
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

Towards the Application of

Interaction-oriented Frameworks to

Information Sharing in

Emergency Contexts

Gaia Trecarichi

Advisor:

Prof. Maurizio Marchese

Università degli Studi di Trento

December 2010

Abstract

In distributed, open evironments, possibly heterogeneous computational

entities need to engage in complex interactions in order to complete tasks

and often have to face sudden changes; it therefore becomes essential for

modern information systems to adopt coordination technologies which sup-

port dynamic and flexible interactions among processes, whether reactive

(e.g., web services) or proactive (e.g., autonomous agents). Substantial ef-

forts are being put forward to devise suitable mechanisms for process coor-

dination. In the past few years, interaction-oriented frameworks have been

proposed, which enable distributed and heterogeneus agents to engage in

coordination activities by sharing interaction models specified in executable

protocol languages. Software systems have started to be developed to apply

such frameworks to concrete use. In particular, the OpenKnowledge frame-

work has been proposed as such an interaction-oriented framework, and the

OpenKnowledge (OK) system has been developed for its realization. Such

system provides a distributed infrastructure which allows a-priori unknown

peers to gather together and coordinate with each other by publishing, dis-

covering and executing interaction models specified in the Lightweight Co-

ordination Calculus (LCC) protocol language. Although the realization of

the OpenKnowledge approach is promising, its application in realistic, com-

plex scenarios is not fully exploited.

This thesis aims at applying the OpenKnowledge framework to realistic

contexts such as emergency response (e-Response). Its main contribution

is in the design and simulation of emergency response scenarios which are

expressed in terms of LCC specifications, and are enacted by means of a

simulation environment fully integrated with the OK system. Such envi-

ronment is developed to: (1) informally validate the e-Response scenarios;

(2) test the capability of the OK system to support such scenarios, and (3)

provide a preliminary evaluation of the efficacy of different information

gathering strategies (i.e., centralized or distributed) in emergency response

settings. The results obtained show that the OK system is able to support

complex coordination tasks; however, some limitations have emerged in re-

lation to the discovery mechanism. Furthermore, simulations have shown

to adhere with realistic scenarios, and that - under ideal conditions - cen-

tralized and decentralized information-gathering strategies are comparable.

Keywords

[interaction models, peer-to-peer information sharing, agent-based disaster

simulation]

4

Publications

This work has been developed in collaboration with various people

(as the publications indicate) and in particular with: Maurizio March-

ese, Lorenzino Vaccari, Veronica Rizzi, Juan Pane, Paolo Besana, Fiona

McNeill, Nardine Osman.

Part of the material of the thesis has been published as articles in

various conferences and journals and as technical reports in the EU FP6

OpenKnowledge1 Specific European Targeted Research Project (STREP)

project IST-FP11V341. In what follows, journal articles, conference pa-

pers, and technical reports are listed.

Journal articles (in order of appearance):

• [111]: Gaia Trecarichi, Veronica Rizzi, Maurizio Marchese, Lorenzino

Vaccari, Paolo Besana. Enabling information gathering patterns for

emergency response with the OpenKnowledge system, Special Issue

on Pervasive Computing and Application, Computing and Informatics

Journal, Vol. 29, N. 4, 2010, pp. 537-554.

• [70]: Maurizio Marchese, Lorenzino Vaccari, Gaia Trecarichi, Nardine

Osman, Fiona McNeill, and Paolo Besana. An Interaction-Centric

Approach to Support Peer Coordination in Distributed Emergency

Response Management, Intelligent Decision Technologies (IDT), Spe-

cial Issue on Incident Management, Vol. 3, N. 1, 2009, pp. 19-34.

Conference papers (in order of appearance):

• [112]: Gaia Trecarichi, Veronica Rizzi, Lorenzino Vaccari, Maurizio

Marchese, and Paolo Besana. OpenKnowledge at work: exploring
1http://www.openk.org/

5

centralized and decentralized information gathering in emergency con-

texts. In Proceeding of the 6th International Conference on Informa-

tion Systems for Crisis Response and Management (ISCRAM), 2009.

• [69]: Maurizio Marchese, Lorenzino Vaccari, Gaia Trecarichi, Nar-

dine Osman, and Fiona McNeill. Interaction models to support peer

coordination in crisis management. In Proceedings of the 5th Inter-

national Conference on Information Systems for Crisis Response and

Management (ISCRAM), pages 230-241, 2008.

Technical reports (in order of appearance):

• [113]: Gaia Trecarichi, Veronica Rizzi, Lorenzino Vaccari, Juan Pane,

and Maurizio Marchese. OpenKnowledge deliverable 6.8: Summative

report on use of OpenKnowledge approach in eResponse: integration

and evaluation results. Technical report, OpenKnowledge, 2008.

• [21]: Paolo Besana, Fiona McNeill, Fausto Giunchiglia, Lorenzino

Vaccari, Gaia Trecarichi, and Juan Pane. Web service integration

via matching of interaction specifications. Technical report, Univer-

sity of Trento, Dipartimento di Ingegneria e Scienza dell’Informazione

(DISI), 2008.

• [71]: Maurizio Marchese, Lorenzino Vaccari, Gaia Trecarichi, Pavel

Shvaiko, Juan Pane, Nardine Osman, and Fiona McNeill. Open-

Knowledge deliverable 6.7: Interaction models for eResponse. Tech-

nical report, OpenKnowledge, 2008.

Whenever results of any of these works are reported, proper citations

are made in the body of the thesis.

6

Contents

1 Introduction 1

1.1 The problem . 3

1.2 The proposed approach . 5

1.3 Thesis structure . 8

I State of the Art 11

2 Service Coordination 13

2.1 Composition techniques 15

2.1.1 Workflow-based composition 15

2.1.2 Dynamic composition 16

2.2 Collaboration techniques 17

2.2.1 WSCI . 18

2.2.2 WS-CDL . 18

2.2.3 Let’s Dance . 19

2.2.4 BPEL4Chor . 20

3 Agent-Oriented Coordination 21

3.1 Agent communication languages 22

3.2 Conversation policies . 24

3.3 Social agency . 26

3.3.1 Commitment protocols 26

i

3.3.2 Normative systems 27

3.3.3 Dialogue-game protocols 27

3.3.4 Electronic Institutions 28

3.3.5 Lightweight Coordination Calculus (LCC) 29

II An Interaction-Oriented Approach to Knowledge Sharing:

OpenKnowledge 37

4 The Framework 39

5 The OpenKnowledge System 43

5.1 LCC interaction models 43

5.2 The OpenKnowledge Kernel 45

5.2.1 OKC components 46

5.2.2 Kernel modules . 49

5.2.3 Kernel services . 51

5.3 Interaction lifecycle . 53

5.3.1 Subscription to an interaction model 53

5.3.2 Interaction bootstrap 54

5.3.3 Interaction run . 55

5.4 OpenKnowledge vs. other technologies 56

5.4.1 Web services . 57

5.4.2 Grid services . 58

5.4.3 P2P systems . 59

5.4.4 Multi-Agent Systems (MAS) 59

III Design and Simulation of LCC e-Response Scenarios 61

6 Information Sharing in Crisis Response 63

ii

6.1 The general context . 64

6.2 Flooding in Trentino: the e-response case study 67

6.2.1 Prealarm scenario 69

6.2.2 Evacuation scenario 71

6.3 Conclusion . 74

7 LCC Protocol Design 77

7.1 Initial design . 78

7.2 Final design . 82

7.3 Conclusion . 85

8 The Simulation Environment 87

8.1 LCC protocols: an overview 88

8.2 Simulation architecture . 89

8.2.1 The peer network 90

8.2.2 The e-Response simulator 97

8.3 OK component reuse . 108

8.3.1 Reuse of LCC interaction models 109

8.3.2 Reuse of OKC methods 110

8.4 Conclusion . 111

IV Experimental Evaluation 113

9 Experimental Testbed 115

9.1 Testbed overview . 115

9.2 Experimental hypotheses 117

9.3 Experimental design . 118

9.3.1 Performance measures 118

9.3.2 Experimental variables 118

iii

9.3.3 Assumptions . 121

9.3.4 Experiment configuration 121

9.3.5 Experiment execution 122

9.4 Results . 122

9.4.1 Information gathering strategies 123

9.4.2 The OK infrastructure 125

9.5 Conclusion . 128

V Final Discussions 131

10 Related Work 133

11 Conclusions 137

12 Future Work 141

Bibliography 145

A Peer Network Interaction Models 165

A.1 Evacuation.lcc . 165

A.2 Find-Route.lcc . 169

A.3 Check-Route-State.lcc . 170

A.4 Querier-Reporter.lcc . 173

B Simulator Interaction Models 177

B.1 Simulation Cycles.lcc . 177

B.2 Flood Sub-Simulator Connection.lcc 182

B.3 Peer Connection.lcc . 183

B.4 Flood.lcc . 187

B.5 Sensory Info.lcc . 189

B.6 Visualiser.lcc . 191

iv

B.7 Perform Action.lcc . 193

v

List of Tables

2.1 Collaboration vs. Composition 14

5.1 OpenKnowledge vs. Other Technologies 60

9.1 Experiments configuration 122

vii

List of Figures

3.1 LCC formal syntax . 30

3.2 LCC example: double arrows (⇒,⇐) indicate message pass-

ing, single arrow (←) indicates constraint satisfaction. . . . 31

5.1 Simple LCC interaction. 45

5.2 OK Kernel Architecture [34] 46

5.3 Annotated peer’s methods 48

5.4 Peer’s methods required by an OKC 49

5.5 OKC: access to peer’s local knowledge 49

5.6 Peer Modules [34] . 50

5.7 Interaction Subscription 54

5.8 OK network at subscription time [111] 55

5.9 Interaction Bootstrap . 56

5.10 Interaction Run . 57

6.1 Integrated Emergency Response Framework (iERF) proposed

by NIST . 66

6.2 The overall e-Response use case 68

6.3 The implemented e-Response scenarios 69

6.4 Evacuation phase: moving peer behaviour 75

7.1 UML activity diagram: baseline scenario 78

7.2 UML sequence diagram: baseline scenario 79

7.3 LCC fragment: ES initial role 80

ix

7.4 LCC fragment: ES “route finder” role 80

7.5 UML activity diagram: evacuation scenario 83

7.6 LCC fragment for the “goal-achiever” role 84

7.7 LCC fragment for the “free-path-finder” role 84

8.1 e-Response Interaction Models 89

8.2 The e-Response system’s architecture 90

8.3 Evacuation phase: network peer’s interactions 91

8.4 LCC fragment for the “free-path-finder” role 93

8.5 Java code for OKC method “request path state”: interaction

model enaction . 94

8.6 Information Gathering: centralized interactions 96

8.7 Decentralized Information Gathering: selection of reporters 98

8.8 LCC fragment for the “info-handler” role taken by the con-

troller . 100

8.9 Maximum Water Level [2] 101

8.10 Maximum Flow Velocity [2] 101

8.11 Maximum impulse [2] . 102

8.12 Maximum water level rising speed [2] 102

8.13 Arrival time of first water [2] 102

8.14 Maximum water level in Trento Nord 103

8.15 Arrival time of maximum water level 103

8.16 Flooding Law . 104

8.17 Emergency GUI . 106

8.18 Flood Evolution . 107

8.19 GUI: Centralized information gathering 108

8.20 GUI: Decentralized information gathering 108

8.21 The “Querier-Reporter” IM Reuse 109

9.1 Percentage of arrivals by IG strategies 124

x

9.2 Outcome Distribution (centralized/decentralized scenario) 124

9.3 Time-steps vs. Path Length 125

9.4 Successful vs. Failed Experiment Runs 126

9.5 Failed experiment runs . 127

9.6 Subscription failures by simulation run phase 128

9.7 Subscription failures by IMs 129

xi

Chapter 1

Introduction

The need for effective process coordination has long been recognized in

diverse research fields, such as service-oriented computing and agent sys-

tems. In open and distributed environments, possibly heterogeneous pro-

cesses (whether web services or autonomous agents) must interact with

each other in a way that allows the execution of complex coordination

tasks. Two different realistic scenarios are briefly outlined below, to show

the kind of issues involved in such settings.

In a possible e-tourism scenario, a customer wants to book a journey

and forwards a request to a travel company able to deliver e-tickets. The

companys information system supports process automation and integration

with airline, car rental and hotel partners. When a request is received, the

process coordinates different activities involved in the reservation proce-

dure; for instance, it invokes services provided by the partner companies,

stores information properly and handles new and unexpected situations

(e.g., a partner service changes its interface; the customer changes its re-

quest, cancels reservations, asks for refunds; the company itself adds new

services).

In a possible e-response scenario, a large number of actors (e.g., local

governments, emergency coordination centres, fire brigades, the police and

1

CHAPTER 1. INTRODUCTION

health agencies, volunteers, citizens) are involved in the emergency activi-

ties. For instance, people in a coordination center may need to retrieve and

integrate data and services from different geographical information systems

in order to plan activities, make decisions and forward directives to their

subordinates; geographically dispersed agents have to collaborate and co-

ordinate in the disaster scenes by exchanging and reporting information

with each other and with the people in the control room; moreover, the

information distribution system has to cope with unexpected situations

(e.g., actors changing roles, taking new and interrupting old activities).

In the e-tourism scenario, the Web is the scene where all the involved

activities will take place. Here, the role of services is essential: they must

be coordinated in order to provide more complex services and to respond

to business requirement changes (e.g., partner and customer changes). The

e-response scenario is much more complex and dynamic: beside the crucial

problem of coordinating services (e.g., the problem of geo-service chain-

ing), coordination mechanisms must support mobile agents located in ar-

eas prone to sudden changes. However, in both situations, the following

key issues need to be addressed:

• Design of large-scale information systems (e.g., both scenarios involve

many parties which are geographically dispersed);

• Dynamic and flexible interaction patterns (e.g., a customer may enter-

tain long-lived interactions, emergency agents may engage in complex

interactions or suddenly change the progress of their coordinated ac-

tivities);

• Adaptive coordination mechanisms (e.g., one partner may change its

protocol interface, an agency may deal with different organizations

having different policies and procedures).

2

1.1. THE PROBLEM

The above issues are recognized as top priorities among research com-

munities. For example, Singh et al. [106] highlight the importance of

adopting suitable software paradigms for “programming in the large”, i.e.,

the need for approaches able to model systems where large software com-

ponents - built by different organizations over a long period of time, and

having their local state - hold interactions which are subject to unforeseen

events. Kang et al. [63] distinguish orchestration from choreography ap-

proaches: the former oriented in describing how composite processes are

implemented and the latter focused on the interactions enacted by the

processes without any central entity. Buhler et al. [25] make a distinc-

tion between the internal behaviour of the software components and their

interactions: “a software system is viewed as an ensemble of coordinables

and their orchestrated interactions. Coordinables are entities that function

as independent units of computation. The coordinated interaction of the

computational units produces the desired behavior of the system”.

All the above mentioned works put in evidence the role played by coordi-

nation mechanisms in software system design. Coordination technologies

are, therefore, fundamental for supporting effective interactions between

heterogeneous and distributed computational entities.

1.1 The problem

The issue of devising suitable coordination technologies is being tackled

by several research communities: works on service-oriented computing and

agent systems are converging to enable dynamic interaction among au-

tonomous components in large, open systems.

On the one hand, the paradigm of Service-Oriented Architecture (SOA)

and, as a consequence, that of Web services, is rapidly being accepted as

the standard for coordinating distributed processes across networks, like

3

CHAPTER 1. INTRODUCTION

Internet.

On the other hand, agent technologies allow proactive entities to oper-

ate autonomously and to interact with each other in order to accomplish a

task. In particular, protocol languages such as the Lightweight Coordina-

tion Calculus (LCC) [94], MAP [119] and RASA [81] have been specified

to express executable models of interactions within multi-agent systems.

However, to put them into practical use, research needs to be carried out

along the following directions:

• the establishment of frameworks that allows heterogeneous agents1 to

coordinate via interaction protocols;

• the development of software systems that implement the aforemen-

tioned frameworks;

• the exploitation and the evaluation of such systems, to assess their ca-

pability to support coordination tasks in complex, dynamic scenarios

such as those briefly outlined earlier.

In respect to the first point, the OpenKnowledge (OK) framework [96]

has been proposed in the past few years; it is an interaction-oriented ap-

proach according to which interaction models specified in a protocol lan-

guage (e.g, LCC) are shared first-class entities which enable a priori un-

known agents to engage in complex coordination patterns.

In respect to the second point, the OpenKnowledge system [34] has been

developed within the European project OpenKnowledge2 as a distributed

peer-to-peer3 infrastructure which realizes the OK framework. In particu-

lar, such system is adopted as the underlying communication infrastructure

1In the rest of this thesis, the terms “computational entity”, “process”, “agent”, and “peer” will be

used interchangeably.
2http://www.openk.org/
3In the rest of this thesis, we will give to “peer-to-peer” the short name “p2p”.

4

1.2. THE PROPOSED APPROACH

that enables peers to find and coordinate with each other by publishing,

discovering and executing multi party conversational protocols specified in

the LCC language.

The work of this thesis has indirectly contributed to the second direc-

tion; and has mainly contributed to the third direction by means of the

approach described in the next section.

1.2 The proposed approach

With the aim to apply the above mentioned interaction-oriented frame-

works in realistic contexts, the approach taken has been to: (1) first de-

sign LCC interaction protocols to model coordination tasks in a complex

domain such as emergency response; (2) then, provide a simulation en-

vironment, where to validate such interaction-based scenarios; (3) finally,

conduct an experimental evaluation, to test the functionality of the OK

system, and to start exploring the efficacy of different information gather-

ing strategies in emergency response contexts.

The research has thus been carried out along three main lines: (1)

LCC protocol engineering; (2) simulation environment development; (3)

experimental evaluation.

LCC protocol engineering the effective design of interaction models is cru-

cial to the application in realistic contexts. Since interaction models shape

coordination patterns occurring in well defined settings (e.g., e-response,

e-health, etc.), it is essential to study the functional requirements of the

specific domain. This helps to identify some common interaction patterns

occurring in emergency situations. Such interaction patterns in fact form

the basis for identifying basic protocols which in turn constitute reusable

interaction units needed to compose larger protocols in a modular way. We

5

CHAPTER 1. INTRODUCTION

designed interaction models starting from analyzing documents related to

the current flood emergency plan foreseen by the Trentino region and from

interviews with experts. Our analysis resulted in the modeling of the pre-

alarm and the evacuation phases foreseen by the emergency plan in terms

of LCC specifications.

It is worth to mention here that, such analysis affected the design of

interaction models and provided requirements and feedbacks for the devel-

opment of the OK system. Under this aspect, this thesis also contributes

(though in an indirect way) to the development of the OK system itself.

Simulation environment development the developed simulation environ-

ment is composed of an agent network and a simulation engine. The first

component models a hierarchy of e-response agents, which plan activities

and coordinate with each other through predefined LCC interaction mod-

els; the second module simulates the environment where all the involved

actors operate.

The developed simulator is used to: (1) informally validate interac-

tion models, and investigate how appropriate LCC protocols are to reflect

dynamic emergency coordination tasks; (2) evaluate the capability of the

whole OK infrastructure to support different models of information sharing

; (3) assess, under specific assumptions, the efficacy of different information

gathering strategies during e-response situations.

Experimental evaluation an experimental testeb has been designed, to test

the OK infrastructure in a realistic and demanding case study, and to

provide a preliminary evaluation on how different information gathering

strategies (i.e., centralized and decentralized) impact emergency response

tasks.

Specifically, simulations have been served as funtional tests to determine

6

1.2. THE PROPOSED APPROACH

in which stage of the coordination mechanism the OK infrastructure failed

in enacting the multiple interleaved interactions; this was done without

entering in the details of the underlying communication infrastructure,

thus, by considering the OK infrastructure as a black-box.

To get insights into the domain under study, and in particular, to eval-

uate how the above mentioned information-gathering strategies impact

emergency response activities, we designed and conducted experiments.

The result obtained show that our simulations adhere to realistic scenarios

and that - under ideal conditions - such strategies are comparable.

In summary, this thesis contributes in the following four aspects:

1. The design of a set of interaction models written in the LCC protocol

language to model complex coordination tasks in a realistic scenario

such as a flood disaster;

2. The development of a simulation environment - built on top of the OK

platform - to informally validate the just mentioned suite of interaction

models;

3. A functional testing of the OK platform by means of the same simu-

lator;

4. A preliminary evaluation on how different information gathering strate-

gies impact emergency response tasks.

To the best of our knowledge, there is no prior work on the design

and testing of complex interaction protocols in realistic contexts such as

disaster situations. Also, while the OK platform has been exploited and

tested only with a small number of simple interaction models involving

mainly reactive web services [1], this thesis work focused on the exploita-

tion and testing of the OK platform with multiple interleaved interactions

between more proactive agents [111]. Finally, by providing a simulation

7

CHAPTER 1. INTRODUCTION

environment, this thesis takes a first step towards the assessment of how

different information gathering strategies (e.g., centralized or distributed)

affect emergency response efficiency.

1.3 Thesis structure

This thesis is divided in five parts.

Part I overviews state-of-the-art research in coordination techniques,

in two different fields. In particular, Chapter 2 describes the dominant

composition and collaboration techniques in the Web service area; Chapter

3 deals with the key concepts related to multi-agent interaction techniques

and protocols, with an emphasis on the LCC protocol language.

Part II presents OpenKnowledge as a suitable framework to enact choreography-

based interaction models. Chapter 4 introduces the core principles upon

which the framework is based; Chapter 5 describes the main components

of the OpenKnowledge system, and compares it with the dominant tech-

nologies.

Part III describes the design of LCC interaction models in specific emer-

gency response scenarios and presents the environment realized to simulate

them. In particular, Chapter 6 first introduces “crisis response” as the ap-

plication domain of the proposed approach, and then presents the specific

case study of a flood disaster; Chapter 7 describes the process that lead

from the analysis of the scenarios to the design of LCC protocols and, con-

sequently, to the requirements suggested for the development of the OK

system. Finally, Chapter 8 describes the architecture of the simulation

environment.

Part IV illustrates the experimental testbed used to: (1) provide a

preliminary evaluation on how centralized and decentralized information

gathering strategies impact emergency response situations; and (2) test the

8

1.3. THESIS STRUCTURE

overall functioning of the underlying supporting infrastructure, i.e., the OK

system. Specifically, Chapter 9 first gives an overview of the experimental

testbed; then it describes the hypothesis to be tested and the design of the

experiments conducted to evaluate the information-gathering strategies; fi-

nally, it presents the results from the conducted experiments for both the

evaluation of the strategies and the testing of the OK infrastructure.

Finally, Part V concludes the thesis with final discussions: Chapter

10 gives a summary of related work in the area of emergency response

systems; finally, Chapters 11 and 12 draws conclusions and outline future

work directions, respectively.

9

CHAPTER 1. INTRODUCTION

10

Part I

State of the Art

Chapter 2

Service-Oriented Coordination

While the Service-Oriented Architecture paradigm is being commonly ac-

cepted as a means to build distributed systems that deliver application

functionalities as services, web services are emerging as suitable standards

that provide an implementation of such paradigm. They can be composed,

discovered and invoked thus allowing different organizations to provide and

use service functionalities.

Since they are self-contained and self-describing XML-based compo-

nents which enable interoperability of heterogeneous applications, they

constitute the starting point for coordinating distributed processes. Web

services are, in fact, sufficient for basic interaction needs but, by them-

selves, inadequate to integrate processes involving multiple participants.

For this reason, languages and models are needed to provide coordination

mechanisms fulfilling the execution of more complex interactions. Many

proposals are available and some became already standards. The most

important ones are: BPEL4WS (or BPEL) [4], WSCI [5], BPML [110],

WS-CDL [99], OWL-S [72], WSMO [97]. There is no common agreement

on the classification model for such languages but generally they are associ-

ated to orchestration and choreography languages [98, 87], or to web service

composition techniques, which in turn are divided in static (e.g., BPEL,

13

CHAPTER 2. SERVICE COORDINATION

WS-CDL) and dynamic (e.g., OWL-S) techniques [23]. Moreover, Kang

et al. [63] distinguish between composition and collaboration techniques

which adopt web services as basic and reusable software components. Table

2.1, taken from [63], shows the distinctive characteristics of both techniques

taking WS-CDL and BPEL as examples of collaboration and composition

techniques, respectively.

WS-CDL BPEL4WS

The Collaboration layer specification The Composition layer specification

Information driven Explicitly invoking

Among participants Within one single participant

Distributed controlling Centralized controlling

Distributed controlling Centralized controlling

Description language Process execution language

Peer-to-peer Centralized executor

Dynamic topology support -

Candidate recommendation Officially published

No commercial implementation Websphere, ActiveBPEL, etc

Table 2.1: Collaboration vs. Composition

From the table above, while composition techniques (a) coordinate avail-

able services by means of a central controller that is fully responsible for

the execution of the process and (b) focus on the modelling on one sin-

gle participant, the counterpart collaboration techniques model interac-

tions among participants in decentralized settings, where the control is

distributed. This recalls the difference between orchestration and chore-

ography approaches and take us to contrast some of the concepts outlined

in the works mentioned so far: “programming in the large”, “coordinated

interaction”, “collaboration”, “choreography” versus “programming in the

small”, “coordinable”, “composition”, “orchestration”. In the next sec-

tions we follow this distinction and give an overview of both composition

14

2.1. COMPOSITION TECHNIQUES

and collaboration techniques1 .

2.1 Composition techniques

The aim of composition techniques is to provide an extension of the Web

service technology in order to support the creation of composite services

out of simpler ones. The main methods are classified into two broad cate-

gories: workflow-based methods (e.g., BPEL, BPML) and methods based

on Semantic Web techniques and AI planning for dynamic composition

[90].

2.1.1 Workflow-based composition

In this kind of composition, the flow of the information and the invocation

between services is known in advance. BPEL4WS [4] can be employed

to define either abstract or executable business processes. BPEL abstract

processes are not executable per se, but they can indirectly impose behavior

compliance upon private processes executed by the BPEL orchestration

controller. How? By defining sequencing rules on invoked operations upon

the BPEL private process. In this way the BPEL orchestration engine can

use the abstract process to validate and assure public protocol conformance

of executing processes. BPEL is also employed to describe executable

business processes. In this case, the process models the internal, actual

behaviour of one participant; it does so by encoding a precise sequence

of messages that are exchanged between partners and described by their

WSDL definitions. Moreover, an executable business process is said to be

“compositionally complete”, that is, exportable as a Web service eligible

to participate in other compositions.

1In the rest of this thesis, the terms “composition” and “collaboration” will be used interchangeably

with the terms “orchestration” and “choreography” respectively.

15

CHAPTER 2. SERVICE COORDINATION

2.1.2 Dynamic composition

The technique described in the previous section requires human activities

since services have to be directly specified and protocols (or models) have

to be manually defined at design time. This prevents complex services to be

created dynamically, at runtime. Methods based on Artificial Intelligence

aim at either generating the process model automatically or locate the

correct services if an abstract process model is given.

Such an abstract process model can be provided by an OWL-S service.

OWL-S [72] is one of the two most prominent frameworks for enabling

automated Web service composition. It provides a service ontology that

supplements the WSDL description of a Web service with semantics. An

OWL-S service is defined by three parts:

• Profile: describes what the service does;

• Process Model: tells how the service works;

• Grounding: contains details on how to access the service

The idea is that automatic composition can be achieved by reasoning

on these components. WSMO is the alternative framework to OWL -S: it

goes beyond the definition of a service ontology and provides a complete

methodology for constructing Semantic Web applications.

While frameworks like OWL-S and WSMO aim to enrich web services

with semantic annotation, thus facilitating automated coordination of ser-

vices (e.g., composition, discovery, invocation), AI planning techniques pro-

vide the means to create a plan representing the composite service. Some of

these methods exploit semantic service descriptions to produce the plans.

The work in [107] provides such an example: OWL-S Web service descrip-

tions are translated in the knowledge domain of a planning system based

on a Hierarchical Task Network (HTN). In [18], the authors introduce a

16

2.2. COLLABORATION TECHNIQUES

general architecture for service delivery and coordination and describe a

composition component which provides flexible semantic service compo-

sition by exploiting OWL-S descriptions and Xplan, a planner partially

based on HTN. In these works, the key idea is to sequentially compose the

available web services, which are regarded as black boxes. In [89], a differ-

ent technique based on “planning as model checking” is described to auto-

matically compose BPEL web services: the code representing an internal

business process is synthesized automatically starting from abstract BPEL

specifications and a given business goal. This last method, in contrast to

the others, has the advantage to deal with situations where external part-

ner services are unpredictable and opaque in their internal status; however,

the process of creating the plan is time-consuming. Althought many other

AI planning techniques exist for automating web service composition, it is

not our aim to provide a complete list in the framework of this thesis.

2.2 Collaboration techniques

As previously mentioned, the aim of collaboration techniques is that of

providing a global view of how the participants interact in order to achieve

a common goal. Here, the perspective is switched, from the “viewpoint”

of the single actor (orchestration) to that of all the involved actors, which,

in this case, are treated equally (choreography). A choreography model

does not describe any internal action (e.g., internal computation, data

transformation) occurring within a participating service that is not directly

related to an externally visible effect. In short, choreography foresees all

the interactions between the participating services that are relevant with

respect to the choreography’s goal.

Compared to composition techniques, collaboration techniques are less

investigated and choreography languages are defined at a preliminary stage.

17

CHAPTER 2. SERVICE COORDINATION

In the next section we give an overview of the main choreography languages.

2.2.1 WSCI

The Web Service Choreography Interface (WSCI) [5] was the first XML-

based language attempting to provide a standard for describing message

exchange among collaborating parties. However, WSCI is classified as a

behavioural interface rather than a choreography language, since it de-

scribes the flow of messages exchanged by a web service participating in

choreographed interactions with other services. WSCI specifies an ab-

stract business process that is observable by external services. Therefore,

like orchestration, focuses on the perspective of the single participant. Like

choreographies, it does not describe internal tasks (e.g., internal data trans-

formations).

2.2.2 WS-CDL

The Web Services Choreography Description Language (WS-CDL) [99] is

the standard proposed by W3C in December 2004. It is an XML-based, ab-

stract business process specification which defines interoperable, long-lived,

p2p collaborations between web services. It introduces, among others, en-

tities such as:

• Role: describes the external behavior that must be exhibited by a

party to collaborate with other parties;

• Relationship: represents the mutual commitments needed between

two parties to interact effectively;

• Choreography : defines the collaborations between interacting parties;

• Interaction Activity : determines an exchange of information between

parties.

18

2.2. COLLABORATION TECHNIQUES

WS-CDL defines multi-party contracts that can be used in two ways:

(1) to generate the behavioural interfaces needed by peers to participate

at the collaboration and (2) to check whether a specific service - provided

with its behavioural interface - is able to play a given role in that contract.

Criticisms directed to the language regard, among the others: the lack of

a comprehensive formal grounding, the lack of direct support for multi-

transmission interactions, the lack of separation between the meta-model

and syntax [12]. Moreover, there is no graphical support and only few im-

plementations are available [38]. In this last respect, Kang et al. proposed

WS-CLD+ as an extension of the WS-CDL language [62] and a first execu-

tion engine [63] for its enactment. Other implementations include pi4soa2,

a partial implementation presented in [49] and an agent-oriented solution

[126].

2.2.3 Let’s Dance

Let’s Dance is a visual language introduced by Zaha and colleagues to

model behavioral dependencies between service interactions [125]. The

language is meant to be used during the design phase of a system, it sup-

ports the specification of both global and local models, allows to specify

interaction models at different levels of abstraction, and to compose them.

It has proven to be compliant with all the Service Interaction Patterns

(SIP) [13], a set of 13 recurrent interaction scenarios used as a benchmark

to assess the languages for service behavior modeling. Maestro has been

developed as a tool to support the static analysis of global models, the

generation of local models from global ones, and the interactive simulation

of both local and global models [36].

2http://sourceforge.net/projects/pi4soa/ [01/11/2010]

19

CHAPTER 2. SERVICE COORDINATION

2.2.4 BPEL4Chor

BPEL4Chor [37] is a language built on top of BPEL, to extend orchestra-

tion models with choreographies. In BPEL4Chor, the core elements are: (i)

Participant behavior descriptions define the control flow dependencies be-

tween activities, in particular between communication activities, at a given

participant; (ii) A participant topology determines the structural aspects of

a choreography by specifying participant types, participant references, and

message links; (iii) Participant groundings describe the technical configura-

tion of the choreography by pointing to actual links to WSDL definitions,

and establishing XSD types. It complies with almost all service interaction

patterns, promotes reusability since technical details are confined to the

groundings layer, and directly supports multi-party interactions. Regard-

ing the supporting tools, a web-based editor3 exists that enables designers

to create choreography models in a graphical way.

3http://www.bpel4chor.org/editor/ [01/11/2010].

20

Chapter 3

Agent-Oriented Coordination

As presented in the previous chapter, the SOA framework has the goal to

provide loose coupling among interacting software agents which are dis-

tributed over a network and created by different organizations, with differ-

ent platforms. The similarity with Multi-Agent Systems (MASs) becomes

apparent: a MAS is, in fact, a loosely coupled network of intelligent agents

that interact to solve problems that are unsolvable by the individual ca-

pacities or knowledge of the single entity. However, there is a fundamental

difference between SOA and MAS that lies in the definition of an agent. A

“SOA agent” is a software agent, that is, a program that implements and

accesses a web service. In a MAS, the agent is an intelligent agent, that is,

an independent entity which is able to make decisions autonomously. While

software agents are involved in stateless communications, intelligent agents

can engage in complex interactions by means of sophisticated communica-

tion and coordination mechanisms and can easily adapt to changes in the

environment they inhabit. This makes agent techniques suitable to com-

plement and enhance the more inflexible nature of Web service technology.

In the next sections, we give an overview of the main agent communication

and coordination techniques and sketch some approaches which use these

techniques to strength web service technology.

21

CHAPTER 3. AGENT-ORIENTED COORDINATION

3.1 Agent communication languages

An Agent Communication Language (ACL) is a mechanism allowing agents

to exchange information and knowledge. Existing ACLs for MASs are

KQML[45] and FIPA-ACL [47]. Even though the latter has superseded

the former, the principles underlying the two are similar. They are based

on the speech act theory [8, 102], according to which verbalizing certain

utterances (performative speech acts) means to “do things” or “perform”;

a message therefore specifies a performative (or communicative act) which

tells whether it is an assertion, a command, a query or any other element

of a predefined set of performatives. A KQML message is organized in

three layers:

• Content Layer: it represents the actual content of the message encoded

in a given representation language. Different representation languages

are allowed, including languages expressed as ASCII strings and those

expressed using binary notation;

• Communication Layer: it specifies lower-level communication param-

eters, such as the identity of the sender and the receiver, and a unique

identifier for the communication;

• Message Layer: it is the fundamental layer which determines the type

of performative; it also specifies the content language, the ontology

used and some type of description of the content.

As stated above, FIPA-ACL is conceptually similar to KQML. Both

ACLs are specified with a formal semantics which is intended to provide

the meaning of the communicative acts: each message comes with a set of

(feasibility) preconditions and postconditions (rational effects). The former

represent the necessary conditions that must hold before a message is sent

and the latter determine the state in which the sending agent must be in

22

3.1. AGENT COMMUNICATION LANGUAGES

after the message delivery; usually they also specify the conditions that

must be satisfied in the recipient agent.

For what concerns the integration of FIPA’s technologies with service-

oriented ones, [18] sketches an agent-based approach where FIPA-ACL

standards adopted in JADE are combined with Semantic Web Services

(OWL-S) to realize a flexible coordination infrastructure, able to operate

in highly dynamic settings. P. A. Buhler et al. [25] recognize the benefit of

using MAS techniques for flexible enactment of enterprise workflows and,

starting from a comparison between BPEL and the FIPA-IP standard,

suggest the use of a BPEL specification to express the initial social order

of a MAS.

In [67], the authors analyse the two ACLs, compare them and explain

their limitations: it is up to the agent programmer to conform to the

semantics defined in the specification. As a consequence, the problem is

to pass from the theory (formal semantics) to the code and the process is

left to the intuition of the designer. This clearly leads to problems when

coordinating groups of heterogeneous computational entities. However,

since compliance with the formal model is not enforced, ACL standards

are adopted in some multi-agent platforms such as JADE [17].

Besides the problem of relying on agent designers to avoid messages

being misinterpreted, a crucial issue of ACLs is that while they guaran-

tee knowledge sharing, effective coordination is not ensured. Cost et al.

[31] well identify these two distinct and separate problems which interact-

ing agents face when acting in open and dynamic environments: while the

knowledge sharing problem between agents is solved with shared ontologies

and translation of their respective representation languages, coordination

requires agents to reason about the next action to perform (e.g., the mes-

sage to send), the anticipated actions of others and the environment; in this

way, coherent interactions aimed at completing a common task can take

23

CHAPTER 3. AGENT-ORIENTED COORDINATION

place. In short, agents usually engage in complex interactions which use

ACL performatives as building blocks. Another perspective of this problem

is provided by Greaves et al. [54] which identify the Basic Problem:

“Modern ACLs, especially those based on logic, are frequently power-

ful enough to encompass several different semantically coherent ways to

achieve the same communicative goal, and inversely, also powerful enough

to achieve several different communicative goals with the same ACL mes-

sage”.

Basically, it is unfeasible for an agent, whose aim is to select the next

action to take in an interaction, to reliably deduce the intentions and goals

implied in the use of an ACL performative by another agent; therefore,

since it lacks the more rich context of the interaction, it comes to search

in a vast space of possible actions. As Maudet et al. [75] observe, the

complexity of this task is made worse by the difficulty of accessing an

agent’s mental-state (especially in open environments) and by the fact

that not always agents are “sincere”, hence trustable.

3.2 Conversation policies

To overcome the limitations of ACLs, vast research has been conducted.

The concept of “conversation policy” as a preplanned pattern of message

exchange that two or more agents agree to comply with has been intro-

duced. A conversation policy (or protocol) narrows the possible choices an

agent has to continue its dialogue with its counterparts; it establishes the

allowed sequences of semantically coherent messages exchanged to achieve

a goal by constraining them. As Maudet et al. [75] observe, a conversation

provides the context and has its own semantics and this coincides with

the semantics of an ACL, which thus cannot be reduced to the sum of the

single performaives’semantics.

24

3.2. CONVERSATION POLICIES

Conversation policies as defined by Greaves et al. [54] are conceived as

abstract sets of fine-grained constraints, each handlying a certain aspect

of the conversation (i.e., uptake acknowledgment, synchrony, exception

handling, etc.). They should be shared among the agents and enforced by

the computational models adopted by each of them.

In order to model conversation policies on an abstract level, extensions

of the Unified Modelling Language (UML) have been proposed, such as

the AUML formalism [84, 85]. It allows to represent agent interactions

by means of collaboration, sequence and activity diagrams. These kind

of protocol diagrams are used by FIPA to provide an Interaction Protocol

(IP) standard, i.e., a set of high-level interaction protocols (e.g., auction,

contract-net, negotiation) [46]. Tools have been proposed for mapping

high-level AUML diagrams into Petri nets, thus to generate code structures

from the drawings [26].

Computational models used to implement conversation protocols range

from Finite State Automata (FSM), to Pushdown Automata (PDA), to

Petri Nets and Colored Petri Nets. For example, Iwao et al. [59] specify

conversation policies by means of FSM: so called policy packages separat-

ing the agent’s inner state from the state transitions and the rules for state

transitions are dynamically exchanged among agents which are required to

adopt the same architecture in order to interpret a policy package. Martin

et al. [73] also use an automata (specifically a PDA) for protocol represen-

tation; however, they provide mechanisms to statically and dynamically

upgrade it. Petri Nets are preferred by de Silva et al. [35] since they allow

to parallelize conversation (e.g., messages sent in multicast). The advan-

tages of using Colored Petri Nets (CPNs) to model conversational proto-

cols are presented in detail by Nowostawski et al. [83] which underline the

ability of such computational models to model, beside concurrency, the dif-

ferent participants’ roles; and to allow the reuse of conversation structures.

25

CHAPTER 3. AGENT-ORIENTED COORDINATION

Further research (among many others) on the use of CPNs for protocol

representation has been conducted by Cost et al. [29, 30, 31] and Lin et

al. [68].

3.3 Social agency

Alternative approaches to conversation policies have emerged which con-

sider agents as members of an artificial society. Such society-based ap-

proaches underline the importance to explicitly define societal norms in an

interaction among agents [105, 104]. Societal norms represent constraints,

that is, restrictions an agent may choose to adhere to, in order to be part of

a society and thus gain benefit from it (e.g., from services, knowledge pro-

vided by other agents). In particular, concepts as “commitments”, “obli-

gations”, “power” (meaning hierarchical relations) have been introduced to

model such artificial social systems. The following sections present briefly,

and not exhaustively, some of the most relevant approaches. More com-

prehensive surveys tackle the issue of specifying agent coordination under

different perspectives: Artikis et al. [6] provide a definition of Open Agent

Systems (OAS) through the review and comparison of four frameworks

(i.e., normative systems, enterprise modeling, commitment protocols and

Electronic Institutions) highlighting their ability to model normative re-

lations; McGinnis et al. [76] discuss only those approaches that can be

ascribed to “first-class protocols” by stressing the feature of being dynam-

ically composable.

3.3.1 Commitment protocols

The concept of social commitment has been used by Yolum and Singh [123]

to develop a framework based on commitment machines. Here social norms

are represented by commitments. A commitment c(x, y, q, p) means that

26

3.3. SOCIAL AGENCY

the debtor x is committed to the creditor y to bring about the condition p

when the condition q is satisfied. There can be non-conditional (or base-

level) commitments (i.e., q is true) and meta-commitments (i.e., p involves

other commitments). Commitments provide meaning to a protocol and

have operations defined on them (e.g., create, discharge, cancel, etc.) which

are executed as a result of a message sent or received. Agents are supplied

with inference mechanisms that allow them to reason about the action to

be taken. The works in [124, 39, 28, 40] present and describe the use of

commitment protocols.

3.3.2 Normative systems

In normative systems, the approach is similar to that of commitment ma-

chines but social norms are represented by legal and illegal actions instead

of commitments. As before, agents have the proper machinery to create

and manipulate norms when messages are sent or received. The work in

[7] presents this kind of framework.

3.3.3 Dialogue-game protocols

The approaches that lead to these kind of protocols were inspired by the

theory of Walton and Krabbe [122], according to which dialogues can be

categorized into six types (e.g., persuasion, information-seeking, negotia-

tion, etc.) depending on the individual and joint goals of the participants,

and on the information and the aptitude (e.g., being cooperative, compet-

itive) they initially have. Research has been carried out to formalize the

theory and to apply it to enable inter-agent communication [91].

Maudet et al. [75] offer a broad survey of both commitment-based and

dialogue-game protocols.

27

CHAPTER 3. AGENT-ORIENTED COORDINATION

3.3.4 Electronic Institutions

Electronic Institutions (EI) [44, 42, 43, 50] provide a framework to specify

artifical social systems where agents are supposed to follow social norms

to engage in interactions. The core components of an EI are [42]:

• Roles: they represent the agent capabilities, that is, the actions al-

lowed when an agent takes a given role, and are organized in hier-

archies to specify, for example, subsumption and exclusivity between

roles;

• Dialogic framework: it determines the message format of communica-

tive acts, i.e., the ontology, the content language, a list of illocutions

(type of performatives), roles and their relationships. The dialogic

framework hence permits agents to interact meaningfully.

• Scenes: a scene defines a specific task, i.e. a structured exchange of

messages between roles, within the whole interaction (e.g., negotia-

tion). Scenes are defined as finite state machines and are connected

together, thus forming a so called performative structure. Agents only

interact directly within a scene, move simultaneously between states,

can take different roles, and can pass from one scene to another de-

pending on normative rules (e.g., obligations and commitments), these

being defined and administered externally by a central process.

• Performative structure: a network of scenes describing how agents can

move between scenes, provided that they satisfy certain rules which

are dependent on the roles they occupy and the performative they

execute.

• Normative rules: a normative rule expresses obligations or prohibi-

tions on agent behavior and is defined by an antecedent (a list of

28

3.3. SOCIAL AGENCY

scene-illocution pairs) and a consequent (the predicates that must

hold if the antecedent illocutions have taken place).

Tools assisting the design of EIs exist: ISLANDER is such an exam-

ple [44]. It provides a graphical user interface that allows users to edit

performative structures, scenes and illocutions. Another tool offering com-

putational support for EI specifications is the one presented in [50]; it is a

rule-based system for executing a set of normative rules which are used to

derive the permissions and obligations of the agents in each state.

EIs offer the advantage that agents involved in interactions will actually

conform to the estabilished norms, this resulting in reliable coordination

mechanisms. However, some drawbacks cannot be avoided: (1) since a

finite-state model is adopted, all the possible conversations are shaped be-

fore they actually occurr, thus limiting interaction flexibility; (2) since an

administrative agent syncronizes the agents, the objective to build decen-

tralized systems is not fulfilled.

3.3.5 Lightweight Coordination Calculus (LCC)

Alternative approaches exist that overcome the limitations of the EI frame-

work. These are based on the use of protocol languages: executable spec-

ifications which are used directly to build real multiagent systems [119].

The feature of being inspectable/executable protocols avoid to translate

abstract specifications into computational models.

The Lightweight Coordination Calculus (LCC) is a protocol language

according to the above definition. It is based on logic programming [94] and

is used to describe interactions among distributed processes, e.g., agents,

web services [92, 93]. LCC was designed specifically for expressing p2p style

interactions within multi-agent systems, i.e., without any central control;

henceforth, it is well suited for modeling coordination of software compo-

29

CHAPTER 3. AGENT-ORIENTED COORDINATION

nents running in an open environment. Its main characteristics are the

flexibility, the modularity and the neutrality to the underlying commu-

nication infrastructure. It supports, on one side, the independence and

autonomy of the peers and, on the other side, the collaborative process es-

sential to achieve a common goal in a distributed-knowledge and dynamic

environment.

LCC syntax and semantics

The formal syntax of LCC is presented in Figure 3.1.

Framework := {Clause, . . . }
Clause := Role :: Dn

Agent := a(Type, Id)

Dn := Agent | Message | Dn then Dn | Dn or Dn | Dn par Dn | null← C

Message := M ⇒ Agent | M ⇒ Agent← C | M ⇐ Agent | C ←M ⇐ Agent

C := Term | C ∧ C | C ∨ C

Type := Term

M := Term

Where null denotes an event which does not involve message passing; Term is a

structured term and Id is either a variable or a unique identifier for the agent.

Figure 3.1: LCC formal syntax

An LCC interaction model is a set of clauses, each of which defines how a

role in the interaction must be performed. Roles are described by their type

and by an identifier for the individual peer undertaking that role. Partici-

pants in an interaction take their entry-role and follow the unfolding of the

clause specified using a combination of the sequence operator (“then”) or

30

3.3. SOCIAL AGENCY

choice operator (“or”) to connect messages and changes of role. Messages

are either outgoing to (⇒) or incoming from (⇐) another participant in a

given role. During an interaction, a participant can take on more than one

role, and can recursively take the same role (for example when processing

a list). Message input/output or change of role is controlled by constraints

defined using the normal logical operators for conjunction and disjunction.

LCC example

A basic LCC interaction is shown in Figure 3.2.

a(r1, A1) ::

ask(X)⇒ a(r2, A2)← need(X) then

update(X)← return(X)⇐ a(r2, A2)

a(r2, A2) ::

ask(X)⇐ a(r1, A1) then

return(X)⇒ a(r1, A1)← get(X)

Figure 3.2: LCC example: double arrows (⇒,⇐) indicate message passing, single arrow

(←) indicates constraint satisfaction.

The peer identified by the value of the variable A1 playing the role

r1 verifies if it needs the info X (pre-condition need(X)); if it does, A1

asks the peer identified by the value of the variable A2 for X by sending

the message ask(X). A2 receives the message ask(X) from A1 and then

obtains the info X (pre-condition get(X)) before sending back a reply to

A1 through the message return(X). After having received the message

return(X), A1 updates its knowledge (post-condition update(X)).

The constraints embedded into the protocol express its semantics and

31

CHAPTER 3. AGENT-ORIENTED COORDINATION

could be written as first-order logic predicates (e.g., in Prolog) as well

as methods in an object-oriented language (e.g., in Java). Furthermore,

these constraints could hide simple functionalities (i.e., provided by web

services) as well as very complex AI algorithm. This is the characteristic

of modularity previously mentioned that allows to separate the protocol

from the agent or service engineering.

While performing the protocol, peers can therefore exchange messages,

satisfy constraints before/after messages are sent/received and jump from

one role to another so that a flexible interaction mechanism is enabled

still following a structured policy, which is absolutely necessary for team-

execution of coordinated tasks.

Coordination in LCC

An agent willing to coordinate via LCC protocols must have a way to

receive the protocol, unpack it, interpret what are the actions to perform

next and upgrade the state of the conversation. This is done through a

protocol expansion mechanism which consists of:

• Extracting the protocol embedded in the message received;

• Extracting from the protocol the clause pertaining to its role and

identifying its part of the conversation;

• Applying rewriting rules to compute a new clause (that will be sub-

stituted to the old one in order to produce a new protocol), a set of

outgoing messages, and a set of unprocessed messages;

• Sending the outgoing messages, each containing a copy of the new

protocol.

The above steps and the rewriting rules are described in detail in [94].

To enact the above-sketched coordination mechanism, the following compo-

32

3.3. SOCIAL AGENCY

nents need to be present in an agent process: (i) a message encoder/decoder

for sending and receiving messages through the communication infrastruc-

ture chosen to transmit messages on the wire; (ii) a protocol expander

performing the just mentioned steps; and (iii) a constraint solver used to

satisfy the pre- and post-conditions specified in the protocol.

The fact that the protocol can be exchanged between agents while the

conversation evolves, allows for flexibility and adaptivity. On one hand,

LCC protocols can be designed in a way that confine agents to be mere

executors of decision procedures; in this case, the protocol is fully con-

strained and imposes strict “social norms” which limit the autonomy of

the agent; on the other hand, they can be very flexible, for example by

just declaring the messages allowed to be exchanged; in this second case,

agents are required to apply reasoning techniques in order to compute the

next actions to be taken. They could even modify the protocol so that the

one sent next differs from the one received. McGinnis et al. [77, 78, 79]

conducted research on how to make protocol transformation in a way that

still guarantees the continuation of meaningful dialogues.

Although the LCC protocol provides flexible specifications, some draw-

backs were discovered: Besana et al. [19] present these limitations and

extend the language so to overcome them. In particular, they introduce

two operators: the scene operator which allows to model abstractions of

interaction models, thus to compose them in a more straightforward way;

and the parallel operator that permits to create new processes performing

roles at run-time.

As far as composability is concerned, the RASA executable protocol lan-

guage was designed where dynamic composition is intrinsic to the language.

RASA combines constraints and process algebra to model interaction pro-

tocols as first-class entities [81]. As for LCC, the agent process is decoupled

from the protocol but the ability of participants to compose protocols at

33

CHAPTER 3. AGENT-ORIENTED COORDINATION

runtime to engage in more complex interactions is a built-in feature. A

comparison of the two protocols by analyzing different characteristics is

provided by McGinnis et al. [76].

Integration with Web service standards

The benefits of integrating multiagent techniques with web service stan-

dards are pointed out in different research works [93, 119, 118, 27, 100, 55,

56].

Li Guo et al. [55, 56] apply techniques to enact business workflows ex-

pressed in BPEL4WS in a distributed manner, i.e., by using a multiagent

platform where agents exchange LCC protocols. In [55], an LCC interac-

tion model is directly derived from a BPEL4WS specification and passed

around the agent network; in [56], the approach of using an LCC protocol

to interpret a BPEL4WS model is preferred.

A protocol language similar to LCC, MAP, has proven to be effective

in building multiagent systems within a Web service architecture, thus

allowing complex communication patterns: Walton [119] describes a service

approach, the key idea being that of building a MAS service composed by

proxies in charge of communicating via interaction models. An agent is

represented by one or more proxies and an external web service, which

embodies its decision procedures (defined as constraints in the interaction

models). The approach is substantiated in the MagentA agent system [120].

Here, the agent technique is adopted to enable web service composition by

defining pre-prepared plans written in MAP. The same protocol is used

for web service invocation [117]: it specifies the correct order in which the

operations should be invoked as well as inter-argument dependencies, thus

enhancing industry-standard WSDL specifications.

Another attempt to integrate agent techniques with the web service

world is made by Giunchiglia et al. [52]: here LCC is extended with

34

3.3. SOCIAL AGENCY

contextual information in order to facilitate semantic matching at run-time,

this being crucial for enabling automatic service composition; although

interaction protocols are predefined workflows, the advantage is that web

services are not assumed to be semantically annotated.

In relation to web service composition, other agent-oriented methods

exist: for instance, Casella et al. [27] propose a tool for translating AUML

visual diagrams into WS-BPEL and WSDL definitions. Also, a protocol-

based approach is advocated by Singh et al. [106] to model and enact

business processes. Here, the emphasis is on how the modular nature

of protocols can be exploited to enable their abstraction, thus allowing

protocols to be composed and reasoned about.

Recently, protocol languages such as LCC and MAP have been regarded

more as executable choreography languages rather than logic-based work-

flows enabling service composition [22, 19, 9, 10, 11]. Barker et al. [10, 11]

used them to enact e-science experiments where the transmission of huge

amount of data benefits from a choreography model in terms of decreased

data transfer and bottleneck likelihood. In particular, in [10]/[11], Open-

Knowledge/MagentA is presented as the framework for the enactment of

distributed LCC/MAP choreographies which are then compared with ex-

isting languages such as WS-CDL, Let’s Dance and BPEL4Chor.

Finally, Miller et al. [82] propose the RASA language as a viable solution

to coordinate web service and agent processes in e-science workflows.

35

CHAPTER 3. AGENT-ORIENTED COORDINATION

36

Part II

An Interaction-Oriented Approach

to Knowledge Sharing:

OpenKnowledge

Chapter 4

The Framework

In the previous two chapters, we have given an overview of state-of-the-

art research in coordination techniques in two different (but combinable)

fields, namely the web service and the multiagent fields. In this chapter, we

restrict our attention to OpenKnowledge, the framework developed within

the European project OpenKnowledge [95], and around which our work

revolves; we describe here its underlying principles.

As emerged from our state-of-the-art analysis, effective knowledge shar-

ing and coordination between (reactive/proactive) processes across open

environments, is made possible, respectively, by achieving semantic inter-

operability and by permitting computational entities to engage in complex

interaction patterns. The OpenKnowledge framework we introduce in this

chapter addresses both issues with few general principles.

The basic intuition is that by promoting interaction specifications as

the currency of knowledge sharing, it is possible to have a context in which

the knowledge that is to be exchanged may be interpreted [96]. In this

way, semantic heterogeneity problems can be reduced; in addition, they

can be solved with techniques which prevent different parties to agree on

39

CHAPTER 4. THE FRAMEWORK

a common conceptualization of the world a priori, i.e., before the actual

interaction. Instead, semantic agreement applies only for the purpose of

the interaction and within its scope.

According to the just described vision, it is fundamental to have inter-

action specifications fulfilling certain criteria.

The first criteria consists of specifications which guarantee the separa-

tion between the interaction protocol and the processes that will take part

in it. For example, if the protocol is being used to compose a set of services,

it should not specify which atomic services will be involved. This is crucial

to allow reuse of interaction specifications, hence, to permit heterogeneous

peers to make use of them.

The second criteria requires to devise specifications which are indepen-

dent on the computational model adopted to run them. For example, a

peer could run the interaction model locally and contact partner peers

only when needed; or, it could opt for a distributed computation where

each party is separately running its piece of model; or, finally, interactions

could be passed around as scripts thus to produce complex interactions

[96].

It is therefore crucial to ensure neutrality towards the computational

strategy adopted for executing the specifications.

The OpenKnowledge framework promotes the use of the LCC language

to specify models of interactions; the good reason for that lies in the fact

that LCC represents an executable protocol language which fulfills the two

criteria above, and is expressive enough to shape complex interaction pat-

terns between peer roles. LCC has already been presented in Chapter 3,

Section 3.3.5; we refer to a basic description of it in the Section 5.1 of the

next chapter, where the core components of the OpenKnowledge system

40

are described.

Once an interaction model is specified, coordination between peers has

to take place. In order to form teams for the purpose of completing a task

effectively, three principles must be put in action [96]:

1. In open environments, peers should interact in a meaningful way, i.e.,

the knowledge exchanged should be understood within the context of a

given interaction. This is accomplished by adopting dynamic ontology

matching techniques that, at run-time, map terms in the interaction

models and help to select peers which are not known in advance but

are suitable to take part in a given interaction;

2. Interaction models should be searchable and peers should be able to

select suitable partners to interact with. This is accomplished by re-

lying on some distributed discovery service(s) which could use simple

keyword-based techniques to retrieve appropriate interaction models;

also, peers may select partners according to different strategies, one

of which could be relying on their past experiences;

3. Full automation is not a prerogative: humans might need to be on

the loop. The provision of visualization components is thus required.

This is accomplished by allowing default visualization modules and/or

modules fully customizable by both interaction models and peer de-

signers.

In the next chapter we present the OpenKnowledge system, i.e., the

infrastructure which has been developed to implement the framework de-

scribed here.

41

CHAPTER 4. THE FRAMEWORK

42

Chapter 5

The OpenKnowledge System

The OpenKnowledge system has been developed to translate the princi-

ples previously described into a concrete piece of software. It provides

the underlying p2p communication infrastructure needed to execute coor-

dinated tasks between peers. As already mentioned, the key concepts in

OpenKnowledge are [95]:

• The interactions between agents, defined by interaction models writ-

ten in LCC and published by the authors on a peer-to-peer infrastruc-

ture with a keyword-based description;

• A distributed infrastructure, denoted as OpenKnowledge Kernel, that

supports the publishing, discovery, execution, monitoring and man-

agement of the various interaction models.

In Section 5.1 we recall some LCC basics and, in Section 5.2, we de-

scribe the core ideas behind the OpenKnowledge Kernel, which allows the

execution of models of interactions among agents.

5.1 LCC interaction models

Interaction models are specified in the LCC language [92], an executable

choreography language based on process calculus, and published by the

43

CHAPTER 5. THE OPENKNOWLEDGE SYSTEM

authors on a distributed discovery service (DDS) with a keyword-based

description [66]. LCC is designed [92] to model coordination of software

components running in an open peer-to-peer environment (without a cen-

tral management): it supports, on one side, the independence and auton-

omy of the peers and, on the other side, the collaborative process essential

to achieve a common goal in a distributed-knowledge and dynamic envi-

ronment.

As described in Section 3.3.5, an interaction model in LCC is a set

of clauses, each of which describes the behaviour of an agent role. This is

defined by structuring message exchanges with other roles and role changes;

and by applying constraints defined using the normal logical operators for

conjunction and disjunction. During an interaction, a participant can take

on more than one role and can take on the same role recursively.

In OK, constraints have a key role in that they are bridges between

the interaction and the peers’ knowledge: they are used to query values or

to update the local knowledge of a peer. The LCC specification does not

enforce any particular constraint solver, hence, different engineers might

choose different techniques: web services, object oriented language meth-

ods, first order logic predicates, human intervention, etc. The OK frame-

work suggests to solve constraints by means of Java methods defined in so

called OpenKnowledge Components. These components are described in

more detail in Section 5.2.1.

Figure 5.1 shows an example of a simple LCC interaction. Here the

participant C, playing the role controller, first tries to get the time (pre-

condition getTime(Time)) and then, if this precondition is satisfied, it

sends the message request info(Time) to the participant FS playing the

role food simulator. When the flood simulator receives the message from

the controller, it first resolves the floodChanges(Time,Changes) constraint,

that calculates changes in water level at time Time, and then it sends back

44

5.2. THE OPENKNOWLEDGE KERNEL

a message with the changes (flood info(Changes)) to the controller. The

controller, after having received the flood info(Changes) message, updates

its local knowledge about the flood with the postcondition constraint up-

dateFlood(Changes). At the end of the controller role definition, we also

have an example of recursion (a(controller,C)).

a(controller, C) ::

request info(Time)⇒ a(flood simulator, FS)← getT ime(Time) then

updateF lood(Changes)← flood info(Changes)⇐ a(flood simulator, FS) then

a(controller, C)

a(flood simulator, FS) ::

request info(Time)⇐ a(controller, C) then

flood info(Changes)⇒ a(controller, C)← floodChanges(Time,Changes)

Figure 5.1: Simple LCC interaction.

5.2 The OpenKnowledge Kernel

The OpenKnowledge Kernel [34] uses p2p technology to provide a dis-

tributed infrastructure which enables assorted services and applications

to interact according to predefined taskflows; it permits peers to publish,

search and run interaction models as well as to share and download so

called OpenKnowledge Components (OKCs), i.e., the software code pro-

viding the services needed to execute the taskflows.

Each peer willing to participate in an “OK-enabled” interaction has to

install the OK Kernel whose architecture is sketched in Figure 5.2 [34].

A peer can manage OKCs and store interaction models1 (IMs), i.e., for-

mal specifications written in a suitable language (e.g., LCC). Each IM de-

1In the rest of this thesis, we will give to “interaction model” the short name “IM”.

45

CHAPTER 5. THE OPENKNOWLEDGE SYSTEM

Figure 5.2: OK Kernel Architecture [34]

fines roles and the interactions between them. OKCs are able to fulfill one

or more roles in a given IM, and are coordinated by means of a peer acting

as a coordinator in the network. In order to be selected as a coordinator,

a peer needs to include an interpreter able to parse the IM specification at

hand. Notice that the OK Kernel infrastructure is not strictly tied to the

language used to specify workflows. Consequently, different languages will

require different interpreters.

The next sections describe in more detail the OpenKnowledge compo-

nents (Section 5.2.1), the core modules of the kernel (Section 5.2.2) and

the services it provides (Section 5.2.3).

5.2.1 OKC components

As mentioned in Section 5.1, the constraints defined in an IM can be solved

by means of Java methods which are in turn specified within OKCs. They

are software components with the following characteristics:

46

5.2. THE OPENKNOWLEDGE KERNEL

• Providing the bridge between IM’s constraints and the peer’s knowl-

edge;

• Allowing a peer to play different roles in different IMs;

• Allowing modularity and reuse of code.

A peer willing to play a role in a given interaction, must be capable of

solving the constraints defined for that role. For this purpose, it needs to

add OKCs in its repository. An OKC is a Java class containing methods

which can be used to solve constraints defined in IMs. When a constraint

in an IM has to be solved, a Java method declared in an OKC “associated”

to the peer, that plays the role containing this constraint, is called [20].

A peer knows whether it is capable of playing a given role by applying a

matching algorithm during the subscription phase, which is described in

more detail in Section 5.3.1.

When a peer takes part in an IM, new instances of the related OKCs

are created and stored in a local repository. An OKC, indeed, can be

used in more than one interaction but a single OKC instance has a scope

only within the associated interaction. Therefore, while a peer can run

different IMs at the same time, data cannot be shared among the different

runs. However, the peer’s knowledge updated within a given interaction

might need to be accessed in the context of another interaction running

in parallel. Therefore, there is a need for a mechanism allowing an OKC

to access the peer’s local knowledge, i.e., information that persists across

multiple interactions.

For this purpose, the OK framework provides a peer access mechanism

which uses Java annotations [20]. On one side, a peer exposes a set of

methods which access its internal knowledge and which are semantically

annotated as in Figure 5.3. On the other side, an OKC lists the peer’s

47

CHAPTER 5. THE OPENKNOWLEDGE SYSTEM

methods it needs to use in order to access the peer local knowledge (Figure

5.4).

A peer eventually instantiates and stores the PeerAccessor class con-

taining the above mentioned peer’s methods. Before adding an OKC to

its local repository, it matches the annotated signatures of the methods

exposed by the peer and those of the peer’s methods required by the OKC.

This is done by transforming them into trees and verifying their distance

[53, 51]. The result of this operation is the creation of an adaptor which

allows an OKC to access the peer’s local knowledge. The described mech-

anism is created through a manager module which acts as a mediator: it

ensures decoupling between the peer and the OKCs. More details on the

mediator module are given in Section 5.2.2. Figure 5.5 shows how peer’s

knowledge is accessed through the method invokePeer(‘‘getMaxTimestep’’,

arg), called within the OKC component.

public class PeerAccessor implements PeerAccess {

......

@MethodSemantic(language="tag",

args={"max_timestep"}
)

public boolean getMaxTimestep(Argument MaxTimestep){
MaxTimestep.setValue(this.maxTimestep);

return true;

}

@MethodSemantic(language="tag",

args={"max_timestep"}
)

public boolean setMaxTimestep(Argument MaxTimestep){
this.maxTimestep = (Integer) MaxTimestep.getValue();

return true;

}

.......

}

Figure 5.3: Annotated peer’s methods

48

5.2. THE OPENKNOWLEDGE KERNEL

@RequiredPeerAccess(

methods={"getMaxTimestep(max_timestep)",
"setMaxTimestep(max_timestep)",

"getTimestep(timestep)",

....}
)

Figure 5.4: Peer’s methods required by an OKC

public int getCycles(){
....

try {
Argument arg = new ArgumentImpl("max_timestep");

invokePeer("getMaxTimestep", arg);

maxtimestep = (Integer) arg.getValue();

} catch (AdaptorException e) {}
....

}

Figure 5.5: OKC: access to peer’s local knowledge

It is important to notice here that from within OKC methods, new

interactions can be enacted. This can be done implicitly (e.g., it is up to

the peer to decide whether to enact a new interaction) or explicitly (e.g.,

the method enforces the enactment of a new interaction) [20]. This is an

important feature that will be heavily exploited in our simulation.

An OKC can be shared across the network by wrapping it into a JAR

archive which is then published on a distribute discovery service via a

dedicated user interface. More details on this are to be found in Sections

5.2.2 and 5.2.3.

5.2.2 Kernel modules

The core modules included in the OK Kernel are depicted in Figure 5.6

and are briefly described below [34]:

Component Repository: it allows the local storage of OKCs implemented

by the peer or downloaded from the network. Retrieval of OKCs is

49

CHAPTER 5. THE OPENKNOWLEDGE SYSTEM

Figure 5.6: Peer Modules [34]

also possible and is achieved by means of keyword-based mechanisms;

users can provide labels for OKCs via a predefined user interface;

Instance Repository: since an OKC can be used in more than one in-

teraction, an OKC instance has to be created at each run. A peer,

thus, manages the created instances by means of this repository.

Communication Layer: it sends asynchronous messages to other OK

peers using the TCP/IP transport protocol. Messages contain the

sender and receivers IP address, port and identifier (that is unique

inside the peer) and the information being delivered [33];

Control Manager: this module ties together all the other modules which

can thus communicate in a decoupled way. There is no direct commu-

nication between modules except the one with the control manager.

This engineering choice allows to reduce the dependences between ob-

jects;

Coordinator: it enables a peer to play the coordinator role. It executes

the IM locally, interprets it, maintains the state of the interaction and

50

5.2. THE OPENKNOWLEDGE KERNEL

simulates message exchanges; when it encounters a constraint to be

solved, it calls the peer having the OKCs playing the IM roles where

the constraint is defined. The coordinator is key to the execution of an

interaction model; more details on the interaction lifecycle are given

in Section 5.3.

Interpreter: it parses an IM, applies the rules and identifies the con-

straints that have to be solved by OKCs. It is the module that allows

a peer to execute an IM and, more generally, that permits the decou-

pling between IMs and OKCs;

User Interface: it provides an user interface (i) to publish, search and

subscribe to IMs, (ii) to public and download OKCs and (iii) to visu-

alize interaction state and constraint satisfaction.

5.2.3 Kernel services

The OpenKnowledge Kernel comes with a set of three predefined services.

One of such services, the distributed discovery service (DDS), is crucial for

the enactment of an interaction; the other two are optional but make peer

interactions more effective. These kernel services are described below:

Distributed Discovery Service (DDS): it provides a common distributed

storage for IMs and OKCs [65]. It is also responsible for the subscrip-

tion of a peer to a role and for the subscription of the coordinator. Fi-

nally, the Discovery Service can be completely distributed: this means

that there can be more than one instance of the service running at the

same time on different computers.

The DDS algorithm [65] takes into consideration the frequency of term

occurrences in descriptions: most popular terms are found, with a high

51

CHAPTER 5. THE OPENKNOWLEDGE SYSTEM

probability, by a random search across the peers in the network, while

rare terms are found by exploiting standard DHT principles.

Ontology Matching Service: it allows to run interactions between par-

ticipants without a semantic agreement established a priori. Within

the OK system, two types of matching problems are tackled. The first

one regards the matching between the peer’s query, which expresses

the desired service functionality, and the descriptions associated to

candidate IMs suitable for the requester. Currently, this problem is

addressed by the DDS by matching IM descriptions using a simple

query expansion mechanism.

The second one is related to the mapping between the OKC Java

methods, which express the peer’s capabilities, to the constraints in

the IMs. The type of matching adopted [53] produces a confidence

level parameter that reflects the overall similarity between the con-

straints and the methods, that is, how well the peer can execute the

interaction;

Trust Service: it helps a peer in the choice of partner peers for a given

interaction. It is used during interaction bootstrap (see Section 5.3.2

for more details): a peer, after having chosen a suitable IM from a list,

has to select the list of peers to play with. This service implements

a trust algorithm where past experiences of the selecting peer are

used to calculate the probability of trustworthiness of another peer;

during an interaction, a peer observes the actions performed by other

peers, compares them with committed actions and stores the result

of this comparison in its database of past experiences. Next time it

will interact with the peer, it will read this database and will search

for records of similar scenarios (interaction contexts). The resulted

values are used to compute the probability of trustworthiness.

52

5.3. INTERACTION LIFECYCLE

5.3 Interaction lifecycle

In this section, we describe the main phases which the system goes through

when a coordinated interaction between peers has to take place: subscrip-

tion to an LCC-based interaction, bootstrap of the interaction, execution

of the interaction.

5.3.1 Subscription to an interaction model

A peer willing to perform a task (e.g., verifying the flood state in some area,

providing the water-level information service), searches for published IMs

by sending a keyword-based query to the DDS (Figure 5.7, step 1) which

in turn collects them by matching the query (eventually extended with

synonyms to improve recall) and sends back the list to the peer (Figure

5.7, step 3);

Since interaction models and peers are possibly designed by different

entities, the constraints and the peers’ knowledge bases rarely correspond

perfectly. The heterogeneity problem is addressed in two main phases [22]:

(1) the DDS selects the interactions by matching their descriptions using

a simple query expansion mechanism (Figure 5.7, step 2); (2) the peers

compare the constraints in the received interaction models with their own

capabilities [53](Figure 5.7, step 4).

The peers capabilities are provided by the plug-in OpenKnowledge com-

ponents described in Section 5.2.1. OKC annotated methods are compared

to the constraints in the interaction models, according to a mechanism

which is identical to the one described in Section 5.2.1 to access the peer’s

local knowledge. The only difference is that, here, the mapping is per-

formed between the annotated signatures of the constraints and that of the

OKC methods. In this case, the adaptors created have a confidence level

that represents the distance between the constraint and the best matching

53

CHAPTER 5. THE OPENKNOWLEDGE SYSTEM

method; the average of all the confidences of constraints gives a measure

of how well the peer can execute an interaction, and it is used to select the

most suitable one [22].

Once the peer has selected an interaction, it notifies its intent to play

one of its roles to the discovery service, by subscribing to it (Figure 5.7,

step 5).

Figure 5.7: Interaction Subscription

Figure 5.8 [111] sketches the network status when the roles in interaction

IM1 are all subscribed by at least one peer. The peers have installed their

OKCs locally: some of them can be found online (e.g., OKC1, OKC2 and

OKC3), others might be private to a peer (e.g., OKC4).

5.3.2 Interaction bootstrap

When all roles in an interaction model have at least one subscriber, the

DDS selects randomly a coordinator peer from the peer-to-peer network

(Figure 5.9, step 1), and sends it the information needed to start the team

formation process for the selected IM (Figure 5.9, step 2). This process

consists of the following steps:

54

5.3. INTERACTION LIFECYCLE

Figure 5.8: OK network at subscription time [111]

• The coordinator asks each peer in the list of subscribers to select the

peers it wants to interact with (Figure 5.9, step 3);

• Adopting a specific selection strategy (e.g., randomly, trust score

based, user based, etc.), each peer sends back its preferences (Fig-

ure 5.9, steps 4-5);

• The coordinator, when has received enough replies, creates a compat-

ible team and sends the outcome to all subscribed peers (Figure 5.9,

step 6).

It is important to notice that an interaction can begin at any moment

but it can also never start if one role doesn’t have subscriptions.

5.3.3 Interaction run

The coordinator peer runs the interaction model locally, by exchanging

messages between local proxies of the peers. Every time a constraint has

55

CHAPTER 5. THE OPENKNOWLEDGE SYSTEM

Figure 5.9: Interaction Bootstrap

to be solved, it sends a message with that constraint to the appropriate

peer (Figure 5.10, step 1). The peer, therefore, solves the constraint by

calling the corresponding method of the proper OKC (Figure 5.10, step 2)

and then sends back to the coordinator a message with updated variables

and a boolean value indicating whether the constraint has been satisfied

or not (Figure 5.10, step 3). The interaction ends when either all messages

of the interaction have been sent or some failures in a peer response occur.

Finally, the coordinator sends an interaction feedback to all peers involved

so that they can optionally send some observations that will be used by the

trust component to compute the score needed during the selection phase

of future interactions.

5.4 OpenKnowledge vs. other technologies

The OpenKnowledge platform aims at enacting interactions in a distributed

P2P manner, the ultimate purpose being that of sharing knowledge be-

tween heterogeneous computational processes in an effective, free and re-

liable way. Under this view, the OpenKnowledge framework can be com-

56

5.4. OPENKNOWLEDGE VS. OTHER TECHNOLOGIES

Figure 5.10: Interaction Run

pared and contrasted with the most prominent current technologies such as

web services, grid services, p2p and the multi-agent systems[103]. In a way,

the OK system integrates some of the features and functionalities which

are present in the just mentioned technologies. In the next paragraphs,

we briefly compare the OpenKnowledge approach with such technology

maintreams.

5.4.1 Web services

As already described in Chapter 2, one of the main concerns in the web

service community is to build an open web environment where platfor-

mindependent software components are integrated and coordinated in a

“loosely-coupled” way. In this respect, two main approaches exist: an

orchestration approach and a choreography-based one.

In the first, single web services are composed into (business) processes

which specify how they are going to interact with each other to accom-

plish the business task; a central service is responsible for the execution

of the process. Semantic Web technology is often applied to ease web

service discovery and automate composition, and, hence, to solve the se-

mantic interoperability problem in a dynamic and distributed environment

57

CHAPTER 5. THE OPENKNOWLEDGE SYSTEM

[108]. Under this perspective, while (semantic) web services provide ways

to automatically compose complex services out of simpler ones, in Open-

Knowledge these are predefined workflows of services. In this sense, Open-

Knowledge is more rigid; where it provides flexibility in respect to web

services is in its ability to separate the advertising of a service (the inter-

action model) from the execution of a service [103], which is not possible

with web services. Also, while in Openknowledge the storage of workflows

is done in a distributed way, in the classical web service architecture this

is achieved through central repositories. Moreover, while in semantic web

services the matching between provider capabilities and requester’s needs

requires the establishment of a shared and agreed ontology, in OpenKnowl-

edge the semantic interoperability problem is solved within the context of

the interaction at hand.

In a choreography-based approach, the collaboration model is equally

visible to all parties and is defined in terms of externally observable in-

teractions existing between services. In this perspective, OpenKnowledge

provides an implementation of the framework needed to allow the execu-

tion of choreographed interactions, thus contributing to the few existing

platforms (see Chapter 2 , Section 2.2 for more details).

5.4.2 Grid services

Grid technologies aim at improving standard web services and were initially

adopted to perform computing demanding task in a ditributed way [48]. As

in OpenKnowledge, the coordination of activities is achieved by means of

predefined workflows, but while in Grid systems these are centrally stored,

in OpenKnowledge this is done using a p2p mechanism. Furthermore, like

web services, grid services differ from OpenKnowledge by advertising a

service functionality together with the identification of the service-provider;

also, they focus on delivering functionalities such as long-term stability of

58

5.4. OPENKNOWLEDGE VS. OTHER TECHNOLOGIES

services, provenance, quality of service and resource monitoring, which are

not considered by the OK framework [103].

5.4.3 P2P systems

OpenKnowledge is obviously tied with the principles of peer-to-peer sys-

tems: distributed storage, symmetry of roles among the peers, etc. How-

ever, two basic characteristics distinguish the OK system from traditional

p2p architectures: (1) the focus on service-sharing rather than on data-

sharing, and (2) the use of semantic matching approaches to service dicov-

ery which ascribe it to the category of semantic p2p systems [103].

5.4.4 Multi-Agent Systems (MAS)

Being OpenKnowledge a p2p framework, the analogy with multi-agent

systems is straightforward: both frameworks aim at permitting non-trivial

interactions between heterogeneous agents; and this is achieved in both sys-

tems by enabling contracts to which all agents conform. However, while

in multi-agent systems peers are cognitive agents expected to be proactive

and designed with complex architectures, in OpenKnowledge they are in-

tended to be reactive components.

The above described analogies and differences between OK and other

dominant technologies are schematized by Siebes et al. [103] in a table

that we report here as Table 5.1.

59

CHAPTER 5. THE OPENKNOWLEDGE SYSTEM

T
ab

le
5.1:

O
p

en
K

n
ow

led
ge

v
s.

O
th

er
T

ech
n
ologies

S
im

ila
ritie

s
D

iff
e
re

n
ce

s

W
e
b
-S

e
rv

ice
s

W
e
b
-S

e
rv

ice
s

O
p

e
n
K

n
o
w

le
d
g
e

serv
ice-orien

ted
com

p
osition

of
atom

ic
serv

ices
p
red

efi
n
ed

w
ork

fl
ow

s

d
istrib

u
ted

fi
x
ed

lin
k

to
ex

ecu
tin

g
p
arty

d
y
n
am

ic
recru

itin
g

au
tom

ated
search

cen
tralised

ad
vertisin

g
d
istrib

u
ted

b
ased

on
sem

an
tic

d
escrip

tion
s

eq
u
ivalen

ce
m

atch
in

g
ap

p
rox

im
ate

m
atch

in
g

G
rid

-S
e
rv

ice
s

G
rid

-S
e
rv

ice
s

O
p

e
n
K

n
o
w

le
d
g
e

serv
ice-orien

ted
p
roven

an
ce

ab
sen

t

fi
x
ed

w
ork

fl
ow

s
Q

oS
rep

u
tation

m
ech

an
ism

s

d
istrib

u
ted

resou
rce

m
on

itorin
g

ab
sen

t

cen
tralised

ad
vertisin

g
d
istrib

u
ted

fi
x
ed

lin
k

to
ex

ecu
tin

g
p
arty

d
y
n
am

ic
recru

itin
g

P
2
P

S
y
ste

m
s

P
2
P

S
y
ste

m
s

O
p

e
n
K

n
o
w

le
d
g
e

d
istrib

u
ted

aim
ed

at
d
ata-sh

arin
g

serv
ice

sh
arin

g

scalab
le

in
d
ep

en
d
en

t
of

con
ten

t
ex

p
loit

sem
an

tics

sy
m

m
etric

roles
of

each
p

eer

M
u
lti-A

g
e
n
t

S
y
ste

m
s

M
u
lti-A

g
e
n
t

S
y
ste

m
s

O
p

e
n
K

n
o
w

le
d
g
e

d
istrib

u
ted

cogn
itive

arch
itectu

re
n
on

e

sy
m

m
etric

roles
of

each
p

eer
cen

tral
b
rokers

scalab
le

d
iscovery

p
ro-active

b
eh

av
iou

r
reactive

60

Part III

Design and Simulation of LCC

e-Response Scenarios

Chapter 6

Information Sharing in Crisis

Response

In the first two parts of this thesis, we overviewed state-of-the-art research

in coordination technologies and we presented OpenKnowledge, a frame-

work addressing both the knowledge sharing and coordination issues that

open and distributed information systems are required to tackle.

This chapter presents emergency response, as the application domain

where the framework can be exploited and tested. The choice of emer-

gency response as a target domain is driven by its potential to deal with

a distributed-knowledge and dynamic environment. The nature of this

domain requires a structured coordination in order to efficiently handle

potential untidy and uncontrolled events. However, flexibility has to be

taken into account when dealing with unexpected conditions (e.g., sudden

road blockage, resource outage, landslide, etc.), which are prone to hap-

pen in emergency situations. Here, while the general vision of interaction

protocols accounts for the “structured coordination” requirement of the

problem, the adoption of a p2p framework for enacting interaction models

can address the need for flexibility and dynamicity.

The chapter is organized as follows: Section 6.1 first introduces the

main requirements emergency response systems need to support, as well

63

CHAPTER 6. INFORMATION SHARING IN CRISIS RESPONSE

as the most common approaches used to design them; it then frames our

research work in this context. Section 6.2 directs the focus on a specific

flood disaster scenario, which is described by the main entities involved

and their coordination.

6.1 The general context

As sketched in the introduction, response to disaster scenarios involves

activities developed and implemented through the essential analysis of in-

formation and the coordination of different actors (both institutional, like

emergency personnel, army, volunteers, and so forth, as well as common

people involved in the crisis).

The existence of numerous, geographically sparsed and different ac-

tors, policies, processes, data standards and systems, results in coordina-

tion problems regarding information gathering, data analysis and resources

management, all critical elements of emergency response management. In

particular, information gathering is essential to increase the effectiveness

of the response; in fact, experience taught us how many response failures

came about because information was never collected or was unknown, thus

obliging people to take decisions blindly [24].

In order to make information sharing effective, a shared understanding

among the various stakeholders is needed, despite each community main-

tains its own view of the domain, i.e., gives meaning and classifies terms

in different ways [41]. For these reasons, it is unrealistic to “monolithically

agree on a single representation of all the knowledge that will be involved

[109]”.

Moreover, it is very difficult to know a priori which actors will assume

which roles and what actions they will plan in the immediate future [88,

114]. This often leads to ad hoc teams of emergency officers from different

64

6.1. THE GENERAL CONTEXT

organizations working together on sometimes unpredictable and novel tasks

[61]; in addition, during emergency response1 activities, it is often the case

where transitions of functions between roles and organizations occur [3].

In view of what has been just mentioned, some of the requirements that

e-response systems need to address can be summarized as follows:

• Decentralized control towards response strategy;

• Effective information gathering;

• Semantic agreement among different stakeholders;

• “On-the-fly” formation of e-response teams;

• Coordination of activities;

• Scalability;

• Flexible but structured interactions;

• Requests for assistance and matching to available capabilities, role

change.

It is straightforward to conceive the OpenKnowledge approach as a vi-

able framework for the satisfaction of the above requirements; hence, the

OpenKnowledge system as a possible technology for their implementation.

Approaches to design crisis response systems mainly include crisis drills

and simulation tools [64]. While drills are expensive and difficult to mimic

large-scale disasters, it is recognized [60, 15] that simulation tools can be

valuable for investigating innovative solutions, such as new collaborative

information systems, new cooperation configurations and communication

devices.
1In the rest of this thesis, we will refer to emergency response as e-response.

65

CHAPTER 6. INFORMATION SHARING IN CRISIS RESPONSE

The National Institute of Standards and Technology2 (NIST) has pro-

posed an Integrated Emergency Response Framework (iERF) where three

axis are defined in order to classify such tools [60], that are: the applica-

tion for which the simulation tools are developed, the entities involved, the

kind of disaster. These factors can affect the development of the simulation

environment. Figure 6.1 depicts the iERF framework.

Figure 6.1: Integrated Emergency Response Framework (iERF) proposed by NIST

As can be observed from the figure, some elements are underlined in

red: these are the ones considered in our work, which includes a software

simulation where response agents need to gather information during a flood

event; and that is used to exploit and test the coordination mechanism

provided by the OK system.

The developed simulation environment will be described in Chapter 8;

the next section describes the specific scenario where OpenKnowledge has

been tested and proven to support coordinated e-response activities.

2http://www.nist.gov/index.html

66

6.2. FLOODING IN TRENTINO: THE E-RESPONSE CASE STUDY

6.2 Flooding in Trentino: the e-response case study

We exploited and tested the OpenKnowledge framework in the case study

of a flood disaster in Trento (Italy). The work started from a preliminary

analysis on this kind of disaster. The available analysis resulted from

documents related to the current flood emergency plan in the Trentino

region and from interviews with experts.

We individuated emergency peers (e.g., firemen, police, medical, bus/ambulance

agents, etc.), the main organization involved (e.g., Emergency Coordina-

tion Center, Fire Agency, Civil Protection Unit, Provincial Health Agency,

etc.), a hierarchy between the actors (e.g., emergency chief, subordinate

peers, etc.), service peers (e.g., water level sensors, route services, weather

forecast services, GIS services, etc.) and a number of possible scenarios,

that is, possible interactions among the agents and their assigned tasks.

The peers can be distinguished into two main categories: service peers

and emergency peers. While the former are basically peers providing ser-

vices under request, the latter are peers often acting on behalf of emergency

human agents that are in charge of realizing the emergency plan. A compre-

hensive description of all peers and tasks can be found in OpenKnowledge

deliverables [115] and [116]. Figure 6.2 recalls the richness of all scenarios

and interactions possibly involved. The areas circled in red, concern the

scenarios actually modeled in terms of LCC interactions. In what follows,

we illustrate only such scenarios. The upper part of the figure represents

the pre-alarm phase of the emergency plan foreseen by the Autonomous

Province of Trento. The lower part relates to the evacuation phase.

In the prealarm phase, the involved peers are mainly service peers which

are, as has been previously described, peers providing the information upon

which the decision on whether to enact the emergency plan or not is made.

67

CHAPTER 6. INFORMATION SHARING IN CRISIS RESPONSE

Figure 6.2: The overall e-Response use case

The pre-alarm phase, hence, mainly involves service peers which provide

information useful for decision making. It eventually results in the evacu-

ation phase, which regards all the activities needed to move people to safe

places. In such evacuation phase, the key peers are emergency peers, that

is, all the peers in charge of helping in the evacuation of citizen: emer-

gency coordinators, firemen, government agencies (e.g., civilian protection

department), real-time water level data reporters (e.g., people, sensors).

The emergency peers are supported by service peers such as route services,

sensors scattered across the emergency area, etc.

Figure 6.3 gives a schematic view of the two phases involved in our

case study. It shows the involved actors (denoted by round circles), their

interactions and the kind of information exchanged. The smooth rectangle

denotes the simulator, that is, the virtual environment where all the peers

68

6.2. FLOODING IN TRENTINO: THE E-RESPONSE CASE STUDY

act; obviously, it doesn’t correspond to any entity in the reality, therefore,

we don’t describe it in this context. However, the simulator is essential for

the simulation-based testbed and will be illustrated in detail in Chapter 8

(Section 8.2.2).

The figure also shows two different evacuation sub-scenarios: in both of

them, an emergency subordinate (ES) needs to get information on route’s

practicability but while in one case (area above the red line), it gets the

route blockage status by asking the Civil Protection (CP), in the other

case (area below the red line), it interacts directly with reporters (r1,r2,r5)

physically present at the locations of interest. These two ways of gathering

information are referred to as centralized and decentralized strategies.

Figure 6.3: The implemented e-Response scenarios

6.2.1 Prealarm scenario

In the pre-alarm phase, the water level of critical points along the river

is constantly monitored by an emergency monitoring system (EMS). Such

system also checks weather information in order to enrich the data needed

to predict the evolution of a potential flooding. When a critical situation

69

CHAPTER 6. INFORMATION SHARING IN CRISIS RESPONSE

is registered, the emergency chief is notified, then to be able to take the

proper actions.

Peer types

The peer types involved in the pre-alarm scenario are the following:

• Emergency Monitoring System (EMS): such system represents the

server station where all the information which are critical to the emer-

gency are collected. In particular, the system:

– collects weather forecast information;

– collects water level information from sensors located along the

Adige river;

– analyses the previous information;

– when needed, sends a proper alarm message to the emergency

coordinator;

• Water Level Sensor(S): represents a water level sensor placed in one

of the four strategic points along the Adige River; provides water level

information registered at the location where it is placed;

• Weather Forecast Provider (WFP): provides weather conditions (i.e.,

temperature, rain probability, wind strength) given a specific location.

• Emergency Chief (EC): the top-level autority which is notified by the

EMS and is in charge of making decisions.

As can be noticed, the majority of the above peers are mainly what we

denoted as “service” peers.

70

6.2. FLOODING IN TRENTINO: THE E-RESPONSE CASE STUDY

Prealarm interactions

The scenarios pertaining the prealarm phase and which are modeled in

terms of LCC interaction models are two. A short description for each of

them follows:

1. Monitoring of water level sensors : a central monitoring system (EMS)

continuously requests information on the level of water registered at

critical positions along the river. Such information, together with the

one about the precipitation rate in the next days, is crucial to enact

the evacuation plan;

2. Weather info collection: the emergency coordinator request periodi-

cally a weather forecast (i.e., rain and temperature) in order to make

previsions and therefore decisions on the actions to take.

6.2.2 Evacuation scenario

As anticipated before, the evacuation plan consists of peers (e.g., firemen,

buses, citizen) moving to safe locations. In order to move, such peers

need to perform activities such as choosing a path to follow (usually by

asking a route service), checking if the path is practicable (usually by

interacting with the Civil Protection or with available reporters distributed

in the area), proceeding along the path. The Civil Protection can deliver

information on the blockage state of some given path to a requester. It is

able to do that since it is continuously gathering information from reporters

scattered around the emergency area. Such reporters inform on the water

level registered at their locations.

Peer types

The peer types involved in this scenarios are the following:

71

CHAPTER 6. INFORMATION SHARING IN CRISIS RESPONSE

• Emergency Chief (EC): such peer is responsible for the coordination

of all the emergency activities, from the propagation of the alarm to

its subordinates, to resources allocation. Specifically, it:

– receives different levels of emergency alarm messages from the

EMS;

– collects GIS information;

– collects specific weather information (e.g., temperature, rain prob-

ability, wind strength, etc.);

– sends directives to its subordinates (e.g., move to a specific point,

close a meeting point).

• Emergency Subordinate (ES): is a peer (e.g., an emergency subordi-

nate as a fireman, a bus, a citizen) in need to move to a specific

location;

• Route Service (RS): is able to provide a route between two points that

takes into account roads that might be flooded, blocked or otherwise

inaccesible. It does this by having a map of the area and through

running separate interactions with other peers to keep track of the

current state of the roads;

• Civil Protection (CP): is responsible for giving information on the

blockage state of a given path;

• Reporter (R): is responsible for giving information on the water level

registered at its location. It could be either a citizen or a sensor

device permanently placed at a given location. In our simulations, we

consider reporters as fixed sensor devices.

72

6.2. FLOODING IN TRENTINO: THE E-RESPONSE CASE STUDY

Evacuation interactions

The main interactions involved in the evacuation scenario are shortly de-

scribed below:

1. Evacuation: describes how an evacuation plan evolves. An emergency

coordinator alerts members to go to a specific destination. Each mem-

ber finds a path to reach the destination, checks its status and even-

tually moves along the path;

2. Find a route: describes the interaction needed to retrieve a path from

a route service;

3. Check path status with CP : describes the interactions with the Civil

Protection needed to know the blockage state of a path;

4. Gather real-time data from reporters : a peer requests information

about the water level from a group of reporters.

Baseline scenario

As mentioned before, part of the evacuation scenario consists of checking

whether a given route is practicable or not. However, we also considered

the case in which the peer chooses to directly move along the route with-

out getting any information on its blockage conditions. This scenario, in

which no strategy is adopted in order to gather such useful information,

constitutes the baseline scenario: a route is taken without checking a priori

its conditions.

Information gathering scenarios

Although the baseline scenario is realistic, one of the aim of this work is

to test the capability of the OK framework to support the two information

73

CHAPTER 6. INFORMATION SHARING IN CRISIS RESPONSE

gathering strategies mentioned earlier, i.e., the strategies relating to how an

emergency subordinate gathers information on the route’s practicability:

• Centralized strategy : a moving peer (e.g., an emergency subordi-

nate) obtains information on the blockage conditions of a given route

after consultation with the Civil Protection CP (see Figure 6.3 - area

above the red line);

• Decentralized strategy : a moving peer obtains information on the

blockage conditions of a given route by gathering water level informa-

tion from a selected group of reporters (see Figure 6.3 - area below

the red line).

What we want to underline here is that the adoption of an information-

gathering strategy benefits the peer in committing to its duty. Figure 6.4

shows the behaviour adopted by the moving peer while moving along a

path. Every time it reaches a location, the peer gets information on the

blockage state of the route ahead. Notice that, when the path is blocked

because of an excessive level of water in a location, the moving peer is

aware of that in advance and is, thus, able to find an alternative path

before approaching the blocked location.

More details on how the moving peer reasons about the information

thus gathered is given in Section 8.2.1, where the peer-network component

of the e-Response simulation system is described.

6.3 Conclusion

Emergency response is not inherently peer-to-peer: we could expect that

the key players would have strategies worked out well in advance and would

have established the infrastructure and vocabulary for communicating with

other key players. However, the chaotic nature of an emergency means that

74

6.3. CONCLUSION

Figure 6.4: Evacuation phase: moving peer behaviour

many players who will not have been able to coordinate in advance, or

who were not expected to participate, may become involved. Furthermore,

services who were part of an emergency response may be unexpectedly

unavailable or may be swamped by requests, and in such a situation, it

is crucial that the emergency response can carry on regardless. Addition-

ally, services may develop and change and it is unrealistic to expect these

changes would always be known and accounted for in advance.

For example, in the described flood disaster, the routing service may

have altered over time and have failed to keep the service up to date with

the changes; in other situations, it could be that the civil protection lost

connection or was swamped with requests.

In the above scenarios, an infrastructure like the one provided by the

OK system would allow a fire team to use the discovery service to locate

a new routing service, or to switch to a distributed information gathering

strategy in case the civil protection becomes unavailable. Still, once teams

of peers are formed, the use of simple and predefined coordination tasks

would facilitate their interactions.

75

CHAPTER 6. INFORMATION SHARING IN CRISIS RESPONSE

76

Chapter 7

LCC Protocol Design

The scenarios described in the previous chapter were translated in terms

of LCC interaction protocols. The full LCC specifications related to the

pre-alarm scenario can be found in the OpenKnowledge project deliverable

[113], while the ones used for the evacuation scenario can be consulted in

Appendices A-B.

This chapter focuses more on the process that lead from the analysis

of the scenarios to the design of LCC protocols and, consequently, to the

requirements suggested for the development of the OK system. The chapter

is organized in three sections: Section 7.1 introduces the initial design of the

LCC protocols, carried out when the OK system was not fully in place; it

describes the design of a relatively complex evacuation scenario, illustrates

the inherent limitations of the LCC interaction models and identifies the

requirements for the design of complex and realistic coordination tasks.

Section 7.2 illustrates the second phase of the protocol design, carried out

after these requirements were addressed by the OK infrastructure. Finally,

Section 7.3 concludes the chapter.

77

CHAPTER 7. LCC PROTOCOL DESIGN

7.1 Initial design

Prior to the specification of emergency response LCC interaction models,

we designed UML diagrams to clarify the activities of the participating

entities and their relationships. Figure 7.1 depicts an activity diagram

that graphically sketches a baseline scenario.

Figure 7.1: UML activity diagram: baseline scenario

This activity diagram clarifies the activities of the single e-response peers

but hides the sequential order of their interactions. To explicit the details

of the peer interactions, we designed UML sequence diagrams like the one

given in Figure 7.2.

The sequence diagram shows the sequence of messages exchanged be-

tween the e-response peers, and also shows the interaction between an

emergency subordinate and the environment, that takes place when an

action is performed.

78

7.1. INITIAL DESIGN

Figure 7.2: UML sequence diagram: baseline scenario

Although we are modeling a relatively simple scenario, the figure gives

a flavour of how complex the interaction patterns can be. Starting from

79

CHAPTER 7. LCC PROTOCOL DESIGN

a(emergency subordinate,ES) ::

alert(MP)⇐ (emergency chief ,EC)

then a(route finder(MP ,EC),ES)

Figure 7.3: LCC fragment: ES initial role

a(route finder(Dest ,EC),ES) ::

null← getPos(Pos) and not(Pos = Dest) and getRouteService(RS)

then request route(Pos,Dest)⇒ (route service,RS)

then

 route(From,To,Path,SubPaths)⇐ (route service,RS) then

null← store(Path,SubPaths) then

a(action performer(move(From, To, Path),ES)


Figure 7.4: LCC fragment: ES “route finder” role

these diagrams we engineered LCC protocols specifying the roles of all

participating entities, the environment (e.g., the simulator) included. This

resulted in one complex interaction model that can be found described in

the OpenKnowledge project deliverable [71].

Below, we briefly outline some of the roles taken on by the emergency

subordinate ES. Figure 7.3 illustrates the initial role, when an alert mes-

sage stating to go to the destination MP is received from the emergency

chief EC. Once the message is received, the emergency subordinate, ES,

assumes the role of route finder. In such role (see Figure 7.4), a route

between the current position and the final destination is requested to the

route service RS. When the path is received from the route service, the

ES stores it together with the sub-paths and then attempts to move by

entering the action performer role. This last role, whose definition is not

reported here, represents the interactions of the ES peer with the sur-

rounding environment, and includes the process of replanning the actions

(e.g., request an alternative path); such process is enacted depending on

the circumstances, for example, when some locations are blocked by the

flood.

As it can be noticed from the depicted LCC fragments, different tasks

80

7.1. INITIAL DESIGN

are mixed together in one single interaction model: the communication

with the route service, the sensing from the environment, the replanning

of actions. Furthermore, a peer must know in advance the services with

which to interact: the constraint getRouteService(RS) consults the route

services known by the ES peer.

It is clear that, with this kind of protocol design, the modeling of more

complex scenarios becomes unfeasible, and not even useful. In fact, for ex-

ample, to enact a distributed information gathering strategy, it is necessary

for a peer to interact with only those reportes located along the path that

has to be followed; obviously, such reporters cannot be known in advance.

Also, as already mentioned, route services might become unavailable, and

so forth.

Besides this, in a real world scenario, an interaction model designed in

such a way would not be of great use. In fact, one would expect to enact

simple and well-targeted tasks; for example, the request for a route could be

specified in one self-contained task involving only two participating entities,

the service requester and the service provider. The possibility to compose

protocols in a modular way, thus becomes a necessity, in two aspects: the

first regards the protocol design and the ability to specify complex models

of interactions in a clean way; the second aspect, which is linked with the

first one, regards the exploitation of such models in real world contexts, as

we just mentioned.

The lack of modularity, in the protocols initially designed, is mainly

due to the fact that the composition is not an intrinsic feature of the

LCC language; also, the underlying enactment infrastructure (i.e., the OK

system) could not offer the possibility to enact separated coordination tasks

within an ongoing interaction.

We therefore identified the following requirements:

81

CHAPTER 7. LCC PROTOCOL DESIGN

• the possibility to enact separated interactions, thus to be able to de-

sign more composite interactions;

• the possibility to adopt peer strategies for the selection of specific

peers;

It is important to notice here that during this first stage of protocol de-

sign, the OK system was still under development. The above requirements

were thus suggested to the team involved in the system implementation.

As a result, the peer access mechanism already illustrated in Section 5.2.1

was devised to enact “nested” interactions.

7.2 Final design

In this section, we present the design of a more complex evacuation sce-

nario, the one including the information gathering strategies. The main

interactions included in this scenario are described in Section 6.2.2 and rep-

resented by the UML diagram of Figure 7.5. In this diagram, the activities

needed to check the path conditions are grouped together, for clarity.

The designed LCC protocol, named “Evacuation”1, is described here

in its main parts. As in the baseline scenario, the emergency subordinate

ES receives an alert message from the chief and resolves the constraints

needed to set the goal to be achieved, and to get the current position.

The activities of ES thus evolve through three key LCC roles: the goal

achiever role which abstractly models the activity of searching for a path

and moving towards the goal; the free path finder role which defines the

operations needed to find a free path; the goal mover role which models

the actions needed to move towards the goal destination. Figures 7.6-7.7

1This IM is described in full details in Appendix A.1

82

7.2. FINAL DESIGN

Figure 7.5: UML activity diagram: evacuation scenario

show LCC code snippets for two of the key roles. The constraints specified

in bold are the ones enacting separate interactions.

For example, the constraint find path(From,To,Path) of Figure 7.7 en-

acts the “Find-Route”2 interaction, i.e., the coordination task needed to re-

quest a path from a route service. The constraint request path state(Path,PathState)

shown in the same figure, eventually enacts either the “Check-Route-State”

interaction or the “Querier-Reporter” interaction, depending on the adopted

information gathering strategy . Finally, since this is a simulated model,

the constraint try move action of the goal mover role3, enacts the inter-

action needed to sense the information from the environment, hence, to

2More details on the “Find-Route” LCC protocol can be found in Appendix A.2.
3This role is fully explained in Appendix A.1.

83

CHAPTER 7. LCC PROTOCOL DESIGN

Figure 7.6: LCC fragment for the “goal-achiever” role

Figure 7.7: LCC fragment for the “free-path-finder” role

interact with the simulator.

It appears that the described design, makes feasible the modeling of

complex interactions such as the ones under study; such design, in fact,

permits to write simple, modular and reusable interactions. The enactment

of LCC protocols designed in the way just presented, is made possible by

84

7.3. CONCLUSION

an enhanced release of the OK system.

7.3 Conclusion

This chapter has shown how the initial design of LCC protocols to model

relatively complex scenarios has affected the development of the OK infras-

tructure. The OK system has in fact been developed contemporarily with

the emergency response LCC interaction models; some of its features were

suggested by the design requirements and the case study domain. Given

the complexity of emergency response coordinated activities, it was neces-

sary to provide a way to combine together modular and reusable interaction

models.

Furthermore, the present chapter has illustrated a possible way to spec-

ify multiple interleaved interactions, in more complex emergency response

scenarios such as the ones where information-gathering strategies are pre-

ferred over more “blind strategies”.

85

CHAPTER 7. LCC PROTOCOL DESIGN

86

Chapter 8

The Simulation Environment

This chapter describes the simulation environment built to validate the

interaction models, to use and test the current release of the OK infras-

tructure and to analyse centralized vs. distributed information gathering

in the flood disaster case study.

The current simulation environment is based on a first version of the

system, which was running on a Prolog based LCC engine [69]. The system

we initially developed is basic, in the sense that it simply provides means

to execute LCC interaction models. However, to run an interaction model,

the peer has to know which interaction model it wants to execute and with

which peers it needs to interact. The current simulation system extends the

initial prototype both in a complete integration with the OK system and

in the inclusion of a realistic flood-simulator. In particular, the following

additional features can be found in this current version of our simulator:

1. Full integration with the OK kernel: the previous prolog simulation

was ported and further extended into Java so to make full use of the

OK Kernel , hence, the LCC Interpreter, the Discovery Service, and

the Ontology Matching modules;

2. Dynamic evolution of flood: while in the previous simulation the

blockage state of a node was fixed a priori, a realistic flood simulation

87

CHAPTER 8. THE SIMULATION ENVIRONMENT

is embedded in the current system;

3. Modular/simple IMs: in the developed simulation environment, about

ten single and independent interaction models are used, instead of a

unique and relatively complex one (as in the previous simulation);

4. Increased peer types: the simulation system extends the previous one

in the number of peer types involved in the emergency scenario. New

peer types such as reporters and Civil Protection are considered;

5. Different information gathering strategies: the current simulation sys-

tem extends the previous one in the scenarios involved; while, previ-

ously, the moving peer was meant to go directly to the destination

assigned, in the present simulation the peer can adopt either a cen-

tralized or a distributed information-gathering strategy to request in-

formation on a route’s state.

The chapter is organized as follows: Section 8.1 proposes a schematized

overview of both the LCC protocols designed to model e-response tasks

and those built to implement the simulator. Section 8.2 describes in more

detail the architecture of the simulator and the interaction mechanisms

which take place. Section 8.3 points out how OK components (i.e., LCC

specifications and OKCs) are reused. Finally, Section 8.4 concludes the

chapter.

8.1 LCC protocols: an overview

Figure 8.1 shows a complete list of all interaction models implemented for

both the pre-alarm and evacuation phases. It also shows the type of peers

involved and the separated interactions eventually enacted by a constraint

in a given IM. The last column of the table indicates for which kind of

88

8.2. SIMULATION ARCHITECTURE

information gathering strategy a given IM is used. As can be noticed, all

interaction models are used in both centralized (C) and decentralized (D)

scenarios, except one: the “Check Route State” IM, which is only used in

the context of the centralized strategy to interact with the Civil Protection

CP. The figure also shows that the interaction models are modular and

reusable in different contexts.

Figure 8.1: e-Response Interaction Models

8.2 Simulation architecture

Our simulation environment is composed of two main components: the

peer network and the e-Response simulator. Figure 8.2 sketches its over-

all architecture. All peers are equipped with their own OpenKnowledge

plug-in component(s); each black arrow represents a different interaction

model, which also represents the flow of information between peers; the

grey arrows indicate interactions among network peers only. In the next

two subsections, we illustrate the peer network, and the core components

89

CHAPTER 8. THE SIMULATION ENVIRONMENT

of the simulator, respectively.

Figure 8.2: The e-Response system’s architecture

8.2.1 The peer network

The peer network represents the group of agents involved in a simulated

coordination task. An agent in the peer network can interact with other

agents, perform actions (e.g., moving along a road) and gather information

(e.g., sense the water level in its vicinity).

In order to perform an action or receive sensory information near its

location, a peer must connect to the simulator by enacting the “Connect”

interaction model. Once added to the simulation, the connected peer peri-

odically receives sensory information from the simulator via the “Sensory-

Info” interaction model; finally, to perform an action, a connected peer

enacts the “Perform-Action” interaction model which models the action

coordination with the simulator. The connected network peers are called

physical peers (shaded ellipses in Figure 8.2).

Not all peers must connect to the simulator: non-physical peers, such as

a route service that provides existing routes, do not need to communicate

90

8.2. SIMULATION ARCHITECTURE

with the controller but only with other peers in the peer network. In the

real world such peers would not actually be in the disaster area and could

not affect it directly, but could provide services to peers that are there.

Non-physical peers are represented as non-shaded ellipses in Figure 8.2.

The interactions between the network peers which regard the evacua-

tion phase, have already been described in the previous chapter. Figure

8.3 shows how these interactions are interleaved with the ones needed to

connect with the simulator.

Figure 8.3: Evacuation phase: network peer’s interactions

The simulated coordination task evolves through the following ordered

sequence of steps:

1. Send directive: the emergency chief EC sends the directive to move

to a given destination to a moving peer MP ;

2. Ask route: the MP asks a path to the route service RS ;

3. Return route: the MP receives a path from RS ;

4. Check route state: the MP checks the route state with either the Civil

91

CHAPTER 8. THE SIMULATION ENVIRONMENT

Protection CP (centralized scenario) or the reporters r (decentralized

scenario);

5. Perform action: the MP checks the feasibility of the (move) action;

6. Return action feasibility : the MP comes to know whether the action

has been performed or stopped.

Eventually, steps 2 through 6 are repeated until the final destination

is reached. The above sequence of actions is specified in terms of the

“Evacuation” interaction model. This IM is the one capturing the whole

evacuation scenario and has already been described in Chapter 7, Section

7.2. In Figure 8.3, grey arrows refer to activities entirely performed within

the “Evacuation” IM while the black arrows shaded in grey indicate that

the associated steps are executed by solving LCC constraints (in the main

IM) which, in their core part, enact separate LCC interactions. As un-

derlined previously, this is a key functionality of the OK system, which

permits to write simple, modular and reusable LCC specifications.

Steps 2-3 pertain to the “Find-Route” IM1, which is enacted by the

constraint find path(From,To,Path) of Figure 8.4, that we show again for

the reader’s convenience.

Step 4 is performed within the constraint request path state(Path,PathState)

shown in the same figure. Such constraint eventually enacts either the

“Check-Route-State” or the “Querier-Reporter” IM, this depending on the

information gathering strategy adopted. Finally, steps 5-6 regard the in-

teractions specified in the “Perform-Action” IM2, which is enacted within

the constraint try move action of the goal mover role3;

We describe in detail the activity of checking the path state, since it rep-

resents the core part of our simulation. The constraint request path state(Path,PathState)

1The LCC specification of this IM is to be found in Appendix A.2.
2The LCC specification of this IM is to be found in Appendix B.7.
3This role is fully explained in Appendix A.1.

92

8.2. SIMULATION ARCHITECTURE

Figure 8.4: LCC fragment for the “free-path-finder” role

of Figure 7.7 performs two activities: (a) enaction of a separate LCC in-

teraction model in order to get key information on the route state; (b)

deduction of the route practicability from the information acquired. Ac-

tivity (a) is carried out in the case where one information gathering strategy

is adopted: the “Check-Route-State” and the “Querier-Reporter” IMs will

be respectively enacted in centralized and decentralized scenarios. When

the moving peer moves ahead without first checking the route state (no

information gathering strategies are adopted), the activity (a) won’t be

performed and the route will be assumed to be practicable. Activity (b)

will start after completion of the interaction eventually enacted in activ-

ity (a) and will usually need the information acquired by the moving peer

during such an interaction. The problem of accessing persistent informa-

tion acquired during the execution of separate interactions is addressed by

the OK kernel through the peer access mechanism already illustrated in

Section 5.2.1, which allows an OKC to access the local knowledge of the

peer by invoking methods declared in a specific PeerAccess Java class.

Figure 8.5 shows the Java code of the OKC’s method associated to the

request path state constraint that implements the activity (a) mentioned

93

CHAPTER 8. THE SIMULATION ENVIRONMENT

above. It can be noticed how, depending on the current strategy, the peer

either enacts one of two interaction models or sets the route state as “free”.

The enaction of a separate interaction model also exploits the peer access

mechanism, and specifically takes place by invoking either the executeIM

method or the executeIMWithStrategy method. The latter method differs

from the former in that it performs a preliminary filtering of the peers

subscribed to the IM to be executed. In particular, before the execution

of the “Querier-Reporter” IM, the peer selects a group of reporter peers.

More details on this selection mechanism are given later in this section.

Figure 8.5: Java code for OKC method “request path state”: interaction model enaction

In what follows, we give some details on both the centralized control

behaviour and the decentralized control behaviour.

Centralized Control Behaviour The centralized scenario is characterized by

the presence of the Civil Protection peer who acts as the unique provider

94

8.2. SIMULATION ARCHITECTURE

of route state information and relies on reporters, i.e., the main sources of

such information. The behaviour of the main actors is the following:

• The Civil Protection is subscribed to the querier role in the “Querier-

Reporter” IM and to the path info provider role of the “Check Route State”

IM. It maintains a database of current statuses of locations and an-

swers requests from moving peers for status information;

• Each Moving Peer is subscribed to the emergency-subordinate role

defined in the “Evacuation” IM (see Appendix A.1) and to the path info requester

role defined in the “Check Route State” IM. Initially at a given loca-

tion L, this peer performs the following steps in order to reach the

goal destination G :

1. If L = G then stop

2. Otherwise:

(a) Get one path P from L to G (P=[Phead | Ptail])

(b) Check that P is free by interacting with Civil Protection

i. If the path is free then

A. move from Phead to next location Ln

B. Back to step (b) with P=Ptail

ii. Otherwise back to step (a) to get an alternative path from

L to G

• Each Reporter is subscribed to the reporter role defined in the

“Querier-Reporter” IM. It responds to requests for water level in-

formation from a querier (e.g., Civil Protection).

Figure 8.6 schematizes the main interactions between the peers. Full de-

tails on “Check Route State” and “Querier-Reporter” interaction models

are given in Appendixes A.3 and A.4, respectively.

95

CHAPTER 8. THE SIMULATION ENVIRONMENT

Figure 8.6: Information Gathering: centralized interactions

Decentralized Control Behaviour the decentralized scenario is character-

ized by the direct interaction between a moving peer and a suitably selected

group of reporters. The behaviour of such a peer is reported below:

• Each Moving Peer is subscribed to an emergency-subordinate role

in the “evacuation” interaction (see A.1) and to the querier role of

the “Querier-Reporter” IM. Initially at a given location L, this peer

performs the following steps in order to reach the goal destination G :

1. If L = G then stop

2. Otherwise:

(a) Get one path P from L to G (P=[Phead | Ptail])

(b) Subscribe to the role of querier with subscription description

querier(Ptail)

(c) Choose reporters according to path P

(d) Check that P is free by interacting with the selected reporters

i. If the path is free then

96

8.2. SIMULATION ARCHITECTURE

– Move from Phead to next location Ln

– Back to step (d) with P=Ptail

ii. Otherwise back to step (a) to get an alternative path from

L to G

• Each Reporter at location N subscribes to the reporter role in the

“Querier-Reporter” IM with a subscription description of “reporter(N)”.

It responds to a request for status information from a querier (e.g.,

moving peer).

The key point in the section above, is how the moving peer selects

a suitable group of reporter peers. Suppose the peer has to move from

location L to location G through path P = [L,A,B,G]. In this case, A and

B represent intermediate locations (or nodes). Assume reporters R1, R2,

R3, R4 and R5 are at nodes A, L, F, B and G respectively and they are

subscribed to the reporter role as specified above. Figure 8.7 shows the

selection process as a sequence of steps. In step 1, the moving peer MP

subscribes to the querier role with subscription description querier(A,B,G).

This means that it is interested in interacting with only those reporters

which are present at the location A,B,G specified. In step 2, MP receives a

list R of all reporters subscriptions from the OK Discovery Service.In this

example, such list would be R = [R1 (A),R2 (L),R3 (F),R4 (B),R5 (G)]. In

step 3, MP selects the reporters of interest, that is, R1, R4 and R5. In

step 4, the MP starts interacting via the “Querier-Reporter” IM with the

selected reporters (green-bordered circles with blue fill).

8.2.2 The e-Response simulator

The simulator is designed to represent the environment where all the in-

volved agents act. It is composed of three modules which are themselves

97

CHAPTER 8. THE SIMULATION ENVIRONMENT

Figure 8.7: Decentralized Information Gathering: selection of reporters

peers: the controller, the flood sub-simulator, and the visualiser (see Fig-

ure 3). The controller regulates the simulation cycles and the management

of the simulated agent activities; the flood sub-simulator reproduces the

actual evolution of the 1966 flood in Trento; the visualiser stores simulation

information used by the GUI to view a simulation run in a step-by-step

way. The simulator does not interfere or help coordinate peer’s actions in

the peer network. It is used to simulate the real world.

A full explanation of the interaction models designed to implement the

simulator is to be found in Appendix B. The next sections, describe the

overall functioning of the simulation engine.

Controller

The controller is the core of the simulator: it drives the simulation cycles

and keeps track of the current state of the world. In order to achieve that,

it needs to know what changes are happening to the world and updates

its state accordingly. After updating its state, it also informs the relevant

peers of these changes. The simulation thus evolves through cycles (or

time-steps). A simulation cycle foresees two main operations:

98

8.2. SIMULATION ARCHITECTURE

• Gathering changes : the controller receives information about the

changes that happened to the world: (a) it receives the disaster (e.g.,

flood) changes from the disaster sub-simulator via the “Flood” IM and

(b) it serves requests of performing (move) actions with the “Perform-

Action” IM (see Figure 8.2). In this latter interaction, the controller

verifies whether certain actions are legal or not before they are per-

formed, and if a certain action is illegal, the peer is informed of the

reason of failure;

• Informing peers: the controller sends information about the changes

that happened in the world: (a) it sends, at each time-step, local

changes to each connected peer via the “Sensory-Info” interaction

model and (b) it sends to the visualiser information on - (i) the loca-

tions of all connected peers; (ii) the status of the reporter peers (e.g.,

available, responding to requests) and (iii) the water level registered;

here, the “Visualiser” interaction model is used.

Before a simulation cycle starts, some preliminary activities are per-

formed such as: establishing key parameters (e.g., maximum number of

simulation cycles, timeouts, water level thresholds), connecting with the

flood sub-simulator, sharing with it the initial topology of the world, and

adding connecting peers. Once a simulation cycle terminates, the con-

troller updates the time-step and starts the next cycle. Notice that, due

to the modularity of the above architecture, it is reasonably easy to add as

many disaster sub-simulators (e.g., landslides, earthquake, volcanic erup-

tion, etc.) as needed.

To simulate the afore-mentioned activities, the single interaction model

“Simulation-Cycles” is designed4. An LCC code snippet is given in Figure

8.8. It only shows the key role of the controller. The constraints specified in

4See appendix B.1 for full details on this interaction model.

99

CHAPTER 8. THE SIMULATION ENVIRONMENT

bold are solved by executing the “Flood”, “Sensory-Info” and “Visualiser”

interaction models5 respectively.

Figure 8.8: LCC fragment for the “info-handler” role taken by the controller

Flood sub-simulator

The flood sub-simulator’s goal is to simulate a flood in Trento town (Italy).

The equation defined in its core OKC is based on flooding levels and flood-

ing timings resulted from a scientific flood simulation of Trento town, devel-

oped by the International Institute for Geo-Information Science and Earth

Observation and by the University of Milano-Bicocca [2].

This study is based on a very detailed digital terrain model of the river

Adige valley, on historical hydrological data of the flood experienced in

Trentino in 1966 and on the localization of ruptures of the river’s dike. It

also takes in consideration floodplain topography changes from (the year)

1966 to (the year) 2000 caused by modifications in vegetation spaces, in

agricultural regions, in industrial zones, in urban areas and in infrastruc-

tures. A two-dimensional finite element flood propagation model is used to

reconstruct the 1966 flood and to show how the terrain alterations affects

the flood behaviour. This 2-D model, at regular time intervals, generates

5The “Flood”, “Sensory-Info” and “Visualiser” IMs are fully explained in Appendixes B.4, B.5 and

B.6, respectively.

100

8.2. SIMULATION ARCHITECTURE

two maps for both the water height and the flow velocity. Once such maps

are created, they are then transformed into five indicator maps :

• Maximum water level : the maximum water level, in meters, reached

by the flood (Figure 8.9);

• Maximum flow velocity : the maximum speed (in meters per second)

of the water flow (Figure 8.10);

• Maximum impulse: the maximum amount of water that has been

moved (Figure 8.11);

• Maximum water level rising speed : the maximum hourly increase of

the water depth, calculated in meters per hour (Figure 8.12);

• Arrival time of first water : the time when the flood arrives at a given

position (Figure 8.13).

Figure 8.9: Maximum Water Level [2] Figure 8.10: Maximum Flow Velocity [2]

To the purpose of our testbed, the territory is divided into flooded areas:

each area is characterised by the maximum water height reached during the

inundation and the time when this level is touched. These flooded areas

are obtained by digitizing the indicator maps of Figures 8.9 and 8.13; To

101

CHAPTER 8. THE SIMULATION ENVIRONMENT

Figure 8.11: Maximum impulse [2] Figure 8.12: Maximum water level rising

speed [2]

maintain our simulation realistic but simple, we have assumed that each

area reached its maximum fooding level in one hour.

Figure 8.13: Arrival time of first water [2]

Figures 8.14 and 8.15 show a zoom on the north region of Trento town.

In particular, they depict the maps of the flooded areas and represent, re-

spectively, the maximum water level and the time when it is reached. Such

maps are used in our testbed to create two different tables in a geographical

database.

Each table has a field, called node, representing x,y cordinates of digital-

ized points. Moreover, the first table has a field, called MaxWL (Maximum

Water Level), that is the maximum water height for a node. The second ta-

102

8.2. SIMULATION ARCHITECTURE

Figure 8.14: Maximum water level in Trento Nord

Figure 8.15: Arrival time of maximum water level

ble, instead, has a field, called MT(Maximum Time), that describes the time,

in hours, at which the flood reaches the maximum water level at a node.

This value is calculated digitalizing the map showing the time arrival of

the first water (see Figure 8.13) and making the assumption that the time

required to culminate the flood is one hour. Finally, at OK-simulation6

time, only the selected data of the topology of the region interested by the

current simulation are joined in a single table using an Open Geospatial

Consortium standard spatial SQL query.

Given the data stored in the two tables of the geographical database,

and assuming that the time required to culminate the flood is one hour, the

6We denote our testbed simulation as the “OK-simulation”, in order to distinguish it from the one in

[2].

103

CHAPTER 8. THE SIMULATION ENVIRONMENT

flooding law used during the OK-simulation to calculate the flood changes

for a given node at a time-step t is:


f(t) = 0 if t < (MT − 1) ∗ T
f(t + 1) = f(t) + (MaxWL)

T if (MT − 1) ∗ T <= t < MT ∗ T
f(t) = f(MT ∗ T) if t >= MT ∗ T

(8.1)

where T is the number of time-steps per hour. It can be noticed that the

flood level is 0 from the beginning of the OK-simulation to one hour before

MT, i.e., the time at which the flood reaches the maximum level. Second,

in an hour the flood increments from 0 to MaxWL and finally it stays to

MaxWL until the end of the OK-simulation. The time at which the water

level starts to decrement is not considered since the number of hours the

flood stays at its maximum level is sufficiently high for the purpose of our

simulation.

Figure 8.16: Flooding Law

The flood sub-simulator is developed in Java and is fully integrated into

the OpenKnowledge kernel. The main component is an OpenKnowledge

peer FloodPeer that subscribes to two interaction models, i.e., the “Flood

104

8.2. SIMULATION ARCHITECTURE

Sub-Simulator Connection” IM and the “Flood” IM; and stores its core

OKC component FloodSubSimulatorOKC.

These two interaction models are very simple. The “Flood Sub-Simulator Connection”

IM, explained in detail in Appendix B.2, is enacted just once at the begin-

ning of the simulation by the connectWithSubSimulators constraint defined

in the “Simulation Cycles” IM. This last IM is described in more detail in

Appendix B.1).

The “Flood Sub-Simulator Connection” IM has two aims:

• The sharing of the topology of the world between the controller and

the flood sub-simulator peers;

• The storing, in the controller peer local knowledge, of the connection

state of the sub-simulator peer.

The “Flood” IM, described in more detail in Appendix B.4, is used by

the controller at each time-step, to get from the flood sub-simulator the

changes of the flood level at the nodes in the area interested by the simula-

tion. The core parts of this interaction model are the floodChanges(Time,Changes)

constraint (in the ‘flood-simulator’ role) and the updateFloodChanges(Changes)

constraint (in the ‘controller’ role). The first constraint implements the

flooding law (8.1); the second one performs an update of the water level

of only those nodes which were interested by flood changes during the last

time-step.

Visualiser

This component enables the GUI used to visualise the simulation. The

visualiser module interacts with the controller via the “Visualiser” IM7.

At every simulation cycle, the visualiser receives, from the controller mod-

ule, information on: (i) the current time-step; (ii) for each moving peer

7The “Visualiser” IM is described in full details in AppendixB.6

105

CHAPTER 8. THE SIMULATION ENVIRONMENT

connected, its current geographical position; (iii) for each node, its geo-

graphical position, the current water level and the status of the sensor

located at that node. Such information are stored in a log file, and then

visualized in a GUI.

Figure 8.17 shows the appearance of the GUI at the first time-step

of a simulation run. A grey hat represents an emergency subordinate; a

green dot represents a reporter peer available for giving information on

the water level registered; a grey dot represents a reporter agent giving

this information; the water level at a location is depicted as a blue circle,

which size depends on how high the water level is. Figure 8.18 shows the

evolution over time of the flood in the area at risk.

Figure 8.17: Emergency GUI

The simulations are visualized on the GUI in order to analyse the move-

ments of the emergency peers. In this way, we can verify the correct

mechanism in the coordination among the agents, and validate the overall

interaction-based scenarios.

Figures 8.19 and 8.20 show a simulation run for the centralized and the

decentralized scenario respectively. Figure 8.19 shows the agent outside

the flooded area. Here, all the dots are grey, meaning that all reporters are

106

8.2. SIMULATION ARCHITECTURE

Figure 8.18: Flood Evolution

being queried by the Civil Protection in order to obtain the water level of

their location. Some of them register high levels of water.

Figure 8.20 shows the agent moving along a route, which can be de-

duced by the grey dots ahead the agent; these dots represent in fact those

reporters located along the route followed and therefore queried by the

moving agent; all the other reporters remain available (green dots).

107

CHAPTER 8. THE SIMULATION ENVIRONMENT

Figure 8.19: GUI: Centralized information gathering

Figure 8.20: GUI: Decentralized information gathering

8.3 OK component reuse

To build the e-Response simulation system described so far, we strongly

benefit from the possibility of reusing OK components. In particular, the

components reused to implement both centralized and decentralized sce-

108

8.3. OK COMPONENT REUSE

narios are LCC specifications and OKC plug-ins.

8.3.1 Reuse of LCC interaction models

Most of the interaction models are reused. However, from the point of

view of the information gathering strategy, the key interaction model is the

“Querier-Reporter”. It is worth to describe here the mechanism through

which this very same specification is used to enable both centralized and

decentralized scenarios (see Figure 8.21). Simply, in the centralized sce-

nario the Civil Protection peer subscribes to this IM with the subscription

description querier(all). This makes the CP peer interacting with all the re-

porters. Moreover, the CP peer enacts the interaction continuously, i.e., at

each time-step. On the contrary, in the decentralized scenario the moving

peer subscribes to the same interaction with the subscription description

querier(Path) as already described in Section 8.2.1. Finally, the peer MP

enacts this interaction only when needed, i.e., when it has to move.

Figure 8.21: The “Querier-Reporter” IM Reuse

109

CHAPTER 8. THE SIMULATION ENVIRONMENT

8.3.2 Reuse of OKC methods

Besides reusing the interaction models, the e-Response system implemen-

tation is aided by the reuse of OKC components, although with a minor

degree. From one side, we have different peers using exactly the same

OKC. For example, the UtilOKC Java class provided by the OK kernel

was a useful OKC component shared by all peers in our simulation. Such a

component provides basic methods for variable increment, decrement, com-

parison and so on. On the other side, we have OKC components organized

in a hierarchical way. By exploiting the Java’s inheritance mechanism it is,

in fact, possible to define OKC components which are used by many peer

types and, when needed, are extended to yield specific behaviour. For ex-

ample, the OKC component ConnectOKC used to include all the methods

needed to solve the constraints in the “Sensory-Info” IM, is stored by the

peers previously denoted as physical peers ; and is extended for each peer

so that it can tackle the constraints differently. In our case, while the Civil

Protection peer needs to enact the “Querier-Reporter” IM every time it

receives sensory info from the controller, the moving peer does not.

Such system will be helpful in many ways: (1) in doing research on

interaction-centered coordination models; (2) in providing an evaluation

of how appropriate an LCC-like protocol is to reflect dynamic coordinated

tasks; (3) to bring the approach into the application field. The evaluation

entails two dimensions: (a) it concerns a qualitative validation of the sim-

ulation system and the interaction models; such validation can be done by

involving the local institutions working in crisis management. Expert peo-

ple in the field can give useful feedbacks by saying how well the simulations

reflect the actual plans. Moreover, the simulations can give useful hints

to the experts by showing possible scenarios they didnt foresee, since the

plan is actually written on paper and never tried in real situations. In this

110

8.4. CONCLUSION

case, the simulation system could act as a training system for the experts;

8.4 Conclusion

This chapter has described in detail the realization of a simulation envi-

ronment fully integrated with the OK system and composed of a network

of peers that coordinate with each other through a predefined set of LCC

interaction models. This peer-network is integrated with an e-response

simulator to constitute an e-Response simulation environment. Such envi-

ronment is used to validate the interaction-based emergency response sce-

narios and shows that all parts of the OK system are capable of working co-

hesively in the desired manner, to support different information-gathering

patterns of interaction (i.e., centralized and decentralized strategies).

111

CHAPTER 8. THE SIMULATION ENVIRONMENT

112

Part IV

Experimental Evaluation

Chapter 9

Experimental Testbed

The previous chapter described the details of the e-response simulation

prototype. The provision of such a prototype is helpful in a number of

ways.

This chapter describes how the simulation environment was exploited.

In particular, it presents the experimental testbed used to provide a prelim-

inary study on the efficacy of different information-gathering strategies in

the e-Response domain; and, to test the OK infrastructure upon which it is

built. The chapter is organized as follows: Section 9.1 presents an overview

of the testbed; Section 9.2 defines the hypotheses to be tested in order to

conduct a preliminary evaluation of the efficacy of different information-

gathering strategies; Section 9.3 deals with the set-up of the experiments

designed for the above purposes by introducing the experimental perfor-

mance measures, the experimental variables and the assumptions under

which the experiments are performed. Section 9.4 presents and discusses

the results obtained and, finally, Section 9.5 cloncludes the chapter.

9.1 Testbed overview

The developed e-Response testbed mainly consists of an agent-based e-

Response simulation environment fully integrated with the OpenKnowl-

115

CHAPTER 9. EXPERIMENTAL TESTBED

edge infrastructure and through which existing emergency plans are mod-

elled and simulated. The e-Response testbed is composed of the following

components:

1. Suite of LCC interaction models (ca.13) supporting three different

peer coordination strategies: baseline, centralized and decentralized

coordination. These strategies has been already discussed in Section

6.2.2;

2. A simulator capable of modeling a flood event in Trentino, using real

GIS/flood data (see section 8.2.2);

3. Suite of OKC components (ca. 25) enabling emergency response peers

to engage in interactions;

4. Suite of peers (ca. 75) modeling emergency agents;

5. Suite of experiments aimed at both analyzing different information-

gathering strategies and testing the OK infrastructure;

In particular, the testbed is conceived to pursue the following objectives:

• Show the OK system in action, illustrating that all parts of the system

are capable of working cohesively in the desired manner;

• Provide a preliminary evaluation on how different information gath-

ering strategies impact emergency response tasks;

• Test whether the OK infrastructure fully supports the interaction-

based scenarios described.

While the achievement of the first objective depends on an appropriate

design of the OK components (IMs, OKCs); the second goal requires to

be elaborated at a more concrete level. The next section introduces the

hypotheses considered to start investigating this second point. The last

point is addressed in Section 9.4.

116

9.2. EXPERIMENTAL HYPOTHESES

9.2 Experimental hypotheses

In order to study the effectiveness of centralized and distributed informa-

tion gathering strategies in emergency response tasks, we setup the follow-

ing hypotheses:

1. any information-gathering strategy is preferable to a more “blind”

strategy in which information are not requested;

2. under ideal conditions (e.g., perfect communication channels, reli-

able information), centralized and decentralized information-gathering

strategies are equally effective to increase the chances of successfully

completing emergency response operations;

3. when undesired and/or unexpected conditions (e.g., failures of sensors

and/or breakdown of communication channels) arise, a decentralized

information gathering strategy is more advantageous over a centralized

one, provided that an appropriate supporting infrastructure exists.

Although trivial, the first two hypotheses have to be verified to make

the proposed model adherent to the reality.

The following methodological steps are taken to conduct the experimen-

tal evaluation:

• establishment of performance measures;

• analysis of the variables involved;

• determination of meaningful assumptions;

• configuration of the experiments;

• experiment execution.

117

CHAPTER 9. EXPERIMENTAL TESTBED

These steps are described in the next sections. In order to verify the hy-

potheses, it is crucial to run each experiment a significant number of times.

This is probably the most timeconsuming and burdensome task since the

number of peers involved is considerable and the OK kernel version used

is not completely stable. In this thesis, we make few experimental runs

to verify the first two hypotheses; the experimentation needed to verify

the third hypothesis requires a more reliable underlying communication

infrastructure and is left to future work.

9.3 Experimental design

The design of our experiments consists of the establishment of adequate

performance measures, an analysis of the variables involved, a set of mean-

ingful assumptions and a configuration of experiments.

9.3.1 Performance measures

The performance measures considered are:

(a) the percentage of times an emergency subordinate arrives at destina-

tion;

(b) the travelling time, i.e., the number of time-steps needed to reach the

destination.

These indicators are used to compute and compare the experimental

results.

9.3.2 Experimental variables

The experimental variables are the following:

118

9.3. EXPERIMENTAL DESIGN

A. Number of moving peers : number of peers moving to a specific destina-

tion. Since the main aim of the summative experiment is to compare

two different strategies (centralized vs decentralized) rather than mak-

ing a realistic simulation, this variable is fixed to 1 in all experiments.

By running an experiment a certain number of times, we compute the

performance (a) of the simulated scenario;

B. Peer speed : the speed - measured in km/h - with which a moving peer

moves along the paths;

C. Distance: set of paths in the topology connecting two locations. To

get significant results it is crucial to consider, for each experiment

type, routes covering both safe and flood-prone areas;

D. Flooding law : how the flood evolves over time. The flooding law,

which is fixed in our experiments, markedly affects the outcome of an

experiment run: a peer may either arrive at destination or be blocked,

depending on how rapidly the flood propagates along the route taken;

E. Water level threshold : the water level threshold - expressed in meters

- above which a node can be considered blocked;

F. Topology : the set of geographical locations considered and whose sta-

tus can be reported by some peer;

G. Distribution of reporter peers : the set of nodes where reporter peers

are present. In our experiments, this variable is the set of nodes com-

posing only the routes involved in a given experiment; incrementing

this number is useful to test the capacity of the OK kernel to support

many peers;

H. Number of (reporter) peers per node: the number of reporters located

in one node. As above, this variable is useful to test the scalability of

119

CHAPTER 9. EXPERIMENTAL TESTBED

the OK system and, moreover, the effectiveness of some of its modules

(e.g., the trust module);

I. Degradation of the CP communication channel : measured as the like-

lihood of a fault in the communication channel of the CP peer. For

example, having a degradation of 80% means to have this peer serving

incoming requests only 20% of the times. In particular, by setting this

variable, a specific type of fault (channel fault) and its severity can be

simulated;

J. Degradation of reporter communication channels : defines, for all re-

porter channels, the probability of their disruption. For example,

having a degradation of 30% means to have each reporter peer serv-

ing incoming requests with the likelihood of 70%. This variable plays

a role in the experiments which foresee the presence of channel fault

conditions. As for the previous parameter, the setting of this variable

determines the degree of severity of the channel fault;

K. Distribution of trustworthy (reporter) peers : defines the number of

reporter peers having a trustworthy behaviour, that is, peers which

always report accurate water level values. It is expressed as the per-

centage over the total number of reporter peers. This variable plays a

role in the experiments which foresee the presence of fault conditions.

In particular, by setting this variable, a specific type of fault (fault

due to inaccurate info), its location and its severity can be simulated.

In the implemented experiments, we assume all peers are trustworthy.

We have reported above the whole list of variables defined in the design

of the experiments. In our evaluation testing, we have used a sub-set of

the listed variables.

120

9.3. EXPERIMENTAL DESIGN

9.3.3 Assumptions

In order to contextualize and interpret properly the results, it is important

to explicitly list the assumptions made in the simulation in order to simplify

it, namely:

They are:

- the CP peer has infinite resources (under ideal conditions). This

means that the peer is able to serve any number of simultaneous re-

quests and the communication channel never breaks. Therefore, under

this assumption, bottleneck problems due to overwhelming requests

never occur;

- a querier, asking a certain number of reporters for an info, will receive

all the answers within a time-step. This is due to how the time-step

interval is set: the value is such that the time elapsing between one

time-step and the next one is sufficiently high to guarantee the replies

from all the reporters.

With such assumptions, we simulate a scenario where the performances

of both centralized and decentralized communication infrastructures are

comparable.

9.3.4 Experiment configuration

The configuration of the experiment is sketched in Table 9.1: three types

of experiments are foreseen. In the first type of experiment, an emergency

subordinate moves towards its assigned destination without gathering any

information; the other two types are related to the centralized and de-

centralized information-gathering strategies. Each experiment is run 10

times; at each run, the only variables that change are the destination as-

signed (variable C) and the nodes where reporters are present (variable

121

CHAPTER 9. EXPERIMENTAL TESTBED

G). The flooding law, the peer speed, the number of moving peers and the

number of reporters located at each node, remain unchanged during all

runs.

The results obtained from the simulation runs are described in the next

section.

Variable Settings

Exp. Type IG Runs A B C D E F G H

1 none 10 1 30 1 distance x run fixed 0.3 fixed 1 config x run 1

2 centralized 10 1 30 1 distance x run fixed 0.3 fixed 1 config x run 1

3 decentralized 10 1 30 1 distance x run fixed 0.3 fixed 1 config x run 1

Table 9.1: Experiments configuration

9.3.5 Experiment execution

In order to run an experiment, a number of processes equal to the number

of total agents considered need to be launched. For this purpose, a Java

program reads a selected configuration of parameters and then launches the

processes. Furthermore, the use of bash scripts allows to run an arbitrarily

large number of contiguous, independent simulations. This mechanism

exploits the distributed nature of the OK platform. For example, while

the DDS is run in one server, the processes associated with the reporter

peers are launched in a different machine, the other emergency response

peers in a third one.

9.4 Results

This section shows and discusses the results obtained from running the sim-

ulations. In particular, subsection 9.4.1 presents the preliminary evaluation

of the efficacy of the two information-gathering strategies; subsection 9.4.2

deals with the evaluation of the OK infrastructure, which is made possible

by running the same experiments.

122

9.4. RESULTS

9.4.1 Information gathering strategies

We conducted the experiments described in the previous section. Indepen-

dently of the kind of strategy adopted, the final goal of a moving peer is to

safely reach the assigned destination. We consider the following possible

situations that might occur:

(1) the agent reaches the destination by following the first route found;

(2) the agent proceeds along a path, finds blocked nodes but finally reaches

the destination by taking an alternative path;

(3) the agent doesn’t reach the destination at all.

We refer to each situation as the outcome of the experiment.

Figure 9.1 shows the percentage - over the total number of experimental

runs - of times a moving peer arrives at destination, depending on the

IG strategy adopted. As it can be seen from the figure, the adoption of

centralized or decentralized strategies increases the chances to arrive to

the final destination. Although not surprising by themselves, these results

confirm that the simulations are coherent with the expectations, hence,

with the trivial hypotheses.

Figure 9.2 shows the outcome distribution obtained by running the sec-

ond experiment 10 times. As can be seen, 80% of the times, the experiment

has outcome (1) (the peer reaches the destination without problems) while

20% of the time, the outcome is (3) (the peer does not reach the destina-

tion). The outcome (2) is never obtained. Although we setup the routes in

order to cover different kind of areas (either safe or flood-prone areas), the

case where an agent finds free routes after a re-routing never happens. This

could be explained by considering how the design of the flooding law and

its related “flood speed” affects the evolution of the scenario. The outcome

123

CHAPTER 9. EXPERIMENTAL TESTBED

distribution related to the second experiment, which simulates the decen-

tralized scenario, is identical to the one found for the first experiment and

hence is not reported here. This result can be explained with the assump-

tions previously made: asking information on the route’s practicability to

either the CP peer or reporters scattered around the city does not make

the difference.

Figure 9.1: Percentage of arrivals by IG strategies

Figure 9.2: Outcome Distribution (centralized/decentralized scenario)

Figure 9.3 shows the time taken (measured as the number of simulation

time-steps) by an agent to reach the goal location according to the shortest

distance (in terms of intermediate locations) between the initial position

124

9.4. RESULTS

and the final destination. The trend is shown for both experiments. It

can be observed that, in both cases, the time needed to achieve the goal

is nearly equal to the shortest distance. This can be explained by the way

the simulation is designed - an agent moves from a location to the next

one exactly in one time-step - and by the missing outcome (2). Finally,

Figure 9.3 reveals very similar trends for both centralized and decentralized

scenarios. Again, this is mainly due to the assumptions made and the

variable settings.

Figure 9.3: Time-steps vs. Path Length

In view of the results described above, we can conclude that our simula-

tions adhere to what we would expect in reality; and that under the selected

- ideal - assumptions, centralized and decentralized information-gathering

strategies are comparable.

9.4.2 The OK infrastructure

As mentioned earlier, the conducted experiments served also as a black-

box functional testing of the underlying OK infrastructure. In particular,

we determined the percentage of times the OK infrastructure failed in

supporting the whole simulation process, and in which stage; also, we

125

CHAPTER 9. EXPERIMENTAL TESTBED

determined in which phase of the coordination mechanism (e.g., interaction

subscription, interaction run), failures occured.

Figure 9.4 shows the percentage of times that the simulation process

failed to complete.

Figure 9.4: Successful vs. Failed Experiment Runs

Figure 9.5 depicts the distribution of the type of failure. As the figure

shows, 99% of the failures are due to problems in the subscription phase

of a peer to an IM; only 1% of the simulations are stopped during the

interaction run phase.

As revealed during the development phase of the OK kernel, the sub-

scription problem is due to a malfunctioning in the OK discovery service:

a query reply is never returned to the peer which is looking for an IM (step

3 of Figure 5.7). However, the reason why this happens is not known.

Due to the complexity of our test-case, it is difficult to devise a simpler

scenario that consistently reproduces the issue; thus, to get more insights

in the subscription problem, we conducted a further analysis.

It is worth to mention here how a simulation run is performed: the

processes associated with the reporter peers are launched first; the reporter

peers subscribe to the “reporter” role of the “Poll-Sensor” IM. Note that

126

9.4. RESULTS

Figure 9.5: Failed experiment runs

in this phase of the simulation run, no interactions are being run since the

other peers processes are not launched yet. When all reporter peers are

subscribed, the processes associated with the other e-response peers are

launched so that the whole simulation can start. In summary, there are

two phases in a simulation run: (a) subscription phase of the reporter peers

(no interactions are executed); (b) the actual simulation where multiple,

interleaved interactions are executed.

Figure 9.6 illustrates the distribution of the subscription failures. As the

figure shows, 30% of the subscription failures occur during the first phase

of the simulation run, i.e., when no interactions are executed; 70% of the

subscription failures mainly occur during the execution of the interactions.

The fact that most of the subscription failures occur in the second phase

of the simulation run, let one think that the problem might be connected to

the many IMs enacted during the execution of other interactions, hence, to

the complexity of the test case in terms of IMs. To further investigate this,

we derived the diagram of Figure 9.7, which gives a more fine-grained view

of the subscription failures by distinguishing the type of IMs for which

the failures occurr. The figure shows that subscription failures occur in

127

CHAPTER 9. EXPERIMENTAL TESTBED

Figure 9.6: Subscription failures by simulation run phase

a low percentage (i.e., 1%) for some interactions (i.e., evacuation, peer

connection). These interactions are not enacted within the execution of

other IMs and are not executed repeatedly; therefore, at a very first look,

it seems that there is a link between the subscription problem and the

enaction of multiple interleaved interactions.

However, these are preliminary results which must be taken carefully

and further validated; nevertheless, they could provide a direction where

to investigate further this kind of failure issue.

9.5 Conclusion

This chapter has presented a testbed which is used to conduct initial analy-

sis on the efficacy of different information-gathering strategies in e-response

settings; and, to test the OK underlying supporting infrastructure. In par-

ticular, preliminary results show that our simulations adhere to realistic

scenarios, and that under ideal conditions centralized and decentralized

information-gathering strategies are comparable.

In relation to the testing of the OK infrastructure, our complex scenario

128

9.5. CONCLUSION

Figure 9.7: Subscription failures by IMs

has shown some limitations with respect to the coordination mechanism.

In particular, failures in the subscription phase of the interaction lifecycle

have emerged. With the aim to investigate whether this kind of failure

is connected with the complexity of the simulation, we conducted an ini-

tial analysis on the type of IMs for which the subscription failures occur.

Although preliminary and limited, the findings suggest that the discov-

ery mechanism of the OK infrastructure is weak in supporting multiple

interleaved interactions.

129

CHAPTER 9. EXPERIMENTAL TESTBED

130

Part V

Final Discussions

Chapter 10

Related Work

In this thesis, we apply interaction-oriented frameworks to information

sharing within complex contexts such as emergency response. We adopt

simulations to establish whether specific software systems (e.g., the OK

system) realizing such frameworks support emergency response activities,

and to study how different information-gathering strategies impact on such

activities.

Many research works exist which adopt simulations as means to evaluate

the effectiveness of different strategies, and the suitability of IT solutions

for crisis response management [16, 74, 101, 14].

In [16], a multi-agent based approach is described to model and simulate

the dynamics of large scale crisis situations. As in our work, the model

and the simulator are based on official rescue plans and on realistic data.

However, the simulator is based on a multi-agent platform which does not

provide mechanisms to discover, and gather together heterogeneous peers.

The DrillSim simulation system has been developed to analyze the ef-

fect of information technology solutions in emergency response [74]. It is

a multi-agent system where each agent simulates a person. The core com-

ponent of DrillSim is the simulation engine: it simulates the geographic

space, the evacuation scenario and the current status of the disaster. The

133

CHAPTER 10. RELATED WORK

prototype has a GUI that enables humans to control the simulation and to

interact with virtual agents.

The DEFACTO system [101], provides a multi-agent simulation system

which is based on a scalable architecture. It allows responders to interact

with the coordinating agent team in a complex environment and includes

3D visualization. This simulation environment is used to analize the impact

of teamwork interaction strategies.

Other related research works are either specifically devised for the emer-

gency management area or focused more on the architectural aspect. In

particular, FireGrid1, CASCOM2, and WORKPAD3 are among such projects.

In the FireGrid project [57], a system to help fire-fighters in e-Response

activities has been built which adopts Grid-techniques. The scenario con-

sidered here is an indoor environment, where real-time sensor data are

collected, processed and presented to support responders in decision mak-

ing.

In the CASCOM project (Context-Aware Business Application Service

Coordination in Mobile Computing Environments) an intelligent agent-

based peer-to-peer (Ip2p) envi- ronment was developed [58]. Here, the

service coordination mechanism relies on Semantic Web technologies, such

as OWL-S and WSMO, rather than on explicit lightweight protocols.

The WORKPAD project aims at designing and developing an innovative

software infrastructure (software, models, services, etc.) for supporting col-

laborative work of human operators in emergency/disaster scenarios [80].

A set of front-end peer-to-peer communities providing services to human

workers, mainly by adaptively enacting processes on mobile ad-hoc net-

works, is part of the system developed [32]. Each community is lead by

a super-peer, which is the only peer managing workflow composition and

1http://www.firegrid.org
2http://www.ist-cascom.org
3http://www.workpad-project.eu

134

coordination in an adaptive manner.

135

CHAPTER 10. RELATED WORK

136

Chapter 11

Conclusions

Coordination technologies play a crucial role to support effective inter-

actions among processes, whether reactive (e.g., web services) or proac-

tive (e.g., autonomous agents). In the past few years, interaction-oriented

frameworks have been proposed, which enable a priori unknown agents

to engage in coordination activities thanks to the sharing of interaction

models specified in executable protocol languages. Software systems have

started to be developed to apply such frameworks to concrete use.

In particular, the OpenKnowledge framework has been proposed as

such an interaction-oriented framework and the OpenKnowledge system

has been developed for its realization. In the OpenKnowledge system, in-

teraction models specified in the Lightweight Coordination Calculus (LCC)

are shared first-class entities which enable distributed peers to engage in

coordination tasks. Although the realization of the OpenKnowledge ap-

proach is promising, its application in complex and dynamic scenarios, is

still a challenge.

This thesis work aims at tackling this challenge, by applying the Open-

Knowledge framework to realistic contexts such as emergency response.

The choice of crisis response as a target domain is driven by its potential

to deal with a distributed-knowledge and dynamic environment. Here, the

137

CHAPTER 11. CONCLUSIONS

adoption of a distributed infrastructure such as the one provided by Open-

Knowledge, can reveal to be effective in dealing with a flexible coordination

of emergency response activities.

The main contribution of this thesis is to have applied the OpenKnowl-

edge framework in realistic contexts. In particular, the research has been

carried out to:

• design LCC interaction protocols to model complex emergency re-

sponse coordination tasks;

• provide an agent-based simulation environment as a means to infor-

mally validate interaction models relative to different information-

gathering strategies in emergency contexts;

• fully use and test a distributed infrastructure enabling and executing

interaction protocols such as OpenKnowledge;

• provide a preliminary experimental evaluation of the efficacy of differ-

ent information gathering strategies in emergency response settings.

Modular and reusable LCC protocols have been designed to model rel-

atively complex emergency response scenarios. Such design has affected

the development of the OK infrastructure, thus enriching it with features

needed to bring the approach towards the application field.

Part of an emergency plan has been modeled in terms of LCC specifica-

tions and a simulation environment has been built to informally validate

the designed interaction-based scenarios. The simulation architecture is

composed of an agent network and a core engine which allows agents to

coordinate with each other via predefined LCC interactions.

The developed simulation environment is fully integrated with the OK

system and has been used to test its capability to support different models

of information-sharing. Results have shown that, the OK infrastructure

138

is able to support complex coordination tasks; however, some limitations

have appeared in relation to the subscription phase of the coordination

mechanism.

Finally, the simulation system has been exploited to carry out a prelim-

inary analysis on the effectiveness of centralized and decentralized infor-

mation sharing strategies in emergency contexts. An experimental testbed

is built to this purpose. Preliminary results show that our simulations ad-

here to realistic scenarios, and that under ideal conditions centralized and

decentralized information-gathering strategies are comparable.

The research conducted has thus provided a contribution towards the

application of interaction-based approaches to information sharing within

realistic, emergency response scenarios.

139

CHAPTER 11. CONCLUSIONS

140

Chapter 12

Future Work

Some limitations, due to both the functionalities of the framework and

the features of the LCC protocol language, were experienced during the

development of the simulator. More specifically:

1. Interaction models are constructed manually since there are no sup-

porting tools. This prevented an easy and fast development process.

Also, since LCC requires a logic background, the system could not

currently be used by end-users to simulate their own processes;

2. The LCC protocol does not directly provide a way to compose hier-

archies of interaction models. It is not possible to refer to a “sub-

interaction model” from a “main interaction model”. Some technical

solutions were applied that allowed to bypass the problem but still

the specification lost in clarity. In fact, to analyse how different in-

teraction models are called and nested, it is necessary to look at how

the decision procedure of a single agent process is implemented. This

raises interesting questions as to where an interaction protocol “ends”

and the agent process “starts”;

3. According to the OpenKnowledge framework, once an interaction

starts, the participants are fixed and new comers cannot enter it.

141

CHAPTER 12. FUTURE WORK

This prevented us to simulate extremely realistic emergency scenarios

where it is likely to have peers suddenly leaving and joining. For ex-

ample, if such functionality was provided, it could have been possible

to deal with an unknown number of peers. However, in this case, we

would have encountered a limitation of the protocol language: the lack

of a parallel operator which prevents to send a message, in multicast,

to all those peers playing a given role.

The issue described in point 1, has previously been raised by Walton

et al. [120, 121] for the MAP protocol language, analogous to LCC. Here

different approaches are considered to solve the problem: provision of a

graphical tool, automatic generation of protocols by means of a planning

process, extension of the protocol language thus to make it more suitable

for p2p architectures.

Recently, Besana and Barker [19] extended the LCC language and in-

troduced the “scene” and the “parallel” operators: the first abstracts an

interaction model and the second allows for real multicast. We could apply

this extended version of the protocol to our interaction-based scenarios, to

investigate whether this helps in a faster and easier protocol design process.

A further observation regards the flexibility of the protocol (as it was

used in the case study considered) to model realistic scenarios. On one

hand, LCC interaction protocols are rigid in the sense that they specify

predefined “workflows” of agent-oriented services. On the other hand, they

provide flexibility at least in two ways:

• By means of external decision procedures: they provide an interface

between the dialogue protocol and the rational process of the agents;

• By allowing the participants to dynamically change the protocol itself

during the coordination task.

142

In our research we explored the first characteristic, which allows to

separately design arbitrary complex agents. However, engineering more

proactive agents would have increased the dynamicity of the interactions.

In this case, a decision procedure in an LCC interaction model might have

represented the goal needed by the proactive process to plan a sequence of

actions in order to achieve that goal.

In our research, we explored the first characteristic, which allows to

separately design arbitrary complex agents. However, engineering more

proactive agents would have increased the dynamicity of the interactions.

In this case, a decision procedure in an LCC-like interaction model could

represent the goal to be achieved by a proactive agent, and could be imple-

mented by deriving a suitable plan, i.e. a sequence of actions, to achieve

that goal.

Let’s make a concrete example of how this could work in the context of

an emergency situation: suppose an emergency coordinator peer asking its

team members to perform the specific task of moving to a precise location.

The agent acting on behalf of a team member might first deliberate the

best way to find the path: rely on its own knowledge? Ask a predisposed

route service? Consult agent peers in its vicinity? In this last case, the

problem is how to consult the peer colleagues. A planning process could

be enacted to provide the agent in need with a suitable sequence of actions

(e.g., messages to be sent to specific neighbor peers). Such sequence of

actions could be synthesized in an interaction model. This interaction

model would be nested in the previous one, that is, would be enacted

at the point of the decision procedure presents in the original interaction

model, the one which started the whole coordination task; moreover, it

might be even shared with other peers willing to solve similar problems.

From the discussion above, we can deduce that a real flexibility of pro-

cess coordination can be achieved by effectively designing both interaction

143

CHAPTER 12. FUTURE WORK

models and agent-oriented processes. Investigating more deeply the trade-

off between the complexity of the interaction models and that of the agent

processes could lead to an interesting direction.

Finally, the exploitation of the second feature outlined above, the one

for which an LCC protocol can be adapted while it is executed, would

certainly guarantee an extreme flexibility. Along this line, it would be in-

teresting to apply the findings of McGinnis [78] to the concrete scenario

considered in this thesis.

Regarding the use of the e-response simulation prototype, we started

with a preliminary evaluation on the impact of different information-gathering

strategies in the response phase of an emergency. We could complete the

evaluation and find out when a decentralized information-gathering strat-

egy is to be preferred to a centralized one, hence, to evaluate the opportu-

nity to adopt or switch to a peer-to-peer solution for emergency manage-

ment.

In regards to the evaluation of the underlying infrastructure, the same

environment can be used to evaluate whether the use of a peer-to-peer

framework - as the one provided by OpenKnowledge - improves on conven-

tional centralized systems when specific fault conditions arise.

Finally, another direction for future work is the improvement of the

simulation experiments: Web interfaces could be designed which allow the

input of parameters to ease the simulation run process.

144

Bibliography

[1] J. Abian, M. Atencia, P. Besana, L. Bernacchioni, D. Gerloff, S. Le-

ung, J. Magasin, A. Perreau de Pinninck, X. Quan, D. Robertson,

M. Schorlemmer, J. Sharman, and C. Walton. OpenKnowledge De-

liverable 6.3: Bioinformatics Interaction Models, 2008.

[2] Dinand Alkema, Angelo Cavallin, Mattia De Amicis, and Andrea

Zanchi. Valutazione degli effetti di un alluvione: il caso di trento.

Studi Trentini di Scienze Naturali : Acta Geologica, 78:55–62, 2003.

[3] H. Aminoff, B. Johansson, and J. Trnka. Understanding coordination

in emergency responses. In Proc. EAM Human Decision-Making and

Manual Control, pages 1111–1128, 2007.

[4] A Arkin, S Askary, B Bloch, Y Goland, N Kartha, C K Liu, S Thatte,

P Yendluri, and A Yiu. Web services business process execution

language. 2004.

[5] A Arkin, S Askary, S Fordin, W Jekeli, K Kawaguchi, D Orchard,

S Pogliani, K Riemer, S Struble, P Takacsi-Nagy, I Trickovic, and

S Zimek. Web service choreography interface (wsci). Technical report,

W3C, 2002.

[6] A. Artikis and J. Pitt. Specifying open agent systems: A survey.

Engineering Societies in the Agents World IX, pages 29–45, 2009.

145

BIBLIOGRAPHY

[7] A. Artikis, M. Sergot, and J. Pitt. Specifying electronic societies

with the Causal Calculator. Agent-Oriented Software Engineering

III, pages 1–15, 2003.

[8] J.L. Austin, J.O. Urmson, and M. Sbisà. How to do things with words.

Harvard Univ Pr, 1975.

[9] X. Bai and David Robertson. Service choreography meets the web of

data via micro-data. In In Proceedings of the AAAI Spring Sympo-

sium on Linked Data Meets Artificial Intelligence (LINKEDAI 2010).

AAAI Press, 2010.

[10] Adam Barker, Paolo Besana, David Robertson, and Jon B. Weiss-

man. The benefits of service choreography for data-intensive com-

puting. In CLADE ’09: Proceedings of the 7th international work-

shop on Challenges of large applications in distributed environments,

pages 1–10, New York, NY, USA, 2009. ACM.

[11] Adam Barker, Christopher D. Walton, and David Robertson. Chore-

ographing web services. In IEEE Transactions on services computing,

2(2), 2009.

[12] A. Barros, M. Dumas, and P. Oaks. A critical overview of the web

services choreography description language. Business Process Trends

White Paper, 2005.

[13] A. Barros, M. Dumas, and A.H.M. Ter Hofstede. Service interaction

patterns. Business Process Management, pages 302–318, 2005.

[14] I. Becerra-Fernandez, M. Prietula, R. Valerdi, G. Madey, D. Ro-

driguez, and T. Wright. Design and development of a virtual emer-

gency operations center for disaster management research, training,

146

BIBLIOGRAPHY

and discovery. In Hawaii International Conference on System Sci-

ences, Proceedings of the 41st Annual, page 27. IEEE, 2008.

[15] Saoud N Bellamine-Ben, J Dugdale, B Pavard, and M Ben Ahmed.

Towards planning for emergency activities in large-scale accidents:

An interactive and generic agent-based simulator. In Proceedings of

the first International workshop on Information Systems for Crisis

Response and Management, 2004.

[16] Saoud N Bellamine-Ben, T Ben Mena, J Dugdale, B Pavard, and

M Ben Ahmed. Assessing large scale emergency rescue plans: an

agent based approach. special issue on emergency management sys-

tems. International Journal of Intelligent Control and Systems,

11:260–271, 2006.

[17] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa. Jade-a white

paper. EXP in search of innovation, 3(3):6–19, 2003.

[18] Federico Bergenti, César Cáceres, Alberto Fernández, Nadine

Fröhlich, Heikki Helin, Oliver Keller, Ari Kinnunen, Matthias Klusch,

Heimo Laamanen, António Lopes, Sascha Ossowski, Heiko Schuldt,

and Michael Schumacher. Context-aware service coordination for

mobile e-health applications. In ECEH, pages 119–130, 2006.

[19] Paolo Besana and Adam Barker. An executable calculus for service

choreography. In OTM Conferences (1), pages 373–380, 2009.

[20] Paolo Besana, David Dupplaw, and Adrian De Pinnick. Openknowl-

edge deliverable 1.3: Plug-in component architecture. Technical re-

port, OpenKnowledge, 2007.

[21] Paolo Besana, Fiona McNeill, Fausto Giunchiglia, Lorenzino Vac-

cari, Gaia Trecarichi, and Juan Pane. Web service integration via

147

BIBLIOGRAPHY

matching of interaction specifications. Technical report, University

of Trento, Dipartimento di Ingegneria e Scienza dell’Informazione,

2008.

[22] Paolo Besana, Adam Patkar V. Barker, David Robertson, and David

Glasspool. Sharing choreographies in openknowledge: A novel ap-

proach to interoperability. Journal of Software, Special Issue on Se-

mantic Extensions to Middleware, 4(8), 2009.

[23] A. Bucchiarone and S. Gnesi. A survey on services composition lan-

guages and models. In in Proceedings of International Workshop on

Web Services Modeling and Testing (WS-MaTe2006), pages 51–63,

2006.

[24] Churton Budd. Information Gathering and Technology Use During

Disaster Deployments.

[25] Paul A Buhler, José M Vidal, and Harko Verhagen. Adaptive work-

flow = web services + agents. In ICWS, pages 131–137, 2003.

[26] L. Cabac and D. Moldt. Formal semantics for AUML agent inter-

action protocol diagrams. Agent-Oriented Software Engineering V,

pages 47–61, 2005.

[27] G Casella and V Mascardi. From auml to ws-bpel. Technical report,

Computer Science Department, University of Genova, 2001.

[28] Amit K. Chopra, Fabiano Dalpiaz, Paolo Giorgini, and John My-

lopoulos. Reasoning about agents and protocols via goals and com-

mitments. In AAMAS ’10: Proceedings of the 9th International Con-

ference on Autonomous Agents and Multiagent Systems, pages 457–

464, Richland, SC, 2010. International Foundation for Autonomous

Agents and Multiagent Systems.

148

BIBLIOGRAPHY

[29] R. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng. Using colored

petri nets for conversation modeling. Issues in Agent Communication,

pages 178–192, 2000.

[30] R.S. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng. Modeling

agent conversations with colored petri nets. 1999.

[31] R.S. Cost, Y. Labrou, and T. Finin. Coordinating agents using agent

communication languages conversations. In Coordination of Internet

agents, page 196. Springer-Verlag, 2001.

[32] Massimiliano De Leoni, Fabio De Rosa, and Massimo Mecella. Mo-

bidis: A pervasive architecture for emergency management. In WET-

ICE, pages 107–112, 2006.

[33] A Perreau De Pinninck, D Dupplaw, S Kotoulas, M Schorlemmer,

R Siebes, and C Sierra. OpenKnowledge Deliverable 1.2: Peer to

peer coordination protocol, 2006.

[34] Adrian Perreau De Pinninck, David Dupplaw, Spyros Kotoulas, and

Ronny Siebes. The openknowledge kernel. International Journal of

Applied Mathematics and Computer Sciences (IJAMCS), 4(3):162–

167, 2007.

[35] L.P. De Silva, M. Winikoff, and W. Liu. Extending agents by trans-

mitting protocols in open systems. In Proceedings of the Work-

shop on Challenges in Open Agent Systems, the Second Interna-

tional Joint Conference on Autonomous Agents & Multi-Agent Sys-

tems (AAMAS-03), Melbourne, Australia. Citeseer, 2003.

[36] G. Decker, M. Kirov, J.M. Zaha, and M. Dumas. Maestro for Lets

Dance: An Environment for Modeling Service Interactions. BPM

Demo Session 2006, page 32.

149

BIBLIOGRAPHY

[37] G. Decker, O. Kopp, F. Leymann, and M. Weske. BPEL4Chor:

Extending BPEL for modeling choreographies. In Web Services,

2007. ICWS 2007. IEEE International Conference on, pages 296–

303. IEEE, 2007.

[38] G. Decker, H. Overdick, and J.M. Zaha. On the Suitability of WS-

CDL for Choreography Modeling. Proceedings of Methoden, Konzepte

und Technologien f

”ur die Entwicklung von dienstebasierten Informationssystemen

(EMISA 2006), Hamburg, Germany, 2006.

[39] N. Desai, A. Mallya, A. Chopra, and M. Singh. OWL-P: a method-

ology for business process development. Agent-Oriented Information

Systems III, pages 79–94, 2006.

[40] N. Desai and M.P. Singh. A modular action description language for

protocol composition. In PROCEEDINGS OF THE NATIONAL

CONFERENCE ON ARTIFICIAL INTELLIGENCE, volume 22,

page 962. Menlo Park, CA; Cambridge, MA; London; AAAI Press;

MIT Press; 1999, 2007.

[41] Sukumar Dwarkanath and Denis Gusty. Information sharing: A

strategic approach. In Proceedings of the 7th International Confer-

ence on Information Systems for Crisis Response and Management

(ISCRAM), 2010.

[42] M. Esteva, J. Padget, and C. Sierra. Formalizing a language for

institutions and norms. Intelligent Agents VIII, pages 348–366, 2002.

[43] M. Esteva, W. Vasconcelos, C. Sierra, and J. Rodrıguez-Aguilar. Ver-

ifying norm consistency in electronic institutions. In Proceedings of

the AAAI-04 workshop on agent organizations: theory and practice,

pages 8–14, 2004.

150

BIBLIOGRAPHY

[44] Marc Esteva, David De La Cruz, and Carles Sierra. Islander: an

electronic institutions editor. In AAMAS, pages 1045–1052, 2002.

[45] T. Finin and Y. Labrou. Kqml as an agent communication language.

In Bradshaw, editor, Software Agents, pages 291–316. 1997.

[46] FIPA. Fipa interaction protocol library specification. 2001.

[47] FIPA. Foundation for intelligent physical agents. Communicative act

library specification, 2001.

[48] I. Foster and C. Kesselman. The grid: blueprint for a new computing

infrastructure. Morgan Kaufmann, 2004.

[49] L. Fredlund. Implementing ws-cdl. In Proceedings of the second

Spanish workshop on Web Technologies (JSWEB 2006), 2006.

[50] A. Garcia-Camino, P. Noriega, and J.A. Rodriguez-Aguilar. Imple-

menting norms in electronic institutions. In Proceedings of the fourth

international joint conference on Autonomous agents and multiagent

systems, pages 667–673. ACM, 2005.

[51] F. Giunchiglia, M. Yatskevich, and F. McNeill. Structure preserving

semantic matching. In Proceedings of the ISWC+ ASWC Interna-

tional workshop on Ontology Matching (OM), pages 13–24, 2007.

[52] Fausto Giunchiglia, Fiona McNeill, and M Yatskevich. Web ser-

vice composition via semantic matching of interaction specifications.

Technical report, DISI, University of Trento, 2006.

[53] Fausto Giunchiglia, Fiona McNeill, Mikalai Yatskevich, Juan Pane,

Paolo Besana, and Pavel Shvaiko. Approximate structure-preserving

semantic matching. In Proceedings of the 7th Conference on Ontolo-

gies, DataBases, and Applications of Semantics (ODBASE), pages

1234–1237, 2008.

151

BIBLIOGRAPHY

[54] M. Greaves, H. Holmback, and J. Bradshaw. What is a conversation

policy? Issues in Agent Communication, pages 118–131, 2000.

[55] Li Guo, David Robertson, and Yun-Heh Chen-Burger. A generic

multi-agent system platform for business workflows using web ser-

vices composition. In IEEE Intelligent Agent Technology, pages 301–

307, 2005.

[56] Li Guo, David Robertson, and Yun-Heh Chen-Burger. A novel ap-

proach for enacting the distributed business workflows using bpel4ws

on the multi-agent platform. In ICEBE, pages 657–664, 2005.

[57] Liangxiu Han, Stephen Potter, George Beckett, Gavin Pringle,

Stephen Welch, Sung-Han Koo, Gerhard Wickler, Asif Usmani,

José L. Torero, and Austin Tate. Firegrid: An e-infrastructure for

next-generation emergency response support. J. Parallel Distrib.

Comput., 70(11):1128–1141, 2010.

[58] H Helin, M Klusch, A Lopes, A Fernandez, M Schumacher, H Schuldt,

F Bergenti, and A Kinnunen. Context-aware business application ser-

vice co-ordination in mobile computing environments. In Proceedings

of the fourth conference of Autonomous Agents and Multi Agent sys-

tems - Workshop on Ambient Intelligence - Agents for Ubiquitous

Computing, 2005.

[59] T. Iwao, Y. Wada, M. Okada, and M. Amamiya. A framework for

the exchange and installation of protocols in a multi-agent system.

Cooperative Information Agents V, pages 211–222, 2001.

[60] S. Jain and C.R. McLean. Modeling and simulation for emergency re-

sponse. In Workshop Report, Relevant Standards and Tools, National

Institute of Standards and Technology Internal Report, NISTIR-7071,

volume 24, 2003.

152

BIBLIOGRAPHY

[61] B. Johansson. Joint control in dynamic situations. Dept. of Computer

and Information Science, Link

”oping universitet, 2005.

[62] Z. Kang, H. Wang, and P.C.K. Hung. WS-CDL+ for web service

collaboration. Information Systems Frontiers, 9(4):375–389, 2007.

[63] Zuling Kang, Hongbing Wang, and Patrick C K Hung. Ws-cdl+: An

extended ws-cdl execution engine for web service collaboration. In

ICWS, pages 928–935, 2007.

[64] K.M. Khalil, M. H. Abdel-Aziz, M. T. Nazmy, and A. M. Salem.

Multi-agent crisis response systems design requirements and analysis

of current systems. In In Proceedings of the 4th International Con-

ference on Intelligence Computing and Information Systems, 2009.

[65] S. Kotoulas and R. Siebes. Adaptive routing in structured peer-to-

peer overlays. In 3rd Intl. IEEE workshop on Collaborative Service-

oriented P2P Information Systems (COPS workshop at WETICE07),

Paris, France, IEEE Computer Society Press, Los Alamitos. Citeseer,

2007.

[66] Spyros Kotoulas and Ronny Siebes. Deliverable 2.2: Adaptive routing

in structured peer-to-peer overlays. Technical report, OpenKnowl-

edge, 2007.

[67] Y Labrou, T Finin, and Y Peng. The current landscape of agent

communication languages. Intelligent Systems, 14:45–52, 1999.

[68] F. Lin, D. Norrie, W. Shen, and R. Kremer. A schema-based approach

to specifying conversation policies. Issues in agent communication,

pages 193–204, 2000.

153

BIBLIOGRAPHY

[69] Maurizio Marchese, Lorenzino Vaccari, Gaia Trecarichi, Nardine Os-

man, and Fiona McNeill. Interaction models to support peer coordi-

nation in crisis management. In Proceedings of the 5th International

Conference on Information Systems for Crisis Response and Man-

agement (ISCRAM), pages 230–241, 2008.

[70] Maurizio Marchese, Lorenzino Vaccari, Gaia Trecarichi, Nardine Os-

man, Fiona McNeill, and Paolo Besana. An interaction-centric ap-

proach to support peer coordination in distributed emergency re-

sponse management. Special Issue on Intelligent Decision Making in

Dynamic Environments: Methods, Architectures and Applications of

the Intelligent Decision Technologies (IDT): An International Jour-

nal, 3(1), 2009.

[71] Maurizio Marchese, Lorenzino Vaccari, Gaia Trecarichi, Pavel

Shvaiko, Juan Pane, Nardine Osman, and Fiona McNeill. Open-

knowledge deliverable 6.7: Interaction models for eResponse. Tech-

nical report, OpenKnowledge, 2008.

[72] David Martin, Massimo Paolucci, Sheila Mcilraith, Mark Burstein,

Drew Mcdermott, Deborah McGuinness, Bijan Parsia, Terry Payne,

Marta Sabou, Monika Solanki, Naveen Srinivasan, and Katia Sycara.

Bringing semantics to web services: The owl-s approach. In First Int.

Workshop on Semantic Web Services and Web Process Composition

(SWSWPC), pages 26–42, 2005.

[73] F.J. Martin, E. Plaza, J.A. Rodŕıguez-Auilar, et al. Jim-a java in-

teragent for multi-agent systems. In In Proceedings of the AAAI-98

Workshop on Software Tools for Developing Agents, 1996.

[74] D Massaguer, V Balasubramanian, S Mehrotra, and N Venkatasubra-

manian. Multi-agent simulation of disaster response. In Proceedings

154

BIBLIOGRAPHY

of the First International Workshop on Agent Technology for Disaster

Management, 2006.

[75] N. Maudet and B. Chaib-Draa. Commitment-based and dialogue-

game-based protocols: new trends in agent communication lan-

guages. The Knowledge Engineering Review, 17(02):157–179, 2002.

[76] J. McGinnis and T. Miller. Amongst first-class protocols. Engineering

Societies in the Agents World VIII, LNAI, 2007.

[77] J. McGinnis and D. Robertson. Dynamic and distributed interaction

protocols. In In Proceedings of the AISB 2004 Convention, pages

45–54, 2004.

[78] J. McGinnis and D. Robertson. Realizing agent dialogues with dis-

tributed protocols. Agent Communication, pages 106–119, 2005.

[79] J. McGinnis, D. Robertson, and C. Walton. Using distributed proto-

cols as an implementation of dialogue games. In Presented EUMAS.

Citeseer, 2003.

[80] M Mecella, T Catarci, M Angelaccio, B Buttazzi, A Krek, S Dust-

dar, and G Vetere. Workpad: an adaptive peer-to-peer software

infrastructure for supporting collaborative work of human operators

in emergency/disaster scenarios. In Proceedings of the 2006 Interna-

tional Symposium on Collaborative Technologies and Systems, 2006.

[81] T. Miller and P. McBurney. Using constraints and process algebra for

specification of first-class agent interaction protocols. In Proceedings

of the 7th international conference on Engineering societies in the

agents world VII, pages 245–264. Springer-Verlag, 2007.

[82] Tim Miller, Peter McBurney, Jarred McGinnis, and Kostas Stathis.

First-class protocols for agent-based coordination of scientific instru-

155

BIBLIOGRAPHY

ments. Enabling Technologies, IEEE International Workshops on,

0:41–46, 2007.

[83] M. Nowostawski, M. Purvis, and S. Cranefield. A layered approach

for modelling agent conversations. In Proceedings of the Second Inter-

national Workshop on Infrastructure for Agents, MAS and Scalable

MAS, the Fifth International Conference on Autonomous Agents,

pages 163–170, 2001.

[84] J. Odell, H.V.D. Parunak, and B. Bauer. Extending UML for agents.

Ann Arbor, 1001:48–103, 1999.

[85] J. Odell, H. Van Dyke Parunak, and B. Bauer. Representing agent

interaction protocols in UML. In Agent-Oriented Software Engineer-

ing, pages 201–218. Springer, 2001.

[86] Juan Pane, Carles Sierra, Gaia Trecarichi, Maurizio Marchese, Paolo

Besana, and Fiona McNeill. OpenKnowledge Deliverable 4.9: Sum-

mative report on GEA, trust and reputation: integration and evalua-

tion results, 2008.

[87] C. Peltz. Web services orchestration and choreography. Computer,

pages 46–52, 2003.

[88] C. Perrow. Normal accidents: Living with high-risk technologies.

Princeton Univ Pr, 1999.

[89] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and P. Traverso.

Planning and monitoring web service composition. Artificial Intelli-

gence: Methodology, Systems, and Applications, pages 106–115, 2004.

[90] J. Rao and X. Su. A survey of automated web service composi-

tion methods. Semantic Web Services and Web Process Composition,

pages 43–54, 2005.

156

BIBLIOGRAPHY

[91] C. Reed. Dialogue frames in agent communication. In Multi Agent

Systems, 1998. Proceedings. International Conference on, pages 246–

253. IEEE, 2002.

[92] D. Robertson. A lightweight coordination calculus for agent systems.

Declarative agent languages and technologies II, pages 183–197, 2005.

[93] David Robertson. A lightweight method for coordination of agent

oriented web services. In Proceedings of AAAI Spring Symposium on

Semantic Web Services, California, USA, 2004.

[94] David Robertson. Multi-agent coordination as distributed logic pro-

gramming. In Proceedings for International Conference on Logic Pro-

gramming, 2004.

[95] David Robertson, Adam Barker, Paolo Besana, Alan Bundy, Yun-

Heh Chen-Burger, David Dupplaw, Fausto Giunchiglia, Frank

Van Harmelen, Fadzil Hassan, Spyros Kotoulas, David Lambert, Guo

Li, Jarred McGinnis, Fiona McNeill, Nardine Osman, Adrian Perreau

de Pinninck Bas, Ronny Siebes, Carles Sierra, and Christopher D.

Walton. Models of interaction as a grounding for peer-to-peer knowl-

edge sharing. LNCS Advances in Web Semantics, 2007.

[96] David Robertson, Fausto Giunchiglia, Frank Van Harmelen, Mau-

rizio Marchese, Marta Sabou, Marco Schorlemmer, Nigel Shadbolt,

Ronald Siebes, Carles Sierra, Christopher D. Walton, Srinandan Das-

mahapatra, David Dupplaw, Paul Lewis, Mikalai Yatskevich, Spyros

Kotoulas, Adrian De Pinninck, and Antonis Loizou. Open knowledge

semantic webs through peer-to-peer interaction. Technical report,

2006.

[97] Dumitru Roman, Uwe Keller Holger Lausen, Jos De Bruijn, Rubén

Lara, Michael Stollberg, Alex Polleres, Dieter Fensel, and Christoph

157

BIBLIOGRAPHY

Bussler. Web service modeling ontology (WSMO). Applied Ontology,

1(1):77–106, 2005.

[98] S. Ross-Talbot. Orchestration and Choreography: Standards, Tools

and Technologies for Distributed Workflows. In NETTAB Workshop-

Workflows management: new abilities for the biological information

overflow, 2005.

[99] S Ross-Talbot and T Fletcher. Web services choreography description

language: Primer. Technical report, W3C, 2006.

[100] B.T.R. Savarimuthu, M. Purvis, M. Purvis, and S. Cranefield. Agent-

based integration of web services with workflow management sys-

tems. In Proceedings of the fourth international joint conference on

Autonomous agents and multiagent systems, pages 1345–1346. ACM,

2005.

[101] Nathan Schurr, Janusz Marecki, J. P. Lewis, and Milind Tambe. The

defacto system: Training tool for incident commanders. In In IAAI,

2005.

[102] J.R. Searle. Speech acts: An essay in the philosophy of language.

Cambridge university press, 1970.

[103] R. Siebes, D. Dupplaw, S. Kotoulas, A.P. De Pinninck,

F. Van Harmelen, and D. Robertson. The openknowledge system:

an interaction-centered approach to knowledge sharing. In Proceed-

ings of the 2007 OTM Confederated international conference on On

the move to meaningful internet systems: CoopIS, DOA, ODBASE,

GADA, and IS-Volume Part I, pages 381–390. Springer-Verlag, 2007.

[104] M. Singh. A social semantics for agent communication languages.

Issues in agent communication, pages 31–45, 2000.

158

BIBLIOGRAPHY

[105] M. Singh. Agent communication languages: Rethinking the princi-

ples. Communications in Multiagent Systems, pages 37–50, 2003.

[106] Munindar P Singh, Amit K. Chopra, Nirmit Desai, and Ashok U

Mallya. Protocols for processes: programming in the large for open

systems. SIGPLAN Not., 39:73–83, 2004.

[107] E Sirin, B Parsia, D Wu, J A Hendler, and D S Nau. Htn planning

for web service composition using shop2. J. Web Sem., 1:377–396,

2004.

[108] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan. Auto-

mated discovery, interaction and composition of semantic web ser-

vices. Journal of Web Semantics, 1(1):27–46, 2003.

[109] A. Tate. The helpful environment: Geographically dispersed intelli-

gent agents that collaborate. 2006.

[110] R.K. Thiagarajan, A.K. Srivastava, A.K. Pujari, and V.K. Bulusu.

BPML: A process modeling language for dynamic business models.

2002.

[111] Gaia Trecarichi, Veronica Rizzi, Maurizio Marchese, Lorenzino Vac-

cari, and Paolo Besana. Enabling information gathering patterns for

emergency response with the openknowledge system. Special Issue on

Advanced Data Mining in Ubiquitous Environment, Computing and

Informatics Journal, 29(4), 2010.

[112] Gaia Trecarichi, Veronica Rizzi, Lorenzino Vaccari, Maurizio March-

ese, and Paolo Besana. Openknowledge at work: exploring central-

ized and decentralized information gathering in emergency contexts.

In Submitted to the 6th International Conference on Information Sys-

tems for Crisis Response and Management (ISCRAM), 2009.

159

BIBLIOGRAPHY

[113] Gaia Trecarichi, Veronica Rizzi, Lorenzino Vaccari, Juan Pane, and

Maurizio Marchese. Openknowledge deliverable 6.8: Summative re-

port on use of ok approach in eResponse: integration and evaluation

results. Technical report, OpenKnowledge, 2008.

[114] M. Turoff. Past and future emergency response information systems.

Communications of the ACM, 45(4):29–32, 2002.

[115] Lorenzino Vaccari, Maurizio Marchese, Fausto Giunchiglia, Fiona

McNeill, Stephen Potter, and Austin Tate. Openknowledge deliver-

able 6.5: Emergency monitoring scenarios. Technical report, Open-

Knowledge, 2006.

[116] Lorenzino Vaccari, Maurizio Marchese, and Pavel Shvaiko. Open-

knowledge deliverable 6.6: Emergency response gis service cluster.

Technical report, OpenKnowledge, 2007.

[117] C. Walton. Protocols for web service invocation. In In Proceed-

ings of the AAAI Fall Symposium on Agents and the Semantic Web

(ASW05), 2005.

[118] C. Walton. Uniting agents and web services. AgentLink News, Issue

18, pages 26–28, 2005.

[119] C.D. Walton. Agency and the semantic web. Oxford University Press,

USA, 2007.

[120] Christopher Walton and Adam Barker. An agent-based e-science ex-

periment builder. In In Proceedings of the 1st International Workshop

on Semantic Intelligent Middleware for the Web and the Grid, 2004.

[121] Christopher D. Walton. Typed protocols for peer-to-peer service com-

position. In P2PKM, 2005.

160

BIBLIOGRAPHY

[122] D.N. Walton and E.C.W. Krabbe. Commitment in dialogue: Basic

concepts of interpersonal reasoning. State Univ of New York Pr, 1995.

[123] P. Yolum and M. Singh. Commitment machines. Intelligent Agents

VIII, pages 235–247, 2002.

[124] P. Yolum and M.P. Singh. Flexible protocol specification and ex-

ecution: applying event calculus planning using commitments. In

Proceedings of the first international joint conference on Autonomous

agents and multiagent systems: part 2, pages 527–534. ACM, 2002.

[125] J. Zaha, A. Barros, M. Dumas, and A. ter Hofstede. Lets dance: A

language for service behavior modeling. On the Move to Meaningful

Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE, pages

145–162, 2006.

[126] M. Zahiri and M. Khayyambashi. An agent-oriented executive model

for service choreography. Journal of Theoretical and Applied Infor-

mation Technology (JATIT), 14(2), 2010.

161

BIBLIOGRAPHY

This appendix includes technical details for the interaction models used

to model the evacuation phase. In the subsequent LCC code snippets: (i)

a constraint which is solved by enacting a separate interaction model is

specified in bold; (ii) the comments are preceded by the character string

“//”.

163

BIBLIOGRAPHY

164

Appendix A

Peer Network Interaction Models

In what follows, we describe the interaction models used by the emergency

peers in the selected use case, i.e. the evacuation plan.

A.1 Evacuation.lcc

This interaction model represents the main one to simulate the evacuation

phase. It can be used in all those situations where an emergency chief sends

the directive of reaching specific locations to its subordinates. It foresees

the main roles emergency chief and emergency subordinate which, in our

simulation, are played by a fire-chief and a fire-fighter peer respectively(see

LCC code below).

The role of the emergency chief is simply that of retrieving a list of

available subordinates (getPeers1 constraint), assigning a destination to

each subordinate (assign goal constraint) and sending an alert message

containing the destination to her/him.

The emergency subordinate, denoted as “moving peer” from now on,

receives the above message from the chief and prepare to satisfy the direc-

tive. The constraints set goal and get current position are solved in order

1This constraint is not defined by the designer of the interaction models but is already provided in

the OK kernel

165

APPENDIX A. PEER NETWORK INTERACTION MODELS

to set the goal to be achieved (reach the goal destination G) and get the

current position CurrPos. The role goal achiever is then taken. The ac-

tivities of the emergency subordinate thus evolve through three roles: the

afore mentioned goal achiever role which abstractly models the activity of

searching for a path and moving towards the goal; the free path finder role

which defines the operations needed to find a free path; the goal mover role

which models the actions needed to move towards the goal destination.

r(emergency_chief,initial)

r(emergency_subordinate,necessary)

r(goal_achiever,auxiliary)

r(free_path_finder,auxiliary)

r(goal_mover,auxiliary)

a(emergency_chief,FFC)::

null <- getPeers("emergency_subordinate", FFL) then

a(emergency_chief(FFL),FFC)

a(emergency_chief(FFL),FFC) ::

null <- FFL = []

or

(

alert(G) => a(emergency_subordinate,FFL_H)

<- FFL=[FFL_H|FFL_T] and assign_goal(FFL_H,G) then

a(emergency_chief(FFL_T),FFC)

)

a(emergency_subordinate,FF)::

alert(G) <= a(emergency_chief,FFC) then

null <- set_goal(G) and get_current_position(CurrPos) then

a(goal_achiever(CurrPos,G),FF)

The goal achiever role is specified with the parameters From and To

which respectively indicate the location from where a peer starts moving

and the final destination to be reached (see LCC code below). The com-

ments in the code clearly explicate the logic and meaning of the role.

166

A.1. EVACUATION.LCC

a(goal_achiever(From,To),GA)::

(

//moving peer already at destination

null <- equal(To,From) and setGoalAchieved(To)

or

(//try to find a free path

a(free_path_finder(From,To,FreePath), GA) then

//no free paths between From and To

null <- FreePath=[] and setGoalUnreachable(To)

or

//move towards the goal destination along the free path found

a(goal_mover(From,To,FreePath),GA)

)

)

The free path finder role is specified with the input parameters From

and To already mentioned and produces, once it is ended, the output

parameter FreePath which contains the shortest free path connecting the

nodes From and To. The constraint find path enacts the interaction model

“Find-Route” (see next section) in order to find an existing path. This

operation is repeated till a free path is found or there are no paths anymore.

A free path is a path that is not blocked by the flood. The information

on the blockage state of a path are acquired by solving the constraint

request path state which enacts the interaction model “Check-Route-State”

(see section A.3 for more details).

a(free_path_finder(From,To,FreePath), FRF) ::

null <- find_path(From,To,Path) then

(

//no paths are found

null <- Path=[] and makeEmptyList(FreePath)

or

(

167

APPENDIX A. PEER NETWORK INTERACTION MODELS

//check if the path is free

null <- request_path_state(Path,PathState) and

path_free(PathState) then

null <- assign(Path,FreePath)

)

or

//search for an alternative path which is free

a(free_path_finder(From,To,FreePath), FRF)

)

Finally, the role goal mover is used to actually move towards the goal

destination. The role consists in moving step by step, from a node to the

next one. At every step, the moving peer tries to perform the “move”

action (try move action constraint) as explained in section A.2 with the

aim to arrive at the next location along the path. Also, once such location

is reached, the peer checks the blockage state of the remaining path through

the constraint request path state2. If the peer is prevented to make even

the first step, most probably an inaccurate signaling by part of the Civil

Protection (CP) happens during the execution of the “Check-Route-State”

interaction model; this because the goal mover role is entered only if a free

path is found. The logic and meaning of the role just described is made

explicit by the comments of the LCC code below.

a(goal_mover(Start,Goal,Path), GM) ::

null <- getSubGoal(Path,SubGoal) and

try_move_action(Start,SubGoal,ActionState) then

(

//The moving peer has moved

null <- action_performed(ActionState) and

update_current_position(SubGoal) then

//the moving peer has reached the final location

null <- equal(SubGoal,Goal) and setGoalAchieved(Goal)

or

2Notice that a path which was found to be free the first time it was checked, can get blocked subse-

quently.

168

A.2. FIND-ROUTE.LCC

(

//the moving peer reaches an intermediate node (SubGoal) in the Path

null <- notEqual(SubGoal,Goal) then

//check the blockage state of the remaining path

//and take decision on whether to move

null <- update_path(Path,RestPath) and

request_path_state(RestPath,PathState) and

take_move_decision(PathState,MoveDecision) then

(// the moving peer proceeds: path is free

null <- go_for_move(MoveDecision) then

a(goal_mover(SubGoal,Goal,RestPath), GM)

)

or

//the moving peer stops: path is blocked

//find alternative free paths from SubGoal to Goal

a(goal_achiever(SubGoal,Goal),GM)

)

)

or

(

//The moving peer stops: wrong info from CP peer received (fault case)

//find alternative free paths from Start to Goal

null <- update_blocked_nodes(Start,SubGoal) then

a(goal_achiever(Start,Goal),GM)

)

A.2 Find-Route.lcc

This interaction model is used to retrieve a route connecting two given

locations. Two roles are involved: the route finder role, played by an

emergency subordinate in our case, and the route service role, taken by a

route provider.

The route finder initiates the interaction by sending a route request mes-

sage to the route service. The message contains the following parameters:

- PeerName: the name identifying the requester;

- From: the starting location;

169

APPENDIX A. PEER NETWORK INTERACTION MODELS

- To: the final destination;

- Vehicle: the means of transport used to move;

- BlkNodes : a list of (already known) inaccessible locations which are

to be excluded from the path requested.

Once the above message is sent and the reply received with the route

message, the path Path specified in it is stored in the peer local knowledge

(store path constraint).

The route service, after reception of the route request message, solves the

constraint get route in order to compute the shortest path (Path) between

the given locations which does not pass by the nodes specified in the list

BlkNodes. If no such path is found, the parameter Path becomes an empty

list. In any case, the route message is sent with the parameter specified.

The LCC code of the interaction just illustrated follows:

r(route_finder,initial)

r(route_service,necessary)

a(route_finder,RF)::

route_request(PeerName,From,To,Vehicle,BlkNodes) => a(route_service(RS)

<- get_peer_name(PeerName) and get_current_position(From) and

get_final_destination(To) and set_vehicle(Vehicle) and

get_blocked_nodes(BlkNodes) then

route(From,To,Path) <= a(route_service(RS)) then

null <- store_path(Path)

a(route_service,RS)::

route_request(PeerName,From,To,Vehicle,BlkNodes) <= a(route_finder,RF) then

route(From,To,Path) => a(route_finder,RF)

<- get_route(PeerName,From,To,Vehicle,BlkNodes,Path)

A.3 Check-Route-State.lcc

This interaction model is used to verify the conditions of the roads and,

therefore, the ability for all drivers to be able to arrive at destination. It

170

A.3. CHECK-ROUTE-STATE.LCC

involves a peer asking for the blockage status of a given route and a peer

providing such kind of information. In our simulation, the requesting peer

is a fire-fighter and the info provider is the Civil Protection (CP).

A fire-fighter initiates the interaction by taking the role path info requester

(see LCC code below). Here, the peer first verifies its connection to the

simulation and acquires the parameter WaitTime which will be used in

the next role. After getting the path Path to check (get path to check con-

straint), the message path info request is sent to the info provider. The role

path info receiver is then assumed. In such role, the requesting peer waits

for the reply till either this is received or the maximum await time (Wait-

Time) has elapsed. The actions taken when a reply is not received are not

foreseen by this interaction; rather, they are established in the requester

peer’s OKCs. In our simulation, when the peer doesn’t obtain the seeked

information, the path is considered as it was practicable. When received,

the reply is constituted by the path info message and its parameters:

- BlkNodes : a list of locations in the requested path which are unreach-

able;

- FreeNodes : a list of locations in the requested path which are reach-

able;

- Timesteps : a list of time-steps relative to the above parameters. Each

time-step represents the last time at which the status of the corre-

sponding location has been updated. This parameter allows the re-

questing peer to know “how old” the searched information is.

The role path info provider taken by the CP is very simple and con-

stists in receiving the message path info request and serving the request.

Notice that, to serve many requests, the CP peer subscribes to this in-

teraction model at the beginning of the simulation, with an acceptance

policy of “all”. The request is handled by getting the current time-step

171

APPENDIX A. PEER NETWORK INTERACTION MODELS

CurrTimestep and obtaining the path info. In our simulation, a local

database3 is consulted for this purpose: the constraint get path status re-

trieves, if present, the water level registered at the locations specified in

the path Path at the time CurrTimestep. Depending on the water level

value, the relative location is inserted in either the BlkNodes or the FreeN-

odes list. If the status of a given location exists but refers to a previous

time-step, this time-step is considered and put in the list Timesteps.

r(path_info_requester,initial)

r(path_info_receiver,auxiliary)

r(path_info_provider,necessary,1)

a(path_info_requester, PIR)::

null <- connected() and getWaitTime(1,WaitTime) then

path_info_request(Path) => a(path_info_provider(PIP)

<- get_path_to_check(Path) then

a(path_info_receiver(WaitTime,1),PIR)

a(path_info_receiver(WaitTime,N),PIR)::

null <- equalZero(N)

or

(

path_info(BlkNodes,FreeNodes,Timesteps) <= a(path_info_provider,PIP) then

null <- store_path_info(BlkNodes,FreeNodes,Timesteps) and

dec(N,NewN) then

a(path_info_receiver(WaitTime,NewN),PIR)

)

or

null <- equalZero(WaitTime)

or

(

null <- sleep(1000) and dec(WaitTime,NewWaitTime) then

a(path_info_receiver(NewWaitTime,N),PIR)

)

3The knowledge base of the CP is filled with information gathered periodically from the reporter peers

by means of the “Querier-Reporter” interaction model (see next section for more details).

172

A.4. QUERIER-REPORTER.LCC

a(path_info_provider, PIP)::

path_info_request(Path) <= a(path_info_requester, PIR) then

path_info(BlkNodes,FreeNodes,Timesteps) => a(path_info_requester, PIR)

<- getTimestep(CurrentTimestep) and

get_path_status(Path,CurrentTimestep,BlkNodes,FreeNodes,Timesteps)

A.4 Querier-Reporter.lcc

This interaction used to model the communication between the Unit (CP)

and a reporter peer is composed by two main roles: the querier role and

the reporter role (see LCC code below).

The heading of the specification defines that the reporter role can be

played by more than one peer, the maximum number allowed being 200.

The CP takes the role of querier with a subscription description of the

type “querier(all)”, while a reporter peer subscribes to the reporter role

with a subscription description of the type “reporter(node)”, where node

univocally identifies a specific geographical location.

By subscribing as a “querier(all)”, the CP specifies that it is interested

in all the nodes present in the emergency area. However, if the inter-

est is just in a subset of such locations, it is possible to subscribe as a

“querier(node1,...,nodeN)”. This sort of mechanisms allows a flexible use

of the interaction specification which doesn’t need to be modified when the

locations of interest change.

The querier role entails two sub-roles: the sender and the receiver role.

The CP first gets the current time-step Timestep and then retrieves the

list of all the peers which are playing the reporter role. Notice that these

peers can be selected according to one of the three strategies described

in [86]. After this, the CP enters the role sender in order to send the

173

APPENDIX A. PEER NETWORK INTERACTION MODELS

message request flood status(Timestep) to all the selected reporter peers.

Once the messages are sent, the CP computes a waiting time WaitTime

which represents the maximum wait time for the reception of the replies

expected. This time is proportional to the number N of messages awaited.

The CP enters the role receiver, thus awaiting for water level information

from the reporter peers. The LCC specification for this role comprises

two main parts: one models the reception of the message water level and

the other shapes the time elapsing. The information embedded in the

water level message are: (1) an identification of the reporter ReporterID ;

(2) the identification of the location Node; (3) the time-step Timestep

representing when the information was requested and, most important, (4)

the value of the water level WaterLevel registered by the reporter at the

location.

After having received the message, the CP stores the data just acquired

(update flood record constraint) and waits for other similar messages from

other reporters. If the wait time established by the CP expires and not all

the reporters have replied, the CP terminates the interaction thus missing

some water level data.

r(querier,initial)

r(sender,auxiliary)

r(receiver,auxiliary)

r(reporter,necessary,1,200)

a(querier,Q)::

null <- get_peer_name(PeerName) and getTimestep(Timestep) and

getPeers("reporter",SPL) then

a(querier1(PeerName,Timestep,SPL),Q) then

null <- size(SPL,N) and getWaitTime(N,WaitTime) then

a(receiver(WaitTime,N),Q) then

null <- close_connection(Timestep)

174

A.4. QUERIER-REPORTER.LCC

a(querier1(PeerName,Timestep,SPL),Q) ::

null <- SPL=[]

or

(

null <- SPL=[H|T] then

request_flood_status(PeerName,Timestep) => a(reporter,H) then

a(querier1(PeerName,Timestep,T),Q)

)

a(receiver(WaitTime,N),Q) ::

null <- equalZero(N)

or

(

water_level(ReporterID,Node,Timestep,WaterLevel) <= a(reporter,R) then

null <- update_flood_record(Node,WaterLevel,ReporterID,Timestep) and

dec(N,NewN) then

a(receiver(WaitTime,NewN),Q)

)

or //handle the wait-time elapsing

(

null <- equalZero(WaitTime)

or

(

null <- sleep(1000) and dec(WaitTime,NewWaitTime) then

a(receiver(NewWaitTime,N),Q)

)

)

The reporter role is very straightforward: after having received the mes-

sage request flood status, the reporter peer retrieves the water level sensed

(retrieve flood level constraint). Notice that the value of the water level

registered by a reporter may not correpond to the real value (e.g., the re-

porter peer is an untrustworthy peer). Once the water level is retrieved,

the reporter peer sends the message water level back to the requester.

175

APPENDIX A. PEER NETWORK INTERACTION MODELS

a(reporter,R) ::

request_flood_status(PeerName,Timestep) <= a(querier1,Q) then

water_level(ReporterID,Node,Timestep,WaterLevel) => a(receiver, Q)

<- retrieve_flood_level(ReporterID,Node,PeerName,Timestep,WaterLevel)

176

Appendix B

Simulator Interaction Models

In what follows, we describe the simulation cycles and the interaction mod-

els used by the simulator peers.

B.1 Simulation Cycles.lcc

This is the main interaction model enacted by the controller module of the

e-Response simulator. This interaction realizes the cycling needed to evolve

the simulation. The only participant of this interaction is the controller

itself. It plays the main role simulator(see LCC code below).

When the simulator role is entered, some parameters are instantiated,

the connections with the flood sub-simulator and the physical peers are

established and the simulation cycling is initiated. The parameters are:

- MaxTimeStep: total number of simulation cycles;

- SimSleepTime: amount of time the simulator stays idle after its main

operations of gathering and sending info;

- Timeout : time awaited for peer connections, expressed in seconds.

When this time expires the simulator starts the simulation cycles;

177

APPENDIX B. SIMULATOR INTERACTION MODELS

- NoExpConnections : number of expected peer connections. This num-

ber depends on the experiment and is used to compute the Timeout ;

- NoPeerConnected : number of peers effectively connected. Its value is

inititated to zero.

Once the above parameters are set, the controller attempts to con-

nect with the available disaster sub-simulators by solving the constraint

connectWithSubSimulators. Such constraint actually enacts the interac-

tion model “Flood SubSmulator Connection” described in the next sec-

tion. After the termination of this interaction, the controller knows which

sub-simulator is properly connected to it. If the sub-simulator connec-

tion fails or there are no sub-simulators available, the “Simulation Cycles”

interaction still goes on with the result of not simulating any disaster evo-

lution. Once the sub-simulators are connected, the controller jump to the

connections waiter role during which the peer connections are awaited and

counted1. At this point, when both sub-simulators and peers are connected

to the simulator, the cycling is initiated (init simulation cycles constraint),

the first time-step is acquired through the getCurrentTimestep constraint

and the info concerning the joined peers are prepared to be sent to the

visualiser (init visualiser constraint). The controller then enters the role

info handler which represents the core part of the simulation and, finally,

terminates the interaction by solving the constraint close simulation. Such

constraint is used to close database connections, delete temporary files,

etc.

r(simulator,initial)

r(connections_waiter,auxiliary)

r(info_handler,auxiliary)

1Notice that the peer connections are actually established by means of the “Peer Connection” inter-

action model which runs in parallel with the described interaction and is initiated by a peer willing to

connect.

178

B.1. SIMULATION CYCLES.LCC

a(simulator,SIM) ::

null <- getSimulationCycles(MaxTimeStep) and

getSimSleepTime(SimSleepTime) and

getPeerConnectionParams(Timeout,NoExpConnections,NoPeerConnected) and

connectWithSubSimulators(MaxTimeStep) then

a(connections_waiter(Timeout,NoExpConnections,NoPeerConnected),SIM) then

null <- init_simulation_cycles(MaxTimeStep) and

getCurrentTimestep(CurrentTimestep) and

init_visualiser(CurrentTimestep) then

a(info_handler(CurrentTimestep,MaxTimeStep,SimSleepTime),SIM) then

null <- close_simulation(MaxTimeStep)

As anticipated before, the role connections waiter is used to await for

a number of peer connections. When this role is entered, the parameters

Timeout, NoExpConnections and NoPeerConnected are specified. Every

second, the simulator retrieves the number NewNoPeerConnected of peers

connected so far (getNumbConnectedPeers role) and updates the timeout

NewTimeout ; it then recurses again to this role by passing the updated

parameters. The role ends when either the timeout has elapsed or the

number of peer connected is equal to the number NoExpConnections of

expected connections. Notice that, if the role is ended because of a time-

out, the peers actually connected are less than the ones expected and the

interaction still continues. However, this fact does not prevent a peer to

join the simulation after this phase.

a(connections_waiter(Timeout,NoExpConnections,NoPeerConnected),SIM) ::

null <- equal(NoPeerConnected,NoExpConnections)

or //This is to simulate the time elapsing

(null <- equalZero(Timeout)

or

(

null <- sleep(1000) and dec(Timeout,NewTimeout) then

null <- getNumbConnectedPeers(NewNoPeerConnected) then

a(connections_waiter(NewTimeout,NoExpConnections,

NewNoPeerConnected),SIM)

179

APPENDIX B. SIMULATOR INTERACTION MODELS

)

)

The role info handler constitutes the kernel of this interaction model

and dictates the sequence of the two main operations of the controller.

These operations are the following:

- Gathering : the controller receives information about the changes that

happened to the world: (a) it receives the flood changes from flood

sub-simulator and (b) it receives other changes from the peers in the

peer network that caused these changes (and verifies their validity);

- Informing : the controller sends information about the changes that

happened in the world: (a) it sends changes (called sensory-info) that

occurred in a peers vicinity to each peer in the peer network and (b)

it sends a list of all the changes to the simulator’s visualiser.

The gathering operation is realized by the gather info constraint. In

such constraint, the flood sub-simulator connection state is first retrieved

and then, if the flood sub-simulator is connected, the interaction model

“Flood” is enacted in order to get the flood changes from the sub-simulator.

The constraint ends by making the controller idle for an amount of time

equals to SimSleepTime.

The informing operation is realized by the constraints send info and

inform visualiser. In the send info constraint, the interaction model “Sen-

sory info” is enacted in order to send contextual info to all connected peers.

When this interaction terminates, the controller stays idle again for some-

times and the time-step counter is incremented. The inform visualiser

constraint is then solved to compute the changes occurred during the cur-

rent time-step CurrentTimestep. For example, at time-step 2, such changes

can assume the form:

180

B.1. SIMULATION CYCLES.LCC

updates(2,[[at(Tom,peer,[11.1207037,46.0587387])],

[at(reporter3,reporter,[11.1116,46.0968,0.0])]]).

The above format can be read as follows: at time-step 2, the fire-

fighter Tom, which is a peer, is located at the geographical coordinates

(11.1207037, 46.0587387); the reporter named “reporter2” is located at

the geographical coordinates (11.1116, 46.0968)’and its status set to 0 in-

dicates that it is available to provide information on the water level present

in its current location.

After the changes pertaining the current time-step are computed ac-

cording to the above format, the controller enacts the interaction model

“Visualiser” so to send the updates to the simulator’s visualiser. Once the

inform visualiser constraint is completed, the new time-step NewTimestep

is retrieved (getCurrentTimestep constraint) and the controller recursively

jumps back in the info handler role to start a new simulation cycle. The

role, and hence the whole interaction, terminates only when the new time-

step is greater than the maximum number of cycles MaxCycles foreseen

for the simulation.

a(info_handler(CurrentTimestep, MaxTimeStep, SimSleepTime),SIM) ::

null <- greater(CurrentTimestep, MaxTimeStep)

or

(

null <- gather_info(SimSleepTime) and

send_info(SimSleepTime) and

inform_visualiser(CurrentTimestep) and

getCurrentTimestep(NewTimestep) then

a(info_handler(NewTimestep, MaxTimeStep, SimSleepTime),SIM)

)

181

APPENDIX B. SIMULATOR INTERACTION MODELS

B.2 Flood Sub-Simulator Connection.lcc

This interaction model is played by the controller and the flood sub-

simulator; it is used to get the topology and connect the sub-simulator

to the controller. The topology defines the flooding areas, the geographi-

cal coordinates of the locations (included strategic locations such as meet-

ing points, refuge centers, etc.) and their connections. This interaction

model can be extended so to connect the controller to many disaster sub-

simulators.

As can be seen below, the peer playing the controller role sends a topol-

ogy’s URI to the peer playing the sub-simulator role with the aim that both

peers, during the current simulation, use the same topology of the world.

Note that the flood sub-simulator works in parallel with the controller.

Since the flood sub-simulator does not have neither data nor equations to

simulate flood evolution in all the world but only in Trento town, after

downloading the topology it first verifies if in its local database there is the

data that should be used to simulate the flood evolution in the region re-

ceived and then it does some other initializations, like joining the selected

data using a geospatial query.

The second aim of this interaction model is to store the flood sub-

simulator connection state in the local knowledge of the controller . The

connection state of the sub-simulator is set to “successfully connected”

only if the sub-simulator downloads the topology file without any failures.

This state is then verified in the constraint gather info of the previous

interaction model. At each time-step, if this state is successfully verified,

the flood interaction model (see section B.4) is then enacted.

r(controller,initial)

r(sub_simulator,necessary)

a(controller,C) ::

182

B.3. PEER CONNECTION.LCC

initial_topology_source(URI) => a(sub_simulator,SS)

<- getInitialTopology(URI) then

(

(got_topology(URI) <= a(sub_simulator,SS) then

null <- setFloodSubSimConnection("true"))

or

(connection_failure(URI) <= a(sub_simulator,SS) then

null <- setFloodSubSimConnection("false"))

)

a(sub_simulator,SS) ::

initial_topology_source(URI) <= a(controller,C) then

(

got_topology(URI) => a(controller,C) <- getTopology(URI)

or

connection_failure(URI) => a(controller,C)

)

B.3 Peer Connection.lcc

This interaction model is used to connect a physical peer to the simulator

and is initiated by the peer willing to join the simulation. The main roles

are connecting peer and registrar which are played by a joining peer and

the controller respectively. The controller subscribes to this interaction

with the option of running in parallel many interactions of this type. In

this way, an unfixed number of peers may connect to the simulator. This

interaction remains active till the end of the simulation.

When the peer enters the connecting peer role (see LCC code below),

it first retrieves its characterizing parameters (e.g., PeerName, PeerType,

Location) and then sends the message exist to the controller. The message

connected is thus received as reply from the controller. The following

parameters are specified in the message:

183

APPENDIX B. SIMULATOR INTERACTION MODELS

- RegisteredName: the name registered by the controller to identify the

connecting peer;

- TS : the time-step at which the connection takes place;

- MaxTimestep: the duration (in time-steps) of the simulation;

- SimSleepTime: the time (expressed in seconds) used to estimate how

long the connecting peer should wait for an incoming message;

- WLThr : the water level threshold above which a node (a location in

the topology) is blocked.

The above parameters, when received, are stored in the peer local knowl-

edge through the constraint updateSimParameters. Afther this operation,

the peer enters the connected peer role.

r(connecting_peer,initial)

r(connected_peer,auxiliary)

r(interrupter,auxiliary)

r(registrar,necessary)

r(registrar2,auxiliary)

a(connecting_peer,Id) ::

exists(PeerName,PeerType,Location) => a(registrar,S)

<- get_peer_name(PeerName) and

connect(PeerName, PeerType, Location) then

connected(RegisteredName,TS,MaxTimestep,SimSleepTime,WLThr)

<= a(registrar,S) then

null <- updateSimParameters(RegisteredName,TS,MaxTimestep,

SimSleepTime,WLThr) then

a(connected_peer(MaxTimestep,PeerName),Id)

For all the duration of the simulation, the peer maintains the connected

peer role (see LCC code below). This role starts by retrieving the cur-

rent time-step Timestep. This time-step is checked against the maximum

184

B.3. PEER CONNECTION.LCC

number of time-steps (MaxTimestep) foreseen by the simulation. If the

current time-step overcomes the MaxTimestep, the simulation terminated,

the peer disconnects and the connected peer role can be stopped. In the

other case, the simulation is evolving and the peer may decide (disconnect

constraint) to exit from it, or to pause it (through start pause simulation

constraint) and resume it again. When the peer wants to temporarily dis-

connect, the message await decision is sent to the controller and the role

interrupter is taken. Once in this role, the peer continuously recurses till

the stop pause simulation constraint becomes true; when this happens the

message decision made is sent to the controller, meaning that the peer

intends to resume the simulation. The peer goes therefore back to the

connected peer role.

a(connected_peer(MaxTimestep,PeerName),Id) ::

null <- getTimestep(Timestep) then

(

null <- greaterOrEqual(Timestep,MaxTimestep) and disconnect() then

)

or

(

exit(PeerName) => a(registrar2,S) <- disconnect()

)

or

(await_decision(PeerName) => a(registrar2,S)

<- start_pause_simulation(T) then

a(interrupter,Id) then

a(connected_peer(MaxTimestep,PeerName),Id)

)

a(interrupter,Id) ::

decision_made => a(registrar2,S) <- stop_pause_simulation()

or

a(interrupter,Id)

185

APPENDIX B. SIMULATOR INTERACTION MODELS

The registrar role is the main role taken by the controller (see LCC

code below). It handles the first phase of the peer connection, that is, the

reception of the exist message from the connecting peer. First, it retrieves

the maximum number of time-steps MaxTimesteps2, then it waits for an

incoming exist message. Once such message is received, the controller reg-

isters the peer identity with a name RegisteredName (register constraint)

and adds it to the simulation (add peer to sim constraint). In this way, the

peer location is also registered and the current time-step Time, represent-

ing the registration time, is obtained. Also, the parameters SimSleepTime

and WLThr are retrieved through the constraints getSimSleepTime and

getWLThreshold respectively. If the simulation is running, these parame-

ters are then sent back to the connecting peer via the connected message.

The controller thus takes the role registrar2 till the end of the simulation.

a(registrar,S) ::

null <- getMaxTimesteps(MaxTimesteps) then

(

exists(PeerName,PeerType,Location) <= a(connecting_peer,Id) then

null <- register(Id,PeerType,PeerName,RegisteredName) and

add_peer_to_sim(PeerName,PeerType,Location,Time) and

getSimSleepTime(SimSleepTime) and getWLThreshold(WLThr) and

lessOrEqual(Time,MaxTimesteps) then

connected(RegisteredName,Time,MaxTimesteps,SimSleepTime,WLThr)

=> a(connecting_peer,Id) then

a(registrar2(MaxTimesteps,PeerName),S)

)

The registrar2 role is entered by specifying the two parameters Max-

Timesteps and PeerName (see LCC code below). The current time-step

Time- step is first obtained through the constraint getTimestep. Then, the

controller can receives two types of messages from the connected peer: exit

2Notice that this parameter is set in the “Simulation cycles” interaction model which started first and

is running in parallel.

186

B.4. FLOOD.LCC

and await decision. If the first message is received, the controller performs

the costraint remove peer from sim to definitively disconnect the peer from

the current simulation and ends the registrar2 role of this running instance

of interaction. If the second message is received, the controller solves the

constraint await decision which temporarily exclude the peer from the sim-

ulation till the message decision made is received from the peer. The peer

is therefore resumed and the controller recurses again to this role. The role

finally terminates when the MaxTimesteps are reached.

a(registrar2(MaxTimesteps,PeerName),S) ::

null <- getTimestep(Timestep) then

(

null <- greaterOrEqual(Timestep,MaxTimesteps)

)

or

(

exit(PeerName) <= a(connected_peer,Id) then

null <- remove_peer_from_sim(PeerName)

)

or

(

await_decision(PeerName) <= a(connected_peer,Id) then

null <- await_decision(PeerName) then

decision_made(Empty) <= a(interrupter,Id) then

null <- end_await_decision(PeerName) then

a(registrar2(MaxTimesteps,PeerName),S)

)

B.4 Flood.lcc

This interaction model is used by the controller at every time-step, in order

to get from the flood simulator the changes of the flood level registered at

the nodes in the topology.

187

APPENDIX B. SIMULATOR INTERACTION MODELS

r(controller, initial)

r(flood_simulator, necessary)

a(controller,C) ::

null <- getTimeFlood(Time) then

(

request_info(Time) => a(flood_simulator,FS) then

flood_info(Changes) <= a(flood_simulator,FS) then

null <- updateFloodChanges(Changes)

)

a(flood_simulator,FS) ::

request_info(Time) <= a(controller,C) then

flood_info(Changes) => a(controller2,C) <- floodChanges(Time,Changes)

This interaction model is enacted by the constraint gather info in the

“Simulation Cycles” IM of section B.1, which manages cycles and therefore

also time-step increments.

The starting role of the “Flood” IM is the ‘controller’ role that is played

by the controller peer. It first gets the current time-step and then it sends

a message to the flood sub-simulator requesting water level changes at

the current time. After receiving an answer with flooding changes, it up-

dates its local knowledge of the world with the acquired information. The

update is made within the core constraint of this role, i.e., the update-

FloodChanges(Changes) constraint. The Java method implementing such

constraint invokes a Prolog query3.

The other role, flood simulator is played by the flood sub-simulator

peer. In this role, the core constraint is floodChanges(Time,Changes).

Here the flooding law (8.1) is implemented. For each node that has been

affected by some changes in flood status, it sends a message to the controller

with flooding changes in the form:
3Some basic code of the controller peer is left in Prolog

188

B.5. SENSORY INFO.LCC

nodeFloodLevl(nodeid, levl)

where nodeid is the identifier of the node received in the topology file at

initialization time and levl is a real number in [0, 3] range indicating the

level of water in meters. The following conditions are assumed depending

on the water level values:

• levl < 0.5: no critical water

• levl > 0.5: stretch of road blocked

• levl >= 2: person dead

The following is an example of the content of the Changes argument in the

floodChanges(Time,Changes) constraint:

[nodeFloodLevl(23, 0.3), nodeFloodLevl(45, 1.2), nodeFloodLevl(66, 2.2)]

B.5 Sensory Info.lcc

This interaction model is initiated by the controller at every time-step. In

particular, it is enacted in the constraint send info, within the interaction

model “Simulation-cycle” described in B.1. It is used to send contextual

information (sensory-info) to all connected peers. Such information depend

on the recipient peer and are represented by the following parameters:

- PeerName: the name of the recipient peer;

- Timestep: the time-step referred by the sensory-info;

- Location: the current location of the peer;

- Flood : the water level registered at the location where the peer is;

189

APPENDIX B. SIMULATOR INTERACTION MODELS

- SimName: the name identifying the simulator;

- NeighPeers4.: a list of neighbors peers, that is, peer located in the

vicinity of the recipient peer PeerName.

The interaction model comprises two main roles, sensory info sender

and connected peer, which are taken by the controller and a connected

peer respectively (see LCC code below).

The controller starts the interaction by entering the sensory info sender

role where the parameters SimName and Timestep are retrieved and the

peer list PL of all connected peers is obtained. The controller then jumps to

the role sensory info sender1 to actually compute and send the sensory-

info to each peer in the list. The sensory-info are computed by solving

the constraint send update info that takes as input the peer identifier H,

which is assigned by the kernel, in order to extract the registered name

of the peer and hence its real name PeerName. Based on the PeerName,

the parameters Location and Flood are then obtained. The message sen-

sory info is thus sent to the current peer and the role recurses to handle

the sensory-info of the subsequent peer.

Each connected peer plays the connected peer role. The peer simply

awaits for the sensory info incoming message and then performs an up-

date of the parameters received (Timestep, Location, Flood, NeighPeers)

by means of the constraint update info. After the update, the role is ended.

The recursion is not needed since a peer connected to the simulation sub-

scribes to this interaction with an acceptance policy of “all”, meaning that

the peer can execute more than one interaction of this type.

r(sensory_info_sender,initial)

r(sensory_info_sender1,auxiliary)

r(connected_peer,necessary,1,75)

4Though the simulation is predisposed to handle this parameter, its computation is still missing and,

therefore, this parameter is always a blank list

190

B.6. VISUALISER.LCC

a(sensory_info_sender,S) ::

null <- get_peer_name(SimName) and

getControllerTimestep(Timestep) and

getPeers(‘‘connected_peer’’,PL) then

a(sensory_info_sender1(SimName,Timestep,PL),S)

a(sensory_info_sender1(SimName,Timestep,PL),S) ::

null <- PL=[]

or

(

null <- PL=[H|T] then

(

sensory_info(Timestep,SimName,PeerName,Location,Flood,NeighPeers)

=> a(connected_peer,H)

<- send_update_info(Timestep,H,PeerName,Location,Flood,NeighPeers)

) then

a(sensory_info_sender1(SimName,Timestep,T),S)

)

a(connected_peer,Id) ::

sensory_info(Timestep,SimName,PeerName,Location,Flood,NeighPeers)

<= a(sensory_info_sender1,S) then

null <- update_info(Timestep,SimName,PeerName,Location,Flood,NeighPeers)

B.6 Visualiser.lcc

This interaction model is used to let the controller inform the visualiser of

all the changes that have occurred in the world at every time-step. It is

enacted in the constraint inform visualiser, within the interaction model

“Simulation-cycle” described in B.1. This ensures changes are sent out

only once every time-step.

The controller plays the controller role (see LCC code below). After

191

APPENDIX B. SIMULATOR INTERACTION MODELS

having retrieved the current time-step CurrTime and get the previous time-

step PrecTime, a check is done on the latter parameter to find out if the

current time-step is the first time-step of the simulation. If so, initial

information are retrieved and then sent to the visualiser. Such information

regards: (i) the water level threshold which establishes the maximum water

level above which a node is blocked; (ii) the peers who currently joined the

simulation; (iii) the initial positions of all connected peers, the location

of the reporters and their initial status. Notice that these information

are got by solving the constraints getThrInfo, getJoinInfo and getAtInfo

respectively and are sent via the initInfo message only once5. For time-

steps greater than 1, a unique constraint (getAllChanges) is solved which

retrieves information of type (iii). The information thus retrieved, which

are contained in the parameter AllChanges, are then sent to the visualiser

via the changes message. The parameter CurrTime is also incorporated

in the message. The parameter AllChanges looks like the following, whose

meaning is explained in section B.1:

updates(2,[[at(Tom,peer,[11.1207037,46.0587387])],

[at(reporter3,reporter,[11.1116,46.0968,0.0])]]).

r(controller,initial)

r(visualiser,necessary)

a(controller,C) ::

null <- getCurrentTimestep(CurrTime) and

assign(CurrTime,CurrTime1) and

dec(CurrTime1,PrecTime) then

(

initInfo(CurrTime,ThrInfo,JoinInfo,AtInfo) => a(visualiser,V)

null <- equalZero(PrecTime) and

getThrInfo(ThrInfo) and

getJoinInfo(JoinInfo) and

5The constraints getThrInfo, getJoinInfo and getAtInfo only retrieve the information which are ac-

tually computed within the constraint inform visualiser of the “Simulation cycle” interaction model

described in section B.1.

192

B.7. PERFORM ACTION.LCC

getAtInfo(CurrTime,AtInfo)

)

or

(

changes(CurrTime,AllChanges) => a(visualiser,V)

null <- getAllChanges(CurrTime,AllChanges)

)

The visualiser plays the visualiser role. By receiving the initInfo mes-

sage, it starts its GUI with the parameter acquired (start visualiser). If

a changes message is received instead, it updates its history according to

the new information (constraint updateChanges). The update results in a

change on the GUI.

a(visualiser,V) ::

(

initInfo(ThrInfo,JoinInfo,AtInfo) <= a(controller,C) then

null <- start_visualiser(ThrInfo,JoinInfo,AtInfo)

)

or

(

changes(Timestep,AllChanges) <= a(controller,C) then

null <- updateChanges(Timestep,AllChanges)

)

B.7 Perform Action.lcc

This interaction model is used to let the connected physical peers inform

the controller of the physical actions they are performing. As mentioned

earlier, peers should inform the controller of all their physical actions since

these would result in changes in the physical world. Furthermore, it is the

controller that would confirm whether an action is currently possible or

not. This interaction model is executed every time a connected physical

193

APPENDIX B. SIMULATOR INTERACTION MODELS

peer needs to perform an action. In particular, its enaction takes place

in the constraint try move action of the “Evacuation” interaction model

described in the next section. Although the action in question is always a

“move” action, this interaction model is designed to be usable for any kind

of action.

The connected physical peer initiates the interaction by entering the

action performer role (see LCC code below). Here, the parameters Regis-

teredName and Action are retrieved, by means of get registered name and

get peer action constraints, in order to send the action message. The pa-

rameter Action specifies the action the peer attempts to perform; in our

simulation6, it is expressed by the string “move(N1,N2, Vehicle)”, where

N1, N2 and Vehicle identify respectively the initial position, the final des-

tination and the mean of transport used to move. After having sent the

action message, the moving peer receives the action state message from the

controller. Such message contains the parameter ActionState which speci-

fies whether the action has been performed or stopped by the simulator. In

any case, the value of the parameter is stored in the local knowledge of the

connected peer through the set action state constraint. This interaction

does not tell anything about the future actions the peer will take depend-

ing on the result received. In our simulation, this kind of issues are dealed

with in the peer’s OKCs rather than in the LCC code. This guarantees a

major flexibility in the interaction model which can thus be used in more

general contexts.

r(action_performer,initial)

r(simulator,necessary,1)

a(action_performer,P)::

(

action(RegisteredName,Action) => a(simulator,S)

<- connected() and

6Though generic, the actions currently performed are the “move” actions only.

194

B.7. PERFORM ACTION.LCC

get_registered_name(RegisteredName) and

get_peer_action(Action) then

action_state(ActionState) <= a(simulator,S) then

null <- set_action_state(ActionState)

)

The simulator’s controller plays the simulator role (see LCC code be-

low). Its aim is to tell the connected peer whether it can perform the action

or not. The controller subscribes to this interaction at the very beginning

of the simulation with an acceptance policy of “all”. This guarantees that

the controller can serve multiple requests from the connected peers. The

controller first checks whether the simulation has terminated or not. If yes,

the role is ended otherwise the action message is received. The constraint

update action results is thus solved in order to evaluate the possibility of

executing the action. In particular, being the action in question a “move”

action, the controller checks the action feasibility by determining the flood

level of the destination specified in the Action parameter; if the associated

stretch of road is blocked, the controller set the parameter ActionState to

“stopped”, this meaning that the peer cannot perform the action. On the

contrary, if no risk is associated to the piece of road, the controller up-

dates the position of the moving peer to the new location (the destination

) and sets the value of ActionState to “performed”. After this process, the

message action state is finally sent to the connected peer.

a(simulator,S)::

null <- getMaxTimestep(MaxTimestep) and getControllerTimestep(Timestep) then

(

null <- greaterOrEqual(Timestep,MaxTimestep)

)

or

(

195

APPENDIX B. SIMULATOR INTERACTION MODELS

action(RegisteredName,Action) <= a(action_performer,P) then

action_state(ActionState) => a(action_performer,P)

<- update_action_results(RegisteredName,Action,ActionState)

)

196

