
PhD Dissertation

International Doctorate School in Information and

Communication Technologies

DISI - University of Trento

A Reactive Search Optimization approach

to interactive decision making

Paolo Campigotto

Advisor:

Prof. Roberto Battiti

Università degli Studi di Trento

December 2010

Abstract

Reactive Search Optimization (RSO) advocates the integration of learning

techniques into search heuristics for solving complex optimization problems.

In the last few years, RSO has been mostly employed in self-adapting a local

search method in a manner depending on the previous history of the search.

The learning signals consisted of data about the structural characteristics

of the instance collected while the algorithm is running. For example, data

about sizes of basins of attraction, entrapment of trajectories, repetitions

of previously visited configurations. In this context, the algorithm learns by

interacting from a previously unknown environment given by an existing

(and fixed) problem definition.

This thesis considers a second interesting online learning loop, where

the source of learning signals is the decision maker, who is fine-tuning her

preferences (formalized as an utility function) based on a learning process

triggered by the presentation of tentative solutions. The objective function

and, more in general, the problem definition is not fully stated at the begin-

ning and needs to be refined during the search for a satisfying solution. In

practice, this lack of complete knowledge may occur for different reasons:

insufficient or costly knowledge elicitation, soft constraints which are in the

mind of the decision maker, revision of preferences after becoming aware

of some possible solutions, etc.

The work developed in the thesis can be classified within the well known

paradigm of Interactive Decision Making (IDM). In particular, it consid-

ers interactive optimization from a machine learning perspective, where

IDM is seen as a joint learning process involving the optimization com-

ponent and the DM herself. During the interactive process, on one hand,

the decision maker improves her knowledge about the problem in question

and, on the other hand, the preference model learnt by the optimization

component evolves in response to the additional information provided by

the user. We believe that understanding the interplay between these two

learning processes is essential to improve the design of interactive decision

making systems. This thesis goes in this direction, 1) by considering a final

user that may change her preferences as a result of the deeper knowledge of

the problem and that may occasionally provide inconsistent feedback dur-

ing the interactive process, 2) by introducing a couple of IDM techniques

that can learn an arbitrary preference model in these changing and noisy

conditions. The investigation is performed within two different problems

settings, the traditional multi-objective optimization and a constraint-based

formulation for the DM preferences.

In both cases, the ultimate goal of the IDM algorithm developed is the

identification of the solution preferred by the final user. This task is accom-

plished by alternating a learning phase generating an approximated model

of the user preferences with an optimization stage identifying the optimiz-

ers of the current model. Current tentative solutions will be evaluated by

the final user, in order to provide additional training data. However, the

cognitive limitations of the user while analyzing the tentative solutions de-

mands to minimize the amount of elicited information. This requires a

shift of paradigm with respect to standard machine learning strategies, in

order to model the relevant areas of the optimization surface rather than

reconstruct it entirely. In our approach the shift is obtained both by the ap-

plication of well known active learning principles during the learning phase

4

and by the suitable trade-off among diversification and intensification of

the search during the optimization stage.

Keywords

Interactive decision making, reactive search optimization, multi-objective

optimization, preference elicitation, machine learning, concept drift, satis-

fiability modulo theory.

5

Contents

1 Introduction 3

1.1 Multi-objective optimization formulation 5

1.2 Motivation of the thesis 6

1.2.1 Preferences as soft constraints 8

1.3 Contribution of the thesis 10

1.3.1 Contribution in interactive multi-objective optimiza-

tion . 11

1.3.2 Constraint-based formulation 13

1.4 Outline of the thesis . 16

2 Handling preference drift in interactive decision making 17

2.1 Introduction . 18

2.2 Interactive decision making techniques 20

2.3 The BC-EMO algorithm 22

2.4 Handling preference drift with BC-EMO 25

2.5 Experimental results . 27

2.6 Conclusion . 32

3 Active Learning of Combinatorial Features for Interactive

Optimization 35

3.1 Introduction . 36

3.2 Overview of our approach 38

i

3.3 Satisfiability Modulo Theory 42

3.3.1 Satisfiability Modulo Theory solvers 43

3.3.2 Weighted MAX-SMT 45

3.4 Related works . 46

3.4.1 Constraint programming approaches for preference

elicitation . 48

3.5 Experimental results . 52

3.5.1 Weighted MAX-SAT 52

3.5.2 Weighted MAX-SMT 56

3.6 Discussion . 65

4 Conclusions and perspectives 69

Bibliography 73

A Expressing bipolar preferences within the soft constraints

formalism 81

B Additional MAX-SAT experiments 85

ii

Acknowledgements

Come inizio della tesi, permettetemi di ringraziare tutti Coloro che hanno

contribuito a renderla possibile. Per primo, il mio advisor Roberto Bat-

titi che mi ha dato l’opportunita’ di intraprendere un Dottorato nel suo

gruppo di Machine Learning and Intelligent Optimization e ha corretto

tutto quanto scritto in queste pagine (tranne questi ringraziamenti!). Oltre

a Roberto, i risultati presentati in questa tesi sono da condividere con An-

drea Passerini, che non ha lesinato consigli, correzioni e proposte deter-

minanti per realizzare questo lavoro. Non potrei non citare Franco Mascia

ed Elisa Cilia, che hanno condiviso con me gli anni del Dottorato. Un

ringraziamento particolare anche a Mauro Brunato, per i suoi “consigli sci-

entifici” e non solo (tuttora custodisco gelosamente l’unico esemplare mon-

diale di bottiglia di grappa “SAT-customized”). Scrivendo queste pagine,

mi piace ricordare tutte le persone che hanno gravitato attorno al labora-

torio LION in questi anni. Infine, condivido la felicita’ per il traguardo

raggiunto anche con la mia famiglia, la mia ragazza ed i miei amici.

Chapter 1

Introduction

In many decision making problems, the crucial issue is not that of deliv-

ering a single solution, but that of critically analyzing a mass of tentative

solutions, which can easily grow up to thousands or millions, to identify the

solution preferred by the final user. Delivering to the decision maker (DM)

the entire set of the tentative solutions so that the user can pick her most

preferred solution is impractical, due to the prohibitive effort required to

the DM.

In principle, this laborious selection among the large set of candidate

solutions could be avoided by including in the initial formulation of the

problem the specification of the utility criterion of the DM. However, re-

quiring a human DM to pre-specify her preferences, without seeing any

actual optimization result, is extremely difficult. In typical decision mak-

ing problems the preferences of the DM cannot be fully defined at the

beginning and needs to be learnt and refined during the search for a sat-

isfying solution. This lack of complete knowledge can occur for different

reasons: insufficient or costly knowledge elicitation, soft constraints which

are in the mind of the decision maker, revision of the preferences after

becoming aware of some possible solutions, etc.

Interactive decision making methods (IDM) overcome these difficulties

3

CHAPTER 1. INTRODUCTION

by keeping the user in the loop of the optimization process. They use pref-

erence information from the decision maker during the optimization task

to guide the search towards her favourite solution. This thesis introduces

two new interactive decision making techniques. With the extent of identi-

fying the favourite solution of the decision maker, they learn and optimize

an approximation of the preference model of the final user.

One technique is developed within the context of the traditional multi-

objective optimization problem, where the user searches for her favourite

solution within the Pareto-optimal set. Our approach considers the limited

and bounded rationality of the humans when making decisions: it accounts

for noisy and inconsistent feedback from the user and can handle a DM

preference model that changes over time. The incomplete knowledge about

the problem to be solved is formalized by assuming the knowledge of a set

of desirable objectives, and ignorance of their detailed combination. To

the best of our knowledge, in the context of multi-objective optimization

no interactive decision making technique has been explicitly designed to

handle a preference model that evolves over time. This work aims at cover-

ing this gap, by introducing also a representative multi-objective problem

with evolving user preferences.

The alternative problem setting considered in this thesis consists of a

constraint-based formulation of the DM preference model. The preferences

are expressed in terms of soft constraints, with each constraint the conjunc-

tion of decisional features of the DM. The utility function of the user is

modeled by the weighted sum of the constraints. This formulation is a

natural way to express preferences in many real world applications. Con-

sider, e.g., a user selecting a house among a set of candidates, a customer

judging the value of a car or assessing her interests to a movie. This the-

sis introduces an interactive optimization procedure alternating a learning

phase with an optimization stage. In detail, it iteratively learns an util-

4

CHAPTER 1. INTRODUCTION1.1. MULTI-OBJECTIVE OPTIMIZATION FORMULATION

ity function modeling the quality of the candidate solutions and uses it to

generate novel candidates for the following refinement. The learning stage

exploits the sparsity-inducing property of 1-norm regularization to learn a

combinatorial function from the power set of all possible conjunctions up

to a certain degree. The optimization stage uses a satisfiability modulo

theories solver, which enables the definition of a general approach for a

large class of optimization problems.

1.1 Multi-objective optimization formulation

Modeling real world problems often generates optimization tasks involving

multiple and conflicting objectives. Because the objectives are in conflict,

a solution simultaneously optimizing all of them does not exist. The terms

multiple criteria decision making or multi-objective optimization refers to

solving these problems. A multi-objective optimization problem (MOOP)

can be stated as:

minimize f(x) = {f1(x), . . . , fm(x)} (1.1)

subject to x ∈ Ω

where x ∈ R
n is a vector of n decision variables; Ω ⊂ R

n is the feasible

region and is typically specified as a set of constraints on the decision

variables; f : Ω → R
m is a vector of m objective functions which need

to be jointly minimized. Objective vectors are images of decision vectors

and can be written as z = f(x) = {f1(x), . . . , fm(x)}. Problem 1.1 is

ill-posed whenever objective functions are conflicting, a situation which

typically occurs in real-world applications. In these cases, an objective

vector is considered optimal if none of its components can be improved

without worsening at least one of the others. An objective vector z is said

5

1.2. MOTIVATION OF THE THESIS CHAPTER 1. INTRODUCTION

to dominate z′, denoted as z ≻ z′, if zk ≤ z′k for all k and there exist at

least one h such that zh < z′h. A point x̂ is Pareto-optimal if there is no

other x ∈ Ω such that f(x) dominates f(x̂). The set of Pareto-optimal

points1 is called Pareto set (PS). The corresponding set of Pareto-optimal

objective vectors is called Pareto front (PF).

1.2 Motivation of the thesis

The centrality of the decision maker is widely recognized in the multiple cri-

teria decision making community. However, in the experiments considered

in IDM literature the user preferences are usually formalized into a math-

ematical model, with the extent of representing the qualitative notion of

preference as a quantitative function, while retaining the Pareto-optimality

properties. This mathematical model emulates the decision maker in the

interactive optimization process. The preference model is usually repre-

sented by the linear combination of the objectives or it is expressed as a

function of the distance from the ideal point. In the first case, the model

is formalized into a function U(z) as follows:

U(z) =
m
∑

k=1

wkzk (1.2)

where the (positive) weights encode the relative importance of the different

objectives. In the second case, the utility function is defined by a weighted-

Lp metric of the following form:

U(z) = −

(

m
∑

k=1

wk|z
∗
k − zk|

p

)1/p

(1.3)

1In the multi-objective optimization literature, these trade-off solutions are known by means of differ-

ent synonyms: efficient, nondominated, noninferior or Pareto-optimal solutions.

6

CHAPTER 1. INTRODUCTION 1.2. MOTIVATION OF THE THESIS

in which z∗ is a reference ideal objective vector obtained by separately

maximizing each objective function subject to the feasible region, i.e., z∗k =

maxx∈Ω fk(x).

The utility functions in Eq. 1.2 and 1.3 are used to simulate the feedback

of a real user during the interactive process. That is, the preference of the

user for the solution z′ is expressed by the value U(z′). This approach has

several limitations:

1. the linear weighting scheme in Eq. 1.2 cannot model the typical

human decision making process occurring in many real life situa-

tions. When a strong non-linear relation correlates the different ob-

jectives, the most intuitive approach of giving highest weight to the

most important criterion can lead to completely unsatisfactory solu-

tions [41, 45]. In many decision making situations, assuming that

satisfaction increases linearly with the decrease of the objective func-

tions is inappropriate.

Even the generalization in Eq. 1.3 of the linear utility function can-

not model the nonlinear preference of “compromise” solutions, which

characterizes many human decision activities [4];

2. an error-free preference structure of the DM is assumed. However, im-

precisions and contradictions characterize most human decision pro-

cesses. As result, uncertain and inconsistent feedback is often observed

in real decision making problems;

3. a static preference model for the DM is considered. The preference

structure is modeled by a function specified a priori (Eq.1.2 and 1.3),

which remain fixed during the interactive optimization process. This

is rather unrealistic in many concrete applications, where the DM has

only limited initial knowledge of the problem at hand. In many cases,

only when the DM sees the actual tentative solutions, she becomes

7

1.2. MOTIVATION OF THE THESIS CHAPTER 1. INTRODUCTION

aware of “what is possible”. Confronted with this new knowledge,

her preferences may evolve over time. Typical scenarios involve a DM

introducing new objectives in her preference model during the search,

changing the relations between the different objectives or adjusting her

preference model according to the observed limitations of the feasible

set. As a results, her judgment changes over time.

According to [25], the number of real world applications of the optimization

techniques developed by the multi-criteria decision making community is

modest. The reason for this failure is the “high complexity of the methods

as perceived by real decision makers” [25]. As matter of fact, the typical

decision maker is not necessarily an expert in algorithmic and mathemati-

cal details, but she is a user who needs a fast and simple way of navigating

among the set of the Pareto-optimal solutions, guided by her preferences.

These observations motivate the development of a robust preference elicita-

tion phase in IDM techniques, enabling the user to express her preferences

in a simple way, to change them over time and accounting for inconsistent

feedback from the DM.

1.2.1 Preferences as soft constraints

The importance of learning the preference of the DM is not limited to the

multi-objective optimization research community. In the last few years, the

preference elicitation problem has been investigated in the context of differ-

ent disciplines, including machine learning and constraint programming. In

the machine learning (ML) community, the task of learning and predicting

preferences in an automatic way is known as preference learning [20]. As

notable applications, consider, e.g., Web search engines and recommender

systems. Very recent research in the field of constraint programming [21]

defines the preferences of the DM in terms of soft constraints and introduce

8

CHAPTER 1. INTRODUCTION 1.2. MOTIVATION OF THE THESIS

constraint optimization problems where the data are not completely known

before the solving process starts. In soft constraints, a generalization of

hard constraints, each assignment to the variables of the constraint is as-

sociated to a preference value taken from a preference set. The preference

value represents the level of desirability of the assignment. The desirability

of a complete assignment is computed by applying a combination operator

to the local preference values. Thus, a set of soft constraints generates

an order (partial or total) over the complete assignments of the variables

of the problem. Given two solutions of the problem, the preferred one is

selected by computing their preference levels and by comparing them in

the preference order. The work in [21] introduces an elicitation strategy

for soft constraint problems with missing preferences, to find the solution

preferred by the decision maker asking the final user to reveal as few pref-

erences as possible. Soft constraints are modeled by a general framework

that can unify previous extensions of the constraint satisfaction formalism

(e.g., weighted or fuzzy constraint satisfaction problems). The optimality

of the solutions produced is guaranteed and the empirical studies in [21]

show that on fuzzy constraint satisfaction problems with missing prefer-

ences the algorithm can also provide a solution at any point in time, whose

quality increases with the computation time (anytime property).

However, the work in in [21] has several limitations and open issues:

• it does not consider the inconsistent and imprecise preference infor-

mation from the DM characterizing many human decision processes;

• it assumes initial complete knowledge of both the decisional features

of the DM and their detailed combination (represented in terms of soft

constraints). The elicitation process focuses exclusively on assessing

the weights of the soft constraints;

• it expresses the preference information by quantitative judgments about

9

1.3. CONTRIBUTION OF THE THESIS CHAPTER 1. INTRODUCTION

assignments to the variables of a specific constraint. However, asking

to the final user precise scores is in many cases inappropriate or even

impossible. Most of the users are typically more confident in compar-

ing solutions, providing qualitative judgments like “I prefer solution

A to solution B”, rather than in specifying how much they prefer A

over B;

• it models just negative preferences, i.e., the final user can express just

different degrees of unsatisfaction for the solutions. In many real life

problems, the interaction with the final users is naturally modeled by

specifying what she likes and what she dislikes, reflecting the typi-

cal human behavior, where the degree of preference for a solution is

defined by comparing its advantages with its disadvantages;

• it combines branch and bound search with preference elicitation, the

adoption of local search algorithms is a matter of current research, as

pointed out by the authors themselves.

In this thesis, we introduce a technique that can solve the above issues,

testing its performance over a couple of realistic decision problems.

1.3 Contribution of the thesis

This thesis tackles the problem of learning the user preferences in the

context of interactive decision making. In particular, we formalize the

preference learning problem within two settings:

1. the traditional multi-objective optimization formulation;

2. a constraint-based formulation modeling the DM preferences.

In both cases, we introduce a novel technique based on machine learning.

The adoption of machine learning enables a robust approach, handling

10

CHAPTER 1. INTRODUCTION 1.3. CONTRIBUTION OF THE THESIS

contradictory and inconsistent feedback from the decision maker as well as

a dynamic preference model of the final user.

1.3.1 Contribution in interactive multi-objective optimization

Concerning the traditional MOOP, the contribution of this thesis consists

of a new technique that can handle unforeseen changes in the preferences of

the decision maker. Real world optimization tasks are often characterized

by noisy and changing conditions. The problem of learning in changing

conditions is known in the machine learning community as learning under

concept drift [39]. The problem has received increasing attention in past

few years, and a number of solutions have been proposed to tackle it. For

a review of the recent approaches in this area, see [51]. In this thesis we

consider concept drift in the specific setting of interactive optimization.

We call preference drift the tendency of the decision maker to change her

preferences during the interactive optimization stage. To the best of our

knowledge, the current IMO techniques usually consider a static prefer-

ence model for the DM: no IMO technique has been explicitly designed

to handle preference drift. Among the plethora of IMO algorithms, ref-

erence point methods [29, 30], which iteratively minimize the distance to

ideal reference points provided by the DM, could in principle naturally

handle preference drifts. However, the cognitive demands required to the

DM can easily become prohibitive, especially when dealing with non-linear

preference models and an increasing number of objectives.

Machine learning techniques [43, 44, 23] have been employed in IMO by

learning the user preferences in an interactive fashion, and can be easily

adapted to deal with preference drifts. Most existing approaches are lim-

ited either by not guaranteeing the generation of Pareto-optimal solutions,

or by assuming a linear set of weights, one for each objective. The recent

Brain-Computer Evolutionary Multi-Objective Optimization (BC-EMO)

11

1.3. CONTRIBUTION OF THE THESIS CHAPTER 1. INTRODUCTION

algorithm [4] overcomes these limitations. BC-EMO is a genetic algorithm

that learns the preference information of the decision maker (formalized

as a value function) by the feedback received when the DM evaluates ten-

tative solutions. Based on this feedback, the predicted value function is

refined, and it is used to modify the fitness measure of the genetic al-

gorithm. Fast convergence of the algorithm to the desired solution was

shown [4] on both combinatorial and continuous problems with linear and

non-linear value functions. The learning stage is based on a support vector

ranking algorithm which provides robustness to inaccurate and contradic-

tory DM feedback [8]. We thus selected BC-EMO as a natural candidate

to be extended for managing preference drift [9].

The extension of BC-EMO for preference drift recovery is based on the

approach of instance weighting [27], a popular strategy in the concept drift

literature. The instance weighting technique consists of reweighting the

examples according to their predicted relevance for the current concept.

We include this reweighting scheme in the learning component of the BC-

EMO algorithm, a change detection monitor is responsible for activating

the mechanism. In order to deal with concept drift in the specific setting of

interactive optimization, we also introduce a diversification strategy aimed

at escaping from minima which could become suboptimal for the changed

utility function of the DM.

An additional contribution of this thesis consists of a benchmark prob-

lem simulating the noisy and changing conditions occurring during real

world optimization tasks. A real user cannot be emulated via the static

error-free utility function defined in Eq. 1.2 and 1.3. The limited ra-

tionality of people when making decisions motivates the need for a more

realistic simulation of the seamless human-computer interaction charac-

terizing IMO techniques. Furthermore, solving real MOOPs requires the

ability to search over complex Pareto fronts. These observations translate

12

CHAPTER 1. INTRODUCTION 1.3. CONTRIBUTION OF THE THESIS

into the definition of benchmark problems characterized by:

1. highly complex Pareto front, including concave, convex and discon-

nected regions;

2. arbitrary DM preference model;

3. uncertain, inconsistent and contradictory feedback from the final user;

4. unforeseen changes in the preferences of the decision maker.

Uncertain preference information is modeled by considering occasional

inattention of the DM or her embarrassment when required to compare

too similar solutions. Evaluating the ability of the proposed preference

model to simulate the human decision process is outside the scope of this

work. The generation of benchmark problems with the above characteris-

tics provides test cases for the extended version of BC-EMO, and, more in

general, may help to identify the MOO algorithms that are more promising

for future testing on real-life scenarios.

1.3.2 Constraint-based formulation

In many real-life problems, preferences can be naturally expressed as soft

constraints. Given the set of soft constraints, the aim consists of finding

a solution optimizing them. This means that there is an utility function

measuring the quality of the candidate solutions in terms of preferences.

Consider, for example, a house sale system suggesting candidate houses

according to their characteristics, such as “the kitchen is roomy”, “the

house has a garden”,“the neighbourhood is quiet”. The task can be formal-

ized as a weighted MAX-SAT problem, where the constraints are encoded

by Boolean terms, with each term the combination of Boolean features.

The preferences of the final user are expressed by the weighted sum of

13

1.3. CONTRIBUTION OF THE THESIS CHAPTER 1. INTRODUCTION

the constraints, with the weights defining the relative importance of the

constraints.

In the setting we consider here the combinatorial utility function ex-

pressing the DM preference model is the weighted combination of Boolean

terms. However, it is unknown and has to be jointly and interactively

learned during the optimization process. Note that the optimal utility

function is complex enough to prevent exhaustive enumeration of possible

solutions.

Our method consists of an iterative procedure alternating a search phase

with a model refinement phase. At each step, the current approximation of

the utility function is used to guide the search for optimal configurations;

preference information is required for a subset of the recovered candidates,

and the utility model is refined according to the feedback received. A set

of randomly generated examples is employed to initialize the utility model

at the first iteration.

We show how to generalize the proposed method to more complex utility

functions which are combinations of predicates in a certain theory of inter-

est. A standard setting is for example that of scheduling, where solutions

could be starting times for each job, predicates define time constraints for

related jobs, and weights specify costs paid for not satisfying a certain set of

constraints. The generalization basically consists of replacing satisfiability

with satisfiability modulo theories [1] (SMT). SMT is a powerful formalism

combining first-order logic formulas and theories providing interpretations

for the symbols involved, like the theory of arithmetic for dealing with in-

teger or real numbers. It is receiving increasing attention in recent years,

thanks to a number of successful applications in areas like verification sys-

tems, planning and model checking. Optimization modulo theories, also

known as “Satisfiability modulo the theory of costs” [13], extends SMT by

considering optimization problems. Rather than checking the existence of

14

CHAPTER 1. INTRODUCTION 1.3. CONTRIBUTION OF THE THESIS

a satisfying assignment as in SMT, the target is a satisfying assignment

that minimizes a given cost function. Optimization modulo theories is a

very recent research field; this is the first work combining learning, inter-

active optimization and SMT. Therefore, to test our IDM technique we

encoded different optimization tasks as weighted MAX-SMT optimization

problems.

Considering our critique to the soft constraint-based approach in [21],

our technique offers the following advantages:

• it does not assume to know in advance the decisional features of the

user and their detailed combination. It can select the variables of the

learning problem from a set of “catalog” features;

• it can handle noisy and inconsistent feedback from the user;

• it may adapt to both qualitative and quantitative evaluations from the

DM, by asking the comparison of solutions rather than the assignment

of preference degrees in terms of scores from a predefined range;

• in the case of quantitative evaluations from the DM, it allows the

user to state both negative or positive judgments for the provided

solutions, including the possibility to express “indifference”;

• both complete and local search techniques may be adopted to optimize

the learnt preference model.

On the other hand, our approach cannot guarantee the optimality of the

retrieved solutions. However, the experimental results on both weighted

MAX-SAT and MAX-SMT problems demonstrate the effectiveness of our

technique in focusing towards the optimal solutions, its robustness as well

as its ability to recover from suboptimal initial choices.

15

1.4. OUTLINE OF THE THESIS CHAPTER 1. INTRODUCTION

1.4 Outline of the thesis

The remainder of the thesis is organized as follows. Chapter 2 presents our

approach in the context of multi-objective optimization. First, the limi-

tations of current IDM techniques in regard to preference drift handling

are discussed. Then, the BC-EMO algorithm is reviewed and extended to

automatically handle preference drift. The constraint-based formulation of

the user preferences is tackled in Chapter 3. The preference structure of

the DM is expressed as a combinatorial optimization function and the elici-

tation task is solved by combining active learning of combinatorial features

with the optimization of learnt utility function models. The comparison

of our method with recent preference elicitation approaches developed in

the context of constraint programming [21, 28, 6] is discussed. As no es-

tablished real world benchmarks are available at the time of this writing,

a couple of realistic problems is defined and included in experimental eval-

uation of the proposed technique. Chapter 4 draws some conclusions, by

summarizing the results and the contribution of the thesis and by proposing

possible directions for future research.

16

Chapter 2

Handling preference drift in

interactive decision making

Interactive decision making methods use preference information from the

decision maker during the optimization task to guide the search towards

favourite solutions. In real-life applications, unforeseen changes in the

preferences of the decision maker have to be considered. To the best of our

knowledge, no interactive decision making technique has been explicitly

designed to recognize and handle preference drift. The work in [9] aims at

covering this gap, by extending the Brain-Computer Evolutionary Multi-

Objective Optimization (BC-EMO) algorithm to handle preference drift.

BC-EMO is a recent multi-objective genetic algorithm. It exploits user

judgments of couples of solutions to build incremental models of the user

value function. The learnt model is used to refine the genetic population,

generating the new individuals in the region of the Pareto front surrounding

the favourite solution of the decision maker. The proposed extension of

BC-EMO detects the changes of the user preferences by observing the

decrease of prediction accuracy of the learnt model. The preference drift

is jointly tackled by the BC-EMO learning phase, by a discounting policy

for outdated training examples, and by the BC-EMO search phase, by

encouraging diversification in the genetic population. Experimental results

17

2.1. INTRODUCTION

CHAPTER 2. HANDLING PREFERENCE DRIFT IN INTERACTIVE DECISION

MAKING

for a representative preference drift scenario are presented.

2.1 Introduction

Modeling real-world problems often generates optimization tasks involving

multiple and conflicting objectives. Because the objectives are in conflict, a

solution simultaneously optimizing all of them does not exist. The typical

approach to multi-objective optimization problems (MOOPs) consists of

searching for a set of trade-off solutions, called Pareto-optimal set, for

which any single objective cannot be improved without compromising at

least one of the other objectives.

Usually, the size of the Pareto-optimal set is large or infinite and the

decision maker (DM) cannot tackle the overflow of information generated

when analyzing it entirely. In this scenario, interactive decision making

(IDM) techniques come to the rescue. They assume that the optimization

expert (or the optimization software) cooperates with the DM. Through

the interaction, the search process can be directed towards the DM pre-

ferred Pareto-optimal solutions and only a fraction of the Pareto-optimal

set needs to be generated.

To the best of our knowledge, current IDM techniques consider a static

preference model for the DM. This is rather unrealistic in many appli-

cations, where the DM has limited initial knowledge of the problem at

hand [37, 36]. Only when the DM sees the actual tentative solutions, she

becomes aware of “what is possible”. Confronted with this new knowledge,

her preferences may evolve. Typical scenarios involve a DM introducing

new objectives in her preference model during the search, changing the re-

lations between the different objectives or adjusting her preference model

according to the observed limitations of the feasible set. Furthermore, the

DM may not be aware of her preference changes and may not explicitly

18

CHAPTER 2. HANDLING PREFERENCE DRIFT IN INTERACTIVE DECISION

MAKING 2.1. INTRODUCTION

alert the optimization component. From a learning perspective, interactive

multi-objective optimization should thus be seen as a joint learning process

involving the model and the DM herself [5].

In the machine learning (ML) community, the problem of learning in

these changing conditions is known as learning under concept drift [39].

The work in [51] reviews the recent approaches for concept drift recovery.

In this thesis we consider preference drift, the tendency of the decision

maker to change her preferences during the interactive optimization stage.

To the best of our knowledge, no IDM technique has been explicitly de-

signed to handle preference drift. Among the plethora of IDM algorithms,

reference point methods [29, 30], which iteratively minimize the distance

to ideal reference points provided by the DM, could in principle naturally

handle preference drifts. However, the cognitive effort of the DM can eas-

ily become prohibitive, especially when dealing with non-linear preference

models and an increasing number of objective.

Different IDM approaches [43, 44, 23] employ machine learning tech-

niques to learn the user preferences and can be easily adapted to tackle

preference drifts. However, these approaches cannot guarantee the gener-

ation of Pareto optimal solutions or assume a linear set of weights, one

for each objective. A recent genetic technique, the Brain-Computer Evolu-

tionary Multi-Objective Optimization (BC-EMO) algorithm [4], overcomes

these limitations.

BC-EMO represents the preference information of the decision maker

in terms of a value function. Based on the DM evaluation of current

tentative solutions, the predicted value function is refined, and it is used

to modify the fitness measure of the genetic algorithm. The convergence of

the algorithm to the desired solution on both combinatorial and continuous

problems with linear and non-linear value functions has been tested [4].

Robustness to inaccurate and contradictory DM feedback [8] is obtained

19

2.2. INTERACTIVE DECISION MAKING TECHNIQUES

CHAPTER 2. HANDLING PREFERENCE DRIFT IN INTERACTIVE DECISION

MAKING

by the adoption of a support vector ranking technique in the learning

stage of BC-EMO. We thus selected BC-EMO as a natural candidate to

be extended for managing preference drift.

The extension of BC-EMO for preference drift recovery exploits the

instance weighting scheme [27] from the concept drift literature, which

reweights the examples according to their predicted relevance for the cur-

rent concept. The activation of the reweighting mechanism is triggered by

a change detection monitor. Furthermore, in order to deal with concept

drift in the specific setting of interactive optimization, a diversification

strategy aimed at escaping from minima which could become suboptimal

for the changed preference of the DM is also introduced.

The remainder of the chapter is organized as follows. Section 2.2 intro-

duces IDM and discusses the limitations of current techniques in regard

to preference drift handling. Section 2.3 briefly reviews the BC-EMO al-

gorithm, while Section 2.4 extends it to automatically handle preference

drift. An experimental evaluation of the proposed extension is reported

in Section 2.5. Section 2.6 draws some conclusions and proposes possible

directions for future research.

2.2 Interactive decision making techniques

Several IDM approaches have been developed to aid the DM in identify-

ing her preferred solution [31], including evolutionary multi-objective al-

gorithms (see for example [15] and contained references). IDM procedures

exploit the preference feedback from the DM to refine a preference model,

usually expressed as a value function.

In the popular family of reference point methods [29, 30] the value func-

tion is interpreted as an achievement scalarizing function, which measures

the distance from a selected objective vector z̄, called reference point. The

20

CHAPTER 2. HANDLING PREFERENCE DRIFT IN INTERACTIVE DECISION

MAKING 2.2. INTERACTIVE DECISION MAKING TECHNIQUES

reference point specifies the desirable values of the objectives and it is

usually provided by the DM. The distance from the reference point has a

preferential meaning: the tentative solution x∗ ∈ Ω showed to the DM is

the solution minimizing the deviation from the reference point. In detail,

the solution x∗ is obtained by solving the following program:

x∗ = min max
k=1...m

[wk(fk(x)− z̄k)] (2.1)

subject to x ∈ Ω

with weight wk > 0, k = 1 . . .m. The achievement scalarizing function to

minimize in Eq. 2.1 is the weighted Tchebychev distance from the reference

point. The DM can express her bias for the k-th objective by assigning a

value to weight wk. After the DM has specified her desirable solution as

a reference point, she can see what was feasible (the solution x∗) and in

case provide a new reference point. Let us emphasize the rationale of this

approach:

1. the location of the reference point causes the procedure to focus on a

certain region in the Pareto front;

2. a local approximation of the preference model is expressed by the dis-

tance function from the reference point. Using the weighted Tcheby-

chev distance metric, every solution of the Pareto front can be ob-

tained by altering the reference point only [48].

Many refinements and extensions of this approach exist [30]. They con-

sider different ways of interaction with the DM (e.g., by showing a set of

solution in the neighborhood of x∗) and different refinements of the achieve-

ment scalarizing function, designed to obtain Pareto-optimal solutions with

particular properties.

In principle, reference points approaches could be considered a natural

way of accounting for preference drift: the DM is free to modify the refer-

ence point, exploring new regions of the Pareto front in response to a change

21

2.3. THE BC-EMO ALGORITHM

CHAPTER 2. HANDLING PREFERENCE DRIFT IN INTERACTIVE DECISION

MAKING

in her preferences. However, the effort of the decision maker to modify the

reference point when her preference model includes non-linear relations be-

tween the objectives may be prohibitive. The cognitive demands become

unrealistic when the dimensionality of the problem increases, providing a

large set of candidate directions to shift the reference point.

In the past, a number of works [43, 44, 23] introduced ML-based ap-

proaches to learn the user preferences in an interactive fashion. However,

they have several limitations [4]. The approach in [43] does not guarantee

the generation of Pareto optimal solutions, while the strategies developed

in [44, 23] generate a linear local approximation of the user preferences

and do not use directly the learned preference model to drive the search.

Furthermore, in all these works the feedback from the DM is expressed in

terms of quantitative scores.

The BC-EMO algorithm [4] overcomes these limitations, by learning

the preference model with pairwise preference supervision, a much more

affordable task for the DM, and by directly using the preference model to

drive the search over the Pareto front. The algorithm does not make any

assumption about the preference structure of the DM, possibly accounting

for highly non-linear relations between the different objectives. This work

extends BC-EMO to handle preference drift.

2.3 The BC-EMO algorithm

The goal of the BC-EMO algorithm consists of identifying the non-dominated

solution preferred by the decision maker. To fulfill this scope, BC-EMO

learns a value function from the preference information provided by the

DM by using the support vector ranking [14], a supervised machine learn-

ing technique that learns to rank the input data. Training examples consist

of pairwise comparisons of non-dominated solutions which are turned into

22

CHAPTER 2. HANDLING PREFERENCE DRIFT IN INTERACTIVE DECISION

MAKING 2.3. THE BC-EMO ALGORITHM

Algorithm 1 Training procedure at the generic i-th EMO iteration

1: procedure Train(Pi, Ui−1, exa)

2: Ptr ← PrefOrder(Pi,Ui−1,exa)

3: obtain pairwise preferences for Ptr from the DM

4: sort Ptr according to user preferences and add it to training instances

5: Choose best kernel K and regularization C by k-fold cross validation

6: Ui ← function trained on full training set with K and C

7: resi ← k-fold cv estimate of function performance

8: return Ui, resi

9: end procedure

ranking constraints for the learning algorithm. No specific assumptions are

made about the form of the DM value function: BC-EMO has a tuning

phase selecting the most appropriate kernel (i.e., similarity measure) in or-

der to best approximate the targets, allowing it to learn an arbitrary value

function provided enough data are available. Furthermore, support vector

ranking allows to effectively deal with noisy training observations thanks

to a regularization parameter C trading-off data fitting with complexity of

the learned model.

The learned value function is used to rank the current population during

the selection phase of the BC-EMO algorithm, where a sub-population is

selected for reproduction on the basis of fitness (i.e., quality of the solu-

tions). In particular, the BC-EMO selection procedure, which we will refer

to as PrefOrder, consists of:

1. collecting the subset of non-dominated individuals in the population;

2. sorting them according to the learned value function;

3. appending to the sorted set the result of repeating the procedure on

the remaining dominated individuals, until the desired number of in-

dividuals is reached.

The procedure is guaranteed to retain Pareto-optimality regardless of the

23

2.3. THE BC-EMO ALGORITHM

CHAPTER 2. HANDLING PREFERENCE DRIFT IN INTERACTIVE DECISION

MAKING

form of the learned value function. Any evolutionary multi-objective algo-

rithm (EMOA) that needs comparisons between candidate individuals can

be equipped with the BC-EMO selection procedure (replacing or integrat-

ing the original selection procedure). Algorithm 1 describes the procedure

of the generic i-th training iteration, in which: 1) the exa best individuals

from the current population Pi are selected according to PrefOrder with

current value function Ui−1; 2) DM feedback is collected for these exam-

ples; 3) parameter selection, training and evaluation are conducted on the

training data enriched with Ptr. This procedure will be modified in the

next section in order to account for preference drifts.

The overall BC-EMO approach consists of three steps:

1. initial search phase: the plain EMOA selected is run for a given num-

ber of generations and produces a final population P1;

2. training phase: using P1 as initial population, a specific number of

training iterations are executed to learn the value function V by in-

teracting with the DM. The final population obtained (P2) is collected;

3. final search phase: the selected EMOA equipped with the BC-EMO

selection procedure is run for a given number of generations, using P2

as initial population and producing the final ordered population.

Each training iteration alternates a refinement phase, where the DM is

queried for feedback on candidate solutions and the value function is up-

dated according to such feedback, with a search phase, where the EMOA

equipped with the BC-EMO selection procedure is run for a given number

of iterations. The training phase is executed until the maximum number

of training iterations or the desired accuracy level are reached.

The parameters of the BC-EMO algorithm are: the number of allowed

training iterations (maxit), the number of training individuals for iteration

24

CHAPTER 2. HANDLING PREFERENCE DRIFT IN INTERACTIVE DECISION

MAKING 2.4. HANDLING PREFERENCE DRIFT WITH BC-EMO

(exa), the number of generations before the first training iteration (gen1)

and between two successive training iterations (gens). Algorithm 2 con-

tains the pseudocode of the BC-EMO approach applied on top of a generic

EMO algorithm. Further details on the algorithm can be found in [4].

Algorithm 2 The BC-EMO algorithm

1: procedure BC-EMO(maxit, exa, gen1, gens)

2: res← 0, it← 0, U ← Rand

3: run the EMOA for gen1 generations

4: collect last population P

5: while it ≤ maxit do

6: U, res← Train(P , U , exa)

7: run the EMOA for gens generations guided PrefOrder with U

8: collect last population P

9: end while

10: run the EMOA for the remaining generations guided PrefOrder with U

11: return the final population P

12: end procedure

2.4 Handling preference drift with BC-EMO

The effect of preference drift is a decrease of the accuracy of the learnt

model over time. In the original version of BC-EMO, training data arrives

in batches over time and the model is re-trained every gens generations,

when a new batch of training examples is available. The extension to

handle preference drift consists of a mechanism for drift detection and of

a reweighting of the past training examples inversely proportional to the

observed decrease in the performance accuracy.

First, a cost in the range [0, 1] is associated with each training example,

initialized to the value one and defining the relevance of the example for the

concept to predict. The detection of a drift in the preferences of the decision

maker is based on the prediction accuracy of the learnt model. Let bi and

25

2.4. HANDLING PREFERENCE DRIFT WITH BC-EMO

CHAPTER 2. HANDLING PREFERENCE DRIFT IN INTERACTIVE DECISION

MAKING

Ui−1 the new batch of observable data and the current model at the generic

i-th training iteration, respectively. The performance of the current model

is the prediction accuracy 0 ≤ resi−1 ≤ 1 over batch bi−1. Furthermore, let

0 ≤ res′i−1 ≤ 1 the prediction accuracy of the current model over batch bi.

If the difference between resi−1 and res′i−1 is bigger than a fixed threshold

td, with td > 0, a drift in the preferences of the decision maker is assumed.

In this case, the cost of the training examples collected so far (i.e., the

training examples of batches b1, b2, . . . bi−1) is decreased as a function of

the value resi−1− res′i−1. In detail, the cost is updated by a multiplicative

factor d = c(resi−1 − res′i−1), where the function c is defined as follows:

c(x) =

1 if x ≤ td

1− x if td < x < 0.5

0 if x ≥ 0.5

(2.2)

Let us comment. If the value resi−1 − res′i−1 is bigger than the threshold

and smaller than 0.5, the cost of the training examples is decreased by the

normalized value of the difference res′i−1 − resi−1. When the decrease of

the performance accuracy over the last batch of observable data is bigger

than value 0.5, the training examples of the previous batches are discarded

(i.e., their cost becomes zero). The rationale for this choice is that a large

decrease in the accuracy of the learnt model is seen as symptom of a radical

change in the preferences of the DM, outdating training examples collected

in previous iterations.

If a drift in the preferences of the user has been detected, the model

selection phase is executed using only the data in the i-th batch rather

than using all the collected examples, as in the original version of BC-

EMO (algorithm 1, line 6). Furthermore, the genetic population of the

EMOA is reinitialized.

Let resi the prediction accuracy of the selected model over batch bi. If

26

CHAPTER 2. HANDLING PREFERENCE DRIFT IN INTERACTIVE DECISION

MAKING 2.5. EXPERIMENTAL RESULTS

resi is smaller than threshold tr, the selected model is discarded as it does

not satisfy the minimal performance requirement, and all training examples

of of batches b1 . . . bi−1 are discarded as well. The plain EMOA underlying

BC-EMO will then be executed starting with a random population, until

the next training iteration is reached. The rationale for this choice is the

assumption that the poor performance of the selected model is caused

by the collected training examples, localized in a region of the Pareto

front that does not provide informative examples to learn the drift of the

user preferences. The plain EMOA algorithm is executed to generate a

population representing the whole Pareto front (without considering the

preferences of the decision maker), in order to create more informative

training examples at the next training iteration.

Algorithm 3 describes the modification of the training procedure at the

generic i-th training iteration of BC-EMO to handle preference drift.

2.5 Experimental results

The experimental evaluation is focused on demonstrating the effectiveness

of the extension of BC-EMO to handle decision maker preference drift for

a selected case study. Given this focus, we did not attempt to fine-tune

non-critical parameters which were fixed for the experiment.

Following [4], BC-EMO has been applied on top of NSGA-II [16] EMOA.

We chose a population size of 100, 2000 generations, probability of crossover

equal to one and probability of mutation equal to the inverse of the num-

ber of decision variables. Concerning the learning task of BC-EMO, the

number of initial generations (gen1) was set to 200, while the number of

generations between two training iterations (gens) was set to 100. Both

5 and 10 examples per training iteration are tested. The minimum per-

formance requirement threshold tr was set to 0.5, while a decrease of the

27

2.5. EXPERIMENTAL RESULTS

CHAPTER 2. HANDLING PREFERENCE DRIFT IN INTERACTIVE DECISION

MAKING

Algorithm 3 Training procedure to handle preference drift

1: procedure Train(Pi, Ui−1, exa, resi−1, td, tr)

2: Ptr ← PrefOrder(Pi,Ui−1,exa)

3: obtain pairwise preferences for Ptr from the DM

4: bi ← sort Ptr according to user preferences

5: Add bi to training instances

6: res′
i−1
← test Ui−1 using bi

7: if resi−1 − res′
i−1

> td then

8: Decrease costs of examples in b1 . . . bi−1 according to (2.2) using td

9: Re-initialize Pi randomly

10: end if

11: Choose best kernel K and regularization C by k-fold cross validation

12: resi ← k-fold cv estimate of function performance

13: if resi ≥ tr then

14: Ui ← function trained on full training set with K and C

15: else

16: resi ← 0, Ui ← Rand

17: end if

18: return Ui, resi

19: end procedure

performance greater than 10% (td = 0.1) triggers the procedure handling

the preference drift.
The case study consists of the bi-objective version of DTLZ6 problem,

taken from popular DTLZ suite [17]:

min×∈Ω(×)

Ω = {×| 0 ≤ xi ≤ 1 ∀ i = 1, . . . , n}

f1(×) = x1, . . . , fm−1(×) = xm−1,

fm(×) = (1 + g(×m))h(f1, f2, . . . , fm−1, g)

g(×m) = 1 + (9/|×m|)
∑

xi∈×m
xi

h = m−
∑m−1

i=1
[(fi/(1 + g))(1 + sin(3πfi))]

This problem is characterized by a highly disconnected Pareto front, with

both convex and concave regions (Fig. 2.1 (left)).
The drift in the preferences of the user is simulated by a sequence of

28

CHAPTER 2. HANDLING PREFERENCE DRIFT IN INTERACTIVE DECISION

MAKING 2.5. EXPERIMENTAL RESULTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2.2
2.4
2.6
2.8

3
3.2
3.4
3.6
3.8

4

f
1

f 2

0 0.2 0.4 0.6 0.8 12

3

4
0

2

4

f
1

f
2

first

third

fourth

fifth

second

Figure 2.1: Problem DTLZ6 with two objectives: (left) Pareto front for a sample run

of plain NSGA-II without user preference; (right) preference values of the Pareto front

according to the different values functions simulating the preference drift.

five value functions:

1. 0.2 ∗ f1 + 0.8 ∗ f2

2. 0.05 ∗ f2 ∗ f1 + 0.6 ∗ f2
1
+ 0.38 ∗ f2

3. 0.05 ∗ f2 ∗ f1 + 0.6 ∗ f2
1
+ 0.38 ∗ f2 + 0.23 ∗ f1

4. 0.05 ∗ f2 ∗ f1 + 0.68 ∗ f2
1
+ 0.26 ∗ f2 + 0.23 ∗ f1

5. 0.05 ∗ f2 ∗ f1 + 0.68 ∗ f2
1
+ 0.1 ∗ f2 + 0.23 ∗ f1

The sequence is generated by increasing the importance of the first ob-

jective (f1) w.r.t. the second objective (f2), assuming a non-linear for-

mulation of the user preferences. This experimental setting simulates a

decision maker that gradually becomes aware of the relation between her

objectives to be optimized. Note that designing value functions which

are non-monotonic in the Pareto front while retaining Pareto dominance

properties is a non-trivial task. See [4] for a description of the generation

process. Fig.2.1 (right) shows the different value functions considered, and

their global minima over the Pareto front (square marked points). Tracking

the shift of the global minimum between disconnected regions of the Pareto

front is a challenging task for the optimization algorithm. The changes be-

tween the different value functions were fixed at generations 300, 600, 900

29

2.5. EXPERIMENTAL RESULTS

CHAPTER 2. HANDLING PREFERENCE DRIFT IN INTERACTIVE DECISION

MAKING

and 1200.

Fig. 2.2 and 2.3 report the results for the plain BC-EMO algorithm, for

a baseline algorithm and for our BC-EMO extension, respectively, over the

considered case study. The performance of the algorithms is measured in

2 3 4 5 6 7 8 9 1011121314151617181920
0

5

10

15

20

25

30

35

Generation (x100)

A
pp

ro
xi

m
at

io
n

er
ro

r

5 exa
10 exa

2 3 4 5 6 7 8 9 1011121314151617181920
0

5

10

15

20

25

30

35

Generation (x100)

A
pp

ro
xi

m
at

io
n

er
ro

r

5 exa
10 exa

Figure 2.2: Performance of the BC-EMO algorithm (left) and of the baseline algorithm

(right).

2 3 4 5 6 7 8 9 1011121314151617181920
0

5

10

15

20

25

30

35

Generation (x100)

A
pp

ro
xi

m
at

io
n

er
ro

r

5 exa
10 exa

Figure 2.3: Performance of the extension of BC-EMO to handle preference drift.

terms of percent approximation error w.r.t. the gold standard solution (y-

axis) in function of the generation of the genetic population (x -axis). The

gold standard solution is obtained by guiding the algorithm with the true

value function. Each graph reports two learning curves for an increasing

30

CHAPTER 2. HANDLING PREFERENCE DRIFT IN INTERACTIVE DECISION

MAKING 2.5. EXPERIMENTAL RESULTS

number of training examples per iteration (exa). Results are the medians

over 500 runs with different random seeds for the search of the evolutionary

algorithm.

At the generic i-th training iteration, the baseline algorithm retrains the

learnt model using only the i-th batch of observable data. This is the only

difference with the plain BC-EMO. Experimental results not reported here

show the better performance obtained by discarding the previous training

examples rather than discounting their cost by a fixed multiplicative factor

in (0, 1).

Fig. 2.2 (left) shows that the original version of BC-EMO cannot han-

dle preference drift. The algorithm cannot track the changes of the user

preferences: with the exception of the first drift, the performance of the

algorithm keeps degrading each time the value function changes. After the

last drift of the user preferences, the percent approximation error exceeds

value 35%. This sub-optimal performance is caused by the lack of diversi-

fication during the search phase of the algorithm: the genetic population

“gets trapped” in the region surrounding the global minima of the first and

the second value functions.

A better performance is showed by the baseline algorithm (Fig. 2.2

(right)). Like BC-EMO, with 10 examples per iteration, a successful re-

cover from the first drift is shown. The baseline algorithm fails to detect

the second and the third changes of the value function (at generation 600

and 900, respectively): between generations 900 and 1200, the curves for

both 5 and 10 training examples show a constant percentage deviation

from the gold solution greater than 30%. When the fourth concept drift

happens, the worst performance is observed. However, after generation

1400 the approximation error rapidly becomes zero, with both 5 and 10

training examples per iteration. Three iterations are required for perfect

recovery from the fourth concept drift.

31

2.6. CONCLUSION

CHAPTER 2. HANDLING PREFERENCE DRIFT IN INTERACTIVE DECISION

MAKING

As expected, the best results are observed for the extension of BC-EMO

designed for handling preference drift. Even if three training iteration are

not enough for the perfect recovery from the second concept drift, the

favourite solution of the decision maker generated by her third preference

drift is perfectly identified. In the case of 10 training examples per iteration,

an approximation error smaller than 1% is obtained at generation 1100.

An even faster recovery is observed from the fourth concept drift: two

training iteration are required to approximate the new gold solution within

an 1% approximation error. Note that, with the exception of the peak at

generation 900 (corresponding to the third preference drift), the results

tend to remain within 10% of the gold solution when 10 examples per

iteration are provided.

2.6 Conclusion

This work addresses the problem of handling evolving preferences in in-

teractive decision making. We modify BC-EMO, a recent multi-objective

genetic algorithm based on pairwise preferences, by adapting its learning

stage to learn under a concept drift. Our solution relies on the popular ap-

proach of instance weighting, in which the relative importance of examples

is adjusted according to their predicted relevance for the current concept.

We integrate these modifications with a diversification strategy favouring

exploration as a response to changing DM preferences. Experimental re-

sults on a benchmark MOO problem with non-linear user preferences show

the ability of the approach to early adapt to concept drifts.

Our promising preliminary results leave much room for future work.

First, additional benchmark problems with evolving non-linear user pref-

erences will be generated, possibly derived from real-world applications.

Both sudden and gradual preference drift will be considered. Furthermore,

32

CHAPTER 2. HANDLING PREFERENCE DRIFT IN INTERACTIVE DECISION

MAKING 2.6. CONCLUSION

more sophisticated active learning approaches could be devised in order to

reduce the number of queries to the DM. This requires a shift of paradigm

with respect to standard active learning strategies, in order to model the

relevant areas of the optimization surface rather than reconstruct it en-

tirely, and early detect and adapt to a changing surface.

33

2.6. CONCLUSION

CHAPTER 2. HANDLING PREFERENCE DRIFT IN INTERACTIVE DECISION

MAKING

34

Chapter 3

Active Learning of Combinatorial

Features for Interactive Optimization

In this chapter, based on the work in [10], we address again the prob-

lem of automated discovery of preferred solutions by an interactive op-

timization procedure. However, rather than considering the traditional

multi-objective optimization paradigm, we focus on combinatorial utility

functions made of weighted conjunctions of Boolean variables. Our ap-

proach resorts again to the “learning to optimize” framework, where a

utility function modeling the quality of candidate solutions is iteratively

learnt and used to generate novel candidates for the following refinement.

In the proposed algorithm, the learning stage exploits the sparsity-inducing

property of 1-norm regularization to learn a combinatorial function from

the power set of all possible conjunctions up to a certain degree. The op-

timization stage uses a stochastic local search method to solve a weighted

MAX-SAT problem. We show how the proposed approach generalizes to a

large class of optimization problems dealing with satisfiability modulo the-

ories. Experimental results demonstrate the effectiveness of the approach

in focusing towards the optimal solution and its ability to recover from

suboptimal initial choices.

35

3.1. INTRODUCTION

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION

3.1 Introduction

The field of combinatorial optimization focussed in the past mostly on solv-

ing well defined problems, where the function f(x) to optimize is given,

either in a closed form, or as a simulator which can be interrogated to de-

liver f values corresponding to inputs, possibly with some noise leading to

stochastic optimization. One therefore distinguishes two separated phases,

a first one related to defining the problem through appropriate consulting,

knowledge elicitation, modeling steps, and a second one dedicated to solv-

ing the problem either optimally, in the few cases when this is possible, or

approximately, in most real-world cases leading to NP-hard problems.

Unfortunately the above picture is not realistic in many application sce-

narios, where learning about the problem definition goes hand in hand with

delivering a set of solutions of improving quality, as judged by a decision

maker (DM) responsible for selecting the final solution. In particular, this

holds in the context of multi-objective optimization, where one aims at

maximizing at the same time a set of functions f1, ..., fn. Multi-objective

optimization, when cast in the language of machine learning, is a paradig-

matic case of lack of information, where only some relevant building blocks

(features) are initially given as the individual function fi’s, but their com-

bination into a utility function modeling the preferences of the DM is not

given and has to be learnt by interacting with the DM [7]. Dealing with

human DM, characterized by limited patience and bounded rationality, de-

mands for some form of strategic production of candidates to be evaluated

(query learning), and requires to account for the possible mistakes and dy-

namical evolution of her preferences (learning about concrete possibilities

may lead somebody to change his/her initial objectives and evaluations).

A further complication is related to the difficulty of delivering quantitative

judgments by the DM, who is often better off in ranking possibilities more

36

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION 3.1. INTRODUCTION

than in delivering utility values. The interplay of optimization and ma-

chine learning has been advocated in the past for example in the Reactive

Search Optimization (RSO) context, see [2] also for an updated bibliog-

raphy and [3] for an application of RSO in the context of multi-objective

optimization.

In this work, we focus on a setting in which the optimal utility function

is both unknown and complex enough to prevent exhaustive enumeration of

possible solutions. We start by considering combinatorial utility functions

expressed as weighted combinations of terms, each term being a conjunc-

tion of Boolean features. A typical scenario would be a house sale system

suggesting candidate houses according to their characteristics, such as “the

kitchen is roomy”, “the house has a garden”,“the neighbourhood is quiet”.

The task can be formalized as a weighted MAX-SAT problem, a well-

known formalization which allows to model a large number of real-world

optimization problems. However, in the setting we consider here the un-

derlying utility function is unknown and has to be jointly and interactively

learned during the optimization process.

Our method consists of an iterative procedure alternating a search phase

and a model refinement phase. At each step, the current approximation of

the utility function is used to guide the search for optimal configurations;

preference information is required for a subset of the recovered candidates,

and the utility model is refined according to the feedback received. A set

of randomly generated examples is employed to initialize the utility model

at the first iteration.

We show how to generalize the proposed method to more complex util-

ity functions which are combinations of predicates in a certain theory of

interest. A standard setting is that of scheduling, where solutions could

be starting times for each job, predicates define time constraints for re-

lated jobs, and weights specify costs paid for not satisfying a certain set of

37

3.2. OVERVIEW OF OUR APPROACH

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION

constraints. The generalization basically consists of replacing satisfiability

with satisfiability modulo theory [1] (SMT). SMT is a powerful formalism

combining first-order logic formulas and theories providing interpretations

for the symbols involved, like the theory of arithmetic for dealing with

integer or real numbers. It has received consistently increasing attention

in recent years, thanks to a number of successful applications in areas like

verification systems, planning and model checking.

Experimental results on both weighted MAX-SAT and MAX-SMT prob-

lems demonstrate the effectiveness of our approach in focusing towards the

optimal solutions, its robustness as well as its ability to recover from sub-

optimal initial choices.

The chapter is organized as follows: Section 3.2 introduces the algorithm

for the SAT case. Section 3.3 introduces SMT and its weighted generaliza-

tion and shows how to adapt our algorithm to this setting. Related works

are discussed in Section 3.4. Section 3.5 reports the experimental evalu-

ation for both SAT and SMT problems. A discussion including potential

research directions concludes the chapter.

3.2 Overview of our approach

Candidate configurations are n dimensional Boolean vectors x consisting

of catalog features. The only assumption we make on the utility function is

its sparsity, both in the number of features (from the whole set of catalog

ones) and in the number of terms constructed from them. We rely on this

assumption in designing our optimization algorithm.

The candidate solutions are obtained by applying a stochastic local

search (SLS) algorithm that searches the Boolean vectors maximizing the

weighted sum of the terms of the learnt utility model. At each iteration, the

algorithm chooses between a random and a greedy move with probability

38

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION 3.2. OVERVIEW OF OUR APPROACH

wp and 1−wp, respectively. A greedy move consists of flipping one of the

variables leading to the maximum increase in the sum of the weights of the

satisfied terms (if improving moves are not available, the least worsening

move is accepted). The main difference w.r.t the “standard” weighted SLS

algorithms consists of the DNF rather than CNF representation, which

we believe to be a more natural choice when modeling combined effects

of multiple non-linearly related features. Since switching from disjunctive

to conjunctive normal form representations may involve an exponential in-

crease in the size of the Boolean formula, we implemented a method that

operates on formulae represented as a weighted linear sum of terms.

The candidate solutions generated by the optimizer during the search

phase are first sorted by their predicted score values and then shuffled uni-

formly at random. The first s/2 configurations are selected, where s is

the number of the random training examples generated at the initializa-

tion phase. The evaluation of the selected configurations completes the

generation of the new training examples.

The refinement of the utility model consists of learning the weights of the

terms, discarding the terms with zero weight. In the following, we assume

that the available feedback consists of a quantitative score. We thus learn

the utility function by performing regression over the set of the Boolean

vectors. Adapting the method to other forms of feedback, such as ranking

of sets of solutions, is straightforward as will be discussed in Section 3.6. We

address the regression task by the Lasso [46]. The Lasso is an appropriate

choice on problem domains with many irrelevant features, as its 1-norm

regularization can automatically select input features by assigning zero

weights to the irrelevant ones. Feature selection is crucial for achieving

accurate prediction if the underlying model is sparse [19].

Let D = (xi, yi)i=1...m the set of m training examples, where xi is the

Boolean vector and yi its preference score. The learning task is accom-

39

3.2. OVERVIEW OF OUR APPROACH

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION

plished by solving the following lasso problem:

minw

m
∑

i=1

(yi −wT · Φ(xi))
2 + λ||w||1 (3.1)

where the mapping function Φ projects sample vectors to the space of all

possible conjunctions of up to d Boolean variables. The learnt function

f(x) = wT · Φ(x) will be used as the novel approximation of the util-

ity function. A new iteration of our algorithm can now take place. The

pseudocode of our algorithm is in Fig. 3.1.

In principle, one may argue that showing random examples to the user

during the initialization phase (lines 5-6 in Fig. 3.1) is not an appropriate

choice and may result a little bit artificial. However, the evaluation of

diverse examples stimulates the preference expression, especially when the

user is still uncertain about her final preference [37]. In particular, the

diversity of the examples helps the user to reveal the hidden preferences:

in many cases the decision maker is not aware of all preferences until she

sees them violated. For example, a user does not usually think of stating

the preference for an intermediate airport until one solution proposes an

airplane change in a place she dislikes [37].

Note that dealing with the explicit projection Φ in Eq. 3.1 is tractable

only for a rather limited number of catalog features and size of conjunc-

tions d. This will typically be the case when interacting with a human

DM. A possible alternative consists of directly learning a non-linear func-

tion of the features, without explicitly projecting them to the resulting

higher dimensional space. We do this by kernel ridge regression [42] (Krr),

where 2-norm regularization is used in place of 1-norm. The resulting dual

formulation can be kernelized into:

α = (K + λI)−1y

40

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION 3.2. OVERVIEW OF OUR APPROACH

1. procedure interactive optimization

2. input: set of the catalog variables

3. output: configuration optimizing the learnt utility function

4. /* Initialization phase */

5. initialize training set D by selecting s configurations uniformly at random;

6. get the evaluation of the configurations in D;

7. while (termination criterion)

8. /* Learning phase */

9. Based on D, select terms and relative weights for current

10. weighted MAX-SAT formulation (Eq. 3.1);

11. /* Optimization phase */

12. Get new configurations by optimizing current weighted MAX-SAT

13. formulation;

14. /* Training examples selection phase */

15. Select s/2 configurations, get their evaluation and add them to D;

16. return configuration optimizing the learnt weighted MAX-SAT formulation

Figure 3.1: Pseudocode for the interactive optimization algorithm.

where K and I are the kernel and identity matrices respectively and λ is

again the regularization parameter. The learnt function is a linear combi-

nation of kernel values between the example and each of the training in-

stances: f(x) =
∑m

i=1 αiK(x,xi). We employ a Boolean kernel [26] which

implicitly considers all conjunctions of up to d features:

KB(x,x′) =
d
∑

l=1

(

xT · x′

l

)

With the lasso, the function Φ(·) maps the Boolean variables to all

possible terms of size up to d. This allows for an explicit representation

of the learnt utility function f as a weighted combination of the selected

Boolean terms. On the other hand, in the kernel ridge regression case

terms are only implicitly represented via the Boolean kernel KB. In both

cases, the value of the learnt function f is used to guide the search of

the SLS algorithm. In the following, the two proposed approaches are

referred as the Lasso and the Krr algorithms. As will be shown in the

41

3.3. SATISFIABILITY MODULO THEORY

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION

experimental section, the sparsity-inducing property of the Lasso allows it

to consistently outperform Krr. The problem of addressing more complex

scenarios, possibly involving non-human DM, where we can not afford an

explicit projection, will be discussed in Section 3.6.

3.3 Satisfiability Modulo Theory

In the previous section, we assumed our optimization task could be cast

into a propositional satisfiability problem. However, many applications of

interest require or are more naturally described in more expressive log-

ics as first-order logic (FOL), involving quantifiers, functions and predi-

cates. In these cases, one is usually interested in validity of a FOL formula

with respect to a certain background theory T fixing the interpretation of

(some of the) predicate and function symbols. A general purpose FOL

reasoning system such as Prolog, based on the resolution calculus, needs

to add to the formula a conjunction of all the axioms in T . This is, for

instance, the standard setting we consider in inductive logic programming

when verifying whether a certain hypothesis covers an example given the

available background knowledge. Whenever the cost of including such addi-

tional background theory is affordable, our algorithm can be applied rather

straighforwardly.

Unfortunately, adding all axioms of T is not viable for many theories of

interest: consider for instance the theory of arithmetic, which restricts the

interpretation of symbols such as +,≥, 0, 5. A more efficient alternative

consists of using specialized reasoning methods for the background theory

of interest. The resulting problem is known as satisfiability modulo theory

(SMT)[1] and has drawn a lot of attention in recent years, guided by its ap-

plicability to a wide range of real-world problems. Among them, consider,

for example, problems arising in formal hardware/software verification or

42

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION 3.3. SATISFIABILITY MODULO THEORY

in real-time embedded systems design. Popular examples of useful theories

include various theories of arithmetic over reals or integers such as linear

or difference ones. Linear arithmetic considers + and − functions alone,

applied to either numerical constants or variables, plus multiplication by a

numerical constant. Difference arithmetic is a fragment of linear arithmetic

limiting legal predicates to the form x − y ≤ c, where x, y are variables

and c is a numerical constant. Very efficient procedures exists for checking

satisfiability of difference logic formulas [34].

A number of theories have been studied apart from standard arithmetic

ones. Machine arithmetic, for instance, is more naturally modeled by the

theory of bit-vector arithmetic, which includes bit-wise operations. The

theory of arrays includes two functions read(a,i) and write(a,i,v). The

former returns the value of array a at index i, the latter an array identical

to a but for position i having value changed to v. This theory is extensively

used to model arrays in programs as well as an abstraction of memory.

Other theories exists for data structures such as lists and strings.

3.3.1 Satisfiability Modulo Theory solvers

The most successful SMT solvers can be grouped into the two main ap-

proaches named eager and lazy. The eager approach consists of developing

theory-specific and efficient translators which translate a query formula into

an equisatisfiable propositional one, much like compilers do when optimiz-

ing the code generated from a high-level program. Lazy approaches, on

the other hand, work by building efficient theory solvers, inference systems

specialized on a theory of interest. These solvers are integrated as submod-

ules into a generic SAT solver. In the rest of the chapter we will focus on

this latter class of SMT solvers, which we integrated in our optimization

algorithm. The simplest approach for building a lazy SMT-solver consists

of alternating calls to the satisfiability and the theory solver respectively,

43

3.3. SATISFIABILITY MODULO THEORY

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION

1. procedure SMT-solver(ϕ)

2. ϕ′ = α(ϕ)

3. while (true)

4. (r,M) ← SAT(ϕ′)

5. if r = unsat then return unsat

6. (r,J) ← T-Solver(β(M))

7. if r = sat then return sat

8. C ←
∨

l∈J
¬α(l)

9. ϕ′ ← ϕ′ ∧ C

Figure 3.2: Pseudocode for a basic lazy SMT-solver.

until a solution satisfying both solvers is retrieved or the problem is found

to be unsatisfiable. Let ϕ be a formula in a certain theory T , made of a

set of n predicates A = {a1, . . . , an}. A mapping α maps ϕ into a proposi-

tional formula α(ϕ) by replacing its predicates with propositional variables

pi = α(ai). The inverse mapping β replaces propositional variables with

their corresponding predicates, i.e., β(pi) = ai. For example, consider the

following formula in a non-linear theory T:

(cos(x) = 3 + sin(y)) ∧ (z ≤ 8) (3.2)

Then, p1 = α(cos(x) = 3 + sin(y)) and p2 = α(ai ≤ 8). Note that the

truth assignment p1 = true, p2 = false is equivalent to the statement

(cos(x) = 3 + sin(y)) ∧ (z > 8) in the theory T.

Figure 3.2 reports the basic form [32] of an SMT algorithm. SAT(ϕ)

calls the SAT solver on the ϕ instance, returning a pair (r,M), where r is

sat if the instance is satisfiable, unsat otherwise. In the former case, M

is a truth assignment satisfying ϕ. T-Solver(S) calls the theory solver on

the formula S and returns a pair (r, J), where r indicates if the formula

is satisfiable. If r =unsat, J is a justification for S, i.e any unsatisfiable

subset J ⊂ S. The next iteration calls the SAT solver on an extended

instance accounting for this justification.

State-of-the-art solvers introduce a number of refinements to this basic

44

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION 3.3. SATISFIABILITY MODULO THEORY

strategy, by pursuing a tighter integration between the two solvers. A

common underlying idea is to prune the search space for the SAT solver

by calling the theory solver on partial assignments and propagating its

results. Finally, combination methods exist to jointly employ different

theories, see [33] for a basic procedure.

3.3.2 Weighted MAX-SMT

Weighted MAX-SMT generalizes SMT problems much like weighted MAX-

SAT does with SAT ones. While a body of works exist addressing weighted

MAX-SAT problems, the former generalization has been tackled only re-

cently and very few solvers have been developed [18, 35, 13]. The simplest

formulation consists of adding a cost to each or part of the formulas to be

jointly satisfied, and returning the assignment of variables minimizing the

sum of the costs of the unsatisfied clauses, or a satisfying assignment if it

exists. The following is a “weighted version” of Eq. 3.2:

5 · (cos(x) = 3 + sin(y)) + 12 · (z > 8) (3.3)

where 5 and 12 are the cost of the violation of the first and the second

predicate, respectively.

Generalizing, consider a true utility function f expressed as a weighted

sum of terms, where a term is the conjunction of up to d predicates defined

over the variables in the theory T . The set of all n possible predicates

represents the search space S of the MAX-SAT solver integrated in the

MAX-SMT solver. Our approach learns an approximation f̂ of f and gets

one of its optimizers v from the MAX-SMT solver. The optimizer (and in

general each candidate solution in the theory T) identifies an assignment

p∗ = (p∗1, . . . , p
∗
n) of Boolean values (p∗i = {true, false}) to the predicates

in S. The DM is asked for a feedback on the candidate solution v and

returns a possibly noisy quantitative score s ≈ f(v). The pair (p∗, s)

45

3.4. RELATED WORKS

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION

represents a new training example for our approach. In order to obtain

multiple training examples, we optimize again f̂ with the additional hard1

constraint generated by the disjunction of all the terms of f̂ unsatisfied by

p∗ . For example, let t1 and t5 be the terms of f̂ unsatisfied by p∗, then

the hard constraint becomes:

(t1 ∨ t5)

If p∗ satisfies all the terms of f̂ , i.e., f̂(p∗) = 0, the additional hard con-

straint generated is

(¬p∗1 ∨ ¬p
∗
2 . . . ∨ ¬p

∗
n)

which excludes p∗ from the feasible solutions set of f̂ . The generation

of the training examples is iterated till the desired number of examples

have been created or the hard constraints generated made the MAX-SMT

problem unsatisfiable.

The learning component of our algorithm is then re-trained, including

in the training set the new collected examples and the approximation of

the true utility function is refined. A new optimization phase can now take

place (see Fig. 3.1).

The mechanism creating the training examples is motivated by the

tradeoff between the selection of good solutions (w.r.t. the current approx-

imation of the true utility function) and the diversification of the search

process.

3.4 Related works

Active learning is a hot research area and a broad range of different ap-

proaches has been proposed (see [40] for a review). The simplest and most

1Hard constraints do not have a cost, and they have to be satisfied. On the contrary, the terms with

a cost, which may or may not be satisfied, are called soft constraints.

46

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION 3.4. RELATED WORKS

common framework is that of uncertainty sampling : the learner queries

the instances on which it is least certain. However, the ultimate goal of

a recommendation or optimization system is selecting the best instance(s)

rather than correctly modeling the underlying utility function. The query

strategy should thus tend to suggest good candidate solutions and still

learn as much as possible from the feedback received. Typical areas where

research on this issue is quite popular are single- and multi-objective inter-

active optimization [7] and information retrieval [38]. The need to trade

off multiple requirements in this active learning setting is addressed in [49]

where the authors consider relevance, diversity and density in selecting

candidates. Note that our approach relies on query synthesis rather than

selection, as de-novo candidate solutions are generated by the SLS algo-

rithm. Nonetheless, our diversification strategies are very simple and could

be significantly improved by taking advantage of the aforementioned liter-

ature.

Choosing relevant features according to their weight within the learnt

model is a common selection strategy (see e.g. [22]). When dealing with

implicit feature spaces as in kernel machines, the problem can be ad-

dressed by introducing a hyper-parameter for each input feature, like a

feature-dependent variance for Gaussian kernels [12]. Parameters and

hyper-parameters (or their relaxed real-valued version) are jointly opti-

mized trying to identify a small number of relevant features. One-norm

regularization [46] has the advantage of naturally inducing sparsity in the

set of selected features. Approaches also exist [47, 24] which directly ad-

dress the combinatorial problem of zero-norm optimization.

A large body of recent work exists for developing interactive approaches [7]

to multiobjective optimization. A common approach consists of modeling

the utility function as a linear combination of objectives, and iteratively

updating its weights trying to match the DM requirements. Our algorithm

47

3.4. RELATED WORKS

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION

allows to deal with complex non-linear interactions between (Boolean) ob-

jectives and, thanks to the SMT extension, can be applied to a wide range

of optimization problems.

3.4.1 Constraint programming approaches for preference elici-

tation

Very recent works in the field of constraint programming [21] define the

user preferences in terms of soft constraints and introduce constraint op-

timization problems where the data are not completely known before the

solving process starts.

In soft constraints, a generalization of hard constraints, each assign-

ment to the variables of one constraint is associated to a preference value

taken from a preference set. The preference value represents the level of

desirability of the assignment. The desirability of a complete assignment is

computed by applying a combination operator to the local preference val-

ues. A set of soft constraints generates an order (partial or total) over the

complete assignments of the variables of the problem. Given two solutions

of the problem, the preferred one is selected by computing their preference

levels and by comparing them in the preference order. Soft constraints are

therefore represented by an algebraic structure, called c-semiring (where

letter “c” stays for “constraint”), providing two operations for combining

(×) and comparing (+) preference values. In detail, the c-semiring is a

tuple (A,+,×,0,1) where:

• A is a set and 0,1 ∈ A;

• + is commutative, associative and idempotent; 0 is its unit element

and 1 is its absorbing element;

• × is commutative, associative, distributes over +; 1 is its unit element

and 0 is its absorbing element.

48

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION 3.4. RELATED WORKS

Note that a c-semiring is a semiring with additional properties for the two

operations: the operation + must be idempotent and with 0 as absorbing

element, the operation × must be commutative. The relation ≤A over

A, a ≤A b iff a + b = b, is a partial order, with 0 and 1 its minimum and

maximum elements, respectively. The relation ≤A allows to compare (some

of) the desirability levels, with a ≤A b meaning that b is “better” than a; 0

and 1 represent the worst and the best preference levels, respectively, and

the operations + and × are monotone on ≤A.

The c-semiring formalism can model just negative preferences. First,

the best element in the ordering induced by ≤A, denoted by 1, behaves

as indifference, since ∀a ∈ A, 1 × a = a. This result is consistent with

intuition: when using only negative preferences, indifference is the best

level of desirability that can be expressed. Furthermore, the combination of

desirability levels returns a lower overall preference, since a×b ≤A a, b. This

result reflects the desired property of negative preferences: the combination

of desirability levels returns lower preferences.

The generality of the semiring-based soft constraint formalism allows to

express several kinds of preferences, including partially ordered ones. For

example, different instances of c-semirings encode weighted or probabilistic

soft constraint satisfaction problems [6].

The work in [21] introduces an elicitation strategy for soft constraint

problems with missing preferences, with the purpose of finding the solu-

tion preferred by the DM asking to reveal as few preferences as possible.

Despite the common purpose, this approach is different from ours. A ma-

jor difference regards the preference elicitation problem considered. In [21]

decision variables and soft constraints are assumed to be known in advance

and the information uncertainty consists only of missing preference values.

On the other hand, our settings assume sparsity of the utility function,

both in the number of features (from the whole set of catalog features) and

49

3.4. RELATED WORKS

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION

in the selection of the terms constructed from them.

The technique in [21] is based on local elicitation queries, with the fi-

nal user asked to reveal her preferences about assignments for specific soft

constraints. Global preferences or bounds for global preferences associated

to complete solutions of the problem are derived from the local preference

information. Our technique goes in the opposite direction, inducing local

utilities from global preference values. In many cases, recognizing appeal-

ing or unsatisfactory global solutions may be much easier than defining

local utility functions, associated to partial solutions. For example, while

scheduling a set of activities, the evaluation of complete schedules may

be more affordable than assessing how specific ordering choices between

couples of activities contribute to the global preference value.

In order to reduce the embarrass of the decision maker when specifying

precise preference scores, interval-valued constraints [28] allow users to

state an interval of utility values for each instantiation of the variables of

a constraint. The adoption of interval-valued soft constraints is appealing

when the user may have a vague idea of the preference scores or when she

may not be willing to reveal her preference, for example for privacy reasons.

Furthermore, note that informal definitions of degrees of preference such as

“quite high”, “more or less”, “low” or “undesirable” cannot be naturally

mapped to precise preference scores. However, the technique described

in [28] requires the user to provide all the information she has about the

problem (in terms of preference intervals) before the solving phase, without

seeing any optimization result.

Even if interval-valued constraints [28] have been introduced to han-

dle uncertainty in the evaluations of the DM, the experiments in [21] do

not consider the case of inconsistent preference information. Our tech-

nique is robust to imprecise information from the DM, modeled in terms

of inaccurate preference scores for the candidate solutions. On the other

50

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION 3.4. RELATED WORKS

side, the optimality of the solutions produced by the technique in [21] is

guaranteed and the empirical studies show that on fuzzy constraint satis-

faction problems with missing preferences the algorithm can also provide

a solution at any point in time, whose quality increases with the compu-

tation time (anytime property). While our iterative approach satisfies the

anytime property, it cannot guarantee the optimality of the retrieved solu-

tion. However the promising experimental results show the ability of our

heuristic to find the optimal solution.

When asking to the DM quantitative evaluations of the solutions results

inappropriate or even impossible, rather than resorting to preference inter-

vals, our technique can be straightforwardly extended to express preference

information in terms of qualitative judgments, based on the comparison of

complete solutions. The extension basically consists of the replacement of

support vector regression with support vector ranking, as discussed below

in Sec. 3.6.

Furthermore, while the works in [21] considers unipolar preference prob-

lems, modeling just negative preferences, our approach naturally accounts

for bipolar preference problems, with the final user specifying what she

likes and what she dislikes. Bipolar preference problems provides a better

representation of the typical human decision process, where the degree of

preference for a solution reflects the compensation value obtained by com-

paring its advantages with the disadvantages. Note that the work in [6]

extends the soft constraint formalism to account for bipolar preference

problems. For further details, see Appendix A.

Finally, while the technique in [21] combines branch and bound search

with preference elicitation and the adoption of local search algorithms is

matter of research, our approach works straightforwardly with both incom-

plete and complete search techniques.

51

3.5. EXPERIMENTAL RESULTS

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION

3.5 Experimental results

The following empirical evaluation demonstrates the versatility and the

efficiency of our approach for the weighted MAX-SAT and the weighted

MAX-SMT problems. The MAX-SMT tool used for the experiments is the

“Yices” solver [18]. Each point of the curves depicting our results is the

median value over 400 runs with different random seeds, unless otherwise

stated.

3.5.1 Weighted MAX-SAT

The Lasso and the Krr algorithms were tested over a benchmark of ran-

domly generated utility functions according to the triplet (number of fea-

tures, number of terms, max term size), where max term size is the max-

imum allowed number of Boolean variables per term. We generate func-

tions for: {(5, 3, 3), (6, 4, 3), (7, 6, 3), (8, 7, 3), (9, 8, 3), (10, 9, 3)}. Each util-

ity function has two terms with maximum size. Terms weights are integers

selected uniformly at random in the interval [−100, 0) ∪ (0, 100]. We con-

sider as gold standard solution the configuration obtained by optimizing

the true utility function.

The number of catalog features is 40. The maximum size of terms is as-

sumed to be known. The walk probability parameter of the SLS algorithm

wp is set to 0.2. Furthermore, the score values of the training examples

are affected by Gaussian noise, with mean 0 and standard deviation 10.

We run a set of experiments for 10, 20, . . . 100 initial training examples,

for the Lasso and the Krr versions of the algorithm. Results are expressed

in terms of the quality of the learnt utility function (Fig. 3.3) and of the

approximation of the gold solution (Fig. 3.4). Each point of the curves in

the Fig. 3.3 and 3.4 is the mean and the median values, respectively, over

400 runs with different random seeds.

52

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION 3.5. EXPERIMENTAL RESULTS

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

3 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

4 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa
pe

rf
or

m
an

ce

6 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

7 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

8 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

9 terms

Figure 3.3: Quality of the learnt utility function for an increasing number of training

examples observed for the algorithms at the first iteration. The y-axis reports the root

mean squared error between the true and the predicted values for a benchmark of 1000

test examples. The x -axis contains the number of training examples. The solid blue

and the dashed green lines show the performance of the Lasso and the Krr algorithms,

respectively. See text for details.

53

3.5. EXPERIMENTAL RESULTS

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION

Fig. 3.3 shows the quality of the learnt utility function, in terms of the

root mean squared error (rmse) between the true and the predicted values

for a benchmark of 1000 test examples. A better approximation is gener-

ated by the Lasso algorithm for all the considered true utility functions.

Furthermore, while increasing the number of training examples, a faster

improvement is observed for the Lasso w.r.t. the Krr algorithm. Con-

sider, for example, the case of nine terms. With 40 training examples, the

performance of Krr is within 10 units from the value observed for the Lasso

method. When 100 examples are employed, the mean rmse of the Lasso

algorithm is less than value 30, while the performance of the Krr method

does not increase beyond value 50.

The superior performance of the Lasso algorithm is confirmed by the

experiments in Fig. 3.4, reporting the quality of the best configuration at

the different iterations for an increasing number of initial training exam-

ples. The best configuration is the configuration optimizing the current

approximation of the true utility function. Its quality is measured in terms

of the approximation error w.r.t. the gold solution.

Considering the simplest problems with three and four terms, the per-

formance of Krr is comparable with the results obtained by Lasso, except

at the first iteration of Krr in the case of four terms true utility functions,

where the gold solution is not identified even with 100 initial training ex-

amples.

However, the Lasso approach outperforms the Krr results when the

true utility function includes at least six terms. First, note that the Lasso

algorithm succeeds in exploiting its active learning strategy, and converges

rather quickly to the optimal solution when enough iterations are provided.

At the first iteration its approximation error is above 40 even when 30

training examples are used. At the third iteration, the Lasso algorithm

identifies the gold standard solution, when at least 60 training examples

54

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION 3.5. EXPERIMENTAL RESULTS

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

3 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa
pe

rf
or

m
an

ce

4 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

6 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

7 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

8 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

9 terms

Figure 3.4: Learning curves for an increasing number of training examples observed for

the two algorithms at different iterations. The y-axis reports the solution quality, while

the x -axis contains the number of training examples. The dashed lines refer to the Krr

algorithm, while the solid lines are for the Lasso algorithm. Furthermore, red, green and

cyan colors show the performance of the algorithms at the first, the second and the third

iteration, respectively. See text for details.
55

3.5. EXPERIMENTAL RESULTS

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION

are available. On the other hand, for true utility functions with more

than seven terms Krr fails to improve over its suboptimal solution when

increasing the number of examples and iterations. As a consequence, the

Krr algorithm does not identify the gold solution, even in the case of

100 training examples. However, when very few training examples are

available, the Krr algorithm reaches a better approximation than Lasso.

Further results for the Lasso algorithm are reported in Appendix B. In

particular, they refer to a second implementation of the technique, with

the SLS algorithm in the optimization stage replaced by a complete solver

and with the Boolean training examples generation described in Sec. 3.3.2

for the MAX-SMT version of our approach.

Fig. 3.5 and Fig. 3.6 show the learning curves for both the Lasso and

Krr approaches at the first and third iteration, respectively, in the case

of true utility functions with nine terms. Error bars indicates the range

between the 25th and 75th percentiles of the underlying data distributions.

In both cases, the sample percentiles demonstrate a more stable behavior

of the Lasso technique. In particular, at the first iteration the stability of

Lasso increases with additional training examples, while the variability of

Krr does not decrease of the same extent. At the third iteration, with at

least 80 examples the Lasso algorithm consistently finds the gold solution,

while an unstable behavior is still observed for Krr.

3.5.2 Weighted MAX-SMT

SMT is a hot research area [32]. However, MAX-SMT techniques are very

recent and there are no well established publicly available benchmarks for

weighted MAX-SMT problems. Existing results [35] indicate that MAX-

SMT solvers can efficiently address real-world problems.

In this work, we modeled a scheduling problem as a MAX-SMT prob-

lem. In detail, a set of five jobs must be scheduled over a given period of

56

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION 3.5. EXPERIMENTAL RESULTS

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

9 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

9 terms

Figure 3.5: Learning curves observed for the Lasso (right) and Krr (left) algorithms at the

first iteration in the case of true utility functions with nine terms. Error bars represents

the range among the 25th and the 75th percentiles of the measurements.

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

9 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

9 terms

Figure 3.6: Learning curves observed for the Lasso (right) and Krr (left) algorithms at the

third iteration in the case of true utility functions with nine terms. Error bars represents

the range among the 25th and the 75th percentiles of the measurements.

57

3.5. EXPERIMENTAL RESULTS

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION

time. Each job has a fixed known duration, the constraints define the over-

lap of two jobs or their non-concurrent execution. The true utility function

is generated by selecting uniformly at random weighed terms over the con-

straints. The solution of the problem is a schedule assigning a starting

date to each job and minimizing the cost, where the cost of the schedule

is the sum of the weights of the violated terms of the true utility function.

The temporal constraints are expressed by using the difference arithmetic

theory. In detail, let si and di, with i = 1 . . . 5, be the starting date and

the duration of the i-th job, respectively. If si is scheduled before sj, the

constraint expressing the overlap of the two jobs is sj− si < di, while their

non-concurrent execution is encoded by sj − si ≥ di Note that there are

40 possible constraints for a set of 5 jobs. The maximum size of the terms

of the true utility function is three and it is assumed to be known. Their

weights are distributed uniformly at random in the range [1, 100]. Similarly

to the MAX-SAT case, the experimental setting includes Gaussian noise

(with mean 0 and standard deviation 10) affecting the cost values of the

training examples.

Fig. 3.7 depicts the performance of the Lasso algorithm for the cases of

3, 4, 6, 7, 8, 9 terms in the true utility function. The y-axis reports the so-

lution quality measured in terms of deviation from the gold solution, while

the x -axis contains the number n of training examples at the first iteration.

At the following iterations, n/2 examples are added to the training set (see

Sec. 3.2).

As expected, the learning problem becomes more challenging while in-

creasing the number of terms. However, the results for the scheduling

problem are promising: our approach identifies the gold standard solution

in all the cases. In detail, less than 40 examples are required to identify the

gold solution at the second iteration. At the third iteration our algorithm

needs only 20 training examples for convergence to the gold solution.

58

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION 3.5. EXPERIMENTAL RESULTS

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

3 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

4 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

6 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

7 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

8 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

9 terms

Figure 3.7: Learning curves observed at different iterations of the Lasso algorithm while

solving the scheduling problem. The y-axis reports the solution quality, while the x -

axis contains the number of training examples. Red, green and cyan colors show the

performance of the algorithm at the first, the second and the third iteration, respectively.

See text for details.

Note that the approach based on Krr does not maintain an explicit

representation of the learnt utility function, and therefore a direct extension

to SMT problems is not possible for the current MAX-SMT solvers which

tightly integrate SAT and theory solvers as discussed in Section 3.3.

The plots in Fig. 3.8 and Fig. 3.9 show that at the third iteration our

approach finds the gold solution consistently, provided that at least 50

initial examples are used in the case of nine terms true utility functions.

As expected, a more unstable behavior is observed at the first iteration for

both three and nine terms cases.

For a second realistic application of our preference elicitation technique,

consider a customer judging potential housing locations provided by a real

estate company (henceforth the Housing problem). There are different

59

3.5. EXPERIMENTAL RESULTS

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

3 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

3 terms

Figure 3.8: Learning curves at the first (left Figure) and the third (right Figure) iterations

observed while solving the scheduling problem with three terms in the true utility function.

Error bars denote the range among the 25th and the 75th percentiles of the measurements.

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

9 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

9 terms

Figure 3.9: Learning curves at the first (left Figure) and the third (right Figure) iterations

for scheduling problems with true utility functions of nine terms. Error bars denote the

range among the 25th and the 75th percentiles of the measurements.

60

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION 3.5. EXPERIMENTAL RESULTS

locations available, characterized by different housing values, prices, con-

straints about the design of the building (e.g., in the city center you cannot

have a family house with a huge garden and pool), etc. The customer may

formulate her judgments by considering a description of the housing loca-

tions based on a predefined set of parameters, including, e.g., crime rate,

distance from downtown, location-based taxes and fees, public transit ser-

vice quality, cultural resources accessibility, walking and cycling facilities,

etc. In addition, she is free to express her own requirements, consisting of

financial issues, working opportunities, personal interests (e.g., the proxim-

ity to commercial facilities or green areas), etc. As a result, this problem

is characterized by a plethora of decisional features whose contribution

in the definition of the user preferences cannot be quantified in advance.

Many of them may be redundant, as they do not represent any decisional

criteria for the customer. Furthermore, while specifying in advance hard

constraints for the locations may be straightforward (consider, e.g., cost

bounds stated by the user or building design requirements asserted by the

company), assessing the user preferences in terms of the combination of this

redundant set of decisional features may demand a prohibitive effort. In

the real world, the elicitation process is usually driven by the sales person-

nel of the company in collaboration with the customer. Their joint effort

identifies the customer decisional features from the catalog set and defines

the (nonlinear) relationships among the selected features. For example,

consider the following preference information from the decision maker: “I

like family houses with a big garden and I’m not interested in living near

the place where I work. On the other hand, I would like a location near the

school of my children. However, in the case of good price, I could accept

a flat in the downtown, provided that commercial facilities are reachable

on foot and there are free parkings in the neighborhood”. Finally, in order

to provide satisfying locations to the customer, the sales personnel has to

61

3.5. EXPERIMENTAL RESULTS

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION

assess a rank for the (possibly conflicting) stated preferences. Considering

the previous preference information statement, the sales personnel should

quantify, e.g., how much a family house with big garden is preferred to a

location near the children’s school (or viceversa).

However, this process may often produce poor results, which do not

fulfill the expectations of the user. In most of the cases, a complete and

precise formulation of the user preferences cannot be accomplished be-

fore the customer becomes aware of some possible solutions. As a result,

soft constraints remain in the mind of the decision maker, and revisions

of the stated preferences after seeing the actual optimization results are

an inescapable fact. To complicate things, misunderstanding between the

persons may arise and possibly imprecise and inconsistent answers of the

user to the elicitation queries have to be considered. In this context, our

preference elicitation technique provides a robust housing location recom-

mendation system that can evaluate the suitability of the locations and

optimize them for the customer. On the other side, the application of

the preference elicitation technique introduced in [21] is difficult, as it as-

sumes to know in advance both the decisional features of the user and their

detailed combination (represented in terms of soft constraints), while the

elicitation process focuses exclusively on assessing the preferences for the

different instantiations of the variables of the constraints.

In our experiments, the formulation of the housing problem is as fol-

lows. The set of catalog features is listed in Tab. 3.1. A set of 10 hard

constraints (Tab. 3.2) defining feasible housing locations and known in ad-

vance is considered. The hard constraints are stated by the costumer (e.g.,

cost bounds) or by the company (e.g, constraints about the distance of the

available locations from user-defined points of interest). Note that con-

straints 5,6,7 define a linear bi-objective problem among distances from

user-defined points of interest. Prices of potential housing locations are

62

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION 3.5. EXPERIMENTAL RESULTS

Table 3.1: Decisional features for the housing problem.

num feature type

1 house type categorical

2 garden Boolean

3 garage Boolean

4 commercial facilities in the neighborhood Boolean

5 public green areas in the neighborhood Boolean

6 cycling and walking facilities in the neighborhood Boolean

7 price numerical

8 distance from downtown numerical

9 crime rate numerical

10 location-based taxes and fees numerical

11 public transit service quality index numerical

12 distance from high schools numerical

13 distance from nearest free parking numerical

14 distance from working place numerical

15 distance from parents house numerical

defined as a function of the other features. For example, price increases

if a semi-detached house rather than a flat is selected or in the case of

green areas in the neighborhood. On the other side, e.g., when crime index

of potential locations increases, price decreases. Soft constraints are rep-

resented by weighted terms including predicates in the linear arithmetic

theory or Boolean variables, in the case of features 2, 3, . . . , 6 in Tab. 3.1.

For example, one predicate may model the preference for a location with

distance from nearest free parking smaller than a given threshold, while, a

Boolean variable encodes, e.g., the aspiration for houses with garage.

We generated a set of 40 predicates. The true utility function is com-

posed of terms with two up to three predicates, with at least one term

with maximum size. Term weights are integer values selected uniformly at

random in the range [1, 100]. The experimental setting includes Gaussian

noise (with mean 0 and standard deviation 10) affecting the cost values of

63

3.5. EXPERIMENTAL RESULTS

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION

Table 3.2: Hard constraints for the housing problem. Parameter ts is a threshold value

specified by the user or by the sales personnel.

num hard constraint

1 price ≤ ts

2 location-based taxes and fees ≤ ts => not public green ares in the neighborhood

and not public transit service quality index ≤ ts

3 commercial facilities in the neighborhood => not (garden and garage)

4 crime rate ≤ ts => distance from downtown ≥ ts

5 distance from working place + distance from parents house ≥ ts

6 distance from working place + distance from high schools ≥ ts

7 distance from parents house + distance from high schools ≥ ts

8 distance from nearest free parking ≤ ts => not public green areas in the

neighborhood

9 distance from parents house ≤ ts => distance from downtown ≥ ts and crime

rate ≥ ts

10 garden => house type ≥ ts

the training examples.

Fig. 3.10 reports the results over a benchmark of 400 randomly generated

utility functions for each of the following instantiation of the triplet (num-

ber of features, number of terms, max term size): {(5, 3, 3), (6, 4, 3), (7, 6, 3),

(8, 7, 3), (9, 8, 3), (10, 9, 3)}. The promising results observed for the schedul-

ing problem are confirmed. A stable behavior is observed for our approach

at the third iteration: the quality of the solution rapidly improves with

a larger number of examples and the algorithm succeeds in exploiting its

active learning strategy. As a consequence, the gold solution is quickly

identified.

Fig. 3.11 shows the ability of the algorithm to converge to a stable result

while solving Housing problems with true utility functions of three terms.

The more challenging elicitation task represented by true utility functions

with nine terms (Fig. 3.12) indicates that running three iterations of the

64

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION 3.6. DISCUSSION

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

3 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

4 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

6 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

7 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

8 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

9 terms

Figure 3.10: Learning curves observed at different iterations of the Lasso algorithm while

solving the Housing problem. The data are presented analogously to that in Fig. 3.7.

algorithm results in less variability than unstable performance observed at

the first iteration, confirming the efficiency of our incremental approach.

3.6 Discussion

We presented an interactive optimization strategy for combinatorial prob-

lems over an unknown utility function. The algorithm alternates a search

phase using the current approximation of the utility function to generate

candidate solutions, and a refinement phase exploiting feedback received

to improve the approximation. One-norm regularization is employed to

enforce sparsity of the learned function. An SLS algorithm addresses the

weighted MAX-SAT problem resulting from the search phase. We show

how to adapt the approach to a large class of relevant optimization prob-

lems dealing with satisfiability modulo theories. Experimental results on

both weighted MAX-SAT and MAX-SMT problems demonstrate the ef-

65

3.6. DISCUSSION

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

3 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

3 terms

Figure 3.11: Learning curves at the first (left Figure) and the third (right Figure) iterations

obtained while solving the Housing problem with true utility function of three terms. Error

bars represents the range among the 25th and the 75th percentiles of the measurements.

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

9 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

9 terms

Figure 3.12: Learning curves at the first (left Figure) and the third (right Figure) iterations

obtained while solving the Housing problem with true utility function of nine terms. Error

bars represents the range among the 25th and the 75th percentiles of the measurements.

66

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION 3.6. DISCUSSION

fectiveness of our approach in focusing towards the optimal solutions, its

robustness as well as its ability to recover from suboptimal initial choices.

The algorithm can be generalized in a number of directions. The avail-

ability of a quantitative feedback is not necessarily straightforward, espe-

cially when a human DM is involved in the loop. A more affordable request

is often that of ranking sets of candidates according to preference. Our set-

ting can be easily adapted to this setting by replacing the squared error

loss in the learning stage with appropriate ranking losses. The simplest

solution consists of formulating it as correctly ordering each pair of in-

stances as done in support vector ranking, and applying 1-norm SVM [50].

More complex ranking losses have been proposed in the literature (see for

instance [11]), especially to increase the importance of correctly ranking

the best solutions, and could be combined with 1-norm regularization.

Our experimental evaluation is focused on small-scale problems, typical

of an interaction with a human DM. In principle, when combined with ap-

propriate SMT solvers, our approach could be applied to larger real-world

optimization problems, whose formulation is only partially available. In

this case, a local search algorithm rather than a complete solver will be

used during the optimization stage, as showed in the experiments on the

weighted MAX-SAT instances. However, the cost of requiring an explicit

representation of all possible conjunction of predicates (even if limited to

the unknown part) would rapidly produce an explosion of computational

and memory requirements. One option is that of resorting to an implicit

representation of the function to be optimized, like the one we used in the

Krr algorithm. Kernelized versions of zero-norm regularization [47] could

be tried in order to enforce sparsity in the projected space. However, the

lack of an explicit formula would prevent the use of all the efficient re-

finements of SMT solvers, based on a tight integration between SAT and

theory solvers. A possible alternative is that of pursuing an incremen-

67

3.6. DISCUSSION

CHAPTER 3. ACTIVE LEARNING OF COMBINATORIAL FEATURES FOR

INTERACTIVE OPTIMIZATION

tal feature selection strategy and iteratively solving increasingly complex

approximations of the underlying problem.

Finally, we are currently investigating larger preference elicitation prob-

lems, with both known hard constraints limiting the set of feasible solutions

and unknown user preferences. This setting allows us to address many real-

world scenarios. The promising results for the Housing problem, where the

hard constraints define the available house types and locations and the

preferences of the DM drive the search within the set of feasible solutions,

constitute the first step along this research direction.

68

Chapter 4

Conclusions and perspectives

This thesis introduces two novel approaches for interactive decision mak-

ing. The first one is developed within the context of traditional interactive

multi-objective optimization, while the second one considers a constraint-

based formulation for the user preferences. Both techniques are an instanti-

ation of the “learning to optimize” paradigm coming from Reactive Search

Optimization [2], successfully applied in the past for the online configura-

tion of relevant parameters for optimization algorithms. The presented ap-

proaches implement an incremental algorithm, alternating a search phase

using the current approximation of the utility function to generate can-

didate solutions, and a refinement phase exploiting feedback received to

improve the approximation.

In particular, the first technique addresses the problem of handling

evolving preferences in interactive multi-objective optimization. To the

best of our knowledge, in the context of multi-objective optimization no

interactive decision making technique has been explicitly designed to han-

dle a preference model that evolves over time. With the extent of covering

this gap, we modify BC-EMO, a recent multi-objective genetic algorithm

based on pairwise preferences, by adapting its learning stage to learn under

a concept drift. Our solution relies on the popular approach of instance

69

CHAPTER 4. CONCLUSIONS AND PERSPECTIVES

weighting, in which the relative importance of examples is adjusted ac-

cording to their predicted relevance for the current concept. We integrate

these modifications with a diversification strategy favouring exploration as

a response to changing DM preferences. Experimental results on a repre-

sentative MOO problem with non-linear user preferences show the ability

of the approach to early adapt to concept drifts. Our promising prelimi-

nary results leave much room for future work. In detail, we plan to extend

the experimental evaluation including additional benchmark problems with

evolving non-linear user preferences, possibly derived from real-world ap-

plications. Both sudden and gradual preference drift will be considered.

We are currently investigating more complex models for uncertain user

preference information, considering the DM fatigue during the interactive

process (the probability to obtain an incorrect answer increases with the

number of questions) and the level of satisfaction achieved by the DM (in-

accurate feedback may increase when the final user is required to evaluate

solutions very different from her favourite one).

Our second approach encodes the user preferences in terms of stochastic

logic utility functions. It consists of an incremental algorithm employing

1-norm regularization to enforce sparsity of the learned function and a SLS

algorithm addressing the weighted MAX-SAT problem resulting from the

search phase. Furthermore, we show how to adapt the approach to a large

class of relevant optimization problems dealing with satisfiability modulo

theories. Experimental results on both weighted MAX-SAT and MAX-

SMT problems demonstrate the effectiveness of our technique in focusing

towards the optimal solutions, its robustness as well as its ability to recover

from suboptimal initial choices. In particular, our realistic problems con-

sider a redundant set of decisional features to choose from, a set of known

hard constraints defining feasible configurations and a strong non-linear

relationship between the features representing the preference structure of

70

CHAPTER 4. CONCLUSIONS AND PERSPECTIVES

the user. Furthermore, some of the decisional features may be defined as

a function of the others, like the price variable in the Housing problem

formulation.

The presented algorithm can be generalized in a number of directions.

First, the preference drift concept defined in the context of multi-objective

optimization can be extended to the constraint-based formulation of user

preferences. Second, the availability of a quantitative feedback is not nec-

essarily straightforward, especially when a human DM is involved in the

loop. A more affordable request is often that of ranking sets of candi-

dates according to preference. Our algorithm can be easily adapted to this

setting by replacing the squared error loss in the learning stage with ap-

propriate ranking losses. Furthermore, while our experimental evaluation

is focused on small-scale problems, typical of an interaction with a human

DM, we plan to extend our approach to deal with larger real-world opti-

mization problems, whose formulation is only partially available. A typical

case would be the automatic configuration of a complex system, which is

too costly to be queried for each candidate solution during its optimization

process. Finally, we will consider for both our IDM techniques more so-

phisticated active learning approaches, for example taken from information

retrieval, in order to reduce the number of queries to the DM.

71

Bibliography

[1] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability

modulo theories. In Handbook of Satisfiability, chapter 26, pages 825–

885. IOS Press, 2009.

[2] R. Battiti, M. Brunato, and F. Mascia. Reactive search and intelligent

optimization. Springer Verlag, 2008.

[3] R. Battiti and P. Campigotto. Reactive search optimization: Learning

while optimizing. an experiment in interactive multi-objective opti-

mization. In MIC2009, VIII Metaheuristic International Conference,

Hamburg, Germany, July 13-16, 2009, Lecture Notes in Computer

Science. Springer Verlag, 2009.

[4] R. Battiti and A. Passerini. Brain-computer evolutionary multi-

objective optimization (BC-EMO): a genetic algorithm adapting to

the decision maker. IEEE Transactions on Evolutionary Computa-

tion, 2010, to appear.

[5] V. Belton, J. Branke, P. Eskelinen, S. Greco, J. Molina, F. Ruiz, and

R. S lowiński. Interactive multiobjective optimization from a learning

perspective. In Multiobjective Optimization: Interactive and Evolu-

tionary Approaches, pages 405–433. Springer-Verlag, Berlin, Heidel-

berg, 2008.

73

BIBLIOGRAPHY BIBLIOGRAPHY

[6] Stefano Bistarelli, Maria Silvia Pini, Francesca Rossi, and Kris-

ten Brent Venable. From soft constraints to bipolar preferences: mod-

elling framework and solving issues. J. Exp. Theor. Artif. Intell.,

22(2):135–158, 2010.

[7] J. Branke, K. Deb, K. Miettinen, and R. S lowiński, editors. Multiobjec-

tive Optimization: Interactive and Evolutionary Approaches. Springer-

Verlag, 2008.

[8] P. Campigotto and A. Passerini. Adapting to a realistic decision

maker: experiments towards a reactive multi-objective optimizer. In

LION IV: Learning and Intelligent OptimizatioN Conference, Venice,

Italy, Jan 18-22, 2010, Lecture Notes in Computer Science. Springer

Verlag, 2010.

[9] P. Campigotto, A. Passerini, and R. Battiti. Handling concept drift

in preference learning for interactive decision making. In Online proc.

of the International Workshop on Handling Concept Drift in Adaptive

Information Systems (HaCDAIS 2010), 2010.

[10] P. Campigotto, A. Passerini, and R. Battiti. Active learning of com-

binatorial features for interactive optimization. In LION V: Learn-

ing and Intelligent OptimizatioN Conference, Rome, Italy, Jan 17-21,

2011, Lecture Notes in Computer Science. Springer Verlag, 2011, to

appear.

[11] S. Chakrabarti, R. Khanna, U. Sawant, and C. Bhattacharyya. Struc-

tured learning for non-smooth ranking losses. In KDD ’08, pages

88–96, New York, NY, USA, 2008.

[12] O. Chapelle, V.N. Vapnik, O. Bousquet, and S. Mukherjee. Choosing

multiple parameters for support vector machines. Machine Learning,

46(1–3):131–159, 2002.

74

BIBLIOGRAPHY BIBLIOGRAPHY

[13] A. Cimatti, A. Franzén, A. Griggio, R. Sebastiani, and C. Stenico. Sat-

isfiability modulo the theory of costs: Foundations and applications.

In Javier Esparza and Rupak Majumdar, editors, TACAS, volume

6015 of LNCS, pages 99–113. Springer, 2010.

[14] M. Collins and N. Duffy. Convolution kernels for natural language.

In Advances in Neural Information Processing Systems 14, pages 625–

632. MIT Press, 2001.

[15] K. Deb. Multi-objective optimization using evolutionary algorithms.

Wiley, 2001.

[16] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast elitist

multi-objective genetic algorithm: NSGA-II. IEEE Transactions on

Evolutionary Computation, 6:182–197, 2000.

[17] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable multi-

objective optimization test problems. In Congress on Evolutionary

Computation (CEC2002), pages 825–830, 2002.

[18] B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for

DPLL(T). In Proceedings of the 18th Computer-Aided Verification

conference, volume 4144 of LNCS, pages 81–94. Springer-Verlag, 2006.

[19] J. Friedman, T. Hastie, S. Rosset, and R. Tibshirani. Discussion of

boosting papers. Annals of Statistics, 32:102–107, 2004.

[20] J. Fürnkranz and E. Hüllermeier. Preference Learning: An Introduc-

tion. Springer-Verlag, 2010.

[21] Mirco Gelain, Maria Silvia Pini, Francesca Rossi, Kristen Brent Ven-

able, and Toby Walsh. Elicitation strategies for soft constraint prob-

lems with missing preferences: Properties, algorithms and experimen-

tal studies. Artif. Intell., 174(3-4):270–294, 2010.

75

BIBLIOGRAPHY BIBLIOGRAPHY

[22] I. Guyon, J. Weston, S. Barnhill, and V.N. Vapnik. Gene selection for

cancer classification using support vector machines. Machine Learning,

46(1–3):389–422, 2002.

[23] H. Z. Huang, Z. G. Tian, and M. J. Zuo. Intelligent interactive mul-

tiobjective optimization method and its application to reliability op-

timization. IIE Transactions, 37(11):983–993, 2005.

[24] H. Kaizhu, K. Irwin, and R.L. Michael. Direct zero-norm optimization

for feature selection. In ICDM, pages 845–850, Los Alamitos, CA,

USA, 2008.

[25] I. Kaliszewski. Out of the mist–towards decision-maker-friendly multi-

ple criteria decision making support. European Journal of Operational

Research, 158(2):293–307, October 2004.

[26] R. Khardon, D. Roth, and R.A. Servedio. Efficiency versus conver-

gence of boolean kernels for on-line learning algorithms. J. Artif. Int.

Res., 24(1):341–356, 2005.

[27] R. Klinkenberg and S. Rüping. Concept drift and the importance of

examples. In Text Mining Theoretical Aspects and Applications, pages

55–77. Physica-Verlag, 2002.

[28] F. Rossi K. B. Venable M. Gelain, M. S. Pini and N. Wilson. Interval-

valued soft constraint problems. Accepted by AMAI - Annals of Math-

ematics and Artificial Intelligence - Special Issue for ISAIM 2008,

Springer, 14 June 2010.

[29] K. Miettinen. Nonlinear Multiobjective Optimization, volume 12 of

International Series in Operations Research and Management Science.

Kluwer Academic Publishers, Dordrecht, 1999.

76

BIBLIOGRAPHY BIBLIOGRAPHY

[30] K. Miettinen and M. M. Mäkelä. On scalarizing functions in multiob-

jective optimization. OR Spectrum, 24:193–213, 2002.

[31] K. Miettinen, F. Ruiz, and A.P. Wierzbicki. Introduction to Mul-

tiobjective Optimization: Interactive Approaches. In Multiobjective

Optimization: Interactive and Evolutionary Approaches, pages 27–57.

Springer-Verlag Berlin, Heidelberg, 2008.

[32] Leonardo Moura and Nikolaj Bjorner. Satisfiability modulo theories:

An appetizer. pages 23–36, 2009.

[33] Greg Nelson and Derek C. Oppen. Simplification by cooperating de-

cision procedures. ACM Trans. Program. Lang. Syst., 1(2):245–257,

1979.

[34] R. Nieuwenhuis and A. Oliveras. Dpll(t) with exhaustive theory prop-

agation and its application to difference logic. In In CAV05 LNCS

3576, pages 321–334. Springer, 2005.

[35] R. Nieuwenhuis and A. Oliveras. On sat modulo theories and op-

timization problems. In In Theory and Applications of Satisfiability

Testing (SAT), LNCS 4121, pages 156–169. Springer, 2006.

[36] P. Pu and L. Chen. Integrating tradeoff support in product search

tools for e-commerce sites. In Proceedings of the 6th ACM conference

on Electronic commerce (EC ’05), pages 269–278, New York, NY,

USA, 2005. ACM Press.

[37] P. Pu and L. Chen. User-involved preference elicitation for product

search and recommender systems. AI magazine, 29(4):93–103, Winter

2008.

[38] F. Radlinski and T. Joachims. Active exploration for learning rankings

from clickthrough data. In KDD ’07: Proceedings of the 13th ACM

77

BIBLIOGRAPHY BIBLIOGRAPHY

SIGKDD international conference on Knowledge discovery and data

mining, pages 570–579, New York, NY, USA, 2007. ACM Press.

[39] J. Schlimmer and R. Granger. Incremental learning from noisy data.

Mach. Learn., 1(3):317–354, 1986.

[40] B. Settles. Active learning literature survey. Technical Report

Computer Sciences Technical Report 1648, University of Wisconsin-

Madison, 2009.

[41] R.E. Steuer. Multiple Criteria Optimization: Theory, Computation,

and Application. Wiley, New York, 1986.

[42] C. Suanders, A. Gammerman, and V. Vovk. Ridge regression learning

algorithm in dual variables. In ICML’98, 1998.

[43] M. Sun, A. Stam, and R.E. Steuer. Solving multiple objective pro-

gramming problems using feed-forward artificial neural networks: the

interactive ffann procedure. Manage. Sci., 42(6):835–849, 1996.

[44] M. Sun, A. Stam, and R.E. Steuer. Interactive multiple objective pro-

gramming using tchebycheff programs and artificial neural networks.

Comput. Oper. Res., 27(7-8):601–620, 2000.

[45] L. Tanner. Selecting a text-processing system as a qualitative mul-

tiple criteria problem. European Journal of Operational Research,

50(2):179–187, January 1991.

[46] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal

of the Royal Statistical Society, Series B, 58:267–288, 1996.

[47] Jason Weston, André Elisseeff, Bernhard Schölkopf, and Mike Tipping.

Use of the zero norm with linear models and kernel methods. J. Mach.

Learn. Res., 3:1439–1461, 2003.

78

BIBLIOGRAPHY BIBLIOGRAPHY

[48] A.P. Wierzbicki. On the completeness and constructiveness of para-

metric characterizations to vector optimization problems. OR Spek-

trum, 8:73–87, 1986.

[49] Zuobing Xu, Ram Akella, and Yi Zhang. Incorporating diversity and

density in active learning for relevance feedback. In ECIR, pages 246–

257, 2007.

[50] Ji Zhu, Saharon Rosset, Trevor Hastie, and Rob Tibshirani. 1-norm

Support Vector Machines. In Neural Information Processing Systems.

MIT Press, 2003.

[51] I. Žliobaité. Learning under concept drift: an overview. Technical

report, Vilnius University, Faculty of Mathematics and Informatics,

2009.

79

Appendix A

Expressing bipolar preferences

within the soft constraints formalism

The work in [6] extends the soft constraint formalism to handle bipolar pref-

erence problems, by introducing a structure with the ability of compensat-

ing positive and negative preferences. Compensation among heterogeneous

preferences includes also the possibility of expressing “indifference” (i.e.,

neither positive nor negative preference) for a given solution. In principle,

one may think to represent bipolar preferences in terms of a bi-objective

optimization problem with positive preferences to be maximized and neg-

ative ones to be minimized. In this case, the heterogeneous preferences

are considered separately, and a solution is associated with a pair of scores

expressing its negative and positive preference levels, respectively. The

solutions are ordered by the Pareto optimality criterion, thus two solu-

tions defeating each other on one preference level are incomparable. The

lack of compensation between negative and positive preferences and the

incomparability among the (large) set of non-dominated solutions reduce

the appeal of this approach.

To overcomes these drawbacks, the extension in [6] represents bipolar

preferences with two separate algebraic structures. In particular, in ad-

dition to a c-semiring (N,+n,×n,0n,1n) for the negative preferences, the

81

APPENDIX A. EXPRESSING BIPOLAR PREFERENCES WITHIN THE SOFT

CONSTRAINTS FORMALISM

algebraic structure (P,+p,×p,0p,1p) is used for positive preferences. The

additive operator +p has the same properties as the corresponding one +n

in c-semirings. Therefore, a partial order over P is defined by the relation

≤P over P , a ≤P b iff a+b = b. Opposite to the operator ×n, the absorbing

and the unit elements for the operator ×p are the best (1p) and the worst

(0p) elements in the set, respectively. Furthermore, for each a, b ∈ P we

have a, b ≤P a×p b. Therefore, this structure models the desired properties

with positive preferences: the combination of positive preferences gener-

ate better preference and the value encoding indifference is smaller than

all the positive preference levels. The structures for the positive and the

negative preferences are then combined in a bipolar preference structure.

It is a tuple (N,P,+,×,⊥,�,⊥) where:

• (N,+n,×n,⊥,�) is a negative preference structure;

• (P,+p,×p,�,⊥) is a positive preference structure;

• + : (N ∪ P)2 → (N ∪ P) is an operator s.t. an + ap = ap for any

an ∈ N and ap ∈ P ; it induces a partial ordering on N ∪ P : ∀a, b ∈

N ∪ P , a ≤ b iff a + b = b;

• × : (N ∪ P)2 → (N ∪ P) is the compensation operator, commutative

and monotone (∀a, b, c ∈ N ∪ P , if a ≤ b then a× c ≤ b× c).

Given the order induced by + on N ∪P , we have that ⊥≤ � ≤ ⊥, with ⊥

and ⊥ the unique minimum and maximum elements of the bipolar struc-

ture. The element � is used to model indifference; it is smaller than any

positive preference and greater than any negative one. The combination of

a positive and a negative preference is a preference which is higher than,

or equal to, the negative one and lower than, or equal to, the positive one.

The above bipolar structure generalizes both c-semirings and positive pref-

erence structures. Furthermore, a different number of levels may be used

82

APPENDIX A. EXPRESSING BIPOLAR PREFERENCES WITHIN THE SOFT

CONSTRAINTS FORMALISM

to express positive and negative preferences and the operator ×n is not

constrained to be equal to ×p.

83

APPENDIX A. EXPRESSING BIPOLAR PREFERENCES WITHIN THE SOFT

CONSTRAINTS FORMALISM

84

Appendix B

Additional MAX-SAT experiments

Fig. B.1 and Fig. B.2 depict the performance of the Lasso approach with

the SLS algorithm in the optimization stage replaced by a complete solver

and with the Boolean training examples generation described in Sec. 3.3.2

for the MAX-SMT version of our technique. Henceforth this MAX-SAT

variant of the Lasso algorithm will be referred as Lassoc. Each point in

the graphs is the median value over 400 runs with different random seeds.

In detail, Fig. B.1 contains the learning curves obtained over the same

MAX-SAT benchmark considered in the tests of Fig. 3.4. As expected, due

to the limited size of the search space, there is not a clear superiority of

one approach over the other. With three, four, six and seven terms in the

true utility function, Lassoc converges more rapidly to the gold solution at

the third iteration. Considering the cases of eight and nine terms, Lasso

outperforms Lassoc over all the observed iterations.

Fig. B.2 contains the learning curves observed for Lassoc in the case of

weighted MAX-SAT problems with 10 known hard constraints. The hard

constraints involve both features appearing in the true utility function and

features that do not represent any decisional criteria for the user. In partic-

ular, the hard constraints include both randomly generated clauses, terms

and implications. Each clause and term contains up to three features, while

85

APPENDIX B. ADDITIONAL MAX-SAT EXPERIMENTS

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

3 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

4 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

6 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

7 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

8 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

9 terms

Figure B.1: Learning curves for an increasing number of training examples observed for

the Lassoc approach. The y-axis reports solution quality, while the x -axis contains the

number of training examples. Red, green and cyan colors show the performance of the

algorithms at the first, second and third iteration, respectively.

the maximum size of the antecedent and the consequent of an implication

is four. The comparison of Fig. B.1 with Fig. B.2 shows the faster conver-

gence of our approach when including a known set of hard constraints in

the problem definition. For example, with ten hard constraints the cases of

three and four terms become a trivial elicitation task for our technique. We

argue that the better performance in terms of convergence speed is caused

by the reduction of the search space generated by the hard constraints.

86

APPENDIX B. ADDITIONAL MAX-SAT EXPERIMENTS

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

3 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

4 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

6 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

7 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

8 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

9 terms

Figure B.2: Learning curves for the Lassoc approach in the case of weighted MAX-SAT

problems with 10 known hard constraints. The data are presented analogously to that in

Fig. B.1

87

