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Abstract

Biology is the science of life and living organisms. Empowered by the

deployment of several automated experimental frameworks, this discipline

has seen a tremendous growth during the last decades. Recently, the focus

towards studying biological systems holistically, has lead to biology converg-

ing with other disciplines. In particular, computer science is playing an

increasingly important role in biology, because of its ability to disentangle

complex system level issues. This increasing interplay between computer

science and biology has lead to great progress in both fields and to the open-

ing of new important areas for research. In this thesis we present methods

and approaches to tackle the problem of knowledge discovery in computa-

tional biology from a stochastic perspective. Major bottlenecks in adopting a

stochastic representation can be overcome with the use of proper methodolo-

gies by integrating statistics and computer science. In particular we focus

on parameter inference for stochastic models and efficient model analysis.

We show the application of these approaches on real biological case studies

aiming at inferring new knowledge even when a priori (and/or experimen-

tal) information is limited.

Keywords

[systems biology, knowledge discovery, evolutionary inference,

model analysis]
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Chapter 1

Introduction

The importance of computer science is witnessed by its ability to change

our life, our social relations and how we relate with the environment, as well

as by its potential to affect other disciplines. In particular, developments

in computer science have had a great influence on biological sciences by

helping scientists understand the basic principle and dynamics of living

organisms.

1.1 The Problem

Biology is the science of life and living organisms. This discipline has seen a

tremendous growth during the last 20 years, empowered by the deployment

of automated experimental frameworks. The increase in computational

power pushed the research community to investigate more accurately, at

an unprecedented finer level of granularity, how living systems behave.

New approaches to the interpretation of living systems have been proposed.

In particular systems biology [36] focuses on the study of living systems as

a whole, rather than following a reductionist approach that concentrates

on on the action of individual subsystems. In particular, computer science

is playing an increasingly important role in biology, because of its ability to

disentangle complex system level issues. This increasing interplay between

1



1.1. THE PROBLEM CHAPTER 1. INTRODUCTION

computer science and biology has lead to great progress in both fields and

to the opening of new important areas for research.

Hitherto, developments in computer science have produced new tailored

algorithms, often in association with statistical procedures, allowing us

to manage and analyze the enormous amount of data that is produced

in modern, high-throughput biological experiments. In its current form,

bio-informatics is mainly concerned with the analysis of experimentally

produced data, that is, it tries to identify patterns or infer knowledge just

from a priori selected experiments.

More recently, computer science has started to play a different role, more

closely linked to biological research activities. The unique algorithmic view

that computer science can give [53] produces new insights on the dynami-

cal behavior of biological systems, by offering new languages for properly

modeling these complex systems.

Modeling is an essential step for fully understanding the dynamics of bi-

ological systems. Although models can be used to give a static picture of

the whole system, they may also easily include the dynamical information

required to study its evolution over time.

Historically, deterministic mathematical modeling has been considered the

way to describe the dynamics of biological systems. Now, stochastic ap-

proaches [72] are gaining interest due to their ability to quantitatively de-

scribe in a more realistic manner the observed behavior of living systems.

Among others, formal languages (e.g. Process Algebras [2]), have been

designed to describe concurrent systems. Recently, they been extended

to allow the abstraction of intracellular chemical reactions [54].These for-

malisms are called models and they are composed by a qualitative and a

quantitative component.

From a purely descriptive point of view, these approaches have shown their

potential, but still a considerable amount of work is required in order to

2
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automatically derive knowledge from their dynamical behavior.

A common problem in knowledge inference for biological systems is the one

of parameter inference, also known as model calibration. Here, the goal is

to properly infer model parameters in order to reproduce some experimen-

tally observed behavior at the best.

Inference represents a challenging task. Usually the available experimen-

tal information is not sufficient to describe the entire system. This is due

to several reasons: experiments are costly and time-consuming, sometimes

important parameters governing cannot be measured directly and, common

to every experimental activity, the available data contain noise, deriving

from both experimental limitations and intrinsic biological stochasticity.

Hence, a valid inference framework should be able to face with these limi-

tations.

To derive new knowledge from a computational approach to biological sys-

tems, it is not sufficient to have an accurate model, in depth analysis is

also required. At this stage we are interested in exploring the dynamical

behavior of the model. Usually the focus is on those situations that are

critical for biological laboratories, for technical or economical reasons.

As has been pointed out, only very small stochastic models can be analyzed

analytically with tools like Ito calculus, and thus, to study their dynamic

properties, we rely on stochastic simulations. A stochastic simulation of

a model represents a random realization of the underlying stochastic pro-

cess. Consequently, simulation runs differ from one another often making

it hard to derive predictions about the system behavior. Then, in order

to obtain statistically reliable conclusions, there is the need of performing

a usually large number of stochastic simulations and to aggregate their

outputs. Due to the complexity of certain systems that are modelled, fast

and efficient methods are required to tackle the computational demands of

repeated simulations.

3



1.2. THE CONTRIBUTION CHAPTER 1. INTRODUCTION

1.2 The Contribution

The main focus of this thesis is on algorithmic systems biology, and in par-

ticular on methods and approaches to tackle the problems of knowledge

discovery.

Major bottlenecks in adopting a stochastic representation can be overcome

with the proper use of methodologies that incorporate statistics into com-

puter science approaches. We followed two directions: inference, and in

particular parameter inference, and efficient model analysis.

We developed a new inference scheme that uses stochastic modeling and

simulation not only as a tool for describing a system, but also as an ef-

fective method for inferring biological knowledge. Within this view, we

used evolutionary computational techniques to evolve stochastic models of

biological systems towards solutions that match experimental data, that

is, to iterate the modeling and simulation steps in an intelligent manner in

order to use them as an inference tool.

This evolutionary inference framework can help us overcome the limita-

tions of the experimental data. In fact it easily deals with problems where

experimental information is sparse or even incomplete. The algorithm is

powerful enough to sometime even produce hypothesis and predictions for

parts of the system where experimental data was missing.

Concerning the model analysis, we focus our attention on two wel- known

problems. The first is related to the analysis of model properties. Bio-

logically relevant events can be formally characterised as temporal logic

formulae that can then be automatically checked against a discrete state

model. In particular we present a approximate methodology that, given a

model M , a property φ and a desired level of statistical confidence, esti-

4
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mates the probability that φ is satisfied by M with the estimated measure

meeting the desired confidence.

The second development for model analysis is related to the sensitivity

of model parameters. Usually, sensitivity analysis for model parameters

tries to identify those parameters which have the greatest influence on the

model behavior by perturbing them (usually with small perturbations).

Within this setting, but taking a broader view of the problem, we devel-

oped a workflow-schema to extend the concept of sensitivity as to efficiently

generate and detect peculiar behaviors of a given model by appropriately

perturbing its parameter space.

For both approaches we coupled statistical methods with high performance

parallel algorithms in order to properly face with the computational de-

mands of stochastic simulations.

In order to evaluate the proposed approaches and methodologies we con-

sidered several case studies. Every method is presented and consequently

explained and tested on a particular problem. The evolutionary inference

framework has been tested on a well known benchmarking problem, the

thermal isomerization of α-pinene. Analysis of model properties has been

tested on a cell cycle model, while the approach to identify and estimate the

parameter effects on a desired model output has been tested on a predator-

prey model to evaluate the relationship among parameters and oscillation

frequencies.

The use of test cases let the reader fully understand the basic principles

and functioning of the methodologies. Nonetheless, our aim is to provide

approaches and methods able to face with real problems. Real cases are

much more difficult to tackle than simulated or benchmarking ones as they

result from real laboratory activities with all the constraints and limita-

tions they have to deal with. Valid methods should be able to bypass

possible obstacles and still give reliable information.

5
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We will present two real cases derived from direct collaboration with re-

search institutes. The former is related to the description of V. vinifera

general pathway for phenolics biosynthesis leading to flavonoids, in col-

laboration with Instituto Agrario San Michele all’Adige (IASMA), located

in Trento, Italy. This problem is challenging mainly due to the limited

amount of experimental data. If, from one hand the methodologies are

able to work with partial information, some assumptions still has to be

considered.

The second case study is related to the development of Leishmaniasis dis-

ease, in collaboration with the Universidad La Laguna, Tenerife, Spain.

In this problem the experimental information is difficult to handle due to

its variability and experimental constraints, but we were able to exploit

system level properties present in the experimental system to apply our

theoretical methods, showing promising results.

6



Chapter 2

Knowledge discovery

for biological systems

Recent years have witnessed unprecedent increases in the number, variety

and complexity of resources available to life science researchers. An im-

portant reason lies in the general trend of moving from single molecular

processes to complete cellular pathways. This shift in perspective requires

the integration into system-level views of the elementary pieces of informa-

tion that have been gathered by thousands research groups so far.

In order for modelling to serve ’wet’ science, models have to make empiri-

cally testable predictions that can be validated. In other words, by making

the process of hypothesis generation more simple, systems biology aim to

promote a more rigorous analysis of the system under study.

To build such a system-level description, the starting point is the iden-

tity of the components constituting the biological system as well as their

interactions and dynamical behavior. Once the current knowledge of the

system is incorporated into the model, the model can then be used to pro-

vide new insights and predictions for conditions of the systems that have

not previously been explored.

More generally we can think at this knowledge discovery problem as that

process that enables to obtain new information and insights about a bio-

7
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logical system. It is depicted in Figure 2.1.

From the picture we can clearly identify two separate routes for the

Figure 2.1: Knowledge discovery process

knowledge discovery process: an inference cycle, summarizing the need for

a valid and consistent model with current knowledge and a following anal-

ysis process.

The goal of the inference cycle is to derive the information required to build

a valid model of the biological system under study. Usually, the available

knowledge about a system is only partial. One may know which are the

components of the systems under study and how they interact, but not the

parameters that govern their dynamical behavior. This problem, which

was briefly alluded to in the introduction, is also known as parameter in-

ference or model calibration. Another common problem when building a

model from limited data, is that a full knowledge of the interactions be-

tween the components is lacking - in this case, parameter inference is not

sufficient, and we have to rely on a different approach known as network

8
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inference.

In this next case study, we limit ourself to the study of parameter estima-

tion.

Parameter estimation is a challenging task. Common situations when deal-

ing with inference is the frequent lack of information and the limited avail-

able experimental data due cost and time reasons. Sometimes some char-

acteristics of the system are not measurable and still, common to every

experimental activity, data contain noise, deriving from both experimental

conditions and intrinsic biological stochasticity.

Parameter inference for stochastic models has to be considered an itera-

tive process. This is because usually it is not sufficient to perform a single

iteration for defining a valid model. At every step, a tentative model is

produced, and this model is scored based on how well it reproduces experi-

mental data. At each step, the model that best reproduces the experiments

is chosen, and this process is iterated until a model that satisfies the chosen

constraints reached.

Once a valid model has been reached, the attention has to move towards

model analysis. Only the full understanding of the model dynamics can

let researchers to use it as a proper counterpart of real experimentation

in order to derive new knowledge. In fact at this stage, the focus is on

those situations that are critical for biological laboratories, for technical or

economical resaons.

The ability to derive valid and efficient methods for model analysis stands

in identifying the most informative aspects of the biological system in order

to use the model as a perfect computational counterpart of wet-ab experi-

mentation.

It is thus clear that the entire process of knowledge discovery is strongly

influenced by both experimental choices and the simulation method. In

particular, the quantity and quality of the experimental data well as the

9
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FOR BIOLOGICAL SYSTEMS

type of modeling and simulation considered will both affect the inference

phase and the model analysis phase.

2.1 Theory and experimentation

Developments in experimentation has always been coupled with advances

in technological devices. In the second half of the nineteen century, exten-

sive experimentation took root in many disciplines. Among others Biology

greatly benefited from this approach.

Early attempts to analyze biology at a systems level were subject to in-

adequate experimental activities due to several technological limitations.

Only recently, with the development of high throughput technology we are

starting to have the required variety of information needed to a system-

level analysis of biological systems.

If technology represents a great issue in the development of experiments, a

very hotly debated philosophical question arises when we analyze the role

of theories into experimentation [55].

Two ways of thinking can be identified. The first sees the growth of theoret-

ical knowledge from experimental activities considering experimentation as

theory-free, while the second questions the role of theories into experiments

pointing that experimentation is theory dependent and every experiment

is planned and performed following some precise theoretical perspectives.

Both approaches often occur in scientific research depending upon the type

of problem. Usually, most innovative or borderline researches don’t have

the support of fully fleshed out theories and thus experimentation has the

specific task of deriving new knowledge, hopefully leading to the creation

of new theories. On the contrary, problems where the focus is on specific

system behavior (e.g. under peculiar conditions, mutations, etc) usually

rely on a predefined theoretical knowledge. Experiments in these cases are

10



CHAPTER 2. KNOWLEDGE DISCOVERY
FOR BIOLOGICAL SYSTEMS 2.2. BIOLOGICAL MODELING

then planned and performed with the aim of confirming or refusing the

hypotheses derived from theoretical knowledge.

Besides the philosophical questions about the interplay of theories and ex-

perimentation, statistics also play a fundamental role in shaping scientific

knowledge. Statistical methods for the design of experiments represent the

essential complementation to properly derive trustable conclusions. Such

methods should always be considered during the design of an experiment,

both in the case where the experiment is aiming to prove or disprove a spe-

cific scientific question, and in the case where the aim of the experiment is

to obtain new data about a subject where no relevant hypothesis exist.

A sound experimental design is a mandatory step for proper extraction of

relevant information from the system under investigation.

The use of proper statistical methodology for experimentation has the ad-

vantage of appropriately dealing with the noise or intrinsic variations a

system may exhibit. The reproducibility of an experiment is central. It

is well known that a single experimental trial is not enough to establish a

stable result and, for this reason, replicas are usually necessary and statis-

tical aggregation techniques are used to measures are used to describe the

experimental outcome.

2.2 Biological modeling

The most common interpretation a biologist can give to the term ’model’ is

the one of graphical description of a mechanism underlying cellular process

[21].

More generally, the modeling activity has the goal to describe a system at

a high level, sometimes reducing its complexity through the introduction

of educated abstractions and simplifications, and it is mostly knowledge

11
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driven. In fact, what modelers do, is to try to summarize the knowledge

about a system in a (hopefully) simple manner.

Anyway, any modeling effort should start with the definition a purpose

and with the identification of the appropriate level of detail. A very de-

tail model is inadequate for a general and qualitative inquiry and would

possible lead to misleading conclusions. Even for the best studied systems

the accumulated data often isn’t sufficient to describe the variety of the

elementary processes that occur. Consequently assumptions are always

necessary.

Two major approaches to modeling are used in biology. The most popular

one is the deterministic approach. This formalism uses set of Ordinary

Differential Equations (ODEs) or Partial Differential Equations (PDEs) to

describe the evolution of the system in time and/or space. Each equation

represents the rate of change of a species concentration in the system. A

derivation of the standard ODE models is the power-law formalism [61] in

which the process that integrate biochemical networks are modeled using

power-law expansions in the variable of the system.

By definition, a deterministic description of a biological system generates

a behaviour that is completely determined by the input parameters and

structure of the model. The same input will produce the same output if

the model is simulated multiple times.

This deterministic approach is best suited to model and describe the be-

havior of systems where species are abundant and thus reactions occur

frequently. In these cases species concentration are well approximated by

continuous processes.

Complementary to the deterministic approach is the stochastic one. With

the stochastic approach possible transformations determining the evolution

of biological systems are described probabilistically. The use of various

types of specification languages (such as process algebras, chemical reac-

12
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tions, membrane systems or Petri nets, master equations), allow encoding

in a highly expressive and user-friendly way the stochastic process that dy-

namically reproduces the evolution of the modeled biological system over

time.

With this approach every simulation results in a different realization of the

stochastic process. This type of description is instead well suited when the

system is composed by species that are scarce and thus the effect of every

reaction event may greatly influence the overall system’s behavior.

It is now generally accepted that stochastic models are necessary to prop-

erly capture the multiple sources of heterogeneity needed for modeling

biosystems in a realistic way [72]. However, such models are computa-

tionally more demanding than deterministic ones, and considerably more

difficult to fit to experimental data.

An intermediate approach is represented by hybrid methods. These meth-

ods include at the same time continuous representation for modeling fast

reactions and stochastic representation to take into account the effect of

slow reactions.

Among the different types of modeling we focused on concurrency-theory-

derived methods [18] inherited from computer science, because of their

capabilities in describing biological systems with an algorithmic view.

2.2.1 BlenX modeling language

BlenX is a process calculi derived programming language [19, 18] and it is

specifically designed for modeling entities that can change their behavior

in response to external stimuli.

A general biological molecule M with n interaction sites is depicted as a

box BM (figure 2.2. The program PM is called process and allows to de-

scribe the behavior of BM . In particular, PM activates proper replies to

13
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Figure 2.2: BlenX representation of a general molecule

external signals caught by interaction sites xi : Idi . Types Idi discriminate

among allowed and disallowed interactions, mimicking interaction mecha-

nisms based on compatibility [52]. The name xi is used by the process PM

to modify or to interact through the associated type Idi. Process PM is

written in a process calculi style and therefore it has few primitives inspired

by both π-calculus [46] and molecular biology [42].

A BlenX system consists in a set of boxes that, running in parallel, can

interact and can be attached together through their interfaces forming com-

plexes. The dynamics of a BlenX system emerges from the way in which

boxes interact and change and is described in terms of an operational se-

mantics.

A complete description of the BlenX language, followed by ”on the road”

explanations through examples can be found in [19]. For the sake of clarity

we report here some basics on programming BlenX models with events.

Events specify transitions that are not elementary reactions. Here we con-

sider two classes of events, namely join and split. The join event 2.1

when(B1, B2 :: rateParameter1)join(B) (2.1)

is enabled when a box B1 and a box B2 are available. The left part

in brackets of the event is called condition, while join(B) is called verb.

Event 2.1 removes boxes B1 and B2 and adds a box B. The duration of

the transition is specified by the rateParameter1 value, as usual, the unique
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parameter of a negative exponential distribution.

The split event in reported in 2.2

when(B :: rateParameter2)split(B1, B2) (2.2)

Event 2.2 reverses event 2.1 and removes box B and adds both B1 and B2.

Events add flexibility to BlenX enabling the description of biological sys-

tems with different levels of detail in the same model. Note that the BlenX

language offers a richer set of primitives that the ones presented here; for

a detailed description of the full language we still refer the reader to [19].

2.3 Simulation of biological models

Biological models describe the structure and dynamics of the system, but

they still just give a static picture of the system behavior. For a model,

to be useful, it is essential that all its relevant behavior and properties can

be determined in a practical way: analytically, numerically, or by deriving

the model with certain (typically random) inputs and observing the corre-

sponding outputs. The latter process is called simulation.

Biological models, being deterministic or stochastic are often analytically

not tractable. Their complexity, in terms of components and interactions,

make the use of simulations mandatory for the study of the dynamical be-

havior.

Simulations are clearly model dependent. Deterministic simulations are the

obvious result of a deterministic model. In this case the dynamics of the

system is fully determined by the initial conditions and the model struc-

ture. In the discrete-stochastic setting, biochemical species are enumerable

quantities representing the number of molecules of a given substance, and

the evolution of the system is probabilistic, rather than deterministic, lead-

ing to Continuous Time Markov Chain (CTMC). Events occur discretely
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after a random time period, with the chosen reaction and timestep both

depending only on the previous state.

Within such a stochastic setting a common algorithm is used to generate

exact realizations (runs) of the underlying Markov process. It is known as

the Stochastic Simulation Algorithm (SSA) or more commonly, the Gille-

spie algorithm.

2.3.1 Stochastic Simulation Algorithm

In the stochastic realm the amount of a molecule i at time t is modeled

as a discrete random variable Xi(t), and its system of belonging is ex-

pressed by a vector X of random variables. The Chemical Master Equation

(CME) [29] gives a description of the time evolution of a biological system

in terms of a joint probability distribution P(X, t). In particular, the CME

specifies the probability that, at time t, the system holds X1 molecules of

the first species of the vector X, X2 molecules of the second species, and

so on. Due to its complexity, P(X, t) the CME is often intractable both

analytically and numerically, requiring researchers to resort to stochastic

simulation in order to characterize its dynamics.

Several stochastic simulation algorithms are available [40], but most of

them derive from the Stochastic Simulation Algorithm (SSA) [28]. SSA

considers a well-stirred mix of molecular species that chemically interact

through reaction channels inside some fixed volume and at a constant tem-

perature. Based on CME, a propensity function is defined for each reaction

j, which is used to calculate the probability that a reaction j will occur

in the next infinitesimal interval. The algorithm then relies on standard

Monte Carlo methods to stochastically select and execute a reaction ,and

by iterating the process, a simulated trajectory in the discrete state-space

of P(X, t). The simulation consists of four main steps: (i) Initialize the

data structures of the system; (ii) Randomly select a reaction; (iii) Execute
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the selected reaction; (iv) Update the data structures.

The machinery of SSA founds on the definition of the propensity function

of a reaction j: the likelihood that a reaction j will fire in the next in-

finitesimal interval is a function of the number of molecules involved in the

reaction j and of a constant number specific to j, named specific probability

rate constant. For example, let us consider the reaction: A+B
c−→ C +D.

Its propensity function is c × |A| × |B|, where | · | represents the number

of molecules of A and B. Different implementations of SSA exist that use

ad-hoc algorithms and data structures to improve the processes of storing

and updating the propensity functions.
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Chapter 3

State of the Art

Systems biology deeply relies on methodologies for knowledge discovery.

Many research groups are working in this field as the enormous amount of

data and intrinsic complexity of biological systems, pose several challenges.

Research directions follow the entire knowledge discovery cycle described

in figure 2.1. Most of the available methods and tools for both parameter

inference and model analysis have been created and used for deterministic

models of biological systems, while only recently works have concentrated

on stochastic settings.

We will now present the current state of the art of parameter inference and

model analysis.

3.1 Parameter inference

Recent literature in inferring rate coefficients of biochemical reactions re-

ports many different methods. In a problem of parameter estimation (also

known as model calibration), given a set of experimental data, the goal

is to calibrate model parameters in order to reproduce the experimentally

observed behavior at the best.

Technically, a parameter estimation problem is stated as the minimization

of a cost function that measures the goodness of fit of the model with re-
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spect to experimental data. It represents a nonlinear programming problem

and very often is multimodal (i.e. presents multiple local optima). Thus,

traditional gradient-based methods may fail to identify the global solution

and may converge to a local optimum.

Numerous methods have been developed for parameter estimation and they

can be distinguished by the type of cost function used or by the global opti-

mization technique implemented. Cost functions that have shown to work

well in practice are: bayesian estimators, maximum likelihood estimators

and least squares estimators. The main difference between the three meth-

ods is represented by the amount of information they require: bayesian

estimators require the probability distribution of the parameters and the

conditional probability distribution of the measurement for some given pa-

rameter values and maximum likelihood methods capture a substantial

amount of knowledge in the definition of the likelihood function to be then

maximized, whereas least squares estimators can be performed without any

extrinsic information.

Beside cost functions, a great attention has been devoted to the implemen-

tation of new global optimization techniques, usually divided into deter-

ministic and stochastic ones. Moles et al. in [47] analyzed several deter-

ministic and stochastic global optimization methods. Results on a bench-

mark case study showed the better performance of stochastic methods, and

pointed out the effectiveness of evolutionary strategies applied to the pa-

rameters estimation problem for continuous models.

More recent literature reports several new methods. Rodriguez and cowork-

ers [58] presented a meta-heuristic procedure derived from operational re-

search, showing its performances on three different biological examples

modeled through ODE’s. Deterministic approaches to the global opti-

mization problem using branch-and-bound principles to identify the best

set of model parameters has been presented by Polisetty et al. [51]. Chou
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et al. [12] developed the alternate regression (AR) method. The key fea-

ture of AR is that it dissects the nonlinear inverse problem of estimating

parameter values into iterative steps of linear regression.

Recent developments by Rodrigez-Fernandez and coworkers [59] have been

focusing on hybrid methods, i.e. methods that combine global and local

optimization having a number of desirable features: robustness of global

optimization and rapid convergence of local method in the proximity of the

optimum. Improvements in hybrid methods have been recently presented

by Balsa-Canto et al [5]. They used an evolutionary strategy as a global

method together with a local multiple-shooting approach. Only recently

there have been some attempts to deal with the noise present in stochastic

systems by developing methods based on simulated maximum likelihood

(Tian, [68]) or based on a probabilistic, generative model of the variations

in reactant concentration (Lecca, [39]). In both papers the authors clearly

state the necessity of developing new methods able to deal with the noise

of the experimental data and with the fluctuations that stochastic systems

exihibit.

Effective methods for statistically estimating stochastic models by using

time course data have only recently appeared in the systems biology lit-

erature. Reinker and coworkers [56] presented a method that tries to ap-

proximate the likelihood function, while another approach is to use com-

putationally intensive Monte Carlo methods to estimate it [68]. Finally

bayesian approaches [7] have been presented to develop exact bayesian in-

ference, but still algorithms are computationally intensive and do not scale

well realistic sized problems.

In general, all the presented methods for model calibration assume, as a

starting point, the availability of experimental data about the time evolu-

tion of all the species involved in the model. In practice, in most circum-

stances, the direct measurements of some species may not be practicable
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both for economical and experimental reasons, resulting thus in incom-

plete data. Inference in systems where experimental data are not complete

currently represents an open and challenging problem.

3.2 Model analysis

For what concerns model analysis, lots of methods have been developed for

deterministic models. Only few are instead available for stochastic models.

This is mostly due to the challenges that such a representation brings.

When dealing with techniques for the verification of temporal logic prop-

erty against probabilistic/stochastic models, we can identify either exact

or approximate methods.

Exact approaches work by constructing a complete representation of a fi-

nite state space model and, because of this, their application to complex

systems is unfeasible. PRISM [37] and MRMC [34] are two popular prob-

abilistic model checking tools that support both exact and approximated

CSL verification. Approximated verification can be one of two different

types. If the considered problem is to establishing whether the likelihood p

of a formula is p E b where b ∈ [0, 1] is a threshold and E {<,≤,≥, >} (i.e.

model checking problem) then the outcome of verification is boolean and is

determined based on Hypothesis testing. On the other hand if the problem

is one of determining an estimate for p then this is achieved through confi-

dence interval based techniques. PRISM approximated verification belong

to the latter type: the size of the sample is determined statically as a func-

tion of the chosen level of confidence and the desired approximation, rather

than being calculated iteratively as function of intermediate estimates, as

is the case with our method, whereas paths generation is controlled by on-

the-fly checking of the considered formula. Furthermore although PRISM

has been recently added with support for (exact) probabilistic LTL model

22



CHAPTER 3. STATE OF THE ART 3.2. MODEL ANALYSIS

checking, at the best of our knowledge, it currently supports statistical veri-

fication only for CSL (and not for LTL). The YMER [74] and MRMC tool,

on other hand, features approximated (hypothesis testing based) model

checking which uses on-the-fly verification of sampled path in order to de-

cide whether the probability of formula is below/above a threshold. The

Monte Carlo Model Checker MC2(PLTLc) [23] computes a point estimate

of a Probabilistic LTL logic (with numerical constraints) formula to hold

of model. MC2(PLTLc) does not include any simulation engine but works

offline by taking a set of sampled trajectories generated by any simulation

or ODE solver software. Besides MC2(PLTLc) calculates also the prob-

abilistic domain of satisfaction for any free variable of PLTLc formula.

Finally the APMC tool [31] features confidence interval based estimates of

the probability of Probabilistic LTL and PCTL formulae to hold of either

DTMC and CTMC models.

The analysis of the parameters space of biological models have been previ-

ously studied in the context of uncertainty analysis and, in particular, sensi-

tivity analysis. Sensitivity analysis provides a series of approaches and tools

to investigate how model parameters affect system output. Usually these

approaches apply on deterministic models. A general review of uncertainty

and sensitivity analysis methods can be found in [60]. Recently, Marino

et al. [44] have compared and then proposed novel techniques to perform

sensitivity analysis in a stochastic settings. Still within the stochastic set-

ting, an extension of sensitivity analysis for the study of bistable stochastic

models has been proposed by Degasperi and Gilmore [16]. These methods

have been also included in computational tools. Hoare and coworkers [32]

realized SaSat, a matlab toolbox for sampling and sensitivity analysis, con-

taining the most important sampling and analysis methods. It can be used

as a black box and thus applies also in the biological context, even if it is

not specific. Instead, SimLab [27] is a standalone software that performs
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uncertainty and sensitivity analysis.
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Chapter 4

Approaches

The development of new approaches always takes as its starting point the

specific needs of the community. We have seen that in computational sys-

tems biology, the use of stochastic thinking allow us to accurately describe

the variability at the individual level typical of biological systems. At the

same time, however, it poses remarkable challenges in handling and ana-

lyzing models as well as to interface these models with the experimental

evidence.

The first contribution is an evolutionary inference framework able to con-

nect stochastic models and experimental data in order to derive systems

kinetics. We will then present methods to efficiently analyze stochastic

models making extensive use of statistical methodologies coupled with par-

allel computation.

4.1 Evolutionary parameter inference

We developed a new inference scheme which uses stochastic modeling and

simulation not only as a tool for describing a system, but also as an ef-

fective method for inferring biological knowledge. Within this view, we

used evolutionary computation techniques to evolve stochastic models of

biological systems, evaluated through simulation, towards solutions that
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match experimental data, that is, to iterate the modeling and simulation

steps in an intelligent manner in order to use them as an inference tool.

The inference framework is composed by different parts that work in a

coordinate manner. As depicted in Figure 4.1, the flow of information

starts with some initial proposed solution (an initial random guess or de-

rived from the experimental data) for the problem (1). It is then coded

Figure 4.1: The inference scheme.

to form a model and a stochastic simulation is performed (2). By doing

so, we obtain a first simulated evolution for the system, that is compared

with the experimental information in order to evaluate its goodness (3).

If the goodness is satisfactory the process ends with a proposed solution

for the inference problem (4), while, if the results are not satisfactory the

evolutionary algorithm evolves the solutions according to its dynamics (5)

producing thus new solutions and models (6). The process is iterated until

some goodness conditions or other convergence criteria are met.

A number of different methods can be adopted (5). We have developed

two different evolutionary strategies that come from two different sub-

disciplines: evolutionary computation and computational intelligence, Ge-

netic Algorithm (GA) [30] and Particle Swarm Optimization (PSO) [35]
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respectively. Both algorithms are widely studied and present some ad-

vantages and drawbacks in solving optimization problems. In particular,

GAs represent a class of optimization algorithms that emulate the natural

evolution. They work by evolving populations of individuals using the com-

putational counterparts of genetic operators (i.e. selection, recombination,

mutation). PSO, instead, is a population based stochastic optimization

algorithm inspired by social behaviour of bird flocking or fish schooling.

Both of them are well suited to deal with the stochastic evolutionary in-

ference.

Although recent works have shown the ability of evolutionary approaches,

and in particular genetic algorithms, to tackle high dimensional biochem-

ical design of experiments for the discovery of new compounds [66, 26],

results from a simulation study of PSO algorithm in the same context [24]

have shown that PSO outperforms GA, leading us to concentrate only on

the use of PSO.

The use of evolutionary algorithms is particular suited to deal with com-

mon problems of parameter estimation like incomplete and noisy data. If

some of the species time evolution data are not available, as it happens

frequently due to cost or practical unfeasibility restrictions, the algorithm

will evolve the solutions through just what is known, guessing hypotheses

for what is unknown.

For what concerns the type of computational model to be used, our choice

has been to use process calculi derived language BlenX, as it helps in de-

scribe biological systems in a modular and systematic way.

4.1.1 Particle Swarm Optimization for Parameter Inference

Particle Swarm Optimization (PSO) is a swarm intelligence algorithm, first

developed and introduced by Eberhart and Kennedy [35] as a stochastic

optimization algorithm. It is a heuristic technique inspired by the chore-
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ography of a bird flock.

Particle Swarm approaches have been successfully applied to various do-

mains, ranging from flowshop scheduling [41] to data mining [63] and, in

design of experiments, for composite box-beam design [64].

PSO is a population-based algorithm, in which the population is called

swarm, while the search points are called particles. Each particle moves

in the search space with an adaptable velocity, recording the best position

it has ever visited in the search space, i.e., (in minimizing objective prob-

lems) the position with the lowest function value. The adaptation of the

velocity is based on information coming from the particle itself, as well as

from the rest of the particles. More specifically, each particle has a neigh-

bourhood that consists of some pre-specified particles and the best position

ever attained by any member of the neighbourhood is communicated to the

particle and influences its movement.

Technically, a swarm S = (X1, X2, . . . , XN) consists of N particles. Every

particle Xi = (xi1, xi2, . . . , xin)
T is composed by n components

The velocity, Vi, of the ith particle, as well as its best position, Pi, at each

iteration step t, are also n-dimensional vectors, Vi = (vi1, vi2, . . . , vin)
T and

Pi = (pi1, pi2, . . . , pin)
T .

The best position of neighbourhood particles is Pgi = (pg1, pg2, . . . , pgn)
T .

Let t be the iteration counter. Then, the velocity and position of Xi are

updated according to the equations:

Vi(t+ 1) = ωVi(t) + c1r1(Pi(t)−Xi(t)) + c2r2(Pgi(t)−Xi(t)) (4.1)

Xi(t+ 1) = Xi(t) + Vi(t+ 1) (4.2)

where ω is the inertia factor, c1, c2 are positive acceleration parameters

called cognitive and social parameter respectively, and r1, r2 are vectors

with components uniformly distributed in the range [0, 1]. All vectors op-
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erations in equations (4.1) and (4.2) are performed componentwise.

In the context of parameter estimation for stochastic models of biological

systems, particles are composed by the set of parameters to be estimated,

generating thus a real-valued vector.

The implemented PSO algorithm initially selects a random initial popula-

tion of particles, that is, the initial position of particles is randomly selected

within a predefined interval.

Each subsequent algorithm iteration modifies particles positions according

to equations (4.1) and (4.2) with inertia factor ω consisting in a linearly

decreasing function in the number of iteration as to enhance exploration

for the initial stages of the searching problem, while then preferring ex-

ploitation properties. Cognitive and social parameters have been taken as

fixed c1 = c2 = 2 meaning that each particle trusts its best position as

much as the position of the best neighbouring particle.

The type of neighborhood used is a ring topology of radius 3, based on

particle’s index inside the population. It means that the neighborhood of

a particle is composed by the previous particle in the population, itself and

the successive one.

Finally, we decided to fix the number of particle in the population n = 30.

4.1.2 Requirements

In order to use the entire evolutionary framework for parameter inference

there is the necessity of some input information and settings.

The starting point is the BlenX computational model for the system un-

der investigation and related experimental data. Experimental data often

has to be analyzed and transformed to meet stochastic modeling repre-

sentation, that is to translate them from concentration measurements to

absolute values. This step is necessary considering that the simulation al-

gorithm (i.e. Gillespie’s SSA) handles species copy numbers. Moreover,
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a model should be thought and designed to meet the study goal but also

to properly work with the available experimental information, e.g., models

that are too complex should be simplified if the experimental data is lim-

ited.

A further requirement is given by the set of intervals (lower and upper

bounds) for every parameter in the system to be inferred. These inter-

vals do not represent a fixed search space for parameters, but only a first

set of values from which sampling the initial conditions of the inference

framework. For every further iteration of the procedure these intervals do

not constitute any limit for parameter values. Clearly an initial interval

containing or close to hypothetic good values helps in reaching a faster

convergence state.

The general inference framework does require other input settings. More

precisely it should be defined a maximum number of iterations, as well as

a halting criteria represented by a value for the cost function used. If the

average value of the cost function among the best 10 positions of the parti-

cles in the cumulative history of the procedure is less than the given value,

the entire procedure stops. This value is problem dependent as it is related

to the used cost function. To properly identify a valid stopping value for

the cost function, some preliminary analyses are usually necessary.

Summing up, to start the evolutionary inference framework we need:

• BlenX model of the system;

• Experimental data to match;

• Values intervals for model parameters to be estimated (from which

initial guesses will be drawn);

• Maximum number of iterations;

• Stopping value for cost function (optional).
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4.1.3 Implementation

The general framework for parameter inference of stochastic biological

models has been developed by merging different tools and approaches. It

consists in repeated interactions among Python [69] programming language

code, BlenX model simulator and statistical procedures and methods im-

plemented in R [65].

The manager of the information is the Python code which handles infor-

mation passing between the other two programs. BlenX simulator is in

charge to perform a single stochastic simulation for a given model param-

eters configuration, while the entire PSO procedure has been implemented

in R.

The first step selects the initial position for any particle of the population.

This is done by an R procedure which takes as input the set of value inter-

vals for model parameters in input and returns a random sample from it.

Then, the python code creates, for every particle initial position, a corre-

sponding BlenX model and run the BlenX simulator to obtain a stochastic

simulation from that model.

Once all the models constituted by particle positions have been simulated,

R code executes the PSO algorithm described in the previous section, eval-

uating the goodness of each particle position through a cost function. This

cost function is usually a least squares estimator based on the difference

from the observed simulated behavior and experimental data. If halting

criteria are not met then, based on the value of the cost function and fol-

lowing equations (4.1) and (4.2), new particles positions are generated.

The process is repeated until the maximum number of iteration or the cost

function threshold have been reached.
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4.1.4 Test: thermal isomerization of α-pinene

To fully understand how the evolutionary inference framework works, we

used a test example to evaluate it. The system is the one of thermal isomer-

ization of α-pinene in which we want to estimate 5 rate constants (p1,...,p5)

of a complex biochemical reaction. This pathway has been originally stud-

ied by Box and coworkers [6], and it is also part of COPS (Collection of

large-scale Constrained Optimization ProblemS) [22].

The system is depicted in figure 4.2. α-pinene (Y1) is converted into dipen-

Figure 4.2: Mechanism for thermal isomerization of α-pinene

tene (Y2) and alloocimen (Y3) which in turn yields α- and β-pyronene (Y4)

and a dimer (Y5). Experiments on this process have been conducted and

reported by Hunt and Hawkins [33], reporting the concentrations of the

reactant and the four products at eight time intervals.

We built a stochastic model of the pathway using the BlenX language.

Nonetheless, to infer the model parameters we did not convert concentra-

tion measurements into absolute species abundances. In fact, as the goal

was just to evaluate the methodology, and thus not to describe the stochas-
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tic kinetics of the system, we only scaled experimental data and performed

the estimates on the concentrations variations. By doing so, we described

the reaction rates as they would represent concentration variations.

Finally estimated model parameters were compared with those already

available.

Input settings

BlenX stochastic model of the hermal isomerization of α-pinene has been

built using an event based approach, in which every species is declared

and every action the system may take is entirely governed by these events.

Associated with each event there is a rate constant representing the pa-

rameter set to be estimated.

Experimental data, has been multiplied by a factor 10, as to avoid possible

model deviations due to stochastic effects.

Once defined model and experimental data to match we proceed defining

procedure’s parameters. In particular we need to define a proper fitness

function, halting criteria and initial parameters ranges.

The fitness function, representing the goodness of fit of each simulation

with respect to the experimental data is based on sum of squares errors.

Halting criteria are twofold. The first one, based on number of iterations,

has been arbitrarily fixed to 100, while the second, based on a fitness func-

tion threshold, defining the goodness of fit, has been fixed to an average

5% distance from experimental data (i.e. equal to 380).

The last input to be set is the set of initial ranges for parameters. We

recall here that they are not the ranges in which the procedure will search

for good estimates, but just an initial interval from which randomly guess-

ing a first population of solutions. The procedure then may look for good

estimates out of that intervals at later steps.

We used the method for generating initial parameter ranges described
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Parameter Lower limit Upper limit

p1 0 0,000044

p2 0 0,000044

p3 0 0,000025

p4 0 0,000025

p5 0 0,000046

Table 4.1: Initial parameter ranges

Parameter Best known value Estimate Standard error

p1 5.93e - 5 6.14e-05 5.40e-07

p2 2.96e - 5 2.92e-05 5.07e-07

p3 2.05e - 5 2.11e-05 2.72e-07

p4 27.5e - 5 30.0e-05 1.84e-05

p5 4.00e - 5 3.89e-05 2.81e-06

Table 4.2: Estimated parameters with standard errors and best known value

above ending with intervals for the parameters reported in table 4.1.

Results

We run three times the evolutionary inference framework. In all three cases

the procedure stopped after reaching the fitness threshold. The average

number of iterations performed in the three runs was 14 with an average

time to convergence of 90 seconds. Given the good and fast results, we

decided to scale down the threshold lowering it to a 2.5% of average differ-

ence with respect to experimental data. The procedure took 54 iterations

to converge, with a computation time of 5 minutes on a standard Apple

MacBook laptop, 2.0GHz processor and 1Gb RAM.

Estimated parameters are reported in table 4.2 together with the true pa-

rameters from the literature and standard error for the estimates.

As can be seen by glancing at the above table, the parameter estimates
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are very close to the best known values. To confirm the goodness of fit we

report in figure 4.3 the behavior of the best solutions identified together

with experimental points. Traces on the plot represent a single stochastic

simulation which has shown a good fitting. The procedure identified 5 so-

lutions with a fitness function value lower than the predefined threshold.

The same system has been used in [58] to test a new inference procedure

Figure 4.3: Best solutions identified and experimental points

based on an evolutionary technique and using a deterministic modeling

approach. The presented approach is able to efficiently tackle the prob-

lem in a finite amount of time even considering wider parameter intervals

value with respect to previous approaches, which were unable to obtain
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solutions.

Even if the evolutionary procedure presented here does not give the same

results when ranges are increased to the paper’s original values, we showed

that an appropriate choice of that intervals is able to drastically reduce

computational time to achieve optimal solutions.

Concluding, with this example we showed the potentialities of the evolu-

tionary framework to solve parameter estimation problems in a stochastic

setting.However, it is worth highlighting, that most of the times estimation

tasks are more complex, as usually experimental data is not complete (i.e.

they are not available for every species) and they may be very sparse.

When we will tackle real cases in the proceeding of the thesis, these aspects

will clearly arise, showing how the approach is well suited to deal with real

problems.

4.2 Model Analysis

The major advantage of working with computational models of a biological

system lies in the ability to use the model as a perfect counterpart of the

real system. With a model we can reproduce experimental evidence but

also derive new information by deeply analyzing it without requiring real

experimentation.

Such a use of models although desirable, is not straightforward. Once we

have defined an acceptable model in terms of abstraction and correspon-

dence to available experimental data, its analysis poses several challenges.

These challenges are even more pronounced when we are dealing with

stochastic models. As we have pointed out, only very small stochastic

models can be analyzed analytically and thus the unique way to observe

model behaviors is to heavily rely on stochastic simulations.

A stochastic simulation of a model represents a random realization of the
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underlying stochastic process. Consequently, simulation runs differ from

one another often making it hard to derive predictions about the system

behavior. In fact, in order to obtain statistically reliable conclusions, a

large number of stochastic simulations have to be run, and those runs have

to then be pooled together in a stastically sound way. This highlights the

clear need for fast and efficient methods to tackle the computational de-

mands of repeated simulations.

4.3 Statistical approximate

model checking

A model of a biological system essentially describes the dynamics of a pop-

ulation of n interacting biochemical species S1, S2, . . . Sn. Analyzing the

behaviour of such models entails looking for the occurrence of biologically

relevant events during the evolution of the system.

When dealing with discrete stochastic modeling of biological systems, bio-

chemical species are enumerable quantities representing the number of

molecules of a given substance, and the evolution of the system is prob-

abilistic, rather than deterministic, leading to Continuous Time Markov

Chain (CTMC) models. Unfortunately finding numerical solutions of CTMC

models is unfeasible for most realistic case studies.

A common way to analyze stochastic models is given by query based veri-

fication methods (model checking [13]). Biologically relevant events can be

formally characterised as temporal logic formulae that can then be auto-

matically checked against a discrete state model. But still, these methods

suffer of the state-space explosion problem which limits their accessibility

especially in systems biology where very large models are common.

Approximate methods, based on statistical measures, have been proposed
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as an alternative to exact probabilistic model checking that allows to get

an estimate of the likelihood of a condition to hold of a CTMC model.

This paradigm essentially comprises three ingredients: (i) a stochastic en-

gine that generates trajectories of the underlying state space; (ii) a model

checking algorithm capable of analyzing a single trajectory; (iii) a statis-

tical support for estimating the accuracy of the answer. The advantage is

that, contrary to exact model checking, it does not need to build (i.e. to

store) the state space of the model as it only explores a limited number

of (finite) trajectories. The cost paid for such space saving is in terms of

precision of the calculated measure.

We realized a methodology that given a CTMC model M , a property φ

and a desired level of confidence estimates the probability of φ to be satis-

fied by M with the estimated measure meeting the desired confidence. The

method we propose is based on three key aspects: (i) the trajectory genera-

tion is controlled by on-the-fly verification of the considered formula which

means that simulation halts as soon as a state which verifies (falsifies) the

formula is reached. (ii) we use an efficient statistical method (i.e. a variant

of the Wilson score interval method) which results in smaller samples (i.e

fewer simulation runs) in order to meet the desired confidence. (iii) the

whole simulation/verification framework has been designed and tested on

a parallel prototype, which is based on independent simulation/verification

engines generation, and a MPI client/server parallel computation architec-

ture.

4.3.1 On-the-fly Bounded Linear-time Temporal Logic with nu-

merical constraints verification

Statistical verification of a CTMC model M is based on the simple principle

of collecting N sample realisations σi (i ∈ {1, . . . , N}) of M and verifying

each of them against a given property φ. The estimate of the likelihood
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of φ to hold true of M is obtained as the frequency p̂φ = po
N of positive

outcomes (po) of the verification of φ versus σi.

In order to state properties of simulated trajectories, we defined a temporal

logic, namely BLTLc logic (Bounded Linear-time Temporal Logic with nu-

merical constraints) which combines Constraint LTL (LTLc) and Bounded-

LTL (BLTL). Both LTLc and BLTL are based on classical LTL [50] tempo-

ral operators. However while LTLc allows for using (complex) arithmetical

conditions between state variables, it does not allow for expressing time

bounded conditions. On the other hand with BLTL time bounded LTL ex-

pressions can be formed but based on simple non-arithmetical conditions

rather than on a grammar for arithmetic expressions as it is the case with

LTLc.

BLTLc formulae are evaluated against timed-paths resulting from simu-

lation of a CTMC model. The formal semantics of BLTLc formulae, ex-

pressed in terms of the |= relation, is given below, where σ is a timed-path

of a CTMC model.

As an example of the expressiveness of the BLTLc logic consider the fol-

lowing formula φ ≡ [(X1 < Sqrt(X2)) U (X2 ≥ 10+X3)] which states that

the concentration of X1 shall be less than the square root of that of X2

until that of X2 exceeds X3 by at least 10.

The verification of a formula φ on a CTMC model M is performed on-

the-fly meaning that simulation proceeds with the generation of the next

state only if φ is neither satisfied nor falsified in the current one (and if

the simulation time limit has not been reached). Verification of temporal

formulae may result in passing of the already-generated trace (available in

a buffered trace σbuff that results from verification of a sub-formula) from

the inner-most sub-formulae to the outer-most ones. For time-unbounded

formulae, we adopt a pessimistic approach: if the simulation max time

tmax is reached and the formula is neither verified nor falsified then the
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algorithm returns false. Thus the exact probability of time-unbounded

formulae is an upper bound of the estimated one.

4.3.2 Estimating the probability of a property

Checking of a BLTLc property on a simulated trace corresponds to a

Bernoulli experiment, where the outcome can be either positive or neg-

ative. Thus the number of successes that results from reiterated checking

of the same property on n independent simulations, represents a random

variable X with a Binomial distribution. The point estimation of the un-

known probability of success p out of n independent trials, is given by the

well known maximum likelihood estimator p̂ = po/n, where po represents

the number of successes. Clearly the reliability of such estimate is highly

affected by the number of simulations performed, i.e. by the sample size

n. As a consequence the point estimate p̂ is usually associated with a

confidence interval, expressed in terms of a real value α ∈ (0, 1), which

represents the range within which the actual value of the unknown param-

eter θ (i.e. the actual probability of the considered formula to hold against

the simulated model) shall fall (1− α)% times1.

The standard approach to compute the confidence interval for the proba-

bility of success of a binomial distribution uses the normal approximation,

producing the so-called Wald interval. Brown et al. [8],[9], have studied

the coverage characteristics of different types of binomial proportion con-

fidence intervals, and they showed that the Wald interval present unstable

coverage characteristics also for large n, suggesting thus the use of other

types of confidence intervals. Among the discussed intervals, the Wilson

score interval [73] has shown good coverage characteristics also for small

1There exists a strong connection between confidence intervals and hypothesis testing: all the values
θ0 for the unknown parameter θ external to a 1− α confidence interval would end in the rejection of the
two sided hypothesis testing (i.e. Null Hypothesis H0 : θ = θ0) at the α level.
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n and extreme probabilities. Wilson score confidence interval is calculated

by means of Wilson interval(p̂, n, α) = [L,U ] with,

[L,U ]=
p̂+ 1

2nz
2
1−α/2 ∓ z1−α/2

√
p̂(1−p̂)
n +

z2
1−α/2
4n2

1 + 1
nz

2
1−α/2

(4.3)

where p̂ is the estimated probability from the statistical sample, α is the

confidence level, z1−α/2 is the 1 − α/2 percentile of a standard normal

distribution, and n is the sample size.

We can now use this equation to ask which is the proper sample size to

obtain a confidence interval of a given width at a specific confidence level

α. In particular, the sample size required for the Wilson interval of width

2ε at 1 − α confidence level can be obtained simply by solving for n the

Wilson score limits in equation (4.3) [49]: formally this is given by function

Wilson sample(p, ε, α) = N with,

N ≥ z2
1−α/2

p̂(1− p̂)− 2ε2 +
√
p̂2(1− p̂)2 + 4ε2(p̂− 0.5)2

2ε2
(4.4)

where p̂ is the frequency of positive outcomes of a re-iterated Bernoulli

experiment. As we usually do not have a guess of the probability p̂ to be

used in (4.4), the standard approach is to take a conservative estimate, by

considering p̂ = 0.5 which is the estimate with maximum variance, and, as

such, produces the highest sample size.

The method we developed consists in adopting a different approach in de-

termining the sample size. By iterating (4.4) with successive estimates of

p̂ we are able to drastically reduce the number of samples required when

the true probability p is far from 0.5. More specifically, given a confidence

interval width 2ε and a confidence level 1 − α, the algorithm starts by

calculating the sample size required for an initial estimate p̂ = 1 (or equiv-

alently p̂ = 0) and returns the minimum number N of simulations to be

performed. After computing the proportion of successes the new estimate p̂
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is rounded by adding or subtracting the quantity ε if p̂ ≤ 0.5 or p̂ > 0.5 re-

spectively. The rounded estimate p′ is then used to recalculate the sample

size resulting in N ′. If we have already performed a cumulative Ntot ≥ N ′

simulations the algorithm stops. Conversely, we iterate the process again

by launching N ′ −Ntot simulations.

The p̂ rounding step is crucial and ensures that a successive sample size

calculation would avoid undersized samples due to erratic estimates. If

the current estimated probability of success drifts from the true unknown

one, towards extreme probabilities, of more than ε, this would produce an

undersized sample which would produce a confidence interval not covering

the parameter at 1− α level.

By using this iterative method for the determination of sample size we

drastically reduce the number of required samples with respect to the con-

servative approach that starts with p̂ = 0.5. Of course this gain is greater

when the actual p is close to the extreme values p = 0 and p = 1, while us-

ing the same sample size for p close to 0.5. Figure 4.4 represents the sample

Figure 4.4: Average sample size for CI-width= 0.05 at 99% confidence lelvel. Comparison

of sample size required with i) conservative approach, ii) Iterative Wilson, iii) Minimum

sample size with known p
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size required to obtain a confidence interval of a given width 2ε = 0.05 at

a confidence level 1− α = 0.99 for values of p ranging from 0 to 1 by 0.1.

Bars from light gray to dark gray represent respectively: I. Conservative

approach (using always p̂=0.5); II. Iterative Wilson; III. Minimum sample

size if the unknown p was known (i.e. p̂ = p). On the right side of the

plot we reported the percentage of reduction in sample size by using the

Iterative Wilson approach with respect to the Conservative approach. As

it can be easily seen, we have the strongest reduction in sample size when

the true p is close to 0 or 1. By using the Iterative Wilson method, we

can reduce the sample size required by up to 88% with respect to the Con-

servative approach. This reduction at extreme values is explained by the

fact that at those probabilities the variance of the binomial distribution is

smaller, so we need less samples to obtain good estimates.

4.3.3 Implementation

What so far illustrated has been implemented within a distributed soft-

ware architecture. It is actually made of two distinct modules: a graphical

front-end and a remote simulation engine. The front-end part acts as a

server and is in charge of drawing the computational graph relative to the

loaded BlenX models.

The prototype collects any information from a BlenX model and serializes

it in a proprietary, xml-based, data format along with all the simulation

information manually inputted by the user (see Figure 4.5(a) - State A).

Further information about the logical formula to be checked, the α and

ε values are required only whenever one wants to automatically calculate

the number of replicated simulations (or “replicas”) needed to reach the

required confidence threshold. However, both in the case that the number

of replicas is user-defined and that it is automatically computed, a ran-

dom number generator is instantiated and used to make a stream of initial
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(b) Inter-process and client-server communications

seeds, one for each simulation (see Figure 4.5(a) - State B).

As soon as the simulation task is invoked by the user, a number of inde-

pendent simulation engines is instantiated (see Figure 4.5(b) - Activity A).

Among them, one is entitled to be master. The master handles both the

inter-process and the client-server communications. In the former case,

it takes care of scattering and dispatching the initial seeds to the slave

processes (and to itself) and of gathering the results (see Figure 4.5(b) -

Activities C). In the latter case, the master node is responsible for count-

ing the computed YES and for its sending to the server (see Figure 4.5(b)

- Activities C). Hence, each process simulates independently (see Figure

4.5(a) - State C and Figure 4.5(b) - Activities C) and evaluates on-the-fly

a logical formula, giving a boolean answer. The summation of the positive

answers is sent to the server, which recomputes the Wilson method and

returns a new number of simulation replicas to be performed (see Figure

4.5(a) - State D and Figure 4.5(b) - Activity B). This loop halts only when

no more replicas are requested
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4.3.4 Test: buddying yeast cell cycle

We consider a stochastic model of (a part) of the regulatory network that

controls the buddying yeast cell cycle [48]. Once identified few BLTLc for-

mulae characterizing relevant aspects of the cell-cycle behavior, we then

run the statistical verification tool to estimate the probability of the con-

sidered formulae. To assess the accuracy of the statistical procedure we

compare the estimates obtained through our statistical model checker with

the exact values calculated through numerical model checking, namely by

means of the PRISM model checker [37]. As the state-space dimension

corresponding to the original cell-cycle model is too large to be handled

through numerical model checkers we consider a ”scaled-down” version of

the model for validating the statistical model checking approach against

the numerical one.

Input settings

To run the statistical verification tool, we clearly need to analyze the

stochastic model first. We consider here a simplified cell-cycle model

sketched in Figure 4.5(c). It consists of three species, x (Cdk/CycB com-

plex), y (activated APC/Cdh1 complex) and a (activated Cdc20), and nine

molecular reactions listed in Table 4.3 and with parameters in Table 4.4.

Complex x is synthesized and degraded by reactions R1x and R2x, respec-

tively. Complex y speeds up x production by means of reaction R3x. At

the same time, x deactivates y by R3y. Also, y turns active by itself with

R1y and with the help of a in reaction R2y. Finally, a is produced and

consumed by R1a and R2a and regulated by x in reaction R2a. Such sys-

tem behaves as a bistable switch with two stable states: G1 with low x

and high y, and S/G2 /M with high x and low y, as shown in the plot of

Figure 4.5(d).
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Figure 4.5: Budding yeast cell-cycle cartoon and simulation

Cdk/CycB APC/Cdh1 Cdc20

R1x ∅ k1α−−→ x R1y yin
k∗3−→ y R1a ∅

k′5α−−→ a

R2x x
k′2−→ ∅ R2y yin + a

k
′′′
3−−→ y + a R2a x

k∗5−→ x+ a

R3x x+ y
k
′′
2 α−−→ y R3y x+ y

k∗4−→ x+ yin R3a a
k6−→ ∅

Table 4.3: Budding yeast cell-cycle reactions

The second input setting is the set of formulae to be evaluated. We

target the experiments to the study of the so-called S/G2 /M transition

which begins in states with low level of activated APC, high concentration

of Cdk/CycB and (initially) low level of Cdc20. By looking at the topol-

ogy of the network in Figure 4.5(c), and at the form of the corresponding

equations (Table 4.3), it is evident that a (i.e. Cdc20) plays a fundamental

part in the activation of y hence in the controlling the S/G2 /M transi-

tion. Specifically the progressive growth of a results in the (initially slow)

activation of y which then, in turns, is responsible for the degradation of

x. The influence of a on y can be studied through BLTLc formulae of the

following type:

φ1 ≡ (a ≤ i) U (y ≥ j), φ2 ≡ (a ≤ i) U≤t (y ≥ j)
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Component Rate Constant Dimensionless constants

Cdk/CycB k1 = 0.04, k′2 = 0.04, k′′2 = 1, k′′′2 = 1
APC/Cdh1 k′3 = 1, k′′3 = 10, k′4 = 2, k4 = 35 J3 = 0.04, J4 = 0.04

k∗3 = k4mαxy
J4+(αy) k

′′′
3 = k

′′
3 αayin

J3+(αyin
J5 = 0.3

k∗4 = k′3yin

J3+(αyin) m = 0.80

Cdc20 k′5 = 0.005, k′′5 = 0.2, k6 = 0.1, k4 = 35 α = 0.00236012

k∗5 = k
′′

α /
J5
mαx

Table 4.4: Parameter Values: Cell Cycle toy model

Formula φ1 represents the possibility that y grows above the threshold j

while a does not exceed the threshold i. Since y gets abruptly activated

only after a has reached high concentration (see Figure 4.5(d)) then, for

i < j and δ = j − i, we expect a low probability of φ1 for large δ, and a

higher probability of φ1 for high i and small δ2.

Results

Figure 4.6 compares exact versus estimated probability measure for the

time-bounded formula φ2, verified with respect to different time points

(t ∈ [0.2, 1.6] step 0.2). The (cross marked) point estimates (depicted in

Figure 4.6 together with their confidence interval), have been calculated

with 99.99% confidence and 0.005 interval semi-amplitude (ε = 0.005). The

exact values computed with PRISM (red plot in Figure 4.6) fall within the

confidence interval of each point estimates, confirming the accuracy of the

statistical verification method we have realized.

2φ2 allows also to study the dependence on time of such an attitude.
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Figure 4.6: Exact vs Estimated probability of the time-bounded Until formula: (a ≤
4)U (0,t](y ≥ 5), estimates with 99.99% confidence and ε = 0.005 semi-interval amplitude.

4.4 Multivariate analysis to detect effects of param-

eters changes in stochastic models

A model of a biological system is characterized by its structure and associ-

ated parameters. Model parameters describe the temporal dynamics of the

system components. It is then clear that once identified a model behavior

of interest, we may want to focus on the effects that model parameters

have on that behavior, and possibly try to evaluate and predict them.

One of the biggest challenges comes form the size of parameters space as-

sociated to a model, that often makes it difficult to estimate the effects of

a perturbation of the parameters. Moreover, when dealing with stochastic

models, we have to take into account the differences arising in the model

dynamics even considering fixed initial conditions. For this reason, multi-

ple replications of the same model simulated in parallel (MRiP) is widely

used as it allows to estimate an averaged behavior and thus to use statis-

tical tools to justify the sensitivity of parameters [3, 4].

We extend the concept developing a framework for efficiently generating
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and detecting peculiar behaviors of a given model by perturbing its pa-

rameters space [25].

4.4.1 Sampling the parameter space

The first step in order to evaluate the effects of parameters changes on a

model output is to properly define how these parameters have to be varied.

Different approaches for properly sampling the parameter space exist. The

simplest one lies in changing a single parameter at a time, keeping fixed all

the others. It captures ’first order’ effects only. However, often it happens

that interesting behaviors are linked to “higher order” effects, which are

those effects that derive from the combination of some parameters. In this

case, sophisticated sampling techniques are required.

Simple Random Sampling picks a number of samples by randomly select-

ing them among the entire population. With this kind of sampling we can

estimate higher order effects, but with low or no efficiency gain. On the

contrary, a full factorial sampling scheme takes every possible combination

of parameters values. In this way, the parameters space is fully explored

and higher order effects considered. If, on one hand, this sampling ap-

proach works well with small models, on the other hand, it fails when the

number of parameters configurations explodes.

A more efficient sampling scheme is the one named Latin Hypercube Sam-

pling (LHS). LHS, firstly introduced by McKay [45] allows to efficiently

sample the parameters space, but still preserving the potential of estimat-

ing high order interactions. LHS divides the space of each parameter into

N equiprobable intervals and picks (randomly) a single value from every

subinterval. Thus, LHS allows sampling of the entire parameters space in

an efficient manner, by essentially reducing the number of required simu-

lations.
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4.4.2 Simulation, aggregation and analysis

A valid sampling scheme for the parameter space returns a number of pa-

rameter configurations to be simulated. We consider here stochastic simu-

lation, i.e. the evolution of a biological system is described by a stochastic

process. The stochastic algorithm used is the well-known Stochastic Sim-

ulation Algorithm (SSA) [28].

The generation of a number of parameters configurations leads to the gen-

eration of as many sub-models. Consequently, their simulation furnishes

as many traces. The aim of this step is to focus on a property of interest

that is common among all the traces and, then, to aggregate them over it.

Depending on the observer’s interests, different measures of aggregation of

the model output can be used. In order to properly derive the forthcoming

analysis, a great attention should be paid on this measure. An erroneous

measure could later lead to conclude that model parameters do not statis-

tically effect the output trend when, instead, it could possibly be the case.

After aggregating simulation results, the last step is to perform statistical

analyses in order to estimate and validate potential effects of parameter

changes on the model output.

Statistics is an essential tool for identifying and quantifying the effects

of the parameters changes. There is a vast literature describing numer-

ous statistical methods which can be used in different situation. If, for

instance, we were interested in determining the possible statistical rela-

tionships among some model’s parameters and its simulation output, then

we should be aware that for qualitative (or categorical) outputs we should

use the analysis of variance, whilst for quantitative output, the multiple

regression analysis. If multiple regression can be used also for categorical

data, with proper output transformation, the reverse is not true.

After the estimation process, the next step is the statistical validation
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that we conduct through t-test or F-test for regression. These are used to

give significance to the previous estimate and to check that a relationship

among a specific configuration and a simulation output actually holds. In

some cases these tests are not sufficient to reach a conclusion. This is even

truer for those statistical methods that rely on some assumptions over the

estimates or residuals of the results. Regression, for instance, relies on the

assumption that residuals of the estimated model are uncorrelated and nor-

mally distributed. Before drawing a final conclusion, it is then necessary to

check this assumption by means of plots or quantile-quantile distribution.

4.4.3 Implementation

The methodology has been implemented in a plug-in based software pro-

totype that runs under the .Net framework 4 runtime and it is written

in C#.

The tool takes care of loading the proper settings (that include input mod-

els location, stochastic simulators, analysis plugins, and hardware config-

uration). It then generates a model for each parameter configuration sup-

porting both factorial and LHS samplings. Stochastic simulations are then

launched (either locally on multicore processors or remotely on clusters of

processors). To obtain statistical significance, the same model is simulated

a number of times equal to a given input parameter. Once simulations are

complete the analyzer evaluates the property of interest on every simula-

tion and stores the results in a shared data structure that holds as many

records as the number of parameter configurations. This data structure is

a simple table whose rows contain each parameters configuration plus the

relative value calculated by the analyzer.

Finally, multivariate analysis for the estimation and validation of param-

eters effects is performed using R statistical computing software and its

built-in statistical functions.
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4.4.4 Test: Predator-Prey model oscillation frequency

To explain the methodology, we consider here the classic Lotka-Volterra

(Predator-Prey) model [43, 71] depicted in Fig. 4.7(a). The model com-

prises three entities: a prey and a predator, which represent general species

of animals, and a third entity food, modeling an unbounded resource as,

e.g., grass.

The dynamic of this system is governed by three specific probability rate

constants, corresponding to as many basic reactions:

Ax. the Prey eats some food and then it duplicates;

Xy. the Predator feeds on prey and then it duplicates;

Yb. the Predator dies.

Given an initial large number of preys, the population of predators grows

rapidly due to the abundance of food. As soon as the predators number

increases, that of preys starts to decrease, thereby resulting in a consequent

reduction of predators. Due to the unbounded quantity of food, the preys

start to repopulate the systems, and the cycle restarts. An example of the

oscillatory behaviour of the Predator-Prey model is given by the simulation

reported in Fig. 4.7(b).

We consider the parameters space formed by Ax, Xy, and Yb and we

are interested in estimating the influence exerted on the system oscillation

frequency.

Input settings

A BlenX program encoding the Predator-Prey model is presented in [17].

In order to proceed we have also to select a proper sampling scheme for

the parameter set. Given the relative small dimension of the parameters
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Prey
Predator
Food

(a) Predatory Prey model cartoon (b) Predatory Prey stochastic simulation with
Ax = 0.001, Xy = 0.1, and Yb = 50

Figure 4.7: Predatory Prey Model

space, we rely on a factorial generation of configurations. The sub-models

generated are then simulated on an HPC infrastructure.

Finally we use a proper aggregation measure for the system behavior of

interest. In our case we are interested in the frequency of oscillation of the

systems species. More precisely, our goal is to investigate the possibility

that some parameter values can somehow influence the frequency of oscil-

lations of a given stable Predator-Prey system. To do that, we use the fast

fourier transform to get oscillations out of the traces.

Results

After performing sampling, parallel execution of simulations and aggre-

gation, we make extensive use of statistical methods to evaluate possible

effects of parameter changes on the system’s oscillation frequency.

A first descriptive analysis gives us a clear indication of a possible rela-

tionship existing between the first parameter Ax and the preys frequency

of oscillation (Fig. 4.8). The second and third parameters do not seem

to affect the frequencies of the oscillation, although a small relationship

between them is registered.

Following a more accurate analysis it becomes clearer that the relation-

53



4.4. MULTIVARIATE ANALYSIS TO DETECT EFFECTS OF PARAMETERS
CHANGES IN STOCHASTIC MODELS CHAPTER 4. APPROACHES

Ax

0.0 0.1 0.2 0.3 0.4 0.5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10 20 30 40

0.
00

2
0.

00
6

0.
01

0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

Xy

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

● ● ●●●● ●● ●●

● ● ● ● ● ● ●●●●

● ● ●● ● ● ● ●● ●

● ● ● ●● ● ● ● ● ●

● ● ● ● ●● ● ●● ●

● ● ● ● ●● ● ●● ●

● ● ●● ●●● ●●●

● ● ● ● ● ● ● ● ● ●

● ● ● ●●● ● ● ●●

● ●● ● ●● ●● ●●

● ● ● ● ● ● ●● ● ●

● ● ● ●● ● ● ● ● ●

● ● ● ● ●● ●●●●

● ● ● ● ● ● ● ●● ●

● ● ● ● ● ●● ●●●

● ● ● ● ●● ● ● ●●

● ● ● ● ● ● ● ● ●●

● ● ● ● ● ● ●● ●●

● ●● ●● ●●●●●

● ●● ● ● ● ●● ●●

● ● ● ● ● ● ● ● ●●

● ● ● ● ● ●● ● ● ●

● ● ● ●● ● ● ● ●●

● ● ● ●● ● ●● ● ●

● ● ●● ●●● ●●●

● ● ● ● ●●● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●● ● ●●

● ● ● ● ● ● ●● ● ●

● ● ● ● ● ● ● ●● ●

● ● ●● ●● ●●● ●

● ● ● ● ●●● ● ● ●

● ● ● ● ● ● ●●● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ●●● ●● ● ● ● ●

● ● ● ● ● ● ●● ● ●

● ● ● ● ●● ●● ●●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●● ● ● ●

● ● ●● ● ●●● ●●

● ● ● ● ● ● ●● ● ●

● ● ● ● ● ●● ● ● ●

● ● ● ● ● ●● ●● ●

● ● ● ●● ● ● ●●●

● ● ● ● ● ● ● ● ●●

● ● ● ●● ●● ●● ●

● ● ● ● ● ● ● ● ●●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ●● ● ● ●● ●

● ● ● ● ● ● ● ●● ●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

Yb

50
60

70
80

90

● ● ●●●● ●● ●●● ● ● ● ● ● ●●●●● ● ●● ● ● ● ●● ●● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ●● ●● ● ● ● ●● ● ●● ●

● ● ●● ●●● ●●●● ● ● ● ● ● ● ● ● ●● ● ● ●●● ● ● ●●● ●● ● ●● ●● ●●● ● ● ● ● ● ●● ● ●● ● ● ●● ● ● ● ● ●

● ● ● ● ●● ●●●●● ● ● ● ● ● ● ●● ●● ● ● ● ● ●● ●●●● ● ● ● ●● ● ● ●●● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ●● ●●

● ●● ●● ●●●●●● ●● ● ● ● ●● ●●● ● ● ● ● ● ● ● ●●● ● ● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●●● ● ● ●● ● ●● ● ●

● ● ●● ●●● ●●●● ● ● ● ●●● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ●●● ● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ●● ●

● ● ●● ●● ●●● ●● ● ● ● ●●● ● ● ●● ● ● ● ● ● ●●● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

● ●●● ●● ● ● ● ●● ● ● ● ● ● ●● ● ●● ● ● ● ●● ●● ●●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ●

● ● ●● ● ●●● ●●● ● ● ● ● ● ●● ● ●● ● ● ● ● ●● ● ● ●● ● ● ● ● ●● ●● ●● ● ● ●● ● ● ●●●● ● ● ● ● ● ● ● ●●

● ● ● ●● ●● ●● ●● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ●● ●● ● ● ● ● ● ● ●● ●

0.002 0.006 0.010

10
20

30
40

●

●

●
● ● ●

●
●

●
●

●

●

●

●
●

●

● ●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

● ●

● ●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●
● ●

●

● ●
● ●

●

●
●

●
●

●

● ●

● ●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

● ●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●
●

● ●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

● ●
●

● ●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●
●

●
●

●

●

●

●
●
●

●●
●
●

●

●

●
●
●
●

●
●
●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●
●
●
●

●

●

●

●
●
●

●

●
●
●

●

●
●

●

●
●

●
●
●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●
●
●

●

●

●
●
●●

●●
●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●
●
●

●
●

●●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●
●

●●

●

●

●
●●

●

●●
●●

●

●
●

●
●

●

●●

●●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●
●

●
●

●
●

●

●
●
●

●●
●

●
●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●●
●

●

●

●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●
●

●

●
●
●

●
●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●●

●●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

50 60 70 80 90

●

●

●
●●
●

●
●

●
●

●

●

●

●
●
●

●●
●
●

●

●

●
●
●
●

●
●
●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●
●
●
●

●

●

●

●
●
●

●

●
●
●

●

●
●

●

●
●

●
●
●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●
●
●

●

●

●
●
●●

●●
●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●
●
●

●
●

●●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●
●

●●

●

●

●
●●

●

●●
●●

●

●
●

●
●

●

●●

●●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●
●

●
●

●
●

●

●
●
●

●●
●

●
●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●●
●

●

●

●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●
●

●

●
●
●

●
●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●●

●●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

OF

Figure 4.8: Model parameters and Oscillation Frequency paired scatterplot
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ship among the first parameter and the oscillation frequency is not linear.

Indeed, by employing a bivariate analysis, we easily notice that the com-

bined effect of first and third parameters is almost linear (if plotted against

the oscillation frequency).

By testing different regression model hypotheses, we end up with a final

model which well describes the oscillations frequency (OF). In particular

we have:

OF = 1.052 + 44.497
√
AxY b+ ε̂, ε̂ ∼ N (0, 1.32) (4.5)

where both the intercept and the parameter of the interaction term have a

strong statistical significance. T-test values are 5.5 and 145, respectively,

with a correspondent p-value of 4.59e-08 and 2e-16.

The goodness of fit of the model, given by the coefficient of determina-

tion (R-squared) that shows a value of 0.9752, clearly indicates the validity

of the model as also derived from the analysis of the residuals.

This statistical model describes how the oscillation frequency is influ-

enced by the squared root of the interaction between the first parameter

(i.e. the rate of eating and reproduction of the prey) and the third pa-

rameter (i.e. the rate of death of the predator). Greater these parameters,

higher the oscillation frequency.

Such a model lets us make some guesses about the oscillation frequen-

cies. As an example, considering the following basic configuration: Ax =

0.001, Xy = 0.1 and Y b = 50, we know from simulation (and from the sta-

tistical model above) that the average oscillation frequencies of the predator

and of the prey populations are around 11 Hz. Now, we use the model to

predict the oscillation frequency of the preys population with perturbed

configurations. In addiction we compute prediction intervals on the esti-

mated frequency values in order to take into account the system variability.

Table 4.5 reports three parameters configurations. If we supposed to set
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Ax to be equals to 0.0003, the model would predict a mean value for the

oscillation frequency of OF = 6.50. If, instead, we supposed to decrease Y b

up to 30, we would get a predicted OF equals to 8.76. But, if we decreased

both parameters we would obtain OF = 5.27, thereby discovering the

combined effect of the parametric interaction.

Table 4.5: Statistical model predictions and 95% prediction intervals for modified model

parameters

Parameters Lower Expected Upper

configurations bound Predicted Value bound

Ax = 0.0003, Y b = 50 3.89 6.50 9.12

Ax = 0.001, Y b = 30 6.15 8.76 11.37

Ax = 0.0003, Y b = 30 2.66 5.27 7.89

To finally confirm the prediction provided by the model, we run a bench

of simulations with varying parameters. As we can see in Tab. 4.6, the

mean oscillation frequency obtained by simulating the three model config-

urations are close to those predicted and lie within the prediction intervals

bounds.

Table 4.6: Statistical model and simulation results for modified model parameters

Parameters configurations Simulations Results

Ax = 0.0003, Y b = 50 OF = 5.84

Ax = 0.001, Y b = 30 OF = 10.60

Ax = 0.0003, Y b = 30 OF = 4.43

An analytical study of a Predator-Prey model [62] shows a relation

between the oscillation frequency and the squared root of the product

of Ax and Y b. With the proviso that the relation between a stochastic

and a deterministic system is not trivial, the result of [62] agrees with

the statistical hypothesis of Eq. 4.5. More important, the two analyses

concord on a counterintuitive conjecture: the speed a Predator feeds on a
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Prey does not influence OF , i.e., the period of oscillation is not influenced

by the greediness of the Predator.
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Chapter 5

Case Studies

Knowledge discovery clearly aims at unrevealing useful information about

a particular system which is not completely studied. For this reason we

put at the very centre of this thesis, the need for developing approaches

and methodologies able to face with real systems.

When we test some new methodology on a toy or well studied problem we

are completely aware of what we have to expect from it. Contrarily, work-

ing with real systems, and possibly in close synergy with experimenters

and experiments, make it clear which are the current conditions to work

with when dealing with knowledge discovery.

We present two real cases derived from direct collaboration with research

institutes. The former is related to the description of V. vinifera general

pathway for phenolics biosynthesis leading to flavonoids, in collaboration

with Instituto Agrario San Michele all’Adige (IASMA), located in Trento,

Italy. The latter case study is related to the development of Leishmaniasis

disease, in collaboration with the Universidad La Laguna, Tenerife, Spain.

We want here also to highlight how the synergic use of the proposed

methodologies let it possible to deeply face the problem under study, de-

riving essential information and thus finally making the in-silico analysis

of biological systems useful.
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5.1 V. Vinifera flavonoid biosynthesis

Flavonoids are regarded as one of the most important determinants of

quality in red grapes and wines. Color and taste of red wines are strongly

related to the amount of anthocyanins, flavonols and proanthocyanidins.

Moreover in recent years some flavonoids compound (anthocyanins, proan-

thocyanidins and flavonols) have attracted additional attention for their

potential health benefits ([14], [67]).

Antocyanins, proanthocyanidins and flavonols are synthesized via the flavonoid

pathwway depicted in Figure 5.1.

Three different types of compounds are highlighted, as they are those of

greatest interest for experimentalists:

• Quercetin, Kaempferol and Myricetin (highligheted in blue) represent

flavonols, and they are all synthesized by a flavonol synthases (FLS).

• Catechin, Gallocatechin, Epicatechin and Epigallocatechin (green) rep-

resents flavan-3-oli (or flavanols) and they are synthesized by two en-

zymes (LAR and ANR).

• Cyanidin-3-glucoside and Deplhinidin-3-glucoside (red) are instead

two primary anthocyanins synthesized by UFGT.

The research institute IASMA (Istituto Agrario San Michele all’Adige)

located in Trento, Italy has been investigating the Vitis Vinifera genome

[70]. Given the interest in the flavonoid biosynthesis pathway, the research

centre has designed several experiments with the aim at unrevealing the

pathway’s metabolites evolution over time.

To positively integrate the experimental information into new knowledge

at the pathway level, the entire work has been divided into tasks:

• building of a computational model of the pathway;
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Figure 5.1: V.Vinifera pathway

• preliminary analysis on experimental data;

• inference on model parameters using experimental data.

5.1.1 Computational model of the flavonoid biosynthetic path-

way

The knowledge about the V. vinifera general pathway for phenolics biosyn-

thesis leading to flavonoids is reported in 5.1 and includes the involved

metabolites and the gene coding for the enzymes involved in the reactions.

A complete stochastic model for the pathway has been built by using the

BlenX programming language (see A.1). BlenX modeling language lets us

to describe the pathway, and thus the enzymatic reactions, by means of

communications among species. More precisely, given the intrinsic charac-

teristics of the language, there is not the need for specifying every species

involved in the pathway, as it would be usually done by using other mod-

eling techniques. All we need to specify is the initial substrate and the

61



5.1. V. VINIFERA FLAVONOID BIOSYNTHESIS CHAPTER 5. CASE STUDIES

enzymes. The enzymatic reactions are then described as sequential state

change from the initial substrate once the proper enzyme binds and com-

municates.

As for any modeling activity, the level of detail of a model should be re-

lated to the problem goals, and of course to the available theoretical and

experimental knowledge. In this case, primary goal of the study was to

identify possible differences in the dynamics of accumulation of several

metabolites among plants. We have already spoken about the theoretical

knowledge. Experimental evidences consisted instead in concentration lev-

els for 9 metabolites at the extremes of the pathway (those highlighted in

the picture). Data are single concentration measurements at berries mat-

uration for 63 individuals (plants) of red berries.

Given the above considerations, during the development of the computa-

tional model we decided to regard at some working hypothesis.

We did not model the enzyme synthesis from their gene copies, while in-

stead we considered a constantly available single molecule for every enzyme.

While this assumption is clearly unrealistic, it helps in scaling down the

complexity of the model given the complete lack of information on the en-

zymatic abundance and kinetics.

Still to preserve model complexity, we do not model and consider metabo-

lites degradation. This hypothesis obviously influences the dynamics of

metabolite accumulation.

Finally, in order to have a complete computational model, we require to

indicate initial conditions for the system. Since there is no available infor-

mation on the initial substrate, meaning that there is no indication for its

plausible initial condition, we decided to consider a single molecule of the

initial substrate and an external source of production for that metabolite

which continuously synthesizes new molecule at a given rate. This aspect,

together with the lack of degradation for the metabolites, produces a linear
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accumulation of metabolites during time. Moreover, every other metabo-

lite in the pathway is considered to be not present in the system at its

initial state.

5.1.2 Preliminary analysis on experimental data

The computational model described in the previous section cannot be used

to represent pathway dynamics, yet. It lacks of all the kinetic parameters

necessary to derive the time evolution of metabolites abundance. That is,

we need to correlate the model with the experimental evidence.

Experimental data should be analyzed first. Statistical descriptive analy-

ses are necessary to isolate potential strange observations (outliers) which

could lead to erroneous conclusions, but also to provide proper guidance

to following analysis or work.

Experimental data on the V. vinifera general pathway have been produced

by the IASMA research centre, and they are about the concentration levels

for 9 metabolites at the extremes of the pathway (those highlighted in Fig-

ure 5.1). Data have been collected in two years, 2007 and 2008 and they

are metabolites concentration measurements at berries maturation for 63

individuals (plants) of red berries. We consider here the first 61 individuals

leaving out the parental individuals (Syrah and Pinot Noir).

We initially investigate the variability of the data. Figure 5.2 shows the

distribution of the measurements for every species in the two years. Con-

centration levels are in mg/Kg of berries skin. We can easily notice that

values for the Delphinidin-3-glucoside metabolite concentration, over the

61 individuals, are much higher than the others, as it seems for its variabil-

ity. This peculiarity is kept from 2007 to 2008, while a strong difference

can be seen for the distribution of Cyanidin-3-glucoside in 2007 and 2008

(squared highlighting). Distribution of this metabolite in 2008 is narrower

and average values are much lower denoting a very different behavior from
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Figure 5.2: Distributions of the metabolites concentration levels, year 2007 and 2008

one year to the other. To extend the variability analysis, we calculate the

coefficients of variation of metabolite concentrations (Table 5.1) for the two

years. We can notice that Catechin and Gallocatechin present the high-

est variability. Furthermore, metabolites synthesized by the same enzymes

present similar variability (they are grouped together in the table).

By comparing the coefficients of variations we can notice that values in

2007 are smaller than in 2008, meaning that concentration levels among

the 61 plants are less dispersed around a mean value. To be noticed is also

the coefficients of variations for Cyanidin-3-glucoside metabolite. From

Figure 5.2 we highlighted a great difference in the two years, but their

coefficients of variation do not reflect this huge difference. This is due to

64



CHAPTER 5. CASE STUDIES 5.1. V. VINIFERA FLAVONOID BIOSYNTHESIS

Metabolite CV 2008 CV 2007 Enzyme

Myricetin 0.66 0.59

Quercetin 0.46 0.42 FLS

Kaempferol 0.77 0.62

Gallocatechin 0.98 0.73

Catechin 1.11 0.99 LAR

Epigallocatechin 0.73 0.53

Epicatechin 0.79 0.61 ANR

Delphi3gluco 0.90 0.83

Cyani3gluco 0.88 0.72 UFGT

Table 5.1: Coefficients of variation

the big difference which instead exists among the average value of the 61

plants. We moved from an average of 700 mg/kg in 2007 to 87 mg/Kg in

2008.

By looking at the differences in the mean of the other metabolites we can

also notice that other metabolites present relevant changes. Average Gal-

locatechin concentrations have more than halved from 2007 to 2008 (107

mg/Kg in 2007 VS 44 mg/kg in 2008) and Epigallocatechin has halved

(147 mg/kg in 2007 VS 75 mg/kg in 2008). Interestingly, all these three

metabolites are placed in the right branch of the pathway.

The above analyses opened a question on the variability of the experimental

information. In order to identify similar behaviour (or recurrent patterns)

among individuals in the production of metabolites, we performed cluster

analysis. With this analysis we are able to identify those plants having

greatest interest for the study. In particular we are interested in those

plants that are high producers of anthocyanins and in comparing them

with low producers, extending the analysis over the available two years

information.

We performed a hierarchical clustering based on euclidean distance of stan-
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dardized data, and, by using the Ward’s method for the aggregation we

finally obtained dendrograms representing possible partitioning. The den-

drogram is a tree which illustrates how individuals (on the leafs) are clus-

tered together and in which order. At the beginning every plant constitutes

a single group which is then consequently merged with others, based on

similarity, ending up with a single cluster composed by all the individuals.

Based on dendrograms and variability analysis, we identified proper data

clusters. By plotting the distribution of the metabolites concentration over

the different groups we are able to identify the distinguishing characteristics

of each group. In particular, being us interested in anthocyanins, Figure

5.3 reports their group division (Delphinidin-3-glucoside and Cyanidin-3-

glucoside). As it can be noticed, a good data partitioning has been found

Figure 5.3: Clustering results

in both years with 6 groups. From the figure we can also easily extract

the information required. From 2007 data, we pick as high anthocyanins

producers, those plants clustered in group 4, while plants in group 3 will be
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considered low producers. For what concerns 2008 data, group 7 contains

high antocyanins producers while plants in group 2 are low producers. Ta-

ble 5.2 summarizes the plants constituting each group.

We can further notice that some of the plants are preserved as high or low

Year 2007 Year 2008

High producers

6, 13, 14, 15, 17

18, 20, 23, 26, 31

34, 41, 45, 48, 51

9, 15, 18, 20

Low producers 5, 25, 55, 57, 60, 61

2, 3, 7, 11, 16, 24, 30

33, 38, 39 42, 43, 44

46, 49, 54, 55, 57

Table 5.2: High and low anthocyanins producers

anthocyanins producers among 2007 and 2008, while none of them switched

from high to low producers and viceversa.

5.1.3 Parameter inference

As a starting point, we run the evolutionary inference framework, described

in chapter 4 on the average of the experimental data.

Concentrations have been clearly translated into absolute values obtaining

thus quantities representing number of molecules. To complete the input

settings of the framework we fixed as halting criteria, a maximum number

of iteration equal to 150. The cost function used is a sum of normalized

squared error between the experimental evidence and simulated results.

We also fixed a threshold for this objective function. We consider to have

obtained good estimates when the average cost function value among the

best 10 solutions is lower than a 5% distance from experimental evidence.

This value is then fixed to 25.
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The inference process took 65 minutes on an Apple Macbook, 2.0 GHz

processor and 1 Gb RAM. Results are reported in Figure 5.4. The picture

shows the best estimated solutions as well as experimental data with mean

value used for the estimation (circle) and variability bars.

The estimated solutions fit well the mean values of experimental data.

Figure 5.4: Estimation results for the average of experimental data

However, they will hardly describe the great variability the data exhibit.

To give support to this hypothesis we used the approximate model check-

ing tool we presented in Chapter 4. With this tool we can derive a formula
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codifying our hypothesis to be confirmed (that is, the estimated model

cannot represent data variability).

We defined some thresholds for one of the metabolites we are mostly inter-

ested in, Cyanidin-3-glucoside. In particular, by looking at the experimen-

tal data, we took the 1st and 3rd quartile of its distribution (378 and 1248

molecules respectively). Twenty-five percent of the experimental data lies

below the first quartile, and another 25% lies over the third quartile. Thus,

by checking a formula that evaluates the probability of the model to ob-

tain those values, we can conclude about the goodness of our model. If the

estimated probabilities are very far from those exhibited by experimental

data, then we will refuse the model.

Table 5.3 reports the result obtained by the approximate model checking

tool on three different formulae. The first two formulae describe the prob-

Formula (95% confidence), ε = 0.02 Lower bound Upper bound Probability

Cyanidin-3-glucoside < 378 at t = 2016 0 0.0099 0

Cyanidin-3-glucoside > 1248 at t = 2016 0 0.0099 0

Cyanidin-3-glucoside < 800 at t = 2016 0.00117 0.01538 0.00425

Table 5.3: Checking the model probability to describe data variability

ability to observe values lying below the first quartile or over the third

quartile. In both cases at a 95% the true probability falls inside the in-

terval [0, 0.0099] with a point estimate equal to 0. In the last formula we

took the threshold up to 800, and the probability for the model to obtain

that level at the considered time falls in the interval [0.00117, 0.01538] at

a 95% confidence.

These results clearly indicate the inappropriate behavior of the model in

describing data variability.

We decided then to proceed to infer pathway kinetics from clustered data

reported in Table 5.2, as the goal is that of identifying the differences in
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kinetics for high and low anthocyanins producers.

We run again the evolutionary inference framework, for each of the 4 con-

figurations of clusters. Low and high anthocyanis producers in 2007 and

2008.

In particular, we considered as target experimental information, the cen-

troid of the cluster. From Table 5.4 we can notice that for every con-

figuration considered we reached the predefined halting criteria based on

the value of the cost function. Nonetheless in one case (namely high an-

thocyanins producers in 2008) the inference procedure took a longer time,

requiring more iterations. Estimation time spans from 37 minutes to about

4.5 hours.

As we have seen when we have explained the evolutionary inference ap-

Low 2007 Low 2008 High 2007 High 2008

Estimation Time (min) 37 91 87 260

Iterations 46 87 60 126

Cost function value (best 10 average) 24.8 24.4 24.1 24.8

Table 5.4: Estimation performance for low and high anthocyanins producers in 2007 and

2008

proach, being it a stochastic procedure, performance and results are differ-

ent each time it has been ran. In this case we have obtained the expected

results in terms of goodness of fit in every on the 4 times it has been used.

By the way, just for the sake of clarity we run the estimation procedure

for a second time on the high anthocyanins producers group in 2008 which

has shown longer convergence time. After 95 iterations, and with an es-

timation time equal to 166 minutes we obtained an average cost function

value equal to 24.4.

Table 5.4 summarizes quantitative information on the estimation problem.

We move now to qualitatively analyze the model behavior by considering
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the estimated parameters. Figure 5.5 reports the best solutions identified

by the evolutionary procedure with a cost function lower than 24.8 (best

10 average). Points at 2016 hours are the experimental data together with

standard error bars, representing the variability within the group on the

considered metabolites. Colored traces represent the dynamical behavior

of the model with the estimated parameters.

It can be noticed that every metabolites abundance is well matched by

Figure 5.5: Estimation results for low anthocyanins producers in 2007
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the model with a greater variability for Kaempferol metabolite, derived by

its lower abundance which highlights the effects of stochastic fluctuations.

We can also notice that, for those metabolites characterizing the group,

namely anthocyanins (delphinidin-3-glucoside and cyanidin-3-glucoside),

we have achieved very good matching, even considering group variability,

i.e. stochastic fluctuations seems to properly describe group variability.

The identified good solutions for the estimation problem contains thus an

estimate of each parameter of the pathway model. As we are in a stochas-

tic setting, there is the possibility to obtain solutions that differ for one or

more estimated parameters, still preserving the overall good fitting prop-

erties with respect to the experimental data. This is due to the stochastic

effects that may arise during the time evolution of the simulated system.

To visualize the similarity of the solutions we make use of a radial (also

known as spider) plot. Figure 5.6 reports the radial plot representing the

five solutions with a cost function lower than 24.8 of the estimation of high

producers in 2007. Polygons in the centre of the plot connect points repre-

senting values of each estimated parameter. Form this figure we can easily

see that all the polygons are similar. The only small difference is repre-

sented by the value of rEriodicF3h parameter which slightly differs in the

three solutions. This parameter is the one governing the transformation of

Eriodictol to Dyhidroquercetin with the act of enzyme F3h.

We can confirm this observation by performing a cluster analysis on the

estimated solutions. Figure 5.7 plots the cluster dendrogram clearly high-

lighting the similarities of the solutions. We can notice the early aggrega-

tion of three of the five solutions, while the last two are aggregated to the

previous cluster later, due to the difference in the previous parameter.

More generally, given the nature of the evolutionary procedure used for

the inference, good solutions tend to be considered again, or with small

changes, in the proceeding of the iterations. We then expect to have clus-
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Figure 5.6: Radial plot of estimated solutions for high anthocyanins producers in 2007

ters of similar solutions in the pool of the best solutions reached, while

the presence of a single solution in that pool may indicate that its good

behavior has been the result of stochastic fluctuations.

The next step is to select the solutions from which derive the final parame-

ters set. To do so we consider the similar solutions obtained by the cluster

analysis and we average them. Table 5.5 contains the estimated parame-

ters for the low anthocyanins producers in 2007. It contains the average

value among the similar good solutions derived from the cluster analysis
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Figure 5.7: Cluster dendrogram of high anthocyanins producers (2007) estimated solutions

together with their standard deviation.

With the aim at focusing on the final goal of the project, we extended

these analysis steps to the remaining three clusters of individuals consid-

ered, as to possibly identify strong differences in groups producing low or

high amount of anthocyanins and/or year to year variations.

Plot in Figure 5.8 shows the abundance of metabolites for low anthocyanins

producers in 2007 and 2008. As we can see some of the metabolites are

more abundant in 2007 while others in 2008. More specifically all flavanols

are more abundant in 2007 (black line) with a peak for epicatechin, while

flavonols and anthocyanins are more abundant in 2008. From the compar-

ison of the estimated parameters, we then expect to see higher values for

those parameters governing the production of flavanols in the year 2007,

while, in contrast, greater values for those parameters regulating antho-

cyanins production in the year 2008. Figure 5.8 reports this information

in the form of a radial plot. Black polygon, connecting year 2007 esti-

mated parameters, presents higher values with respect to those estimated

for year 2008 data only for rEriodictF3h and rDihidroF3p5ph. These are

2 parameters regulating the production of Dyhidroquercetin from Eriodic-

tol and DyhidroMyricetin from Dyhidrokaempferol respectively. They are

precursors of all flavanols.
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Parameter Mean value Standard deviation

rTetraHy 1.08 1.64e-02

rTetraChi 0.24 1.69e-03

rNarigF3h 0.51 4.09e-04

rEriodictF3h 9.15 9.05e-01

rPentaF3h 1.83 6.53e-03

rNarigF3ph 1.87 9.01e-03

rDihidroF3ph 1.15 4.02e-04

rDihidroF3p5ph 2.48 3.52e-03

rNarigF3p5ph 0.35 3.15e-05

rDiHidroFls 0.20 1.21e-05

rDihidroMyFls 0.19 6.57e-04

rDihidroqueFls 0.14 3.49e-03

rDihidroqueDfr 1.26 5.68e-04

rDihidromyDfr 0.91 3.66e-02

rLeucoCyaLar 0.22 2.77e-04

rLeucoDelphiLar 0.47 1.06e-02

rLeucoCyaLdox 1.57 1.36e-03

rLeucoDelphiLdox 1.07 1.74e-03

rCyaniAnr 0.86 1.24e-03

rCyaniUfgt 0.22 9.57e-06

rDelphiAnr 2.44 7.21e-04

rDelphiUfgt 2.99 2.19e-06

Table 5.5: Estimated parameters for low anthocyanins producers in 2007
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Figure 5.8: Radial plot of metabolites abundance in low anthocyaninns producers in 2007

and 2008

Red polygon, connecting year 2007 estimated parameters, presents instead

higher values for all the parameters with higher differences for those param-

eters directly involved with the production of anthocyanins (rDelphiUfgt

for the production of Delphinidin-3-glucoside form Delphinidin) or imme-

diate precursors (rLeucoCyaLdox for the production of Cyanidin from

Leucocyanidin). In this last case the subsequent pathway step for the

production of Cyanidin-3-glucoside from Cyanidin present similar values

among the two years (parameter rCyaniUfgt).

If we move the analysis towards the comparison of low and high antho-
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Figure 5.9: Radial plot of estimated parameters for low anthocyaninns producers in 2007

and 2008

cyanins producers in the same year we are able to identify which are the

parameters that mostly affect the abundance variability. In particular

in figure 5.10 we can see the great difference in the metabolites abun-

dance among low and high anthocyanins producers in 2007. Obviously,

the most significant difference is on anthocyanins (delphinidin-3-glucoside

and cyanidin-3-glucoside) abundance, but also the remaining metabolites

are more abundant in the high producers than in the low ones. This make

us guessing that the kinetics is increased on the entire pathway and not
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Figure 5.10: Radial plot of metabolites abundance in low and high anthocyaninns pro-

ducers in 2007

only in the last steps of it, i.e. just when producing anthocyanins. In fact,

by looking at the estimated parameters for low and high anthocyanins pro-

ducers in 2007 and 2008 (figure 5.11 we can notice higher parameter values

for most of the model parameter, but without a clear difference. The most

interesting observation should be done in pointing out the remarkable dif-

ference in the initial parameters: rTetraHy and rTetraChi. These are the

parameters that regulate the production of the initial substrate (Tetrahy-

droxychalcone) from the external environment and its transformation into
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Figure 5.11: Radial plot of estimated parameters for low and high anthocyaninns produc-

ers in 2007

Narigenin respectively. These are the initial steps of the entire pathway.

Greater values for these parameters represent the necessity for increas-

ing the entire flux of metabolites to describe the overproduction of final

metabolites (anthocyanins), as previously hypothesized.

5.1.4 Discussion

The flavonoids biosinthetic pathway has received great interest mostly due

to the potential health benefits of some of its compounds. Experimentation
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conducted at the IASMA centre in San Michele all’Adige - Trento, Italy

made available concentration levels for part of the metabolites involved in

the pathway measured on a number of plants.

The use of stochastic modeling has highlighted the different dynamical

behavior among groups of plants. By estimating kinetics on pathway

stochastic model we were able to identify those differences related to the

production of anthocyanins, and specifically to differentiate low and high

anthocyanins producers. Differences in the production of such metabolites

cannot be described just by stochastic fluctuations, while there’s the clear

evidence of an enzymatic overactivity.

Clearly this conclusion should be validated with new experiments, and if

confirmed, attention should be paid on an upper level, that of regulation.

5.2 Leishmaniasis disease progression

Leishmaniasis is recognized as one of the most important tropical diseases.

It is present in three main forms: visceral leishmaniasis, the most aggressive

and usually fatal when untreated; muco-cutaneous and cutaneous Leish-

maniasis.

The disease is caused by a parasite belonging to the genus Leishmania

and it is spread by the bite of a female sandfly to humans and animals.

Desjeux [20] presents an extensive review of the disease, situation and new

perspectives.

From a theoretical point of view, mathematical modeling has been used

to study the evolution of the disease. Most of the attempted models deal

with epidemiological settings [11, 1] or with the genome and metabolism

features of the parasite [10, 57]. Only recently two integrated works were

focused on the description of the host-parasite interaction, the first one

[15] is an agent-based model of the immune response to Leishmania major
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infection in mice. A still more recent work [38] presented a mathematical

model based on GMA power law formalism to describe the disease evolu-

tion and the host-pathogen interaction in mice.

A joint collaboration with the Biochemical Technology Group of the Uni-

versidad La Laguna in Tenerife, Spain has let us to develop a stochastic

model for the progression of the leishmania disease, based on their previous

mathematical description.

For this case study, we present an integrated work that uses and connects

the methodologies described in this thesis. After creating the stochastic

model we used the evolutionary inference tool to estimate model parame-

ters as to reproduce experimental data presented in the paper. We analyzed

how parameters may affect particular model outputs. We aimed at high-

lighting the model nodes that play a central role in the disease development

and we finally produce a quantitative information on the potentialities of

disease reduction.

5.2.1 Leishmaniasis progression model

The theoretical model is the one presented in [38], which describes the in-

teraction of four variables (here considered as species) and it is depicted in

figure 5.12.

Species are Parasite Load on mouse internal organs, population of Lym-

phocytes and the immune response given by antibodies IgG1 and IgG2a.

Each of the considered species displays an inbound and outbound flux rep-

resenting respectively their production and degradation. Arrows stand for

influence of a single species on one another, affecting either the production

or degradation and possibly showing positive or negative effects.

To start with, once parasites have been inoculated they self proliferate (p14)

and enhance the immune system to produce lymphocytes (p11). At the

same time, the increase of parasite load leads to a decrease in lymphocytes
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Figure 5.12: Leishmaniasis disease progression model

activity (p18). Lymphocytes proliferate (p10) and act as parasite suppres-

sor (p16). Simultaneously they enhance the synthesis of immunoglobulins

IgG1 and IgG2a (p2 and p6 respectively). Being these immunoglobulins

antagonists they have a negative influence on the other’s generation (p3

and p7 respectively). Antibody IgG2a is able to identify parasites and thus

enhancing parasite degradation (p17), while this does not happen for IgG1.

Finally all of species degradation follows mass action law (p4, p8, p12 and

p15).

BlenX stochastic model of the Leishmania development is reported in A.2

and follows an event based style of modeling, in which each possible step

in the evolution of the system is completely governed by a set of actions.

These events are related to the production and degradation of each sin-

gle species in the model. They also describe the regulatory effect of each

species on the others.
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5.2.2 Inference

We initially consider the problem as presented in [38], trying thus to obtain

parameters estimate for the same data.

For this case we used a cost function based on least squares estimator

weighted for the number of different experimental points available for each

variable. As for two of the four variables we have 13 data point, while for

the remaining just 4, we equally weighted the contribution of each variable

to the cost function.

Data presented in the paper have been initially considered ”as they are”,

and thus without transforming concentrations into molecules abundances,

mostly due to technical unfeasibility to retrieve such information. To avoid

meaningless simulations and inference, data have been rescaled to properly

work in the stochastic setting. They all have been multiplied by a factor

of 1000.

The choice of initial interval values for model parameters, although not

limiting the search space, should be carefully selected, as it represents

a fundamental step for achieving a faster convergence. For instance, by

considering each parameter initial interval equal to [0,1], convergence time

is quite high, while using simple relationships among parameters, we are

able to decrease it drastically.

More precisely, if we consider the system in a quasi-equilibrium, with a

very naive analysis on the species involved, we are able to guess interval

values for involved parameters in a more realistic way. As a simple rule

of thumb, differences in the parameters order of magnitudes are estimated

from experimental data on species abundances, and evaluating production

and degradation reactions. For every parameter involving a first order

reaction (i.e., species degradation, other species regulation) we adopted an

initial value equal to the interval for a zero order reaction divided by the
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average abundance of the other species (i.e., its own average abundance in

case of degradation, the average abundance of the regulating species in the

latter case). This procedure is repeated for every parameter in the model

(e.g., the interval for a second order reaction is scaled by the cross product

of species involved.

In summary, we run the evolutionary inference procedure taking as initial

parameter intervals [0,1] for every zero order reaction and [0,0.001] for

every first order reaction. We set 200 as maximum number of iterations

and derived a cost function threshold equal to 0.5, a value representing a

12% average deviation from experimental data.

We run the procedure 3 times, and in one case we reached the cost function

threshold after 163 generations and a computation time of 15 minutes.

We can have a look at the qualitative behavior of the inferred solutions

by analyzing figure 5.13. Dots represent experimental evidence averaged

on mice population and organs infection. Bars stand for data variability

and finally solid lines are the best solutions identified by the evolutionary

procedure.The estimated solutions well describe the qualitative behavior

of the system so we can now proceed to the analysis of the model.

5.2.3 Model analysis

This step is of primary importance for a deeper understanding of the dis-

ease progression. Before moving toward extensive model analysis we tried

to reproduce the results presented in [38].

Our estimated stochastic model is consistent with the deterministic one

presented in the paper for what concerns the influence of parameter p10 (g6

in the paper).

Figure 5.14 shows the evolution of parasite load for different values of pa-

rameter p10. Simulation length has been extended to 250 days (dashed
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Figure 5.13: Best estimated solutions and experimental data with variability bars.

lines) as to taken into account possible longer effects. As it can be seen

parasite load evolution start to decrease for p10 = 0.03 (which correspond

to an increase of the parameter from the basal level of 3 times) even if the

effect of parasite load reduction starts from about day 160. The effects are

faster when the parameter is increased up to p10 = 0.04 and p10 = 0.05,

respectively, 4 and 5 times its basal level.

For what concerns the influence of the parasite on its own proliferation,

modeled by parameter p14, our model predicts an increase of the overall

parasite load when it is considered at higher level.

To make these predictions more plausible and to test other possible param-

eter effects, we used the tool for sweeping the model parameters to detect
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Figure 5.14: Parasite load evolution for different values of parameter p10

those parameters which influence the most the parasite load.

We defined ranges of variation for every parameter involved in the model.

These have been considered as proportional to the parameter value and

more precisely, any parameter pi varies in the interval [0.5pi, 5pi]. We are

interested in identifying the possible effect of any of the parameters, and

possibly higher order interaction among them producing a parasite load

reduction. Given the number of involved parameters and and wideness of

the intervals, we decided to consider a Latin Hypercube Sampling of the

parameter space, with a sampling size n = 1000.

To accurately detect the effects of parameters’ changes on the parasite load

during disease progression, we considered two measures: the average para-
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site load value and the final (at 24 weeks, or 168 days) parasite load value.

They are simultaneously evaluated during the execution of the methodol-

ogy. These aggregation measures are correlated. In fact, results clearly

show this correlation when the two are plotted (Figure 5.15). As the goal

Figure 5.15: Scatterplot of average parasite load against final parasite load resulting from

parameter sweeping

is to identify possible parameter influence on the final parasite load (cor-

responding thus to healing), we focused on that measure.

Results of multivariate analysis on the parameter sweeping reveal that

other parameters influence the final parasite load (Table 5.6). In particu-

lar p17 which is responsible for the effect of immunoglubulin IgG2a on the

identification and degradation of the parasites, influences the final parasite

load with a negative sign. It means that its increase would result in a de-

crease of the final parasite load. Another negative effect, is the one given

by p6, the parameter regulating the positive effect of lymphocytes in the

production of immunoglobulin IgG2a, while both positive are the effects of
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Parameter t-test p-value Sign

p6 1.29e− 11 negative

p10 < 2e− 16 negative

p13 < 2e− 16 positive

p14 < 2e− 16 positive

p17 < 2e− 16 negative

Table 5.6: First order analysis of variance results for parameter influencing final parasite

load

p13 and p14, parameters related to parasite production are characterized by

positive consequences on the final parasite load. Increasing the parameter

value corresponds to increasing the final parasite load.

Still more interesting is the results when moving towards higher order in-

teractions and effects (Table 5.7).

Higher order interactions are still related to those parameters previously

Parameter t-test p-value Sign

p10 < 2e− 16 negative

p14 < 2e− 16 positive

p13 : p14 < 2e− 16 positive

p17 : p6 < 2e− 16 negative

Table 5.7: Higher order analysis of variance results for parameter influencing final parasite

load

identified. Nonetheless these results show us that varying simultaneously

combinations of parameters, like p13 and p14 or p17 and p6 may result in a

stronger effect on the final parasite load.

In order to make it clear this point highlighting the potential healing ef-

fects if multiple drugs would be developed, we performed a final in-silico

experiment. We perturbed every parameter that was identified as influenc-

ing the final parasite load. Disturbance was set at a 15% magnitude from
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each basal level, corresponding thus to a very low modification. Obviously,

every parameter has been modified according to its sign in the influence of

the parasite load (i.e p10, p17 and p6 have been increased, while p13 and p14

decreased) and 5 stochastic simulations have been performed.

Results, averaged among the 5 simulations are depicted in Figure 5.16. We

can notice the decrease of parasite load starting from about day 170. The

decrease in parasite load is then constant and in 3 simulations out of 5 it

has reached zero before day 250.

Figure 5.16: Parasite load for optimized model with a 15% change for every parameter

involved in final parasite load

5.2.4 Discussion

In this section we studied the Leishmaniasis disease progression in mouse

from a computational perspective. We initially modeled the system and
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identified a possible set of kinetic parameters describing its evolution over

time. We then concentrated on the analysis of the model as it is of primary

importance in identifying those parts that can mostly affect the disease pro-

gression.

The use of proper methodologies able to handle the complexity of real sys-

tems, both in terms of involved components and interactions, has let us to

identify a set of parameters which are of great influence in the disease. We

also were able to identify significant higher order interactions that can be

vital for the study and development of possible new drugs.

We showed that considering most important parameters, even small changes

may produce remarkable results.

We want also to point out the ranges of applications. With a so wide spec-

tra of possible target parameters, the experimentalists are free to select

those that more easily accessible from external drugs or treatment, or even

those that have reduced impact on the disease host.
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Conclusion

Computer Science’s unique way of describing systems through an algorith-

mic approach,is helping us understand how living systems behave. It offers

tools and approaches to describe and model biological systems in a novel

way, but, at the same time, a lot of work is still required in order to obtain

a complete in-silico cycle of modeling and experimentation.

In this work we identified a couple of bottlenecks of this approach, namely

the inference cycle for stochastic models and the subsequent model analy-

sis.

We presented a new inference scheme that uses evolutionary computation

techniques to evolve stochastic models, evaluated through simulations, to-

wards solutions that match experimental data.The inference scheme pre-

sented is able to deal with cases where experimental information is sparse,

noisy and even incomplete.

We also presented two approaches designed for efficiently tackling model

analysis tasks within a stochastic setting. We developed an approximate

method for the evaluation of logical properties of a stochastic model and a

framework for efficiently generating and detecting peculiar behaviors of a

given model by appropriately perturbing its parameter space.

All the above approaches and tools have been tested on a number of dif-
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ferent test problems. Their application has then been extended to two

real case studies, showing their potential to extract new knowledge from

stochastic models of biological systems.

Process Algebra’s stochastic approaches to Biology have proven to be a

valid tool for describing living systems, but a lot of work is still required to

provide a complete framework for appropriate model building and analysis.

Further work, starting from the results presented in this thesis may help us

reach that elusive goal. In particular, further study is needed to integrate

the evolutionary inference scheme together with the model analysis. This

would lead to a more general framework for knowledge inference able to

describe systems for which only some qualitative characteristics are known

and may not be quantitatively observable.
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Appendix A

BlenX models

A.1 Flavonoids pathway

A.1.1 The ”.prog” file

[ steps = 91, delta = 24 ]

<<

BASERATE:inf,

CHANGE:inf,

EXPOSE:inf,

HIDE:inf,

UNHIDE:inf

>>

let CHI : bproc = #(x,Chi)

[ rep x!(chi).nil ];

let F3H : bproc = #(x,F3h)

[ rep x!(f3h).nil ];

let FLS : bproc = #(x,Fls)

[ rep x!(fls).nil ];

let F3PH : bproc = #(x,F3ph)

[ rep x!(f3ph).nil ];
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let F3P5PH : bproc = #(x,F3p5ph)

[ rep x!(f3p5ph).nil ];

let DFR : bproc = #(x,Dfr)

[ rep x!(dfr).nil ];

let LDOX : bproc = #(x,Ldox)

[ rep x!(ldox).nil ];

let LAR : bproc = #(x,Lar)

[ rep x!(lar).nil ];

let ANR : bproc = #(x,Anr)

[ rep x!(anr).nil ];

let UFGT : bproc = #(x,Ufgt)

[ rep x!(ufgt).nil ];

let TetraHy : bproc = #(y,TetrHy), #h(y1,yONE), #h(y2,yTWO)

[

xx!() | rep xx?(). ( y?(ez).ez!().nil + y1?(ez1).ez1!().nil

+ y2?(ez2).ez2!().nil )

|

chi?().ch(y,NarigenErio).unhide(y1).ch(y1,NarigenDy).unhide(y2).

.ch(y2,NarigenPenta).xx!().nil |

rep f3h?(). ( if(y1,NarigenDy) then ch(y,DyHidroque).ch(y1,DyHidroKae).

.ch(y2,DyHidroDyhidroMy).xx!().nil endif +

if(y,ErioDyhidroque) then ch(y,DyHidroqueQue).unhide(y1).

.ch(y1,DyHidroqueLeo).xx!().nil endif +

if(y,PentaDiHydroMy) then ch(y,DyHidroMyLeuco).unhide(y1).

.ch(y1,DyHidroMyRice).xx!().nil endif

) |
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rep f3ph?(). ( if(y,NarigenErio) then ch(y,ErioDyhidroque).ch(y1,yONE).

.hide(y1).ch(y2,yTWO).hide(y2).xx!().nil endif +

if(y,DyHidroque) then ch(y,DyHidroqueQue).ch(y1,DyHidroqueLeo).

.ch(y2,yTWO).hide(y2).xx!().nil endif

) |

rep f3p5ph?(). ( if(y2,NarigenPenta) then ch(y,PentaDiHydroMy).

.ch(y1,yONE).hide(y1).ch(y2,yTWO).hide(y2).xx!().nil endif +

if(y2,DyHidroDyhidroMy) then ch(y,DyHidroMyLeuco).

.ch(y1,DyHidroMyRice).ch(y2,yTWO).hide(y2).xx!().nil endif

) |

rep fls?(). ( if(y,DyHidroKae) then hide(y).hide(y1).hide(y2).

.xx!().nil endif +

if(y,DyHidroqueQue) then hide(y).hide(y1).xx!().nil endif +

if(y1,DyHidroMyRice) then hide(y).hide(y1).xx!().nil endif

) |

rep dfr?(). ( if(y1,DyHidroqueLeo) then ch(y,LeucoCate).

.ch(y1,LeucoCya).xx!().nil endif +

if(y,DyHidroMyLeuco) then ch(y,LeucoDelphi).

.ch(y1,LeucoGallo).xx!().nil endif

) |

rep ldox?().( if(y1,LeucoCya) then ch(y,CyaniEpica).

.ch(y1,CyaniFla).xx!().nil endif +

if(y,LeucoDelphi) then ch(y,DelphiFla).

.ch(y1,DelphiEpigallo).xx!().nil endif

) |

rep lar?().( hide(y).hide(y1).xx!().nil

) |

rep ufgt?().( if(y1,CyaniFla) then ch(y,Cyanidin3Gluco).

.hide(y).hide(y1).xx!().nil endif +

if(y,DelphiFla) then ch(y,Delphi3Gluco).

.hide(y).hide(y1).xx!().nil endif
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) |

rep anr?().( if(y,CyaniEpica) then ch(y,Epicatechin)

.hide(y).hide(y1).xx!().nil endif +

if(y1,DelphiEpigallo) then hide(y).

.hide(y1).xx!().nil endif

)

];

when(TetraHy :: rate(rTetraHy)) new;

run 1 CHI || 1 F3H || 1 FLS || 1 F3PH || 1 F3P5PH ||

1 DFR || 1 LDOX || 1 LAR || 1 ANR || 1 UFGT || 1 TetraHy

A.1.2 The ”.types” file

{

Chi, F3h, Fls, F3ph, F3p5ph, Dfr, Ldox, Lar, Anr, Ufgt, TetrHy,

yONE, yTWO, NarigenDy, NarigenErio, NarigenPenta,

DyHidroKae, DyHidroque, DyHidroDyhidroMy, ErioDyhidroque,

DyHidroqueLeo, DyHidroqueQue, LeucoCya, LeucoCate,

PentaDiHydroMy, DyHidroMyLeuco, DyHidroMyRice,

LeucoDelphi, LeucoGallo, CyaniFla, CyaniEpica, DelphiFla,

DelphiEpigallo, Epicatechin, Cyanidin3Gluco, Delphi3Gluco

}

%%

{

(Chi,TetrHy,rate(rTetraChi)),

(F3h,NarigenDy,rate(rNarigF3h)),

(F3h,ErioDyhidroque,rate(rEriodictF3h)),

(F3h,PentaDiHydroMy,rate(rPentaF3h)),

(F3ph,NarigenErio,rate(rNarigF3ph)),

(F3ph,DyHidroque,rate(rDihidroF3ph)),

(F3p5ph,NarigenPenta,rate(rNarigF3p5ph)),
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(F3p5ph,DyHidroDyhidroMy,rate(rDihidroF3p5ph)),

(Fls,DyHidroKae,rate(rDiHidroFls)),

(Fls,DyHidroMyRice,rate(rDihidroMyFls)),

(Fls,DyHidroqueQue,rate(rDihidroqueFls)),

(Dfr,DyHidroqueLeo,rate(rDihidroqueDfr)),

(Dfr,DyHidroMyLeuco,rate(rDihidromyDfr)),

(Lar,LeucoCate,rate(rLeucoCyaLar)),

(Lar,LeucoGallo,rate(rLeucoDelphiLar)),

(Ldox,LeucoCya,rate(rLeucoCyaLdox)),

(Ldox,LeucoDelphi,rate(rLeucoDelphiLdox)),

(Anr,CyaniEpica,rate(rCyaniAnr)),

(Anr,DelphiEpigallo,rate(rDelphiAnr)),

(Ufgt,CyaniFla,rate(rCyaniUfgt)),

(Ufgt,DelphiFla,rate(rDelphiUfgt))

}

A.1.3 The ”.func” file

let rTetraHy : const = 1.64;

let rTetraChi : const = 1.64;

let rNarigF3h : const = 0.547;

let rEriodictF3h : const = 0.547;

let rPentaF3h : const = 0.547;

let rNarigF3ph : const = 0.547;

let rDihidroF3ph : const = 0.43;

let rDihidroF3p5ph : const = 0.525;

let rNarigF3p5ph : const = 0.547;

let rDiHidroFls : const = 0.022;

let rDihidroMyFls : const = 0.135;

let rDihidroqueFls : const = 0.264;

let rDihidroqueDfr : const = 0.714;

let rDihidromyDfr : const = 0.506;

let rLeucoCyaLar : const = 0.124;

let rLeucoDelphiLar : const = 0.0425;

let rLeucoCyaLdox : const = 0.59;

let rLeucoDelphiLdox : const = 0.463;

let rCyaniAnr : const = 0.537;
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let rCyaniUfgt : const = 0.053;

let rDelphiAnr : const = 0.029;

let rDelphiUfgt : const = 0.39;

A.2 Leishmaniasis disease progression

A.2.1 The ”.prog” file

[ steps = 25, delta = 7 ]

<< BASERATE:inf >>

let IgG1 : bproc = #(w,bs0)

[ nil];

let IgG2a : bproc = #(e,bs1)

[ nil];

let IE : bproc = #(r,bs2)

[ nil];

let PL : bproc = #(t,bs3)

[ nil];

when (IgG1 :: f_bornIgG1) new;

when (IgG1 :: rate(p4)) delete;

when (IgG2a :: f_bornIgG2a) new;

when (IgG2a :: rate(p8)) delete;

when (IE :: f_bornIE) new;

when (IE :: f_deathIE) delete;

when (PL :: f_bornPL) new;

when (PL :: f_deathPL) delete;
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when (IgG1 :: f_IgG1_control) delete;

when (IgG2a :: f_IgG2a_control) delete;

when (IE :: f_IE_control) delete;

when (PL : : f_PL_control) delete;

run 18 IgG1 || 22 IgG2a || 1000 IE || 0 PL

A.2.2 The ”.types” file

{bs0, bs1, bs2, bs3 }

%%

{ (bs0, bs1, inf)}

A.2.3 The ”.func” file

let p1 : const = 0.003331426;

let p2 : const = 0.056690934;

let p3 : const = 0.007130887;

let p4 : const = 0.006977599;

let p5 : const = 0.094012998;

let p6 : const = 0.169765354;

let p7 : const = 0.033729534;

let p8 : const = 0.079018305;

let p9 : const = 0.09848451;

let p10 : const = 0.064639724;

let p11 : const = 4.79;

let p12 : const = 0.053664816;

let p13 : const = 0.513853473;

let p14 : const = 0.110547994;

let p15 : const = 0.000129843;

let p16 : const = 0.001430713;

let p17 : const = 0.001402321;

let p18 : const = 0.10;
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let f_bornIgG1 : function = p1 + p2 * |IE| - p3 * |IgG2a| ;

let f_bornIgG2a : function = p5 + p6 * |IE| - p7 * |IgG1| ;

let f_bornIE : function = p9 + p10 * |IE| + p11 * |PL| ;

let f_bornPL : function = p13 + p14 * |PL| ;

let f_deathPL : function = p15 * |PL| + p16 * |IE| + p17 * |IgG2a|;

let f_deathIE : function = p12 * |IE| + p18 * |PL|;

let IgG1_limit : const = 10000;

let f_IgG1_control : function = ( p2 / IgG1_limit ) * |IgG1| * |IgG1|;

let IgG2a_limit : const = 10000;

let f_IgG2a_control : function = (p6 / IgG2a_limit) * |IgG2a| * |IgG2a|;

let IE_limit : const = 10000;

let f_IE_control : function = (p10 / IE_limit) * |IE| * |IE|;

let PL_limit : const = 10000;

let f_PL_control : function = ( p14 / PL_limit) * |PL| * |PL|;
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