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“Would you tell me, please, which way I ought to go from here?”

“That depends a good deal on where you want to get to”, said the Cat.

“I don’t much care where –” said Alice.

“Then it doesn’t matter which way you go”, said the Cat

“–so long as I get somewhere” , Alice added as an explanation.

“Oh, you’re sure to do that” , said the Cat, “if you only walk long enough.”

[Charles Lutwidge Dodgson]





Abstract

For many years, computers have played an important role in helping scientists to store,

manipulate, and analyze data coming from many different disciplines. In recent years,

however, new technological capabilities and new ways of thinking about the usefulness of

computer science is extending the reach of computers from simple analysis of collected

data to hypothesis generation.

The aim of this work is to provide a contribution in the Computational Systems Biology

field. The main purpose of this recent discipline is to enhance the intertwined relationship

connecting Biology and Computer Science, by developing tools and theoretical frameworks

able to formally and quantitatively investigate the interactions among the components

of biological systems. The final goal of these efforts is to assemble the different pieces

into a working model of a living, responding, reproducing cell; a model that can be used

for performing in-silico tests and simulations in order to understand and predict possible

emergent properties.

In this thesis we present the application to real biological case studies of a specific concur-

rent modelling language (derived by the metaphors of “molecules-as-object” –introduced

by Fontana– and “cells-as-computations” –introduced by Regev and Shapiro– at the end of

last century) and the development and implementation of a tool for inferring knowledge

from experimental data in order to link the numerical aspects of a model to real wet-lab

data.
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Chapter 1

Introduction

1.1 The context

For many years, computers have played an important role in helping scientists to store,

manipulate, and analyze data coming from many different disciplines. In recent years,

however, new technological capabilities and new ways of thinking about the usefulness of

computer science is extending the reach of computers from simple analysis of collected

data to hypothesis generation. The authors of [62] predict that within a decade, powerful

tools will enable automated, high-volume hypothesis generation to guide high-throughput

experiments in biomedicine, chemistry, physics, and even social sciences. In order to go

in this direction, a shift from the old way of studying the different scientific fields in

isolation was needed and already started: the cross-fertilization between sciences like bi-

ology, computer science, sociology, ecology, economy, mathematics, physics, etc. is critical

to advance human knowledge and allows the discovery of many unexpected connections

between seemingly disjoint fields of science.

For this thesis work, we decided to focus on the intertwined relationship that, in the

last few years, has involved biology and computer science.

In the last thirty years, the constant advances in technologies and experimental tech-

niques in molecular biology have led to a massive increase in the quantity of data scientists

produce: in this respect, computer science has helped life-scientists to manage this enor-

mous amount of knowledge. The result of this effort is what we call today bioinformatics.

This first convergence between computing and biology led scientists to a deeper com-

prehension of the basic mechanisms governing living organisms, leading to unthinkable

achievements like the Human Genome Project that have begun of the post-genomic era.

However, the initial idea behind the bioinformatic approach relies on the reductionist

concept that a complex system is nothing but the sum of its parts, so a biological system

1



1.1. THE CONTEXT CHAPTER 1. INTRODUCTION

can be understood by studying its individual components (e.g. molecules and proteins)

and the connections among them [114]. The method is based on the assumption that the

single components contain enough information to explain the complexity of the system as

a whole. Although reductionist methods form the basis for many of the well-developed

areas of modern science (including physics, chemistry and cell biology), the limit of re-

ductionism’s usefulness stems from emergent properties of complex systems, which are

more common at certain levels of organization.

As Kitano points out in [105] a complete system-level understanding requires a shift in

the notion of what to look for in biology. Also the Noble laureate Paul Nurse [144] writes

that a proper understanding of the complex regulatory networks making up cellular sys-

tems like the cell cycle will require a shift from common sense thinking: “We might need

to move into a strange more abstract world more readily analyzable in terms of mathe-

matics”. So, while the understanding of a molecular network at the level of single genes

and proteins continues to be important, more effort is needed to focus on understanding

the system’s structure and dynamics at a higher level of abstraction. These concepts lead

to the establishment of the new paradigm that in the last years has been identified with

systems biology.

This new approach has its root in the use of modelling and simulation, combined

with experiment, to explore network behavior in biological systems – in particular their

dynamic nature. To give a precise meaning to the term of “systems biology” is difficult,

here just a few examples of definitions are listed:

To understand complex biological systems requires the integration of experi-

mental and computational research – in other words a systems biology approach

[105]

[...] the objective of systems biology [can be] defined as the understanding

of network behaviour, and in particular their dynamic aspects, which requires

the utilization of mathematical modeling tightly linked to experiment. [27]

By discovering how function arises in dynamic interactions, systems biology

addresses the missing links between molecules and physiology. Top-down sys-

tems biology identifies molecular interaction networks on the basis of correlated

molecular behavior observed in genome-wide omics studies. Bottom-up systems

biology examines the mechanisms through which functional properties arise in

the interactions of known components. [16]

One of the main reasons why it is so difficult to come up with a concise definition of

systems biology might be that every definition needs to respect a delicate balance between

2
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different and complementary aspects of the discipline: the integration of experimental

and computational approaches, the balance between genome-wide systematic approaches

and smaller-scale quantitative studies, top-down versus bottom-up strategies to solve

systems architecture and functional properties. But despite the diversity in opinions and

views, two main aspects are conserved across these definitions: a) a system-level approach

attempts to consider all the components of a system; b) the interactions of the components

are translated to their functions by a computational model.

It is clear how systems biology is strongly inter-disciplinary and calls for the integra-

tion and convergence of many different sciences. Its domain indeed spreads from several

branches of biology to more distant fields of study, such as physics, mathematics, statistics

and informatics. The main role of these latter distant disciplines is to devise adequate for-

mal tools and concepts to describe and model efficiently biological systems, analyse their

properties, and reproduce and predict their behavior through computer-based simulations

(e.g., [184, 115, 124, 129, 37]), with the ultimate and challenging goal of delineating the

basis for a foundation theory of systems biology.

Although advances in accurate, quantitative experimental approaches will doubtless

continue, insights into the functioning of biological systems will not result from purely

intuitive assaults, because of the intrinsic complexity of biological systems [105]. So a

combination of experimental and computational techniques is expected to resolve this

problem. Recently researchers working in different fields of life-sciences have expressed

the need for systematic approaches and computer models of biochemical and signalling

networks in order to arrive at testable quantitative predictions despite the complexity of

these networks [106]. For example, Hartwell and colleagues [85] argue that the best test of

our understanding of cells will be to make quantitative predictions about their behavior

and verify them in the lab: this will require detailed simulations of the biochemical pro-

cess taking place within cells. This procedure requires that results of computer-executable

models are first compared with experimental observation: inconsistencies found at this

stage means that the assumptions behind our knowledge of the system are at best incom-

plete. Models that pass this initial validation can then be used to make predictions to

be tested by experiments, as well as to explore questions that are not amenable to ex-

perimental inquiry. Although traditional bioinformatics has been used widely for genome

analysis, simulation-based approaches have received little mainstream attention. This

is now changing. Current experimental molecular biology is now producing the high-

throughput quantitative data needed to support simulation-based research.

However, in order to have useful simulation results, it is not enough to have good data

from which to infer reliable numeric information to feed computer-executable models, it is

also very important to choose a suitable formalism to write the models because different

3



1.2. THE PROBLEM CHAPTER 1. INTRODUCTION

formalisms allow different kinds of analysis, i.e. different kinds of question that we are able

to answer with respect to that system: citing Nurse [145], “we require the development

of the appropriate languages to describe information processing in biological systems”.

In recent years there has been increasing interest in the application of process calculi

(a formalism derived from theoretical computer science) in the modelling and analysis

of biological systems [68, 161, 25, 67, 154, 37]. Process algebras have some interesting

properties that make them particularly useful in this context. First of all, they offer

compositionality, i.e. the possibility of defining the whole system starting from the def-

inition of its subcomponents. Secondly, process algebras give a formal representation of

the system avoiding ambiguity. Thirdly, the different parts of a biological system can be

modelled as concurrent independent sub-systems running in parallel in an asynchronous

way (with the possibility of adding synchronization just when it is needed): this approach

is in contrast with the forced synchronicity of the mathematical formalism of differential

equations implied by the contemporaneous solution of the set of equations defining the

whole system. The application of independent rules for looking at the dynamical evolu-

tion of the system is a more appropriate representation of what is actually going on in

biological systems.

Motivated by the intention to see those concepts of computational modelling and in-

ference of biological systems applied on real case studies and to give a contribution in this

field we started three years ago by exploring the usage of some specific computational tools

and formalisms that support different stages of the modelling cycle of systems biology.

1.2 The problem

The physiological characteristics of a cell are determined by networks of interacting pro-

teins that process energy, material and information. Confined to a few picoliter of cy-

toplasm these processing and control systems are not only as complex as a Boeing 777

but are also able to make exact replicas of themselves from CO2, NO−3 , PO3−
4 and a drop

of mineral water [188]. We would like to know how these complex machines work, but

they do not come with instruction manuals or schematic wiring diagrams. It is the grand

challenge for post-genomic life scientists to deduce diagrams and write manuals. This ef-

fort will take a variety of resources and approaches: genetics and biochemistry, hardware

and software, high-throughput and low-throughput technologies, hypothesis-driven and

discovery-driven experiments, etc. The grand challenge of post-genomic cell biology is to

assemble these pieces into a working model of a living, responding, reproducing cell; a

model that gives reliable account of how the physiological properties of a cell derive from

its underlying molecular machinery.

4
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In all sciences, models are used because they represent in an accessible, abbreviated and

convenient form the more complex and detailed reality [197]. Models can serve as explana-

tory tools for summarizing the state of knowledge, and can act as objects of predictive

experiments. Most importantly, a model is a representation of some reality that embodies

essential and interesting aspects of that reality. Mathematical and computational models

help biologists to better understand cell physiology by unraveling the underlying dynam-

ical behavior of the system and by allowing a deep investigation of complex interactions

of regulatory molecules when different – and possibly contradictory – hypotheses can fit

a specific biological scenario.

Figure 1.1: Modelling cycle of a biological system

The modelling cycle that computational biologists usually follow is the one depicted in

Fig. 1.1. In the context of cellular modelling, for example, one of the main goals is to gain

insight into the molecular interactions that are responsible for the behavior of the cell.

To do so, a quantitative model of the cell must be developed and the development of such

a model is iterative. It begins with a rough model of the cell, based on some knowledge

of its components and possible interactions among them. Although the assumptions

underlying the model are insufficient and may even be inappropriate for the system being

investigated, this rough model provides some initial hypotheses about the structure of

the interactions that govern the system and, most importantly, it contains, by the way in

which it has been constructed and the language that has been chosen, implicit predictions

about the system’s response under different kinds of perturbation. Those perturbations

5



1.3. THE CONTRIBUTION CHAPTER 1. INTRODUCTION

are fundamental for proceeding in the modelling cycle, because they drive the model

discrimination/validation step that consists of the comparison of the models predictions

to measurements taken in the different perturbed conditions. This comparison indicates

where and how the model must be refined in order to match the measurements more

closely and/or it can suggest new experiments that can restart the modelling cycle from

the beginning.

Because of the huge amount of information, knowledge and studies that today are

available to scientists, it is crucial that individual research groups are able to exchange

their models, their ideas and their methodologies in software environments that are avail-

able to all. One of the obstacles that gets in the way of pursuing this goal is the lack

of a global framework thought to assist and follow every step of the modelling cycle of a

biological system, i.e. a set of inter-operable tools that can be used in isolation in order

to fulfill specific tasks or as a whole in order to guide the work of a biologist. So each

step of the modelling cycle explained above needs to be supported by automatic tools

and formal languages able to guide biologists in the refinement of his/her knowledge of

the investigated system: in other words, each of the steps above is an interesting open

challenge from the computer science point of view.

In conclusion, developing novel quantitative conceptual and computational tools smooth-

ly connecting models and experiments can give to life scientists a deeper understanding of

fundamental biological principles. This approach can enable scientists studying a partic-

ular natural system, such as a biochemical pathway, to identify and fill in missing pieces,

and traverse reasoning chains much longer than with the unaided mind.

1.3 The contribution

The contribution of this thesis is the application to real biological case studies of a specific

computational modelling language and the development of a tool for inferring knowledge

from experimental data in order to link the numerical aspect of the model to real wet-lab

data.

In particular we chose to use the BlenX language (a recently developed stochastic

process algebra) to model a well-known biological process: the cell cycle of budding

yeast. In our thesis, we will present a general procedure that can be used to translate

rate equation models into the chosen computational framework in an easy way. This

same procedure can be applied to any existing ordinary differential equation model for

which a more detailed stochastic characterization holds the potential to reveal aspects

and behaviors that cannot be captured with a deterministic approach. We used different

BlenX models built with this proceduce to quantify the strength of the irreversibility of

6
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the “Start” transition of the budding yeast cell cycle with respect to a specific parameter

in a simple core model; to understand the role played by the noise in peculiar mutants at

the border of life and death; and finally to analyze the asymmetrical growing and division

in the most complete model of the budding yeast cell cycle existing in the literature.

The motivation behind the choice of the BlenX language is three-fold: firstly it is

supported by a set of tools that allow us to perform stochastic simulations of a system;

secondly it is a language designed for modelling biological systems at different levels of

abstraction. This means that the language directly provides primitives that enable the

user to put in the same model processes described with all their elementary steps and

processes that are abstracted by a complex mechanism whose precise details are not

known (or not relevant) and only the overall shape of its outcome is needed for the sake of

the current study. A side effect of the presence of the primitives for including abstracted

behaviors in a model, is that a translation of existing mathematical models of biological

systems is almost straightforward (and will be presented in the following chapters): this

is a fundamental merit of a language because in the literature many complex models have

already been constructed and characterized in detail, and the knowledge contained in

those validated model needs to be transferred to models written with different languages as

easily as possible in order to allow the discovery of further incremental insights about the

system. The third main advantage of chosing BlenX as a modelling language with respect

to mathematical formalisms lies in the fact that the compositional and modular nature

of process algebra’s description of the system makes it easy, for example, to implement

a change in the hypothesised role of a reagent within a network or to integrate two sub-

models into a bigger one: in general those modifications will involve changing only the

code representing the behavior of the specific reagent or of the species interconnecting the

two sub-systems, whereas the impact on the ODEs may be pervasive.

A modelling language like BlenX is useful for defining the structure of the model, but

in order to be able to use the model to perform stochastic simulations of the system,

quantitative information needs to be included in the model’s definition. Often, initial

conditions can be determined experimentally, but the kinetic rate constants governing the

dynamical behavior of the system in time are frequently not accessible directly through

experiments. Therefore methods that estimate rate constants with the maximum precision

and accuracy are needed. We present a new method for estimating rate coefficients from

noisy observations of concentration levels at discrete time points. This is traditionally

done by fitting procedures (e.g. by the least-squares estimator) or by computationally

intense methods like Bayesian approaches. We propose an alternative technique based on

a probabilistic, generative model of the variations in reactant concentration. Our method

returns the rate coefficients, the level of noise and an error range on the estimates of rate
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constants. Its probabilistic formulation is key to a principled handling of the noise inherent

in biological data, and it allows for a number of further extensions. The mathematical

procedure presented here has been implemented in a software tool, named KInfer.

1.4 Structure of the Thesis

• Chapter 1 is this introduction;

• Chapter 2 gives basic preliminaries about the state of the art on the main biological

case study chosen (i.e. the budding yeast cell cycle), process calculi (with an overview

of the main ones applied or developed for systems biology) and inference methods

for chemical reaction networks;

• Chapter 3 describes some basic strategies to build a BlenX model and the straight-

forward translation procedure of an ordinary differential equation model into this

process algebra framework;

• Chapter 4 shows detailed studies of many models of the budding yeast cell cycle,

obtained using the translation procedure described in the previous chapter. The

models are of different sizes and levels of abstraction and each of them allows a

different kind of analysis (from irreversibility studies, to statistical characterization

of peculiar properties, to pedigree analysis);

• Chapter 5 presents the mathematical inference framework and the tool that we

developed on top of it;

• Chapter 6 shows the application of KInfer (the tool presented in the previous

chapter) to both synthetic and real biological case studies;

• Chapter 7 discusses the limitations of the current implementation of the framewoks

and some interesting possible future developments of the different techniques;

• Chapter 8 draws some conclusions and summarises the thesis work.

1.5 Publications related to the work presented in this thesis

Book Chapters

A. Csikász-Nagy, A. Palmisano, J. Zamborszky, Molecular network dynamics of cell
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Chapter 2

Preliminaries

2.1 Modelling of Biological Systems

What is a model? In the broadest sense, a model is an abstract representation of objects

or processes that explains features of these objects or processes that are interesting from

the point of view of what the modeller wants to observe. For instance, the strings com-

posed of the letters A, C, G, and T are used as a model for DNA sequences. In many

cases when we consider modelling biological systems the first model that is built is a car-

toon of a reaction network showing different shapes for proteins and arrows for reactions

between them; then this informal description of the system is translated into a formal

framework in order to be able to study its qualitative/quantitative characteristics and

its dynamical properties. Model assignment is not unique and modelling is a subjective

and selective procedure: the choice of a mathematical model or an algorithm depends on

the problem, the purpose and the intention of the investigator: different models, using

different formalisms, may highlight different aspects of the same instance providing dif-

ferent insights into the system. An important disadvantage of this ambiguity is that the

diversity of modelling approaches makes it difficult to merge established models (e.g. for

individual metabolic pathways) into larger super-models (e.g. for the complete cellular

metabolism). However, the main advantage (and purpose) of a computational model of

any sort, is that once it has been constructed, effects of possible perturbations can be

predicted fairly cheaply in silico, even simulating conditions that are not easily accessible

with experiments in wet-lab.

A wide variety of cellular models have been proposed, each of different complexity and

abstraction. For example, chemical kinetic models attempt to represent a cellular process

as a system of distinct chemical reactions. In this case the network state is defined by the

instantaneous quantity (or concentration) of each molecular species of interest and molec-
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ular species may interact via one or more reactions. Traditionally, chemical kinetics have

been analyzed using ordinary differential equations (ODE for short): the use of differ-

ential equations for describing biochemical processes makes certain assumptions that are

not always justified [106]. One assumption is that variables can attain continuous values.

This is obviously a simplification since the underlying biological objects (i.e. molecules)

have a discrete nature. As long as molecule numbers are sufficiently large this is no prob-

lem, but if the involved molecule numbers are only on the order of dozens or hundreds,

the discreteness should be taken into account. Another important assumption of ordinary

differential equations is that they treat the described process as deterministic. Random

fluctuations are normally not part of differential equations. Again, this presumption does

not hold for very small systems. Moreover, ODEs are an aggregate description of the

system: if a system can be described by a set of fluxes acting on the different entities (i.e.

on the system variables), then ODEs hide part of the logical structure of such fluxes by

combining them into equations.

A solution to the limitations described above is to use a stochastic simulation approach

that explicitly models the interactions between entities and calculates the change of the

number of molecules of the participating species during the time course of a chemical

reaction. Even if stochasticity can be added to the deterministic framework using the

formalism of stochastic differential equations (which consist of an ordinary differential

equation containing a deterministic part and an additional noise term [113]), believing in

the idea expressed by Nurse in Nature [145] that “life science field requires the development

of new and more appropriate languages to describe biological systems” and inspired by

the metaphors of molecules-as-object introduced by Fontana [68] and the abstraction of

cells-as-computation suggested by Regev and Shapiro [161] in their seminal works, we

decided to use a recently developed process algebra language (called BlenX) to model a

specific biological system, the cell cycle of budding yeast. In the rest of this section, in

order to contextualize our study, we are going to present the state of the art of process

algebra languages already used for modelling biological systems.

2.1.1 Process algebra for modelling biological systems

The main advantage of a computational model versus a mathematical one is that the

former is executable and not just simply solvable [67]. Execution means that we can

predict/describe the flow of control between molecules and reactions (e.g., not only the

time, but also the causality relation among the events that constitute the history of the

dynamics of the model). In other words, the computational modelling interpretation is

similar to programming the step-by-step behavior of a system, rather than describing

only its outcome with respect to time [154]. Various computational approaches have been
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Biology Process Calculi

Entity Process

Interaction capability Communication channel name

Interaction Synchronization/Communication

Modification/Evolution State change

Table 2.1: A concise picture of the mapping between biology and process calculi. In the process calculi

interpretation, a biological entity (e.g. a protein) is seen as a computation unit (i.e. a process) with

interaction capabilities abstracted as communication channel names. Similarly to biological entities, which

interact/react through complementary capabilities, processes synchronize/communicate executing, on

communication channels, complementary send/receive actions. The modifications/evolutions of molecules

after reactions are represented by state changes following communications.

proposed and equipped with supporting software tools (e.g., boolean networks [103], Petri

nets [90], Bayesian networks [70], graphical gaussian models [139], process calculi [156],

rule-based modelling [93]).

In their seminal works, Fontana and Buss [68] and Regev and Shapiro [161] suggested

to abstract molecules-as-objects or cells-as-computation and proposed that languages for-

merly used in the study of networks of computers could be usefully employed and extended

to model biological processes (see Table 2.1).

The abstraction of molecules as parallel, interacting computational entities opened

the unexpected application of the realm of concurrency theory to biology. As a con-

sequence many modelling languages have been adapted or newly developed for build-

ing biological models and performing stochastic simulations (i.e. Stochastic π-calculus

[156, 153], BioAmbients [160], Brane Calculi [20], k-calculus [47], Bio-PEPA [37], con-

tinuous π-calculus [109], β-binders [155]): all of them follow the paradigm illustrated in

Table 2.1 and the have ability of handling concurrency, non-determinism, stochasticity

and cooperation/competition for resources. Moreover, most of them are equipped with

software tools for performing simulations – following one of the variants of the Stochastic

Simulation Algorithm introduced by Gillespie [74] (see A.2 for a brief description of the

algorithm) – and for analyzing their results. In Section 3 we will give a detailed descrip-

tion of the language that we have chosen for this work (i.e. BlenX) and its modelling

approach, but here follows a concise description of other process calculi that have been

developed starting from similar approaches and for similar purposes.

Stochastic π-calculus [156]: this is the first process calculus used to represent biolog-

ical systems and it is derived from π-calculus [131]. It is one of the most famous represen-

tatives of the process calculi family, invented to specify and study the behaviour of con-

current software systems. Molecules are modelled as processes, and molecular complexes
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are rendered by parallel compositions of processes sharing private names. Movements

between complexes and formations of new complexes are represented as transmissions of

private names. Once a complex is formed, its components interact by communicating

on complementary sites. Two simulators for the biochemical stochastic π-calculus exist

that implement the Direct Method of the Stochastic Simulation Algorithm (see Appendix

A.2): BioSPI [156] and SPiM [150]. Interesting applications of stochastic π-calculus on

real biological scenarios can be found in [121, 32, 108].

Bio-PEPA [37]: is an extension of the PEPA language (Performance Evaluation Pro-

cess Algebra) [91] for dealing with biochemical signalling pathways. PEPA is a formal

language for describing Continuous Time Markov Chain originally defined for the per-

formance analysis of computer systems. PEPA allows one to quantitatively model and

analyze large pathway systems and it is supported by a lot of software tools for analysis

and stochastic simulations. A Bio-PEPA system is a formal, intermediate and composi-

tional representation of biochemical systems, on which different kinds of analysis can be

carried out: deterministic analysis of the ODE system, stochastic simulations (with the

Stochastic Simulation Algorithm), generation and analysis of the underlying Continuous

Time Markov Chain and generation of the input code for the PRISM model checker. The

Bio-PEPA extension modifies PEPA to deal with some features of biological models, that

are peculiar of those kind of systems [18]:

• Functional rates: In contrast to PEPA, individual processes are not able to define

their own rates for actions. Instead the rate associated with an action is specified

once, independently of the processes in which the action occurs. The value of this

rate can be specified to be a function that depends on the current state of the system.

• Stoichiometry: For each action, as well as its type, the stoichiometry or degree of

involvement is also specified.

• Parameterised processes: Bio-PEPA has been designed to support the population

based reagent-centric style of modelling and so a model consists of a number of se-

quential components each representing a distinct species which evolve quantitatively

(increasing or decreasing amounts). Thus in order to capture the state of a system

each component is parameterised recording its current level.

• Differentiated prefix: For each action (reaction) that a component is involved in

it records its role within that reaction, e.g. reactant, product, inhibitor etc. This

enables the appropriate values to be used in the functional rate associated with this

reaction.

Recently, some extensions of Bio-PEPA have been defined in order to represent some

specific features of some biochemical networks. Specifically, the language has been ex-
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tended to support SBML-events that represent changes in the system due to some trigger

conditions and to support the definition of a hierarchy of compartments that have a fixed

structure, but a dynamic varying size. Interesting applications of Bio-PEPA on real bio-

logical scenarios can be found at http://biopepa.org/.

BioAmbients [160]: it is a variant of Mobile Ambients [24] for systems biology and its

focus is on biological compartments. Localization of molecules in specific compartments

is extremely important in regulatory mechanisms because often a molecule can perform

its task only if it is in the right compartment. Ambients can be nested and organized in a

hierarchical way and (like in π-calculus) biological entities interact by means of commu-

nication, which can occur only between processes belonging to the same compartment, to

parallel compartments or to compartments contained one in the other. Moreover, primi-

tives for movement between compartments are defined. The language is equipped with a

stochastic extension and a simulator, based on Gillespie’s algorithm and implemented as

part of the BioSPI project. Moreover in [140, 39] results concerning the applicability of

Control Flow Analysis and Abstract Interpretation for the static analysis of BioAmbients

models are presented.

Brane Calculi [20]: it is a calculus focused on biological membranes, which are not

considered only as containers, but are active entities. A system is viewed as a set of nested

membranes and a membrane as a set of actions. Brane Calculi primitives are inspired

by membrane properties; membranes can merge, split, shift or act as channels. In [47],

an extension called Projective Brane Calculus is presented. The goal of the extension

is to refine Brane Calculi with directed actions, which tell whether an action is looking

inwards or outwards the membrane. This modification brings the calculus closer to bi-

ological membranes. Recently, to improve the consistency with biological characteristics

of membrane reactions, a new extension has been proposed in [50]. This extension uses a

generalized formalism for action activation with a receptor-ligand type channel construc-

tion that incorporates multiple associations and a concept of affinity.

The κ-calculus [46]: is a rule-based language for modelling protein interaction net-

works that allows the formalization of molecular agents and their interactions in signalling

networks. The κ description of a system consists of a collection of agents and rules. An

agent has a name and a number of labelled sites, collectively referred to as the agent’s

interface. A site may have an internal state, typically used to denote its phosphorylation

status or other post-translational modifications. Rules provide a concise description of

how agents interact. Elementary interactions consist of the binding or unbinding of two
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agents, the modification of the state of a site, and the deletion or creation of an agent.

The rule-based modelling approach of κ incorporates causality constraints in the rules

by using partial complexes: only the aspects of the state of a complex which matter for

an event to happen need to be specified. This reliance on partial complexes allows the

capture of compact descriptions and work around the huge numbers of combinations one

would have to contemplate (or neglect) otherwise. It is possible to associate rate con-

stants with each rule and the rule has to be expressed in elementary form. The language

is equipped with a visual notation, where proteins are represented by boxes with domains

on their boundaries. The calculus is provided with a stochastic simulator, and a series of

tools (that can be found at http://www.kappalanguage.org/) that allow different kinds

of analyses on κ-calculus models. Moreover, [112] introduces the bioκ-calculus, a calculus

for describing proteins and cells which tries to unify primitives and concepts of Brane

Calculi and κ-calculus.

The continuous π-calculus [109, 111]: this is a process calculus for modelling be-

havior and variation in molecular systems. Processes are parallel combinations of species,

where species are very similar to π-calculus processes. Communication is through named

channels, but there is no distinction between names and co-names. Any name can in prin-

ciple communicate with any other; an affinity matrix specifies whether any two names can

communicate and at which rate. The calculus is provided with an operational semantics

in terms of real vector spaces, that offers a fully modular and compositional method of

generating a set of ordinary differential equations (ODEs). The calculus is specifically

designed to study evolutionary properties of biological systems.

Language for Biological Systems [148, 147]: this language is based on the Calcu-

lus of Biochemical Systems (CBS) and combines rule-based approaches to modelling with

modularity. It allows the description of metabolic, signalling and regulatory networks

in terms of reactions between complexes in a concurrent way and inside a hierarchy of

compartments and with possible cross-compartment interactions and transport. Addi-

tional features of LBS include expressions for manipulating large complexes in a concise

manner, parameterised modules with a notion of subtyping for writing reusable modules,

and nondeterminism for handling combinatorial explosion. Formal specification of LBS

are given both through an abstract syntax and a specific semantics such as Petri nets,

coloured Petri nets, ODEs and continuous time Markov chains.

β-binders [155]: in this formalism processes are encapsulated into boxes with typed

interfaces. Types represent the interaction capabilities of the boxes. β-binders aims to
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enable non-determinism of communication by introducing the concept of compatibility

[152], a notion that extends the key-lock notion of complementarity between actions and

co-actions typical of process calculi where the precise matching between an input and an

output over a given channel is always required. In β-binders, boxes are able to perform

complementary input/output actions over one of their interfaces only if the types of the

involved interfaces have some rate of compatibility. In this way, whichever notion of type

compatibility is assumed, the communication ability of boxes is mainly determined by the

types of their interfaces rather than by the actual naming of the relevant input and output

actions. The formalism is also provided with join and split operations, i.e. parametric

rules that drive the merging and splitting of boxes depending on their structure. A

stochastic extension of β-binders for quantitative experiments is presented in [52].

The list of process calculi presented here is by no means exaustive but we chose to

cite the most representative languages applied on real biological case studies and the ones

closer to the approach used by the language chosen for developing our study and explained

in the following chapters.

2.2 Inference of Biological Systems

The data currently collected in high-throughput experiments on genomic, proteomic, and

metabolomic scales hold the promise of identifying not only the components but also

the interactions which comprise large-scale biochemical networks. Parameter estimation

(also known as model calibration) from experimental data is a bottleneck for a major

breakthrough in computational systems biology in the present post-genomic era. Given a

model structure and a set of experimental data, the objective of parameter estimation is

to calibrate the model (looking for parameters which are rarely measured directly) so as to

reproduce the experimental results in the best possible way. This calibration is performed

by minimizing a cost function which measures the goodness of the fit. In other words,

the identification problem is stated as the optimization of a scalar cost function with

respect to the model parameters. The cost function is usually a certain weighted distance

measure between the experimental values correponding to the measured variables and the

predicted values for those variables. The optimal value will of course depend on the cost

function chosen. Cost functions that have been shown to work well in practice include

Bayesian, maximum likelihood and least squares estimator. The selection criterion will

depend on the assumptions about the data disturbance and on the amount of information

provided by the user. In most approaches dealing with parameter estimation the cost

function is the likelihood function, also know as joint transitional density, that expresses

the probability of obtaining the observed outcomes in terms of measured systems vari-
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ables and parameters. Thus it can be used to determine unknown parameters based on

known outcomes. The optimal values of the parameters can be estimated by maximizing

the likelihood function (maximum likelihood criterion). There are two general methods

of parameter estimation: the least-squares estimation (LSE) and the maximum likelihood

estimation (MLE).

Least Squares Estimator [15]: The method of least squares is a standard approach

to the approximate solution of overdetermined systems. It is a popular technique of model

fitting and is tied to many familiar statistical concepts such as linear regression, sum of

squares errors, and root mean squared deviation. Least squares problems fall into two

categories: linear least squares and nonlinear least squares, depending on whether or not

the residuals (i.e. the distances between data in the starting dataset and the predicted

value) are linear in all unknowns. In both cases the aim is to find the parameters which

minimize the sum of squared distances between the observed responses in the dataset, and

the responses predicted by the approximation. Least squares corresponds to the maxi-

mum likelihood criterion if the experimental errors have a normal distribution and can

also be derived as a method of moments estimator.

Maximum likelihood [149]: Maximum likelihood estimation, instead, is a popular

statistical method that starts from a generative assumption on the probability distribution

underlying the data, and estimates parameters via an optimisation procedure.

A maximum likelihood estimator coincides with the most probable Bayesian estimator

given a uniform prior distribution on the parameters. MLE has two optimal properties:

consistency, i.e. the ability, for data of sufficiently large samples, to asymptotically recover

true parameter values that generated the data; and the parameter invariance, i.e. same

MLE solutions can be obtained independently of the parametrization used. Moreover,

MLE is useful for inference with missing data and modelling random effects, as well as

having close ties to more general Bayesian methods. The main idea behind the method

is the following: suppose there is a sample x1, x2, . . . , xn of n independent and identically

distributed observations, coming from parametric model f0 = f(·|θ0). Given sample of

data with observed values x1, x2, . . . , xn, the likelihood function of the parameter can be

expressed as: L(θ |x1, . . . , xn) = f(x1, x2, . . . , xn | θ) =
∏n

i=1 f(xi|θ). In practice it is

often more convenient to work with the logarithm of the likelihood function (ˆ̀) called the

log-likelihood. The method of maximum likelihood estimates θ0 by finding a value of θ

that maximizes ˆ̀(θ|x): θ̂mle = arg max
θ∈Θ

ˆ̀(θ |x1, . . . , xn).
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Bayesian inference [81, 195]: Bayesian inference is another approach to statistical

inference. Bayesian inference is based on the Bayes’ theorem which states that:

P (Θ|D) =
P (Θ) · P (D|Θ)

P (D)

where Θ represents the set of parameters of the model, P (Θ) is called the prior proba-

bility of Θ that is deduced before data, D, became available, P (D|Θ) is the conditional

probability of seeing the data D with the choice of parameters Θ, P (D) is a normalizing

factor that represent the model likelihood (i.e. the a priori probability of witnessing the

evidence D under all possible choices of parameters) and finally P (Θ|D) is the posterior

probability of Θ given D. Bayesian statisticians believe that even with different prior

probabilities, new evidence from repeated observations will tend to bring their posterior

subjective probabilities closer together. However, others argue that with widely differ-

ent prior probabilities the posterior probabilities may never converge even with repeated

collection of evidence and that priors which are completely different initially can remain

completely different over time despite accumulation of evidence [100]. Parameter esti-

mation using Bayesian strategies correspond to finding the parameter of the model that

minimizes the posterior expected value of a loss function (i.e. the posterior expected loss)

or maximizes the posterior expectation of a utility function.

The underlying inference principles of MLE and Bayesian inference, even if related, are

different. Let us consider a model described by some parameters ~θ = {θ1, . . . , θN}, that are

free to vary. In a Bayesian approach, we have first to formulate some prior beliefs about

the value of these parameters, These beliefs are formalised by a probability distribution

on the parameters, P (~θ). Once the prior beliefs have been formulated, the likelihood of

the observed data is used to update the prior probability distribution to a posterior prob-

ability distribution. The posterior probability distribution essentially represents the end

result of a Bayesian analysis: unlike maximum likelihood analysis, the aim of a Bayesian

analysis is not to provide so-called point estimates of the model parameters, the result of

the analysis is the posterior probability itself. If we are interested in one parameter, we

would calculate the marginal probability distribution for that parameter by integrating

(or summing) out all other parameters in the model (P (Θi|D) =
∫
−i P (Θ|D)dΘ−i). The

marginal distribution for a parameter is identical up to a normalizing constant to the

integrated likelihood that would result if we were to integrate out all parameters in the

likelihood function except the one we focused on. Consequently, the maximum poste-

rior probability estimate is the same as the maximum likelihood estimate when a pure

integrated likelihood approach is used. Other differences between maximum likelihood

inference and Bayesian inference happen when analysing multi-parameter models: the
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maximum likelihood approach distinguishes between structural and nuisance parameters

while there is no such difference in Bayesian analysis. The result of a Bayesian analysis

is a joint probability distribution on all parameters in the model [84, 165].

When estimating parameters of dynamical systems with optimization methods a num-

ber of difficulties and pitfalls may arise, e.g. convergence to local solutions (if stan-

dard local methods are used and especially when only bad starting values for parameters

are available), very flat objective function in the neighborhood of the solution, over-

determined models (leading to many solution vectors), badly scaled model functions and

non-differentiable terms in the systems dynamics. The recent literature reports many

examples of effective methods attempting to work out the aforementioned difficulties of

parameter estimation. Here we briefly mention the most recent ones that apply both to

determinsitc and stochastic biochemical processes.

Polisetty et al. in [151] suggested global optimization techniques as an alternative

to traditional local methods. Rodrigez-Fernandez et al. in [164] developed a hybrid

stochastic-deterministic global optimization method. Moles et al. in [133] explored sev-

eral state-of-the-art deterministic and stochastic global optimization techniques and com-

pared their accuracy and effectiveness on nonlinear biochemical dynamic models. Tian

et al. [182] presented a simulated maximum likelihood method to evaluate parameters

in stochastic models described by stochastic differential equations. They propose differ-

ent types of transitional probability and a genetic optimization algorithm to search for

optimal reaction rates. Chou et al. [33] developed an alternate regression method, that

dissects the parameter inference problem into iterative steps of linear regression. Sug-

imoto et al. [179] provided a computational technique based on genetic programming

that simultaneously generates biochemical equations and their parameters from time se-

ries data. Reinker et al. [163] are the authors of the approximate maximum likelihood

method and the singular value decomposition likelihood method that estimates stochastic

reaction constants from molecule count data measured with errors at discrete time points.

Finally, we mention the works of Quach et al. and Vyshemirsky and Girolami [158, 193],

that developed Bayesian model-based inference techniques.

The estimation of parameters can also be done taking advantage of the numerous

learning approaches that has been recently applied to parameter inference in dynamical

systems. Methods like Simulated Annealing [190] have been used in parameter estimation

for biological network dynamics in [162, 34], for fitting parameters in gene regulation

networks, different kinds of evolutionary programming where used in similar contexts

(reviews comparing the different approaches to standard chemical kinetic models can be

found in [132, 130]). Approximate Bayesian computation (ABC) algorithms are another
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group of methods that recently have gained a lot of attention for performing Bayesian

inference without the need for explicit evaluation of the model likelihood function [11, 127,

174]. The algorithms can be used with computer models that generate sample data sets

rather than return likelihoods, so they enable inference using only simulations generated

from the model: the main idea is to replace the calculation of the likelihood with a

comparison between the observed and simulated data [196]. Synthetic experimentation

using stochastic simulations has been shown to be useful also to predict the effects of

parameter changes in stochastic models. The authors of [69] presented a framework that,

thanks to the usage of a parallel architecture, generates and explores the parameter space

of a model allowing parameter inference and multivariate analysis in an efficient way.

Moving beyond the usage of SSA to sample the joint probability distribution derived by

the chemical master equation describing the system, [194] proposed a general formula for

the gradient of the likelihood function of stochastic models of biochemical networks given

a discrete time-course using reversible jump Markov chain Monte Carlo sampling: the

gradient has then been used to estimate the parameter values with a gradient descent

method.

All these kinds of approach, however, are computationally intense because they iterativelly

modify the model’s parameters: according to specific rules that depend on the chosen

method, they decide if the choice of parameter is correct (using some kind of acceptance

criteria) and, if this is not the case, they generate another set of parameters to be tried

(using selection strategies that again depend on the specific method chosen). In the

majority of the application papers of these methods convergence issues are raised and the

choice of the acceptance criteria and/or the iterative step need to be carefully tuned by

the user. In spite of these possible disadvantages, these approaches are gaining popularity

in the context of inference of biological systems so they are a promising research area

in which more work is required to understand how the different options affect the final

results in order to help and guide the user in the choice of which method is more suitable

for which specific kind of data/model.

Tools for parameter estimation can be found as an integral part of some simula-

tion tools (e.g. Matlab packages, Copasi [95]), but there exist also stand-alone soft-

ware exclusively designed for that purpose, like PET (Parameter Estimation Toolkit,

http://mpf.biol.vt.edu/pet/). The disadvantages of the most of the current tools for pa-

rameter estimation is the lack of robustness to the noise and the absence of any estimate of

experimental error in their outcome. Experimental uncertainties on parameters propagate

from the measurements of the concentrations of the species. Returning the parameters

with an estimate of their uncertainty is essential if we want to use the tool in the con-

text of optimal experimental design. Moreover, the majority of the current tools based
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on optimization techniques, ask the user to provide some kind of a priori knowledge to

the optimization algorithm in order to limit the region of parameter space in which to

perform the search for the maximum. Further discussions about the main existing tools

for parameter estimation can be found in Section 6.5.

2.3 Cell cycle models (Saccharomyces cerevisiae)

The general cell theory was developed in the 1830s by Theodor Schwann and Matthias

Schleiden [170, 171]. It states that all living organisms are composed of nucleated cells

that are the functional units of life and that cells arise only from pre-existing cells by a

process of division. According to current knowledge about the structure of a cell, we know

that a cell is surrounded by a membrane that separates it from its external environment

and fundamental to eukaryotic cells – in contrast to prokaryotic cells – is their subdivision

by intracellular membranes into distinct compartments (see Figure 2.1).

Because of the fact that growth and reproduction are major characteristics of life,

crucial for these is the cell division process by which one cell divides into two and all

parts of the mother cell are distributed to the daughter cells. Even if the concept of

cells as the “functional units of life” was established by the mid-nineteenth century and

despite the fact that from that time an enormous amount of biological data has been

produced, we are still far from a detailed understanding about how cells function. Even if

the physiological behavior of cells can be observed and measured by various experimental

techniques, DNA can be sequenced and some molecular interactions might be detected,

yet our knowledge about the mechanisms describing the observed properties is far from

complete.

Mathematical modelling of the cell cycle has been started already when scientists were

only guessing the mechanism that could drive the processes of cell division. From the

1960’s we can find mathematical models that explain some key aspects of cell cycle reg-

ulation from phenomenological observations on cell size and cell cycle time distributions

[107]. At the same time, chemical oscillators have been discovered: the mixture of some

reactants discovered by Belousov and later rediscovered by Zhabotinsky served as the

first and classical example of non-equilibrium thermodynamics [198]. The details of the

Belousov-Zhabotinsky reaction (BZ reaction) provoked widespread interest and research

in the 1970s and gave huge contributions to research on theoretical physical chemistry

and later to mathematical biology. Researchers, like Albert Goldbeter, John J. Tyson,

Arthur Winfree and others realized that the discoveries on chemical oscillations and the

tools that have been developed for their descriptions might help to understand biologi-

cal oscillations. They investigated biological systems from calcium oscillations, circadian
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Figure 2.1: Cells are surrounded by a plasma membrane, which is made of a double layer of phospholipids.

Within this membrane the cytoplasm encloses the organelles of the cell. The nucleus of eukaryotic cells contains

the genetic material which chemically directs all of the cell’s activities. Usually this is in the form of long strands of

chromatin made of DNA and affiliated proteins. When a cell is ready to divide, the chromatin coils and condenses

into individual, distinguishable chromosomes. Another organelle of the cell is the endoplasmic reticulum (ER for

short). There are two kinds of ER: smooth ER and rough ER. Typically ER closer to the nucleus is rough and that

farther away is smooth. Smooth ER is a transition area where chemicals like proteins the cell has manufactured

are stored for transportation elsewhere in the cell. Pieces of the smooth ER called vesicles pinch off from the

smooth ER and travel other places in the cell to transfer their contents. Rough ER gets its name because it

has other organelles called ribosomes attached, which give it a rough appearance when viewed by an electron

microscope. Rough ER and its associated ribosomes are involved in protein synthesis, with the new polypeptide

being threaded into the lumen of the ER as it is formed. Ribosomes are special organelles that are directly involved

in protein synthesis. They are made of RNA (ribonucleic acid) and protein and are manufactured in the nucleus

(from a DNA template), then go out into the cytoplasm to function. Vacuoles and vesicles are storage organelles.

Generally, vacuoles are larger than vesicles and the latter are small enough and mobile enough that they are often

used to move chemicals to other locations in the cell where they might be needed. One of the places to which

vesicles travel is the Golgi apparatus that is like the shipping and receiving department of the cell. Materials are

received as vesicles unite with the Golgi apparatus, and sent elsewhere as other vesicles pinch off. Materials are

temporarily stored in the Golgi bodies, and some further chemical reactions do take place there. Other organelles

found in nearly all eukaryotic cells are mitochondria: they burn sugar for fuel in the process of cellular respiration

and they are the “engine” of the cell. Mitochondria consist of a smooth outer membrane and a convoluted inner

membrane separated by an intermembrane space. As sugar is burned for fuel, a mitochondrion shunts various

chemicals back and forth across the inner membrane. The organelle that is responsible for the shape and the

structure of the cell is the cytoskeleton that is made of various types of special proteins. Microtubules are hollow

tubes made of globular proteins. Animal cells typically have a pair of centrioles located just outside the nucleus

and oriented at right angles to each other. These function in cell division. Microfilaments are also part of the

cytoskeleton and are made of solid rods of globular proteins. (Picture taken from http://www.animalport.com/animal-cells.html)

clocks and many others, among them the oscillations that drive cell division. As some

data on the key regulator of cell cycle (CDK) that works in a complex with a cyclically

appearing molecule (cyclin) were found by Nurse [143], Hartwell [86] and Hunt [63] in
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the 70s-80s (breakthrough results for which they received the Nobel Prize in 2001), theo-

reticians started to create models to understand how CDK can regulate cell cycle events

[79, 181, 186]. Some of these works laid down crucial details and basic properties of

cell cycle regulation. Further experiments on yeasts and frog eggs produced a molecular

description of the protein interaction network of these systems, inspiring further mathe-

matical analysis. This success story created a great interest for modelers to ask questions

in cell biology and to answer them with the help of an inter-disciplinary work of mathe-

maticians, physicists, and other scientists [43].

Budding yeast is perhaps the most useful yeast owing to its use since ancient times in

baking and brewing. The molecular machinery of eukaryotic cell cycle control is known in

more detail for this yeast species (whose scientific name is Saccharomyces cerevisiae, from

Latinized Greek saccharo- (sugar) myces- (fungus) and from Latin cerevisiae (of beer))

than for any other organism. Moreover, informational pathways in yeast are remarkably

similar to those in fly, worm and humans, and many orthologous genes can be identified

across these species.

Figure 2.2: Budding yeast is the microorganism behind the most common type of fermentation. Its cells
are round to ovoid, 5-10 micrometres in diameter. Its genome is composed of about 12.5 ∗ 106 base pairs
and 6275 genes, compactly organized in 16 chromosomes. It reproduces by a division process known as
budding. (Picture taken from http://rushartsbiology.wikispaces.com/Visuals+-+Unit+5)

The reason why this organsim became the eukaryotic model organism is because it

scores favorably on the following criteria:

• as a single celled organism, it is small with a short generation time (doubling time

1.5-2 hours at 30◦C) and can be easily cultured. These characteristics allow for the

quick production and maintenance of multiple specimen lines at low cost;

• it can be easily manipulated genetically, allowing for either the addition or deletion

of new genes;

• as a eukaryote, it shares the complex internal cell structure of plants and animals

without the high percentage of non-coding DNA that can confound research in higher

eukaryotes.
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For many years, molecular biologists have meticulously characterized individual compo-

nents of budding yeast cell cycle to derive a consensus picture of the regulatory network.

One of the most common ways to describe this network of biochemical reactions is to

translate the interactions of the hypothetical molecular wiring diagram into ordinary dif-

ferential equations. The solutions of ODEs can be compared with existing experimental

data and can be used both to verify a hypothesized mechanism that controls the sys-

tem and to provide testable predictions. ODEs have been used for many years to create

mathematical models of eukaryotic cell cycle regulation since this was the technique that

was used to investigate chemical and physical oscillators, thus all the developed tools of

dynamical systems theory could be used to analyze ODE models of cell cycle regulation.

Focusing our attention on the history of budding yeast cell cycle modelling, we can

identify one of the first version of the model in [31] where the authors hypothesize the

existence of an hysteretic switch that controls the entry into S phase (for explaination of

the biological meaning of the different phases/roles of proteins in the cell cycle process,

see Section 4.1.1): this prediction and others were tested experimentally by Fred Cross’s

group in a seminal paper that might be the first case when a molecular genetics lab focused

solely on verifying a mathematical model of cell-cycle regulation [42]. Later the groups

joined forces to create a model that can simulate the behavior of more than 120 mutants

of the budding yeast [30]. This model also predicted the existence and regulation of a

phosphatase that later was identified [159]. Recently other groups have presented their

own models of the budding yeast cell cycle, focusing on various aspects of the regulatory

system: the authors of [14] use a genetic network model of 11 genes that coordinate the

cell cycle process to study a dynamical attractor that results in a remarkable robustness

against noise fluctuations; in [7] the authors report a mathematical model of the G1

to S network that newly takes into account nucleo/cytoplasmic localization, the role of

the cyclin-dependent kinase Sic1 in facilitating nuclear import of its cognate Cdk1-Clb5,

Whi5 control, and carbon source regulation of Sic1 and Sic1-containing complexes; [176]

analyze the dynamical properties of the intertwined feedback loops that drive the cell cycle

alternation of states; [177] discuss aspects of model development using the example of cell

cycle regulation in yeast in order to suggest that capturing complex dynamic networks is

feasible despite incomplete quantitative biological knowledge.

Most of the models mentioned above use the mathematical formalism of ODEs to

describe the dynamics of the system, and there exist many mathematical analysis tools

able to track the steady states and dynamical transitions of cell-cycle control system

[9, 44]. As the complexity of the known cell-cycle regulatory network increased in the last

few years, logical dynamic modelling [180] and especially Boolean algebra became another

fashionable modelling approach, because it is a very simple formalism where the activity
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of each component is represented by two states: ON and OFF. The success of Boolean

algebra for studying budding yeast cell cycle might be partially influenced by the results

presented in [122], where the authors showed in a logical model that trajectories from

86% of all possible initial states lead the system into one state representing G1-phase of

the cell cycle. Most of these trajectories funneled into a path which steps through the

different phases of the cell cycle, showing that the cell cycle is robustly designed.

Although some of these logical models were already introducing a stochastic treatment

of the system, recently some more expressive and specific formalisms have started to con-

sider the effects of molecular noise in the cell cycle regulatory network. These stochastic

models can investigate how individual cells might differ from the average behavior of the

population (the output of deterministic ODE models). Stochastic fluctuations could be

relevant for certain mutant cell populations that show partial viability [135]. Further-

more, recent advances in experimental observations on single cells allow the measurement

of the distribution of behaviors in a population of cells, for example, the measurements

of the noisiness of the G1/S transition in budding yeast cells provided by Cross’s group

[10, 57]. Recently [101] explored the role of noise by measuring the cell size and cell

cycle time distributions in a budding yeast cell cycle model. In order to investigate the

stochastic property of the reaction network, the authors unpacked the ODE model in [187],

with all its complicated functions, into elementary reaction steps. The stochastic models

described so far use the mathematical formalism of stochastic differential equations but

recently some modelling concepts expanded from computer science towards biological sys-

tems proved to be useful in modelling budding yeast cell cycle. [135] used the formalism

of Petri nets (which are a mathematical modelling language defined as directed bipartite

graphs, in which the nodes represent transitions (i.e. events that may occur) and places

(i.e. conditions); the directed arcs describe which places are pre- and/or postconditions

for which transitions) to show that the stochastic fluctuations could be relevant for certain

mutant phenotypes that show partial viability: these kinds of analysis could not be car-

ried on with deterministic models at population level. Finally, as shown in the previous

section, languages derived from computer science have been adapted to model biological

systems and different rule-based modelling languages has been used to build models of the

cell cycle: [116] chose to implement, using stochastich π-calculus, the control mechanism

of the cell cycle (modelled by Novak in 1999) that is accounting for the antagonistic in-

teraction between cyclin-dependent kinases dimers and the anaphase promoting complex;

[37] built in Bio-PEPA the model, presented by Goldbeter in 1991 and later extended by

Gardner et al. in 1998, that describes the negative feedback loop obtained by the fact that

cyclins promotes the activation of a cdk (cdc2) which in turn activates a cyclin protease

which in turn promotes cyclin degradation.
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Chapter 3

Modelling with BlenX

3.1 The language

BlenX is a stochastic programming language explicitly designed to model interactions of

biological entities. Stochastic means that quantitative information about speed and prob-

ability of actions is provided with systems specifications. A BlenX program is made up

of a program file for the system structure (a textual file, usually with extension .prog),

an interfaces file for the quantitative information about the system (a textual file, usually

with extension .types) and an optional declaration file for the user-defined variables and

functions (a textual file, usually with extension .func). A BlenX program can be given as

input to the Beta Workbench [55, 56] (BetaWB for short) for running stochastic simu-

lations of the model. BetaWB implements an efficient variant of the Gillespie algorithm

[74] allowing the user to have stochastic time courses of the system under consideration.

For a detailed description of the BlenX languange and BetaWB functionalities we refer

the reader to [55, 53]. Here we just sketch the main features of the language used for the

translation procedure presented in section 3.2 and the main peculiarities of the framework

that allow us to perform interesting analysis of the chosen real biological case study (i.e.

the budding yeast cell cycle).

The underlying metaphor of BlenX is that a biological entity, i.e. a component that is

able to interact with other components to accomplish biological functions, is represented

by a computational device, a box, composed of a set of interfaces (also called binders)

and an internal program. Interfaces have associated types (representing their state) and

are the places where an entity interacts with other entities; the internal program, instead,

codifies for the mechanism that transforms an interaction into a conformational change of

the entity, e.g. the modifications of box’s interface types. Figure 3.1 shows the graphical

notation we use to represent boxes. The program file contains the definition of all the
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boxes acting in the model.

site1  S1_Ph

site2  

S2_act

S3_act   site3 P
CycB

Figure 3.1: The small squares on the border of the box are the binders; site1, site2 and site3 are the

interfaces subjects (omitted when not necessary); S1 Ph, S2 act and S3 act are the interfaces types; the

line surrounding the interface with type S3 act indicates that the interface is hidden; P is the internal

program and CycB is the name of the box.

A box is defined using the keyword bproc and, for instance, the following piece of code

defines the box in Fig. 3.1:

let CycB : bproc = #(site1,S1 Ph), #(site2,S2 act), #h(site3,S3 act)[ P ];

#(site1,S1 Ph), #(site2,S2 act), #h(site3,S3 act) are box’s interfaces defined by a sub-

ject (e.g. site1) and a type (e.g. S2 act). Subjects and types must all be different. Any

interface has an associated state that can be free (denoted with #), hidden (denoted with

#h) or bound. Subjects can be referred by the internal program P, that is described by

a process built on top of the following set of primitives, where the first two are derived

from the classical process algebras primitives constructs while the others are specific for

the BlenX language:

• Input: x?(y) / x?()

• Output: x!(y) / x!()

• Change: ch(x,A) / ch(r,x,A)

• Delay: delay(r)

• Die: die / die(r)

• Expose: expose(x:s,A) / expose (r,x:s,A)

• Hide: hide(x) / hide(r,x)

• Unhide: unhide(x) / unhide(r,x)

The input action intuitively means that a process is willing to receive on the channel

x a name that will replace the target variable y. The output action sends a name y

along channel x. When both the name sent and the target variable are irrelevant (i.e.

we want to represent just pure synchronization and no information exchange), we omit

the name y. The change action changes the type of an interface with subject x into

A. The delay action represents a time delay, while the die action eliminates the box
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executing it. The directive expose allows the exposure of a new interface, while hide and

unhide actions modify the state of an interface to hidden or free, respectively. Notice

that for most of the actions listed above it is also possible to define a specific rate r

associated to the action. The basic actions can be combined by sequential composition

(“.” symbol), parallel composition (“|” symbol), choice (“+” symbol), replication (rep

keyword) and conditional “if/then” statement. These operators allow us to construct

complex programs describing the internal behavior of a box. The choice operator “+”

composes two processes that can be alternatively executed, i.e. the execution of one of

the processes prevents the execution of the others. The parallel operator “|” composes

two processes that execute concurrently and allows them to communicate or synchronize

when they perform complementary input/output actions on the same channel. The rep

operator produces as many copies of its argument in parallel as needed (i.e. possibly

infinitely many).

In addition to the classical process algebra actions described above, BlenX allows the

definition of events which are statements, or verbs, that are executed with a specified

rate and/or when some conditions of the system are satisfied. A single event is the

composition of a condition cond and an action verb: when (cond) verb. Conditions are

used to trigger the execution of an event when some elements are present in the system,

when a particular condition is met, with a given rate, or at a precise simulation time or

simulation step. Events can split an entity into two entities, join two entities into a single

one and add/remove entities into/from the system. For an intuitive explaination of the

main primitives of the language described up to now, see Figure 3.2.

Another characteristic of BlenX concerns the possibility of separating the qualitative

description of the structure of the model (encoded in the program file) from the quanti-

tative information about the rates of the different reactions (encoded in the declaration

file). In the latter file the user defines:

• constants: identifiers associated to real values that cannot be changed at runtime;

• variables: identifiers that can assume modifiable real values. The content of a variable

is automatically updated when the evaluation of the expression that it is defining it

changes; the content of the variable can also be changed by an update event;

• continuous variables: identifiers that depend on time and whose value is determined

by an expression which is recalculated at fixed time steps;

• functions: complex mathematical expressions that are usually used as rates for non-

elementary reactions (coded as events, for modelling an aggregated process or when

the precise elementary steps of interaction between entities are not known).

The last peculiar characteristic of the BlenX language are templates. They are a fea-

ture of many programming languages that allow us to code, in an extended grammar,
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site1

IEP_A

ch(site1, IEP_IN).P

IEP_A

site1

IEP_IN

P

IEP_IN

change

mRNA

P
mRNA

P

Cdc20

Q
split

site1

IEP_A

site1!().P

IEP

site2

Cdc20_IN

site2?().ch(site2,Cdc20_A).Q

Cdc20

site1

IEP_A

P

IEP

site2

Cdc20_A

Q

Cdc20

inter change

site1

CDH1

site1!().P

Cdh1

site2

CycB_dim

site2?().die

Cdk/CycB

inter die

site1

CDH1

P

Cdh1

site2

CycB_dim

Cdk/CycB

Cdk

P
new(2)

Cdk

P
Cdk

P
Cdk

P

Cdk

P
Cdk

P
delete(1)

Cdk

P
Cdk

P

CycB_AP

CycB

Cdk_A Q

Cdk

complex
CycB_AP

CycB

Cdk_A Q

Cdk
decomplex

Figure 3.2: Intuitive behavior of some BlenX primitives. Each row represents a different primitive.

The first three primitives are internal actions, the fourth is a complexation/decomplexation event and the

last three are global events on boxes. The first action is a change action that allows the modification of

the type of a binder from the internal code of the box. The second row shows a sequence of two actions: an

intercommunication between boxes with compatible interfaces and the change of an interface performed

by the box that received the communication message (modelling the effect of IEP on the activation of

Cdc20 box). Analogously the third row shows a sequence of an intercommunication action followed by a

die action performed by one of the two boxes (modelling the fact that Cdh1 is able to degrade Cdk/CycB

species). The complex event is performed when two boxes have interfaces with compatible types and the

user wants to model the creation of a private and permanent (until the complementary decomplexation

event) communication channel between two specific boxes. Those two boxes will maintain their individual

internal behavior but they will be able to communicate on the shared channel. Finally the last three rows

are the graphical representation of the events of split, new and delete. The split event is used to substitute

one box with two (possibly different) boxes, while the last two events model the creation/deletion of an

arbitrary number of boxes in the system.

parametric processes, which can contain variable parts instantiated later by the compiler

with respect to the base grammar. In BlenX, template code is specialized and instantiated

at compile time using interfaces identifiers, code or names that are passed as template

arguments. In general, in a big and complex model, the usage of templates reduces the

amount of code that needs to be written making the whole model more modular and easy
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to modify. A way to reduce the code that has to be written is identifying “structurally

equal” mechanisms in the model: for example, in cell cycle models there are a lot of species

whose degradation is the result of the interaction of another species with a mass action

kinetic law, or different proteins have a self-degradation mechanism that only differs in

the rate constant that is driving the process. Thus, in BlenX any common pattern of this

kind can be grouped and coded in an easy way through the templates.

In order to show how to use the BlenX features explained above concretely, we present a

“toy model” of the budding yeast cell cycle that will be used in Section 4.2 for performing

quantitative analysis of the irreversibility of the cell cycle process (for details about the

biological meaning of this model, we refer to Chapter 4).

A

YY_IN

X

m

1 2

3

4

5

6

7

8
9

d|X|
dt

= k1/α︸ ︷︷ ︸
(1)

− k2p · |X|︸ ︷︷ ︸
(2)

− k2s · α · |X| · |Y |︸ ︷︷ ︸
(3)

d|Y |
dt

=
k3p · α|Y IN |
J3 + α · |Y IN |︸ ︷︷ ︸

(4)

+
k3s · α · |Y IN | · |A|
J3 + α · |Y IN |︸ ︷︷ ︸

(5)

+

−
k4 ·m · α · |Y | · |X|

J4 + α|Y |︸ ︷︷ ︸
(6)

d|Y IN |
dt

= −
k3p · α|Y IN |
J3 + α · |Y IN |︸ ︷︷ ︸

(4)

−
k3s · α · |Y IN | · |A|
J3 + α · |Y IN |︸ ︷︷ ︸

(5)

+

+
k4 ·m · α · |Y | · |X|

J4 + α|Y |︸ ︷︷ ︸
(6)

d|A|
dt

= k5p/α︸ ︷︷ ︸
(7)

+−
k5s · (m · |X|)n · αn−1

J5n + (m · α · |X|)n︸ ︷︷ ︸
(8)

− k6 · |A|︸ ︷︷ ︸
(9)

dm

dt
= µ ·m · (1−m/mstar)

Figure 3.3: The antagonism between Cdk/CycB complex (X) and the Cdh1/APC (Y) that drives cell

cycle oscillations in budding yeast as explained in [142] (graphical representation on the left and ODE

system on the right). For an explanation of the biological meaning of the different entities, see Chapter

4. Solid arrows link reactants to products, dashed lines represent the mediation effect that some species

have on reactions. Reactions are numbered to allow an easy reference from the code in Table 3.1.

Table 3.1 shows the input file for the model depicted in Figure 3.3. The reactions in

the table are numbered as in the figure. In general, synthesis mechanisms are modelled

with a new event, while degradation ones are modelled with delete events. All the events

have an associated rate function (usually with a complex mathematical expression) that is

defined in the .func file and then its name used in the appropriate event. In the .func file,

two variables are defined: m (which represents the mass of the cell), that is modelled as a
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//.PROG

[steps = 2000, delta = 0.2]

let X : bproc = #(x,X)[ nil ];

let Y : bproc = #(y,Y)[ nil ];

let Y_IN : bproc = #(y_in,Y_IN) [ nil ];

let A : bproc = #(a,A)[ nil ];

when(X :: X_synthesis) new(1);

when(X :: X_self_degradation ) delete(1);

when(X :: X_degraded_by_Y ) delete(1);

when( Y_IN :: Y_self_activation ) split(Nil, Y);

when( Y_IN :: Y_activation_with_A ) split(Nil, Y);

when( Y :: Y_deactivation ) split(Nil, Y_IN);

when(A :: A_synthesis ) new(1);

when(A :: A_collaborate_M_X ) new(1);

when(A :: A_self_degradation ) delete(1);

when (:mCycB->0.2,mCycB<-0.1:) update (m,mass_div);

run 4 X || 424 Y || 424 A

-> Simulation output length-accuracy

->--

| Definition of the

| main species (boxes)

->--

-> Reaction (1)

-> Reaction (2)

-> Reaction (3)

-> Reaction (4)

-> Reaction (5)

-> Reaction (6)

-> Reaction (7)

-> Reaction (8)

-> Reaction (9)

-> m division controlled by the state of mCycB

-> Initial conditions for the simulation

//.FUNC

let mu : const = 0.005; let k1 : const = 0.04; let k6 : const = 0.1;

let k2p : const = 0.04; let k2s : const = 1; let mstar : const = 10;

let J3 : const = 0.04; let k3p : const = 1; let J5 : const = 0.3;

let k3s : const = 10; let k4 : const = 35; let k5s : const = 0.2;

let J4 : const = 0.04; let k5p : const = 0.005; let n : const = 4 ;

let alpha : const = 0.00236012;

let m(0.1): var = mu * m * (1 - m/mstar) init 0.45;

let mCycB : var = m * |X| * alpha;

let mass_div : function = m / 2;

let X_synthesis: function = k1 / alpha ;

let X_self_degradation : function = k2p * |X|;

let X_degraded_by_Y : function = k2s*alpha * |X|*|Y|;

let Y_self_activation : function = (k3p * |Y_IN|)

/ (J3 + alpha * |Y_IN|);

let Y_activation_with_A:function=(k3s*alpha*|A|*|Y_IN|)

/(J3 + alpha * |Y_IN|);

let Y_deactivation : function =(k4 * m * alpha*|X|*|Y|)

/(J4 + alpha * |Y|);

let A_synthesis : function = k5p / alpha;

let A_collaborate_M_X:function = (k5s / alpha)

/ (pow((J5/(m*alpha*|X|)),4)+ 1);

let A_self_degradation : function = k6 * |A|;

->--

|

| Definition of the constants

|

->--

-> Def. of the continuous variable of the mass

-> Def. of discrete variable that triggers m division

-> Def. of the expression that divides m

-> Reaction (1) kinetic rate function

-> Reaction (2) kinetic rate function

-> Reaction (3) kinetic rate function

| Reaction (4) kinetic rate function

-^--

| Reaction (5) kinetic rate function

-^--

| Reaction (6) kinetic rate function

-^--

-> Reaction (7) kinetic rate function

| Reaction (8) kinetic rate function

-^--

-> Reaction (9) kinetic rate function

Table 3.1: BlenX input files of the budding yeast cell cycle toy model in Fig. 3.3. The left column shows

the content of the textual .prog and .func file, and the right column contains a small description of the

different lines of code. See text for details.

continuous variable (recalculated every 0.1 minutes (simulation time) with the expression

provided and initialised to 0.45) and a discrete variable which represents the combined

effect of X (CycB) and of the mass (mCycB). This variable is automatically updated when

the evaluation of its defining expression changes (i.e. when the amount of X boxes changes

during the simulation). mCycB variable is used to trigger the cell division (i.e. the update
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event in the .prog file): in particular this event will be immediately fired whenever the

sequence of conditions that guard the event are met. Those conditions are based on the

traversal of successive states which are examined in sequence. The update event is fired

when all the states, in sequence, are met throughout the system dynamics. In our specific

example we want to monitor the crossing of “mCycB” value 0.2 from below and then 0.1

from above (i.e. when the value of “mCycB” becomes greater than 0.2 the event is acti-

vated and then when the value of mCycB falls under the limit 0.1, the event is fired and

the variable m is updated with the result of the evaluation of the function mass div).

In order to show the usage of templates in this small example, let us consider the degra-

dation of X and A proteins: in the first version of the code, the spontaneous degradation

mechanism has been coded for both proteins as a delete event, whose rate is depending

on k2p and k6 respectively. We can drop those two events and substitute the code that

declares the X and A boxes with the following code:

template spont_degradation : pproc<<rate kin_rate>> = die(rate(kin_rate));

let X : bproc = #(x:0,X)[ spont_degradation<<k2p>> ];

let A : bproc = #(a:0,A)[ spont_degradation<<k6>> ];

The gain in readability, usability and maintainability of the model cannot be fully

appreciated in a so small and simple model, however the general principle of recognizing

common behaviors and coding them in a modular way has been used in the big model of

budding yeast that is presented in Section 4.4.

Moreover, the reason why, whenever it is possible, we want to substitute the delete

events with templates that use internal actions is because events are global rules that

drive the deletion of a box from the system, but the mechanism that we would like to

encode is the “local suicide” of a box that decides, from its internal code, to disappear

from the system (usually after the interaction of another specific species that induces the

degradation of the first one): in this way we can reduce the amount of code that has to

be written because even if a protein A is degraded by different species (B, C, D, . . . ), the

internal code of A does not change (i.e. waiting for a signal from outside on a specific

interface used to sense degradation signals and then die) and the source of the signal can

be any other protein of the system (with possibly different rates). Hence using templates,

we can write the code that is accounting for this mechanism just once, and then we can

instantiate it in different boxes just specifying the local information that differentiate each

species (in our case the rate of the self degradation, or the channel on which the sensing

of the degradation signal from outside is happening).

Just to conclude this section, we want to emphasize that our usage of the BlenX lan-

guage is by no means exhaustive and does not take advantage of many other features of
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the language that can be useful in different contexts and scenarios. For example, BlenX

does not only support actions with an associated stochastic rate, but also immediate ac-

tions (using the keyword inf as rate value): those actions have precedence with respect

to actions associated with finite rates. This can be used when, for example, more than

one change action should be the result of a single synchonization of a box with another

box: the sequence of changes can be done at infinite rate so that they will be done in zero

simulation time (i.e. immediately). Other distinguishing characteristics of the language

are the possibility of inserting conditional statements in the internal code of a box, cod-

ing alternative behaviors through the usage of the choice operator; defining patterns for

dynamic complex formation, etc. We refer the reader to [53] to see all the distintinctive

features of the BlenX language in action.

3.2 Translating a mathematical model into BlenX

In this section, we are going to show a semi-automatic method to translate existing

deterministic models written with ordinary differential equations (ODEs for short) into

programs written in BlenX. The simple translation of general ODE terms into a BlenX

model is possible because of the expressive power of the language that allows the definition

of general rate functions for the transitions. In fact, the rationale behind the translation of

an ODE system into BlenX is to use the same level of abstraction adopted in the starting

deterministic model so that we can define an easy mapping of ODEs into BlenX. This

translation requires the usage of just a few primitives of the language.

The first step lies in converting species concentrations into species molecular number.

In order to do that, it is enough to apply the Conc = α ·MolNum conversion, introducing

a scalar constant α defined as α =
1

(NA · 10−6 · V )
where NA is the Avogadro’s number,

V is the volume of the modelled system expressed in ml and the initial concentration to

be converted is expressed in nM. Applying the above conversion for each species S in the

ODE system, we end up with a set of equation that uses the original kinetic constants,

but it is written in terms of number of molecules. This allows us to use directly the

manipulated ODE system’s terms as stochastic rate functions, without the need of giving

to each single kinetic constant its stochastic numerical counterpart.

The second algebraic modification of the ODE system that we need to do is to write

explicitly the equations for the species that are appearing “implicitly” in the ODE system.

If a species is present in a constant total amount but it can switch between an active and

an inactive state, the time evolution of just one of the two states is usually explicitly

considered, because the other (the “implicit” one) can be derived from the first. In BlenX
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we have to define all the states in which a species can be, and so we need a definition also

for the states not explicitly written in the initial ODEs. Hereafter, when we talk about

species, we include both the original explicit and the added implicit ones.

The general mathematical description of a system of N reactant species S1, . . . , SN ex-

pressed in terms of number of molecules M1, . . . ,MN and involved in R1, . . . , RR reactions

has the following form:

dMi

dt
=

Ri∑
j=1

f ij(M1, . . . ,MN , V ar1, . . . , V arT ) (3.1)

where i = 1, . . . , N , Ri ≤ R, and f ij is a rate term referring to the amount of other

species in the system (M1, . . . ,MN) and, possibly, to V ar1, . . . , V arT terms that represent

other constant rates, discrete/continuous variables dependent from time or other complex

mathematical formulation accounting for combined abstracted effect of other species of

the system on the rate of change of the current species Si (so the complete definition of

the system above has to be coupled with the set of algebraic equations that entail the

variation of each discrete/continuous variable of interest).

The translation from an ODE system written with the above conventions to BlenX can

be summarized by the following pseudocode:

Input: the set (3.1) of ODEs;

Output: the definition of the BlenX model (i.e. the three files used as input for the BetaWB simulator).

Method:

1. expand all the possible factors of the ODEs, so that all the equations are written as summations of

positive/negative terms;

2. for(i in [1..N ])

for(j in [1..Ri])

define function(f i j) = AbsoluteValue(mathematical expression(f ij ))

3. for (i in [1..T ])

define variable(var i) = mathematical expression(V ari)

4. declare all the constants contained in the previous definitions

5. for(i in [1..N ]) declare empty-box(Si)

6. for(i in [1..N ])

for(j in [1..Ri])

switch(kind of f ij reaction):

case ’synthesis’: add event “when (i : : f i j) new(1)”;

case ’degradation’: add event “when (i : : f i j) delete(1)”;

case ’changing from i to k’: add event “when (i : : f i j) split(Nil, k)”;

case ’changing from k to i’: add event “when (k : : f i j) split(Nil, i)”;

7. remove all copies but one of the replicated events that have been created for the reactions appearing

in multiple ODEs

8. set the initial state of the model
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Note that the choice in step (6) has to be made manually, looking at the wiring diagram

of the system: this is the only step that cannot be done automatically, because of the

well known inverse problem [60]: it is not true that a set of kinetic differential equations

is induced by a unique reaction event within the class of reversible and conservative

reactions. In other words, there is more than one set of reactions (i.e. structurally

different networks of chemicals) that can produce the same set of ODEs. In order to see

the ambiguity of the inverse problem, let us consider for example the following simple

ODE system:

d|A|
dt

= −k|A|
d|B|
dt

= k|A|

that can be induced by the following two alternative set of reactions:

A
k→ B (3.2)

A
k→ ∅ A

k→ A+B (3.3)

In the deterministic solution, both systems have the same behavior. However, in a

stochastic context with a small number of molecules, the two systems can show different

behaviors due to the stochastic choice between the two different reactions in the second

system (Fig. 3.4). In order to simulate the right set of interactions, the user must choose

which is the reaction system that he/she wants to use. Usually this choice can be made

by looking at the interactions depicted in the wiring diagram of the phenomena.

(a) (b) (c)

Figure 3.4: The deterministic (a) and stochastic (b-c) solutions of reactions (3.2) and (3.3), respectively,

with the initial configuration of 10 A and 0 B. The stochastic simulation in (b) always reaches the end

configuration of 10 B and 0 A, while the one in (c) reaches very different final configurations, due to the

non-deterministic choice between the two separate reactions that describe the system.

To disambiguate between those reaction networks we need to have the knowledge of

the interactions between all the species, but usually this knowledge is hidden in wiring

diagrams that are not following strict or general formal conventions. Therefore also the

translation that we propose cannot be a formal and general method, but it is a set of

patterns that can be easily applied to each term of the ODE model. It is an useful

starting point because the ODE models are usually written in such a way that the set
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of inducing reactions can be recognized in a quite unique way by using the information

encoded in the wiring diagram of the system.

In section 4.3 the whole translation procedure has been applied to the budding yeast cell

cycle model presented in [142] in order to show that the translation is straightforward and

that the stochastic simulations are, from one side, consistent with the results obtained by

the solution of the ODE system, but from the other side, the stochastic model matches

some characteristics that cannot be found with the deterministic one. In section 4.3

we also show how it is possible to refine the BlenX model obtained following the above

translation, in order to take advantage of peculiar features of the language (e.g. templates)

that allow the creation of a model that is more easily mantained and possibly composed

with other models.

3.3 Issues about the usage of different abstraction levels

The presence of different levels of abstraction in the same model raises some technical

issues that need to be carefully taken into account. The two main points that we want

to consider here are usage of the stochastic simulation algorithm when non-elementary

reactions are incorporated in the model and the (often ignored) underlying assumptions

that the high-level mathematical representation of those reactions imply.

The former remark has already been discussed by several authors [3, 36, 136], and

here we just want to summarize the main idea that allows us to discuss and to rely on

the simulation results of the models in the following chapter of this work (where we will

perform stochastic simulations of models in which elementary mass-action reactions are

modelled together with higher-level complex mechanisms like Goldbeter-Koshland and

Hill responses).

The main point is that, in general, the rate dependent functions define the reaction

propensities of the stochastic model. We assume that the fundamental hypothesis of

Gillespie, i.e. each reaction time is a random variable following a negative exponential

distribution with rate equal to the value of the propensity function, holds for the biological

system we are modelling. If this is true, a stochastic characterization of the reaction times

as negatively exponentially distributed random variables is an accurate modelling choice,

as proved by Gillespie [74]. In some studies considering Michaelis-Menten reactions [3],

the applicability of the fundamental hypothesis was mathematically proved, and in some

others dealing with the circadian rhythm this same hypothesis was experimentally veri-

fied in silico [82]. In all the cases that we are going to present in this work, because of

the presence of many non-elementary reactions of many different mathematical forms, a

careful validation study has been performed. In this way, even if the exactness of the
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stochastic characterization of the whole mathematical model has not been verified, the

validation of the simulation ouputs against the experimental measurements, both quali-

tatively and quantitatively, makes us confident of that the stochastic description of the

system is correctly modelling the original system.

The second main problem about the presence of non-elementary reactions in a model,

is the often naive attempt to unpack those complex mathematical expressions into the

many elementary steps that they are abstracting. From one side, in the original model

the high-abstraction level of specific mechanisms is most of the time due to the need

of keeping the model manageable and/or because detailed kinetics about the individual

steps are not available. From the other side, because of the philosophy that is behind the

process algebra approach of modelling the single interactions between single molecules,

the modeller is inclined to make a detailed model with all the elementary steps and simply

look for the kinetic rates of the missing (i.e. abstracted) reactions. However often this

could lead to a completely different model that has no possility of behaving like the

original “packed” one, no matter how the single parameter rates are chosen.

As a main example, we refer the reader to [35] where the authors describe a very simple

network of chemical species linked together with Michaelis-Menten reactions. In the paper

they show that the original model (i.e. the one with the Michaelis-Menten kinetics) has

a bistable behaviour (i.e. the system has two stable states, and the final outcome of

the systems is determined by its initial conditions). However in the simple unpacking of

the enzymatic reactions (with the explicit consideration of the intermediate complexes)

the hysteresis is lost, and not just for a single parameters choice but, according to the

Advanced Deficiency Theory developed by Feinberg [66, 41], the network cannot have

a bistable behaviour for any assignment of positive values of the kinetic rate constants.

Furthermore, the authors show that it is enough to add a background reaction between

one of the (supposed to be) inactive proteins and an enzyme to re-establish the bistable

behaviour of the whole system. The problem of the initial naive unpacking is in the

mathematical assumptions of the “packed” version (assumptions that made possible the

application of the Michaelis-Menten approximation) were hiding some mechanisms that

become essential when the user is modelling the whole set of elementary steps while they

are redundant if the modeller choice in this specific example is to abstract the underlying

mechanism.

In general, those kind of abstractions could be introduced because the mathematical

formulation of the system is trying to model the available experimental results directly

rather than modelling the elementary molecular mechanism that result in that response:

this is the reason why sometimes the mathematical rate terms have not a direct molecular
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(a)

(b) (c)

Figure 3.5: Two networks of enzymes, analyzed in [35], that model different antagonistic relationships

that drive part of cell cycle. 3.5(a) shows a bistable behaviour both in the model where the Michaelis-

Menten abstraction has been used and in the unpacked version. 3.5(b), instead, has a bistable behaviour

only in the version of the model where a background reaction (shaded in the rightmost figure) is added.

(The different plots has been produced by the Beta plotter software on a BlenX model of the three different

versions of the network). 3.5(c) Nullcline of the Etot and Stot species (black and red curves, respectively)

which represent single free species plus all the complexes in which the species appears. Left: when SP

has some catalytic activity, the system is bistable. Right: when SP has no catalytic activity, the system

is monostable (figure adapted from [35])
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interpretation. So whenever we want to use a model in which mathematical abstractions

have been used, we need to be aware of the fact that those complex mathematical ex-

pressions are hiding some assumptions (often not declared) that can be essential in the

detailed version of the same model (just as a side note, not all the models presented in

[35] need the background reaction in order to have the bistable behaviour: so the simple

unpacking can be, in some cases, enough).

In conclusion, the usage of abstracted mechanisms is a fundamental opportunity for

keeping the model as detailed as the user needs it to be (i.e. ignoring sub-parts of the

model in which there is no interest) and, if a careful unpacking is performed, can be

used for unraveling the undelying mechanism of the system (and/or to falsify some naive

explanations of the elementary molecular interaction network).
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Chapter 4

Budding Yeast Cell Cycle models

4.1 Introduction

The cell cycle is a coordinated sequence of events by which a cell replicates all its inter-

nal components and divides them into two nearly identical daughter cells. A complex

molecular machinery is needed to control this crucial biological process. One of the

early success stories of mathematical biology was the work done on cell cycle regulation.

Through the description and analysis of the cell cycle regulatory network, theoreticians

predicted several dynamical properties and unknown components of the system that were

later experimentally verified. Moreover in recent years computational and theoretical ap-

proaches have been increasingly incorporated in the main stream of cell cycle research

[161, 180, 93, 135, 65].

In this chapter, first we briefly describe the physiology and molecular biology of cell

cycle regulation, focusing on a specific organism (i.e. the budding yeast). We present

some of the most relevant mathematical models that have been studied in the literature

of deterministic systems and we show how their translation into the stochastic framework

presented in Chapter 3 can be used to analyze behaviours and properties that are not

observable with the deterministic characterization of the system. In particular, we chose

to translate different mathematical models that describe in an increasing level of details

the molecular machinery that drives the growing and division of budding yeast cells.

In Section 4.2 we build a stochastic model of the core molecular network behind the

oscillatory behaviour of the system: we show how this small model can already be useful

for a quantitative study of interesting properties, like the irreversibility of specific events.

The model presented in Section 4.2 has been then refined in order to take into account

more complex molecular interactions between the key cell cycle regulators: hence, in

Section 4.3 we analyze a more detailed version of the same model that accounts for many

experimentally verified mutants. We show that the stochastic characterization of this
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version of the model is more in accordance with experimental data of partially viable

mutants at the border of life and death with respect to the deterministic study that has

been done in the literature. Finally, in Sections 4.4 and 4.5 we code in the stochastic

framework the most comprehensive model available for the budding yeast cell cycle: we

use this last refinement of the model to show how the stochastic description of the system

is nicely resembling the experimental data available and can be also used for in silico

analysis of single cell that just recent advance technologies made possible to be done in

wet-labs.

4.1.1 Physiology of the cell cycle

Cells perform a sequence of coordinated steps (referred to as the cell cycle) that result

in self reproduction. All eukaryotic cells (i.e. cells with a real nucleus) share the major

processes of the cell cycle, while prokaryotes have a less characterized one. For detailed

descriptions of various aspects of cell cycle modelling we refer the reader to some recent

reviews [43, 45, 71, 173, 189].

The two main events in the eukaryotic process are: the proper replication of the DNA

(i.e. the hereditary material of the cell) and the separation of the two copies into two

daughter nuclei. Those two events take place in two different phases called S (Synthesis)

and M (Mitosis) that need to occur alternately. Additionally to DNA, cells need to

double all other components of the cell (proteins, ribosomes, RNAs, phospholipid bilayers,

carbohydrates, metabolic machinery, etc.) in order to generate two proper offspring.

Usually the doubling of the cytoplasm takes longer hence temporal gaps (G1 and G2

phases) are inserted in the cell division cycle between S-phase and M-phase in order to

keep the size of the two daughter cells similar to that of the mother. This ensures that

the overall cell growth cycle is coordinated with the chromosome cycle (DNA replication-

division) and that maintains the homeostasis of the population.

In G1 the chromosomes are not yet replicated and the cell replication-division process

is uncommitted. G1-phase can be separated into two functionally different parts and the

boundary between early and late G1 is called the restriction point or “Start”: it occurs

when the internal and external conditions are favorable for a new round of chromosome

replication and segregation. At this point a cell commits itself to the whole process. The

decision is irreversible: once DNA-synthesis begins, it goes to completion and eventually

the cell will finish the current cycle even if conditions are getting worse in the meantime.

During S phase each DNA molecule is replicated: accuracy of those events is crucial for

producing healthy and viable daughter cells, thus the synthesis is permanently checked

and repair mechanisms guard the correct DNA replication. During G2 phase the cell

increases its mass by duplicating its internal components. G2-phase is inserted to ensure
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Figure 4.1: Phases of the cell cycle. The evolution in time of the budding yeast case is shown.

that DNA replication is properly finished and cells have grown to an appropriate size

before mitosis.

Events during mitosis are critical for proper distribution of DNA between the two

daughter cells. The mitotic process has several subphases: during prophase, replicated

chromosomes condense into compact structures, in metaphase these condensed chromo-

somes are aligned on the center of the cell with the help of mitotic spindles. When all

chromosomes are aligned the so called “Finish” transition (or meta-anaphase transition)

is induced: the cohesins that hold the two sister chromatids together are destroyed al-

lowing the chromosomes to be pulled to the opposite poles of the cell (anaphase). After

distributing the DNA content in telophase the daughter nuclei form and eventually the

two daughter cells separate. The two new cells are now back in G1 state and the cycle

repeats (Figure 4.1).

The major steps of the cell cycle described above must be tightly regulated, thus events

must be checked and corrected for errors. Evolution developed “surveillance mechanisms”

that monitor progress through the cell cycle in different points in order to ensure that all

the events happen in the proper order [87]. If something goes wrong, cell cycle stops at

crucial checkpoints and waits until the problems have been repaired. Not only the state

of the DNA is monitored, but checkpoints also react to the changes of the environment

and ensure, for example, that cells are large enough to step into the next phase: cells

must indeed grow to a critical size before committing to chromosome replication and

division to guarantee the balance between the cell growth and the DNA cycle, in order

to ensure that the next generation will have a size, more or less, similar to the size of the

mother cell. Mistakes like DNA damage or not proper size are usually fatal if they are

not repaired in single cell organism, while in multi-cellular organisms the affected cells

need to be eliminated to ensure homeostatis. The development of cancer is associated

with loss of cell cycle control, as tumor cells with damaged DNA do not stop replicating
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and cannot be eliminated, and as a result they carry the loss of control over the next

generations [102].

So summing up, the basic characteristics of cell cycle are the following:

• the alternation of DNA replication (S-phase) and mitosis (M-phase) is essential;

• growth in cellular mass is the rate limiting process, thus the DNA replication-division

cycle needs to be coupled with gap phases (G1, G2) in order to slow down the

progression;

• checkpoint mechanisms stop the cell cycle if any previous event has not been properly

completed and ensure that repair mechanisms are initiated to try to fix the problem;

and these controls are conserved in all eukaryotic organisms from yeast to human.

4.1.2 Molecular mechanism of cell cycle control

The events of the cell cycle described in the previous section are controlled by a complex

regulatory network of interacting macromolecules that induce the transitions between the

different phases.

CDK proteins work as effective kinases only if they are bound by a regulatory cyclin

partner that helps substrate recognition. CDK/cyclin complexes initiate crucial events

of the cell cycle by phosphorylating specific protein targets. For instance, CDK initiates

DNA replication at the transition from G1 to S-phase by phosphorylating proteins bound

to chromosomes at origins of replication (specific nucleotide sequences, where DNA repli-

cation can start), CDK also induces chromosome condensation and initiation of mitosis at

the G2/M transition by phosphorylating histones (proteins involved in DNA packaging).

In the opposite way, CDK inhibits the last steps of the cycle by keeping the cells in mitosis

as long as CDK is active. The separation of chromosomes at the end of mitosis and cell

division can occur only after CDK activity has dropped at the end of the cell cycle.

The activity of CDK/cyclin complexes can be regulated in several ways, one of which

is the controlled degradation of the cyclin subunit. The Anaphase Promoting Complex

(APC) with help from the regulatory protein Cdh1 labels cyclins for degradation at the

end of the cell cycle. Cdh1/APC is also helped by the CDK inhibitor Sic1 that can bind

to CDK/cyclin complexes and inhibit their activity. Thus G1 phase is stabilized by the

concerted action of Cdh1/APC and Sic1. Interestingly, CDK/cyclin complexes can phos-

phorylate and inactivate Cdh1 proteins, which leads to an antagonistic relation between

CDK/cyclin and Cdh1/APC. Importantly also Sic1 is in an antagonistic relation with

CDK/cyclin complexes (that can induce Sic1 degradation by phosphorylating it). These

antagonisms creates two, alternative, stable steady states of the control system: a G1

state, with high Cdh1/APC activity and low CDK/cyclin activity, and an S-G2-M state,

with high cyclin/Cdk activity and low Cdh1/APC activity. Transitions between these
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two states are facilitated by “helper” molecules that are insensitive to the antagonists. In

order to better explain how the progression between the different phases is driven by this

antagonistic relationship, let us consider the simple mechanical metaphor of the seesaw

in Figure 4.2.

Figure 4.2: A seesaw metaphor for the antagonism between CDK/cyclin (Clb’s for the specific case of

the budding yeast organism) and Cdh1/APC and Sic1 proteins that drive the cell cycle oscillations (see

text for details) [137]

The lever represents the strong connection between the two antagonist partners. The

height of the left part of the lever represents the abundance of the Cdh1/APC protein

and the stoichiometric inhibitor of CDK/cyclin (Sic1). The height of the right part of the

lever represents the abundance of the CDK/cyclin complex (Clb’s, for short, in the figure).

The two buckets represent the helpers molecules that ease the passage between the two

states. After cell division the newborn cells are in G1 phase, with high Cdh1 activity, and

no CDK/cyclin complex present. As the cell grows (the “Growth” signal in the top-left

corner of each sub-figure) it starts to produce cyclin (Cln’s) that binds to CDK and these

complexes phosphorylates Cdh1. As cell growth proceeds eventually enough CDK/cyclin
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complexes are produced to inactivate Cdh1 (full left bucket in Figure “S/G2”). This leads

to a further increase in CDK/cyclin level, since cyclin degradation is slowed down after

Cdh1 got inactivated. This increased CDK/cyclin activity can induce DNA replication,

thus the cells enter into S-phase. This abrupt increase of CDK/cyclin activity is the

“Start” transition of the cell cycle. High population of active CDK/cyclin has also the

effect of causing the inactivation of the transcription factors for the starter kinases Cln’s,

which have already accomplished their role in the cell cycle (see the emptying bucket and

the small left drop in Figure “M”). CDK/cyclin also induces the synthesis of the Cdc14

protein (see the big right drop in Figure “M”). The active Cdc14 degrades CDK/cyclin

complexes and activates Cdh1 (lowering the lever back on the right side). As the CDK

activity reverts to low levels, the telophase completes and the cell divides. The synthesis

of the APC related protein Cdc14 stops as the activity of CDK is lost (see the spilling

bucket and the small right drop in Figure “early G1”). The newborn cells are back in G1

phase with low cyclin levels and the process can start again.

The result of the hysteric interaction between CDK/cyclin and Cdh1/APC can also be

visualized in the oscillatory behavior of the concentrations of the different proteins as the

time progresses in the cell cycle. Figure 4.3 shows the classical time courses of different

key regulators of the budding yeast cell cycle.

Figure 4.3: Idealized time course of the fluctuations in the activities of key regulator proteins during the

cell cycle.

The dynamical properties of a cell are implicit in the topology of the protein networks

that underlie cell physiology. Not only cyclin and CDK proteins are conserved among

eukaryotes, but most of the cell cycle regulator proteins as well as their interactions. In

this work we want to explain in more details the regulatory network of budding yeast.
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4.1.3 Saccharomyces cerevisiae regulatory network

The cell cycle regulatory system of budding yeast is most fully worked out in [30] and the

hypothetical molecular mechanism for regulating DNA synthesis, bud emergence, mitosis

and cell division is depicted in Figure 4.4.
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Figure 4.4: Regulatory network of cell cycle, adapted from [30]. In the diagram, Cln2 stands for Cln1,2, Clb5 for

Clb5,6, and Clb2 for Clb1,2. Moreover the kinase protein Cdc28 is not shown explicitly because it is always in excess and it

combines rapidly with the different cyclin partners as soon as they are synthesized. Newborn daughter cells must grow to

a critical size to have enough Cln3 and Bck2 to activate the transcription factors SBF and MBF, which induce synthesis of

Cln2 and Clb5 respectively. Cln2 is primarily responsible for bud emergence and Clb5 for initiating DNA synthesis. Clb5

activity is not immediately evident because in G1-phase cell is full of cyclin-dependent kinase inhibitors (CKI; namely, Sic1

and Cdc6). After the CKIs are phosphorylated by Cln2 and other active cyclin-dependent kinase complexes (collectively

denoted by CDKs), they are rapidly degraded by SCF, releasing Clb5 to do its job. A fourth class of cyclins, denoted Clb2,

are not involved in G1 because their transcription factor Mcm1 is inactive, their degradation pathway Cdh1/APC is active,

and their stoichiometric inhibitors CKI are abundant. CDKs active complexes remove CKI and inactivate Cdh1, allowing

Clb2 to accumulate after some delay, as it activates its own transcription factor, Mcm1. Clb2 turns off SBF and MBF.

As Clb2 drives the cell into mitosis, it also sets the stage for exit from mitosis by stimulating the synthesis of Cdc20 and

by phosphorylating components of the APC. Meanwhile, Cdc20/APC is kept inactive by the Mad2-dependent checkpoint

signal responsive to unattached chromosomes. When the replicated chromosomes are attached, active Cdc20/APC initiates

mitotic exit. First, it degrades Pds1, releasing Esp1, a protease involved in sister chromatid separation. It also degrades

Clb5 and partially Clb2, lowering their strenght on Cdh1 inactivation. In this model, Cdc20/APC promotes degradation of

a phosphatase (PPX) that has been keeping Net1 in its unphosphorylated form, which binds with Cdc14. As the attached

chromosomes are properly aligned on the metaphase spindle, Tem1 is activated, which in turn activates Cdc15. When

Net1 gets phosphorylated by Cdc15, it releases its hold on Cdc14. Cdc14 (a phosphatase) then does battle against the

cyclin-dependent kinases: activating Cdh1, stabilizing CKIs, and activating Swi5 (the transcription factor for CKIs). In

this manner, Cdc14 returns the cell to G1 phase (no cyclins, abundant CKIs, and active Cdh1)
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In general, in order to determine whether an hypothetic regulatory network is correct,

the classical approach is to convert the mechanism informally described by the wiring

diagram into a formal mathematical/computational model and to compare the results

of those models to the observed behavior of the chemical reaction system. If the re-

sults fit the observations, then the mechanism is provisionally confirmed (pending further

experimental investigations). If not, inconsistencies identify aspects of the mechanism

that require revision and further testing. Although a mechanism can be disproved if it

is inconsistent with well-established facts, it can never be proved correct, because new

observations may force modifications and additions. Hence, the hypothetical interaction

network presented in [30] and portrayed in Figure 4.4 cannot be considered “true” but it

is the most complete, validated and detailed model that reasonably approximates what is

going on inside yeast cells.

The wiring diagram in Figure 4.4 implies a set of dynamical relationships among its

components, a quite complex network with several intertwined feedback loops. A detailed

characterization of such a complex system can be achieved only by mathematical and

computational approaches that describe the temporal and spatial evolution of the system.

The type of equations/languages to be used depends on the biological questions under

consideration. For instance, genetic regulatory circuits might be modelled by differen-

tial equations or by Boolean networks. Spatial signalling might be modelled by partial

differential equations or by cellular automata. When small numbers of molecules are in-

volved, stochastic models must be used. And in the plethora of languages that support

stochastic simulations, the choice should be driven by the different user needs (i.e. an

easy/automatic translation from a language to another, a final model written in a stan-

dard language supported by many software tools, a final model that is easily composable

with other models, fast simulations results, different post-processing of the simulation

results, . . . ). We refer the reader to Section 2.3 for a detailed discussion of the different

choices that have been made in the literature for modelling budding yeast cell cycle and

other biological systems, both with mathematical and computational approaches. Here

we just summarize the main analyses that have been done on this organism and that

inspire and guide the in-depth examination – presented in the rest of this chapter – that

we have done on this interesting case study.

As some data on the key regulator of cell cycle (CDK) were found by Nurse, Hartwell

and Hunt, theoreticians started to create models to understand how CDK can regulate cell

cycle events [79, 181, 186]. Most of these works focus on the basic properties of cell cycle

regulation. The two landmark papers by Katherine C. Chen and colleagues from the Tyson

lab stand out as the most influential mathematical models of cell cycle regulation [30, 31].
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These models are based on an extensive literature data collection on more than 100

budding yeast cell cycle mutants and the final model can simulate the findings of almost

all these experiments. A comprehensive website reports all these results, together with

detailed description of the model (http://mpf.biol.vt.edu/research/budding_yeast_

model/pp/). In 2002 Fredrick R. Cross and his group performed experiments following the

suggestions made in the early paper by Chen and colleagues and confirmed the predictions

([42]). In this groundbreaking paper Cross went much further and made an extensive

experimental test of various properties of the model while also performing some crucial

measurements to help further model development. Two years later the measurements and

corrections by Cross were implemented into a new extended version of the Chen model

[30]. The resulting model was tested in the deterministic framework against the behavior

of 131 mutants and marginally failed only on 11 of them. Considering the fact that many

cell cycle processes are driven by proteins which are present in low concentration [101],

the few inconsistencies between the model and experiments can be the result of the noise

acting on those regulatory proteins. Moreover intrinsic molecular fluctuations are also

probably partially responsible for the fluctuation in cell cycle properties like the size at

division or the length of the different phases of the process.

4.2 Irreversibility study

Mathematical models have been investigating the dynamics of the interactions that drive

the “Start” transition of the cell cycle (i.e. the abrupt increase of Cdk/CycB activity

after the inactivation of Cdh1) [31, 141]. It has been proposed that the positive feedback

loop that is the result of this antagonism between Cdk/CycB and Cdh1/APC can create

bistability and hysteresis in the system [31]. Experiments proved the existence of bista-

bility in the cell cycle of budding yeast cells [42], but the irreversibility of this transition

was never tested yet.

We decided to analyse this module by applying both stochastic simulations analysis in

BlenX and probabilistic model checking [38] on a simple budding yeast cell cycle model

[6]. Model checking allows one to state and verify relevant properties of a system. Algo-

rithms and software tools exist that take as inputs both the model M and a formula φ

(expressing, in temporal logic, the property that needs to be verified) and return either

a positive answer, if φ is satisfied by M (denoted M |= φ) or a negative one if that is

not the case (denoted M 6|= φ). The peculiarity of model checking is that verification

of φ against M is achieved through an exhaustive exploration of the model state space,

hence the outcome of model verification is exact, as opposed to the approximated results

obtained through model simulation. The obvious downside of model checking, is that,
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due to the complexity of many real systems, the resulting model dimension blows up to

the point that model checking becomes infeasible. So, we chose to rely on probabilitistic

model checking for studying the smaller model of the core of the cell cycle because the

quantification of the probability of the irreversibility of the “Start” transition can be done

in an exact way but since this approach cannot handle more complex models, we show

that analysis of a bigger BlenX model can give similar insights on the system (even if just

approximated).

The core mechanism that we investigated with the model checking approach is depicted

in Figure 4.5.

Figure 4.5: Antagonism between Cdk/CycB complex and the Cdh1/APC. Cdh1/APC (denoted

Y in equations (4.1-4.3)) induces the degradation of cyclin while Cdk/CycB (denoted X in equations (4.1-

4.3)) inactivated Cdh1/APC by phosphorylation. Increase in cell mass helps to concentrate Cdk/CycB

into the nucleus, where it acts on Cdh1/APC, thus following [142] we assume that increase in cell size

elevates Cdk/CycB’s efficiency to inactivate Cdh1/APC. The model is similar to the one shown in Section

3.2 apart from the fact that the activator protein here is considered constant. The parameter that is the

subject of this study (i.e. k4) is also shown in the picture.

As previously illustrated, the antagonistic interaction between Cdk/CycB and Cdh1/APC

stands at the core of cell cycle regulation. This switch makes the decisions on commitment

to start the cell cycle [30]. The wiring diagram of Figure 4.5 was turned into ODEs by

Novak and Tyson [142]. The dynamic of the real valued variables X and Y are described

by the following ordinary differential equations, taken from [142]:

dX

dt
= k1 − (k′2 + k′′2 · Y )X (4.1)

dY

dt
=

(k′3 + k′′3 · A)(1− Y )

J3 + (1− Y )
− k4 ·m ·X · Y

J4 + Y
(4.2)

dm

dt
= µ ·m

(
1− m

m∗

)
(4.3)
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Note that a unitary (constant) total concentration of Cdh1/APC complex is assumed,

thus (1− Y ) represents the inactive amount of Cdh1/APC. Furthermore, A indicates the

amount of the activator (Cdc20) protein which influences activation of Cdh1/APC. For

simplicity, in this model, we assume A constant. Finally m denotes the cell mass and its

dynamic behavior is driven by equation (4.3), where µ is the growing factor and m∗ is the

maximum level that the mass can reach.

In order to see the effect of k4 on the “Start” transition and to quantify the loss of

irreversibility that lowering the strength of this reaction causes, we decide use proba-

bilistic/stochastic model checking [89, 134]. Continuous Time Markov Chains are a well

established form of discrete-state stochastic processes largely used for modelling and anal-

ysis of many different types of systems. A CTMC model can be thought of as a graph

whose states correspond to variables’ value and whose transitions indicate the dynamic

of the modelled system. In a CTMC, transitions are labelled with real valued numbers,

representing the rate of an exponentially distributed delay (the time consumed by the

transition to take place). Once a CTMC model is developed then it can be analysed

in several manners. Classical steady-state and transient analysis, provides information

about the system evolution, respectively, in the long run (steady-state), or with respect

to a specific instant of time (transient analysis). If the model is too large, stochastic sim-

ulations can be applied to derive relevant statistics. For a detailed description of CTMC

models we refer the reader to [178].

Starting from ODEs (4.1-4.3) a CTMC model of the Cdk/CycB-Cdh1/APC module

has been derived and coded into the PRISM probabilistic model checker [110], a software

tool implementing different CTMC analysis. The coding into PRISM firstly requires

the discretization step obtained through the conversion mechanism of concentration into

molecular numbers similar to what we have done for coding the models in BlenX. Moreover,

after the conversion, in order to limit the state-space explosion of the CTMC model, the

initial values have been scaled by an order of magnitude, hence in the final model we have

Xinit = 0, Yinit = 42 (note that reaction rates need to be re-scaled accordingly)

Noise sensitive model. The CTMC model has been provided with means to keep

track of the noise level. Noise can be thought of as a fluctuation, within a given threshold,

around the current level of signal (i.e. the level of molecules). Keeping track of signal

noise allows one to account for “noise-free” variations in the level of molecules of a given

species1. For that purpose the CTMC model has been equipped with a parameter noise d

which can be set to the desired level of noise. As a result, a sequence of transitions in the

CTMC model is recorded as an actual increasing/decreasing path only when it consists of

1in fact noise fluctuations are not relevant for the sake of our analysis and should be disregarded.
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at least noise d consecutive increasing/decreasing transitions (see Figure 4.6). In practical

terms this is achieved by means of a specific coding in the PRISM language so that (noise-

free) monotonic trends for species X and Y can be straightforwardly captured by means

of temporal logic formulae such as (4.5) and (4.4).

Figure 4.6: Visual representation of noise-free oscillations of Cdk/CycB and Cdh1/APC. Only fluctuations

out of the coloured band are considered actual fluctuations and oscillations inside the band are considered

just noise.

The irreversibility nature of the interactions between Cdk/CycB and Cdh1/APC can be

formally expressed using the Continuous Stochastic Logic (CSL) [4, 5], that is a language

for stating properties referring to CTMC models. A full description of CSL formulae is out

of the scope of this work but the general idea is that the language allows us to express and

verify basic properties of a system like “after time t, the number of Cdk/CycB molecules is

below n until the cell mass is below m” (a more detailed description of CSL and references

can be found in Appendix A.3).

Irreversibility in the Cdk/CycB-Cdh1/APC module of the cell-cycle corresponds to the

monotonic trend of both X (Cdk/CycB) and Y (Cdh1/APC). In the initial state X is

low (X = 0) whereas Y is high (Y = 42), when the cell’s mass reaches a certain threshold

then Y gets inactivated thus X starts growing. We formally characterise monotonicity of

Y and X with the following CSL path formulae:

Probability of Monotonic increase of Cdk/CycB. ‘What is the probability that

the number of molecules of Cdk/CycB increases monotonically until the value v is reached?”

P=?[(increase X U (X = v)] (4.4)

Probability of Monotonic decrease of Cdh1/APC. “What is the probability

that the number of molecules of Cdh1/APC decreases monotonically until the value v
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is reached?”

P=?[(decreasing Y U (Y = v)] (4.5)

Verification of such formulae through the PRISM tool quantifies the likelihood of mono-

tonicity (hence irreversibility) to be maintained (for X and Y ) up until the value of v

(which can be made to vary in [0, 42]). Figure 4.7(a) and Figure 4.7(b) show the results

of model checking verification for formulae (4.5) and (4.4), respectively, as a function of

the reaction rate k4, which is one of the key parameters governing the interaction between

X and Y (see Figure 4.10). Generally speaking results depicted in Figure 4.7(a) and

Figure 4.7(b) show, as expected, that decreasing the influence of the Cdk/CycB dimer on

the inactivation of Cdh1/APC (i.e. lowering of the rate k4) decreases the likelihood of a

monotonic trend (thus of irreversibility) of both X and Y . Furthermore, by comparing

Figure 4.7(b) and Figure 4.7(a), we observe the existence of a slight asymmetry between

the monotonicity of Y and X, which is: it is more likely for X to span upwards the whole

interval [0, 42], than for Y to span downwards [42, 0].

(a) (b)

Figure 4.7: Monotonic increase of Cdk/CycB (decrease of Cdh1/APC) with cell mass growing form the

initial value of 50 up to 100.

In order to confirm the results obtained through probabilistic model checking we per-

formed stochastic simulations of a more detailed version of the cell cycle regulatory net-

work. By means of the BetaWB (see Chapter 3) we developed a model of the wild type

network [142] as depicted in Figure 4.10. For more details about this model (how we

coded it and which peculiarities it has) we refer the reader to Section 4.3. Here we just

want to illustrate the results connected to the irreversibility study and obtained from the

Multiple stochastic simulative Replications in Parallel (MRiP) that we perform on this

model.

MRiP approaches are frequently used to speed up simulations by working out inde-
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pendent replications of the same stochastic trajectory on multiple computers. Each run

is calculated starting from a seed chosen among a stream of pseudorandom numbers ob-

tained with the leap-frog technique [59] by splitting linear congruential generators. Such a

seed guarantees that the resulting trajectories are approximately uncorrelated. So doing,

more observations can be collected during a given time interval than running a single

replication on one computer within the same period of time [64, 76, 54].

We built 8 identical models except for the kinetic parameter k4, that accounts for the

inactivation of Cdh1/APC by Cdk/CycB and that we systematically decreased from 35

to 0, step 5. Therefore, to guarantee the trustworthiness and the statistical accuracy of

the following analyses, we ran a batch of 100 simulations for each new parameter value

to the number of 800 simulations. In Figure 4.8, we show three sample simulations with

decreasing k4 parameter. The simulations with the original set of parameters (Figure

4.8(a)) is reproducing the solutions of the original ODE model in [142], apart from the

stochastic noise. At a first glance, it is evident that even a small change of the parameter

makes less stable the supposed irreversible Cdh1 decreasing activity (curve P in each

graph). Such activity results in quick and sustained oscillations of high amplitude waves.

(a) (b) (c)

Figure 4.8: Sample simulations of the wild type model depicted in Figure 4.10. Each of the plots shows

3 curves: (P) Cdh1/APC, (Q) mass, (R) Cdk/CycB. All the simulations have been equally sampled and

then 2000 points (a point every 0.2 seconds) have been plotted. 4.8(a) plot corresponds to the original

model (k4 = 35), 4.8(b) plot comes from a model with k4 = 15 and 4.8(c) plot is related to a model

with k4 = 5.. Cell division event follows the rule illustrated for the model in Section 4.3: the mass value

is halved when the concentration of active Cdk/CycB falls below an assigned threshold (0.1, as in the

original model) after having raised above another threshold (here 0.2).

Moreover, Figure 4.8(c) shows that the more k4 is decreased, the less stable is the

phase transition, i.e. an increasing number of oscillations of the Cdh1 concentration are

present in each cell cycle.

In this context, in order to figure out how sensitive the irreversibility of the Cdh1/APC

inactivation is to the parameter of interest, we statistically inspected the 800 simulations
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results, counting the number of oscillations observed during a complete cycle. The results

depicted in Figure 4.9 show the percentage of cases with only one Cdh1/APC inactivation

per cell cycle. They show that the probability of an irreversible behavior is decreasing, as

the parameter is decreased.

Figure 4.9: Probability of a single Cdh1/APC peak between two cell divisions

Our results provide a quantitative measure for the irreversibility of the “Start” tran-

sition of the cell cycle, reached by probabilistic model checking of the Cdk/CycB -

Cdh1/APC core module of cell cycle regulation. We show that by weakening the strength

of the positive feedback loop (by reducing k4) the irreversibility gets lost. With stochastic

simulations of the budding yeast cell cycle model that includes also the auxiliary regula-

tors of this module, we show that indeed the above mentioned parameter variations can

perturb the irreversibility of the “Start” transition of the cell cycle.

4.3 Viability study

In this section we applied the semi-automatic procedure, explained in Section 3.2, that

allows us to translate an existing model written with ODEs into BlenX. The whole process

is applied to the budding yeast cell cycle model in [142], in order to show that the stochastic

simulations are, from one side, consistent with the results obtained by the solution of the

ODE system, but from the other side, the stochastic model is able to explain some peculiar

behavior of some mutants that cannot be captured by the deterministic one.

We will focus hereafter on the biochemical machinery that controls Cdks activity that

has been modeled with ODEs by Novak and Tyson (see [142], pag. 270), and that is

depicted in Figure 4.10.

In order to see the procedure of Section 3.2 in action, we do not report here the 8

equations composing the model in [142], but only the ODEs of two species that contain

all the basic features needed to show the translation in BlenX of the model (see equations
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Figure 4.10: Graphical representation of cell cycle engine. Solid lines link reactants to products, dashed

lines represent the mediation effect that some species have on reactions. Model taken from [142]

in Figure 4.11 below).

d|CDC20 IN |
dt

= k5p/α︸ ︷︷ ︸
synthesis

+
(k5s/α) · (α ·m · CycB)n

(J5)n + (α ·m · CycB)n︸ ︷︷ ︸
(induced) synthesis

− k6 · |CDC20 IN |︸ ︷︷ ︸
degradation

+

+
k8 · |CDC20 A|

J8 + α · |CDC20 A|︸ ︷︷ ︸
inactivation

−
k7 · α · |IEP | · |CDC20 IN |

J7 + α · |CDC20 IN |︸ ︷︷ ︸
activation

(4.6)

d|CDC20 A|
dt

=
k7 · α · |IEP | · |CDC20 IN |

J7 + α · |CDC20 IN |
−

k8 · |CDC20 A|
J8 + α · |CDC20 A|

− k6 · |CDC20 A| (4.7)

dm

dt
= µ ·m · (1−m/mstar) (4.8)

Figure 4.11: Equations for the activation/inactivation of the Cdc20 protein and the rate law for the

growing of the mass. |S| is the number of molecules of species S and the different ks (and Js) are

the deterministic kinetic parameters. The part of the model above includes the reference to a discrete

variable (CycB) that represents the activity of the dimer Cdk/CycB. CycB is calculated with an algebraic

expression which can be found in [142] with the complete set of equations and variables. The α conversion

factor has been calculated using the (average) volume of the budding yeast cell nucleus (which is assumed

to be V = 0.7043188 · 10−15, corresponding to roughly 1.67% of an initial average cell volume of 42fl).

The CDC20 IN species contains a positive term for the rate of its synthesis (k5p/α)

and a negative term for the rate of its degradation (k6 · |CDC20 IN |). The result of

the codification of the rate functions definition is in Figure 4.12(a).

The next step is the encoding of the structure of the model. We define an empty box

for the species CDC20 IN and then we add a new event that represents its synthesis and

a delete event that represents its degradation. The rates of the events are the functions
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Figure 4.12: BlenX code showing the result of the steps of the translation method described in Section

3.2 on the specific equations in Figure 4.11: synthesis/degradation (a) and activation/inactivation (c)

rate functions, synthesis/degradation (b) and activation/inactivation mechanism (d).

defined in Figure 4.12(a) and structure of the model is in Figure 4.12(b). The CDC20 IN

species contains a positive Michaelis-Menten term that is representing the inactivation of

the CDC20 A and a negative Michaelis-Menten term that is representing the activation

of the CDC20 IN . Coding this rate function terms similarly to the previous case, we

obtain the code in Figure 4.12(c). In the model we just have to add the box for the

CDC20 A species because we have already defined the box for the inactive species. Then

we add two events, one encoding the inactivation of the active Cdc20 and one encoding

the activation of the inactive Cdc20. Their rate are the ones in Figure 4.12(c) and the

code for this part of the model is in Figure 4.12(d). All the terms of the complete ODE

system can be seen as one of the previous cases, so even if they are driven by complex

kinetics (as the Hill function in the synthesis of CDC20 IN) they can be easily coded by

a new/delete/split event.

With the rules introduced so far we encode almost the whole set of ODEs from [142].

The only one left is ODE (4.8), which is not representing a chemical species but the

mass of the cell. It can be seen as a variable that has to be updated, following the

function in equation (4.8), with discrete time steps. With BlenX is possible to define

those kind of variables simply copying their ODE with the other rate functions, declaring

it as a var rather than a function. Also cell division is an event that is not explicitly
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coded in the ODE system, and it halves the mass value when the concentration of active

Cdk/CycB falls below an assigned threshold (0.1, as in the original model) after hav-

ing raised above another threshold (here 0.2). In BlenX we can simply add the event

“when(:mCycB→0.2,mCycB←0.1:)update(m,mass div);”, which tells the simulator to

trace the state of the variable mCycB and whenever this variable overcomes the 0.2

threshold and then goes back under the 0.1 threshold, the event that updates the value

of the mass with its halved value is executed. With this last rule we can complete the

translation of the model from ODE to BlenX.

Following [135], we compare the results provided by the BlenX model and the determin-

istic one for the wild type of budding yeast. The model simulation was performed with

BetaWB and the only difference among the runs of the model is the stochastic fluctuation

(Figure 4.13(a)-4.13(b)).
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Figure 4.13: Deterministic (4.13(a)) and stochastic (4.13(b)) results for the wild type model. (4.13(c),4.13(d)) Statistics

of mass at division and cell cycle time (respectively) on 20 runs of the stochastic model. The means of the stochastic values

are consistent with the results of the deterministic model (mean mad = 0.826989, mean cct = 146.8167); however deviation

from the mean values can be seen and, in particular for the mass at division value, the bell-shaped distribution unbalanced

on its right side is caused by some outlier cycles that divides with a bigger mass and are able to influence in the same

direction some of their following offspring cycles (cvmad = 3.88, skewnessmad = 3.07, cvcct = 7.51, skewnesscct = 0.037)

All the results and statistics deduced from the stochastic simulations are in agreement

with the deterministic model of those mutants (see Figure 4.13(c)-4.13(d)).

In order to show the insights that can be obtained with the stochastic model, we
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show results for the mutant obtained with the deletion of the destruction box of cyclin

Clb2 (which reduces its degradation rates), and with the deletion of cyclin Clb5 (which

reduces the overall CycB level). This model can be obtained changing just some specific

parameters of the original model. Experimental results show that this mutant is viable,

but only with a decreased growth rate [42]. Therefore we reduce the rate constant of

growth from the default value 0.005 min−1 to 0.0041 min−1. Both the deterministic and

the stochastic model results correctly show its viability. It is interesting to observe that

the deterministic model is able to fit the lethality of the mutation with growth rate 0.005

and its viability with growth rate 0.0041, but cannot predict the intermediate situations:

it is instead reasonable to expect a continuous transitions as the growth rate varies in the

interval [0.0041-0.005], with some mutant cells that have a limited survivability for values

of the growth rate inside the interval and a death probability increasing approaching the

lethal situation of 0.005.

(a) (b)

Figure 4.14: Stochastic run for a nutritional sensitive mutant (Clb2db∆ clb5∆). This peculiar mutant is viable only

under circumstances that slow down its growth rate. It is interesting to observe that the deterministic model is just able

to fit the lethality of the mutation in glucose (growth rate µ = 0.005), but actually, the transition from dead to viable for

the ODE model is at µ = 0.0041, and the model cannot predict any intermediate situation. From the plot of the stochastic

version of the model (with growth rate 0.0045) (Figure 4.14(a)) we can instead see that the cell was able to generate 2

offspring generations before losing the ability of surviving further, so intermediate behaviour can be identified and quantified

(4.14(b)). We conducted an in-silico experiment to evaluate the probability that the progeny of a single mutant cell would

be able to divide at least 10 times before dying (forming a small colony), with growth rate within the interval [0.0041-0.005].

Small colonies of mutants cells with growth rate in this interval have been experimen-

tally observed [42], so we are expecting that if a mutant is able to complete a sufficient

number of cells cycles before dying, a colony may develop, even if its overall growth would

be slow. We conducted an in-silico experiment to evaluate the probability that a single

mutant cell would be able to generate at least 10 offspring generations before dying, vary-

ing the growth rate within the interval [0.0041-0.005] (we ran 100 simulations for each

value). The results in Figure 4.14 clearly show that colonies of the mutant may exist for

values of the growth rate higher than the threshold which sets the upper limit for the

viability of the mutant in the ODE model. We can conclude that stochastic simulations

are important to check the partial viability of mutants at the border of life and death.
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4.4 Stochastic characterization of Chen model

In this section we show the statistics of the stochastic version of the model in [30] whose

biological behavior as already been explained in Section 4.1.3. The chemical reaction

network that has been translated into BlenX is the one depicted in Figure 4.4.

The whole set of ODEs relative to this reaction network can be translated into BlenX

just following the rules illustrated in the previous sections, but because of the size of the

model, this can lead to a model that it is difficult to maintain and possibly integrated

in a bigger model accounting for other regulatory mechanisms of the cell. This is the

reason why, to produce the code shown in Appendix A.1, we refined the initial model

using some more advanced BlenX features to code this biological network. In particular

we take advantage of the usage of templates (described in Section 3.2) and we code

specific internal behavior for different species so that intercommunications, conditional

and alternative execution of internal process can encode the specific properties of each

species (see Figure 4.15).

l e t CDC20 : bp roc = #(cdc20 degr , CDC20 ty ) , #(cdc20 out , CDC20 out ty ) ,

#h( cdc20 act , CDC20 ACT ty)

[ Cdc20 proc ] ;

l e t CDC20i : bp roc = #(cdc20 degr , CDC20I ty ) , #(cdc20 out , CDC20 out ty ) ,

#(cdc20 act , CDC20 ACT ty)

[ Cdc20 proc ] ;

l e t Cdc20 proc : pp roc = r e c e i v i n g d e g r s i g n a l<<cdc20 degr>> |
spont degradat ion<<kd20>> |
s e l f a c t i v a t i o n | rep rec ? ( ) . s e l f a c t i v a t i o n |
s e nd d eg r s i g na l | rep rec2 ? ( ) . s e nd d eg r s i g na l |
a c t i v a t i o n by i e p | rep rec3 ? ( ) . a c t i v a t i o n by i e p ;

t emp l a t e spont degradat ion : pp roc <<r a t e k in ra t e>> = d i e ( r a t e ( k i n r a t e ) ) ;

t emp l a t e r e c e i v i n g d e g r s i g n a l : pp roc <<name channel>> = channel ? ( ) . d i e ;

l e t s e nd d eg r s i g na l : pp roc =

i f ( cdc20 degr , CDC20 ty ) then cdc20 out ! ( ) . r ec2 ! ( ) . n i l end i f ;

l e t s e l f a c t i v a t i o n : pp roc = i f ( cdc20 degr , CDC20I ty ) then

ch ( r a t e ( ka20 p ) , cdc20 degr , CDC20 ty ) . h ide ( cdc20 act ) . r e c ! ( ) . n i l end i f ;

l e t a c t i v a t i o n by i e p : pp roc = i f ( cdc20 degr , CDC20I ty ) then

cdc20 act ? ( ) . ch ( cdc20 degr , CDC20 ty ) . h ide ( cdc20 act ) . r ec3 ! ( ) . n i l end i f ;

Figure 4.15: BlenX code showing the usage of templates that allow the model to be more easily integrated in a compo-

sitional manner. In particular the three extracts above show how to code different behaviors that the Cdc20 protein can

perform.

In the first part, the definitions of the two states of the Cdc20 protein (i.e. active (CDC20 ) and inactive (CDC20i)) are

shown. The two boxes differs only with respect to the state of the interfaces, while the internal behavior is coded by the

same bio-process (Cdc20 proc) that, in its own definition, will differentiate the behavior of the species according to state of

the box. The second part contains the definition of the internal process of the protein. In particular the actions that it can

perform has been made available in parallel and, at each simulation step, one of those actions will be chosen (and fired)

according to their rate in the context of the SSA algorithm. (Caption continued on the next page)
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The final BlenX code of the model can be found in Appendix A.1 and it can be used

as input of the BetaWB simulator to reproduce the results presented in this work.

At the web site [19], full details about the deterministic model and the solutions of

the different mutants can be found. Here the authors present a set of 131 mutants built

using exactly the same equations and parameter values of the wild type except for those

parameter changes that are dictated by the nature of the mutation. Some of those mutants

are viable, while some others are not. The viability of a cycle is not determined just by the

fact that all the proteins are showing an oscillatory behavior in time, but also the timing

of the different events that characterize the passage between a phase and the following

one must be taken carefully into account. In order to be able to tell if the BlenX output

are reproducing viable/inviable cycles, we produced a small program that analyzes the

stochastic traces produced by the BetaWB simulator and tell, according to the rules in

[146, 2], if a cycle has to be considered alive or not and (if not) what is the reason/stage

of its death. The logical rules implemented are illustrated in Figure 4.16.

We performed multiple stochastic simulations in parallel for the wild type parameter

setting of the model: in Figure 4.17 we show some of the statistics that has been deduced

from the output of these simulations.

The oscillations are consistent with the results of the solution of the ODEs with an

evident effect of the noise on the variance of the different properties of the cell cycle.

We performed a complete study (similar to the one described above for the wild type

model) for all the mutants listed on the web site [19]. The results for all the viable

Figure 4.15: (continued) The behavior that the protein can perfom are:

a) waiting on one of its own channel interfaces (cdc20 degr) for signal of degradation (implemented by the receiv-

ing degr signal bio-process – whose definition is in the bottom part of the figure – that just waits for a signal on a channel

passed as parameter and then performs the die action that deletes the box from the system);

b) start a spontaneous degradation at rate kd20 (implemened by the spont degradation bio-process – whose definition is in

the bottom part of the figure – that just performs a die action with the rate set as a parameter);

c) the self activation process (made always available to the box by the replication process guarded by the input/output

on the rec channel) which is responsible for changing the states of the interfaces from the inactive to the active one if the

initial state is inactive (the first if clause) and at rate ka20 p;

d) the send degr signal process (made always available to the box by the replication process guarded by the input/output

on the rec2 channel) which is responsible for sending to other species in the system (not shown in the figure) degradation

signal only if the state of the current box is active (the first if clause in the definition of the process);

e) the activation by iep process (made always available to the box by the replication process guarded by the input/output

on the rec3 channel) which is responsible for changing the states of the interfaces from the inactive to the active one if the

initial state is inactive (the first if clause) and after an interaction on the channel cdc20 act, which is a communication

channel used between CDC20 boxes and IEP ones (not shown in the figure);

Note that in the actual “.prog” file, the three code-extracts above should be written in the opposite order because the

definition of the processes have to preceed its usage. However, for more clear reasoning and explanation, here they are listed

the other way round.
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(a)

(b)

Figure 4.16: (4.16(a)) The five stages of the cell cycle, separated by the events described in the rules of

viability of [146]. The up (down) arrow in the condition of the triggers (lightning) identifies a rise (drop)

of the indicated quantity above (below) the threshold level on the right. The four biological phases of the

cell cycle are indicated below the stages. (4.16(b)) Sequence of rules that determines the different arrest

type of unviable cell cycles. The yellow diamond shapes represent condition checked at each time point,

the green rectangles represent changes of state and the red rounded boxes record the error condition that

classify the kind of unviability of the cycle currently under investigation.

mutants are showed in Tables 4.1 (and summarized in Figure 4.18): obviously statistics

about cell cycle time, mass at division, etc. are meaningful only for viable mutants, so for

all the unviable ones we report (in Figure 4.19) the stage/reason of their death (always

comparing the deterministic data with our stochastic simulation results; the deterministic

data about all the mutants are reported in Appendix A.4 for reference).
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Figure 4.17: Statistics on different properties of the stochastic version of complete model of the budding yeast cell cycle.

(4.17(a)) Visualization of the output of a BlenX simulation of the model in Appendix A.1. The time series plot is produced

using the BetaPlotter tool, belonging to the CoSBiLab platform. The typical oscillatory behavior of the system can be

easily seen together with the stochastic noise affecting the system. (4.17(b)) Solution of the original deterministic model.

Only some species are reproduced just to show the classical oscillatory behavior of the whole system. (4.17(c)) Bifurcation

diagram with some stochastic cell cycle trajectories. We plot the locus of Clb2 values (parametric in time) versus the

increasing value of the mass in time. The abrupt jump from left to right indicates a cell division event. (4.17(d), 4.17(e),

4.17(f)) Statistics of mass at division, cell cycle time and length of G1 phase (respectively) on 100 runs of the stochastic

model, following the daughter cell. Each simulation run reproduce about 150 complete cycles. The means of each collection

of stochastic values are consistent with the results of the deterministic model (mean mad = 2.514964, mean cct = 101.2306,

mean lg1 = 35.61656). Deviation from the mean values can be easily seen from the histograms and quantification of the

spread of these distributions can be found in Table 4.1.
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(a)

(b)

Figure 4.18: For all the viable mutants, a comparison of ODE values for mass at division (mad) and

length of G1 (lg1) (taken from [19]) with the mean value of the same quantities calculated from the

stochastic simulation runs of all the viable mutants (the numbers next to each point is referring to the

“ind”ex of the specific mutant according to the list in Table 4.1). The general accordance between the

two approaches can be seen in the overall trend of the value to be close to the 1:1 line. The red mutants

are the ones for which the viability check module has been turned off (see text and Table 4.1 caption for

discussions and further details).
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Figure 4.19: For all the inviable mutants, a comparison of the arrest/error type deduced from the deter-

ministic solution of the model (see [146]) and stochastic runs of the same parameter sets. On the x-axis

a numeric identifier is associated with each mutant (see Appendix A.4 for associating the number with

the mutant they refer to). There are some discrepancies between the deterministic classification of the

inviable mutants and the stochastic ones. Most of them are due to the fact that in the deterministic case,

no justification of the cause/stage of death is recorded in [146]. Other inconsistencies between the results

of the two approaches can be ascribed to the sensitivity of some peculiar mutants to the threshold of the

viability check module. See text for details.

As we can see in Table 4.1 there are some mutants whose stochastic behavior nicely

resemble that of their deterministic counterpart, while some others show some peculiar

statistics. We can identify two kind of inconsistencies:

1. (with respect to the corresponding wild type parameter set) some mutants show a

lower number of viable cycles on which the statistics has been taken;

2. (with respect to the deterministic solution) some mutant seems to be so delicate that

the viability rules used in the general case consider unviable all the simulated cycles

so, in order to have some statistics, the viability check module has been turned off
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for those mutants (the underlined values in the tables above).

Both type of inconsistencies are due to the application of the viability check rules

(Figure 4.16(b)) on the collected simulated cycles: however, if the difference in the number

of collected cycles between a specific mutant and its corresponding wild type parameter

set is in the order of a few hundreds, this is just the consequence of the fact that a slightly

greater (smaller) cell cycle time can result in a lower (higher) total number of cycles (in

a fixed simulation time). If the difference in the number of viable cycles, instead, is more

than a few hundreds, this implies that the considered mutant is not completely viable

and this is a signal that the mutant needs a more careful study because the effect of the

stochastic noise is not negligible (so, for example, a quantification of its unviability can

be done on its simulation results). As an extreme case of this situation, stands the second

inconsistency described above: if the number of “supposed to be” viable cycle is zero this

means that the mutant is quite peculiar and/or it needs different rules for defining its

viability (see Figure 4.20 for an example where the threshold level should be relaxed in

order to take into consideration the noise affecting the system).

Figure 4.20: A simulation of cln1D cln2D cln3D GAL CLN3 mutant (Mass and Esp1 axis on the right, expressed

in concentration; Cdc20 and Clb2 axis on the left, expressed in number of molecules). This mutant is one of the

peculiar ones in Table 4.1 for which the viability check has to been disabled in order to be able to obtain meaningful

statistics. As we can see from the top plot, the mutant seems to be oscillating and dividing; however the viability

rule of “ESP1 rises above 0.1 before division” has not been fulfilled in the cycle depicted in the bottom row, so

the division happens when the stage of the cycle is still “aligned” and not yet separated, so this cycle (and all the

following ones) should be considered inviable.
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A careful study of all those mutants is an interesting future development of this work,

because these results confirm the importance of considering the effect of the noise on this

system when mutants at the border of life and death are analyzed. As we will see in the

next section, there is a further interesting study that can be done through the stochastic

framework and that can reveal characteristics of some mutants that cannot be seen by

the deterministic framework.

4.5 Stochastic pedigree analysis of Chen model

As we saw in the previous section, analysing a stochastic model of the budding yeast cell

cycle can reveal interesting properties of the system that are more in accordance with

experimental measures with respect to the conclusions that can be drawn from determin-

istic studies. However the statistics presented in the previous section are collected from

batch of single simulation runs, starting from the same initial conditions: this means that

each cycle in a run is correlated to the previous one because its initial state is uniquely

determined by the state of the previous cycle in the moment when the event of divi-

sion happens. So putting together all the single cycles from all the simulation runs and

considering them as independent sample cycles from a population is not exactly correct.

However following one initial cell long enough in its continuous growth/division can re-

semble the population trend (because, due to the robustness of the biological process, the

effect of the initial conditions are lost after some transient cycles).

In order to do proper statistics on the system under consideration and because of the

fact that recent advances in experimental techniques allow us to have data about single

cell measurements [28, 29, 40], we decided to implement a framework in which it is possi-

ble to follow the development of a single cell and its own offspring. So what we are going

to present in this section is a framework that we called spPeAnBY: Stochastic Parallel

Pedigree Analysis (for Budding Yeast).

The division of a budding yeast is asymmetrical, giving two cells of different sizes [125]:

this happens because at the “Start” transition of the cell cycle, a bud emerges from the

mother cell, and subsequent cytoplasmic growth is directed primarily to the bud. S and

M phases of the cycle are completed before the bud grows as large as its progenitor; thus

cell separation produces a large mother cell and a small daughter cell.

The basic idea behind spPeAnBY is to be able to run a simulation of a single cell

cycle (from an initial model), then – after the first division event – to apply different

division rules for having mother and daughter cell (models), to run (possibly in parallel)

the simulations for both models and, at their first division, start again the process (up
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to a fixed number of generations). This allows the user to end up with a complete and

detailed characterization of the growth of a specific initial cell, in the same way as it is

happening when, in a wet-lab, the experimentalist is following the growth of a colony of

cells starting from a single cell (see Figure 4.21). Indeed when yeast cells bud, a ring of

chitin builds up at the bud isthmus. This chitin ring remains on the parent cell after the

bud (new born daghter cell) has separated from the parent, and it is then termed “bud

scar”. Bud scars can be visualized by fluorescence microscopy: it is therefore possible to

follow each cell in its growth and division history and to ascertain its age in term of how

many cycles it has passed through from the number of bud scars it possesses.

D D

D M D

D D

M M

Figure 4.21: A cell growing and dividing for three generations on a Petri dish (top) and, in parallel, on

different cores of a cluster of computer (bottom). The color codifies the link of each cell to its parents:

the initial green cells duplicates and generates a mother (green-red) and a daughter (green-blue) cells;

the following generation uses similar color-patterns.

4.5.1 spPeAnBYarchitecture

The workflow that spPeAnBYimplements to simulate in silico the study described above

is depicted in Figure 4.22: the initial input model files (in our work the three BlenX files,

.prog, .types and .func) are put in a queue that is continuously inspected by the “Cluster

manager” (C). It takes these files and uses them to start the BlenX simulations, invoking

the “BetaWB Simulator” (S) on them. As soon as the simulations are finished, the cluster

75



4.5. STOCHASTIC PEDIGREE ANALYSIS CHAPTER 4. BUDDING YEAST CELL CYCLE

manager puts the output of the simulations in another queue that is continuously inspected

by the “Generator of offspring” module (G). This module is performing a different kind of

analysis on the simulation outputs and, according to the result of some checks, it generates

the model files for the next generations. In our case, the checks are of two kinds: is the

just finished cycle viable (according to the rules listed in section 4.4)? if the answer

is yes, then its ending conditions are used, by the “Division” module (D), to produce

(according to some rules explained in the next section) the new .func files containing the

parameters (and initial conditions) of the mother and daughter cell model: the old .prog

and .types are put again in the input queue together with the new .func files, so that the

cluster manager can take them and restart the whole process. If the cycle is not viable,

its offspring is not added to the main input queue, and this will result in a terminated

branch of the pedigree tree that the whole procedure is producing (see Figures 4.23).

The other terminating condition of the G module happens when the maximum number

of generations requested by the user is reached.

SIMULATIONS

INPUT FILES

C G

model

simulation
output

S

daughter cell model

initial model

simulation
output

VIABLE?

MAXGEN?

D

mother cell model

NO

NO

Figure 4.22: spPeAnBYarchitecture. See text for details.

Before going ahead showing the results obtained by spPeAnBYon the chosen case study,

we want to point out that the implemented framework is pretty general and it can be

applied to any system whose main characteristic is to start as a single entity and, after a

while, for some reasons, with some specific rules, generates (possibly many) indipendent

offspring. In this work it has been specialized on stochastic simulations of the Chen

model of budding yeast implemented in BlenX but, thanks to the architecture of the

whole project, it can be easily adapted to other biological systems.
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4.5.2 spPeAnBYin action

One of the main reasons behind the need for a detailed pedigree analysis of budding yeast

cell cycle is its primary characteristic of having an unequal division of the content of the

cell, when the separation of the mother and the daughter cells occurs. This asymmetrical

divison has been experimentally verified since the early 80s by Lord and Wheals [125], who

tested this feature by bud scar analyses of cultures of Saccharomyces cerevisiae growing

at constant temperature at 19 different rates (obtained by altering the carbon source).

With these analyses the authors conclude that daughter cycle time, parent cycle time,

and the budded phase are all linearly related to the growth rate and they converge to

equality (symmetrical division) at growth rate equal to 65 min.

The physiology behind the asymmetrical division (as explained in [31]) is the following:

when a cell cycle starts, a bud emerges from the mother cell so the cytoplasmic growth

is directed primarily to the bud. S and M phases of the current cell are completed before

the bud grows as large as its progenitor: so cell separation produces a large mother cell

and a small daughter cell. Shortly after division, the mother cell produces a new bud, but

the daughter cell enters an extended G1 phase, during which it has to grow to a critical

size before being able to produce a bud of its own. As the experiments by Lord and

colleagues show, the whole process is quite sensitive to growth rate: at the fastest growth

rates, division is almost symmetrical, as growth rate is decreased, cell division becomes

increasingly asymmetrical.

This informal description of the process has been encoded in the Chen model ([30])

with the following rule for calculating the new mass at division: defining f as the fraction

of mass given to the daughter at cell division, they choose f to give the observed daughter

cycle time (D) at any particular growth rate (µ = 0.693/Td where Td is the mass doubling

time). From the assumption that cells grow exponentially, (mother size at division) =

(daughter size at birth)·eµ·D, so f = (daughter size at birth)/(mother size at division) =

eµ·D. By using the empirical formula for daughter cycle time, D = 1.48 · Td − 32 ([125],

Table 2) to calculate f , the model fits the data for D as a function of Td. With the above

values of f , it is enough to set (new mass) = f · (mass at cell separation) in order to follow

the behavior of the daughter cell, and the (new mass) = (1− f)· (mass at cell separation)

in order to follow the behavior of the mother cell.

In our BlenX model, for the analysis presented in the previous section, we used this

same approach, following the simulations of the daughter cell. However, in the pedigree

analysis we are allowed to follow both mother and daughter cells and, moreover, we applied

the f function not only to the value of the mass, but also to the level of all the proteins

present at the moment of division in the cell: in this way we are accurately modelling the

split of the whole content of the cell.
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In the first version of the spPeAnBY (used to produce the plots in Figure 4.23 and the

following statistics in Figure 4.26-4.27) the f function is applied in a deterministic way.

However, the framework of spPeAnBY is easily extendable to allow the addition of different

kinds of extrinsic noise on any of the following parts of the model: species concentration

level, initial mass, growth rate, other parameters – in a dependent or independent way –

see Chapter 7 for some discussions about those future developement.

In the rest of this section, we will show some interesting analyses that have been

performed on the output generated by spPeAnBYon the Chen model.

(a) (b) (c)

Figure 4.23: Pedigree analysis of the stochastic version of the Chen model, with parameter set as wild type in glucose

(4.23(a)) and wild type in galactose (4.23(b)). The plots generated from the simulations are comparable with the exper-

imental phylogenies (4.23(c)) showing the budded/unbudded periods for all descendents of a founder cell as the ones in

[28].

Figure 4.24: An example of an incomplete pedigree tree. The black dots indicate that the simulation of that cycle was

considered inviable and, due to that, all its offspring have been neither generated nor simulated. When spPeAnBY completes

the simulations of the desired number of generations for a specific mutant, statistics about the probability of survival (i.e.

the number of healthy cycle versus the dead ones) can be computed and compared with similar experimental measures.
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Figure 4.25: Statistics on the output of the pedigree analysis of the stochastic version of the Chen model. Mass

at division and cell cycle time statistics are shown collecting data from all the available cycles (top row), just for

daughter cells (central row) and just for the mother cells (bottom row): the asymmetrical behavior of the two

branches of the pedigree tree can be easily seen in the double gaussian distribution of cell cycle time, while it is

less evident (even if present) in the statistics about the mass.
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Figure 4.26: Histograms of the genealogical classification of a colony of budding yeast cells growing in

glucose media. The data have been obtained cutting the pedigree tree in Figure 4.23(a) at random

consecutive time instants. The expected distribution of daugthers (D) and mother (M) of generation 01,

. . . , 09 has been found.

Figure 4.27: Histograms of the synchronicity of a colony of budding yeast cells growing in glucose media.

The data have been obtained cutting the pedigree tree in Figure 4.23(a) at random consecutive time

instants and measuring the percentage of advance in the cell cycle (where 0 and 100 represent the division

event). The asynchronicity of the colony can be seen by the fact that the distribution of the frequency

of the number of cells at the different stages is approaching the ideal age distribution (the dashed line in

each plot).
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4.6 Some concluding considerations

Let us conclude this part of the thesis summarizing the analysis and the results that have

been carried out on the specific case study of budding yeast cell cycle.

The first result that we were able to obtain is a quantification of the probability that

the “Start” transition of the cell cycle is irreversible, a property that has never been

tested before. We showed that by weakening the strength of the positive feedback loop

(by reducing a specific parameter of the model) the irreversibility gets lost. With stochas-

tic simulations of the budding yeast cell cycle model we showed that indeed the above

mentioned parameter variations can perturb the irreversibility of the “Start” transition

of the cell cycle.

The second result is obtained through the application of the semi-automatic procedure,

explained in Section 3.2, that allows us to translate an existing model written with ODE

into BlenX. The whole process have been applied to a budding yeast cell cycle model

and we were able to show that, in the wild type case, the stochastic simulations are

consistent with the results obtained by the solution of the ODE system using the same

parameter set, but the stochastic model is also able to explain peculiar behaviour of

some mutants that present viability issues. We chose to analyse a nutritionally sensitive

mutant (Clb2db∆ clb5∆) for which experimental results show that it is viable only with a

decreased growth rate. Both the deterministic and the stochastic model results correctly

show its viability at a low growth rate, but it is interesting to observe that the deterministic

model cannot predict the intermediate situations between a high growth rate (modelling

a growth medium which is lethal for the mutant) and another growth rate modelling a

medium which allows it to be completely viable. It is instead reasonable to expect a

continuous transition as the growth rate varies in the interval, with some mutant cells

that have a limited survivability for values of the growth rate inside the interval and a

death probability increasing approaching the lethal situation. This was indeed the result

that we obtained studying the stochastic simulations of the BlenX model of this mutant.

The third result presented in the previous chapter is a full characterization of the

most complete model of the budding yeast cell cycle available [30]. With this analysis

we wanted to acquire, in the stochastic framework, the detailed knowledge about this

system that has been made available through the study in the deterministic framework.

In particular we characterized the set of 131 mutants that can be found in [19]. Some of

those mutants are viable, while some others are not, so beyond the standard stochastic

simulation runs, we implemented a program that analyzes the stochastic traces produced

by the BetaWB simulator and it is able to tell, according to the rules in [146, 2], if a cycle

has to be considered alive or not and (if not) what is the reason/stage of its death. This
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kind of analysis allow us to identify some delicate mutants that may need more careful

studies both with in-silico and in-vitro experiments.

The final result that we obtained was motivated by the consideration that even if

analysing a stochastic simulations of a model can reveal interesting properties of the

system that are more in accordance with experimental measures with respect to the con-

clusions that can be drawn from deterministic studies, the statistics collected from batch

of single simulation runs, starting from the same initial conditions can be inadequate. In

particular this consideration it is due to the fact that each cycle in a run is correlated

to the previous one because its initial state is univocally determined by the state of the

previous cycle. So putting together all the single cycles from all the simulation runs and

considering them as independent sample cycles from a population is not exactly correct.

So in order to do proper statistics on the system under consideration we implemented a

framework in which it is possible to follow the development of a single cell and its own

offspring. Using this framework we were able to create pedigree trees of simulation runs

where each branch represents the stochastic trace of a single cycle. Analysis of these pedi-

gree trees resemble the kind of results that recent advances in experimental techniques

allow us to obtain about a single cell of budding yeast.
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Part II

The inference framework





Chapter 5

KInfer: a new tool for parameter

estimation of biochemical systems

The construction of a model consists of two tasks: 1. deciding on the model structure

and 2. estimating the involved parameters values. The previous chapters detailed some

approaches for the former issue, while the following chapters are focused on the key step

of parameter estimation, assuming the structure of the model as given.

Parameter estimation (also known as model calibration) from experimental data is

a bottleneck for a major breakthrough in computational systems biology because inter-

and intra-cellular processes require dynamic models, that contain the rate constants of

the biochemical reactions. However the kinetic rate constants governing the dynamical

behavior of the system in time are frequently not accessible directly through experiments,

therefore methods that estimate rate constants with the maximum precision and accuracy

are needed. Parameter inference aims to find the parameters of the model which give the

best fit to a set of experimental data. In this chapter we present a method for param-

eter estimation based on a probabilistic, generative model of the variations in reactant

concentrations.

The overall workflow of the proposed strategy can be summarized as follows: we take

the observed time series of concentrations for all the reactant species defining the model

under consideration and we gather them in N state vectors X1, . . . ,XN . Then, the state

vectors and the structure of the model written following the general mass action formalism

are used to define a probability density function of the observed increments/decrements

for all the species in the system: the function is expressed in terms of the unknown kinetic

constants so this likelihood for the observed increments/decrements can be optimized with

respect to the rate coefficients of the biochemical network under consideration.
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5.1 The model for inference

Consider N reactant species, S1, S2, . . . , SN , with concentrations X1, X2, . . . , XN , that

evolve according to a system of rate equations

dXi

dt
= fi(X

(i)(t); θi) (5.1)

where θi (i = 1, 2, . . . , N) is the vector of the rate coefficients, which are present in the

expression of the function fi. X(i) is the vector of concentrations of chemicals that are

present in the expression of the function fi for the species i. We wish to estimate the set

of parameters Θ = ∪θi (i = 1, 2, . . . , N), whose element θi is the set of rate coefficients ap-

pearing in the rate equations of i-th species (therefore θ1 = {θ11, θ12, . . . , θ1N1}, . . . , θN =

{θN1, θN2, . . . , θNNN}).

According to the law of mass action, the functions fi have the general form:

fi(X
(i)(t); θi) = θi1

∏
w∈S1

Xαw
w + · · ·+ θiNi

∏
w∈SNi

Xαw
w =

Ni∑
h=1

(
θih

∏
w∈Sh

Xαw
w

)

where αw ∈ R, and Ni is the number of parameter in the fi rate equation. The rate

equations in (5.1) form the so-called Generalized Mass Action law [126].

We assume that we have a number M of concentration measurements for each con-

sidered species. We also assume that we have noisy observations X̂i = Xi + ε at times

t0, . . . , tM , where ε ∼ N (0, σ2) is a Gaussian noise term with mean zero and variance

σ. With this choice we are assuming that the concentration measurements are not sig-

nificantly affected by systematic errors, but by uncontrolled random errors and that an

error is equally likely to occur in either positive or negative direction with respect to the

symmetry axis of the distribution.

Approximating the rate equation (5.1) as a finite difference equation between the ob-

servation times, we have:

Xi(tk) = Xi(tk−1) + (tk − tk−1) · fi(X(i)(tk−1); θi) (5.2)

where k = 1, . . . ,M . In Eq. (5.2) the rate equation is viewed as a model of incre-

ments/decrements of reactant concentrations; i.e., given a value of the variables at time

tk−1, the model can be used to predict the value at the next time point tk. Incre-

ments/decrements between different time points are conditionally independent by the

Markov nature of the model (5.2). Therefore, given the Gaussian model for the noise, it

is possible to estimate the probability to observe the value X̂i(tk) given the model at time
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tk−1 (Xi(tk−1)) and the set of parameters θi, as:

p
(
X̂i(tk−1)|Xi(tk−1)

)
= N

(
Xi(tk−1) + (tk − tk−1) · fi(Xi(tk−1, θi), σ

2
)

(5.3)

We then also have that the true value of Xi(tk) is normally distributed around the

observed value X̂i(tk), so that

p
(
Xi(tk−1)|X̂i(tk−1))

)
= N

(
X̂i(tk−1), σ2

)
=

1√
2πσ

exp
[
− (Xi(tk−1)− X̂i(tk−1))2

2σ2

]
(5.4)

Therefore, the probability to observe a variation Di(tk) = Xi(tk) −Xi(tk−1) for the con-

centration of the i-th species between the time tk−1 and tk, given the parameter vector θi,

is

p(Di(tk)|θi, σ) = N
(
E
[
fi(X

(i)(tk−1), θi)
]
, 2σ2

)
(5.5)

and

E
[
fi(X

(i)(tk−1, θi))
]

=

∫
Ω

X(i)

fi(X
(i)(tk−1), θi)

Ki∏
i=1

[
pi

(
Xi(tk−1)|X̂i(tk−1)

)]
dX(i) (5.6)

where ΩX(i) is the sample space of X(i), and Ki is the number of chemical species in

the expression for fi. Note that we decide to consider the expectation value of the rate

functions (and not the value of the fis) because we want to mediate the effects of the

prensence of random noise on the actual value of the rate functions at each time-point.

While the increments/decrements are conditionally independent given the starting

point Xi (tk), the random variables Di(tk) are not independent of each other. Intuitively,

if Xi(tk) happens to be below its expected value because of random fluctuations, then the

following increment Di(tk+1) can be expected to be bigger as a result, while the previous

one Di(tk) will be smaller. A simple calculation allows us to obtain the covariance matrix

of the vector of increments for the i-th species. This is a banded matrix Ci ≡ C = Cov(Di)

with all entries zero except for the diagonal elements given by

E
[
D2
i (tk)− E[D2

i (tk)]
]

= 2σ2

and a non-zero band above and below the diagonal given by

E
[(
Di(tk)− E[Di(tk)]

)(
Di(tk−1)− E[Di(tk−1)]

)]
= −σ2.

The likelihood for the observed increments/decrements therefore will be

p(D|Θ) =
N∏
i=1

N (Di|mi(Θ),C) =

(
1√

2π det(C)

)N
e
∑N
i=1−

1
2

(Di−mi)
TC−1(Di−mi) (5.7)
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where D = {D1, . . . ,DN}, Di = Di(t1), Di(t2), . . . Di(tM) (i = 1, 2, . . . , N), and mi(tk−1) ≡
E
[
fi(X(tk−1), θi)

]
.

Eq. (5.7) can be optimized with respect to the parameters Θ = (θ1, θ2, . . . , θN) of

the model to yield estimates of the parameters themselves and of the noise level. The

chief numerical problem of this approach is the computation of the expectations of the

rate functions given by equation (5.6). Non-integer values of the coefficients α can make

estimating the integral analytically difficult. Hence we use an approximate method in

which the Gaussian noise is replaced by an approximate uniform (white) noise, with the

amplitude of the uniform noise being obtained as a sample from the Gaussian cumulative

distribution function. At the first order, for small σ, we can approximate the Gaus-

sian with zero mean and variance σ with an uniform distribution defined on the interval

[−
√

2πσ
4
,
√

2πσ
4

], so that

Ki∏
i=1

pi =

Ki∏
i=1

χi (5.8)

where

χi(Xi) =

{
2√
2πσ

if −
√

2πσ
4
≤ Xi ≤

√
2πσ
4

0 otherwise.

This approximation makes the calculation of the expectation value of the rate equation

(Eq. (5.6)) simpler and reduces the computational time of the procedure. Moreover,

experiments reported in [120] demonstrate that it does not influence the accuracy of the

parameter estimates until σ is less that 30% of the concentration measurement.

Substituting Eq. (5.8) in Eq. (5.6) gives

E[fi(X
(i)(tk−1), θ)] =

(
2√
2πσ

)Ki ∫ X̂+
√
2πσ
4

X̂−
√
2πσ
4

fi(X
(i)(tk−1), θi)dX

(i) (5.9)

Now, substituting Eq. (5.1) in Eq. (5.9) leads to

E[fi(X
(i)(tk−1), θi)] =

(
2√
2πσ

)Ki{ Ni∑
h=1

θih

[(√
2πσ

2

)#(S−Sh)

×

×
∏
w∈Sh

1

αw + 1

((
X̂w +

√
2πσ

4

)αw+1

−
(
X̂w −

√
2πσ

4

)αw+1
)]}

(5.10)

where S is the set containing the indexes referring to all the Ki species appearing in fi,
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and αw 6= −1. In case some orders are equal to -1 Eq. (5.10) takes the following form

E[fi(X
(i)(tk−1), θi)] =

(
2√
2πσ

)Ki Ni∑
h=1

θih

{(√
2πσ

2

)#(S−Sh)

×

[ ∏
w∈S′h

1
αw+1

((
X̂w +

√
2πσ
4

)αw+1

−
(
X̂w −

√
2πσ
4

)αw+1
)][ ∏

w∈S′′h

ln
X̂w +

√
2πσ
4

X̂w −
√

2πσ
4

]}
(5.11)

where S ′h is the set of indexes {h′1, h′2, . . . , h′s} such that αh′ 6= −1 ∀h′ ∈ S ′h, and S ′′h is the

set of indexes {h′′1, h′′2, . . . , h′′s} such that αh′′ = −1 ∀h′′ ∈ S ′′h.

If in the Eq. (5.7), mi is substituted with the expression (5.10) or (5.11), Eq. (5.7)

becomes more tractable and can be optimized with respect to the parameters Θ =

(θ1, θ2, . . . , θN) and σ. The values of the model’s parameters for which p(D|Θ) has a

maximum are the most likely values giving the observed kinetics.

5.1.1 Variance of the estimated parameters

To seek the parameter matrix Θ that maximizes the function in Eq. (5.7) is equivalent

to seeking the parameter matrix Θ that maximizes the log-likelihood function given by

ln p(D|Θ) = −N
2

(
ln(2π) ln(det (C))

)
− 1

2

N∑
i=1

(
(Di −mi)

TC−1(Di −mi)

)
(5.12)

Maximizing the log-likelihood function amounts to minimizing the last term of (5.12)

since the other terms do not depend on Θ. The estimation problem is therefore reformu-

lated as follows:

ΘMLE = arg minΘ

N∑
i=1

(
(Di −mi)

TC−1(Di −mi)

)
(5.13)

The maximum likelihood estimate ΘMLE has the following appealing asymptotic prop-

erties: it is asymptotically unbiased (i.e. E(ΘMLE) = Θ∗, where Θ∗ denotes the vector

of the true values of Θ), consistent, asymptotically efficient and asymptotically Gaussian

[26]. The latter implies that the distribution of the ΘMLE converges to a normal distri-

bution with a covariance matrix given by the Cramér-Rao bound that is also the inverse

of the Fisher information matrix

FΘMLE =
N∑
i=1

GT
i C−1Gi (5.14)

where Gi is called the sensitivity matrix.
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All the matrices Gi can be obtained from the sensitivity matrix S(t) evaluated at the

sampling instants. The sensitivity matrix is a N × P time-dependent matrix, where N

is the number of species and p is the length of the parameter vector Θ. It is defined as

follows

S(t) =
∂ ln m(t,Θ)

∂ ln Θ
=

(
1

m(t,Θ)

∂m(t,Θ)

∂Θ

)∣∣∣∣
Θ=ΘMLE

(5.15)

The Gi matrices are obtained from S(t) as

Gi = [si(t1)T , . . . , si(tM)T ]T

where si(tk), (k = 1, . . . ,M), is the i-th row of S(tk) (i = 1, . . . , N), where

S(tk)=



∂ lnm1(tk)
∂ ln θi1

. . . ∂ lnm1(tk)
∂ ln θiNi

. . . ∂ lnm1(tk)
∂ ln θNP

∂ lnm2(tk)
∂ ln θi1

. . . ∂ lnm2(tk)
∂ ln θiNi

. . . ∂ lnm2(tk)
∂ ln θNP

...
...

...
...

...
...

∂ lnmN (tk)
∂ ln θi1

. . . ∂ lnmN (tk)
∂ ln θiNi

. . . ∂ lnmN (tk)
∂ ln θNP

θNP


and thus

GT
i =



∂ lnmi(t1)
∂ ln θi1

∂ lnmi(t2)
∂ ln θi1

. . . ∂ lnmi(tM )
∂ ln θi1

...
...

...
...

∂ lnmi(t1)
∂ ln θiNi

∂ lnmi(t2)
∂ ln θiNi

. . . ∂ lnmi(tM )
∂ ln θiNi

∂ lnmi(t1)
∂ ln θi+1 1

∂ lnmi(t2)
∂ ln θi+1 1

. . . ∂ lnmi(tM )
∂ ln θi+1 1

...
...

...
...

∂ lnmi(t1)
∂ ln θNP

∂ lnmi(t2)
∂ ln θNP

. . . ∂ lnmi(tM )
∂ ln θNP


An element γ

(i)
ab (t) of the Gi (a = 1, 2, . . . ,M and b = 1, 2, . . . , N), is

γ
(i)
ab (t) =

(
1

mi

∂mi

∂θib

)
Θ=ΘMLE

=

(
1

mi

)
Θ=ΘMLE

(√
2πσ

2

)−#(Sb)

×
∏
w∈Sb

[(
X̂w(t) +

√
2πσ

4

)αw+1

−
(
X̂w(t)−

√
2πσ

4

)αw+1]
1

αw + 1
(5.16)

if αw 6= −1 ∀w ∈ Sh.
The square root of the p-th diagonal element of F−1

ΘMLE gives an estimate of the standard

deviation of the p-th component of Θ [49].

5.1.2 Parameter space restriction

The search for the optimal values of rate constants can be made more efficient if we

provide the algorithm of optimization of Eq. (5.7) with the initial guesses for these

constants. In this way the algorithm does not waste time in exploring large regions of the
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parameter space in which the model in Eq. (5.2) is not valid. For this purpose we include

in our framework a procedure for the automatic calculation of the initial guesses of the

parameters. Therefore, the task to direct the inference method to efficiently exploring the

parameter space is not left to the user, who often does not have a precise idea about a

reasonable value of the parameters.

The derivatives dX/dt at all measured time points tk can be interpreted as slopes

[191, 169]. Given the species i (with i = 1, . . . , N), we can estimate these slopes from the

data as si(tk), and approximate the differential equations as

si(tk) ≈
dXi

dt

∣∣∣∣
t=tk

(5.17)

If the data consist of N species and the concentration of each species i is measured at M

time points (Xi(t1), Xi(t2), . . . , Xi(tM)), we estimate M ×N slopes si(tk) (k = 1, . . . ,M).

In fact, for each species we have M differential equation of the form

si(tk) ≈ fi(X1(tk), X2(tk), . . . , XN(tk); θi1, θi2, . . . , θiNi) (5.18)

that form a system of M algebraic equations with M ×Ni unknown variables θs, as the

slopes s are measurable from the data. In general M 6= Ni and more often M � Ni so

that the system of M ×Ni equation results overdetermined. The prediction intervals for

the parameter can thus be obtained by computing the solution of the system (5.18) with

the least squares procedure for overdetermined systems. Note that at this stage we are

not interested in a very precise estimate of the rate constants, but only in an approximate

guess. Note also that the least squares method should be considered only as a method of

fitting a line to a set of data, not as a method of statistical inference. The parameters

calculated with the method of least squares should be called least squares solutions rather

than least squares estimates, because they are the solutions of the mathematical problem

of minimizing the residual sum of squares rather then estimates derived from a statistical

model. However, if we make the assumption that the residuals are normally distributed

and independent with the same variance σ2, then the maximum likelihood approach to the

estimation of model parameters from data yields the classical formulae for least squares.

A system of equations similar to the system (5.18) can be written also for the experi-

mental uncertainties ∆si affecting the slopes si:

∆si(tk) ≈ ∆fi(X1(tk), X2(tk), . . . , XN(tk); θi1, θi2, . . . , θiNi) (5.19)

where

∆si = ∆
[
θi1

∏
j∈S1⊆[1,N ]

X
αj
j

]
+ ∆

[
θi2

∏
j∈S2⊆[1,N ]

X
αj
j

]
+ · · ·+ ∆

[
θiNi

∏
j∈SNi⊆[1,N ]

X
αj
j

]
(5.20)
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By using the standard formulas of the error propagation, a single term of the sum on the

right-hand side of Eq. (5.20) is

∆
[
θi1
∏

j∈S1⊆[1,N ] X
αj
j

]
∣∣∣θi1∏j∈S1⊆[1,N ] X

αj
j

∣∣∣ =
∆θi1
θi1

+
∆
[∏

j∈S1⊆[1,N ] X
αj
j

]
∣∣∣∏j∈S1⊆[1,N ] X

αj
j

∣∣∣ =
∆θi1
θi1

+

#S1∑
h=1

|αh|
∆Xh

|Xh|

where #S1 is the cardinality of the set S1. Therefore, Eq. (5.20) becomes

∆si =

Ni∑
ν=1

{(
∆θiν
θiµ

+

#Sν∑
h=1

|αh|
∆Xh

|Xh|

)
·
∣∣∣θiµ ∏

j∈Sν⊆[1,N ]

X
αj
j

∣∣∣} (5.21)

By assuming that the measurements of times are not affected by errors, the error ∆si is

calculated from Eq. (5.2) as follows

∆si(tk) =
1

tk − tk−1

(
∆Xi(tk)−∆Xi(tk−1)

)
where ∆Xi(tk) is the experimental error on the measurement of concentration of species

i at time tk. Therefore ∆si(tk) can be obtained from the data, and the system (5.21) can

be solved to find the size of the prediction intervals ∆θ of θs with the same procedure

used for the system (5.18). These intervals are also upper-bound measures of the errors

that propagate to the rate constants from the concentration measurements.

5.1.3 Parameter inference in not - mass action models

Although the generalized mass action law (Eq. (5.1)) is able to describe a wide variety of

biochemical processes, this empirical rate equation is not the only principle for modelling

continuous time nonlinear dynamics. The other two main principles are the Michaelis-

Menten kinetics and the Hill kinetics. The Michaelis-Menten kinetic is derived from the

mass action law when the steady-state assumption is verified. The steady-state approxi-

mation assumes that the concentration of any intermediate in the reaction is unchanged

(the rate of the intermediate production is equal to the rate at which it is used). In

an enzymatic catalysis, for instance, this assumption is verified if the concentration of

the substrate is much larger than the concentration of the enzyme. If the steady-state

approximation can be applied, i.e. when the input values of the time series are such to

determine a Michaelis Menten kinetics, the parameters inferred from a generalized mass

action analytical form can be combined to calculate the values of the Michaelis-Menten

constants.

While the generalized mass action law can still handle Michaelis-Menten approxima-

tion, the kinetics described by the Hill function deserves a different mathematical treat-
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ment before the inference method proposed in this work can be applied. Consider the

general form of the Hill function h(x), where x is the species concentration.

h(x) = θ
xn

cn + xn
(5.22)

where the constants c, θ ∈ R and n ∈ N.

The Hill function produces a sigmoidal curve that can be fitted to a Gaussian error

function (the so-called erf function) as in the following:

h(x) ∼= c1

[
erf(c2x

c3 + c4)

]
+ c5 (5.23)

where c1, and c5 ∈ R are constants, and c2
∼= c3

∼=
√
n and |c4| is of the same order

of magnitude as the variance affecting the experimental concentration time series of the

species x. Therefore, our method can fit a Hill form to an erf function and optimize the

erf function with respect to the parameters c1 and c5. Many tests both on synthetic and

real data have shown that the Gauss error function calculated with the parameter values

obtained by our procedure for c1, and c5, and c2
∼=
√
n and c4

∼= σexp, is a good fit of

the Hill function, since it fits the maximum, minimun and the point of inflexion of the

Hill sigmoid. Thus, the value of x for which the erf function presents an inflexion is an

estimate of the constant c in the Hill form in Eq. (5.22). For our preliminary analysis of

the tratment of Hill kinetics, the user is asked to specify the value of the Hill coefficient

n, because as for the partial reaction orders αs in the model (5.1), it is not included in

the optimization procedure. Therefore, once the Hill equation is entered, it is easy to

automatically introduce in the equation system a new species, say Xerf , whose rate of

change in time is calculaded as follows

Xerf (t)

dt
= erf(

√
nx(t)

√
n + σexp)

where x(t) is the experimental time series of concentrations of species x. Then, the pro-

cedure described in the previous section can estimate parameters c1 and c5 that optimize

the fit with the experimental observations. Using this method, the mathematical scheme

of complex reaction kinetics (i.e. not-mass action Hill kinetics) could be handled. If, for

instance, the rate equation of the i-th species contains mass action terms and Hill terms

dXi

dt
=

Ni−1∑
h=1

(
θih

∏
w∈Sh

Xαw
w

)
+ θini

XNi
n

cn +Xn
Ni

the equation can be approximated as follows

dXi

dt
∼= fi(X

(i)(t); θi) ∼=
Ni−1∑
h=1

(
θih

∏
w∈Sh

Xαw
w

)
+ c1X

(i)
erf + c5 (5.24)
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where
dX

(i)
erf

dt
=

[
erf(c2X

c3
Ni

+ c4)

]
is numerically calculated from the experimental time-series of XNi(t) and c2

∼= c3
∼=
√
n

and |c4| ∼= σexp. In this way, Eq. (5.24) has still a mass-action form.

5.2 The inference tool: KInfer

We developed the prototype software, called KInfer (Kinetic Inference), that implements

the mathematical procedure described in the previous section. In Figure 5.1, some screen-

shots of the current version of the tool are shown.

(b)

(c) (d)

Figure 5.1: Screenshots of KInfer, a tool for inferring parameters of a biochemical system.
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KInfer is a software tool written in Java, distributed as a jar package and downloadable

at http://www.cosbi.eu/index.php/research/prototypes/kinfer. KInfer requires

Java 2 Runtime Environment (JRE) version 5 or newer, or an equivalent JRE. KInfer

relies upon the JAMA library, a cooperative product of the MathWorks and the National

Institute of Standards and Technology (NIST) [128]: this library is installed within the

KInfer directory when the user installs the software.

The whole architecture of KInfer consists of seven main blocks (Figure 5.2): two man-

age the data needed as input (i.e. the model and the time series), one is responsible for

automatically generate the general mass action model, one calculates initial guesses for

the parameters, one builds the probability density function properly combining the model

structure and the time series data, one performs the maximization step and finds the

parameter which maximize the previously built probability density function and finally

the last module represent the output interface that show the results.

Figure 5.2: Graphical representation of the general architecture of KInfer.

In the rest of this section we will explain in more details how each of the modules works.

The first input needed by the software is the set of chemical reactions defining the model.

In the left part of Figure 5.1(b) the user can input the set of chemical reactions de-

scribing the kinetics of the system, with the following syntax:

a A+ b B + · · · → a′ A′ + b′ B′ + · · · : k, α, β, . . . ;

On the left-hand side of the arrow, the reactants (A,B, . . . ) and the reactants stoi-

chiometric coefficients (a, b, . . . ) are indicated (separated by an empty space). On the

right-hand side of the arrow the products (A′, B′, . . . ) and the product stoichiometric co-
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efficients (a′, b′, . . . ) are indicated. After the list of products, the user has to specify the

name for the rate constant (k in the example above) associated to the reaction, followed

by a comma-separated list of the partial orders of reaction (α, β, . . . ) for that reaction.

The specification of the reaction must end with a semicolon.

The reaction orders are supposed to be given and do not undergo any inference pro-

cedure. This list of partial orders of reaction is optional: if not specified, the default

value can be chosen by the user between 1 (that is the option “Default ONE”) or the

stoichiometric coefficients associated with the species (that is the option “Default STE”).

While the user is typing, KInfer automatically translates the list of chemical reactions

into the corresponding rate equations following the General Mass Action kinetic format

and shows the result in the upper right part of the GUI (see Figure 5.1(b)). In the same

part of the graphical user interface typing errors that prevent the tool from building the

correct mass action model are reported to the user.

Using the proper button or menu options, it is possible to save a model into a textual

file for future use and then load it again into KInfer using the classical save/open dialog

windows that allow the user to browse the filesystem and open the input textual file

defining the model.

Alternatively to the automatically generated model, the user is allowed to input a

manual model, through the “Manual Model” part of the interface (Figure 5.1(b)). The

user can enter an ordinary differential equation model without specifying the reactions’

list in the standard chemical notation: the syntax of the ODE model has to be the same

as the one of the automatically generated model (some examples are presented in Chapter

6). The manual model can be used to specify general mass action laws with possibly real

numbers as partial order of reaction: in this first prototype version of the software, it is

not possible to specify a general kinetic law, but we plan to add this feature in the future

(see Chapter 7 for discussions about this topic).

Along with the specification of the set of reactions involved in the system, KInfer

requires the experimental time series data of the concentration (or number of molecules)

of the species in the system.

In order to load those data, the user has to select the “Load concentrations...” item

from the “File” menu. This will show a classical open dialog window that can be used

to open the directory containing the concentrations file. This file has to be a Comma

Separated Values (CSV) file, whose first row is the list of all the reactants sp1, . . . , spN

contained in the model, preceded by the keyword “time”. The following rows of the file
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need to be the concentration levels expressed by real numbers as follows:

t0, [sp1]t0 , [sp2]t0 , . . . , [spN ]t0

. . .

ti, [sp1]ti , [sp2]ti , . . . , [spN ]ti

. . .

tM , [sp1]tM , [sp2]tM , . . . , [spN ]tM

The loaded concentration file is then displayed in the “Time series concentration” tab

as shown in 5.1(c). In this version of KInfer there is not the possibility of modifying those

data from the interface, but its a very simple modification that can be easily implemented

in the next version of the software.

With the information provided in the first two tabs of the graphical interfaces, KInfer

internally creates and holds in appropriate data structures the probability density function

in Eq. (5.7): as this mathematical formula is parametric with respect to the kinetic

values driving the biochemical system, it is used to find the set of kinetic parameters that

maximize its value.

The optimization algorithm included in KInfer is a Genetic Algorithm (GA) [78]. This

choice has been driven by the fact that a biological model of realistic size and complexity

presents a high number of parameters with possible nonlinear relations between them.

A GA is a population based stochastic optimization technique, that, starting from a

set of initial guesses about the solution, determines the next set of possible solutions

to the optimization problem on the basis of the results obtained from the preceding set

and approaching step by step the best solution. In particular, in the GA approach,

the evolution starts from a population of randomly generated individuals. Then in each

generation the fitness of every individual in the population is evaluated and multiple

individuals are stochastically selected from the current population (based on their fitness).

The chosen individuals are modified (recombined and possibly randomly mutated) to

form a new population. The new population will be used in the next iteration of the

algorithm. The algorithm terminates when either a maximum number of generations has

been produced, or a satisfactory fitness level has been reached for the population. The

selection operation involves the evaluation of each possible solution with respect to the

target assigned: the lower the log-likelihood value is, the better the solution is considered.

The next step is to select the solutions for the next generation in such a way that those

with higher fitness have higher probability of selection: to each guessed solution will be

assigned a selection probability derived by the ratio of its square fitness and the sum

of the squared fitness of all the solutions. The selected solutions are then subjected to
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cross-over, mutation and innovation operators. To realize cross-over, every two parents

create two children in the following way: the algorithm selects randomly from the first

parent how many and which parameters will have to be kept in the first child. Then from

the second parent the algorithm takes the complementary number of variables and uses

these values to complete the first child. The second child is then built with the remaining

variables of the two parents. The mutation operation, with a low probability (in our

examples p = 0.1), randomly selects one variable to be mutated. After the selection, the

value of the variable is changed selecting (again randomly) from the possible values it can

take excluding the currently one. Finally, the innovation operator randomly selects new

solutions never tested to be performed. Usually this operator is kept at low rate (here

at 5%), trying to optimize the trade-off between exploration and exploitation. Once the

new population of experiments is derived from the algorithm, it is then proposed as a

new generation for the next algorithm iteration. The size of each population of solution

in each generation is maintained constant. These methods have been designed primarily

to address problems that cannot be tackled through traditional optimization algorithms.

Such problems are characterized by discontinuities, lack of derivative information, noisy

function values and disjoint search spaces.

In the KInfer graphical interface, the user (in the “Maximization options” tab) can

modify the main parameters of the method which have the following interpretation:

• Multiplier : a real number, that is used to perform subsequent run of the algorithm

on the same objective function but with different initial value ranges for the unknown

parameter. E.g. using a 0.5 multiplier means that for each complete run of the GA,

the range of the initial parameters search space is halved.

• NTrial : is the number of different runs of the algorithm that are performed applying,

each time, the Multiplier parameter to the parameters bounds

• NGenerations : is the maximum number of generations of the GA

• Nexp: is the size of each population in a single step of the GA

• Crossed : is the number of population elements that are target of the cross-over

operation between two steps of the GA. This number has to be lower than Nexp and

it has to be even.

In order to limit the search space of the optimization algorithm, as explained in Section

5.1.2, we implemented a procedure for the automatic calculation of the initial guesses of

the parameters. Through the “Initial values” tab the user can take advantage of this

procedure by simply clicking the “Calculate!” button in the upper part of the window.

This will calculate the Stineman value for each of the parameter indicated in the model,
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using the time series concentration loaded before and considering the fact that each value

has a measurement error associated (see Section 5.1.2 for a detailed description of the

procedure).

This whole process can be avoided by the user that already knows a possible range of

variability for each parameter: in this case the user can simply load those data from a

textual file written as follows:

k1 => lower: 1.0E-8 upper: 1.0

k2 => lower: 1.8 upper: 10.0

k3 => lower: 0.27 upper: 1.0

sigma => lower: 1.0E-8 upper: 1.0

The user can also dynamically modify each range value through the graphical interface:

it is enough to select from the list the parameter that has to be changed, and then type

the new range in the two textfields on the right part of the window. To save those values

for the current run of the inference algorithm, the user has to click the “Update ranges

initial parameters!” button. To save them for future runs the user can click the “Save

initial values. . . ” button on the left, and then select a file in which those values will be

stored in the format shown above.

Finally, as soon as the model, the concentration data, the maximization algorithm and

the initial values are loaded and correctly set up, the inference algorithm can be executed

just selecting the option “Infer!” from the “Infer parameters” menu.

After the calculations, that can take some time depending on the number of parameters

that has to be inferred and the choices made for the maximization algorithm, the results

are listed in the “Results” tab (Figure 5.1(d)). In the textarea, the user can find the list

of all the parameters with an inferred value for each of the runs of the GA that he/she

decided to make. The user can select the results from the textarea and simply copy/paste

them, according to his/her needs.

5.3 Some concluding considerations

The results of the application of our inference procedure to the calibration of models

of synthetic and real biochemical networks (see next chapter) show that the method

converges to the expected solutions within the bounds of the experimental errors that

propagates from concentration measurements to the kinetic rate constants. The chosen

method differs from the classical fitting procedure because it relies on the construction of

a model of probability that is intrinsically able to handle the noise contained in dataset

coming from real experiments on biological systems. In Section 6.5 we will give further

details about the comparison of the method presented in this work and other existing
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methods and tools for parameter estimation. Here we want just to list some important

features missing from the existing methods that are present instead in ours. The first is

the automatic computation of the initial guesses of the parameters. In this way, the user

is not forced to insert any a priori knowledge about the system, that often is quite hard to

find. At the same time, the method is equipped with a rigorous procedure referring only

to the experimental concentration measurements to identify a region of the parameter

space where the optimization of the probability density function takes place. The second

feature is the implementation of the experimental error propagation. The evaluation of

the experimental uncertainty on the rate constants estimates is particularly useful if the

parameter inference is incorporated in projects of experimental design. If big error values

are found, it may be a signal that some inconsistencies between the structure of the model

and the input data have been identified; this inconsistency can be due to the fact that

the input dataset is not accurate enough for inferring the rate constants of the system

(i.e. new experimental time series need to be collected), but it can also point out that

the model in itself is not structurally able to account for the experimental measures. If

more than one dataset are all consistent with one other and the accuracy of the measure

is good, then a change of the model is needed; otherwise if the structure of the model is

well validated and trusted, just more (or different) experiments need to be performed.

As a final remark, it is important to point out that the software prototype implement-

ing the inference procedure described in previous sections can be used for interfacing the

outcomes of the wet-lab activity for the concentration measurements with the softwares

for modelling and simulation of biochemical networks: actually KInfer is part of the CoS-

BiLab platform (http://www.cosbi.eu/index.php/research/prototypes/overview)

and can be seen as a essential tool in the overall objective of creating an artificial labora-

tory in which it is possible to replicate in-silico the activities that are usually performed in

real wet labs. In particular KInfer can feed BlenX models with the numerical kinetic pa-

rameter needed for performing stochastic simulations of the system under consideration.

For discussions about the integration of the two different frameworks, see Chapter 7.
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Chapter 6

Applying KInfer on

biochemical case studies

In this chapter we report and discuss the application of KInfer to case studies of increasing

complexity. These case studies include first and second order chemical reactions, didactical

examples of biochemical networks, and more complex biological pathways like small scale

genetic network with feedback loops, cell cycle regulation mechanisms and the NF-kB

pathway. Case studies with both synthetic and experimental datasets have been chosen

and all the results shown in this chapter have been presented in different pubblications

by the author of this thesis and colleagues [120, 119, 118].

Discussions about similar results that can be obtained with other available software

tools for parameter inference are presented in the last section of this chapter.

6.1 Gene transcription and transcriptional regulation

In this example we consider the transcription of a single gene as given by the model of

Golding et al. in [80]. The DNA for the tagged mRNA is switched on and off by poly-

merase binding and unbinding, respectively. Only polymerase-bound DNA is transcribed

into mRNA. The system is depicted in Figure 6.1.

We set the initial conditions DNAOFF = 1, DNAON = 0 and mRNA = 0, and we

generated a set of 100 data points at temporal resolution of 1. Typical measurements

units are “number of molecules” for the species amount and “minutes” for time. Our

estimates of parameters are reported in Table 6.1; the comparison of the estimated and

experimental system’s behavior in Figure 6.2 shows a strong agreement. The accuracy of

the results is comparable with one of those obtained by Reinker et al. [163] for the same

network.
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DNAOFF
θ1−→ DNAON

DNAON
θ2−→ DNAOFF

DNAON
θ3−→ DNAON +mRNA

Figure 6.1: Golding’s model of gene transcription process.

Parameter Actual value Initial guesses Estimated value

θ1 0.027 [0.0242; 0.0249] 0.0244 ± 0.0007

θ2 0.1667 [0.151; 0.152] 0.152 ± 0.001

θ3 0.4 [1.578; 2.385] 1.579 ± 0.807

σ 0.5 [0; 1] 0.445

Table 6.1: Estimated parameter values for the Golding’s model of gene transcription (Figure 6.1).

Figure 6.2: Time series of gene transcription case study. The actual and the estimated time series of molecules

of mRNA in the model network shown in of Figure 6.1.

We have also considered a more complex model: the Goutsias model of gene transcrip-

tion regulation [83, 163]. Figure 6.3 illustrates this model. The mRNA is translated into

a protein monomer M that can dimerise. The dimer D, in turn, can bind to its DNA and

acts as a transcription factor to auto-regulate its own mRNA production. Both mRNA

and protein are degraded at constant rates. The set of reactions of this network is reported

in Figure 6.3. As in [163], we used this set of reactions to generate a synthetic dataset of

the time series of the number of molecules for each component in the system. The dataset

contains of 100 data points at the time resolution of 1.2 min. As initial values we used M

= 2, D = 4, DNA = 2, and mRNA = 0, DNA·D = 0. All the reaction constants are in

units of per seconds.

Table 6.2 reports the estimates of the rate constants, that within the estimated error

ranges, are in agreement with the actual values and with the results obtained by [83].
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mRNA
θ1−→ mRNA+M ; M

θ2−→ ∅
DNA ·D θ3−→ mRNA+DNA ·D

mRNA
θ4−→ ∅; DNA+D

θ5−→ DNA ·D
DNA ·D θ6−→ DNA+D; 2M

θ7−→ D; D
θ8−→ 2M

Figure 6.3: Goutsias’s model of gene transcription regulation.

Figure 6.4 shows the actual and the estimated dynamics.

Parameter Actual value Initial guesses Estimated value

θ1 0.043 [0.01; 0.08] 0.042 ± 0.007

θ2 0.0007 [0.0001; 0.001] 0.0004 ± 0.0009

θ3 0.715 [0; 1] 0.1051 ± 0.1

θ4 0.00395 [0.00340; 0.00386] 0.0038 ± 0.0005

θ5 0.02 [0.01; 0.04] 0.019 ± 0.03

θ6 0.4791 [0; 1] 0.62 ± 0.17

θ7 0.083 [0.01; 0.2] 0.12 ± 0.02

θ8 0.5 [0; 1] 0.7 ± 0.1

σ 1 [0,2] 0.95

Table 6.2: Estimated parameter values for the Goutsias model of trascriptional regulation (Figure 6.3).

Figure 6.4: Estimated and experimental time series of mRNA, dimer (D), and monomer (M) in Goutsias’s model

of gene transcription.
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6.2 A didactic example of biochemical network

The system depicted in Figure 6.5 is representative of a small biochemical network of 4

interacting species. The network has two feedback loops:

• the species X3 inhibits the production of species X1;

• the species X4 promotes the activation of X5, inducing X3 degradation.

A numerical implementation with typical parameters is given by the set of ordinary

differential equations in Figure 6.5. This system of equations has been used to create the

artificial time series of 51 data points with a time resolution of 0.2. Typical units might be

mM for the concentration and minutes for time, but the example could as well run on an

hourly scale and with variables of different nature. Table 6.3 lists the results and Figure

6.6 shows the dynamic simulations. Within the experimental uncertainties, these results

are in agreement with the expected ones and with those in [33]. The peculiar feature of

this example is that the partial orders of reaction are non-integer, so the manual model

option of KInfer has been used in order to be able to obtain the estimated results.

X ′1 = θ1X
−0.8
3 − θ2X0.5

1 X1(t0) = 1.4

X ′2 = θ3X
0.5
1 − θ4X0.75

2 X2(t0) = 2.7

X ′3 = θ5X
0.75
1 − θ6X0.5

3 X0.2
4 X3(t0) = 1.2

X ′4 = θ7X
0.5
1 − θ8X0.5

4 X4(t0) = 0.4

Figure 6.5: A didactic example of biochemical network with four variables and the system of ordinary differential

equations describing it.

Parameter Actual value Initial guesses Estimated value

θ1 12 [10.18; 13.84] 11.37 ± 3.66

θ2 10 [8.28; 11.74] 9.39 ± 3.46

θ3 8 [9.81; 9.87] 9.83 ± 0.06

θ4 3 [3.92; 3.99] 3.98 ± 0.07

θ5 3 [2.91; 2.96] 2.94 ± 0.05

θ6 5 [4.89; 4.91] 4.90 ± 0.02

θ7 2 [1.50; 2.55] 1.84 ± 1.05

θ8 6 [4.01; 8.17] 5.5 ± 4.16

σ 0.1 [0.1; 0.3] 0.3

Table 6.3: Estimated parameter values for the network in Figure 6.5
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Figure 6.6: Estimated and experimental time series of the species X1, X2, X3, and X4 in the network of Figure

6.5

6.3 A regulatory genetic network

To confirm the validity of our inference model we also considered the calibration of a

typical model of a small-scale gene network shown in Figure 6.7. Because of the presence

of positive and negative loops and its non-linear dynamics, this model is considered a

challenging benchmark for comparative tests and analysis of inference methods. Here we

report a brief description of the model and we refer the reader to the studies of Hlavacek

and Savageau [94], Savageau [167, 168] and Kikuchi et al. [104] for the details of the

biological and mathematical aspects of this regulatory network.

Figure 6.7 is a diagrammatic representation of the gene interaction system originally

proposed by Hlavacek and Savageau [94] to analyze the interaction of regulator and effector

genes. The regulator gene encodes a protein that acts at the level of transcription to bring

about induction, and the effector gene encodes an enzyme that catalyzes a pathway in

which the inducer of the system is an actual or functional intermediate [94]. The regulator

can negatively or positively influence transcription at the promoter of each gene, and these

influences can be respectively facilitated or antagonized by inducer. This gene network

model is an idealized regulatory system. Nevertheless it captures the essential features of

many actual systems [94, 167, 168].

The network consists of two genes (gene 1, called effector and gene 4, called regula-
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tor). The state of the system is described by five variables X1, . . . , X5. X1 is an mRNA

produced from gene 1, X2 is an enzyme protein it produces, and X3 is an inducer protein

catalyzed by X2. X4 is an mRNA produced from gene 4 and X5 is a regulator protein

it produces. Positive feedback from the inducer protein X3 and negative feedback from

the regulator protein X5 are assumed in the mRNA production of gene 1 and 4. These

five variables represent quantities that vary during induction and are determined by the

processes of transcription, translation, specific degradation, dilution, and metabolism.

The variables X6 and X7 denote the precursor pools for mRNA and protein biosynthesis,

respectively. In our model, as in [104] they are maintened constant with respect to time.

Finally, X8 denotes a substrate concentration representing an independently determined

environmental signal to which the system responds.

dX1

dt
= α1X3X

−1
5 − β1X2

1

dX2

dt
= α2X

2
1 − β2X2

2

dX3

dt
= α3X

−1
2 − β3X−1

2 X2
3

dX4

dt
= α4X

2
3X
−1
5 − β4X2

4

dX5

dt
= α5X

2
4 − β5X2

5

Figure 6.7: Genetic network model of Hlavacek and Savageau [94].

The time courses of X1, . . . , X5 were artificially prepared solving the S-system in Figure

6.7 with the numerical integrator XPPAUT [61] with the parameter values and initial

conditions listed in Table 6.4.

α1 = 5 β1 = 10 X1(0) = 0.1

α2 = 10 β2 = 10 X2(0) = 0.12

α3 = 10 β3 = 10 X3(0) = 0.70

α4 = 8 β4 = 10 X4(0) = 0.70

α5 = 10 β5 = 10 X5(0) = 0.18

Table 6.4: Parameters that determine the dynamic action of the S-system in Figure 6.7. These values are

expressed in arbitrary units and were determined artificially by Kikuchi et al. ([104]) in order to realize

the network in Figure 6.7.
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Parameter Value ∆α σα

α1 5.41 0.01 0.31

α2 7.91 0.01 0.76

α3 2.77 0.01 ∼ 0

α4 9.61 0.01 0.27

α5 10.68 0.01 0.92

Parameter Value ∆β σβ

β1 11.12 0.01 0.28

β2 7.691 0.005 0.4

β3 2.75 0.005 ∼ 0

β4 11.84 0.01 0.42

β5 10.992 0.002 0.81

Table 6.5: Estimates of the kinetic parameters of model in Figure 6.7.

Table 6.5 presents the parameter estimates obtained by KInfer and graphs in Figure

6.8 show the simulation curves (solid lines) obtained by solving system in Figure 6.7 with

the estimated parameters. The inferred rate constants are comparable with those used to

generate the input data in Table 6.4 and reproduce the expected time series (black points

in graphs of Figure 6.8).

Figure 6.8: Comparison between expected behavior, i.e. solution of equation system in Figure 6.7 with

parameters given in Table 6.4 (black circles) and estimated behavior obtained as a solution of the same

equation system with the parameters inferred by KInfer (Table 6.5).

6.4 Real case studies

The analysis of in vivo time series for inferring the kinetic parameters is a worthwhile

challenge. In this section we report the results obtained with KInfer for the estimate of

the rate constants of three biologically relevant real case studies.

The first case study is the glycolysis and lactate production in bacterium L. lactis.

The relative simplicity of the L. lactis metabolism, that converts sugars via the Embden-
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Meyerhalf-Parnas pathway to pyruvate [192], makes the metabolic machinery of this bac-

terium an attractive case study for testing systemic approaches to modelling biochemical

networks.

The second case study is the sub-network involving the IκB phosphorylation in the

NF-κB pathway. NF-κB is a collective name for the complexes formed by the multigene

family which functions as DNA-binding proteins and transcription factors. They are

regulators of gene expression in eukaryotic cells but are held in an inactive state by a

family of inhibitors (IκB). The biological relevance of this case study is due to the crucial

role that NF-κB plays as the central mediator of inflammation with roles in cell death; and

has been implicated in a myriad of common diseases - such as cancer, arthritis, asthma,

diabetes, atherosclerosis and septic shock, to name but a few - and in the regulation of

immune responses to infection. Recent detailed theoretical studies and experimental data

about the NF-κB pathway can be found in [97, 98, 99, 138].

The third case study is the estimation of the kinetic constants of a gene transcriptional

control mechanism in the cell cycle biochemical network of budding yeast. We modified

a sub-part of a model in order to be able to include the CycB-triggered transcription of

the Cdc20 gene. Then we used gene expression data to estimate some parameters that

drive the periodic oscillations of chemical species connected to it.

6.4.1 Glucose metabolisms of Lactococcus lactis

We applied our method to infer the rate constants of the biochemical pathway that con-

verts glucose into lactate in the bacterium L. lactis [77, 192] (see Figure 6.9). The ex-

perimental data provided by Voit consist of the time series of glucose (X1), glucose-6-

phosphate G6P (X2), total fructose 1,6-biphosphate FBP (X3), 3-phosphoglycerate 3-

PGA (X4), phosphoenolpyruvate PEP (X5), pyruvate (X6), lactate (X7), acetate (X8),

ATP and inorganic phosphate Pi. The mathematical model of this pathway has been

formulated by Voit et al. [77, 192] as in the equation system in Figure 6.9.

Parameter Estimated value Parameter Estimated value

k1 0.388 ± 0.001 k6 0.0538 ± 0.0011

k2 10.35 ± 0.011 k7 0.0050 ± 0.0008

k3 1.300496 ± 0.000012 k8 0.00824 ± 0.00007

k4 89.16 ± 0.12 k9 0.012458 ± 0.000006

k5 87.41 ± 0.10

Table 6.6: Estimates of the kinetic rate constants of the pathway of regulation of glycolysis in L. lactis.

110



CHAPTER 6. CASE STUDIES 6.4. REAL CASE STUDIES

dX1

dt
= −k1X0.4
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Figure 6.9: Pathway of glycolysis and lactate production in L. lactis. Black arrows: flow of material;

grey arrows: enzyme activation and inhibition; dashed arrows indicate leakage of material into secondary

pathways, that are not considered in the model presented in this work. X[1..8] variables names are assigned

as follows: X1 = Glucose, X2 = G6P, X3 = FBP, X4 = 3PGA, X5 = PEP, X6 = Pyruvate, X7 = Lactate

and X8 = Acetate. The figure has been adapted from [77].

The parameter inference in this model suffers from difficulties of technical nature due

to the peculiarities of the data. In fact, the time series of 3-PGA and PEP dip down

very quickly, then recover, overshoot and slowly degrades. Even if it is possible to model

such dynamics with generalized mass action law, the search algorithm might find a set

of parameters causing the time course to cross over into the negative domain. In this

case, non-integer reaction orders force the integration of the equation system to produce

results with imaginary values. Moreover, some variables approach to zero toward the end

of the experiment. Due to the numerical inaccuracies of any integration software, these

variables may become negative. Also in our specific case, the search algorithm selects

a parameter combination such that the simulation of the generalized mass action model

with those parameters does not identify a global fit of the experimental data over their

entire time domain. namely, the integration with the XPPAUT software stops at t ≈ 6.4

min. Therefore, to avoid termination of integration, we artificially stopped the simulation

of the dynamics of the pathway at t ≈ 6.4 min, and extrapolated with the Stineman

interpolation algorithm the behavior from t ≈ 6.4 min till t ≈ 40 min. We maintained

the values of the orders of reaction as in Figure 6.9 and we estimated the kinetic rate
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Figure 6.10: Comparison between experimental behavior (black circles) and estimated behavior obtained

as a solution of equation system in Figure 6.9 with the parameters inferred by KInfer (Table 6.6).

constants of the model. Table 6.6 shows the KInfer estimates of these parameters. The

rate constants estimates reproduce the experimental time series of the involved species,

except for 3-PGA and PEP.

6.4.2 Binding affinity of IκB kinase

Activation of the NF-κB transcription factor can be triggered by exposing cells to a multi-

tude of external stimuli such as tumour necrosis factor (TNF-α) and interleukin 1 (IL-1α).

These cytokines initiate numerous and diverse intracellular signalling cascades, most of

which activate the IKK complex. This IKK complex regulates the activity of the NF-κB

transcription factor positively by phosphorylating the inhibitor - IκB. The IKK catalyses

the transfer of the terminal phosphoryl group of ATP to the I-κB protein substrates,

thereby tagging the inhibitor protein for ubiquitination and then degradation. The pre-

viously inactive NF-κB is thus activated and available for gene expression. This crucial

component in the NF-κB activation cascade typically consists of two catalytic subunits,

IKKα (IKK1) and IKKβ (IKK2), and a regulatory unit NEMO (IKKγ). The cytoplasmic

inhibitors of NF-κB (the IκBs) are phosphorylated by activated IKK at specific N-terminal
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residues, tagging them for poly-ubiquitination and rapid proteasomal degradation. Since

recombinant human IKK2 (rhIKK2) phosphorylates GST-IκB in vitro, we examined the

activity of the synthesised GST-IκB followed by the association and dissociation reaction,

as shown in the chemical reaction system in Figure 6.11.

IKK2 +ATP
k1−−→ IKK2 ·ATP

IKK2 ·ATP k2−−→ IKK2 +ATP

IKK2 ·ATP +GST -IκBα
k3−−→ IKK2 ·ATP ·GST -IκBα

IKK2 ·ATP ·GST -IκBα
k4−−→ IKK2 ·ATP +GST -IκBα

IKK2 ·ATP ·GST -IκBα
k5−−→ IKK2 +GST -IκBα-P +ADP

IKK2 ·ATP ·GST -IκBα
k6−−→ IKK2 ·GST -IκBα+ATP

IKK2 ·GST -IκBα+ATP
k7−−→ IKK2 ·ATP ·GST -IκBα

IKK2 ·GST -IκBα+ATP
k8−−→ IKK2 +ATP +GST − IκBα

IKK2 +ATP +GST -IκBα
k9−−→ IKK2 ·GST -IκBα+ATP

Figure 6.11: The set of reaction modelling the activity of GST-IκB, in its associations and dissociations

reaction with IKK2 [99]

A time course plot of the increasing of GST-IκBα-P was recorded to monitor the

reaction advance (filled circles in Figure 6.13). The measured initial concentrations

of the system’s components are as follows: [IKK2]0 = 50 nM, [ATP ]0 = 200 nM,

[GST -IκBα] = 1000 nM, and [IKK2 · ATP ]0 = [IKK2 · ATP + GST -IκBα]0 =

[GST -IκBα-P ]0 = [ADP ]0 ≈ 0 nM.

The only experimental time course measured for this model is the one of GST-IκBα-

P. Nevertheless, from the law of mass action and assuming that ATP is in excess and

thus its concentration does not change significantly in time, the time course of IKK2 and

GST-IκBα can be derived respectively as: [IKK2] ≈ [IKK2]0− 1
kcat

[GST -IκBα-P ]′ and

[GST -IκBα] ≈ [GST -IκBα]0 −
c2[GST -IκBα-P ]′

c1 − c3[GST -IκBα-P ]′

where the second equation is the best fit of the experimental data reported in Figure 6.12

([99]), and [GST -IκBα-P ]′ is the time derivative of the [GST -IκBα-P ].

The coefficients of the fit are: c2 = 2996.03 nM min, c3 = 0.67078 min. The inferred

values of the rate constants are listed in Table 6.7. Figure 6.13 shows a good agreement

within the error range, between the estimated time course and the measured time course

of [GST -IκBα-P ].
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Figure 6.12: Reaction velocity (d[GST-IκBα-P]/dt) versus substrate concentration ([GST-IκBα]).

Parameter Value Parameter Value

k1 1.2308 ± 0.0008 k6 0.043230 ± 0.000006

k2 0.93060 ± 0.00018 k7 12.247 ± 0.005

k3 2.8506 ± 0.0003 k8 1.351 ± 0.004

k4 0.148654 ± 0.000012 k9 0.4345 ± 0.0004

k5 0.692538 ± 0.000018 σ 0.8006856

Table 6.7: Estimates of the model parameters. ∆k is the experimental error propagating from the

measures of concentration to the parameters, and σk is the variance of the parameter estimate; σ is the

variance of the experimental uncertainty on the concentration measurements. The estimated values are

in agreement with the experimental ones that can be found in [99].

Figure 6.13: Time series of GST-IκBα-P. The error bars show the standard deviation associated with

each measurements.

114



CHAPTER 6. CASE STUDIES 6.4. REAL CASE STUDIES

6.4.3 Transcription control of Cdc20 gene in a Budding Yeast cell cycle model

The last case study that we want to present is the estimation of the kinetic constants of a

gene transcriptional control mechanism in the cell cycle biochemical network of buddying

yeast. As reported in [1], the oscillations of the expression level of Cdc20 are very likely to

be controlled by the cyclin-Cdk-dependent phosphorylation of gene regulatory proteins.

In order to keep the model as simple as possible and to capture the essential feature of the

triggering mechanism, we describe the regulation of gene Cdc20 transcription by CycB

with the biochemical network depicted in Figure 6.14.

CycB
t1−→ mRNACdc20 + CycB

mRNACdc20
t2−→ ∅

mRNACdc20
t3−→ Cdc20 +mRNACdc20

Figure 6.14: The transcription of the gene Cdc20 gene is regulated by the oscillations of Cdk/CycB. The

regulation depicted in the cartoon corresponds to the set of reactions on the right.

We modified the original Novak and Tyson model presented in [142] by including the

CycB-triggered transcription of the Cdc20 gene. We introduce this modification in order

to be able to apply our inferring strategy on the experimental data in Cyclebase database

[72] for the expression level of the gene coding for this specific protein of the cell cycle

control. In Figure 6.15 the curves of the expression level of Cdc20 gene obtained in six

experiments are shown. Table 6.8 summarizes the main information contained in the

experimental data [72].

Figure 6.15: Six experiments denominated Pramilla-alpha38, Spellman-alpha, Pramilla-alpha30, Cho-

cdc28, Spellman-cdc25, and de Lichtenberg-cdc15 provide the time series of the expression level of Cdc20

gene during one cell cycle [72, 175, 51].
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Experiment Rank Pper Preg Peaktime

Pramilla-alpha38 50 0.000025 0.0274 77%

Spellman-alpha 182 0.0068 0.0512 74%

Pramilla-alpha30 46 0.00001 0.0203 75%

Cho-cdc28 439 0.0042 0.6365 uncertain

Spellman-cdc15 303 0.0509 0.0194 uncertain

de Lichtenberg-cdc15 183 0.0097 1.237 76%

Table 6.8: Rank, P-values and peaktime of the six experimental micro-array time series shown in Figure 6.15.

The rank orders each gene of an organism by a score that has been assigned on the basis of its pattern of expression

and magnitude of regulation. Those genes with the highest periodicity and that are most regulated are given the

best ranks (lower number). The P-value for periodicity (Pper) is the chance of observing as great a periodicity

by random shuffling of the individual time point values of the expression profile. A small Pper value therefore

implies a highly periodic pattern of expression. The P-value for regulation (Preg) estimates the chance that the

magnitude of regulation will have occurred by chance. A small Preg values therefore implies a strongly regulated

gene. The peaktime describes when in the cell cycle a gene is maximally expressed. Peaktime is represented as a

percentage with both 0 and 100 representing the M/G1 transition in the cell cycle. In some cases the peaktime

will be marked as uncertain. There are several reasons this uncertainty can occur: the experiment(s) are not

sufficiently periodic for a peaktime to be determined or more than one experiment has been analyzed but the

experiments disagree with respect to the time of peak expression. In such cases, inconsistency across the different

experiments makes it impossible to calculate a reliable peaktime.

The modification on the structure of the model that we introduced is the definition of

the dynamics of CycB regulation on the expression level of Cdc20 gene (i.e. [mRNACdc20])

with the following rate equations.

d[mRNACdc20]

dt
=t1·[CycB]−t2·[mRNACdc20] (6.1)

d[Cdc20]T

dt
=t3·[mRNACdc20]−k6[Cdc20]T (6.2)

In spite of the fact that Eq. (6.1) and (6.2) look like minor changes of the original model,

we will see that the time series of all the species involved in the model are highly sensitive

to the parameters t1, t2 and t3.

The parameters t1, t2, and t3 introduced in Eq. (6.1) and Eq. (6.2) can all be inferred

from the experimental dynamics of the expression levels of Cdc20 gene (Figure 6.15) and

from the experimental measurements of the time series of [CycB], since the inference

model implemented by KInfer takes as an input the experimental time course of all the

reactants. Note that, time resolved measurements of [CycB] are not available, since, with

the current techniques, they are quite hard to obtain experimentally. However, as we show

in Figure 6.14, in our model the mechanism with which CycB regulates the synthesis of

the mRNA of Cdc20 gene, is abstracted using the following virtual reaction: CycB −→
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mRNACdc20 + CycB. Assuming, that the [mRNACdc20] oscillations are almost entirely

driven by the oscillation of [CycB], and, to a lesser extent, by the mRNA degradation,

we have the following inequality |d[mRNACdc20]/dt| � t2[mRNACdc20], ∀t, that allows us

to obtain the approximation d[mRNACdc20]/dt ≈ t1[CycB], with t1 ∈ (0, 1]. Therefore,

the missing experimental time course of [CycB] can be obtained from d[mRNACdc20]/dt,

i.e. slope of the tangent to the experimental curve of [mRNACdc20] in the measured time

points.

The inference procedure applied to different experimental datasets gives different sets

of parameter estimates, that we report in Table 6.9, where each parameter estimate tp
is associated with its error ∆tp (p = 1, 2, 3), due to the propagation of the experimental

uncertainty from the input concentration time series (see Section 5.1.2).

Experiment t1 ±∆t1 t2 ±∆t2 t3 ±∆t3

(min−1) (min−1) (min−1)

Spellman-alpha 0.122 ± 0.002 0.0116 ± 0.000835 0.0129 ± 0.0045

Spellman-cdc15 0.126 ± 0.0007 0.0107 ± 0.00002 0.0211 ± 0.00603

Cho-cdc28 0.235 ± 0.0198 0.0395 ± 0.00869 0.0127 ± 0.0035422

Pramilla-alpha30 0.0857 ± 0.00144 0.0146 ± 0.0016 0.019 ± 0.005773

Pramilla-alpha38 0.14 ± 0.0001 0.0216 ± 0.00022 0.0193 ± 0.00546

de Lichtenberg-cdc15 1.884 ± 0.5308 0.0995 ± 0.03583 0.0125 ± 0.003617

Table 6.9: Parameter estimates of the Cdc20 transcription sub-network. The experiments from which

the inferred kinetic constants do not reproduce the expected oscillatory behavior of the model’s proteins

are highlighted in bold.

Experiment σt1 σt3 σt3
(min−1) (min−1) (min−1)

Spellman-alpha [175, 72] 0.33 0.0021 4.46 × 10−4

Spellman-cdc25 [175, 72] 0.034 0.0027 0.0025

Cho-cdc28 [72] 0.086 0.0028 4.18 × 10−4

Pramilla-alpha30 [72] 0.021 0.0061 0.00266

Pramilla-alpha38 [72] 0.034 0.0054 0.0025

de Lichtenberg-cdc15 [51, 72] 0.232 0.006 0.0014

Table 6.10: Variances of the estimated parameters (σt1 , σt2 , σt3).

Each set of parameters (t1, t2, t3) defines a new model. The solutions of the six new

models are shown in Figure 6.17. The parameters inferred from “Spellman-alpha” and

“Pramilla-alpha30” experiments do not reproduce the expected oscillatory behavior for

any of the species included in the model. As we can see in Table 6.10, the variances
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Figure 6.16: Comparison between experimental time course of [mRNACdc20] and the simulated time

course with the parameters t1, t2, and t3 inferred from the four experimental time series in Figure 6.15.

Only the four datasets which mantain an oscillatory behaviour are shown.
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Figure 6.17: Solutions of the model including Cdc20 transcription process with the rate coefficients in

Table 6.9 inferred from the six experimental datasets shown in Figure 6.15.
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of parameters t1 and t2 in these two cases are one order of magnitude bigger than the

value of the corresponding parameter estimates, revealing a big inaccuracy and a low

confidence in the estimates of these parameters. This results also reveals that the cell

cycle model considered in this study is sensitive to t1 and t2. In Table 6.8 we notice that

the experimental data of the expression level of Cdc20 in Spellman-alpha experiments

have a high value of Pper indicating a low periodicity in the expression pattern. This fact

may justify the high variances of the parameter estimates inferred from this experiment.

However, the Pper value of the Spellman-alpha time series is not the highest and it has the

same order of magnitude of the Pper obtained in the experiment Cho-cdc28 from which

the inference procedure estimated parameters able to reproduce the expected oscillatory

dynamics. The highest Pper values is reported in the experiment of Spellman-cdc15, that

also reports a strong uncertainty on the peaktime. Nevertheless, the parameters inferred

from Spellman-cdc15 still guarantee the oscillatory behavior of the species concentration

(see Figure 6.17), even if Figure 6.16 shows in the case of this experiment the highest

disagreement between the estimated and the experimental expression level of Cdc20 gene.

Further analysis about the relationship between the variance associated with the estimated

parameters and the values that are quantifying the periodicity of the data has been

performed and can be found in [118].

We conclude this section by pointing out that the new model defined by the reactions

in Figure 6.14 is simpler than the Hill mechanism used in the original model, but it is

equally able to reproduce the observations. In a general case, however, we could still use

the Hill kinetics and use KInfer to infer its parameters following the strategy introduced

in Section 5.1.3 by approximating the Hill function with a Gauss error function as in Eq.

(5.23), where the parameter estimates used for this example are reported in Table 6.11.

In Figure 6.18 the goodness of the fit of the KInfer estimated erf function to the Hill

form is showed. We decided to introduce the modification of the model structure just to

be closer to the elementary mechanistic reactions driving the oscillations of the different

mRNA/proteins.

Parameter Value Asymptotic standard error

c1 10.36 0.1%

c2 2 –

c3 2 –

c4 1.159 –

c5 -10.16 0.1 %

Table 6.11: KInfer estimates of the parameters of the Gauss error function approximating the Hill function

h(x) = θ mCycBn

cn+mCycBn ≈ c1
[
erf(c2 ·mCycBc3 + c4)

]
+ c5). Parameters c2 and c3 are given as an input by

the user. c4 is equal to σexp throughout all the experiments (see Figure 6.15).
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Figure 6.18: Fit of Gauss error function to Hill function. The width of the error bars have been calculated

by propagating through the Hill equation an experimental error on the measurements of [CycB] equal to

the 7% of the measurements.

6.5 Other existing inference tools

For the parameter inference problem, many methods and tools have been proposed in the

systems biology community. In Section 2.2 the main competing approaches have already

been described. In this section we select some available software tools implementing the

different representative ideas and we explain their application on some examples in order

to stress the features that distinguish our approach from the other ones.

COPASI [96]. COPASI is a platform-independent software tool that offers several

features for the simulation and analysis of biochemical reaction networks. For what con-

cerns the parameter estimation problem, COPASI is equipped with a number of diverse

optimization algorithms that can be used to minimize or maximize different variables of

the model. A special case of optimization is parameter estimation. The objective function

is given implicitly by a function that measures the distance between the model and the ex-

perimental data, such as a sum of squares of residuals. The kinetic constants of the model

are adjusted to minimize the objective function. Different methods are implemented in

the tool: two algorithms based on estimating derivatives of the objective function (steep-

est descent and Levenberg Marquardt), a direct search algorithm, and different kind of
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evolutionary algorithms. The software is able to simultaneously fit the model to data

from steady-state and time course experiments. This is achieved by enabling the user to

provide multiple data files with multiple experiments.

The main advantages of this software platform are that it has a user friendly GUI

that facilitates a modeler to easily switch between different simulation approaches and

analysis/plotting techniques. Moreover it reads and writes SBML files and it supports

the export of the model in C code and Berkeley Madonna file. The main disadvantage for

what concerns the parameter estimation problem is that it implements a fitting procedure

which can be inadequate in a context in which we suppose to have very noisy data and

for which the probability distribution underlying the data needs to be considered.

SBML-PET [199]. SBML-PET is a Systems Biology Markup Language based Pa-

rameter Estimation Tool. This tool has been designed to do parameter estimation for

biological models. It can run on Linux and Cygwin on Windows and, using a shell-like

interface, allows the import of a SBML model together with experimental dataset possibly

produced under different experimental conditions. These two inputs are used to build a

cost function that is optimized using an Evolutionary Algorithm in order to get the best

parameter fit. The tool uses an ODE Solver and the cost function is evaluated taking

into consideration the number of experimental conditions, the number of time courses,

the number of experimental data, the number of sampling points available and the pre-

diction data from the mathematical model. The cost function also include weights that

are calculated from the standard deviation associated with the experimental measures (if

available).

The main advantage of this platform is the fact that it has been explicitly designed

to support the standard language in which many existing model are currently written

(SBML), but the not so easy user interface and the fact that it implements a standard

fitting procedure for deterministic models, make it not so appealing for analyzing models

of biological systems with noisy input data and where the stochastic effect should be taken

into consideration.

PET [172]. PET (Parameter Estimation Toolkit) is a graphical user interface for ex-

ploring the parameter space of a mathematical model. PET is designed for biological

models based on Ordinary Differential Equations using SBML as the modelling language.

For the parameter estimation issue, in PET a weight is assigned to every experimental

datum in order to indicate the relative importance of that datum compared to the other

data. The optimization algorithm uses the weights when fitting the model to experimen-

tal data using as objective function the weighted sum of the squares of the orthogonal
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distances between the experimental data and the model simulations. In [200] this tool

has shown to be useful in the estimation of parameters of a deterministic model of cell

cycle regulation in budding yeast.

The advantages/disadvantages of this tool are similar to the ones listed for the SBML-

PET tool, apart from the issue about the usability of the interface that, in this case, is

much easier because it is based on graphical objects like windows, buttons and textfields

rather than just shell commands like the SBML-PET tool.

BioBayes [193]. BioBayes is a software tool that supports standard definitions of

mathematical models and provides a framework for applying methods of Bayesian infer-

ence to ODE models of biochemical systems. Through an user friendly graphical user

interface, users can load models and define the desired prior distributions for the ki-

netic parameters and run different samplers (i.e. Metropolis-Hastings, population-based

MCMC) to infer their posteriors using one or more experimental datasets.

Some of the advatages of this tool (that are features of the Bayesian approach in itself)

are that, due to its probabilistic nature, it allows one to consider noisy observations as a

source of data for learning full distributions of beliefs and it provides a formal way in which

prior knowledge can be included in the modelling process. The main disadvantages are

that the convergence to a good estimate of the parameter value is usually not guaranteed

and it depends both on the data used for the inference and on the priors chosen for

running the estimation procedure, even if the possibility of using non-informative priors

[183, 48] can also be employed (the idea behind their usage is to make inferences when

external information is not available. The uniform distribution is frequently used as a

non-informative prior).
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Discussions and Future work

In this thesis, we presented a work that is part of a larger, multidisciplinary project

involving many researchers for the development of conceptual and computational tools

for modelling, analysis and simulation of multi-level/multi-scale biological systems to

predict their behavior in a modular, compositional, scalable and executable manner. The

aim of those tools is to become an artificial laboratory in which it is possible to replicate

in-silico the activities that are usually performed in real wet labs.

Within a project as large and varied as this one, there are numerous areas where

new applications of the work presented in this thesis can be applied and incremental

improvements of both the methods and the tools can be made. In the rest of this chapter

we try to sketch the possible future development that we feel to be the more appealing.

Extensions to the inference framework

The first and more natural incremental improvements of the inference framework pre-

sented in this thesis, are some additions that can be easily integrated in the actual imple-

mentation of the KInfer tool and that are useful in order to be able to handle in a better

way more complex case studies in which not all the information are known to the user.

An important remark that needs to be made, indeed, is that the time-resolved experi-

mental data suitable for an accurate maximum likelihood inference of parameters should

possibly satisfy two main requirements: 1) an optimal sampling time selection; 2) the time

series of the majority of the species involved in the system should be available. However,

the experiments to generate data are complex and expensive, as a consequence of which

the time series available are usually rather short, with few (if any) replicates. Morever,

almost certainly, not all the variables that the user would like to include in the model can

be measured. In the light of this, an important feature to be added to the current version

of KInfer are modules performing the following tasks: 1) find the optimal sampling time
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that reduce the variance of the error in the estimated parameters (this task is of practical

importance in experimental design); 2) simultaneous inference of parameters and missing

time-series through the optimization of the same likelihood function of observed data in

which missing time series are treated as missing parameters.

Other improvements that can make KInfer easier to use are the implementation of

modules able to combine different time series replicas in the same model, in order to infer

a set of parameters that matches more than one single experiment and the implementation

of modules able to parse and include in the likelihood function rate laws different from the

general mass-action (e.g. Hill responses, algebraic equations accounting for conservation

laws). The implementation of these modules is a fundamental improvement needed in

order to apply KInfer in wider contexts.

In a more general view, interesting future developments of the inference framework are

the integration of the parameter estimation step with the inference of the structure of the

network. The investigation of some correlation-based approaches for network inference

has already been started, but at the time of writing the results are still not ready to be

integrated in the framework [117].

Moreover also the identifiability problem should be addressed [164]. Parameter iden-

tifiability is a fundamental prerequisite for model identification; it concerns uniqueness

of the model parameters determined from the input-output data, under ideal conditions

of noise-free observations and error-free model structure. Recently, differential algebra

methods seem to be promising tools to study the identifiability of nonlinear dynamic sys-

tems described by polynomial equations [166, 123]. Given that biological/physiological

systems are usually characterized by nonlinear dynamics, e.g. threshold processes, and

that the identification experiments are often performed on systems started from known

(equilibrium) initial conditions, a future step of the work presented in this thesis is to

develop new differential algebra algorithm, which tests a priori identifiability of nonlinear

models with given initial conditions.

Finally, some considerations need to be made about the integration of the two frame-

works (i.e. the modelling and the inference one) presented in this thesis. Although the

two can be used independently and in isolation to accomplish interesting analyses like the

ones presented in the previous chapters, having an integrated environment in which the

two software systems can be linked would be highly desiderable.

Since the model’s formalism that KInfer uses are equations in the form of general mass

action, the first natural way to approach the integration between the two frameworks is to
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try to automatically deduce this set of equations from the BlenX specification of a system.

The derivation of a system of ordinary differential equation from a process algebra model

(often also referred as fluid-flow analysis) has been studied by several authors. Between

the main contributions we cite the work done by Hillston and colleagues [92, 13] on

different classes of PEPA models; a fluid-flow formulation for the stochastic constraint

programming language (sCCP) by Bortolussi and colleagues [12]; various translations,

presented by Cardelli [22, 23, 21], from stochastic process algebras like stochastic π-

calculus to systems of chemical reactions and back. In all the aforementioned studies a

specific subclass of the language and syntactical restrictions have been introduced in order

to derive ODEs by static inspection of the model description. Some following studies

propose methods to overcome those limitations [88, 185] and prove the convergence to

the same behavior of the two formalisms; other studies also deepening the analysis of

the fundamental characteristics of the derived ODEs, such as the existence, uniqueness,

boundedness and nonnegativeness of the solution [58]. Sometimes semantics different from

the original one needed to be introduced in order to achieve those goals.

Many peculiar features of BlenX make it more complex with respect to the other process

algebra mentioned above for which some study of their relationship with the ODEs has

already been carried out. Hence, any automatic derivation of ODEs from a BlenX model

will need to take inspiration from the works cited above but it will for sure need to address

more difficult theoretical issues. The main topics that need to be very carefully defined

concern the limitation on the kind of actions/events contained in the model and methods

of identifying the generation of a possible infinite state space. The study of those subjects

represent interesting development of the theory behind the BlenX language: the successful

characterization and implementation of those topics will allow the final user to be able to

handle in a unique framework deterministic and stochastic approaches on a specific model

of choice and/or apply in a transparent way the parameter inference procedure described

in this thesis.

Biological systems in a stochastic framework

The study of the budding yeast cell cycle allowed us to identify many interesting analyses

that can be further carried on in order to better understand the behavior of this organism

and that can be useful also for studying properties of other biological systems.

For example, a systematic quantification and analysis of the partially viable mutants

already experimentally characterized can give us information about the completeness and

reliability of the model in the stochastic framework. Inconsistency between synthetic and

measured data can point to parts of the model that need to be further refined, whereas a
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good agreement between the two will open the possibility of using the model to test new

hypotheses and answer new questions.

Moreover, a deeper investigation of the “intrinsic vs. extrinsic” noise affecting the

budding yeast cell cycle is a natural evolution of the studies carried out in this thesis.

More detailed analyses like the ones in [101, 8] on refined models can reveal where and

from which sub-module of a model the noise can arise. This is important in order to

understand if the intrinsic fluctuations of molecular numbers is the sole cause for the

hetereogeneity of cell cycle measures (e.g. size at division, cell cycle time, etc.) or only

some kind of extrinsic noise (derived from a part of the system not included in the model)

can make the in silico results in agreement with the wet-lab data.

The kind of analyses described above are useful for any kind of biological system (oscil-

latory and not): however many of the results presented in this thesis have been obtained

using ad-hoc pieces of code adapted in order, for example, to analyze BlenX output traces

and get the frequency/amplitude of specific oscillating species. Also the pedigree study

has been tuned on that specific model of cell cycle, containing peculiar species with an

associated precise interpretation, e.g. the threshold’s traversal of a specific species define

the transition between different phases of the cycle. A more general framework able to

handle different kind of models, where the modeller can specify (possibly in a user-friendly

way) which are the characteristics of the model he/she is interested in measuring during

the simulation can be a useful and interesting extention of the BlenX simulation framework.

The way in which, in recent years, biological systems has been studied looks strik-

ingly similar to the approach of analyzing electronic circuits: in the wiring diagrams

modelling biological processes, instead of resistors, capacitors and transistors hooked to-

gether by wires, one sees genes, proteins and metabolites connected by chemical reactions

and intermolecular interactions. The natural consequence is to ask whether physiological

regulatory systems can be understood in modular terms, in the same way an electrical

engineer would model a radio [114].

Being able to isolate, characterize and analyze the single modules that compose a com-

plex behavior will be an interesting addition to the study of the budding yeast cell cycle,

especially in the stochastic framework. The advantages of isolating modules contained

in the cell cycle model, like hyperbolic/sigmoidal responses, positive/negative feedback

loops or irreversible/hysteretic switches are two-fold: from one side, the modeller can

create a library with all those behaviors that later can be used to compose new models

in an easy way; from the other side each module can be studied in isolation in order to
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understand the effect of the noise on the system’s behavior [17]. Having different versions

of the same module (i.e. having the same overall modelled response, but, for example,

with modules that in isolation are subject of a different coefficient of variation), the mod-

eller can study the effect of each single version of the module in the context of the whole

model and can deduce which are the most sensitive part of the model with respect to

the noise (i.e. if the experimental measurements show a less noisy response compared

to a module modelled with all its elementary steps it means that the real system pos-

sess a not yet considered external mechanism able to reduce the overall effect of the noise).

Finally approaches similar to the semi-automatic translation of ODEs to BlenX pre-

sented in this work should be taken into consideration in the overall idea of developing a

framework in which also non-expert computer scientists can build models of biological sys-

tem in BlenX. Allowing the user to import a model written in other formalisms/languages

(possibly more familiar to people coming from a biological background) will increase the

impact that process calculi approaches and related tools/techniques can have on the anal-

ysis of biological systems. Indeed only if experts in the system under consideration (and

not experts in the chosen modelling approach) develop a specific model, then meaningful

insights on the biological behavior can be obtained quickly and reliably: so an effort in

blurring the boundaries between the expertises needed to think about what the user wants

to model and the actual writing of the model in BlenX is a worthwile field of investigation

and efforts in this sense have already been started.
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Conclusions

In this thesis we presented a contribution to the model building cycle for systems biology.

In particular, we showed that the use of a process algebra approach for creating models

of biological systems can allow the study of properties that are not easily accessible in

the classical formalism used for modelling biological systems. The literature is rich in

“ready-to-use” complex models which have been analyzed in detail and characterized,

and the knowledge contained in those validated model needs to be transferred to models

written with different languages as easily as possible in order to allow the discovery of

further incremental insights about the system. With this idea in mind, we presented

a translation of ordinary differential equations into BlenX, a process algebra language

specifically designed to model networks of interacting chemical species. We showed on

the concrete case study of budding yeast cell cycle, that the translation is straightforward

and, thanks to the peculiar features of the BlenX language, can mantain the same level

of abstraction as the original models so that the knowledge contained in those already

validated models can be easily transferred and compared to the results obtained in the

stochastic framework.

The relevance of studying this specific biological system in the stochastic BlenX frame-

work can be deduced from the results that our approach allow us to find. In particular we

were able to investigate models of the budding yeast cell cycle of increasing levels of detail

and complexity: we quantified the strength of the irreversibility of the “Start” transition

of the cell cycle with respect to a specific parameter in a simple core model. This kind

of result allows the user to get a quantitative answer to the question of which parameters

are the ones that affect key properties of a system. Following the idea of studying sys-

tems of increasing levels of complexity, we analyzed a more detailed model of the budding

yeast cell cycle with respect to some peculiar mutants at the border of life and death for

which the noise can play a crucial role for their survival. We found that the stochastic

characterization of those systems was in a greater accordance with the experimental data
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available. Finally, inspired by the kind of single-cell experiments that are carried out in a

wet-lab for studying budding yeast, we implemented a framework for performing in-silico

pedigree analysis of the asymmetrical growing and division of budding yeast models. In

particular we chose the most complete model of the system available in the literature

and for which complete and detailed both experimental and theoretical studies have been

published. We showed that all the simulation results that we obtained for different kind

of analyses (e.g. checking the synchronicity of different colonies, partial viability seen

as the generation of an incomplete pedigree tree, . . . ) have been validated against the

experimental evidence of the biological system. The nice agreement between the in-silico

and experimental results make us confident that this framework, can be used for gaining

more deep insights in the study of the budding yeast growing and division process.

Modelling approaches are central in systems biology, as they provide a rational frame-

work to guide systematic strategies for key issues in medicine as well as the pharmaceutical

and biotechnological industries. The estimation of parameter values (model calibration) is

the bottleneck of the computational analysis of biological systems. Inter- and intra-cellular

processes require dynamic models, that contain the rate constants of the biochemical re-

actions. These kinetic parameters are often not accessible directly through experiments,

therefore methods that estimate rate constants with the maximum precision and accu-

racy are needed. We presented a new method for estimating rate coefficients from noisy

observations of concentration levels at discrete time points. This is traditionally done

by fitting procedures (e.g. by the least-squares estimator). We propose an alternative

approach based on a probabilistic, generative model of the variations in reactant concen-

tration. Our method, starting from the time series concentrations for the X1, . . . , XN

chemical species, discretizes the law of mass action, and as a result provides a tool to

predict the values of the variables Xi at time t, based on their values at the previous time

point. The discretization of the law of mass action provides a model for the variations

of the species concentration, rather than a model for the time-trajectory of the species

concentrations. This makes the evaluation of the expectation value of the mass action law

function simpler and analytically tractable. The probabilistic formulation of the method

is key to a principled handling of the noise inherent in biological data. The method also

includes a simple strategy to automatically estimate the initial guesses and bounds for

the parameters: in this way the user, especially if he/she has no idea about their values,

is not asked to give them as input. We implemented this mathematical procedure into

a software tool, called KInfer. The tool has been shown to be able to obtain estimates

for the rate coefficients in case studies of different complexity including first and second

order chemical reactions, didactical examples of biochemical networks, and more com-
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plex biological pathways like cell cycle regulation mechanisms and the NF-kB pathway.

The results obtained on these case studies confirmed that the procedure converges to the

expected solution within the noise strength and experimental error on input data.

Summing up, the contribution of this thesis can be seen as an effort to apply approaches

and tools born in the computer science field to the modelling and the study of biological

systems, in a way that could lead, one day, to a more easy and automated way to analyze

biological case studies.
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Appendix A

A.1 BlenX model of Budding Yeast Cell Cycle

Here we report the BlenX code used in Sections 4.4-4.5 for perfoming stochastic simulations

of the Chen model.

The .prog and .types file contain the definition of the structure of the modelled chemical

reaction network, while the .func file contains the definition of the kinetic constants and

rate functions. Just the parameter set of the wild type model in glucose is reported below,

because it is possible to obtain the input file of all the other mutants, just changing

the appropriate constants in the .func file, according to the assignments on the web-site

http://mpf.biol.vt.edu/research/budding_yeast_model/pp/.

Note that the value of the “alpha” constant (used for converting the concentration

levels to molecular numbers) has been calculated in such a way that the total amount of

proteins in the simulations is comparable to the experimental data presented in [101].

A.1.1 .prog file

[steps = 1000, delta = 0.5]

<<BASERATE:inf>>

template spont_degradation : pproc<<rate kin_rate>> = die(rate(kin_rate));

template receiving_degr_signal : pproc<<name channel>> = channel?().die;

template guarded_spont_degradation : pproc<<name N1, binder state, rate kin_rate>> =

(if((N1,state)) then die(rate(kin_rate)) endif);

let C2 : bproc = #(c2_state, C2_ty) [ receiving_degr_signal<<c2_state>> ];

let C2P : bproc = #(c2p_state, C2P_ty) [ receiving_degr_signal<<c2p_state>> ];

let C5 : bproc = #(c5_state, C5_ty) [ receiving_degr_signal<<c5_state>> ];

let C5P : bproc = #(c5p_state, C5P_ty) [ receiving_degr_signal<<c5p_state>> ];

let CDC14 : bproc = #(cdc14_state, CDC14_ty), #(cdc14_out, CDC14_OUT_ty)

[ receiving_degr_signal<<cdc14_state>> | spont_degradation<<kd14>> | rep cdc14_out!().nil ];

let activation_CDC15 : pproc =

if(cdc15_degr, CDC15I_ty) then cdc15_act?().ch(cdc15_degr, CDC15_ty).rec?().nil endif;

let inactivation_CDC15 : pproc =
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if(cdc15_degr, CDC15_ty) then ch(rate(ki15),cdc15_degr,CDC15I_ty).rec2?().nil endif;

let Cdc15_process : pproc =

receiving_degr_signal<<cdc15_degr>> |

activation_CDC15 | rep rec!().activation_CDC15 |

inactivation_CDC15 | rep rec2!().inactivation_CDC15;

let CDC15 : bproc = #(cdc15_degr, CDC15_ty), #(cdc15_act, CDC15_ACT_ty) [ Cdc15_process ];

let CDC15i : bproc = #(cdc15_degr, CDC15I_ty), #(cdc15_act, CDC15_ACT_ty) [ Cdc15_process ];

let send_degradation_signal : pproc =

if(cdc20_degr, CDC20_ty) then cdc20_out!().rec2!().nil endif;

let self_activation : pproc = if(cdc20_degr, CDC20I_ty) then

ch(rate(ka20_p),cdc20_degr,CDC20_ty).hide(cdc20_act).rec!().nil endif;

let activation_by_iep : pproc = if(cdc20_degr,CDC20I_ty) then

cdc20_act?().ch(cdc20_degr,CDC20_ty).hide(cdc20_act).rec3!().nil endif;

let Cdc20_process : pproc =

receiving_degr_signal<<cdc20_degr>> | spont_degradation<<kd20>> |

self_activation | rep rec?().self_activation | send_degradation_signal | rep rec2?().send_degradation_signal |

activation_by_iep | rep rec3?().activation_by_iep;

let CDC20 : bproc = #(cdc20_degr, CDC20_ty),

#(cdc20_out, CDC20_out_ty), #h(cdc20_act, CDC20_ACT_ty) [ Cdc20_process ];

let CDC20i : bproc = #(cdc20_degr, CDC20I_ty),

#(cdc20_out, CDC20_out_ty), #(cdc20_act, CDC20_ACT_ty) [ Cdc20_process ];

let CDH1 : bproc = #(cdh1_ch, CDH1_ty),#(cdh1_4killer, CDH1_4KILLER_ty)

[ receiving_degr_signal<<cdh1_4killer>> |

rep cdh1_ch!().nil | spont_degradation<<kdcdh>> ];

let CDH1i : bproc = #(cdh1i_ch, CDH1I_ty),#(cdh1_4killer, CDH1_4KILLER_ty)

[ receiving_degr_signal<<cdh1_4killer>> |

spont_degradation<<kdcdh>> ];

let CLB2 : bproc = #(clb2_ch, CLB2_ty)

[ receiving_degr_signal<<clb2_ch>> | spont_degradation<<kdb2_p>> | rep clb2_ch!().nil ];

let CLB5 : bproc = #(clb5_ch, CLB5_ty)

[ receiving_degr_signal<<clb5_ch>> | spont_degradation<<kdb5_p>> ];

let CLN2 : bproc = #(cln2_ch, CLN2_ty)

[ receiving_degr_signal<<cln2_ch>> | spont_degradation<<kdn2>> ];

let ESP1 : bproc = #(esp1_ch, ESP1_ty) [ receiving_degr_signal<<esp1_ch>> ];

let F2 : bproc = #(f2_ch, F2_ty) [ receiving_degr_signal<<f2_ch>> ];

let F2P : bproc = #(f2p_ch, F2P_ty) [ receiving_degr_signal<<f2p_ch>> ];

let F5 : bproc = #(f5_ch, F5_ty) [ receiving_degr_signal<<f5_ch>> ];

let F5P : bproc = #(f5p_ch, F5P_ty) [ receiving_degr_signal<<f5p_ch>> ];

let IE : bproc = #(ie_ch, IE_ty) [ receiving_degr_signal<<ie_ch>> ];

let IEP : bproc = #(iep_ch, IEP_ty) [ receiving_degr_signal<<iep_ch>> | rep iep_ch!().nil ];
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let NET1 : bproc = #(net1_degr, NET1_ty), #(net1_deph_ch, NET1P_DEPH_ty)

[ receiving_degr_signal<<net1_degr>> | spont_degradation<<kdnet>> ];

let NET1P : bproc = #(net1_degr, NET1P_ty), #(net1_deph_ch, NET1P_DEPH_ty)

[ receiving_degr_signal<<net1_degr>> | spont_degradation<<kdnet>> |

(ch(rate(kppnet_p),net1_degr,NET1_ty).nil + net1_deph_ch?().ch(net1_degr,NET1_ty).nil) ];

let PDS1 : bproc = #(pds1_ch, PDS1_ty)

[ receiving_degr_signal<<pds1_ch>> | spont_degradation<<kd1pds_p>> ];

let PE : bproc = #(pe_ch, PE_ty) [ receiving_degr_signal<<pe_ch>> ];

let PPX : bproc = #(ppx_ch, PPX_ty) [ receiving_degr_signal<<ppx_ch>> | rep ppx_ch!().nil ];

let RENT : bproc = #(rent_degr, RENT_ty), #(rent_deph_ch, RENT_DEPH_ty)

[ receiving_degr_signal<<rent_degr>> ];

let RENTP : bproc = #(rent_degr, RENTP_ty), #(rent_deph_ch, RENT_DEPH_ty)

[ receiving_degr_signal<<rent_degr>> |

(ch(rate(kppnet_p),rent_degr,RENT_ty).nil + rent_deph_ch?().ch(rent_degr,RENT_ty).nil) ];

let SIC1 : bproc = #(sic1_degr, SIC1_ty), #(sic1p_deph_ch, SIC1P_DEPH_ty)

[ receiving_degr_signal<<sic1_degr>> |

guarded_spont_degradation<<sic1_degr,SIC1P_ty,kd3c1>> ];

let dephosphorilation_SIC1P : pproc = sic1p_deph_ch?().ch(sic1_degr,SIC1_ty).nil;

let SIC1P : bproc = #(sic1_degr, SIC1P_ty), #(sic1p_deph_ch, SIC1P_DEPH_ty)

[ receiving_degr_signal<<sic1_degr>> |

guarded_spont_degradation<<sic1_degr,SIC1P_ty,kd3c1>> | dephosphorilation_SIC1P ];

let CDC6 : bproc = #(cdc6_degr, CDC6_ty), #(cdc6p_deph_ch, CDC6P_DEPH_ty)

[ receiving_degr_signal<<cdc6_degr>> |

guarded_spont_degradation<<cdc6_degr,CDC6P_ty,kd3f6>> ];

let dephosphorilation_CDC6P : pproc = cdc6p_deph_ch?().ch(cdc6_degr,CDC6_ty).nil;

let CDC6P : bproc = #(cdc6_degr, CDC6P_ty), #(cdc6p_deph_ch, CDC6P_DEPH_ty)

[ receiving_degr_signal<<cdc6_degr>> |

guarded_spont_degradation<<cdc6_degr,CDC6P_ty,kd3f6>> | dephosphorilation_CDC6P ];

let phosphorilation_dephosphorilation_SWI5 : pproc =

swi5_deph_ch?().(

if(swi5_degr, SWI5_ty)

then ch(swi5_degr,SWI5P_ty).ch(swi5_deph_ch,SWI5_DEPH_ty).rec!().nil endif

+ if(swi5_degr, SWI5P_ty)

then ch(swi5_degr,SWI5_ty).ch(swi5_deph_ch,SWI5_PH_ty).rec!().nil endif

);

let SWI5 : bproc = #(swi5_degr, SWI5_ty), #(swi5_deph_ch, SWI5_PH_ty)

[ receiving_degr_signal<<swi5_degr>> |

spont_degradation<<kdswi>> |

rep rec?().phosphorilation_dephosphorilation_SWI5 | phosphorilation_dephosphorilation_SWI5 ];

let SWI5P : bproc = #(swi5_degr, SWI5P_ty), #(swi5_deph_ch, SWI5_DEPH_ty)

[ receiving_degr_signal<<swi5_degr>> |

155



A.1. BLENX MODEL OF BUDDING YEAST CELL CYCLE APPENDIX A. APPENDIX

spont_degradation<<kdswi>> |

rep rec?().phosphorilation_dephosphorilation_SWI5 | phosphorilation_dephosphorilation_SWI5 ];

let TEM1GDP : bproc = #(tem1gdp_ch, TEM1GDP_ty)

[ receiving_degr_signal<<tem1gdp_ch>> | rep tem1gdp_ch!().nil ];

let TEM1GTP : bproc = #(tem1gtp_ch, TEM1GTP_ty)

[ receiving_degr_signal<<tem1gtp_ch>> | rep tem1gtp_ch!().nil ];

when(CLN2 : : Synthesis_of_CLN2) new(1);

when(CLB2 : : Synthesis_of_CLB2) new(1);

when(CLB5 : : Synthesis_of_CLB5) new(1);

when(SIC1 : : Synthesis_of_SIC1) new(1);

when(SIC1 : : Phosphorylation_of_SIC1) split(Nil, SIC1P);

when(SIC1,CLB2 : : Assoc_of_CLB2_and_SIC1) join(C2);

when(C2 : : Dissoc_of_CLB2SIC1_complex) split(SIC1, CLB2);

when(SIC1,CLB5 : : Assoc_of_CLB5_and_SIC1) join(C5);

when(C5 : : Dissoc_of_CLB5SIC1) split(SIC1, CLB5);

when(C2 : : Phosphorylation_of_C2) split(Nil, C2P);

when(C2P : : Dephosphorylation_of_C2P) split(Nil, C2);

when(C5 : : Phosphorylation_of_C5) split(Nil, C5P);

when(C5P : : Dephosphorylation_of_C5P) split(Nil, C5);

when(C2 : : Degradation_of_CLB2_in_C2) split(Nil, SIC1);

when(C5 : : Degradation_of_CLB5_in_C5) split(Nil, SIC1);

when(C2P : : Degradation_of_SIC1_in_C2P) split(Nil, CLB2);

when(C5P : : Degradation_of_SIC1P_in_C5P_) split(Nil, CLB5);

when(C2P : : Degradation_of_CLB2_in_C2P) split(Nil, SIC1P);

when(C5P : : Degradation_of_CLB5_in_C5P) split(Nil, SIC1P);

when(CDC6 : : CDC6_synthesis) new(1);

when(CDC6 : : Phosphorylation_of_CDC6) split(Nil, CDC6P);

when(CDC6,CLB2 : : CLB2CDC6_complex_formation) join(F2);

when(F2 : : CLB2CDC6_dissociation) split(CDC6, CLB2);

when(CDC6,CLB5 : : CLB5CDC6_complex_formation) join(F5);

when(F5 : : CLB5CDC6_dissociation) split(CDC6, CLB5);

when(F2 : : F2_phosphorylation) split(Nil, F2P);

when(F2P : : F2P_dephosphorylation) split(Nil, F2);

when(F5 : : F5_phosphorylation) split(Nil, F5P);

when(F5P : : F5P_dephosphorylation) split(Nil, F5);

when(F2 : : CLB2_degradation_in_F2) split(Nil, CDC6);

when(F5 : : CLB5_degradation_in_F5) split(Nil, CDC6);

when(F2P : : CDC6_degradation_in_F2P) split(Nil, CLB2);

when(F5P : : CDC6_degradation_in_F5P) split(Nil, CLB5);

when(F2P : : CLB2_degradation_in_F2P) split(Nil, CDC6P);

when(F5P : : CLB5_degradation_in_F5P) split(Nil, CDC6P);

when(SWI5 : : Synthesis_of_SWI5) new(1);

when(IE : : Activation_of_IEP) split(Nil, IEP);

when(IEP : : Inactivation_1_IEP) split(Nil, IE);

when(CDC20i : : Synthesis_of_inactive_CDC20) new(1);

when(CDC20 : : Inactivation_2_CDC20) split(Nil, CDC20i);

when(CDH1 : : CDH1_synthesis) new(1);

when(CDH1i : : CDH1i_activation) split(Nil, CDH1);

when(CDH1 : : Inactivation_3_CDH1) split(Nil, CDH1i);

when(CDC14 : : CDC14_synthesis) new(1);

when(NET1,CDC14 : : Assoc_with_NET1_to_form_RENT) join(RENT);

when(RENT : : Dissoc_from_RENT) split(CDC14, NET1);
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when(NET1P,CDC14 : : Assoc_with_NET1P_to_form_RENTP) join(RENTP);

when(RENTP : : Dissoc_from_RENP) split(NET1P, CDC14);

when(NET1 : : Net1_synthesis) new(1);

when(NET1 : : NET1_phosphorylation) split(Nil, NET1P);

when(RENT : : RENT_phosphorylation) split(Nil, RENTP);

when(RENT : : Degradation_of_NET1_in_RENT) split(Nil, CDC14);

when(RENTP : : Degradation_of_NET1P_in_RENTP) split(Nil, CDC14);

when(RENT : : Degradation_of_CDC14_in_RENT) split(Nil, NET1);

when(RENTP : : Degradation_of_CDC14_in_RENTP) split(Nil, NET1P);

when(TEM1GDP : : TEM1_activation) split(Nil, TEM1GTP);

when(TEM1GTP : : inactivation_1_TEM1GTP) split(Nil, TEM1GDP);

when(PPX : : PPX_synthesis) new(1);

when(PPX : : degradation_1_PPX) delete(1);

when(PDS1 : : PDS1_synthesis) new(1);

when(PE : : Degradation_of_PDS1_in_PE) split(Nil, ESP1);

when(ESP1,PDS1 : : Assoc_with_ESP1_to_form_PE) join(PE);

when(PE : : Disso_from_PE) split(ESP1, PDS1);

when(: CLB2_CLB5_KEZ2 <- 10, CLB2_CLB5_KEZ2 <- 9.95 :) update(ORI , reset_ORI_ORI_var);

when(: CLB2_KEZ -> 10, CLB2_KEZ <- 9.95 :) update(BUD , cell_division_BUD_var);

when(: CLB2_KEZ -> 10, CLB2_KEZ <- 9.95 :) update(MASS , cell_division_MASS_var);

when(: CLB2_KEZ -> 10, CLB2_KEZ <- 9.95 :) update(LTE1 , cell_division_LTE1_var);

when(: CLB2_KEZ -> 10, CLB2_KEZ <- 9.95 :) update(SPN, cell_division_SPN_var);

when(: ORI <- 0.1, ORI -> 1.0 :) update(MAD2 , start_S_MAD2_var);

when(: ORI <- 0.1, ORI -> 1.0 :) update(BUB2 , start_S_BUB2_var);

when(: SPN <- 0.08, SPN -> 1.0 :) update(MAD2 , spindle_checkpoint_MAD2_var);

when(: SPN <- 0.08, SPN -> 1.0 :) update(LTE1 , spindle_checkpoint_LTE1_var);

when(: SPN <- 0.08, SPN -> 1.0 :) update(BUB2 , spindle_checkpoint_BUB2_var);

when(: BUD -> 1.0e+170, BUD <- 10 :) update(A , useless);

when(: LTE1 -> 1.0e+170, LTE1 <- 10 :) update(A , useless);

when(: SPN -> 1.0e+170, SPN <- 10 :) update(A , useless);

when(: ORI -> 1.0e+170, ORI <- 10 :) update(A , useless);

when(: MAD2 -> 1.0e+170, MAD2 <- 10 :) update(A , useless);

when(: BUB2 -> 1.0e+170, BUB2 <- 10 :) update(A , useless);

when(: LTE1 -> 1.0e+170, LTE1 <- 10 :) update(A , useless);

when(: SBF -> 1.0e+170, SBF <- 10 :) update(A , useless);

let KILLER : bproc = #(k, KILLER) [ rep k!().nil ];

when(KILLER: |KILLER| < 4: inf) delete(2);

when(KILLER : MASS -> 10.48 : inf ) new(20);

when(: KILLER <- 2 , KILLER -> 10 : ) update(MASS, null_mass);

run init_PPX PPX || init_CDC20i CDC20i || init_C5 C5 || init_CDC6P CDC6P || init_C5P C5P ||

init_CDH1i CDH1i || init_CDC14 CDC14 || init_CDC15 CDC15 || init_CDH1 CDH1 || init_SIC1 SIC1 ||

init_SWI5 SWI5 || init_F5P F5P || init_C2 C2 || init_NET1 NET1 || init_SIC1P SIC1P ||

init_SWI5P SWI5P || init_IE IE || init_TEM1GTP TEM1GTP || init_CDC6 CDC6 || init_CLN2 CLN2 ||

init_RENTP RENTP || init_RENT RENT || init_CLB5 CLB5 || init_CDC20 CDC20 || init_TEM1GDP TEM1GDP ||

init_CLB2 CLB2 || init_C2P C2P || init_ESP1 ESP1 || init_CDC15i CDC15i || init_NET1P NET1P ||

init_F5 F5 || init_F2 F2 || init_PE PE || init_PDS1 PDS1 || init_IEP IEP || init_F2P F2P || 2 KILLER
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A.1.2 .types file

{CDH1_4KILLER_ty, CDC14_OUT_ty,CDC20_out_ty, RENT_DEPH_ty, NET1P_DEPH_ty, CDC15_ACT_ty, CDC20_ACT_ty,

SWI5_DEPH_ty,SWI5_PH_ty, SIC1P_DEPH_ty, CDC6P_DEPH_ty, KILLER, C2_ty , C2P_ty , C5_ty , C5P_ty ,

CDC14_ty , CDC15_ty , CDC15I_ty , CDC20_ty , CDC20I_ty , CDC6_ty , CDC6P_ty , CDH1_ty , CDH1I_ty ,

CLB2_ty , CLB5_ty , CLN2_ty , ESP1_ty , F2_ty , F2P_ty , F5_ty , F5P_ty , IE_ty , IEP_ty , NET1_ty ,

NET1P_ty , PDS1_ty , PE_ty , PPX_ty , RENT_ty , RENTP_ty , SIC1_ty , SIC1P_ty , SWI5_ty , SWI5P_ty ,

TEM1GDP_ty , TEM1GTP_ty}

%%

{ (C2_ty, KILLER, 1000000000000000000000000), (C2P_ty , KILLER, 1000000000000000000000000),

(C5_ty , KILLER, 1000000000000000000000000), (C5P_ty , KILLER, 1000000000000000000000000),

(CDC14_ty , KILLER, 1000000000000000000000000), (CDC15_ty , KILLER, 1000000000000000000000000),

(CDC15I_ty , KILLER, 1000000000000000000000000), (CDC20_ty , KILLER, 1000000000000000000000000),

(CDC20I_ty , KILLER, 1000000000000000000000000), (CDC6_ty , KILLER, 1000000000000000000000000),

(CDC6P_ty , KILLER, 1000000000000000000000000), (CDH1_4KILLER_ty , KILLER, 1000000000000000000000000),

(CLB2_ty , KILLER, 1000000000000000000000000), (CLB5_ty , KILLER, 1000000000000000000000000),

(CLN2_ty , KILLER, 1000000000000000000000000), (ESP1_ty , KILLER, 1000000000000000000000000),

(F2_ty , KILLER, 1000000000000000000000000), (F2P_ty , KILLER, 1000000000000000000000000),

(F5_ty , KILLER, 1000000000000000000000000), (F5P_ty , KILLER, 1000000000000000000000000),

(IE_ty , KILLER, 1000000000000000000000000), (IEP_ty , KILLER, 1000000000000000000000000),

(NET1_ty , KILLER, 1000000000000000000000000), (NET1P_ty , KILLER, 1000000000000000000000000),

(PDS1_ty , KILLER, 1000000000000000000000000), (PE_ty , KILLER, 1000000000000000000000000),

(PPX_ty , KILLER, 1000000000000000000000000), (RENT_ty , KILLER, 1000000000000000000000000),

(RENTP_ty , KILLER, 1000000000000000000000000), (SIC1_ty , KILLER, 1000000000000000000000000),

(SIC1P_ty , KILLER, 1000000000000000000000000), (SWI5_ty , KILLER, 1000000000000000000000000),

(SWI5P_ty , KILLER, 1000000000000000000000000), (TEM1GDP_ty , KILLER, 1000000000000000000000000),

(TEM1GTP_ty , KILLER, 1000000000000000000000000),

(CLB2_ty, CDH1_ty, rate(Vdb2_1)),

(CLB2_ty, CDC20_out_ty, rate(Vdb2_2)),

(CLB5_ty, CDC20_out_ty, rate(Vdb5_1)),

(PDS1_ty, CDC20_out_ty, rate(Vdpds_1)),

(PDS1_ty, CDH1_ty, rate(Vdpds_2)),

(SIC1P_DEPH_ty, CDC14_OUT_ty, rate(Vppc1_1)),

(CDC6P_DEPH_ty, CDC14_OUT_ty, rate(Vppf6_1)),

(SWI5_DEPH_ty, CDC14_OUT_ty, rate(Activation_of_SWI5_1)),

(SWI5_PH_ty, CLB2_ty, rate(Inactivation_of_SWI5_1)),

(CDC20_ACT_ty, IEP_ty, rate(Activation_of_CDC20_1)),

(CDC15_ACT_ty, TEM1GDP_ty, rate(CDC15_activation_1)),

(CDC15_ACT_ty, TEM1GTP_ty, rate(CDC15_activation_2)),

(CDC15_ACT_ty, CDC14_OUT_ty, rate(CDC15_activation_3)),

(NET1P_DEPH_ty, PPX_ty, rate(Vppnet_1)),

(RENT_DEPH_ty, PPX_ty, rate(Vppnet_1))

}

A.1.3 .func file

let b0 : const = 0.054; let bub2h : const = 1.0; let bub2l : const = 0.2;

let C0 : const = 0.4; let Dn3 : const = 1.0; let ebudb5 : const = 1.0;

let ebudn2 : const = 0.25; let ebudn3 : const = 0.05; let ec1b2 : const = 0.45;

let ec1b5 : const = 0.1; let ec1k2 : const = 0.03; let ec1n2 : const = 0.06;

let ec1n3 : const = 0.3; let ef6b2 : const = 0.55; let ef6b5 : const = 0.1;

let ef6k2 : const = 0.03; let ef6n2 : const = 0.06; let ef6n3 : const = 0.3;

let eicdhb2 : const = 1.2; let eicdhb5 : const = 8.0; let eicdhn2 : const = 0.4;

let eicdhn3 : const = 0.25; let eorib2 : const = 0.45; let eorib5 : const = 0.9;

let esbfb5 : const = 2.0; let esbfn2 : const = 2.0; let esbfn3 : const = 10.0;

let J20ppx : const = 0.15; let Jacdh : const = 0.03; let Jaiep : const = 0.1;

let Jamcm : const = 0.1; let Jasbf : const = 0.01; let Jatem : const = 0.1;

let Jd2c1 : const = 0.05; let Jd2f6 : const = 0.05; let Jicdh : const = 0.03;

let Jiiep : const = 0.1; let Jimcm : const = 0.1; let Jisbf : const = 0.01;

let Jitem : const = 0.1; let Jn3 : const = 6.0; let Jpds : const = 0.04;

let Jspn : const = 0.14; let ka15_p : const = 0.0020; let ka15_p_p : const = 1.0;

let ka15p : const = 0.0010; let ka20_p : const = 0.05; let ka20_p_p : const = 0.2;
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let kacdh_p : const = 0.01; let kacdh_p_p : const = 0.8; let kaiep : const = 0.1;

let kamcm : const = 1.0; let kasb2 : const = 50.0; let kasb5 : const = 50.0;

let kasbf : const = 0.38; let kasesp : const = 50.0; let kasf2 : const = 15.0;

let kasf5 : const = 0.01; let kasrent : const = 200.0; let kasrentp : const = 1.0;

let kaswi : const = 2.0; let kd14 : const = 0.1; let kd1c1 : const = 0.01;

let kd1f6 : const = 0.01; let kd1pds_p : const = 0.01; let kd20 : const = 0.3;

let kd2c1 : const = 1.0; let kd2f6 : const = 1.0; let kd2pds_p_p : const = 0.2;

let kd3c1 : const = 1.0; let kd3f6 : const = 1.0; let kd3pds_p_p : const = 0.04;

let kdb2_p : const = 0.0030; let kdb2_p_p : const = 0.4; let kdb2p : const = 0.15;

let kdb5_p : const = 0.01; let kdb5_p_p : const = 0.16; let kdbud : const = 0.06;

let kdcdh : const = 0.01; let kdib2 : const = 0.05; let kdib5 : const = 0.06;

let kdiesp : const = 0.5; let kdif2 : const = 0.5; let kdif5 : const = 0.01;

let kdirent : const = 1.0; let kdirentp : const = 2.0; let kdn2 : const = 0.12;

let kdnet : const = 0.03; let kdori : const = 0.06; let kdppx_p : const = 0.17;

let kdppx_p_p : const = 2.0; let kdspn : const = 0.06; let kdswi : const = 0.08;

let ki15 : const = 0.5; let kicdh_p : const = 0.0010; let kicdh_p_p : const = 0.08;

let kiiep : const = 0.15; let kimcm : const = 0.15; let kisbf_p : const = 0.6;

let kisbf_p_p : const = 8.0; let kiswi : const = 0.05; let kkpnet_p : const = 0.01;

let kkpnet_p_p : const = 0.6; let kppc1 : const = 4.0; let kppf6 : const = 4.0;

let kppnet_p : const = 0.05; let kppnet_p_p : const = 3.0; let ks14 : const = 0.2;

let ks1pds_p_p : const = 0.03; let ks20_p : const = 0.0060; let ks20_p_p : const = 0.6;

let ks2pds_p_p : const = 0.055; let ksb2_p : const = 0.0010; let ksb2_p_p : const = 0.04;

let ksb5_p : const = 8.0E-4; let ksb5_p_p : const = 0.0050; let ksbud : const = 0.2;

let ksc1_p : const = 0.012; let ksc1_p_p : const = 0.12; let kscdh : const = 0.01;

let ksf6_p : const = 0.024; let ksf6_p_p : const = 0.12; let ksf6_p_p_p : const = 0.0040;

let ksn2_p : const = 0.0; let ksn2_p_p : const = 0.15; let ksnet : const = 0.084;

let ksori : const = 2.0; let kspds_p : const = 0.0; let ksppx : const = 0.1;

let ksspn : const = 0.1; let ksswi_p : const = 0.0050; let ksswi_p_p : const = 0.08;

let mad2h : const = 8.0; let mad2l : const = 0.01; let mdt : const = 90.0;

let lte1h: const = 1.0; let lte1l : const = 0.1; let ESP1T : const = 1.0;

let IET : const = 1.0; let TEM1T : const = 1.0; let CDC15T : const = 1.0;

let kez2 : const = 0.2; let kez : const = 0.3;

let alpha : const = 0.0008166695;

let BCK2 : function = (b0*MASS);

let Visbf_1 : const = kisbf_p_p*alpha;

let Visbf : function = (kisbf_p+Visbf_1*|CLB2|);

let CLN3_1 : const = C0*Dn3;

let CLN3 : function = (CLN3_1*MASS/(Jn3+Dn3*MASS));

let Vppc1_1 : const = kppc1*alpha;

let Vppc1 : function = (Vppc1_1*|CDC14|);

let Vppf6_1 : const = kppf6*alpha;

let Vppf6 : function = (Vppf6_1*|CDC14|);

let Vaiep_1 : const = kaiep*alpha;

let Vaiep : function = (Vaiep_1*|CLB2|);

let Vacdh_1 : const = kacdh_p_p*alpha;

let Vacdh : function = (kacdh_p+Vacdh_1*|CDC14|);

let Vicdh_1 : const = kicdh_p_p*eicdhn3;

let Vicdh_2 : const = kicdh_p_p*eicdhn2*alpha;

let Vicdh_3 : const = kicdh_p_p*eicdhb5*alpha;

let Vicdh_4 : const = kicdh_p_p*eicdhb2*alpha;

let Vicdh : function = (kicdh_p+Vicdh_1*CLN3+Vicdh_2*|CLN2|+Vicdh_3*|CLB5|+Vicdh_4*|CLB2| );

let Vkpnet_1 : const = kkpnet_p_p*alpha;

let Vkpnet : function = ((kkpnet_p+Vkpnet_1*|CDC15|)*MASS);

let Vppnet_1 : const = kppnet_p_p*alpha;
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let Vppnet : function = (kppnet_p+Vppnet_1 *|PPX|);

let Vasbf_1 : const = kasbf*esbfn2*alpha;

let Vasbf_2 : const = kasbf*esbfn3;

let Vasbf_3 : const = kasbf*esbfb5*alpha;

let Vasbf : function = (Vasbf_1*|CLN2|+Vasbf_2*(CLN3+BCK2)+Vasbf_3*|CLB5|);

let SBF : var = (2 * (Jisbf) * (Vasbf) / ((Visbf) - (Vasbf) + (Jasbf) * (Visbf) + (Jisbf) * (Vasbf)

+ sqrt( pow((Visbf) - (Vasbf) + (Jasbf) * (Visbf) + (Jisbf) * (Vasbf), 2) - 4 * ((Visbf) - (Vasbf)) * (Jisbf) * (Vasbf))));

let MCM1_1 : const = kamcm*alpha;

let MCM1 : function = (2 * (Jimcm) * (MCM1_1*|CLB2|) / ((kimcm) - (MCM1_1*|CLB2|) + (Jamcm) * (kimcm) +

(Jimcm) * (MCM1_1*|CLB2|) + sqrt( pow((kimcm) - (MCM1_1*|CLB2|) + (Jamcm) * (kimcm) + (Jimcm) * (MCM1_1*|CLB2|), 2)

- 4 * ((kimcm) - (MCM1_1*|CLB2|)) * (Jimcm) * (MCM1_1*|CLB2|))));

let Vd2c1_1 : const = kd2c1*ec1n3;

let Vd2c1_2 : const = kd2c1*ec1k2;

let Vd2c1_3 : const = kd2c1*ec1n2*alpha;

let Vd2c1_4 : const = kd2c1*ec1b5*alpha;

let Vd2c1_5 : const = kd2c1*ec1b2*alpha;

let Vd2c1 : function = Vd2c1_1*CLN3 + Vd2c1_2*BCK2 + Vd2c1_3 *|CLN2| + Vd2c1_4*|CLB5| + Vd2c1_5*|CLB2|;

let Vd2f6_1 : const = kd2f6*ef6n3;

let Vd2f6_2 : const = kd2f6*ef6k2;

let Vd2f6_3 : const = kd2f6*ef6n2*alpha;

let Vd2f6_4 : const = kd2f6*ef6b5*alpha;

let Vd2f6_5 : const = kd2f6*ef6b2*alpha;

let Vd2f6 : function = Vd2f6_1*CLN3 + Vd2f6_2*BCK2 + Vd2f6_3*|CLN2| + Vd2f6_4*|CLB5| + Vd2f6_5*|CLB2|;

let Vkpc1 : function = (kd1c1+Vd2c1/(Jd2c1+alpha*(|SIC1|+|C2|+|C5|+|SIC1P|+|C2P|+|C5P|)));

let Vkpf6 : function = (kd1f6+Vd2f6/(Jd2f6+alpha*(|CDC6|+|F2|+|F5|+|CDC6P|+|F2P|+|F5P|)));

let Vdb2_1 : const = kdb2_p_p*alpha;

let Vdb2_2 : const = kdb2p*alpha;

let Vdb2 : function = (kdb2_p+Vdb2_1*|CDH1|+Vdb2_2*|CDC20|);

let Vdb5_1 : const = kdb5_p_p*alpha;

let Vdb5 : function = (kdb5_p+Vdb5_1*|CDC20|);

let Vdpds_1 : const = kd2pds_p_p*alpha;

let Vdpds_2 : const = kd3pds_p_p*alpha;

let Vdpds : function = (kd1pds_p+Vdpds_1*|CDC20|+Vdpds_2*|CDH1|);

let Vdppx : function = (kdppx_p+kdppx_p_p*(J20ppx+alpha*|CDC20|)*Jpds/(Jpds+alpha*|PDS1|));

let CLB2T : function = alpha*(|CLB2|+|C2|+|C2P|+|F2|+|F2P|);

let CLB5T : function = alpha*(|CLB5|+|C5|+|C5P|+|F5|+|F5P|);

let CDC14T : function = alpha*(|CDC14|+|RENT|+|RENTP|);

let NET1T : function = alpha*(|NET1|+|NET1P|+|RENT|+|RENTP|);

let SIC1T : function = alpha*(|SIC1|+|C2|+|C5|+|SIC1P|+|C2P|+|C5P|);

let CDC6T : function = alpha*(|CDC6|+|F2|+|F5|+|CDC6P|+|F2P|+|F5P|);

let CKIT : function = (SIC1T+CDC6T);

let Synthesis_of_CLN2: function = ((ksn2_p+ksn2_p_p*SBF)*MASS)/alpha;

let Synthesis_of_CLB2: function = ((ksb2_p+ksb2_p_p*MCM1)*MASS)/alpha;

let Synthesis_of_CLB5: function = ((ksb5_p+ksb5_p_p*SBF)*MASS)/alpha;

let Synthesis_of_SIC1_1 : const = ksc1_p_p*alpha;

let Synthesis_of_SIC1: function = (ksc1_p+Synthesis_of_SIC1_1*|SWI5|)/alpha;

let Phosphorylation_of_SIC1: function = ((Vkpc1) * (|SIC1|));

let Assoc_of_CLB2_and_SIC1: function = ((kasb2) * (alpha*|CLB2|) * (|SIC1|));

let Dissoc_of_CLB2SIC1_complex: function = ((kdib2) * (|C2|));

let Assoc_of_CLB5_and_SIC1: function = ((kasb5) * (|CLB5|) * (alpha*|SIC1|));

let Dissoc_of_CLB5SIC1: function = ((kdib5) * (|C5|));

let Phosphorylation_of_C2: function = ((Vkpc1) * (|C2|));
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let Dephosphorylation_of_C2P: function = ((Vppc1) * (|C2P|));

let Phosphorylation_of_C5: function = ((Vkpc1) * (|C5|));

let Dephosphorylation_of_C5P: function = ((Vppc1) * (|C5P|));

let Degradation_of_CLB2_in_C2: function = ((Vdb2) * (|C2|));

let Degradation_of_CLB5_in_C5: function = ((Vdb5) * (|C5|));

let Degradation_of_SIC1_in_C2P: function = ((kd3c1) * (|C2P|));

let Degradation_of_SIC1P_in_C5P_: function = ((kd3c1) * (|C5P|));

let Degradation_of_CLB2_in_C2P: function = ((Vdb2) * (|C2P|));

let Degradation_of_CLB5_in_C5P: function = ((Vdb5) * (|C5P|));

let CDC6_synthesis_1 : const = ksf6_p_p*alpha;

let CDC6_synthesis: function = (ksf6_p+CDC6_synthesis_1*|SWI5|+ksf6_p_p_p*SBF)/alpha;

let Phosphorylation_of_CDC6: function = ((Vkpf6) * (|CDC6|));

let CLB2CDC6_complex_formation: function = ((kasf2) * (|CLB2|) * (alpha*|CDC6|));

let CLB2CDC6_dissociation: function = ((kdif2) * (|F2|));

let CLB5CDC6_complex_formation: function = ((kasf5) * (|CLB5|) * (alpha*|CDC6|));

let CLB5CDC6_dissociation: function = ((kdif5) * (|F5|));

let F2_phosphorylation: function = ((Vkpf6) * (|F2|));

let F2P_dephosphorylation: function = ((Vppf6) * (|F2P|));

let F5_phosphorylation: function = ((Vkpf6) * (|F5|));

let F5P_dephosphorylation: function = ((Vppf6) * (|F5P|));

let CLB2_degradation_in_F2: function = ((Vdb2) * (|F2|));

let CLB5_degradation_in_F5: function = ((Vdb5) * (|F5|));

let CDC6_degradation_in_F2P: function = ((kd3f6) * (|F2P|));

let CDC6_degradation_in_F5P: function = ((kd3f6) * (|F5P|));

let CLB2_degradation_in_F2P: function = ((Vdb2) * (|F2P|));

let CLB5_degradation_in_F5P: function = ((Vdb5) * (|F5P|));

let Synthesis_of_SWI5: function = (ksswi_p+ksswi_p_p*MCM1)/alpha;

let Activation_of_SWI5_1 : const = kaswi*alpha;

let Inactivation_of_SWI5_1 : const = kiswi*alpha;

let Activation_of_IEP: function = ((|IE|) * (Vaiep) / ((Jaiep) + (alpha*|IE|)));

let Inactivation_1_IEP: function = ((kiiep) * (|IEP|) / ((Jiiep) + (alpha*|IEP|)));

let Synthesis_of_inactive_CDC20: function = (ks20_p+ks20_p_p*MCM1)/alpha;

let Activation_of_CDC20_1 : const = ka20_p_p*alpha;

let Inactivation_2_CDC20: function = ((MAD2) * (|CDC20|));

let CDH1_synthesis: function = (kscdh)/alpha;

let CDH1i_activation: function = ((|CDH1i|) * (Vacdh) / ((Jacdh) + (alpha*|CDH1i|)));

let Inactivation_3_CDH1: function = ((|CDH1|) * (Vicdh) / ((Jicdh) + (alpha*|CDH1|)));

let CDC14_synthesis: function = (ks14)/alpha;

let Assoc_with_NET1_to_form_RENT: function = ((kasrent) * (alpha*|CDC14|) * (|NET1|));

let Dissoc_from_RENT: function = ((kdirent) * (|RENT|));

let Assoc_with_NET1P_to_form_RENTP: function = ((kasrentp) * (alpha*|CDC14|) * (|NET1P|));

let Dissoc_from_RENP: function = ((kdirentp) * (|RENTP|));

let Net1_synthesis: function = (ksnet)/alpha;

let NET1_phosphorylation: function = ((Vkpnet) * (|NET1|));

let RENT_phosphorylation: function = ((Vkpnet) * (|RENT|));

let Degradation_of_NET1_in_RENT: function = ((kdnet) * (|RENT|));

let Degradation_of_NET1P_in_RENTP: function = ((kdnet) * (|RENTP|));

let Degradation_of_CDC14_in_RENT: function = ((kd14) * (|RENT|));

let Degradation_of_CDC14_in_RENTP: function = ((kd14) * (|RENTP|));

let TEM1_activation: function = ((|TEM1GDP|) * (LTE1) / ((Jatem) + (alpha*|TEM1GDP|)));

let inactivation_1_TEM1GTP: function = ((|TEM1GTP|) * (BUB2) / ((Jitem) + (alpha*|TEM1GTP|)));

let CDC15_activation_1 : const = ka15_p*alpha;

let CDC15_activation_2 : const = ka15_p_p*alpha;

let CDC15_activation_3 : const = ka15p*alpha;

let PPX_synthesis: function = (ksppx)/alpha;

let degradation_1_PPX: function = ((Vdppx) * (|PPX|));

let PDS1_synthesis: function = (kspds_p+ks1pds_p_p*SBF+ks2pds_p_p*MCM1)/alpha;

let Degradation_of_PDS1_in_PE: function = ((Vdpds) * (|PE|));

let Assoc_with_ESP1_to_form_PE: function = ((kasesp) * (alpha*|PDS1|) * (|ESP1|));

let Disso_from_PE: function = ((kdiesp) * (|PE|));

let init_C2 : const = 0.238404 / alpha; let init_C2P : const = 0.024034 / alpha;

let init_C5 : const = 0.070081 / alpha; let init_C5P : const = 0.006878 / alpha;

let init_CDC14 : const = 0.468344 / alpha; let init_CDC15 : const = 0.656533 / alpha;
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let init_CDC20 : const = 0.444296 / alpha; let init_CDC20i : const = 1.472044 / alpha;

let init_CDC6 : const = 0.10758 / alpha; let init_CDC6P : const = 0.015486 / alpha;

let init_CDH1 : const = 0.930499 / alpha; let init_CDH1i : const = 0.0695 / alpha;

let init_CLB2 : const = 0.1469227 / alpha; let init_CLB5 : const = 0.0518014 / alpha;

let init_CLN2 : const = 0.0652511 / alpha; let init_ESP1 : const = 0.301313 / alpha;

let init_F2 : const = 0.236058 / alpha; let init_F2P : const = 0.0273938 / alpha;

let init_F5 : const = 7.24E-5 / alpha; let init_F5P : const = 7.91E-5 / alpha;

let init_IEP : const = 0.1015 / alpha; let init_NET1 : const = 0.018645 / alpha;

let init_NET1P : const = 0.970271 / alpha; let init_PDS1 : const = 0.025612 / alpha;

let init_PPX : const = 0.123179 / alpha; let init_RENT : const = 1.04954 / alpha;

let init_RENTP : const = 0.6 / alpha; let init_SIC1 : const = 0.0228776 / alpha;

let init_SIC1P : const = 0.00641 / alpha; let init_SWI5 : const = 0.95 / alpha;

let init_SWI5P : const = 0.02 / alpha; let init_TEM1GTP : const = 0.9 / alpha;

let init_CDC15i : const = CDC15T/alpha - init_CDC15;

let init_IE : const = IET/alpha - init_IEP;

let init_PE : const = ESP1T/alpha - init_ESP1;

let init_TEM1GDP : const = TEM1T/alpha - init_TEM1GTP;

let mu : function = (log(2)/mdt);

let D : function = (1.026/mu-32.0);

let F : function = (exp(-mu*D));

let Growth: function = (mu*MASS);

let DNA_synthesis: function = (ksori*(eorib5*alpha*|CLB5|+eorib2*alpha*|CLB2|));

let Negative_regulation_of_DNA_synthesis: function = (kdori * ORI);

let Budding: function = (ksbud*(ebudn2*alpha*|CLN2|+ebudn3*CLN3+ebudb5*alpha*|CLB5|));

let Negative_regulation_of_Cell_budding: function = (kdbud * BUD);

let Spindle_formation: function = (ksspn*alpha*|CLB2|/(Jspn+alpha*|CLB2|));

let Spindle_disassembly: function = (kdspn * SPN);

let init_ORI : const = 9.09E-4;

let init_BUD : const = 0.008473;

let init_SPN : const = 0.03;

let MASS(0.1) : var = Growth init 1.206019;

let ORI(0.0001) : var = DNA_synthesis - Negative_regulation_of_DNA_synthesis init 9.09E-4;

let BUD(0.0001) : var = Budding - Negative_regulation_of_Cell_budding init 0.008473;

let SPN(0.0001) : var = Spindle_formation - Spindle_disassembly init 0.03;

let MAD2(0.1) : var = 0.0000001 init 0.01;

let BUB2(0.1) : var = 0.0000001 init 0.2;

let LTE1(0.1) : var = 0.0000001 init 0.1;

let start_S_MAD2_var : function = mad2h;

let start_S_BUB2_var : function = bub2h;

let reset_ORI_ORI_var : function = 0;

let spindle_checkpoint_MAD2_var : function = mad2l;

let spindle_checkpoint_LTE1_var : function = lte1h;

let spindle_checkpoint_BUB2_var : function = bub2l;

let cell_division_MASS_var : function = F * MASS;

let cell_division_LTE1_var : function = lte1l;

let cell_division_BUD_var : function = 0;

let cell_division_SPN_var : function = 0;

let A : var = 1000; let useless : function = 2000;

let CLB2_KEZ : var = alpha*|CLB2| - kez + 10;

let CLB2_CLB5_KEZ2 : var = (alpha*|CLB2| + alpha*|CLB5|) - kez2 + 10;

let null_mass : function = 0;

162



APPENDIX A. APPENDIX A.2. STOCHASTIC SIMULATION ALGORITHM

A.2 Stochastic Simulation Algorithm

Chemical stochastic systems are usually represented by a chemical master equation (CME)

that describes the time evolution of the probability distribution of the discrete molecule

quantities (expressed by natural numbers). This evolution is a Continuous Time Markov

Chain (CTMC). However because each state requires a separate variable, the system

becomes quickly intractable as the number of chemical species and the number of each

kind of molecule grows. It was therefore a major breakthrough when Gillespie developed

exact stochastic simulation algorithms [74]. These algorithms are exact in the sense that

they are equivalent to the results of the master equation, but instead of solving the

probabilities for all trajectories simultaneously, the simulation method calculates single

trajectories through the Monte Carlo sampling methods. Calculating many individual

trajectories and studying the statistics of these trajectories can provide the same insights

as obtained with the master equation. Gillespie proposes two mathematically equivalent

methods: the direct method (DM) and the first reaction method (FRM). The algorithm

is computationally expensive, so many modifications and adaptations exist: the efficient

next reaction method by Gibson and Bruck [73] that achieves a significant reduction in

complexity with respect to the Gillespie algorithms, tau-leaping [75] and hybrid techniques

[157] where reactants in abundance are modelled with deterministic behaviour. The price

to be paid when those more efficient techniques are used, is that the exactness of the theory

behind the algorithm as it connects to the master equation is generally compromised, but

they offer reasonable realizations for greatly improved timescales.

The FRM algorithm can be summarized by the following steps:

1. Initialize the number of molecules for each species and the initial time = 0;

2. Calculate the propensity value ai for each i ∈ 1, . . . ,m (where m is the total number

of reactions in the system. Propensities represent the probability that a reaction Rj

occurs in the next infinitesimal time interval and depend on the amount of reactants

that are present in the system in that time instant);

3. For each i ∈ 1, . . . ,m generate a putative time τi in accordance with an exponential

distribution of parameter ai;

4. Let τµ and µ be the fastest time and the corresponding reaction;

5. Update the number of molecules to reflect the execution of µ;

6. Set t = t+ τµ;

7. Go back to Step 2 unless the number of all reactants is zero or the simulation time

has been exceeded.
This method is used heavily in computational systems biology at the basis of almost

all the stochastic simulators implemented for modelling biological systems with different

computational languages.
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A.3 Continuous Stochastic Logic and PRISM

Continuous Stochastic Logic (CSL) is a logical formalism for expressing properties of

continuous time Markov chains and can be used in order to perform formal verification

of systems with stochastic dynamics.

There are two types of formulae in CSL: state formulae and path formulae.

An atomic state formula express the fact that the system is in a specfic state of the

Markov chain and, using the formal syntax that can be found in [4], state formulae can be

connected by the classical logical operators in order to express more complex properties

about the system.

A path formula expresses the probability that a specific sequence of state formulae

are true along a path of the Markov chain defining the model. Path formulas are for-

mulae of the form f1U[a1,b1] f2U[a2,b2] . . . fn where f1, f2, . . . fn are state formulae, and

a1, b1, . . . , an−1, bn−1 are not-negative rationals representing time intervals.

For example, the formula Ψ = Pr>0.3(aU [0.0, 4.0] b) is a state formula that formally

expresses the property that with probability greater than 0.3, the system will remain in a

state where the output is a before making a transition before 4.0 time units have elapsed

to a state where the output is b.

The model checking problem for this logic was shown to be decidable and there are

tools that allow the specification of a model and the verification of CSL formulae. One

of the most widely used software for reaching this goal is the probabilistic model checker

PRISM [89], a tool for formal modelling and analysis of systems which exhibit random

or probabilistic behaviour. It supports three types of probabilistic models: discrete-time

Markov chains (DTMCs), continuous-time Markov chains (CTMCs) and Markov decision

processes (MDPs), plus extensions of these models with costs and rewards.

Models are described using a simple, state-based language and the tool provides sup-

port for automated analysis of a wide range of quantitative properties of these models.

The property specification language incorporates the temporal logics PCTL, CSL, LTL

and PCTL*, as well as extensions for quantitative specifications and costs/rewards.
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A.4 Deterministic data (Chen model)

In the following tables we report the data about the deterministic solution of the model in

[30]. For each of the 131 mutants we summarize the data that can be found in [146] and on

the web-site http://mpf.biol.vt.edu/research/budding_yeast_model/pp/. For each

viable mutant, we list the values of mass at division and length of G1-phase. For each

inviable mutant, we list the arrest stage and the error type (see Section 4.4 for details).

Mutant Viable (Inviable) M.a.D. (Arr.st.) Length G1 (Err.type)

WT galactose viable 1.92 108.4

WT glucose viable 2.62 36.0

1 cln1D cln2D viable 6.39 51.0

2 GAL CLN2 cln1D cln2D viable 1.43 59.4

3 cln1D cln2D sic1D viable 3.59 6.4

4 cln1D cln2D cdh1D viable 4.29 56.7

5 GAL CLN2 cln1D cln2D cdh1D viable 0.61 153.7

6 cln3D viable 3.77 55.2

7 GAL CLN3 viable 1.02 40.3

8 bck2D viable 3.9 56.2

9 Multicopy BCK2 viable 2.54 32.3

10 cln1D cln2D bck2D viable 8.45 51.2

11 cln3D bck2D inviable licensed 5

12 cln3D bck2D multicopy CLN2 inviable licensed 5

13 cln3D bck2D GAL CLN2 cln1D cln2D viable 1.7 46.8

14 cln3D bck2D sic1D inviable - -

15 cln1D cln2D cln3D inviable licensed 5

16 cln1D cln2D cln3D GAL CLN2 viable 1.55 68.4

17 cln1D cln2D cln3D GAL CLN3 viable 1.4 43.6

18 cln1D cln2D cln3D sic1D viable 5.8 5.8

19 cln1D cln2D cln3D cdh1D inviable separated 3

20 cln1D cln2D cln3D multi copy CLB5 viable 10.68 40.6

21 cln1D cln2D cln3D GAL CLB5 viable 3.86 119.0

22 cln1D cln2D cln3D multicopy BCK2 viable 8.75 49.8

23 cln1D cln2D cln3D GAL CLB2 inviable licensed 5

24 cln1D cln2D cln3D apc ts inviable aligned 3

25 sic1D viable 2.32 9.7

26 GAL SIC1 viable 2.81 144.8

27 GAL SIC1 dbD inviable licensed 5

28 GAL SIC1 cln1D cln2D inviable licensed 5

29 GAL SIC1 GAL CLN2 cln1D cln2D viable 3.22 144.2

30 GAL SIC1 cln1D cln2D cdh1D inviable licensed 5
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Mutant Viable (Inviable) M.a.D. (Arr.st.) Length G1 (Err.type)

31 GAL SIC1 GAL CLN2 cln1D cln2D cdh1D viable 2.8 155.4

32 cdh1D viable 1.91 66.3

33 Cdh1 constitutively active inviable fired 3

34 sic1D cdh1D viable 0.0 0.0

35 sic1D cdh1D GALL CDC20 viable 1.7 117.5

36 cdc6D2 49 viable 2.46 40.6

37 sic1D cdc6D2 49 viable 2.18 13.4

38 cdh1D cdc6D2 49 viable 1.96 60.2

39 sic1D cdc6D2 49 cdh1D inviable fired 3

40 sic1D cdc6D2 49 cdh1D GALL CDC20 viable 2.2 141.0

41 swi5D viable 2.37 23.3

42 swi5D GAL CLB2 inviable - -

43 swi5D cdh1D inviable - -

44 swi5D cdh1D GAL SIC1 viable 2.5 143.0

45 clb1D clb2D inviable fired 3

46 CLB1 clb2D inviable - -

47 GAL CLB2 viable 1.57 162.0

48 Multicopy GAL CLB2 inviable separated 3

49 CLB1 clb2D cdh1D viable 0.0 0.0

50 CLB1 clb2D pds1D viable 0.0 0.0

51 GAL CLB2 sic1D inviable separated 3

52 GAL CLB2 cdh1D inviable - -

53 CLB2 dbD inviable separated 3

54 CLB2 dbD in galactose inviable separated 3

55 CLB2 dbD multicopy SIC1 viable 2.94 53.0

56 CLB2 dbD GAL SIC1 viable 3.08 119.8

57 CLB2 dbD multicopy CDC6 viable 0.0 0.0

58 CLB2 dbD cllb5D inviable separated 3

60 GAL CLB2 dbD inviable separated 3

61 cllb5D clb6D viable 3.13 73.4

62 cln1D cln2D clb5D clb6D inviable licensed 5

63 GAL CLB5 viable 1.82 101.9

64 GAL CLB5 sic1D inviable unlicensed 1

65 GAL CLB5 cdh1D viable 1.36 126.0

66 CLB5 dbD viable 2.64 30.8

67 CLB5 dbD sic1D inviable - -

68 CLB5 dbD pds1D viable 2.24 38.1

69 CLB5 dbD pds1D cdc20D inviable separated 3

70 GAL CLB5 dbD inviable - -
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Mutant Viable (Inviable) M.a.D. (Arr.st.) Length G1 (Err.type)

71 cdc20ts inviable aligned 3

72 cdc20D cllb5D inviable aligned 3

73 cdc20D pds1D inviable separated 3

74 cdc20D pds1D cllb5D viable 3.02 77.8

75 GAL CDC20 inviable fired 10

76 cdc20ts mad2D inviable aligned 3

77 cdc20ts bub2D inviable aligned 3

78 pds1D viable 2.25 40.2

79 esp1ts inviable aligned 1

80 PDS1 dbD inviable aligned 1

81 GAL PDS1 dbD inviable aligned 1

82 GAL PDS1 dbD esp1ts inviable aligned 1

83 GAL ESP1 cdc20ts inviable separated 3

84 tem1D inviable separated 3

85 GAL TEM1 viable 2.08 112.2

86 tem1ts multicopy CDC15 viable 0.0 0.0

87 tem1ts GAL CDC15 viable 3.66 30.0

88 tem1D net1ts viable 6.18 38.5

89 tem1D multicopy CDC14 viable 8.36 35.8

90 cdc15D inviable separated 3

91 Multicopy CDC15 viable 2.27 134.1

92 cdc15ts multicopy TEM1 inviable - -

93 cdc15D net1ts viable 6.13 38.5

94 cdc15ts multicopy CDC14 viable 8.2 36.0

95 net1ts viable 6.3 42.1

96 GAL NET1 inviable separated 3

97 cdc14ts inviable separated 3

98 GAL CDC14 inviable licensed 5

99 GAL NET1 GAL CDC14 viable 1.9 110.5

100 net1ts cdc20ts inviable aligned 1

101 cdc14ts GAL SIC1 inviable - -

103 cdc14ts sic1D inviable - -

104 cdc14ts cdh1D inviable - -

105 cdc14 ts GAL CLN2 inviable - -

106 TAB6 1 viable 3.35 42.0

107 TAB6 1 cdc15D viable 3.83 34.5

108 TAB6 1 cllb5D clb6D inviable licensed 5

109 TAB6 1 CLB1 clb2D viable 6.22 20.6

110 mad2D viable 2.35 38.9
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Mutant Viable (Inviable) M.a.D. (Arr.st.) Length G1 (Err.type)

111 bub2D viable 3.29 38.6

112 mad2D bub2D viable 2.7 38.8

113 WT in nocodazole inviable - -

114 mad2D in nocodazole inviable - -

115 mad2D GAL TEM1 in nocodazole inviable - -

116 mad2D pds1D in nocodazole inviable - -

117 bub2D in nocodazole inviable - -

118 bub2D pds1D in nocodazole inviable - -

119 bub2D mad2D in nocodazole inviable - -

120 pds1D in nocodazole inviable - -

121 net1ts in nocodazole inviable - -

122 APC A viable 3.86 27.4

123 APC A cdh1D inviable separated 3

124 APC A cdh1D in galactose inviable - -

125 APC A cdh1D multicopy SIC1 viable 0.0 0.0

126 APC A cdh1D GAL SIC1 viable 2.89 112.8

127 APC A cdh1D multicopy CDC6 viable 0.0 0.0

128 APC A cdh1D GAL CDC6 viable 2.63 57.2

129 APC A cdh1D multicopy CDC20 viable 1.96 65.1

130 APC A sic1D viable 3.39 7.4

131 APC A GAL CLB2 inviable separated 3

168






