
PhD Dissertation

International Doctorate School in Information and

Communication Technologies

DISI - University of Trento

Exploiting Contextual and Social Variability for

Software Adaptation

Fabiano Dalpiaz

Advisor:

Prof. John Mylopoulos

Università degli Studi di Trento

Co-Advisor:

Prof. Paolo Giorgini

Università degli Studi di Trento

January 2011

Abstract

Self-adaptive software systems are systems that monitor their environment and com-

pensate if there are deviations from their requirements. Self-adaptivity is gaining promi-

nence as an approach to lowering software costs by reducing the need for manual system

maintenance. Self-adaptivity is particularly important for distributed systems that involve

both software and human/organizational actors because of the volatility as well as un-

certainty that permeates their operational environments. We refer to such systems as

Socio-Technical System (STS).

The thesis proposes a comprehensive framework for designing self-adaptive software that

operates within a socio-technical system. The framework is founded upon the notions of

contextual and social variability. A key ingredient of our approach is to rely on high-level

abstractions to represent the purpose of the system (requirements model), to explicitly rep-

resent the commitments that exist among participating actors in an STS, and also to con-

sider how operational context influences requirements. The proposed framework consists

of (i) modelling and analysis techniques for representing and reasoning about contextual

and social variability; (ii) a conceptual architecture for self-adaptive STSs; and (iii) a

set of algorithms to diagnose a failure and to compute and select a new variant that ad-

dresses the failure. To evaluate our proposal, we developed two prototype implementations

of our architecture to demonstrate different features of our framework, and successfully

applied them to two case studies. In addition, the thesis reports encouraging results on

experiments we conducted with our implementations in order to check for scalability.

Keywords

[Adaptive Software, Requirements Engineering, Multi-Agent Systems, Variability, Socio-

Technical Systems]

Acknowledgements

I am extremely grateful to John Mylopoulos, whose vision and enthusiasm have guided

and encouraged my research over the last four years. It was a privilege to have such an

outstanding supervisor. I owe special thanks to Paolo Giorgini, not only for his co-

supervision, but also for convincing me to leave my job in industry and embark on a

doctorate. Thanks to the professors who served on my thesis committee: Luciano Baresi

(Politecnico di Milano), Schahram Dustdar (Technical University of Vienna), and Franco

Zambonelli (Università di Modena e Reggio Emilia).

I am thankful to my main co-authors Raian Ali and Amit K. Chopra. Each played

an essential role in different phases of my thesis. I will always remember with pleasure

our intellectually stimulating meetings. I can’t help saying “Grazie mille!” to Michele

Vescovi, who developed the automated reasoner EL+2SAT that I applied to the variants

generation problem. You all are very good friends of mine.

My discussions with professors and researchers have stimulated my work and have

provided me with useful directions and suggestions. I benefited much from the discussions

with researchers located in Trento, in particular Fabio Massacci (University of Trento),

Anna Perini and Angelo Susi (FBK-IRST), Nicola Guarino and his group (LOA-CNR).

Thanks to Jaelson Castro (Universidade Federal de Pernambuco), who demonstrated

interest in my work and provided valuable suggestions throughout my doctorate. Eric Yu

(University of Toronto) and Oscar Pastor (Universidad Politecnica de Valencia) hosted

me during visiting periods. Thanks for the opportunity to present and discuss my work,

meet your research groups, and for the warm hospitality.

Thanks to all my colleagues in Trento, Valencia, and Toronto. I apologize for not

listing your names. I think it would be unfair for the people I would certainly forget to

mention. It was a pleasure to interact with you during my doctorate. I hope we will keep

in touch. Thanks to all my friends: the nice time we spent together reminded me of the

importance of social life.

Last but not least, thanks to my parents Flavia and Antonio, to my brother Luca,

and to Francesca for their encouragements during my doctorate. You have been the

greatest psychologists ever. The mood of a PhD student—my mood—is extremely vari-

able. Thanks for standing me when I was in low mood, and thanks for your advices and

unconditional love.

i

ii

Contents

1 Introduction 1

1.1 The age of socio-technical systems . 1

1.2 Software design in the age of STSs . 3

1.3 Evolution and adaptation . 5

1.4 Research objectives . 7

1.5 Application areas . 8

1.6 Approach overview and contribution . 10

1.7 Structure of the thesis . 13

1.8 Published work . 14

1.8.1 Refereed . 15

1.8.2 Un-refereed . 16

2 State of the art 17

2.1 Baseline models for self-adaptive software 17

2.1.1 Modelling requirements via goal models 18

2.1.2 Modelling social interaction . 22

2.1.3 Software variability modelling . 25

2.2 Approaches to adaptive software . 29

2.2.1 Conceptual models of adaptation 29

2.2.2 Programming frameworks . 31

2.2.3 Software architectures . 33

2.2.4 Service-oriented approaches . 38

2.2.5 Requirements engineering approaches 42

2.2.6 Adaptation algorithms and policies 47

2.2.7 Agent reasoning and planning . 49

2.2.8 Self-organization . 51

2.3 Chapter summary . 53

iii

3 Variability: the key for adaptation 55

3.1 Variability: from nature to software engineering 55

3.2 From variability to self-adaptive software 56

3.3 Contextual variability . 59

3.3.1 On the notion of context . 59

3.3.2 Context and goals . 60

3.3.3 Contextual goal model . 62

3.3.4 Context analysis . 64

3.3.5 Methodological guidance . 68

3.3.6 Variation points and self-adaptive software 69

3.4 Social variability . 72

3.4.1 Sociality and interaction . 73

3.4.2 Modelling service-oriented applications 76

3.4.3 The framework applied . 82

3.4.4 Dealing with social variability . 85

3.5 Chapter summary . 89

4 An architecture for self-adaptive software 91

4.1 Underlying principles . 91

4.2 Logical view . 95

4.2.1 Monitor . 97

4.2.2 Diagnosis . 98

4.2.3 Reconfiguration . 100

4.3 Requirements models for the architecture 101

4.3.1 Contextual goal models . 101

4.3.2 Context model . 102

4.3.3 Plan specification . 103

4.3.4 Domain assumptions . 106

4.3.5 Interaction modelling via commitments 106

4.4 Applying the architecture . 108

4.5 Chapter summary . 110

5 Diagnosis and reconfiguration algorithms 111

5.1 Diagnosis algorithms . 111

5.1.1 Goal failure . 112

5.1.2 Plan failure . 116

5.1.3 Commitment violation . 117

5.2 Reconfiguration algorithms . 118

iv

5.2.1 Soft-goal based . 119

5.2.2 A cost-based algorithm for adaptation with commitments 124

5.3 Adaptation patterns for socio-technical systems 132

5.3.1 Variant selection and operationalization 136

5.4 Chapter summary . 139

6 Prototype implementations 141

6.1 Prototype for settings with contextual variability 141

6.2 Prototype for settings with social variability 148

6.3 Chapter summary . 156

7 Evaluation and scalability 157

7.1 Case study 1: smart-home for health support 158

7.1.1 Modelling contextual variability . 159

7.1.2 Simulations: adaptation in the smart-home STS 163

7.1.3 Scalability experiments for the first prototype 166

7.2 Case study 2: hazardous materials emergency response 169

7.2.1 Modelling social variability . 170

7.2.2 Simulations: adaptation in the HazMat STS 174

7.2.3 Scalability experiments for the second prototype 180

7.3 Chapter summary . 186

8 Conclusions and future work 187

8.1 Conclusions . 187

8.2 Ongoing work and future directions . 191

Bibliography 195

v

List of Tables

2.1 Categories of approaches to adaptive software 29

3.1 Messages and their effects; a commitment is understood as a contractual

relation . 80

5.1 Expected and visible goals and plans for an agent 112

5.2 A fire-fighting scenario to illustrate variant selection: (a) The current vari-

ant for Jim; (b) capabilities and commitments cost; (c) commitments in

the scenario . 130

5.3 Generic criteria for variant selection . 137

5.4 Event-Condition-Action rule for variant selection with goal redundancy

(Figure 5.4) . 137

5.5 Generic criteria for variant operationalization 138

6.1 Encoding a goal model to propositional logic 153

7.1 Specification for some plans in Figure 7.1. Preconditions in bold are critical 162

7.2 Diagnosis scalability: increasing the number of top-level goals; time in ms . 167

7.3 Diagnosis scalability: increasing the number of agents; time in ms 167

7.4 Diagnosis scalability: increasing goal model’s depth; time in ms 167

7.5 Reconfiguration scalability: increasing the number of variants; time in ms . 169

7.6 Commitments in the hazard materials response simulation 175

7.7 Capabilities in the hazard materials response simulation 176

7.8 Scalability results showing the progress with different timeouts. The first

part refers to increasing commitments in the case study; the second part

refers to increasing capabilities . 183

7.9 Scalability results for variant generation with restricted syntax 186

vii

List of Figures

1.1 Overview of our approach to self-adaptive software 10

2.1 A strategic rationale model in i* [Yu96] . 21

2.2 A feature model using the FODA notation [KCH+90] 26

2.3 Self-managed systems three-layer reference architecture [KM07] 36

2.4 MAPE-K autonomic control loop with functions to adapt service ensem-

bles [DD10] . 41

2.5 Requirements-based adaptation [FFvLP98] 44

2.6 Relation between the different types of policies defined in [KW04] 49

3.1 Contextual goal model for a mall promotion information system. Contexts

are associated to variation points as labels 63

3.2 Context analysis for context c1 in Figure 3.1 67

3.3 Data conceptual model specifying required data to observe c1 (Figure 3.1) . 67

3.4 Methodological guidance for contextual goal modelling 68

3.5 Contextual OR-decomposition taken from Figure 3.1 70

3.6 Contextual means-end decomposition taken from Figure 3.1 70

3.7 Contextual AND-decomposition taken from Figure 3.1 71

3.8 Social variability and adaptation in an STS concerning fire-fighting 73

3.9 Interaction between two agents via messages (A) and its meaning (B) . . . 75

3.10 A service-oriented application is specified in terms of roles. It is instantiated

when participants adopt those roles; it is enacted when participants interact

according to the adopted roles . 77

3.11 Conceptual model for service-oriented applications and participating agents 78

3.12 A (partial) service engagement depicting an auction application. The labels

are for reference purposes only. Figure 3.13 shows an enactment of this

engagement between a bidder agent and a seller agent 81

3.13 An enactment . 81

ix

3.14 Role model for the insurance claim processing scenario. Commitments are

rectangles that connect (via directed arrows) debtors to creditors 83

3.15 Visual modelling of Tony’s engagement-bound specification. Tony plays

repairer . 84

3.16 Agent model of Jim; he is a fire chief . 84

3.17 Simple role model for the fire-fighting example 85

4.1 Logical view on the conceptual architecture for self-adaptation 96

4.2 Overview of the Event normalizer component 98

4.3 Contextual goal model with runtime extensions 102

4.4 Part of the context model for the smart-home scenario 103

4.5 Statechart showing the possible state transitions for a plan 105

4.6 Statechart representing the state evolution of commitments (adapted from

[SCD09]) . 107

4.7 SPEM 2.0 diagram showing how to create the architecture for an STS . . . 108

5.1 An example from the smart-home scenario to show visibility 113

5.2 An example from the smart-home scenario to show variant generation and

selection . 121

5.3 Alternative goals: Jim switches from a variant involving fire hydrant usage

to another involving tanker truck usage . 133

5.4 Goal redundancy: Jim adopts a redundant variant, which involves also

calling a water tanker truck . 134

5.5 Commitment redundancy: Jim gets C4 from Tanker 2 134

5.6 Switch debtor: Jim releases Tanker 1 from C3 and takes C4 from Tanker 2 . 135

5.7 Division of labour: Jim releases Brigade 1 from C5 and takes commitment

C3 from Tanker 1 . 135

5.8 Bind commitments to agents: Jim delegates C2 on the basis of trust 138

6.1 Runtime operation of the prototype for STSs with contextual variability . 142

6.2 Meta-model for contextual goal models, the context model, and plan spec-

ifications . 143

6.3 Meta-model for domain assumptions . 145

6.4 Screen-shot showing the simulation editor embedded in the prototype . . . 146

6.5 Runtime screen-shot of the prototype for settings with contextual variability147

6.6 EL+2SAT input files created by our prototype during variant generation . 150

6.7 Basic operation of EL+2SAT [SV09] applied to variant generation 151

6.8 Runtime screen-shot of the prototype for settings with social variability . . 154

x

6.9 Adaptation policy editor . 155

7.1 Contextual goal model for a smart-home patient: goals wake up and call

helper . 160

7.2 Contextual goal model for a smart-home patient: goal have breakfast 161

7.3 Screen-shot of the architecture applied to the smart-home case study (Sim-

ulation 2) . 165

7.4 Scalability evaluation for diagnosis (left side) and reconfiguration (right

side) mechanisms . 168

7.5 Hazardous materials emergency response options (from [Ben75]) 170

7.6 Commitments in the HazMat case study 171

7.7 Goal model for agent Mike who wants to play Incident Commander 173

7.8 Initial variant for the simulations . 177

7.9 Variant generation for the case study: (a) 16 variables, 6 solutions; (b) 20

variables, 25 solutions . 180

7.10 Variant generation for the case study with 25 variables and 120 solutions:

(a) entire execution; (b) zoom till the last solution is found 181

7.11 Variant generation for the case study with 27 variables and 216 solutions:

(a) entire execution; (b) zoom till the last solution is found 182

7.12 Variant generation for the case study with 32 variables, timeout at 12500

seconds . 182

7.13 Variant generation, increasing the number of solutions: (a) 14 variables

and 144 solutions; (b) 16 variables and 256 solutions 183

7.14 Variant generation, increasing the number of solutions: (a) 16 variables

and 324 solutions; (b) 18 variables and 576 solutions; (c) 19 variables and

874 solutions; (d) 20 variables and 1024 solutions; (e) 21 variables and 1600

solutions; (f) 23 variables and 2000 solutions 184

xi

Chapter 1

Introduction

Software systems operate in dynamic environments, wherein expected and unexpected

changes threaten their capability to meet their requirements. Developing self-adaptive

software seems to be a promising way to cope with such volatility. Traditional approaches

to self-adaptivity are conceived from a technical standpoint, and conceive adaptation

as the adoption of a different technical configuration. However, many software systems

do not operate in a purely technical environment. Conversely, they engage in social

relationships with social actors (humans and organizations). This interplay of technical

systems and social actors constitutes a Socio-Technical System (STS). In this chapter, we

revisit software adaptation from a socio-technical perspective.

1.1 The age of socio-technical systems

There is no question that the software we interact with today is far more complex than that

used just a few years ago. Think of a not-so-complex web application such as eBay. eBay

enables you to conduct business: you browse the eBay.com website, select an item and

place a bid, or you purchase immediately using the “Buy It Now” option. Alternatively,

you can create auctions for your own items (that you do not necessarily own) and, as the

auction finishes, ship the item to the winner through an express courier.

Importantly, modern software systems weave a network of business relations. eBay

engages you in business transactions with the auctioneer or the bidders, payment pro-

cessors, shippers, and the eBay corporation. Some people open personal shops on eBay,

whereas some companies open virtual branches. Essentially, software acts as a means to

create such relations on behalf of the social actor it represents.

The eBay website creates a number of business relations between you and the eBay

corporation: you commit to deliver an item to the auction winner, eBay is entitled to

suspend your account under certain circumstances, eBay commits to refund you if an

2 Introduction

item you bought is not delivered, etc. Compare this to the application you used less than

two decades ago, when the Web was just born and desktop applications were mainstream.

Software is rapidly shifting from a computational setting where it works in isolation—

or with few hard-coded interconnections with other technical systems—to social settings

where it is part of a broader system composed of both technical and social subsystems.

The term Socio-Technical System (STS) was coined in organizational theory to refer to

a complex interplay of human actors—the traditional constituents of organizations—and

technical systems [Eme59]. Software is a prominent example of technical system in an

STS; humans and organizations exemplify social systems.

We encounter many examples of STSs in our daily lives. A smart-home that helps

heart patients carry out everyday activities constitutes an STS. It includes a smart-home

controller software, cameras, biomedical sensors, and other devices, human actors such as

the patient itself, social workers, caregivers, doctors. The LinkedIn1 social network de-

fines an STS consisting of the LinkedIn website (technical system), professionals looking

for a job, business scouts searching for interesting profiles, companies advertising open

positions, and the LinkedIn corporation that aims at increasing revenues by offering pro-

fessional relationships management. Likewise, a logistics department in a wholesale fruit

company is an STS. A logistics management system supports purchases while warehouse

personnel ensures fruit arrives to the warehouse just in time for delivery.

We rely here on the characterization of socio-technical system proposed by Ropohl

[Rop99], which is founded upon general systems theory [VB73]. At the basis of his char-

acterization is the notion of action system, a system that acts to transform a starting

situation into a final one according to pre-set goals. Action relates not only to work (mod-

ifications in the environment), but also to communication with other systems. Ropohl

asserts that a socio-technical system is an action system.

The principle of excluded reductionism, from general systems theory, states that sys-

tems are hierarchical. An STS can be understood in terms of internal subsystems that

effectively execute the actions of the STS. These subsystems need informational coordi-

nation and communication to operate effectively. Communication and work are regulated

by the goals of the STS and of its subsystems. In turn, each subsystem is an action sys-

tem and can be hierarchically decomposed. Though not explicitly mentioned by Ropohl,

this property supports a third kind of subsystem: organizations. Along with humans,

organizations are the social components in an STS.

The principle of equi-functionality states that the function of a system may be pro-

duced by different structures. In an STS, actions can typically be performed by human

subsystems as well as by technical subsystems. Only goal-setting cannot be performed by

1www.linkedin.com

Software design in the age of STSs 3

technical subsystems. STSs are characterized by socio-technical division of work, the dis-

tribution of acting functions among humans and machines. This applies because technical

systems are largely equi-functional with human abilities.

The discussion above suggests that an STS is an action system composed of both

social and technical subsystems. Notice how the goal-orientation of STSs naturally leads

to adaptation. Indeed, socio-technical systems should adapt to ensure their goals are met.

Given their hierarchical structure, this results in different divisions of labour across the

subsystems. To enact adaptation, the subsystems would typically consider the current

division of labour and select the alternative that differs the least.

1.2 Software design in the age of STSs

The network of social relationships that arises and evolves in an STS has a deep impact on

each participating subsystem. A single subsystem—either technical or social—cannot be

merely understood in isolation, for this would ignore its relations with other subsystems.

We are concerned here with a specific type of technical system, software. Specifically, our

objective is to understand how software design needs to evolve to cope with the distinctive

features of STSs, and to determine if and how well current design paradigms are suited.

Over the years, software evolved from monolithic structure to computational distribu-

tion. Pervasive [Sat01] and ubiquitous [Wei91] computing represent distribution brought

to its extreme, where software becomes transparent to its users being well-camouflaged

in the environment. Moreover, software is often cross-organizational : it enables different

companies to make business together, as well as to build virtual organizations [Mow94].

For instance, service-oriented computing [PG03] lets each organization maintain its inter-

nal logic private and interact with others by exposing the interface of offered services.

Another relevant trend in software design is adaptivity. Adaptive (and self-adaptive)

software emerged as a way to cope with the volatility of operational environments, which

poses threats to the satisfaction of system goals. Software adaptation has been consid-

ered at different levels: some approaches emphasize the role of architecture in adapta-

tion [OGT+99, GS02]; some others provide programming frameworks to program adap-

tive behaviour [AHP94, AST09]; requirements-based approaches ensure that the system

adapts to fulfil its purpose [FFvLP98, WMYM09]; service-oriented approaches analyse

adaptation in terms of composition and recomposition [TP04, BDNGG07]; multi-agent

systems literature provides algorithms for a single agent [Mye99, vdKdWW03] and envi-

ronments that enable self-organization for a set of agents [MZ04, DNDM09].

Requirements Engineering has paid some attention to the social dimension during soft-

ware design. This is particularly valid for goal-oriented requirements engineering [DvLF93,

4 Introduction

Yu96, vL01]. A notable example is i*, an agent- and goal-oriented requirements modelling

framework. i* is a social modelling framework in the sense that it depicts an organiza-

tion as a set of actors that depend on each other for achieving goals, executing tasks, and

providing resources. However, the social relations that are identified at requirements-time

are not necessarily preserved in the system to-be.

The challenge. The evolution of software design does not adequately take into account

the social perspective that is so crucial for STSs. Although software design techniques

do recognize the decomposition principles of STSs, social subsystems are typically not

considered as first-class citizens. Consequently, overall STS designs are less than ideal.

Our challenge is to provide design techniques that lead to software that is operable in STSs.

In particular, this new class of software has to provide the following key features:

− Take into account interaction with technical and social subsystems. An

STS consists of both technical and social subsystems. Software designed to operate

in an STS should explicitly take into account such characteristic and be able to

effectively interoperate with other subsystems. A smart-home controller should be

able to interact with technical systems such as sensors and effectors, also to establish

social relationships with social actors, such as patients, nurses, and catering services.

− Operate in open systems. Open systems [HdJ82, Hew86] are applications com-

posed of multiple subsystems developed independently. They are founded on the

communication between subsystems. As observed by Singh et al. [SCDM04], open

systems involve autonomous and heterogeneous subsystems, and they are speci-

fied by the interaction among these subsystems. Many socio-technical systems are

open systems. Consequently, software operating in an STS cannot control other

participants—due to their autonomy—and cannot know how others reason—due to

their heterogeneity and autonomy. The smart-home controller, for instance, cannot

control the patient nor can it be sure of her intentions.

− Deal with volatility via adaptation. The environment where an STS operates

is very dynamic. Therefore, participants—in our case, software—should be able to

successfully cope with the threats of such volatility. To prevent failures, software

should be able to self-adapt. Self-adaptation consists of the selection and enactment

of a variant behaviour that better deals with the situation at hand. Different variant

behaviours for software in an STS typically include different interactions with other

subsystems. We consider two major types of volatility:

– The physical context is volatile. Consider a smart-home that supports a patient

in everyday activities. Patient’s health varies, as well as his location in the

Evolution and adaptation 5

house, temperature and humidity in the various rooms, availability of food in

the fridge, network connectivity. Moreover, devices in the smart-home suffer of

sudden disruptions and temporal unavailability;

– The social context is volatile. New actors (subsystems) can join and leave the

system as they wish. Additionally, they add, remove, and modify services of-

fered to others. Social actors in a smart-home STS vary over time. New social

workers come into play, some others leave the STS, catering services offer differ-

ent service levels and price, neighbours might be available or not. Notice that

these actors might—intentionally or not—leave even when the patient relies

on them. For instance, the nurse in charge of measuring the patient’s blood

pressure may have a car accident while reaching the smart-home.

1.3 Evolution and adaptation

The problem outlined in Section 1.2 is part of the broader challenge of software evolution.

In this section we draw a parallel between natural (biological) evolution and software

evolution. On the one side, this enables us to adapt concepts and mechanisms that

operate successfully in nature. On the other side, this comparison helps us to determine

the main differences between natural and software evolution.

Natural/biological evolution is the change in the inherited traits of a population of

organisms through successive generations [Fut05]. This means that our descendants will

be different from us in some trait. Software evolves as well: versioning might be considered

as a basic evolutionary mechanism for software. New versions are released to ameliorate

previous ones by adding, replacing, or dropping some features. However, evolution is not

always ameliorative, neither in nature nor in software.

A key ingredient for evolution is variation, the existence of variants in a population.

Variation is a result of a complex interplay of processes that introduce variation and

others that remove it. The concepts of software variation and software variant refer to

the existence of multiple instances of the same system class/family. Each instance differs

from others in the features it delivers, i.e. in the way it meets requirements.

How is variation introduced in nature? Mutation introduces changes in a genomic

sequence, and is caused by radiation, viruses, as well as errors that occur during meio-

sis or DNA replication. Genetic recombination—the basic mechanism underlying sexual

reproduction—shuffles genes into new combinations which can result in new individu-

als exhibiting different traits. Less frequent—but still significant—mechanisms are the

transfer of variation between species [JRL99] and the incorporation of genes through

endosymbiosis [TAHM04].

6 Introduction

Software developers artificially introduce variation in software systems. The current

mechanisms to introduce variation are quite different from natural ones. Software prod-

uct families are exploited to derive a number of variants with different characteristics;

developers select which are the features to deploy. Variants arise when a project splits to

different branches; this is the case, for instance, of the PostgreSQL and Ingres databases

and of the many Linux distributions based on the same kernel.

In nature, there are two main mechanisms to produce evolution. Natural selection

favours genes that aid the survival and reproduction of the population. Genetic drift is

the random change in the frequency of alleles, and is caused by the random sampling of

genes during reproduction. Natural selection can be easily found in software, and refers

to the survival of software that better fits with the current environment—the software

variant that best meets users’ expectations. Genetic drift does not traditionally apply to

software, since it arises from random recombinations.

The outcome of evolution are the changes that observers can see. We list the major

outcomes in nature and show how they map to software:

− adaptation is the process whereby an organism becomes better suited to its habi-

tat [May82]. Adaptation is noticeable by the modification of some trait in the

exemplar: either a new feature is gained, or an ancestral feature is loss. Also soft-

ware adaptation is characterized in terms of the features that are added, removed,

or replaced. Software adaptation is performed to enable software to better fulfil

its purpose in the current operational environment. For instance, the smart-home

controller might be enriched with a feature to check patient’s blood sugar level, if

the doctor discovers the patient suffers from diabetes.

− co-evolution occurs when a biological entity changes in response to the change of

a related entity. For instance, the production of tetrodotoxin in the rough-skinned

newt produced the evolution of tetrodotoxin resistance in its predator, the common

garter snake. Software co-evolution usually refers to the joint evolution of different

software-related artefacts, e.g. implementation and design [DDVMW02]. Another

type of co-evolution occurs in software suites (e.g. office suites) where the evolution

of one application requires other applications to evolve to maintain interoperability.

− speciation makes a species diverge into two or more descendant species. In software,

this is the case of a software project that is split into multiple variants, that differ for

some feature from the original one. Differently from adaptation, speciation generates

new entities whose identity is different from the original one.

− extinction is the disappearance of an entire species. In software terms, this corre-

sponds to the retirement of a software system.

Research objectives 7

This thesis focuses on adaptation. More specifically, we consider self-adaptation, the

capability of a software system to adapt without the intervention of external forces. We

partially consider co-evolution: software in an STS interacts with other social and tech-

nical systems, therefore the evolution of any of these systems might require co-evolution

by the considered software.

1.4 Research objectives

We outlined the research challenge tackled by this thesis—provide design techniques that

lead to software operable in STSs—in Section 1.2, and we have shown how this relates to

the broader theme of software evolution in Section 1.3. We specify now our challenge in

terms of research objectives and questions.

Research Objective: define a systematic process for designing self-adaptive software for

socio-technical systems.

We decompose the research objective into five specific research questions.

RQ1. What are software adaptation and variability?

As argued earlier, adaptation and variability are fundamental traits for STSs. Indeed,

they enable software (and any other system) participating in an STS to cope with the

volatility of their physical and social context. We propose to provide a precise account

for them, as a prerequisite for tackling the following research questions.

RQ2. Which is an adequate conceptual model?

We employ a model-driven approach for the construction of self-adaptive software. One

or more models are integral part of software and are used to diagnose failures, to iden-

tify new alternatives, and to keep track of the current configuration. We will address

this research question by proposing a conceptual model that—based on the notions of

adaptation and variability in RQ1—is effective for self-adaptive software in STSs. Our

conceptual model will represent software requirements, explicitly support social relations,

deal with variability in an efficient way, and provide traceability links from requirements

to implementation.

RQ3. How can self-adaptive software be architecturally designed?

Software operates successfully only if its architecture is adequately structured. We will

devise a general architecture for self-adaptive software based on several principles. First,

requirements models should be an integral component of the architecture that keeps them

alive at runtime. Second, the architecture should perform model-based diagnosis by check-

ing monitored events against requirements models. Third, variability has to be explicitly

considered: the architecture generates variants, selecting the most adequate, and enacts it

8 Introduction

if needed. Fourth, the architecture should be designed for socio-technical systems. Thus,

it derives existing social relations from interaction and exploits these relations during both

system operation and adaptation. Finally, the architecture has to be applicable to several

settings (i.e. should not be application specific).

RQ4. Which are effective and general adaptation algorithms?

Adaptation is the transition from the current configuration—variant—to another one that

better satisfies system requirements. The effectiveness of self-adaptive software depends

on the usage of sound adaptation policies and algorithms. First, adaptation should be

performed only if needed and if the expected benefit from the new variant is higher than

the effort required to adapt. Second, efficient algorithms should be devised to perform

diagnosis and to plan and select new variants. Third, the algorithms should be general

and rely on domain-independent criteria. Domain-specific criteria might be applied by

tuning the algorithms. In a long-term view, a catalogue of adaptation policies should be

defined to collect reusable adaptation strategies.

RQ5. How well does the approach perform when applied to realistic settings?

Any engineering approach needs empirical evidence to assess its applicability and per-

formance. To evaluate our approach we shall conduct thorough experiments to verify

whether it can be applied to realistic socio-technical systems and to assess its scalability.

Specifically, we will verify if (i) the conceptual model is sufficiently expressive to repre-

sent requirements and social relations in STSs; (ii) the conceptual architecture can be

adequately implemented and applied; and (iii) the proposed adaptation algorithms and

policies are efficient.

1.5 Application areas

Our approach should be applicable to several types of socio-technical system. To such

extent, the notion of adaptation has to be defined in terms of high-level and domain-

independent abstractions. We describe three STSs we will use throughout this thesis to

exemplify the introduced concepts.

Smart-home scenario. A smart-home is a home environment that supports and as-

sists elderly or handicapped people (e.g. people with chronic heart problems) to live

their lives. In smart-homes, an ambient intelligence technological infrastructure along

with supervisory software are deployed in order to support and monitor inhabitants dur-

ing their everyday activities around the clock. Typically, several devices—sensors and

effectors—are deployed in the smart-home and function transparently to the inhabitants.

Such devices are used to measure temperature, proximity and distance, force, pressure,

and touch. RFID technology has also been recently exploited in smart-home settings,

Application areas 9

e.g. for authenticating people. As well, general-purpose devices, such as cameras, are

employed for motion detection and trajectory recognition. Effectors actuate changes to

the environment, e.g. servomotors for doors and windows, automatic 911 callers, light

switches, displays, and remote controllers for multimedia devices such as TVs.

Suppose the smart-home, while monitoring the health of its inhabitant Bob, detects that

he has a heart attack and has collapsed on the floor. The smart-home reacts to this event

by requesting paramedic services. Since there is uncertainty on how quickly paramedics

can be on the scene, the smart-home also requests assistance from a neighbour and pro-

ceeds to unlock the entrance door as the neighbour approaches. Alternatively, a police

patrol may be dispatched in order to deliver first-aid services.

As an alternative scenario, suppose that Bob is to have breakfast within one hour after

he wakes up, and that he needs to take his medicine just after breakfast. If Bob has

not had breakfast and the hour is almost expired, the smart-home might send gentle

reminders such as turning on a light positioned on the fridge to attract his attention. If

such strategy doesn’t work and the hour is expired, the smart-home might call a catering

service or check whether a social worker can assist the patient in having his breakfast. �

Emergency response coordination. Emergency response is the phase of emergency

management that includes mobilization of emergency services as well as responses to an

emergency. Core actors involved in emergency response are fire brigades, police, and

ambulances. Emergency response is a well-thought out activity for most countries. Emer-

gency response plans are defined by municipalities, counties, regions, also at the national

level. These plans assign responsibilities to different actors. Recent plans involve also the

usage of an integrated information system to facilitate the collaborative efforts of par-

ticipating actors. Emergency response unfolds in a very dynamic setting, and therefore

adaptation is a required skill. For the supporting information system, this might mean

detecting threats to the plans currently executed, also being able to identify opportunities

to better deal with the emergency.

Suppose a fire-fighter squad requests additional water, for no fire hydrant is located in the

fire area. If a traffic jam threats on-time arrival of the truck, the squad might request air

delivery, if the weather is good enough for water tanker planes. If that is not the case, the

squad might interact with another squad that is dealing with a low-priority emergency.

In case the fire gets worse and toxic substances are burning, the squad might adapt its

strategy and use chemicals instead of water, also contact a specific team that deals with

hazardous substances. �

Mall Promotion Information System. Consider now a system that promotes prod-

ucts to customers inside shopping malls. It is assumed that both customers and sales staff

are provided with PDAs to communicate and interact. The way the system supports the

10 Introduction

customer depends on the specific context where it operates: the customer, the product,

the sales staff and the shopping mall itself. A promotion process is initiated when a cus-

tomer is within the mall building and is therefore able to accept a promotion offer. In

choosing a promotion, the system has different alternatives: (i) cross-selling by suggesting

a combination of products, if the customer is interested in a product for which a comple-

mentary product exists; (ii) offer a discount by showing a discount code, if the product is

under promotion or is outdated; (iii) give free samples by calling a staff member, if free

samples for that product exist.

To fulfil its requirements, the system has to continuously adapt. If the customer is inter-

ested in an item, and cross-selling is not working well (i.e. the customer is not interested

in the cross-sold product), the system might either propose another cross-selling option

or give a discount code. Similarly, if cross-selling is being offered but another customer

has just checked out the last item of the cross-sold product, the system has to adapt and

choose another option. �

1.6 Approach overview and contribution

Figure 1.1: Overview of our approach to self-adaptive software

Our approach to self-adaptive software is outlined in Figure 1.1. We provide a com-

prehensive approach that goes from problem understanding and conceptualization to em-

pirical evaluation via case studies. We overview now the building blocks of our approach,

Approach overview and contribution 11

showing the tackled research questions and the contribution beyond the state of the art.

− Modelling and Reasoning Frameworks. We devise modelling primitives to rep-

resent contextual requirements and social interaction, respectively. Their shared

baseline consists of Tropos goal models [BPG+04]. Each language includes a graph-

ical modelling notation as well as supporting automated reasoning techniques:

– The contextual requirements framework associates contextual annotations to

variation points in goal models. Each of these annotations describes when

and where certain options (variants) in the goal model are applicable. Each

contextual annotation is analysed to determine how its validity can be assessed

at runtime via monitoring.

– The social interaction framework is founded upon the notion of social commit-

ment [Sin98]. Commitments represent social relations between heterogeneous

and autonomous agents. They are publicly verifiable since they arise from in-

teraction (the messages that are exchanged between agents). They capture

the meaning of interaction, rather than describing interaction as a sequence of

exchanged messages. Our framework integrates commitments with goal mod-

elling. This enables to reason about how an agent can achieve its current goals,

given a set of commitments that hold in the STS.

Addressed research questions: RQ1 and RQ2.

Contribution beyond state of the art: the modelling frameworks enable to explic-

itly deal with contextual and social variability at a high-level of abstraction. Our

approach supports a different variability space than other goal-oriented approaches.

Wang et al. [WM09] support variation points in goal trees. Souza et al. [SLRM10]

extend Wang’s work with control parameters. In our approach, the supported vari-

ability space consists of variation points, context, and the social interactions between

systems (the enactment of dependencies via commitments).

− Conceptual Architecture. We propose a reference architecture that describes

the basic components of self-adaptive software for STSs. Our architecture is model-

driven, and relies on requirements models. To satisfy its requirements, the system

can choose among alternative variants. The applicability of each variant depends on

the current context, the social relations the software is involved in, and the possi-

ble relations it might establish. Our architecture is based on a Monitor-Diagnose-

Reconcile-Compensate (MDRC) control loop. The system cyclically (i) monitors the

surrounding environment (both the physical and the social context); (ii) diagnoses

failures and under-performance by checking monitored data against models; (iii)

12 Introduction

identifies possible variants to reconcile system behaviour with correct behaviour, as

well as selects the best variant; and (iv) compensates the problem by enacting the

selected variant.

Addressed research questions: RQ3.

Contribution beyond state of the art: differently from existing architectures for self-

adaptive software (e.g. [OGT+99, GS02, KM07]), ours is expressly suited for socio-

technical systems. It preserves the autonomy and heterogeneity of subsystems, for

it does not control other subsystems nor requires knowledge about their rationale.

This is possible because social relations—commitments between subsystems—are

decoupled from intentions—the goals of the supported system. If agent x intends

to satisfy goal g through a commitment offered by y, then x need not know why y

promises to deliver g or how y will bring about such goal.

− Adaptation Algorithms and Policies. We devise a set of adaptation algorithms

that are used at runtime during the adaptation control loop:

– We propose diagnosis algorithms that determine failures on the basis of moni-

tored data. Failures occur when observed data deviate from data predicted by

the models at-hand. Additionally, we consider proactive adaptation triggers to

deal with opportunities the system has to improve its performance.

– We define algorithms to enumerate possible variants to support current goals

and to select the best variant. In particular, we present two algorithms for

variant selection. The first one balances two factors: (i) it maximizes the con-

tribution of the system to soft-goals, and (ii) it minimizes the difference from

the current variant. The second one is a cost-based framework where goals are

supported via capabilities and commitments; the best variant is that having

minimal cost. Additionally, it can be customized by (i) specifying which events

types trigger adaptation and (ii) enabling adaptation to a new behaviour only

if significantly better than the current one.

Addressed research questions: RQ4.

Contribution beyond state of the art: most approaches to self-adaptive software

pay little attention to the algorithms used in the adaptation control loop. In our

approach, we specify algorithms for diagnosis—understanding what went wrong—

and for reconciliation—identifying and selecting possible variants. We rely on widely

applicable concepts—such as soft-goals and cost—to keep our algorithms general.

− Prototypes and Case Studies. We propose two prototype implementations of

the conceptual architecture that highlight different features of our approach.

Structure of the thesis 13

– The first implementation focuses on contextual requirements—expressed as con-

textual goal models [ADG10]—and adapts in response to failures. This pro-

totype selects the best variant by maximizing contribution to soft-goals and

minimizing compensation cost. This implementation is applied to an Ambient

Intelligence case study where a patient lives in an adaptive smart-home that

monitors his health and supports him in everyday activities. The case study is

adapted from the Serenity project2.

– The second implementation focuses on social interaction and variability. It en-

ables the system to achieve its goals in a dynamic social environment where

social relations vary. Such volatility consists of participants that join and leave

the system as they wish, new commitments made by the system itself or by

other systems, threats to and violations of existing commitments. This im-

plementation exploits our cost-based adaptation framework, and lets system

administrators specify adaptation policies. The implementation is applied to a

simulated emergency response setting.

Addressed research questions: RQ5.

Contribution beyond state of the art: the implementations and their application to

case studies allows us to identify bottlenecks and limitations of our approach. These

implementations demonstrate the applicability of our conceptual architecture, and

evaluate the effectiveness of the algorithms in practice.

1.7 Structure of the thesis

The thesis is structured as follows:

− Chapter 2 provides an extensive survey of the state of the art. First, we review

modelling languages in the areas of requirements engineering and social interaction.

These modelling languages represent the baseline for the models used in our ap-

proach. Then, we examine approaches to self-adaptive software. These approaches

are classified into different categories to better contrast and position related work.

− Chapter 3 presents a study of the notion of variability and its role in self-adaptive

software. We present two modelling frameworks that extend Tropos [BPG+04] to

deal with two facets of variability: contextual and social. For each framework, we

describe how each factor—the physical context and social interaction—influences

2SERENITY (System Engineering for Security and Dependability) is an R&D project funded by the EU

commission under the FP6: www.serenity-project.org.

14 Introduction

system operation, we present the modelling framework, and emphasize how such

framework deals with variability.

− Chapter 4 presents our conceptual architecture. It applies to multi-agent settings,

where several subsystems (agents) interact within the scope of an overall socio-

technical system. First, we present the underlying principles (the requirements)

for the architecture. Second, we detail the logical view on the architecture via a

component diagram. Finally, we show how it can be applied to an existing system.

− Chapter 5 introduces diagnosis and reconfiguration algorithms. The diagnosis algo-

rithms allow for efficient detection of failures by checking monitored data against

requirements models. While identifying new variants, reconfiguration algorithms

consider not only qualities, but also to what extent each variant differs from the cur-

rent one. We propose an adaptation framework for STSs with heavy social variability

that enables the specification of adaptation policies.

− Chapter 6 describes two prototype implementations of our architecture; these proto-

types implement the algorithms presented in Chapter 5. The first prototype focuses

on contextual variability. It supports the entire adaptation cycle, from events moni-

toring to the actual variant enactment. The second prototype is specific for settings

with social variability, and selects variants based on choosing commitments and

capabilities to achieve current goals.

− Chapter 7 evaluates our approach on two case studies and presents scalability re-

sults. First, we model each case study using our frameworks for contextual and

social variability. Second, we apply the prototypes to the case studies: we describe

simulated scenarios where the prototypes perform adaptations. Third, we present

scalability experiments for each prototype.

− Chapter 8 draws conclusions for this thesis, describes ongoing work, and presents

future directions.

1.8 Published work

We list here published work related to this thesis. They are split into refereed (with sub-

categories for journal, conference, workshops, and others) and un-refereed (book chapters).

Published work 15

1.8.1 Refereed

International Journals

1. Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. A Goal-based Framework for Con-

textual Requirements Modeling and Analysis. Requirements Engineering, Vol. 15,

Nr. 4, pp. 439–458, 2010.

2. Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. Modeling and Analyzing Location-

based Requirements: Goal-oriented Approach. International Journal of Computer

Science and Software Technology (IJCSST). Vol. 2, Nr. 2, pp. 89–95, 2009.

International Conferences

3. Fabiano Dalpiaz, Amit K. Chopra, Paolo Giorgini, John Mylopoulos. Adaptation

in Open Systems: Giving Interaction its Rightful Place. In proceedings of the 29th

International Conference on Conceptual Modeling (ER 2010), Springer LNCS 6412,

pp. 31–45, 2010.

4. Amit K. Chopra, Fabiano Dalpiaz, Paolo Giorgini, John Mylopoulos. Modeling

and Reasoning about Service-Oriented Applications via Goals and Commitments. In

proceedings of the 22nd International Conference on Advanced Information Systems

Engineering (CAiSE’10), Springer LNCS 6051, pp. 113–128, 2010.

5. Amit K. Chopra, Fabiano Dalpiaz, Paolo Giorgini, John Mylopoulos. Reasoning

about Agents and Protocols via Goals and Commitments. In proceedings of the 9th

International Conference on Autonomous Agents and Multiagent Systems (AAMAS

2010), pp. 457–464, 2010.

6. Fabiano Dalpiaz, Paolo Giorgini, John Mylopoulos. An Architecture for Require-

ments-driven Self-Reconfiguration. In proceedings of the 21st International Confer-

ence on Advanced Information Systems Engineering (CAiSE ’09), Springer LNCS

5565, pp. 246–260, 2009.

7. Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. A Goal Modeling Framework for

Self-Contextualizable Software. In proceedings of the 14th International Conference

on Exploring Modeling Methods in Systems Analysis and Design (EMMSAD’09),

Springer LNBIP 29, pp. 326–338, 2009.

8. Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. Location-based Software Modeling

and Analysis: Tropos-based Approach. In proceedings of the 27th International

16 Introduction

Conference on Conceptual Modeling (ER 2008), Springer LNCS 5231, pp. 169–182,

2008.

9. Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. Location-based Variability for Mo-

bile Information Systems. In proceedings of the 20th International Conference on

Advanced Information Systems Engineering (CAiSE 08), Springer LNCS 5074, pp.

575-578, 2008.

10. Raian Ali, Fabiano Dalpiaz and Paolo Giorgini. Modeling and Analyzing Variability

for Mobile Information Systems. In proceedings of the International Conference on

Computational Science and Its Applications (ICCSA 2008), Springer LNCS 5073,

pp. 291–306, 2008.

Workshops

11. Raian Ali, Amit K. Chopra, Fabiano Dalpiaz, Paolo Giorgini, John Mylopoulos,

and Vitor E. Silva Souza. The Evolution of Tropos: Contexts, Commitments and

Adaptivity. In the proceedings of the 4th International i* Workshop, co-located with

CAiSE 10. CEUR-WS Vol-586, pp. 15–19, 2010.

12. Fabiano Dalpiaz, Raian Ali, Yudistira Asnar, Volha Bryl, Paolo Giorgini. Applying

Tropos to Socio-Technical System Design and Runtime Configuration. In the Pro-

ceedings of the 9th WOA workshop, From Objects to Agents (Dagli Oggetti Agli

Agenti), ISBN 978-88-6122, 2008.

Other refereed publications

13. Fabiano Dalpiaz, Paolo Giorgini, John Mylopoulos. Software Self-Reconfiguration:

a BDI-based approach (Extended Abstract). In proceedings of the 8th International

Conference on Autonomous Agents and Multiagent System (AAMAS 2009), pp.

1159–1160, 2009.

14. Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. Goal-based Self-Contextualization.

In the Forum of the 21st International Conference on Advanced Information Systems

(CAiSE 09 - Forum). CEUR-WS Vol-453, pp. 37–42, 2009.

1.8.2 Un-refereed

15. Amit K. Chopra, John Mylopoulos, Fabiano Dalpiaz, Paolo Giorgini, Munindar P.

Singh. Requirements as Goals and Commitments too. Book chapter in: Intentional

Perspectives on Information Systems Engineering, Springer, 2010.

Chapter 2

State of the art

The state of the art in the area of self-adaptive software is broad and includes very

diverse approaches belonging to different research sub-areas, including conceptual models,

software architectures, service-orientation, requirements engineering, algorithms, agent

reasoning, and self-organization. We overview these sub-areas and assess their adequacy

in supporting self-adaptation for socio-technical systems. Section 2.1 reviews literature

that defines our research baseline, covering Requirements Engineering, Social Interaction,

and Software Variability. Section 2.2 provides a comprehensive survey on approaches to

self-adaptive software.

2.1 Baseline models for self-adaptive software

Our approach to self-adaptive software is model-driven: models are used at runtime to

detect adaptation needs and to identify alternative behaviours. Thus, our baseline in-

evitably consists of modelling concepts and techniques. According to the big picture we

presented in Chapter 1, we need models that represent:

− The purpose of the system, captured by requirements models. We review goal-

oriented modelling languages in Section 2.1.1.

− The social relations the system is currently or might potentially be engaged in. Social

relations are the glue that ties together different participants in an STS, and they

are established and modified by the interaction between participants. We review

modelling frameworks for social interaction in Section 2.1.2.

− Software variability, the possibility to achieve requirements through different alter-

natives. A model for software variability should represent variants in a structured

way and relate variants to the requirements of the system. We discuss software

variability models in Section 2.1.3.

18 State of the art

2.1.1 Modelling requirements via goal models

Goal-Oriented Requirements Engineering (GORE) has emerged as a prominent approach

within Requirements Engineering (RE). According to GORE, stakeholder needs are goals

—desired states-of-affairs—and should be elicited, modelled and analysed accordingly.

There is a large amount of work in the area, which encompasses all phases of RE [vL00]:

domain analysis, elicitation, negotiation and agreement, specification, specification anal-

ysis, documentation, and evolution.

A common thread in all GORE research is that goals and their refinements are cap-

tured by goal models using a formal or semi-formal notation. Goal models serve as a

communication artefact among requirements engineering and stakeholders, but also as

abstract specifications of the system-to-be. We review here the most influential goal

modelling approaches and show their main strengths, specific features, and limitations.

The NFR framework [MCN92, CNYM00] has been devised to model and analyse Non-

Functional Requirements (NFRs). Apart from the proposed technical framework, this

work is a paradigmatic shift in requirements engineering, for it motivates the need for

and emphasizes the importance of non-functional requirements. Indeed, the authors treat

NFRs as selection criteria for design decisions during software development. NFRs can

be formally treated either from a product-oriented or a process-oriented perspective. The

first perspective means to develop formal definitions for NFRs. The second perspective—

addressed in the NFR framework—proposes their usage for justifying decisions during the

software development process. An orthogonal dimension is qualitative versus quantitative

treatment. The authors observe that obtaining quantitative measurements is too hard a

task, and select thus qualitative treatment of NFRs. The NFR framework consists of

five major components: (i) a set of goals that represent NFRs, design decisions, and

arguments in support or against other goals; (ii) a set of link types that correlate goals to

other goals; (iii) a set of methods for refining goals into others; (iv) a set of correlation rules

for inferring potential interactions among goals; and (v) a labelling procedure that decides

to what extent a NFR is satisficed. They use the term “satisficed”, instead of “achieved”

or “satisfied”, to suggest that there is no concept of full satisfaction for a NFR, for

they represent qualities that are satisfied within acceptable limits, rather than absolutely.

The framework supports three types of goals: (i) non-functional requirements of the

system to-be, (ii) satisficing goals that represent design decisions, and (iii) arguments

that provide evidence or counter-evidence for other goals. Design proceeds by refining

one or more times each goal using different types of links: AND/OR decomposition, four

types of contribution, equivalence, undetermined. The model where these concepts are

combined is called Soft-goal Interdependency Graph (SIG). Developers choose alternative

combinations of leaf-level soft-goals and use a label propagation algorithm to verify how

Baseline models for self-adaptive software 19

well the different alternatives satisfice the high-level non-functional requirements.

KAOS (Knowledge Acquisition in autOmated Specification) [DvLF93] is a goal-orien-

ted methodology heavily focused on the formalization of requirements. The authors’ claim

is that representing requirements—conceptualized as goals—formally enables automated

reasoning. They suggest KAOS as a supporting methodology for the requirements ac-

quisition phase, where designers aim to understand which are the requirements of the

system to-be. Central to their framework is the concept of goal model, a graph where

each node captures an abstraction (goal, action, agent, entity, event), and whose edges

represent semantic links between such abstractions. The conceptual model of KAOS en-

ables to express both functional and non-functional requirements. KAOS includes also

an acquisition process to construct requirements models and an automated support tool.

The conceptual meta-model of KAOS consist of three levels: the meta-level represents

domain-independent abstractions (e.g. agent, action, relationship); the domain level de-

scribes concepts specific to the application domain (e.g. resource management, telephone

network); the instance level refers to specific instances of domain-level concepts. Ac-

cording to the KAOS world-view, objects are things of interest which can be referenced

in requirements; objects are specialized into entities, relationships, events, and agents.

Agents decide on their own behaviour. The KAOS requirements acquisition process con-

sists of eight steps: it starts with the acquisition of an initial goal structure and the

identification of concerned objects, and it ends with the assignment of actions to agents.

Roughly, the six intermediate steps refine the initial structure and identify responsibilities.

The Goal-Based Requirements Analysis Method (GBRAM) [AP98] is a method to

identify, elaborate, refine, and organize goals for requirements specification. GBRAM re-

lies on a conceptual model consisting of (i) goals, high-level objectives of the business; (ii)

requirements, specifications of how a goal can be fulfilled by a system; (iii) operational-

ization, the refinement of a goal so that its sub-goals have an operational definition; (iv)

achievement and maintenance goals whose condition should be met once or kept true,

respectively; (v) agents, the entities that seek to achieve goals within an organization;

(vi) constraints that place conditions on the achievement of goals; (vii) goal decomposi-

tion, the process of subdividing goals into logical subgroups; (viii) scenarios, behavioural

descriptions of a system and its environment that specify a certain situation; (ix) goal ob-

stacles, behaviours or goals that prevent the achievement of a given goal. The GBRAM

process consists of two phases: goal analysis and goal refinement (or evolution). Goal

analysis concerns the identification of goals starting from process descriptions, their or-

ganization, and their classification. Goal refinement is about how goals change from the

time they are first identified to the time they are operationalized. Goal refinement is very

important since stakeholders change their minds very often over time. GBRAM does not

20 State of the art

provide any graphical notation to represent and structure goals; rather, it makes use of

textual tables in so-called goal schemas.

Rolland et al. [RSA98] propose a method that integrates goal modelling with scenario

authoring. Their approach supports goal identification through scenarios. They focus the

discovery of goals around the concept of Requirement Chunk (RC), a pair 〈Goal, Scenario〉.

They define a bidirectional goal-scenario coupling: goals help in scenario discovery, and

scenarios help in goal discovery. Consequently, requirements elicitation consists of two

steps: scenario authoring and goal discovery. Another key feature of their work is the

distinction between the refinement relationship and the AND/OR relationships among

goals. Requirements chunks are organized in a requirement chunk model, which keeps

track of all RCs and their refinements. Refinement is used to go from high-level fuzzy

goals to lower-level concrete goals, whereas AND/OR relations create a hierarchy for each

concrete goal. The structure of both goals and scenarios is specified through a conceptual

model that helps defining these artefacts on the basis of natural language statements. For

example, a goal has at least one verb and at least one parameter, where parameters can

be target, direction, way, and beneficiary. This approach also provides guidelines to assist

the designer during requirements identification.

i* [Yu96] is an agent-oriented modelling framework usable for requirements engineer-

ing, business process re-engineering, and organizational modelling. The novelty of i* is

that, unlike other approaches, the notion of agent is a first-class citizen. In KAOS, for

instance, operationalizable goals are assigned to different agents on the basis of a respon-

sibility principle. In i*, goals exist only if associated to a certain agent; in other words,

agents want to achieve goals, either using their own capability or depending on another

agent. When using i* for requirements engineering, two phases are to be carried out.

During the early requirements phase, i* is used to model the stakeholders of the system,

their objectives, and their relationships. i* models developed during early requirements

help understanding why a new system is needed. During the late requirements phase, i*

models are used to propose possible ways to construct the new system and the new orga-

nizational processes. The alternatives can be evaluated and compared based on how well

they meet functional and non-functional requirements. Though agent-oriented, the i* on-

tology includes a broader abstraction, that of actor. Actors can be agents (concrete actors

with specific capabilities), roles (abstract actors embodying expectations and responsibil-

ities), or positions (socially recognized roles). Actors are intentional: they have goals they

aim to achieve. Goals are decomposed through AND/OR decomposition and means-end

relations into other goals, tasks, or resources. i* supports two types of goals: hard and

soft. Soft-goals are goals for whose satisfaction level there is no clear cut criteria, as in

the NFR framework [MCN92]. Actors depend on each other for the fulfilment of goals,

Baseline models for self-adaptive software 21

the execution of tasks, and the provision of resources. Intentional elements—goals, tasks,

and resources—may contribute positively or negatively to other intentional elements. The

Figure 2.1: A strategic rationale model in i* [Yu96]

i* framework exploits these abstractions in two models: Strategic Dependency (SD) and

Strategic Rationale (SR). An SD model is a network of dependency relationships among

actors, and captures the intentionality of the processes in the organization and what is

important to its participants. SR models are exploited to describe the rationale behind

the processes in systems and organizations. In SR models, the rationale of every actor is

described in terms of intentional elements: goals, soft-goals, tasks, and resources, and the

relationships among them. Figure 2.1 shows how a strategic rationale model looks like.

Tropos [BPG+04] is an agent-oriented software engineering (AOSE) methodology that

relies on the i* meta-model. Unlike i*, Tropos is a methodology that exploits mental-

istic notions (e.g. goals and tasks) from early requirements to actual implementation.

Tropos consists of five phases: early requirements analysis, late requirements analysis,

architectural design, detailed design, and implementation. From the point of view of

the underlying conceptual model, Tropos starts from i* and adds some restrictions. For

example, decompositions are allowed only between homogeneous elements (goals can be

decomposed only to sub-goals, tasks to subtasks, resources to sub-resources); plans can

be means-end decomposed only to plans or resources, and not to other goals.

22 State of the art

2.1.2 Modelling social interaction

Social interaction arises naturally, both in our physical environment and, increasingly,

in our virtual (software) world. Social interaction occurs whenever two or more actors

interact (typically, for some purpose). Examples of everyday social interaction are visiting

a doctor, buying a car from a car dealer, exchanging information about summer holidays.

Social interactions often involve technology—in particular, software systems. Think of

your payments via credit card, where you interact with a software system that processes

the payment, your credit card company, the item seller. Social interaction creates social

relationships between the interacting participants. There is a large amount of research

about social interaction modelling; the most prominent approaches are in agents and

multi-agent systems, conceptual modelling, software and service engineering.

Odell et al. propose AUML (Agent Unified Modeling Language) [OPB01], an extension

of UML that supports, among other features, agent interaction protocols. Their proposal

is intended to increase adoption of the agent technology in industry through the definition

of a standard modelling framework that extends UML. Their notion of agency requires

only (i) the capability to initiate action without external invocation and (ii) the ability

to refuse or modify an external request. In AUML, an agent interaction protocol (AIP)

describes a communication pattern as an allowed sequence of messages between agents

and the constraints on the content of those messages. AUML adopts a layered approach to

protocols, where interaction protocols can be specified in more details using a combination

of diagrams. Level 1 represents the overall protocol at a high-level of abstraction, in order

to facilitate reuse of the protocol. AUML uses packages to express nested protocols

and templates, parametrized model elements whose parameters are bound at model time.

Level 2 represents interaction between agents using the dynamic models of UML: sequence

diagrams, collaboration diagrams, activity diagrams, and statecharts. The combined

usage of all these diagrams allows to specify interaction between agents in a process-

like fashion. Level 3 describes internal agent processing, i.e. how agents are structured to

carry out an interaction protocol. This is done through activity diagrams and statecharts.

Some approaches to agent interaction are based on the speech acts theory by Searle

[Sea70]. More specifically, these approaches rely on indirect speech acts [Sea75], that

require interaction parties to understand the motives behind utterances. For example,

a sentence such as “Can you pass the salt?”, though syntactically an interrogative that

expresses a question, is actually a request message. There are two standard languages

developed by the Agents community: the Knowledge Query and Manipulation Language

(KQML) [FFMM94] and the FIPA Agent Communication Language (FIPA-ACL) [FIP97].

We present here only FIPA-ACL as an example of agent communication language based

on indirect speech acts. The interested reader may find more on the similarities and dif-

Baseline models for self-adaptive software 23

ferences between these two languages in the work by Labrou et al. [LFP99]. FIPA-ACL

describes how messages exchanged by agents should be structured. Being based on speech

acts, a performative field is needed to represent the communicative act of the message.

Examples of communicative acts are accept, agree, cancel, call for proposals, confirm,

inform, failure, request, and query. Three fields are used to represent participants in the

conversation: sender, receiver, and reply-to. The content is the core of the message, which

is interpreted by the receiver agents according to the communicative act, the encoding, the

ontology, and the protocol. FIPA-ACL contains some fields to represent control of con-

versation: the protocol to which the message belongs to, a conversation ID that uniquely

represents different conversations, reply-with and in-reply-to to deal with conversations

where multiples dialogues occur simultaneously, reply-by to indicate response deadlines.

In his “Rethinking the principles” paper on agent communication [Sin98], Singh ob-

serves that agent communication languages do not let heterogeneous agents communicate,

and that approaches that rely on mental agency are unrealistic. If agents are autonomous

and heterogeneous, the sender cannot make any hypothesis about the receiver’s ratio-

nale. Singh shows that an agent communication language has to emphasize social agency.

Communication is inherently public and depends on the agent’s social context. The long-

term challenge he poses is the definition of agent communication languages that (i) are

based on formal semantics; (ii) support high autonomy; (iii) enable high heterogeneity;

(iv) support open dialects. Singh calls for a radical shift from previous agent communi-

cation languages, that make many assumptions concerning the structuring of the single

agents—violating their heterogeneity—and have very little flexibility.

Kumar et al. [KHC02] propose a landmark-based approach to agent interaction,

where landmarks are those states of affairs that must be brought about during a goal-

directed execution of a protocol. In such approach, interaction protocols are joint action

expressions that can be derived from partially ordered landmarks. Interaction protocols

are then executed directly by joint intention interpreters. Unlike traditional approaches

to agent communication, this work asserts that the correctness of a protocol is defined

in terms of the states to be achieved, not of the state transitions (i.e. the messages).

The formalization of protocols in terms of partially ordered states (the landmarks) al-

lows for the automated verification of a protocol. Also, interaction protocols composition

is supported to derive composed protocols from simpler ones. Despite of its execution

flexibility, this approach—being based on joint action theory—works only for cooperative

agents, and does not take into account open settings (such as socio-technical systems)

where agents are autonomous and heterogeneous. Indeed, the hypothesis about the exis-

tence of a joint intention violates the principles stated by Singh [Sin98]; joint intentions

are not necessary—nor typical—for social interaction.

24 State of the art

Cheong and Winikoff [CW06] propose Hermes, a goal-oriented approach to agent in-

teraction. Hermes is to be used by engineers that want to define interaction protocols

for multi-agent systems, and includes (i) a methodology to design goal-based interac-

tions; (ii) failure handling mechanisms; and (iii) a process to map design artefacts to

an executable implementation. They observe that message-centric approaches are not

suitable for flexible and robust interaction, being rooted in low-level abstractions. Such

inflexibility—typically expressed by the sequencing of messages to be exchanged—restricts

the autonomy of agents and does not allow the exploitation of shortcuts (reduced versions

of a protocol). In Hermes, an interaction protocol is a set of goals to be achieved and some

temporal constraints about these goals. The Hermes methodology supports the design

of an interaction protocol in six steps, starting from the identification of roles and inter-

action goals and ending with the definition of messages to exchange. Hermes supports

action failure and interaction goal failure. An action failure occurs when an action does

not achieve its interaction goal. An interaction goal failure occurs if an interaction goal

cannot be achieved. The main limitation of this approach is to suppose that goals exist

at the level of an overall multi-agent system: this assumption holds when designing an

entire MAS, but does not hold in case of autonomous and heterogeneous agents, which

can join and leave as they wish.

To overcome the limitations of existing agent communication languages, Singh pro-

poses the concept of social commitment [Sin99] as the interaction abstraction for multi-

agent systems. In his work, commitments are described and exploited in a multi-agent

architecture named spheres of commitment. His work on commitments relies on sev-

eral assumptions: agents are autonomous (and constrained only by social commitments

to avoid chaos), social commitments cannot be reduced to internal commitments, social

commitments are revocable through appropriate operations, commitments exist only in a

social context, commitments are different from the way agents use them, commitments are

a social abstraction—not a mental one. Formally, a commitment is a four-place relation

involving a proposition p and three agents x, y, and G. A commitment c = C(x, y,G, p)

denotes a commitment from x to y in the context of G for the proposition p. x is called

debtor, y is the creditor, G is the context group, and p is the discharge condition of com-

mitment c. The semantics is that the debtor x commits to the creditor y to bring about p

in the context G. The social context G includes norms and conventions that apply in the

environment where the commitment c is instantiated. Commitments can be manipulated

via specific operations performed by the involved agents: a debtor creates a commitment,

a debtor discharges a commitment by satisfying the discharge condition, a debtor cancels

its commitment—implying a violation, a creditor can release a debtor from a commitment,

delegation transfers the role of debtor to another agent, assignment transfers the role of

Baseline models for self-adaptive software 25

creditor to another agent. A commitment is conditional if the debtor commits to the

discharge condition only if a certain precondition holds. In subsequent work, Singh and

colleagues consider mainly conditional commitments—which are particularly adequate to

represent business relations—as a five-place relation c = CC(x, y,G, p, q), in which p is

called antecedent, q is called consequent, and the debtor x commits to y for q if p holds.

Commitments have been used by Desai et al. [DMCS05] to define flexible interaction

protocols for business processes. In their approach, a business protocol is an abstract,

modular, and public specification of an interaction among different partner roles. They

contrast protocols defined in terms of commitments to traditional message-flow based

protocols, and show that their approach is more flexible and robust. They also show

how composite protocols can be defined. Their framework is formalized in π-calculus in

order to allow inference reasoning about (in)correctness, compatibility, equivalence, and

flexibility. Telang and Singh [TS09] apply the concept of commitment to the Tropos

methodology in order to enable to specify cross-organizational business processes. The

motivation of this work is similar to that of Desai et al. [DMCS05], but the approach

is different. Here, a business process consists of a set of agents having goals and tasks,

and a set of roles related via dependencies and commitments. The two abstractions

related to interaction—dependencies and commitments—are used at different steps of the

methodology. First, goals and goal dependencies between roles are identified. Then, goals

and goal dependencies are refined into tasks and task dependencies between roles. Finally,

task dependencies are further refined into conditional commitments. The authors explain

the importance of verifying agent interaction, since agents autonomy does not guarantee

that their interaction will follow the protocol defined as commitments between roles.

2.1.3 Software variability modelling

Software variability refers to “the ability of a software system or artefact to be efficiently

extended, changed, customized or configured for use in a particular context” [SvGB05].

Software variability is an essential property for adaptive systems, for software adaptation

does not exist in absence of variability. We review here the most influential approaches

to software variability modelling.

Kang et al. propose Feature-Oriented Domain Analysis (FODA) [KCH+90], the first

domain analysis technique to apply the concept of feature modelling to domain engineer-

ing. Feature models are not only beneficial to domain analysis, but also they promote

software reuse. The proposed method allows for discovering and representing common-

alities among related software systems. The core concept used to define commonality is

that of feature: “a prominent or distinctive user-visible aspect, quality, or characteristic

of a software system or systems”. Feature models are not the only component of FODA,

26 State of the art

but they its distinctive trait. Figure 2.2 shows a feature model for a car. A car has two

Figure 2.2: A feature model using the FODA notation [KCH+90]

mandatory features—that every car instance has—transmission and horsepower. Cars

have optional features—that a car instance may have or not—such as air conditioning.

Alternative features are those that vary from one instance to another; transmission can

be manual or automatic. Optional and alternative features represent variation points, i.e.

constructs where variability is introduced. The feature model in Figure 2.2 contains two

additional element: a composition rule saying that air conditioning requires horsepower to

be bigger than 100; and a rationale saying that manual transmission is more fuel efficient

than automatic transmission. These two elements allow for more expressiveness and help

designers to choose among variants.

The same authors extend FODA and propose FORM [KKL+98], which focuses on

the development of reusable architectures and components. While FODA focuses on re-

quirements only, FORM supports the entire software design phase. FORM prescribes

how the feature model is used to develop domain architectures and components for reuse.

FORM is based on abstraction principles, and is composed of four layers. Every layer ex-

ploits feature models; higher-level features are refined in lower-levels. The four supported

layers are: capability, operating environment, domain technology, and implementation

technique. FORM enables to transform a feature model to a reference architecture. Such

transformation takes into account non-functional features, which influence the structure

of the architecture.

Czarnecki et al. [CHE05] introduce Cardinality-Based Feature Modeling (CBFM),

an extension of FODA that enhances the expressiveness of feature models. Apart from

the contribution given by the extension itself, their work provides a formal account of

feature modelling with a semantic interpretation of feature models. They exploit a notion

of feature that is more generic than that by Kang and colleagues: “a system property

that is relevant to some stakeholder and is used to capture commonalities or discriminate

among systems in a family”. Such definition allows for features defined with respect

Baseline models for self-adaptive software 27

to any stakeholder, not just users. Features can be of two kinds: solitary features and

grouped features. Grouped features appear in feature groups. Cardinality-based feature

models express cardinalities as intervals over integers. Their approach also proposes the

concept of staged configuration, the process of specifying a product family member in

stages, where each stage eliminates some configuration choices. The formalization of the

cardinality-based feature model is in terms of context-free grammars.

Von der Maßen and Lichter [vdML02] study how UML use case diagrams can ex-

press variability. They first define the requirements for a variability modelling language:

representation of common and variable parts, distinction between types of variability,

representation of dependencies between variable parts, support to model evolution, and

provision of good tangibility and expressiveness. Their baseline is the UML use case

diagram, which is extended by adding the concepts of variation point, alternative, and

option. Halmans and Pohl [HP03] propose a different way to express variability via use

case diagrams. First, they show how the “include” and “extend” links can be used as

a primitive means to represent variability. Second, they observe the inflexibility of such

solution and propose an alternative approach based on UML stereotypes. Specifically,

they introduce the concept of variation point to explicitly take into account variants.

Asikainen et al. propose Koalish [ASM04], a modelling language to express config-

urable software product families supporting the automatic configuration of product in-

stances. The language extends Koala [vOvdLKM02], a component model and architecture

description language, by adding explicit variation modelling mechanisms. Unlike most ap-

proaches in variability modelling, Koalish does not define variation points, while it allows

for selecting the number and type of parts of components, and writing constraints. A

Koalish model represents the properties of a software product family and describes com-

ponent and interface types that can occur in configurations. A configuration is a set of

instances of these types; a configuration is valid if it satisfies the constraints in the Koalish

model.

Van der Hoek [vdH04] observes how existing approaches to variability modelling sup-

port variability in a specific phase of the software life cycle, and proposes an approach to

supporting any-time variability. The key novelty of his approach is to exploit a product

line architecture as the organizing abstraction during the entire life cycle of software.

His approach relies on four components: a representation to capture variability, a tool

to specify variability, a generic tool to resolve variability, and specialized tools that at

different points in the life cycle apply the results of variability resolution. For the purpose

of our work, we focus on the language he chooses to express variability. He suggests the

use of xADL 2.0, an extensible architecture description language built as a set of exten-

sible XML schemas. xADL is composed of nine XML schemas. Van der Hoek exploits

28 State of the art

the six lower-level models to represent the structure and the functionalities of a specific

architecture. Fundamental to express variability are the Options, Variants, and Boolean

Guard schemas. Together, these schemas allow for modelling variability in space through

explicit variation points in the architecture. The Options schema supports the definition

of optional architectural elements; the Variants schema enables to define variant elements

that can be configured to be one of a set of alternative types; the Boolean Guard schema

allows to define the preconditions for the Options and Variants schemas.

Gomaa and Webber propose the Variation Point Model (VPM) [GW04]. The authors

outline four approaches to modelling variability: parametrization, information hiding,

inheritance, and variation points. The variation point model belongs to the last category.

Parametrization means changing some core attribute of the application, e.g. varying a

greeting depending on the device display. Information hiding relies on the implementation

of different version of a same component sharing the same interface, e.g. developing a

multi-language ATM based on different language components. Inheritance is also based

on components but relies on specialization (e.g. by extending a generic class); thus, the

components need not have the same interface. VPM is based on an explicit representation

of variation points, that are contained in reusable components. VPM uses UML models

to describe variability and consists of four points of view. The requirements point of view

shows the variation point in terms of the variations of the common core. The component

variation point view is a composite view that shows all the variation points that belong

to a particular component. The static point view exploits an UML class diagram to show

structural variability. The dynamic variation point view shows how to make a variant

known to the other components.

Liaskos et al. explore the use of goal models for variability representation and analysis

[LLY+06]. The core idea is to explore OR-decompositions to represent alternative ways

of satisfying goals. They associate a set of concerns to high-level goals and introduce

alternative refinements of the goal to address each of these concerns. The concerns they

define are (i) agentive, the agent whose activities will bring about the state of affairs

related to the goal; (ii) dative, the agent affected by the generic activity implied by the

goal; (iii) objective, the object affected by the generic activity implied by the goal; (iv)

factitive, the object that results from the activity; (v) process, the instrument, means and

manner to perform the activity; (vi) locational, the spatial location where the activity

is performed; (vii) temporal, the duration or frequency of the activity; (viii) conditional,

the conditions under which the goal can be fulfilled; and (ix) extent, alternative degrees

by which the generic activity can be performed. They show how these concerns can be

applied to perform concern-driven decomposition of a goal model, so that the variants in

a goal model keep track of the concerns they address.

Approaches to adaptive software 29

2.2 Approaches to adaptive software

In this section we present our literature survey on adaptive software. We organize the

state of the art according to the categories listed in Table 2.1. Approach that fall into

more categories are described in the most representative category.

Category Section Description

Conceptual models 2.2.1
Provide conceptual foundations to conceive and

understand adaptation

Programming frameworks 2.2.2
Enable the development of adaptive software by

extending programming languages

Software architectures 2.2.3
Define architectural styles or are frameworks to

build adaptive software

Service-oriented 2.2.4
Conceive adaptation in a setting composed of

multiple interacting (web) services

Requirements engineering 2.2.5
Guarantee that the system fulfils its require-

ments

Algorithms and policies 2.2.6
Define criteria about how to adapt and enable

designers to specify adaptation policies

Agent reasoning and planning 2.2.7
Characterize adaptation from the perspective of

an intelligent agent

Self-organization 2.2.8
Adaptation in a multi-agent system results from

the individual behaviour of the agents

Table 2.1: Categories of approaches to adaptive software

2.2.1 Conceptual models of adaptation

Some approaches address software adaptation from a conceptual perspective, rather than

through a technical framework. The main questions they tackle are: what is adaptation?;

why and how should software adapt?; how does adaptive software differ from non-adaptive

one?; and when should an adaptation process start?

Zhang and Cheng [ZC06] introduce a formal model for the behaviour of self-adaptive

software. Their purpose is to structure software so that it works correctly both during and

after adaptation. In their approach, they separate adaptation models from non-adaptation

models. By decoupling these two models, it becomes easier to understand and formally

verify adaptive features, for they are isolated from non-adaptive behaviour. They formal-

ize adaptive software as a program whose state space can be separated into a number of

disjoint regions (programs), each exhibiting a different steady-state behaviour and operat-

30 State of the art

ing in a different domain. Adaptation models guide the transition from a source program

to a target one. Programs are formalized via petri nets as finite state machines. Their

conceptualization of adaptation is general and can be applied to architectural models,

UML diagrams, or formal requirements modelling languages.

Salehie et al. [SLAT09] propose a conceptual model for adaptation changes based

on activity theory. They conceive adaptive software as a closed-loop system that aims

at self-adjusting under different situations at runtime. Specifically, they focus on two

different facets of adaptation: how adaptation is carried out and partly where it applies,

i.e. which is the object to change. They rely on activity theory to define an adaptation

change as “an activity which sets to modify an artefact of software to attain specific

objectives”. Their approach refines the concepts of activity and objective hierarchically.

Activity is broken down into actions and operations, whereas objective is split into goals

and conditions. The two hierarchies are then related by a formal framework for adaptation

changes. Though applied to a single example concerning fine-grained adaptation changes,

their model is applicable to any type of adaptation, at different levels of granularity.

Andersson et al. [AdLMW09] classify the modelling dimensions for self-adaptive soft-

ware systems. Each dimension constitutes a particular facet of the system that is relevant

to adaptation. These facets refer to four macro-categories: system goals, causes of self-

adaptation, mechanisms to achieve self-adaptivity, and effects of self-adaptation. They

characterize system goals along different dimensions: evolution (static/dynamic), flexibil-

ity (mandatory/optional), duration, multiplicity, and interdependency. Change triggers

should describe the source of change (internal/external), type of change, frequency, and

anticipation (can change be foreseen?). Adaptation mechanisms can be classified accord-

ing to their type (parametric/structural), autonomy (self/human-assisted), organization

(centralized/decentralized), scope (local/global), duration, timeliness, and trigger type

(event/time). Effects are modelled by considering criticality, predictability, overhead,

and resilience. Their taxonomy helps adaptation frameworks designers to assess their

approach and to compare it to different approaches. Also, their work suggests some

important dimensions to consider when proposing new approaches.

Taxonomies of software change and evolution consider not only runtime adaptation,

but also other types of software change. Mens et al. [MBZR03, BMZ+05] character-

ize how, when, what and where, of software changes. To address these questions, they

define a taxonomy of characteristics of change mechanisms and the factors that influ-

ence these mechanisms. These characteristics are related to software change either as

characterizing factor, influencing factor, or both. An orthogonal classification of these

characteristics is based on the question they address. Temporal properties, that answer

the “when” question, are time of change (static, load-time, dynamic), change history,

Approaches to adaptive software 31

change frequency, and anticipation. The object of change (where) should consider the

artefact that evolves, granularity, impact, and change propagation. System properties

(what) are availability, activeness, openness, and safety. Change support (how) should

explain degree of automation, degree of formality, and change type. This taxonomy can

be applied to classify approaches to runtime software adaptation. However, being more

generic than [AdLMW09], it results less informative.

McKinley et al. [MSKC04] make the case for compositional adaptation. They contrast

this form of adaptation to parametric adaptation, and define it as the exchange of algo-

rithmic or structural system components with others that improve a program’s fit to its

current environment. Compositional adaptation is supported by three main technologies:

separation of concerns, computational reflection, and component-based design. At run-

time, it is enacted by middleware that supports the components replacement. Separation

of concerns, understood as aspect-oriented programming [KLM+97], is very important to

dynamic recomposition because many adaptations refer to a cross-cutting concern, such

as quality of service. Computational reflection is fundamental to let the program rea-

son about its current state, identify the need of adapting, and find a better configuration.

Component-based design is suggested as the enabler for software components replacement.

Inverardi et al. [IPT09] propose a theory for software adaptation based on the preser-

vation of a set of invariants during adaptation. Theirs is an assume-guarantee framework

that allows to efficiently define the conditions under which adaptation should be performed

while guaranteeing the desired invariants. Being independent of the level of abstraction,

their theory can be applied at different levels of abstraction (from architecture to code).

The main feature of their approach is the usage of assume-guarantee reasoning, which en-

ables the verification of a component-based system through the verification of the single

components. The main limitation is that they presume adaptive software can be neatly

split into independent components, which is seldom the case in real systems.

2.2.2 Programming frameworks

Programming languages and framework provide developers with programming abstrac-

tions that support and facilitate the development of self-adaptive software systems. These

programming frameworks propose a clear shift from traditional programming methods

and styles. Indeed, they provide developers with specific languages and data structures

to create self-adaptive applications.

Agnew et al. [AHP94] propose Clipper, a C++ extension that facilitates the develop-

ment of reconfiguration plans responding to reconfiguration events. Clipper is applicable

to distributed systems where multiple processes execute and are interconnected by commu-

nication channels. The approach consists of three steps: (i) creation of the reconfiguration

32 State of the art

module, (ii) application creation, and (iii) application execution. A core concept is that of

application configuration, a collection of C++ structures. Clipper enables programmers to

describe mappings between configurations as operations on structures. A reconfiguration

plan is defined by associating each mapping with the conditions and events that trigger

reconfiguration. The plans are then compiled into a so-called catalyst module which ex-

ecutes along with its the main application. The catalyst module recognizes triggering

events and performs reconfiguration plans.

Asadollahi et al. [AST09] propose StarMX, a framework to develop self-managing

Java-based systems. StarMX is intended for programming closed loops and supports

several adaptation mechanisms, among which action policies. Like Clipper, adaptation

(management) logic is decoupled from application logic. The architecture of StarMX

consist of two main elements: the execution engine and a set of services. StarMX ex-

ploits the Java Management Extensions (JMX) as enabling technology to manage and

monitor resources, and requires a policy language to define adaptation policies. The

default implementation of StarMX uses the CIM-Simplified Policy Language [DMT09].

The execution engine automates self-management: a number of processes are deployed

on it, each representing an adaptation building block. StarMX provides makes services

available through an API: lookup of new resources, proxy generation, activation mecha-

nism, caching, memory scoping (a repository mechanism), data gathering, and logging.

These features make StarMX a comprehensive and generic framework applicable to sev-

eral domains and customizable via specific algorithms. However, StarMX does not embed

ready-to-use adaptation mechanisms.

Liu et al. [LPH04] propose Accord, a component-based programming framework to

build autonomic self-managed applications. Accord is thought for pervasive grid environ-

ments, where a large number of computational devices is interconnected. This type of

environment is characterized by heterogeneous components, dynamism, and uncertainty.

The third factor is due to dynamism, failures, and incomplete knowledge. To cope with

these factors, the Accord programming framework relies on four concepts: (i) the appli-

cation context, which is a common semantic basis for the application; (ii) the autonomic

components, self-contained modular software units of composition with specified inter-

faces and explicit context dependencies; (iii) the rules and mechanisms for the dynamic

composition of autonomic components; and (iv) an agent infrastructure to support rule

enforcement to realize self-managing and dynamic composition behaviours. In particular,

The agent infrastructure used by Accord is the AutoMate middleware [PLL+03]. Adap-

tation is performed by so-called composition agents, which replace components with new

ones. Accord works well for computationally distributed grids, where components are

passive structures that can be activated and deactivated by the middleware. Conversely,

Approaches to adaptive software 33

Accord does not support open settings where every component is autonomous and is hence

not controllable.

Bigus et al. [BSP+02] propose ABLE (Agent Building and Learning Environment),

a toolkit for the development of multi-agent autonomic systems. ABLE consists of a

lightweight Java agent framework, a comprehensive JavaBeans library of intelligent soft-

ware components, a set of development and test tools, and an agent platform. ABLE

relies on learning techniques, among which machine learning algorithms and inference

engines. ABLE has been applied to server administration, where an ABLE-based multi-

agent system monitors the server parameters, sends notification to system administrators,

and performs maintenance operations (e.g. killing processes). ABLE is a complete devel-

opment framework and provides a number of features for the development of autonomic

systems. ABLE is best suited for closed systems, whereas it does not natively support

socio-technical systems, where the subsystems need to interact.

Sadjadi et al. [SMCS04] propose TRAP/J, a software tool that enables developers

to transparently add adaptive behaviour to existing Java applications. TRAP/J relies on

two mechanisms to add adaptation: computational (behavioural) reflection and aspect-

oriented programming. At compile time, developers select the classes that need to be

self-adaptive. TRAP/J then generates specific aspects and reflective classes associated

with the selected classes, producing an adapt-ready program. At runtime, new behaviour

can be added to adaptable classes through specific interfaces in the wrapper and meta-

level classes (i.e. the reflective classes). The same research group also proposed a variant

of TRAP/J based on C++ (TRAP/C++ [FCSM05]), which uses a compile-time meta-

object protocol instead of an aspect weaver.

2.2.3 Software architectures

There are many proposals of software architectures for adaptive software. These ap-

proaches describe how to design adaptive software, and which are the core logical com-

ponents. Since software architectures are a higher-level abstraction than programming

frameworks, these approaches are more flexible than those presented in Section 2.2.2.

Some approaches are implemented architectures that can be applied, while others are

architectural styles that define the basic components of adaptive software.

In their seminal work, Oreizy et al. [OGT+99, OMT98] introduce the concept of self-

adaptive software. This class of systems performs adaptation according to criteria speci-

fied at development time, which include triggering conditions for adaptation, open/closed

adaptation, degree of autonomy. According to Oreizy and colleagues, the building units

for self-adaptive software are software components and connectors. This leads to adapta-

tions that modify the system architecture by replacing components. Their approach relies

34 State of the art

on four main features: (i) an explicit architectural model is available at runtime and de-

scribes the interconnections between components and connectors; (ii) runtime change is

described on the architectural model; (iii) runtime change is governed via constraints to

be preserved, i.e. some adaptations are admitted whereas others are forbidden; and (iv)

adaptation is enabled by a reusable runtime architecture infrastructure that supports the

previous three features. This approach has been very influential and most of the subse-

quent approaches rely on the principles they suggest. Their ICSE 1998 paper received

the most influential paper award at ICSE 2008, where they proposed a revisited version

of their paper [OMT08]. In this revision, they briefly review the state of the art in the

area and survey architectural styles for software adaptation, which they consider the big

challenge in the next years.

A relevant early work, which focuses only on monitoring and diagnosis, is that by

Savor and Seviora [SS97]. They introduce software supervision, an approach to automatic

detection of software failures. They are among the first ones to suggest that monitoring

and diagnosis should be performed by a separated component, whose purpose is to observe

inputs and outputs of a target system and to detect software failures. The key principle

behind this work is to match observed behaviour and expected behaviour—through a

finite-state based formalism—to identify failures. In their work they propose algorithms

and mechanisms to address computational complexity by increasing latency.

Brun et al. [BMSG+09] analyse the design of self-adaptive software through feedback

loops. Feedback loops are an integral component of self-adaptive software, and define how

the system reasons to exhibit runtime adaptive behaviour. Typically, feedback loops are

based on four activities: collect, analyse, decide, and act. Sensors collect data from the

system and its surrounding context; these data are then analysed to diagnose symptoms

of failures or under-performance; planning is then performed to decide how to act on the

executing system and on the context through actuators. The authors argue that feedback

loops should be a first-class entity for self-adaptive software, which should be made explicit

and expose the self-adaptive properties to designers. Consequently, they call for a shift in

the development of feedback loops on the basis of systematic approaches used in control

theory. Software architectures for adaptive software should therefore highlight the key

aspects of feedback loops: their structure, data flow, tolerance policies, sampling rates,

stability, and so on.

In a similar way, Müller et al. [MPS08] highlight the importance of feedback loops

and exemplify their use in Ultra-Large Scale (ULS) systems. They observe that, by their

nature, ULS systems lack of central control and do not have complete specifications. They

argue ULSs should ensure that the system operates correctly, and they reckon self-adaptive

architectures as the way to tackle this challenge. First, they position adaptivity (conse-

Approaches to adaptive software 35

quently, feedback loops) as a solution space property. Second, they sketch a reference

feedback control loop for adaptive software. Finally, they observe that such control loop

is compatible with several existing implicit feedback loops used in technical architectures.

Karsai et al. [KLS+01] propose an approach to self-adaptive software based on super-

visory control. They take this concept from control theory. Using terminology from that

field, one can build self-adaptive software systems using a “Ground-Level” (GL) layer that

includes baseline processing, then use a “Supervisory-Level” (SL) layer responsible for the

adaptation and reconfiguration. The GL layer focuses on baseline functionality and per-

formance, whereas the SL layer is concerned with optimization, robustness, and flexibility.

They represent system configuration in terms of a tree-based hierarchical representation

of components. In order to deal with the variability explosion problem, they suggest the

usage of symbolic representation techniques (e.g. ordered binary decision diagrams), so

that efficient decision procedures can be used.

The Rainbow project [GS02, GCH+04] is an architectural approach for self-adaptive

software based on externalized adaptation. This term refers to the capability of the system

to keep alive, at runtime and external to the application, one or more models for identifying

and resolving problems. Externalized adaptation is a response to the observation that

most adaptation mechanisms are embedded in the application itself, at the code level,

and therefore their reuse is very difficult and unlikely. Also, externalized adaptation is

more generic than embedded mechanisms and allows for detecting soft system anomalies,

such as gradual degradation of performance. Rainbow relies on architectural models of

the application expressed using an Architectural Description Language (ADL). ADLs

represent system architecture as a graph, where nodes are components, while arcs are

connectors and represent the pathways of interaction between components. There has

been a considerable amount of research concerning Rainbow. An interesting extension

supports multiple objectives [CGS06]. The authors propose a language to express high-

level stakeholder objectives and use utility theory techniques to choose the adaptation

that best suits the objectives. A support tool has been developed to engineer adaptive

systems [CGS09]. Another extension adds proactive behaviour, so that the architecture

can anticipate failures and prevent their occurrence [CPGS09].

Kramer and Magee introduce self-managed systems [KM07]. They assert that the

architectural level is the most suitable, in terms of abstraction and generality, to sup-

port self-management. With the term self-managed software they refer to a system

whose architecture is one in which components automatically configure their interac-

tion so that the overall purpose of the system is met. The objective of their work is

to minimize human intervention during software design and maintenance. They propose

a three-layer reference architecture—based on the model proposed by Gat in Artificial

36 State of the art

Intelligence [Gat98]—shown in Figure 2.3. The topmost layer, goal management, is the

Figure 2.3: Self-managed systems three-layer reference architecture [KM07]

deliberation layer. Based on the current goals and state, this layer computes a plan to

achieve these goals. The middle layer, change management, reacts to changes in state re-

ported from the lower levels and reactively executes the plans the goal management layer

provides. The bottom layer, component control, consists of sensors, actuators and control

loops, and includes self-tuning algorithms, event and status reporting, and operations to

support system modification (adding, removing, and interconnecting components). In

subsequent work, Sykes et al. [SHMK08] describe the three layers in more detail. Their

goal management layer accommodates the generation of reactive plans—that support a

non-deterministically changing environment—by prescribing an action towards a given

goal for each state from which that goal is reachable. Their change management layer

uses a simplified component model based on Darwin [MDEK95], where a component

has a set of ports, each requiring or providing a single interface. Their domain-specific

component layer includes Java components based on the Backbone language [MKM06].

Autonomic computing [Hor01, KC03] is an IBM initiative aimed at the development of

self-managing systems to overcome the growing complexity of traditional system manage-

ment. Here, self-management is the capability of a system to manage itself given high-level

objectives set by system administrators. Self-management includes four properties: (i)

self-configuration, i.e. systems that autonomously adjust their configuration parameters

according to high-level policies; (ii) self-optimization, i.e. continuous seek for opportu-

nities to improve performance and efficiency; (iii) self-healing, i.e. autonomic detection,

diagnosis, and repair of software and hardware problems; and (iv) self-protection, i.e.

defence against malicious attacks or cascading failures. Autonomic computing systems

consist of multiple interacting autonomic elements. Each autonomic element includes a

managed element and an autonomic control loop implemented by an autonomic manager.

The loop is founded on a Monitor-Analyse-Plan-Execute (MAPE) cycle. A successful pro-

Approaches to adaptive software 37

totype implementation of an autonomic computing system is Unity [TCW+04, CSWW04].

In addition to autonomic elements, Unity has several auxiliary components: (i) an applica-

tion environment manager takes care of the operational environment (obtaining resources,

communicating with other management elements); (ii) a resource arbiter decides about

who should use a certain pool of resources; (iii) a registry enables elements to locate other

elements to interact with; (iv) a policy repository enables system administrators to change

policies; and (v) sentinel elements monitor other elements. Unity uses utility functions to

determine resource allocation in order to maximize the overall system utility. Autonomic

elements are able to compose with other elements to attain a certain goal (goal-driven

self-assembly).

Floch et al. [FHS+06] proposeMadam, an architectural approach to develop adaptive

software for mobile computing. Unlike other approaches, Madam explicitly deals with

context changes that threaten software operation. Their approach starts by monitoring

context factors that can affect the application under consideration, such as battery, com-

puting resources, and network quality of service. Users of the mobile application express

their preferences. Then, the quality provided by the monitored context is compared to

user preferred quality and, if needed, an adaptation middleware adapts the mobile ap-

plication. To identify alternative operational modes, Madam makes use of architectural

models and computes possible application variants. Being expressly thought for mobile

devices, Madam relies on adaptation mechanisms that are computable on mobile devices.

They use extended goal policies expressed as utility functions, and let the system reason

about the actions needed to implement those policies.

CASA (Contract-based Adaptive Software Architecture) [MG05] is another approach

that deals with contextual variability via self-adaptation. CASA differentiates between

changes in the contextual information (user’s location, identify of nearby persons) and

changes in resource availability (bandwidth, battery power, connectivity). The authors

argue that, in order to adequately deal with changes in the environment, both dynamic

change support in application code and adaptation of lower-level services are needed. The

CASA Runtime System (CRS) hosts a set of adaptive applications. The CRS monitors

changes in the execution environment on behalf of these applications, and is responsible

for adapting them whenever required. Every time the CRS detects a change in the

environment, it evaluates the application contracts of the running applications to check

if these changes trigger some adaptation policies. If adaptation is required, the CRS can

effect it through various mechanisms: lower-level services are changed, aspects are weaved

or unweaved, application attributes are modified, components are recomposed.

Vogel and Giese [VG10] observe that most architectural approaches to adaptation rely

on architectural models that are as complex as the core system architecture itself. To

38 State of the art

overcome such complexity, they propose a model-driven approach that provides multiple

architectural runtime models at different levels of abstraction. Moreover, they deal with

different concerns. This way, their approach facilitates the development of adaptation

managers. A source model is associated to a managed system to represent its architec-

ture. Then, a model transformation engine is used to derive more target models, each

representing a specific facet of adaptation. For instance, one target model could deal with

self-optimization, another one with self-protection. Monitored data result in a first set

of changes in the source model, then these changes are propagated to the target models

via model transformations. When adaptation is needed, parameter adaptation and struc-

tural adaptation can be performed by modifying the specific target models, rather than

changing the source model.

Cetina et al. propose an architecture for autonomic computing based on variability

models [CGFP09]. Though applied to a smart-home case study, the approach is generic.

They represent variability via feature models; these models are used at design-time to

configure the system, and at runtime to determine adaptive behaviour. Their architec-

ture supports (i) self-configuration, e.g. when new devices are added to the system; (ii)

self-healing, e.g. when a device is removed or fails; and (iii) self-adaptation, e.g. when

user needs change. Changes in the context are monitored and checked against variabil-

ity models to detect problems. Then, a model-based reconfiguration engine defines a

reconfiguration plan which is enacted to the actual system.

2.2.4 Service-oriented approaches

Organizations are rapidly evolving from stable and monolithic structures to dynamic and

federated ones. It is more and more common to encounter virtual organizations where

business is performed through delegation of work and subcontracting. Software is evolving

according to the same trend. The most prominent computational paradigm to support

these new organizational structures is service-orientation. Software services expose their

functions through a public interface, that is exploited by other systems to identify and

exploit these functionalities. Due to the volatility of organizational structures, service-

oriented applications have to be flexible and adaptive. For instance, if a company X

relies on a service provided by another company Y , and Y goes bankrupt, X has to

find a different provider for an equivalent service, or its operations might be at risk. A

comprehensive review on adaptive service-oriented applications is offered by Di Nitto et al.

[DNGM+08]. They outline the evolution of organizations and computational paradigms,

review current approaches for service-based applications, and highlight the need for novel

service-based approaches that apply to modern settings.

Much research on service-orientation examines how services can be composed to tackle

Approaches to adaptive software 39

problems that a single service alone could not address. Two major approaches have

emerged: service orchestration and service choreography [Pel03]. They describe different

aspects of composing services thereby relating business processes from composite (web)

services. These terms derive from music. In orchestration, services are composed by a

player (the director) that directs their composition. In choreography, every service is

a player, and services get composed as a result of their interaction, without the inter-

vention of any director. The web-services community has defined several languages to

support these operations. In particular, BPEL4WS [ACD+03] is the standard for service

orchestration, whereas WS-CDL [KBR+04] is that for service orchestration. Most of the

following approaches are based on composition and orchestration.

Some approaches enable automated composition of web services via automated plan-

ners. Among them, Traverso and Pistore [TP04] propose a planning technique that applies

to web services described in OWL-S process models. Their approach can deal effectively

with nondeterminism, partial observability, and complex goals. They synthesize plans

that encode compositions using common programming constructs such as conditionals

and iterations. They exploit the MBP [BCP+01] planner, which relies on planning-as-

model-checking. The inputs are OWL-S process models and a composition goal, while

the output is an executable process expressed in BPEL4WS.

Lazovik et al. [LAP06] propose a planning architecture based on the interleaving of

planning and execution. Their framework starts from an user request and tries to fulfil

it against a business process expressed, e.g., in BPEL. The framework returns failure if

the request is unsatisfiable in the given business process under the current runtime cir-

cumstances. Satisfiability is verified using a planner, thus unsatisfiability means that no

plan exists. As a plan is chosen, the executor enacts the plan by invoking web services.

User requests are expressed using the Xml Service Request Language (XSRL). This ar-

chitecture provides adaptive behaviour by interleaving planning and execution. These

two activities are iterated until the goal (the user request) is met. Though designed to

respond to user requests, this framework can be easily extended to perform autonomic

service composition and execution.

Li et al. [LSQC05] propose an approach to tackle the runtime reconfiguration of a

service-based system. Their approach addresses a very specific kind of change: geometrical

change. The logical application structure may remain fixed, while the mapping of the

logical structure to physical hardware nodes—the geometry—changes. The configuration

of a service system is composed of a set of machines, a set of services, and information

concerning where these systems are deployed. Also, on the basis of a set of metrics,

they define (i) a metric satisfaction function that returns true if a configuration satisfies

a metric, and (ii) a configuration satisfaction function—which returns true if all active

40 State of the art

metrics are true. Their approach is based on a MAPE loop. Reconfigurations are initiated

either reactively—in response to an SLA violation—or proactively—by resource over-

consumption or under-utilization. Ill configurations are analysed to identify which are the

services that require reconfiguration (which consists of service migration, in this work).

Then, a planning algorithm is executed to identify the best reconfiguration, which is later

enacted. The limitation of this approach is to presume that services in a service-based

system can be controlled. Such assumption is invalid for STSs.

Denaro et al. [DPTS06] propose a way to develop self-adaptive service-oriented archi-

tectures. They observe that the task of service systems designers is hard due to the lack of

information concerning the interaction protocols of dynamically discovered web services.

This absence might cause unexpected runtime failures. Their approach enables clients

to adapt their behaviour to alternative web services that provide the same functionality

through a different protocol. They rely on an infrastructure that traces successful inter-

actions of web services and approximates interaction protocols from these traces. This

infrastructure, named Interaction Protocol Service Extension (IPSE), is deployed within

a Service-Oriented Architecture. IPSE exploits efficient state of the art algorithms to

derive interaction protocols from successful interaction.

Koning et al. propose VxBPEL [KSSA09], an extension of BPEL to capture variability

in web-services based systems. VxBPEL supports four types of variability: replacement

of a service by one with the same interface, replacement by one with a different interface,

changing the service invocation parameters, and changing the composition of the system.

They augment BPEL with VariationPoint and Variant tags to explicitly represent

variability. They propose a prototype interpreter that understands VxBPEL. When it

encounters a variation point, the prototype chooses the variant that is currently better

performing. Performance is computed on top of either monitored data or QoS metrics.

Siljee et al. propose DySOA (Dynamic Service-Oriented Architecture) [SBNH05], an

architecture that adds self-adaptation capabilities to service-centric applications. The pur-

pose of DySOA is to maintain a certain QoS in the service system. Several events trigger

adaptations, such as unreliable third-party services, user changes, and network irregular-

ities. DySOA assists the service system in maintaining its QoS, which is known only at

runtime depending on negotiation for service-level agreements. DySOA runs concurrently

with the application system, monitors QoS parameters, and enacts reconfigurations when

QoS is not met. Reconfiguration is based on an explicit variation model that documents

variation points and allows for the selection of an alternative variant. Each variant is

characterized by a realization, the instructions to realize and bind the variant.

Baresi et al. [BDNGG07] propose a framework for the deployment of adaptable

web service compositions. The novelty of this approach is its publication infrastructure

Approaches to adaptive software 41

that integrates existing heterogeneous repositories and makes them cooperate for service

discovery. Also, the behaviour of these repositories is adjusted in response to changes

and unforeseen events. The main components of this approach are: (i) the DIstributed

REgistry (DIRE) to which existing registries can subscribe; (ii) the Service Composition

ExecutioN Environment (SCENE) that supports the execution of service compositions—

using an extension of BPEL—and enables runtime recomposition; and (iii) the Dynamic

monitoring (Dynamo), which provides runtime monitoring of BPEL-like processes. The

overall infrastructure enables the engineering of service-centric systems capable of dynamic

service (re)composition.

Dorn and Dustdar [DD10] address adaptation in service systems from a different per-

spective. They observe that adaptation cannot be conceived from the perspective of a

single service alone, but it should take into account factors that emerge from the overall

interaction in the service ensemble. They contrast the service ensemble—which comprises

humans, software services, and the service infrastructure—to the system, which includes

only software elements. They introduce a MAPE-K cycle that turns an autonomous

system into an evolving system; such cycle (depicted in Figure 2.4) is based on ensemble-

specific adaptation functions. The key feature of their approach is interaction monitoring,

measuring the relations between different human and technical actors via a distance mea-

surement. Distance decreases when two actors perform several shared actions and when

these interactions re-occur. By continuously monitoring distance, system requirements

can be adjusted. An example of requirement might be storage capability.

Figure 2.4: MAPE-K autonomic control loop with functions to adapt service ensembles [DD10]

Dustdar et al. propose a roadmap for self-aware sustainable service systems [DDL+10].

They claim that the complexity of self-adaptive systems has become unmanageable, there-

42 State of the art

fore there is a clear need for sustainable approaches. The major challenges for adaptation

in service systems are (i) limited awareness on resource utilization and long-term effects;

(ii) lack of understanding interdependencies between social and technical entities; (iii) lo-

cal information in heterogeneous large-scale environments; (iv) dynamic and decentralized

evolution of requirements, interests, and topology; and (v) no central authority. To tackle

these challenges, they propose to make systems more self-aware in terms of: (i) event

awareness, so that events trigger ECA rules; (ii) situation awareness, the ability to per-

ceive the status of an entity by aggregating relevant events; (iii) adaptability-awareness,

the capability of a service to detect the adaptability of other entities and to open its own

interface of adaptation; (iv) goal-awareness, keeping track of the overall objectives of the

system; (v) future awareness, i.e. understanding a resource’s life-cycle describing long-

term utilization by the system and resource provisioning by the environment. We agree

with them on the importance of self-awareness; also, most of their observations inspire our

work. However, unlike them, we also consider systems where services are not cooperative.

Cavallaro et al. [CDNFP10] propose a model for the design of self-adaptive service

compositions based on the concept of service tiles. The key idea is to let designers create

a service-oriented system by building an assembly of component services to achieve a

certain goal. Their approach automatically computes an assembly from the specification

of a subset of the whole system, a set of constraints, and the goals of the application. Once

the application has been deployed according to the tiles model, it is capable of adapting by

replacing services if context changes or services fail. With tiles, a designer first abstracts

the structure of the application process; then, she builds a workflow of the application

and defines which external services should be invoked. Each service is associated to a

string that represents the goal that service fulfils. At runtime, the self-adaptive system

can replace a service with another that provides the same goal.

2.2.5 Requirements engineering approaches

There is no question that software design should guarantee the fulfilment of software

requirements. We review here approaches to self-adaptive software based on requirements

models. These approaches state that adaptation should occur to prevent requirements

failure and/or to optimize requirements fulfilment. Requirements-based approaches differ

in the used requirements models and in the algorithms to identify failures and to select a

new variant.

Some approaches perform requirements diagnosis only and leave adaptation to design-

ers. Cohen et al. [CFNF97] propose one of the earliest approaches to automatic re-

quirements monitoring. The same research group had previously motivated the need for

approaches to requirements monitoring [FF95]. They claim that monitoring is practicable

Approaches to adaptive software 43

only if (i) requirements are expressed in a flexible and convenient way; (ii) requirements

expressions are automatically compiled into efficient runtime code; (iii) monitoring is ap-

plicable to black-box systems; (iv) monitoring works in an incremental fashion. They

support these requirements through an approach where requirements are expressed in

FLEA (Formal Language for Expressing Assumptions). FLEA models are then com-

piled into a monitor for a target system, so that notifications about violated requirements

(assumptions) are sent to administrators. More recently, Robinson [Rob06] proposes Req-

Mon, a requirements monitoring framework expressly thought for enterprise systems. He

observes that, in modern organizations, requirements monitoring is a necessary activity.

The modus operandi of ReqMon is comparable to the early work by Cohen and colleagues;

however, the framework by Robinson is more comprehensive. Indeed, ReqMon consists

of a language to define requirements, an assisting methodology, and requirements moni-

toring tools. ReqMon is based on the goal-oriented KAOS language [DvLF93], which is

formally represented and allows for defining temporal expressions. On the basis of the

KAOS-specified requirements, and with the support of automated reasoning techniques,

ReqMon derives obstacles and defines the monitors to deploy in the system. Finally,

Robinson suggests ways to implement these monitors as SQL monitors or ECA rules.

Robinson and Purao [RP09] propose SerMon, a requirements monitoring framework

for systems composed of several interacting subsystems. Web services are a notable exam-

ple of this kind of system. Their approach extends ReqMon to support: (i) commitment-

and message-based specifications of interaction; (ii) inherited agent properties; and (iii)

event acquisition from the Common-Base-Event enterprise monitoring framework. Ser-

Mon exploits rule-based monitors based on OCL extended with temporal-message logic

(OCLTM [Rob08]). Commitments are formally represented as invariants in OCLTM , there-

fore they become additional requirements for the committed agent.

Bencomo et al. explore the notion requirements reflection [BWS+10], which has been

introduced by Finkelstein [Fin08]. Such concept specializes computational reflection, the

ability of a program to observe and possibly modify its behaviour at runtime. They sug-

gest to consider computational reflection at the requirements level, i.e. requirements are

available as runtime objects. Requirements reflection provides systems with the ability

to reason about, understand, explain and modify requirements at runtime. In traditional

approaches, even when requirements monitoring functions are integrated within the sys-

tem, high-level system requirements are manually refined into low-level runtime artefacts.

Differently, requirements reflection reifies requirements as runtime entities. They are in

favour of using goals to represent requirements at runtime for introspection and adap-

tation. Goals should be synchronized with the architecture, and this challenge can be

addressed only through a middleware that propagates changes in requirements to the

44 State of the art

architecture. Requirements reflection should necessarily deal with uncertainty, for self-

adaptive systems operate in a volatile environment where unexpected changes occur.

The first approach to requirements-based adaptation is that devised by Feather et al.

[FFvLP98]. Their approach copes with system behaviour deviations from requirements

specified as KAOS goal models. They introduce an architecture (and a development pro-

cess) to reconcile requirements with behaviour. Their monitoring infrastructure is based

on the FLEA system [FF95]. Alternative system designs are represented either as system

parameters or as alternative goal refinement trees. To reduce the gap between require-

ments and runtime behaviour their approach relies on three phases: (i) at specification

time, event sequences to be monitored are generated from requirements specifications; (ii)

at design time, they build an architecture consisting of multiple cooperating agents and

in which alternative designs are explicitly represented; and (iii) at runtime, the system is

observed by a monitor and, if a violation is identified, a shift is made to an alternative de-

sign. Their approach is illustrated in Figure 2.5. KAOS requirements models are defined

Figure 2.5: Requirements-based adaptation [FFvLP98]

at development time; then, requirements are implemented via a multi-agent system and

assertions are compiled to FLEA violation event definitions. At runtime, the multi-agent

system executes and provides input (events) to the monitor. If violations are identified,

the reconciler sends messages to the multi-agent system to perform adaptation. If needed,

the KAOS specification models are updated, either automatically or manually.

Wang et al. propose another approach to self-adaptive software based on i* goal

models. The first part of their work concerns requirements monitoring and diagno-

sis [WMYM07, WMYM09]: they exploit a single i* goal model to express system require-

Approaches to adaptive software 45

ments, and annotate goals and tasks with pre- and post-conditions. In their framework,

a failure occurs if (i) a post-condition is met while the respective pre-condition does not

hold, or (ii) an event representing a precondition occurs and at the next time-step the

postcondition does not hold. They support diagnosis of failures by transforming goal

models to satisfiability problems in conjunctive normal form, which are then fed into a

SAT solver that performs the actual diagnosis. Their approach applies to legacy systems

and requires the system to be instrumented with monitors so that it can provide mon-

itoring data to the architecture. Technically, instrumentation exploits aspect-oriented

programming: they use the AspectJ weaver to insert software probes into the monitored

program without modifications to the source code. They provide algorithms that enable to

tune the granularity of monitoring, so that a trade-off can be defined between monitoring

overhead and accuracy. In [WMYM09] they show how the monitoring trade-off becomes

relevant when the approach is applied to multi-layer monitoring, e.g. in service-oriented

architectures. This framework has been extended to support self-repair [WM09] for high-

variability software. The resulting architecture is an autonomic one based on monitoring,

diagnosis, reconfiguration, and execution components. In their work, a configuration is

a set of tasks from a goal model which, if executed successfully in some order, lead to

the satisfaction of the root goal. They propose an algorithm for reconfiguration based on

soft-goals contribution where they associate priorities (low, medium, high) to soft-goals,

and then consider positive or negative contributions from tasks to soft-goals. For every

configuration, they compute a weighted sum to privilege high-priority soft-goals.

Salehie and Tahvildari propose a mechanism for action selection in self-adaptive soft-

ware based on weighted voting [ST07]. Given a goal set representing current system goals,

an adaptation action set, and an attribute set, the problem they address is how to select

the most appropriate action to satisfy goals in different conditions of attributes. Central

element of their approach is the Goal-Action-Attribute Model (GAAM), which repre-

sents the three main abstractions and relates them in a well-defined structure. Goals are

characterized by an activation level—active goals are eligible to participate in the action

selection process—and a preference vector representing goal weights or priorities. System

attributes are divided into controllable and non-controllable. Adaptation actions have

pre- and post-conditions. They define three matrices to relate these three elements: an

impact matrix shows how goals relate to actions; an activation matrix tells how goals

are activated by attributes; an aspiration level matrix expresses the desired level of at-

tributes for each goal. On the basis of this conceptual model, they apply a weighted

voting mechanisms to determine the best adaptation action in the current situation.

Bryl et al. consider socio-technical systems able to reconfigure at runtime [BG06].

Their work is founded upon their work on the design of technical systems [BGM06,

46 State of the art

BGM09]. They observe that in modern settings the interplay between social and tech-

nical components is stronger and stronger, and alternative requirements models have to

be evaluated and selected finding a right trade-off between the technical and social di-

mensions. They propose a planning-based approach to generate these alternative. Their

conceptual model characterizes socio-technical systems as a set of actors each requesting

and providing goals, and a set of possible dependencies that can be established between

actors. Goals are AND/OR decomposed to sub-goals. These elements define the goals

to be achieved by the system (the goals requested by individual actors) and the possible

ways to achieve these goals (using capabilities for goals, decomposing them, or delegating

to other actors). Formally, they translate the alternative selection problem to an AI plan-

ning problem, using the Planning Domain Description Language (PDDL), and select the

configuration that costs the least. This framework has been used in [BG06] to support

redesign at runtime. First, they define a set of adaptation triggers that stimulate the

reconfiguration process: an agent commits to a goal, a goal is achieved, a goal is removed,

an agent leaves the system, a new agent is introduced, and a new goal is introduced.

Depending on the fired trigger, different preliminary operations are performed to update

the problem definition, and the planner is executed to perform replanning. Costs are as-

signed to goal decomposition, goal delegation, and goal satisfaction via capabilities. The

cost for the new strategy includes only the costs for the elements that do not belong to

the current configuration. The main limitation of their approach is that they adopt a

centralized planning approach, which violates agents’ autonomy and heterogeneity.

Many approaches support the design of requirements-driven self-adaptive software.

Lapouchnian et al. [LYLM06] analyse the design of autonomic application software.

They demonstrate how well goal-oriented requirements engineering fits with this setting,

thanks to its support to variability. Then, they show how goal models can be transformed

into high-variability software designs. Finally, they describe how to use goal modelling to

express self-configuration, self-optimization, and self-healing. Penserini et al. [PPSM07]

extend the Tropos methodology to enhance its capability to support high-variability soft-

ware. The proposed extensions include explicit modelling of alternatives, the adoption

of an extended notion of agent capability, and a refined Tropos design process. Moran-

dini et al. [MPP08] propose another extension of Tropos to support the development of

self-adaptive systems. They add the notion of goal type (maintain, achieve, perform), en-

vironment modelling (including the relation between environmental and system entities),

and fault modelling (representing undesirable states and describing how to prevent reach-

ing these states). They developed a support tool, t2x, which generates JADEX [PBL05]

agents starting from the extended Tropos models. Cheng et al. [CSBW09] propose goal-

based modelling of adaptive systems that takes into account environmental uncertainty.

Approaches to adaptive software 47

They observe that, at design-time, designers cannot know all possible environmental con-

ditions the system will encounter at runtime. Their approach is based on the RELAX

language, which integrates environmental uncertainty with goal specifications. They sug-

gest systematic usage of tactics for adaptation to deal with uncertainty on a rising scale

of costs. Examples of these tactics are adding low-level goals, relaxing requirements to

accomplish partial satisfaction, identify a new (high-level) goal to mitigate uncertainty.

Baresi and Pasquale [BP10] propose an approach that exploits goal models for adaptive

service compositions. They observe that very few existing approaches consider what capa-

bilities are needed to adapt and when they should be activated. They propose an approach

that extends KAOS with the notion of adaptive goal. Adaptive goals are responsible for

the actual adaptation and evolution at runtime; they specify countermeasures to address

violations of conventional goals. In their approach, goals are live abstractions that change

dynamically. Adaptive goals describe possible adaptation strategies, and identify both

the conditions that may cause a goal violation and the set of possible countermeasures.

The adaptation strategy has an objective, which can be enforcing a substitute goal, the

original goal, avoiding a goal violation, and enforcing a weaker version of the failing goal.

Both adaptive and conventional goals are then translated into two models: conventional

goals are mapped to a functional model, that provides the actual functionality of the

system, whereas adaptive goals are translated to a supervision model, that is in charge of

adaptation. The same authors extend their framework and propose FLAGS (Fuzzy Live

Adaptive Goals for Self-adaptive systems) [BPS10]. The extension distinguishes between

crisp goals with boolean satisfaction value and fuzzy goals whose satisfaction is specified

via fuzzy constraints. Whereas crisp goals are defined in KAOS, fuzzy goals exploit a

fuzzy temporal language inspired by the theory of fuzzy sets [Zad65].

2.2.6 Adaptation algorithms and policies

A fundamental activity in adaptive control loops is the choice of a new configuration that

responds to failure or under-performance. On one side, sound and efficient algorithms

are needed. On the other side, these algorithms are used in complex adaptation policies

defined by system administrators. Research in this area is very heterogeneous and is

often solution-specific. However, most approaches exploit the concept of resource: they

suppose that software has to manage some resources, and these resources might be shared

by different systems.

Wang and Li [FFZ05] acknowledge the importance of decision mechanisms in auto-

nomic computing. They propose an autonomic computing model and a decision-making

algorithm designed for that model. In their approach, a fundamental role is played by the

resources managed by autonomic elements. They hypothesize that different autonomic

48 State of the art

managers need to execute operations on managed resources. Each autonomic element

has a set of behavioural rules that define their behaviour. These rules describe which

operations, and under what conditions, an autonomic element should execute. The pro-

posed decision-making algorithm is executed by the overall system, and defines the best

sequencing of operations to perform by the autonomic elements.

Patrascu et al. [PBD+05] analyse resource allocation. They conceive an autonomic

system as one that optimizes the way resources are allocated. They propose an effi-

cient regret-based approach and define heuristics to further boost performance. In their

approach, a central provisioner queries autonomic elements for samples of their utility

functions at various resources levels. The provisioner allocates resources based on these

samples. Since they consider partial utility information, they exploit the notion of mini-

max regret to determine a suitable allocation.

Tesauro [Tes07] propose an approach based on utility functions. His paper is a mani-

festo about the usage of Reinforcement Learning (RL) in autonomic computing. The key

feature of RL is to require less built-in domain knowledge than traditional approaches.

The basic operation of RL is to let agents learn effective decision-making policies through

an iterative online trial-and-error process. In every iteration, the agent interacts with

the environment: (i) it observes the state of the environment; (ii) it performs a legal

action according to the observed state; (iii) it receives a reward (a numerical value it

wants to maximize) and an observed transition to a new state. Tesauro shows how RL

can be applied to resource allocation in a data center, where the autonomic computing

resource arbiter module collects data and computes optimal allocation of data servers

to applications. Unlike most decision-making algorithms, RL is not based on predefined

information. As such, it is applicable to settings where design-time information is lacking

or unreliable.

Many researchers define languages for adaptation policies. Policies are used by system

administrators; thus, they should be expressed at a level of abstraction that they can

understand without deep algorithmic knowledge. Anthony [Ant06] presents a generic

policy toolkit that enables the definition of policies and their adaptation over time. In his

approach, policies (i) define self-management properties for the target autonomic system;

and (ii) are adaptive themselves, i.e. they can evolve over time to guarantee better

adaptation of the system. The first contribution of the paper consists of an XML-based

policy definition language, which allows for the specification of detailed adaptive policies.

The second contribution is a policy library, which aims to support easy integration with

legacy code, is thought for non-autonomics-experts, and has general applicability.

Kephart and Walsh [KW04] introduce an unified framework to define adaptation poli-

cies. Their framework supports three types of policy: (i) action policies dictate the action

Approaches to adaptive software 49

that should be taken whenever the system is in a certain state; (ii) goal policies declare

either a desired state that should be met or criteria that maximize a set of states; and

(iii) utility function policies are objective functions that express the value of each possi-

ble state. Utility functions are a generalization of goal policies, that ascribe a value to

each state rather than expressing desirable and undesirable states. Figure 2.6 shows the

relation between these three types of policies. In addition to showing their different level

of abstraction, the figure specifies possible techniques to derive lower-level policies from

higher-level ones.

Figure 2.6: Relation between the different types of policies defined in [KW04]

2.2.7 Agent reasoning and planning

Agent reasoning is a very relevant research for self-adaptation. Agents are computational

abstractions that act in an autonomous way. Their actions can either directly affect the

physical environment where they are situated (see, e.g., AI planning-based approaches),

or consist of messages that are sent to other agents. The crux of agent reasoning is to

determine how an agent should act to achieve its goals. Also, agent reasoning supports

adaptation in response to threats to the agent’s goals.

Thangarajah et al. [TWPF02] focus on resource conflicts in rational agents. They

claim that rational agents should avoid resource conflicts while pursuing their goals. They

propose a set of algorithms to derive and update resource requirements, to detect conflicts,

and to resolve resource conflicts. In this approach, agents have a plan library, where each

plan indicates (i) the goal for which the plan is relevant; (ii) a context precondition; and

(iii) a plan body specifying what the plan does (actions and sub-goals). A particular type

of action is delegation to another agent, which establishes a social relation between the

delegator and the delegatee. Resource requirements are characterized as a pair 〈resource

type, amount〉, where “amount” represents the needed quantity of that resource type.

Resources are attached to plans, so that resource requirements for a certain goal can be

arithmetically computed. Given a set of goals to achieve, a plan set for those goals can

be safe, schedulable, schedule-dependent, conflicting, or uncertain.

50 State of the art

Wooldridge and Parsons provide a comprehensive account on intention reconsideration

in BDI agents [WP99]. They investigate how to design an agent that successfully balances

the time spent in reconsidering its intentions and that spent in acting to achieve these

intentions. This trade-off is a crucial issue when developing agents according to the

Belief-Desire-Intention paradigm [RG92, RG95]. Intention reconsideration is very relevant

to self-adaptive software, for such activity corresponds to determining whether software

should adapt or persist with the current intention. Their approach is founded on the

concept of meta-level control function, a policy function that determines whether the

agent should reconsider its intentions and deliberate or rather go ahead with the current

actions. They characterize agents in terms of four components: a next-state function, a

meta-level control function, a deliberation function, and an action function. They suggest

the use of utility functions to guide decision-making.

Sardina and Padgham [SP07] propose a BDI agent-oriented programming language

that focuses on the semantics of goals in the presence of plan failure. Their language

brings together three types of goals: classical BDI event goals, declarative goals, and

planning goals. In their approach (i) agents are prevented from blindly persisting with a

certain goal if a viable alternative strategy to achieve a higher-level goal exists; (ii) goals

that succeed or are considered as impossible are dropped; and (iii) there is a mechanisms

to proactively adopt new goals in addition to the traditional reaction goal adoption. The

authors formalize mechanisms that are typical in human rational behaviour. They avoid

blindly persisting with a certain goal is by integrating hierarchical planning in their agent

architecture. Hierarchical Task Networks (HTNs) [Sac77] are a way to structure plans in

a hierarchical manner, where high-level tasks are decomposed to lower-level ones. A very

successful procedure to perform HTN task planning is UMCP [EHN94].

Myers propose the Continuous Planning and Execution Framework (CPEF) [Mye99].

CPEF starts with the generation of a rough plan. Then, such plan is executed, moni-

tored, and repaired whenever needed. CPEF is thought for dynamic environments, where

traditional planning is not sufficient to guarantee that system goals will be achieved.

Therefore, plans are dynamic and open-ended artefacts that evolve over time. In CPEF,

users play an important role, for they can provide feedback that influences system be-

haviour. CPEF is agent-based, and relies on an agent infrastructure that supports the

management of complex and distributed planning tasks. It supports not only direct plan

execution by software components, but also indirect execution by humans. In the lat-

ter execution mode, CPEF tracks human execution rather than carrying out the plans.

Whenever the current plan has to be modified, CPEF preserves plan stability, i.e. it

chooses the plan that differs the least from the current one.

Van der Krogt et al. [vdKdWW03] propose a resource-based framework for planning

Approaches to adaptive software 51

and replanning. It is founded upon the concepts of action and resource: actions produce

and consume resources. They conceive both planning and replanning as transformation

operations on plans. For our purposes, the most interesting part in their framework is

replanning, which transforms an initial inadequate plan into an adequate plan for the

fulfilment of the agent goals. They support two replanning operators: (i) plan addition

glues two plans together by connecting input resources to output resources; (ii) plan

deletion removes from the first plan the actions in the second plan (which has to be a

sub-plan of the first one). They also propose a template algorithm for replanning, which

refines a partial plan in a suitable way to achieve the current agent’s goals.

A similar effort by the same authors deals with plan repair based on traditional plan-

ning [vdKdW05]. They observe that repairing an existing plan is more efficient than

planning from scratch, while planning techniques are more efficient than plan repair al-

gorithms. They manage to apply methods from traditional planning due to the operators

in plan repair: (i) removal of obstructing constructs from a plan; and (ii) adding actions

to achieve the goals. Whereas adding actions is easily mappable to planning, the authors

propose a heuristics to deal with the removal of obstructing constructs (unrefinement).

They demonstrate applicability by extending the VHPOP planner [YS03], and show ex-

perimental results that confirm the effectiveness of the approach.

Unruh et al. address failure handling in agents via semantic compensation [UBR04a,

UBR04b]. Such technique consists of cleaning up failed or cancelled plans so that agents

can behave more robustly. They describe a methodology that decouples failure handling

code from normative agent logic. Semantic compensation has several benefits: (i) agents

are left in a state in which future actions are more likely to succeed; (ii) agent systems are

maintained in a predictable state; (iii) it is applied more generally than “patch” methods;

and (iv) it enables to split a long transaction into shorter ones. Specifically, they analyse

goal-based semantic compensation, i.e. compensations are defined in terms of goals. They

also support compensations for tasks delegated to other agents, and they assert the need

of flexible interaction protocols to achieve a useful degree of control.

2.2.8 Self-organization

Most approaches described so far conceive adaptivity as the capability of the system

itself to modify its behaviour to better achieve its objectives. Self-organizing systems

exploit a different approach. The behaviour of the overall system is defined by that of its

components, whose objectives are not necessarily related to those of the overall system.

Approaches based on self-organization are specific for application settings that resemble

natural phenomena.

In his seminal work, Van Dyke Parunak [Par97] argues that agent architectures need

52 State of the art

to organize themselves and to adapt dynamically to changing circumstances without a

top-down control. In his view, there is no need to develop further approaches that try to

emulate human behaviour; rather, interesting theories come from natural systems, such

as populations of insects. He shows several examples of multi-agent systems that exist

in nature: path planning of ants, brood sorting of ants, nest building of termites, task

differentiation of wasps, flocking of birds and fish, and surrounding prey of wolves. Then,

he proposes a set of principles to design self-organizing multi-agent systems: (i) agents are

things, not functions; (ii) agents must be kept small; (iii) system control is decentralized;

(iv) agent diversity is a value; (v) an entropy leak should be provided; (vi) agents need

to share information; (vii) agents plan and execute concurrently.

Mamei and Zambonelli [MZ04] propose TOTA (Tuples On The Air), a middleware to

support self-organization in multi-agent systems. They observe that self-organization is

founded on two building blocks: (i) adaptive and uncoupled interaction mechanisms and

(ii) context awareness. The distinctive feature of TOTA is to rely on spatially distributed

tuples for both building blocks. Single agents can add (inject) tuples to the network, so

that other agents can exploit the published contextual information. The TOTA middle-

ware is responsible for propagating tuples on the basis of application specific patterns,

and makes sure that the intended shape is maintained. The concept of “shape” in TOTA

corresponds to the values that are propagated to the various nodes in the network due

to information injection. Consequently, every agent has a different perception of the

environment, which depends on the nodes in the neighbourhood.

Di Nitto et al. [DNDM09] discuss the usage of self-organization algorithms to develop

evolvable systems. They consider bio-inspired self-organizing algorithms, which are based

upon a set of principles that hold in the natural world. The basic principles are (i)

noise, the usage of perturbations that move the system away from its short-term goal

but augment the likelihood to attain longer-term goals; (ii) emergence, the capability of

a composite system to achieve a certain goal through a set of components apparently

unrelated to that goal; (iii) diffusion, a method for spreading information across nodes

regardless of the destination of the message; (iv) stigmergy, spreading information by

storing it in the environment; and (v) evolution, the capability of the system to improve

itself through natural selection of its components. They show a number of stochastic

algorithms that exploit these principles. Being stochastic, there is no guarantee that they

will work. However, one can reason about the probability that they will succeed.

Di Marzo Serugendo et al. [DMSGK06] provide a formal definition of self-organization

and related concepts. They view self-organization as the mechanism or the process that

enables a system to change its organization without explicit external control at execution

time. They distinguish between strong and weak self-organizing system; they differ in

Chapter summary 53

the existence of an explicit internal central control, which exists only in weak ones. After

thoroughly discussing the main properties and characteristics of self-organizing systems,

they detail the property of emergence. Their analysis leads to the conclusion that emergent

phenomena are characterized by (i) novelty, for what emerges is radically different from the

individual components; (ii) irreducibility, i.e. the emergent phenomena exhibit properties

that its components do not exhibit; (iii) interdependency between levels, for there is a

relation between the evolution of lower-levels (e.g. individual agents) and the higher-levels

(e.g. the multi-agent system); and (iv) an emergent phenomenon derives from non-linear

activities carried out at the micro-level.

2.3 Chapter summary

In this chapter, we have provided a comprehensive survey on the state of the art in the

area of self-adaptive software. In Section 2.1 we reviewed the most important models that

can be exploited as a baseline for model-driven self-adaptation. These models formally

represent requirements (Section 2.1.1), social interaction (Section 2.1.2), and software

variability (Section 2.1.3). In Section 2.2 we detailed approaches to adaptive software.

The main contribution of this chapter is to investigate existing approaches to determine

if they can be used or adapted in our approach. Section 2.1 helps us to identify the

baseline for our approach, which consists of (i) Tropos goal models [BPG+04]; and (ii)

social commitments [Sin99]. Tropos goal models are adequate to represent STSs since they

promote an agent-centric world-view. An agent adopts intentions to achieve its goals and

depends on other agents for goals it cannot achieve by itself. Commitments formalize the

notion of dependency in terms of a purely social abstraction that arises from interaction.

The literature review presented in Section 2.2 shows how existing approaches are in-

adequate to build self-adaptive software for STSs. Most approaches ignore the social

component of a system, and focus on technical components only. Also, they do not con-

sider the autonomy and heterogeneity of participants in an STS, and conceive adaptation

as components re-routing, activation of different features, or orchestration of services.

54 State of the art

Chapter 3

Variability: the key for adaptation

In this chapter, we examine the notion of variability and justify why it is the key for

adaptation. First, we investigate the concept of variability in different disciplines. We

start from its general meaning and conclude with software variability. Second, we relate

software variability to self-adaptive software by defining the basic terms used throughout

the thesis. Third, we focus on two classes of software variability: contextual and social.

For each of them, we present a requirements modelling framework. The chapter provides

the conceptual baseline for our approach.

Acknowledgement. Section 3.3 builds on top of on [ADG08b, ADG08a, ADG09,

ADG10], while Section 3.4 extends [CDGM10b, CDGM10b].

3.1 Variability: from nature to software engineering

The notion of “variability” refers to the state or characteristic of being variable. According

to the Merriam-Webster online dictionary1, variable means “able or apt to vary; subject to

variation or changes”. Consequently, the term “variability” points to a non-static nature

and to the ability to change. The same word is used to denote specific phenomena in

various fields: climate, genetic, heart rate, space, statistics, product engineering, etc.

The best-known acceptation of “variability” is perhaps that in genetics. Genetic vari-

ability is a natural phenomena that describes the tendency of the genotypes in a popula-

tion to vary from one another. Genetic variability is fundamental for biodiversity: without

variability, a population can hardly adapt to environmental changes and becomes more

exposed to the risk of extinction. This specific meaning influences the understanding of

variability in non-natural domains, such as product engineering and software engineering.

In these fields, variability enables the creation of customized variants of a same prod-

1http://www.merriam-webster.com/

56 Variability: the key for adaptation

uct/software that better adapts to user needs and preferences. Unlike genetic variability,

product/software variability is an intended effect, and not a natural phenomenon.

Product lines have a long-standing tradition in industrial manufacturing. A product

line is “a group of products that are closely related because they function in a similar

manner, are sold to the same customer groups, are marketed through the same types of

outlets, or fall within a given price range” [KA09]. Product lines exploit product variabil-

ity: a generic product is designed so that different product variants—each differing for

some feature—can be produced. An example of product variants are the different sizes and

colours T-Shirts can come with: each combination of size (small/medium/large/x-large)

and colour (red/blue/yellow) is a different variant. An interesting case study about prod-

uct variability concerns car bodyworks2. The same bodywork is exploited to produce very

diverse car variants: sedan, station wagon, convertible, and pickup. The main advantage

of product variability is to reuse a single design for different products to accommodate

more customers than a single unchangeable product would do.

Product lines have been applied to software production, and are known as software

product lines or software product families. Software product lines are based on the same

rationale as that of traditional product lines: a single design can be exploited to deploy

multiple variants of the same software. Variants differ in terms of the features they

provide and, consequently, of price. Software variability is often expressed using feature

models [KCH+90, KKL+98]. Feature models are trees whose nodes are features and whose

links are relations between features. A feature can be decomposed to an arbitrary number

of sub-features, some features can be optional, a feature can be decomposed to alternative

features. Software variability is used not only in solution-space artefacts such as feature

models, but also in problem-space artefacts such as goal models [LLY+06, LJL+07].

3.2 From variability to self-adaptive software

Self-adaptive software is a class of software systems able to autonomously vary its be-

haviour in response to changes in the environment. Variability is essential for self-adaptive

software: without variability there would be only one variant, thus software could not

adapt. Software adaptation is inevitably linked to requirements: software adapts to bet-

ter achieve its requirements, when they are threatened. Let’s provide a more formal

account for these intuitions.

Definition 3.1 (Software Variability) The property of a software system to have al-

ternative variants among which choosing.

2http://mercedes-benz-blog-trivia.blogspot.com/2010/02/mercedes-benz-blog-trivia-four-cars.html

From variability to self-adaptive software 57

The provided definition of software variability is intentionally general. First, we do not

prescribe who actuates the change. Thus, the definition allows both for human interven-

tion or autonomous change. Second, variability is a structural characteristic: software

should be designed with the characteristic of being variable. Third, the definition of vari-

ability does not specify exactly what is the object of change; thus, the definition applies

to component-based systems, service-oriented applications, agent-based software, and so

on. From now on, we will use the term “variability” to refer to “software variability”.

The definition of variability references the concept of variant, which is defined below.

Definition 3.2 (Variant) An operational configuration of software.

The definition of variant characterizes software operation in general terms, without bind-

ing it to any technology. In our approach—and in literature—variants are the concrete

manifestations of variability. Variability exists if and only if there is more than one variant.

If there is only one variant, then software will have only one operational configuration,

and it will not be changeable. If more variants exist, software is ready to be changed.

Definition 3.3 (Adaptation) The process through which software switches from the

current variant to a different one to better fulfil its current requirements.

The concept of adaptation we introduce here is more specific than those of variability

and variant. Let’s emphasize the salient non-obvious points in this definition. First,

adaptation involves variants, and in particular it is the transition from the current variant

to a different one. Thus, staying with the same variant is not an adaptation. Second,

adaptation is related to requirements. Adaptation is performed to better fulfil the current

software requirements. This means that the adoption of a variant that does not better

fulfil the requirements—or does not fulfil them at all—is not an adaptation.

How does our characterization relate to natural adaptation and evolution? According

to Eldredge and Hurst [Eld95], “adaptation is the heart and soul of evolution”. Modern

evolutionary theories seem to argue that adaptation via genetic change leads to exemplars

that are not necessarily better adapted to the environment than previous ones. In our

case, term “adaptation” refers to ameliorating transitions. Software can clearly switch

to a worse variant, but that is not an adaptation according to Definition 3.3. We made

this choice since software, being a human artefact, can be designed to perform as good as

possible (designing for under-performance makes little sense).

Definition 3.4 (Self-Adaptation) An adaptation process autonomously carried out by

software.

Definition 3.5 (Self-Adaptive Software) Software capable of self-adaptation.

58 Variability: the key for adaptation

The definitions of self-adaptation and self-adaptive software follow from the previous ones.

Self-adaptation refers to a particular kind of adaptation that is autonomously carried out

by software, instead of being performed by some external actor (typically, humans). Self-

adaptive software represents the family of software systems capable of self-adaptation.

Thanks to this set of definitions, the reader should have a clear understanding of the

core concepts concerning software adaptation. We clarified the relation between vari-

ability, variants, adaptation, and self-adaptive systems. To demonstrate the flexibility of

these definition, we present a few examples of diverse self-adaptive applications that can

be characterized using Definitions 3.1-3.5:

− suppose a distributed DBMS is deployed on a network of servers, and it allocates

queries and maintenance jobs to different servers depending on their current work-

load. So, given the set of current jobs, each possible allocation of jobs is a different

variant. The main requirement of the DBMS is to guarantee that all jobs are carried

out as efficiently as possible. Adaptation consists of (i) migration of jobs from one

server to another; (ii) addition of new maintenance jobs to optimize low-performing

machines; and (iii) efficient allocation of new queries. The DBMS performs self-

adaptation when these operations are conducted by the DBMS itself;

− suppose one of the requirements of a smart-home is to assist the patient in preparing

breakfast. Different variants are possible: using cameras to monitor the patient’s

activity, calling a catering service and facilitate delivery by opening the door, show-

ing visual aids to guide the patient during breakfast preparation. Adaptation means

switching from one variant to another if breakfast preparation is in danger. For ex-

ample, if the cameras reveal the patient is idle, then the smart-home might intervene

by guiding the patient via visual aids;

− consider a service application that provides real-time meteorological information to

emergency response units in the county. Its main requirement is to provide current

weather and accurate 7-days forecasts. Also, data should be provided in a redundant

way, i.e. relying on different information sources. The service application gathers

information from different web services. Given the set of available web services

providing the needed data, each combination that includes redundant information

provision is a variant. Adaptation means dropping some service and replacing it

with another one, if the current service is unreliable.

These examples show that the definitions are able to deal with a variety of threats

(low-performance, plan failure, unreliability) through diverse reconfiguration actions (job

reallocation, usage of effectors, service replacement). Also, they show how adaptation is

Contextual variability 59

performed to better meet requirements: to carry out jobs efficiently, to ensure the patient

has breakfast, to provide redundant weather information. In the next sections we will

construct our framework for software self-adaptation on top of Definitions 3.1-3.5.

3.3 Contextual variability

The context where software is deployed impacts on software operation. Changes in the

context may threaten the capability of software to meet its requirements (i.e. the current

software variant might become ineffective). Software operation has an impact on context

as well. While achieving its requirements, software changes the context. Thus, the influ-

ence between requirements and context is mutual. We propose a requirements modelling

framework, the contextual goal model, that allows for representing and reasoning about

such influence.

3.3.1 On the notion of context

According to the Merriam Webster online dictionary, context is “the parts of a discourse

that surround a word or passage and can throw light on its meaning” or “the interrelated

conditions in which something exists or occurs”. The former definition is related to

linguistics, whereas the latter describes the ontological meaning of context. The same

dictionary suggests two synonyms for such word: “environment” and “setting”. This

generic definition emphasizes how anything existing or occurring should be understood as

part of a wider entity, its context.

Literature in artificial intelligence provides many definitions of context. As Brezillon

observed [Bre99a, Bre99b], there is no agreement on the meaning of the term. In Mc-

Carthy’s notes on formalizing context in AI [McC93], context is “an infinite and only

partially known collection of assumptions”. The Telos knowledge representation lan-

guage [MBJK90] define it simply as “possible worlds”. Giunchiglia gives a definition

suited for contextual reasoning [Giu93]: “a context is a theory of the world which en-

codes an individual’s subjective perspective about it”. These definitions are flexible and

well-thought; however, they do not tell which are the actual elements that characterize

context. Such missing information is valuable for system engineers.

More recently, researchers in ubiquitous, mobile and pervasive computing have pro-

posed their own understanding of context. The best-known definition is probably that by

Dey [Dey01]: “Context is any information that can be used to characterize the situation

of an entity. An entity is a person, place, or object that is considered relevant to the

interaction between a user and an application, including the user and applications them-

selves.”. Such definition is recursive, for it refers to a so-called “situation” of an entity.

60 Variability: the key for adaptation

As such, it does not help much, since defining a “situation” is a hard task too.

Context plays an important role in requirements engineering. Researchers in this

area often use different terms to refer to context, such as environment. In their seminal

paper [ZJ97], Zave and Jackson argue that requirements exist only in the environment,

a portion of the real world whose current behaviour is unsatisfactory in some way. They

claim all statements made in requirements engineering are about the environment, none is

about the proposed machine. This notion of environment is very similar to the definitions

of context we have listed above. Such tight relation is confirmed by Finkelstein and

Savigni [FS01]: they assert that context is “the reification of the environment”.

The problem frames approach [Jac00] is based on the centrality of the environment.

It characterizes software problems along three dimensions: (i) the world description W

expresses unconditional behaviour and properties of the world that do not depend on the

designed machine, (ii) the requirements R express the desired behaviour and properties

the world should exhibit as a result of the interaction with the machine, and (iii) the

specification S describes the behaviour and properties the machine should exhibit in its

interface with the world.

3.3.2 Context and goals

As shown in Section 3.3.1, there is no agreement on the definition of context. Our intent

is not to provide an universal definition of context. Rather, we will provide a pragmatic

definition that captures its tight relation with requirements. Consequently, our definition

should be applicable to the requirements modelling language we choose.

Since goal models represent variability at the level of requirements [LLY+06, LJL+07],

they are a suitable option for our purposes. Though traditional goal modelling approaches

do not explicitly represent context, designers implicitly consider such factor when they

introduce variation points (e.g. OR-decompositions) in goal models. Let’s show this

intuition on a smart-home scenario. Suppose the patient’s goal is to “Have breakfast”.

Possible alternatives to achieve such goal are “Prepare breakfast autonomously” and “Or-

der catering food”. Using a goal model, a designer would represent these two alternatives

as sub-goals of the OR-decomposed goal “Have breakfast”. The designer might have

made implicit contextual assumptions: (i) the first option is applicable only if the patient

is autonomous (i.e. he’s not constricted in bed); and (ii) the second option is applicable

only if the patient is able to contact a catering service.

As said in the conclusions of Chapter 2, our baseline consists of Tropos [BPG+04]

goal models. Tropos describes a system as a set of interdependent actors, each having its

own goals to reach. Tropos goal analysis decomposes high-level objectives into lower-level

ones. Goal analysis ends with the introduction of executable tasks. A task is linked to

Contextual variability 61

a goal by a binary “means-end” relation: the execution of a task is a means to achieve

a goal. We extend Tropos to represent the mutual influence between requirements—

understood as goals—and context. We introduce now the basic concepts of our framework

(from [ADG10]).

Definition 3.6 (Actor) An actor is an entity that has goals and decides autonomously

how to achieve them.

The notion of actor accommodates different types of active entities, such as humans,

software, or organizations. An actor is characterized by two fundamental properties.

First, actors are goal-oriented: they have certain goals that they want to achieve. In

general, actors do not disclose their goals to other actors (goals are kept private). Second,

actors are autonomous: they make decisions on how to achieve their goals, and others

cannot force them to act in a specific way. A corollary of these two properties is actor

heterogeneity: each actor has its own goals and devises its strategies to achieve them.

Let’s illustrate these concepts on the mall scenario. Suppose a sales staff—a human

actor—has the goal of conveying information about products to customers. The sales staff

is free to decide when to pursue (activate) such goal and which are possible strategies to

reach it. Due to actors heterogeneity, such strategy might be invalid from the perspective

of a different actor. The staff may reach such goal in different ways: he can (i) call the

customer by phone, or (ii) deliver information to him in person. The sales staff himself

is the only actor that can select which strategy to adopt. Such decision is influenced by

the state of that portion of the world where the actor is. We call such state “context”.

Definition 3.7 (Context) A context is a partial state of the world that is relevant to an

actor’s goals.

We devise a definition of context is expressly suited for actor-based conceptual frame-

works in which actors are goal-oriented entities (as in Definition 3.6). Hence, it should

not be taken as a general definition of context. Its specific features are the following:

− Actors observe the world purposefully : there is no value for an actor to observe the

world for the purpose of observation per se. Actors do that to guide decision making

about which goals to reach and which actions to perform for reaching those goals.

Such decisions are influenced by properties of the world in which the actor lives. For

example, a partial world state like “customer is interested in a product” is relevant

for a sales staff whose goal is to promote a product to customers. The same context

is irrelevant if her goal is to process customer complaints.

62 Variability: the key for adaptation

− State of the world relevancy is subjective: the decision about which are the parts

of the world relevant to decision making is of subjective nature. Each actor has a

viewpoint on the world and is free to choose which are the relevant states of the

world. For example, to decide whether “conveying information to a customer via

an information terminal” is adoptable, one sales staff S1 might observe the context

“customer is very close to a free terminal”, whereas staff S2 might verify the context

“customer visitor has a map showing where terminals are located”.

− Context is inherently partial : actors have only a partial view on the state of the

world. They are neither interested nor able to capture all the information that fully

describes such a state. For instance, a sales staff that wants to promote soccer

jerseys is probably not interested in recently released philosophy books. The same

sales staff, while promoting a jersey, is unable to check if there is a traffic jam nearby

his house.

− Context is volatile: the world is volatile and could be in different states. An uniform

partial state of the world is irrelevant for the decision making of an actor. For exam-

ple, if a promotion information system operates in a geographic area where shopping

malls do not provide information offices, then the system need not consider their ex-

istence when deciding about how to convey information to a customer. However,

many states of the world are volatile. For example, the interest of a customer in a

certain product changes—and sales staff should promptly exploit the interest before

it ceases; also, the number and identity of customers in the mall varies.

3.3.3 Contextual goal model

The definitions given in Section 3.3.2 provide the conceptual background for our modelling

language to represent and deal with contextual variability. We extend Tropos proposing

the contextual goal model [ADG10]. The key novelty of this modelling language is to

explicitly represent and analyse the relation between context and goals.

The contextual goal model enriches variation points with information about the impact

of context. Such impact is expressed via contextual annotations (contexts). Contexts are

represented as labels (c1, c2, . . . , cn). Every label is associated to a natural-language

description of the context. In Section 3.3.4 we will show how such description is formally

specified via context analysis. Moreover, goal labels contain parameters between square

brackets (e.g. [c] for customer, [p] for product). Parameters are needed during context

analysis. Figure 3.1 shows a partial contextual goal model for the promotion information

system. Contextual goal models support the following contextual variation points:

Contextual variability 63

Figure 3.1: Contextual goal model for a mall promotion information system. Contexts are

associated to variation points as labels

− OR-decomposition: the adoptability of each sub-goal (sub-task) of an OR-decom-

posed goal (task) may require a specific context to hold. Consider the OR-decom-

position of goal promote product [p] to customer [c] in mall [m] in Figure 3.1. Sub-

goal by cross-selling [p] to [c] can be adopted when the product complements another

product the customer already has (c2); by offering discount on [p] to [c] is adoptable

when the product is discountable and interesting to the customer (c3); and by giving

free sample of [p] to [c] is adoptable when product is free sampled and new to the

customer (c4). Goal [c] gets [p] sample from machine [mc] can be adopted when

customer has experience with such machines and can reach it quickly (c5).

− means-end : goals are satisfied by means of executable processes (tasks). The adopt-

ability of each task may require a specific context. Consider the means-end decom-

position of goal [c] confirms [p] sample offer. Task get customer [c] confirmation by

voice recognition is applicable only if the place where the customer is currently not

noisy, and the system is trained enough on the customer voice (c7). The alternative

task get [c] confirmation by clicking can be adopted when the customer has a good

64 Variability: the key for adaptation

level of expertise in technology and the device has a touch screen (c8). The task

show path to sample machine [mc] on the mall e-map [m] is adoptable if the customer

can arrive easily to that machine (c9), while task trace and instruct customer [c] to

sample machine [mc] is adoptable if the path is complex (c10).

− actor dependency : the applicability of a dependency might depend on a specific

context. For example, the promotion information system can satisfy goal deliver a

sample of the product to customer by sales staff by delegating it to the sales staff

information system, if the corresponding sales staff knows that product sufficiently

well and is currently available (c6).

− root goals : root goals are activated only in certain contexts. For example, to activate

goal promote product to customer in mall, the customer has to be inside the mall

building and be eager to accept getting promotion of the product (c1).

− AND-decomposition: the satisfaction (execution) of a sub-goal (sub-task) in an

AND-decomposition might be needed only in certain contexts. In other words, some

sub-goals (sub-tasks) are optional to fulfil the decomposed goal (task). For example,

sub-task show customer current place to sales staff is not needed if the customer can

visually see the sales staff (c12).

− contribution to soft-goals : soft-goals are qualitative objectives for whose satisfaction

there is no clear-cut criteria. Mylopoulos et al. used the term “satisficed” [MCN92]

to emphasize that, unlike hard goals, they cannot be satisfied. Tasks and goals can

contribute either positively or negatively to soft-goals; contribution can be qualita-

tive (−, −−, +, ++) or quantitative (a real number in the range [−1,+1]). The

contributions to soft-goals can also vary from one context to another. In our ex-

ample, task get customer confirmation by voice recognition contributes negatively to

soft-goal less disturbance when the mall is crowded (c13).

3.3.4 Context analysis

In Section 3.3.3 we have introduced the contextual goal model and have shown how

contextual labels are associated to variation points. These labels are place-holders for

descriptions of the corresponding context. However, such description is not formal. Like

goals, context can be analysed too. Whereas goal analysis allows for discovering alterna-

tive sets of tasks an actor may execute to reach a goal, context analysis should allow for

discovering alternative sets of facts an actor may observe to judge if a context holds.

We introduce now the basic concepts of context analysis. The first concept is that of

formula of world predicates (Form), which is defined by the following EBNF grammar as

Contextual variability 65

an AND/OR composition of world predicates:

Form := World Predicate | (Form) | Form ∧ Form | Form ∨ Form

There are two types of world predicates, that differ for their observability by an actor:

facts and statements.

Definition 3.8 (Fact) A world predicate W is a fact for an actor A iff A can observe

W.

Definition 3.9 (Statement) A world predicate W is a statement for an actor A iff A

cannot observe W.

Actors observe facts via a well specified procedure. They need the ability to capture the

necessary data and to compute the truth value of a fact. Facts are not viewpoints. When

a fact is true for an actor it will be also true for others. The notion of fact is unrelated to

that of belief, that we do not consider in our framework. Since facts are observable world

predicates, they hold irrespective of the beliefs of the different actors.

A world predicate such as “customer bought products from the mall in the last week”

is a fact. To verify this fact, the Customer IS actor can check the purchase history of the

customer in the mall database. The world predicate “two products, p1 and p2, are usually

sold together” is also a fact. The system can check the sales record of all customers and

check if the two products p1 and p2 are often sold together. The world predicate “product

is not in the shopping cart of the customer” is a fact observable by positioning RFID

readers in shopping carts.

Not all world predicates are observable by an actor. We call these non-observable pred-

icates statements. There are several reasons why a world predicate cannot be observed,

among which the following:

− lack of information: an actor may be unable to observe a world predicate because

of its inability to capture the necessary information to observe it. For example,

“customer does not know about a new product” is a statement from the perspective

of an actor such as the sales staff in a shopping mall. The staff cannot obtain all

the information needed to observe this statement, since the staff cannot monitor if

a customer has read about the product on the web or has been told about it by a

friend.

− abstract nature: some world predicates are abstract by nature and cannot be eval-

uated against clear criteria. For example “customer is interested in a product” is a

world predicate that cannot be observed in a well specified way. It is a concept that

66 Variability: the key for adaptation

refers to the mood of a customer; therefore, only the customer itself can tell whether

such predicate holds or not.

− subjectivity : the validity of a world predicate depends on the actor that evaluates

it. Notice how the notion of statement is different from that of fact: whereas facts

are not viewpoints, statements can be (and often are) viewpoints. For example, a

world predicate like “customer is rich” can be evaluated differently depending on

the criteria an actor uses to determine wealth.

Some contexts are specifiable by means of only facts, while others need the use of

statements. For example, to decide whether promoting a product by offering a discount,

the system (Customer IS system) has to judge if context c3 applies. This includes deciding

the truth of the world predicate wp=“customer is interested in the product”. Such world

predicate is a statement that the system cannot observe. However, this statement can be

refined into a formula of facts and other statements. For example, a possible refinement

might consider the behaviour of the customer in the mall and his purchase history. If the

customer has been examining the product for more than ten minutes or he often goes to

the product area, then the system may judge that wp holds. We introduce a new relation

that links a formula of word predicates to a statement. Such relation is called Support

and enables to refine a statement.

Definition 3.10 (Support) A statement S is supported by a formula of world predicates

ϕ iff ϕ provides evidence in support of S.

Iteratively, a statement could be ultimately refined to a formula of facts that supports

it. In other words, the relation support is transitive. If a formula ϕ1 supports a statement

S1 and S1 ∧ ϕ2 supports S2, then ϕ1 ∧ ϕ2 supports S2. However, refining a statement

to a formula of facts is not always feasible. In contextual goal models, we allow only

for contexts that are specified in terms of facts and/or statements that are supported

by facts. We call these kinds of statements and contexts, observable statements and

observable contexts, respectively. They are defined as follows:

Definition 3.11 (Observable Statement) A statement S is observable iff there exists

a formula of facts ϕ that supports S.

Definition 3.12 (Observable Context) A context C is observable iff C can be specified

by a formula of facts and monitorable statements.

A observable context, specified by ϕ, holds if all the facts in ϕ and all the formulae

of facts that support the statements in ϕ are true. Notice that facts are observable by

Contextual variability 67

definition, since there exists a procedure for an actor to observe them. Context analysis

allows to discover if a context is observable and to find the formula of facts that specifies it.

Context analysis starts with the specification of a world predicate formula that represents

a context. This formula may contain both facts and statements. Take context c1 in

Figure 3.1, and let its specification be c1 = wp1 ∧wp2 where wp1=“customer is inside the

mall building” and wp2= “customer may accept getting promotion of the product”. wp1
is a fact the system can observe using a positioning system, while wp2 is a statement and

needs further refinement.

Figure 3.2: Context analysis for context c1 in Figure 3.1

Customer

+retired

Mall

+closing_time

RegionDay_Of_YearProduct

Position

+x

+y

+floor

Is_At

+at_Time

Cart

exist_in

is_holiday

contain

is_using

Bought

+at_Time

sell

in

Figure 3.3: Data conceptual model specifying required data to observe c1 (Figure 3.1)

Figure 3.2 shows our visual syntax for the context analysis of c1. Statements are

68 Variability: the key for adaptation

represented as shadowed rectangles, facts as parallelograms. The support relation is

represented as a curved filled arrow, the and, or logical operators are represented as black

triangles and white triangles, respectively. Equivalence (filled double-arrow) relates a

context label to its specification in terms of a formula of facts and statements.

Context analysis enables the discovery of which data about the world an actor has

to collect. Indeed, an actor can observe facts only if it can gather required data. For

example, the facts in the context analysis of Figure 3.2 lead to the data conceptual

model in Figure 3.3. Such model expresses the monitoring requirements for the promotion

system.

3.3.5 Methodological guidance

Requirements analysts need guidance to properly conduct contextual goal modelling. In-

deed, such activity consists of heavily intertwined sub-activities wherein stakeholders and

analysts tightly cooperate. Devising a comprehensive methodology for contextual goal

modelling is outside the scope of this thesis. A comprehensive methodological account on

contextual goal modelling can be found in [Ali10]. Here, we outline the main activities

that are necessary to develop self-adaptive applications based on contextual goal models.

The way the core activities are intertwined is shown in the activity diagram in Figure 3.4.

Figure 3.4: Methodological guidance for contextual goal modelling

1. Goal Analysis consists of the identification of high-level goals and their refinement

(goal analysis). Traditional goal modelling methodologies (e.g. the early require-

ments phase of Tropos) can be applied.

Contextual variability 69

2. Contextual Goal Modelling activities are conducted after goal analysis. These activ-

ities add contextual information to goal models. Goal analysis and contextual goal

modelling can be conducted iteratively. After each iteration, further goal analysis is

performed if needed. We identify two sub-activities:

(a) Contextual Variation Points Identification: the variation points that are af-

fected by contextual factors are identified.

(b) Context Analysis : the contexts affecting contextual variation points are anal-

ysed by applying the context analysis described in this section.

3. Consistency Verification: automated reasoning techniques are performed to verify

the consistency of the contextual goal model (e.g. applicability of variants, identi-

fication of redundant variants, detection of inconsistent contexts). In case inconsis-

tencies are detected, further contextual goal modelling is required. Details about

consistency verification techniques are provided in [ADG10].

4. Monitoring Requirements Identification: once contextual goal models are consistent,

the analyst has to identify the monitoring requirements for the system. These re-

quirements consist of the data the system should collect from the system environment

and the equipments needed to collect them.

3.3.6 Variation points and self-adaptive software

As we have observed earlier, goal models enable to represent variability at the level of

goals. In Section 3.3.3 we have proposed the contextual goal model as a framework to

represent the interweaving between context and goals. Contexts are first associated to

variation points via labels, then each context is refined to a set of observable facts through

context analysis (Section 3.3.4).

Context monitoring is therefore an essential feature for self-adaptive software dealing

with contextual variability. Our conceptual framework can be exploited to represent

context changes that inhibit the current variant and to identify new opportunities that

were not previously available. The data conceptual model that is derived after context

analysis represents monitoring requirements (what the system shall monitor).

Here, we explain and illustrate how the different contextual variation points affect the

variability space.

− OR-decomposition: context helps to reduce the variability space, for it specifies

required preconditions to adopt sub-goals. Consider the OR-decomposition in Fig-

ure 3.5 extracted from the contextual goal model in Figure 3.1. Context c2 is re-

quired for cross selling, c3 for offering a discount, c4 for giving a free sample. The

70 Variability: the key for adaptation

contexts associated to the OR-decomposition branches need not be mutually exclu-

sive. Consequently, more than one alternative might be available at the same time.

For instance, a product might be both associated to a cross-selling offer (c2) and be

discounted (c3). It might also be the case that no sub-goal is adoptable. Suppose

Figure 3.5: Contextual OR-decomposition taken from Figure 3.1

now a self-adaptive promotion system decides to promote the product by giving a

free sample. Also suppose that, while carrying out the plan to give a free sample,

the last free sample is taken by another customer. Context c4 becomes false—no free

sample is available—and the information system will have to switch to a different

variant. The system will choose on the basis of the validity of c2 and c3. If neither

context is true, then no alternative variant exists, and the system cannot adapt.

− means-end: the role of context in means-end decompositions is analogous to that

in OR-decomposition. The difference is conceptual: in a means-end decomposition

context affects task execution, rather than goal adoption. In Figure 3.6 context limits

the applicability of different tasks for the same goal. Showing a map is possible only

if c9 holds, while tracing and instructing the customer only if c10 holds. Like in

OR-decompositions, it is possible that both contexts hold (all variants are possible)

or that none holds (no variant is applicable).

Figure 3.6: Contextual means-end decomposition taken from Figure 3.1

− AND-decomposition: the effect of context on AND-decompositions is opposite to

that of OR-decompositions and means-ends. In AND-decompositions, context makes

certain sub-goals/sub-tasks needed if the context associated to their decomposition

branch is true. Consider the contextual AND-decomposition in Figure 3.7. If the

Contextual variability 71

context c12 holds, then both sub-tasks should be performed to execute the decom-

posed task. Otherwise, only the second task has to be executed. Suppose our self-

Figure 3.7: Contextual AND-decomposition taken from Figure 3.1

adaptive promotion system is guiding the sales staff to the customer place and c12
does not hold (the sales staff can easily locate the customer). Suppose c12 becomes

true due to the entrance of several customers in the mall. Now, the self-adaptive

system will switch to a variant including task show customer place to the sales staff.

− root goal activation: the effect of context is to specify in which context a root goal is

activated. The impact on adaptation is different from that of the previous variation

points. Indeed, such context does not invalidate the current variant nor makes

new variants viable. The effect is that software should satisfy a new goal, thus it

should revise its strategy and choose a variant supporting such goal too. Suppose

the promotion system has another activated root goal issuing loyalty cards to new

customers. Certain variants to achieve this goal might inhibit product promotion.

For instance, assigning a sales staff to the issuing of loyalty cards could inhibit the

promotion of a product to another customer.

− dependency: contextual dependencies are applicable only if the corresponding con-

text holds. For instance, the dependency on the sales staff for delivering a free

sample (Figure 3.1) is possible only if the sales staff is able to promote the product

and has enough time. If our self-adaptive information system is relying on such

dependency, but during its execution all sales staffs are busy with higher-priority

duties (c6 becomes false), the system should choose a different variant not including

that dependency.

− contribution: contextual contribution does not affect variants applicability. Unlike

other contextual variation points, it has a qualitative effect. In a certain context a

variant V1 might be preferable to V2 because of its better contribution to soft-goals.

In another context V2 might provide better contribution. Self-adaptive software

should continuously monitor contexts related to contributions to identify threats to

the validity of the current variant and opportunities to better perform.

72 Variability: the key for adaptation

3.4 Social variability

We analyse here social variability, which is caused by the varying social structure of STSs.

Specifically, it exists due to the social relationships that arise, hold, evolve, and cease to

exist. This kind of variability is becoming very relevant in software engineering, due

to the diffusion of computational paradigms characterized by heavy interaction among

technical systems and social actors. The increasing number of Web 2.0 social networks

and ubiquitous computing systems seems to support our claim.

Consequently, the design of self-adaptive software cannot ignore social variability. Soft-

ware systems do not operate in isolated environments, but they execute in open systems

together with other systems. Moreover, participating subsystems are not only software

systems, but also humans and organizations. These social relations define business trans-

actions between legal entities, for software systems act on behalf of legal entities. Let’s

consider eBay. When we use eBay and create an auction for an old book, we establish

business relations with the eBay corporation—we commit to sell a real item and we accept

the eBay policies—and with the bidders—we commit to ship the item to the winner upon

payment.

We illustrate the notion of social variability with the aid of a small example about

emergency response coordination. Suppose the current goal of a fire chief is to put out a

fire. Figure 3.8 shows a scenario where the fire chief uses his PDA to set up a fire squad

to put out that fire. The requirements of the PDA software are (i) to ensure that two fire

units will reach the fire, and (ii) to make sure that the closest firemen are selected. The

dashed rectangles represent an abstract view on variants; the arrows indicate the events

that trigger adaptations in the PDA software. The initial variant is shown in the top-left

of the figure, where the fire chief is connected to fire unit 1 and fire unit 2 via social

relations; each fire unit is committed to reach the fire. The fire chief’s PDA established

these relations by sending an SMS to the fire units, which have responded affirmatively.

After some time, fire unit 3 joins the STS. Such fire unit is the closest to the fire, therefore

the software identifies an opportunity and decides to assign fire unit 3 to the fire and to

release fire unit 1 from its commitment. Later, fire unit 2 violates its commitment: it

communicates that it will not be able to reach the fire due to a traffic jam. In response to

this event, the fire chief’s PDA reassigns the task to fire unit 1, which accepts such task

and establishes a new social relation. Finally, both fire unit 1 and fire unit 2 leave the

system (e.g. they go out of service). The fire chief should now rely only on fire unit 3.

Where is social variability in this setting? Social variability consists of the ever-

changing social structure that exists in open systems. Actors are free to join and leave as

they please, they offer different services at different times, they establish, maintain, drop,

Social variability 73

Figure 3.8: Social variability and adaptation in an STS concerning fire-fighting

and release social relationships. Therefore, the social context where a system operates is

in constant evolution, and the system should continuously monitor such context to detect

threats and to identify new opportunities.

Let’s contrast social variability to contextual variability. Contextual variability is in

line with the philosophy of component-based systems, wherein specific components are

replaced at runtime, depending on the current context. Social variability goes beyond this

traditional system view. It considers open systems, where participants are autonomous

and heterogeneous, and the overall system is an emergent concept that originates from

the actions of individual participants and from their interactions.

3.4.1 Sociality and interaction

Social variability is about the existence and evolution of social relations. In this section

we show that social relations originate from the interactions between actors. We justify

this claim with the aid of literature in philosophy and multi-agent systems. This implies

that most interactions between software systems—via exchange of messages—result in

social relations between them. We limit our analysis to a particular kind of interaction,

i.e. communication.

Let’s start from the early work by J.L. Austin, whose book “How To Do Things With

74 Variability: the key for adaptation

Words” [Aus62] arose a revolution in philosophy of mind, and is the precursor of modern

theories. In his work, Austin refuses the dominant theory at that time, which said that

the purpose of sentences was to state facts that can become true or false. He provides solid

examples against this theory, and introduces several kinds of sentences that are neither

true or false. He names these sentences “performative utterances” (briefly, performatives);

humans use performatives to carry out actions. Performatives are opposed to declarative

or constative utterances—the true/false ones—that just describe the state of the world.

An example of constative is “the sky is cloudy today”, which is a statement about the

state of the world that might be true or false. An example of performative is “I apologize

for my behaviour”, which is clearly not a description of the world.

Austin introduces three dimensions along which utterances can be analysed: locu-

tionary, illocutionary, and perlocutionary. A locutionary act is the performance of an

utterance, its ostensible meaning, that comprises phonetic, syntactic and semantic fea-

tures. An illocutionary act refers to the use of a locution with a certain force such as

stating, asking, commanding, promising. A perlocutionary act refers to the psychological

consequences of a locution, such as persuading, convincing, scaring.

John Searle [Sea70, Sea75] refines the notion of illocutionary act introducing the term

“speech act”. Speech acts represent the semantic illocutionary force of an utterance,

its intended meaning. Searle classifies speech acts [Sea75]: representatives (or assertives)

commit a speaker to the truth of the expressed proposition (“today it’s raining”), directives

cause the hearer to take a particular action (“open that door!”), commissives commit the

speaker to a future action (“I’ll open that door tomorrow”), expressives communicate the

speaker’s attitude and emotion about the proposition (“congratulations for the award”),

declarations change reality according to the proposition (“you are fired!”).

The work by Austin and Searle shows how communication can be considered in terms

of different perspectives, importantly its illocutionary force (the speech act). These the-

ories had a great impact on multi-agent systems research. Mainstream agent-oriented

programming languages, such as JADE [BPR99], exploit agent communication languages

based on speech acts, in which the specification of messages includes the performative

(the illocutionary act) the sender wants to communicate to the receiver.

As observed by Singh [Sin99], the concept of social commitment is useful to understand

the classes of speech acts proposed by Searle. A social commitment is a four-place relation

C(x, y,G, p) that denotes a commitment from agent x to agent y for the proposition p

in the context of agent G. x is the debtor, y the creditor, G the context group, p the

discharge condition. A conditional commitment is a commitment having a precondition:

if the precondition holds, then the debtor commits to the creditor for the consequent p.

Singh shows how commitments are integral part of speech acts.

Social variability 75

Let’s show some examples to illustrate how speech acts are representable as commit-

ments. Commissives bring into effect a commitment by the speaker to the hearer. “I’ll

open the door tomorrow” means that the speaker commits to open the door tomorrow.

Directives presume a commitment by the hearer to do as told. “Open that door!” pre-

sumes that the hearer will commit to open that door. Assertives commit the speaker to

the statement expressed. “Today it’s raining” is understood as a commitment from the

speaker to the fact that it’s actually raining. Notice that these are social commitments,

and are different from psychological commitments [Sin91].

Our point here is that interaction—both in the physical and in virtual worlds—occurs

in order to create, modify, and drop social relations. Specifically, we used existing liter-

ature to show that social commitments (just commitments, from now on) cover a wide

range of illocutionary acts that are communicated via interaction. Figure 3.9 exemplifies

the relation between interaction—via messages—and the corresponding social relations.

The depicted scenario refers to a book-selling transaction between Bookie and Alice.

Bookie sends an offer message to Alice saying that he will sell book BO if Alice pays $12:

this creates a commitment CB from Bookie to Alice for BO. Then, Alice pays $12; the

meaning of this message is to inform Bookie that the payment has been made. Bookie

is now unconditionally committed to bring about BO. Finally, Bookie sends a message

saying that the book BO was given to the shipper for delivery; the meaning is that Bookie

is informing Alice that the commitment proposition has been fulfilled. Consequently, the

commitment is satisfied.

Figure 3.9: Interaction between two agents via messages (A) and its meaning (B)

Most system engineering approaches do not take into account the meaning of interac-

tion between sub-systems. Our literature survey in Chapter 2 demonstrates this limitation

and articulates how commitments are an adequate abstraction to overcome it.

76 Variability: the key for adaptation

3.4.2 Modelling service-oriented applications

In Section 3.4.1 we have shown that social relations are established via interactions be-

tween parties. We started from theories in linguistics and philosophy of mind, then we

outlined how such theories apply to system engineering. In this section we propose a

modelling framework for the design of systems that take into account social relations.

The proposed framework is capable of representing and dealing with social variability.

Our modelling framework is designed for service-oriented applications. These appli-

cations exemplify the concept of programming-in-the-large introduced by DeRemer and

Kron [DK76]. Programming-in-the-large suggests that large programs are not monolithic

blocks, but are composed of a number of modules, possibly written by different people in

different programming languages; these modules are linked together by an interconnection

language that enables their interoperability. In a service-oriented application, the archi-

tecture of the overall application takes precedence over the specification of services. An

individual service may be designed using any methodology in any programming language

as long as it structurally fits in with the rest of the system. Component-based systems

embody this philosophy, but service-oriented applications are fundamentally different in

that they represent open systems [DNGM+08, SH05].

In our approach, a service-oriented application is characterized by the autonomy and

heterogeneity of the participants. Application participants engage each other in a service

enactment via interaction. Applications are dynamic implying that participants may join

or leave as they please. The identity of the participants need not even be known when

designing the application. Service-oriented applications take the idea of programming-in-

the-large to its logical extreme. The ultimate purpose of this computational paradigm is

to completely decouple the logic of a participant from the interaction that ties together

the participants in the application.

An example of a service-oriented application are auctions on eBay. Multiple au-

tonomous and heterogeneous participants are involved: the eBay corporation, buyers,

sellers, payment processors, credit card companies, shippers, and so on. eBay (the orga-

nization) specified the architecture of the application in terms of the roles (seller, bidder,

shipper, and so on) and the interaction among them without knowing the identity of the

specific participants that would adopt those roles. Most likely, eBay was not aware it

was building a service-oriented application while designing the eBay.com website. This

example shows that this computational paradigm is already applied, though designers

might be unaware of it. There is no question that this is an under-optimal situation, that

can be improved by devising modelling frameworks that enable the systematic design of

service-oriented applications.

It is widely recognized that, in (software) design, architectural models provide an ade-

Social variability 77

quate level of abstraction to represent the key structure and functionality of the designed

artefact. For service-oriented applications, it is especially useful to treat the architecture

as being largely synonymous with the application itself. In other words, there need not be

any distinction between the concept of application and the abstraction that represents its

architecture. From now on we will not differentiate between a service-oriented application

and its architecture.

Figure 3.10: A service-oriented application is specified in terms of roles. It is instantiated when

participants adopt those roles; it is enacted when participants interact according to the adopted

roles

Service-oriented applications are characterized by some specific features that make

them different from traditional software applications. We explain now these specificities

with the aid of the eBay.com scenario. Such concepts are illustrated in Figure 3.10:

− A service-oriented application (from here on, simply application) exists irrespective

of the existence of interacting participants. The auctions application on eBay exists

whether some auction is going on or not;

− The application is specified in terms of roles. Actual participants are unknown at

design-time. The eBay corporation doesn’t know the actual agents that will create

auctions or place bids;

− The application is instantiated when participants adopt (play) roles in the applica-

tion. For instance, this happens as Bob signs in eBay.com using his bob354 account

78 Variability: the key for adaptation

and creates an auction for his old copy of “The Divine Comedy”. By doing that, he

plays the role of “seller”;

− The application is enacted when participants interact according to the roles they

play. For example, Bob interacts with a certain shipper to make sure his copy of

“The Divine Comedy” is delivered to the winner of the auction.

− The application is, in general, specified independently from the specification of the

individual participants. There are therefore at least two specification layers: that of

the application—in terms of roles and their interaction—and that of the single par-

ticipants. In line with the principles of programming-in-the-large, each participant

can be specified in any language.

The real value of service-oriented computing is realized for applications in which par-

ticipants engage each other in business transactions, such as auctions on eBay. Each

individual participant has his own business goals, and he would need to interact flexibly

with others so as to be able to fulfil his goals. Ideally, we would want to model both

applications and participants in terms of business-level abstractions. We would also want

to characterize and reason about properties critical to doing business, such as goal fulfil-

ment, compliance, interoperability, and so on, in similarly high-level terms. This is key to

alleviating the business-IT gap.

Service

Engagement

Commitment Role

WorldState

Agent

Goal

HardGoal SoftGoal

++S, --S

Decomposition

types: AND / OR

Application

(Architecture)

Agent (Requirements)

1

hasCreditor

1

hasDebtor

0..*

0..*

1..*

1

0..*

1..*

1

2..*

0..*

0..*

1

decomposesTodecomposesTo

reflects

capableOf

contributesTo

has

plays

hasConsequent

hasAntecedent

involves
specifies

Figure 3.11: Conceptual model for service-oriented applications and participating agents

From here on, we refer to the participants in an application as agents. This is the

most adequate term to accommodate their autonomy and heterogeneity. Notice that

the concept of agent is different from its technological counterpart (software agents).

Social variability 79

According to our notion, humans and organizations are agents too. Software agents act

on behalf of organizations or humans. Figure 3.11 shows the proposed conceptual model:

the left box concerns a service-oriented application (the STS), the right box is about an

agent’s requirements.

Our approach enables decoupling the specification of a service-oriented application

from the specification of a specific agent. Each specification involves a different set of

designers and stakeholders. In the following subsections, we will show how

In general, application designers specify the application without knowing who will be

the actual agents participating in the application. Agent designers will specify an agent

so that the requirements expressed by the stakeholders are satisfied. We do not provide

detailed methodological guidance on how each artefact is to be engineered. However, the

following subsections will describe how (i) a specific agent is specified using a goal model;

(ii) a service-oriented application is specified in terms of a commitment protocol; (iii) an

agent designer can check whether the agent’s specification supports the agent’s goals in a

certain application.

Specifying agents via goal models

An agent is specified in terms of a goal model, as formalized in the meta-model of the

Tropos methodology [BPG+04]. As shown in the right side of Figure 3.11, an Agent has

some goals. In other words, each agent aims to attain its current goals. A Goal may

be a HardGoal or a SoftGoal. A soft-goal has no clear-cut criteria for satisfaction (its

satisfaction is subjectively evaluated). A goal reflects a state of the world desired by

the agent. In such a way, goals are grounded to something which is observable in the

environment. A goal may contribute to other goals: ++S (g, g′) means that g contributes

positively to the achievement of g′; −−S (g, g′) means that g contributes negatively to

the achievement of g′. We do not consider here partial contributions between goals, but

limit our framework to full positive or negative contributions. Both hard- and soft-goals

may be AND-decomposed or OR-decomposed into sub-goals of the same type (hard goals

are decomposed only to hard goals, soft-goals to soft-goals). Additionally, an agent may

be capable of a number of hard-goals; the notion of capability abstracts the means-end

relation in Tropos.

Specifying applications via service engagements

Our intent is to specify applications in terms of commitments. When specifying an appli-

cation, commitments are expressed among roles. Later, when the application is instanti-

ated and enacted, real agents play the roles in the specification. We use here the notion of

80 Variability: the key for adaptation

conditional commitment, C(Debtor,Creditor, antecedent, consequent), in which the Debtor

agent is committed to the Creditor agent for the consequent if the antecedent holds. The

antecedent and the consequent are propositions that refer to the states of the world of

relevance to the application under consideration.

Unlike the original formulation by Singh, we do not explicitly represent the context

agent. We hypothesize it does not vary for all commitments within an application spec-

ification. A commitment is discharged when its consequent is achieved; it is detached

when the antecedent holds. An unconditional commitment is one where the antecedent

is ⊤ (true). For example, in an auction application, there might exist a commitment

C(Bidder, Seller, bidWon, paymentMade). Its meaning is that the bidder commits to the

seller that, if the world-state where the bidder has won the bid occurs, the bidder will

bring about the payment.

We use commitments as the basis of architectural connections. As in Figure 3.11, a

Service Engagement involves two or more roles and specifies one or more commitments

among the involved roles. A Role role can be debtor (creditor) in one or more com-

mitments; each commitment has exactly one debtor (creditor). A commitment has an

antecedent and a consequent, each representing a specific state of the world.

Message From To Effect Business Significance

Create(x, y, r, u) x y C(x, y, r, u) brings about a relation

Cancel(x, y, r, u) x y ¬C(x, y, r, u) dissolves relation

Release(x, y, r, u) y x ¬C(x, y, r, u) dissolves relation

Delegate(x, y, z, r, u) x z C(z, y, r, u) delegates relation to another debtor

Assign(x, y, z, r, u) y x C(x, z, r, u) assigns relation to another creditor

Declare(x, y, p) x y p informs about some aspect of state

Table 3.1: Messages and their effects; a commitment is understood as a contractual relation

Commitments are dynamic relations. Indeed, agents manipulate commitments and

make them evolve. Table 3.1 introduces the message types by which agents update com-

mitments [CS09]. In the table, x, y, . . . are variables over agents, and p, q, . . . are variables

over propositions. A Create message is sent by the debtor to notify the creditor about the

establishment of a commitment. A Cancel message is sent from the debtor to dissolve a

commitment; cancelling a commitment is a violation, for the debtor breaks his promise.

A Release message is sent from the creditor to relieve the debtor from its commitment.

A Delegate message is sent from the debtor to a third agent so that the third agent will

commit to the creditor. An Assign message is sent from the creditor to the debtor so

that the latter becomes committed to another creditor. A Declare message informs that

a certain state of the world has been met.

Social variability 81

Conceptually, a service engagement is a business-level specification of interaction. It

describes the possible commitments that may arise between agents adopting the roles,

and via the standard messages of Table 3.1, how the commitments are updated. Notice

that such specification does not guarantee—by any means—that the agents will behave

as prescribed. Due to their autonomy, agents can behave freely: they may either respect

the specification or violate it. The context agent can deal with violations by applying new

commitments. For instance, if you park your car in a forbidden area, police (the context

agent) might assess a fine which makes you committed to pay a penalty. Similarly, in a

service-oriented application like eBay.com, your account would be suspended or revoked

by the eBay corporation if you don’t behave according to the regulations.

Agent compliance amounts to the agent not violating any of his commitments towards

others. A service engagement specified in terms of commitments does not dictate specific

operationalizations (runtime enactments) in terms of when an agent should send or expect

to receive particular messages; as long as the agent discharges his commitments, he can

act as he pleases [DCS10].

Figure 3.12 shows the (partial) service engagement for an auction application. Fig-

ure 3.13 shows a possible enactment for the service engagement of Figure 3.12. The bidder

first creates CB. Then he places bids, possibly increasing his bids (indicated by the dashed

bidirectional arrow labelled “Bidding”). The seller informs the bidder that he has won the

bid, which detaches CB and causes commitment CUB = C(Bidder, Seller,⊤, paymentMade)

to hold. Finally, the bidder discharges his commitment by sending the payment.

CB = C(Bidder, Seller,wonBid, paymentMade)

CS = C(Seller,Bidder, paymentMade, itemDelivered)

CA = C(Auctioneer,Bidder,⊤, itemCheckedForAuthenticity)

Figure 3.12: A (partial) service engagement depicting an auction

application. The labels are for reference purposes only. Figure 3.13

shows an enactment of this engagement between a bidder agent

and a seller agent

Figure 3.13: An enactment

A challenging research topic—that we do not address in this thesis—is the construction

of service engagements. In general, domain experts specify service engagements from

scratch or by reusing existing specifications that may be available in a repository. In

eBay’s case, presumably software architects, experts on the various kinds of businesses

(such as payment processing, shipping, and so on) and processes (auctions) involved, and

some initial set of stakeholders got together to define the architecture. How application

82 Variability: the key for adaptation

requirements (as distinct from an individual participant’s requirements) relate to the

specification of service engagements is studied in the Amoeba methodology [DCS10].

Binding

As Figure 3.11 shows, an agent may choose to play, in other words, adopt one or more roles

in a service engagement. Such an agent is termed an engagement-bound agent. Adopting

a role is the key notion in instantiating an application, as shown in Figure 3.10.

However, before a bound agent may start interacting, he may want to verify that he is

compatible with the engagement. The semantic relationship between a service engagement

and an agent’s goals is the following. To fulfil his goals, an agent would select a role in

some service engagement and check whether adopting that role is compatible with the

fulfilment of his goals. If it is compatible, then the agent would presumably act according

to the role to fulfil his goals; else, he would look for another service engagement. For

example, the bidder may want a complete refund from the seller if the seller delivers

damaged goods. The bidder must check whether the service engagement with the seller

includes a commitment from the seller to that effect; if not, he may opt for a different

service engagement.

In Figure 3.11 both commitments and goals are expressed in terms of world states.

This provides the common ontological basis for reasoning between goals and commitments.

3.4.3 The framework applied

We show how the modelling techniques can be used to represent two scenarios: the first

one concerns car insurance claim processing, the second one is a simple version of an

emergency response coordination STS focused on fire-fighting. Inspired by these scenarios,

we apply the approach we proposed in Section 3.4.2, and we specify both the service-

oriented application and one participating agent.

Claim processing: we base our scenario on the documentation that the Financial Ser-

vices Commission of Ontario (FSCO) provides online, specifically on the description of

the claim process3. The scenario describes the perspective of a driver involved in a car ac-

cident in Ontario, as well as highlighting what happens behind the scenes. The described

engagement is independent of specific insurance companies, car repairers, and damage

assessors. We assume the car driver is not at fault and his policy has no deductible.

Figure 3.14 describes the service engagement in the car insurance claim processing

scenario. The engagement is defined as a set of roles (circles) connected via commitments;

the commitments are labelled Ci. C1 (insurer to repairer) states that if insurance has

3http://www.fsco.gov.on.ca/english/insurance/auto/after auto accident ENG.pdf

Social variability 83

Figure 3.14: Role model for the insurance claim processing scenario. Commitments are rectan-

gles that connect (via directed arrows) debtors to creditors

been validated and the repair has been reported, then the insurer will pay and approve

the assessment. C2 (insurer to assessor) says that if damages have been reported, the

assessment will be paid by the insurer. C3 (assessor to repairer) says that if damages

have been reported and the insurance has been validated, a damage assessment will be

performed. C4 (supplier to repairer) says that if parts have been paid for, new parts

will be provided. Finally, C5 (repairer to customer) states that if the insurance has been

validated, then the car will be repaired.

Figure 3.15 shows an agent model where agent Tony plays role repairer. An agent model

is the specification of a single agent. The main goal of Tony is to perform a repair service.

This is AND-decomposed to sub-goals car repaired, receipt sent, and service charged. The

goal model contains two variation points: the OR-decompositions of goals parts evaluated

and service charged. The former goal is OR-decomposed to sub-goals new parts provided

and old parts fixed. Note the soft-goals low cost service and high quality parts. Using new

parts has a negative contribution to low cost service and a positive one to high quality

parts, whereas fixing old parts contributes oppositely to those soft-goals.

Fire-fighting. Jim is a fire chief. His root goal is to extinguish fires. Such goal may be

achieved either by using a fire hydrant or a tanker truck. In order to achieve such goal,

Jim exploits his own capabilities but also needs help from other agents. For instance, Jim

needs an authorization to use fire hydrants.

Figure 3.16 shows the agent model of this agent. The goal fire extinguished is OR-

decomposed to fire hydrant used and tanker truck used, representing the two basic ways to

achieve the root goal. In order to use a fire hydrant, Jim needs to notify hydrant usage

need and to get authorized. He is capable of notifying his need. In order to use a tanker

truck, he has to pay the service, get the truck to the fire, and connect a water pipe. He

is capable of connecting the water pipe to the truck.

84 Variability: the key for adaptation

Figure 3.15: Visual modelling of Tony’s engagement-bound specification. Tony plays repairer

Figure 3.16: Agent model of Jim; he is a fire chief

Figure 3.17 shows a simple role model for the fire-fighting STS where Jim operates. A

fire brigade commits to a fire chief that, if the hydrant need is notified, then the hydrant

usage will be authorized (C1). A fire chief commits to a fire brigade that, if the tanker

service is paid, then the tanker truck will be used to put out a fire (C2). A tanker provider

commits to a fire chief that, if the tanker service is paid, then the fire will be reached by

a tanker truck (C3).

Social variability 85

Figure 3.17: Simple role model for the fire-fighting example

3.4.4 Dealing with social variability

The modelling framework presented in Section 3.4.2 enables to represent: (i) service-

oriented applications—via a role model that specifies the architecture in terms of the

participating roles and the commitments between these roles—and (ii) the requirements

of a specific participants—in terms of an agent model that specifies the goals of the

participant and the relations between these goals.

We show now how such framework is able to represent the effect of social variability on

requirements and enables automated reasoning about goal support. Three key features

make our approach suitable for social variability:

− The application is specified at the level of roles : in open systems (exemplified by

service-oriented applications), the actual participating agents are unknown at design-

time and, also, they vary at runtime. The specification of the application is in terms

of roles; in such a way, the architecture is a flexible one that is not bound to the

participation of specific agents.

− Actual commitments arise and evolve at runtime between agents : the specification

between roles does not prescribe any behaviour at runtime. It just represents the kind

of commitments an agent can realistically expect in such application. Commitments

arise at runtime as a consequence of the interaction between agents. Commitments

evolve (e.g. they are discharged, cancelled, released, delegated) due to interaction

between involved agents. They enable to represent the essential elements of social

variability: the creation of commitments, the freedom of agents to join and leave,

the manipulation of commitments.

− Agents’ rationale and social relations are at the same level of abstraction: both

the rationale of agents—expressed as goal models—and social relations—specified

as commitments—are at the same level of abstraction and are ontologically linked

86 Variability: the key for adaptation

to each other. This enables to link the private (an agent’s internals) to the public

(the interfaces expressed via commitments). We formalize such intuition through

the notion of variant below.

We introduce the notion of a variant from the perspective of an agent. This formal-

ization is not specific to any specific agent—it forms a common semantic substrate that

characterizes a goal-oriented agent operating in a service-oriented application. The intu-

ition is that, given a certain goal to achieve, a variant is a strategy that is likely to lead

to the achievement of such goal—if the strategy is carried out successfully at runtime.

Let’s first introduce the syntax of our language. Let g, g′, g′′, g1, g2, . . . be atomic propo-

sitions (atoms); p, q, r, . . . be generic propositions, either atomic or composite; x, y, z, . . .

be roles. Let aid be the agent under consideration. A commitment is a quaternary relation

C(x, y, p, q). It represents a promise from a debtor agent playing role x to the creditor

agent playing role y for the consequent q if the antecedent p holds. Let P be a set of

commitments.

Commitments can be compared according to a basic strength relation [CS09]. If an

agent commits for something, it will also commit for something less. Similarly, it will

commit if he gets more than expected in return. This intuition is captured via the

transitive closure of P .

Definition 3.13 (Transitive closure) Given a set of commitments P, P∗ is its transi-

tive closure with respect to the commitments strength relation [CS09].

Let P = {C(fireman, brigade, team assigned ∨ ambulance sent, fire fought ∧ casualties

rescued)}. Then, for instance, C(fireman, brigade, team assigned ∨ ambulance sent, fire

fought) ∈ P∗, C(fireman, brigade, team assigned ∨ ambulance sent, casualties rescued) ∈ P∗,

C(fireman, brigade, team assigned, fire fought) ∈ P∗, C(fireman, brigade, ambulance sent,

casualties rescued) ∈ P∗. Conversely, C(fireman, brigade, team assigned ∨ ambulance sent,

casualties rescued ∧ traffic rerouted) /∈ P∗, C(fireman, brigade, ⊤ , casualties rescued) /∈ P∗.

Definition 3.14 (Goal Model) A goal model Mid specifies an agent aid as:

1. a set of AND/OR trees whose nodes are labeled with atoms;

2. a binary relation on atoms p-contrib;

3. a binary relation on atoms n-contrib.

An AND/OR tree encodes the agent’s knowledge about how to achieve the root node.

The nodes are the agent’s goals. p-contrib(g, g′) represents positive contribution: the

Social variability 87

achievement of g also achieves g′. n-contrib(g, g′) is negative contribution: the achieve-

ment of g denies the achievement of g′. Figure 3.16 is a goal model for agent Jim. MJim

has one AND/OR tree rooted by goal fire extinguished. MJim contains no contributions.

We introduce the predicate scoped to capture a well-formedness intuition: a goal

cannot be instantiated unless its parent is, and if a goal’s parent is and-decomposed,

all the siblings of such a goal must also be instantiated. The notion of scoped is useful to

devise a clear definition of variant that does not consider partial states where an agent is

transiting from one variant to another. The clarity and elegance we gain slightly sacrifices

the expressive power of our framework, which can deal only with steady states.

Definition 3.15 (Scoped) A set of goals G is scoped with respect to goal model Mid,

that is, scoped(G,Mid) if and only if, for all g0 ∈ G, either

1. g0 is a root goal in Mid, or

2. exists a simple path 〈g0, g1, . . . , gn〉 in Mid such that gn is a root goal in Mid and

∀i, 0 ≤ i ≤ n :

(a) gi ∈ G, and

(b) if anddec(gi+1) (i 6= n), then ∀g such that parent(gi+1, g), g ∈ G

Example 1 G1 = {fire extinguished, fire hydrant used} is well-formed with respect to

MJim. Indeed, fire extinguished is a root goal, whereas fire hydrant used is part of path

〈fire hydrant used, fire extinguished〉.

Example 2 G2 = {fire extinguished, fire hydrant used, hydrant need notified} is not scoped

with respect to MJim. Though 〈hydrant need notified, fire hydrant used, fire extinguished〉

is a simple path to the root, the sibling of hydrant need notified—goal hydrant usage

authorized—is not in G2. The set of goals G3 = {fire extinguished, fire hydrant used, hydrant

need notified, hydrant usage authorized} is scoped with respect to MJim.

A variant is an abstract agent strategy for the achievement of some goal. It consists

of a set of goals G that the agent intends to achieve via a set of commitments P and a

set of capabilities C. A variant is defined with respect to an agent’s goal model Mid. A

variant is not a concrete strategy because it does not tell the exact course of action the

agent should carry out to achieve its goals: which actions to execute, which messages to

exchange, how to interleave actions, and so on.

Definition 3.16 (Variant for a Goal) A triple ⌊G,P , C⌋ is a variant for a goal g with

respect to goal model Mid, that is, ⌊G,P , C⌋ |=Mid
g if and only if

88 Variability: the key for adaptation

1. scoped(G,Mid) and g ∈ G, and

2. g is supported: ∄g′ ∈ G : n-contrib(g′, g) ∈ Mid, and either

(a) g ∈ C, or

(b) C(x, aid, g
′, g) ∈ P∗ : ⌊G,P , C⌋ |=Mid

g′, or

(c) C(x, y, g, g′) ∈ P∗, or

(d) ordec(g), and either

i. ∃g′ : parent(g, g′) and ⌊G,P , C⌋ |=Mid
g′, or

ii. C(x, aid, g
′, q) ∈ P∗ : q ⊢

∨
parent(g,gi)

gi and ⌊G,P , C⌋ |=Mid
g′, or

iii. C(x, y, p, g′) ∈ P∗ : p ⊢
∨

parent(g,gi)
gi;

(e) anddec(g) and ∀g′ : parent(g, g′) and ⌊G,P , C⌋ |=Mid
g′, or

(f) p-contrib(g′, g) ∈ Mid : ⌊G,P , C⌋ |=Mid
g′.

The goals G that aid intends to achieve should be scoped with respect to the goal model

Mid (clause 1). Goal g must be supported: there should be no negative contributions to

g from any goal in G and one clause among 2a-2f should hold (clause 2).

2a. capabilities support goals;

2b. aid gets a commitment for g from some other agent playing x if aid supports the

antecedent;

2c. some agent playing y brings about g in order to get a commitment for g′ from some

other agent playing x (possibly aid itself);

2d. an OR-decomposed goal g is supported if either: there is some sub-goal g′ such

that ⌊G,P , C⌋ |=Mid
g′ (2(d)i), g is supported via commitment to (2(d)iii) or from

(2(d)ii) other agents. These two clauses cover the case of an agent who commits

for a proposition that logically implies the disjunction of all the goal children. For

instance, a commitment for g1∨ g2 supports a goal g OR-decomposed to g1∨ g2∨ g3;

2e. an AND-decomposed goal is supported if ⌊G,P , C⌋ is a variant for each of its children;

2f. positive contribution from g′ supports g if ⌊G,P , C⌋ |=Mid
g′.

Definition 3.17 generalizes the notion of variant to sets of goals. A variant for a goal

set should be a variant for each goal in the set.

Definition 3.17 (Variant for a Goal Set) A triple ⌊G,P , C⌋ is a variant for a goal set

G ′ with respect to goal model Mid, that is ⌊G,P , C⌋ |=Mid
G, if and only if, for all g in G ′,

⌊G,P , C⌋ |=Mid
g.

Chapter summary 89

We show now some examples to illustrate how the definitions of variant can be ap-

plied. We will verify whether a triple ⌊G,P , C⌋ is a variant for the root goal in MJim

(Figure 3.16).

Example 3 Let G = {fire extinguished, fire hydrant used, hydrant need notified, hydrant

usage authorized}, P = {Cx = C(x, Jim, hydrant need notified, hydrant usage authorized)},

C = {hydrant need notified}. ⌊G,P , C⌋ |=MJim
fire extinguished.

Step 1. From Definition 3.16, G must be scoped and fire extinguished supported.

Step 2. G is scoped: G = G3 and G3 is scoped with respect to MJim (Example 2).

Step 3. Clause 2(d)i applies to fire extinguished if ⌊G,P , C⌋ |=MJim
fire hydrant used.

Step 4. Clause 2e applies to fire hydrant used if both ⌊G,P , C⌋ |=MJim
hydrant need notified

and ⌊G,P , C⌋ |=MJim
hydrant usage authorized.

Step 5. ⌊G,P , C⌋ |=MJim
hydrant need notified holds by 2a: such goal is in C.

Step 6. ⌊G,P , C⌋ |=MJim
hydrant need notified holds by Clause 2b: some other agent will

commit for Cx to Jim, given that ⌊G,P , C⌋ |=MJim
hydrant need notified.

Example 4 Let G = {fire extinguished, tanker truck used, tanker service paid, fire reached

by tanker truck, pipe connected}, P = {Cy = C(Jim, y, tanker service paid, fire extin-

guished),Cz = C(z, Jim, tanker service paid, fire reached by tanker truck)}, C = {pipe

connected}. ⌊G,P , C⌋ |=MJim
fire extinguished.

Step 1. From Definition 3.15, G is scoped with respect to MJim. Indeed, fire extinguished

is a root goal, tanker truck used is AND-decomposed, all its sub-goals are in G, and there

is a path from all goals in G to fire extinguished.

Step 2. From Definition 3.16, we should check if g is supported. Clause 2(d)i applies to

fire extinguished if ⌊G,P , C⌋ |=MJim
tanker truck used.

Step 3. tanker truck used is AND-decomposed into tanker service paid, fire reached by

tanker truck, pipe connected; 2e tells to verify every sub-goal.

Step 4. pipe connected is in C, therefore 2a applies.

Step 5. tanker service paid can be supported if Jim commits for Cy to some agent (2c).

Step 6. fire reached by tanker truck is supported if some agent commits for Cz to Jim (2b),

given that the antecedent tanker service paid is supported.

3.5 Chapter summary

We have investigated the role of software variability for software self-adaptation in STSs.

In Section 3.1 we analysed the term variability showing its interpretations in different

90 Variability: the key for adaptation

disciplines. In Section 3.2 we argued why variability is a fundamental concept for self-

adaptive software, and we defined the core terminology of this thesis. In Section 3.3

and Section 3.4 we explored contextual and social variability, respectively. For each

type of variability, we defined its meaning, described its impact, and proposed modelling

primitives.

The main contribution of the chapter consists of the theoretical underpinning for our

approach. In particular, the chapter proposes:

− The core terminology for the thesis: software variability, variant, adaptation, self-

adaptation, and self-adaptive software. We have shown the generality of these defi-

nitions by applying them to different types of adaptive software.

− A modelling framework for contextual variability. First, we have characterized the

notion of context and have explored its impact on requirements. Then, we have

proposed the contextual goal model, which enables to systematically represent the

relation between context and requirements. Contextual goal models represent the

impact of contextual variability via contextual variation points.

− A modelling framework for social variability. Social variability is a main factor in

STSs, where new systems—either technical or social—join and leave as they please,

and the services they provide vary over time. After analysing social variability and

describing how it is grounded in interaction, we have proposed and formalized a

modelling for social variability based on the concepts of goal and commitment.

Chapter 4

An architecture for self-adaptive

software

In this chapter we propose an architecture for self-adaptive software. The architecture

applies to settings composed of multiple interacting actors, and is expressly thought for

socio-technical systems. The purpose of the architecture is to ensure that an actor par-

ticipating in the system achieves its goals. The architecture is conceptual: it describes

the basic components that its implementations have to develop and outlines its runtime

operation, but does not prescribe specific algorithms or technologies.

In Section 4.1 we present the principles for our conceptual architecture. In Section 4.2

we propose its logical view. In Section 4.3 we describe possible requirements models the

architecture can use at runtime. Finally, in Section 4.4 we provide an account on how the

architecture can be built for an existing system.

Acknowledgement. Section 4.2 is based on [DGM09a].

4.1 Underlying principles

We outline a set of basic principles for our architecture. They derive mainly from the

characteristics of the setting the architecture is meant for, socio-technical systems. These

principles guide the construction of the architecture, and ensure its adequacy to provide

adaptation in STSs. Each principle is exemplified on the emergency response setting.

Principle 1 (Adaptation support) The architecture supports an agent in achieving

its objectives by adding self-adaptation capabilities. �

The architecture provides self-adaptation capabilities to an agent. As stated by Defini-

tion 3.3, self-adaptation is performed to achieve the agent’s objectives. An agent can be a

92 An architecture for self-adaptive software

human, an organization, or a software system. This principle is in line with externalized

adaptation [GS02]: the adaptation logic is separated from the application logic.

Example 5 The architecture is installed on the PDA of a fire chief to support him

in coordinating fire emergences response. The fire chief is responsible for defining and

enacting a response plan. The architecture continuously monitors such plan and performs

adaptations when the plan is at risk or is under-performing.

Principle 2 (Open socio-technical systems) The architecture operates in STSs com-

posed of a varying set of interacting agents. �

This principle settles down the kind of setting the architecture is meant for. Being thought

for settings characterized by openness, the architecture should effectively deal with their

volatility. Two major dimensions of such volatility are contextual and social variability

(see Chapter 3). Agents can join and leave as they please, they can offer new services or

revoke existing ones, contextual entities and devices fail, the physical context is subject

to expected and unexpected changes.

Example 6 During emergency response, multiple agents interact (fire chiefs, firemen,

ambulances, doctors, police). They are free to join and leave: new firemen become avail-

able, doctors might exit to deal with other emergencies, each agent offers different services

(e.g. doctor D1 commits to rescue a patient in 10 minutes, doctor D2 in 15 minutes).

The severity of the fire varies, traffic jams might arise, weather conditions evolve. The

architecture monitors these changes to detect threats and identify opportunities, so that

the supported agent—the fire chief—can successfully achieve his purpose.

Principle 3 (Autonomy) The agents in the STS are autonomous. Therefore, the ar-

chitecture cannot enforce their behaviour. �

Agent autonomy means that no agent (including our architecture) can force another to do

any action. The architecture should foresee methods to bring about adaptations without

forcing agents to behave in a certain way or another. For instance, the architecture might

suggest what to do, send reminders, actuate changes using effectors in the context, or

establish social relations with other agents. Not even the supported agent is controllable;

however, it is presumably more receptive to adaptation suggestions than other agents.

Example 7 If a fire-fighter is under-performing—e.g. it is not using an adequate extin-

guishing agent to put out fire—the architecture might suggest to use a different tool or

tell the fire chief to request an additional fire-fighter. However, the autonomy of each

fire-fighter makes the adaptation strategy uncertain.

Underlying principles 93

Principle 4 (Heterogeneity) The agents in the STS are heterogeneously constructed.

�

Heterogeneity means that different agents are constructed differently. Together with Prin-

ciple 3), this ensures that agents do not know the internal construction of other agents. In

addition to the impossibility for an agent to control another, these principles say that an

agent does not even know how another agent will think or act. Our architecture should

therefore devise adaptation strategies that do not violate this principle.

Example 8 The architecture is likely to know the typical construction of the fire chief,

given that it is built to support its objectives. On the contrary, it does not know how

fire-fighters will reason and act. Therefore it can rely only on the social relations that can

be established, such as their commitments to put out fires.

Principle 5 (Driven by requirements models) The architecture should be model-

driven: models are kept alive at runtime to represent correct and incorrect system be-

haviour. These models should represent the agent’s requirements. �

Our architecture should keep requirements models alive at runtime and use them to

determine whether an agent is performing as expected. Requirements models give primacy

to the purpose of the agent over the (low-level) mechanisms that the agent enacts to

achieve requirements. This way, the use of requirements models in adaptation control

loops guarantees that adaptation is performed to meet the agent’s purpose.

Founding adaptation upon requirements models has some limitations. First, faults

cannot be always detected. For example, incorrect context monitoring—e.g. due to

faulty sensors—cannot be captured, for monitored data will be considered correct by

the architecture. To overcome this limitation, our approach should be complemented

by others that enable faults detection. Second, requirements models are assumed to be

correctly specified. If a certain variant is applicable in a specific context—according to the

requirements models—the architecture will be choosing that variant even if in practice the

variant does not work (it is actually inapplicable). To deal with such issue, requirements

models have to be monitored and revised at runtime (they should evolve).

Example 9 One of the requirements of a fire chief is to efficiently respond to fires in his

competence area. Different high-level strategies can be devised to meet this requirement,

such as assembling a fire squad or delegating the emergency to another fire chief. The

architecture would check monitored data against these models to determine whether the

purpose of the fire chief is threatened.

94 An architecture for self-adaptive software

Principle 6 (Conceptual level) The architecture should be conceptual and domain-

independent. �

The advantage of a conceptual architecture is that application domain details do not affect

its applicability. Implementations for specific STSs specialize the conceptual architecture

by considering domain-dependent characteristics. The architecture should not prescribe

the usage of specific algorithms to identify the best alternative variant, while it can provide

guidelines, such as general factors variant selection algorithms may consider.

Principle 7 (Adaptation control loop) The architecture operates via an adaptation

control loop. Such control loop consists of four phases: Monitor, Diagnose, Reconcile,

and Compensate. �

The importance of control loops is widely recognized in the area of self-adaptive soft-

ware [BMSG+09]. Our architecture will be based on a control loop composed of four main

stages: (i) monitoring events that occur in the surrounding physical and social context

(i.e. both context changes and messages exchanged between agents); (ii) diagnosing mon-

itored data against requirements models to identify failures and under-performance; (iii)

devising an abstract strategy that reconciles actual behaviour with expected behaviour;

and (iv) enacting such strategy through compensation actions.

Example 10 Suppose the architecture is supporting the fire chief during a fire accident.

The architecture detects that the fire severity is increasing, and that a new fire-fighter

is available in proximity of the fire (he sends an SMS notifying its availability). The

current variant is inadequate to cope with the fire, due to the increasing fire severity.

Reconciliation is performed by selecting a variant where the new fire-fighter is assigned

to that emergency. The compensation action is to send him a message asking him to get

to the fire as soon as possible.

The novelty of the proposed architecture is to exploit high-level models to represent

the system’s purpose (requirements models) and to consider the social relationships be-

tween the supported system and other systems—either technical or social—in the STS.

The usage of goal models and social commitments—to represent requirements and inter-

action, respectively—makes our proposal very flexible. By focussing on the purpose of

the system and the meaning of interaction, adaptation guarantees that the system meets

its stakeholders’ strategic interests (the purpose) and is compliant with the commitments

with other systems.

Logical view 95

4.2 Logical view

Figure 4.1 presents our conceptual architecture for self-adaptive software. The figure

shows an UML 2.0 component diagram that represents architectural components and

the connections between them. The architecture is proposed at the conceptual level in

accordance with Principle 6. Throughout this section we will use the terms adaptation

and reconfiguration interchangeably.

Our architecture is founded on the Monitor-Diagnose-Reconcile-Compensate (MDRC)

control loop. Hence, it complies with Principle 7:

1. Monitoring collects data about the state of the environment and the agents partici-

pating in the system from a variety of sources;

2. Diagnosis interprets these data with respect to requirements models to determine if

all is well. If not, the problem-at-hand is diagnosed;

3. Reconcile searches for a new variant that best deals with the problem-at-hand;

4. Compensation takes necessary steps to define and execute a plan that enacts the

new variant.

Our architecture is designed for socio-technical systems, which are inherently decen-

tralized, distributed and heterogeneous. Therefore, our architecture has to take into

account the interaction between participating agents and functional components as well

as the supervisory MDRC cycle. These interactions are supported through additional

elements of the architecture:

− Context sensors are computational entities providing raw data about the environ-

ment where the system runs. In the smart-home scenario, context sensors can deter-

mine the current location of the patient, temperature and humidity levels in specific

rooms, open/closed status of doors and windows, incoming/outgoing phone calls,

the location of other actors (caregivers, doctors) within the apartment or elsewhere.

− Agents include all the actors who need to be monitored to ensure that they deliver

on their obligations to the system (i.e. they respect their commitments). These may

be patients living in smart-homes, firemen and medical doctors in crisis management

settings, air traffic controllers in charge to manage the air space around the airport

they work in. A special kind of agent is the supported agent. In accordance with

Principle 1, the architecture supports its requirements. Agents are interfaced with

the system through interface System pushes so that they can be sent directions,

advice and reminders. For instance, a patient may be reminded to take her medicine

96 An architecture for self-adaptive software

<<component>>

Self-reconfiguration

<<component>>

Agent

<<component>>

Context sensor

<<component>>

Context actuator

<<component>>

Monitor

<<component>>

Policy manager

<<component>>

Reconfiguration

<<component>>

Diagnosis

<<component>>

Context

monitor

<<component>>

Interaction

monitor

<<component>>

Event

normalizer

<<component>>

Prioritize

diagnoses

<<component>>

Reaction strategy

planner

<<component>>

Task assigner

<<component>>

System pushing

<<component>>

Actuator

manager

<<component>>

Domain assumption

verifier

<<component>>

Contextual goal

model diagnosis

<<component>>

Plan execution

checker

<<component>>

Interaction

analyser

<<component>>

Diagnoses

Selector

<<component>>

Goal commitment

diagnosis

Interaction

opportunities

Priority

policiesTolerance

policies

Violated domain

assumptions

Task

assignments

System

pushes

Actuations

System

pushes

Actuations

Actuate

reconfigurations

Push system

reconfigurations

Uncommitted

goals

Task

reassignment

reconfigurations

Diagnoses to

compensate

Selected

diagnoses

Failed

dependencies

Failed

plans

Goals/plans

applicability

Interaction

status

Context

changes

Normalized

events
Events

Task

assignments

Figure 4.1: Logical view on the conceptual architecture for self-adaptation

by sending an SMS to her mobile phone. Also, the system can assign specific tasks

to other agents—establish dependencies—through interface Task assignments. For

instance, a catering service might be called to deliver food. These interfaces take

into account the autonomy and uncontrollability of each agent (Principle 3).

− Context actuators represent any effector in the environment that can receive com-

mands and act. Examples of actuators are sirens, door openers, automated windows,

remote light switches, automatic 911 callers. The component receives the commands

Logical view 97

to enact through the required interface Actuations. Notice that agents and context

actuators are mutually exclusive entities: while agents are autonomous, heteroge-

neous, and uncontrollable, context actuators are passive and controllable.

The self-reconfiguration component provides the self-adaptation capabilities of our ar-

chitecture. This component is split into three sub-components. The Monitor component

is in charge of collecting, filtering, and normalizing collected events; the Diagnosis com-

ponent identifies symptoms and discovers root causes; the Reconfiguration component

takes care of reconciliation and compensation to deal with such symptoms, which might

be failures, under-performance, but also opportunities to better perform. These three

components are detailed in the following subsections.

4.2.1 Monitor

The purpose of the Monitor component is to detect relevant changes in the physical and

social context, and notify these changes to the diagnosis component. To collect events,

this component relies on context sensors. Different sub-components are needed to carry

out the function of the Monitor.

The Event normalizer component initiates the monitoring function, taking its input

from the interface Event through appropriate ports (in Figure 4.1 ports are the small

squares on component borders). The collected data is normalized to a common format

that expresses the collected events on a context model (see Section 4.3.2 for an example

of context model). Normalization requires the definition of a translation schema for each

raw data format. If event sources provide data in standard formats (e.g., XML), trans-

formation schemes can be defined using a transformation language (e.g., XSLT [C+99]).

Figure 4.2 sketches how the event normalizer works. Three events are sent in different

formats: binary raw data from the door, an XML file from the surveillance camera, CSV

data from the thermometer. The event normalizer converts these data in terms of a shared

context model.

The provided interface Normalized events is required by the components that deal with

agent interaction and contextual events. The Interaction monitor computes the status of

existing interactions and exposes it through interface Interaction status. For example, a

social worker expected to visit might send a message to the the patient telling she cannot

come. The Context monitor processes events related to context and exposes the interface

Context changes. For instance, if the house entrance door is closed (door.status = closed)

and an event such as open(door, timei) happens, the status of the entrance door will

change to open (door.status = open).

98 An architecture for self-adaptive software

Figure 4.2: Overview of the Event normalizer component

4.2.2 Diagnosis

Diagnosis consists of checking current information about the system—collected by the

Monitor component—against the requirements models kept alive at runtime.

The role of requirements models is to specify what should happen and hold: which

goals should/can/cannot be achieved by certain agents, which plans they can/cannot

execute in different contexts, the domain assumptions that should not be violated. On

the one side, the richer the requirements models are, the more accurate the diagnosis will

be. On the other side, the granularity of detected events is bounded by technological

and pragmatic aspects. Detecting if a patient is sitting on a sofa is readily feasible (e.g.

through pressure sensors), while detecting if she is handling a knife the wrong way is

far more complex. Consequently, the level of detail of diagnosis is an application-specific

parameter, and different models are (not) adequate depending on the specific application.

We will provide examples of possible specific requirements models in Section 4.3. Over-

all, the requirements models for the architecture should express (i) the goals of the sup-

ported agent in the STS; (ii) the context where the system is deployed in; (iii) the relation

between goals and context; (iv) the interaction between the agents, in terms of social re-

lations; (v) domain assumptions the system should not violate.

The Contextual goal model diagnosis component performs diagnosis on contextual goal

models. It requires context changes, analyses contextual goal models to identify goals

and plans that should/can/cannot be achieved, and provides this output through the

interface Goals/Plans applicability. For example, it can detect that a patient is not having

breakfast. Also, it can exclude variants involving preparing breakfast autonomously if the

patient is sick in bed.

Domain assumption verifier also requires context changes, verifies the list of domain

Logical view 99

assumptions, and identifies violations that are then exposed through the interface Violated

domain assumptions. Domain assumptions are contextual conditions that should not be

violated in the system. For example, this component can verify requirements such as

“The patient should never take his medicines twice after breakfast”.

Interaction analyser requires interaction status and goals/plans applicability, and com-

putes (i) failed dependencies between agents and (ii) interaction opportunities that have

arisen. Dependencies fail not only if the dependee cannot achieve the goal or perform the

plan (e.g., the nurse cannot support the patient because she’s busy with another patient),

but also changes in the context that make goals and dependencies inapplicable (e.g., the

patient exits home and thus cannot depend on a catering service any more). New inter-

action opportunities arise if new agents join the system and offer some service—i.e. they

commit to act as dependee—or they change their existing services.

Plan execution checker requires goals/plans applicability, determines failed plans and

provides them through the interface Failed plans. This component verifies whether the

way a plan is conducted is compliant with the plan specification. For example, it can

identify failures such as “insulin was pumped while insulin pump was not under skin”, or

a timeout as the patient tries to wake up.

The Goal commitment diagnosis component diagnoses those goals that should be

achieved for which the agent took no action so far. In other words, activated goals

for which no plan has started yet. Notice that goal commitment refers to psychological

commitments [Bra87], which is different from the social commitments we use to repre-

sent social interactions. For example, a goal commitment diagnosis might detect that the

patient is not preparing breakfast. This component requires the interfaces goals/plans

applicability and provides the interface Uncommitted goals.

Diagnoses selector requires failed dependencies, failed plans, uncommitted goals, in-

teraction opportunities, as well as interface Tolerance policies provided by the Policy

manager. The policy manager handles those policies defined by system administrators,

e.g. cases where failures (or opportunities) do not lead to reconfiguration actions. For

example, lack of goal commitment for washing dishes can be tolerated if the patient’s vital

signs are good (she may wash dishes after her next meal). Similarly, if a new catering

service commits to provide breakfast but the patient is already depending on another

provider, the new opportunity might be ignored. The interface Selected diagnoses con-

tains the diagnoses that should be compensated via adaptation. Tolerance policies can

be specified using an arbitrary language. For instance, Pimentel et al. [PSC10] extend

our architecture with a policy language to deal with failures. Their language enables to

express conditions such as “A task set can fail if a context holds”, “A task set can fail if

some goals are satisfied/unsatisfied”, and “A task set can fail at most n times”.

100 An architecture for self-adaptive software

4.2.3 Reconfiguration

The reconfiguration phase defines compensation/adaptation strategies in response to se-

lected diagnosis. The core idea is to devise a new variant that better achieves the goals

of the supported agent.

The effectiveness of a reconfiguration depends on several factors: the number of plans

that can be automated, the available compensation strategies, the effectiveness of sugges-

tions and reminders on participating actors. The actual success of compensation strate-

gies is scenario-specific and depends on available resources. Suppose a patient feels giddy:

if she lives in a smart-home provided with a door opener, the door can be automati-

cally opened to let the rescue team enter. Otherwise, the rescue team should wait for

somebody—perhaps the porter—to bring the door keys.

The Prioritize diagnoses component requires selected diagnoses and priority policies,

selects a subset of diagnoses according to their priority level, and provides them through

the interface Diagnoses to Compensate. Priorities depend on failure severity, urgency

of taking a countermeasure, time passed since diagnosis. For example, taking a remedy

to failures is typically more urgent than exploiting new opportunities. The Reaction

strategy planner component takes the diagnoses to compensate as input and selects a set

of reactions to compensate for the failures. Given one or more failures, this component

identifies possible reconfigurations, and selects one of them. Our architecture supports

three types of reconfigurations:

− Plan reassignment reconfigurations involve the automated enactment of dependen-

cies on external agents. The architecture acts on behalf of the supported agent to

define a social relation with a dependee agent. A plan reassignment strategy works

only if the dependee accepts to deliver the service (due to its autonomy, it is free to

refuse). For example, if the patient has not had breakfast and the timeout for the

goal is expired, the architecture can automatically call the catering service. If the

catering service does not accept or later violates its task, the architecture will need

to perform another reconfiguration.

− Push system reconfigurations remind agents their current goals or suggest plans to

execute. Such option gives little certainty, but is often a very effective way when one

deals with social actors. A push strategy for the patient that did not have breakfast

so far is sending an SMS to her mobile phone.

− Actuate reconfigurations are enacted via context actuators. As we said earlier, con-

text actuators are passive entities that can be commanded. For instance, if the

patient feels bad, the door can be automatically opened by activating the door

opener. In such a way, rescuers or neighbours can easily enter and help the patient.

Requirements models for the architecture 101

Each reconfiguration type feeds a specific component (Task assigner, System pushing and

Actuator manager) that enacts the chosen reconfiguration by interacting with external

components (agents and actuators).

4.3 Requirements models for the architecture

As stated in Principle 5, our architecture is model-based and relies on requirements mod-

els. The logical view presented in Section 4.2 is in line with such principle: requirements

models play an essential role during the entire adaptation control loop. Specifically, they

are used to diagnose failures and under-performance, as well as in the reconciliation phase

to identify new variants.

In this section, we present possible requirements models that can be used in imple-

mentations of our architecture. The logical view provides some guidelines about the type

of models (contextual goal models, domain assumptions, interaction models, plan mod-

els), but does not mandate specific models. The models presented here are based on the

modelling primitives defined in Section 3.

4.3.1 Contextual goal models

Contextual goal models enable to keep track of the supported agent’s goals, as well as

to identify alternative variants to achieve these goals. Our architecture supports any

goal model that expresses the relation between goals and context. Our baseline is the

contextual goal model we introduced in Section 3.3.3. We enrich it with information to

enable its usage in the adaptation control loop of our architecture. We illustrate these

changes with the aid of Figure 4.3. This goal model chunk refers to a patient living in a

smart-home. The extensions we introduce are the following:

− Activation rules are associated to top-level goals. An activation rule is composed

of a triggering event and a precondition. The top-level goal is activated when the

triggering event happens, if the precondition holds. Active goals are those our ar-

chitecture should monitor to detect threats and failures. Activation rules specialize

of the “root goal” variation point described in Section 3.3.6. Figure 4.3 includes

an activation rule for the top-level goal of the patient: goal Have lunch is activated

when it’s noon (triggering event), provided that the patient had not lunch before

(precondition).

− Time limits are associated to top-level goals to define the maximum amount of time

within which an agent has to achieve a goal. We assume that all models in the

architecture represent time in terms of discrete time steps; the duration of a time

102 An architecture for self-adaptive software

Figure 4.3: Contextual goal model with runtime extensions

step is domain-specific. In Figure 4.3, goal Have lunch should be achieved within one

hour since its activation.

− Plans are sets of actions. In a contextual goal model, plans are connected to goals

by means-end decompositions: an agent executes a plan to achieve a goal. To

support plan monitoring and diagnosis, we specify plans using a simple and flexible

language. Each action is performed correctly if its postcondition is achieved within

a time limit and, at that time, the associated precondition holds. If an action is not

performed correctly, the plan including it fails. We provide more details concerning

plan specification in Subsection 4.3.3.

4.3.2 Context model

The context descriptions associated to variation points in contextual goal models define

the impact of context on goals and variability. As we have explained in Section 3.3.3, con-

texts are typically expressed by analysts as abstract statements. These statements cannot

be verified in an objective manner. Thus, our architecture cannot verify statements.

In Section 3.3.4, we proposed context analysis as a refinement process that reduces

abstract contexts (e.g. “the patient is sick”) to propositional formulae of observable facts

(e.g. “the patient’s oxymeter shows a saturation level below x” ∧ “the patient did not

wake up this morning”). Facts are expressed with respect to a contextual data model,

which describes context in terms of entities, attributes and relations. The architecture

monitors these facts on the contextual data model via contextual sensors.

We present here a context model based on class diagrams. Classes represent contex-

tual entities (e.g. patient, oxymeter, home, smart-shirt, thermometer, etc.), attributes

characterize the state of specific class instances (e.g. the heart rate of Bob’s oxymeter,

Requirements models for the architecture 103

the temperature Jim’s thermometer indicates), and associations define relations between

different objects (e.g. patient Jim lives in smart-home #2, the thermometer tx belongs

to Jim).

Figure 4.4: Part of the context model for the smart-home scenario

Figure 4.4 shows a piece of the context model for the smart-home scenario. The class

“Patient” is characterized by a set of boolean attributes that express whether he suffers

of a chronic disease, he is diabetic, autonomous, is a heart patient, can stand, is currently

in his bed, and is currently standing. A patient has also associations to other classes:

for instance, he can have zero or more smart shirts (association hasSmartShirt to class

“SmartShirt”), and he knows at least one assistant (association knowsAssistant to class

“Assistant”).

At runtime, our architecture deals with instances of the classes in the context model.

For instance, we might have two instances of patient (jim and bob), both living in the

same smart-home smartHome1. Each of them might have one smart shirt (ss1 and ss2).

They might be assisted by the same assistant mike.

4.3.3 Plan specification

Goals are the basic concept we use to characterize the purpose of the supported system.

They are abstract concepts, that agents achieve by executing concrete plans. There

are many plan specification languages in literature: PDDL [FL03] is widely used in AI

planning, JAM [Hub99] or AgentSpeak [Rao96] plans are used in BDI architectures, etc.

These languages enable the specification of very detailed plans. In this section, we define

a simpler plan specification language that allows for flexible plan execution (i.e. actions

are not sequential unless explicitly specified).

104 An architecture for self-adaptive software

We specify a plan as a set of actions to be carried out. Each action is characterized in

terms of (i) a postcondition, the expected effect produced by performing that action; (ii)

a set of preconditions, the state of the world that should hold to enable an agent perform

that action; (iii) a time limit within which the action should be carried out. Preconditions

can be critical or non-critical. If an action postcondition is met and a critical precondition

does not hold, the action leads to plan failure.

We formalize the semantics of plans in the statechart in Figure 4.5. The statechart

represents the possible states for a plan and the transitions between these states. The

meaning of each state is the following:

− idle: None of the actions in the specification has been executed so far, the time limit

is not expired. This state includes situations in which some actions started, and

none of them is done yet.

− started : at least one (but not all) action has been performed successfully, the time

limit is not expired. This state represents the non-atomic nature of plans: several

actions have to be performed before completing the plan, and in that situation the

plan is in progress;

− success : all actions in the specification have been executed successfully within the

time limit. This is a terminal state: once a plan succeeds, there is no need for the

system to monitor its execution;

− failed : at least one action in the specification has been performed, and at least one

critical precondition was false. This is another terminal state. Plan failure triggers

an adaptation process, unless the application policies tell to ignore such failure;

− timeout : the time limit expired. Timeout is a particular type of failure, and is a

terminal state.

To better explain our plan specification language and clarify how it can be used to

determine the status of a plan, we illustrate it on the smart-home scenario. Suppose the

patient’s goal is to get up, and the smart-home system has to ensure he achieves such

objective. A possible way for the patient to get up is to grab a bed pole. So, plan get up

by using pole is specified by actions A1 and A2 as follows:

A1. Precondition: patient p is in bed b, bed b has a pole pl; Postcondition: the bed pole

pl is touched; Time limit : 5 minutes;

A2. Precondition: patient p is in bed b (critical), bed b has pole pl, pl is touched; Post-

condition: patient p stands up; Time limit : 10 minutes;

Requirements models for the architecture 105

Figure 4.5: Statechart showing the possible state transitions for a plan

The correct execution of plan get up by using pole requires that: (i) the bed pole is

touched within five minutes since plan activation (the time the means-end decomposed

goal is activated), and (ii) the patient stands up—after he touches the bed pole—within

ten minutes. There are three possible violations for this plan:

− the patient stands up without being in bed before. This might represent a fault

in the camera that detects when the patient stands up, or in the bed sensor that

detects if the patient is in bed;

− a timeout failure happens if the patient doesn’t stand up within ten minutes (e.g.

since the alarm rings). This happens if the patient touches the bed pole—his inten-

tion is to stand up—and he does not stand up within the time limit;

− the pole is not touched within five minutes. Both this violation and the previous

one indicate a possible health problem of the patient.

Based on the policies defined by designers, these failures might result in different actions:

the system might notify a nurse and give her access to the room webcam, gently alert the

patient, or ignore the failure if his vital signs are good.

Consider now another goal for Frank, who is a heart patient: check vital signs. Such

goal is triggered after meals. A possible plan is to use an oxymeter. Suppose such plan

is defined by two actions: “the oxymeter measures the heart rate” and “the oxymeter

measures the saturation level”. Both actions have the same preconditions: “the patient

has an oxymeter” and “such oxymeter is working”. The latter precondition is critical: if

the oxymeter measures the heart rate (or the saturation level) but it is not turned on,

then something is wrong in that plan. Perhaps the on/off sensor is not working, or there

is a major fault in the oxymeter, and maybe patient has not actually measured his vital

106 An architecture for self-adaptive software

signs. The time limit for these actions is 16 minutes: if 16 minutes pass since the alarm

ringed, the plan is marked as timeout (failure).

4.3.4 Domain assumptions

A domain assumption is an indicative property that should not be violated by the system

or its surrounding environment [JMF08]. Domain assumptions are a common type of

requirements. Though they do not refer to functions the system should provide, they

should be considered during design, since they express stakeholders’ needs or constraints.

Our architecture supports monitoring and diagnosis of domain assumptions.

We specify domain assumptions as implications over the context model (e.g. that

introduced in Section 4.3.2). The implication antecedent consists of an activation event,

that triggers the domain assumption, and an arbitrary number of preconditions. If the

antecedent holds (the activation event happens while the preconditions are true), the

consequent has to be verified. We allow for two types of consequent: (i) a state should

hold when the activation event happens; and (ii) an event should happen within a time

limit since the antecedent event happens.

A possible domain assumption for the smart-home scenario is “The oven should be

turned off within 10 minutes if the patient is not at home”. This domain assumption

is represented as follows: (i) the activation event is “the patient exits home”; (ii) the

antecedent precondition is “the oven is turned on”; (iii) the consequent is event “the oven

is turned off”, which should occur within ten minutes. Another domain assumption is that

“the fridge door should be closed if the patient is not in kitchen”. This can be expressed

as follows: (i) the activation event is “the patient exits kitchen”; (ii) the consequent is

state “the fridge is closed”.

4.3.5 Interaction modelling via commitments

A socio-technical systems is a multi-agent system. Consequently, requirements models

should be able to represent the interaction between agents. The social relations that arise

from interaction should be identified and their status verified. As explained in Chapter 2.1,

commitments are an effective abstraction to capture the meaning of interaction and keep

track of the active social relationships.

As described in Section 3.4.1, the socio-legal context where interactions occur defines a

mapping between domain-specific messages—exchanged between agents—and their mean-

ing in terms of commitments. So, for instance, an “offer-lunch(10)” message sent from a

catering service to the patient means that a commitment C(catering, patient, tenEurosPaid,

lunchDelivered) is created. Similarly, a message such as “lunch-not-needed-anymore” from

Requirements models for the architecture 107

the patient to a catering service means that the catering is released from its previous

commitment. Again, a message “john-will-deliver-lunch” from the catering to the patient

represents a delegation from the catering service to John for lunch delivery.

Given this mapping between domain-specific messages and their meaning, the system

should keep track of the evolution of the commitments. Figure 4.6 illustrates how differ-

ent message types—corresponding to commitment manipulation operations—modify the

state of a commitment. We assume that commitments have an expiration deadline and

the debtor should bring about them within a deadline. A commitment is initially in a

Figure 4.6: Statechart representing the state evolution of commitments (adapted from [SCD09])

null state. Then, the debtor creates it and makes it active (in particular, conditional). If

the antecedent is brought about, the commitment is detached and the debtor is uncon-

ditionally committed (base). Commitments typically have an expiration deadline; once

it expires, commitments are dropped and go back to a null state. If a creditor releases

a debtor from a base commitment, the commitment state goes to null. The debtor can

delegate active commitments; similarly, the creditor can assign active commitments. If

the consequent of an active commitment is brought about, the commitment is discharged

and goes to state satisfied. A commitment can be discharged even if the antecedent is not

brought about. Base commitments can be cancelled by the debtor or expire by timeout.

In both cases, the commitment is violated.

We illustrate these concepts on an example. Suppose a catering service Cat1 sends

a message to patient Jim committing to deliver lunch and a snack within 2 pm if a 20

euros payment is made within 11 am. This creates a conditional commitment C1 =

C(Cat1, Jim, twentyEurosPaid, lunchDelivered ∧ snackDelivered). If Jim makes no payment

within 11 am, then C1 expires. Alternatively, if Jim pays within 11 am, commitment C1

108 An architecture for self-adaptive software

is detached and base commitment C1′ = C(Cat1, Jim,⊤, lunchDelivered ∧ snackDelivered)

holds. Suppose now Cat1 delivers lunch at 1 pm: base commitment C1′′ = C(Cat1, Jim,⊤,

snackDelivered) holds. If Cat1 delivers the snack within 2 pm, then the commitment is

discharged (and satisfied). If Cat1 tells it won’t be able to deliver or does not deliver on

time, the commitment is violated.

4.4 Applying the architecture

To exploit the proposed architecture, requirements engineers and software designers need

guidance to apply it to existing socio-technical systems. Once implemented, the archi-

tecture can be deployed to add self-reconfiguration capabilities to an STS by helping the

supported agent achieve its objectives. We propose here a methodological process to

apply our architecture. Figure 4.7 shows it as a SPEM 2.0 [Obj08] diagram represent-

Figure 4.7: SPEM 2.0 diagram showing how to create the architecture for an STS

Applying the architecture 109

ing the sequence of activities—continuous lines—and the input-output flow in terms of

artefacts—dashed lines. The diagram provides high-level guidance to successfully apply

the architecture. However, specific methodologies might be devised to refine and better

specify such process.

The first task is Application Domain Analysis, which corresponds to acquiring knowl-

edge about the STS in terms of humans, organizations, and autonomous software agents

as well as non-autonomous entities such as sensors and actuators. The resulting artefact

is the set of agents and entities in the application. Also, such activity provides a list of

domain-specific messages that are exchanged between participants in the STS.

Three tasks should be concurrently performed after domain analysis: Requirements

Analysis, Context Analysis, and Interaction analysis. The output of these activities con-

sists of the models we presented in Section 2.1: context analysis produces a context model;

requirements analysis generates goal models and domain assumptions; interaction analysis

defines commitments.

Context and requirements analysis are typically performed iteratively: the correspond-

ing models are not isolated. Indeed, requirements models include links to contextual in-

formation. For example, domain assumptions are implication over context entities. Also,

the status of goals (active, started, done, failed) is characterized as contextual events

and states. Given the tight connection between these models, changes in the context

(requirements) model often requires to modify the requirements (context) model.

After requirements and context analysis are completed, Traceability Establishment is

performed. This task defines what to monitor at runtime in order to determine require-

ments satisfaction and violation. The objective of this step is to ensure traceability

links between implementation and requirements. In particular, requirements reflection

[Fin08, BWS+10] should be established to enable a system to be aware of its require-

ments. This step is carried out by associating a specification—in terms of monitorable

actions expressed over the context model—to goal model tasks. Traceability for commit-

ments means defining the mapping between domain-specific messages and their meaning

in terms of commitment operations. Communication via commitments might be enabled

by an API that keeps track of commitments status and enables commitments manipula-

tion.

After establishing traceability, the next steps are to select tolerance policies and to

define reconfiguration mechanisms. Task Tolerance Policies Selection specifies tolerance

policies for failures and under-performance. Some failures have to be addressed through

reconfiguration, some can always be tolerated, some can be tolerated under certain cir-

cumstances. Policy definition is first enacted at design-time, but in most cases policies

need to be redefined or adjusted at runtime. For instance, system administrators might

110 An architecture for self-adaptive software

realize that too many failures are considered, and the system is spending too much time

in generating or enacting new variants.

Task Reconfiguration Mechanisms Selection defines how failures should be addressed

by the architecture. The activity produces two output artefacts: (i) Compensation Plans

are intended to revert the effects of the failed strategies, and (ii) Reconfiguration Strate-

gies describe a possible alternative to achieve current goals. Both steps depend on the

actuation capabilities of the existing application: possible reactions are scenario-specific,

since the architecture needs to control actuators or communicate with specific agents.

4.5 Chapter summary

In this chapter we have presented a conceptual architecture to structure self-adaptive

software for STSs. In Section 4.1 we presented the principles for our architecture. In Sec-

tion 4.2 we described the logical view on the architecture. In Section 4.3 we described the

requirements models the architecture exploits; they are based on the modelling frame-

works to deal with variability we presented in Chapter 3. In Section 4.4 we provided

methodological guidance to support engineers in applying our architecture.

The main contribution of this chapter lies in the conceptual architecture we have pro-

posed. It has been devised after carefully identifying a set of basic principles: the focus

on adaptivity in open STSs, the autonomy and heterogeneity of subsystems, adaptation

based on a model-driven approach, and the usage of requirements-level abstractions. The

control loop of the architecture is based on a Monitor-Diagnose-Reconcile-Compensate

(MDRC) cycle: events in the environment are monitored; failures are diagnosed by check-

ing events against requirements models; a strategy to reconcile actual behaviour with

expected one is generated; finally, compensation actions are taken to enact the strategy.

The architecture supports the objectives of one agent. It enacts adaptation taking into

account the autonomy of participants in an STS. Compensation actions cannot force other

agents to enact plans (agents cannot be controlled); however, the architecture can remind

agents of their commitments or suggest them an alternative course of action. Other

compensation actions are controlling some actuator in the environment (unlike agents,

actuators are controllable) and negotiating the assignment of plans with other agents.

In addition, we have proposed possible requirements models that the architecture

can use at runtime. First, we refined the modelling languages for contextual and social

variability introduced in Chapter 3 with runtime extensions. Second, we introduced simple

languages to specify flexible plans and domain assumptions.

Chapter 5

Diagnosis and reconfiguration

algorithms

In this chapter we detail a set of algorithms that can be used in our architecture. The

algorithms we present apply to the requirements models introduced in Chapter 3 and

refined in Section 4.3. These algorithms demonstrate how the architecture can operate

to provide self-adaptation capabilities. Other algorithms can be devised to improve their

performance or to support different requirements models. These algorithms have been

implemented in the prototypes described in Chapter 6.

The chapter consists of three parts. Section 5.1 describes algorithms to perform goal,

plan, and commitment diagnosis. Section 5.2 introduces algorithms to generate possible

variants and to select the best variant. In particular, we present two algorithms based

on soft-goals and cost, respectively. Finally, in Section 5.3 we introduce some adaptation

tactics (patterns) that can be employed in STSs characterized by heavy social variability.

Acknowledgement. Section 5.1 is partially based on [DGM09a], while Section 5.3 ex-

tends [DCGM10].

5.1 Diagnosis algorithms

We describe diagnosis algorithms that check monitored events against the requirements

models presented in Chapter 3. Monitored events (the current behaviour of the system)

are compared to expected behaviour, which is expressed by the requirements models. A

failure occurs when (i) the monitored behaviour is not allowed (e.g. a patient has to heat

up her room, and she opens the window in winter); or (ii) expected behaviour does not

occur (e.g. a catering service committed to deliver breakfast within half an hour does not

deliver in time).

112 Diagnosis and reconfiguration algorithms

We split this section into three parts, each analysing a different kind of failure. Sec-

tion 5.1.1 describes diagnosis for goal failure; Section 5.1.2 focuses on plan failure; Sec-

tion 5.1.3 outlines how commitment violations are identified. We report on performance

through application to case studies and scalability analysis later in the thesis (Chapter 7).

5.1.1 Goal failure

Since supported agents are specified via goal models, goal failures should be detected.

Goals represent the business rationale of an agent. The goals of a software agent are

assigned to it by its stakeholders. Consider, for instance, a software agent that supports a

patient in a smart-home, e.g. it regularly checks the patient’s health. Failing in checking

her health corresponds to compromising the purpose of the system—providing prompt

detection of and quick response to health problems of the monitored patient.

goal(g, P) ∧ happened(activation evt(g, P), t)

∧ ¬done(g, P) ∧ ∄ gp, dec s.t. decomposed(gp, g, dec)
(i)

should do(g,P)

should do(g, P)
(ii)

visible(g,P)

goal(g, P) ∧ ¬done(g, P)

∧ ∃ gp s.t.

goal(gp, Pp) ∧ decomposed(gp, g, dec)

∧ visible(gp, Pp) ∧ holds(context cond(dec))

∧ ∀p ∈ P s.t. (∃ pp ∈ Pp s.t. name(p) = name(pp)),

value(p) = value(pp)
(iii)

visible(g,P)

plan(t, P) ∧ holds(pre cond(t, P)) ∧ ¬done(t, P)

∧ ∃ g s.t.

goal(g, Pp) ∧ means end(g, t, dec)

∧ holds(context cond(dec)) ∧ visible(g, Pp)

∧ ∀p ∈ P s.t. (∃ pp ∈ Pp s.t. name(p) = name(pp)),

value(p) = value(pp)
(iv)

visible(t,P)

Table 5.1: Expected and visible goals and plans for an agent

To detect when goals fail we first need to identify which are the goals to achieve, and

the sub-goals that can be achieved, in the current context. For this purpose, we introduce

two predicates to denote goals that should be achieved (should do) and goals/plans that

can be achieved/executed (visible). The semantics for these predicates is given in Table 5.1

Diagnosis algorithms 113

in first-order logic.

This formalization supports multiple instances for the same goal class. At design-

time, goal models contain goal classes; at runtime, these classes are instantiated. Goals

are parametric: their instances differ for the actual parameters that bind to the formal

parameters. A patient’s goal Have breakfast is repeated every day with different values

for the parameter day, and it has different instances for each patient living in the same

smart-home. Let’s explain the rules in Table 5.1.

− Rule (i) defines when a top-level goal—i.e. a goal having no parent—should be

achieved. This happens if g is a goal instance with actual parameters P , it has not

been achieved so far, the activation event has occurred, and there exists no goal gp
that is AND/OR-decomposed into g.

− Rule (ii) is a general axiom saying that whenever a goal instance should be achieved,

it is also visible (i.e., it is compatible with the current context).

− Rule (iii) defines when decomposed goals are visible. A goal instance g with param-

eter set P can be achieved if it has not been achieved so far and exists an achievable

goal gp with parameters Pp that is decomposed into g, the context condition on the

decomposition holds, and the actual parameters of g are compatible with the actual

parameters of gp.

− Rule (iv) defines visibility for plans that are linked to goals via means-end decompo-

sitions. This rule is very similar ro rule (iii), with two main differences: plans are also

characterized by a precondition—which should hold to make the plan executable—

and are connected to goals through means-end.

Figure 5.1: An example from the smart-home scenario to show visibility

Figure 5.1 exemplifies the notion of visibility through an example from the smart-

home scenario. The figure shows a top-level goal Take medicine, which is activated after

114 Diagnosis and reconfiguration algorithms

the patient has breakfast. The same patient can have multiple instances of that goal

at the same time, one for each medicine he should take. In order to take medicine, the

patient collects the medicine, prepares the medicine, and assumes it. The medicine has

to be prepared only if it should be dissolved in water (context c1 holds). Suppose the

patient has had breakfast, and thus he should take a medicine that is to be dissolved in

water. In such context, goal Take medicine should be achieved, all sub-goals and tasks are

visible, expect for Swallow. Indeed, the medicine is not to swallow. If the medicine were

to swallow and not to dissolve in water, goal Prepare medicine and task Drink would not

be visible.

Algorithm 5.1 Identification of goal and plan failures
DiagnoseGoal(GoalPlan g)

1 GoalPlan [] failure, started, done, children

2 g.status← uncommitted

3 if IsGoalDecomposed(g)

4 then children← GetSubgoals(g)

5 for each gi in children do 〈failure, started, done〉 += DiagnoseGoal(gi)

6 if ∀gi in children, gi.status = success

7 then g.status← success

8 done += {g}

9 else children← GetMeansToEnd(g)

10 if g.status = uncommitted

11 then for each gi in children

12 do if !gi.visible then continue

13 if IsAndDecomposed(g)

14 then if gi.status = fail

15 then g.status← fail

16 break

17 else if gi.status = in progress then g.status← in progress

18 else if IsMeansEndDecomposed(g) then gi.status← CheckPlan(gi,g)

19 switch gi.status

20 case success :

21 g.status← success

22 done += {g}

23 break

24 case in progress :

25 g.status← in progress

26 case fail :

27 failure += {gi}

28 if g.status = uncommitted then g.status← fail

29 if g.status = in progress then started += {g}

30 if (g.should do and g.status = uncommitted and Timeout(g)) then g.status← fail

31 if g.status = fail then failure += {g}

32 return 〈failure, started, done〉

Diagnosis algorithms 115

Algorithm 5.1 (DiagnoseGoal) applies rules (i)-(iv) to diagnose goals and plans fail-

ures. DiagnoseGoal is invoked for each top-level goal instance the agent should achieve.

Internally, it is recursively invoked to consider sub-goals and plans in the considered goal

tree. The algorithm declares the arrays to contain failed, started and done goals/plans,

also one array for the sub-goals or means-end decomposed tasks (children). Then (line 2)

the status of goal g is set to uncommitted, since no information is initially available.

Lines 3-9 define the recursive structure of the algorithm. If the goal is AND/OR-

decomposed (line 3), the array children is initialized to contain all the sub-goals of g

(line 4), and the function DiagnoseGoal is recursively called for each sub-goal (line 5),

updating the goal arrays. If the status of all the sub-goals is success, then the status

of g is also set to success, and g is added to the array done (lines 6-8). If the goal is

means-end decomposed (line 9), children is assigned to the set of plans that are means to

achieve g.

If the status of g is still uncommitted (line 10), each sub-goal (or means-end decom-

posed plan) in children is examined (lines 11-28). If a children gi is not visible, the algo-

rithm does not examine the goal further and continues with the next element in children;

indeed, invisible goals cannot be achieved in the current context. If g is AND-decomposed

(lines 13-17), two cases are handled: if gi failed, then the status of is g is set to fail and

no other element in children has to be examined (lines 14-16); else if gi is in progress, the

status of g is set to in progress (line 17).

If g is OR-decomposed or means-end decomposed (lines 18-28), it succeeds if at least

one sub-goal (or plan) succeeds. If g is means-end decomposed, the algorithm calls

CheckPlan (Algorithm 5.2 in Section 5.1.2) to diagnose plan status (line 18). If the

status of gi is success, the status of g is also set to success, g is added to the set of

achieved goals, and the cycle is terminated (lines 20-23). If gi is in progress, the status of

g is set to in progress (lines 24-25). If the status of gi is fail, gi is added to the set of

failures, and, if g is still uncommitted, its status is set to fail (lines 26-28).

If the loop is over and g is in progress, g is added to the set of started goals (line

29). If g is a top-level goal to achieve, its status is uncommitted, and the timeout expired,

then the status of g is set to fail because the agent took no commitment for g (line 30).

Notice that commitment here refers to a psychological commitment, and not to social

commitments between agents. If the status of g is fail, it is added to the list of failures

(line 31). The algorithm returns failed, started and succeeded goals (line 32).

We illustrate now how the algorithm works on the example in Figure 5.1. Suppose the

status of task Take from closet is success, context c1 is false, c2 is true, and the status of

task Drink is success. Then, the status of goals Collect medicine and Assume medicine is

success (see line 7). Since the state of both visible sub-goals of Take medicine is success, the

116 Diagnosis and reconfiguration algorithms

top-level goal is in state success too. Consider now a different scenario, where contexts

c1 and c2 are true, the status of Take from closet, Prepare medicine, Drink are success,

failed, and in progress, respectively. Here, the failure of Prepare medicine—which is now

visible—is propagated to the top-level goal, whose status is therefore failed (see line 15).

If context c1 were false, the status of Take medicine would be in progress (see line 17), for

the failure of Prepare medicine would have no effect, given that the goal is not visible.

5.1.2 Plan failure

A plan is a course of action that an agent carries out to achieve a goal. In our contex-

tual goal modelling framework (Section 3.3.3), plans are linked to goals via means-end

relations. In the commitment-based framework (Section 3.4.2), plans are abstracted—to

emphasize the social aspects of the framework—by the concept of capability, but they

exist and are performed by agents when they use their capabilities.

We refer here to the plan specification formalism we introduced in Section 4.3 and,

specifically, to the statechart of Figure 4.5. A certain plan is idle (uncommitted) if

no action in its specification has been performed; once actions in the specification are

executed, the plan status can be in progress (in progress) or failed (fail). Failure

occurs if an action is executed and its critical precondition was not true. If all actions are

executed correctly, the state of the plan turns to success. If an action time limit expires,

the status turns to timeout, which is a special kind of failure.

Algorithm 5.2 Plan execution diagnosis
CheckPlan(GoalPlan means, GoalPlan end)

1 int start time← GetActivationTime(end)

2 Event [] events← GetSpecification(means)

3 plan status← uncommitted

4 for each evt in events

5 do if ∃time1 > start time s.t. Happened(evt, time1)

6 then if time1 > start time+ evt.time limit

7 then return fail

8 boolean done← true

9 for each prec in evt.preconditions

10 do if !HoldsAt(prec, time1)

11 then if IsCritical(prec)

12 then return fail

13 else done← false

14 if plan status = uncommitted and done

15 then plan status← success

16 else if plan status = success

17 then plan status← in progress

18 return plan status

Diagnosis algorithms 117

Algorithm 5.2 (CheckPlan) describes diagnosis for plans. Its parameters are a plan

and a goal linked by a means-end decomposition. Lines 1-3 initialize the variables used

by the algorithm: start time contains the activation time of the goal; events is the set of

events that correspond to the execution of actions in the plan specification; and plan status

is the return value of the algorithm, initially set to uncommitted. All the events in the

specification are examined (for cycle in lines 4-17). If the examined event has happened

after the activation of the goal (lines 5-15), the event is further analysed. If the event

happened after the event time limit, the algorithm returns failure (lines 6-7); otherwise,

the event preconditions are examined (lines 8-13). Line 8 initializes the variable done to

true. If the precondition does not hold (line 10) and it is critical (line 11) the algorithm

returns failure (line 12), whereas if it is not critical the variable done is set to false.

After preconditions are checked, if the plan is still uncommitted and the variable done

is still true (line 14), the plan status is set to success (line 15). If the event has not

happened after goal activation and the plan status is success (line 16), the plan status

is set to in progress, since not all events happened. Line 18 returns the plan status if

the algorithm has not returned failures in the cycle.

Let’s exemplify this algorithm with scenarios inspired by Figure 5.1:

− Consider plan Take medicine from closet, whose specification is as follows: (a) closet

opened [time limit=4 minutes]; and (b) medicine removed, if (critical precondition)

closet opened [time limit=6 minutes]. Suppose event “medicine removed” happens

after 3 minutes, with the closet currently closed. In such case, the algorithm returns

status “failure” in line 12, for the critical precondition for action (b) does not hold.

Suppose now event “closet opened” happens one minute before “medicine removed”.

In such situation, the plan status is success, for all actions happen without violating

critical preconditions and within time limits. An example of plan in progress is when

the closet is opened at minute 3 and the medicine has not been removed yet.

− Take now plan Drink specified by action “glass emptied”, with critical precondition

“medicine dissolved”, and time limit 3 minutes. Suppose that event “glass emptied”

happens after four minutes; this leads to a timeout failure. Consider an alternative

scenario wherein event “glass emptied” happens after two minutes, but the medicine

has not been dissolved. Again, the action fails (status failure). If event “medicine

dissolved” happened at minute 2, then the status would be success.

5.1.3 Commitment violation

Commitments are the abstraction our framework exploits to represent the interactions

between different agents. From the perspective of one agent, commitments are the social

118 Diagnosis and reconfiguration algorithms

relationships that it has made to or taken from other agents to achieve its current goals.

An agent needs to identify promptly commitments violations, since they could threaten

its current goals and, thus, require the agent to adapt.

We distinguish between two major types of commitment violation: explicit and im-

plicit. Both violations are captured in the statechart for commitment evolution that we

presented in Figure 4.6:

− An explicit violation occurs when a debtor cancels a commitment that he has made

before. This cancellation is the effect of a message sent by the debtor to the creditor.

This message is bound to commitment cancellation by the mapping between domain-

specific messages and commitment operations. Such mapping exists in the socio-legal

context where the commitment is enacted. Also notice that it is possible that the

socio-legal context introduces penalties to debtors violating their commitments or

other types of compensation actions (e.g. new commitments).

− An implicit violation occurs when an unconditional commitment is not achieved

within the commitment time limit. Such violation is implicit because it is not origi-

nated by an exchange of messages. To detect implicit violations, there should exist a

default time clock in the socio-legal context where commitments are enacted. Agents

cannot question the validity of such time clock.

Let’s exemplify these violations with the aid of the smart-home STS. Suppose a doctor

Doc1 commits to the health service Health that, if the patient Jim in the smart-home has

a fever, then the doctor will visit him within 24 hours. This is encoded as a commitment

C(Doc1,Health, jimHasFever, jimVisited), with a 24 hours time limit. Such commitment

can be violated in various circumstances. First, Doc1 might send a message to the health

service saying that he is sick. The domain-specific interpretation of such message is a

cancellation that does not imply penalties but defines a compensation action, the com-

mitment of Doc1 to find another doctor who can visit Jim. Another explicit violation is

Doc1 sending a message to the health service saying that he cannot arrive in time. In

such case, a penalty might be applied. Implicit violations happen when the commitments

time limits expire: Doc1 received a message saying that Jim is feverish, and 24 hours have

passed since the receipt of such message.

5.2 Reconfiguration algorithms

We propose two algorithms to identify possible variants and to select one of them. These

activities are fundamental part of any adaptive control loop, and output the variant to be

Reconfiguration algorithms 119

enacted. These algorithms introduce general criteria that an agent can exploit to generate

variants and to select the most promising one.

The two proposed algorithms focus on different aspects of variant generation and selec-

tion. The first algorithm (Section 5.2.1) focuses on the usage of soft-goals—that represent

qualitative objectives—as a criteria di select the best plan to achieve the agent’s current

goals. The second algorithm (Section 5.2.2) exploits commitments to define variants that

involve interaction with other agents, and chooses the variant that costs the least.

5.2.1 Soft-goal based

Our modelling frameworks represent correct behaviour of an agent in terms of a goal

tree, where high-level goals are AND/OR-refined until concrete means (tasks) to achieve

these goals are identified. AI planning and replanning algorithms are a good candidate to

identify possible plans for goal achievement. There are three main planning mechanisms

to identify alternative variants in goal models in response to a specific failure:

− Backtracking : the goal tree is explored bottom-up in order to find an alternative

plan. The principle is that options in the same tree branch are preferable to op-

tions in other branches. Backtracking preserves stability—it ensures that the new

variant differs as little as possible from the current one—but does not guarantee the

optimization of cross-cutting concerns, such as soft-goals. We have experimented

this approach in [DGM09b], where we apply this technique by extending the agent-

oriented programming language Jason [BWH07]. Backtracking for failure handling

is extensively discussed by Sardina and Padgham [SP07].

− Tree planning : this class of mechanisms corresponds to planning from scratch in a

hierarchical task network. Tree planning identifies the best solution in the goal tree

(based on the metric used to determine the quality of a solution), regardless of how

much the new variant differs from the previous one.

− Tree replanning : this approach combines tree planning and variant stability. Al-

gorithms in this category do not only consider plan optimality, but also minimize

changes from the previous configuration. The impact of each of these two factors

(optimality and stability) can be balanced depending on the agent’s preferences.

The algorithm we present belongs to the replanning category. Plan optimality is

determined via contribution to soft-goals, while stability considers the distance between

the old and the new variant computed as the compensation cost for the plans that belong

to the current variant and not to the new one. The reconfiguration process is enacted by

Algorithms 5.3 and 5.4, which perform variant generation and selection, respectively.

120 Diagnosis and reconfiguration algorithms

Algorithm 5.3 Variants generation
GenerateAlternatives(Agent ag)

1 PlanSet [][] options← null

2 for each g ∈ GetShouldDo(ag)

3 do PlanSet [] opts← GeneratePlans(g)

4 options.Add(opts)

5 PlanSet [][] cartProduct← options[1]× . . .× options[n]

6 Variant [] variants← null

7 for option ∈ cartProduct

8 do Variant v

9 for planSet ∈ option

10 do v.AddPlanSet(planSet)

11 variants.Add(v)

12 return variants

Algorithm 5.3 takes as input the supported agent in the STS, and generates all alter-

native variants that satisfy the current goals of that agent. Line 1 initializes to null the

variable options that will contain the alternatives for top-level goals. options is an array

of arrays of plan sets. One plan set is an applicable strategy to achieve a top-level goal;

an array of plan sets contains all strategies to achieve a top-level goal; and an array of

arrays of plan sets contains all strategies to achieve a set of top-level goals.

The for cycle in lines 2-4 iterates over all the current top-level goals of the agent—based

on the semantics given in Table 5.1—and populates the variable options with the possible

variants to achieve the current goals. Line 3 creates an array of plan sets that contains

all possible plans for a specific top-level goal. The invoked function GeneratePlans

explores the AND/OR goal tree and identifies all valid minimal plans. Minimality means

that, whenever an OR-decomposition is encountered, only one sub-goal is selected. In

other words, OR-decompositions are treated here as XORs. In line 4 the algorithm adds

the possible plans for the examined top-level goal to the variable options.

As the cycle terminates, the variable cartProduct is initialized to the Cartesian product

of the sets in options ; in such a way, each array of plansets in cartProduct is an applicable

plan to achieve all top-level goals (line 5). Line 6 initializes the variable variants to null;

this variable is simply a data structure that allows for simpler handling of alternative than

cartProduct. Lines 7-11 populate variants : for each option (line 7) a Variant is declared,

the plansets in that option are added to the variant (lines 9-10), and the variant is added

to variants. Once the array of variants is populated, the algorithm returns it.

We use the example from the smart-home STS shown in Figure 5.2 to illustrate variant

generation and selection. The patient has two top-level goals. Both goals have one active

instance: he wants to watch a movie and to call his daughter. The former goal is AND-

Reconfiguration algorithms 121

Figure 5.2: An example from the smart-home scenario to show variant generation and selection

decomposed to two sub-goals: the patient has to sit in front of the TV and to choose

a movie. In case he is already sitting in front of the TV (context c1 holds), the first

sub-goal need not be reached. To sit in front of the TV, two plans are possible: sit on

the wheelchair or sit on the sofa. The contributions to soft-goals tell that the first option

requires more effort (unless he is already sitting) and is less comfortable. To choose a

movie, the patient can either select a TV movie or watch a DVD. These options have

different contributions to soft-goal Variety of choice: a TV movie is better if the TV has

on-demand features; otherwise, watching a DVD is preferable. To achieve the other top-

level goal Call daughter the patient can either use his mobile phone or the land-line. Using

a mobile phone is more comfortable, while using the land-line requires less effort.

Let’s see how Algorithm 5.3 applies to this scenario. The for cycle in lines 2-4 iterates

over the two active top-level goals, and populates the array options as follows:

options[1] = {sit on wheelchair, select TV movie}, {sit on wheelchair, watch DVD},

{sit on sofa, select TV movie}, {sit on sofa, watch DVD}

options[2] = {use mobile phone}, {use landline}

Then, the algorithm computes the Cartesian product of the elements of options, and

populates variable cartProduct as follows:

cartProduct[1] = {sit on wheelchair, select TV movie}, {use mobile phone}

cartProduct[2] = {sit on wheelchair, select TV movie}, {use landline}

cartProduct[3] = {sit on wheelchair, watch DVD}, {use mobile phone}

122 Diagnosis and reconfiguration algorithms

cartProduct[4] = {sit on wheelchair, watch DVD}, {use landline}

cartProduct[5] = {sit on sofa, select TV movie}, {use mobile phone}

cartProduct[6] = {sit on sofa, select TV movie}, {use landline}

cartProduct[7] = {sit on sofa, watch DVD}, {use mobile phone}

cartProduct[8] = {sit on sofa, watch DVD}, {use landline}

Once cartProduct is initialized, lines 6-11 copy its content into variants, so that the

generated variants can be easily processed by the variant selection algorithm.

Algorithm 5.4 Selection of the best reconfiguration variant
selectAlternative(Variant [] alt,Plan [] failed, started, done)

1 for each v in alt

2 do v.cost←
∑

p∈failed
p.compCost

3 for each sp in started

4 do if p in GetAllPlans(v)

5 then v.cost += p.compCost

6 for each gt in v.goalTrees

7 do for each pl in gt.plans

8 do int contrib, totPriority← 0

9 for each c in pl.contribs

10 do contrib += c.val ∗ c.softgoal.priority

11 totPriority += c.softgoal.priority

12 contrib← contrib/totPriority

13 v.contrib += contrib/Size(gt.plans)

14 if pl not in started ∪ done

15 then v.cost += GetBestReaction(pl)

16 minCost←min(v.cost | v ∈ alt)

17 maxCost←max(v.cost | v ∈ alt)

18 minCont←min(v.contrib | v ∈ alt)

19 maxCont←max(v.contrib | v ∈ alt)

20 bestVal← −∞

21 bestVariant← null

22 for each v in alt

23 do nCost← (v.cost−minCost)/(maxCost−minCost)

24 nCont← (v.contrib−minCont)/(maxCont−minCont)

25 if GetAllPlans(v) ∩ failed 6= ∅

26 then varValue← varValue− 4

27 varValue← varValue+ nCont− nCost

28 if varValue > bestVal

29 then bestVal← varValue

30 bestVariant← v

31 return bestVariant

Algorithm 5.4 selects one variant from a set of variants. Its input consists of an array

of variants alt—like that generated by Algorithm 5.3—and three arrays of plans with

Reconfiguration algorithms 123

self-explanatory names: failed, started, and done. The for cycle in lines 1-15 computes

the cost and the contribution to soft-goals for each variant in alt.

Lines 2-5 determine the cost of the examined variant, which corresponds to the sum

of the compensation cost for failed plans (we assume that each failed plan has to be

compensated) and the compensation cost for started plans that will not be in the new

configuration. Compensation cost refers to the actions needed to revert or nullify the

effects of a failed (or partially executed) plan.

Lines 6-15 iterate the goal trees in the variant and compute contribution to soft-

goals. Line 7 iterates all plans in the goal tree, line 8 initializes the variables contrib

and totPriority used in the cycle, whereas line 9 iterates all the soft-goals the examined

plan contributes to. In line 10, the contribution value from the plan to the soft-goal is

multiplied by the soft-goal priority, and the result is added to variable contrib.

In line 11, the soft-goal priority is added to the total priority for the considered plan.

Then (line 12) the plan contribution is divided by the total priority to compute the

average soft-goal contribution for the examined plan, and (line 13) the contribution value

for the whole variant is updated. Lines 14-15 update the reconfiguration cost by adding the

minimum reaction cost for the plans that are not started nor done (GetBestReaction)

if multiple reactions are available (e.g., both task assignment and system pushing).

Lines 16-19 initialize the variables that contain the minimum/maximum variant cost

(16-17) and the minimum/maximum contribution (18-19). Lines 20-21 initialize the vari-

able to contain the best value to −∞ and the best variant to null. The for cycle in lines

22-30 performs a min-max normalization of costs and contributions in the [−1,+1] range.

This is needed to make the two factors comparable; in such a way, variant selection gives

equal weight to both factors. Lines 23 and 24 compute the normalized value for a variant’s

cost and contribution, respectively.

Line 25 deals with variants that contain a failed plan, and makes any variant without

failed plans preferable to all variants including failed plans. The variant value (line 27) is

the normalized contribution minus the normalized cost. Lines 28-30 update the variable

containing the best variant if the examined variant is better than all variants examined

so far. Line 31 returns the best variant.

Let’s now illustrate Algorithm 5.5 on the example in Figure 5.2. Suppose the current

variant includes plans use mobile phone, sit on wheelchair, and select TV movie; also suppose

that sit on wheelchair is failed because the patient fell down while sitting, and that select

TV movie is in progress. Let the array of variants alt contain the eight variants that

were produced by the Cartesian product in Algorithm 5.3. The cycle of lines 2-15 of the

variant selection algorithm iterates over all variants and determines, for each variant, (i)

the average soft-goal contribution; and (ii) the cost to compensate the effects of the failed

124 Diagnosis and reconfiguration algorithms

and started plans. The results of this phase are as shown in the following table, whose

columns represent the variant number (Var), the compensation cost (CCost), the reaction

cost (RCost), the overall cost (Cost), and the contribution to soft-goals (Contrib):

Var CCost RCost Cost Contrib

1 10 9 19 0.167

2 10 8 18 0.067

3 10 11 21 0.433

4 10 10 20 0.333

5 10 11 21 0.083

6 10 10 20 -0.027

7 10 13 23 0.350

8 10 12 22 0.250

The bold values in the table highlight the minimum and maximum costs and soft-goal

contributions. Now, Algorithm 5.4 enters the cycle of lines 22-30 to identify the best

variant. For each variant, it computes a normalized value that considers contribution and

cost. In the example, this leads to the following results:

Variant 1 2 3 4 5 6 7 8

Value -4.007 -3.907 -3.600 -3.617 -0.361 -0.4 -0.181 -0.199

The best variant is the seventh. Despite of its cost (which is the highest overall), its

contribution to soft-goals makes it preferable to others. This variant is radically different

from the current one, for it involves sitting on sofa and watching a DVD, rather than

sitting on wheelchair and selecting a TV movie.

5.2.2 A cost-based algorithm for adaptation with commitments

We present an adaptation algorithm that considers not only internal capabilities of the

considered agent, i.e. its plans, but also (and mostly) the social relationships with other

agents. This algorithm is based on the conceptual model proposed in Section 3.4.2 to

deal with social variability. Variants are computed by combining capabilities with com-

mitments the agent can make to and get from other agents.

Like the algorithm presented in Section 5.2.1, this approach consists of variant gen-

eration and variant selection. We do not describe variant generation here; such activity

consists of finding all variants that satisfy the semantics presented in Definition 3.16. We

provide a concrete way to generate variants in Chapter 6 (Algorithm 6.1). There, our

prototype encodes the variant generation problem to a satisfiability problem and feeds an

external reasoner based on SAT-solving techniques.

We focus here on the post-processing that is carried out after variant generation. Such

post-processing consists of filtering the generated variants and selecting the best variant.

Reconfiguration algorithms 125

Filtering is needed to deal with negative contributions, since the external reasoner used

for variant generation deals only with Horn clauses, and negative contributions cannot

be mapped to Horn clauses. Additionally, the algorithm performs further processing to

consider the adaptation policy defined by system administrators. Our algorithm supports

policies including the following factors:

− Variant selection criteria refers to the algorithm to determine the best variant. We

currently support two algorithms. The first one (overallCost) considers the overall

variant cost, and selects the variant having minimal total cost. The second one

(delta) takes into account the current variant, and computes the cost as the delta

between the new possible variant and the current one. The first criteria is similar to

planning from scratch, whereas the second one is a replanning algorithm.

− Variant exclusion factors specify typical criteria an agent could consider to rule

out some variants from the generated ones. First, an agent might want a different

solution (noRetry). Selecting such option corresponds to preventing a retry strategy

(i.e. it forces an adaptation, as in Definition 3.3). Second, the agent might want

to avoid threatened capabilities and commitments (avoidThreatened). Also, failed

capabilities and violated commitments might be excluded (avoidFailed).

− Compensation cost represents how expensive is for an agent to revert/nullify the

effects of a capability that is currently exploited and that will not be in the next

variant. Compensation cost is considered when determining variant cost, if such

option is selected (compensationCost).

− Third-party commitments are those that do not involve the agent neither as debtor

nor as creditor (useThirdPartyCommitments). The agent can exploit these com-

mitments to generate variants. The rationale is that, if the agent brings about the

antecedent and communicates that to the debtor, the debtor would be uncondi-

tionally committed for the consequent to the creditor. Notice that such option is

considered during variant generation, not during selection. It will appear in Algo-

rithm 6.2 (Chapter 6).

− Opportunity threshold defines when an opportunity should be adopted. The rationale

behind this option is that, if the current variant is not at risk, the agent needs a clear

incentive to switch to another variant. If the variant selection strategy is chosen,

this threshold is how less the new variant would cost, in percentage. If the delta

strategy is chosen, opportunities are taken only if their delta is lower than a fixed

value.

126 Diagnosis and reconfiguration algorithms

Algorithm 5.5 Cost-based variant selection
FilterVariants(Variant [] variants, Agent ag,Policy pol, Event [] triggers, Variant currVar)

1 Variant [] toReturn← null

2 for each Variant v ∈ variants

3 do if (pol.noRetry and v = currVar) then goToNextV ariant

4 SoW [] supported← ComputeSupported(ag, v)

5 for each Goal g ∈ v.capabilities

6 do if (pol.avoidThreatened and g.status = threatened) or (pol.avoidFailed and g.status = failed)

7 then goToNextV ariant

8 if pol.simType = overallcost

9 then v.solCost← v.solCost+ g.cost

10 else if g.status = idle or g.status = failed

11 then v.solCost← v.solCost+ g.cost

12 for each Commitment c ∈ v.commitments

13 do if (pol.avoidThreatened and c.status = threatened) or (pol.avoidFailed and c.status = violated)

14 then goToNextV ariant

15 if pol.simType = overallcost

16 then v.solCost← v.solCost+ c.cost

17 else if c.status = idle

18 then v.solCost← v.solCost+ c.cost

19 if ∄Event e ∈ triggers : e.type = threat

20 then if not OpportunityExploitable(v, pol) then continue

21 SoW [] scoped← null

22 for each SoW s ∈ supported

23 do if s /∈ scoped then PropagateSupport(s, scoped)

24 for each Contribution c ∈ GetNegContributions(ag)

25 do if c.from ∈ supported and c.to ∈ supported

26 then PropagateNegative(c.to, supported)

27 if not SupportsQuery(supported, ag.currentGoals) then continue

28 if pol.considerCompensation

29 then for each SoW s ∈ currVar.supported

30 do if s /∈ supported then v.solCost← v.solCost+ s.compensationCost

31 for each Commitment c ∈ currVar.commitments

32 do if c /∈ v.commitments then v.solCost← v.solCost+ c.compensationCost

33 if ∄Event e ∈ triggers : e.type = threat

34 then if not OpportunityExploitable(v, pol) then continue

35 AddElement(toReturn, v)

36 return toReturn

Function FilterVariants (Algorithm 5.5) filters the generated variants to exclude

those that do not match the adaptation policy. Its input consists of the set of variants

to be filtered (variants), the agent ag, the adaptation policy pol, the events that have

triggered the adaptation process (trigger), and the current variant currVar.

Line 1 defines the array to contain the filtered variants (toReturn). The cycle of lines

2-34 iterates over the input variants and filters them, selecting only those matching the

Reconfiguration algorithms 127

adaptation policy. Line 3 enacts the noRetry policy: if the generated variant is like

the current one, the variant is ignored and the cycle continues with the next variant.

Line 4 calls algorithm ComputeSupported to derive the states of the world that the

considered variant supports, i.e. those that will eventually hold if the variant is enacted

correctly and no unexpected changes in the world occur. This algorithm is formalized in

Algorithm 5.6 and will be described later in this section.

The for cycle of lines 5-11 begins variant cost computation by considering the involved

capabilities. The capabilities are iterated. For each capability, different options are possi-

ble. If the adaptation policy excludes threatened (failed) capabilities, and the examined

capability is threatened (failed), the current variant is ruled out and the variants iteration

cycle continues with the next variant (lines 6-7). If this is not the case, cost computation

is performed. If the policy is based on the overall variant cost, the cost of the capability

is added to the variant cost (lines 8-9). If the delta policy is chosen, the cost is added

only if the capability is currently not exploited or failed (lines 10-11).

The cycle of lines 12-18 adds the cost of the commitments in the variant. Lines 13-14

rule out the variant if the commitment is violated (threatened) and the adaptation policy

specifies to exclude variants involving violated (threatened) commitments. Lines 15-18

update the variant cost: if the overall cost policy is chosen, the cost is always added; if

the delta policy is chosen, the cost is added only if the commitment is not active. Note

how violated commitments do not imply additional costs, for no plan has to be carried

out by the considered agent. Relying on violated commitments is a sensible option if a

delay is expected, while it is very unlikely to succeed in case of cancellation.

Lines 19-20 consider variant filtering in presence of opportunities only, i.e. when

adaptation is not triggered by any threat. In such case, the variant is not selected if the

opportunity does not provide a significant advantage over the current variant. This is

verified by invoking function OpportunityExploitable (Algorithm 5.7), that we will

describe later in this section.

Lines 21-23 populate the array of states of the world scoped. For each state of the

world supported by the current variant, the function PropagateSupport is invoked

to compute the scoped states of the world, according to the semantics of scoped we

provided in Definition 3.15. Then, lines 24-26 take into account negative contributions

between scoped states of the world by invoking PropagateNegative, which will remove

from the set of supported goals those having an incoming negative contribution from a

supported goal. Both propagation algorithms are described later in this section.

If the updated set of supported states of the world does not satisfy the goal query—the

goals the agent wants to achieve—the variant is not selected (line 27). If the adaptation

policy includes compensation cost (line 28), the variant cost is updated with the com-

128 Diagnosis and reconfiguration algorithms

pensation cost for the goals and commitments that are in the current variant and are not

in the next possible variant (lines 29-32). Lines 33-34 perform the same check done in

lines 18-19 for adaptations triggered by opportunities. Repeating the analysis is necessary

because the compensation cost has been added, thus the variant might have become not

exploitable now.

At the end of the cycle the current variant is added to the set of filtered variants (line

35), since no rule in the policy prevented it from being selected. Line 36 concludes the

algorithm by returning the filtered variants.

Algorithm 5.6 Computation of supported goals in a variant
ComputeSupported(Agent ag,Variant var)

1 SoW [] supported← null

2 for each Goal g ∈ var.capabilities

3 do AddElement(supported,GetState(g))

4 for each SoW s ∈ var.states

5 do AddElement(supported, s)

6 for each Commitment c ∈ var.commitments

7 do if c.debtor = ag

8 then AddElement(supported,GetSymbols(c.antecedent))

9 else AddElement(supported,GetSymbols(c.consequent))

10 return supported

Algorithm 5.6 describes function ComputeSupported. Its input consists of an agent

and a variant. Line 1 initializes the array to contain supported states of the world. Lines

2-3 iterate over the capabilities in the variant, and adds to the set of supported states

those corresponding to the capabilities. Lines 4-5 adds the states of the world that already

hold to the set of supported states. Lines 6-9 iterate over the commitments in the variant.

If the agent plays debtor in the commitment, all symbols in the antecedent are added to

the set of supported states. If the agent plays creditor, all symbols in the consequent are

added. Finally (line 10), the algorithm returns the supported states.

Algorithm 5.7 Checking if an opportunity should be exploited
OpportunityExploitable(Variant var, Policy pol)

1 if pol.threshold = 0 then return true

2 if pol.simType = overallcost

3 then if var.solcost < (currentsolcost− pol.threshold%)

4 then return true

5 else if var.solcost < pol.delta

6 then return true

7 return false

Algorithm 5.7 (OpportunityExploitable) is a boolean function that determines

Reconfiguration algorithms 129

if a certain variant is exploitable as an opportunity, by checking if its cost matches the

adaptation policy. If no threshold is specified, then the variant is always exploitable

(line 1). Otherwise, two cases are possible: (a) if the policy considers the overall cost,

the variant can be exploited if its cost is minor than the current solution variant minus

the specified threshold percentage (lines 2-4); (b) if delta cost is selected, the variant is

exploitable if its cost is minor than the specified delta threshold (lines 5-6). If none of

these conditions holds, the variant cannot be exploited (line 7).

Algorithm 5.8 Support propagation in a goal model
PropagateSupport(SoW state, SoW [] scoped)

1 AddTo(scoped, state)

2 if IsGoal(state) and GetParent(state) 6= null and GetParent(state) /∈ scoped

3 then Goal parent← GetParent(state)

4 if parent.andDecomposed

5 then if ∀Goal g ∈ parent.children : g ∈ scoped

6 then PropagateSupport(parent, scoped)

7 else PropagateSupport(parent, scoped)

8 for each SoW state1 ∈ GetPosContributionsFrom(state)

9 do if state1 /∈ scoped then PropagateSupport(state1, scoped)

Algorithm 5.8 (PropagateSupport) propagates support. It is a recursive algorithm

that updates its input parameter scoped starting from the input state of the world. First,

the state itself is added to the set of supported states (line 1). Then, if the state cor-

responds to a goal, it is not a root level goal, and the parent does not already belong

to scoped, support is propagated bottom-up in the goal tree (lines 2-7). If the parent is

AND-decomposed (line 4), support is propagated only if all its children goals are sup-

ported (lines 5-6). If the parent is OR-decomposed, support is propagated since the

considered goal (its child) is supported (line 7). Lines 8-9 perform support propagation

for all goals that are positively contributed by the considered goal.

Algorithm 5.9 Negative contribution propagation in a goal model
PropagateNegative(SoW from, SoW [] supported)

1 if from ∈ supported

2 then RemoveElement(supported, from)

3 if IsGoal(state) and GetParent(state) 6= null and GetParent(state) ∈ supported

4 then Goal parent← GetParent(state)

5 if parent.orDecomposed

6 then if ∄Goal g ∈ parent.children : g ∈ supported

7 then PropagateNegative(parent, supported)

8 else PropagateNegative(parent, supported)

Algorithm 5.9 (PropagateNegative) propagates the effect of negative contributions

130 Diagnosis and reconfiguration algorithms

in a goal model. Its input parameters are a state of the world from and the set of

supported states of the world. The algorithm is initially invoked for goals that have

negative contributions to other states. If the considered state does not belong to such

set, the algorithm terminates. Otherwise, the considered state is removed (line 2) and

further processing is performed (lines 3-8). If the state corresponds to a goal, it is not a

top-level goal, and its parent belongs to supported (line 3), two options are possible. If

the parent is OR-decomposed and no sub-goal is supported, the algorithm is recursively

invoked on the parent (lines 5-7). If the parent is AND-decomposed, the algorithm is

always recursively invoked.

Current commitments: C2,C3

Element Acost Ccost

hydrantNeedNotified 6 4

pipeConnected 17 8

C1 15 7

C2 8 0

C3 13 20

C4 31 16

(a) (b)

C1 = C(Brigade1, Jim, hydrantNeedNotified, hydrantUsageAuthorized)

C2 = C(Jim,Brigade1, tankerServicePaid, tankerTruckUsed)

C3 = C(Tanker1, Jim, tankerServicePaid, fireReachedByTruck)

C4 = C(Tanker2, Jim, tankerServicePaid, fireReachedByTruck)

(c)

Table 5.2: A fire-fighting scenario to illustrate variant selection: (a) The current variant for Jim;

(b) capabilities and commitments cost; (c) commitments in the scenario

We illustrate now Algorithms 5.5-5.9 on an example from the emergency response

scenario (Table 5.2). The goal model and current variant of agent Jim are shown in part

(a). He currently intends to fight fire using a tanker truck, which involves getting tanker

service paid by Brigade1 via C2, having fire reached by a tanker truck via C3, and using the

capability for connecting the water pipe to the tanker truck. Part (b) shows the activation

cost (ACost) and compensation cost (CCost) for capabilities and commitments. Part (c)

describes the commitments made by Jim and the other agents in the scenario (Brigade1,

Tanker1, Tanker2).

Suppose commitment C3 made by the tanker truck service Tanker1 is threatened. This

Reconfiguration algorithms 131

happens because Tanker1 notifies it will be late in reaching the fire due to a traffic jam.

C3 is part of Jim’s current variant for goal fireExtinguished. Consequently, such variant

is threatened. In response to such threat, an adaptation process is triggered. Jim is

using an adaptation policy including variant selection based on the delta criteria, and

prescribing to avoid threatened/violated commitments. Jim can currently choose between

three variants to extinguish fire:

− exploit his capability for hydrantNeedNotified and get commitment C1 from Brigade1

to support goal hydrantUsageAuthorized. Bringing about the antecedent of C1 will

make Brigade1 unconditionally committed to authorize hydrant usage.

− make commitment C2 to Brigade1 to support tankerServicePaid, chain such commit-

ment to C3 so that Tanker1 is unconditionally committed to fireReachedByTruck, use

his capability for pipeConnected. Notice that this is the current variant, which is

already partially enacted.

− the same strategy as the previous, but relies on commitment C4 instead of C3. This

corresponds to making Tanker2 unconditionally committed to reach the fire.

Let’s take a look at how Algorithm 5.5 rules out variants that do not match the

adaptation policy and how it computes variant cost. We presume that, after variant

filtering, agent Jim selects the variant having the lowest cost.

The first variant involves commitment C1 and Jim’s capability for hydrant need noti-

fication. In line 3, function ComputeSupported computes the states of the world that

the capabilities and commitments in the variant support. The returned set consists of hy-

drantNeedNotified, hydrantUsageAuthorized, fireHydrantUsed, and fireExtinguished. Then,

lines 4-10 determine the cost of the capabilities in the variant. Here, there is only one

capability (hydrantNeedNotified), whose activation cost is 6. The following lines 11-17 add

the cost of involved commitments, which corresponds to the activation cost of C1, 15.

Lines 20-26 are not relevant here, for there are no contributions in the model. Then, lines

27-33 determine the compensation cost. This includes the cost of capability pipeConnected

(8), commitment C2 (0), and commitment C3 (20). The variant is not filtered out, and

its overall cost is 49.

The second variant (C3, C2, pipeConnected) supports (line 3) states tankerServicePaid,

fireReachedByTruck, pipeConnected, tankerTruckUsed, and fireExtinguished. Cost compu-

tation for capabilities (lines 4-10) adds no cost, for pipeConnected is already in use (the

if control in line 9 excludes it). Then, cost calculation for commitments is started (lines

11-17), and the variant is filtered out due to the adaptation policy. Indeed, commitment

C3 in the variant is threatened, and the if control in line 12 makes the algorithm continue

with the next variant.

132 Diagnosis and reconfiguration algorithms

The third variant (C4, C2, pipeConnected) supports the same states as the second one.

Cost computation for capabilities is also the same and adds no cost. Cost computation

for commitments (lines 11-17) adds the activation cost of C4, 31. The next relevant part

of the algorithm is cost computation for compensations (lines 27-33), which adds the

compensation cost of C3 (20). Indeed, C3 is in the current variant but not in the analysed

variant. The variant is added to the set of filtered variants (line 35); its overall cost is 51.

Jim will therefore choose—according to his current adaptation strategy—the first vari-

ant. To enact it, he will have to perform several steps. First, he has to revert the effects

of the current variant: cancel commitment C2 he made to Brigade1, release Tanker1 from

commitment C3, compensate pipeConnected. Second, he has to carry out some actions to

adopt the new variant: use his capability for hydrantNeedNotified to detach C1 and make

Brigade1 unconditionally committed to hydrantUsageAuthorized.

5.3 Adaptation patterns for socio-technical systems

In the previous two sections we have detailed diagnosis and reconfiguration algorithms.

Here, we focus on adaptation patterns for socio-technical systems. This type of patterns

captures common tactics to cope with threats and opportunities that arise in STSs. Our

patterns have a clear focus on the interactions the considered agent should engage in to

achieve his goals.

The concept of pattern has a long-standing tradition in software engineering, and it

is widely recognized as a fundamental design abstraction to reuse successful solutions

to common problems [GHJV95]. Our purpose is similar to that of design patterns in

software design: we want to identify and represent adaptation strategies that an agent

would typically perform in response to threats and to exploit opportunities. We use the

term “tactics” instead of “patterns”, for they represent an agent’s behaviour to better

deal with the situation at-hand.

We describe most tactics both textually and graphically. The latter representation is

based on the emergency response setting, and refers to the example in Table 5.2. Each

of the Figures 5.3–5.6 depicts Jim’s active variant for his goal fire extinguished before (on

the left of the dark, solid arrow) and after adaptation (on the right of the arrow).

A variant depicts the active part of Jim’s goal model: those goals in the goal model

of Figure 3.16 that Jim has instantiated (we are abusing the Tropos notation by using

it to denote the active goals), and the capabilities and commitments required to support

that goal. Commitments are represented by labelled directed arrows between agents—the

debtor and creditor are indicated by the tail and the head of the arrow, respectively.

Our adaptation tactics represent adaptation at a high-level of abstraction: they do

Adaptation patterns for socio-technical systems 133

not tell which are the specific plans and actions that should be performed to switch from

the current variant to a new one. They focus on the essence of adaptation, and show that

different goals are supported, new capabilities are exploited, commitments are taken from

and made to other agents.

Tactic 1 (Alternative goals) (Example 11) Choose a different set of goals in a goal

model to satisfy target goals. The agent believes the current strategy is not likely to

succeed, and reacts by modifying its internal strategy.

Figure 5.3: Alternative goals: Jim switches from a variant involving fire hydrant usage to another

involving tanker truck usage

Example 11 (Figure 5.3) Jim tries to achieve fire extinguished via a variant that relies

upon using the fire hydrant. However, the fulfilment of C1, which is necessary to support

the goal, is threatened because Brigade 1 hasn’t authorized hydrant usage yet. In other

words, Jim’s internal policy states that this specific situation corresponds to a threat for

C1. Jim switches to another variant that supports fire extinguished via the alternative goal

tanker truck used. This corresponds to selecting an alternative set of goals; also, it requires

to make and get commitments to support tanker truck used: Jim makes C2 to Brigade 1

and gets C3 from Tanker 1.

Tactic 2 (Goal redundancy) (Example 12) Select a variant that includes redundant

ways to satisfy goals. Useful for critical goals that the agent wants to achieve at any cost.

Example 12 (Figure 5.4). Jim’s current strategy is to fight the fire via the hydrant.

However, C1 is threatened. So Jim adopts a strategy which involves also calling a water

tanker truck. By contrast, Example 11 involves no redundancy. Tactics based on goal

redundancy are more expensive than others. However, many realistic strategies rely on

redundancy For instance, redundancy is a fundamental feature in avionics.

134 Diagnosis and reconfiguration algorithms

Figure 5.4: Goal redundancy: Jim adopts a redundant variant, which involves also calling a

water tanker truck

Tactic 3 (Commitment redundancy) (Example 13) More commitments for a goal are

taken. Useful if the agent does not trust some agent it interacts with. Also, it applies

when a commitment from another agent is at risk due to the surrounding environment,

and a different commitment is more likely to succeed.

Example 13 (Figure 5.5) Jim doesn’t trust Tanker 1much for C3. He might be interacting

with that tanker because it was the only available one. Now another tanker is available,

which he trusts more. Jim decides to get a similar commitment C4 from Tanker 2.

Figure 5.5: Commitment redundancy: Jim gets C4 from Tanker 2

Tactic 4 (Switch debtor) (Example 14) Get a commitment for the same state of the

world but from a different debtor agent. Useful if the creditor believes the current debtor

will not respect its commitment or a more trustworthy debtor comes into play. Unlike

commitment redundancy, the original debtor is released from his commitment.

Adaptation patterns for socio-technical systems 135

Figure 5.6: Switch debtor: Jim releases Tanker 1 from C3 and takes C4 from Tanker 2

Example 14 (Figure 5.6). Jim takes C3 from Tanker 1, but fears that the Tanker 1 will

violate the commitment. Therefore Jim releases Tanker 1 from C3 and instead gets C4

from Tanker 2.

Tactic 5 (Division of labor) (Example 15) Rely on different agents for different goals

instead of relying on a single agent. Distribution of work reduces the risk of complete

failure by splitting the task.

Figure 5.7: Division of labour: Jim releases Brigade 1 from C5 and takes commitment C3 from

Tanker 1

Example 15 (Figure 5.7) Suppose Jim wants to use both fire hydrant and a water tanker

truck. Also, suppose Brigade 1 acts as a water tanker provider (see Commitment C5 in

the figure). Jim is currently relying on the tanker service provided by Brigade 1. However,

Jim applies division of labour to minimize risk of failure: he releases Brigade 1 from C5

and takes commitment C3 from Tanker 1.

136 Diagnosis and reconfiguration algorithms

Tactic 6 (Commitment delegation) (Example 16) An agent delegates a commitment

in which he is debtor to another agent, perhaps because he can’t fulfil it and does not

want to violate his commitment.

Example 16 Jim does not have resources to fight a fire, for they are already assigned to

other tasks, e.g. a flooding in the area. So he delegates his commitment to extinguish a

fire to another fire chief Ron of a neighbouring town.

Tactic 7 (Commitment chaining) (Example 17) Agent x’s commitment C(x, y, g0, g1)

is supported if he can get C(z, x, g2, g1) from some z and if x supports g2. This tactic is

very common: x commits to another agent y for some g1 so that, as the antecedent g0 is

brought about by y, agent x can take another agent from z and support his goal g2.

Example 17 Jim wants to achieve goal tanker truck used. It makes C2 to Brigade 1 so

that tanker service paid is achieved. In such a way, as soon as commitment C2 is detached,

he can get C3 from Tanker 1 and achieve his goal to use a tanker truck.

5.3.1 Variant selection and operationalization

The adaptation tactics provided in Section 5.3 are a valuable resource for the development

of adaptive agents. However, they do not detail how they are applied. To overcome

such limitation, we discuss here different criteria to select a variant (Section 5.3.1) and

enact/operationalize it (Section 5.3.1). Some of the variant selection criteria are exploited

by the algorithms in Section 5.2.

From Definition 3.16, a variant V is an abstract strategy. It is a triple ⌊G,P , C⌋

composed of goals G, commitments P , and capabilities C. Neither commitments nor

capabilities are grounded to concrete entities. The agent should therefore operationalize

the variant: commitments must be bound to actual agents, capabilities to real plans.

Variant selection

Variant selection is the choice of one variant among the possible ones. Function selVari-

ant takes as input a set of variants and a state of the world and returns one of these

variants. Taking into account the state of the world is important because the agent need

not identify ways to achieve a sub-goal if the corresponding state of the world already

holds. Also, the state of the world might make some solutions non-adoptable.

selVariant : 2V × S → V

selVariant({V1, . . . , Vn}, σ) = Vi : 1 ≤ i ≤ n

Adaptation patterns for socio-technical systems 137

Table 5.3 shows some common criteria for variant selection. Due to its autonomy,

each agent is free to choose its own criterion. Criteria can be merged to define more

specific selection procedures. For example, an agent might want to consider both cost

and stability (this is the case of Algorithm 5.4).

Name Description

Cost Minimize the overall cost, expressed as money, needed resources, time

Stability Minimize the distance between the current strategy and the new one

Soft-goals Maximize the satisfaction of quality goals (performance, security, risk)

Preference Choose preferred goals and commitments

Goal Redundancy Choose a redundant variant to achieve critical goals

Table 5.3: Generic criteria for variant selection

Event Condition Action

threatened(C1)

target(fire extinguished),

¬made(C2), ¬taken(C3),

¬taken(C4),

adopted(fire hydrant used),

¬adopted(tanker truck used)

adopt(tanker truck used),

adopt(tanker service paid),

adopt(fire reached by tanker truck),

adopt(pipe connected), get(Cz),

useCapability(pipe connected), make(Cy)

Table 5.4: Event-Condition-Action rule for variant selection with goal redundancy (Figure 5.4)

Example 18 Table 5.4 specifies the function selVariant for Figure 5.4 as an Event-

Condition-Action rule. Such a function is based upon goal redundancy (Tactic 2). The

triggering event is that commitment C1 is threatened. It applies if the target goal is fire

extinguished, commitments C2, C3, C4 are not in place, Jim adopted goal fire hydrant used

and not tanker truck used. The action specifies the transition to the new variant. Jim

adopts goal tanker truck used and its children, uses his capability for pipe connected, gets

commitment Cz, and commits for Cy. Cy and Cz are the unbound commitments introduced

in Example 4: Cy = C(Jim, y, tanker service paid, fire extinguished), Cz = C(z, Jim, tanker

service paid, fire reached by tanker truck).

Variant operationalization

The operationalize function takes as input the selected variant and an agent’s state

and returns a set of states.

operationalize : V × S → 2S

operationalize(⌊G,P , C⌋, σ) = bindToPlan(C);bindAgent(P)

138 Diagnosis and reconfiguration algorithms

Operationalization means identifying a concrete strategy to achieve goals and com-

mitments in a variant. Commitments are bound to real agents (bindAgent), whereas

capabilities are bound to executable plans (bindPlan). Let’s explain why such a func-

tion returns a set of states instead of a single one. Suppose Jim’s selected variant includes

finding some agent that will commit for Cz. Jim may send a request message for Cz to all

known tanker providers—Tanker 1 and Tanker 2—and get a commitment from the first

one that accepts. If Tanker 1 answers first, the function returns a state σ1 where C3 holds;

if Tanker 2 answers first, the returned state will be σ2 such that C4 holds.

With respect to Table 5.4, operationalization would be invoked inside useCapabil-

ity(pipe connected) to bind an appropriate plan to the capability, and inside get(Cz) and

make(Cy) to bind z and y to the appropriate agents.

Name Description

Comm Redundancy More commitments for the same goal from different agents

Division of Labour Involve many agents, each agent commits for a small amount of work

Delegation Delegate some commitment where the agent is debtor to someone else

Trust The agent gets commitments only from other agents it trusts

Reputation Rely on reputation in community to select agents to interact with

Table 5.5: Generic criteria for variant operationalization

Table 5.5 shows some generic criteria an agent can exploit and combine to operational-

ize a variant. Operationalization policies can mix these criteria to define fine-grained

strategies.

Figure 5.8: Bind commitments to agents: Jim delegates C2 on the basis of trust

Example 19 Let’s operationalize the variant in Example 18. Jim wants to delegate fire-

fighting with tanker truck to the agent he trusts more. He knows two fire chiefs, Ron and

Frank. The one he trusts more is Ron.

Step 1. Bind capabilities to plans. Jim binds his capability for pipe connected to a specific

Chapter summary 139

plan where he connects a water pipe to the rear connector of a water tanker truck.

Step 2. Bind commitments to agents. Jim delegates C2 to Ron, but he doesn’t get any

response. Thus, he delegates such commitment to Frank, who accepts delegation. Frank

creates a commitment to Brigade 1 and notifies Jim. Figure 5.8 illustrates binding to

agents.

5.4 Chapter summary

In this chapter we have proposed algorithms for the adaptation control loop of our ar-

chitecture. In Section 5.1 we have described diagnosis algorithms to identify failures and

under-performance. In Section 5.2 we have proposed algorithms to generate possible vari-

ants and select the best one. Specifically, we have devised: (i) an algorithm for settings

with contextual variability based on soft-goals; and (ii) a cost-based algorithm for settings

with social variability. In Section 5.3 we illustrated some adaptation tactics that illustrate

the specific features of adaptation in STSs.

The main contribution of this chapter is in the proposed algorithms. They cover

the fundamental phases of adaptation and are based on the modelling frameworks of

Chapter 3. The diagnosis algorithms enable to detect goal failure, plan failure, and

commitment violation. The two reconfiguration algorithms are based on general criteria

and apply to different types of STS. The first algorithm deals with contextual variability.

It performs variant selection on the basis of two factors: (i) contribution to soft-goals

and (ii) configuration stability, i.e. minimize changes between the current variant and the

new one. The second algorithm is for STSs with social variability, where available agents

and the services the offer—the commitments they make—change over time. It supports

two variant selection strategies: (i) minimization of the overall solution cost, and (ii)

maximization of stability by choosing the less expensive set of changes.

In Section 5.3 we have analysed adaptation in STSs from a broader perspective. We

have shown how adaptation in STSs is affected by social factors, and how adaptation

tactics rely on engaging in different social relations. On top of these tactics, we proposed

a general framework for adaptivity that distinguishes between the selection of an abstract

strategy and its operationalization.

140 Diagnosis and reconfiguration algorithms

Chapter 6

Prototype implementations

We describe two prototype implementations of the conceptual architecture we presented

in Section 4.2. They demonstrate the feasibility of our approach. Each implementation

focuses on specific aspects of software self-adaptation in STSs. The first implementation

is for STSs with a volatile physical context, wherein changes are a threat for the agent’s

current variant. The second implementation deals with the effect of social variability on

variant generation and selection.

6.1 Prototype for settings with contextual variability

The first prototype we developed is meant for socio-technical systems characterized by

contextual variability. Examples of these settings are smart-homes and emergency re-

sponse coordination. For example, in a smart-home, the health conditions of a patient

vary over time, and the applicability of different variants depends on the patient’s health.

Our prototype deals mainly with failures and context changes that make the current

variant inadequate to achieve current goals.

We used Java 1.6 as main programming language, the Eclipse Modeling Framework

(EMF)1 to define the meta-model for the requirements models, the DLV-complex rea-

soner [CCIL08] to support diagnosis and reconfiguration, and the H2 embedded database2

to keep track of the effect of context changes on active goals and plans. The main features

of this prototype are the following:

− The meta-model for requirements models is an independent artefact. Being defined

using EMF, it is decoupled from code. Consequently, it is reusable in other ap-

plications and is an useful resource for documentation. The resulting implemented

architecture is therefore fully model-driven.
1http://www.eclipse.org/modeling/emf/
2http://www.h2database.com/

142 Prototype implementations

− The MDRC cycle is fully implemented. A monitoring component listens for events

from connected event sources (either sensors or agents); diagnosis is performed with

the aid of the automated reasoning tool DLV-complex; the same tool is used as

a planner to generate possible variants; compensation is actuated by controlling

effectors in the environment and interacting with other agents.

− The architecture can deal with failures and context changes. The supported failure

types are (i) plan failure, i.e. an action is carried out though its critical precondition

does not hold; (ii) plan timeout, i.e. an action in the plan does not occur within

its deadline; (iii) goal timeout, i.e. a goal is not achieved within its deadline; (iv)

inapplicable plan, i.e. the current variant is not applicable any more due to a change

in the environment; (v) domain assumption violation, i.e. the system itself or some

other agent in the STS perform an action that violates a domain assumption.

− A simulation editor enables to test the architecture’s capabilities to respond to fail-

ures and exceptional scenarios. Designers can use the simulation editor to define

traces that—during simulated sessions—generate events sent to the monitor.

Figure 6.1: Runtime operation of the prototype for STSs with contextual variability

Figure 6.1 shows the basic runtime operation of our implementation. The main application

threat consists of an User Interface, the Event Collector, the Diagnosis Component,

and the Planner. Several external components interact with the main application: the

Ticker thread defines when the adaptation logic is triggered; the Monitor is a centralized

collector of events; the DLV-complex reasoner is used during diagnosis and planning; the

H2 Database assists diagnosis; and a Reconfiguration component enacts new variants.

The MDRC cycle starts with the Ticker thread triggering the Event Collector.

Prototype for settings with contextual variability 143

The Event Collector fetches not-yet-processed events from the Monitor thread, which

is deployed to receive events from context sensors and agents. The Event Collector

activates then the Diagnosis component, which determines failures with the aid of the

DLV-complex tool and identifies which plans should be compensated on the basis of the

information in the H2 database. As diagnosis is completed, the User Interface is up-

dated to visually show the current status of the system on the requirements models. If

failures are identified, the Diagnosis component activates the Planner, which gener-

ates applicable variants in the current context using DLV-complex as a planner. Finally,

the Planner creates a Reconfiguration thread, which selects and enact one variant by

commanding context actuators and interacting with agents.

System

Goal

goalName

Plan

planName

compensationCost

GoalDecomposition

andDecomposition
Decomposition

MeansEnd

Parameter

name

TopLevelGoal

DecGoal

ContextualMeansEnd

ContextualGoalDec

SupportSystem

Dependency

type

DepTlGoal

TlGoal

commitmentTime

AnySytem

systemName

Context

name

value

referenceType

valueOperator

ContextEntity

name

EntityAttribute

attributeName

Event

timeLimit

Precondition

impliesFailure

Fluent

value

referenceType

valueOperator

ActivationCondition

AchievementCondition

SoftGoal

name

priority

Contribution

value

Condition

Reaction

cost

efficacy

PushReaction

Assignment
Automation

ReferenceAttribute

mandatory

toplevelGoals

1..*

supportsystems

0..*

decomposed 1..1

parameters

0..*

dependsFor

0..*

to

1..*

to

1..*

plan

1..1

subGoal

1..1

tlGoals

1..*

for

1..1

parameters

0..*

parameters

0..*

parameters

0..*

dep
1..1

system

1..1

system

1..1

contexts0..*
contexts 0..*

contexts

0..*

entities

0..*

entity

1..1

item

1..1

attributes

0..*

allParameters

0..*

specification

0..*

allParameters

0..*

precondition

0..*

attribute

1..1

entity

1..1

actCondition

1..1

achCondition
0..1

precondition

0..*

softgoals
0..*

contributions

0..*

to1..1

from 0..*

conditions

0..*

reactions

0..*

references_to

1..1

Figure 6.2: Meta-model for contextual goal models, the context model, and plan specifications

144 Prototype implementations

The requirements models for our prototype are specified according to the meta-models

in Figure 6.2 and Figure 6.3. Figure 6.2 shows the meta-model for contextual goal models,

the context model, and plan specifications. Figure 6.3 outlines the meta-model for domain

assumptions. The most significant features of these meta-models are the following:

− goals are parametric and top-level goals have an activation condition. This way,

multiple instances of the same goal are allowed. For example, goal Wake up might

be activated at 8 am every day for each supported patient living in the smart-home;

− plans are linked to soft-goals by contextual contribution links. Contextual condi-

tions are specified over the context model. Depending on the current context, the

contribution of a plan to a certain soft-goal varies;

− goals can be declarative—i.e. they can have an achievement condition. A declarative

goal is achieved only if the state of the world expressed by its achievement condition

is met, regardless of the correct satisfaction of its children. A non-declarative goal

is met if its sub-goals are met or, if means-end decomposed, an adequate plan is

correctly carried out;

− the context model consists of a set of named contextual entities, each having a set

of attributes. Attributes can either be simple (e.g. the temperature in a room is a

real number) or refer to another entity (e.g. the default doctor of a patient);

− AND/OR-decompositions and means-end relations are contextual, and the contex-

tual conditions are expressed over the context model;

− the two types of domain assumptions presented in Section 4.3 are supported. They

differ for their consequent type: (i) a state of the world that should hold or (ii) an

event that should happen within a certain time limit.

The meta-models we presented contains OCL constraints. The class diagram provides

the coarse-grained structuring of requirements models, while OCL constraints restrict the

allowed syntax. These constraints enable to check the well-formedness of a model. We

illustrate this via examples.

The first constraint we present applies to class Goal. It says that goal instances should

have a different name, i.e. the goal name is an unique identifier for the Goal class. To

verify this, the OCL constraint takes all instances of class Goal, and checks that there are

not different goals having the same value for attribute goalName.

context Goal inv:

not Goal.allInstances()

-> exists(a: Goal,b: Goal | a<>b and a.goalName = b.goalName)

Prototype for settings with contextual variability 145

System

Fluent

value

referenceType

valueOperatorDomainAssumption

name

DAEvent

DAConseqEvent

timeDelta

DAState

DAConsequent

DAConseqState

Operator

equal

biggerThan

biggerEqualThan

lowerThan

lowerEqualThan

different

domainAssumptions

0..*

trigger
1..1

precondition

0..*consequent

1..1

Figure 6.3: Meta-model for domain assumptions

The second constraint applies to class Contribution. It says that the attribute value

of that class should be (i) greater or equal than minus one and (ii) less or equal that plus

one. This constraint ensures that the value of contributions is in-between full negative

(-1) and full positive (+1).

context Contribution inv:

value>=-1.0 and value <=1.0

The third invariant applies to class ContextualGoalDec, and is more complex than

the previous constraints. It ensures that contextual conditions in a goal decomposition

variation point are expressed on entities that can be bound to parameters of the parent

goal. For example, if an AND-decomposed goal Have breakfast has parameters patient

and smart-home, then no contextual condition in the AND-decomposition should refer to

a fire-fighter entity. The OCL constraint differentiates between root goals and non-root

goals for technical reasons, but the two branches of the “if” express the same constraint.

Specifically, each branch says that either one of the goal parameters is the referenced

entity, or the entity is referenced by another entity in the contextual condition.

context ContextualGoalDec inv:

contexts->forAll(x | let y : ContextEntity = x.oclAsType(Context).item.entity in

if from.parent.oclIsTypeOf(TlGoal) then

(from.parent.oclAsType(TlGoal).parameters->exists(z |

z.oclAsType(Parameter).entity=y)

or contexts->exists(w | w.oclAsType(Context).referenceType=y.name))

else if from.parent.oclIsTypeOf(DecGoal) then

(from.parent.oclAsType(DecGoal).parameters->exists(z |

z.oclAsType(Parameter).entity=y)

or contexts->exists(w | w.oclAsType(Context).referenceType=y.name))

146 Prototype implementations

else false

endif

endif)

The fourth invariant applies to class Contribution. It says that the contextual condi-

tions of a contribution (if any exists) should refer to entities that belong to the parameters

of the plan from which the contribution starts. Like the previous constraint, this is a well-

formedness constraint that guarantees that contextual conditions in the contextual goal

model refer to entities that can be correctly associated to the specific goal instance at

runtime. For example, if a contextual contribution is dependent on the temperature of a

room, but the decomposed goal has no parameter associated to a “room” entity, it will

not be possible to guess which room should be considered.

context Contribution inv:

self.conditions->forAll(x | let y:ContextEntity = x.oclAsType(Condition).entity in

self.contribFrom.parameters->exists(z |

z.oclAsType(Parameter).entity=y))

Our prototype includes two tools for supporting designers. They allow for defining

requirements models and simulation traces, respectively:

Figure 6.4: Screen-shot showing the simulation editor embedded in the prototype

Prototype for settings with contextual variability 147

− Requirements models editor : we use Java Emitter Templates (as in [Dam07]) to

transform the EMF meta-model we presented—which is stored in an ecore file—into

a requirements models editor deployable as an Eclipse application. The resulting

application enables designers to define requirements models, and includes automated

validation to check the model against the well-formedness rules defined by the meta-

model class diagram and the OCL constraints.

− Simulation editor : we developed a simulation editor that enables designers to define

simulation traces. Figure 6.4 shows a screen-shot of the editor. The upper part

shows a matrix where instances of the contextual entities can be defined; contextual

entity classes are taken from the context model specified using the requirements

models editor. The designer can define at which timestep the simulation starts. The

lower part of the editor enables to define the actual simulation, i.e. the events that

occur. The events refer to the entity instances defined in the same interface.

Figure 6.5: Runtime screen-shot of the prototype for settings with contextual variability

At runtime, requirements models are extensively used by our prototype. Before the

architecture starts, a model is loaded and is automatically translated to the DLV-complex

input format. Requirements models in the ecore file are expressed at the class-level. The

148 Prototype implementations

translation to datalog supports instances, namely real agents and goal instances that

constitute the application at runtime. In addition to requirements models, the architecture

takes as input a simulation trace—possibly empty—and events received from the running

application (agents and sensors). Currently, input from agents and sensors is read via

socket listener. Figure 6.5 shows a screen-shot of the prototype in execution. The left

side shows the simulation trace. The right side shows the current requirements and their

status. Every root goal instance is shown as a tree; its nodes are coloured to denote the

state of the goal (achieved, started, active, not active, failed, timeout). The status of

domain assumptions is visualized in a different panel.

6.2 Prototype for settings with social variability

The second prototype we developed applies our architecture to open socio-technical sys-

tems. As argued earlier in this thesis (e.g. in Section 3.4), this class of systems is

characterized by social variability: participating sub-systems vary, as well as the social

relationships between them.

The prototype enables a sub-system (an agent) to adapt in response to threats and

failures by switching from the current variant to a new one. Interaction plays a funda-

mental role in the notion of variant—that introduced by Definition 3.16—we employ here.

The main features of our prototype are the following:

− Social relations are explicitly represented in terms of social commitments. The pro-

totype takes into account the current commitments, and their status, to determine

if agent adaptation is required and to identify valid variants to achieve the current

goals. Commitments, being social relationships, originate from agent interaction.

The prototype does not resolve exchanged messages into their meaning in terms of

commitments. We assume that the agent is deployed in an appropriate middleware

that performs this mapping.

− The focus is on variant generation and selection. While in the first prototype we

implemented and tested the entire MDRC cycle, this second prototype investigate

adaptation triggers (when to adapt) and the choice of the best variant. The distinc-

tive feature of the prototype is to provide adaptation via goals and commitments.

− Efficient variant generation is provided by using a SAT-based automated reasoner

EL+2SAT [SV09]. In turn, EL+2SAT includes the MiniSat2 SAT-solver [ES04].

Variant generation is reduced to propositional formulae. Then, EL+2SAT generates

and return variants. The mapping from goal models to the EL+2SAT input format

Prototype for settings with social variability 149

is automatically performed by our prototype, so that designers just have to specify

goal models graphically.

− The prototype executes in an interactive live mode. The designer can add relevant

events by interacting with the GUI. For example, the designer can add new com-

mitments, notify changes in the state of the world, change the status of capabilities

and commitments. The interactive live mode complements a static mode in which

the prototype can be used offline to generate variants.

− An embedded policy editor enables the definition of fine-grained adaptation policies.

The policy editor permits to define which are the triggers that stimulate an adap-

tation, as well as the variant generation and selection strategy. This way, designers

can test the efficacy of different adaptation policies, and choose the one that seems

the most adequate to the application domain.

We show now how our prototype exploits the EL+2SAT automated reasoning tool (Se-

bastiani and Vescovi [SV09]) to generate variants given an agent’s goal model, a goal query,

and a set of commitments. EL+2SAT was originally developed for concept subsumption

and axiom pinpointing in the EL+ Description Logic. Given a theory T expressed as an

ontology and given two concepts A and B in T , EL+2SAT verifies if the interpretation of

A is a subset of the interpretation of B in every model of T . If so, it returns all minimal

sets of axioms in T —i.e. subsets of the original ontology—where A is subsumed by B.

Here, EL+2SAT is applied to a different problem, that of variant generation. Conse-

quently, its operation has been slightly modified:

− the theory used by the tool is a propositional encoding (M) of the considered agent’s

goal model and the commitments that currently hold. Such encoding is based on

the notion of goal support that we introduced in Section 3.4.4 in the definition of

variant;

− we support a generic AND/OR query q over symbols in the theory.

The tool identifies minimal sets of axioms that satisfy q in the theory expressed by M ,

picking the axioms from the set S. The set S limits the search to those axioms that

represent capabilities the agent can use, commitments the agent can take or make, and

states of the world that already hold.

Figure 6.6 exemplifies the input files needed by EL+2SAT to perform variant gener-

ation. These files are automatically generated by our prototype and feed the automated

reasoner. The models file M—part (a) in the figure—is specified in the DIMACS CNF

format3. The first half of the file contains comments that ease the reading of the CNF

3www.satlib.org/Benchmarks/SAT/satformat.ps

150 Prototype implementations

encoding. In particular, it shows the mapping between propositional variables in the file

and their meaning in requirements models. Here, variable 1 corresponds to commitment

c1; in particular, its meaning is that agent ag1 can take such commitment from jim to

support goal g1. Variable 4 tells that the state of the world corresponding to g5 holds.

Variables 7 to 13 represent goals in the goal model. The query file—part (b) in the

c Agent name: ag1

c #1 <=> c1=C(jim,ag1,T,g1) --> g1

c #3 <=> c3=C(ag1,ron,g1,g6) --> g1

c #4 <=> holds(g5)

c #5 <=> cap(g5)

c #6 <=> cap(g7)

c #7 <=> g1

c #8 <=> g5

c #9 <=> g3

c #10 <=> g7

c #11 <=> g2

c #12 <=> g4

c #13 <=> g6

p cnf 13 11

-1 7 0

-2 -8 9 0

-3 7 0

-4 8 0

-5 8 0

-6 10 0

-11 -9 7 0

11 -12 0

11 -8 0

9 -13 0

9 -10 0

(a) Models file M

p cnf 13 1

-11 9 0

(b) Query file q

1

2

3

4

5

6

(c) Variables file S

Figure 6.6: EL+2SAT input files created by our prototype during variant generation

figure—represents the query in the DIMACS CNF format. The variables in this file are

associated to the same entities as in the model file. Due to technical reasons, the query

is expressed negated (¬q). The actual query in the figure is g2 ∧ g3, and is represented as

¬g2 ∨ ¬g3. The third file—part (c) in the figure—tells EL+2SAT which are the variables

it should pick to define the minimal sets of axioms satisfying the query. These variables

correspond to commitments, states of the world that hold, and capabilities.

Figure 6.7 provides some details about how EL+2SAT internally works. There are

three main components: two SAT solvers (Enumerator and T-Solver) and a Minimizer.

The Enumerator is in charge of selecting a subset of the variables in the file S. It does

that by defining truth assignments for the variables in S, so that the truth assignment is

consistent with a theory ϕ. Initially, ϕ is set to true. The truth assignment µi generated

by the Enumerator becomes then input for the T-Solver, which checks whether there is

a solution for M ∧ ¬q ∧ µi. If this theory is satisfiable, then it means that the negation

of the query can be satisfied, therefore the solution µi should be discarded—and indeed

the negation of µi is added to the theory ϕ the enumerator handles. If the theory is

unsatisfiable, the T-Solver identifies the conflict ψi, which is actually a solution for the

considered query. Such conflict is given to the Minimizer to determine whether there

are redundant variables that can be removed and that still preserve unsatisfiability. The

minimal solution ψj is returned by the tool; then, the theory ϕ is updated by adding ¬ψj,

Prototype for settings with social variability 151

Figure 6.7: Basic operation of EL+2SAT [SV09] applied to variant generation

since such solution has already been found. The cycle iterates as long as the Enumerator

finds new truth assignments. Details about EL+2SAT can be found in [SV09].

Algorithm 6.1 Encoding an agent to CNF
Encode(Agent ag, Query q, GoalModel gm, Commitment [] c, SoW [] s)

1 Goal [] roots← GetRelevantRoots(gm,GetSymbols(q))

2 GoalModel gmp← PruneNotRelevant(gm, roots)

3 if CheckQuery(q)

4 then return true

5 else idx← 1

6 for each comm ∈ c

7 do idx← EncodeCommitment(comm, ag, idx)

8 for each sw ∈ s

9 do AddClause(s, idx)

10 idx++

11 for each g ∈ GetGoals(gmp)

12 do if IsCapableOf(ag, g)

13 then AddClause(g, idx)

14 idx++

15 EncodeGoalModel(gmp)

Let’s take a closer look at the way the encoding to CNF is performed. Algorithm 6.1

describes the Encode algorithm, which takes in input an agent, a query, the agent’s goal

model, the current commitments, and the states of the world that currently hold. The

first two lines reduce the goal model to preserve only those goal trees that are scoped with

respect to the query (see Definition 3.15). To do this, the algorithm takes those goal tree

roots that are ancestors of symbols in the query, and removes those trees in the goal model

that are not scoped. In line 3 the algorithm checks if the query already holds; if so, no new

variant is needed and the algorithm can return. Otherwise the encoding to CNF starts.

152 Prototype implementations

Variable idx, initialized in line 5, represents the propositional variable number associated

to the capabilities, commitments, and states of the world (those in the file containing

the variables set S). Commitments are encoded by the EncodeCommitment function

(Algorithm 6.2). Each state of the world corresponds to a new clause and leads to the

increment of idx. A variant can rely on states of the world that already hold. The encoding

of goals (lines 11-14) differs only for the fact that capabilities are added. Finally, the goal

model structure is encoded (line 15), following the mapping in Table 6.1.

Algorithm 6.2 Encoding commitments to CNF
EncodeCommitment(Commitment c, Agent ag, int idx)

1 {p1, . . . , pn} ← ToCNFandSplit(c.antecedent)

2 if c.debtor = ag

3 then for each pi ∈ {p1, . . . , pn}

4 do if not HasNonScopedGoals(pi)

5 then AddClause(qi, idx)

6 idx++

7 if c.creditor = ag or ag.useThirdPartyCommitments

8 then {q1, . . . , ql} ← ToCNFandSplit(c.consequent)

9 for each qi ∈ {q1, . . . , ql}

10 do if not HasNonScopedGoals(qi)

11 then AddClause(c.antecedent→ qi, idx)

12 idx++

13 return idx

The function EncodeCommitment (Algorithm 6.2) encodes a commitment to CNF,

if relevant to the agent. Its input is a commitment, the agent under consideration, and

the variables index used for the encoding. The variables index is returned to the caller

function at the end of the algorithm. First, the function converts the antecedent to CNF

and splits the conjuncts (line 1). The remainder of the algorithms depends on the role of

the agent in the commitment:

− The branch of lines 3-6 is followed if the agent is a debtor. This reflects the rationale

of Clause 2c in Definition 3.16. Each conjunct in the antecedent that does not contain

non-scoped goals is encoded as a clause and idx is incremented. Each antecedent

conjunct is a state of the world that the agent can realistically expect to obtain by

making the commitment to some other agent (which will bring about the antecedent

to detach the commitment).

− The branch of lines 7-12 is followed if the agent is creditor or is aware of an ex-

isting commitment that supports its goals. It reflects the rationale of Clause 2b in

Definition 3.16. This branch considers third-party commitments only if the agent’s

adaptation policy specifies so. The algorithm converts to CNF the consequent of

Prototype for settings with social variability 153

the commitment, then it split its conjuncts. For each conjunct that does not con-

tain non-scoped goals, the algorithm adds an implication clause. The implication is

from the antecedent of the commitment to a consequent conjunct. The AddClause

function converts such clause to multiple CNF clauses.

Construct Mapped Mapping description

AND-decomposed(g, {g1, . . . , gn}) X g1 ∧ . . . ∧ gn → g

OR-decomposed(g, {g1, . . . , gn}) X g1 ∨ . . . ∨ gn → g

pos-contrib(g1, g2) X g1 → g2

neg-contrib(g1, g2) × post-processing

Table 6.1: Encoding a goal model to propositional logic

Table 6.1 shows how the different constructs in a goal model are mapped to propo-

sitional logic. This mapping is necessary to create the input files for EL+2SAT. Each

AND-decomposition is mapped to an implication from the conjunction of the sub-goals

to the parent goal. Each OR-decomposition is mapped to an implication from the dis-

junction of the sub-goals to the parent goal. These two rules reflect the semantics of

goal support for goal decompositions. Positive contribution is mapped to an implication

from the contributing goal to the contributed goal. Such mapping encodes the meaning

of complete positive contribution. Negative contributions cannot be directly mapped to

propositional logic due to the type of input EL+2SAT expects. Indeed, the tool works

with Horn clauses, in which at least one literal should be positive. The CNF encoding of

a negative contribution from g1 to g2 is ¬g1∨¬g2; both literals are negative. To overcome

such limitation, our tool performs the post-processing described in Algorithm 5.5.

Figure 6.8 shows a runtime screen-shot of the prototype. On the top-left side are

placed the buttons to create new goal models, open/save files, and to configure the con-

sidered agent’s adaptation policy. On the top-middle side there is a field containing the

agent name and the palette to graphically draw the goal model (decomposition, positive

contribution, negative contribution, element deletion). The main part of the GUI is oc-

cupied by the goal model of the agent. In order to let a designer define such model, we

have exploited the JGraphX API4, a Java library that allows for drawing and interacting

with graphs. Below the goal model, from left to right, are placed (i) the set of current

commitments; (ii) the states of the world that currently hold; (iii) two spinners that let

the designer define cost and compensation cost for the selected goal.

The prototype deals with different goal and commitment states. The user can inter-

actively update their state. Also, the user can add new commitments and add/remove

4http://www.jgraph.com/jgraph.html

154 Prototype implementations

Figure 6.8: Runtime screen-shot of the prototype for settings with social variability

states of the world at runtime. The supported goal states are (i) idle: no specific sta-

tus is set; (ii) active: the capability for that goal is being exploited; (iii) supported : the

goal is supported by the current variant; (iv) threatened : there is some evidence that the

goal is at risk; (v) failed : the current strategy for the achievement of the goal did not

succeed. The supported commitment states are (i) idle: the commitment exists but is

not being used by the agent in this variant; (ii) active: the commitment is part of the

current variant; (iii) threatened : there is some evidence that the commitment is at risk;

(iv) violated : the commitment is not correctly fulfilled. The threatened state of commit-

ments represents the agent’s view on a commitment. It represents the belief of the agent

that the commitment is at risk. Another agent might have an opposite view on the same

commitment. The different states are visually represented using intuitive colours (green

for active, yellow for threatened, red for failed).

On the right side of Figure 6.8 are shown the current query (bottom-right) and the

generated set of variants (above the query). Also, there are two buttons to start and

stop the live interactive mode. The query can be expressed as an AND/OR formula,

Prototype for settings with social variability 155

using binary AND and OR constructs wrapped by parentheses. So, for instance, query

g1 ∧ g2 ∧ g3 is expressed as “((g1 AND g2) AND g3)”; query g1 ∨ (g2 ∧ g3) is expressed

as “((g1 OR (g2 AND g3))”. The generated variants are listed on the top-right side; the

selected variant in the list is shown below the variants list. Variants are expressed as a set

of commitments, capabilities, and states of the world. Our prototype exploits a notion

of variant that extends that in Definition 3.16: a goal is supported if the corresponding

state of the world holds. Such extension is useful for runtime adaptation, where the agent

needs not put any effort to achieve a state of the world that already holds.

Figure 6.9 presents a screen-shot of the configuration options supported by our pro-

totype. Many of these options define the agent’s adaptation policy. We already provided

details about variant selection policies in Section 5.2.2. We focus here on those configu-

ration options that we did not describe there.

Figure 6.9: Adaptation policy editor

− Variant generation timeout ensures that EL+2SAT terminates within a fixed amount

of time. The allowed syntax for goal models and commitments makes the variant

generation problem an exponential problem. Consequently, an exhaustive variant

generation procedure might not terminate within reasonable time. We will report

156 Prototype implementations

on the performance of variant generation in Chapter 7.

− Live mode defines how the prototype should operate. Two options are available:

live mode and passive mode. In live mode, the prototype cyclically monitors for

changes—interactively created by the user—and responds to threats via adaptation.

In passive mode, the designer can use the tool to generate variants and make of-

fline experimentations. Live mode can be tuned by specifying the time tick, i.e.

how frequently the agent should analyse monitored events, determine whether an

adaptation is needed, and possibly perform an adaptation.

− Adaptation triggers specify why adaptation is required. The designer can choose

which event types lead to adaptation. These triggers capture all events of a certain

type, i.e. they do not refer to a specific event instance (e.g. commitment from agent

x is violated, capability for goal g failed, etc.). Currently, the prototype supports

two families of triggers:

– Risks are events that endanger the current variant: an active commitment is

threatened, an exploited capability is threatened, a commitment is violated, a

capability fails, a state of the world does not hold any more, a commitment is

cancelled by the debtor. Designers can activate individual risk types by ticking

the corresponding check-box.

– Opportunities are events that can potentially lead to better achievement of the

agent’s goals: a threatened commitment/capability is now not threatened any

more, a capability is marked as unfailed (the capability is now available again),

a state of the world is added, a new commitment is created.

6.3 Chapter summary

In this chapter we have described two prototype implementations of our architecture.

The first prototype implements a complete Monitor-Diagnose-Reconcile-Compensate cycle

and focuses on the impact of contextual factors on requirements. It implements the

diagnosis algorithms of Section 5.1.1 and Section 5.1.2, as well as the reconfiguration

algorithm—based on soft-goals and stability—of Section 5.2.1. The second prototype is

suited for socio-technical systems with social variability and focuses on the identification

of alternative variants based on capabilities and commitments (Section 5.2.2).

The principal contribution of this chapter is to demonstrate the feasibility of our con-

ceptual architecture proposed in Chapter 4. Additionally, we implemented the diagnosis

and reconfiguration algorithms devised in Chapter 5. The two prototypes show comple-

mentary aspects of our framework for self-adaptivity.

Chapter 7

Evaluation and scalability

The purpose of this chapter is to evaluate our approach. Since our framework spans from

conceptual models to prototype implementations, evaluation should necessarily assess the

efficacy of each component. To this end, we follow an evaluation methodology that relies

extensively on case studies. The methodology consists of five steps:

1. define evaluation objectives. Which are the claims the evaluation should confirm or

disconfirm?

2. select and describe a socio-technical system. The adequacy of the STS used as case

study is justified with respect to the evaluation objectives;

3. model a relevant part of the STS. To demonstrate the applicability of the modelling

primitives, they are used to represent a part of the STS in which variability is affected

by contextual or social factors. This step involves applying the modelling framework

presented in Chapter 3;

4. conduct simulations on self-adaptation. The models created in the previous step are

used by our prototypes (proposed in Chapter 6) to perform simulations about self-

adaptation. The purpose of this step is assessing the capability of our architecture

(proposed in Chapter 4) to cope with failures and under-performance;

5. run scalability experiments. To determine if the prototypes can deal with larger

models, scalability tests are performed. The analysis focuses on the time spent

in diagnosis and reconfiguration. This step allows for assessing the efficacy of the

algorithms presented in Chapter 5 and implemented in the prototypes described in

Chapter 6.

We perform these steps twice. Each time we consider a specific evaluation objective:

158 Evaluation and scalability

O1. Verify how well our framework supports STSs with contextual variability. We use

a case study about a smart-home for health support, in which the architecture

supports a patient’s goals. In particular, we apply our contextual goal modelling

(Section 3.3.3) to model the case study, and the prototype of Section 6.1 to conduct

simulations and assess scalability. Detailed in Section 7.1.

O2. Verify how well our framework supports STSs with social variability. We use an

emergency response STS that focuses on dealing with hazardous materials. We

examine this STS from the perspective of an incident commander who wants to

assemble a response team. In particular, we apply the modelling framework based on

goals and commitments presented in Section 3.4.2, and the prototype of Section 6.2

for simulations and scalability analysis. Detailed in Section 7.2.

7.1 Case study 1: smart-home for health support

A smart-home is an environment which provides assisted living with the help of technology.

Research in this area is very active and interdisciplinary (see, e.g. Harper [Har03]). A

smart-home is an STS, as we have shown in Chapter 1. We consider here a particular

type of smart-homes for supporting elderly or handicapped people.

Our scenario is a variant of the “smart items” case study [CCG+06] of the EU-funded

Serenity project: a patient lives in a smart-home and is part of a socio-technical system

supporting the patient in everyday activities (such as eating, sleeping, taking medicine,

being entertained, consulting with doctor). Of particular importance is the health of

the patient, which should be monitored and guaranteed by the smart-home. Moreover,

a smart-home should minimize obtrusiveness. The patient’s life experience should be

affected as little as possible. The smart-home is expected to act unobtrusively, and should

take more evident actions only if absolutely necessary.

The smart-home is equipped with Ambient Intelligence (AmI) devices that gather

data—such as the patient’s vital signs and the temperature in the bedroom—and enacts

compensation actions—such as opening the door or alerting the medical centre if the

patient feels giddy. Smart-homes are manifest exemplars of pervasive computing scenarios,

where multiple devices are used both for monitoring and for enacting changes to the

environment. For example, the prototype smart-home of the Serenity project exploits

many sensors: a pulse oxymeter to gather patient’s heart rate and saturation level, a set

of cameras capable of motion detection and object tracking, a wireless sensor network

to authenticate doctors and social workers, magnetic fields to detect open doors and

windows. The equipment in the house (lights, doors, windows, heating, and so on) are

Case study 1: smart-home for health support 159

connected by the KNX communication bus1. In addition, the house includes a number of

actuators for the entrance door, the windows and the blinds to enable automatic opening

and closing. Moreover, lights and temperature can be adjusted automatically; some pieces

of equipment can be raised or lowered, etc.

7.1.1 Modelling contextual variability

A smart-home is an STS with contextual variability. Many contextual changes are relevant

for the goals of the home inhabitant and influence his current goals and the way these

goals are achieved. For example, there could be no food in the fridge, the temperature

in the kitchen might be too high, some electric appliance (oven, fridge, . . .) might break,

the patient might forget or lose the home keys, he might be constricted in bed by a flu,

social workers enter the house to perform regular tasks such as bringing medicines, etc.

We detail part of the case study where the smart-home system helps the patient to wake

up. We have applied the contextual goal modelling process we outlined in Section 3.3.5.

In this section, we show the main outcomes of such application. Specifically, we present

the contextual goal models that represent the requirements of the smart-home system.

To ease reading, we provide textual descriptions for the contexts, rather than showing the

complete context analysis. Later in the section, we show task specifications where pre-

and post-conditions are expressed on the contextual model derived from context analysis.

Figure 7.1 presents the goals of a patient using a contextual goal model (see Sec-

tion 3.3.3 and Section 4.3.1). The top-level goal g1: Wake up is AND-decomposed to

sub-goals g2: Get out of bed, g5: Check health, g10: Take medicine, and g13: Have a wash.

The decomposition of g1 to g10 is labelled c2: the achievement of g1 requires the achieve-

ment of the sub-goal g10 only if the context c2 (patient suffers chronic disease) is valid.

g2 is OR-decomposed to sub-goals g3: Get up autonomously and g4: Get support to get up,

which are valid alternatives if the patient is autonomous and not autonomous, respec-

tively. Three plans achieve g3: the patient can use a bed pole (or a bed trapeze) to get

up more easily (t1), get up without support (t2), or use bed rails (t3).

To achieve goal g4, possible means are t4: use transfer sling and t5: lift patient. Each

of these plans originates a dependency on actor Patient assistant, for goal Get patient up

with transfer sling and Get patient up by lifting, respectively. Notice that the goals of the

assistant are less specific than those of the patient; indeed, these are general assumptions

and do not characterize in detail the plan an assistant will carry out. The first dependum

(the object of a dependency) becomes top-level goal g19 of the patient assistant. g19 is

AND-decomposed to g20: Position transfer sling and g21: Get patient up. g20 is means-end

decomposed to plans t22 and t23: the former indicates manual positioning of the sling, the

1a standard bus that allows devices in smart-homes to communicate: http://www.knx.org/

160 Evaluation and scalability

Figure 7.1: Contextual goal model for a smart-home patient: goals wake up and call helper

latter refers to the use of a remote control to position it. Plan t24: Activate sling is the

only available alternative to achieve g21. The dependency for goal Get patient up by lifting

results in patient assistant’s top-level goal g25, which is means-end decomposed to t28:

lift up patient. The patient’s goal g5: Check health is AND-decomposed to sub-goals g6:

Routine check and g7: Specific check; the latter goal should be achieved only if the patient

suffers from chronic diseases (in context c2). Possible means to achieve g6 are using a

smart shirt to check the health (t6), using a thermometer (t7), or using an oxymeter (t8).

g7 is OR-decomposed to sub-goals g8: measure glucose and g9: check hearth activity; each

Case study 1: smart-home for health support 161

decomposition link is subject to a different context: g8 is possible if the patient suffers

from diabetes, g9 should be achieved if the patient was victim of heart attack. The only

plan to achieve g8 is t9: use glucose meter. g9 can be achieved either by using a pulse

checker (t10) or by using a smart shirt with EKG capabilities (t11). The trees for the other

sub-goals of g1 are similar, thus we don’t detail them here. The patient has also another

top-level goal, g18: Call helper. This goal can be achieved by calling a helper by phone

(t20) or sending an SMS (t21).

Figure 7.2: Contextual goal model for a smart-home patient: goal have breakfast

Figure 7.2 shows a different part of the scenario which describes goal g1: Have break-

162 Evaluation and scalability

fast. g1 is activated when the patient wakes up (activation event). The patient should

internally commit to achieve g1 within two hours since goal activation. Four different con-

texts characterize the scenario: in c1 the patient is autonomous, in c2 the patient is not

autonomous, in c3 the patient is at home, in c4 the patient is not at home. If the patient

is autonomous (c1 holds) g1 is decomposed into the sub-tree of goal g2: Eat alone; if c2
holds g1 is decomposed into the sub-tree of goal g22: Get eating assistance. In the former

case, c3 activates the sub-tree of goal g3: Eat at home, whereas c4 activates the sub-tree

of goal g7: Eat outside. When eating at home, the patient has to prepare food (g4), eat

breakfast (g5), and clean up (g6). Goal g4 is means-end decomposed to two alternative

tasks: t1: Prepare autonomously and t2: Order catering food. The latter task requires

interaction with the external actor Catering service, which should fulfil goal Provide food

for the successful execution of t2. The other sub-trees of Figure 7.2 are structured in a

similar way, thus we don’t detail them here.

Plan name Precondition Action Time

t1: Use pole/trapeze bed b has a pole pl pl is touched 5

patient p is in bed b, b has pole pl, pl is

touched

p stands up 10

t2: Get up without support patient p is in bed b p stands up 10

t3: Use bed rails bed b has rails r r are activated 7

patient p is in bed b, b has rails r, r are

activated

p stands up 10

t6: Use smart shirt patient p has a smart shirt s, s is active s performs a health

check

15

t7: Use thermometer patient p has thermometer t, t is active t measures temp > 35◦C 35

t8: Use oxymeter patient p has oxymeter o, o is working o measures heart rate 16

patient p has oxymeter o, o is working o has measured satura-

tion

16

t9: Use glucose meter patient p has glucose meter gm, gm is

turned on

gm has blood on its sen-

sor

28

patient p has glucose meter gm, gm is

turned on, gm has blood on its sensor

gm measures glucose

level

30

t10: Use pulse checker patient p has pulse checker c c measured pulse 25

t11: Use smart shirt EKG patient p has smart shirt s s performs EKG 40

t12: Inject with insulin pen patient p has insulin pen i, p has glucose

meter gm, gm measured glucose level

i injects insulin 50

t13: Use insulin pump patient p has insulin pump i, i is under

skin

i pumped insulin 30

t20: Phone helper to get up house h has phone ph ph is dialling 10

house h has phone ph, ph is not dialling ph called a helper 15

t24: Activate sling bed b has sling sl, sl is active and over

bed

patient p stands up 45

Table 7.1: Specification for some plans in Figure 7.1. Preconditions in bold are critical

Case study 1: smart-home for health support 163

Table 7.1 shows a semi-formal specification for some of the patient’s plans in Figure 7.1.

Plans are expressed according to the plan specification introduced in Section 4.3.3. We

explain now the semantics of the specification for some of these plans.

Plan t9: Use glucose meter is defined by two actions: the glucose meter has blood

on its sensor, and the glucose meter measures glucose level. The first action has a non-

critical precondition (the glucose meter should belong to the considered patient), and a

critical precondition (the glucose meter is turned on). If the glucose meter is turned off

but blood is detected on its sensor, a plan failure is detected. The second action has an

additional critical precondition: the glucose meter should have blood on its sensor. In

general, our plan specification does not prescribe plan sequencing. However, sequencing

can be explicitly expressed. Here, the event corresponding to the first action (blood on

sensor) is used as a critical precondition for the second action, so that the second action

is to execute after the first one. The timeout for the first action is 28, the timeout for the

second action is 30. Plan t12: Inject with insulin pump is specified by one action: the insulin

pen injects insulin. The action has two non-critical preconditions: the insulin pen belongs

to the patient and the patient has a glucose meter. It has a critical precondition too: the

glucose meter has measured glucose level. This means that plan t12 should be carried out

after plan t9. The specification of plan t20: Phone helper to get up consists of two actions.

First, the phone should be dialling (time limit 10). The action precondition tells that the

phone should belong to the smart-home. Second, the phone should call a helper. This

action has a critical precondition: the phone should not be dialling. Therefore, if the

sensors notify that a helper is called while the phone is still dialling, a failure is detected.

7.1.2 Simulations: adaptation in the smart-home STS

We have experimented our prototype for settings with contextual variability (Section 6.1)

on the smart-home scenario described in the previous section. We describe some simula-

tions concerning the contextual goal model in Figure 7.1. The goal model is composed of

two agents, 25 goals, 28 plans, and 3 soft-goals. The context model consists of 18 entities

having 67 attributes. Overall, 67 different event types are relevant to our architecture,

such as “phone is dialling”, “bed rails are active”, “patient enters bathroom”, “patient

exits home”. We have conducted our experiments on a machine equipped with an AMD

Athlon(tm) 64 X2 Dual Core Processor 4200+ processor, 2GB RAM, and running Linux

ubuntu 2.6.31-16-generic ♯53-Ubuntu SMP i686, Java OpenJDK Runtime Environment

(IcedTea6 1.6.1) (6b16-1.6.1-3ubuntu1).

We tested the requirements model on several realistic scenarios. We show here three

simulations that involve diagnosis and compensation. We express these simulations in

terms of timesteps. In order to automate testing in a simulated environment, we developed

164 Evaluation and scalability

a module that simulates the enactment of a chosen reconfiguration.

Simulation 1 Marco is a diabetic patient living in a smart-home. Currently he cannot

stand up autonomously, for he is still weak after a bad flu. However, he can stand

up if assisted. He is typically supported by a social worker named Mike. Marco is in

bed at timestep 0, he is alone at home. At timestep 1 the alarm rings in his bedroom.

Marco is supposed to call a helper and to wake up: goals g18 and g1 are instantiated.

At timestep 2 the phone dials; this gives evidence that Marco is calling a helper, maybe

Mike. At timestep 5 an event says that a helper is called: the smart-home system receives

a confirmation SMS from Mike. �

This simulation raises a failure, according to the specification for plan t20. Indeed, the

phone is still dialling (see Table 7.1) as the helper confirms he will come. This is a critical

precondition, therefore the diagnosis component identifies this failure. The root cause

for this failure is either a fault in the sensor that detects phone dialling status or in the

sensor that detects received SMSs. No tolerance policy is specified, thus the architecture

should compensate for this failure. Twelve alternatives are generated by DLV-complex,

then the best alternative is chosen according to Algorithm 5.4 (in Section 5.2.1). The

selected strategy supports both active goals: g18 and g1. The failed plan t20 is marked to

be compensated, and plan t21 (send SMS) is selected. The reconfiguration simulator takes

care of enacting the chosen strategy and lets the agents achieve their own goals. Plan

t21 is automated by sending an SMS to Mike. In a real environment, some compensation

actions could fail—or have no effect—implying further reconfiguration.

Simulation 2 Marco’s alarm rings at timestep 1. At timestep 2 his phone starts dialling.

At timestep 3 the phone stops dialling and a helper is called. This time t20 is carried out

correctly. At timestep 4 Marco is not alone in his house any more; moreover, the sling

is over his bed. At time 9, Marco stands up with the support of a person. However, the

sling has not been touched. �

Also in Simulation 2, the event sequence leads to a failure, specifically plan t24 of the

assistant fails. Indeed, the patient is standing and the sling is over the bed, but the sling

is not active. Clearly, the patient could hardly be standing up, for the sling is supposed

to be just above Marco. This might have different interpretations: either the patient is

standing and the sling activation sensor is broken, the patient standing sensor failed, or

maybe the assistant is not even there. Regardless of the real cause, the architecture plans

possible alternatives and selects the best one, which includes notifying the helper to lift

the patient. It might be the case that the person in the house found a way to bypass using

the sling; in any case, the system is just notifying such person, acting in an unobtrusive

way. If Marco does not achieve his other goals, more obtrusive actions will be taken.

Case study 1: smart-home for health support 165

Simulation 3 After some days, Marco feels better and can stand up autonomously. At

timestep 1 the alarm rings, and Marco gets up without support (t2) at timestep 10. Now,

he is expected to measure glucose level, a fundamental activity for diabetic patients (g8
should be achieved). He should use the glucose meter and put a blood drop on the sensor.

Let’s consider two variations now: (i) at timestep 25, Marco uses his insulin pen and

injects insulin; (ii) Marco doesn’t carry out any further relevant action till time 32. �

This third simulation produces a failure detected by the architecture at timestep 25

(in the first variation) or at timestep 32 (in the second variation). The first failure refers

to plan t12, and is detected because the critical precondition (the glucose level has been

measured) is violated. Indeed, Marco has not measured his glucose before injecting insulin.

This is a dangerous situation, for injecting an incorrect amount of insulin might lead to

hypoglycaemia and later to hyperglycaemia. Our architecture reacts to this failure by

choosing plan t13 (use insulin pump) and compensating t12 by notifying the nurse assigned

to the Marco. The prototype tries to enact plan t13 by sending a notification to Marco

telling him to wear the insulin pump. The insulin pump performs continuous glucose level

monitoring and injects insulin whenever needed. In the second variation, the failure is

a timeout for plan t9. There is no alternative to such plan, thus the architecture has to

retry with the same plan. Also, plan failure is compensated by alerting the nurse.

Figure 7.3: Screen-shot of the architecture applied to the smart-home case study (Simulation 2)

Figure 7.3 shows a snapshot of the architecture running Simulation 2. The current

simulation trace is shown on the left side, whereas requirements monitoring is on the right

166 Evaluation and scalability

side. Goal models are represented as trees, the status of every goal is represented by a

coloured circle. Plans are leaf-level nodes in goal trees. The status of domain assumptions

are shown in a different tab (hidden in Figure 7.3). In Figure 7.3, the architecture has

started its reaction to t24 failure: Marco has been lifted by the helper, the smart shirt has

performed a routine check, the patient is using the glucose meter to measure his blood,

and Marco has already taken his medicine.

These simulations demonstrate the capability of our first prototype to cope with dif-

ferent types of failures related to contextual factors. Specifically, we have shown how the

architecture can detect plan failures and expired timeouts, and how it responds to these

issues via different reconfigurations. In the first simulation, the plan is automated to en-

sure a helper is actually notified. The other two simulations minimize the obtrusiveness

of the smart-home system: notifications are sent to specific people so that they can help

the patient upon double checking the need of intervention. During our simulations, the

prototype performed well during diagnosis and reconfiguration. On average, CPU usage

was below 9%, with a maximum value of almost 67% and some other peaks, but also some

values close to 0%. Memory (heap) usage follows a pattern where heap allocation (high

peaks are ∼61MB) is immediately followed by heap deallocation (low peaks are ∼9MB).

On average, heap usage is less than 33MB. For what concerns performance, we can con-

clude that the size of the models used for this case study is not critical for our prototype.

On average, diagnosis took 863ms, with a maximum of 1215ms and a minimum of 787ms.

Planning for alternatives and selecting the best reconfiguration took on average 203ms.

7.1.3 Scalability experiments for the first prototype

We have performed two types of scalability experiments to verify different phases of the

MDRC cycle: (i) failure diagnosis, i.e. how long the architecture takes to determine

failures (Algorithms 5.1 and 5.2); (ii) system reconfiguration, i.e. the time needed to

derive alternatives (Algorithm 5.3) and to choose the best one (Algorithm 5.4).

We have verified diagnosis scalability on goal models of growing size. We have increased

the size of goal models in three ways: (i) the number of top-level goals of an agent; (ii) the

number of agents in the model; (iii) the depth of a goal tree. We report results concerning

all these dimensions.

Table 7.2 summarizes scalability results obtained by increasing the number of top-

level goals. We took a basic goal tree composed of 15 goals and we replicated it to obtain

multiple goal trees, thus increasing the total number of goals. The six columns in the table

represent number of goal trees, number of goals, number of datalog rules, diagnosis time,

diagnosis time per goal, and diagnosis time per datalog rule, respectively. The results

show that the tool scales very well till 180 goals (12 top-level goals), for the time per goal

Case study 1: smart-home for health support 167

Trees Goals Rules Time Time
Goals

Time
Rules

1 15 131 218 14.533 1.664

2 30 255 318 10.600 1.247

3 45 379 526 11.689 1.387

6 90 751 799 8.878 1.064

12 180 1495 2146 11.922 1.435

24 360 2983 7101 19.725 2.380

48 720 5959 25615 35.576 4.299

Table 7.2: Diagnosis scalability: increasing the number of top-level goals; time in ms

is always below 15ms. Larger goal models increase the time per goal till 35ms for 720

goals. However, this is still a good result since time does not grow exponentially.

Agents Goals Rules Time Time
Goals

Time
Rules

2 20 291 213 14.550 1.366

3 25 320 291 12.800 1.099

5 40 340 379 8.500 0.897

11 70 463 525 6.614 0.882

21 120 793 915 6.608 0.867

41 220 1964 1695 8.927 1.159

81 420 5870 3255 13.976 1.803

161 820 17831 6375 21.745 2.797

Table 7.3: Diagnosis scalability: increasing the number of agents; time in ms

Table 7.3 reports on scalability for requirements models with multiple agents. We

don’t change the supported agent, and make it depend on an increasing number of other

agents. The agents acting as dependees are cloned, each one having one small goal tree

composed of five goals. The table columns represent number of agents, number of goals,

number of rules, diagnosis time, time per goal and time per rule. The diagnosis scales

very well (linearly) till 420 goals (81 agents); the result is a bit worse with 820 goals (161

agents) but the growth is still not exponential.

Depth Goals Rules Time Time
Goals

Time
Rules

5 18 241 156 13.388 1.545

10 23 286 191 12.435 1.497

20 33 375 261 11.364 1.437

40 53 727 401 13.717 1.813

80 93 2076 681 22.323 3.048

160 173 7184 1241 41.526 5.789

320 333 30071 2361 90.333 12.737

Table 7.4: Diagnosis scalability: increasing goal model’s depth; time in ms

Table 7.4 details scalability results about goal models with increasing depth. In order

168 Evaluation and scalability

to increase depth, we generated goal decompositions with just one sub-goal. In this

setting, the diagnosis mechanisms scale less well than in the other two experiments: good

scalability is measured till 93 goals (depth 80). However, notice that we are measuring

unrealistically deep goal models.

256

512

1024

2048

4096

8192

16384

16 32 64 128 256 512

T
im

e
 (

m
s
)

Number of Goals

Goal Trees
Nr. Agents
Tree Depth

0.5

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

4 8 16 32 64 128 256 512 1024 2048 4096 819216384

T
im

e
 (

m
s
)

Number of Alternatives

Alternatives generation
Best alternative selection

Generation + Selection

Figure 7.4: Scalability evaluation for diagnosis (left side) and reconfiguration (right side) mech-

anisms

The left-hand side of Figure 7.4 shows a chart plot summarizing diagnosis scalability.

The chart is created using a logarithmic scale on both axes. The three plots represent

the three conducted experiments: the chart shows that diagnosis works better with many

small goal models (even with many agents) than with a single large goal model (i.e.,

increasing its depth). Overall, the diagnosis mechanisms perform well for medium-sized

requirements models.

The basic unit to verify reconfiguration scalability is not the number of goals. Re-

configuration is the selection of an alternative variant to achieve the requirements of the

system. Therefore, reconfiguration corresponds to (i) generating viable variants and (ii)

selecting the best variant. Scalability has to be assessed with respect to the number of

variants. To check reconfiguration scalability we created several goal models with increas-

ing number of variants. In particular, we introduced additional options to variation points:

more sub-goals in OR-decompositions and more plans in means-end decompositions.

Table 7.5 reports on scalability for reconfiguration mechanisms. The five columns rep-

resent number of variants, time taken to generate the variants, time taken to select the best

variant, generation time per variant, and selection time per variant, respectively. Each

experiment was repeated three times; the overall time is approximated to the millisec-

ond in columns 2 and 3. Results show that the implemented reconfiguration mechanisms

scale very well. The growth is linear with the number of variants, as can be seen in the

ratio columns. Both generation and selection perform efficiently. Selection time is much

smaller than generation time. The right-hand side of Figure 7.4 graphically resumes the

scalability results concerning reconfiguration, also shows the overall reconfiguration time.

Case study 2: hazardous materials emergency response 169

♯ var Gen time Sel time Gen time
♯var

Sel time
♯var

3 36 <1 12.000 0.111

8 40 1 4.958 0.166

27 73 3 2.691 0.111

64 204 7 3.182 0.115

125 325 15 2.597 0.117

216 408 36 1.867 0.166

343 547 66 1.594 0.193

512 798 95 1.559 0.186

1024 1148 122 1.121 0.119

2048 1839 286 0.898 0.140

4096 3064 354 0.747 0.111

8192 5198 514 0.635 0.063

16384 10604 738 0.647 0.045

Table 7.5: Reconfiguration scalability: increasing the number of variants; time in ms

7.2 Case study 2: hazardous materials emergency response

Emergency response involves multiple social actors that interact—via a technical infra-

structure—to reach the emergency location, determine the hazard severity, plan a proper

response, and timely enact the response. Therefore, emergency response defines a socio-

technical system. This case study is about emergencies where hazardous materials are

involved. It is based on a publicly available document released by the South Dakota

department of public safety2. Such document3, titled “Hazardous Material Plan Work-

book”, defines general response procedures for emergency handling involving improper

handling or accidental release of hazardous materials (HazMat).

When improperly handled or accidentally released, HazMats threaten life, property,

and the environment. Quick and efficient response is mandatory to effectively manage

and mitigate an incident. Inadequate response is very costly in terms of lives, money, and

environmental damage. The procedure described by the document is complemented and

refined by local emergency plans. The document covers all phases concerning emergency

response: response preparedness, response, and recovery.

We focus here on hazardous material response phase (section C in the document). Sev-

eral actors are involved in such phase. The Local Emergency Planning Committee (LEPC)

of the county is the main authority, which is responsible for the correct management of

HazMat threats. The County dispatcher serves as the 24 hour contact for notification of

HazMat incidents, and has to alert the most adequate agencies to initiate response. The

first public safety officer getting to the location becomes the Incident commander. He

2http://www.dps.sd.gov/emergency services/emergency management/
3http://dps.sd.gov/emergency services/emergency management/images/hazmat plan workbook.pdf

170 Evaluation and scalability

is authorized to nominate a designee that acts as vice-commander. Response Personnel

is chosen and coordinated by the incident commander, and is responsible for enacting

the command and control procedure. Public safety officials conduct off-site evacuation

operations if requested. Designated agencies are alerted by the incident commander to

effectively tackle the emergency actuating the most adequate response.

We complement the procedure description found in the document with information

taken from the DECIDE procedure applied to HazMat emergencies [Ben75]. The DECIDE

procedure acronym defines six steps: (i) Detect HazMat presence; (ii) Estimate likely

harm without intervention; (iii) Choose response objectives; (iv) Identify action options;

(v) Do best option; and (vi) Evaluate progress. In particular, we consider the emergency

response options proposed by Benner [Ben75] and shown in Figure 7.5.

Figure 7.5: Hazardous materials emergency response options (from [Ben75])

7.2.1 Modelling social variability

HazMat response procedures are a social-intensive activity, where several social actors

(humans, teams, organizations) perform a coordinated action that will ultimately lead

to controlling the emergency. Social variability is an inherent property in this setting.

Case study 2: hazardous materials emergency response 171

Alternative teams and individuals are available and commit to deliver various services. For

example, the incident commander can typically choose among different people the most

suitable designee; also, many emergency response teams can act as response personnel.

The social structure of an STS responding to an emergency varies over time. Agents

involved in emergency response often have to adapt to ensure their objectives are achieved.

This happens, for instance, if some agent breaks a previously made commitment. For

example, a response team might be unable to successfully define a restricted area because

team members are busy with other tasks. Then, the incident commander will have to

find a replacement team. Sometimes, adaptation is required due to contextual changes.

For example, the severity of the hazard might increase, and this might require to find an

alternative response agency with specific skills.

Figure 7.6: Commitments in the HazMat case study

We apply the modelling framework of Section 3.4.2 and specify both the service-

oriented application (in terms of a commitments protocol), and a particular agent that

172 Evaluation and scalability

wants to participate in the application. In Figure 7.6 we show a possible commitments

protocol for the HazMat case study. The figure shows the expected commitments between

the involved roles. At runtime, specific agents play these roles and introduce social vari-

ability in the scenario. Figure 7.6 helps an agent designer to verify whether such agent

will be able to achieve its goals by playing a certain role, provided that it finds agents

whose commitments are compatible with those expressed at the role level.

The county dispatcher commits to the LEPC that, if a hazard is notified, the hazard

will be dispatched to all agencies in the emergency notification roster (C1). The LEPC

commits to the incident commander that, if the commander reaches the hazard, evacuation

will be authorized (C2). This commitment reflects the rule that a public officer playing

role incident commander can start an evacuation only if it receives an authorization.

The incident commander makes a set of commitments to the LEPC: (C3) as soon as he

reaches the hazard, an on-scene command post with communication capabilities will be

established outside the immediate danger area; (C4) if the command post is established,

he will either choose a designee or perform risk analysis by himself; (C6) if the hazard ia

assessed, a restricted area will be established and an emergency response agency will be

designated; (C7) if the hazard is not under control, additional personnel will be requested;

(C12) if a radioactive hazard is detected, a specialized agency will be notified; (C14) if

special clothing is needed, then the need of wearing special clothes will be notified to all

involved rescuers. The incident designee commits to the incident commander that, if he

is chosen as designee, the hazard will be assessed and an event log will be kept (C5).

The public safety official commits to the LEPC that, if an evacuation is started, then

offline evacuation will be performed. The response personnel makes a set of commitments

to the incident commander: (C8) if personnel is requested, then the hazard will be reached;

(C9) as the hazard is reached, the response personnel will be in charge for keeping safe

distance between people and the hazard; (C10) if a hazard escape is identified, then neces-

sary measures to avoid exposure will be adopted; (C11) if a restricted area is established,

then the response personnel will check entrance to the area and will keep a log of people

entering/exiting the area; (C13) if the need to wear special clothing is notified, then such

clothing will be worn.

The designated agency is responsible for responding to the emergency by controlling

the HazMat and putting out possible fires. There are several commitments from the

agency to the incident commander: (C15) if the agency is designated and hazard severity

is assessed, then a prediction about the evolution of the hazard will be made; (C16) if the

evolution prediction is made and the breach has not been crossed by the HazMat, then

either the contents will be chilled or the venting system will be activated; (C17) if the

prediction is made and the danger zone is not engulfed by escaping HazMat, then the

Case study 2: hazardous materials emergency response 173

HazMat container will be moved; (C18) if the prediction is made and the material is not

dispersed, either a controlled ignition will be started, or protective dikes will be erected,

or fog sprays will be used; (C19) if the prediction is made, shielding will be provided and

helicopters will be called; (C20) if evacuation is authorized, then the evacuation will be

started. Commitments C16-C19 represent different response strategies that cover events

from B to E in Figure 7.5.

Figure 7.7 shows the specification of agent Mike (its goal model). Mike wants to adopt

role incident commander in the HazMat scenario. At design-time, such goal model can be

checked against the commitments in Figure 7.6. Mike has four top-level goals: responding

a hazard (hazardResponded), tackling radioactive hazard (radioactiveHazardTackled), evac-

uating people when needed (peopleEvacuated), and ensuring body protection to rescuers

(bodyProtecionEnsured).

Figure 7.7: Goal model for agent Mike who wants to play Incident Commander

The first top-level goal is AND-decomposed to four sub-goals: the hazard should be

reached by the incident commander, a command post should be established, the hazard

174 Evaluation and scalability

should be tackled, and an event log should be kept. Mike is capable of hazardReached-

ByIC, commandPostEstablished, and logKept. To achieve hazardTackled, Mike has to es-

timate the hazard, guarantee safety, and control the hazard. Goal hazardEstimated is

AND-decomposed to analysing the hazard and assessing the hazard. The former sub-goal

is achievable either by choosing a designee (designeeChosen) or performing risk analysis

(riskAnalysisPerformed). Goal riskAnalysisPerformed contributes positively to (supports)

hazardAssessed. To guarantee safety, Mike has to establish a restricted area, gather per-

sonnel, keep an entrance log, keep safe distance, and check area entrance. He is capable

of restrictedAreaEstablished and entranceLogKept. To achieve personnelGathered, he has

to request personnel (he is capable of this goal) and to ensure the hazard is reached by

response personnel.

Achieving goal hazardControlled requires to designate a response agency, make a pre-

diction about the hazard evolution, and actuate a response. Mike is capable of agencyDes-

ignated. In order to achieve responseActuated, Mike has different alternatives: influencing

the breach size, changing the position of the container, influencing the danger size, or

reducing the impinged exposures. Goal breachSizeInfluenced can be achieved either by

chilling the contents or activating the venting system. To achieve dangerSizeInfluenced,

he has to use a remedy and to erect a protection dike. Goal hazardRemedyUsed is OR-

decomposed into controlledIgnitionStarted and fogSpraysUsed. In order to reduce the im-

pinged exposures, Mike has to provide a shielding and to call helicopters. Notice that

Mike has no capability for responding to hazards. He has to rely on commitments made

by other agents.

The second top-level goal, radioactiveHazardTackled, is AND-decomposed to filling in a

preliminary report and notifying an agency that can deal with radioactive hazards. Mike

is capable of both preliminaryReportFilledIn and radioAgencyNotified. To achieve the third

top-level goal, peopleEvacuated, Mike has to perform both an online evacuation and an

offline evacuation. To perform an online evacuation, he needs to authorize the evacuation,

order the evacuation, and start it. He is capable only of ordering the evacuation. The

fourth root goal, bodyProtectionEnsured, is AND-decomposed to notifying the need to

wear special clothing and wearing such clothing. Mike is capable of the former sub-goal.

7.2.2 Simulations: adaptation in the HazMat STS

The purpose of this section is to show how our architecture—specifically, the prototype

for STSs characterized by social variability (Section 6.2)—adds self-adaptive capabilities

to agent Mike in the HazMat STS. The prototype can be used either at design-time

to run simulations, or at run-time to support Mike in his decision-making. We do not

examine the operationalization of adaptations. We limit our analysis to the generation of

Case study 2: hazardous materials emergency response 175

variants and the selection of the best one according to Mike’s adaptation policy (we use

the framework proposed in Section 5.2.2).

Before describing the simulations, we list the commitments from other agents that

currently hold in the scenario (Table 7.6). In addition, we specify the activation and the

compensation cost for each of these commitments, which are communicated by the debtor

as the commitment is made. In Table 7.7 we specify activation and compensation cost

for Mike’s capabilities. The commitments in Table 7.6 are made by agents playing roles

in the protocol specified by Figure 7.6. Due to their autonomy, the agents make different

commitments from those specified by the roles they play.

Commitment AC CC

Ca=C(Designee1, Mike, designeeChosen, hazardAssessed ∧ logKept) 10 4

Cb=C(Lepc, Mike, hazardReachedByIC, evacuationAuthorized) 1 25

Cc=C(Rteam1, Mike, personnelRequested, hazardReachedByRP ∧ safeDistanceKept) 7 10

Cd=C(Rteam1, Mike, restrictedAreaEstablished, areaEntranceChecked ∧ entranceLogKept) 5 1

Ce=C(Rteam3, Mike, restrictedAreaEstablished ∧ hazardReachedByRP, areaEn-

tranceChecked ∧ entranceLogKept)

6 2

Cf=C(Rteam1, Mike, clothingNeedNotified, clothingWorn) 1 1

Cg=C(Agency1, Mike, agencyDesignated ∧ hazardAssessed, predictionMade) 6 2

Ch=C(Agency2, Mike, agencyDesignated, hazardAssessed ∧ predictionMade) 7 0

Ci=C(Agency1, Mike, predictionMade ∧ dangerZoneNotEngulfed, containerPosition-

Changed)

5 3

Cj=C(Agency2, Mike, predictionMade ∧ materialNotDispersed, fogSpraysUsed ∧ di-

keErected)

7 16

Ck=C(Agency3, Mike, predictionMade, shieldingProvided ∧ helicoptersCalled) 26 40

Table 7.6: Commitments in the hazard materials response simulation

Commitment Ca is made by agent Designee1 and tells that, if the designee is chosen,

the hazard will be assessed and the log will be kept. The activation cost is 10, the

compensation cost 4. Ca is a concrete version of commitment C5 in the role-based diagram

of Figure 7.6. Agent Lepc commits (Cb) to authorize evacuation if the hazard is reached

by the incident commander; the compensation cost is much higher than the activation

cost, since cancelling Cb includes a lot of work on behalf of agent Lepc. Cb is a concrete

version of C2. Agent Rteam1 commits to reach the hazard and keep safe distance if

personnel is requested (Cc), check area entrance and keep an entrance log if a restricted

area is established (Cd), and wear special clothing if such need is notified (Cf). Agent

Rteam3 commits to check area entrance and keep entrance log if a restricted area is

established and the hazard is reached by response personnel (Ce). In other words, Rteam3

will make this commitment only if some other rescue team is already at the emergency

location. Commitments Cg-Ck are about controlling the hazard. Three agencies are

176 Evaluation and scalability

involved. Agency1 commits to make a prediction if the agency is designated and the

hazard is assessed (Cg); the activation cost is 6, the compensation cost is 2. Agency2

commits to make the prediction and assess the hazard, if the agency is designated (Ch);

activation and compensation costs are 7 and 0, respectively. Agency1 commits to change

the container position if the prediction is made and the danger zone is not engulfed (Ci).

Both activation (5) and compensation (3) are cheap. Agency2 commits to use fog sprays

and erect a dike if a prediction is made and material is not dispersed (Cj). The activation

cost is low (7), whereas compensation is high (16). Agency3 commits to provide shielding

and call helicopters, if the prediction is made (Ck). Both activation and compensation

are very expensive.

Capability AC CC Capability AC CC

hazardReachedByIC 9 6 commandPostEstablished 8 15

designeeChosen 6 8 riskAnalysisPerformed 15 1

restrictedAreaEstablished 7 7 personnelRequested 6 9

entranceLogKept 7 0 agencyDesignated 10 14

logKept 10 0 preliminaryReportFilledIn 4 0

radioAgencyNotified 6 16 evacuationOrdered 8 14

clothingNeedNotified 6 4

Table 7.7: Capabilities in the hazard materials response simulation

Table 7.7 lists activation and compensation costs for Mike’s capabilities. Notice that

the cost for a capability might vary over time, and it typically depends on available

resources. We suppose here that these values don’t vary during our simulations. Some

capabilities do not have significant compensation cost: entranceLogKept, logKept, and pre-

liminaryReportFilledIn. Indeed, compensating these activities means simply ignoring the

data that was filled in. Some other capabilities have high compensation cost: radioAgen-

cyNotified, commandPostEstablished, agencyDesignated, and evacuationOrdered. The reason

is that compensating the effects of these actions is expensive for Mike, either in terms of

work (e.g. removing a command post) or money (e.g. a penalty might be assigned if an

evacuation order is cancelled).

We performed our simulations using the following adaptation policy: (i) the variant

selection criteria minimizes the delta from the current configuration; (ii) the new variant

should differ from the current one; (iii) threatened capabilities and commitments should

be avoided; (iv) failed capabilities and violated commitments should be avoided; (v)

compensation cost is considered; (vi) third-party commitments can be used; (vii) the

variant generation timeout is 5 seconds, the tick time is 7 seconds; (viii) the considered

adaptation triggers are all risks plus unthreatened commitments and capabilities; (iv)

opportunities are adopted irrespective of their delta value.

Case study 2: hazardous materials emergency response 177

Currently, states of the world dangerZoneNotEngulfed and materialNotDispersed hold.

Mike’s goal is hazardResponded. Mike is adopting a variant to support hazardResponded.

We generate this variant using our prototype. The prototype outputs 39 variants; the

current one (shown in Figure 7.8) has minimal cost (79). The commitment labels in the

figure are numbered (C1, C2, . . .) instead of being ordered alphabetically (Ca, Cb, . . .)

as in Table 7.6. Our description refers to the alphabetical version.

Figure 7.8: Initial variant for the simulations

To achieve his root goal, Mike exploits the world state dangerZoneNotEngulfed. He uses

his capabilities, some of which are used to make other agents unconditionally committed

to deliver some service. He uses his capabilities for hazardReachedByIC and for command-

PostEstablished. Then, Mike uses his capability for designeeChosen to detach Ca and make

Designee1 unconditionally committed to logKept and hazardAssessed. By using his capabil-

ity for personnelRequested, he detaches Cc and makes Rteam1 unconditionally committed

for safeDistanceKept and hazardReachedByRP. The capability for restrictedAreaEstablished

is used to detach Cd and make Rteam1 unconditionally committed for entranceLogKept

178 Evaluation and scalability

and areaEntranceChecked. Using his capability for agencyDesignated and supporting haz-

ardAssessed via Ca, Mike detaches Cg and supports predictionMade. Finally, he detaches

Ci and makes Agency1 unconditionally committed to containerPositionChanged.

Simulation 4 Mike is currently responding to the hazard using the variant described

above. After some time, Agency1 notifies Mike that commitment Ci is at risk, for the

agency is encountering difficulties in moving the HazMat container to a safe position. Mike

interprets such message as a threat for Ci, and changes the state of such commitment. �

Mike’s adaptation policy specifies that threatened commitments are adaptation trig-

gers. Consequently, variant generation is executed, invoking EL+2SAT with a timeout of

5 seconds. The tool generates 17 possible variants. The less expensive one is the second

one (cost 10), which is the following:

Cj=C(Agency2, Mike, predictionMade ∧ materialNotDispersed, dikeErected)

Cj=C(Agency2, Mike, predictionMade ∧ materialNotDispersed, fogSpraysUsed)

Cg=C(Agency1, Mike, agencyDesignated ∧ hazardAssessed, predictionMade)

Cd=C(Rteam1, Mike, restrictedAreaEstablished, entranceLogKept)

Cd=C(Rteam1, Mike, restrictedAreaEstablished, areaEntranceChecked)

Cc=C(Rteam1, Mike, personnelRequested, safeDistanceKept)

Cc=C(Rteam1, Mike, personnelRequested, hazardReachedByRP)

Ca=C(Designee1, Mike, designeeChosen, logKept)

Ca=C(Designee1, Mike, designeeChosen, hazardAssessed)

cap(agencyDesignated), cap(personnelRequested), cap(restrictedAreaEstablished),

cap(designeeChosen), cap(commandPostEstablished), cap(hazardReachedByIC)

holds(materialNotDispersed)

The cost of the variant (10) is computed by summing the compensation cost of the ca-

pabilities and commitments that are not in the new solution and the activation cost for

capabilities and commitments that have to be adopted. The new variant requires to

compensate Ch (cost 0) and Ci (cost 3), and to adopt commitment Cj (cost 7).

Simulation 5 Mike is still responding to the emergency. While tackling the hazard with

the new variant (that includes Cj), a new event occurs. Agent Agency2 sends a message

to Mike telling that it will violate Cj, for the protection dike cannot be erected safely. �

As soon as the diagnostic component of the prototype detects this failure, variant

generation is performed. The prototype identifies nine variants. The number of variants

is decreasing given that the adaptation policy tells to ignore both threatened and failed

capabilities/commitments. The best variant is the following:

Ck = C(Agency3, Mike, predictionMade, helicoptersCalled)

Ck = C(Agency3, Mike, predictionMade, shieldingProvided)

Cg = C(Agency1, Mike, agencyDesignated ∧ hazardAssessed, predictionMade)

Cd = C(Rteam1, Mike, restrictedAreaEstablished, entranceLogKept)

Case study 2: hazardous materials emergency response 179

Cd = C(Rteam1, Mike, restrictedAreaEstablished, areaEntranceChecked)

Cc = C(Rteam1, Mike, personnelRequested, safeDistanceKept)

Cc = C(Rteam1, Mike, personnelRequested, hazardReachedByRP)

Ca = C(Designee1, Mike, designeeChosen, logKept)

Ca = C(Designee1, Mike, designeeChosen, hazardAssessed)

cap(agencyDesignated), cap(personnelRequested), cap(restrictedAreaEstablished)

cap(designeeChosen), cap(commandPostEstablished), cap(hazardReachedByIC)

The cost for this variant is 42, and it consists of the activation cost for Ck (26) and the

compensation cost for Cj (16).

Simulation 6 Mike is using the variant with Ck. Two relevant events occur during the

same time tick. Commitment Ca is threatened (agent Designee1 tells it cannot keep the

log), whereas Agency1 says that it is now able to bring about Ci. Notice that Ci had not

been violated; however, Mike had cautiously marked it as a threatened commitment. �

The prototype starts an adaptation process triggered both by the threat (Ca) the oppor-

tunity (Ci). The variant generator outputs only one variant within the time limit:

Ci = C(Agency1, Mike, predictionMade ∧ dangerZoneNotEngulfed, containerPositionChanged)

Cg = C(Agency1, Mike, agencyDesignated ∧ hazardAssessed, predictionMade)

Cd = C(Rteam1, Mike, restrictedAreaEstablished, entranceLogKept)

Cd = C(Rteam1, Mike, restrictedAreaEstablished, areaEntranceChecked)

Cc = C(Rteam1, Mike, personnelRequested, safeDistanceKept)

Cc = C(Rteam1, Mike, personnelRequested, hazardReachedByRP)

cap(logKept), cap(agencyDesignated), cap(personnelRequested)

cap(restrictedAreaEstablished), cap(riskAnalysisPerformed), cap(commandPostEstablished)

cap(hazardReachedByIC), holds(dangerZoneNotEngulfed)

The delta cost of this variant—the difference from the previous variant—is 82. This

derives from the adoption of commitment Ci (5), the compensation of Ca (4) and Ck (40),

the exploitation of capabilities for riskAnalysisPerformed (15) and logKept (10), and the

compensation cost for capability designeeChosen (8).

These simulations demonstrate that the prototype can effectively deal with a variety

of events caused by the volatility of the social context. The simulations that we presented

perform adaptations in response to threats for the fulfilment of commitments, violations

of commitments, and opportunities caused by ceased threats for commitments. The third

simulation testifies how the architecture provides self-optimization by exploiting opportu-

nities. Adaptations consist of engaging in new commitments with other agents, releasing

debtors from current commitments, and using a different subset of internal capabilities.

The prototype has managed to identify some solutions within a small amount of time (the

timeout was set to five seconds). Specifically, the first solution is identified after a few

milliseconds. Also, we have shown how the cost-based adaptation algorithm works and

preserves stability by minimizing changes between the current variant and the new one.

180 Evaluation and scalability

7.2.3 Scalability experiments for the second prototype

We report here on scalability experiments about the prototype for settings with social

variability (Section 6.2). We verify the scalability of variant generation. We test the

performance of the prototype both on variant versions of the case study and on artificial

models of growing size. At the end of the section we briefly report on experiments where

we exploit the DLV-complex solver on a restricted version of the language.

Notice that the variant generation problem is NP-complete. Since we allow for com-

mitments expressed in propositional logic, we encode the variant generation problem as

a boolean satisfiability (SAT) problem. It is well known that SAT is a NP-complete

problem, which is therefore exponential in the worst case [GJ79].

The performance of our tool depends on: (i) the efficiency of EL+2SAT and its typical

solution detection distribution; and (ii) the efficiency of our encoding of the problem.

EL+2SAT has some distinctive features to consider: (i) if the problem is satisfiable, one

solution is returned during the first SAT-solver invocation; (ii) in the typical distribution of

the solutions a large amount of solutions is returned in a short time, then fewer and fewer

solutions are identified. In theory, our encoding should slightly affect these properties. In

particular, the first feature of EL+2SAT is invalid: the first solution returned by EL+2SAT

might be discarded by the post-processing performed by Algorithm 5.5.

The basic unit to assess scalability is the number of boolean variables to which the tool

assigns truth values. These variables represent states of the world, agent capabilities, and

commitments. A single commitment can be mapped to more variables (Algorithm 6.2).

(a) (b)

Figure 7.9: Variant generation for the case study: (a) 16 variables, 6 solutions; (b) 20 variables,

25 solutions

We perform scalability experiments on some variations of the case study. Figure 7.9

presents results for (a) a setting with 7 commitments and 7 capabilities, resulting in 16

boolean variables and 6 solutions; (b) a setting with 8 commitments and 9 capabilities,

Case study 2: hazardous materials emergency response 181

resulting in 20 variables and 25 solutions. The x axis shows time in seconds; the y axis

represents solutions. Both charts show the optimal behaviour of EL+2SAT, where most

solutions are identified at the beginning. In particular, with these small problems, most

time is spent to generate new truth assignments after all solutions are found (as the line

becomes horizontal). In the first example, all solutions are found in a few milliseconds,

and the solver terminates after less than 0.7 seconds. In the second example, the tool takes

slightly less than 16 seconds, but all solutions are identified in less than three seconds.

(a) (b)

Figure 7.10: Variant generation for the case study with 25 variables and 120 solutions: (a) entire

execution; (b) zoom till the last solution is found

Figure 7.10 considers a larger version of the case study with 11 commitments, 9 capa-

bilities, and one state of the world. This setting is encoded to 25 boolean variables and

has 120 solutions. Figure 7.10a shows the entire execution of the tool, whereas Figure 7.10

zooms on the time interval till the last solution. The tool takes more than 700 seconds

to terminate, though all solutions are found within 200 seconds. This trend might seem

negative, but should be read keeping in mind that the problem is of exponential nature.

Moreover, most solutions are identified in the very beginning, then the chart line flattens.

The right-hand side of the figure shows that solutions are identified in blocks: as soon as

a solution is found, several small variations of the same solution are identified. This is

due to optimization strategies implemented by EL+2SAT.

Figure 7.11 considers the setting we used in the simulations in Section 7.2.2. In

particular, we analyse here the initial variant generation. In the example there are 11

commitments, 9 capabilities, and two states of the world. This setting results in 27

variables and 216 solutions. The solution determination distribution does not differ much

from the previous cases. More than one hundred solutions are identified in about half

a minute, then most solutions (200) are determined within 500 seconds, finally the tool

identifies the remaining few solutions in a much longer time.

182 Evaluation and scalability

(a) (b)

Figure 7.11: Variant generation for the case study with 27 variables and 216 solutions: (a) entire

execution; (b) zoom till the last solution is found

Figure 7.12: Variant generation for the case study with 32 variables, timeout at 12500 seconds

Our scalability analysis on the case study terminates with Figure 7.12: 15 commit-

ments, 9 capabilities, and three states of the world. We ran the tool for 12500 seconds,

then we manually stopped it. The tool generated 464 solutions. The shape of the chart

resembles the previous ones, but the number of solutions does not grow so quickly. Given

the current encoding, the tool cannot terminate in reasonable time for larger variations

of the problem. However, it seems able to generate a significant number of variants.

We report now on scalability experiments where we artificially increment the number

of variants. We enrich an initial goal model with an increasing number of sub-goals for

which the agent has capabilities. Figure 7.13 shows variant generation for two settings

where we have (a) 14 variants and 144 solutions; (b) 16 variables and 256 solutions. The

trend is different from the previous settings. The reason is that a higher percentage of

truth assignments leads to a solution (the density of solutions in higher). The distribution

trend is quite linear: solutions are identified following an uniform pattern over time. In

both cases, the tool is very efficient and terminates in less than 0.4 seconds.

Case study 2: hazardous materials emergency response 183

(a) (b)

Figure 7.13: Variant generation, increasing the number of solutions: (a) 14 variables and 144

solutions; (b) 16 variables and 256 solutions

Figure 7.14 presents results for larger models. We do not detail all the diagrams

here. The variant identification trend resembles that of Figure 7.13, since many truth

assignments are actual solutions. In this second set of experiments, we are applying the

SAT-based solver to a simpler problem which could be expressed using a smaller subset

of propositional logic. However, the tool is still able to identify some solutions since the

beginning. This is a very good feature if one is interested in obtaining some solutions.

Experiment 1sec 3sec 10sec 30sec 100sec

16-6 6 100% 6 100% 6 100% 6 100% 6 100%

20-24 23 95.8% 24 100% 24 100% 24 100% 24 100%

25-120 36 30% 49 40.8% 72 60% 80 66.7% 117 97.5%

27-216 9 4.2% 26 12% 51 23.6% 71 32.9% 130 60.2%

32-n.a. 9 n.a. 13 n.a. 13 n.a. 17 n.a. 57 n.a.

14-144 144 100% 144 100% 144 100% 144 100% 144 100%

16-256 256 100% 256 100% 256 100% 256 100% 256 100%

16-324 324 100% 324 100% 324 100% 324 100% 324 100%

18-576 50 8.7% 374 64.9% 576 100% 576 100% 576 100%

19-874 58 6.6% 74 8.5% 874 100% 874 100% 874 100%

20-1024 54 5.3% 126 12.3% 1024 100% 1024 100% 1024 100%

21-1600 23 1.4% 56 3.5% 137 8.6% 1260 78.8% 1600 100%

23-2000 23 1.2% 75 3.8% 177 8.9% 353 17.7% 2000 100%

Table 7.8: Scalability results showing the progress with different timeouts. The first part refers

to increasing commitments in the case study; the second part refers to increasing capabilities

Table 7.8 summarizes scalability results. It shows the effectiveness of the tool with dif-

ferent timeouts. The first column is an identifier for the experiment (number of variables,

number of solutions). Then, for each timeout (1, 3, 10, 30, and 100 seconds), we report

184 Evaluation and scalability

(a) (b)

(c) (d)

(e) (f)

Figure 7.14: Variant generation, increasing the number of solutions: (a) 16 variables and 324

solutions; (b) 18 variables and 576 solutions; (c) 19 variables and 874 solutions; (d) 20 variables

and 1024 solutions; (e) 21 variables and 1600 solutions; (f) 23 variables and 2000 solutions

the total number of generated variants and the ratio generated variants over all variants.

In all experiments, the tool always finds some solutions within one second. In the

first experiment, it returns all six solutions. In other experiments, it returns a number

of variants in between 9 (experiment with 32 variables) and 324 (experiment with 16

variables and 324 variants). In large experiments (e.g. 21-1600 and 23-2000), more than

twenty variants are generated. With the three-seconds limit, we can notice a substantial

Case study 2: hazardous materials emergency response 185

improvement for the experiment 18-576, where more than 300 variants are generated in

two seconds. All the other experiments have a linear increase in the number of variants.

Within the ten-seconds time limit all solutions for experiments 19-874 and 20-1024 are

computed. In the experiments based on the case study, the progress is linear. Most

variant generation experiments terminate within 30 or 100 seconds.

Dealing with the exponential growth of the problem

In our scalability experiments, we applied a simple type of heuristic to deal with the expo-

nential growth of the problem size. We specified a time limit that stops variant generation

after a fixed time. Several heuristics can be defined to cope with the exponential nature

of the problem. Another simple option is to define a minimum and maximum number

of solutions. Again, variant generation can be terminated if no variants are identified for

a long period of time (time might be an absolute value or based on the average time to

compute the last n solutions). Devising these heuristics is part of future work.

Another way to deal with scalability issues is to limit the expressiveness of the language

used to represent commitments. We have conducted some initial experiments in this

direction. We limited the antecedent to a disjunction of states of the world, and the

consequent to a conjunction of states. This way, we can use the disjunctive datalog solver

DLV-complex to generate variants. For details about the encoding, look at [CDGM10a].

We evaluate the applicability of our reasoning to medium- and large-sized scenarios

by increasing both the size of goal models and the number of commitments in the setting.

We create our experiments using a scenario cloning technique: a basic building block is

cloned to obtain larger scenarios. The building block consists of a goal model with 9

goals (with one top-level goal, 3 AND-decompositions and 1 OR-decomposition) and two

commitments. Cloning this scenario produces a new scenario with 2 top-level goals, 18

goals and 4 commitments; another cloning operation outputs 3 top-level goals, 27 goals

and 6 commitments, and so on. The query consists of the conjunction of all the top-level

goals in the cloned scenario. This kind of cloning increases linearly the number of goals

and commitments, whereas it increases exponentially the number of solutions.

Table 7.9 present the results of the scalability experiments. The first three columns

show the number of goals, commitments and solutions, respectively. The number of

solutions grows exponentially: the largest experiment has almost two millions solutions.

The fourth column shows the time to generate variants; the reasoning is applicable at

design time to large models, given that 2 millions solutions are computed in 200 seconds

on a desktop computer. The most significant result, however, is in the last column. It

shows the average time to derive one solution in microseconds. The time per solution

does not grow exponentially. The average time for smaller experiments is higher because

186 Evaluation and scalability

goals # comms # solutions time (s) time
#sol

(µs)

9 2 5 0.009 1866

18 4 25 0.013 533

27 6 125 0.033 266

36 8 625 0.112 179

45 10 3125 0.333 107

54 12 15625 1.361 87

63 14 78125 7.017 90

72 16 390625 37.043 95

81 18 1953125 199.920 102

Table 7.9: Scalability results for variant generation with restricted syntax

initialization time has a strong impact; time grows pseudo-linearly for larger experiments.

The conclusion we draw from scalability analysis is that there is no variant generation

algorithm fits perfectly to all types of settings. If the STS requires the usage of an

expressive language, the SAT-based solution is the most adequate one. It returns a

significant number of variants within reasonable time, and can be stopped using some

heuristics. If the setting is characterized by high variability (thousands or millions of

solutions), the only solution is to use a simpler language to express the problem. We have

demonstrated the efficacy of this second solution through an implementation (based on

disjunctive datalog) that deals with a restricted syntax for commitments.

7.3 Chapter summary

In this chapter we have evaluated our approach on two case studies. In Section 7.1 we

have applied contextual goal modelling to a smart-home case study, we experimented the

first implementation of our architecture via some simulated scenarios, and we performed

scalability experiments concerning diagnosis and reconfiguration. In Section 7.2 we ap-

plied the modelling language for social variability to an hazardous materials response case

study, we experimented the second prototype on some scenarios where commitments are

violated and threatened, and we performed scalability experiments.

The contribution of the chapter is twofold. First, we have shown the adequacy of

our modelling primitives to represent realistic scenarios characterized by contextual and

social variability. The same models are then used by the prototype implementations of

our architecture to perform self-adaptation in response to threats and failures. Second, we

have performed scalability experiments to determine if the algorithms implemented in our

implementations scale when considering larger settings. We have identified bottlenecks

and proposed promising solutions to cope with them.

Chapter 8

Conclusions and future work

8.1 Conclusions

In this thesis, we proposed a novel approach to software self-adaptation founded on the

notions of contextual and social variability. We claimed that and justified how these types

of variability affect software requirements. Variability might result in either threats or

opportunities. In our approach, self-adaptation is an evolutionary mechanism enacted

by a software system to cope with the volatility of the environment and to ensure the

fulfilment of system requirements.

Our framework applies to software that operates in socio-technical systems. As sug-

gested by Ropohl [Rop99], we understand an STS as a goal-oriented system composed

of a number of interacting subsystems. Subsystems can be either technical (software) or

social (humans and organizations). Unlike traditional approaches in software and system

engineering, we conceive interaction in terms of the social relationships it defines, the

social commitments [Sin98] between subsystems.

The thesis lies in the vast and active landscape of approaches to self-adaptivity (look

at Chapter 2 for an overview). Most work in the area focuses on technical aspects

of adaptation—re-routing of architectural connectors, orchestration and composition of

web services, replacement of current features with others—and largely ignores high-

level concepts—system requirements and social relationships with other systems. Some

approaches in Requirements Engineering propose self-adaptation based on goal mod-

els [FFvLP98, WMYM09, ST07, BP10]. To our knowledge, there is no work, apart from

ours, that considers both requirements and social relationships.

The distinctive features of our approach to adaptivity are that (i) we explicitly take

into account the purpose of software by keeping alive requirements models (extended

goal models), and using them for diagnosis and variant selection; (ii) we represent the

meaning of the social relationships—via commitments—between the considered software

188 Conclusions and future work

system and other social actors or technical systems; (iii) we propose a comprehensive

account on adaptation, from its conceptualization to implementation and evaluation. We

detail now the specific contributions of this thesis and present our conclusions.

Study of the impact of contextual and social factors on software adaptation

We have studied how contextual and social factors affect software requirements. In par-

ticular, we considered their impact at runtime. In this thesis, software is aware of its

requirements, which are expressed via Tropos goal models [BPG+04]. Goal models refine

high-level objectives—that stakeholders assign to the system—by AND/OR-decomposing

them into sub-goals. This decomposition process terminates with the identification of

concrete plans (tasks) to achieve goals. Goal models are well suited for adaptation be-

cause they define a variability space [LLY+06], alternative ways (variants) to achieve root

goals. Such variability space is affected by various factors, among which:

− the physical context: the validity of a certain context is required to adopt sub-goals in

OR-decompositions (or for tasks in a means-end decompositions), and to establish

dependencies on other actors. Also, some sub-goals in AND-decompositions are

necessary only in certain contexts.

− the social context: the variability space is enlarged when new actors come into play

and commit to deliver services, or when existing actors offer new services. Con-

versely, the commitments the system has already made limit the variability space,

provided that the system wants to respect them. Generally speaking, commitments

violation is equally undesirable as requirements failure. Since commitments have

contractual validity, their violation might lead to further commitments or to other

penalties.

These two factors cannot be ignored by self-adaptive software. Doing that could lead, at

the very least, to the selection and enactment of variants that do not work properly in

the current physical context and that violate commitments the system has made. Such

conclusion is particularly valid when one considers software operating in socio-technical

systems, where technical and social subsystems depend one on another to fulfil their

requirements.

Requirements modelling and reasoning framework for variability

We introduced and detailed two requirements modelling and reasoning frameworks that

consider the impact of contextual and social factors on requirements. The modelling

languages are functional to self-adaptation: at runtime, software exploits them to deter-

mine threats and to identify alternative variants to achieve goals. The contextual goal

Conclusions 189

modelling framework represents contextual influence on goals by associating contexts to

variation points in goal models. Since contexts are typically communicated as informal

statements, we proposed context analysis as a refinement mechanism to identify a set

of observable facts that evidence the validity of a context. The framework to represent

social variability based on goal models and commitments relates goals and commitments

through the notion of state of the world. An agent’s goal is achieved when a certain state

of the world is met, whereas a commitment is an agent’s promise to bring about a state

of the world (the consequent) if another state of the world holds (the antecedent). Such

observation enables us to formally link goals and commitments and to define a formal

semantics for the concept of variant. A variant for an agent’s goals is a triple that con-

sists of (i) a set of (sub)-goals the agent intends to achieve, (ii) the capabilities the agent

intends to exploit to achieve those (sub)-goals; (iii) the commitments the agent intends

to make to and take from other agents.

The two proposed frameworks enable software designers to represent and analyse con-

text and social relationships (commitments), as well as to reason about their impact on

variability. Understanding variability in terms of requirements—here, goals—guarantees

that software self-adaptation is performed to better satisfy the current requirements.

Conceptual architecture for self-adaptive software

We devised a conceptual architecture for self-adaptive software that operates in STSs.

The adaptation control loop of our architecture consists of a Monitor-Diagnose-Reconcile-

Compensate (MDRC) cycle. The key features of our proposal are: (i) characterizing

desired system behaviour via models that represent requirements, context, and social

relations; and (ii) considering the autonomy and heterogeneity of other subsystems (both

technical and social) in the STS throughout the MDRC cycle.

Our architecture supports a system in achieving its requirements. In doing so, the

architecture interacts with other entities in the STS through appropriate interfaces: con-

text sensors provide information about contextual changes, context actuators enable to

effect changes, agents represent subsystems with which the supported system can establish

social relationships to satisfy goals it cannot achieve by itself.

Requirements models are used at runtime to (i) diagnose failures and under-perfor-

mance, and (ii) generate alternative variants that enable the system to achieve its goals.

We show how the architecture can exploit the requirements models proposed in this thesis.

The conceptual architecture can be instantiated using different models, e.g. other goal

modelling frameworks (e.g. KAOS [DvLF93] or GBRAM [AP98]) or social interaction

models (e.g. Hermes [CW06]).

190 Conclusions and future work

Algorithms for diagnosis and reconciliation

We proposed and implemented algorithms for diagnosis and reconciliation that are part

of the MDRC cycle:

− diagnosis algorithms detect plan and goal failures when plans are not carried out as

expected or they do not produce the desired effect (achieving some goal). Also, they

identify the violation of commitments based on timeouts and cancellation messages

sent by committed agents.

− a variant selection algorithm specific for contextual variability. The selection of

the best variant—among those that fit with the current context—depends on the

contribution to a set of prioritized soft-goals. The current context does not only

make some variants inapplicable, but also affects their quality. Variant stability is

also considered: new variants that are similar to the current one are preferred over

variants that are radically different.

− a variant selection algorithm specific for setting with social variability. Variants

consist of capabilities and commitments to/from other agents. The selection of

the best variant is based on cost. Both capabilities and commitments have (i) an

activation cost, the effort needed to exploit a capability or take/make a commitment;

and (ii) a compensation cost to deactivate the plan used for a capability or to cancel a

commitment. The overall variant cost can be computed either summing the costs of

each capability and commitment or considering only the differences from the current

variant (added and removed capabilities/commitments).

The proposed algorithms provide general mechanisms for diagnosis and reconciliation. We

expect that, in practice, they will be refined, customized, and optimized. For instance,

the cost-based framework might be enriched with a cost computation framework.

Experimental evaluation of the approach

We evaluated our approach via case studies and scalability tests. We applied the mod-

elling languages to represent case studies, performed simulations to demonstrate how our

prototypes respond to failures and threats via self-adaptation, and conducted scalability

experiments to check if our algorithms and prototypes can cope with larger problems. We

repeated this evaluation methodology twice:

− we applied contextual goal modelling to a case study concerning assisted living in

smart-homes. We modelled a smart-home supervisor that helps people living in the

house carry out everyday activities. We performed simulations that show how our

prototype reacts to plan failures and context changes. Our scalability experiments

Ongoing work and future directions 191

demonstrate that the diagnostic component scales in a pseudo-linear manner with

respect to the number of goals and plans, and that variant generation scales linearly

with the number of variants.

− we applied the framework for social variability to a case study concerning response

to hazardous materials accidents. We have represented the perspective of a hypo-

thetical incident commander that has to interact with other people to deal with the

emergency. We showed, via simulations, that our prototype can successfully react

to different threats, to failed capabilities, and to violated commitments. The variant

generation problem with commitments, being NP-complete, is hard to tackle. Nev-

ertheless, the scalability experiments demonstrated that the underlying automated

reasoning tool—based on a state of the art SAT-solver—is able to identify a reason-

able number variants in short time even with large problems. To further improve our

approach, we sketched a simple heuristic and we conducted preliminary experiments

with a less expressive language for commitments.

8.2 Ongoing work and future directions

This thesis opens the doors to several research lines. We introduce some directions we

are working on and others we intend to investigate in the future.

Early diagnosis of failures

The adage “Prevention is better than cure” applies to software too. Early diagnosis is

the detection of possible failures and threats before they occur. Self-adaptive software

can anticipate the problem and actuate strategies to avoid it. This is doable if software

is able to identify the symptoms of possible problems.

A way to identify these early symptoms is performing risk analysis. This technique as-

sesses the level of risk based on positive or negative events. Risk analysis has already been

applied to goal modelling, e.g. by the Goal-Risk Framework [AGM11]. This design-time

framework enables to model the positive or negative impact of events on requirements

(goals) and the effect of mitigation treatments on these events. Also, it supports proba-

bilistic reasoning to quantitatively assess risks.

The Goal-Risk Framework is a valid baseline to perform early diagnosis. However,

assessing risks at runtime is harder than doing it at design-time, since software operates

in a volatile context. At runtime, the impact of a certain event on a goal changes over time,

as well as the success of a specific treatment to mitigate a risk. Traditional risk analysis

can be complemented by learning mechanisms, so that software updates its knowledge

192 Conclusions and future work

base and performs risk assessment based on up-to-date evidence. This requires software

to monitor events, treatments, and their effect.

Another factor might be the reputation of other participants in the STS. For instance,

if actor P is currently relying on the commitments made by a service provider S, and

the reputation trend of S is negative, P might decide to adapt by switching to another

service provider. Such adaptation occurs in response to early diagnosis, since S has not

violated its commitment to P yet.

Represent and reason about QoS

Commitments are promises to deliver services. An important attribute of any service is

its quality (Quality of Service, QoS). Different service providers commit to deliver the

same service with different QoS levels. For example, agent SP1 commits to repair your

car within five days, SP2 commits to repair it within eight days, SP3 commits to repair

it between three and six days.

QoS is a relevant factor for adaptation. If the considered agent needs a service, QoS is

a discriminant to choose among different providers on the basis of those qualities the agent

cares of. An agent might not be concerned with time, while it might be most interested

is high-quality repairs. If the considered agent offers a service, offering a high QoS might

have negative impact on other goals or other offered services. For instance, a car repairer

might not have enough resources to commit to repair two cars within one day.

To support QoS in our adaptation framework, we need to (i) extend the formalization

of commitment to represent QoS; (ii) provide reasoning mechanisms that consider QoS

during variant generation and selection; and (iii) associate measurement instruments to

qualities to detect violations in the QoS agreement.

Secure adaptation

Security is a desirable feature in any system. Self-adaptive software cannot neglect the

importance of security concerns. We will investigate the concept of secure adaptation to

identify a special class of adaptive systems where security is a primary concern.

Threats to security properties (e.g. privacy, integrity, authenticity, availability, etc.)

trigger an adaptation process. During variant generation and selection, the ranking of

variants takes into account how well they guarantee security properties. Secure adapta-

tion should consider not only security qualities expressed in commitments, but also trust

relations between agents. For instance, a service provider SP1 might offer a commitment

with better security than SP2, but the service requester distrusts SP1 due to previous

unsuccessful interactions. Thus, the service requester would typically choose SP2.

Ongoing work and future directions 193

This research thread is vast and includes many research questions. First, which are the

security properties relevant to self-adaptation in STSs? Second, how is trust computed

and who is responsible for its computation? Third, how can an agent specify its own

security policies? A policy language should be defined to express the security concerns

the agent is interested in. Fourth, what should an agent do if there is no variant that

satisfies security policies? Two naive options are adopting a variant that does not match

its security policy and dropping/delaying current goals.

API for commitments-aware software agents

Our adaptation framework enables agents to define variants composed of capabilities

and commitments. However, we did not focus on how agents interact via commitments

operations (create, discharge, cancel, release, delegate, assign, etc.). A future direction is

the development of an API that enables to program agent interaction. This API should

offer primitives to create a commitment to another agent, to cancel previously made

commitments, assign them to other agents, and so on.

The API consists of a middleware that (i) dispatches messages from the agent that

performs a commitments operation to the receivers; and (ii) determines the status of

commitments (conditional and unconditional ones, violated, delegated, etc.). The API

should provide the publicly verifiable status of the commitment. On top of that, each

agent might define additional states used for internal processing (e.g. threatened).

In Section 3.4.2 we have shown how interaction protocols are defined in terms of roles,

while they are enacted when specific agents play those roles. Agent adaptation might

consider the notion of role compliance: is agent x playing role ρ behaving as expected by

its role? The middleware might act as the socio-legal context where agents operate: it

determines violations and can impose penalties on non-compliant agents. For example it

might decrement the agent’s reputation, create further commitments, disable the agent.

Efficient variant generation/selection

We have demonstrated how generating and selecting variants using goal models are compu-

tationally hard tasks. Such tasks become even harder when commitments are considered.

Such complexity is due to the expressiveness of the language (goal trees and propositional

commitments). Devising means to cope with this issue is a main concern. There are two

main strategies to improve variant generation and selection:

− Restrict language expressiveness. This corresponds to simplifying the problem by

using a subset of the language. The language to express the antecedent and the

consequent in commitments might be restricted. We performed and reported about

194 Conclusions and future work

promising experiments in Section 7.2.3. Replacing contribution to soft-goals with

costs for tasks/goals is another option. This enables to explore a goal tree bottom-up

in linear time; on the contrary, it does not enable to represent cross-cutting qualities.

− Use heuristics. Instead of determining all solutions and select the best, heuristics can

be employed to identify good enough solutions. We have already discussed the use of

time limits and the introduction of thresholds for the number of solutions. Another

heuristic is to explore goal models top-down and make sub-optimal decisions for each

encountered variation point. Again, one might define the concept of good-enough

variant and stop variant generation as soon a good-enough variant is found.

Policy language

We did not propose a complete policy language for adaptation. However, this is an im-

portant future direction: policies enable fine-grained tuning of the self-adaptation mech-

anisms. Adaptation policies apply to all the steps of the MDRC control loop:

− Monitoring policies express what to monitor and how to do it. Depending on the

currently available resources, monitoring can be fine- or coarse-grained. For example,

plan monitoring might be disabled for non-critical goals. Also, less accurate but more

efficient sensors might be exploited, when needed.

− Diagnosis policies tell when adaptations are triggered. Failures can be ignored if

they relate to non-critical goals or occur for the first time. On the contrary, they

cannot be ignored if a critical goal is involved or they occur several times. Also,

priorities might be assigned to different failures. Pimentel et al. [PSC10] have

designed and implemented a module for our architecture based on tolerance policies

to specify when to ignore failures.

− Reconciliation policies determine how to search for variant behaviours. If the sys-

tem has to adapt urgently, one of the first generated variants should be selected.

Otherwise, the system might wait for all variants before selecting the one to en-

act. Reconciliation policies might tell to avoid interactions with distrusted agents

or having low reputation.

− Compensation policies guide the system in switching from the current variant to the

new one. These policies should define the scheduling for the activities to perform:

execute plans, establish commitments, revert the effects of started or failed plans,

and so on. These activities can be interleaved in different ways, time limits can be

specified, precedence constraints should be considered.

Bibliography

[ACD+03] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein, Frank Ley-

mann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana Trickovic, and Sanjiva Weer-

awarana. Business Process Execution Language for Web Services. Technical report, IBM, 2003.

[ADG08a] Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. Location-based Software Modeling and Analysis:

Tropos-based Approach. In Qing Li, Stefano Spaccapietra, Eric Yu, and Antoni Olivé, editors,

Proceedings of the 27th International Conference on Conceptual Modeling (ER 2008), volume 5231

of LNCS, pages 169–182. Springer, 2008.

[ADG08b] Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. Location-based Variability for Mobile Information

Systems. In Zohra Bellahsene and Michel Léonard, editors, Proceedings of the 20th International

Conference on Advanced Information Systems Engineering (CAiSE’08), volume 5074 of LNCS,

pages 575–578. Springer, 2008.

[ADG09] Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. A Goal Modeling Framework for Self-

Contextualizable Software. In Proceedings of the 14th International Conference on Exploring

Modeling Methods in Systems Analysis and Design (EMMSAD 2009), volume 29 of LNBIP, pages

326–338. Springer, 2009.

[ADG10] Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. A Goal-based Framework for Contextual Re-

quirements Modeling and Analysis. Requirements Engineering, 15(4):439–458, 2010.

[AdLMW09] Jesper Andersson, Rogério de Lemos, Sam Malek, and Danny Weyns. Modeling Dimensions of

Self-Adaptive Software Systems. In Betty Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi,

and Jeff Magee, editors, Software Engineering for Self-Adaptive Systems, volume 5525 of LNCS,

pages 27–47. Springer, 2009.

[AGM11] Yudistira Asnar, Paolo Giorgini, and John Mylopoulos. Goal-driven Risk Assessment in Require-

ments Engineering. Requirements Engineering, 2011. To appear.

[AHP94] Brent Agnew, Christine Hofmeister, and James Purtilo. Planning for Change: A Reconfiguration

Language for Distributed Systems. Distributed Systems Engineering, 1(5):313–322, 1994.

[Ali10] Raian Ali. Modeling and Reasoning about Contextual Requirements: Goal-based Framework. PhD

thesis, University of Trento. Information technology and telecommunications international doc-

toral school, http://eprints-phd.biblio.unitn.it/288/, 2010.

[Ant06] Richard J. Anthony. A Policy-Definition Language and Prototype Implementation Library for

Policy-based Autonomic Systems. In Proceedings of the 3rd IEEE International Conference on

Autonomic Computing (ICAC 2006), pages 265–276. IEEE, 2006.

[AP98] Annie I. Antón and Colin Potts. The Use of Goals to Surface Requirements for Evolving Systems.

In Proceedings of the 20th International Conference on Software Engineering (ICSE 1998), pages

157–166. IEEE Computer Society, 1998.

196 Bibliography

[ASM04] Timo Asikainen, Timo Soininen, and Tomi Männistö. A Koala-Based Approach for Modelling

and Deploying Configurable Software Product Families. In Frank van der Linden, editor, Software

Product-Family Engineering, volume 3014 of LNCS, pages 225–249. Springer, 2004.

[AST09] Reza Asadollahi, Mazeiar Salehie, and Ladan Tahvildari. StarMX: A Framework for Develop-

ing Self-Managing Java-based Systems. In Proceedings of the 2009 ICSE Workshop on Software

Engineering for Adaptive and Self-Managing Systems (SEAMS 2009), pages 58–67, 2009.

[Aus62] John L. Austin. How to Do Things with Words. Clarendon Press, Oxford, 1962.

[BCP+01] Piergiorgio Bertoli, Alessandro Cimatti, Marco Pistore, Marco Roveri, and Paolo Traverso. MBP:

a Model Based Planner. In Proceedings of IJCAI-01 Workshop on Planning under Uncertainty

and Incomplete Information, pages 93–97, 2001.

[BDNGG07] Luciano Baresi, Elisabetta Di Nitto, Carlo Ghezzi, and Sam Guinea. A Framework for the De-

ployment of Adaptable Web Service Compositions. Service Oriented Computing and Applications,

1(1):75–91, 2007.

[Ben75] Ludwig Benner. DECIDE in Hazardous Materials Emergencies. Fire Journal, 69(4):13–18, 1975.

[BG06] Volha Bryl and Paolo Giorgini. Self-Configuring Socio-Technical Systems: Redesign at Runtime.

International Transactions on Systems Science and Applications, 2(1):31–40, 2006.

[BGM06] Volha Bryl, Paolo Giorgini, and John Mylopoulos. Designing Cooperative IS: Exploring and

Evaluating Alternatives. In Proceedings of the 14th International Conference on Cooperative In-

formation Systems (CoopIS’06), volume 4275 of LNCS, pages 533–550. Springer, 2006.

[BGM09] Volha Bryl, Paolo Giorgini, and John Mylopoulos. Designing Socio-Technical Systems: from

Stakeholder Goals to SocialNetworks. Requirements Engineering, 14(1):47–70, 2009.

[BMSG+09] Yuriy Brun, Giovanna Marzo Serugendo, Cristina Gacek, Holger Giese, Holger Kienle, Marin

Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw. Engineering Self-Adaptive Systems through

Feedback Loops. In Betty H. Cheng, Rogério Lemos, Holger Giese, Paola Inverardi, and Jeff

Magee, editors, Software Engineering for Self-Adaptive Systems, volume 5525 of LNCS, pages

48–70. Springer, 2009.

[BMZ+05] Jim Buckley, Tom Mens, Matthias Zenger, Awais Rashid, and Günter Kniesel. Towards a Tax-

onomy of Software Change: Research Articles. Journal of Software Maintenance and Evolution,

17(5):309–332, 2005.

[BP10] Luciano Baresi and Liliana Pasquale. Live Goals for Adaptive Service Compositions. In Proceedings

of the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems

(SEAMS 2010), pages 114–123, 2010.

[BPG+04] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John Mylopoulos. Tropos:

An Agent-Oriented Software Development Methodology. Autonomous Agents and Multi-Agent

Systems, 8(3):203–236, 2004.

[BPR99] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. JADE–A FIPA-compliant Agent

Framework. In Proceedings of the 4th International Conference on the Practical Application of

Intelligent Agents and Multi Agent Technology (PAAM’99), pages 97–108, 1999.

[BPS10] Luciano Baresi, Liliana Pasquale, and Paola Spoletini. Fuzzy Goals for Requirements-driven

Adaptation. In Proceedings of the 18th International IEEE Requirements Engineering Conference

(RE 2010), 2010.

[Bra87] Michael E. Bratman. Intention, Plans, and Practical Reason. Harvard University Press Cam-

bridge, Massachusetts, 1987.

Bibliography 197

[Bre99a] Patrick Brezillon. Context in Artificial Intelligence: I. A Survey of the Literature. Computers and

artificial intelligence, 18(4):321–340, 1999.

[Bre99b] Patrick Brezillon. Context in Problem Solving: a Survey. The Knowledge Engineering Review,

14(1):47–80, 1999.

[BSP+02] Joseph P. Bigus, Donald A. Schlosnagle, Jeff R. Pilgrim, Nathaniel Mills, and Yixin Diao. ABLE:

A Toolkit for Building Multiagent Autonomic Systems. IBM Systems Journal, 41(3):350–371,

2002.

[BWH07] Rafael H. Bordini, Michael Wooldridge, and Jomi Fred Hübner. Programming Multi-Agent Systems

in AgentSpeak using Jason. John Wiley & Sons, 2007.

[BWS+10] Nelly Bencomo, Jon Whittle, Peter Sawyer, Anthony Finkelstein, and Emmanuel Letier. Require-

ments Reflection: Requirements as Runtime Entities. In Proceedings of the 32nd ACM/IEEE

International Conference on Software Engineering (ICSE 2010), pages 199–202. ACM, 2010.

[C+99] James Clark et al. XSL Transformations (XSLT) Version 1.0. W3C Recommendation, 16(11),

1999.

[CCG+06] Stefano Campadello, Luca Compagna, Daniel Gidoin, Silke Holtmanns, Valentino Meduri, Jean-

Christophe R. Pazzaglia, Magali Seguran, and R. Thomas. Serenity Deliverable A7.D1.1: Scenario

Selection and Definition, 2006.

[CCIL08] Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola Leone. Computable Func-

tions in ASP: Theory and Implementation. In Proceedings of the 24th International Conference

on Logic Programming (ICLP 2008), volume 5366 of LNCS, pages 407–424. Springer, 2008.

[CDGM10a] Amit K. Chopra, Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos. Modeling and Reasoning

about Service-Oriented Applications via Goals and Commitments. In Proceedings of 22nd Inter-

national Conference on Advanced Information Systems Engineering (CAiSE’10), volume 6051 of

LNCS, pages 113–128. Springer, 2010.

[CDGM10b] Amit K. Chopra, Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos. Reasoning about Agents

and Protocols via Goals and Commitments. In Wiebe van der Hoek, Gal A. Kaminka, Yves

Lespérance, Michael Luck, and Sandip Sen, editors, Proceedings of the 9th International Confer-

ence on Autonomous Agents and Multiagent Systems (AAMAS 2010), pages 457–464. IFAAMAS,

2010.

[CDNFP10] Luca Cavallaro, Elisabetta Di Nitto, Carlo A. Furia, and Matteo Pradella. A Tile-based Approach

for Self-assembling Service Compositions. In Proceedings of the 15th IEEE International Confer-

ence on Engineering of Complex Computer Systems (ICECCS’10), pages 43–52. IEEE, 2010.

[CFNF97] Don Cohen, Martin S. Feather, K. Narayanaswamy, and Stephen S. Fickas. Automatic Monitor-

ing of Software Requirements. In Proceedings of the 19th International Conference on Software

Engineering (ICSE 1997), pages 602–603. ACM New York, NY, USA, 1997.

[CGFP09] Carlos Cetina, Pau Giner, Joan Fons, and Vicente Pelechano. Autonomic Computing through

Reuse of Variability Models at Runtime: The Case of Smart Homes. IEEE Computer, 42(10):37–

43, 2009.

[CGS06] Shang-Wen Cheng, David Garlan, and Bradley Schmerl. Architecture-based Self-Adaptation in

the Presence of Multiple Objectives. In Proceedings of the 2006 ICSE Workshop on Software

Engineering for Adaptive and Self-Managing Systems (SEAMS 2006), pages 2–8, 2006.

[CGS09] Shang-Wen Cheng, David Garlan, and Bradley Schmerl. RAIDE for Engineering Architecture-

based Self-Adaptive Systems. In Companion of the 31st International Conference on Software

Engineering (ICSE Companion ’09), pages 435 –436, 2009.

198 Bibliography

[CHE05] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing Cardinality-based Feature

Models and their Specialization. Software Process: Improvement and Practice, 10(1):7–29, 2005.

[CNYM00] Lawrence Chung, Brian A. Nixon, Eric Yu, and John Mylopoulos. Non-functional Requirements

in Software Engineering. Springer, 2000.

[CPGS09] Shang-Wen Cheng, Vahe Poladian, David Garlan, and Bradley Schmerl. Improving Architecture-

Based Self-Adaptation through Resource Prediction. In Betty Cheng, Rogério de Lemos, Holger

Giese, Paola Inverardi, and Jeff Magee, editors, Software Engineering for Self-Adaptive Systems,

volume 5525 of LNCS, pages 71–88. Springer, 2009.

[CS09] Amit K. Chopra and Munindar P. Singh. Multiagent Commitment Alignment. In Carles Sierra,

Cristiano Castelfranchi, Keith S. Decker, and Jaime Simo Sichman, editors, Proceedings of the 8th

International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009), pages

937–944. IFAAMAS, 2009.

[CSBW09] Betty Cheng, Pete Sawyer, Nelly Bencomo, and Jon Whittle. A Goal-Based Modeling Approach

to Develop Requirements of an Adaptive System with Environmental Uncertainty. In Andy Schürr

and Bran Selic, editors, Model Driven Engineering Languages and Systems, volume 5795 of LNCS,

pages 468–483. Springer, 2009.

[CSWW04] David M. Chess, Alla Segal, Ian Whalley, and Steve R. White. Unity: Experiences with a Proto-

type Autonomic Computing System. In Proceedings of the 1st IEEE International Conference on

Autonomic Computing (ICAC 2004), pages 140–147. IEEE Computer Society, 2004.

[CW06] Christopher Cheong and Michael Winikoff. Hermes: Designing Goal-Oriented Agent Interactions.

In Jörg Müller and Franco Zambonelli, editors, Agent-Oriented Software Engineering VI, volume

3950 of LNCS, pages 16–27. Springer, 2006.

[Dam07] Christian W. Damus. Implementing Model Integrity in EMF with MDT OCL. Eclipse Corner

Articles, online at: http://www.eclipse.org/articles/article.php?file=Article-EMF-Codegen-with-

OCL/index.html, 2007.

[DCGM10] Fabiano Dalpiaz, Amit K. Chopra, Paolo Giorgini, and John Mylopoulos. Adaptation in Open

Systems: Giving Interaction its Rightful Place. In Proceedings of the 29th International Conference

on Conceptual Modeling (ER 2010), volume 6412 of LNCS, pages 31–45. Springer, 2010.

[DCS10] Nirmit Desai, Amit K. Chopra, and Munindar P. Singh. Amoeba: A Methodology for Model-

ing and Evolution of Cross-Organizational Business Processes. ACM Transactions on Software

Engineering and Methodology, 19(2), 2010.

[DD10] Christoph Dorn and Schahram Dustdar. Interaction-Driven Self-adaptation of Service Ensem-

bles. In Barbara Pernici, editor, Proceedings of the 22nd International Conference on Advanced

Information Systems Engineering (CAiSE’10), volume 6051 of LNCS, pages 393–408. Springer,

2010.

[DDL+10] Schahram Dustdar, Christoph Dorn, Fei Li, Luciano Baresi, Giacomo Cabri, Cesare Pautasso, and

Franco Zambonelli. A Roadmap Towards Sustainable Self-Aware Service Systems. In Proceedings

of the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems

(SEAMS 2010), pages 10–19, 2010.

[DDVMW02] Theo D’Hondt, Kris De Voider, Kim Mens, and Roel Wuyts. Co-evolution of Object-Oriented

Software Design and Implementation. In Mehmed Aksit, editor, Software Architectures and Com-

ponent Technology. Kluwer Academic Publishers, 2002.

[Dey01] Anind K. Dey. Understanding and Using Context. Personal and ubiquitous computing, 5(1):4–7,

2001.

Bibliography 199

[DGM09a] Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos. An Architecture for Requirements-Driven

Self-Reconfiguration. In Proceedings of the 21st International Conference on Advanced Information

Systems Engineering (CAiSE’09), volume 5565 of LNCS, pages 246–260. Springer, 2009.

[DGM09b] Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos. Software Self-Reconfiguration: a BDI-

based Approach. In Proceedings of the 8th International Conference on Autonomous Agents and

Multiagent Systems (AAMAS 2009), pages 1159–1160. IFAAMAS, 2009.

[DK76] Frank DeRemer and Hans H. Kron. Programming-in-the-Large versus Programming-in-the Small.

IEEE Transactions on Software Engineering, 2(2):80–86, June 1976.

[DMCS05] Nirmit Desai, Ashok U. Mallya, Amit K. Chopra, and Munindar P. Singh. Interaction Protocols

as Design Abstractions for Business Processes. IEEE Transactions on Software Engineering,

31(12):1015–1027, December 2005.

[DMSGK06] Giovanna Di Marzo Serugendo, Marie-Pierre Gleizes, and Anthony Karageorgos. Self-Organization

in Multi-Agent Systems. The Knowledge Engineering Review, 20(02):165–189, 2006.

[DMT09] DMTF. CIM Simplified Policy Language (CIM-SPL). Technical report, DMTF, 2009.

[DNDM09] Elisabetta Di Nitto, Daniel J. Dubois, and Raffaela Mirandola. On Exploiting Decentralized

Bio-inspired Self-Organization Algorithms to Develop Real Systems. In Proceedings of the 2009

ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2009),

pages 68 –75, 2009.

[DNGM+08] Elisabetta Di Nitto, Carlo Ghezzi, Andreas Metzger, Mike Papazoglou, and Klaus Pohl. A Journey

to Highly Dynamic, Self-Adaptive Service-based Applications. Automated Software Engineering,

15(3-4):313–341, 2008.

[DPTS06] Giovanni Denaro, Mauro Pezzé, Davide Tosi, and Daniela Schilling. Towards Self-adaptive Service-

oriented Architectures. In Proceedings of the 2006 Workshop on Testing, Analysis, and Verification

of Web Services and Applications (TAV-WEB ’06), pages 10–16, 2006.

[DvLF93] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed Requirements Acqui-

sition. Science of computer programming, 20(1-2):3–50, 1993.

[EHN94] Kutluhan Erol, James A. Hendler, and Dana S. Nau. UMCP: A Sound and Complete Procedure

for Hierarchical Task Network Planning. In Proceedings of the 2nd International Conference on

AI Planning Systems (AIPS 94), pages 249–254, 1994.

[Eld95] Niles Eldredge. Reinventing Darwin: the Great Evolutionary Debate. Weidenfeld and Nicolson,

1995.

[Eme59] Fred E. Emery. Characteristics of Socio-Technical Systems. Technical Report 527, London: Tavi-

stock Institute, 1959.

[ES04] Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In Proceedings of the 6th Interna-

tional Conference on Theory and Applications of Satisfiability Testing (SAT’03), volume 2919 of

LNCS, pages 502–518. Springer, 2004.

[FCSM05] Scott D. Fleming, Betty H. C. Cheng, R. E. Kurt Stirewalt, and Philip K. McKinley. An Approach

to Implementing Dynamic Adaptation in C++. In Proceedings of the 2005 ICSE Workshop on

Design and Evolution of Autonomic Application Software (DEAS 2005), pages 1–7, 2005.

[FF95] Stephen Fickas and Martin S. Feather. Requirements Monitoring in Dynamic Environments. In

Proceedings of the 2nd IEEE International Symposium on Requirements Engineering (RE’95),

pages 140–147. IEEE Computer Society Washington, DC, USA, 1995.

200 Bibliography

[FFMM94] Tim Finin, Richard Fritzson, Don McKay, and Robin McEntire. KQML as an Agent Communica-

tion Language. In Proceedings of the 3rd International Conference on Information and Knowledge

Management (CIKM’94), pages 456–463. ACM, 1994.

[FFvLP98] Martin S. Feather, Stephen Fickas, Axel van Lamsweerde, and Cristophe Ponsard. Reconciling

System Requirements and Runtime Behavior. In Proceedings of the 9th International Workshop on

Software Specification and Design (IWSSD’98), pages 50–59. IEEE Computer Society Washington,

DC, USA, 1998.

[FFZ05] Wang Fei and Li Fan-Zhang. The Design of an Autonomic Computing Model and the Algorithm

for Decision-making. In In Proceedings of the 2005 IEEE International Conference on Granular

Computing (GrC 2005), pages 270–273, 2005.

[FHS+06] Jacqueline Floch, Svein Hallsteinsen, Erlend Stav, Frank Eliassen, Ketil Lund, and Eli Gjorven.

Using Architecture Models for Runtime Adaptability. IEEE Software, 23(2):62–70, 2006.

[Fin08] Anthony Finkelstein. Requirements Reflection. Talk given at the 2008

Dagstuhl seminar on Software Engineering for Self-Adaptive Systems. Available at

http://www.cs.ucl.ac.uk/staff/A.Finkelstein/talks/reqtsreflection.pdf, 2008.

[FIP97] FIPA. FIPA Specification part 2: Agent Communication Language. Technical report, Technical

report, FIPA-Foundation for Intelligent Physical Agents, 1997.

[FL03] Maria Fox and Derek Long. PDDL2. 1: An Extension to PDDL for Expressing Temporal Planning

Domains. Journal of Artificial Intelligence Research, 20(1):61–124, 2003.

[FS01] Anthony Finkelstein and Andrea Savigni. A Framework for Requirements Engineering for Context-

Aware Services. In Proceedings of 1st International Workshop From Software Requirements to

Architectures (STRAW 01), 2001.

[Fut05] Douglas J. Futuyma. Evolution. Sinauer Associates, 2005.

[Gat98] Erann Gat. Artificial Intelligence and Mobile Robots: Case Studies of Successful Robot Systems,

chapter Three-layer Architectures, pages 195–210. MIT Press, Cambridge, MA, USA, 1998.

[GCH+04] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and Peter Steenkiste.

Rainbow: Architecture-based Self-Adaptation with Reusable Infrastructure. IEEE Computer,

37(10):46–54, Oct. 2004.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995.

[Giu93] Fausto Giunchiglia. Contextual Reasoning. Epistemologia, Special Issue on I Linguaggi e le

Macchine, 16:345–364, 1993.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman, January 1979.

[GS02] David Garlan and Bradley Schmerl. Model-based Adaptation for Self-Healing Systems. In Pro-

ceedings of the 1st Workshop on Self-Healing Systems (WOSS 2002), pages 27–32, 2002.

[GW04] Hassan Gomaa and Diana L. Webber. Modeling Adaptive and Evolvable Software Product Lines

Using the Variation Point Model. In Proceedings of the 37th Hawaii International Conference on

System Sciences (HICSS 2004), 2004.

[Har03] Richard Harper. Inside the Smart Home. Springer, 2003.

[HdJ82] Carl E. Hewitt and Peter de Jong. Open Systems. In In Proceedings of the 1982 Intervale

Workshop, pages 147–164, 1982.

Bibliography 201

[Hew86] Carl E. Hewitt. Offices are Open Systems. ACM Transactions on Information Systems, 4(3):271–

287, 1986.

[Hor01] Paul Horn. Autonomic Computing: IBM’s Perspective on the State of Information Technology.

Talk given at IBM TJ Watson Labs, NY, October 2001.

[HP03] Günter Halmans and Klaus Pohl. Communicating the Variability of a Software-product Family

to Customers. Software and Systems Modeling, 2(1):15–36, 2003.

[Hub99] Marcus J. Huber. JAM: A BDI-theoretic Mobile Agent Architecture. In Proceedings of the 3rd

Annual Conference on Autonomous Agents (AGENTS’99), pages 236–243. ACM, 1999.

[IPT09] Paola Inverardi, Patrizio Pelliccione, and Massimo Tivoli. Towards an Assume-Guarantee Theory

for Adaptable Systems. In Proceedings of the 2009 ICSE Workshop on Software Engineering for

Adaptive and Self-Managing Systems (SEAMS 2009), pages 106–115, 2009.

[Jac00] Michael Jackson. Problem Frames: Analyzing and Structuring Software Development Problems.

Addison-Wesley Longman, 2000.

[JMF08] Ivan J. Jureta, John Mylopoulos, and Stephane Faulkner. Revisiting the Core Ontology and

Problem in Requirements Engineering. In Proceedings of the 16th IEEE International Conference

on Requirements Engineering (RE 2008), pages 71–80, 2008.

[JRL99] Ravi Jain, Maria C. Rivera, and James A. Lake. Horizontal Gene Transfer among Genomes: the

Complexity Hypothesis. Proceedings of the National Academy of Sciences of the United States of

America, 96(7):3801–3806, 1999.

[KA09] Philip Kotler and Gary Armstrong. Principles of Marketing. Prentice Hall, 2009.

[KBR+04] Nickolas Kavantzas, David Burdett, Gregory Ritzinger, Tony Fletcher, and Yves Lafon. Web

Services Choreography Description Language Version 1.0. Technical report, W3C, 2004.

[KC03] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Computing. IEEE Computer,

36(1):41–50, 2003.

[KCH+90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer Peterson.

Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-

TR-21, Carnegie Mellon University, 1990.

[KHC02] Sanjeev Kumar, Marcus J. Huber, and Philip R. Cohen. Representing and Executing Protocols

as Joint Actions. In Proceedings of the 1st International Joint Conference on Autonomous Agents

and Multiagent Systems (AAMAS 2002), pages 543–550, 2002.

[KKL+98] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moonhang Huh. FORM: A

Feature-oriented Reuse Method with Domain-specific Reference Architectures. Annals of Software

Engineering, 5:143–168, 1998.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-

Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In Proceedings of the 11th

European Conference on Object-Oriented Programming (ECOOP 1997), volume 1241 of LNCS,

pages 220–242, 1997.

[KLS+01] Gabor Karsai, Akos Ledeczi, Janos Sztipanovits, Gabor Peceli, Gyula Simon, and Tamas Kovac-

shazy. An Approach to Self-adaptive Software Based on Supervisory Control. In Proceedings of

the 2nd International Workshop on Self-Adaptive Software: Applications (IWSAS 2001), volume

2614 of LNCS, pages 77–92. Springer, 2001.

[KM07] Jeff Kramer and Jeff Magee. Self-Managed Systems: an Architectural Challenge. In Proceedings

of the 29th International Conference on Software Engineering (ICSE 2007), pages 259–268. IEEE

Computer Society, 2007.

202 Bibliography

[KSSA09] Michiel Koning, Chang-ai Sun, Marco Sinnema, and Paris Avgeriou. VxBPEL: Supporting Vari-

ability for Web services in BPEL. Information and Software Technology, 51(2):258–269, 2009.

[KW04] Jeffrey O. Kephart and William E. Walsh. An Artificial Intelligence Perspective on Autonomic

Computing Policies. In Proceedings of the 5th IEEE International Workshop on Policies for

Distributed Systems and Networks (POLICY 2004), pages 3–12. IEEE Computer Society, 2004.

[LAP06] Alexander Lazovik, Marco Aiello, and Mike Papazoglou. Planning and Monitoring the Execution

of Web Service Requests. International Journal on Digital Libraries, 6(3):235–246, 2006.

[LFP99] Yannis Labrou, Tim Finin, and Yun Peng. Agent Communication Languages: The Current

Landscape. IEEE Intelligent Systems, 14(2):45–52, 1999.

[LJL+07] Sotirios Liaskos, Lei Jiang, Alexei Lapouchnian, Yiqiao Wang, Yijun Yu, Julio Cesar Sampaio

do Prado Leite, and John Mylopoulos. Exploring the Dimensions of Variability: a Requirements

Engineering Perspective. In Proceedings of the 1st International Workshop on Variability Modelling

of Software-intensive Systems (VaMoS 2007), 2007.

[LLY+06] Sotirios Liaskos, Alexei Lapouchnian, Yijun Yu, Eric Yu, and John Mylopoulos. On Goal-based

Variability Acquisition and Analysis. In Proceedings of the 14th IEEE International Requirements

Engineering Conference (RE 2006), pages 76–85. IEEE Computer Society, 2006.

[LPH04] Hua Liu, Manish Parashar, and Salim Hariri. A Component-based Programming Model for Au-

tonomic Applications. In Proceedings of the 1st IEEE International Conference on Autonomic

Computing (ICAC 2004), pages 10–17, 2004.

[LSQC05] Ying Li, Kewei Sun, Jie Qiu, and Ying Chen. Self-Reconfiguration of Service-based Systems: a

Case Study for Service Level Agreements and Resource Optimization. In Proceedings of the 2005

IEEE International Conference on Web Services (ICWS 2005), pages 266–273, 2005.

[LYLM06] Alexei Lapouchnian, Yijun Yu, Sotirios Liaskos, and John Mylopoulos. Requirements-driven

Design of Autonomic Application Software. In Proceedings of the 2006 Conference of the Center

for Advanced Studies on Collaborative research (CASCON’06). ACM Press New York, NY, USA,

2006.

[May82] Ernst Mayr. The Growth of Biological Thought. Belknap Press Cambridge, MA, 1982.

[MBJK90] John Mylopoulos, Alex Borgida, Matthias Jarke, and Manolis Koubarakis. Telos: Representing

Knowledge about Information Systems. ACM Transactions on Information Systems, 8(4):325–362,

1990.

[MBZR03] Tom Mens, Jim Buckley, Matthias Zenger, and Awais Rashid. Towards a Taxonomy of Software

Evolution. In Proceedings of the 1st Workshop on Unanticipated Software Evolution, 2003.

[McC93] John McCarthy. Notes on Formalizing Context. In Proceedings of the 13th International Joint

Conference on Artifical intelligence (IJCAI-93), pages 555–560, 1993.

[MCN92] John Mylopoulos, Lawrence Chung, and Brian Nixon. Representing and Using Nonfunctional

Requirements: a Process-oriented Approach. IEEE Transactions on Software Engineering,

18(6):483–497, 1992.

[MDEK95] Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff Kramer. Specifying Distributed Software

Architectures. In Wilhelm Schfer and Pere Botella, editors, Proceedings of the 5th European

Software Engineering Conference (ESEC ’95), volume 989 of LNCS, pages 137–153. Springer,

1995.

[MG05] Arun Mukhija and Martin Glinz. Runtime Adaptation of Applications Through Dynamic Recom-

position of Components. In Michael Beigl and Paul Lukowicz, editors, Proceedings of the 18th

Bibliography 203

International Conference on Architecture of Computing Systems (ARCS 2005), volume 3432 of

LNCS, pages 124–138. Springer, 2005.

[MKM06] Andrew McVeigh, Jeff Kramer, and Jeff Magee. Using Resemblance to Support Component

Reuse and Evolution. In Proceedings of the 2006 Conference on Specification and Verification of

Component-Based Systems (SAVCBS ’06), pages 49–56, 2006.

[Mow94] Abbe Mowshowitz. Virtual Organization: A Vision of Management in the Information Age. The

Information Society, 10(4):267–288, 1994.

[MPP08] Mirko Morandini, Loris Penserini, and Anna Perini. Towards Goal-oriented Development of Self-

Adaptive Systems. In Proceedings of the 2008 ICSE Workshop on Software Engineering for Adap-

tive and Self-Managing Systems (SEAMS 2008), pages 9–16, 2008.

[MPS08] Hausi Müller, Mauro Pezzè, and Mary Shaw. Visibility of Control in Adaptive Systems. In

Proceedings of the 2nd International Workshop on Ultra-Large-Scale Software-Intensive Systems

(ULSSIS’08), pages 23–26, 2008.

[MSKC04] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty H. C. Cheng. Composing

Adaptive Software. IEEE Computer, 37(7):56–64, 2004.

[Mye99] Karen L. Myers. CPEF: A Continuous Planning and Execution Framework. AI Magazine,

20(4):63–69, 1999.

[MZ04] Marco Mamei and Franco Zambonelli. Self-Organization in Multi Agent Systems: A Middleware

Approach. In Giovanna Di Marzo Serugendo, Anthony Karageorgos, Omer F. Rana, and Franco

Zambonelli, editors, Engineering Self-Organising Systems, volume 2977 of LNCS, pages 233–248.

Springer, 2004.

[Obj08] Object Management Group. Software & Systems Process Engineering Metamodel specification

(SPEM) Version 2.0. Technical report, 2008.

[OGT+99] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimbigner, Gregory Johnson,

Nenad Medvidovic, Alex Quilici, David S. Rosenblum, and Alexander L. Wolf. An Architecture-

Based Approach to Self-Adaptive Software. IEEE Intelligent Systems, 14(3):54–62, 1999.

[OMT98] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-based Runtime Software

Evolution. In Proceedings of the 20th International Conference on Software Engineering (ICSE

1998), pages 177–186, 1998.

[OMT08] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Runtime Software Adaptation: Frame-

work, Approaches, and Styles. In Companion of the 30th International Conference on Software

Engineering (ICSE Companion ’08), pages 899–910, 2008.

[OPB01] James Odell, H. Van Dyke Parunak, and Bernhard Bauer. Representing Agent Interaction Pro-

tocols in UML. In Paolo Ciancarini and Michael Wooldridge, editors, Agent-Oriented Software

Engineering, volume 1957 of LNCS, pages 201–218. Springer, 2001.

[Par97] H. Van Dike Parunak. “Go to the Ant”: Engineering Principles from Natural Multi-Agent Systems.

Annals of Operations Research, 75:69–101, 1997.

[PBD+05] Relu Patrascu, Craig Boutilier, Rajarshi Das, Jeffrey O. Kephart, Gerald Tesauro, and William E.

Walsh. New Approaches to Optimization and Utility Elicitation in Autonomic Computing. In

Proceedings of the 20th National Conference on Artificial Intelligence (AAAI-05), pages 140–145,

2005.

[PBL05] Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. Multi-Agent Programming, chapter

Jadex: A BDI Reasoning Engine, pages 149–174. Springer, 2005.

204 Bibliography

[Pel03] Chris Peltz. Web Services Orchestration and Choreography. IEEE Computer, 36(10):46–52, 2003.

[PG03] Mike P. Papazoglou and Dimitrios Georgakopoulos. Service-Oriented Computing. Communica-

tions of the ACM, 46(10):25–28, 2003.

[PLL+03] Manish Parashar, Hua Liu, Zhen Li, Vincent Matossian, Cristina Schmidt, Guangsen Zhang, and

Salim Hariri. AutoMate: Enabling Autonomic Applications on the Grid. In Proceedings of the

5th Annual Workshop on Active Middleware Services (AMS 2003), pages 48 – 57, jun. 2003.

[PPSM07] Loris Penserini, Anna Perini, Angelo Susi, and John Mylopoulos. High Variability Design for

Software Agents: Extending Tropos. ACM Transactions on Autonomous and Adaptive Systems,

2(4):16, 2007.

[PSC10] Joao Pimentel, Emanuel Santos, and Jaelson Castro. Conditions for Ignoring Failures Based on a

Requirements Model. In Proceedings of the 22nd International Conference on Software Engineering

and Knowledge Engineering (SEKE 2010), pages 48–53, 2010.

[Rao96] Anand S. Rao. AgentSpeak (L): BDI Agents Speak Out in a Logical Computable Language. In

Proceedings of the 7th European Workshop on Modelling Autonomous Agents in a Multi-Agent

World (MAAMAW’96). Springer, 1996.

[RG92] Anand S. Rao and Michael P. Georgeff. An Abstract Architecture for Rational Agents. In

Proceedings of the 3rd International Conference on Principles of Knowledge Representation and

Reasoning (KR’92), pages 439–449, 1992.

[RG95] Anand S. Rao and Michael P. Georgeff. BDI Agents: From Theory to Practice. In Proceedings

of the 1st International Conference on Multi-Agent Systems (ICMAS-95), pages 312–319. San

Fransisco, USA, 1995.

[Rob06] William N. Robinson. A Requirements Monitoring Framework for Enterprise Systems. Require-

ments Engineering, 11(1):17–41, 2006.

[Rob08] William N. Robinson. Extended OCL for Goal Monitoring. Electronic Communications of the

EASST, 9:1–12, 2008.

[Rop99] Günter Ropohl. Philosophy of Socio-Technical Systems. Society for Philosophy and Technology,

4(3), 1999.

[RP09] William N. Robinson and Sandeep Purao. Specifying and Monitoring Interactions and Commit-

ments in Open Business Processes. IEEE Software, 26(2):72–79, 2009.

[RSA98] Colette Rolland, Carine Souveyet, and Camille Ben Achour. Guiding Goal Modeling using Sce-

narios. IEEE Transactions on Software Engineering, 24(12):1055–1071, 1998.

[Sac77] Earl D. Sacerdoti. A Structure for Plans and Behavior. Technical report, Artificial Intelligence

Center, SRI International, 1977.

[Sat01] Mahadev Satyanarayanan. Pervasive Computing: Vision and Challenges. IEEE Personal Com-

munications, 8(4):10–17, Aug 2001.

[SBNH05] Johanneke Siljee, Ivor Bosloper, Jos Nijhuis, and Dieter Hammer. DySOA: Making Service Sys-

tems Self-adaptive. In Boualem Benatallah, Fabio Casati, and Paolo Traverso, editors, Proceedings

of the 3rd International Conference on Service-Oriented Computing (ICSOC 2005), volume 3826

of LNCS, pages 255–268. Springer, 2005.

[SCD09] Munindar P. Singh, Amit K. Chopra, and Nirmit Desai. Commitment-Based Service-Oriented

Architecture. IEEE Computer, 42:72–79, 2009.

Bibliography 205

[SCDM04] Munindar P. Singh, Amit K. Chopra, Nirmit V. Desai, and Ashok U. Mallya. Protocols for

Processes: Programming in the Large for Open Systems (extended abstract). In Companion to the

19th Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages,

and Applications (OOPSLA ’04), pages 120–123, 2004.

[Sea70] John R. Searle. Speech Acts: An Essay in the Philosophy of Language. Cambridge University

Press, 1970.

[Sea75] John R. Searle. Indirect Speech Acts. Syntax and Semantics, 3:59–82, 1975.

[SH05] Munindar P. Singh and Michael N. Huhns. Service-Oriented Computing: Semantics, Processes,

Agents. John Wiley & Sons Inc, 2005.

[SHMK08] Daniel Sykes, William Heaven, Jeff Magee, and Jeff Kramer. From Goals to Components: a

Combined Approach to Self-Management. In Proceedings of the 2008 ICSE Workshop on Software

Engineering for Adaptive and Self-Managing Systems (SEAMS 2008), pages 1–8, 2008.

[Sin91] Munindar P. Singh. Social and Psychological Commitments in Multiagent Systems. In AAAI Fall

Symposium on Knowledge and Action at Social and Organizational Levels, pages 104–106, 1991.

[Sin98] Munindar P. Singh. Agent Communication Languages: Rethinking the Principles. IEEE Com-

puter, 31(12):40–47, December 1998.

[Sin99] Munindar P. Singh. An Ontology for Commitments in Multiagent Systems: Toward a Unification

of Normative Concepts. Artificial Intelligence and Law, 7(1):97–113, 1999.

[SLAT09] Mazeiar Salehie, Sen Li, Reza Asadollahi, and Ladan Tahvildari. Change Support in Adaptive

Software: A Case Study for Fine-grained Adaptation. In Proceedings of the 6th International

Conference and Workshops on Engineering of Autonomic and Autonomous Systems (EaSE 2009),

pages 35–44. IEEE Computer Society, 2009.

[SLRM10] Vitor E. Silva Souza, Alexei Lapouchnian, William N. Robinson, and John Mylopoulos. Awareness

Requirements for Adaptive Systems. Technical Report DISI-10-049, DISI, University of Trento,

2010.

[SMCS04] S. Masoud Sadjadi, Philip K. McKinley, Betty H.C. Cheng, and R.E Kurt Stirewalt. TRAP/J:

Transparent Generation of Adaptable Java Programs. In Proceedings of the International Sympo-

sium on Distributed Objects and Applications (DOA’04), pages 1243–1261. Springer, 2004.

[SP07] Sebastian Sardina and Lin Padgham. Goals in the Context of BDI Plan Failure and Planning.

In Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent

Systems (AAMAS 2007), pages 16–23, 2007.

[SS97] Tony Savor and Rudolph E. Seviora. An Approach to Automatic Detection of Software Failures

in Real-time Systems. In Proceedings of the 3rd IEEE Real-Time Technology and Applications

Symposium (RTSA 1997), pages 136–146, 1997.

[ST07] Mazeiar Salehie and Ladan Tahvildari. A Weighted Voting Mechanism for Action Selection Prob-

lem in Self-Adaptive Software. In Proceedings of the 1st IEEE International Conference on Self-

Adaptive and Self-Organizing Systems (SASO 2007), pages 328–331. IEEE Computer Society,

2007.

[SV09] Roberto Sebastiani and Michele Vescovi. Axiom Pinpointing in Lightweight Description Logics

via Horn-SAT Encoding and Conflict Analysis. In Renate Schmidt, editor, Proceedings of the 22nd

International Conference on Automated Deduction (CADE-22), volume 5663 of LNCS, pages 84–

99. Springer, 2009.

[SvGB05] Mikael Svahnberg, Jilles van Gurp, and Jan Bosch. A Taxonomy of Variability Realization Tech-

niques. Software: Practice and Experience, 35(8):705–754, 2005.

206 Bibliography

[TAHM04] Jeremy N. Timmis, Michael A. Ayliffe, Chun Y. Huang, and William Martin. Endosymbiotic

Gene Transfer: Organelle Genomes Forge Eukaryotic Chromosomes. Nature Reviews Genetics,

5(2):123–135, 2004.

[TCW+04] Gerald Tesauro, David M. Chess, William E. Walsh, Rajarshi Das, Alla Segal, Ian Whalley, Jef-

frey O. Kephart, and Steve R. White. A Multi-Agent Systems Approach to Autonomic Computing.

In Proceedings of the 3rd International Joint Conference on Autonomous Agents and Multiagent

Systems (AAMAS 2004), pages 464–471, 2004.

[Tes07] Gerald Tesauro. Reinforcement Learning in Autonomic Computing: A Manifesto and Case Stud-

ies. IEEE Internet Computing, 11(1):22–30, 2007.

[TP04] Paolo Traverso and Marco Pistore. Automated Composition of Semantic Web Services into Exe-

cutable Processes. In Sheila A. McIlraith, Dimitris Plexousakis, and Frank van Harmelen, editors,

Proceedings of the 3rd International Semantic Web Conference (ISWC 2004), volume 3298 of

LNCS, pages 380–394. Springer, 2004.

[TS09] Pankaj R. Telang and Munindar P. Singh. Enhancing Tropos with Commitments. In Alex Borgida,

Vinay Chaudhri, Paolo Giorgini, and Eric Yu, editors, Conceptual Modeling: Foundations and

Applications. Springer, 2009.

[TWPF02] John Thangarajah, Michael Winikoff, Lin Padgham, and Klaus Fischer. Avoiding Resource Con-

flicts in Intelligent Agents. In Proceedings of the 15th European Conference on Artifical Intelligence

(ECAI 2002), pages 18–22, 2002.

[UBR04a] Amy Unruh, James Bailey, and Kotagiri Ramamohanarao. A Framework for Goal-Based Semantic

Compensation in Agent Systems. In Proceedings of the Workshop on Safety and Security in Multi-

Agent Systems (SASEMAS ’04), volume 4324 of LNCS, pages 130–146, 2004.

[UBR04b] Amy Unruh, James Bailey, and Kotagiri Ramamohanarao. Managing Semantic Compensation

in a Multi-Agent System. In Proceedings of the 12th International Conference on Cooperative

Information Systems (CoopIS 2004), volume 3290 of LNCS, pages 245–263. Springer, 2004.

[VB73] Ludwig Von Bertalanffy. General System Theory: Foundations, Development, Applications.

George Braziller New York, 1973.

[vdH04] André van der Hoek. Design-time Product Line Architectures for Any-Time Variability. Science

of computer programming, 53(3):285–304, 2004.

[vdKdW05] Roman van der Krogt and Mathijs de Weerdt. Plan Repair as an Extension of Planning. In

Proceedings of the 2005 International Conference on Automated Planning & Scheduling (ICAPS

2005), pages 161–170, 2005.

[vdKdWW03] Roman van der Krogt, Mathijs de Weerdt, and Cees Witteveen. A Resource Based Framework

for Planning and Replanning. Web Intelligence and Agent Systems, 1(3):173–186, 2003.

[vdML02] Thomas von der Maßen and Horst Lichter. Modeling Variability by UML Use Case Diagrams.

In Proceedings of the International Workshop on Requirements Engineering for Product Lines

(REPL02), 2002.

[VG10] Thomas Vogel and Holger Giese. Adaptation and Abstract Runtime Models. In Proceedings of the

2010 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS

2010), pages 39–48, 2010.

[vL00] Alex van Lamsweerde. Requirements Engineering in the Year 00: A Research Perspective. In

Proceedings of the 22nd International Conference on Software Engineering (ICSE 2000), pages

5–19, 2000.

Bibliography 207

[vL01] Alex van Lamsweerde. Goal-oriented Requirements Engineering: A Guided Tour. In Proceedings of

the 5th IEEE International Symposium on Requirements Engineering (RE 2001), pages 249–263,

2001.

[vOvdLKM02] Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee. The Koala Component

Model for Consumer Electronics Software. IEEE Computer, 33(3):78–85, 2002.

[Wei91] Mark Weiser. The Computer for the Twenty-First Century. Scientific American, 265(3):94–104,

1991.

[WM09] Yiqiao Wang and John Mylopoulos. Self-repair Through Reconfiguration: A Requirements Engi-

neering Approach. In Proceedings of the 24th IEEE/ACM International Conference on Automated

Software Engineering (ASE’09), pages 257–268. IEEE Computer Society, 2009.

[WMYM07] Yiqiao Wang, Sheila McIlraith, Yijun Yu, and John Mylopoulos. An Automated Approach to

Monitoring and Diagnosing Requirements. In Proceedings of the 22nd IEEE/ACM International

Conference on Automated Software Engineering (ASE’07), pages 293–302. ACM New York, NY,

USA, 2007.

[WMYM09] Yiqiao Wang, Sheila McIlraith, Yijun Yu, and John Mylopoulos. Monitoring and Diagnosing

Software Requirements. Automated Software Engineering, 16(1):3–35, 2009.

[WP99] Michael Wooldridge and Simon Parsons. Intention Reconsideration Reconsidered. In Proceeedings

of the 5th International Workshop on Intelligent Agents V: Agent Theories, Architectures, and

Languages (ATAL’98), volume 1555 of LNCS, pages 63–79. Springer, 1999.

[YS03] H̊akan L. S. Younes and Reid G. Simmons. VHPOP: Versatile Heuristic Partial Order Planner.

Journal of Artificial Intelligence Research, 20(1):405–430, 2003.

[Yu96] Eric Siu-Kwong Yu. Modelling Strategic Relationships for Process Reengineering. PhD thesis,

University of Toronto, Toronto, Ont., Canada, Canada, 1996.

[Zad65] Lofti A. Zadeh. Fuzzy Sets. Information and control, 8(3):338–353, 1965.

[ZC06] Ji Zhang and Betty H. C. Cheng. Model-based Development of Dynamically Adaptive Software.

In Proceedings of the 28th International Conference on Software Engineering (ICSE 2006), pages

371–380, 2006.

[ZJ97] Pamela Zave and Michael Jackson. Four Dark Corners of Requirements Engineering. ACM

Transactions on Software Engineering and Methodology, 6(1):1–30, 1997.

