metal binding sites. Indeed, the task

is closely related to the identification of functional residues as already ex-

plained in Chapter 2. In the case of metal binding site prediction the

problem is extended to determining the number of sites in the same pro-

tein and the residues involved in each of them.

The extremely challenging combinatorial problem here is formulated

as a distance-based supervised clustering task [8], where training proteins

are employed to learn a proper distance function between residues. The

learnt pairwise distance is employed to turn instances into weighted graphs.

A partial clustering is then returned by searching for maximum-weight

cliques in the resulting protein graph representation. The partial clustering

corresponds to a small set of densely connected components corresponding
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to candidate sites.

The approach is based on a stochastic local search algorithm for effi-

ciently generating approximate solutions for the maximum-weight clique

problem. The algorithm has a number of desirable features including au-

tomatic selection of the number of clusters — for example, the number of

metal binding sites in apo-proteins is unknown —, natural handling of par-

tial clusterings with many outliers and overlapping clusters, and scalability

to large datasets.

The method achieves significant improvements over the current state-of-

the-art in predicting catalytic sites from 3D structure in enzymes, where

both node and edge weights are employed in order to exploit both lo-

cal predictions and spatial constraints. Substantial improvements are also

achieved in the related task of metal binding site prediction from sequence

alone, over a previous structured-output approach proposed in [60].

4.1 Problem Description and Formalisation

Given a protein, the problem consists of detecting the number of catalytic

or metal binding sites, collecting for each site the set of protein residues

involved.

Metal binding sites are characterised by the set of protein atoms directly

involved in binding the ion, called ligands, and the overall geometry of the

site. Furthermore, the same protein often binds multiple ions, with typical

numbers ranging from one to four. They tend to be rather specific in

terms of possible ligands with cysteine (C), histidine (H), aspartic (D) and

glutamic (E) acids being by far the most common ligands in transition

metals. Cysteine and histidine residues are the vast majority of ligands in

metal binding sites, while aspartic and glutamic acids are quite common

in proteins and their relative binding frequency is thus very limited [107].
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A more complex situation can be observed with alkali and alkaline-earth

metals, which often bind proteins through the oxygen in backbone carbonyl

groups.

Catalytic propensity is even less specific, given the number of different

roles that a residue can play within the active site. Figure 4.1 reports

the catalytic propensity of the whole set of amino acids showing that only

few of them can be safely discarded. The previous results on the sim-

pler binary classification task actually indicate that keeping all candidates

produces slightly better results on average: the predictor occasionally man-

ages to correctly predict rare amino acids as catalytic without significantly

affecting precision.

Histogram of the Residue Catalytic Propensity

Amino acids

C
at

al
yt

ic
 P

ro
pe

ns
ity

 %

A C E D G F I H K M L N Q P S R T W V Y

0.
03

1.
49

2.
57

3.
76

6.
25

Figure 4.1: Histogram of the catalytic propensities of the residues in the experimental

dataset HA superfamily (see experimental section for details).

Concerning the number of sites, metalloproteins usually contain between

one and three sites, sometimes four and occasionally more. The coordina-

tion number of a bound ion, i.e. the total number of its ligands, varies from
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one to about eight depending on the metal. Values between two and four

are the most frequent for transition metals. Figure 4.2 shows the metal

binding geometry of the equine herpes virus-1 (PDB code 1CHC), where

candidate ligands in L = {C,H} not binding any ion are marked in green.

Contrarily to metal binding sites, enzymes tend to have a single catalytic

site involving a larger number of residues, ranging from 1 to 9 in the ex-

perimental dataset we used. Multiple active sites can actually be found

in some multimeric proteins, such as the 3-isopropylmalate dehydrogenase

(PDB code 1A05). Figure 4.3 shows the active site of cloroperoxidase

T (PDB code 1A7U and UniProtKB entry O31168) with seven residues

corresponding to seven different amino acids involved. Note that proxim-

ity in sequence only partially relates to involvement in the same site, as

the three-dimensional arrangement of the protein can bring quite distant

residues closer as explained in Chapter 2. However, additional features

contribute to characterise target residues, such as a conservation profile

and the residue neighbourhood.

MATVAERCPICLEDPSNYSMALPCLHAFCYVC ITRWIRQNPTCPLCKVPVESVVHTIESDSEFGDQLI

ZN1 ZN2

Figure 4.2: Sequence of the equine herpes virus-1 (PDB code 1CHC). Residues composing

the metal binding sites are highlighted in different colours.

Given these premises, the problem is here formulated as a supervised

clustering task. We provide a common formulation for both active site and

metal binding site prediction. Slightly abusing terminology, we refer to

residues involved in either type of site as ligands. While the two problems

are treated as separate tasks in the experiments, they are indeed highly
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MPFITVGQEN STSIDLYYED HGAGQPVVLI HGFPLSGHSW 40

ERQSAALLDA GYRVITYDRR GFGQSSQPTT GYDYDTFAAD 80

LNTVLETLDL QDAVLVGFSM GTGEVARYVS SYGTARIAKV 120

AFLASLEPFL LKTDDNPDGA APKEFFDGIV AAVKADRYAF 160

YTGFFNDFYN LDENLGTRIS EEAVRNSWNT AASGGFFAAA 200

AAPTTWYTDF RADIPRIDVP ALILHGTGDR TLPIENTARV 240

FHKALPSAEY VEVEGAPHGL LWTHAEEVNT ALLAFLAK

Figure 4.3: Sequence of the cloroperoxidase T (PDB code 1A7U and UniProtKB entry

O31168). Residues composing the active site are highlighted in red.

correlated as metal binding sites can be part of a larger active site or can

coordinate catalytic ions. In the latter case they are sometimes said to be

“cocatalytic”.

A protein sequence is represented as the set x of its candidate ligands,

that is residues belonging to L. The output y for the sequence is a subset

of the powerset of x, i.e. y ⊆ P(x). In the case of active site predic-

tion, if we limit the prediction to a single site the possible outputs are

|P(x)| = 2n, where n is equal to the number of residues in the protein

x. For instance, the average sequence length in the UniProtKB/Swiss-

Prot is 352 amino acids1. The problem is therefore quite challenging as

the number of outputs is exponential in the size of the input. Outputs

for proteins in Figures 4.2 and 4.3, for instance, would be represented as

{{c1, c2, c4, c5}, {c3, h1, c6, c7}} and {f2, s8,m2, a14, p7, d18, h6} respectively,

assuming L is equal to {C,H} for metal binding sites and L is the whole

set of amino acids, for catalytic sites.

The desired output is thus a partial clustering of residues, where only

predicted ligands are reported. Furthermore, at least for metal binding

sites, clusters can overlap, as the same residue can simultaneously bind two

ions, as happens for glutamic and aspartic acids with their two side-chain

oxygen atoms. For comparison with previous approaches, experiments only

1source:http://www.expasy.org/sprot/relnotes/relstat.html

97



4.2. THE APPROACH CHAPTER 4. COLLECTIVE LEARNING

deal with non-overlapping clusters, but the approach can naturally handle

overlaps, as described in the next section.

4.2 Distance-based Supervised Clustering with Maximum-

weight Cliques

We opt for a distance-based supervised approach [8], where training in-

stances are used to learn an appropriate distance (or similarity) measure

to be later used in the clustering. The learning stage simply consists of

training a pairwise classification function F (xi, xj) predicting for each pair

of residues xi and xj in x whether they belong to the same site. Again, an

SVM is employed as the underlying classification function.

Given a learnt similarity function F , we represent a set x as a weighted

graph, removing edges whose weight is below a certain threshold θ and

rescaling remaining weights to be positive. A maximum-weight clique al-

gorithm is then run on the graph in order to return a set of maximal cliques,

i.e. cliques that are not contained in larger cliques, which correspond to

the predicted sites. The rationale for the approach is that given a reason-

able pairwise similarity measure, the algorithm should isolate few densely

connected components which correspond to the desired solution while dis-

carding most of the nodes in the graph. The algorithm can be asked to

return a single large cluster, as typical of the active site prediction task,

or a set of possibly overlapping maximal cliques, as for the metal binding

site case, where the number of clusters cannot be specified a priori.

The described approach actually learns a separating hyperplane among

paired feature vectors representing the protein residues. The distance of

the vector k of paired residues from the learnt hyperplane, i.e. the margin

γk, is taken as a measure of likelihood that the pair belongs to the same

site. This approach is applied when searching active and metal binding
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sites by only knowing the protein primary sequence. When the protein

structural information is available, other considerations, i.e. spatial con-

sideration, can be made for clustering functional or metal binding residues

belonging to the same site. Therefore, in this case, we took a slightly dif-

ferent approach. Edges of the protein graph are weighted with the inverse

of the Euclidean distance between the residues side-chain centroids (see

Chapter 3). Furthermore, weights on the vertices are added, which corre-

spond to the margins γk of the structure-based functional residue classifier

described in Chapter 3. The maximum-weight clique algorithm takes into

consideration both edge and vertex weights during the search.

Note that the maximum-weight clique algorithm is independent of the

supervised learning stage, and can be easily integrated in more complex

supervised clustering approaches such as the structured-output formulation

proposed in [57].

4.3 The Maximum-weight Clique Clustering Algo-

rithm

Maximum Clique (MC) is a paradigmatic combinatorial optimisation prob-

lem with relevant applications in many areas; its weighted versions origi-

nate from fields such as computer vision, pattern recognition and robotics [6].

A survey on recent literature on Weighted Maximum Clique algorithms can

be found in [114].

A heuristic algorithm is introduced for searching maximum-weight cliques

in protein weighted graph, as discussed in the previous section. The algo-

rithm is described for weighted edges only. Its extension for dealing with

weights on both nodes and edges, as well as the case where weights are

averaged on the number of nodes, is straightforward.

In the previous section we defined a learnt symmetric similarity func-
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tion F that maps each pair of residues onto a measure of likelihood that

they belong to the same cluster. Given the set of protein residues R, a

weighted undirected graph is defined as a triplet Gθ ≡ (R,Eθ, F ) where R

corresponds to the vertex set, the edge set Eθ ⊆ R×R is defined by vertex

pairs whose symmetric similarity function F is above the threshold θ

Eθ =
{
{u, v} ⊂ R : u 6= v ∧ F (u, v) ≥ θ

}
,

and the weight of every edge e ∈ Eθ is given by F (e). From now on,

subscript θ shall be removed for clarity.

A clique in graph G is defined as a completely connected subgraph of

G, i.e., any subset R′ ⊆ R such that for every pair of nodes u, v ∈ R′ the

pair {u, v} belongs to E. The Edge-Weighted Maximum Clique Problem

requires to find the clique in R that maximises the sum of weights:

R′max = arg max
R′⊆R

R′ clique in G

∑
u,v∈R′

F (u, v).

The introduced stochastic local search (SLS) algorithm (see [70] for a

thorough introduction) is based on the Reactive Local Search optimisation

heuristic for Maximum Clique [10](RLS-WMC, in the following WMC for

short), with a novel dynamic behaviour adapted from [9].

The algorithm essentials are those of a Reactive Tabu Search applied to

the weighted MC problem. The main procedure is sketched in Algorithm

4.1. Starting from an initial configuration (subset of vertices) R̄ ⊆ R,

which corresponds to an empty clique (line 9), the search proceeds per-

forming local moves by adding or removing vertices from the current can-

didate solution (lines 15-19). In this way, at each iteration t only a set

of feasible neighbouring solutions — cliques in the graph — is evaluated.

A greedy choice is made among neighbouring solutions (see lines 2-3 in

Algorithm 4.2). If a clique is found with an average weight greater than

that of the current one, then it is taken as new current candidate solution
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Algorithm 4.1 The main section of WMC: the local search step is repeated and the best

clique is returned
1: input: edge-weighted undirected graph G = (R,E, F )

2: output: best clique R̄ found

3:

Variable Meaning

t Current iteration index

T Tabu tenure

Lv Last iteration when v ∈ R was added/removed

R̄ Current configuration

P List of nodes that can be added to R̄

w Clique weight

v Chosen node

a Action to be taken (Add or Drop)

4: procedure WMC(G)

5: for all v ∈ R do

6: Lv ← −∞ . initialise tabu attributes for each vertex in the graph

7: end for

8: t← 0

9: R̄← ∅ . initialise current solution

10: P ← R

11: w ← 0

12: repeat

13: UpdateProhibition(R̄, T ) . update tabu attributes

14: (v, a)← ChooseNode(L, R̄, P, T, t,G) . choose best improving non-tabu neighbour

15: if a = Add then

16: R̄← R̄ ∪ {v}
17: else

18: R̄← R̄ \ {v}
19: end if

20: recompute P and w incrementally

21: Lv ← t

22: if too many iterations without improvements then

23: Restart() . escaping mechanism against stagnation

24: end if

25: t← t+ 1

26: until termination condition is met

27: return R̄

28: end procedure
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(line 14). The algorithm repeats search steps until a termination condition

is met.

Tabu attributes Lv are associated to each one of the vertices in the

graph. They store the last iteration in which the same vertex was part of

a visited configuration. The aim of tabu attributes is to prohibit revisiting

already visited configurations, for a certain period T , called tabu tenure.

This prevents the algorithm from cycling between suboptimal solutions and

getting trapped into local optima. The strategy implies the acceptance

of worsening steps (see lines 4-7 in Algorithm 4.2) in the case in which

the current solution quality can not be improved due for example to the

prohibition.

The choice of the tabu tenure value has a strong impact on the capacity

of the algorithm of diversifying or intensifying the search. Small values of

T tend to be insufficient for the system to efficiently escape local optima,

while high values highly reduce the flexibility of the search procedure by

reducing the number of eligible vertices. Rather than relying on an ideal

value of T as a function of the graph size and of its density, WMC adjusts

it dynamically thanks to its reactive mechanism. To achieve this, a limited

history of the search is maintained. If a configuration is visited too often,

then the T parameter is increased in order to improve the diversification

capabilities of the algorithm. If, on the other hand, no configuration is

revisited for a given time, T is reduced. Further details on the dynamic

adaptation of T are available in [9].

Finally, to further improve diversification a restart mechanism is also

provided for escaping from search stagnation: if the best solution is not

improved in a fixed number of iterations, then the algorithm is restarted,

so that new regions of the search space are possibly visited.
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Algorithm 4.2 The ChooseNode procedure: choose the non-prohibited node having

the best chance to lead to better cliques in the future; if no nodes can be added, pick one

for removal.

1: procedure ChooseNode(L, R̄, P, T, t, G)

2: S ←
{
w ∈ P :

Lw > t− T ∧
∧w maximizes future expectations

}
3: a← Add

4: if S = ∅ then

5: S ←
{
w ∈ R̄ :

Li > t− T ∧
∧w maximizes future expectations

}
6: a← Drop

7: end if

8: Pick v ∈ S
9: return (v, a)

10: end procedure

4.4 Experimental Results

We experimented the proposed supervised learning approach on both tasks

of predicting catalytic and metal binding sites from sequence information.

For catalytic sites we considered also the prediction starting from sequence

and structural information, relying on the previous results by the support

vector classifier exploiting the residue structural neighbourhood as intro-

duced in Chapter 3. The WMC algorithm is applied in cascade to the

structure-based classifier for realising the collective prediction exploiting

spatial information.

4.4.1 Predicting Active Sites

We focused on the HA superfamily dataset [37], the largest dataset em-

ployed as benchmark in the literature and in previous experiments in Chap-

ter 3.

Given that most proteins contain a single active site, and the labelling

found in the CSA [113] does not include information on different sites,
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we consider here a single site prediction setting. Common examples of

multiple active sites are those of polymeric proteins in which a pair of

specular sites is found at the interface of two identical chains. We plan to

extract this additional information from known 3D structures in order to

fully characterise overall geometry in the future.

For sequence-based prediction, we applied the proposed approach for

learning a similarity function predicting whether two residues jointly par-

ticipate in a certain active site. Pairs of residues are represented by con-

catenating their feature vectors (those described in Section 3.2.1), thus

comparing residues according to their order in the sequence. This option

was shown [60] to provide better results with respect to alternative ap-

proaches such as averaged pairwise comparisons, possibly because sequen-

tial ordering is relevant in characterising sites. Pairs were labeled positive

if both residues bind to the same active site and negative otherwise, and

an SVM was used as the pairwise classifier.

Following the same setting used for functional residue prediction on the

HA superfamily dataset, we employed a 6 to 1 subsampling of negative

(i.e. non-catalytic) residues, resulting in a 61/1 proportion of negative vs

positive residue pairs. As a result of a model selection phase we employed

a second degree polynomial kernel.

In building the weighted graph, edges having weight smaller than θ =-

0.9 are discarded, and remaining weights are rescaled to have positive val-

ues. The weight of each clique, i.e. the sum of its edge weights, was

averaged over the clique dimension, i.e. the number of vertices in the

clique. Following the site size distribution in training instances, we fixed

the maximum size of cliques to six.

For structure-based prediction, edges were pruned for distances over

θ =14 Å. This threshold was chosen according to the distribution of dis-

tances between catalytic residues in the training set. The idea of constrain-
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ing candidate solutions based on their pairwise 3D distances was actually

used in the MBG prediction approach by Babor et al. [3] as an initial fil-

tering stage. However the 3D constraint is much less stringent in catalytic

sites, as shown by the quite large threshold (14 Å) we derived from data.

Vertices weights encode catalytic propensity as predicted by the state-of-

the-art support vector machine predictor described in Chapter 3. Vertices

and edge weights were normalised in order to fall within the same range

of values. In this case the weight of the clique is computed as the sum of

edge and vertices weights divided by the number of vertices of the clique.

Experimental comparisons with the “local” approach described in Chap-

ter 3 are shown in Table 4.1, where the protein-level precision, recall and

F1 measures averaged across folds are reported.

SVM SVM+WMC

P R F1 P R F1

sequence-based predictor 20 ± 4 59 ± 7 25 ± 4 22 ± 2 41 ± 4 27 ± 3 •
structure-based predictor 23 ± 3 65 ± 6 28 ± 3 35 ± 7 43 ± 7 34 ± 6 •

Table 4.1: Comparison of the results (performance ± st.d.) obtained in active site pre-

diction. A bullet indicates that the performance differences are statistically significant

(p < 0.05).

The SVM+WMC approach achieves significant improvements at p <

0.05 in both sequence-based and structure-based predictions according to

a paired Wilcoxon test. Note that the average protein-level F1 of the

local predictor is quite lower than the F1 computed from average protein-

level precision and recall. This happens because the local SVM produces

rather unbalanced predictions, either maximising recall with low precision

or (more rarely) vice versa, and for a number of proteins it outputs com-

pletely wrong predictions. The SVM+WMC approach is much more stable

and balanced in its predictions. Note also that the improvement in F1 is
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not simply due to a better choice of the decision threshold with respect to

the standard local approach. The best F1 value which could be obtained

with local sequence-based predictions by optimising the threshold (on the

test set) is just 0.256. Results from the structured-based prediction sig-

nificantly improve the current state-of-the-art thanks to an effective use of

the spatial geometry information. In particular, the algorithm finds cliques

that discard many of the classifier false positives.

4.4.2 Predicting Geometry of Metal Binding Sites

The method is also tested on the task of predicting metal binding sites in

metalloproteins. We used the same setting described in [60], for predicting

their geometry from the sequence and the same dataset of 199 metallopro-

teins, for allowing a comparison. In [60] a supervised structured output

learning technique is proposed. Each residue is represented by 242 features

encoding conservation profiles from multiple alignments in a window of 11

residues centred on the target residue (see also Section 3.2.1 for details on

conservation profile computation). Performance are evaluated on 30 ran-

dom 80/20 train/test splits. We employed a setting analogous to the case

of sequence-based active site prediction, with pairs of residues represented

as ordered pairs of features vectors.

All parameters concerning the SVM and the maximum weighted clique

algorithm described below were selected by an inner-fold cross-validation

on the training set of the first split and kept fixed for all remaining folds.

As a result of this model selection phase, we employed a second degree

polynomial kernel and a cost factor j = 3. The same thresholding and

rescaling of the weighted graph in sequence-based active site prediction is

applied in this case.

For metal binding site prediction, the maximum clique algorithm enu-

merates all the maximal cliques of size up to four.
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The algorithm returns the first four non-overlapping solutions with at

most four residues.

We present here a set of measures including those reported in [60]. Note

that we are not trying to predict the identity of an ion (e.g. the “first” zinc,

the “second” iron or so), but only the subset of residues which jointly bind

the same one. Thus, when evaluating the quality of a certain clustering,

we assign each ion to the cluster containing the highest number of its true

ligands (if any). An equivalent approach was employed in [60]. PE, RE,

and FE are the precision, recall, and F1 of the correct assignment between

a ligand and a metal ion. PS, RS, and FS are the precision, recall, and F1

of the correct prediction of binding sites, i.e., how many sites are entirely

correctly predicted over the total number of sites in the chain. PB, RB,

and FB are the precision, recall, and F1 of the correct prediction of the

bonding state of the residues in the chain, i.e. regardless of which ion they

actually bind. Tables 4.2 and 4.3 report the mean and standard deviation

of these performance measures averaged over the 30 splits. The breakdown

of these measures for proteins binding different numbers of metal ions (i.e.

from 1 to 4) is also reported.

Our SVM+WMC approach achieves significant improvements over the

previous structured-output approach in edge, site and bonding state pre-

diction, as measured by paired Wilcoxon tests (p < 0.05).

The most significative improvement over [60] lies in the number of sites

entirely correctly predicted. The overall PS, RS, and FS, is consistently

better for any number of metal ions in the protein.
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SVM + WMC [60]
# sites

PE RE FE PE RE FE

any 79± 3• 59± 5• 62± 5• 66± 5 52± 4 53± 4

1 84± 4 73± 7 73± 6 66± 7 58± 6 57± 6

2 70± 8 33± 5 42± 6 67± 7 44± 9 48± 9

3 70± 15 22± 8 32± 11 69± 19 24± 13 32± 12

4 42± 30 16± 13 23± 18 42± 31 20± 19 26± 22

PS RS FS PS RS FS

any 42± 7• 30± 7• 31± 7• 20± 7 17± 6 16± 6

1 50± 8 41± 9 41± 9 25± 10 22± 8 22± 8

2 25± 14 8± 7 11± 9 15± 9 7± 7 7± 7

3 23± 32 4± 7 5± 11 0± 2 0± 1 0± 2

4 9± 21 3± 6 5± 9 2± 7 1± 5 1± 5

PB RB FB PB RB FB

any 88± 3• 63± 5 67± 4• 79± 4 64± 6 64± 4

1 84± 4 73± 7 73± 6 74± 5 68± 7 65± 6

2 92± 8 45± 6 58± 7 88± 5 60± 11 66± 10

3 100± 0 34± 12 49± 15 98± 5 38± 22 50± 20

4 67± 45 25± 18 36± 25 65± 44 32± 28 40± 31

Table 4.2: Comparison on the metalloproteins dataset. The means and standard devi-

ations are computed on the 30 random splits. A bullet indicates that the performance

differences are statistically significant (p < 0.05).

# sites

any 1 2 3 4

SVM + WMC 27± 6• 40± 9 1± 4 0± 0 0± 0

[60] 14± 6 20± 8 3± 7 0± 0 0± 0

Table 4.3: Experimental results on the metalloproteins dataset. AG is the accuracy at a

chain level, i.e., the number of entire configurations correctly predicted. A bullet indicates

that the performance differences are statistically significant (p < 0.05).
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Chapter 5

CatANalyst - Catalytic Residue

Predictor

In this Chapter CatANalyst [159] will be described CatANalyst is a web

server for predicting catalytic residues from sequence and structural infor-

mation. The server is freely accessible at the following web address:

http://catanalyst.disi.unitn.it

since the beginning of 2010. The web server provides sequence- or structure-

based predictions depending on the available information and relies on the

underlying SVM classifiers described in Chapter 3. Details about the server

realisation are reported in the following sections.

5.1 CatANalyst Web Server Architecture

The CatANalyst web server is implemented in Python and C languages.

Some core modules for PDB file parsing and information extraction are

written in C language and integrated with other python written modules

for querying external servers and managing other server functionalities.

The CatANalyst web-server architecture highly decouples management

of the user sessions and web-interface (front-end) from the elaboration
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system (back-end), which includes input/output job pools, the scheduler

and the elaboration engine (see Figure 5.1). The latter incorporates the

most computationally intensive modules of the server. This architecture

confers scalability and allows for the server to be easily expanded in the

future to distribute the server load on different machines.

job input

job output

front-end

back-end

input 
pool

output 
pool

scheduler
engine

Monday, 11 October 2010

Figure 5.1: CatANalyst web server architecture.

The front-end uses mod-python, an apache module that embeds the

Python interpreter within the Apache server. Front-end modules manage

the graphical web-interface and sessions associated to the submitted jobs.

The two main functionalities are:

(a) manage and send to the back-end a job request;

(b) display the prediction results.

The back-end is composed of three main parts:
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• the input/output pools

• the scheduler

• the elaboration engine

Input and output pools are shared by both the back-end and the front-

end and contain respectively the input data associated to the queued jobs

and the result of the elaboration for each job.

The scheduler implements a simple policy. A job queue in the input

pool is chosen according to an assigned prior probability as reported in

Table 5.1. Each one of the four queues is identified by a mode (interac-

tive or batch) and the kind of input data (primary or tertiary structure).

Prior probabilities on the queues tend to favour interactive jobs that are

computationally less intensive as those asking for a sequence-based pre-

diction, therefore trying to maximise the server throughput. Within each

queue the priority is given according to a First Come First Served policy

for minimising the waiting time.

Input Data

Modes sequence structure

interactive 0.33 0.27

batch 0.22 0.18

Table 5.1: CatANalyst’s scheduler policy and job queues.

5.1.1 The Elaboration Engine

The Elaboration Engine (EE) main sub-systems are:

• system of feature extraction from primary and tertiary structure;

• prediction system.
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After an initial setup, needed for creating job folders and some interme-

diate files, the EE starts the elaboration with a feature extraction step.

Feature extraction varies depending on the type of input data available.

If the input is a protein primary structure, only sequential features will be

extracted, while if the input is a protein tertiary structure, both sequential

and structural features will be extracted.

Starting from the protein primary sequence the name and type of the

residue and a multiple alignment profile computed using Blast+1 [28] (see

also Section 3.2.1 and Table 3.1), are used for building the residue vecto-

rial representation. From the tertiary structure, features are autonomously

generated by modelling spherical regions around candidate residues and

computing statistics on the neighbourhood properties (see Section 3.2.3).

Whenever available in the PDB file, information on close heterogen molecules

is also extracted. Additional features are extracted by querying a pool of

well-known servers: solvent accessibility features from Naccess [71], rela-

tive position on the protein surface features from CASTp [17], hydrogen

bonds from Molmol [84], and secondary structure features from DSSP [75].

Once the feature vectors corresponding to each residue of a input protein

are built, the sequence or structure based support vector classifier is used

for predicting whether a residue has the characteristics for being considered

a putative catalytic residue or not.

5.2 Querying CatANalyst

5.2.1 Job Submission

CatANalyst provides two different forms for submitting jobs to the sequence-

based predictor (Figure 5.2) or the structure-based predictor (Figure 5.3).

In the former case, the user is asked to provide as input a protein sequence

1version 2.2.22
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Figure 5.2: Input form for the sequence-based CatANalyst prediction.

in FASTA format. In the latter case, the user submits as input a PDB

identifier of the protein structure and a chain identifier. Alternatively, she

can directly upload a file in PDB format, always specifying the protein

chain to be analysed.

Two possibilities are offered to the user: (a) to use the CatANalyst

in an interactive way, i.e. waiting for the results being delivered on the

browser page, or (b) to ask for an e-mail notification once the results of

the elaboration become available.

Details on the web server usage can be found in the web-site help pages2.

An example that automatically fills the input forms is also available on

the web-site by clicking on “Example” button (see Figure 5.2 and 5.3).

2http://catanalyst.disi.unitn.it/help
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Figure 5.3: Input form for the structure-based CatANalyst prediction.

5.2.2 Job Elaboration

Once the user submits a job, a new page is shown to her. The page

is automatically refreshed every 10 seconds and reports the current job

status (queued or running) (see Figure 5.4). When the job elaboration is

completed and the results are available they will be displayed on the same

page.

The user can bookmark the page and check the results later when they

will become available. Alternatively she can leave the browser window open

and check the status of her job until completion. If she asked for an e-mail

notification, she will be notified as soon as the results will be available by

an e-mail containing the link to follow for visualising the results.
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Figure 5.4: Intermediate elaboration page showing the job status.

Figure 5.5: Web page showing the results of the CatANalyst predictions.
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5.2.3 Result Visualisation

CatANalyst outputs the prediction results by rendering the protein residues

with different colour temperatures and sizes, reflecting how likely they are

to be catalytic (see Figure 5.5 for an example). Probabilities of being

catalytic are also shown for residues predicted with more than 0.5 confi-

dence. To this aim, SVM margins are rescaled in the [0,1] range passing

them through a sigmoid function. A different confidence threshold can

be selected if desired, as well as probabilities for the entire sequence (see

Figure 5.5). It is also possible to visualise the annotations reported in the

Catalytic Site Atlas 3 (CSA) [113] if available, and readily compare them

with the CatANalyst predictions.

5.3 Performance Evaluation

In order to train and test the online version of the predictors, we collected

the set of enzymes contained in PDBselect and annotated in the CSA. We

employed the 505 enzymes deposited in PDB before January 2008 for train-

ing and the 88 newly deposited ones for testing, resulting in 137,116 train

and 24,849 test residues respectively. Results are reported in Table 5.3.

Consistently with the previous comparisons, we employed a 6:1 subsam-

pling of negative to positive examples on the training set. The performance

obtained are consistent with those obtained with a 10-fold cross-validation

on other benchmark datasets (compare results in Table 5.3 with those re-

ported in Chapter 3).

Note that the model we choose for CatANalyst tends to favour recall

with respect to precision. CatANalyst allows to shift the prediction thresh-

old as explained in Section 5.2.3. In Figure 5.6 we report the Recall/Pre-

cision curves for the sequence-based (blue) and structure-based (green)

3version 2.2.11
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Figure 5.6: Recall/Precision curves of the CatANalyst online sequence-based (blue) and

structure-based (green) predictors on the PDB-select dataset.

predictors. The curves can be easily compared to those we reported in

Chapter 3 on other benchmark datasets. Note that a performance wors-

ening of the structure-based predictor with respect to the sequence-based

one can be observed at very low levels of recall (below 0.07). This is due

to a slight positive bias on residues, especially HIS or ASP having a high

catalytic propensity, that bind catalytic cofactors (especially zinc ions).

These residues are not considered as having a direct role in the cataly-

sis according to the CSA annotation rules. This observation suggests to

develop models able to jointly predict the different roles of catalytic and

binding site residues.

As a case study we tested the structure-based predictor on an amidase

(SsAH) [45] whose structure has not been resolved. We used as input

to CatANalyst a predicted model of the tertiary structure the authors
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Performance %

CatANalyst P R FPR F1 MCC

PDBselect-seq 16.1 51.6 2.7 24.6 27.6

PDBselect-struct 18.3 61.6 2.8 28.2 32.4

Table 5.2: Precision (P), recall or sensitivity (R), False Positive Rate (1-specifity), F1 mea-

sure and Matthews Correlation Coefficient (MCC) results for test proteins in PDBselect

(rows one and two).

in [154] were confident with. CatANalyst predictions include the known

catalytic residues (K96, S195, S171) [45]. It also confirms the experimental

results shown in previous work [153], for example a possible role of R197,

K209 and D228 in affecting the active site, and identifies an additional

candidate residue (E142), whose putative role could be verified by site-

directed mutagenesis.

5.4 Statistics

The CatANalyst server is online since the beginning of December 2009

and it has been tested on thousands of different protein sequences and

structures from the PDB during the development. Six research groups and

companies outside of the author’s group have been involved in the testing

phase.

CatANalyst web-site has currently about three visits per-day. Since its

online publication it has received more than 900 visits, and submissions

from more than twenty countries around the world.

5.5 Computational Time Issues

Many of the CatANalyst tasks of feature extraction can take a long time

depending on many different factors. We observed that one of the most
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costly tasks in terms of latency is the computation of the conservation

profiles.

Conservation profiles encoding evolution-based similarity among sequences

in a multiple alignment are computed by using the Position-Specific Itera-

tive Blast Search (PSI-Blast) [28] on a database of non redundant protein

sequences (as explained in Chapter 3).

In order to reduce the latency in the delivery of the answer to a queried

protein we are precomputing the conservation profiles for a large number

of protein sequences of the UniProtKB [131]. Currently more than 8000

profiles have been precomputed.

5.6 Work In Progress

The CatANalyst structure-based classifier shows a slight positive bias on

residues having a high catalytic propensity that bind catalytic cofactors.

These residues have no direct role in the catalysis according to the CSA

annotation, as explained in Chapter 2. On the other hand, information

on nearby heterogens helps in identifying functional residues with low cat-

alytic propensities. Planned extensions include the joint prediction of both

catalytic and binding site residues and the collective prediction of residues

belonging to the same catalytic site by incorporating the approach de-

scribed in Chapter 4.
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Chapter 6

Learning from Mutations

In this second part of the manuscript the focus is on the mining of relevant

relational features from enzyme mutation data. It shows that the use of

the mined features is not only important for improving the understanding

of an enzyme function but also for predicting the evolution of viral enzyme

mutants. The proposed approaches have a general validity and can be

applied straightforwardly to proteins other than enzymes.

6.1 Introduction and Background

Advances in molecular genetics reveal that many diseases stem

from specific protein defects.

David Whitford in “Protein Structure and Function”

Random mutagenesis is a technique that aims at generating a library of

mutants of the same enzyme (the wild type) to be screened. A mutant has

incurred mutations, i.e. changes in the DNA sequence, with respect to its

wild type. In the present study the interest is on the so called mis-sense

mutations, in other words in mutations that change the protein amino acid.

Mutations that, due to the redundancy of the Genetic Code, do not change

the amino acid, are called silent or synonyms or same-sense mutations.
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The mutations induced by random mutagenesis can lead to either inac-

tive mutants or more convenient mutants showing an improved biological

activity or they can be mutations that do not affect the enzyme activity

(silent mutations). Protein mutation data are not only characterised by

the mutant sequences. They typically include mutant activities assayed

on several groups of structurally related substrates. By analysing common

patterns of mutation and their correlation with the experimentally mea-

sured mutant activity, it is possible, for instance, to formulate hypotheses

on the functional sites and the amino acids involved in them [153].

The sequence-based predictor described in Chapter 3 has been used for

predicting functional residues in mutants of the same enzyme — an ami-

dase (SsAH) [45]— produced by random mutagenesis. Mutant functional

residue predictions were analysed by correlating them with those of the

wild type enzyme. An example is shown in Figure 6.1. 36 mutants and

their activities on 14 substrates belonging to three structural groups were

screened. By coupling and validating the computational analysis with spa-

tial considerations on a predicted 3D model of the enzyme tertiary struc-

ture (see Figure 6.2), residues in positions 173 and 209 were highlighted as

important for affecting the catalytic site.

This analysis helped to gain insights about the putative role of some

residues in affecting the catalytic site. However, the case study highlighted

the need of a suitable approach for screening a large number of mutants and

mining relevant features from the related data. The mined features should

highlight the properties of protein functional sites and of the residues in-

volved in them. Therefore, relational and statistical relational learning

approaches are here investigated for mining enzyme mutation data.

Random mutagenesis is not only used with the mere purpose to gain in-

sights on a protein function or analyse a protein structure. It is also used in

protein engineering applications. Indeed, the design of novel proteins with
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Figure 6.1: Correlation plot of the prediction margins of the residues in the wild type

enzyme (x axis) and one of its mutants (y axis).

useful function passes through the understanding of the structure-function

relationship and the analysis functional sites. Here is also proposed a re-

lational learning approach that starting from the mined relevant features

builds novel instances of the learnt concept. An example of learnt concept

is “a mutant resistant to a certain inhibitor”.

The analysis of mutations proved to be extremely important in molec-

ular genetics studies aiming at developing effective cures to a number of

diseases stemming from specific protein defects [143].

Diseases like the cystic fibrosis, cancer and Human Immunodeficiency

Virus (HIV) infection all depend in some way on specific mutations taking

place into specific proteins — for the cystic fibrosis even a single mutation

over a total of 1500 amino acids. The HIV case is an emblematic example of

infection that encompasses many aspects of protein structure and function.
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Figure 6.2: Portion of the predicted 3D model of SsAH including the active site.

The virus enters white blood cells through the interaction of specific viral

proteins with receptors on the cell surface. Once in the cell, through the

action of specific enzymes, the virus integrates viral DNA into the host cell

for its replication.

The reverse transcriptase (RT) is the DNA polymerase enzyme that

transcribes RNA into DNA, allowing it to be integrated into the genome

of the host cell and replicated along with it, and is therefore crucial for the

virus propagation. Stopping an HIV infection requires the understanding

of the structure and functioning of these viral enzymes. Thanks to its high

mutation rate, the virus is able to quickly develop resistance to specific

drugs. The analysis of mutations and the discovery of those residues that

are necessary for the proper functioning of virus proteins are extremely

important. Based on this information more effective inhibitors can be de-
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signed and the virus evolution can be possibly anticipated. Even a single

mutation can confer the mutant resistance to one or more drugs by mod-

ifying the inhibitor target site on the protein and consequently avoiding

its interaction with the drug. HIV mutants typically have multiple muta-

tions and understanding the role of each one of them with respect to the

development of the resistance is quite difficult.

Many types of RT inhibitors have been designed for fighting against HIV

infection, which rely on quite different mechanisms. The NonNucleoside

RT Inhibitors (NNRTIs) and the NonCompetitive RT inhibitors (NCR-

TIs) inhibit the reverse transcriptase by binding to the enzyme active site,

therefore directly interfering with the enzyme function. A Nucleoside RT

Inhibitor (NRTI) is instead incorporated into the newly synthesised viral

DNA for preventing its elongation. Finally the Pyrophosphate Analogue

RT Inhibitor (PARTI) targets the pyrophosphate binding site and it is em-

ployed, as part of a salvage therapy, on patients in which the HIV infection

shows resistance to the other classes of antiretroviral drugs. Each of these

four classes of inhibitors includes a number of specific drugs or substrates

(see Table 7.1 in Chapter 7). HIV mutation data typically consist of a

number of HIV protein mutants whose resistance has been evaluated with

respect to several groups of related inhibitors.

Figure 6.3 shows an example of the inhibition of the reverse transcrip-

tase. The Nevirapine drug, an NNRTI, by binding just at the back of the

active site, changes the active site shape interfering with the RT function.

Recently the research for halting HIV is going into the direction of study-

ing HIV controllers, i.e. patients that are infected by HIV but do not get

the Acquired Immune Deficiency Syndrome (AIDS). Knowing how these

patients “naturally” fight off AIDS could help in providing that same resis-

tance to other patients who has contracted HIV. Analysing and comparing
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Figure 6.3: Reverse transcriptase inhibition by Nevirapine (PDB code 1VRT).

mutations of collected human genetic samples in [127] some genetic vari-

ations have been discovered. All of them are related to a protein HLA-B

which is essential in the immune system process of destroying infected cells.

This again underlines the importance of analysing and studying mutations

and the need of developing tools for mining the relevant protein variations

and their characteristics.

In this part of the thesis, two different approaches are proposed for

“learning from mutations”. The focus is on resistance of HIV RT to drug
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treatment. The first approach has the primary aim to mine relevant fea-

tures from mutation data, which can explain the mechanism involved in

the mutant mutated response to a drug. A statistical relational approach

is proposed for learning relational features.

The catalytic activity of an enzyme and its mutants is usually evaluated

on a number of different substrates (drugs). Exploiting the information on

related classification tasks can be useful for improving predictive perfor-

mance. Therefore, a multitask learning setting is employed for exploiting

the availability of resistance data for multiple inhibitors. The proposed

approach extends the notion of multitask learning in a relational setting to

a hierarchical multitask classification, providing the ability to learn rules

that are themselves hierarchical. The second proposed approach exploits

relational learnt rules modelling resistance mutations. Its aim is to gener-

ate novel mutations that can confer resistance to an inhibitor and therefore

anticipate the virus evolution.

129



6.2. STATE OF THE ART CHAPTER 6. LEARNING FROM MUTATIONS

6.2 State of the Art

Many machine learning methods have been applied in the past to mutation

data for predicting single point mutations on protein stability changes [32,

33,40] and the effect of mutations on the protein function [104] [26] or HIV

drug susceptibility [118]. All but one of the above mentioned approaches

are based on SVMs or neural networks. In [118] the performance of five

different statistical learning methods (for example, decision trees, neural

networks and support vector regression) are compared in the prediction

of mutant drug susceptibility. An extensive review of approaches for the

prediction of drug resistance mutations can be found in [30].

Albeit being effective binary classification algorithms, SVMs are not

ideal for mining relevant features or general rules that can be readily inter-

preted by human experts. A first attempt of learning rules from mutation

data, can be found in [120]. In this work relational associations among

mutations are extracted by means of an ILP learner.

Statistical relational learning approaches offer not only the ability to

learn human interpretable rules, typical of ILP algorithms, but also the

incorporation of statistical robustness principles needed to handle noise,

from the statistical learning theory. kFOIL [86, 87] is a statistical rela-

tional learner that combines techniques from inductive logic programming

—specifically, the FOIL algorithm [115]— with kernel methods.

Multitask learning [34] is an active research area and various techniques

have been proposed in the literature. The underlying idea is that of intro-

ducing a form of parameter sharing among tasks. In feed-forward neural

networks [34], this is achieved by learning a common hidden layer for the

tasks, while in kernel machines a matrix encoding the tasks relationship

is included in the regularisation term [55]. In a fully Bayesian framework,

hierarchical Bayesian models [11] introduce a common prior distribution
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for the task-specific models, favouring parameter sharing among related

tasks. These models allow for a great flexibility in modelling different

levels of tasks relatedness. Bakker and Heskes [5] for instance, generalise

standard multitask feed-forward neural networks with prior distributions

over the output layer weights. In the task gating approach, they allow for

both task clustering, by using a mixture model for the prior distribution,

and task-specific mixing proportions for the clustering. However, the num-

ber of clusters needs to be pre-specified according to the available domain

knowledge, or determined by model selection strategies. Non-parametric

Bayesian approaches have gained increasing popularity in recent years as

they allow to overcome this problem, by sampling distributions over pa-

rameters rather than parameters directly. Dirichlet processes [56] have

been employed for multitask learning [147] in order to automatically se-

lect the appropriate number of clusters for task-dependent parameters.

Approaches to learn an entire latent hierarchy of tasks have been also pro-

posed [47, 102]. These approaches, however, assume that task models can

be eventually represented as parameter vectors.

In a full relational setting, either domain knowledge allows to explicitly

encode relationships between tasks, or one needs to resort to multitask rela-

tional structure learning, and specifying priors over task-dependent struc-

tures is quite challenging. The same observation can be made on the quite

different setting considered in Chapter 7 in which hybrid statistical-logical

models made up of first-order clauses are learnt. It would be quite challeng-

ing to devise prior distributions for such discrete structures. Indeed, mul-

titask structure learning itself has received little attention in the statistical

relational learning setting. A notable exception is the work by Deshpande

et al. [52] on learning multitask probabilistic relational rule sets. Their

approach assumes that the prior information shared among tasks is a set

of rule prototypes. Task-specific rules are derived from these prototypes by
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a generative probabilistic process involving prototype selection and mod-

ification steps or rule generation from scratch. From the point of view of

learning hierarchies of concepts in relational domains, the works on infinite

relational models [78, 146] are also worth mentioning. Here latent indica-

tor variables on entities or concepts are introduced on top of the relational

structure, allowing to cluster them using Dirichlet process priors. The ap-

proach has also been extended [121] to discover a hierarchical structure of

concepts. While these models do not perform structure learning in terms

of logical hypotheses, their ability to infer arbitrary clustering structures

is an appealing feature to be integrated in a multitask learning approach.

kFOIL has been recently extended for dealing with multitask learning

[87]. It exploits multitask information for learning a general-to-specific

hierarchy of logical hypotheses, represented as relational kernel functions,

to be coupled with appropriate task-specific weights. The multitask kFOIL

was the first attempt to address multitask kernel learning in a statistical

relational learning context.

In the ILP community, multitask learning has been tackled in the form

of learning several related concepts simultaneously. Different approaches

have been pursued. In [116], the assessment of candidate clauses on the

primary task is augmented with the performance of similar rules on a

secondary task. Furthermore, a scenario resembling multitask learning has

been studied in [46], where (sub)structures of concepts already learnt are

used as building blocks when learning a new concept. A further related

scenario is that of repeat learning and multiple predicate learning [50, 80],

where an ILP learner has to discover a series of related concepts drawn from

some (initially unknown) distribution. Moreover, predictive clustering trees

have been used in an ILP setting. These trees can be used in a multitask

setting, where predictions for several tasks are made at every leaf [18,19].
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Chapter 7

Hierarchical Multitask kFOIL

This chapter proposes a novel approach for mining relevant features from

enzyme mutation data [155]. The proposed statistical relational learn-

ing approach implements a simple hierarchical extension of the multitask

kFOIL learning algorithm. The algorithm addresses the limitations of

learning a single relational structure for multiple tasks, by taking a hi-

erarchical approach. It first learns a core logic representation common to

all tasks, and then refines it by specialisation on a per-task basis. The

approach can be easily generalised to a deeper hierarchy of tasks. A task

clustering algorithm is also proposed in order to automatically generate the

task hierarchy. The approach is validated on the problem of drug-resistance

mutation prediction, as well as on a protein structural classification prob-

lem [156]. Experimental results show the advantage of the hierarchical

version over both single and multi task alternatives and its potential use-

fulness in providing explanatory features for the domain. Task clustering

allows to further improve performance when a deeper hierarchy is consid-

ered. A major advantage of the adopted strategy is the ability to provide

explanations for the learnt models which are themselves hierarchical: a

subset of relational features relevant to all tasks can be identified together

with more specific task-dependent ones.
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7.1 Introduction

kFOIL [86] is a statistical relational learner that, by taking a discrimina-

tive viewpoint, greedily learns a relational kernel representation with high

discriminant power for a certain task. The algorithm was recently [87]

extended to deal with multitask problems by learning a shared relational

representation which is discriminative for multiple tasks simultaneously.

However, learning a single common representation prevents the model from

discovering task-specific features, a problem affecting multitask neural net-

works as well. Moreover learning a single common representation can be

highly suboptimal if tasks relatedness is not high [94]. We propose a simple

extension where the common representation is viewed as an initial struc-

ture which is further specialised on a per-task basis. This simple approach

can be generalised to a deeper hierarchical process of refinements whenever

a hierarchical clustering of the tasks is available or can be learnt from data.

The hierarchical kFOIL algorithm is applied to a dataset of HIV resis-

tance mutations [120]. The dataset reports wild type and mutations of

the reverse transcriptase, a viral protein which is essential for the success

of the viral propagation. A mutation can confer the mutant resistance to

one or more drugs, for instance by modifying the inhibitor target site on

the protein. Due to the high mutation rate of viruses, mutants typically

have multiple mutations, ranging from 6 to 90 on this dataset. A possi-

ble problem in this setting is predicting which drugs a certain mutant is

resistant to. This can be naturally addressed as a multitask learning prob-

lem, where each drug is a single task. However, the relationship between

tasks is not necessarily strong as different drugs can target different sites

in the protein. Indeed, plain multitask learning will sometimes result in

a performance worsening with respect to single task in this setting, espe-

cially when drug classes are considered as tasks [120]. On the other hand,
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the proposed hierarchical refinement approach succeeds in combining the

advantages of the two methods, being always at least as good as either

alternative. Task clustering allows to further improve performance when

a finer grain of tasks is obtained by considering individuals drugs as tasks

instead of drug classes. The hierarchical multitask approach is also applied

to a protein structure classification problem, within the SCOP [72] hierar-

chy. In a setting in which quite distantly related tasks are combined, the

hierarchical approach is always significantly better than both single task

and multitask alternatives. Nonetheless, the main concern here is not the

predictive performance itself, but rather the ability of the method to pro-

vide insights into the reasons for a certain resistance. From this viewpoint,

multitask and hierarchical approaches have an additional advantage: the

models learnt can be inspected in order to relate general and task-specific

features.

7.2 kFOIL: Learning Relational Kernels

This section briefly reviews the original kFOIL algorithm [86] and its mul-

titask extension [87].

7.2.1 The kFOIL Algorithm

kFOIL [86] is a statistical relational learning approach that combines tech-

niques from inductive logic programming — specifically, the FOIL algo-

rithm [115] — with kernel methods. ILP systems such as FOIL learn a

first-order logical hypothesis for the target concept. This approach has

several advantages, including that a large and flexible space of hypotheses

is considered, and that the final model is readily interpreted by human

experts. On the negative side, ILP methods do not always incorporate

statistical robustness principles needed to handle noise, and searching in a
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large, discrete space of hypotheses can be challenging. In contrast, kernel-

based learning methods are well-suited to deal with noisy training data,

and learning reduces to a much simpler convex optimisation problem for

which globally optimal solutions can be found. It is possible to apply ker-

nel methods to relational data by manually defining a kernel function for

relational instances and using this function in standard kernel-based learn-

ers. However, this approach lacks the flexibility of an ILP-style hypothesis

search, as relevant relational features have to be encoded a priori in the

kernel function, rather than being discovered automatically from data. It

also limits the amount of domain insight obtainable from the learnt model,

as no new relational features are induced during learning.

kFOIL integrates the clause search of ILP approaches with kernel meth-

ods, by learning a set of interpretable first-order clauses from data that

define a relational kernel function. Thus, ILP methods are used as a form

of structure learning to induce a suitable kernel function from data. This

approach has the appealing potential of combining the advantages of both

approaches, namely the flexibility and interpretability of ILP-style clause

search and the robustness of kernel-based learners.

The simplest way to introduce a relational kernel function k(x1, x2)

based on a set H = {c1, ..., cn} of first-order clauses is to propositionalise

the examples x1 and x2 using H and then employ existing kernels on the

resulting vectors, which we will refer to as the feature space representation

of the examples. We will thus map each example x onto a vector φ(x) over

{0, 1}n with φ(x)i = 1 if the i-th clause ci ∈ H covers the example x, and

φ(x)i = 0 otherwise. Figure 7.1 shows an example of the propositionalis-

ing function φ(x) and feature space representation of examples m261 and

m1636 in the HIV resistance domain. Each mutant is mapped to a vector

with one entry for each clause, evaluating to one if the clause fires on the

example (i.e. the clause and the background knowledge logically entail
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Algorithm 7.1 kFOIL algorithm.

1: procedure kFOIL(H0,D,B)

2: Initialise H ← H0

3: repeat

4: Initialise c := p(X1, · · · , Xn)←
5: repeat

6: c := arg maxc′∈ρ(c) S(H ∪ {c′},D,B)

7: until stopping criterion

8: H := H ∪ {c}
9: until stopping criterion

10: return H

11: end procedure

it) and zero otherwise. A linear kernel in this representation amounts to

counting the number of rules firing on both examples. For details on the

logic representation employed see Section 7.5.1.

kFOIL integrates ILP and kernel-based learning by solving an integrated

optimisation problem given by (see also Section 1.4.3):

max
H∈H

SO

(
arg max
f∈FH

SI(f,D,B),D,B
)

(7.1)

Here, H denotes the logical hypothesis space under consideration, i.e. the

set of all possible sets of clauses. H is defined using language bias decla-

rations similar to those employed in FOIL and other ILP algorithms. FH
denotes the model space of a kernel machine working on the feature space

representation given by H. S denotes a scoring function that measures

the predictive performance of f(x;H,B) on the training data D, and B
the available logical background knowledge. SO and SI are the scoring

functions used for hypothesis and function learning respectively.

Learning the hypothesis H requires to solve the outer optimisation prob-

lem.

kFOIL follows the well-known FOIL algorithm [115] for learning a set of

clauses from data. The search procedure is sketched in Algorithm 7.1. In
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Figure 7.1: Example of a relational kernel function for the HIV resistance mutation

database. An alignment between the wild type and two mutants is reported with colours

highlighting positions which jointly satisfy the corresponding clause. The resulting fea-

ture space representation and mutants similarity for a linear kernel are reported in the

lower right part.

an outer loop, kFOIL repeatedly searches for clauses that score well with

respect to the data set and the current hypothesis, and adds them to the

current hypothesis. The initial hypothesis H0 is the empty set in the stan-

dard algorithm, but it will be a partial model when the procedure will be

used in the hierarchical version of the algorithm described in Section 7.3.

In the inner loop, kFOIL greedily searches for a clause that scores well.

To this aim, it employs a general-to-specific hill-climbing search strategy.

Let p/n denote the predicate that is being learnt. Then the most gen-

eral clause, which succeeds on all examples, is “p(X1, ..., Xn) ←”. This

clause serves as a starting point for the hill-climbing search. The set of

all refinements of a clause c within the language bias is produced by a

refinement operator ρ(c). Clauses are greedily refined until a stopping cri-

terion is met, and the highest-scoring clause encountered during the search

is added to the hypothesis H. The joint optimisation of the hypothesis H

and kernel machine f reflected in Equation (7.1) and Algorithm 7.1 means
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that kFOIL falls into the framework of dynamic propositionalisation [85].

This is in contrast to static propositionalisation approaches that decouple

propositionalisation of the data and propositional learning.

Several scoring functions S(H ∪ {c′},D) for candidate hypotheses have

been proposed. One class of scoring functions uses the performance of

a kernel machine trained on the feature space representation of the data

φ(D) obtained from H ∪ {c′}, by setting

S(H,D,B) = SO

(
arg max
f∈FH

SI(f,D,B),D,B
)
. (7.2)

These measures require that the statistical learner is trained for each can-

didate clause, and its performance on the training set is reported. An

efficient alternative consist of using kernel target alignment (KTA) [44],

defined as:

S(H,D,B) =
〈K, yyT 〉F√

〈K,K〉F 〈yyT , yyT 〉F
(7.3)

where K is the kernel matrix resulting from H, y ∈ {−1, 1}m is the target

vector for m examples, yT is the transpose of y, and the Frobenius product

is defined as 〈M,N〉F =
∑

ijMijNij. Intuitively, the alignment measures

how the kernel adheres to a “perfect” kernel, scoring one and minus one

for examples belonging to the same and different classes respectively, and

is thus an indication of the performance a kernel machine can reach using

it.

As a stopping criterion, the original FOIL algorithm stops when it fails

to find a clause that covers additional positive examples. As an equally

simple stopping criterion, learning in kFOIL is stopped when there is no

improvement in score between two successive iterations.
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7.2.2 Multitask kFOIL

The original kFOIL algorithm has been recently extended to a multitask

setting [87]. Multitask learning in kFOIL is based on sharing the learnt fea-

ture representation (or, equivalently, the relational kernel function) across

tasks. This can be achieved by learning a single joint set of clauses for

all tasks under consideration, such that all task-specific kernel machines

trained on this representation achieve good performance in their respec-

tive prediction tasks. In a multitask setting, Algorithm 7.1 is thus adapted

by replacing the single-task scoring function S(H,D,B) by an appropriate

multitask scoring function, which is obtained as a combination of single-

task scoring functions on the individual tasks. Assume that S(H,D,B) is

an (outer) scoring function as given by Equation (7.2) or Equation (7.3),

and that D1, ...,DM are the available training data for M tasks T1, ..., TM .

A simple but effective multitask scoring function is obtained by averaging

single-task scores. That is, replacing Equation (7.2) with

S(H,D,B) =
1

M

M∑
t=1

SO

(
arg max
f∈FH

SI(f,Dt,B),Dt,B
)
, (7.4)

or equivalently, replacing Equation (7.3) with

S(H,D,B) =
1

M

M∑
t=1

〈K, ytyTt 〉F√
〈K,K〉F 〈ytyTt , ytyTt 〉

(7.5)

where yt is the label vector of task t ∈ 1, ...,M .

Experimental results presented in [87] show several advantages of mul-

titask learning in the proposed setting. First, generalisation performance

is improved in some cases, confirming the advantages of multitask learning

observed in the literature [34]. Second, in this setting learning a shared

clause set for multiple tasks leads to a more compact representation of

the learnt concept, as the multitask clause set is significantly smaller than
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task1 task2 taskM

multitask model

single task model

refined model

on a per-task basis

Figure 7.2: The hierarchical learning approach.

the union of the task-specific clause sets. In terms of the learnt simi-

larity/kernel function, this yields a generic definition of similarity that is

shared between tasks and should be easier to interpret than a number of

task-specific similarity functions. Finally, multitask learning also results in

significant computational savings.

7.3 Hierarchical kFOIL

Learning a representation which is common to multiple related tasks is a

way to reduce the risk of overfitting the data [11]. However, it prevents the

algorithm to learn specific task-dependent features, which can be harmful

for some of the other tasks. Furthermore, it assumes a high relatedness

among tasks, and performances can be badly affected when relatedness

is not that high. We propose a simple extension to the multitask kFOIL

learning algorithm dealing with this problem.

A hierarchical approach to multitask learning is taken (see Figure 7.2):

the algorithm first learns a representation which is common to all tasks
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Algorithm 7.2 Hierarchical kFOIL algorithm.

1: procedure HierarchicalKFOIL({D1, . . . ,DM},B)

2: Initialise H0 ← kFOIL(∅, {D1, . . . ,DM},B) . compute initial representation

3: for all Dt ∈ {D1, . . . ,DM} do

4: Ht ← kFOILRefine(H0,Dt,B) . compute task-dependent refinements

5: end for

6: return {H1, . . . , HM}
7: end procedure

by using the multitask kFOIL; then such initial representation is refined

separately for each task, leading to task-dependent final representations ob-

tained as extensions of a common core. Algorithm 7.2 shows the resulting

hierarchical kFOIL learning system, where D1, . . . ,DM are the datasets for

the M different tasks. For simplicity we assumed a common background

knowledge B, but it is straightforward to replace it with task-specific back-

ground knowledge, as well as a task-specific language bias defining the

clause refinement operator ρ.

The refinement stage is described in Algorithm 7.3 and consists of two

steps. First, each clause from the initial representation is further refined

guided by the task-specific score. If the (possibly) refined clause fails to

improve the score, it is not added to the task-specific model. Then, the

model from the previous step is enlarged by creating novel clauses using the

plain kFOIL procedure. In principle, when refining general clauses, spe-

cialising the initial representation is not the only available option. We also

implemented a search operator that considers both specialisation and gen-

eralisations of the current clause, by greedily adding or removing a single

literal. As this did not change results significantly in the experimental set-

tings, section 7.5 only reports the results obtained with the specialisation

operator.

A detailed analysis of computational complexity for both single task

and multitask kFOIL is reported in [87], showing the increase in efficiency
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Algorithm 7.3 kFOIL refinement algorithm.

1: procedure kFOILRefine(H0,D,B)

2: Initialise H ← H0

3: for all c ∈ H0 do . refinement of existing clauses

4: H ← H \ {c}
5: repeat

6: c← arg maxc′∈ρ(c) S(H ∪ {c′},D,B)

7: until stopping criterion

8: if score improvement then

9: H ← H ∪ {c}
10: end if

11: end for

12: H ← kFOIL(H,D,B) . search for novel clauses

13: return H

14: end procedure

of the latter especially when KTA scoring is employed. The additional

complexity of the refinement stage depends on the number of single-task

clauses added: the more related the tasks are, the more the multitask

clauses will already explain them and the refinement size will be limited.

The hierarchical kFOIL algorithm can be easily generalised to multiple

levels of refinements whenever tasks can be naturally aggregated into a

hierarchical structure. When the existence of a hierarchy can be guessed

but its structure is unknown, the approach can be combined with a task-

clustering algorithm as suggested by Thrun and O’Sullivan [132].

7.4 Task Clustering

The rationale of multitask learning is that predictive performance on a cer-

tain task should improve if information from related tasks can be exploited.

However, performance worsening can also be experienced when trying to

transfer information between unrelated tasks. A selective transfer [132]
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approach would be advisable. In such approach the transfer occurs only

among tasks related one to each other. This requirement can be combined

with the potential advantages of a multi-level representation by pursuing

a hierarchical clustering approach. We basically adapt the task-clustering

algorithm of Thrun and O’Sullivan [132] to our setting in which multitask

learning is seen as a way to improve performance among training tasks

rather than on novel test ones, and the clustering structure is used to learn

interpretable hierarchical models and discover hierarchical rules relating

tasks and groups of tasks.

Most clustering approaches rely on a measure of similarity (or distance)

among instances. Intuitively, two tasks are similar if they have the same

output over the same (or similar) examples. Whenever few (or no) ex-

amples are shared between tasks, we cannot just rely on them in order

to compute a reliable measure of similarity. However, we can simply fill

missing labels using predicted ones. Assume D is the overall set of training

instances, and Di its subset having labels for task i. We compute missing

task-dependent labels for D \ Di as those predicted by a model for task i

trained on Di. Repeating the procedure for all tasks, we compute pairwise

task similarity as:

sim(i, j) =
1

|D|
∑
x∈D

δ(f̂i(x), f̂j(x)) (7.6)

where f̂k(x) is the true task-specific label yk for x if available, or the pre-

dicted one fk(x) otherwise. Learning a model for each task requires provid-

ing a representation for instances. We rely on the initial common represen-

tation H0 (see Algorithm 7.2) and use it to derive task-dependent models,

pairwise similarities and resulting hierarchical clustering. We employed an

agglomerative hierarchical clustering approach with average pairwise simi-

larity between elements for cluster similarity. Once the clustering structure
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is available, a multi-level refinement can be applied. Note however that the

amount of transfer and the granularity of the refinement structure can be

adaptively adjusted to the problem at hand. At each node in the cluster-

ing structure, two choices are possible, depending on the similarity between

the node children: 1) learn a node-dependent model, and refine it for each

child; this would be the default strategy to achieve a fully hierarchical

model; 2) learn a node-dependent model, and use it within each child;

this option would reduce the granularity of the hierarchical structure by

merging together nodes containing similar tasks. The choice between these

two options can be made separately for each choice point, by specifying a

similarity threshold θmax, or jointly by constraining the size of the repre-

sentational structure (e.g. three levels from the root to the task-specific

models). Algorithm 7.4 reports the pseudo-code of the hierarchical kFOIL

procedure with task clustering. The initial representation H0 obtained by

running the plain multitask kFOIL on all tasks is used to infer a hierar-

chical clustering rooted at C0. The representation H0 is then refined on a

per-node basis for each child of C0, using the subset of D containing exam-

ples for tasks in Ci. sim(C0) returns the similarity between the children of

C0, needed to decide on the amount of transfer. Algorithm 7.5 describes

the node-dependent refinement for a generic node C. If the similarity value

s between the node and its siblings is below θmax, or the node contains a

single task, a node-refined representation is generated calling the kFOIL

refinement algorithm, implementing case 1 of node choices previously de-

scribed. Otherwise, no node-wise refinement is performed (case 2) and the

parent model is directly passed to the children.
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Algorithm 7.4 Hierarchical clustering kFOIL algorithm.

1: procedure HierarchicalClustKFOIL(D,B)

2: Initialise H0 ← kFOIL(∅,D,B) . compute initial representation

3: C0 ← HierarchicalClustering(H0,D,B) . compute clustering

4: for all Ci children of C0 do . compute node-dependent refinements

5: Di ← subset of D involving tasks in Ci

6: ClusterNodeKFOIL(H0, Ci, sim(C0),Di,B)

7: end for

8: end procedure

Algorithm 7.5 kFOIL algorithm for cluster node.

1: procedure ClusterNodeKFOIL(H0, C, s,D,B)

2: if s ≤ θmax ∨ isLeaf(C) then

3: H ← kFOILRefine(H0,D,B)

4: else

5: H ← H0

6: end if

7: for all Ci children of C do

8: Di ← subset of D involving tasks in Ci

9: ClusterNodeKFOIL(H,Ci, sim(C),Di,B)

10: end for

11: end procedure

7.5 Experimental Evaluation

We evaluated our hierarchical approach on datasets from two domains,

namely HIV drug resistance mutations and SCOP protein structure clas-

sification hierarchy. In all experiments the KTA (see Equation 7.3) was

used as scoring function for guiding the search of the kFOIL algorithm, as

it is more efficient even if less effective [87] in general than measures based

on a trained kernel machine. A simple linear kernel was employed in order

to maximise the understandability of the learnt models. Note that, rather

than pushing the performance of the learning algorithm by fine tuning its

parameters, we are more interested in comparing the respective advantages
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of the different approaches and evaluate their explanatory power. The Hi-

erarchical kFOIL program is freely available online 1. The package also

includes all the prediction results and learnt models of the experiments

reported in the following sections.

7.5.1 Predicting Drug-Resistance of Mutants

Viruses are characterised by a very high mutation rate, which allows them

to quickly develop drug-resistant strains. A single- or multiple-point mu-

tation can confer the mutant resistance to one or more drugs, for instance

by modifying the inhibitor target site on the protein. Predicting the drug-

resistance of mutants can be of valuable help in designing more effective

drugs, especially if interpretable models can be provided. This can be ad-

dressed as a multitask learning problem, where each drug is a single task.

However, the relationship between tasks is not necessarily strong as differ-

ent drugs can target different sites in the protein. A hierarchical approach

seems a natural candidate in this setting. We focused on HIV, both for the

impact of the virus and the availability of annotated databases of mutants.

The HIV Resistance Mutations Datasets

We experimented on a dataset of mutations from the Los Alamos National

Laboratories (LANL) HIV resistance database2. The dataset was derived

in [120] and is composed of 2,339 mutants of the HIV RT. Richter et al. [120]

formulated the learning problem as a mining task and applied a relational

association rule miner to derive rules relating different mutations and their

resistance properties. We take a slightly different approach here and pro-

vide supervision at the mutant rather than mutation level. A mutant is

considered resistant to a drug if it contains at least one observed resistance

1http://www.disi.unitn.it/∼passerini/software/HkFOIL.tgz
2http://www.hiv.lanl.gov/content/sequence/RESDB/
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mutation to that drug. We derived two different versions of the dataset,

considering resistance to drug classes or specific drugs respectively.

drug class resistance dataset We selected the three classes of drugs:

(a) NonNucleoside RT Inhibitors (NNRTI); (b) NonCompetitive RT

inhibitors (NCRTI); (c) Pyrophosphate Analogue RT Inhibitors (PARTI).

In the dataset 1081 mutants are labelled as resistant to NNRTI, 75 to

NCRTI and 53 to PARTI. We ignored the Nucleoside RT Inhibitors

(NRTI) since all the mutants in this dataset had at least one mutation

conferring resistance to that class of drugs.

drug resistance dataset We used all the four classes of drugs from the

original dataset, thus including the NRTI class. We specialised the

labelling on a single-drug basis, extracting this information directly

from the LANL HIV resistance database when available. Table 7.1

reports the drugs belonging to the four inhibitor classes and the num-

ber of mutants resistant to each of them. In this way we deepen the

hierarchy at the single drug level with the aim of testing the usefulness

of the hierarchical clustering approach.

Background Knowledge

A relational knowledge base is built for the domain at hand. Table 7.2

summarises the predicates included as a background knowledge. We repre-

sented the amino acids of the wild type with their positions in the primary

sequence (aa/2) and the specific mutations characterising them (mut/4).

Target predicates were encoded as resistance of the mutant to a certain

drug (res against/2).

Additional background knowledge was included in order to highlight

characteristics of residues and relationships between mutations:
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Drug class Drug # mutants

Zidovudine (azt) 2211

Lamivudine (3tc) 1356

NRTI Abacavir (abc) 422

Zalcitabine (ddc) 336

Didanosine (ddi) 280

Efavirenz (efv) 883

Nevirapine (nvp) 833

NNRTI Delavirdine (dlv) 796

ADAMII 114

Trovirdine 113

NCRTI MSK-076 75

PARTI foscarnet 53

Table 7.1: Hierarchical task structure for the HIV resistance mutation datasets with

associated number of instances.

Background Knowledge Predicates
aa(Pos,AA) indicates a residue in the wild type sequence
mut(Mutant,AA,Pos,AA1) indicates a mutation: mutant identifier, position and

amino acids involved, before and after the substitution
res against(Mutant,Drug) indicates whether a mutant is resistant to a certain drug

color(Color,AA) indicates the type of a natural amino acid
same type(R1,R2) indicates whether two residues are of the same type
same type mut(Mutant,Pos) indicates a mutation to an amino acid from the same type
different type mut(Mutant,Pos) indicates a mutation changing the type of residue
correlated mut(Mutant,Pos1,Pos2) indicates whether two mutations are correlated (see the

text for the details)

Table 7.2: Summary of the HIV drug resistance background knowledge facts and rules.

color/2 indicates the type of the natural amino acids according to the

colouring proposed in [130] and also reported in Table 7.3. For exam-

ple the magenta class includes basic amino acids as lysine and arginine

while the blue class includes acidic amino acids as aspartic and glu-

tamic acids.

same type/2 indicates whether two residues belong to the same type, i.e.
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Colour Class Amino Acids Description

red AVFPMILW small and/or hydrophobic and/or aromatic

blue DE acidic

magenta RK basic

green STYHCNGQ hydroxyl and/or polar and/or basic

Table 7.3: Amino acid types encoded in colour classes.

a change from one residue to the other conserves the type of the amino

acid.

same type mut/2 indicates that a residue substitution at a certain position

does not modify the amino acid type with respect to the wild type. For

example mutation d123e conserves the amino acid type while mutation

d123a does not (i.e. different type mut/2 holds for it).

correlated mut/3 states that two mutations are correlated. We consid-

ered two mutations in different positions along the primary sequence

to be correlated, when they compensate reciprocally for the substi-

tutions of the amino acids. This predicate captures simple cases like

the two mutations d123a and a321d, and more complex correlations

in which the changes involve not exactly the same residue but residues

of the same type, like d123a and a321e or d123a and v321e.

Hierarchical Multitask Experiments

The hierarchical kFOIL algorithm is evaluated on the drug class resistance

dataset, with three tasks corresponding to the three drug classes. Results

are compared with the two alternatives of: 1) considering three separate

single task learning problems; 2) considering a single common multitask

learning problem with no per-task refinement. We performed 3-fold cross-

validation procedures stratified at the single-task level to ensure a good
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balancing between positive and negative examples for each learning task.

The area under the ROC curve (AUC) was employed as measure of per-

formance in all experiments.

We experimented with two variants of the language bias guiding the

learner, by varying the constraints on the use of the mut/4 predicate. In the

first variant (V1) the learner can extend a clause by using the predicate

mut/4 with the position variable already instantiated, and thus scoring it

according to the mutants that have a mutation in that position. In the

second variant (V2), in the predicate mut/4 the position variable is not in-

stantiated while the variable corresponding to the mutated form of the

residue is instantiated instead. In the first case the search space of the

learner will contain predicates like mut(Mutant,a,123,Rnew) with a specific po-

sition instantiated, while in the second case it will contain predicates like

mut(Mutant,Rold,Position,k) where k indicates a change resulting in a lysine.

The rationale for considering the two variants is that the former will tend

to learn more specific clauses involving relationships between point-wise

mutations, as for the association rules discovered in [120]. Conversely, the

latter variant will be biased to learn possibly suboptimal but more general

and hopefully more interesting mutation rules, trying to discover higher

level patterns relating different mutations.

Table 7.4 reports the results of the two variants V1 and V2. Different

behaviours can be detected for different drug classes. Overall, multitask

learning achieves comparable results with respect to a standard single task

approach in both variants, being twice significantly better and once signifi-

cantly worse than the alternative. The result suggests that for this dataset

we are not always able to take a real advantage from the multitask learning

approach, possibly because classes of drugs can be quite unrelated by tar-

geting different binding sites. By adding a refinement stage on a per-task

basis, we succeed in improving the results with respect to both single task
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V1 V2

Drug class single task multitask hierarchical single task multitask hierarchical

NNRTI 0.95◦ 0.77 0.96◦ 0.68 0.66 0.71◦•
NCRTI 0.95 0.99 0.99• 0.88 0.86 0.88

PARTI 0.81 0.95• 0.98• 0.65 0.84• 0.90•

Table 7.4: Summary of the hierarchical multitask experiments (KTA scoring). Statistical

tests for the significance of the differences in AUC were computed for the methods within

each language bias variant using the two-tailed Hanley-McNeil test [68] (p=0.05). A bullet

(•) indicates that the method is significantly better than the single task approach, while a

circle (◦) indicates a significant improvement over the multitask one. All other differences

are not statistically significant.

and multitask approaches. Hierarchical kFOIL is never significantly worse

than any of the two alternatives, while being significantly better than at

least one of them in five out of six cases.

Discussion and Rule Interpretation

Concerning the language bias variants, we can observe from Table 7.4 that

as expected the instantiation of a specific position (V1) gives better results

compared to searching more general rules (V2). The former models can ex-

ploit the fact that mutants resistant to the same drug often share mutations

in the same positions. These could be located in the protein binding site

or its vicinity, but drug resistance could also be conferred more indirectly

by other conformational modifications.

Figure 7.3 shows an example of hierarchy of learnt clauses in the V1

variant setting. The root clause mut(A,g,196,B),color(blue,B) was learnt in

the multitask models of all folds. The clause states that a mutation in

position 196 changing a glycine into an acidic residue (aspartic or glutamic

acid) can be important for a mutant to develop resistance to the three

kinds of drugs analysed. This could provide hints for understanding how
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the binding works and is affected by the surrounding residues. Moreover it

underlines the potential of the approach also in other contexts: for example

to gain insights on the wild type protein function and on its active site

starting from its mutants usually obtained by random mutagenesis. We are

currently pursuing such research direction on an amidase. When inspecting

the models resulting from the single task refinements, we found that for

the NNRTI task the above-mentioned clause is not extended. Additional

mutations are instead included in the extended clauses for the NCRTI and

the PARTI tasks. This could suggest that in those cases the drug-specific

resistance results from the combination with one or two other mutations.

Introduction kFOIL The kFOIL Hierarchical Extension The HIV RT Drug Resistance Prediction Experiments Conclusion

Learned Clauses
Some examples

mut(A,g,196,B),

color(blue,B)

NCRTI
mut(A,g,196,B),

color(blue,B),

mut(A,s,162,C).

NNRTI
mut(A,g,196,B),

color(blue,B).

PARTI
mut(A,g,196,B),

color(blue,B),

mut(A,i,178,C),

mut(A,g,359,D).

Note

kFOIL identifies also known correlation previously observed to
be related to resistance to NNRTI

mut(A,m,41,B),mut(A,t,215,C) , mut(A,d,67,D)

E. Cilia, N. Landwehr, A. Passerini — Mining Drug Resistance Relational Features with Hierarchical Multitask kFOIL 26/31

Figure 7.3: Example hierarchy of learnt clauses.

Some mutations, like the mutation of the asparagine in position 348,

appear in multitask model and in all the single task models (in all the

folds) with the addition of at most one correlated mutation. This seems

to suggest that such mutation is important for the mutant resistance to

the three drug classes. Interestingly the refined model further enriches the

corresponding clause by correlating the mutation with up to three other

mutations.

The learnt rules generated by kFOIL for NNRTIs, NCRTIs and PARTIs

can be compared with those reported by the rule miner used in [120] which

are not explicitly linked to the resistance to NRTIs. These rules correlate
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mutations in position 41 and 215, sometimes also with other mutations in

position 277 and 293. kFOIL identified the correlation between the muta-

tions at positions 215 and 41. This correlation was previously observed to

be related to resistance to NRTIs [91]. kFOIL identifies the same correla-

tion for the resistance to the quite different other classes of inhibitors. In

particular the two mutated positions were found among the rules for the

resistance to PARTIs where additional mutated position are highlighted:

67 and 376 .
The learnt models in the variant V2 contain clauses like

mut(A,B,C,w),mut(A,D,E,i),mut(A,F,G,l),mut(A,H,I,d),mut(A,J,K,a)

or

mut(A,B,C,g),position(C,135),mut(A,D,E,m),

correlated_mut(A,E,F),position(F,138)

which combine a quite large set of mutations, with the latter clause includ-
ing an explicitly correlated pair of mutations. As a further example the
refined model on the PARTI task suggests, in all folds, the clause:

mut(A,B,C,w),different_type_mut(A,C)

which highlights a mutation into a tryptophan that completely changes the

type of amino acid in the mutated position. Note that the need for multiple

mutations in order to induce a change in the phenotype has recently found

confirmation [140] in experimental studies on molecular phenotypes. A

suggested interpretation [140] states that “neutral mutations prepare the

ground for later evolutionary adaptation”. While this is far from being a

confirmation for the specific patterns found by the algorithm, the obvious

limitation of learning techniques focusing on single point mutations alone

is an additional stimulus for this research direction.

Hierarchical Clustering Experiments

The task clustering approach for hierarchical multitask learning is evalu-

ated on the drug resistance dataset, which provides a deeper structure of
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tasks as information on both drug classes and specific drugs are available.

Results are compared with the three alternatives of: 1) considering three

separate single task learning problems; 2) considering a single common

multitask learning problem with no per-task refinement; 3) learning a per-

task refinement of an initial common multitask model as in the previous

section. In order to feed the clustering algorithm with an accurate esti-

mate of tasks similarities, the focus is on the variant of the language bias

providing the better results (V1). The validation procedure is the same as

for the hierarchical multitask experiments.

Figure 7.4 shows the dendrograms of the clusterings obtained in each

one of the folds of the cross-validation. Drug classes are highlighted with

different colours: red for drugs belonging to the NRTIs, blue for those

belonging to NNRTIs, orange for PARTIs and green for NCRTIs. Note

that the hierarchical clustering obtained is rather stable across folds. In-

terestingly, Zidovudine (azt) is consistently separated from the rest of the

drugs and merged only at the root. A possible explanation for this be-

haviour is that the large number of examples available for the drug (see

Table 7.1) makes the kernel machine employed in kFOIL more focused on

the task and less predictive for different drugs. Indeed, multitask learning

already achieves an AUC of 0.95 for azt (see Table 7.5), which is rather

high considered that the resulting binary classification problem is the most

balanced.

A dotted line in Figure 7.4 indicates the value of the similarity threshold

employed (θmax = 0.5): a single intermediate level of refinement is obtained

in all folds between the shared multitask model at the root and the per-task

refinements at the leaves.

Table 7.5 reports AUC results for the different learning strategies for

the V1 variant of the language bias. The problem of using a plain multi-

task approach is even more severe when considering single drugs from all
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(a) fold 0 (b) fold 1

(c) fold 2

Figure 7.4: Hierarchical clustering dendrograms. Specific drugs belonging to the same

class are coloured respectively in red for NRTI, blue for NNRTI, orange for PARTI, green

for NCRTI.
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classes, as the single task alternative is significantly better in six out of

twelve cases and never significantly worse. Again, a per-task refinement of

the multitask model allows to recover the single-task performance. How-

ever, only in one case (azt) the refinement is significantly better than the

single-task alternative. This seems to indicate a poor overall contribution

of task transfer, possibly because of the difference between target sites for

the four inhibitor classes. Indeed, such inhibitors rely on quite different

mechanisms. A further refinement level guided by the clustering proce-

dure allows to increase to four the number of cases in which a hierarchical

approach is significantly better than the single-task alternative. Further-

more, in one of these cases the approach is significantly better than the

shallow hierarchical multitask model too. Note that in one case (foscarnet)

the hierarchical clustering is actually significantly worse than the shallow

approach. However, in this case a plain single task model is significantly

better than both hierarchical versions3. This drug has very few examples

(53), indicating a possible sub-optimality of the hierarchical versions when

insufficient data are available.

Discussion and Rule Interpretation

By mining the learnt rules some interesting examples of hierarchical con-

cept learning can be found: the clause mut(A,w,88,B) learnt in the multitask

setting is specialised at the first refinement stage into the clause

mut(A,w,88,B),mut(A,C,D,E),color(blue,C),color(green,E),

in which an additional rather high-level mutation description is included.

In the second refinement stage, the per-drug one, the clause is further

specialised depending on the specific drug under consideration. In the case

3Note that the multitask approach for foscarnet is not significantly better than the hierarchical ones

even if its AUC value is the same as the single-task one. This is due to the fact that in the latter case

predictions are highly related to the hierarchical ones, and the Hanley-McNeil test [68] considers such

relatedness in computing the critical ratio.
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Drug
Drug multitask single task

hierarchical hierarchical

Class multitask clustering

azt 0.95 0.93 0.97•◦ 0.97•◦
3tc 0.76 0.92◦ 0.91◦ 0.94•◦�

NRTI abc 0.92 0.95◦ 0.96◦ 0.95◦
ddC 0.94 0.92 0.94 0.94•
ddi 0.95 0.94 0.94 0.95

efavirenz 0.93 0.94◦ 0.95◦ 0.96•◦
nevirapine 0.92 0.95◦ 0.96◦ 0.96◦

NNRTI delavirdine 0.93 0.96◦ 0.97◦ 0.97◦
ADAMII 0.87 0.90 0.91 0.90

trovirdine 0.91 0.96◦ 0.96◦ 0.97◦
NCRTI MSK-076 0.99 0.98 0.97 0.99

PARTI foscarnet 0.88 0.88�? 0.86? 0.84

Table 7.5: Summary of the hierarchical clustering experiments (KTA scoring) with the

V1 version of the language bias. AUC values are reported, together to the results of

the statistical tests for the significance of AUC differences computed using the two-tailed

Hanley-McNeil test [68] (p=0.05). A symbol after an AUC value indicates that the corre-

sponding method is significantly better than: single task (•), multitask (◦), hierarchical

multitask (�), hierarchical clustering (?). All other differences are not statistically signif-

icant.
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of Lamivudine (3tc), for instance, the final clause is:

mut(A,w,88,B),mut(A,C,D,E),color(blue,C),color(green,E),mut(A,t,400,F)

that is, a specific position is selected in combination with the previously

characterised mutations.

Another interesting example is given by the clause

mut(A,t,215,y),mut(A,g,196,B),

which is initially refined into mut(A,t,215,y),mut(A,g,196,B),mut(A,t,357,C).

When refining on a single task basis for the NRTI drug Abacavir (abc),

for instance, the previously observed [141] correlation between mutations

in positions 215 and 41 is recovered:

mut(A,t,215,y),mut(A,g,196,B),mut(A,t,357,C),mut(A,m,41,D),mut(A,i,293,E).

Correlation of mutations in position 41, 215 and 293 was also highlighted

by the relational rule miner used in [120]. Here we are able to be a bit

more specific and relate the correlation to resistance to a particular drug

(abc).

Among the kFOIL generated rules many surveillance mutations [12]

indicated for the resistance to NRTI and NNRTI can be found. Those

mutations often appear in correlation with other mutations that potentially

participate in conferring the resistance to a class of inhibitors or to a specific

inhibitor. For instance, the mutations in position 184 that were shown to

be involved in 3tc resistance appear jointly with a mutation in position 69.

In abc resistance the same 184 mutated position appears with a mutation

in position 10 in the generated model.

7.5.2 Protein Structure Classification

After being sequenced, a protein folds in the 3D space assuming a specific

native conformation. Large regularities can be observed in these conforma-

tions, from the local arrangements into secondary structure units, alpha

helices and beta strands, to their aggregation into domains. A number
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All-α N All-β N α/β N α+ β N

DNA 3-helical 30 Ig beta-sandwich 45 β/α (TIM)-barrel 55 Ferredoxin-like 26

EF hand-like 14 Tryp ser proteases 21 Rossmann-fold 21 Zincin-like 13

Globin-like 13 OB-fold 20 P-loop 14 SH2-like 13

4-Helical cytokines 10 SH3-like barrel 16 Periplasmic II 13 beta-Grasp 12

Lambda repressor 10 Lipocalins 14 α/β-Hydrolases 12 Interleukin 9

Table 7.6: Number of examples (N) in each of the folds in the SCOP dataset. Folds are

grouped by fold classes: All-α, All-β, α/β and α + β.

of hierarchies of protein 3D structures have been created, based on evolu-

tionary and/or structural considerations. A protein structure classification

task in this setting consists of automatically assigning a protein structure

to the correct class, relying on information like the arrangement of its

secondary structure units.

SCOP [72] is a manually curated hierarchy based on both structural and

evolutionary relationships between proteins. Turcotte et al. [137] extracted

a dataset made of the five most populated folds of each of the four main

classes (see Table 7.6). They learnt a set of rules characterising each of the

folds with respect to the other folds of the same class, in a binary classi-

fication setting. The problem was later generalised [39] to full multiclass

classification at the fold-class level. The following experiments consider

this last setting.

Background Knowledge

The background knowledge encoded in [137] is used for representing the

three-dimensional structure information of the proteins. Table 7.7 reports

the background knowledge predicates divided into three classes: global

knowledge, which encodes global characteristics of the protein domains,

namely, the number of residues and the number and type of secondary

structure elements; local knowledge, which encodes local information of
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a single protein secondary structure element (SSE); relational knowledge,

introducing relationships between secondary structure elements and their

properties.

Background Knowledge Predicates
global background knowledge
len interval(Min,Domain,Max) indicates that the number of amino acids com-

posing a Domain is between Min and Max
nb alpha interval(Min,Domain,Max) indicates that the number of α-helices com-

posing a Domain is between Min and Max
nb beta interval(Min,Domain,Max) indicates that the number of β-strands com-

posing a Domain is between Min and Max

local background knowledge
unit len(SSE,Value) indicates the length of an SSE as very low,

lo, hi, very high

unit aveh(SSE,Value) indicates the average hydrophobicity of an
SSE as very low, lo, hi, very high

unit hmom(SSE,Value) indicates the hydrophobic moment of an SSE
as very low, lo, hi, very high

has pro(SSE) indicates whether an SSE contains a proline.

relational background knowledge
adjacent(Domain,SSE1,SSE2,N,TypeSSE1,TypeSSE2)indicates that the N-th (position along the

chain) secondary structure element SSE1 of
type TypeSSE1 is followed by SSE2 of type
TypeSSE2. The type can be h or e. Helices
and strands are numbered separately

coil(SSE1,SSE2,Len) indicates that there are Len residues between
two SSEs

Table 7.7: Summary of the SCOP background knowledge.

Hierarchical Multitask Experiments

Single task problems here consist of discriminating a fold against the other

folds in the same fold class. A common multitask learning problem can

be devised by jointly addressing all 20 single tasks. The two alternatives

are compared with the hierarchical approach. Adhering to the experimen-

tal setting in [39], 5-fold cross validation procedures are performed and

multiclass classification accuracies at the fold-class level are reported.

Experimental results are summarised in Table 7.8. Single task learn-
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Fold class single task multi task hierarchical

all-α 0.66◦ 0.45 0.69◦•
all-β 0.78◦ 0.65 0.87◦•
α/β 0.55◦ 0.50 0.59◦•
α + β 0.59◦ 0.46 0.67◦•

Table 7.8: Summary of the hierarchical multitask experiments for the SCOP dataset.

Multiclass accuracies at the fold-class level are reported, averaged over 5 folds. The

results of a two-tailed paired t-test for the significance of accuracy differences are also

shown (p=0.05). A symbol after an accuracy value indicates that the corresponding

method is significantly better than single task (•) or multitask (◦) respectively.

ing is always significantly better than the multitask approach. This is

rather expected in this setting, as different fold classes have quite different

structural characteristics. This is a clear example where plain multitask

learning is badly harmful because of the limited relationship between tasks.

On the other hand, the hierarchical approach is always significantly better

than both multitask and single task alternatives. That is, it succeeds in

collecting the useful information coming from loosely related tasks, to be

effectively refined on a per-task basis. Indeed, only a fraction of the mul-

titask clauses are actually retained, or further specialised, in the refined

models. Note that a deeper hierarchical structure could be conceived by

learning a common representation at the fold-class level, to be further re-

fined. This is a special case in which the multitask problem is actually a

multiclass one. While single tasks are definitely related in this case, there

is no increase in the training set size as all examples appear in all tasks.

We experienced a performance degradation when including this additional

level of the hierarchy. The results are roughly comparable to those re-

ported in [39]. Better results are achieved on the two most populated fold

classes, and worse on the other two. However, a sound comparison cannot

be conducted because of the different learning setting. The set of rules
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Figure 7.5: Relative frequency of the background knowledge predicates in the learnt

models.

employed in [39] were learnt on the entire dataset, and only their weights

were learnt and evaluated with a cross-validation procedure.

Discussion and Rule Interpretation

Figure 7.5 highlights the different roles of global, relational and local back-

ground knowledge predicates (on the x axis) in the learnt models. On the

y axis we report the relative frequency of occurrence of each predicate in

the ten best clauses for the different settings (multitask, single task and

hierarchical).

As expected the multitask learning produces models mainly including

global background knowledge predicates, especially those characterising

the number and type of secondary structure elements. Indeed these are

the main features characterising the different fold classes. In single task
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learning models and refined models, relational background knowledge pred-

icates gain more relevance. The results also confirm the observation in [38]

that local information, related to the hydrophobicity (unit aveh/2 and

unit hmom/2) and the presence of a proline in the SSE (has pro/1), has a

quite marginal role.

To give a more detailed idea of the learnt clauses interpretation, we

report an example of hierarchical rule. At the root level, the multitask

model includes the following clause:

nb_beta_interval(0,A,3),nb_alpha_interval(1,A,18).

The clause is refined at the single-task level both by adding global infor-

mation on domain lengths and relational one for SSE pairs. Examples of

the former type of refinement include the 4-Helical cytokines fold from the

All-α class:

nb_beta_interval(0,A,3),nb_alpha_interval(1,A,18),len_interval(104,A,145).

and the Ferredoxin-like for the α + β one:

nb_beta_interval(0,A,3),nb_alpha_interval(1,A,18),len_interval(58,A,72).

Relational background knowledge is used with regard to β-strands in the

Interleukin fold from the α + β class:

nb_beta_interval(0,A,3),nb_alpha_interval(1,A,18),adjacent(A,B,C,2,e,e).

and to α-helices in the EF-hand like fold (All-α).

nb_beta_interval(0,A,3),nb_alpha_interval(1,A,18),

nb_alpha_interval(3,A,5),adjacent(A,B,C,1,h,h).

Note that in this last clause the number of α-helices is also restricted to a

range from three to five. The domain should then contain two consecutive

helices at the beginning of the polypeptide chain. Figure 7.6 shows an

example of EF-hand like protein structure (PDB code 1CNP) that respects

the above rule. The two consecutive α-helices are highlighted in red.
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Figure 7.6: Example of EF-hand like protein structure (PDB code 1CNP). The first two

consecutive α-helices are highlighted in red.
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Chapter 8

A Relational Learning Approach

Toward Protein Engineering

The mining of relevant features from protein mutation data has its first

aim in understanding the properties of functional sites, for instance, which

residues are more likely to have a functional role. The same mined infor-

mation can be used to engineer mutants of a protein with an improved

activity on a certain substrate or resistance to a certain inhibitor.

Rational design is an engineering technique modifying existing proteins

by site directed mutagenesis. It assumes the knowledge or intuition about

the effects of specific mutations on the protein function. The process typ-

ically involves extensive trial-and-error experiments and is also used with

the aim of improving the understanding mechanisms of a protein behaviour.

In the case of viral proteins this is particularly important for taking the

necessary counter-measures against the development of drug resistance.

In this chapter first steps are moved towards the use of a relational

learning approach to protein engineering [160]. The focus is on learning

relevant single mutations that can affect the behaviour of a protein. Pre-

dicting the effect of single mutations helps reducing the dimension of the

search space for rational design.

In the proposed approach an ILP learner is trained to extract general
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relational rules describing mutations relevant to a certain behaviour (e.g.

drug resistance of HIV). The learnt rules are then used to infer novel po-

tentially relevant mutations. The approach is applied for learning relevant

mutations of the HIV reverse transcriptase (RT). In the case of the HIV

drug resistance, building artificial mutants that can resist to the inhibitor

could help to early predict the virus evolution and thus design more effec-

tive drugs. HIV drug resistance mutation data are abundant and collected

in well structured databases like the Los Alamos National Laboratories

(LANL) HIV resistance database1 and the Stanford HIV Drug Resistance

Database [117].

Many machine learning methods have been applied in the past to muta-

tion data for predicting single point mutations on protein stability changes

[33] and the effect of mutations on the protein function [104] [26] or drug

susceptibility [118]. At the author’s knowledge this is the first approach

proposal for learning relational features of mutations affecting a protein

behaviour and use them for generating novel relevant mutations. Further-

more, even if the focus of the experimental evaluation is on single point

mutations, the approach can be quite straightforwardly extended to multi-

ple point mutations. Conversely, the up-mentioned predicting approaches

would immediately blow up for the explosion in the number of candidate

configurations to evaluate. The approach is tested on a dataset of HIV

drug resistance mutations, and compared to a baseline random generator

of mutations.

The promising preliminary results suggest that the proposed approach

for learning mutations has a potential in guiding mutant engineering, as

well as in predicting virus evolution in order to try and devise appropriate

countermeasures. It is also worth noticing that it can be quite easily gener-

alised to learning mutants characterised by more complex rules correlating

1http://www.hiv.lanl.gov/content/sequence/RESDB/
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multiple mutations.

8.1 Algorithm Overview

The aim of the approach is to learn a first-order logic hypothesis for the tar-

get concept, i.e. mutation conferring resistance to a certain drug, and use

it to infer novel mutations consistent with such hypothesis. For instance,

a simple hypothesis like

res against(A,ncrti) ← mutation(A,C),close to site(C)

would indicate that a mutation C in the proximity of a binding site

confers to mutant A resistance against a ncrti. First-order clauses can thus

be interpreted as relational features that characterise the target concept.

The main advantage of using a logic-based approach with respect to other

machine learning techniques is the expressivity and interpretability of the

learnt models. Models can be readily interpreted by human experts and

provide direct explanations for the predictions.

In the following the proposed approach is described. Starting from

HIV RT mutation data a relational knowledge base is built. By using an

ILP learner, mining of relevant relational features for modelling mutant

resistance is performed. Then, on the basis of the learnt relational rules a

set of candidate mutations satisfying them is generated.

8.1.1 Background Knowledge

A relational knowledge base is built for the domain at hand. Differently

from the approach proposed in Chapter 7 here the focus is on single muta-

tions rather than on the entire mutant. Future extension of the approach

will generalise again to the whole mutant properties for capturing also re-

lations among multiple mutations. Table 8.1 summarises the predicates in-

cluded as a background knowledge. We represented the amino acids of the
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Background Knowledge Predicates
aa(Pos,AA) indicates a residue in the wild type sequence
mut prop(MutationID,AA,Pos,AA1) indicates a mutation: mutation identifier, position

and amino acids involved, before and after the sub-
stitution

res against(MutationID,Drug) indicates whether a mutation is resistant to a certain
drug

color(Color,AA) indicates the type of a natural amino acid
same type(R1,R2) indicates whether two residues are of the same type
same type mut(MutationID, Pos) indicates a mutation to a residue from the same type
different type mut(MutationID, Pos) indicates a mutation changing the type of residue
close to site(Pos) indicates whether a specific position is close to a

binding or active site if any
location(L,Pos) indicates in which fragment of the primary sequence

the amino acid is located
catalytic propensity(AA,CP) indicates whether an amino acid has a high, medium

or low catalytic propensity
mutated residue cp(Pos, CPold, CPnew) indicates how, in a mutated position, the catalytic

propensity has changed (e.g. from low to high)

Table 8.1: Summary of the background knowledge facts and rules.

wild type with their positions in the primary sequence (aa/2) and the spe-

cific mutations characterising them (mut prop/4). Target predicates were

encoded as resistance of the mutation to a certain drug (res against/2).

Additional background knowledge was included in order to highlight

characteristics of residues and relationships between mutations. The fol-

lowing three predicates are already described in the previous chapter. Their

descriptions are reported below again for convenience and readability:

color/2 indicates the type of the natural amino acids according to the

colouring already described in the previous chapter (see Table 7.3).

For example the magenta class includes basic amino acids as lysine and

arginine while the blue class includes acidic amino acids as aspartic

and glutamic acids.

same type/2 indicates whether two residues belong to the same type, i.e.

a change from one residue to the other conserves the type of the amino

acid.
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same type mut/2 indicates that a residue substitution at a certain position

does not modify the amino acid type with respect to the wild type. For

example mutation d123e conserves the amino acid type while mutation

d123a does not (i.e. different type mut/2 holds for it).

Other background knowledge facts and rules were added in order to ex-

press structural relations along the primary sequence and catalytic propen-

sity of the involved residues:

close to site/1 indicates whether a specific position is distant less than

5 positions from a residue belonging to a binding or active site. In this

specific case, the background theory incorporates knowledge about a

metal binding site and a heterodimerisation site.

location/2 indicates in which fragment of the primary sequence the amino

acid is located. Locations are numbered from 0 by dividing the se-

quence into a certain number of fragments.

catalytic propensity/2 indicates whether an amino acid has a high,

medium or low catalytic propensity according to [7].

mutated residue cp/3 indicates how, in a mutated position, the catalytic

propensity has changed (e.g. from low to high).

8.1.2 The Approach

The proposed approach is sketched in Figure 8.1. The first step is the

learning phase, in which an ILP learner is fed with a logical representation

of the data D (the mutations experimentally observed to confer resistance

to a certain inhibitor) and of the domain knowledge B we want to incor-

porate. After a training stage, it returns a first-order logical hypothesis H

for the concept of mutation conferring resistance to a certain drug.

171



8.1. THE ALGORITHM CHAPTER 8. ILP FOR PROTEIN ENGINEERING

D B

dataset of 
training 

mutations

background 
knowledge

ILP 
learner H

hypothesis

generator of 
relevant 

mutations
R

rank of 
novel

relevant 
mutations

Friday, 23 July 2010

Figure 8.1: Schema of the mutation engineering algorithm.

The hypothesis is derived using the Aleph (A Learning Engine for

Proposing Hypotheses) ILP system2. Aleph allows also to learn from pos-

itive example only. This is the most suitable approach in this case as the

positive examples are the mutations experimentally proved to confer resis-

tance to a drug but no safe claim can be made on the other mutations if

there is no sufficient evidence due for example to the lack of an exhaustive

set of laboratory experiments.

Aleph incrementally builds a hypothesis covering all positive examples

guided by a Bayesian evaluation function, described in [98], scoring candi-

date solutions according to an estimate of the Bayes’ posterior probability

that allows to tradeoff hypothesis size and generality.

In Figure 8.2 an example of learnt hypothesis covering a set of examples

is shown. The learnt hypothesis models the ability of a mutation to confer

the resistance to NCRTIs and is composed of three first-order clauses, each

2http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/aleph.html
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one covering different sets of mutations of the wild type as highlighted in

colours: blue for the first clause, yellow for the second and red for the third

one. Some mutations are covered by more than one clause as shown by the

colour overlaps.

>wt ...AGLKKKKSVTVLDVG...YQYMDDLYVG...WETWWTEY...WIPEWEFVN...

| | | | | | | |

98 112 181 190 398 405 410 418

D DD W W

mut prop(A,B,C,D),location(11.0,C)

mut prop(A,B,C,D),mutated residue cp(C,high,small)

mut prop(A,B,C,D),color(green,B),close to site(C)

Figure 8.2: Example of learnt hypothesis for the NCRTI task with highlighted mutations

covered by the hypothesis clauses.

The built background knowledge incorporates information about the RT

metal binding site, which is composed of the aspartic acids D110, D185 and

D186 and, about the heterodimerisation site composed of W401 and W414

(in bold in Figure 8.2).

The second step is the generative phase, in which the learnt hypothesis

is employed to find novel mutations that can confer drug resistance to an

RT mutant. A set of candidate mutations can be generated by using the

Prolog inference engine starting from the rules in the learnt model. The

rules are actually constraints on the characteristics that a mutation of the

wild type should have in order to confer resistance to a certain inhibitor.

Algorithm 8.1 details the mutation generation procedure. We here as-

sume, for simplicity, to have a model H for a single drug class. The proce-

dure works by querying the Prolog inference engine for all possible variable

assignments that satisfy the hypothesis clauses. In order to generate novel

mutations, the mut prop/4 predicate is modified here in order to return all

legal mutations instead of only those appearing in the training instances.
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The set of mutations identified by the variable assignments and not present

in the training set is ranked according to a scoring function SM before be-

ing returned by the algorithm. Here SM is defined as the number of clauses

in H that a candidate mutation m satisfies.

Algorithm 8.1 Algorithm for novel relevant mutations discovery.

1: input: dataset of training mutations D, background knowledge B, learnt model H

2: output: rank of the most relevant mutations R
3: procedure GenerateMutations(D,B, H)

4: Initialise DM ← ∅
5: A← find all assignments a that satisfy at least one clause ci ∈ H
6: for a ∈ A do

7: m← mutation corresponding to the assignments a ∈ A
8: score← SM(m) . number of clauses ci satisfied by a

9: if not m ∈ D then . discard mutations observed in the training set

10: DM ← DM ∪ {(m, score)}
11: end if

12: end for

13: R ← RankMutations(DM,B, H) . rank relevant mutations

14: return R
15: end procedure

Referring to the model in Figure 8.2 some generated candidate muta-

tions with highest score are: 101P, 102A, 103F, 103I, 104M, 181I, 181V,

183M, 188L, 188F where for example the notation 101P indicates a change

of the wild type amino acid, located in position 101, into a proline (P).

This list includes also known HIV RT surveillance mutations [12].

8.2 Experimental Evaluation

Experimental results follow with a comparison to a baseline random gen-

erator of mutations.
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8.2.1 Dataset

The approach is applied to the same dataset of mutations already used

in [120] for extracting relational rules among mutations. The dataset is

derived from the Los Alamos National Laboratories (LANL) HIV resis-

tance database3 and reports mutations of the HIV RT. Richter et al. [120]

formulated the learning problem as a mining task and applied a relational

association rule miner to derive rules relating different mutations and their

resistance properties.

This dataset is the same used in Chapter 7 for learning a relational

model of mutant resistance with the hierarchical kFOIL algorithm. Here

the dataset is used for inferring rules that can characterise a single mu-

tation as resistant to a certain class of RT inhibitors. Those drug classes

include: a) Nucleoside RT Inhibitors (NRTI); b) NonNucleoside RT In-

hibitors (NNRTI); c) NonCompetitive RT inhibitors (NCRTI); d) Pyrophos-

phate Analogue RT Inhibitors (PARTI). The final dataset is composed of

164 mutations labeled as resistant over a set of 581 observed mutations

(extracted from 2339 mutants). Among the 164 mutations, 95 are labeled

as resistant to NRTI, 56 to NNRTI, 5 to NCRTI and 8 to PARTI.

8.2.2 Performance Evaluation

The dataset of mutations is divided into a training and a test set (70/30)

in a stratified way, which means by preserving, both in the train and test

set, the proportion of examples belonging to one of the four drug classes.

The resulting training set is composed of a total of 116 mutations while

the test set is composed of 48 mutations.

The ILP learner is trained on the training set and the set of mutations

generated using the learnt model is evaluated on the test set. The evalua-

3http://www.hiv.lanl.gov/content/sequence/RESDB/
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Mean recall % on 30 splits

Algorithm Random Generator Mean n. generated muts n. test muts

NNRTI 86 • 58 5201 17

NRTI 55 • 46 5548 28

NCRTI 16 8 1042 1

PARTI 49 39 3425 2

Table 8.2: Statistical comparisons of the performance of the proposed algorithm with an

algorithm generating mutations at random. The average recall has been computed for

each one of the learning tasks over the 30 splits by averaging recall over 30 repeated runs

of the two algorithms. Results of a paired Wilcoxon test (α = 0.05) on the statistical

significance of the performance differences are also reported. A black bullet indicates a

statistical significant improvement of the algorithm over a random generator.

tion procedure takes the generated mutations and computes its enrichment

in test mutations by counting how many generated mutations are actually

observed in at least one test example. The recall of the approach is com-

pared with the recall of an algorithm that chooses at random a set (of the

same cardinality) of possible mutations among all legal ones. The Recall

here corresponds to the ratio between the number of generated test set

mutations and the total number of test set mutations. Nothing can be said

on mutations that are not in the test set because those mutations have not

been assayed in “wet lab” experiments for their ability to confer drug re-

sistance. Results averaged on 30 random splits of the dataset are reported

in Table 8.2.

On each split, 30 runs of the algorithm and of the random generation al-

gorithm are performed, in each one of the different learning tasks (NNRTI,

NRTI, NCRTI and PARTI). Columns 3 and 4 also report for each task

the mean number of generated mutations over the 30 splits and the num-

ber of test set mutations for reference. The statistical significance of the

performance differences between the two algorithms is evaluated by paired

Wilcoxon tests on the averaged recall reported on each split. A confidence
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level α of 0.05 is employed.

The improvement of the algorithm with respect to the random genera-

tion of mutations is statistically significant on the NRTI and NNRTI tasks,

which are the tasks on which we can learn the hypothesis from a largest

set of training examples.

Figure 8.3 shows the trend of the mean recall over all splits when cutting

the number of generated mutations (from 1 generated mutation to more

than 8000). The advantage of the approach remains quite stable when

reducing the set of candidates, producing almost nine times more test mu-

tations than random in the 100 highest scoring ones for NNRTI (Figure 8.4

shows the trend of the recall curves of the plot in Figure 8.3(a)(a) for the

highest ranked 150 mutations).

8.3 Discussion

Finally a model is learnt on the whole set of training mutations in order

to generate a single set of mutations for further inspection. Below five

examples of novel mutations are reported, which have the highest rank for

each one of the tasks:

NNRTI 90I 98I 103I 106P 179I

NRTI 60A 153M 212L 229F 239I

NCRTI 183V 183L 188V 188F 188I

PARTI 84R 86E 88Y 88V 89N

In [51], the authors found a set of novel mutations conferring resistance

to efavirenz and nevirapine, which are NNRTIs. The proposed mutation

generation algorithm partially confirmed their findings. Mutation 90I was

ranked high (the model contains five clauses and all of them are satisfied,
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(c) NCRTI
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(d) PARTI

Figure 8.3: Mean recall by varying the number of generated mutations.

5/5), mutation 101H was generated with a rank of 3/5, mutations 196R

and 138Q with rank 1/5, while mutation 28K was not generated at all by

the proposed system as a candidate for conferring resistance to NNRTI.

Example of learnt hypothesis

An example of learnt hypothesis is reported in Table 8.3.

For instance, according to the model, among the features a mutation

should have for conferring resistance to a NNRTI, there is the change of

a basic (magenta) residue of the wild type, e.g. lysine or arginine, into a
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Figure 8.4: Detail of the mean recall curves of the NNRTI task for a number of generated

mutations below 150.

residue with completely different phisico-chemical characteristics (rule 16).

Another example for the resistance to NNRTI is that a non conserved

mutation is present in positions between 98 and 106 of the wild type se-

quence (rule 8).

8.4 Future Work

Albeit preliminary, the results suggest that the proposed approach for

learning mutations has a potential in guiding mutant engineering, as well as

in predicting virus evolution in order to try and devise appropriate counter-

measures. A more detailed background knowledge, possibly including 3D

information whenever available, is necessary in order to further focus the

set of generated mutations, and possibly post-processing stages involving

mutant evaluation by statistical machine learning approaches [33]. In the

next future, plans are to generalise the proposed approach to jointly gener-

ate sets of related mutations shifting the focus from single point mutations

to entire mutants.
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1-res against(A,nrti) ← mut prop(A,B,C,D),color(red,D)

2-res against(A,nrti) ← mut prop(A,B,C,D),color(red,D),color(red,B)

3-res against(A,nrti) ← mut prop(A,B,C,D),location(7.0,C),mutated residue cp(C,medium,medium)

4-res against(A,nrti) ← mut prop(A,B,C,D),location(7.0,C)

5-res against(A,nrti) ← same type mut(A,B)

6-res against(A,nrti) ← mut prop(A,B,C,D),mutated residue cp(C,medium,high)

7-res against(A,nrti) ← mut prop(A,B,C,D),mutated residue cp(C,medium,small)

8-res against(A,nnrti) ← different type mut(A,B),location(11.0,B)

9-res against(A,nnrti) ← mut prop(A,B,C,D),mutated residue cp(C,small,small)

10-res against(A,nnrti) ← same type mut(A,B)

11-res against(A,nnrti) ← mut prop(A,B,C,D),aminoacid(B,v)

12-res against(A,nnrti) ← mut prop(A,B,C,D),location(15.0,C)

13-res against(A,nnrti) ← mut prop(A,B,C,D),aminoacid(D,i)

14-res against(A,nnrti) ← mut prop(A,B,C,D),location(11.0,C)

15-res against(A,nnrti) ← mut prop(A,B,C,D),color(red,D)

16-res against(A,nnrti) ← mut prop(A,B,C,D),color(magenta,B),different type mut(A,C)

17-res against(A,nnrti) ← mut prop(A,B,C,D),location(21.0,C)

18-res against(A,ncrti) ← mut prop(A,B,C,D),location(11.0,C)

19-res against(A,ncrti) ← mut prop(A,B,C,D),mutated residue cp(C,high,small)

20-res against(A,ncrti) ← mut prop(A,B,C,D),color(green,B),close to site(C)

21-res against(A,parti) ← mut prop(A,B,C,D),location(9.0,C)

Table 8.3: Example of learnt model.

As already discussed in Chapter 7, multiple mutations are often required

in order to affect a protein function. The debated neutral network theory

claims that neutral mutations are required as intermediate steps to effective

ones.

The prediction of single point mutations does not consider the joint

effect of multiple mutations. Trying all the possible combination of muta-

tions is computationally unfeasible and anyhow there are not enough data

for applying a similar approach.

An approach like the one proposed in Chapter 7 that learns a model
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for characterising a mutant as resistant to a certain inhibitor, can be used

for generating novel protein mutants that are most probable to develop

resistance against the same inhibitor. In this way, a full protein engineering

approach can be realised. In the specific case of HIV, engineering such

novel mutants can be useful for anticipating the virus evolution toward the

resistance to a drug and taking measures of prevention.

Figure 8.5: Example of application of the approach for mutant engineering.

In Figure 8.5 is shown an example of hypothetical rule learnt from RT

(wt) mutants (m542, m2012, m2006, m1288) and 3 examples of novel mu-

tants that can be generated starting from the learnt rule.
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Chapter 9

Conclusions

In the present thesis the problem of characterising an enzyme function has

been tackled from two different perspectives: the identification of func-

tional residues and the sites they belong to, based on the target protein

structure information, and the mining of functional properties from the

protein mutation data.

Statistical and relational machine learning techniques are investigated

for helping in the enzyme function characterisation. Statistical learning

techniques are chosen for their sound foundation in learning theory and

their efficiency and proved empirical effectiveness when learning from the

experience and generalising the prediction to novel cases. Relational learn-

ing techniques are appealing for their expressivity and their ability to

provide human understandable models of the learnt concept. Statistical

relational learning techniques combine these complementary advantages.

Therefore, in this thesis hybrid approaches are also investigated.

First explorations of kernel-based algorithms for classification led to the

development of a machine learning system for the prediction of functional

residues and lately for identifying the active sites they belong to. The

system is based on a support vector classifier and was shown to be more

accurate than other state-of-the-art approaches.
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The improvement over these approaches on a number of benchmark

datasets and its statistical significance were systematically assessed. Fruit-

ful results were obtained both by predicting functional residues from the

protein primary sequence alone and by incorporating information about

the protein 3D structure. In the last case the improvements over previous

state-of-the-art approaches were achieved thanks to an accurate modelling

and engineering of features of the spherical region surrounding the can-

didate residue, highlighting the important role played by structural infor-

mation in this learning task. Information related to bounded heterogen

molecules was shown to play a key role in identifying functional residues

with low catalytic propensities. Future investigations will be directed to

the the joint prediction of binding and catalytic sites in a fully collective

approach.

Further improvements of the sequence and structure-based predictors

were obtained by collectively learning functional residues belonging to an

active site in a a distance-based supervised clustering approach based on

the formalisation of the problem as a combinatorial search of maximum-

weight cliques in protein weighted graph structures. An efficient optimi-

sation algorithm based on tabu search has been proposed and applied for

finding maximum-weight cliques of putative functional residues showing

that the prediction accuracy can be further improved. The proposed algo-

rithm naturally handles the lack of knowledge in the number of clusters,

partial clusterings with many outliers and overlapping clusters. It is worth

to notice that the maximum-weight clique clustering algorithm is however

independent of the supervised learning stage, and can be easily integrated

in more complex supervised clustering approaches such as the structured-

output formulation proposed in [57].

The successful application of the algorithm also to the sequence-based

prediction of metal binding sites suggests to jointly address the two re-
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lated problems of active site and metal binding site detection. A future

extension of the algorithm could make it able to return a structured set of

solutions, such as metal binding sites as parts of wider functional sites, or

as “cocatalytic” sites, which is a quite common situation in enzymes.

A web-server based on the proposed functional residue sequence- and

structure-based predictors has been developed and made publicly available

as a useful tool at the biologist fingertips.

The sequence-based functional residue predictor proposed in this thesis

was shown to be useful also in the context of the analysis of mutants

of the same protein and their activity on groups of related substrates.

However, the work suggested the need for a more sophisticated approach:

(a) a multitask learning setting for predicting the activity of mutants on

different but related substrates; (b) a method which was eventually able to

provide explanations for an improved or reduced activity and some insights

on the properties of the wild type protein functional site.

Those considerations led to the investigation of logic-based learning al-

gorithms for inferring rules from protein mutation data. A hybrid learner,

namely the kFOIL algorithm, which offers at the same time the advantages

of statistical learning and of induction on logic-based hypotheses, was used

for learning from mutation data in a multitask learning setting. A hierar-

chical extension of the multitask kFOIL algorithm was proposed allowing

to incrementally refine models common to groups of related tasks, at each

level of the hierarchy, until a refinement on a per-task basis at the hierar-

chy leaves. The performance of the method was tested on a large dataset

of HIV mutants showing resistance to different classes of inhibitors. Accu-

racy improvements were obtained with respect to the standard single task

learning or to the more general multitask learning. If the task hierarchi-

cal structure is unknown, it can be inferred by clustering tasks based on

the predictions in the multitask setting. Indeed the approach showed to be
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able to recover a grouping of inhibitors in membership classes that was also

useful for highlighting characteristics of the underlying dataset. A major

advantage of the adopted strategy is the ability to provide explanations for

the learnt models which are themselves hierarchical: a subset of relational

features relevant to all tasks can be identified together with more specific

task-dependent ones.

The proposed mining technique also has highlighted a potential in guid-

ing mutant engineering. The learnt logical rules are useful for highlighting

characteristics of protein functional sites and, as relevant mined features,

they can be further exploited for building artificial instances satisfying the

learnt concept. Building artificial mutants with an improved activity on a

drug has important applications in biotechnology and pharmacology. As

an example, engineered mutants showing resistance to a certain inhibitor

can be useful for predicting and anticipating a protein response to a cer-

tain drug and taking the necessary countermeasures for the prevention or

the infection treatment. At this aim, a simple relational learning approach

toward protein engineering has been proposed. The first step is the mining

of relevant relational features modelling a mutation conferring mutant re-

sistance to drugs, by using an inductive logic programming learner. Then,

based on the learnt relational rules, the second step is to generate a set

of candidate mutations satisfying them. Albeit preliminary, experimental

results suggest that this approach for learning mutations has a potential

in guiding mutant engineering, as well as in predicting virus evolution in

order to try and devise appropriate countermeasures. A more detailed

background knowledge, possibly including 3D information whenever avail-

able, is necessary in order to further focus the set of generated mutations,

and possibly post-processing stages involving mutant evaluation by statis-

tical machine learning approaches. Future research plans are to generalise

the proposed approach to jointly generate sets of related mutations shifting
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the focus from single point mutations to entire mutants.

It is worth to notice that all of the proposed approaches — applied in

this thesis with the goal of functionally characterising enzymes — can be

easily generalised to other kind of proteins. Especially the presented re-

lational learning approaches for mining features from mutation data and

engineering mutants are by definition generally applicable to mutations

and mutants of any protein sequence, independently of its specific function

inside the cell. The background knowledge in those cases can be slightly

adapted and enriched based on the specific domain. Moreover these ap-

proaches can be easily adapted for solving other protein bioinformatics

problems. Some example are already given in this thesis. For instance, the

supervised clustering approach was also successfully applied to the detec-

tion of metal binding sites. The hierarchical multitask kFOIL was shown

useful also for the classification of protein structures into folds. But many

other examples can be made. For instance, the same approach described

in Part I. can be easily adapted for predicting protein-protein interaction

sites and their structural interfaces.
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