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Chapter 1

Introduction

1.1 Human behavior in response to epidemics

Mathematical models represent a powerful tool for investigating human infection dis-
eases, providing useful predictions about the potential transmissibility of a disease and
the effectiveness of possible control measures.

As well known, the characteristics of the pathogen responsible for the infections [6, 19]
play a central role in the spread of an infectious disease. Nonetheless, one of the most
central aspects of the human infection dynamics is the heterogeneity in behavioral patters
adopted by the host population. Actually, the role played by human mobility patterns [84,
38, 151, 11, 112], the sociodemographic structure of the population [112] and intervention
measures [6, 92] has been deeply investigated.

However, changes in human behaviors caused by the reaction to the disease can play
a crucial role as well [56, 52]. Beyond behavioral changes imposed by public authorities,
human behavioral changes can be triggered by uncoordinated responses driven by risk
perception and fear of diseases (eventually of unknown fatality). Indeed, some studies on
recent outbreaks of infectious disease have shown that people are prone to reduce risky
behaviors [144, 98, 90, 125].

While behavioral responses to the spread of a diseases have been frequently reported
anecdotally, there has been relatively little systematic investigation into their nature and
on how they can affect the spread of infectious diseases. Behavioral changes are sometimes
cited in the interpretation of outbreak data to explain drops in the transmission rate [132,
121], yet rarely spontaneous behavioral changes are explicitly modeled and investigated.

Efforts to study human behavior in the context of epidemics usually concentrated on
evaluating the effectiveness of various institutionally enforced measures such as school
closures [21, 80, 28, 27]. Recently, however, the impact of self-protective actions on the
dynamics of an infectious disease has received increased attention [147, 42, 53, 93, 67,
66, 17, 15, 16, 29, 48, 47, 49, 45, 108, 61, 131, 69, 129, 72, 127, 130]. In fact, human
spontaneous responses to an epidemic can affect remarkably the infection spread, and
their interactions with disease dynamics require a proper investigation in order to bet-
ter understand what happens when a disease spreads through human populations [56, 52].
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With spontaneous behavioral responses here we define the changes in human behavioral
patterns that involve personal decisions based on the available information about the
disease or on individuals’ beliefs and attitudes. This phenomenon is completely different
from scenarios where the public is expected to comply with recommendations or control
measures imposed by institutions.

Common childhood diseases, such as chickenpox and measles, provide a suitable ex-
ample of when personal decisions are relevant. In fact, the decision whether or not to
vaccinate a child is ultimately a personal decision and thus it has a strong behavioral
component. Similarly, it is reasonable that during a severe epidemic outbreak individuals
try to reduce the number of potentially infectious contacts. The avoidance of crowded
environments, usage of face masks, practice of better hygiene protocols and self-restriction
in traveling represent examples of self-imposed measures that can remarkably affect the
disease spread.

During the 1918 influenza pandemic people eventually stayed away from congregated
places [40]. In 1995, a supposed outbreak of bubonic plague in Sura, India, caused
widespread panic on hundreds of thousands of people remarkably changing their trav-
eling patterns [24]. When the Severe Acute Respiratory Syndrome (SARS) emerged in
2003, the usage of face masks became widespread in affected areas [98], and many indi-
viduals changed their traveling behavior [98, 58]. More recently, a high risk perception,
possibly as a consequence of the exposure to a massive information campaign (media) on
the risks of an emerging influenza pandemic, was detected during the 2009 H1N1 pan-
demic influenza [90] and, despite the low fatality associated to the event [128], behavioral
response apparently played a relevant role during the early stages of the pandemic as
well [144]. On the other hand, it was observed an increase in protective behavior as the
prevalence of the disease was increasing, for both measles [125] and HIV [2]. Finally,
concerns about proclaimed risks of vaccines have probably driven a widespread refusal
of vaccination, leading to drops in vaccine uptake. This was the case of pertussis in the
1970s [70] and more recently of measles-mumps-rubella (MMR) vaccine [89].

As a matter of fact, attitudes, belief systems, available information about the risk
associated to a disease can change over time. The dynamics of these attributes is a rel-
evant element to understand the impact of behavioral responses to a disease [68]. Thus,
infection dynamics should be considered as a coupled dynamics where the transmission of
the pathogen is driven by human behavior dynamics, and vice versa. The investigation of
this complex interplay would be helpful for giving insight to public health policy makers,
for planning public health control strategies (e.g., vaccination) and better estimating the
burden for health care centers over time.

Two specific phenomena are discussed in this thesis. The first one is represented by
vaccination choices during a not compulsory vaccination program for childhood diseases.
The second one is represented by spontaneous social distancing during an emerging epi-
demic outbreak.

By a modeling point of view, effects of spontaneous behavioral responses on the infec-
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tion dynamics are very different in these two specific situations. Vaccination may result
in moving individuals directly from the susceptible compartment to the removed com-
partment, i.e. those individuals that have developed immunity for the disease. On the
other hand a reduced exposure to diseases, as a reaction to the presence of either the
disease or certain beliefs about the disease, could be modeled either as a reduction in
the number of contacts (e.g., reduced travel behavior), or as a reduction of intensity of
contacts (e.g., usage of face mask). Thus models dealing with spontaneous social distanc-
ing, usually, assume a change in parameters (mainly the transmission rate or the recovery
rate) or changes in population structure. Moreover, unless one considers vaccines that
require boosting at regular intervals because of waning immunity or because of pathogen
evolution ( e.g. seasonal influenza), the decision to vaccinate is usually not reversible. On
the opposite, social distancing triggered by risk perception, may depend on the dynamics
of the risk of infection.

1.2 State of Art

There are various ways to model behavioral changes over time. Different assumption can
be made not only on the effect of behavioral changes on the epidemic dynamics, but
also on source and type of available information and the way the information spreads in
the population. In addition, more sophisticated models can explicitly include spatial or
contact network structure. In this case behavioral response to epidemics can change in
the network structure as well.

1.2.1 Spontaneous social distancing during an epidemic out-
break

A number of studies have considered extensions of the simple SIR model in which the
incidence rate is not bilinear in susceptible and infective individuals, but is modeled
through a more general function, to include effects of saturation. Basically, the assumption
is that, in the presence of a very large number of infective individuals, the population may
tend to reduce the number of contacts per time [25]. These models have been shown to
yield rich complex dynamics [101, 100], but human behavior and its dynamics are not
explicitly modeled in order to account for a specific reaction to the disease [68].

Arguably, also behavioral response which affects the disease transmission can spread
among individuals. Recently a class of models accounting for such phenomenon has been
proposed. Such models share the idea that the spread of responsiveness is driven by the
diffusion of fear, which can be modeled as a parallel infection [147, 42, 53, 93, 67, 66].

In [147], two different types of behaviors, labeled as “careful” and “risky”, are con-
sidered and their frequencies in the population change over time according to social in-
teractions. Interestingly, this work shows that responsive behavior (i.e. behavior which
would guarantee a better protection from the disease and labeled as “careful”) has an
inherent evolutionary advantage if riskier behavior leads to faster progression to infection
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and death. In general, the impact on disease dynamics can be quite remarkable if protec-
tive behavior is triggered by fear or awareness of a disease spread. In [53] it is assumed
that people remove themselves from the circulation of a disease completely when they are
affected by fear from the epidemic; in this case the modeled infection dynamics can lead to
multiple epidemic waves as a consequence of the subsequent return into circulation of the
individuals, as fear decreases [53]. In [93], it is assumed that individuals avoid infection or
seek treatment earlier as they become aware of a disease; as a consequence, the diffusion
of health information can reduce the prevalence of infection. In [42], behavioral responses
can produce a reduction in both the basic reproductive number of the disease and the
final epidemic size as a consequence of people entering a class of low activity at a given
rate depending on the prevalence of a disease.

As for models involving more complex structures, if susceptibility of individuals is
reduced as a direct consequence of having infectious contacts in a social network, it has
been shown that a disease can be brought to extinction when self-protection is strong
enough [9]. Moreover, it was shown that behavioral response results particularly effective
when the network of information spread overlaps with the contact network of disease
transmission [67, 66].

The behavior of infected individuals has also been considered in several works [77, 141,
167]. The underlying idea is that individuals that develop symptoms alter their contact
patters as a consequence of their sickness. More specifically, models based on contact
network assume that individuals who stay at home or avoid infected peers can be seen
as cutting links of possible contagion. For instance, in [77, 141, 167], it was assumed
that healthy individuals completely remove contacts with infected peers (eventually re-
connecting them with the rest of the population). However, changing network structure
removing only existing link is often unrealistic (e.g., it could be “realistic” only in the
specific context of sexually transmitted diseases). The effect of cutting links of possible
contagion is very similar to a reduction in the transmission rate [68].

1.2.2 Vaccination choices in not compulsory vaccination pro-
gram

Vaccination policies of a large number of countries are based on voluntary compliance
[68]. Some recent outbreaks of vaccine preventable diseases occurred in groups opposing
vaccination on ideological grounds [79] or in communities beyond the reach of health care
authorities [35]. Although forms of exemption to vaccination have always existed [139],
the natural history of vaccination programs has always been pervaded by a high degree of
optimism [29]. However, this optimistic view has increasingly been challenged in recent
years. Indeed, concerns about proclaimed risks of vaccines can produce widespread refusal
of vaccination and consequent drops in vaccine uptake.

For example, opposition to the whole-cell pertussis vaccine in the 1970s [70], the
thimerosal case [106], and more recently the MMR scare [89, 135, 64, 142, 163] can be
considered evidence that, in industrialized countries, the success story of vaccination is
feeding back on itself. This is the consequence of two different processes. On the one
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hand, the high degree of herd immunity achieved by decades of successful immunization
programs has reduced the incidence of many infections to negligible levels. On the other
hand, the large, and increasing, number of vaccines routinely administered every year
yields steady flows of vaccine-associated side effects [160, 159]. In the US approximately
30,000 reports of Vaccine Adverse Events are notified annually, with 10–15% classified as
serious [62]. In such circumstances the perception of the public will likely rank the per-
ceived risk of suffering a vaccine side effect (VSE) as much higher than the corresponding
risk of infection.

A common example is poliomyelitis in industrialized countries. In Italy during 1980-
2000 the number of vaccine-induced polio cases was three times higher than wild polio
cases [43]. In addition, it is well known that there can be a significant imbalance between
perceived and real risk. An example of misperception of risk is the belief that the MMR
vaccine can cause autism [120, 146]. In fact, such belief has spread widely despite the
overwhelming evidences that reject such a causality [146].

Drops in vaccination coverage have led to increased interest in so-called rational vac-
cination decisions and their effects on the epidemiology of vaccine preventable infectious
diseases. Many epidemiological modelers have turned to game theory and focused on the
dilemma introduced by voluntary vaccination.

The “free riding” problem and the rational exemption in vaccination

Under voluntary vaccination high degrees of herd immunity might incentives vaccination
free riding [145, 23, 131].

The name “free rider” comes from a historical example for public transportation:
people using a bus without paying the fare are free riders. The free rider problem raises
when too many individuals becomes free riders and thereby the system has not enough
money to operate. Herd immunity consists in the indirect protection for unvaccinated
individuals provided by vaccinated individuals, as the latter will not contract and transmit
the disease. The notion of free riding in vaccination means that, if vaccination is perceived
to come with risk or side-effects, the better strategy can appear not vaccinating, thus
avoiding any risk of vaccine side effects, while relying on the rest of the population to
keep the coverage high enough to provide herd immunity.

The rational exemption, as defined in [48, 108], represents the parents’ decision not to
immunize children after a seemingly “rational” comparison between the perceived utility
of vaccination, i.e. protection from the risk of infection – perceived as very low as a
consequence of the high herd immunity due to decades of successful vaccination policies
– with its disutility, i.e. the risk of vaccine associated side effects. Actually, a behavior,
resulting from the optimization performed by rational agents, might well turn out to be
myopically rational, since it considers only the current perceived risk of disease, and not
the risk of its future resurgence due to declining coverage. Several evidence of rational
exemption behavior are documented by surveys of vaccination lifestyles [8, 107, 163, 64].

A series of recent intriguing works have attempted to explain rational exemption in
its most appropriate framework, i.e. game theory [16, 15, 36, 131]. These papers have

9



provided the first game-theoretic proof of the elimination impossible result, and various
implications of rational exemption. These implications suggest potential difficulties for
global eradication plans, both at the national and international level [13, 55].

The game theoretical approach

When vaccination decisions are investigated using the game theory framework, it can
be shown that the vaccination level attained from individuals acting only in their best
self-interest is always below the optimal for the community. This result implies that it is
impossible to eradicate a disease under voluntary vaccination [17, 15, 16, 29, 48, 23, 61,
48, 47, 49, 45, 131, 69, 129, 69, 72].

Moreover, models based on game theory have shown that the coupled dynamics of vac-
cination coverage and disease prevalence can lead to oscillations with outbreaks following
upsurges in vaccination coverage and subsequent epidemic troughs. Such results comes
from the assumption that vaccination decisions are made by imitating other individuals
at a rate depending on the individual benefit [15, 131]. Actually, similar results have also
been found by assuming that decisions are based on past prevalence of a disease (e.g. by
considering time delays and memory mechanisms [131, 150, 48, 49, 22, 45]).

Works focusing on influenza [69] and on human papillomavirus (HPV) [14], in which
the model is parametrized using the results of population surveys, confirmed the problem
that, with individuals acting rationally according to their perceived risk, the population
does not achieve vaccination levels that minimize disease prevalence in the population.
Moreover, a similar approach (leading to similar results) has been applied to the study
of vaccination against smallpox to prepare for bioterrorism [17], to childhood diseases
[16, 48, 49], to seasonal influenza [150] and to yellow fever [34].

However, it was recently suggested that elimination might become possible when more
realistic contact network structures are considered [124]. Specifically, in [124] it has been
shown that voluntary ring-vaccination of individuals can reduce local outbreaks if contacts
are sufficiently local and the response is fast enough.

Beyond investigations based on game theory framework, models have recently been
proposed to base vaccination behavior on the spread of opinions in a social neighborhood
rather than assuming individual rational behavior. In that case, it was shown that clusters
of unvaccinated individuals can make outbreaks more likely to occur [138, 50].

1.3 Innovative aspects

Spontaneous human behavioral response is rarely considered explicitly in epidemic mod-
eling. This Ph.D. thesis attempts to shed some light on the potential impact of behavioral
changes on infection dynamics. Spontaneous social distancing is investigated in order to
assess how and when behavioral changes can affect the spread of an epidemic. As a second
topic, the problem of rational exemption is faced in order to investigate whether vaccine
preventable diseases can be eliminated through not compulsory vaccination programs.
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1.3.1 Spontaneous social distancing

While the game theoretical approach has been shared by many modelers for investigating
the problem of vaccination choices, to the best of my knowledge, no efforts, but for a very
recent ones [130], were developed for investigating spontaneous social distancing during
an outbreak by using this framework. Moreover, still few works, e.g. [15], deal with the
evolutionary game theory framework, instead of considering classic and static games. The
approach of considering dynamical games allows to explicitly model the coupled dynamics
of disease transmission and behavioral changes based on the risk perception.

Actually, most models accounting for spontaneous social distancing, assume a priori
human response to the infection or consider only the behavioral response induced by
the diffusion of fear, which is modeled as a parallel infection [42, 147, 53, 93, 67, 66].
However, an alternative mechanisms can contribute to the diffusion of responsiveness in
a population. In fact, information diffusion may also spread through person to person
contacts and can be modeled as an imitation process in which the convenience of different
behaviors depends on the perceived risk of infection [9, 52].

Other novelties introduced in this thesis consist in considering: (i) asymptomatic in-
fective individuals’ behavior in response to the risk of infection; (ii) the effect of risk
misperception; (iii) time delays and memory mechanisms in the risk perception of infec-
tion;

An innovative, in my opinion, aspect of this thesis is the investigation of an actual
epidemic through a theoretical model explicitly considering human behavior. Indeed,
the application to the 2009 H1N1 pandemic influenza may represent a further step to
empirically assess quantitative and qualitative effects of spontaneous human response to
perceived risk of infection.

Actually, most modeling efforts undertaken so far to study the impact of human be-
havior on the spread of infectious diseases are based on anecdotal evidence and common
sense. Such models are almost never validated against quantifiable observations. Undeni-
ably, a lot of data would be needed for model validation and parametrization. Recently,
in order to answer questions like “where people obtain their information from”, “which
of information available to them they trust”, “if and how they act upon the information”
and “how-effective this reaction is”, several surveys have been performed [98, 90, 82, 39].
However, even if many works share the insight on the effect of behavioral response on the
epidemic spread, it is still difficult quantify human behavior with robust estimates [68].
Nonetheless, coupling the analysis of epidemiological data with drug purchase data, as
discussed in chapter 4, could represent a promising solution.

At the current stage, proposed models could hardly be used for real time predictions
since our knowledge on model parameters related to human behavior is only preliminary.
However, further investigations, perhaps including results coming from surveys, can lead
to gain a major consciousness on how spontaneous human behavior could affect epidemic
dynamics.
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1.3.2 Vaccination choices

Vaccination choices are investigated in chapters 5, 6 through different frameworks and as-
sumptions, e.g. by considering families as representative agents and investigating different
static and dynamic games.

Recent literature has highlighted that human perception of risk plays a central role
in the dynamics of vaccination choices [17, 15, 16, 29, 48, 23, 61, 48, 47, 49, 45, 131, 69,
129, 69, 72], and thus strongly affects the chance of diseases’ elimination. As discussed in
sec. 1.2, elimination of vaccine preventable diseases becomes a challenge when vaccine are
perceived as risky. Actually, the mismatch between subjective and objective assessment of
risk has been demonstrated experimentally [166] and some of the key factors contributing
to this mismatch have been deeply investigated [65, 91].

One innovative aspect of proposed models is represented by considering misperception
of risks induced by partial or incorrect information, both concerning the infection and
vaccine side effects. Actually, the imbalance between perceived and real risk play a cen-
tral role in determining the possibility of eliminating a vaccine preventable disease. For
example, the investigation carried out in chapter 5 highlight that elimination turns out
to be possible when individuals are not fully informed about herd immunity or about the
existence of a critical vaccination coverage.

Other novelties introduced in this thesis consist in considering: (i) the case of hetero-
geneous predisposition to vaccinate, assuming the population divided in groups that have
different perceptions about risk of VSEs; (ii) nonlinear perceived costs of infection; (iii)
the possibility that the perceived costs of infection and vaccination are evaluated by the
public using past values of state variables, for example due to information delay or of the
perception of long-term vaccine side effects.

The model introduced in chapter 6 makes, in my opinion, useful contributions to the
investigation of the problem of rational exemption. The main innovation is to model
the perceived risk of vaccination as a function of the incidence of vaccine side effects. If
available information on vaccine side effects is becoming the main driving force of vaccine
demand, as strongly supported by empirical evidence [135], this work may represent an
appropriate description of the future evolution of immunization programs in voluntary
vaccination regimes.

1.4 Structure of the Thesis

This thesis is structured as follows. In the next chapter, a simple model coupling an
SIR transmission process with an imitation process is introduced in order to investigate
effects of spontaneous social distancing during an epidemic outbreak. Specifically, the
model assume that individuals are able to reduce their susceptibility. The potential im-
pact of behavioral response on the final epidemic size and the temporal dynamics of the
epidemic is assessed, and the chance of multiple epidemic waves is discussed. An accurate
theoretical investigation is also carried out, capturing essential patterns of the infection
dynamics when behavioral changes are much faster than the epidemic transmission.
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In chapter 3, an extension of the model presented in chapter 2 is described. Both
behavioral response performed by infected individuals and the effect of a memory mecha-
nism in perception of risk are considered. The aim of this chapter is to investigate when
and how the behavioral response affects the epidemic spread, clarifying the role of the
key features describing human response. Moreover, scenarios accounting for the chance
of delayed warning and behavioral responses triggered by the misperception of risk are
analyzed.

In chapter 4, this approach is applied for investigating the specific case of the 2009
H1N1 pandemic influenza in Italy. The chapter is mainly focused on the analysis of
real datasets. The hypothesis of an initial overestimation of risk by the host population
is advanced, as a plausible explanation for the unusual and notable pattern observable
in the ILI incidence reported to the national surveillance system. Such hypothesis is
supported by empirical evidences, such as the temporal pattern of drug purchase and some
(sporadic) reactive school closure (“self-imposed” by the scholastic board or suggested by
local authorities).

Chapter 5, is devoted to the discussion of the problem of rational exemption in de-
veloped countries, through a set of simple static models for vaccination behavior. Firstly
the problem is investigated trough the hypothesis of representative agent and, secondly,
considering game strategic interactions, including the Stackelberg competition and the
analysis of Nash Equilibria. The case of partial information about the risk of an epi-
demic is considered and the effect of heterogeneity in the perception of risks associated
to vaccination is investigated as well.

In chapter 6, a transmission model with dynamic vaccine demand based on an imita-
tion mechanism and with the perceived risk of vaccination modeled as a function of the
incidence of VSEs is introduced. The analysis of the equilibria is performed and notewor-
thy inferences as regards both the past and future lifetime of vaccination programs are
drown.

Finally, in chapter 7 includes a summary of work made during the thesis project
and a discussion on several open issues about human spontaneous behavior in epidemic
modeling.
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Chapter 2

Spontaneous behavioral response to
an epidemic outbreak

2.1 Introduction

The epidemic dynamics depends on the complex interplay between the characteristics of
the pathogens’ transmissibility and the structure and behaviour of the host population.
Spontaneous change of behaviour in response to epidemics [56], possibly related to risk
perception [9, 133, 141], has been recently proposed as a relevant factor in the compre-
hension of infection dynamics. While the merits and influence of such phenomena are
still debated [48, 117], experience from the 1918-19 pandemic indicates that a better un-
derstanding of behavioural patterns is crucial to improve model realism and enhance the
effectiveness of containment/mitigation policies [21].

Human behaviour is driven by evaluation of prospective outcomes deriving from alter-
native decisions and cost-benefit considerations. Past experience, response to the action
of others and changes in exogenous conditions all contribute to the balance, to which
game theory provides a rich and natural modelling framework [154, 81]. It is not surpris-
ing, therefore, that looking at behaviours through the lens of game theory has recently
attracted the attention of the epidemiology community, for example when modelling the
evolution over time of voluntary vaccination uptakes [16, 15].

In this paper we model a fairly general situation in which a population of individuals
is subject to an epidemic outbreak developing according to an SIR model, but in which
contact rates depend on the behavioural patterns adopted across the population. More
specifically, all susceptible individuals can conform to either one or the other of two
different behaviours, ba and bn, respectively corresponding to an “altered” and a “normal”
behavioural pattern. The first gives the individuals an advantage in terms of reduced risk
of infection, yet at some extra cost. For example, avoidance of crowded environments
reduces the risk of infection, but also entails disadvantages deriving from greater isolation.
Individuals adopting the second (bn) are exposed to a normal risk of infection, but are
spared the extra cost associated with ba. Individuals may choose to switch between ba and
bn at any time, depending on cost-benefit assessments based on the perception of risk.
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The resulting model consists in the coupling of two dynamical systems, one describing
the epidemic transmission and the other describing the behavioural changes. In principle,
there is no reason for the two phenomena to evolve at the same speed. It is therefore
crucial to study the model allowing for different time–scales, embodied in different time-
units.

We give a full description of the model when the dynamics of the behavioural changes
are “fast” with respect to the epidemic transmission. In particular, we provide sufficient
conditions on the parameters for generating sequences of epidemic waves. Moreover, we
show that the model is able to account for “asymmetric waves”, i.e., infection waves
whose rising and decaying phases differ in slope. However, similar patterns can also be
observed when the time–scales of the two dynamics are comparable. When the dynamic
of behavioural changes is “slow”, the model basically reduces to a classical SIR.

The model’s dynamics gives rise to patterns that are morphologically compatible with
multiple outbreaks and the same-wave asymmetric slopes recently reported for the Spanish
influenza of the 1918–19 [32, 31, 58, 115]. For these phenomena (trivially incompatible
with the classical SIR model) a variety of alternative explanations have in fact been
advanced: military demobilization at the end of the First World War [58], genetic variation
of the influenza virus [26, 7, 20], exogenous time changes in transmission rates, such as
seasonal forcing [38, 37]. Other explanations have been proposed invoking coinfection
scenarios [111, 1, 51, 114]

Finally, and regardless of the relative speeds of dynamics, we show that the fraction
of susceptible individuals at the end of the epidemic is always larger than that of a
classical SIR model in which all individuals adopt the normal behaviour (bn) with the
same parameters.

2.2 The Model

Our model consists of the coupling of two mutually influencing phenomena: a) the epi-
demic transitions; b) the behavioural changes in the population of susceptible individuals.

As for the epidemic transitions, whose time unit is t, our model is based on an S → I →
R scheme1. We consider that susceptible individuals may adopt two mutually exclusive
behaviours, bn (“normal”) and ba (“altered”). Specifically, we assume that individuals
adopting behaviour ba are able to reduce the number of contacts in the time unit with
respect to individuals adopting behaviour bn. Thus, two transmission rates are considered
for the two groups, accounting for the different contact rates associated with behaviours
ba and bn. In particular, susceptible individuals adopting behaviour bn, Sn(t), become
infected at a rate βnI(t) (and thus Ṡn(t) = −βnSn(t)I(t)), where I(t) represents the pool of
infectious individuals, while susceptible individuals adopting behaviour ba, Sa(t), become
infected at a rate βaI(t) (and thus Ṡa(t) = −βaSa(t)I(t)), with βa < βn. Introducing
the variables S(t) = Sa(t) + Sn(t) and x(t) = Sn(t)/(Sn(t) + Sa(t)), corresponding to the

1Since we model single epidemic outbreaks, the vital dynamics of the population is not taken into
account.
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whole susceptible population and to the fraction of susceptibles adopting behaviour bn
respectively, the epidemic model can be written as:



dS

dt
(t) = − [βnS(t)x(t) + βaS(t)(1− x(t))] I(t)

dI

dt
(t) = [βnS(t)x(t) + βaS(t)(1− x(t))] I(t)− γI(t)

dR

dt
(t) = γI(t)

dx

dt
(t) = x(t)(1− x(t))(βa − βn)I(t) .

(2.1)

Notice that the last equation describes the change of behaviours distribution in sus-
ceptible individuals deriving from the different rates of infection, βn and βa.

We now allow susceptible individuals to change their behaviour spontaneously, follow-
ing cost/benefit considerations. This phenomenon can be cast in the language of evo-
lutionary game theory, in which behaviours correspond to strategies in a suitable game,
with certain expected payoffs. Adopting ba reduces the risk of infection, but it is more
costly. On the other hand, individuals adopting bn are exposed to a higher risk of infec-
tion. It is clear that whether it is more convenient to adopt the first behaviour or the
second depends on the state of the epidemic.

Of course, the two phenomena may not have the same time scales. In fact, while
epidemic transmission can occur only through person-to-person contacts, it is fairly rea-
sonable to consider that individuals can access the information required to decide whether
to adopt either bn or ba, much more frequently by telephone, email, the Internet and, in
general, the media.

Let us therefore introduce τ as the time unit of behavioural changes, and let us assume
that t = ατ with α > 0.

Payoffs can now be modelled as it follows. All individuals pay a cost for the risk
of infection, which we assume depends linearly on the fraction of infected individuals,
I(τ), and it is higher for bn than for ba. Moreover, individuals playing ba pay an extra,
fixed cost k. It may be convenient to think of k as deriving from reducing the contacts
with people, and therefore less traveling, working, attending school, visiting friends and
relatives, etc.. Yet, it is more general than that, as it can account, in fact, for the cost of
any self-imposable prophylactic measure. The payoffs associated with bn and ba are:

pn(τ) = −mnI(τ)
pa(τ) = −k −maI(τ) ,

(2.2)

withmn > ma. We may think ofmn andma as parameters related to the risk of developing
symptoms (especially for the lethal infections) induced by the two different behaviours bn
and ba.
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The dynamics of behaviours is modelled as a selection dynamics based on imitation
(Imitation Dynamics [81, 122]). A fraction of the individuals playing strategy bn can
switch to strategy ba after having compared the payoffs of the two strategies, at a rate
proportional to the difference between payoffs, ∆P (τ) = pn(τ)− pa(τ), with proportion-
ality constant ρ. Conversely for the fraction of the individuals playing ba.

The last equation of system (2.1), in the time scale of infection transmission, thus
becomes:

(2.3)

dx

dt
(t) = x(t)(1− x(t))(βa − βn)I(t)+

+
ρ

α
x(t)(1− x(t))(k − (mn −ma)I(t)) .

Notice that the first component of the time derivative of x(t) is negative, meaning
that the fraction of susceptible individuals adopting the normal beahviour bn can only
decrease over time as an effect of the selection of behaviours induced by the epidemic. On
the other hand, whenever bn is more convenient than ba (pn(t) > pa(t)), the fraction in
the population of susceptibles playing bn can grow.

Let us briefly comment on the second component of the time derivative of x(t). In
principle, since the number of susceptible individuals decreases over time, one can argue
that spontaneous changes of behaviour must depend explicitly on S(t), because of the
diminished number of contacts among susceptible individuals. However, here we assume
that susceptible individuals take their decision on the basis of the composition of the
pool of susceptible individuals that they are able to meet somehow (by looking only at
the fractions of susceptible individuals adopting the two behaviours bn and ba, without
considering the size of the sample).

It is worth noticing that x = 0 and x = 1 are equilibria for Eq. (8.7). This in particular
implies that there is no way to switch to a different strategy (independently of whether
it would be convenient) unless there is a non zero fraction of individuals already playing
it. To circumvent this (which one may regard as an undesirable effect of strict imitation),
irrational behaviour can be introduced which allows for rare (in τ time units) random
switches of behaviour independent of encounters. Assuming a constant rate, χ > 0, equal
for both behaviours, the resulting equation for x is:

(2.4)

dx

dt
(t) = x(t)(1− x(t))(βa − βn)I(t)+

+
ρ

α
x(t)(1− x(t))(k − (mn −ma)I(t))+

+
χ

α
(1− x(t))− χ

α
x(t) .

Therefore, the complete dynamics of infection (coupling behaviour with epidemic tran-
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Table 2.1: Model variables and parameters
Notation Description

S Fraction of susceptible individuals
I Fraction of infectious individuals
R Fraction of recovered individuals
x Fraction of susceptibles individuals adopting the “normal”

behaviour
βn Transmission rate of individuals adopting the “normal”

behaviour
βa Transmission rate of individuals adopting the “altered”

behaviour
γ Recovery rate

1/m Threshold value determining the switch between “normal”
and “altered” behaviour

µ Irrational behaviour rate
ε Relative speed of SIR dynamics and behavioural response

sitions) is given by:

dS

dt
(t) = − [βnS(t)x(t) + βaS(t)(1− x(t))] I(t)

dI

dt
(t) = [βnS(t)x(t) + βaS(t)(1− x(t))] I(t)− γI(t)

dR

dt
(t) = γI(t)

ε
dx

dt
(t) = x(t)(1− x(t))(1−mI(t)) + µ(1− 2x(t)) .

(2.5)

where ε =
α

kρ
, m = (mn − ma)/k + ε(βn − βa) and µ =

χ

kρ
. As for the constraints

on the models parameters, we have: 0 < βa < βn, 0 < γ < βn
2, ε > 0, m > ε(βn − βa)

and µ > 0. For facilitating the reader’s understanding, the definitions of the variables
recurring throughout the paper are reported in Tab. 2.1.

2.3 Study of Dynamics

System (2.5) admits the disease free equilibrium (S, I, R, x) = (1, 0, 0, x?)3, with

(2.6) x? =
1− 2µ+

√
1 + 4µ2

2
,

2This constraint is required only to ensure that the epidemic occurs (see Eq. 3.3).
3System (2.5) admits a continuum of equilibria, namely (S?, 0, 1− S?, x?) with S? ∈ [0, 1]. However,

here we consider in detail only the “pandemic” case S? = 1.
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which is unstable when βnx
?+βa(1−x?) > γ. Thus, we assume that the initial values for

system (2.5) are the following: (S(0), I(0), R(0), x(0)) = (1− I0, I0, 0, x
?) with I0 close to

0. Note that 1/2 < x? < 1 and x? → 1 when µ → 0. Moreover, this equilibrium is stable
as long as R0 < 1 where the basic reproductive number of system (2.5) is:

(2.7) R0 =
βnx

? + βa(1− x?)

γ
.

Let us introduce the basic quantities Rn
0 = βn/γ and Ra

0 = βa/γ. We can rewrite
Eq. (3.3) as R0 = Rn

0x
?+Ra

0(1−x?). The quantities Rn
0 and Ra

0 are reproduction numbers
themselves: Rn

0 characterizes the situation where the susceptible pool is fully composed
by individuals adopting the normal behaviour bn, whereas R

a
0 characterizes the situation

where the susceptible pool is fully composed by individuals spontaneously reducing their
contacts (behaviour ba). Thus, Eq. (3.3) has a straightforward interpretation: a typical
infective individual behaving according to bn (a case occurring with probability x?) would
cause Rn

0 new infections during his/her whole period of infectivity. Similarly for Ra
0 in

case he/she adopts the altered behaviour ba (which occurs with probability 1− x?). Note
that R0 ' Rn

0 for x? ' 1.
We start by analyzing the dynamics of system (2.5) in two extreme cases, namely

ε → 0 and ε → +∞, which correspond respectively to the situation when the dynamics
of the behavioural changes is “fast” or “slow” with respect to the epidemic transmission.

Let us consider first the case ε → +∞. In this case, the solutions of system (2.5)
approximate those of system (2.1), which is a classical SIR model with two classes of
susceptibility. Since ẋ(t) < 0, the fraction of individuals adopting the normal behaviour
bn will decrease over time as a consequence of the selection of the behaviour ba induced
by the epidemic, even in the absence of spontaneous behavioural changes.

For the case ε → 0 (which is more interesting from both the mathematical and the
biological point of view) we are going to apply the singular perturbation methods [123].

The solutions of the singularly perturbed initial value problem (2.5) is approximated
by that of the degenerate system:



dS

dt
(t) = − [βnS(t)x(t) + βaS(t)(1− x(t))] I(t)

dI

dt
(t) = [βnS(t)x(t) + βaS(t)(1− x(t))] I(t)− γI(t)

dR

dt
(t) = γI(t)

0 = x(t)(1− x(t))(1−mI(t)) + µ(1− 2x(t)) ,

(2.8)

obtained from (2.5) by formally setting ε = 0, provided that in the last of (2.8) we use an
asymptotically stable equilibrium of the boundary–layer system
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(2.9)
dx

ds
(s) = x(s)(1− x(s))(1−mI) + µ(1− 2x(s)) ,

obtained by making the transformation of independent variable s = t/ε, and then setting
ε = 0 (which in particular implies that S(s), I(s) and R(s) are constant) [148, 83].

Notice that, after having set ε = 0, parameter m reduces to (mn − ma)/k. Conse-
quently, as it may be expected, the effect of the selection of behaviours induced by the
epidemic is negligible when the dynamics of behaviours is much faster than that of the
infection transmission.

We start by analyzing the solutions of Eq. (2.9), where the fraction of infected indi-
viduals I is assumed to be constant. Eq. (2.9) admits the following equilibrium:

x?(I) =



1− 2P +
√
1 + 4P 2

2
if I < 1/m ⇐⇒ P > 0

1− 2P −
√
1 + 4P 2

2
if I > 1/m ⇐⇒ P < 0

1

2
if I = 1/m ,

(2.10)

where P = µ
1−mI

, which is asymptotically stable (comparing Eq. (2.6), note that x? =
x?(0)). In conclusion, the following Proposition holds:

Proposition 2.3.1. The boundary–layer system (2.9) admits the asymptotically stable
equilibrium (2.10) and, independently on I, x?(I) → 1 if I < 1/m and x?(I) → 0 if
I > 1/m when µ → 0.

As regards the stability of the equilibrium (2.10), it is sufficient to observe that the
equation of ẋ is a parabola (which reduces to a straight line when I = 1/m) and that the
sign of ẋ is positive for x < x?(I) and negative for x > x?(I).

The following Proposition characterizes the solutions of system (2.5) when the dynam-
ics of the behavioural changes is fast with respect to that of the epidemic transmission
and irrational behaviour rate is small.

Proposition 2.3.2. Under the assumptions Rn
0 > 1 and 1/m < Ip where Ip = 1 −

1
Rn

0
+ 1

Rn
0
log 1

Rn
0
, if ε → 0 and µ = o(εk) with k ≥ 1, the solutions of system (2.5) are

characterized as follows:

S1 there exists a finite time t1 > 0 such that the solutions of system (2.5) approximate
those of a classical SIR model with R0 = Rn

0 on the interval (0, t1) and I(t1) = 1/m;

S2.1 If Ra
0S(t1) ≤ 1, there exists a finite time t′2 > t1 such that the solution of system

(2.5) can be approximated in the time interval (t1, t
′
2), where t

′
2 = t1+

m
γ
(S(t1)− 1

Rn
0
),

by S(t) = S(t1)− γ
m
(t−t1) and I(t) = 1/m. Afterwards, the solutions of system (2.5)

approximate those of a classical SIR model (in its decaying phase) with R0 = Rn
0 on

the interval (t′2,+∞);
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Figure 2.1: Possible temporal evolution of the fraction of infected individuals I. Regions
above and below 1/m correspond to x?(I) → 0 and x?(I) → 1, respectively. In the two
regions the solutions of system (2.5) approximate those of classical SIR models with basic
reproductive numbers R0 = Ra

0 and R0 = Rn
0 respectively.

S2.2 If Ra
0S(t1) > 1 there exists a finite time t2 > t1 such that the solutions of system

(2.5) approximate those of a classical SIR model with R0 = Ra
0 on the interval (t1, t2)

and I(t2) = 1/m;

S2.2.1 If Rn
0S(t2) > 1 there exists a finite time t3 > t2 such that the solutions of system

(2.5) can be approximated in the time interval (t2, t3), where t3 = t2+
m
γ
(S(t2)− 1

Rn
0
),

by S(t) = S(t2)− γ
m
(t−t2) and I(t) = 1/m. Afterwards, the solutions of system (2.5)

approximate those of a classical SIR model (in its decaying phase) with R0 = Rn
0 on

the interval (t3,+∞);

S2.2.2 If Rn
0S(t2) ≤ 1 the solutions of system (2.5) approximate those of a classical SIR

model (in its decaying phase) with R0 = Rn
0 on the interval (t2,+∞).

Therefore, under the hypotheses of Prop. 2.3.2, solutions of system (2.5) can be classified
in the three following types:

C1 Solution S1 in [0, t1) and S2.1 in [t1,+∞);

C2 Solution S1 in [0, t1), S2.2 in [t1, t2) and S2.2.1 in [t2,+∞);

C3 Solution S1 in [0, t1), S2.2 in [t1, t2) and S2.2.2 in [t2,+∞).

The possible behaviours of the solutions of system (2.5), which depends on the values
of Ra

0 and Rn
0 , are shown in Fig. 2.1.
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Let us briefly comment on the hypotheses of Prop. 2.3.2. The condition Rn
0 > 1 is

the obvious threshold condition for an epidemic to occur. Ip = 1 − 1
Rn

0
+ 1

Rn
0
log 1

Rn
0
is

the fraction of infected individuals at the peak for the classical SIR model with basic
reproductive number R0 = Rn

0 (this can be easily established by considering that the
fraction of infected individuals at the peak is 1

R0
and by employing the SIR invariant

S(t) + I(t)− 1
R0

logS(t) = const). Thus the condition 1/m < Ip imposes that behaviour
ba starts being convenient at some point before the epidemic reaches its peak. Basically, if
the condition is not satisfied, system (2.5) is of scarce interest since all individuals adopt
the normal behaviour bn during the course of the epidemic; thus, system (2.5) would be
equivalent to a classical SIR model with basic reproductive number R0 = Rn

0 . No explicit
condition is needed on Ra

0. In particular, Ra
0 can be less than 1 (which means that no

epidemic will occur if the susceptible pool is fully composed by individuals adopting the
altered behaviour ba). Clearly, in this case the solutions of system (2.5) can only be of
type C1.

Full proof of Prop. 2.3.2 is given in App 8.1.1. Here we only observe that when I(t) <
1/m we have x?(I) → 1 (see Prop. 2.3.1). Thus, the solutions of the degenerate system
(2.8), obtained by solving the system of differential equations after having substituted
x(t) = 1, are those of a classical SIR model with basic reproductive number R0 = Rn

0 .
The same happens when I(t) > 1/m, but now x?(I) → 0, which results in R0 = Ra

0.
Let us now assume that ε is close to 0. The time intervals in which I(t) ≈ 1/m (for
solutions of type C1 or C2) can be interpreted as time intervals in which the fraction of
infected individuals I(t) is characterized by a sequence of “micro–waves”. In fact, as soon
as I(t) > 1/m, x(t) gets close to 1, so that the effective reproductive number (Ra

0S(t1)
for solutions of type C1 and Ra

0S(t2) for solutions of type C2) is not sufficiently large to
sustain the epidemic and thus I(t) decreases below 1/m. However, as soon as I(t) < 1/m,
x(t) gets close to 1, so that the effective reproductive number (Rn

0S(t1) for solutions of
type C1 and Rn

0S(t2) for solutions of type C2) is sufficient to sustain the epidemic and thus
I(t) increases over 1/m. The process is repeated as long as the fraction of susceptible
individuals in the population is sufficiently large (Rn

0S(t) > 1). In the limit ε → 0,
these switches are instantaneous, and the solution I(t) is approximately always equal to
1/m. Finally, as soon as Rn

0S(t) ≤ 1, the fraction of infected individuals I(t) will start
decreasing to 0 over time. In Prop. 2.3.3 we give sufficient conditions for solutions of type
C1 or C2 to occur, which in particular implies the presence of sequences of “micro–waves”
for small value of ε.

Proposition 2.3.3. Under the assumptions Rn
0 > 1 and 1/m < Ip, where Ip = 1− 1

Rn
0
+

1
Rn

0
log 1

Rn
0
, if ε → 0, µ = o(εk) with k > 1 and Ra

0 satisfies the inequalities 1 < Ra
0 <

Rn
0 exp{−Ra

0(1− 1/Rn
0 )} then the solution of system (2.5) are of type C1 or C2.

First of all, we comment on the hypotheses of Prop. 2.3.3. Clearly, if Ra
0S(t1) ≤ 1

the solutions of system (2.5) can only be of type C1. Condition Ra
0S(t1) > 1 (which in

particular implies Ra
0 > 1) is thus required for solutions of type C2 to occur, in particular

to have that I(t) is increasing in t1. Condition Ra
0 < Rn

0 exp{−Ra
0(1−1/Rn

0 )} is necessary
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to have that the fraction of susceptible individuals does not decrease too much in the time
interval (t1, t2), where system (2.5) is equivalent to an SIR model with basic reproductive
number R0 = Ra

0. In fact, if S(t) decreases so much that Rn
0S(t2) < 1, I(t) will decrease

again for t > t2, resulting in a solution of type C3. Full proof of Prop. 2.3.3 is given in
App. 8.1.1.

Prop. 2.3.3 guarantees that, under certain conditions, one (or more) epidemic waves
will occur after the first when ε > 0 is sufficiently small; here, a solution showing two (or
more) epidemic waves is one for which İ(t) > 0 in two time intervals separated by one
interval in which İ(t) < 0. A concrete example is shown in Fig. 2.2a. In this case, a
sequence of small epidemic waves is observed for t > t2. In fact, as soon as the fraction of
infected individuals becomes larger than the threshold 1/m, the dynamics is the same as
that of an SIR model with R0 = Ra

0 for which there are not enough susceptible individuals
to sustain the epidemic. Thus, the fraction of infected individuals decreases below the
threshold value (see the inset in Fig. 2.2a). A series of waves therefore follows, as long as
Rn

0S(t) > 1. Fig. 2.2b shows that, as stated in Prop. 2.3.2, S(t) decreases linearly while
I(t) undergoes this sequence of waves.

Convergence of the solutions of the singularly perturbed system (2.5) to those of the
degenerate system (Eq. 2.8, ε = 0) for ε → 0 is shown in Fig. 2.2c-d.

If we consider greater values of the parameter ε (about which proposition 2.3.3 does
not say anything), the fraction of infected individuals reaches a higher peak, and thus the
fraction of susceptible individuals decreases in the time interval (t1, t2) more than that of
a SIR model with R0 = Ra

0. However, if Ra
0 is not too large, the fraction of susceptible

individuals at time t = t2 can be sufficient to generate at least a second epidemic wave
(see Fig. 2.3a), that is now quite relevant in size.

As observed previously, if Ra
0 is not sufficiently small (as required by Prop. 2.3.3) the

fraction of susceptible individuals in the time interval (t1, t2) may decrease so much that
Rn

0S(t2) < 1. In this case, no additional waves will be generated and only a change in the
slope during the decaying phase may be observed (see Fig. 2.3b).

One may ask how large ε can be to give rise to a second epidemic wave of the type
shown in Fig. 2.3a. Fig. 2.4a shows a numerical approximation to the minimum value,
ε−1
min, of 1/ε giving rise to sequences of at least two epidemic waves, as a function of the
threshold parameter m. In this respect, it should be observed that computing, given
m, the value of ε at which multiple waves start to occur is essentially equivalent to the
problem of locating the zero (if it exists) of a one-variable monotonic function, within
a suitable interval. It can be observed that ε−1

min decreases with m and ε−1
min ↘ 0 as

m → +∞. Moreover, m has to be larger than the theoretical minimum m = 1/Ip (shown
as the dotted vertical line in Fig. 2.4a) in the assumptions of Prop. 2.3.2; indeed ε−1

min goes
to ∞ (i.e. εmax goes to 0) as m → 1/Ip.

The following Proposition shows that, independently of ε, the fraction of susceptible
individuals at the end of an epidemic described by an SIR model with R0 = Rn

0 is always
smaller than that obtained with model (2.5):

Proposition 2.3.4. S∞ > SSIR
∞ , where SSIR

∞ is the fraction of susceptible individuals at
the end of an epidemic described by a classical SIR model with transmission rate βn and
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Figure 2.2: a Fraction of infected individuals (solid bold line, scale on the left) and fraction
of individuals playing strategy bn (solid tiny line, scale on the right) over time for system
(2.5). Parameters employed: βn = 0.6, γ = 0.3, βa = 0.35, ε = 3.33 · 10−3, m = 65,
µ = 10−7. The dashed line represents the threshold value 1/m. b Fraction of infected
individuals (solid line, scale on the right) and susceptible individuals (bold dot-dashed
line, scale on the left) in the same example as in panel a. We also plot the straight line
S(t) = S(t1) − γ

m
(t − t1) (tiny dot-dashed line, scale on the left)to show the linearity of

S(t) in [t2, t3] as predicted by Prop. 2.3.2. c Fraction of infected individuals vs. time for
different choices of the parameter ε (thin black lines) and the piecewise solution of system
(2.5) (heavy gray line) as in Fig. 2.1; other parameters as in panel a. d Like panel c but
with βa = 0.3; this implies Ra

0S(t1) < 1 so that the solution is of type C1.

S∞ is the fraction of susceptible individuals at the end of an epidemic described by system
(2.5).

Finally, for ε ≈ 0, the dependence of S∞ from m is clarified by the following:

25



a b

Time

In
fe

ct
ed

0 50 100 150 200 250

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0
0.

5
1

Time

In
fe

ct
ed

0 50 100 150 200 250

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0
0.

5
1

Figure 2.3: Other possible behaviour of solutions of system (2.5). a As in Fig. 2.2a but
with ε = 0.25. b As in Fig. 2.2a, but with βa = 0.45.
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Figure 2.4: a The minimum values of 1/ε giving rise to a sequence of at least two epidemic
waves are plotted against m, for system (2.5). Parameters employed: βn = 0.6, γ = 0.3,
βa = 0.33, µ = 10−7. The vertical dotted line represents the value of m such that
m = 1/Ip. Notice that for such choice of parameters, the conditions of Prop. 2.3.3 are
satisfied, which implies that epidemic waves will occur for ε → 0. Notice how multiple
waves can occur even for “slow” changes in behaviour (large ε values). b S∞ as a function
of 1/ε for different choices of m for system (2.5). Parameters employed: βn = 0.6, γ = 0.3,
βa = 0.35, µ = 10−7.

Proposition 2.3.5. Under the assumptions Rn
0 > 1 and 1/m < Ip, where Ip = 1 −

1
Rn

0
+ 1

Rn
0
log 1

Rn
0
, in the limit ε → 0, µ = o(εk) with k ≥ 1, if Ra

0 satisfies the inequalities
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Figure 2.5: The model (2.5) accounts for interesting epidemic patterns: a Parameters
employed: m = 150, βn = 0.8, βa = 0.4, γ = 0.5, µ = 0.01, ε = 10. b Parameters
employed: m = 300, βn = 1, βa = 0.48, γ = 0.5, µ = 10−10, ε = 2. c Parameters
employed: m = 100, βn = 0.6, βa = 0.54, γ = 0.5, µ = 10−5, ε = 0.01. d Parameters
employed: m = 100, βn = 0.8, βa = 0.6, γ = 0.5, µ = 10−5, ε = 1.

1 < Ra
0 < Rn

0 exp{−Ra
0(1−1/Rn

0 )} then the fraction of susceptible individuals at the end of
the epidemic (S∞(m)) is an increasing function of m and S∞(m) → 1/Rn

0 when 1/m → 0.

Proofs of Prop. 2.3.4 and 2.3.5 are in appendix 8.1.1. In Fig. 2.4b the values of S∞
are reported for increasing values of 1/ε and for different choices of m. We can see that
S∞ is non monotonic in neither 1/ε nor in m. However, when 1/ε is sufficiently large, S∞
increases by decreasing 1/m and S∞ → 1/Rn

0 when 1/m → 0. For small values of 1/ε,
S∞ is equivalent to that obtained by employing a classical SIR model with R0 = Rn

0 .
We conclude the analysis of the proposed model by showing that, with suitable choices
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of parameters, its solutions can exhibit some interesting patterns (unaccessible to any
classical SIR model), that are morphologically compatible with the evolution of past
pandemics. For example, two epidemic waves can be obtained (see Fig. 2.5a) in the same
epidemic episode. However, more than two epidemic waves can be obtained (as it was in
fact observed in the 1918-19 Spanish pandemic). Moreover, the peak daily attack rate of
the sequence of waves is not necessarily decreasing over time (see Fig. 2.5b). Difference in
slope in the decaying phase (reminiscent of those observed in the Fall wave of the 1918-19
Spanish pandemic in the UK) can also be captured by our model (see Fig. 2.5c and [33]
for a brief discussion). Finally, very long decaying phases, making the epidemic curve
strongly asymmetric, can also be obtained (see Fig. 2.5d).

2.4 Discussion

When studying the spread of epidemics, behaviour and contact patterns are typically
considered “background” for the infection – i.e., they are not themselves variables of the
dynamics. It is interesting, however, to address cases for which the population behaviour
cannot be merely considered as an independent (though time-varying) parameter, but
it is better modelled as a variable whose evolution influences, and is influenced by, the
dynamics of the infection.

With the introduction of an explicit model for behavioural changes, infection and be-
haviour both contribute to define the context for the other. Symmetry between these
two key-factors is therefore restored, and no by-principle prevalence is given (even for-
mally) to one over the other. Not only the dynamics of infection depends now on both
the transmission and behaviour, but also the behaviour dynamics depends on behaviour
(and infection as well). This is what makes evolutionary game theory especially suited
to the case as compared to classical game theory. In fact, application of the latter would
result in (rational) instantaneous best responses to the infection dynamics, regardless of
the current distribution of behavioural strategies.

The model we propose is (deliberately) simple, and exhibits a transmission dynamics
driven by an S → I → R scheme coupled with behavioural (contact) patterns driven by
imitation dynamics. Still, we were able to prove that the model accounts for multiple
waves occurring within the same outbreak, and is able to explain “asymmetric waves”,
i.e., infection waves whose rising and decaying phases differ in slope. As an interesting
feature, the attack rate for the model is always smaller than that of the equivalent SIR
model (obtained by fixing x(t) = 1).

It should be observed that the model is based on two implicit, yet crucial assumptions:
a) that the benefits of behavioral changes be immediately clear to the individuals; b)
that individuals be able to recognize whether their contacts are susceptible, infective or
removed (since susceptible individuals can change their behaviour only through encounters
with other susceptible individuals). Consequently, our model applies better to severe
epidemics, in which it is more likely that these requirements are actually met.

Coming to discuss possible variants and extensions, a first remark concerns the dy-
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namics of behavioural changes that we have adopted. In particular, the payoffs of the
underlying game are modelled as the perceived risk of infection. Our choice was for a
simple linear dependence from the fraction of currently infected individuals. Of course, a
number of different options are available; for example one may tie the perception of risk
to the number of new infections, or consider the actual probability of infection in place
of perceived risk. Cumulation of risk over time could also be addressed by introducing
appropriate memory mechanisms.

Independently of how the risk is specifically reckoned, the access to information per-
taining the relative efficacy of behaviours may also be collected across more structured
networks (e.g., the media). In this respect, considering different time units adds some
flexibility to the model, in that it allows for different speeds in the diffusion of infection
and behaviour. For example, tuning of key parameter ε may be obtained on the basis of
empirical evidence.

At first sight, introduction of irrational behaviour may appear unnecessary, and con-
trasting with the model simplicity we tried to keep throughout. Yet, by avoiding extinc-
tion of allowed behaviours, irrational behaviour overtakes an unrealistic (and undesirable)
effect of strict imitation: the pool of strategies from which an individual can choose is
limited to those effectively represented in the population. By allowing exploration of all
possible behaviours, irrational behaviours may account for erroneous decisions or idiosyn-
cratic attitudes always present in human societies.

The focus of this work is to investigate the effects that behavioural change as a pro-
tective response to the state of infection has on the spread of a (severe) epidemic. That’s
why the behavioural change modelled here affects only susceptible individuals (infected
individuals may of course change behaviour as an effect of their status, regardless of the
state of epidemic). As a side remark, notice that quarantine or isolation of infected indi-
viduals can already be described by our model since they can be modelled as a reduction
of the transmission parameters.

A wider class of models can also be considered. The model of behavioural changes can
in fact be extended to infected individuals subdivided in symptomatic and asymptomatic,
for example treating the infected asymptomatics as susceptibles for anything concerning
the behavioural dynamics. A specific class for latent individuals could also be introduced,
thereby delaying the epidemic spread and affecting behavioural changes. In general, con-
sidering more than two behavioural classes would provide greater flexibility and realism,
while of course opening to technical problems of increased complexity.

The class of models introduced in this paper may contribute to elucidate phenomena
for which a behavioural basis is apparent, as in reaction to alerts [157], or hypothesized,
as for superspreading events [102]. In fact, empirical estimation of epidemic parameters
(as, for example, the basic reproduction number) or the comparison between intervention
strategies have to be carefully reconsidered whenever an underlying behavioural dynamics
is suspected. Finally, a better understanding of the distinction between spontaneous and
induced changes of behaviour is key for the implementation of more realistic and effective
social distancing measures.
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Chapter 3

Effectiveness of spontaneous social
distancing and risk perception

3.1 Introduction

Among the many factors known to influence the spread of epidemics across human pop-
ulations, a central role is played by the heterogeneity in human behaviors and contact
patterns [156, 103, 57, 151, 3, 76, 11, 112]. Human spontaneous behavioral response to
the risk of infection is largely suspected to play a crucial role as well [71, 132, 56, 21, 52].
In fact, it is expected that, during an epidemic outbreak, individuals change their be-
havior in order to reduce the risk of infection, especially if serious consequences are in-
volved. As mathematical modeling has increasingly become a powerful tool for decision
making, knowing in advance how to account for spontaneous behavioral changes would
greatly improve the predictive power of epidemic transmission models and the evalua-
tion of the effectiveness of control strategies. Actually, the impact of risk perception
on the spontaneous behavioral response, and in turn on the epidemic spread, is largely
acknowledged and several models have been proposed in order to investigate such phe-
nomenon [42, 147, 53, 93, 67, 66, 9, 137, 138, 127, 90, 130, 68]. Nonetheless, most models
in literature either assume a priori human response to the infection or consider only the
behavioral response as driven by the diffusion of fear, which is modeled as a parallel in-
fection [42, 147, 53, 93, 67, 66]. Evolutionary game theory represents a rich and natural
framework for modeling human behavior[153, 158, 81]. Both traditional and evolutionary
game theory have recently been employed to investigate individuals’ choices in voluntary
vaccination programs resulting in interesting and non trivial insights [17, 15, 109, 124],
promoting this approach as very promising.

The aim of this study is to propose the evolutionary game theory framework to model
explicitly the infection dynamics as a complex interplay between the disease transmission
process and spontaneous human defensive response. The dynamics of an epidemic out-
break is modeled by an SIR transmission scheme, where the force of infection depends
on the behavioral patterns of individuals involved. Behavior of individuals is assumed
to change over time in response to the perceived risk of infection [9, 127], based on the
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perceived prevalence [52]. Specifically, at any time, each individual can choose to adopt
or not a self-protection strategy, altering contact patterns and usual habits, in order to
reduce the risk of infection. A recent work [127] has investigated the simple case in which
only choices of susceptible individuals are modeled. Here, an extension of this work,
which includes the investigation of behavioral response performed by infected individuals,
is presented.

Two possible responses are considered. The first one accounts for changes in contact
patterns involving individuals that suffers symptoms, as a consequence of their sickness
(workplaces and school attendance can drastically reduced during a serious infection out-
break [119, 152]). Such defensive response depends on the severity of symptoms and
appears regardless of the current state of the epidemic in the population, the behavior of
other individuals and the current risk of infection. Hence, we assume that symptomatic
infected individuals perform the same defensive response. This assumption results in
considering a different transmission rate for symptomatic individuals, which can take into
account also a possible increased infectivity of symptomatic infections. The second behav-
ioral response considered, accounts for a spontaneous defensive self-protection in response
to the perceived risk of infection. In particular, individuals are supposed to be able to
reduce their susceptibility. Such defensive response takes into account both reduction in
physical contacts – e.g. through the avoidance of crowded environments or by limiting
travels [98, 59] – and, more in general, all self-prophylaxis measures which can reduce
the transmission probability during these contacts – e.g. achievable by increasing wari-
ness in usual activities, as recommended by WHO during 2009 pandemic influenza [161],
or by using face masks, as during the 2003 SARS outbreak [98]. Actually, only suscep-
tible individuals are exposed to the risk of infection. On the other hand, in principle,
asymptomatic infective individuals, and recovered individuals that have not experienced
symptoms, have no reason to behave differently from susceptibles. Self-protective be-
havior eventually adopted by asymptomatic infective individuals results in a reduction
of the force of infection. On the contrary, neither symptomatic infective individuals, nor
recovered individuals that have already experienced the symptoms of the infection can
achieve any benefit through a reduction of the risk of infection. Therefore, they are not
considered in such mechanism of self–protection.

This manuscript investigates the impact of the behavioral response on the spread
of an epidemic and clarifies the role of key parameters regulating such mechanism, in
order to capture essential patterns of the interplay between the risk perception and the
transmission process.

3.2 The model

The disease transmission process is based on a simple SIR model where individuals may
adopt two mutually exclusive behaviors, normal and altered, on the basis of the perceived
risk of infection. Individuals adopting the altered behavior are supposed to be able to
reduce the force of infection.
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Cast in the language of evolutionary game theory, the dynamics of self-protection
can be modeled as a suitable dynamic game, where behaviors adopted by individuals
correspond to strategies with certain expected payoffs. The altered behavior gives the
individuals an advantage of reducing the risk of infection, but it is more costly (in absence
of infection the normal behavior is more convenient). The diffusion of the strategies in
the population is modeled as an imitation process [158, 81, 15, 127]: individuals change
strategy as they become aware, through encounters with other individuals, that their
payoff can increase by adopting another behavior. Which behavior is more convenient to
adopt clearly depends on the state of the epidemic. The balance of the payoff between
the two possible strategies is determined by the perceived risk of infection, which depends
on the cost associated to the risk of infection and on the perceived prevalence in the
population, which is considered as a measure of such risk. The perceived prevalence is
modeled by assuming an exponential fading memory mechanism (such in [48]), taking
into account the number of infections occurred over a certain (past) period of time.

Let denote with S, IS, IA, RS, RA the fraction of susceptible, symptomatic and asymp-
tomatic infective individuals and recovered individuals that has experienced symptoms
or not respectively. By introducing the variables x, describing the fraction of individuals
adopting the normal behavior, and M , describing the perceived prevalence of infection
in the population, the system of ordinary differential equations regulating the above de-
scribed process can be written as follows:



Ṡ = −λ[x+ q(1− x)]S

İS = pλ[x+ q(1− x)]S − γIS
İA = (1− p)λ[x+ q(1− x)]S − γIA
ṘS = γIS
ṘA = γIA
Ṁ = −pṠ − νM

ẋ = x(1− x) pS
(1−RS−IS)

λ(q − 1)

+ ρ[x(1− x)(1− IS −RS)(1−mM) + µ(1− 2x)]

(3.1)

where p denotes the probability of developing symptoms, 1/γ is the average length of the
infectivity period (corresponding here to the generation time), ν weighs the decay of the
perceived prevalence M (which is based on symptomatic cases), 0 ≤ q ≤ 1 represents the
reduction of contagious contact rate induced by the altered behavior; finally, λ is the force
of infection, which is modeled as follows:

λ = βSIS + βAIAx+ qβAIA(1− x)(3.2)

where βS and βA are the transmission rate for symptomatic and asymptomatic infectives
respectively. The force of infection λ is the result of three contribution: first, the transmis-
sion associated to symptomatic infected individuals (βSIS); second, the transmission asso-
ciated to asymptomatic infected adopting the normal behavior (βSISx); third, the trans-
mission associated to asymptomatic infected adopting the altered behavior (qβSIS(1−x)).
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Moreover, the susceptibility of individuals is reduced by q for those susceptibles that adopt
the altered behavior, i.e. a fraction 1−x of susceptible individuals (see first eq. of system
(3.1)).

The first term of the equation for x (i.e., x(1−x) pS
(1−RS−IS)

λ(q−1)) represents a natural
selection, embedded into the transmission process, that favors individuals reducing the
risk of infection. The second one (i.e., ρ[x(1−x)(1−IS−RS)(1−mM)+µ(1−2x)]) accounts
for spontaneous changes in individual behaviors. Specifically, x(1−x)(1− IS −RS) is the
fraction of useful encounter for having a switch of strategy by imitation; 1−mM represent
the balance between the payoff associated with the two possible behavior; m defines a
threshold determining which behavior would represent the most convenient choice; the
term µ(1−2x) represents the possibility that individuals, rarely (at a rate µ << 1), change
strategy independently by the payoff values, by performing an irrational exploration of
strategies [81, 127, 149]; ρ is the imitation rate and essentially represents the speed of
the behavioral dynamics with respect to the disease transmission dynamics. In fact, in
general, as imitation is based on the diffusion of information rather than on physical
contacts between individuals, the speed of behavioral changes may be different from that
of the disease transmission.

For large values of ρ (and small values of µ) the sign of ẋ essentially depends on the
balance of payoff between the two possible behavior (1 − mM). When the perceived
prevalence M is over 1/m (hereafter referred to as prevalence threshold or risk threshold),
the altered behavior is perceived as the most convenient, and thus x decreases. It is
worth of noticing that in the special case of ν = γ, the perceived prevalence is exactly the
prevalence of symptomatic infection in the population (M = IS).

3.3 Reproductive number and model parametriza-

tion

The basic reproductive number R0, which is essentially the average number of secondary
infections that results from a single infectious individual in a fully susceptible population
[6], can be computed by using next generation technique [44]. In this case, the resulting
basic reproductive number is

(3.3) R0 = (1− p)
βA

γ
[x+ q(1− x)]2 + p

βS

γ
[x+ q(1− x)]

which can be interpreted as a combination of two basic reproductive numbers:

Rn
0 = (1− p)

βA

γ
+ p

βS

γ
,

the reproductive number for a population where all individuals are adopting the normal
behavior (x = 1) and

Ra
0 = q2(1− p)

βA

γ
+ qp

βS

γ
,
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Figure 3.1: a Ra
0 as a function of q where βS = βA = 0.5. Colors from green to orange

correspond to different values of p ranging from 0 to 1. b As in a but for βS = 2βA,
where βA = 0.5. c q̃ = (q + f − 1)/f where f is the fraction of individuals able to reduce
their contacts, obtained by keeping Ra

0 constant. For instance, the figure shows that a
reduction of q = 0.85 in contacts performed by all individuals has the same effect on Ra

0

that a reduction of q = 0.8 performed only by 75% of individuals.

the reproductive number for a population where all individuals are adopting the altered
behavior (i.e. x = 0). As 0 ≤ q ≤ 1 and 0 ≤ p ≤ 1, Ra

0 ≤ Rn
0 . The reduction in

the number of contagious contacts cumulates when both susceptibles and asymptomatic
infective individual are adopting the altered behavior; this leads the term q2 in Ra

0.

Equation (3.3) highlights that R0 depends on the fraction of individuals in the pop-
ulation who are adopting either normal or altered behavior. It is easy to check that if
x(0) = 1 and ρ = 0 the system (3.1) reduces to a classical SIR model (with the distinction
on symptomatic and asymptomatic individuals) driven by Rn

0 ; on the contrary, if x(0) = 0
and ρ = 0 it reduces to a classical SIR model driven by Ra

0. The smaller is q, the smaller
Ra

0 and the larger the effect of self-protection when individuals are performing the altered
behavior. Moreover, if βS = βA, i.e. the transmissibility of the disease is assumed equal
for both symptomatic and asymptomatic individuals, a larger fraction of asymptomatic
infections (small values of p) corresponds to a larger impact of self-protection because of
the quadratic form of Ra

0 in q (see Fig.3.1a). On the other hand, if βS > βA a larger
fraction of asymptomatic infections corresponds to a larger impact of self-protection only
for small value of q (see Fig.3.1b).

Two important assumptions characterize this model: (i) all individuals are able to
perform a self-protection strategy; (ii) only two possible behavior are available and is
assumed that all individuals adopting the altered behavior perform the same reduction
q. Nevertheless, as the payoff are linear and a population of players is considered, such
assumptions are analogous to consider a population of individuals that can choose among
the infinite set of mixed strategies defined by the linear convex combination of this two
pure strategies. Moreover, assumption (i) is not constrictive. In fact, assuming that all
individuals are reducing contagious contacts by q, is similar to assume that only a fraction
x̃ act a reduction of q̃ with q̃ = (q − x̃)/(1− x̃) or that only a fraction of f of individuals
is able to reduce their contacts by acting a reduction of q̃ with q̃ = (q + f − 1)/f (see
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Fig.3.1c)1.

In general, the transmission rate for symptomatic and asymptomatic individuals can
be different, as a consequence of a larger infectivity of symptomatic infections or as a
consequence of changes in usual habits (e.g. a lower workplaces and school attendance
associated with sickness). However, such difference does not vary over the course of the
epidemic. In fact, behavioral changes adopted by symptomatic individuals are performed
in order to face sickness rather than to reduce the risk of infection and thus they are
performed regardless of the perceived risk and the behavior adopted by other individuals.
Therefore, in order to investigate the interplay between risk perception and the epidemic
diffusion, the specific choice of the value of the transmission rates is not crucial (here we
made the simplest assumption βS = β = A).

In this study the spread of a “generic” influenza-like infection is simulated. Therefor,
parameters that merely characterize the disease transmission process are taken from lit-
erature. Specifically, the basic reproductive number is assumed 1.4 [63, 118, 74, 165, 4]
and the generation time is assumed 2.8 days [74, 165].

On the other hand, estimates of most of parameters introduced for characterizing the
human behavioral response are uncertain and a deep investigation would be required to
produce reliable estimates. In order to give insights on qualitative dynamics triggered by
human self-protection and to assess when and how human response affects the epidemic
spread, plausible (expected) ranges for those parameters are explored. The impact of
different behavioral response on the epidemic is investigated, varying one-by-one the pa-
rameters starting from a baseline configuration of parameters and initial conditions (see
table Tab.3.1).

3.4 Results

Baseline scenario

In the baseline scenario (parameters as in Tab.3.1) all infections are symptomatic (p = 1),
the perceived prevalence is exactly the fraction of symptomatic infections IS (γ = ν) and
the epidemic is initially perceived as not risky (M(0) = 0 < 1/m). The resulting dy-
namics of the system (3.1) Fig.3.2a and Fig.3.2b. After an initial growth of the epidemic,
the perceived prevalence reaches the prevalence threshold 1/m and the altered behavior
becomes more convenient than the normal one; then, after few days, the altered behavior
becomes widely adopted in the population and the epidemic growth rate remarkably de-
creases. As the prevalence decreases under the threshold, the population starts to adopt
again the normal behavior, producing an heavy tail in the infection dynamics.

Two key parameters characterize the timing of the behavioral response: m and ρ.

The first one describes how the perceived prevalence M is weighted in the payoff
functions, i.e. in the balance of the cost associated to the risk of infection and the cost of
a self-protection strategy. As a matter of fact, 1/m defines the threshold for the perceived

1It is sufficient to require that x+ q(1− x) = x̃f + (1− f) + q̃(1− x̃)f .
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Figure 3.2: a Daily prevalence of symptomatic infection in the case of no response by the
population, q = 1 (bold gray line), and in the baseline scenario, q = 0.85 (bold red line).
Other parameters as in the baseline scenario reported in Tab.3.1. The horizontal gray
line represents the prevalence threshold 1/m. The behavioral response appears about 4
days after the perceived prevalence M(t) = IS(t) crosses the threshold 1/m producing a
lower increase in the prevalence of infection. b Baseline scenario: the dynamics of 1− x
(blue line, scaled on the left) and the effective reproductive number over time (dark green
line, scaled on the right). c Imitation delay as a function of ρ. Other parameters as in the
baseline scenario. For each value of ρ the imitation delay is computed as the time between
when the perceived prevalence crosses the prevalence threshold 1/m and when more than
50% of individuals have adopted the altered strategy (x < 0.5). The gray region represents
a plausible range for the imitation delay. This, in turn, determines plausible values of
ρ. For instance, if ρ = 10 (as assumed in the baseline scenario) the imitation delay is 4
days, compliant to that observed in a. d Daily prevalence of symptomatic infection in
the case of no response by the population, q = 1 (bold gray line), and in the baseline
scenario, q = 0.85 (bold red line), but for the prevalence threshold 1/m = 10−3. This
example shows that, altrough the altered behaviors is (almost) always the most convenient
strategy, human responsiveness takes about 4 days to spread in the population.

prevalence above which individuals reducing contacts have a larger payoff than other ones.
The larger is m, the earlier the risk induced by the epidemic is (perceived) sufficiently
large to make the altered behavior as the most convenient choice.

On the other hand, ρ represents the speed of the imitation process with respect to the
disease transmission time–scale. As a matter of fact, ρ entails the delay (embedded in
the imitation dynamics) between the time at which a strategy becomes more convenient
and the time at which the majority of population adopt this strategy. For instance,
when 1/m < Is(0), the altered behavior is more convenient than the normal one since
the beginning of the epidemic. Nonetheless, if x 6= 0, the altered behavior takes some
time to spread in the population as well (see Fig.3.2d). We define the duration of this
transition as the imitation delay. We mesure the imitation delay as the time between
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when the perceived prevalence crosses the threshold 1/m, and when more than 50% of
the population has changed the strategy. The relation between the imitation delay and
ρ is depicted in Fig.3.2c. Our analysis highlights that the larger is ρ, the erlier the most
convenient strategy spreads in the population.

It is worth of noticing that if ρ = 10 (as assumed in the baseline scenario) the imi-
tation delay is 4 days. This delay is compliant to that observed in the dynamics of the
daily prevalence of symptomatic infections in Fig.3.2a. The computation of imitation
delay is roboust under different assumptions (e.g., for different values of m), as shown in
Fig.3.2d. Moreover, defining a plausible range for the imitation delay allows determining
a correspondent plausible range for ρ (gray region in Fig.3.2c).

In sum, the time at which the transition between two possible behaviors occurs is
driven by m, while the duration of this transition is driven by ρ. Therefore, m and ρ
are the main parameters determining the responsiveness of the population to an epidemic
outbreak.

Effectiveness of human self-protection

The effectiveness of human self-protection is analyzed in term of: i) final epidemic size
(here defined as the total number of infection at the end of the epidemic); ii) daily peak
prevalence; iii) peak day.

As mentioned above, a major responsiveness of the population to an infection corre-
sponds to a small prevalence threshold (large values of m) and to a low imitation delay
(large values of ρ). As the responsiveness of population increases, a larger reduction in the
final epidemic size and in the daily peak prevalence is observed (see Fig.3.3a and Fig.3.3b).
The responsiveness of the population is related to when the behavioral response becomes
effective. In fact, if the prevalence threshold or the imitation delay are too large the
human response never takes places and the epidemic spreads following the dynamics of
an SIR model driven by Rn

0 . If an epidemic is not perceived sufficiently severe to trigger a
behavioral response2, this corresponds to an unreachable level of the prevalence threshold.

The size of reduction in contagious contacts associated to the altered behavior (q) has a
strong impact on epidemic dynamics. As q decreases, a larger protection by the infection is
performed by individuals adopting the altered behavior. This leads a decrease in both the
final epidemic size and the daily peak prevalence of the epidemic (see Fig.3.3c). The peak
day is remarkably anticipated as q increases; however the burden for health care centers
at the epidemic peak decreases (see daily prevalence dynamics over time in Fig.3.3c).
Moreover, Fig.3.3c shows that, as ρ becomes large, for small value of q the daily peak
prevalence corresponds to the threshold value 1/m.

Three interesting aspects raise from our analysis: (i) a large reduction in the number
of contagious contacts is not necessary to affect the epidemic dynamics; in particular, a
small behavioral response performed by the population can remarkably alter the spread of

2From a mathematical point of view, this happens when 1/m is larger than Ip = 1− 1
Rn

0
+ 1

Rn
0
log 1

Rn
0
,

i.e. the largest possible daily peak prevalence, obtained when all individuals adopt the normal behavior
for the whole course of the epidemic.
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Figure 3.3: a Daily prevalencee of symptomatic infections (a1), final epidemic size (a2),
daily peak prevalence of symptomatic infections (a3) and peak day (a4) as obtained for
different values of the prevalence threshold 1/m. Other parameters as in the baseline
scenario (see Tab.3.1). b As a but for different values of the speed of behavioral changes
ρ. c As a but for different values of the reduction in potentially infectious contacts q. d
As a but for different values of the probability of developing symptoms p.

the epidemic; (ii) it exists a threshold for q, such that a further increase in the reduction
q does not determine a larger impact of behavioral changes on the final epidemic size, the
daily peak prevalence and the peak day; (iii) for small values of q multiple epidemic waves
can occur. Indeed, a reduction of 100% in the number of potentially infectious contacts
(corresponding to q = 0, i.e. assuming total isolation) results in a similar final epidemic
size, daily peak prevalence and peak day to that observed by considering a reduction
of 25% (q = 0.75). On the other hand, large values of q can trigger multiple epidemic
waves. The conditions for observing multiple epidemic waves has been already discussed
in [53, 127]. Briefly, the chance of observing multiple epidemic waves increase as the
human responsiveness to the epidemic increases, i.e. for large values of ρ or m.

When considering the possibility of asymptomatic infections (p < 1, but still assuming
βS = βA), asymptomatic infectives can adopt the altered behavior as well. Since they are
not aware of their infection, they have no reason to behave differently from susceptibles.
As the fraction of asymptomatic infections increases (i.e. as p decreases), the fraction of
individuals adopting a self-protection strategy increases as well. On the other hand, a
larger symptomaticity produces a larger number of observable infections and, in turn, a
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larger perceived prevalence and risk. Numerical simulations show that, in this tradeoff, the
latter phenomenon prevails against the former. Indeed, spontaneous behavioral changes
have a larger impact on epidemic dynamics when the probability of developing symptoms
is large (see Fig.3.3d).
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Figure 3.4: a Daily prevalencee of symptomatic infections (a1), final epidemic size (a2),
daily peak prevalence of symptomatic infections (a3) and peak day (a4) as obtained for
different values of the average memory length 1/ν. Other parameters as in the baseline
scenario (see Tab.3.1). b As a but for different values of M(0), assuming 1/ν = 30 and
m = 1. c As a but for different values of the alarm times T . d As a but for different
frequencies of information update: the perceived risk is updated every f days.

Risk perception and information diffusion

Different assumptions on the risk perception, the information diffusion and, more in gen-
eral, the effect of the misperception of the risk of infection are analyzed. Up to now,
we have assumed that the perceived prevalence M at time t is exactly the symptomatic
prevalence IS at time t (i.e. ν = γ). Several alternative assumptions can be considered.

First of all, to determine which behavior is the most convenient to adopt, individuals
can take into account infections occurred over a certain (past) period of time. This case
corresponds to assume 1/ν larger than 1/γ. As a matter of fact, assuming 1/ν > 1/γ
results in a larger perceived risk of infection associated to every single new infection.
Therefore, it is not surprising that a longer memory duration results in a larger diffusion
of the altered behavior, which results in decreasing the daily peak prevalence and the final
epidemic size and in delaying the epidemic peak (see Fig.3.4a).
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The role of memory becomes more relevant when the population overestimates the risk
of infection during the early phases of the epidemic. For instance, such kind of overestima-
tion may happen as a consequence of the concern raised after a mass media campaign (as
could have happened during 2009 H1N1 pandemic [90, 136]). An initial overestimation of
the risk of infection can result an initial perceived risk above the threshold, even when the
threshold is too large for supporting the altered behavior as the most convenient one. In
fact, if the number of new cases produced by the epidemic is not sufficient to support the
altered behavior as more convenient, the effect of misperception can vanish. On the other
hand, when the initial misperception of prevalence is supported by a long lasting memory
the altered behavior can result as the most convenient one for a relevant period of time.
This essentially results in an initial reduced growth rate of the epidemic, which delays the
epidemic (see Fig.3.4b). Moreover, if the initial overestimation of risk is supported for a
sufficiently large period of time, both the daily peak prevalence and the final epidemic
size decrease as well.

The misperception of risk can also occur when the population becomes aware of a new
epidemic outbreak after a certain period of time, since the emergence of the epidemic. This
phenomenon can be investigated by assuming that the perceived prevalence is initially
equal to zero for a period of time T . Numerical simulation show that the larger is the
delay T , the lower the effectiveness of human response becomes. In particular, the daily
peak prevalence and the final epidemic size increase as T increases (see Fig.3.4c) and, if
the alert takes place late in the course of the epidemic no relevant effects on the outbreak
can be detected (see Fig.3.4c).

Finally, regardless of misperceptions or misjudgments of the risk of infection, it is fairy
reasonable to assume that individuals may acquire information about the status of the
epidemic only once in a while, e.g. f days, rather than in real time3. Our investigation
highlights that less frequent information does not clearly reduce the effectiveness of the
behavioral response of the population, unless very rare information is considered (see
Fig.3.4d).

The main results presented in this manuscript are summarized in Fig.3.5. Specifically,
we found that, if perceived risk associated to an epidemic is sufficiently large (i.e. for
large values of m), even small behavioral changes can remarkably reduce the impact of
the epidemic (e.g. for q = 0.9 the final epidemic size can decrease from about 52% to
about 38%). Moreover, if the imitation delay is not too large (lower than 2 weeks),
the response of the population is always effective. On the other hand, the population
responsiveness increases as the symptomaticity increases, while memory of past cases and
an initial overestimation of the risk of infection essentially delay the epidemic spread.

3However, driven by the balance based on the last information acquired by the individuals, behavioral
changes may occur continuously over time.
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3.5 Discussion

Human response to the perceived risk of infection can remarkably affect the epidemic
spread both qualitatively and quantitatively. Nonetheless, human behavior cannot be
merely considered as an independent background process of the infection dynamics. The
introduced model provides a promising approach, based on evolutionary game theory, to
investigate the complex interaction between human behavior and diseases transmission
process. Moreover, the model is fairy general to be applied for describing any kind of
disease (e.g. influenza, smallpox, SARS and endemic diseases as well).

This study represents a further step to assess quantitative and qualitative effects of
spontaneous behavioral response to the perceived risk of infection. Key features of a
human self-protection are captured as well as how and when behavioral responses are
effective. Our results are consistent to those obtained by previous works through different
assumptions. Specifically, as shown in [42], the disease spread results highly sensitive to
how rapidly people adopt a self-reduction in their contact activity rates. Moreover, if
behavioral changes are fast enough, they can have a remarkable effect in reducing the
daily prevalence of infection [93] and the final epidemic size [67]. For suitable parameter
configurations, the epidemic dynamics becomes quite rich and can account for multiple
epidemic waves, as shown in [53, 127].

Spontaneous behavioral changes have detected to be occurred in recent epidemics.
For instance, during the 2009 H1N1 pandemic, high levels of concern have been detected
among individuals exposed to the infection [90, 136]. Moreover, spontaneous behavioral
changes performed as response to an emerging epidemic have been detected during past
epidemics. On 2003 this was the case of the SARS epidemic when individuals changed
their behavioral patters in order to reduce their susceptibility to the infection by limiting
travels [98, 59], wearing face masks and performing other self-prophylaxis measures [98].

Therefore, accounting for spontaneous behavioral changes would be helpful for giving
insight to public health policy makers, for planning control strategies and for better
estimating the burden for health care centers over time. However, at the current stage, the
proposed model could hardly be used for real time predictions. In fact, a deep investigation
on plausible values of model parameters related to human behavior is required. In order
to gain a major consciousness on how such mechanisms work Further investigations may
be devoted to the investigation of real epidemic outbreaks where behavioral changes have
observed.
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Table 3.1: Parameters employed and initial conditions

EPIDEMIOLOGICAL PARAMETERS?

Parameter Interpretation Investigation Baseline
range value

1/γ Average length of - 2.8
the infectivity period (days)

βS Transmission rate for - 0.5
symptomatic individuals (days−1)

βA Transmission rate for - 0.5
asymptomatic individuals (days−1)

p Probability of developing [0, 1] 1
symptoms

S(0) Initial fraction of - 1− 10−3

susceptible individuals
IA(0) Initial fraction of - 0

asymptomatic infective individuals
IS(0) Initial fraction of - 10−3

symptomatic infective individuals
RA(0) Initial fraction of - 0

asymptomatic recovered individuals
RS(0) Initial fraction of - 0

symptomatic recovered individuals

BEHAVIORAL PARAMETERS

Parameter Interpretation Investigation Baseline
range value

q Reduction in the number of [0.5, 1] 0.85
potentially infectious contacts

1/m Prevalence threshold/risk [0, 0.05] 0.01
ρ Speed of the behavioral [10−1, 103] 10

changes (days−1)
1/ν Average memory length [1, 30] 2.8
µ Rate of irrational exploration [0, 10−2] 10−8

x(0) Initial fraction of individuals - 1− 10−6

adopting the normal strategy
M(0) Initial perceived prevalence [0, 0.05]† 0

? The epidemiological parameter lead to a baseline configuration with
generation time 2.8 days and basic reproductive number Rn

0 = 1.4
(assuming that all individuals adopt the normal behavior).

† The perceived prevalence can also be considered larger when the
initial risk of the epidemic is overestimated.
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Figure 3.5: Results summary The influence of different key features of human behav-
ioral responses on: a final epidemic size, b daily peak prevalence and c peak day. Different
parameters have been investigated in the ranges defined in Tab.3.1. Colors represent the
responsiveness of the population: warmer colors correspond to higher responsive popula-
tion. Gray boxes have been used where no specific patterns were observed. The dashed
line represents the baseline scenario, the red line represents a fully not responsive pop-
ulation (i.e., it corresponds to a “simple” SIR model driven by Rn

0 ) and the blue line
represents a fully responsive population (i.e., it corresponds to a “simple” SIR model
driven by Ra
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Chapter 4

The effect of risk perception on the
2009 H1N1 pandemic influenza
dyanmics

4.1 Introduction

Among the many factors known to influence the spread of epidemics across human popu-
lations, a central role is played by the characteristics of the pathogen responsible for the
infections [6, 19], human mobility patterns [84, 38, 151, 11, 112], the sociodemographic
structure of the population [112] and intervention measures [6, 92]. Changes in human
behaviors are largely suspected to play a crucial role as well [42, 53, 127, 67, 130]. As
mathematical modeling becomes a powerful tool for decision making both in pre-planning
[103, 104, 57, 58, 73, 164, 33, 41, 78, 113] and in real-time situations [12, 75, 4, 99], knowing
in advance how to account for spontaneous behavioral changes would greatly improve the
predictive power of epidemic transmission models and the evaluation of the effectiveness
of control strategies.

In March 2009 a new influenza virus emerged in Mexico [162]. Early in the course of
the pandemic the population was very concerned about the event [136, 90]. Did this af-
fect the behavior of the population and, consequently, alter the dynamics of the epidemic?
By analyzing the 2009-2010 Influenza-Like Illness (ILI) incidence in Italy, as reported to
the national surveillance system, the hypothesis appears plausible that spontaneous be-
havioral changes have played a role in the pandemic, contributing to change the timing
of spread and the transmissibility potential. In fact, after an initial period (September
– mid-October 2009) characterized by a slow exponential increase in the weekly ILI in-
cidence, a sudden and sharp increase of the growth rate was observed by mid-October.
Over the whole period schools remained open [54] and only moderate mitigation measures
were enacted (e.g., antiviral treatment of severe cases) [86]. However, during the initial
phases of the epidemic the Italian population has been exposed to a massive information
campaign on the risks of an emerging influenza pandemic, which can have contributed to
alter the perceived risk. The aim of this study is to investigate the effects of the perceived
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risk of infection during the course of the 2009 H1N1 pandemic in Italy. In particular,
we propose a new modeling framework, based on evolutionary game theory, accounting
explicitly for the dynamics of behavioral patterns adopted across the population.

4.2 Materials and Methods

4.2.1 Data description

In Italy, influenza surveillance system INFLUNET (accessible at: http://www.iss.it/iflu/)
is based on a nationwide voluntary sentinel network of general practitioners and pedia-
tricians. The aim is to monitor ILI incidence and to collect information on circulating
strains. Incidence rates are based on the population served by each reporting physician
each week.

As most European countries, Italy has experienced one single pandemic wave during
fall-winter 2009 and no substantial activity has been detected during the summer [4]. The
pandemic has mainly spread starting since the reopening of schools in mid-September
until mid-December. During the whole period schools remained open, in fact neither
regular holidays were scheduled [54] nor mitigation strategies were performed, except for a
moderate vaccination program started on mid-October, and involving only a small fraction
of at-risk patients and essential workers (the fraction of individuals vaccinated during the
whole course of the pandemic is less than 1.5% of the population) and treatment of severe
cases with antiviral drugs [86]. In this study, we consider total ILI incidence from week
38 (corresponding to the reopening of schools after the summer break, when influenza
activity started to be detected by the surveillance system) to 50, 2009. This allows us to
investigate an “uncontrolled” epidemic, not affected by heavy public health interventions
or by school closure. The number of practitioners involved in the surveillance system
over the considered period varies from 561 to 1,165; consequently, the served population
varies from 767,154 and 1,509,971. These values guarantee the reliability of the number
of weekly reported cases.

4.2.2 The model

The transmission process is based on a SIR model where susceptible individuals may
adopt two mutually exclusive behaviors, “normal” and “altered”, on the basis of the per-
ceived risk of infection. Individuals adopting altered behavior are supposed to be able
to reduce the risk of infection by reducing the force of infection to which they are ex-
posed. This defensive response takes into account both reduction in physical contacts
and, more in general, all self-prophylaxis measures which can reduce the transmission
probability during these contacts. For instance, a self reduction in the number of con-
tacts can occur through the avoidance of crowded environments or by limiting travels,
whereas a reduction in transmission probability can be achieved by increasing wariness in
usual activities involving other individuals (e.g., the behavioral goals recommended by the

46



WHO for reducing influenza transmission, such as washing hands frequently or respecting
cough/respiratory etiquette [161]).

In the model, individuals can change their behavior spontaneously, on the basis of
cost/benefit considerations. This phenomenon perfectly fits to the language of evolu-
tionary game theory, in which behaviors adopted by individuals correspond to strategies
played in a suitable game, with certain expected payoffs: altered behavior takes the advan-
tage of reducing the risk of infection, but it is more costly (e.g., because individuals have
to limit their activities). Which behavior is more convenient to adopt clearly depends on
the state of the epidemic. The balance of the payoff between the two possible behaviors
is determined by the perceived risk of infection, which depends on the cost associated to
the risk of infection and on the perceived prevalence of infections in the population. The
latter is modeled by assuming a fading memory mechanism (such in [48, 3]) altering the
perception of the risk of infection on the basis of the number of cases occurred over a
certain (past) period of time. The diffusion of strategies in the population is modeled as
an imitation process [81, 15] based on the idea that individuals change strategy as they
become aware that their payoff can increase by adopting another behavior. Denoting by
S, I, R the fraction of susceptible, infective and recovered individuals respectively and
by introducing the variables x, describing the fraction of individuals adopting normal
behavior, and M , describing the perceived prevalence of infection in the population, the
system of ordinary differential equations regulating this process can be written as follows:


Ṡ = −βIS [x+ q(1− x)]

İ = βIS [x+ q(1− x)]− γI

Ṙ = γI

Ṁ = βIS [x+ q(1− x)]− θM
ẋ = x(1− x)(q − 1)βI + ρx(1− x)(1−mM)S

where β is the transmission rate; 1/γ is the average duration of infectivity period (cor-
responding to the generation time); q represents the reduction of the risk of infection
to which individuals adopting altered behavior are exposed; θ weighs the decay of the
perceived prevalence; ρ essentially represents the speed of the imitation process with re-
spect to the pathogen transmission dynamics; m defines the risk threshold for determining
which behavior would represent the most convenient choice.

Briefly, the last equation of the system models the diffusion of the two different be-
haviors in the population driven by an imitation/natural selection process. The first term
of the equation accounts for a natural selection embedded into the transmission process
that favors individuals reducing the risk of infection, while the second one accounts for an
imitation process modeling spontaneous changes in individual behaviors. These changes
occur on the basis of the difference between the payoffs of the two possible behaviors,
the perceived prevalence, the level of the risk threshold and the speed of the imitation
process which, in general, is different from the speed of the disease transmission process
(as imitation is based on the diffusion of information rather than on physical contacts
between individuals). Model details are presented in the Supporting Text 8.2.
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The basic reproductive number R0, which is essentially the average number of sec-
ondary infections that results from a single infectious individual in a fully susceptible
population [6], can be computed by using next generation technique [44]. The result-

ing basic reproductive number is R0 =
β

γ
[x+ q(1− x)], which can be interpreted as a

weighted sum of two basic reproductive numbers: Rn
0 =

β

γ
, the reproductive number

for individuals adopting the normal behavior (namely the fraction x) and Ra
0 = q

β

γ
, the

reproductive number for individuals adopting the altered behavior (namely the fraction
1 − x). Therefore, R0 depends on the fraction of individuals in the population who are
currently adopting either normal or altered behavior.

4.3 Results

The ILI incidence as reported to the surveillance system during the 2009 H1N1 pandemic
shows two different phases characterized by two distinct exponential growth rates, es-
pecially appreciable when data are plotted in a logarithmic scale (see Fig. 1a and its
sub-panel). The “classical” SIR model is not able to catch this phenomenon (see Fig. 1b)
unless by considering a time-dependent transmission rate, switching from a low transmis-
sion level during the first four weeks to a higher level for the rest of the epidemic (see Fig.
1c). However, this model is not able to explain the motivation underlying this sudden
change in the transmissibility potential.

On the contrary, the model introduced here perfectly fits the observed ILI incidence
(see Fig. 1a) providing a plausible explanation of the mechanisms responsible for the
observed pattern. Specifically, the estimated parameter configuration obtained by fitting
ILI incidence entails an initial overestimation of the perceived risk that decreases over
time, along with an initial diffusion of the altered behavior in the population which be-
comes replaced by the normal behavior during the course of the epidemic. In fact, a high
level of perceived risk of infection at the beginning of the pandemic leads the simulated
population to adopt the altered behavior (as in the presence of a well sustained circulation
of the virus) resulting in a growth rate of the epidemic lower than what would have been
observed in a population adopting the normal behavior. Along with a slow increase in
the number of cases, a decrease in the perceived risk of infection is observed. In fact, the
latter depends on the combination of these two opposite phenomena: the increase of new
infections and the decline of the perceived prevalence (slowed by the memory mechanism),
which was overestimated in the early phases of the epidemic. As the perceived prevalence
goes below the risk threshold 1/m, the normal behavior starts to spread quickly in the
population as the most convenient strategy to be adopted through the subsequent course
of the epidemic. This induces an increase of R0 which leads to a sudden change in the
growth rate of the epidemic. Thus, these two distinct exponential growth phases in the
observed ILI incidence correspond to two phases in the model: the first one characterized
by the diffusion of the altered behavior in the population and thus driven by Ra

0, and the
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Figure 4.1: Comparing observed ILI incidence and model simulations. a Weekly
ILI incidence as reported to the surveillance system (green) and weekly incidence sim-
ulated by the model (red). Sub-panel shows the same curves in a logarithmic scale.
Parameter values used in the simulation are set as follows. The generation time 1/γ
is assumed 2.5 days according to [63, 165, 74] (a sensitivity analysis on the length of
the generation time is presented in the Supporting Text 8.2); S(0) = 0.9 according to a
serological survey on the Italian population [134]; x(0) = 10−8, assumed; M(0) = 10.5,
I(0) = 0.001243, ρ = 66, q = 0.84, m = 0.1, ν = 0.005, β = 0.59, fitted; the estimated
underreporting factor is 16.9%, in good agreement with the range 18%-20.2% previously
estimated in [4]. b Weekly ILI incidence as reported to the surveillance system (green)
and weekly incidence simulated by a “simple” SIR model (blue). Sub-panel shows the
same curves in a logarithmic scale. Parameter values used in the simulation are set as
follows. The generation time 1/γ is assumed 2.5 days; S(0) = 0.9 according to [134];
I(0) = 0.000176, β = 0.58, fitted; the estimated underreporting factor is 17.4%. c Weekly
ILI incidence as reported to the surveillance system (green) and weekly incidence sim-
ulated by a SIR model assuming a time-dependent transmission rate (blue). Sub-panel
shows the same curves in a logarithmic scale. Parameter values used in the simulation
are set as follows. The generation time 1/γ is assumed 2.5 days; S(0) = 0.9 according
to [134]; I(0) = 0.00126, β(t) = 0.496 for weeks 38-41.58 and β(t) = 0.596 for weeks
41.58-51, fitted; the estimated underreporting factor is 16.7%.

second one characterized by the diffusion of the normal behavior and thus driven by Rn
0 .

The best estimate for Ra
0 is 1.24 and for Rn

0 is 1.48 (which correspond to two effective
reproductive numbers of 1.12 and 1.33 respectively, given a 10% initial natural immunity
to the 2009 H1N1pdm strain in the Italian population [134]). The basic reproductive
number estimated in the phase of the epidemic characterized by the normal behavior,
namely Rn

0 , is in good agreement with the estimates previously obtained for the 2009
pandemic in Italy [4] and in several regions of the world [63, 118, 165, 74, 10].

The analysis of the sensibility of the model to changes in parameter values highlights
that the model complies with observed ILI incidence only if an initial (persistent) diffusion
of the altered behavior in the population is considered (see Supporting Text 8.2). Specifi-
cally, an initial perceived risk of infection above the risk threshold, a long-lasting memory
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mechanism (able to maintain the altered behavior as more convenient over a relevant pe-
riod of time) and a fast imitation process (enough to produce a sudden change in the
force of infection) are required. Moreover, model predictions are robust in terms of final
epidemic size (with absolute differences of the order of 3%), while they are more sensible
in terms of timing of the epidemic. Specifically, small variations in the reduction of the
risk of infection in individuals adopting the altered behavior result in changing Ra

0 and
thus the timing of the epidemic. The same holds if the initial perceived prevalence and the
risk threshold determining which behavior is more convenient to adopt are perturbed. On
the other hand, no relevant differences appear by increasing either the average duration of
the perceived risk of infection (i.e., the length of the long-lasting memory mechanism) or
the speed of the imitation process. A further analysis (shown in the Supporting Text 8.2)
has revealed that, if the risk of infection is overestimated during the early phases of the
epidemic, the diffusion of the virus would be slowed down (thus gaining time for vaccine
production). On the other hand, if such overestimation occurs during the outbreak, a
lower peak incidence (and thus a lower burden for health care centers) and a relevant
decline of the final epidemic size would be observed.

Results reported above support the hypothesis that the mass media campaign on the
risks of an emerging influenza pandemic performed in the early phases of the epidemic
might have induced a high perceived risk of infection at the beginning of the pandemic, as
it has been highlighted by specific survey studies [136, 90]. In order to investigate if such
phenomenon could have been a peculiarity of the 2009 pandemic, we also analyzed the
last three influenza seasons in Italy. Our analysis, reported in the Supporting Text 8.2,
reveals that during the 2006-2007, 2007-2008 and 2008-2009 influenza seasons behavioral
changes would not have played a relevant role in the early phases of the epidemics.

Beyond the previous analysis, the hypothesis of an overestimation of the risk is sup-
ported by the temporal pattern of drug purchases and by sporadic self-imposed school
closures. Specifically, during the 2008-2009 influenza season the maximum weekly number
of antiviral drugs sold was under 2 doses per 100, 000 individuals per week, while when
the 2009 pandemic arrived in Europe (end of April) antiviral drug purchases immediately
jumped to more than 12 doses per 100, 000 individuals per week [85]. Despite no substan-
tial ILI activity has been detected in Italy during the summer, the purchase of antiviral
drugs reached a peak of about 35 doses per 100,000 individuals per week at the end of
July. As shown in Fig. 2a and 2b, during fall the purchase of antiviral drugs complies with
the observed ILI temporal dynamics, while until mid-October an excess of antiviral drug
purchase can be observed, supporting the hypothesis of an initial overestimation of the
risk of infection. On the contrary, the sales of pain killers (which are commonly used to
relieve pain due to mild symptoms) have followed a completely different pattern: during
the summer the sales have been (nearly) constant, then they started to increase from the
middle of September [85]. The purchase of antiviral drugs might have been amplified by
the concern about the pandemic possibly thanks to the information campaign about the
use of antivirals for treating H1N1 infections. Moreover, from the end of September to the
beginning of October, a few examples of reactive school closure have been documented
[94, 97, 96, 95]. Such school closures were “self-imposed” by the scholastic board or sug-
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Figure 4.2: Risk perception, antivirals purchase and reporting factor. a Weekly
purchase of antiviral drugs (light blue, scale on the left axis) and weekly ILI incidence
as reported to the surveillance system (green, scale on the right axis) during the 2009-
2010 pandemic in Italy. b Light blue points (scale on the left axis) represent the weekly
excess of the purchase of antiviral drugs. The latter is defined as the difference between
the actual and the expected amount of antiviral drugs purchased (which is assumed to be
proportional to ILI incidence, and the proportionality constant is computed as the number
of antivirals purchased divided by the ILI incidence averaged over weeks 43-51, i.e. in
the period of sustained transmission). Light blue line represents the best linear model
fit to the excess of purchased antivirals. Horizontal black line represents the threshold
over which the number of antivirals purchased is larger than the expected one. Grey area
represents the maximum and the minimum excess of antiviral drugs purchased over the
weeks 43-51. Red points (scale on the right axis) represent the perceived prevalence of
infection simulated by the model parameterized as in Fig. 1a. c Weekly reporting factor
estimates that enable the simple SIR model (parameters as in Fig. 1b) to exactly fit the
reported ILI incidence. The horizontal grey line represents the average reporting factor
as computed over the weeks 42-50.

gested by local authorities (at municipality level). However, these sporadic closures can
hardly be thought as the only responsible for the low transmission observed during the
early phases of the epidemic. These two examples, however, provide empirical evidence
that a high risk for the ongoing pandemic influenza has been perceived by the Italian
population and that individuals have actively performed spontaneous defensive response
measures aimed to reduce the risk of infection.

Behavioral changes, though not directly affecting the transmission process, can also be
relevant from an epidemiological perspective. For example, as well known by epidemiolo-
gists, a high perceived risk during an epidemic can increase the notification rate, especially
if the surveillance system is based on consultations. However, such phenomenon does not
seem to be able to explain (alone) the observed pattern. In fact, a simple SIR model, with
a time dependent reporting factor, can capture ILI incidence during the initial phase of
H1N1 pandemic only by considering extremely large values of the reporting factor (even
above 100%, see Fig. 2c). Similar results have been obtained by investigating a dataset
combining results from the virological and epidemiological surveillance systems which al-
lowed the estimation of a theoretic lower bound of the number of H1N1pdm infections in
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Italy (see in Supporting Text 8.2).
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Figure 4.3: The impact of risk perception. Weekly ILI incidence as reported to the
surveillance system (green) and incidence simulated by the model (red; parameter values
as in Fig 1a). Weekly incidence simulated by the “classical” SIR model (blue; parameter
values as in Fig. 1b but for I(0) = 0.001243).

As a matter of fact, if changes in human behavioral patterns (such as self-protection)
are not taken into account, two opposite outcomes can be observed. Firstly, estimates of
the growth rate based on the observations during the early phases of the epidemic may lead
to an underestimation of the transmissibility potential of the disease and thus to underrate
the impact of the epidemic. Secondly, predictions based on robust available estimates of
the reproductive number (e.g., taken from the analysis in countries where the epidemic is
already well sustained) would lead to overestimate the growth rate of the epidemic during
its early phases, resulting in turn in predicting a faster spread than the actual one. For
instance, by using a SIR model, accounting for the best parameter estimates as obtained
by fitting the entire epidemic but initializing the system with the actual number of cases
at the beginning of autumn 2009 (namely on week 38), the simulations reach the epidemic
peak four weeks in advance with respect to the actual pandemic (see Fig. 3). A similar
result has been observed also in [4], where - using a model not accounting for behavioral
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changes in the population - the epidemic peak has been predicted two weeks in advance
with respect to the actual value.

4.4 Discussion

A high level of the perceived risk at the beginning of the 2009-10 pandemic is largely
suspected, as well as its effect in slowing the epidemic spread. Our aim here is to validate
this hypothesis by showing that spontaneous behavioral changes in the population might
have played a central role in the early phases of the pandemic in Italy. Specifically, ILI
incidence shows a low (though exponential) growth, followed by a sudden change in its
growth rate starting from week 42. Such pattern can hardly be captured by classical
models. On the contrary, the proposed approach is able to reproduce it by explicitly
modeling spontaneous behavioral changes in the population. Our analysis is supported
by some empirical evidence (e.g., the purchase of antiviral drugs) and reveals that a high
perceived initial risk of infection could be a plausible explanation for such phenomenon.

This study represents a first step for the estimation of the quantitative and qualitative
effects of spontaneous behavioral changes in the population on the spread of epidemics. We
believe it provides a promising approach, based on evolutionary game theory, for including
the behavior dynamics into epidemic transmission models. The proposed approach is
general enough to be used for describing any kind of disease where spontaneous behavioral
changes could play a relevant role. Similar approaches have been previously used to
investigate individual choices in non-compulsory vaccination programs [48, 15, 17, 69, 108].

As shown in this study, behavioral changes (e.g. induced by mass media informa-
tion campaigns) can significantly affect the epidemic spread both qualitatively (e.g., by
altering the epidemic dynamics) and quantitatively (e.g., by substantially slowing the
epidemic spread or by determining different final epidemic sizes). Therefore, considering
an approach accounting for spontaneous behavioral changes would be helpful for giving
insight to public health policy makers, for planning public health control strategies (e.g.,
vaccination) and better estimating the burden for health care centers over time. Moreover,
this study highlights that the estimation of fundamental epidemiological parameters (and
in particular the reproductive number) could be largely affected by human behaviors.

At the current stage, the proposed model could hardly be used for real time predictions
since our knowledge on plausible values of model parameters related to human behavior
is only preliminary. Further investigations on the 2009-2010 pandemic dynamics in other
countries or on other epidemics where behavioral changes have been suspected (e.g., the
2002-03 SARS outbreak) have to be performed in order to gain a major consciousness on
how such mechanisms work.
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Chapter 5

Optimal vaccination choice, (static)
vaccination games, and rational
exemption

5.1 Introduction

Despite the fundamental role played in history by vaccines, second only to potable water
in the reduction of mortality and morbidity, various forms of exemption to vaccination
(conscientious, religious, philosophical) have always been documented [139]. In more
recent times episodes of decline in vaccine uptake have been associated to vaccine scares,
e.g. the cases of the whole-cell pertussis vaccine [70], of thimerosal and HBV vaccine [107],
up to the MMR scare [64, 142, 163]. In such cases a significant role of anti-vaccinators
movements in raising and spreading concerns about vaccine safety was also documented
[70, 126].

Today, developed countries are increasingly facing the challenge of rational exemption
(RE). By RE we mean, in regimes of voluntary vaccination, the parents decision not to
immunize children after a seemingly rational comparison between the perceived utility of
vaccination, i.e. protection from the risk of infection perceived as very low as a conse-
quence of the high herd immunity due to decades of successful vaccination policies - with
its disutility, i.e. the risk of vaccine associated side effects. RE is often considered as a
form of free riding [145]. Such a behavior, resulting from the optimization performed by
rational agents, might well turn out to be myopically rational, since it considers only the
current perceived risk of disease, and not the risk of its future resurgence due to declining
coverage. Some evidence of rational exemption behavior is documented by surveys of
vaccination lifestyles [8, 107, 163, 64].

Theoretical papers based on traditional epidemiological models have investigated the
implications of RE for the dynamics and control of vaccine preventable diseases [72, 48, 49].
This literature, which has pointed out the critical interplay between information and
vaccinating as well as other disease-related behavior [45], has shown that RE might make
elimination a mission impossible unless the fraction of those who practice RE is small, i.e.
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below the susceptibility threshold ensuring endemic persistence. Moreover it has shown
that if the information set used by individuals includes past information then the disease
dynamics might yield epidemic waves with very long period. The negative implications
for rubella control of a free vaccines market have also been investigated by more realistic
epidemiological models [155].

These results call for explanations of vaccination choices by behavioral variables, e.g.
economic and psychological, typically neglected in epidemiological models [56]. Besides
some old pioneering work [23, 61], a series of recent intriguing works by Bauch and cowork-
ers have attempted to explain RE in its most appropriate framework, i.e. game theory
[16, 15, 36, 131]. These papers have provided the first game-theoretic proof of the elim-
ination impossible result, and various dynamic implications of RE. These implications
suggest potential difficulties, both at the national and international level, for global erad-
ication plans [13, 55]. In [124] it was suggested that elimination might become possible
when more realistic contact network structures including local information are considered.
Various applications to influenza control by vaccination, e.g. the role of adaptive behavior
[150], and the interplay between perceived and real costs in vaccination choices [69], have
also been considered. A two-population epidemic game related to that studied here was
analyzed in [129].

In this paper we discuss RE in developed countries by simple static models of voluntary
vaccination behavior. In this case the actual coverage p is the sum of the vaccination
choices of the individual families. Families make their choices rationally, by minimizing
a loss function taking into account both the perceived risk of infection and the perceived
risk of vaccine associated side effects (VSE).

We first consider the simple optimization problem where homogeneous representative
families make their choice without taking into account other families’ choices. We dis-
tinguish two cases, i.e. informed families who know the principle of herd immunity, and
not-fully informed ones, who believe that 100% coverage is necessary to avoid any risk
of infection. We prove that the elimination impossible result arises as soon as informed
families perceive any, however small, cost of VSE. From the case of not-fully informed
families we give a possible answer on how patterns of universal vaccination might emerge.
This seems to be more likely when lack of knowledge on herd immunity concur with low
perceived costs of VSE.

Next we model vaccination choices as a game where families interact strategically by
incorporating the other family choices in their loss function [110, 140]. We assume, as
in the theoretical paper [36], the coexistence of two groups of social actors (labeled as
pro- and anti-vaccinators) having widely different perceived costs of infection and of VSE.
This is broadly consistent with the current situation of developed countries.

Unlike [16] where only the Nash equilibrium in a simultaneous game was considered,
we discuss the implications of all the three classical types of agents’ interaction, i.e. also
the cases of non-simultaneous (Stackelberg) and social planner games [110]. In the Nash
case agents play simultaneously, and take each other’s action as given. In the Stackelberg
(or sequential) case, a few active agents lead the game. This seems to be the case of
anti-vaccination groups which appear to be very active in the acquisition of information,
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and optimize their action by taking into account pro-vaccinators actions [8]. In the social
planner case a Deus ex machina (social planner) seeks an agreed solution between the
two groups by minimizing a social loss function given by an average of the two groups’
loss functions. We prove that under informed families, the elimination impossible result
continues to hold in both Nash and Stackelberg cases. The only case where elimination
is feasible occurs when pro-vaccinators do not perceive any cost from vaccine side effects,
and moreover their group is large enough to allow elimination even if the other group does
not vaccinate at all. In particular the Stackelberg case with anti-vaccinators leadership
always leads to a lower coverage compared to Nash behavior. Finally, we show that even
in the social planner case elimination is possible only when, provided the pro-vaccination
group is large enough, the social planner assigns to anti-vaccinators preferences the 100%
of the weight in the social loss function. This allows a nice interpretation of the current
Italian situation.

The paper is organized as follows. Section 2 deals with the basic model of vaccination
choice. Section 3 discusses models of strategic interaction. Concluding remarks follow.

5.2 A simple model of optimal family behavior with-

out strategic interaction

We consider a common Susceptible-Infective-Removed (SIR) vaccine preventable infec-
tion, such as measles or mumps, in a stationary homogeneously mixing population [5].
Infection can give rise to serious but non-fatal sequelae. The vaccine is perfect, i.e. pro-
viding 100% effective lifelong immunity. Vaccination is voluntary, and it is administered
at birth. No recuperation strategy, such as vaccination at a later date during epochs of
higher perceived risk, is allowed [48]. The infection is characterized by a basic reproduc-
tion number R0 > 1 [5]. This ensures endemic circulation as far as the vaccine uptake is
below the critical threshold pc = 1− 1/R0 allowing disease elimination [5].

In this section we assume that families behave non-strategically (i.e. we rule out
any game-theoretic consideration). Families are fully homogeneous in their preferences
toward vaccination, i.e. we consider a single representative family [110]. This implies
identical individual decisions, which in turn straightforwardly imply the equality between
the individual propensity to vaccinate p and the collective coverage. Real world families
have only two options: to vaccinate or not their children at birth. In our formulation
each family determines its optimal propensity to vaccinate p, i.e. its vaccine demand, as
the quantity that minimizes its loss function L. The propensity to vaccinate represents
the agent’s probability (i.e. 0 ≤ p ≤ 1) to take the decision to vaccinate. The loss
function summarizes the cost families will suffer as a consequence of their decisions. As
loss function we take a quadratic additive function, which is the commonest type of loss
function in economics [110], increasing in the perceived risk of infection ρI(p), and in the
perceived risk of vaccine associated side effect ρV (p):

(5.1) L = ρ2I(p) + βρ2V (p)
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In (5.1) β > 0 is the relative cost of vaccine side effects, which is given by the ratio between
the cost of VSE and the cost of infection. These parameters summaries the whole set of
costs (economic, psychological etc) following from serious episodes of disease or of VSE.
The ideas underlying the simple quadratic additive loss (5.1) are that: (a) agents have
two objective variables, i.e. the two perceived risks (from infection and from VSE); (b)
there are target values (ρI = ρV = 0) such that any deviation from such targets results in
a loss for the agent. The case ρI = ρV = 0 corresponds to the situation where the disease
has been eliminated, so that the risk of infection has been forced to zero, but also the need
to vaccinate has been eventually removed, as it has been the case of smallpox, so that also
the risk of VSE is driven to zero; (c) deviations of the objective variable from the target
are penalized in a more than proportional way; (d) simple additivity straightforwardly
reflects the trade-off between the two objectives, e.g. the fact that if agent A increases
his/her propensity to vaccinate (for example as a consequence of an external rumor which
increases his perceived risk of infection), then A expects to observe a reduction in the risk
of disease, but at the cost of increasing the risk of VSE.

A major problem is to what extent families are informed about the disease and the
vaccine, and therefore how they evaluate risks. Families hardly know technical quantities
as R0 . Nonetheless it seems reasonable to assume that they are aware that (a) more
transmissible diseases need a stronger vaccination effort to be controlled; (b) a higher
collective coverage implies a lower individual risk of infection; (c) a coverage of 100%
by a perfect vaccine is certainly sufficient to eliminate the disease. What is unclear is
whether families know the existence of the critical coverage , i.e. the herd immunity
principle, based on the intuitive concept that if everyone vaccinates I do not need to [5],
ch.4). Though this does not seem to be true in general, it might be in some cases [8].
Knowledge of herd immunity was postulated in [16]. For generality we therefore consider
two cases: in the first case families are informed, i.e. they do know herd immunity; in
the second one they do not, and therefore believe universal vaccination to be the only
strategy to surely avoid infection.

5.2.1 The case of informed families

Informed families are assumed to exactly know the critical threshold pc, and to estimate
the risk of infection as a decreasing function of collective coverage p, for p below the
critical threshold pc, and zero above it, since in this case the disease is eliminated. The
simpler form is:

ρI(p) =


H(pc − p) if p < pc

0 if pc ≤ p ≤ 1
(5.2)

WhereH > 0 is a constant. In particular ρI(0) = Hpc represents the family’s perceived
risk of infection in absence of any immunization at the population level. In [16] perfectly
informed agents were postulated to know in detail the underlying epidemiological model,
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in particular the functional form π(p) = (pc−p)/(1−p) of the lifetime risk of infection at
equilibrium, and to estimate ρI(p) by π(p). This choice and ours are qualitatively equiv-
alent (both predict a vanishing risk of infection for p = pc), but ours has the advantage of
being simpler, and also less demanding in terms of abstraction. Though (5.2) is formally
equivalent to the equilibrium force of infection in the SIR model [5], we prefer to interpret
(5.2) as a coarse qualitative estimate of the lifetime risk of infection, consistently with the
above made assumption that agents do not know technical quantities,.

The perceived risk ρV of a VSE is modeled as the product αp of the family propensity
p to vaccinate children, times the conditional probability α > 0 (exogenously given)
of suffering a side effect given vaccination relative to the corresponding probability of
suffering serious disease following infection.

The informed representative family aims therefore at choosing the value of p which
minimizes the loss function 1:

L(p) =


H2(pc − p)2 + βα2p2 if p < pc

βα2p2 if p ≥ pc

(5.3)

Note that L(p) has a continuous first derivative. The idea underlying the quadratic
loss, as (5.3), is that families perceive two type of costs, one arising from the risk of
infection, the other one from the risk of VSE, and want make both them as low as
possible. In [16] the expected loss L(p) = ρI(p)(1− p) + βρV (p) was used

2.

Note first that if β = 0, i.e. if no cost is perceived from VSE, then (5.3) becomes:

L(p) =


H2(pc − p)2 if p < pc

0 if p ≥ pc

(5.4)

One immediately notes that for p < pc, the graph of L(p) is an arc of parabola
decreasing to zero as p tends to pc, implying that any choice p equal to, or above the
critical coverage pc is optimal for the individual. In other words if no costs arise from
VSE it is optimal for the individual to achieve the elimination threshold.

For β > 0 the loss function is decreasing for small p and increasing for p ≥ pc, implying
that the optimal solution can never exceed pc. This means that policies in excess of
the critical level are more costly also at the individual level, as they expose people to

1More general results can be obtained by more general formulations allowing interpolation between
the linear and quadratic loss formulations, as suggested by an anonymous referee for these suggestions.

2It is possible to see that eventually the two formulations yield the same conclusions. The only
difference is that the expected loss allows a dichotomy result, i.e. no one will vaccinate if the cost of VSE
is always higher than the cost of infection, while in the opposite case some will vaccinate. Though the
former case is of theoretical interest as it yields a no vaccination equilibrium, it does not seem to have
practical relevance.
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unnecessarily high risks of VSE. By focusing on the case p < pc, differentiating the loss
with respect to p, and equating to zero, we get a unique global solution of minimum loss

(5.5) popt =
H2

βα2 +H2
pc = εpc

where 0 < ε < 1. Expression (5.5) shows that the optimal propensity to vaccinate popt
is strictly lower than the critical coverage for any, however small, risk of VSE α. In
particular popt is decreasing in both the risk, and the cost of VSE. This is the simplest
proof that the family’s optimal solution always implies a collective coverage below the
elimination threshold, and therefore that elimination is not possible in a free vaccination
market. We illustrate this (Fig.5.1) for a measles-like disease with R0 = 10, implying a
critical coverage pc = 0.9. We consider distinct values (β = 0, β = 0.5, β = 2.5) of the
relative cost of VSE; β = 2.5 means that the cost attributed to a damage from VSE is 2.5
times higher than that attributed to disease. In correspondence of the low relative cost of
VSE (β = 0.5) the optimal propensity to vaccinate popt is about 88%, i.e. very close to pc,
whereas for the high value of β (β = 0.25) popt declines to about 80%, i.e. substantially
less than pc. In other words if the cost families attribute to VSE largely exceeds the cost
of infection, the vaccine demand might become quite low. In the real world families will
then have to implement these theoretical propensities into a binary decision (vaccinate or
not vaccinate). If families vaccinate independently then, unless in very small communities,
the actual realized coverage, i.e. the average of families’ realized decisions, will differ little
from popt. It is to be noted that popt could vary significantly among different diseases
because individuals naturally tend to rank both the costs of diseases and VSE [18].

5.2.2 Not fully-informed families

By analogy with the case of informed families we use the following simple form for the
perceived risk of infection:

(5.6) ρI = K(1− p)

where K > 0. This amounts to assuming that families do not know the critical thresh-
old and believe instead that universal vaccination is the only strategy surely avoiding
infection. In this case the representative family minimizes:

(5.7) L = (K(1− p))2 + βα2p2 0 ≤ p ≤ 1

yielding the optimal solution (the graph of the loss function is again an arc of parabola):

(5.8) popt =
K2

K2 + βα2

If, for comparison purposes, we keep K = H, as in the case of informed families, then
popt = ε, i.e. this case allows to achieve coverages that are systematically higher compared
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Figure 5.1: Shapes of the individual family loss as a function of the level p of vaccine
demanded by the family for different costs of vaccine side effects β (β = 0, β = 0.5, β =
2.5). The point where the graph achieves its minimum is the optimal individual solution
popt. For β = 0 the loss is minimal (i.e. zero) for any choice equal or in excess of the
critical coverage pc. Other parameters values are: H = 0.9, and α = 0.2.
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to the case of informed families, and in particular close to 100% if the cost of VSE is
negligible. Under the same parameters assignments of the example above we find that
for β = 0.5, the optimal coverage is near 98%, and even for β = 2.5 it is about 89%, i.e.
still quite close to pc. It follows that lack of information on the existence of the infection
threshold seems therefore to provide a simple explanation of how patterns of universal
vaccination might emerge in actual circumstances.

5.2.3 Only a fraction of the population is eligible

An interesting case is when only a fraction f1 of the population is eligible for vaccination,
for example because of the presence of a group practicing conscientious exemption. In
this case the overall vaccination coverage is defined as p1 = pf1, and the critical coverage
that needs to be achieved in the eligible population is p?c = pc/f1 > pc, which might be
greater than one if the eligible fraction is small. In the case of informed families we get

popt


H2f2

1

βα2 +H2f 2
1

pc
f1

= ε1p
?
c if ε1p

?
c < 1

1 elsewhere

(5.9)

This result will be useful in the next section.

5.3 Implications of strategic behavior: the game-

theoretic approach

5.3.1 A preliminary: the critical elimination line for multigroup
populations

Let us now consider a SIR-type disease in a population subdivided into two groups with
frequencies f1, f2, and heterogeneous coverages p1, p2. If the population is homogeneously
mixing the collective coverage is p = p1f1 + p2f2 and the elimination rule (p ≥ pc) for
vaccination at birth becomes:

(5.10) p1f1 + p2f2 ≥ pc

showing that the possibility of elimination depends not only on groups’ actual coverages
but also on their frequencies. Taking the frequencies as given, (5.10) states that elimina-
tion requires coverages p1, p2 in the two groups lying above a critical line (CL). The CL is
the portion lying in the unit vaccination square [0, 1]× [0, 1] (i.e. the space of admissible
vaccination policies), of the straight line p1f1 + p2f2 = pc, which can be written as:

(5.11) p1 = p?1,c −
f2
f1
p2
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where p?1,c = pc/f1. Any pair (p1, p2) lying above the CL would eliminate the infection.
The CL has negative slope (an increase in critical coverage in group 2 allows a reduction
in group 1 without compromising elimination) m = −f2/f1, reflecting the relative size of
the two groups. The intercept p?1,c and the foot p?2,c = pc/f2 represent the vaccination
effort that would be required to either group to eliminate infection when the other group
does not vaccinate. If either p?1,c, p

?
2,c exceeds 1 elimination is unfeasible without some

cooperation.

By means of the CL we may answer useful questions related to the containment of the
impact of anti-vaccinators on control programs, e.g. if group 2 vaccinates above threshold,
to what extent can group 1 vaccinate below threshold without compromising elimination?
Let us consider (Fig.5.2a) a disease with R0 = 5 (sometimes adequate for rubella) implying
pc = 0.8, in a community where group 2 represents 90% of the population (f2 = 0.9).
The foot p?2,c ' 0.89 indicates that group 2 can achieve elimination alone. However the
steepness of the CL (m = −9) indicates that small departures from this level make it
necessary to vaccinate also in group 1. If coverage in group 2 is 85%, then elimination
requires at least 35% coverage in group 1.

To sum up, the shape of the CL reflects both the difficulty to eliminate the disease,
summarized by pc (which in turns reflects transmissibility through the increasing relation
pc = 1 − 1/R0), shifting upward when, other things being equal, pc increases, and the
relative size of the two groups. Fig.5.2b illustrates the possible forms of the CL. These
forms correspond to distinct socio-epidemiological types: (a) the CL entirely lies within
the vaccination square: this is characterized by the condition pc < min{f1, f2} and implies
the case of a moderately transmissible infection, i.e. such that pc < 1/2 ⇔ R0 < 2, with
groups of not too dissimilar size (pc < f1 < 1 − pc); (b) both the intercept and the foot
of the CL lie outside the vaccination square: this corresponds to a highly transmissible
infection (pc > 1/2 ⇔ R0 > 2) and groups of not too dissimilar size; (c) the intercept lies
outside and the foot inside: this is expressed by the condition f1 < pc < f2. This case is
compatible with very large differences in size between the two groups when R0 approaches
1 or when it is very large (R0 >> 2); (d) the intercept lies inside the and the foot outside;
this is just the symmetric of (c) when the roles of the two groups are interchanged (not
reported in the figure).

Given our focus on the possibility to eliminate a highly transmissible disease in pres-
ence of a small group with low vaccine uptake, the type of major interest for our discussion
is (c). It is important to remind that in this case group 2 is large enough to eliminate
without cooperation from group 1, i.e. p?2,c < 1. This means that if for instance R0 = 15,
so that pc = 0.93, the maximal affordable size of the anti-vaccine group is less than 7%.

5.3.2 The vaccination game

In a game-theoretic framework, unlike the individual optimization of section 2, families
(players) make their choices by taking into considerations other families’ decisions. We
assume that families are subdivided into two groups of fixed (no migration between the
groups is allowed) sizes f1 and f2. Families are characterized by homogeneous preferences
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Figure 5.2: (a) Vaccination square, critical line, and elimination zone for a disease with
R0 = 5 (pc = 0.8) in a community where group 2 is majority (f2 = 0.9); (b) Different
shapes of the CL corresponding to the three different socio-epidemiological types: type a:
R0 = 1.4, f1 = 0.35; type b: R0 = 3, f1 = 0.4; type c: R0 = 3, f1 = 0.3

within the group they belong to, but heterogeneous preferences between groups. This
allows to refer to a representative agent for each group. Group 1 (anti-vaccinators)3

has a higher relative cost of VSE (β1 > β2 ≥ 0) as in [36], and it is smaller (f1 <
1/2). We focus on the case of informed families, but the extension to non fully informed
families is straightforward. The informed representative family of each group determines
its vaccination propensity pj (j = 1, 2) by solving the problem:

(5.12) MinpjLj = (ρI(p))
2 + βjα

2p2j j = 1, 2; 0 ≤ p1, p2 ≤ 1

where the perceived risk of infection is, as before, given by:

ρI(p) =


H(pc − p) if p < pc

0 elsewhere
(5.13)

In particular p = p1f1 + p2f2 (the constraint 0 ≤ p1f1 + p2f2 ≤ 1 is always fulfilled
as 0 ≤ p1, p2 ≤ 1, 0 ≤ f1, f2 ≤ 1) represents the overall coverage that would follow from

3We have made the distinction between pro and anti-vaccinators just for labeling the two groups. The
only difference between the two types of agents lies in the different perceived costs following from their
decisions (as a consequence perhaps of using distinct information sources), and neither imply distinct
apriori propensities to vaccinate nor a larger apriori cooperative attitude. However we will see that these
different costs imply that a posteriori one group will be more inclined to vaccinate than the other. This
results from the competition within groups as a Nash strategy within group.
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choices (p1, p2) of families of the two groups. In other words families know that the overall
coverage depends on their choices (i.e. from people of their group) but also on the other
group choices. Given that choices made by either group produces some effects also on
the other group, solving (5.12) and (5.13) requires to make assumptions as to the type
of strategic game families play. We will consider simultaneous games, non simultaneous
games (also termed Stackelberg games), and social planner games [110].

5.3.3 The basic strategic competition

In this case the two groups decide their action simultaneously by taking as given the
action of the other group. The Nash solution to (5.12) and (5.13) uses the concept of
vaccination reaction function. The reaction function M1(p2) (M2(p1)) of players of group
1 (2) defines the optimal vaccination choice of player 1 (2) corresponding to any feasible
vaccination choice 0 ≤ p2 ≤ 1 of players from group 2 (1). The points where the two
reaction functions intersect are Nash Equilibria [110]. The algebraic determination of the
reaction functions, though elementary, requires a tedious computation to consider all the
possible cases, depending on the type of the Critical Line, and on the values of the costs
βi. For sake of simplicity we just summarize the main graphic features of M1(p2) (which
hold mutatis mutandis for M2(p1)):

1 since the risk of infection is positive only in the region below the CL (see (5.13)), it
is intuitive that the reaction functions will be positive only in such a region;

2 if group 2 is able to eliminate without cooperation from group 1 (f2 large enough
that p?2,c), then every p2 choice in excess of p?2,c is a feasible elimination choice. In
this case M1(p2) is identically zero for p?2,c ≤ p2 ≤ 1;

3 if group 2 is not large enough to eliminate alone (p?2,c > 1), then M1(p2) is positive
for all 0 ≤ p2 ≤ 1;

4 if the value popt1 determined in section 2.3, which represents the intercept M1(0),
exceeds 1 (this can happen if p?1,c > 1), a portion of M1(p2) will lie flat on the upper
boundary of the vaccination square;

5 the positive portion of M1(p2), will be decreasing in p2 to mirror that as group 2
increases its demand for vaccines, group 1 will find it convenient to vaccinate less
(and symmetrically for M2(p1)). This is found by optimizing L1 in the region below
the CL, yielding:

(5.14) popt1 (p2) =
f 2
1H

2

β1α2 + f 2
1H

2
(p?1,c +

f2
f1
p2) = ε1(p

?
1,c +

f2
f1
p2)

with 0 < ε1 < 1. The line (5.14) is always flatter than the Critical Line, and it has
the same foot. By finally relating the possible shapes of M1(p2) to the underlying
types of the CL (Fig.5.2b) we obtain the forms represented in Fig.5.3.
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Figure 5.3: Possible shapes of the reaction function M1(p2) of group 1 in relation to the
underlying types of the Critical Line.
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A special but important case occurs when families of group 2 assign a zero cost to
vaccine side effects (β2 = 0). In this case the internal portion of the reaction function
M2(p1) will always coincide with the Critical Line.

Finally, as for the case of not-fully informed families, it seems natural to assume that
at least families of group 2 are not aware of herd immunity, and therefore obey (5.5)-(5.6).
This will imply, other things being equal, a reaction function M2 having a higher intercept
and the same slope.

We can now collect our results. They are summarized in Fig.5.4 for a variety of
different circumstances. For brevity we only discuss the case of type (c), that is the most
important for our purposes. For generality we consider two distinct possibilities as for the
relative cost of VSE in group 1: β1,low = 1, β1,high = 2.5 and take β2 < β1,low. The case
β1,high corresponds to a very low reaction function of group 1, which vaccinates little even
if group 2 does not vaccinate, whereas in the case β1,low group 1 vaccinates 100% at very
low vaccination choices of group 2. In particular Fig.5.4a, 5.4b, 5.4c deal with the case of
informed families, while Fig.5.4d with the case of non-fully informed agents. If the relative
cost of VSE in group 2 is positive, however small (Fig.5.4a), then the Nash equilibrium,
i.e. the intersection between the reaction functions, will lie strictly below the Critical Line,
indicating that the families’ behavior is not compatible with elimination. When group
2 does not suffer costs from VSE (β2 = 0) then (Fig.5.4b) the internal portion of the
reaction function of group 2 coincides with the CL, and the Nash equilibrium is located
at the foot p?2,c of the CL. In this case elimination is feasible because group 2 is large
enough to support the whole elimination effort without any cooperation from group 1.
Note however that if group 2 is not sufficiently large, then elimination becomes impossible
even in the favorable case β2 = 0 (Fig.5.4c). Indeed a larger anti-vaccine group make the
CL (and M2) flatter, so that the Nash equilibrium is pushed out of the vaccination square.
If families of group 2 do not know herd immunity then, other things being equal, M2

moves upward (Fig.5.4d) and can therefore always lie above the CL. In this case the Nash
equilibrium locates above the elimination threshold. Therefore lack of knowledge of the
elimination threshold make elimination possible even when this was not the case under
fully informed agents. The previous results therefore prove the following:

Result 1 (Elimination is impossible under informed families). As long as both groups
assign a positive value to the cost of VSE (β1, β2 > 0) elimination is never possible.
Elimination is possible if pro-vaccinators do not suffer costs from VSE (i.e. β2 = 0) and
their group size is large enough to sustain elimination without the cooperation of the
other group.

Summarizing, in presence of informed families, the forces operating in the Nash case
are never able to promote a coverage above the critical one. This provides the main
rationale for compulsory vaccination as the rule to avoid non-cooperative Nash behavior.

When families are not aware of herd immunity, then, as noted in section 2, circum-
stances are more favorable to elimination (as in Fig.5.4d). Nonetheless high costs of VSE
and increases in the size of the anti-vaccine group can obviously lead to a community
coverage below the critical threshold in this case as well.
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Figure 5.4: Critical Line, reaction functions, and Nash equilibrium points (represented by
bold points) under socio-epidemiological type c. Graphs (a), (b), (c) deal with informed
families, (d) with non-fully informed families. H,R0, pc, α are the same throughout the
graphs: H = 0.9, R0 = 3, pc = 0.66, α = 0.2. Moreover: (a) f2 = 0.7 implying p?2,c =
0.952, β2 = 0.75 (b) f2 = 0.7, β2 = 0 (c) f2 = 0.55, β2 = 0 (d) f2 = 0.7, β2 = 0.75 as in (a).
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We finally note that the coordinates of the Nash equilibrium can be computed explic-
itly:

pNash
1 =

H2f1β2

H2(f 2
1β2 + f2

2β1) + α2β1β2

pc

pNash
1 =

H2f2β1

H2(f 2
1β2 + f2

2β1) + α2β1β2

pc

(5.15)

so that the corresponding overall coverage is:

(5.16) pNash = pNash
1 f1 + pNash

2 f2 =
H2(f 2

1β2 + f 2
2β1)

H2(f 2
1β2 + f 2

2β1) + α2β1β2

pc

which immediately shows our main result: pNash ≤ pc.

5.3.4 The Stackelberg case with anti-vaccinators leadership

In Stackelberg games4 there is a leader who minimizes its loss function by taking into
account the reaction function of the follower, rather than by taking it as given, as in
the previous section. This implies therefore a behavioral asymmetry, that might be con-
sistent with the vaccination game in developed countries where anti-vaccinator groups
tend to be very active in the information acquisition and decision processes. To model
this anti-vaccinators leadership in our framework we assume that anti-vaccinators have
an information advantage, i.e. they know pro-vaccinators behavior (i.e. their reaction
function) and incorporate it into their loss function.

We therefore assume that families from group 2 play as before, thereby computing their
reaction function M2(p1), whereas families from group 1 know M2(p1), and incorporate it
into their own loss function. Thus group 1 determines its optimal vaccination choice pStack1 ,
and group 2 will as a consequence follow by just recomputing its choice as M2(p

Stack
1 ). In

the case of informed families it holds:

(5.17) pStack1 =
f 2
1H

2(1− ε2)
2

f2
1H

2(1− ε2)2 + α2β1

pc

where

ε2 =
f2
2H

2

α2β2 + f 2
2H

2

It is thus easy to see that when both groups have positive costs of VSE, the elim-
ination impossible result continues to hold. In addition it is possible to prove that in
the Stackelberg equilibrium (pStack1 ,M2(p

Stack
1 )) the demand for vaccines by group 1 will

4Stackelberg games are usually compared with Cournot games when distinguishing sequential and
simultaneous play. Both types of games can have strategies satisfying Nash’s criteria [140].
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be lower compared to the basic simultaneous game of section 3.2, while that of group 2
will be consequently higher. The intuition for such a result is that when group 1 acts as
Stackelberg leader it has the advantage to decide its optimal policy by considering the
entire reaction of group 2 to its own behavior. For instance group 1 knows that if it
decides not to vaccinate, group 2 will entirely bear the burden of the (whole) commu-
nity immunization (included the cost of VSE). No surprise, then, that in such a case the
vaccination effort of group 1 will be lower than in the case in which the two groups play
simultaneously.

5.3.5 The social planner case

The elimination impossible trap under Nash or Stackelberg rules suggests to look at the
possibility that a social planner may attempt to find an agreed solution. To this end,
we consider a social loss function L = L(p1, p2) of a utilitarian type [110], defined as a
weighted average of the loss functions of the two groups. The social planner will find
a socially optimal solution by minimizing the social loss function and then will seek
appropriate policy tools to actually implement the optimal solution among the two groups.
He will solve:

(5.18) Minp1,p2 xL1 + (1− x)L2 0 ≤ x ≤ 1

where x is the weight that he assigns to the loss of group 1. This case requires some
elaboration (see appendix in [109]), but its results are easy to understand. We only
consider the case of fully informed families. In this case no solution can lie above the CL
(p ≥ pc): in fact the partial derivatives of the social loss function L are always non negative
and do not vanish simultaneously. Looking for solutions lying below the CL, standard
computations yield the following optimum point, i.e. the so called Nash equilibrium in
the social planner case:

pSoc1 =

{
p̂2 if p̂1 < 1
1 elsewhere

(5.19)

pSoc2 =


p̂2 if p̂1 < 1

H2f2
2 (p

?
2,c − f1/f2)

H2f 2
2 + (1− x)β2α2

elsewhere

where

p̂1 =
(1− x)f1H

2β2

H2((1− x)f 2
1β2 + xβ1f 2

2 ) + x(1− x)α2β1β2

pc

p̂2 =
(1− x)f2H

2β1

H2((1− x)f 2
1β2 + xβ1f 2

2 ) + x(1− x)α2β1β2

pc

(5.20)
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One thus immediately notes that for values of the weight x belonging to (0, 1) it holds:
pSoc = pSoc1 f1 + pSoc2 f2 < pc. This means that when both groups concur to form the
social loss function, and in presence of informed families with positive costs from VSE,
elimination is impossible even under social planning.5 Nonetheless, the present case yields,
in most situations, a higher coverage compared to both Stackelberg and Nash cases. This
can be better understood from the limit cases where the social planner assigns a unit
weight to either groups. These cases are discussed easily. Note instead that if x = 1 then:

(5.21) pSoc1 = p̂1 = 0; pSoc2 = p̂2 = p?2,c

Therefore under type c, there exists an optimal social planning solution which allows
elimination. On the other hand, if x = 0 then: p̂1 = p?1,c > 1 and p̂2 = 0. Therefore

(5.22) pSoc1 = 1; pSoc2 =
f 2
2H

2

f 2
2H

2 + β2α2

(
p?2,c −

f1
f2

)
It is easy to see that this solution does not allow elimination since it yields an overall

coverage lower than pc:

pSoc = pSoc1 f1 + pSoc2 f2

= f1

(
1− f2H

2

f2H2 + β2α2

)
+ pc

f2H
2

f2H2 + β2α2
< pc

(5.23)

To sum up, for x = 1 social planning yields a feasible elimination policy if group 2 is large
enough to eliminate alone.

The overall implications of different weights given by the social planner to the two
groups in the social loss functions are illustrated (Fig.5.5) for a highly transmissible disease
with R0 = 10 (pc = 0.9) and f2 = 0.9. This means p?c2 = 1.0, i.e. that a vaccine demand
of 100% in group 2 would be required to achieve elimination when group 1 does not
vaccinate. In addition we assume that group 2 has a cost of VSE smaller than the cost
of infection (β2 = 0.75) whereas for group 1 this cost is much higher (β2 = 2.5). It
happens (Fig.5.5a) that the vaccine demand in group 1 is constant at 100% (pSoc1 = 1)
for very small x values, but as x exceeds a threshold value it starts to fast decline up to
zero. Similarly, the vaccine demand in group 2 is initially constant at a level around 76%,
but when the vaccine demand of group 1 starts declining it starts increasing and reaches
universal coverage for x = 1. As regards the overall coverage (Fig.5.5b) this is initially
constant around the level of 78%, but when coverage in group 2 starts increasing it starts
increasing as well, achieving the elimination threshold pc = 0.9 for x = 1. All this is
consistent with our theoretical findings. It is interesting to note that social planning does
not necessarily yields an improvement of the Nash solution (the flat line in Fig.5.5b): this
happens only when the vaccine demand in group 2 becomes sufficiently high, which does

5It is possible to envisage other social planner functions, based on very different perspectives, that
might lead to elimination.
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Figure 5.5: The social planner case. (a) the optimal vaccine demand in groups 1,2
(pSoc1 , pSoc2 ) as functions of the weight x attributed to group 1 in the social loss func-
tion; (b) Overall vaccine demand (pSoc) versus the corresponding quantity in the Nash
case. Parameter values: R0 = 10, β1 = 2.5, β2 = 0.5, α = 0.2, f1 = 0.1.

not occur if x is close to zero.6 Note also that if the social planner assigns to group 1 a
weight proportional to its demographic frequency (x = 0.1), which a priori could appear
a reasonable choice, an overall coverage of 87.7% follows, which is better than the Nash
coverage.

The results for x = 1 and x = 0 lead to interesting remarks. Note that for x = 1
elimination does not require that β2 = 0, as in the Nash and Stackelberg cases. The
explanation is that for x = 1 the preferences (i.e. the costs) of group 2 are not taken into
consideration by the social planner (whereas those of group 1 fully are), so that group 1
achieves its optimum (not vaccinating at all), and then group 2 needs to supply residually
the amount of vaccination needed to minimize the social loss function. It happens that
this amount is, consistently with the frequencies of the two groups, the one required
to eliminate the disease. In more concrete terms, for x = 1 the social planner gives
whole weight to the preferences of anti-vaccinators, and no weight to the preferences of
vaccinators, on the assumption that this is a good way to achieve the social optimum
i.e. disease elimination. This means that vaccinators contribute fully altruistically to the

6We note that the Nash solution results slightly better than the Stackelberg one (not reported in the
figure). Moreover under not-fully informed families an increase in the overall coverage will follow, in line
with our previous findings.
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social optimum, since they entirely supply the elimination effort. It is also interesting to
note that the opposite case (x = 0), i.e. full weight to the pro-vaccinators preferences, is
the one yielding the worse result in terms of coverage, even worse of the non-cooperative
Nash outcome.

5.4 Discussion: can we get off the no-elimination

trap?

A variety of models of vaccination choice, both without and with strategic behavior, have
been investigated, under both informed, and not-fully informed agents.

The analysis of the non-strategic choice indicates that informed families knowing the
herd immunity principle will always vaccinate below the critical threshold as soon as they
suffer any, however small, cost of VSE, while a high collective coverage is much more
likely to be achieved if families are not aware of herd immunity. The analysis of the
strategic case, carried out on the assumption of the existence of a vast (fixed) majority of
agents having a small perceived cost of VSE (labeled as pro-vaccinators) versus a minority
having a high perceived cost of VSE (anti-vaccinators), confirms that in presence of fully
informed families disease elimination continues to be impossible unless pro-vaccinators do
not associate any cost to vaccine side effects, and moreover their frequency is in excess of
the critical elimination coverage. If anti-vaccinators lead the game, i.e. in the Stackelberg
case, the outcome in terms of coverage will be worse compared to the Nash case. Even
if the State aims at favoring cooperative behavior through social planning, elimination is
possible only when the State takes into account in the social loss functions the prefer-
ences of anti-vaccinators only7. This scenario seems to be representative of the current
Italian situation, where the possibility to switch from a compulsory to a voluntary vac-
cination system is actively debated, and one region, Veneto, has recently made the step
[60]. In this context, under the pressure of anti-vaccinators, the Italian government has
gradually accepted an increasing number of right claims by anti-vaccinators, for example
it has removed the parents’ duty to vaccinate their children in order to enroll them to
compulsory school grades. This can be interpreted as a massive increase of the weight of
anti-vaccinators in the social loss function. Our results indicate that a social planning pol-
icy of this sort, i.e. paying more weight to anti-vaccinators, seems to be technically correct
(in fact in the opposite case, where the State takes into account the preferences of pro-
vaccinators only, dramatically low coverage would follow, even worse than the Stackelberg
outcome.). However such static results figure out the possible dynamic unsustainability
of such a policy. Indeed, how to prevent migrations towards the anti-vaccine choice, if
this starts to be more generally perceived as more protective of children’s health? Though
the consideration of migration between groups would require a dynamic model (as [15]),

7Clearly this result relies upon the adopted form of the social loss function. This does not exclude
that other social planner functions, based on different perspectives, for example including the Government
loss, could allow to achieve elimination under weaker conditions. We thank an anonymous referee for this
remark.
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we note that global socio-economic trends are not favorable in this sense: empirical stud-
ies indicate that often those vaccinating less are the more educated, or the richer, ones
[18, 142]. One can certainly invoke the economic argument that no free-rider groups can
expand above a certain threshold. In epidemiological terms this means that any further
expansion in the anti-vaccinator group will decrease the degree of herd immunity and
will therefore be stopped by the necessary re-emergence of the disease. The public health
dangerousness of such a situation, think for instance to slow declines in herd immunity
due to slow migrations toward the anti-vaccinator group, call for a careful monitoring of
such processes.

The case of not fully informed families produces, as a rule, better outcomes. However it
also raises substantive questions. Which information mechanisms cause real communities
to polarize into a majority who usually vaccinates universally, and a very active minority
who is strongly reluctant to vaccinate? Our model static is not capable of explaining
polarization (it just postulates it) it strongly suggests that universal vaccination in the
majority follows from: a) a very small cost associated to VSE, b) the lack of knowledge
of the critical threshold, i.e. parents believing that a propensity to vaccinate of 100% is
necessary to fully protect children against disease. This wrong perception (mathematics
tells indeed that the critical threshold for disease elimination is always less, sometimes
substantially less, than 100%) is the likely cause of the asymmetry of the real world
vaccination game. Asymmetry stems from the fact that certain group of agents might
instead have a correct knowledge of herd immunity. But this asymmetry is dangerous
for the public health system since it implies the uneven situation where someone takes
the risks of vaccine side effects to protect all, as a consequence of limited information.
This further enhances the danger that people improve their information set, and as a
consequence rationally migrate towards the anti-vaccinator group.

In conclusion, do we need to fear RE? Mathematics shows that RE can be devastat-
ing for immunization programs [16, 15, 36, 48, 49], [131]. This is especially true when
rumors, e.g. the MMR scare [135], contribute to disproportionately increase perceived
risks of vaccine associated side effects compared to the perceived risk of infection [142].
As regards remedies against RE, first economic papers on the subject [23, 72] suggested
that the free-rider problem might partly be overcome through e.g. taxes and subsidies. A
recent modeling effort [124] has shown that the free-rider effect may be amplified by the
assumption of homogeneous mixing, and that the problem can be largely reduced when
more realistic contact networks are considered. Be things as they may, the actual impact
of vaccination free-riding is hard to predict: RE is human behavior, which, as recently
pointed out, is a missing factor of our epidemiological explanation [56].

However, better mathematical models could help to improve our understanding of
such phenomena, and to design more informative studies of vaccination behavior, possi-
bly aimed to also capture strategic parameters. On the other hand we believe that for
those public health systems that have already initiated a roadmap towards voluntary vac-
cination, as in Italy is the case of Veneto region [60], investment in education to the social
role of vaccination will be an unavoidable task in the future.
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Chapter 6

The impact of vaccine side effects on
the natural history of immunization
programs: an imitation-game
approach

6.1 Introduction

Although forms of exemption to vaccination have always existed [139], the ”natural his-
tory” of vaccination programmes, as part of the historical pathway through which hu-
mankind progressive rids itself of infectious diseases, has always been pervaded by a high
degree of optimism [30]. However, recently this optimistic view has increasingly been chal-
lenged: for example, opposition to the whole-cell pertussis vaccine [70], the thimerosal
case [106], and the MMR scare [135] can be considered evidence that in industrialized
countries, the success story of vaccination is feeding back on itself. This is the conse-
quence of two different processes. On the one hand, the high degree of herd immunity
achieved by decades of successful immunization programmes has reduced the incidence of
many infections to negligible levels. On the other hand the large, and increasing, number
of vaccines routinely administered every year yields steady flows of vaccine-associated side
effects [160], [159]. In the US approximately 30,000 reports of Vaccine Adverse Events
are notified annually, with 10–15% classified as serious [62]. In such circumstances the
perception of the public will likely rank the perceived risk of suffering a vaccine side effect
(VSE) as much higher than the corresponding risk of infection [16, 15, 48, 49]. A common
example is poliomyelitis in industrialized countries. For example in Italy during 1980-
2000 the number of vaccine-induced polio cases was three times higher than wild polio
cases [43]. Under voluntary vaccination high degrees of herd immunity might therefore
incentivise vaccination free riding [23],[131], i.e. the parents’ decision not to vaccinate
children after comparing the perceived risk of disease and the perceived risk of vaccine
side effects [16, 15, 48]. Vaccination free riding [23, 61, 72, 16, 15, 48, 49, 46, 131, 129, 69]
makes eradication impossible (unless special contact structures are considered [124]) and
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triggers stable oscillations in the infection prevalence.
Previous studies on the impact of vaccination free riding on endemic infections have
focused on scenarios where the vaccine demand is driven by the time changes in the per-
ceived risk of disease, measured through the current (or past) infection prevalence. Based
on the above-cited literature on VSEs we instead suggest that in industrialized countries,
where the incidence of common vaccine preventable infections is very low, the available
information on vaccine side effects might become the main driving force of vaccine de-
mand. The only paper devoted to this issue is [46], where, however, vaccine demand was
phenomenologically modelled as a decreasing function of the perceived risk of suffering a
vaccine-associated side effect. The perceived risk of VSEs was in its turn evaluated by the
public from available information on current and past trends of side effects attributed to
the vaccine. In this paper we shift the focus onto the impact of VSEs on the dynamics of
immunization programmes for endemic infections, using an SIR transmission model with
voluntary vaccination choice. Vaccination choices are described by an evolutionary game
as in [15], where the vaccine uptake p(t) is determined by an imitation process between
agents (the parents of the children to be vaccinated) who are divided into ”vaccinators”
and ”non-vaccinators”. However, in [15] the perceived payoff of the ”non-vaccinators”
is proportional to the prevalence of the disease, whereas the payoff of ”vaccinators” is
constant, i.e. independent of VSEs).
The novelty of the present work is that the payoff of ”vaccinators” is proportional to
the incidence of vaccine-associated side effects. In turn, this incidence is proportional
to the actual vaccine uptake. We believe that this model represents a more appropriate
description of the future evolution of immunization programmes in voluntary vaccination
regimes. Indeed, the fact that available information on vaccine side effects might become
the main driving force of vaccine demand is strongly supported by the empirical evidence,
e.g. the case of England and Wales, where due to the MMR scare[135], first dose measles
uptake fell for several years from 94% to about 75%. Compared to [15] we also expand our
basic model to include (a) nonlinear perceived costs of infection; (b) the possibility that
the perceived costs of infection and vaccination are evaluated by the public using past
values of state variables, for example due to information delay [49] or of the perception
of long-term vaccine side effects [46].

6.2 Materials and Methods

6.2.1 Dynamic vaccine demand and vaccine side effects

We consider a family of models of the spread of a non-fatal SIR infection controlled by
voluntary vaccination with a ”perfect” vaccine administered in a single dose at birth and
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giving life-long immunity:

S ′ = µ(1− p)− µS − βSI(6.1)

I ′ = βSI − (µ+ ν)I(6.2)

p′ = k1∆Ep(1− p)(6.3)

where: S, I are the susceptible and infective fractions, and p the vaccinated proportion
among newborn children; β > 0, µ > 0, ν > 0 denote the transmission, the mortality and
the recovery rates. We assume that, in absence of vaccination, the disease is endemic, i.e.
R0 = β/(µ+ ν) > 1.
The dynamics of p obeys a learning by imitation [81] process where k1 is the ”imitation”
coefficient and switching between the decisions to vaccinate or not to vaccinate, is de-
termined by the payoff gain ∆E(t). The latter is given by the difference between the
perceived payoff of vaccinators −ρV (t), where ρV (t) is the perceived risk of suffering a
VSE, and the perceived payoff of non-vaccinators: −ρI(t), where ρI(t) is the perceived
risk of suffering serious illness due to infection.
We note that, irrespective of the specific forms of ∆E(t), the family of models (6.1-6.2-
6.3) has the following three equilibria: (i) an unstable disease-free equilibrium with no
vaccinators A = (1, 0, 0); (ii) a pure-vaccinator disease-free equilibrium B = (0, 0, 1); (iii)
the pre-vaccination equilibrium C =

(
SSIR = R−1

0 , ISIR = µ(1−R−1
0 )/(µ+ ν), 0

)
.

The stability of B and C and the existence of further equilibria depend on the specific
types of the payoff gain.
Modelling of the dynamics of p by an imitation game was introduced in the seminal
paper [15], where a specific model of the family (6.1-6.2-6.3) was proposed, where: i)
the perceived payoff of vaccinators is constant:−ρV = −rV ; and ii) the perceived payoff
of non-vaccinators is proportional to the infective prevalence I(t): −ρI(t) = −rImI(t),
where mI(t) is an estimate of the current risk of infection, and rI is the risk of serious
disease as a consequence of infection. Hence:

∆E(t) = rImI(t)− rV = rV (ϑI(t)− 1) ,

where ϑ = mrI/rV is proportional to the relative cost of the non-vaccinator strategy.
In Bauch’s model the B equilibrium is unstable and there is a fourth equilibrium: the
post-vaccination equilibrium D =

(
R−1

0 , ϑ−1, p̂
)
where: p̂ = (1 + ν/µ) (ISIR − ϑ−1) . At

ϑ = ϑ0 = I−1
SIR there is a transcritical bifurcation between C and D. In turn, the stabil-

ity/instability of D depends on the product k1(ϑ− ϑ0).
The assumption in [15] that the perceived risk of vaccination ρV (t) is constant can be
justified if the public correctly evaluates this risk as the ratio between total VSEs per
unit time, given by α (µN) p(t) (α ∈ (0, 1)) where N is the total population size (so that
µN is the yearly number of births), and α the per-capita probability of incurring a VSE
during a single vaccine administration, and the total number of vaccinations administered
for that specific disease µNp(t). We instead suppose that the public evaluates the risk of
VSEs by using the available information on the total number of vaccine-associated side
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effects, or, which is equivalent, on the ratio between the total number of vaccine associated
side effects and the total number of newborn children per unit of time. We therefore set:

(6.4) ρV (t) = αp(t)

The implication of (6.4) is that periods of large vaccine uptake negatively feed back,
through an increase in the incidence of VSEs, into the proportion of parents favourable
to vaccination.
We model the perceived risk of infection as an increasing function h1(·) ≥ 0 of the informa-
tion index M , introduced in [48, 49], that summarizes the publicly available information
on the infection:

(6.5) ρI(t) = h1(M(t)).

The indexM , used by agents to evaluate the risk of infection, may model not only current,
but also past information. The case h1(0) > 0 accounts for the scenario where the disease
is locally eliminated but disease re-emergence by external reintroduction is feared. In the
simplest case, the information index M(t) is related to the current I(t) as follows:

(6.6) M(t) = h2 (I(t)) ,

where h2(·) > 0 and h′
2 (·) > 0. Using (6.4)-(6.5)-(6.6) the dynamics of p can be written

as follows:

(6.7) p′ = k (h(I)− p) p (1− p)

where h(I) = α−1h1(h2(I)), k = αk1.
First, note that from: p′ ≥ k (h(0)− p) p (1− p) it follows that h(0) ≥ 1 ⇒ p(t) → 1, so
that we shall not consider this trivial case. On the contrary, if h(0) < 1 then p(t) ≥ h(0)
holds asymptotically, i.e. the collective coverage will at least reach the minimal level h(0).
Symmetrically, inequality p′ ≤ khMaxp (1− p) means that p(t) is bounded by a logistic
dynamics with kinetics constant khMax. Finally, if imitation dynamics is faster than the
infection time scale: k >> (µ+ ν)−1, then p(t) is at quasi-equilibrium:

(6.8) p(t) ≈ min (h (M(t)) , 1) ,

which is the phenomenological relationship first proposed in [48].

6.2.2 The importance of time delays

The assumption that ∆E depends only on current values of I and p is an approximation.
For example agents might perceive that vaccines are responsible for VSEs arising with long
time delays [46], as might be the case with auto-immune diseases [116]. Moreover, delays
of different nature, concerning the information on the spread of the disease, may involve
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both p(t) and M(t) [48]. Thus in the case in which the perceived risk of vaccination is
evaluated on past VSEs:

(6.9) ρV (t) =

∫ t

−∞
QH(Tv)αp(t− Tv)dTv

where QH is a delay kernel. An important kernel is the exponentially fading memory :
QH(x) = bExp (−bx) , b > 0, which allows reduction to ODE since it holds that:

(6.10) ρ′V = b (αp(t)− ρV ) .

Scenarios such as long-term VSEs may require different kernels, more concentrated on
past periods, such as the Erlang functions: Anx

n−1Exp(−bx), also allowing reduction to
ODEs.

6.3 Results

6.3.1 Endemic equilibria and their stability

In this section we shall investigate the model (6.1)-(6.2)-(6.7) where no delays are present.
Considering a generic h(I), the system (6.1)-(6.2)-(6.7) has three equilibrium points A
(unstable), B (unstable) and C, which, unlike [15], is always unstable since the linearized
equation for p reads η′ = kh (ISIR) η. Moreover, two further equilibria are induced by the
specific ∆E we introduced:

• A disease-free equilibrium with positive vaccine uptake Edfe = (1− h(0), 0, h(0)).

• A new behaviour-related endemic equilibrium:

Ebeh =
(
R−1

0 , Ie, h (Ie)
)
,

where Ie is the unique solution of the equation:

(6.11) h(I) = 1−R−1
0 − µ+ ν

µ
I.

Remark 6.3.1. The equilibrium Ebeh is equal to the endemic equilibrium of the model
studied in [46], where, however, p is not a state variable.

Since all equilibria are independent of k, this makes it natural to choose k as a bifurcation
parameter. Our main results (demonstrated in the Appendix 8.3) are as follows:

A) If

(6.12) βIeµh
′ (Ie) < (µ+ βIe)

(
(µ+ βIe) + 2

√
βIe(µ+ ν)

)
then Ebeh is locally asymptotically stable (LAS) irrespective of the imitation speed
k;
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B) On the contrary, if

(6.13) βIeµh
′ (Ie) > (µ+ βIe)

(
(µ+ βIe) + 2

√
βIe(µ+ ν)

)
holds then there are two positive values k1 and k2 > k1 such that:

1. If 0 < k < k1 or k > k2 then Ebeh is LAS;

2. At k = k1 and at k = k2 there are Hopf bifurcations;

3. If k ∈ (k1, k2) then Ebeh is unstable.

C) In the case k ∈ (k1, k2) the orbits x(t) = (S(t), I(t), p(t)) are oscillatory in the sense
of Yabucovich. This intuitively means that for sufficiently large t all state variables
are permanently oscillating, with regular or irregular oscillations. Formally, for
j = 1, 2, 3 it holds that:

minlimt→+∞xj(t) < maxlimt→+∞xj(t).

D) If h0 > pc then Edfe is globally asymptotically stable (GAS); if h0 < pc then Edfe is
unstable.

Remark 6.3.2. Note that the r.h.s. of (6.13) is O(µ3/2), whereas µβIe is O(µ2), implying
that to have Hopf bifurcation at Ebeh the derivative of h there has to be at least of order
O(µ−1/2)

Remark 6.3.3. Property D shows that, unlike [15], elimination is possible in our model,
although only if in absence of the disease the vaccinator payoff is so large as to yield a
vaccine uptake greater than the elimination threshold.

To better understand the phenomenon of epidemic oscillations driven by vaccination
choice we compare the above results with the recent literature on this subject. Unlike [15]
where large values of k (ϑ− ϑ0) induce sustained oscillations around the endemic state, in
our model oscillations are possible in an intermediate window of values of the imitation
coefficient k. This means that both slow and fast imitation are stabilizing forces. More-
over, we note that the stability condition (6.12) has the same formal structure as that of
the delayed model in [48], where dependence of the current vaccine uptake on past inci-
dence was required to obtain oscillations. Indeed, imitation is a (nonlinear) adjustment
process introducing a delay, whose characteristic time scales are determined by the speed
with which the vaccine uptake reacts to changes in the payoff gain. Heuristically, close to
the equilibrium eq. (6.7) becomes:

(6.14) p′ ≈ kh (Ie) (1− h (Ie)) (h (I)− p) = Ψ (h (I)− p)

which may be read as an exponentially fading memory mechanism with average delay
1/Ψ. This suggests a route to estimate the elusive imitation coefficient k, by preliminar-
ily estimating the average delay 1/Ψ.
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Finally, we note that the Yabucovitch oscillatority is a global result, unlike the Hopf bifur-
cation theorem, which is local. Although the nature (periodic, quasi-periodic or chaotic)
of Yabucovitch oscillations cannot be determined a priori, this makes the predictions of
our model very general.
Finally, it is easy to show that the inclusion of time delays does not affect the location
and stability of equilibria A, B, C and Ee, whereas the stability of Ebeh may be affected,
as seen in the numerical simulations below (see also the Appendix 8.3).

6.3.2 Analysis of selected subcases

We report numerical illustrations of noteworthy sub-cases of epidemiological interest. The
basic reproduction number R0 is set to 10; the recovery rate is set to either ν = 0.1day−1

(pertussis) or ν = (1/7)day−1 (measles), which correspond to an average duration of
respectively 10 days (pertussis) and one week (measles). Finally the life expectancy
L = 1/µ is fixed either at L = 50 years (used in [15] to more closely reproduce UK
pertussis data) or at L = 75 years, which is more representative of mortality in modern
industrialized countries.

The basic unlagged model: the case of linear h(I)

Letting h(I) = ϑI, the infection prevalence at Ebeh is:

Ie = Ie(ϑ) =
1− 1

R0

1 + ν
µ
+ ϑ

= ISIR
1 + ν

µ

1 + ν
µ
+ ϑ

and the vaccine uptake is:

(6.15) pe(ϑ) = ϑIe(ϑ) = pc
θ

1 + ν
µ
+ ϑ

As regards the stability of Ebeh, it is of interest to assess the relative role of the two main
behavioral parameters introduced by our model: ϑ and k. By applying (6.13) it is easy
to show that a ϑ∗ exists such that for ϑ > ϑ∗ then (6.13) is fulfilled and the two branches
k1(ϑ) and k2(ϑ) of the bifurcation curve in the space (k, ϑ) exist and are analytically
computable. Below ϑ∗ the equilibrium Ebeh is (at least) locally stable.
For example in the case ν = 0.1 day−1, µ = 1/50yearday−1 it is (ϑ∗, k∗) ≈ (280, 0.042),
from which the two branches k1(ϑ) and k2(ϑ) of the Hopf curve depart. For ϑ = 1000
(implying Ie = 3. 18 × 10−4 and pe = 0.32) we obtain k−1

2 = 4.75 days and k−1
1 = 312

days a range difficult to interpret. However, the heuristic average imitation delay 1/Ψ
correspondingly ranges between three weeks and about four years, close to the values
found in [48]. The bifurcation curve in the (k, ϑ) and (k−1, ϑ) parametric spaces are
shown in Fig. 6.1.
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Figure 6.1: Bifurcation curve for linear and linear affine h(I), in the case R0 = 10, ν =
1/10 day−1, , µ = 1/50 year−1. (left-hand panel) Bifurcation curve for linear h(I) = ϑI
in the parameter space (k, ϑ). (Central panel) Bifurcation curve for linear h(I) = ϑI
in the parameter space (k−1, ϑ) emphasizing patterns for small imitation-related delays.
(Right-hand panel) Bifurcation curve for linear affine h(I) = p0 + ϑI plotted for three
values of p0. As p0 increases the minimal threshold of ϑ is non-monotone.

The basic unlagged model: the case of linear-affine h (I)

The case h(I) = ϑ0 + ϑI is of interest since it assumes that even in scenarios of zero
prevalence agents perceive a positive risk ϑ0 of infection re-emergence. We get:

Ie(ϑ) =
1−R−1

0 − ϑ0

1 + ν
µ
+ ϑ

, pe(ϑ) = ϑ0 + ϑ
1−R−1

0 − ϑ0

1 + ν
µ
+ ϑ

Thus the perception of such a risk has a positive effect on equilibrium uptake. The
dependence of the bifurcation curve on ϑ0 may be non-monotone, as in the right-hand
panel of Fig. 6.1.

6.4 Substantive implications of vaccine side effects

for vaccination programmes

6.4.1 The epidemiological transition and vaccination payoff

We use equilibrium results from the simple case of linear h(I) to explore the impact
of human progress on the natural history of vaccination programmes. Note that in the
parametric set we are considering the quantity ν/µ ranges from about 1826 (pertussis in a
population with low life-expectancy) up to about 3913 (measles in a population with high
life-expectancy). Thus, achieving a large equilibrium uptake requires very large ϑ, i.e. of
the order of ν/µ. Since ϑ = rIm/α, it follows that to achieve large equilibrium uptakes
for measles or pertussis, the perceived cost of serious disease has to be at least three order
of magnitude higher than the perceived cost of VSE. Though this seems surprising, we
feel it is consistent with what was still observed at the beginning of the 20th century,
when the risk of serious sequelae following measles or scarlet fever was extremely large
(100-250 deaths per 100000 cases of disease), and the absence of vaccines was keeping the
risk of infection very high. In such circumstances even a large probability of suffering a
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VSE from a vaccine could have been tolerated by the community. This also suggests that
in industrialized countries the recent (say after 1970-1980) ’big vaccination age’ is coming
to an end due to the completion of the epidemiological transition [143], i.e. the historical
change in the cause composition of mortality from infectious and nutritional diseases to
chronic degenerative ones. Indeed, an outcome of the transition has been the dramatic
fall in the levels of serious morbidity and mortality from all infectious diseases. Finally,
as regards the role played by life expectancy on the steady state Ebeh, our results suggest
that the achievement of a given equilibrium uptake in industrialized countries (i.e. with
a very high life expectancy) requires a much larger value of ϑ compared to developing
countries. This is consistent with the fact that in regimes with low mortality (also as a
consequence of vaccinations), agents demand a vaccine only if the relative risks of suffering
a VSE are very low. We stress that our predictions are equilibrium ones based on a simple
deterministic model with homogeneous mixing. Nonetheless more realistic models would
not substantially affect them.

6.4.2 Simulations

In our simulations we set h(I) = ϑI and, to better emphasize our main messages, we allow
immigration of infectives, according to two different hypotheses: a) a small constant
transfer Imm from the susceptible to the infective state, representing a steady flow of
infections as a consequence of international travelling; b) a few new infections appear
at some stage once and for all, in order to mimic the possibility of infection resurgence.
Indeed, in the oscillatory regime the infection prevalence I(t) may reach extremely low
values, which calls into question the appropriateness of a deterministic model. This
drawback is avoided by assumption a, also used in [15]. Imm is set to one infective
individual per week in a population of 5× 106 individuals.

The basic unlagged model

We first assess the impact of VSEs on the transient infection dynamics triggered by a
new vaccination introduced at the pre-vaccination endemic state, and under assumption
a. The vaccine is introduced at time t = 0, with initial vaccine uptake set to 0.95 > pc.
Vaccine side effects occur from the beginning of the programme. We set ϑ = 15000
(implying pe ≈ 0.71, k = 0.002 day−1 and 1/Ψ ≈ 7 years). Note that k is small since it is
the product between the natural imitation rate and the low probability α of suffering a
VSE. As predicted by (6.13), the system converges, in epidemiologically reasonable time
scales, to a stable limit cycle. With reference to Fig. 6.2, the vaccine uptake (right-hand
panel) starts declining soon after the programme starts, due to the onset of VSEs, and falls
below the critical threshold pc in less than four years. Thus the effective reproduction
number RE(t) = R0 ∗ S(t) (left-hand panel) initially declines but then increases and
exceed the unit threshold at t ≈ 8 years, yielding a new epidemic outbreak at t ≈ 10
years. During this rather long ’honey-moon’ period the circulation of the infection is
essentially sustained by immigration. Note that p(t) > pc for a rather long period of
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Figure 6.2: The unlagged model with linear h(I): dynamics of RE(t) (left-hand panel),
I(t) (centre), p(t) (right-hand panel), following the initiation of an immunization pro-
gramme with p(0) = 0.95; S0, I0 fixed at their pre-vaccination endemic state. Parameters:
R0 = 10, ν = 1/7 day−1, , µ = 1/75 year−1, θ = 15000,k = 0.002 day−1.

time (about 36 per cent of total time). During such periods routine vaccination surveys
would reveal a satisfactorily high coverage. Therefore they could not explain the endemic
persistence of infection.
The role played by k is illustrated in Fig. 6.3, which considers the values: k = 0.0005,
k = 0.002 (as before), k = 0.0035, and which shows that: i) the average uptake is not
significantly affected by k and remains close to pe; ii) both the amplitude of oscillations
of p(t) and the fraction of total time where p(t) > pc increase in k; iii) the duration of the
period between the start of the programme and a new epidemic outbreak is decreasing
in k. For example, the ’low’ k value (k = 0.0005) yields oscillations that are of small
amplitude and that for a small portion of their period are such that p(t) > pc. Moreover,
there is an interval of about 17 years about before a new epidemics, which is only a few
years long for k = 0.0035. This is the consequence of the slow spread of information
occurring for low k, which slows down the reactivity of the vaccine uptake to changes
in the payoff gain. Note that if no external infections are introduced, then for small k
the infection prevalence is close to zero. This suggests that oscillations might produce
stochastic elimination of infection.
We now study the introduction of a new vaccine for which no vaccine side effects are
initially known. In this case it seems reasonable to assume that an intermediate period
might exist during which no perception of VSEs arises. We consider α = 0 for t < t1
where t1 = 10 years, and that the starting point is the pre-vaccination steady state. Of
course, the vaccine uptake start increasing since the payoff vaccination is initially positive
(α = 0). If VSEs raise after a very long time, or no VSEs are reported, then stochastic
elimination is possible. By contrast, if evidence of VSEs emerges, the scenario reduces
straightaway to the cases treated above. If the imitation process is very slow, VSEs appear
before reaching a sufficient coverage and a sub-optimal vaccination coverage is achieved
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Figure 6.3: The unlagged model with linear h(I): dynamics of p(t) (top) and I(t) (bot-
tom), for k = 0.0005 (left), k = 0.002 (centre), k = 0.0035 (right) following the initiation
of an immunization programme with p(0) = 0.95; S0, I0 fixed at their pre-vaccination
endemic state. Other parameters: R0 = 10, ν = 1/7 day−1, , µ = 1/75 year−1, θ = 15000.

(left-hand panel of Fig. 6.4). Instead for a larger value of k, the infective fraction is
very close to 0 such that stochastic elimination may occur (central panel of Fig. 6.4).
Finally, for an intermediate range of k there is onset of oscillations, but at the end of their
transitory the minimum I(t) is very close to 0 and elimination can again occur (right-hand
panel of Fig. 6.4).
Finally, we simulated the case where eradication was achieved thanks to a period of
compulsory vaccination, after which vaccination becomes voluntary. In this case VSEs
induce individuals to switch to the ’non-vaccinator’ strategy, thereby producing a decrease
in vaccination coverage. This in turn increases the probability of infection re-emergence
from imported cases. If a few new external infections are introduced (assumption b) before
RE(t) = 1, then the occurrence or not of stochastic transient elimination depends again
on k, with patterns similar to the previous case (see Fig. 6.5.a,6.5.b,6.5.c). Moreover, if
individuals take into account a non zero risk of infection re-emergence from importation
(the linear affine case h(I) = ϑ0 +ϑI), the population is more ’protected’ and the impact
of the external infections can be reduced also for large values of k (see Fig. 6.5.d).
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Figure 6.4: Dynamics of I(t) (black line), R0S(t) (dotted black line), p(t) (dashed black
line) with (a), k = 0.0001 (b) and k = 0.001 (c). The vertical grey dashed line describe
the time in which elimination occur. The vertical grey line describe the time in which VSE
appears. Initial conditions: S(0), I(0) fixed at pre-vaccination endemic state, p(0) ' 0.
Other parameters: R0 = 10, ν = 1/10 day−1, , µ = 1/50 year−1, θ = 5000.
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Figure 6.5: Left and central panels: dynamics of I(t) (black line), R0S(t) (dotted black
line), p(t) (dashed black line) for θ = 5000,h0 = 0. and p(0) = 0.95, S(0) = 1 − p(0),
I(0) = 10−5. Left-hand panel k = 0.001. Central panel: k = 0.01. The black line is the
threshold pc. Right-hand panel: as the central panel but for h0 = 0.7,p(0) = 0.80 and
S(0) = 0.07. Other parameters: R0 = 10, ν = 1/10 day−1, , µ = 1/50 year−1, θ = 5000.

Impact of information-related delays

An exponentially distributed lag in the p term yields a model given by (6.1)-(6.2) com-
plemented by:

(6.16) p′ = k (h(I)−H)) p (1− p)

and by (6.10). Fig. 6.6 reports the stability regions in the (k, b) plane for ϑ = 260,
ϑ ≈ 279.5 (which is close to the critical value ϑ∗ in absence of delays) and ϑ = 500. Note
that for ϑ = 500 > ϑ∗ for all b there are two values kl(b;ϑ) and kr(b;ϑ) such that for
kl(b;ϑ) < k < kr(b;ϑ) the endemic state Ee is unstable and it is also an easy matter to
show that Yabucovitch oscillations can arise. Similar plots are obtained in all cases where
ϑ > ϑ∗. This can be easily explained since for very large b the lagged model reduces to
the unlagged one that, for ϑ > ϑ∗, has an instability interval.
Interestingly, the right panel of 6.6 for ϑ = 260 < ϑ∗ shows instability regions that are
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uniquely due to the information delay, because in absence of the delay (i.e. for large
b) there is no instability, as shown in the previous sub-sections. This confirms that
the addition of time delays in the p term (mimicking delayed onset of VSEs or delayed
information acquisition) cumulates with the imitation delay in triggering instabilities.
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Figure 6.6: Effects of an exponentially fading memory in the perceived risk of infection:
stability regions in the (k, b) plane for ϑ = 260 (left), ϑ = 500 (right) and ϑ = 279.5
(centre), a value slightly higher than the bifurcation value. Other parameters: R0 = 10,
ν = 1/10 day−1, , µ = 1/50 year−1.
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Figure 6.7: Effects of an exponential fading memory in the perceived risk of vaccination
with ϑ = 260. Left-hand panel: the case of no delay. Right-hand panel: the delayed case
with b = 0.004 days−1, corresponding to an average delay of 250 days. Other parameters:
R0 = 10, ν = 1/10 day−1, , µ = 1/50 year−1.

Fig. 6.7 reports the time course of vaccine uptake p(t) for θ = 260 for two distinct cases.
In the left-hand panel the behaviour in absence of delay is reported, showing convergence
to the endemic state. The right-hand panel reports the behaviour for a delay of 250 days
(b = 0.004) in the occurrence of side effects, showing instead convergence to a limit cycle.
Let us now consider an exponentially fading memory in the perceived risk of infection: let
M stand for past prevalence, and a the corresponding delaying rate. We set h1(M) = ϑM ,
and h2(I) = I. In Fig. 6.8 we plotted the stability regions in the (k, a) plane for ϑ = 260,
ϑ ≈ 279.5 (which is close to the critical value ϑ∗) and ϑ = 500.
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Figure 6.9: Effects on I(t) of exponential fading memories in both information and side
effects. In both panels a = 20b, R0 = 10, ν = 1/10 day−1, µ = 1/50 year−1. (Left-
hand panel) Periodic solution with alternating low and high peaks arising for ϑ = 260,
b = 1/365.25; (Right-hand panel) Aperiodic solutions arising for ϑ = 500, b = 0.04.

Finally, in the case where exponentially fading memories appear both in the perceived
risk of vaccination (with rate b) and the perceived risk of infection (with rate a), numerical
simulations showed a wide pattern of periodic behaviour, including very long periods (an
example with alternating low and high peaks is reported in the left-hand panel of Fig.
6.9), and also aperiodicity (as in the right-hand panel of Fig. 6.9)

6.5 Concluding remarks

We investigated an SIR transmission model with voluntary vaccination. Unlike [15] we
consider a dynamic perceived risk of vaccination proportional to the trends of VSEs.
Mathematical analysis of the model confirms already known results, such as the onset of
behaviour-triggered steady oscillations about the post-vaccination endemic state. In ad-
dition it shows some noteworthy differences compared to findings elsewhere. For example
global elimination may. or may not, be possible depending on the actual magnitude of
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the baseline perceived risk of disease relative to the risk of vaccine side effects. As regards
the pre-vaccination equilibrium, differently from [15], it is always unstable, so that any
vaccination programme will initially be successful, at least partially. Moreover oscillations
occur, provided the relative risk of disease is large enough, in a bounded window of the
imitation parameter. In addition, we also considered the impact of time delays on the
vaccination payoff gain, which is a realistic feature. Finally, the model allows notewor-
thy inferences on the future lifetime of vaccination voluntary programmes. It suggests
that in order to achieve high equilibrium uptakes for e.g. measles, the perceived cost of
the disease must be at least three orders of magnitude higher than the perceived cost of
vaccine-associated side effects, and moreover that this requirement is further increased
under situations with large life expectancies. Both these facts seem to be consistent with
real world observations, and suggest that maximal vaccination effort by international in-
stitutions should target increasing vaccine uptake in less developed countries where the
risk of serious sequelae is still high, and life expectancy is still low. Simulations finally
provide further interesting insights on the effect of behavioural parameters on vaccine
uptake.
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Chapter 7

Conclusion

As recently pointed out, human behavior is a relevant missing factor of epidemiological
modeling [56, 52].

In fact, organized measures such as quarantine or closure of public places are one way
that behavior can change, but people may also spontaneously modify their behavior to
reduce perceived risk.

Results presented in my thesis show that spontaneous behavioral response to epi-
demics, coming either from the concern about the infection or from possible vaccine side
effects, can remarkably affect the epidemic spread both qualitatively and quantitatively
and may also compromise the expected outcome of voluntary vaccination programs and
other control measures. Indeed, human behavioral changes may alter timing, dynamics
and overall number of cases during a (severe) epidemic outbreak while the problem of
rational exception may be responsible of drops in vaccine uptake and suboptimal vaccine
coverage and may trigger the resurgence of diseases for which the current prevalence is
very low.

Evidences about spontaneous social distancing and other self-imposed prophylactic
measures in response to emerging outbreaks, have been reported for past epidemics [98,
59, 90, 136, 144]. On the other hand, a large number of countries, whose vaccination
policies are based on voluntary compliance, are increasingly facing the challenge of refusal
of vaccines caused by high concerns about proclaimed risks from vaccine side effects
[70, 106, 89, 135, 64, 142, 163]. Thus, spontaneous behavioral responses, not accounted
by large majority of transmission models, can not be neglected to correctly inform public
health decision makers.

The class of models developed in this thesis project provides a promising approach,
based on evolutionary game theory, to investigate the complex interaction between human
behavior and diseases transmission process, contributing to assess possible effects deriving
by risk perception and individual choices.

When studying the spread of epidemics, behavior and contact patterns are typically
considered as a “background” for the infection process– i.e., they are not variables of the
dynamics. For mild infections such approximation is justified, as individuals rarely funda-
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mentally change their behavior because of symptoms associated to diseases auch as cold.
On the other hand, the evidence shows that faced with lethal or novel pathogens, people
will change their behavior to try to reduce their risk [56]. In these cases, population be-
havior cannot be merely considered as an independent (though time-varying) parameter,
but it is better modeled as a variable whose evolution influences, and is influenced by, the
dynamics of the infection.

Actually, the diffusion of human beliefs can be driven by mechanism similar to those
driving an epidemic; different source of information can be considered for the spread
of information in a population (e.g., rumors, media, ... ). Recently, models have been
proposed for investigating spontaneous social distancing describing human behavioral
responses as driven by the diffusion of fear, which is modeled as a parallel infection
[147, 42, 53, 93, 67, 66]. However, evolutionary game theory – that is a natural framework
for studying human behavior – provides an alternative way for modeling the diffusion of
responsiveness in the population.

Models introduced in chapters 2, 3, 4, 6 couple the transmission dynamics with an
imitation process, i.e. a learning process, in which the convenience of self-protection (e.g.,
the reduction of the number of potentially infectious contacts or the choice to vaccinate)
is assessed trough personal encounters. Human behavior is assumed to be driven by the
evaluation of prospective outcomes deriving from alternative decisions and cost-benefit
considerations that depend on the perceived prevalence of infection and, in the case of
voluntary vaccination choices, the incidence of vaccine side effects (possibly considering
time delays and memory mechanisms).

With the introduction of explicit models for behavioral changes based on evolutionary
game theory, infection and behavior both contribute to define the context for the other.
Symmetry between these two key-factors is therefore restored, and no by-principle preva-
lence is given (even formally) to one over the other. Not only the infection dynamics
depends on both the transmission and behavior, but also the behavior dynamics depends
on behavior (and infection as well). This is what makes evolutionary game theory espe-
cially suited to this situation as compared to classical game theory. In fact, application
of the latter would result in (rational) instantaneous best responses to the infection dy-
namics, regardless of the current distribution of behavioral strategies. On the other hand,
at first sight, introduction of irrational behavior may appear unnecessary, and contrast-
ing with models simplicity. Yet, by avoiding extinction of allowed behaviors, irrational
behavior overtakes an unrealistic (and undesirable) effect of strict imitation: the pool of
strategies from which an individual can choose is limited to those effectively represented
in the population. On the other hand, by allowing exploration of all possible behaviors,
irrational behaviors may account for erroneous decisions or idiosyncratic attitudes always
present in human societies.

Independently of how the risk is specifically reckoned, the access to information per-
taining the relative efficacy of behaviors may also be collected across more structured
networks (e.g., the media). In this respect, considering different time units adds some
flexibility to models developed, in that it allows for different speeds in the diffusion of
infection and behavior. For example, tuning of key parameter driving the speed of behav-

92



ioral changes (e.g., ε in chapter 2, ρ in chapters 3,4 and k in chapter 6) may be obtained
on the basis of empirical evidence.

More structured models, as for instance individual based models and network models,
may be more appropriate for investigating actual situations and empirical data. How-
ever, it is worth of noticing that the approach proposed is fairy general to be applied
for describing any kind of disease (e.g. influenza, smallpox, SARS, measles, varicella,
pertussis) and, it can be easily included into more structured models in order to account
for spontaneous human behavior.

The simple model introduced in chapter 2 allows the investigation of the dynamics of
spontaneous reduction in the number of contacts, performed as a protective response to
the state of the epidemic and the spread of a (severe) disease. That is why the behav-
ioral change modeled here affects only susceptible individuals (infected individuals may
of course change behavior as an effect of their status, regardless of the state of epidemic).
The proposed model couples an SIR model with selection of behaviors driven by imitation
dynamics. Therefore, infection transmission and population behavior become dynamical
variables that influence each other. In particular, time scales of behavioral changes and
of epidemic transmission can be different. The performed analysis provide a full qualita-
tive characterization of the solutions when the dynamics of behavioral changes is either
much faster or much slower than that of epidemic transmission. For suitable parameter
configurations, the model accounts for multiple outbreaks occurring within the same epi-
demic episode. Moreover, the model can explain “asymmetric waves”, i.e. infection waves
whose rising and decaying phases differ in slope. Finally, it is proved that introduction of
behavioral dynamics can lead to a reduction of the final attack rate.

In chapter 3, an extension of the model introduced in chapter 2, including a wider
class of scenarios, is presented. The model of behavioral changes is extended to infected
individuals subgrouped in symptomatic and asymptomatic, treating the infected asymp-
tomatic as susceptibles for anything concerning the behavioral dynamics. The impact of
key features of a human self-protection on the effectiveness of behavioral responses are
discussed. The analysis of the proposed model highlights that, if the perceived risk asso-
ciated to an epidemic is sufficiently large, even small behavioral changes can remarkably
reduce the final epidemic size and the daily peak prevalence. Moreover, if the delay in
the behavior diffusion – embedded in the imitation process – is not too large, the re-
sponse of the population is always effective. The population responsiveness increases as
the symptomaticity increases, while memory of past cases and initial overestimation of
the risk of infection essentially delay the epidemic spread. Results of this study are con-
sistent to those obtained by previous works through different assumptions. Specifically,
as shown in [42], the disease spread results highly sensitive to how rapidly people adopt
a self-reduction in their contact activity rates. Moreover, if behavioral changes are fast
enough, they can have a remarkable effect in reducing the daily infection prevalence [93]
and the final epidemic size [67]. Finally, as in [53], for suitable parameter configurations,
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the epidemic dynamics can account for multiple epidemic waves.

In chapter 4 the approach introduced in chapter 3 is used for investigating the 2009
H1N1 pandemic influenza dynamics in Italy. As it emerges from the analysis of influenza-
like illness incidence data, after an initial period characterized by a slow exponential
increase in the weekly incidence, a sudden and sharp increase of the growth rate is ob-
served. The performed investigation, based on model fit to epidemiological data and on
the analysis of antiviral drugs purchase, reveals that an initial overestimation of the risk
in the general population, possibly induced by the high concern for the emergence of a
new influenza pandemic, can result in a pattern of spread compliant with the observed
incidence. Moreover, the analysis of influenza-like illness incidence data highlights that
the estimation of fundamental epidemiological parameters (and in particular of the repro-
ductive number) may be reconsidered as well, as it could be largely affected by human
behaviors.

Static models for vaccination choice introduced in chapter 5 allow getting some mean-
ingful insights on disease elimination feasibility under voluntary vaccination policy. First,
the elimination impossible result is proved by a simple model of individual choice in pres-
ence of informed families, i.e. families aware of herd immunity, and it is suggested that
limited information might explain patterns of universal vaccination. Next, vaccination
choices are investigated in a game-theoretic framework for communities stratified into
two groups, pro and anti vaccinators, having widely different perceived costs of infection
and of vaccine side effects. Under the assumption of informed families neither a Nash
nor a Stackelberg behavior (characterized respectively by players acting simultaneously
and by an asymmetric situation with a leader and a follower) allow disease elimination,
unless pro-vaccinators assign no costs to vaccine side effects. Elimination turns out to
be possible when “cooperation” is encouraged by a social planner, provided however he
incorporates in the social loss function the preferences of anti-vaccinators only.

Finally, the model with dynamic vaccine demand, based on imitation and described
in chapter 6, may represent a significant contribution for the investigation of the problem
of rational exception. Here the perceived risk of vaccination is modeled as a function of
the incidence of vaccine side effects, instead of using a constant. This represents the main
innovative aspect of the model. The impact of time delays on the vaccination payoffs is
considered as well. Mathematical analysis of the model confirms already known results,
such as the onset of behavior-triggered steady oscillations about the post-vaccination en-
demic state. The model shows important differences compared to previous game dynamic
models of vaccination. For example, global elimination may, or may not, be possible de-
pending on the actual magnitude of the baseline perceived risk of disease relative to the
risk of vaccine side effects. Differently from [15], the pre-vaccination equilibrium is always
unstable, so that any vaccination program will initially be successful, at least partially.
Moreover, provided the relative risk of disease is large enough, oscillations occur in a
bounded window of the imitation parameter. The performed analysis suggests that, in
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order to achieve high coverages, a huge disproportion between the perceived risk of disease
and vaccination is necessary. This disproportion is further increased in highly industri-
alized countries. Both these facts seem to be consistent with “real world” observations,
and suggest that maximal vaccination effort by international institutions should target
increasing vaccine uptake in less developed countries where the risk of serious sequelae is
still high, and life expectancy is still low.

As regards the problem of rational exception in vaccination choices, noteworthy in-
ferences emerged in the analysis of proposed models need to be properly discussed. The
possibility to switch from a compulsory to a voluntary vaccination system is actively de-
bated, and one Italian region, Veneto, has recently made the step [60]. In epidemiological
terms, any further expansion in the anti-vaccinator group will decrease the degree of herd
immunity and will therefore be stopped by the necessary re-emergence of the disease.
Though the consideration of migration between groups would require a specific dynamic
model, global socio-economic trends are not favorable in this sense: empirical studies in-
dicate that often those individuals vaccinating less are the more educated, or the richer,
ones [18, 142]. The public health dangerousness of such a situation, think for instance to
slow declines in herd immunity due to slow migrations toward the anti-vaccinator group,
call for a careful monitoring of such processes.

Moreover, the investigation performed in chapters 5 and 6 strongly suggest that uni-
versal vaccination in the majority of the population follows from: a) a very small cost
associated to vaccine side effects, b) the lack of knowledge of the critical threshold, i.e.
parents believing that a propensity to vaccinate of 100% is necessary to fully protect chil-
dren against disease. This wrong perception (mathematical models show that the critical
threshold for disease elimination is always less, sometimes substantially less, than 100%)
is dangerous for the public health system since it implies the uneven situation where
someone takes the risks of vaccine side effects to protect all, as a consequence of limited
information. This further enhances the danger that people improve their information set,
and as a consequence, rationally migrate towards the anti-vaccinator group. Thus, for
those public health systems that have already initiated a road map towards voluntary
vaccination, as in Italy is the case of Veneto region [60], investment in education to the
social role of vaccination will be an unavoidable task in the future.

After all, considering models accounting for spontaneous behavioral changes would be
helpful for giving insight to public health policy makers for planning public health control
strategies during an emerging epidemic (also providing better estimates about the burden
for health care centers over time) and for evaluating the effectiveness of control measures
based on voluntary compliance.

However, as regards spontaneous behavioral changes occurring during an epidemic
outbreak, “the challenge for mathematical modelers is that data are scarce, and often
qualitative when they do emerge”, as pointed out in [56]. Actually, few efforts have been
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made to validate models dealing with spontaneous behavioral changes from empirical
observations.

The study performed in chapter 4 may represent a further step in this direction, as the
quantitative and qualitative effects of spontaneous behavioral changes in the population
on the spread of an epidemic have been validated against empirical data. However, at
the current stage, the proposed models could hardly be used for real time predictions
since our knowledge on plausible values of model parameters related to human behavior
is only preliminary. Further investigations have to be performed in order to gain a major
consciousness on how such mechanisms work.

Undeniably, a lot of empirical data would be needed for models validation and parametriza-
tion. However, recent surveys on human behavioral response have started to answer ques-
tions as: where people obtain their information from, which of information available to
them they trust, if and how they act upon the information [90, 82, 39, 98, 144].

On the other hand, the chance of considering reliable data on human behavior increases
in the context of vaccination. Indeed, data on vaccine uptake may represent also human
behavior and would allow quantitative estimation, model validation and, in turn, a better
understanding of mechanisms that drive information and beliefs diffusion and the interplay
between risk perception and the spreading responsiveness during epidemics.
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Chapter 8

Appendix

8.1 Appendix A

8.1.1 Proofs

Proof of Proposition 2.3.2

S1 Let us consider the set T1 = {0}∪{t̄ > 0 | I(t) < 1/m ∀ t ∈ (0, t̄)}. T1 6= ∅ and let us
define t1 = supT1. I(0) := I0 < 1/m implies that t1 > 0. Let us consider any finite
time t̃ < t1. For any t ∈ [0, t̃], the boundary–layer system (2.9) with I = I(t) admits
the asymptotically stable equilibrium x?(I), as defined in Eq. (2.10) and x?(I) → 1
when µ → 0 (see Prop. 2.3.1). In fact, I(t) < 1/m for each t ∈ [0, t̃]. Therefore, the
solution of the degenerate system (2.8) is equivalent to that of a classical SIR model
with R0 = Rn

0 on the whole interval [0, t̃]. By Tikhonov theorem [148], this is also
the approximation of the solution of system (2.5). Condition 1/m < Ip guarantees
that t1 < +∞. In fact, if t1 = +∞, system (2.5) is equivalent to an SIR model
with R0 = Rn

0 and thus I(t) = Ip > 1/m for some finite time t > 0, which implies
t1 6= supT1. Moreover, I(t1) = 1/m.

S2.1 Let us now assume that Ra
0S(t1) ≤ 1. As observed in the main text, the only

admissible value for the fraction of infected individuals is I(t) = 1/m+O(ε) as long
as Rn

0S(t) > 1. Formally, if I(t) > 1/m in some interval then x(t) would be very
close to 0 in almost the whole interval. Thus, İ(t) would be negative and I(t) would
decrease below 1/m. On the other hand, if I(t) < 1/m in some interval then x(t)
would be very close to 1. Thus, İ(t) would be positive and I(t) would increase over
1/m.

This has two relevant consequences, namely

• in the slower time scale system we have
dI

dt
(t) = 0;

• in the faster time scale system we have
dx

ds
(s) = 0 since µ = o(εk) with k ≥ 1

(see Eq. 2.9). In particular, this implies that the under the hypotheses of
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the Proposition, the dynamics of x is not faster than that of the epidemic
transmission when I(t) ≈ 1/m.

By setting İ(t) = 0 in the degenerate system (2.8) we obtain

(8.1) x =
γ − βaS

βnS − βaS
.

By substituting this value in the equation for S(t) and by setting I(t) = 1/m we
obtain

Ṡ(t) = −γ/m ,

whose explicit solution is S(t) = S(t1)− γ
m
(t− t1) as long as Rn

0S(t) > 1, that is for
all t ∈ (t1, t

′
2) where t′2 = t1 +

m
γ
(S(t1) − 1

Rn
0
). Afterwards, the fraction of infected

I(t) decreases below 1/m and we can apply the line of reasoning applied in S1 to
show that the solution of system (2.5) approximates that of an SIR model in its
decaying phase with R0 = Rn

0 .

One can iterate the procedure to compute the O(ε) terms. In fact, let us assume
that 1 − mI = εv. The equation for x(t) allows us to estimate v. Indeed, we can
rewrite the equation for x(t) as:

(8.2) ẋ = x(1− x)v + εk−1(1− 2x) ,

where, if k > 1, the second righthand term can be ignored. Both ẋ and x(1−x) can
be explicitly computed from Eq. (8.1). By substituting the resulting expressions in
Eq. (8.2) and considering that 1−mI = εv we have:

1−mI =
εγ(Rn

0 −Ra
0)

m(SRn
0 − 1)(1−Ra

0S)
.

If k = 1 we can apply the same line of reasoning, though we do not obtain such a
simple expression for 1−mI.

Going on, one can obtain O(ε) corrections for x(t) and S(t) in (t1, t2), but these are
not really needed.

S2.2 If Ra
0S(t1) > 1 we are guaranteed that the epidemic is still in its growing phase. Let

us consider the set T2 = {t2}∪{t̄ > t2 | I(t) > 1/m∀ t ∈ (t2, t̄)}. We can now apply
the same line of reasoning applied in S1. The only difference is that x?(I) → 0.
Note that t2 < +∞ since I(t) → 0 when t → +∞ and I(t2) = 1/m.

S2.2.1 Similar to S2.1, after having observed that Ra
0S(t2) < 1.
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S2.2.2 Trivial. �

Lemma 8.1.1. If Rn
0 > 1, the set of the solutions of the inequalities 1 < Ra

0 < Rn
0 exp{−Ra

0(1−
1/Rn

0 )} is non empty.

For fixed values of Rn
0 > 1, let us consider the function

hRn
0
(x) = x−Rn

0 exp{−x(1− 1/Rn
0 )} .

We have that hRn
0
(Rn

0 ) > 0. We are interested to study the sign of the function k(Rn
0 ) :=

hRn
0
(1) = 1 − Rn

0 exp{1/Rn
0 − 1}. We have that k(1) = 0, limRn

0→∞ k(Rn
0 ) = −∞ and

k̇(Rn
0 ) < 0. It follows that hRn

0
(1) < 0 for each Rn

0 > 1. Therefore, it does exist R̄(Rn
0 ) ∈

(1, Rn
0 ) such that hRn

0
(R̄) = 0. It follows that choosing Ra

0 with 1 < Ra
0 < R̄(Rn

0 ), we
satisfy the inequality in the thesis. �

Proof of Proposition 2.3.3
Let us consider the time interval [0, t1] where t1 is defined in the proof of Prop. 2.3.2.

Since the system is equivalent to a SIR model with R0 = Rn
0 , we can employ the SIR

invariant S(t) + I(t) − 1
Rn

0
logS(t) = const in [0, t1] to compute S1 := S(t1). Since

S(0) = 1 − I0, I(0) = I0 and I(t1) = 1/m it follows that S1 is a zero of the function
f(x) = x+ 1

m
− 1

Rn
0
log x− 1 +O(I0), where O(I0) =

1
Rn

0
log(1− I0) can be ignored. Since

f(1) = 1/m > 0 and f(1/Rn
0 ) = 1/m− Ip < 0 (by hypothesis) it follows that it does exist

S1 such that f(S1) = 0 and

(8.3) S1 ∈ (1/Rn
0 , 1)

with lim1/m→0 S1 = 1 and lim1/m→Ip S1 = 1/Rn
0 . Since f(x) is increasing for x > 1/Rn

0

the solution is unique.
Let us now assume that Ra

0 satisfies the inequalities 1 < Ra
0 < Rn

0 exp{−Ra
0(1−1/Rn

0 )}
(it is possible thanks to lemma 8.1.1), which in particular implies Ra

0 < Rn
0 . Since Rn

0 >
1/S1 (see Eq. (8.3)), we can distinguish two cases:

• Case 1: Ra
0 > 1/S1 ,

• Case 2: Ra
0 ≤ 1/S1 .

In Case 2, we have a solution of type C1, satisfying the thesis.
Hence, we look only at Case 1. We are guaranteed that the epidemic is still in its

growing phase. Let us consider the time interval [t1, t2] where t2 is defined in the proof of
Prop. 2.3.2. Again, we can employ the SIR invariant in [t1, t2] to compute S2 := S(t2).
Since S(t1) and I(t1) are known and I(t2) = 1/m it follows that S2 is a non trivial solution
of the equation g(x) = g(S1) where g(x) = x + 1

m
− 1

Ra
0
log x. Function g is convex, has

a absolute minimum for x = 1/Ra
0, is strictly decreasing for x < 1/Ra

0 and it is strictly
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increasing for x > 1/Ra
0, limx→0 = +∞ and limx→+∞ = +∞. Since S1 > 1/Ra

0, a unique
S2 ∈ (0, 1/Ra

0) exists such that g(S2) = g(S1).
We now show that S2 > 1/Rn

0 . Since Ra
0 < Rn

0 exp{−Ra
0(1− 1/Rn

0 )} it follows that:

1− 1

Ra
0

log
1

Ra
0

<
1

Rn
0

− 1

Ra
0

log
1

Rn
0

.

Since

1− 1

Ra
0

log
1

Ra
0

> S1 −
1

Ra
0

logS1

we have that g(S2) = g(S1) < g(1/Rn
0 ) and thus S2 > 1/Rn

0 since g is decreasing in
(0, 1/Ra

0).
We have thus demonstrated that Rn

0S2 > 1 which implies that we have a solution of
type C2.

Case 2. Trivially, we have a solution of type C1. �

Lemma 8.1.2. When S(t) = 1/Rn
0 , the solution of system (2.5) satisfies I(t) < 1− 1

Rn
0
+

1
Rn

0
log 1

Rn
0
.

Equations of system (2.5) for I and S can be written in the general form{
Ṡ = −β(t)SI

İ = −β(t)SI − γI
(8.4)

with β(t) ∈ [βa, βn]. It is easy to show that for system (8.4) the function

S(t) + I(t)− 1

Rn
0

logS(t)

is decreasing in t. It follows that

1 = S(0) + I(0)− 1

Rn
0

logS(0) > S(t) + I(t)− 1

Rn
0

logS(t) .

The thesis follows by substituting S(t) = 1/Rn
0 . �

Proof of Proposition 2.3.4
Let us define (SSIR(t), ISIR(t)) and (S(t), I(t)) as the fractions of susceptible and

infected individuals for a classical SIR model and for system (2.5), respectively. In
the phase plane (S, I) the solution of a classical SIR model goes through the point
( 1
Rn

0
, 1 − 1

Rn
0
+ 1

Rn
0
log 1

Rn
0
), corresponding to the epidemic peak. The solutions of system

(2.5) pass through the point (1/Rn
0 , Ĩ) where Ĩ < 1 − 1

Rn
0
+ 1

Rn
0
log 1

Rn
0
thanks to lemma

8.1.2.
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Let us assume that S∞ < SSIR
∞ . It follows that in the phase plane the trajectories

of the two models must intersect at a certain point (S?, I?) with S? < 1/Rn
0 . Moreover,

at this point both S and I are decreasing and thus we can assume that the functions
ISIR(SSIR) and I(S) are well defined, and that

dISIR

dSSIR
(S?) >

dI

dS
(S?) .

hence,

−1 +
γI?

S?I?βn

> −1 +
γI?

S?I?(βnx+ βa(1− x))

which is absurd since βa < βn and x ∈ (0, 1). �

Proof of Proposition 2.3.5
Let us consider system (2.5). We have already seen that a time t3 exists such that

I(t3) = 1/m and S(t3) = 1/Rn
0 (see Prop. 2.3.2). Moreover, for t > t3 system (2.5) can

be approximated by an SIR model with R0 = Rn
0 . Thus we can employ the SIR invariant

in [t3,+∞). It follows that S∞(m) is solution to the equation:

S∞(m)− 1

Rn
0

logS∞(m) = S(t3) + I(t3)−
1

Rn
0

logS(t3) =
1

Rn
0

+
1

m
− 1

Rn
0

log
1

Rn
0

while SSIR
∞ is solution of the equation

SSIR
∞ − 1

Rn
0

logSSIR
∞ = 1 .

Therefore, we have to compare the solutions of the equations:

l(x) = 1 , l(x) = b(m)

where l(x) = x− 1
Rn

0
log x and b(m) = 1

Rn
0
+ 1

m
− 1

Rn
0
log 1

Rn
0
.

Condition 1/m < Ip implies that b(m) < 1. Function l is convex, has an absolute
minimum at x = 1/Rn

0 with l(1/Rn
0 ) < b(m), it is strictly decreasing for x < 1/Rn

0 and
limx→0+ = +∞.

Since we are interested in solutions x < 1/Rn
0 , we have that b(m) < 1 implies S∞(m) >

SSIR
∞ . Moreover, b(m) is an decreasing function of m and thus S∞(m) is an increasing

function of m.
Finally, b(m) ↘ l(1/Rn

0 ) when 1/m → 0; thus S∞(m) → 1/Rn
0 when 1/m → 0. �

8.2 Appendix B

8.2.1 The model

The aim here is to introduce a model for a disease transmission process, accounting for
heterogeneity with respect to the behaviors adopted spontaneously by the individuals of
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the host population. The diffusion of the different behaviors performed by the population
is modeled through evolutionary game theory. Specifically, we introduce a simple SIR
model where individuals can adopt two mutually exclusive behaviors on the basis of the
perceived risk of infection through a classical imitation process. We decided to keep
the transmission model as simple as possible. Therefore no latency period, age classes,
different levels of symptomaticity, variable viral load over time are considered. The host
population is assumed to be divided into three classes, namely susceptible (S), infective
(I) and recovered (R) individuals.

We assume that individuals are able to reduce the force of infection to which they
are exposed as a spontaneous defensive response to the epidemic. Actually, individuals
exposed to the risk of infection are only susceptible ones. As we are considering the
dynamics of a spontaneous self–protection strategy that reduces the undergoing force of
infection, neither infective, nor recovered individuals can achieve any benefit through a
reduction of their force of infection, unless by assuming an altruistic interaction between
them and susceptible individuals. Since such investigation is beyond the scope of this
work, we consider only behavioral changes among susceptible individuals. Therefore,
susceptible individuals are divided in two subclasses: individuals adopting a “normal”
behavior (Sn) and individuals adopting an “altered” one (Sa), assuming that the latter
are able to reduce the received force of infection. From now on, let us denote as bn and
ba the two different behaviors adopted by Sn and Sa respectively.

Let us define β as the transmission rate, 1/γ the average duration of the infectivity
period and q ∈ (0, 1) the reduction of the force of infection performed by Sa (e.g., by
avoiding crowded environments or by increasing wariness in usual activities involving
contacts with other individuals). The epidemic flows between classes can be described as
follows:



dSn

dt
(t) = −βI(t)Sn(t)

dSa

dt
(t) = −qβI(t)Sa(t)

dI

dt
(t) = βI(t)[Sn(t) + qSa(t)]− γI(t)

dR

dt
(t) = γI(t).

(8.5)

Setting x = Sn/(Sn + Sa), where x represents the fraction of susceptible individuals
adopting the normal behavior bn, system (8.5) can be rewritten as follows

102





dS

dt
(t) = −β [x(t) + q(1− x(t))]S(t)I(t)

dI

dt
(t) = β [x(t) + q(1− x(t))]S(t)I(t)− γI(t)

dR

dt
(t) = γI(t)

dx

dt
(t) = x(t)(1− x(t)) [qβI(t)− βI(t)] .

(8.6)

where, as mentioned above, S = Sn + Sa is the whole fraction of susceptible individuals.
The latter equation of system (8.5), obtained by deriving Sn/(Sn+Sa), can be read as a

“natural” selection process embedded in the transmission dynamics that favors individuals
reducing the force of infection.

Let us assume that individuals can also change strategy spontaneously during the
course of the epidemic, through cost–benefit considerations that involve the perceived
risk of infection.

This phenomenon perfectly fits to the language of evolutionary game theory, in which
behaviors correspond to strategies that are adopted or not on the basis of their conve-
nience. More specifically here we assume that behavior diffusion is driven by an imitation
dynamics [81, 122, 15, 127]: a fraction of the individuals playing strategy bn can switch
to strategy ba after having compared the payoffs of the two strategies, namely pn and pa,
at a rate proportional to their difference ∆P = pn − pa, with proportionality constant
ω; conversely for the fraction of the individuals playing ba. As this comparison is based
on the diffusion of information and may not involve only physical contacts between indi-
viduals, the imitation process and the pathogen transmission can have two different time
scales. Thus let us introduce τ as the time unit for spontaneous behavioral changes, and
let us assume that t = ατ with α ∈ R.

The convenience of two mutually exclusive behaviors is modeled through their cor-
responding payoff functions. We consider that all individuals pay a cost for the risk of
infection, which we assume to depend linearly on the perceived prevalence, M(τ), and it
is higher for bn than for ba. Moreover, individuals playing strategy ba pay an extra fixed
cost. Hence, the payoffs associated with bn and ba are respectively:

pn(τ) = −mnM(τ)
pa(τ) = −k −maM(τ) ,

withmn > ma. We may think ofmn andma as parameters related to the risk of developing
symptoms induced by the two different behaviors bn and ba, while k represents the cost
of any self-imposable prophylactic measure (e.g., less traveling).

The perceived prevalence M is modeled through an exponentially fading memory
mechanism (such as in [48]) as follows:

dM

dt
(t) = β [x(t) + q(1− x(t))]S(t)I(t)− θI(t) .
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where θ weighs the decay of the perceived risk of infection produced by new cases and
thus 1/θ can be read as the average duration of the memory of new cases in the perceived
prevalence.

By adding the imitation dynamics in the last equation of system (8.6), the equation
for the fraction of susceptible individuals adopting normal behavior x becomes
(8.7)

dx

dt
(t) = x(t)(1− x(t)) [qβI(t)− βI(t)] + ω

α
x(t)(1− x(t))S [k − (mn −ma)M(t)]

expressed in the time scale of infection transmission process. Equation (8.7) can be
rewritten in the following form:

dx

dt
(t) = x(t)(1− x(t))β(q − 1)I(t) + ρx(t)(1− x(t))S [1−mM(t)] .

where ρ = ωk
α
, m = (mn −ma)/k.

As a matter of fact, 1/m defines the threshold for the perceived prevalence M(t),
over which it is more convenient to adopt the altered behavior. Moreover ρ essentially
represents the speed of the imitation process with respect to the pathogen transmission
dynamics. Finally, q tunes the reduction of the force of infection for individuals adopting
the altered behavior.

One could consider a more general model for behavior dynamics, including the pos-
sibility that individuals can also (rarely) change behavior regardless of cost–benefit con-
siderations, as driven by an irrational exploration. This possibility can be modeled as a
mutation dynamics [81], not favoring any strategy, by considering a mutation rate µ << 1.
The resulting equation for x would become

dx

dt
(t) = x(t)(1− x(t))β(q − 1)I(t) + ρ[x(t)(1− x(t))S(1−mM(t))− µx+ µ(1− x)] .

Mutation dynamics might be considered to gain more realism (details have been largely
discussed in [127]). Nonetheless, its effect can be neglected for the purpose of this work.

8.2.2 Sensitivity analysis

In order to assess the robustness of qualitative results shown in the main text, we investi-
gate the sensibility of the model by changing one–by–one the values of fitted parameters
starting from the estimates obtained by model fitting.

The timing of the simulated epidemics is highly sensible to changes in the parameter
values, while just slightly differences in the final epidemic size can be appreciated. In
general, the final size varies from 38% to 41% whereas the epidemic peak week can change
of more than 3 weeks.

Results are stable for large values of ρ, representing a fast imitation process, for small
x(0) values, i.e. if altered behavior is initially widespread in the population, and for a
long lasting memory (Fig. 8.1). As varying x(0) in a range 10−6 − 10−12 does not result
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Figure 8.1: a Final epidemic size as simulated by the proposed model for different values
of x(0). Other parameters as described in the main text (see Fig. 1). b As is a but for
the peak week. c As is a but for the weekly incidence. Lines colors correspond to points
colors in a and b. d, e and f As a, b and c but varying ρ. g, h and i As a, b and c but
varying θ.
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Figure 8.2: a Final epidemic size as simulated by the proposed model for different values
of q. Other parameters as described in the main text (see Fig. 1). b As is a but for the
peak week. c As is a but for the weekly incidence. Lines colors correspond to points
colors in a and b. d, e and f As a, b and c but varying M(0). g, h and i As a, b and c
but varying m.
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Figure 8.3: Weekly incidence as obtained by simulating the proposed model for three
different sets of values of m and M(0) (constrained to m·M(0) = 1.05). Other parameters
as described in the main text (see Fig. 1).

in appreciable effects in model fit, we decide to fix x(0) = 10−8, instead of searching for
an optimum x(0) value.

On the other hand, small variations of q — the size of the reduction on the force of
infection performed by individuals adopting the altered behavior — significantly influence
the initial growth of the epidemic. This in turn strongly affects the peak week of the
epidemic (Fig. 8.2 b, c). Specifically, for q ∈ (0.78, 0.94), Ra

0 lies in the range 1.1 − 1.4.
However, no significant differences can be appreciated in the final epidemic size (Fig. 8.2a).
Indeed, a slower increase in the early phases of the epidemic would produce a lower number
of cases, but would also accelerate the decrease of the perceived risk of infection, advancing
the diffusion of the normal behavior in the population. In conclusion, the reduction of
the force of infection in the early phases of an epidemic, due to an initial overestimation
of the risk of infection, leads to a delay in the epidemic spread.

As for the risk threshold 1/m and the initial perceived prevalence M(0), they both
contribute to set the initial perceived risk of infection and they determine, through the
memory mechanism, when it becomes more convenient to adopt the normal behavior.
This in turn determines the period characterized by a growth rate of the epidemic lower
than that expected in a population where no spontaneous behavioral changes occur. The
larger is M(0), the smaller is the final epidemic size and the more delayed is the epidemic
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Figure 8.4: a Weekly ILI incidence as reported to the surveillance system (green) and
weekly incidence simulated by the model by assuming 1/γ = 2 days (red). Parameters
values: β = 0.719, q = 0.83, m = 0.1, ρ = 61.3, µ = 0.005, M(0) = 10.5, x(0) = 10−8,
I(0) = 0.00121 and S(0) = 0.1. The estimated basic reproductive number lies in the range
1.2 − 1.44 and the reporting factor is 17.9%. b Weekly ILI incidence as reported to the
surveillance system (green) and weekly incidence simulated by the model by assuming
1/γ = 3 days (red). Parameters values: β = 0.518, q = 0.84, m = 0.1, ρ = 64.9,
µ = 0.005, M(0) = 10.5, x(0) = 10−8, I(0) = 0.00124 and S(0) = 0.1. The estimated
basic reproductive number lies in the range 1.31− 1.55 and the reporting factor is 15.4%.

peak (see Fig. 8.2 d, e and f). The same is observed for m (see Fig. 8.2 g, h and i).
Specifically, variations of the order of 10% in M(0) or in m result in absolute differences
in the epidemic size of about 2% and, most remarkably, in variations of 3-4 weeks of the
epidemic peak week.

Actually, the investigated situation is characterized by: (i) a risk of infection unable
to sustain the altered behavior as a convenient choice; (ii) an initial overestimation of this
risk of infection. In this specific case, the product m ·M(0) is the crucial factor (rather
than the values of the single parameters). In fact, as shown in Fig. 8.3, by varying values
of m and M(0) under the constraint that their product is kept constant, no appreciable
differences in model trajectories can be detected.

In our investigation we have assumed a fixed generation time of 2.5 days, according
to recent estimates [63, 165]. As shown in Fig. 8.4, predictions are not very sensitive to
the length of the generation time (for 1/γ = 2 and 1/γ = 3).

In short, the model is able to account for the notable observed pattern, characterized
by a sudden change in the slope of the incidence, if:

I an initial large diffusion of the altered behavior, due to a perceived risk of infection
over the threshold, occurs;

II the altered behavior results as more convenient for a relevant period of time thanks
to a long-lasting memory;

108



III the imitation process is fast enough to allow a sudden change in the distribution of
the behaviors adopted by the population, which in turn results in a sudden change
of the growth of the epidemic.

In conclusion, m ·M(0) > 1 represents an overestimation of the initial risk of infection.
The closer is the product m ·M(0) to one and the larger is ρ, the smaller are the effects
of the overestimation of the risk and thus the shorter is the period characterized by the
diffusion of the altered behavior. As a consequence, as this period becomes smaller, the
dynamics of the model becomes similar to the one predicted by a “simple” SIR model.

8.2.3 Alert time

Our analysis has revealed that a central role for determining epidemic dynamics has been
played by the initial concern about the spread of a new influenza pandemic. Here we
investigate what would happen if the overestimation of risks occurs at different times
(here considered as “alert” times), for example driven by different timing in the mass
media information campaign. Specifically, as shown in Fig. 8.5, if the alert takes place
during the early phases of the epidemic, no relevant effects are observed in terms of final
epidemic size nor in the peak incidence, while the diffusion of the virus can be slowed
down allowing public health agencies to gain time to perform control strategies such as
vaccination (which requires time for the preparation and the distribution of doses). Alerts
performed during the course of the outbreak have limited effects in slowing the epidemic
spread and thus they do not allow gaining time for the interventions. However, these alerts
can result in lower peak incidence (and thus in a lower burden for health care centers)
and in a relevant decline of the final epidemic size. Clearly, alerts performed at the end
of the epidemic have no effects on the timing and on the peak incidence of the epidemics
but may result only in a reduction of the final size as they can contribute to accelerate
the decline of the epidemic.

8.2.4 Analysis of past influenza seasons

As shown in the main text, the proposed model perfectly fits the ILI incidence reported
to the Italian surveillance system during the 2009 H1N1pdm influenza. Specifically, our
analysis has shown that a self-protection behavior, spontaneously performed by the pop-
ulation in response to a high initial perceived risk of infection, represents a plausible
explanation for the notable observed pattern. As discussed in the main text, this could
have been induced by the mass media information campaign on the risks of an emerging
influenza pandemic; such hypothesis is also supported by empirical evidence (such as the
trend of antivirals drugs sales and the sporadic self-imposed school closures during Octo-
ber 2009). Our aim in this section is to investigate if behavioral changes spontaneously
performed by the population have been a peculiarity of the 2009 pandemic or if (and
possibly how) they could have played a central role during past influenza seasons.

Our analysis focuses on the last three influenza seasons (namely, the 2006-2007, the
2007-2008 and the 2008-2009) in Italy and, exactly as for the analysis shown in the main
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Figure 8.5: a Peak week as predicted by the model for different times of the alert. Pa-
rameters as in Fig. 1a of the main text, but for M , which is set to 10.5 at the time of the
alert (same value as in Fig. 1a of the main text but different time). Horizontal black line
represents the peak week as predicted by the “classical” SIR model. b Final epidemic size
as predicted by the model for different times of the alert. Horizontal black line represents
the final epidemic size as predicted by the “classical” SIR model. Parameters as in a. c
Peak daily incidence (cases per 1,000 individuals) as predicted by the model for different
times of the alert. Horizontal black line represents the peak daily incidence as predicted
by the “classical” SIR model. Parameters as in a. d Daily incidence as predicted by the
model for different times of the alert. Colors of the lines correspond to colors of the points
in a, b and c.

text, it is based on model fit to ILI incidence reported to the Italian surveillance system
(data available at http://www.iss.it/iflu/).

We found that considering behavioral dynamics does not improve the accuracy of the
fit with respect to a “simple” SIR model for the 2006-2007 and the 2008-2009 influenza
seasons. Specifically, the best parameter sets estimated by using a least square fitting
procedure for both 2006-2007 and 2008-2009 seasons force the system to a configuration
characterized by the diffusion of a single strategy adopted by the population over the
whole course of the epidemic (i.e., x(t) = 0∀t or x(t) = 1∀t). Therefore, the proposed
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Figure 8.6: Analysis of the 2006-2007, the 2007-2008 and the 2008-2009 influenza sea-
sons. a Weekly ILI incidence as reported to the Italian surveillance system (green) in
the 2006-2007 season and weekly incidence as simulated by the “classical” SIR model
(blue). Parameters values: β = 0.49, γ = 0.26, I(0) = 0.001. Since serological analy-
sis on those influenza seasons are not available to us, the initial fraction of susceptible
individuals in the population is S(0) = 0.73 as assumed in literature (e.g., in [105, 28]).
The estimated effective reproductive number results to be 1.38 and the reporting factor is
15%. b Weekly ILI incidence as reported to the Italian surveillance system (green) in the
2008-2009 season and weekly incidence as simulated by the “classical” SIR model (blue).
Parameters values: β = 0.46, γ = 0.27, I(0) = 0.001 and S(0) = 0.73. The estimated
effective reproductive number results to be 1.24 and the reporting factor is 23%. c Weekly
ILI incidence as reported to the Italian surveillance system (green) in the 2007-2008 sea-
son and weekly incidence as simulated by the proposed model (red). Parameters values:
β = 0.35, γ = 0.18, q = 0.89, m = 30, ρ = 400, µ = 0.03, M(0) = 0, x(0) = 0.99,
I(0) = 0.001 and S(0) = 0.73. The estimated effective reproductive number lies in the
range 1.26− 1.42 and the reporting factor is 26%. d Weekly ILI incidence as reported to
the Italian surveillance system (green) in the 2007-2008 season and weekly incidence as
simulated by the “classical” SIR model (blue). Parameters values: β = 0.44, γ = 0.26,
I(0) = 0.0001 and S(0) = 0.73. The estimated effective reproductive number results to
be 1.24 and the reporting factor is 27%.
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Figure 8.7: a Weekly incidence (cases per 1,000 individuals) as simulated by the proposed
model (red) for the 2007-2008 season. Dynamics of the perceived prevalence (gray, scale
on the right axis). Horizontal gray line represents the risk threshold. b As a but for the
2009-2010 pandemic season.

model and the “classical” SIR model coincide. Best model fits to the weekly ILI incidence
in 2006-2007 and 2008-2009 influenza seasons are shown in Fig. 8.6 a and b.

As regards the 2007-2008 influenza season, we found that the proposed model, ac-
counting for behavioral changes in the population, fits the weekly ILI incidence better
than the “classical” SIR model (see Fig. 8.6 c and d). However, our parameters estimate
suggests no initial overestimation of the perceived prevalence. The diffusion of an “al-
tered” behavior could possibly have occurred during the most acute phase of the epidemic,
close to the epidemic peak, i.e. when the risk of infection was “really” higher. Hence,
even in this case, no overestimation of the perceived risk of infection at the beginning
of the epidemic has been detected by our analysis, as opposed to that observed for the
2009-2010 season. Fig. 8.7 show the dynamics of the ILI incidence and of the perceived
prevalence, as obtained by fitting the 2009-2010 and the 2007-2008 influenza seasons.

In conclusion, this analysis suggests that behavioral changes would not have played
a relevant role in past influenza seasons, at least in the early stages of the epidemic.
The initial overestimation of the risk of infection seems to be a peculiarity of the 2009
pandemic.

8.2.5 Analysis of epidemiological and virological surveillance data

By combining virological [88] and epidemiological [87] surveillance data on the 2009–
2010 season, we are able to estimate a theoretic lower bound for the weekly number of
H1N1pdm infections. Specifically, we multiply the weekly ILI incidence to the number of
laboratory confirmed cases divided by the number of tested specimens. Tested specimens
have been sampled between the ILI cases identified by physicians participating to the
national surveillance system.

As for the weekly ILI incidence (analyzed in the main text), this different dataset is
characterized by two distinct exponential growth phases (especially appreciable in the
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Figure 8.8: a Weekly incidence as obtained by combining epidemiological and virological
surveillance data for the 2009 pandemic in Italy (green) and weekly incidence simulated by
a “simple” SIR model with a constant reporting factor (blue). Sub–panel shows the same
curves in a logarithmic scale. Parameter values used in the simulation are set as follows:
the generation time 1/γ is assumed 2.5 days (in agreement with [63, 165]); S(0) = 0.9
(according to [134]); I(0) = 0.000025, β = 0.62, fitted. b Weekly incidence computed
as in a (green) and simulated by the model accounting for behavioral changes (with a
constant reporting factor, red). Sub–panel shows the same curves in a logarithmic scale.
Parameter values used in the simulation are set as follows: 1/γ = 2.5 days; S(0) = 0.9;
x(0) = 10−8, assumed; M(0) = 10.17, I(0) = 0.00054, q = 0.815, m = 0.104, ρ = 70,
θ = 0.0046, β = 0.62, fitted. c Weekly reporting factor estimates that enable the “simple”
SIR model (parameters as in a) to exactly fit the influenza incidence (as computed in a).
The horizontal gray line represents the average reporting factor as computed over the
weeks 42–51. d As in c but for the model accounting for behavioral changes.
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log scale, see Fig. 8.8a). By fitting a simple SIR model and the proposed model to such
data, we obtain substantially the same results discussed in the main text: the SIR model
is unable to account for the initial phases of the epidemic, while the model including
behavioral changes performs much better (see Fig. 8.8a, b).

We found that a simple SIR model with a time dependent reporting factor is able
to capture the initial phase of pandemic only by considering extremely large values of
the reporting factor (even above 100%, see Fig. 8.8c). Since this new dataset can be
interpreted as a theoretic lower bound for the number of H1N1pdm infections, reporting
factor values above 100% in principle cannot be observable. On the contrary, the model
considering behavioral changes does not require such large values for the reporting factor
(see Fig. 8.8d). In conclusion, this analysis suggests that a variable reporting factor does
not seem to be able to explain alone the observed pattern.

8.3 Appendix C

8.3.1 Properties and more details

The biomathematical properties listed in section 3 may be demonstrated as follows:
Property A Let us define, to simplify the notation, the parameter:

(8.8) Ψ = kh (Ie) (1− h (Ie)) .

Linearizing at Ee yields the following characteristic polynomial with positive coefficients:

(8.9) λ3 + (Ψ + µ+ βIe)λ
2 + ((µ+ βIe)Ψ + (µ+ ν)βIe)λ+ βIe (µ+ ν + µh′ (Ie))Ψ,

for which the Routh-Hurwitz condition yields this inequality in the variable Ψ:
(8.10)

RH(Ψ) = (µ+ βIe)Ψ
2 +

(
(µ+ βIe)

2 − βIeµh
′ (Ie)+

)
Ψ+ (µ+ βIe) βIe(µ+ ν) > 0.

Since the coefficients of power 0 and 2 of eq. (8.10) are positive, and taking also into
account the sign of the coefficient of power 1, it is easy to show that if (6.12) holds then
Ebeh is LAS.
Property B If (6.13) holds then there are two positive values 0 < k1 < k2 such that if
k < k1 or k > k2 then Ebeh is LAS; moreover, if k1 < k < k2 then Ebeh is unstable and
k1 and k2 are Hopf points. After some algebra it is easy to verify that at the Hopf points
there are Hopf bifurcations since the nonzero speed condition Re

(
(dλ/dk)|λ=±iωHopf

)
6= 0

is fulfilled.
Property C As regards the Yabucovitch oscillations, note that: i) the bounded set

A = {(S, I, p) ∈ R+|0 ≤ S + I ≤ 1− h(0), h(0) ≤ p ≤ 1}

is positively invariant and attractive; ii) Ebeh is unstable, and Edfe, which is in the bound-
ary of A, has as the stable manifold the line (w, 0, 1) w ∈ [0, 1] to which Ebeh does not
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belong, excluding heterocline orbits. Thus we may apply the Yabucovitch theorem.
Property D Since asymptotically p(t) ≥ h(0), it follows that for large times:

S ′ ≤ µ (1− h(0)− S) ,

i.e. asymptotically S(t) ≤ (1− h(0)). This in turn implies:

I ′ ≤ βI
(
1− h(0)−R−1

0

)
= β (pc − h(0)) I.

Thus, if h(0) > pc then I(t) → 0 implying p(t) → h(0) and S(t) → 1 − h(0), i.e. Edfe is
GAS.
Let us now discuss the case of an exponentially fading memory in the perceived risk of
vaccination with linear h(I) = ϑI. The Routh-Hurwitz stability condition reads:

(8.11) G(Ψ, b) = c2(b)Ψ
2 + c1(b)Ψ + c0(b) > 0

where Ψ is as in eq. (8.8), and the coefficients are third order polynomials in the delay
parameter b. Thus, for each b there are at most two bifurcation values for k, whereas for
each k there may be at most three bifurcation values for b.
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