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Introdu
tionSin
e the early 20th 
entury the study of the spread of infe
tious diseaseshas been a theme of deep interest, great importan
e and often a 
hallengefor human and veterinary medi
ine. The main obje
tive of epidemiology isthe understanding of the leading fa
tors and the 
omplex me
hanisms thatprodu
e the observed outbreaks in order to provide tools for disease 
ontroland prevention, in the interest of publi
 health.In this 
ontext, the use of mathemati
al models is parti
ularly signi�
ant.Indeed, mathemati
al models 
an give insight into the understanding of theme
hanisms behind the spread of infe
tious diseases, they are a tool forassessing the e�e
tiveness of 
ontrol measures and therefore sele
ting thebest strategy to be adopted for the 
ontainment of an outbreak, they 
an beused to assess the e�
a
y of va

ine treatments, to explore what-if s
enariosand to inform poli
y de
isions.On Chapter 1 I present the a
tual introdu
tion to this thesis, whi
h 
onsistsin a review of the main mathemati
al tools traditionally used in epidemiology.On the same 
hapter I also pla
e my orignial 
ontributions into the �eld.Below I am going to present a brief des
ription of my resear
h work and thespe
i�
 outline of this thesis.Resear
h des
riptionThe works presented in this thesis are very di�erent one from the other butthey all deal with the mathemati
al modelling of emerging infe
tious diseaseswhi
h, beyond being the leitmotiv of this thesis, is an important resear
h areain the �eld of epidemiology and publi
 health.A minor but signi�
ant part of the thesis has a theoreti
al �avour. This part1



Introdu
tionis dedi
ated to the mathemati
al analysis of the 
ompetition model betweentwo HIV subtypes in presen
e of va

ination and 
ross-immunity proposedby Por
o and Blower (1998). We �nd the sharp 
onditions under whi
h va
-
ination leads to the 
oexisten
e of the strains and using arguments frombifur
ation theory, draw 
on
lusions on the equilibria stability and �nd thata rather unusual behaviour of histeresis-type might emerge after repeatedvariations of the va

ination rate within a 
ertain range.The most of this thesis has been inspired by real outbreaks o

urred in Italyover the last 10 years and is about the modelling of the 1999-2000 H7N1avian in�uenza outbreak and of the 2009-2010 H1N1 pandemi
 in�uenza.From an applied perspe
tive, parameter estimation is a key part of the mod-elling pro
ess and in this thesis statisti
al inferen
e has been performedwithin both a 
lassi
al framework (i.e. by maximum likelihood and leastsquare methods) and a Bayesian setting (i.e. by Markov Chain Monte Carlote
hniques).However, my 
ontribution goes beyond the appli
ation of inferential te
h-niques to spe
i�
 
ase studies. The sto
hasti
, spatially expli
it, between-farm transmission model developed for the transmission of the H7N1 virushas indeed been used to simulate di�erent 
ontrol strategies and asses theirrelative e�e
tiveness. The modelling framework presented here for the H1N1pandemi
 in Italy 
onstitutes a novel approa
h that 
an be applied to a vari-ety of di�erent infe
tions dete
ted by surveillan
e system in many 
ountries.We have 
oupled a deterministi
 
ompartmental model with a statisti
al de-s
ription of the reporting pro
ess and have taken into a

ount for the presen
eof sto
hasti
ity in the surveillan
e system. We thus ta
kled some statisti
al
hallenging issues (su
h as the estimation of the fra
tion of H1N1 
ases re-porting in�uenza-like-illness symptoms) that had not been addressed before.Last, we apply di�erent estimation methods usually adopted in epidemiol-ogy to real and simulated s
hool outbreaks, in the attempt to explore thesuitability of a spe
i�
 individual-based model at reprodu
ing empiri
allyobserved epidemi
s in spe
i�
 so
ial 
ontexts.
2



Introdu
tionStru
ture of the thesisIn the �rst Chapter of this thesis I present a brief review of the mathemati-
al models adopted in epidemiology for the modelling of emerging infe
tiousdiseases and pla
e the works presented in this thesis within the �eld.On Chapter 2 we analyse the Va

ine Model with Cross-Immunity proposedby Por
o and Blower (1998). Por
o and Blower (1998) show that va

ination
an shift the 
ompetitive balan
e in favour of a strain that, without va

ina-tion, would be out-
ompeted and that va

ination 
an also promote 
oexis-ten
e of di�erent strains, something that normally is not expe
ted (Bremer-mann and Thieme, 1989). Their results have been mainly obtained throughnumeri
al simulations, so that the 
onditions under whi
h a shift in 
ompet-itive balan
e or 
oexisten
e o

urs have not been fully established. We givea rather 
omplete des
ription of its behavior, at least in terms of equilibria.We �nd the exa
t 
onditions under whi
h va

ination may lead to a shiftin 
ompetitive balan
e and show that, under these 
onditions, there alwaysexist a range of va

ination rates under whi
h a 
oexisten
e equilibrium ex-ists. We also �nd that a 
oexisten
e equilibrium exists (and is unstable) in a`bi-stability' region, where both monomorphi
 equilibria are stable. This fa
thas been rarely observed in models of 
ompetition between pathogen strains.The work presented in this 
hapter has been submitted for publi
ation andis 
urrently under review.Chapter 3 is about the analysis of the between-farm transmission of the H7N1highly pathogeni
 avian in�uenza virus that disrupted the Italian poultryprodu
tion in the 1999-2000 epidemi
. We de�ne a SEIR model with a spa-tial transmission kernel, a

ounting for the 
ontainment measures a
tuallyundertaken, �nd signi�
ant di�eren
es in sus
eptibility between spe
ies and aredu
tion in transmissibility after the �rst phase. We performed simulationsto assess the e�e
tiveness of the implemented and new 
ontrol measures. Themost e�e
tive measure was the ban on resto
king. An earlier start of pre-emptive 
ulling promotes eradi
ation; restri
ted pre-emptive 
ulling delayseradi
ation but 
auses lower losses. This work has been published on the3



Introdu
tionEpidemi
s Journal, 2 (2010): 29-35 (doi:10.1016/j.epidem.2010.01.002).On Chapter 4 we propose a novel and general modelling framework whi
hallowed us to ta
kle some statisti
al 
hallenges that were usually bypassedthrough the introdu
tion of assumption and has been applied to the 2009-2010 H1N1 pandemi
 in Italy. The analysis of surveillan
e data, often theonly information available in real time, poses many statisti
al 
hallenges thathave not been addressed yet. For instan
e, the fra
tion of 
ases that reportinfe
tion is unknown. We propose here a general modelling framework thatexpli
itly takes into a

ount the way the surveillan
e data was generated.Our approa
h 
ouples a deterministi
 mathemati
al model with a statisti
aldes
ription of the reporting pro
ess and has been applied to surveillan
e data
olle
ted in Italy during the 2009-2010 A/H1N1 in�uenza pandemi
. We esti-mate that the reprodu
tion number R0 has been into the range 1.3−1.4, thatthe youngest age-
lasses reported the symptoms 
aused by the H1N1 virusinfe
tion signi�
antly more than the adults and that, in the Italian popula-tion, s
hool-age 
hildren were e�e
tively the most a�e
ted by the A/H1N1virus. In terms of both estimated peak-in
iden
e and atta
k rate of A/H1N1
ases, the 5 − 14 years age-
lass was about 5 times more a�e
ted than the
65+ years old age-group and about twi
e more than the the other age-
lasses;the overall 
ase atta
k rate was about 30%.The �fth and �nal Chapter is about the �rst results of a topi
 I startedworking on only very re
ently. The 
hapter deals with the estimation of thereprodu
tion number from real and simulated s
hool outbreaks data. In this
ontext, we explore whether an individual-based model re
ently developedto model the spatio-temporal spread of the pandemi
 H1N1 virus in Europe(Merler and Ajelli, 2010), used here as a tool for generating within s
hooloutbreaks, gives 
ompatible results (in terms of estimated within s
hool re-produ
tion number) with real s
hool epidemi
s observed in Italy over the past2009-2010 pandemi
 in�uenza season. The real s
hool outbreaks in questionhave been retrospe
tively re
onstru
ted through a survey and this topi
 ispresented in the last part of the 
hapter.4



Chapter 1Emerging and re-emerginginfe
tions
1.1 Fa
tors driving the emergen
e of infe
tiousdiseasesAn emerging pathogen 
an be de�ned as an infe
tious agent whose in
i-den
e or geographi
 range is in
reasing following its �rst introdu
tion intoa new host population; a re-emerging pathogen is one whose in
iden
e orgeographi
 range is in
reasing in an existing host population as a result oflong-term 
hanges in its underlying epidemiology (Morse, 1995; Woolhouse,2002).Pathogen emergen
e 
an be based on subje
tive 
riteria, whi
h 
an re�e
t in-
reased awareness, improved diagnosis, dis
overy of previously unre
ognizedinfe
tious agents as mu
h as any obje
tive epidemiologi
al data. This is whyWoolhouse (2002) suggests that reporting bias must be 
onsidered as a possi-ble explanation for any apparent pattern. Indeed, despite dozens of pathogenspe
ies are regarded as emerging or re-emerging in livesto
k, domesti
 animaland wildlife, data for non-human hosts are likely to be far less 
omprehensivethan those for humans (Woolhouse, 2002).Infe
tious disease emergen
e 
an be viewed operationally as a two-step pro-
ess 
onsisting in the introdu
tion of the infe
tious agent into a new hostpopulation followed by the establishment and further dissemination of the in-5



1.1. Fa
tors driving the emergen
e of infe
tious diseasesfe
tious agent within the new host population (also 
alled �adoption�) (Morse,1995).Broadly, there are three sour
es of emerging and re-emerging pathogens: fromwithin the host population itself (like My
oba
terium tuber
ulosis, whose re-emergen
e in the 1980s was fuelled by the immune-de�
ien
ies of people withAIDS), from the external environment (like Legionella pneumophila, whoseemergen
e as a human pathogen might not have o

urred were it not for theenvironmental ni
he provided by air-
onditioning systems) and from popu-lations of other host spe
ies (like the Human Immunode�
ien
y Virus (HIV)in humans). Many wildlife spe
ies are reservoirs of pathogens that threatendomesti
 animal, human health and the 
onservation of the global biodi-versity as well (Daszak et al., 2000). Using the WHO de�nition, zoonoti
pathogens are de�ned as those produ
ing diseases or infe
tions whi
h arenaturally transmitted between vertebrate animals and humans. Bats, 
arni-vores, primates, rodents, ungulates and other mammals and non-mammals(birds, reptiles, amphibians and �sh) 
onstitute the broad 
ategories intowhi
h we 
an split the �zoonoti
 pool�. Three-quarters of emerging and re-emerging human pathogens originate as zoonose (Woolhouse, 2002) and aredisproportionately viruses (Woolhouse and Gowtage-Sequeria, 2005; Wool-house et al., 2005).Several (not mutually ex
lusive) fa
tors drive the emergen
e of infe
tious dis-eases: geneti
 
hanges in the pathogen (for example the evolution of HIV fromthe simian immunode�
ien
y virus), immuno
ompromised hosts (for exam-ple M. tuber
ulosis in AIDS patients) and 
hanges in host-pathogen e
ology.This last 
ategory in
ludes 
hanges in host demography, movement or be-haviour; 
limate, agri
ultural 
hanges or 
hanges in the land use; 
hangesin industry and te
hnology (e.g. food produ
tion); international travels and
ommer
e or the breakdown of publi
 health measures (Morse, 1995; Morenset al., 2004; Ra
aniello, 2004). It's worth noti
ing that suprisingly often dis-ease emergen
e is 
aused by human a
tions.In the following 
hapters we propose, analyse and apply di�erent modellingapproa
hes to the spread of HIV, of the Highly Pathogeni
 Avian In�uenza(HPAI) H7N1 virus and to the re
ent H1N1 virus that 
aused the 2009-2010in�uenza pandemi
: these viruses are re
ognized as the 
ause of emerging or6



1.2. An overview on the mathemati
al models used in epidemiologyre-emerging infe
tious diseases. Despite the pre
ise an
estry of HIV is stillun
ertain, it appears to have had zoonoti
 origins. Geneti
al 
hanges are theleading fa
tors of many in�uenza pandemi
s too. In�uenza A viruses, whi
hendemi
ally live in the gastrointestinal apparatus of wild waterfowl, have in-deed evolved elaborate me
hanisms to jump spe
ies into domesti
 fowl, farmanimals and humans. It is widely known that antigeni
 drift (point muta-tions, primarily in the gene for the surfa
e protein, hemagglutinin) 
ausesannual or biennial in�uenza epidemi
s and antigeni
 shift (geneti
 reassort-ment generally between avian and mammalian in�uenza strains) 
aused theemergen
e of pandemi
 in�uenza strains as in 1888, 1918, 1957, 1968 andin the re
ent swine-origin H1N1 2009-2010 pandemi
 (Webster, 2001; Short-ridge et al., 2003; Neumann et al., 2009).The enormous global burden in terms of human and animal disease anddeaths posed by emerging and re-emerging pathogens makes the study ofemerging and re-emerging infe
tions a 
hallenge for human and veterinarymedi
ine.1.2 An overview on the mathemati
al modelsused in epidemiologyAn impressive amount of works �ourished re
ently, given the emergen
e ofdramati
 disease outbreaks su
h as the foot-and-mouth-disease (FMD) out-break of 2001 in the British 
attle farms, the severe a
ute respiratory syn-drome (SARS) outbreaks of 2003 in Asia and Canada and the re
ent 2009-2010 in�uenza pandemi
 
aused by the A/H1N1 virus. Mathemati
al modelsare a useful tool that 
an given insight into the understanding of the leadingfa
tors and me
hanisms behind the spread of infe
tious diseases (Andersonand May, 1992; Diekmann and Heesterbeek, 2000; Fraser et al., 2004) andhave been used in the past to design e�
ient observational studies and to planmass va

ination 
ampaigns (Grassly et al., 2006; Yang et al., 2006). It iswidely re
ognized that they are a valuable tool to investigate the e�e
tivenessof 
ontrol measures, to assess the e�
a
y of va

ine and prophyla
ti
 treat-ments and to explore what-if s
enarios so that they have also been empolyed7



1.2. An overview on the mathemati
al models used in epidemiologyto inform poli
y de
isions (Ferguson et al., 2001; Halloran et al., 2007).The de�nition and 
onstru
tion of a useful model usually depends on theissues the modeller wants to ta
kle and requires knowledge of a variety ofdi�erent aspe
ts, from the biologi
al to the epidemiologi
al and demographi
ones. Whether the interest of the modeller is fo
used on the theoreti
al prop-erties of a model or the mathemati
al framework is used to make inferen
e onunknown quantities, model validation is an always desirable but often unfea-sible stage, sin
e it requires quantitative data, usually 
olle
ted by surveil-lan
e systems. The su

essful appli
ation of statisti
al, mathemati
al and
omputational te
hniques for the analysis of outbreak data and the 
hoi
eof a suitable model framework strongly depends on the nature and availabil-ity of information at all the levels (biologi
al, demographi
, epidemiologi
al)outlined above. As a matter of fa
t, limited data and in
on
lusive epidemi-ologi
al information pla
e severe restri
tions on the e�orts the modeller 
anmake to model the spread of the etiologi
al agent if his/her obje
tives gobeyond the intrinsi
 interests and the theoreti
al exploration of the model'sbehaviour.In this se
tion I would like to propose a brief and far from exhaustive reviewof the most 
ommon mathemati
al modelling approa
hes that have been un-dertaken in infe
tious disease epidemiology in presen
e of outbreaks 
ausedby emerging or re-emerging infe
tious entities both in the human and in someanimal populations.The mathemati
al models we will deal with in this se
tion and, at a broaderextent, in this thesis, are 
ompartmental models at a population level. Itmeans that our interest is fo
ussed on the dynami
s of disease spread amongthe individuals of a population rather than on the pro
esses o

urring withinthe host after infe
tion by the infe
tious agent. Epidemiologi
al models ofdisease spread at a population level split the population into 
ompartmentsthat usually 
hara
terize the infe
tious state (e.g. sus
eptible, infe
tious,re
overed individuals) and 
an also in
lude other forms of partitioning (e.g.va

inated, treated, hospitalized, quarantined individuals).Within the wide variety of existing models, a �rst distin
tion 
an be madebetween the deterministi
 and the sto
hasti
 approa
h.Another distin
tion 
an be made in terms of the level of mixing so that we8



1.2. An overview on the mathemati
al models used in epidemiology
an distinguish models assuming homogenous mixing from models adoptingmore heterogeneous 
onta
t patterns between the individuals of a popula-tion.A 
omprehensive introdu
tion and an outline of the development of mathe-mati
al modelling of infe
tious diseases 
an be found in the texts by Andersonand May (1991), Bailey (1975) and the more re
ent works by Heth
ote (2000)and Keeling and Rohani (2008).1.2.1 Deterministi
 modelsThe history of epidemi
 modelling 
an be tra
ed ba
k to the early 20th
entury, when the deterministi
 approa
h �rst appeared in the literature(Hamer, 1906; Ross, 1916; Ross and Hudson, 1917a,b; Bailey, 1975) and
ulminated with the milestone and still relevant work by Kerma
k and M
K-endri
k (1927).The des
ription of a phenomenon is often translated, in mathemati
al terms,into a set of di�erential equations. The theory of di�erential equations is awell established bran
h of mathemati
s in whi
h both theoreti
al results andnumeri
al methods have been readily available sin
e the early 20th 
entury.A deterministi
 model is 
hara
terized by the fa
t that, on
e that the initial
onditions and the parameter values have been �xed, its evolution is uniquelydetermined. The su

essful appli
ation of the deterministi
 approa
h in the�eld of epidemiology lies in the relative �exibility and 
ontemporary math-emati
al tra
tability of the modelling framework. Deterministi
 models 
anindeed be enri
hed to a

ount for realisti
 features su
h as, for example, thepresen
e of di�erent stages of infe
tion, age-stru
ture, spatial spread and ver-ti
al transmission, without 
ompletely losing their analyti
al tra
tability. De-terministi
 models have been employed to perform parameter estimation and�t surveillan
e data (Chowell et al., 2003; Wang and Ruan, 2004; Nishiuraet al., 2010) and to assess the impa
t of 
ontrol measures in the SARS epi-demi
 (Lipsit
h et al., 2003), to investigate how best to use antibioti
s inpopulations harbouring drug-resistant organisms (Austin et al., 1997) andfor the analysis of the transmission dynami
s of multiple strains pathogens(Gupta et al., 1998; Andreasen et al., 8 15) 
ausing infe
tious diseases su
h9



1.2. An overview on the mathemati
al models used in epidemiologyas malaria (Gupta et al., 1994), dengue (Ferguson et al., 1999) and in�uenza(Minayev and Ferguson, 2009). Multi-strain models have been often anal-ysed through the use of 
omputer simulations and a theoreti
al analysis of theequilibria and the relative stability of a multi-strain model has been proposedby Gog and Grenfell (2002). The e�e
t of di�erent va

ination poli
ies inthe presen
e of two 
ompeting HIV strains 
onferring partial 
ross-immunityhas been proposed and numeri
ally analysed by Por
o and Blower (1998,2000) and it is in this framework that the work presented in Chapter 2 
anbe pla
ed. In the next 
hapter we indeed present a mathemati
al analysis(in terms of equilibria and their stability) of the 2-HIV strains 
ompetitionmodel proposed in (Por
o and Blower, 1998).Deterministi
 models are rapid to simulate, relatively easy to parametrizeand 
apture the average epidemi
 behaviour, i.e. they 
an be 
onsidered avalid tool for predi
tions in large populations. On the 
ontrary, in presen
eof low levels of infe
tions (i.e. near the start and the end of an epidemi
) orof small populations, the deterministi
 approa
h fails to 
at
h the randomnature of transmission events. Another limitation of the deterministi
 ap-proa
h 
onsists in an oversimpli�ed des
ription of the intera
tions betweenindividuals. Due to mathemati
al 
onvenien
e, it is indeed assumed thateither an individual has an equal 
han
e of 
onta
ting anyone in the popula-tion (homogeneous mixing at the population level) or random mixing o

ursbetween ea
h pairs of subgroups into whi
h the population is stru
tured.1.2.2 Sto
hasti
 modelsSto
hasti
 models 
an be 
onsidered the 
ounterpart of the deterministi

ase, are parti
ularly apt to model the spread of a disease in small popula-tions or in the early and �nal stages of an epidemi
 (i.e. when the number of
ases is small) and 
an be added of variuos forms of heterogeneity in 
onta
tpatterns. In the sto
hasti
 modelling framework the modeller attributes aprobability of o

urren
e to ea
h single event and 
ounts (in terms of dis
reteunits) their o

urren
e. The study of the evolution (in time) of the proba-bilities of the state of the system and the investigation of the distribution ofquantities of interest is mu
h more 
omplex. Due to the analyti
al 
omplexity10



1.2. An overview on the mathemati
al models used in epidemiologyof the study of a sto
hasti
 pro
ess, often in
reased by the need (or wish) toin
lude very detailed information on the 
onta
t stru
tures of a population,
omputer simulations o�er an alternative approa
h to explore the behaviourof the system. Su
h an example is given by Cooper et al. (1999), where 
om-puter simulations are used to explore the properties and the behaviour of asto
hasti
 
ompartmental model that had been set up to study the spreadof hand-borne noso
omial pathogens within a general medi
al-surgi
al ward.Other examples of sto
hasti
 models used in epidemiology are given by (Keel-ing et al., 2001; Riley et al., 2003; Chis Ster and Ferguson, 2007) and manyothers more extensively dis
ussed in the rest of the 
hapter.1.2.3 Beyond the homogeneous mixing assumptionIt is widely re
ognized that heterogeneity in 
onta
t patterns due for exampleto age di�eren
es between individuals, the spatial distribution of individualsand the presen
e of so
ial stru
tures in the population play an importantrole in disease spread. Stru
tured, mi
rosimulation, meta-population, net-work models and models with multiple levels of mixing are all examples ofpopulation models that attempt to a
hieve an in
reased realism by goingbeyond the rather unrealisti
 homogeneous mixing assumption. In prin
iple,all the models presented below 
an be pla
ed within both a deterministi
 anda sto
hasti
 framework; as a matter of fa
t, the most of the works reportedas examples belong to the sto
hasti
 
ategory.Mi
rosimulation or individual-based modelsMi
rosimulation models, also 
alled individual-based models, are sto
hasti
simulations of 
onta
t patterns and disease progression operating at an indi-vidual level, where the individual unit needs to be spe
i�ed by the modeller.The 2001 UK foot-and-mouth epidemi
 generated a unique data-set des
rib-ing the spatial spread of the infe
tion between livesto
k farms and o�eredthe opportunity to explore, mainly using mi
ro-simulation models, the im-pa
t of spatial and individual heterogeneities on the 
ourse of the epidemi
(Keeling et al., 2001; Morris et al., 2001; Chis Ster and Ferguson, 2007). Thefull spatio-temporal dynami
s of the foot-and-mouth disease (FMD) epidemi
11



1.2. An overview on the mathemati
al models used in epidemiologyhas indeed been explored by Keeling et al. (2001) and Chis Ster and Ferguson(2007) using sto
hasti
, spatial, individual farm-based models in
orporatingheterogeneity in farm size and spe
ies 
omposition.The transmission of the highly virulent H5N1 in�uenza virus to humans inSouth-East Asia triggered the development of individual-based models in-vestigating the strategies to be applied for 
ontaining an emerging in�uenzapandemi
 (Ferguson et al., 2005, 2006; Longini et al., 2005; Germann et al.,2006). Individual-based model have also been employed to understand therole of population heterogeneity and human mobility in the spread of there
ent 2009-2010 H1N1 pandemi
 in�uenza virus (Merler and Ajelli, 2010).Network modelsThe histori
al study of networks has its bases in two disparate �elds: so
ials
ien
es and graph theory. While the resear
h in graph theory and so
ials
ien
es generally 
onsiders an understanding of the network itself to be theultimate goal, in epidemiology the interest is fo
used on the spread of thedisease, in whi
h 
ase the network forms a 
onstraining ba
kground to thetransmission dynami
s.In order to understand the role of network stru
ture on epidemi
 dynam-i
s, a range of idealized networks, de�ned in terms of how individuals aredistributed in spa
e and how 
onne
tions are formed, have been developedand analyzed. Random networks, latti
es, small-world, spatial and s
ale-free networks have been used to des
ribe di�erent aspe
ts of the populationmixing behaviour, on the basis of the di�erent levels of 
lustering, degreedistribution and path length, intrinsi
ally de�ned by the network stru
tureitself (Keeling and Eames, 2005).The spread of infe
tion on generi
 networks 
an also be modelled throughthe pairwise approximation whi
h, as the name suggests, takes the numberof di�erent pair types as variable of the model and requires some form of mo-ment 
losure approximation. A pairwise model has been used for exampleto provide real-time predi
tions during the 2001 foot-and-mouth epidemi
 inthe UK (Ferguson et al., 2001) and the extent to whi
h the ensemble be-haviour of sto
hasti
 spatial epidemi
 models may be 
aptured by modellingdisease pro
esses as o

urring on networks derived from the underlying spa-12



1.2. An overview on the mathemati
al models used in epidemiologytial stru
ture has been deeply analysed by Parham and Ferguson (2006) andParham et al. (2008). As a matter of fa
t, the di�erential equation formula-tion of pairwise models represents a more rapid parametrization alternativeto 
omputationally intensive mi
rosimulation models and may be amenableto obtain an analyti
al understanding into spatio-temporal dynami
s.In the presen
e of an emerging infe
tion, three te
hniques have been mainlyemployed to gather network information: infe
tion tra
ing, 
onta
t tra
-ing and diary-based studies. Infe
tion tra
ing 
onsists in the re
onstru
tionof the transmission network (or epidemi
-tree), 
onsisting in all the linksthrough whi
h transmission o

urred. Su
h tra
ing has been employed forexample to analyze the foot-and-mouth disease outbreak of 2001 (Haydonet al., 2003), to gather information about the individuals most involved indisease transmission (the so 
alled �super-spreader�) during the 2003 SARSoutbreak in Hong Kong (Riley et al., 2003) and to investigate the transmis-sion properties of the new H1N1 strain in the �rst few hundred 
ases studyin England, Wales and S
otland in the 2009-2010 in�uenza pandemi
 (Ghaniet al., 2009). Conta
t tra
ing aims to identify all potential transmission
onta
ts from a sour
e individual, has been largely applied in the study ofsexually transmitted diseases and relies on individuals providing 
ompleteand a

urate data about personal relationships. At a farm level, expli
it
onta
t stru
tures have been used to analyze the spread of animal diseasessu
h as the foot-and-mouth disease (Ferguson et al., 2001; Green et al., 2006;Kao et al., 2006) and avian in�uenza (Le Mena
h et al., 2006).Models with multiple levels of mixingHousehold models are a natural starting point if the attempt of the mod-eller is to in
lude a more realisti
 so
ial stru
ture than those assumed underthe homogeneous mixing hypothesis, still remaining within an analyti
allytra
table (but rather more 
omplex) framework. Household models parti-tion the population into households and homogeneous mixing within ea
hhousehold is superimposed on homogeneous mixing (typi
ally at a smallerrate) in the population at large (Be
ker, 1995; Hall and Be
ker, 1996; Ballet al., 1997). Most e�ort has been typi
ally pla
ed into analysing, within aprobabilisti
 framework, the asymptoti
 behaviour, the epidemi
 �nal sizes13



1.2. An overview on the mathemati
al models used in epidemiologyand the impa
t of targeted intervention strategies su
h as va

ination (Ballet al., 1997). Re
ently, household models have been fruitfully applied toapproximate the disease dynami
s of an in�uenza pandemi
 (Dodd and Fer-guson, 2007; Fraser, 2007) and to explore the e�e
tiveness of publi
 healthintervention s
enarios (Wu et al., 2006; House and Keeling, 2009).An even more realisti
 so
ial stru
ture is a
hieved when individuals belongto more than one type of mixing group and di�erent groups are allowed tooverlap. Su
h a generalization of the households model is given for examplein the two (i.e. households and workpla
es) levels of mixing models de�nedby Ball and Neal (2002) and Pellis et al. (2009).Pat
h modelsPat
h or metapopulation models are 
hara
terized by the presen
e of alarge population whi
h is divided into a �nite number of groups, also 
alledpat
hes. Within ea
h group individuals are assumed to mix homogeneouslyand the di�erent pat
hes 
an be 
onne
ted either deterministi
ally or ran-domly. Pat
hes usually represent geographi
al areas at various spatial s
ales(Rva
hev and Longini, 1985; Hollingsworth et al., 2006; Colizza et al., 2007;Rizzo et al., 2008; Bal
an et al., 2009) and the 
onne
tions among the pat
hestypi
ally represent the existing transportation, air travel or 
ommuting net-work. In 
omparison to individual-based models, metapopulation models re-quire less information and 
omputational e�ort so that they 
an been pla
edwithin an inferential framework. One of the �rst metapopulation models hasbeen proposed by Rva
hev and Longini (1985) to des
ribe the global spreadof in�uenza. In this work the authors 
onsider 52 big 
ities of the worldinter
onne
ted via air transport. This model has been later updated (Graiset al., 2003), revisited and extended to evaluate the e�e
tiveness of inter-vention strategies as travel restri
tions (Flahault et al., 2006). Sto
hasti
metapopulation models have been proposed by Riley et al. (2003) to modelthe 2003 SARS outbreak in Hong Kong and by Colizza et al. (2007) andBal
an et al. (2009) to investigate the role played by the airline transporta-tion system versus the short range 
onne
tions in the global spatio-temporalspread of an in�uenza pandemi
. A �rst 
omparison between individual-based and metapopulaton models has been re
ently proposed by Ajelli et al.14



1.3. Statisti
al Inferen
e(2010). The good agreement between the two modelling frameworks (interms of epidemi
 pro�le and spatio-temporal patterns) 
ould be the �rststep towards the future development of hybrid models 
ombining the 
om-putational e�
ien
y of pat
h models to the high detail resolution providedby the individual-based approa
h in spe
i�
 lo
ations of interest.1.3 Statisti
al Inferen
eStatisti
al inferen
e is the pro
ess of drawing 
on
lusions from data that aresubje
t to random variation due to the nature of the phenomenon itself, ob-servational errors or sampling variation and is based on the de�nition of aprobabilisti
 model that usually provides a simpli�ed but adequate represen-tation of the phenomenon.Two statisti
al approa
hes 
an be distinguished: the non-parametri
 one aimsat estimating the distribution underlying the phenomenon under minimal as-sumptions, generally using fun
tional estimation. Conversely, the parametri
approa
h represents the distribution of the observations through a densityfun
tion in whi
h only the parameter is unknown.A parametri
 statisti
al model 
onsists of the observation of a random vari-able x, distributed a

ording to f(x|θ) where only the parameter θ is un-known and belongs to a ve
tor spa
e Θ of �nite dimension. Making inferen
eon parameter θ means that we use observation x to improve our knowledgeon parameter θ. Compared with probabilisti
 modelling, statisti
al analysishas fundamentally an inversion purpose whi
h is obvious in the notion of thelikelihood fun
tion l(θ|x) (a fun
tion of the unknown θ given the observedvalue x) whi
h is just the sample density f(x|θ) rewritten in the �proper�order
l(θ|x) = f(x|θ)Within the parametri
 approa
h, statisti
al inferen
e on the unknown param-eter 
an be performed either within a 
lassi
al (or frequentist) framework orwithin a Bayesian setting. In the next few lines I am going to brie�y re
allthe two approa
hes. Indeed, a signi�
ant portion of the work presented inthis thesis deals with parameter estimation whi
h has been 
ondu
ted within15



1.3. Statisti
al Inferen
eboth the frequentist approa
h (on Chapter 3 and 5) and the Bayesian frame-work (on Chapter 4).The 
lassi
al approa
h makes inferen
e on the unknown parameter by themethod of maximum likelihood whi
h was promoted by R.A. Fisher in his
lassi
al 1925 paper. On
e �xed the underlying probability model f(x|θ), themethod of maximum likelihood sele
ts the values of the model parameter θ̂that produ
e the distribution most likely to have resulted in the observeddata (i.e. the parameters that maximize the likelihood fun
tion)
θ̂ = arg maxθ∈Θl(θ|x)The maximum likelihood method is widely applied partly be
ause of the in-tuitive motivation of maximizing the probability of o

urren
e and partlybe
ause of the strong asymptoti
 properties of the maximum likelihood esti-mator (
onsisten
y, normality, e�
ien
y) and fun
tional invarian
e (i.e. forany fun
tion h(θ) the maximum likelihood estimator of h is h(θ̂)) (Be
ker,1989; Za
ks, 1971). Maximum likelihood has been applied to a wide range ofepidemiologi
al models fa
ing a variety of di�erent problems (Keeling et al.,2001; Boender et al., 2007; Le Mena
h et al., 2006; Nishiura et al., 2009;Lessler et al., 2009). Also mi
rosimulation models have been pla
ed within amaximum-likelihood inferen
e s
heme for example by Pelupessy et al. (2002)to identi�ed the most important routes of transmission of resistant pathogensamong the patients of a hospital and by Matthews et al. (2006) to investigatethe reasons underlying the substantial variations in the on-farm prevalen
eof E.Coli O157 both between farms and between sampling events on thesame farm observed in a 
ross-se
tional study 
ondu
ted on S
ottish 
attlefarms between 1998 and 2000. Despite the in
reasing 
omputational poweravailable today, the dimensionality of the problem (i.e. the size of the simu-lated population) poses severe restri
tions on the extent to whi
h one 
an useindividual-based models to make inferen
e on unknown quantities. As a mat-ter of fa
t, it is nowadays unfeasible to pla
e very 
omplex individual-basedmodels a
ting on large populations (of the order of million of individuals)within any inferen
e s
heme and the e�ort of the modeller is hen
e fo
usedon the parametrization of the model. We applied the maximum likelihood16



1.3. Statisti
al Inferen
etheory to estimate the unknown parameters and the relative 
on�den
e inter-vals of a sto
hasti
 spatially-expli
it model for the farm-to-farm transmissionof the highly pathogeni
 H7N1 avian in�uenza virus in Italy (see Chapter 3).In this 
ontext, we 
an insert the least square method, also known as traje
-tory mat
hing method (Tur
hin, 2003). The parameter values are estimatedby minimising the sum of the squares of the residuals, meant as the di�er-en
e between the observed and simulated epidemi
s and 
an be interpretedas a maximum likelihood 
riterion if the measurement errors are assumed tobe normally distributed. From this point of view, it represents a simpli�edmaximum likelihood approa
h, in whi
h the dynami
s of the epidemi
 aresimulated and then the likelihood of the observed data is evaluated. Theleast square method has often implemented to perform parameter estimationespe
ially in deterministi
 settings (Chowell et al., 2006, 2004, 2007b,a) andis the inferential method at the basis of the whole Chapter 5, where we es-timate the within s
hool reprodu
tion number of real and simulated s
hooloutbreaks.The main di�eren
e brought by the Bayesian approa
h is to 
onsider a proba-bility distribution on the parameters. By de�nition (Robert, 1996) a Bayesianstatisti
al model is made of a parametri
 model f(x|θ) and a prior distribu-tion on the parameters, π(θ). Within this framework, statisti
al inferen
e isbased on the distribution of θ 
onditional on x

π(θ|x) =
f(x|θ)π(θ)

∫

f(x|θ)π(θ)dθwhi
h is 
alled posterior distribution. By Bayes's Theorem, the informationon θ is a
tualized with the information 
ontained in the observation x. Noti
ethat, from a Bayesian viewpoint, there is little di�eren
e between observa-tions and parameters, sin
e 
onditional manipulations allow for an interplayof their respe
tive roles. Whenever the posterior distribution π(θ|x) 
annotbe dire
tly simulated, inferen
e on the posterior distribution 
an be obtainedby Markov Chain Monte Carlo (MCMC) methods, whi
h are able to 
on-stru
t Markov 
hains whose stationary distribution is the distributions ofinterest. Markov Chain Monte Carlo te
hniques have been often employedin the �eld of mathemati
al epidemiology and examples are given by (Lip-17



1.3. Statisti
al Inferen
esit
h et al., 2003; Chis Ster and Ferguson, 2007; Cau
hemez et al., 2009a).On Chapter 4 we present a novel modelling approa
h whi
h has been appliedto the re
ent 2009-2010 H1N1 in�uenza pandemi
 in Italy. In this work we
ouple together a deterministi
 des
ription of the infe
tion dynami
s witha statisti
al model for the reporting pro
ess where, by the appli
ation ofMarkov Chain Monte Carlo te
hniques, we obtain the estimates (in terms ofposterior distribution) of epidemiologi
al relevant parameters su
h as the re-produ
tion number R0, the age-dependent reporting rates and sus
eptibility.

18



Chapter 2Analysis of a va

ine model with
ross-immunity: when 
an two
ompeting infe
tious strains
oexist?
2.1 Introdu
tionControl poli
ies of infe
tious diseases 
an lead to unexpe
ted out
omes whenthe infe
tious agents 
onsist of a variety of di�erent strains. In fa
t, it hasoften be argued that more pathogeni
 strains are in 
ompetition with lesspathogeni
 ones (Bremermann and Thieme, 1989), so that the appli
ationof 
ontrol poli
ies may shift the 
ompetitive balan
e in favour of the less �tstrains (M
Lean, 1995; Mart
heva et al., 2008) that might however be morevirulent.It has been observed in previous studies and in pra
ti
e that va

ination, oneof the most powerful 
ontrol poli
ies, 
an have very dramati
 e�e
t on theout
ome of the 
ompetition between more pathogens. This topi
 has beenexamined with the use of mathemati
al models in several papers (Por
o andBlower, 1998; Lipsit
h, 1999; Iannelli et al., 2005; Mart
heva, 2006).Va

ination 
an destabilize the existing host-pathogen evolutionary equilib-ria, a

elerate pathogen evolution and also lead to the emergen
e or domi-19



2.1. Introdu
tionnan
e of a on
e-rare pathogen, a me
hanism also known as strain repla
ement(Por
o and Blower, 2000; Iannelli et al., 2005; Mart
heva, 2006). Va

inesdi�er for their mode of a
tion; va

ines with di�erential e�e
tiveness providedi�erent degrees of prote
tion against infe
tion by the di�erent strains ofthe pathogen and their e�
a
y has been extensively dis
ussed in the liter-ature (Smith et al., 1984; Halloran et al., 1992; Blower and M
Lean, 1994;Mart
heva, 2006).Por
o and Blower (1998) showed that va

ination 
an indeed shift the 
om-petitive balan
e in favour of a strain that, without va

ination, would beout-
ompeted and that va

ination 
an also promote 
oexisten
e of di�erentstrains, something that normally is not expe
ted (Bremermann and Thieme,1989). The results by Por
o and Blower (1998) have been mainly obtainedthrough numeri
al simulations, so that the 
onditions under whi
h a shift in
ompetitive balan
e or 
oexisten
e o

urs have not been fully established.Here we examine in detail the �Va

ine Model with Cross-Immunity� or �Dif-ferential Degree Model� proposed in Por
o and Blower (1998) to des
ribe thespread of 2-HIV strains and the subsequent progression into AIDS in a pop-ulation of potential sex partners. More in general, the model 
an be thoughtas des
ribing the spread of two 
ompeting pathogens within a populationin presen
e of va

ination and 
ross-immunity. We analyse the impa
t ofva

ination at the 
ommunity level and give a rather 
omplete des
ription ofthe model behavior, at least in terms of equilibria. We �nd the exa
t 
ondi-tions under whi
h va

ination may lead to a shift in 
ompetitive balan
e andalso show that, under these 
onditions, there always exist a range of va

i-nation rates under whi
h a 
oexisten
e equilibrium exists. We �nd that theCoexisten
e Equilibrium may be stable or unstable, depending on another
ondition. The former 
ase 
orresponds to what had already been observednumeri
ally. In the latter 
ase, the parameter region in whi
h a 
oexisten
eequilibrium exists is a
tually a `bi-stability' region in whi
h both monomor-phi
 equilibria are stable, so that asymptoti
 behavior depends on initial
onditions. This fa
t, that would lead to a sort of hysteresis 
y
le if va

i-nation rates were in
reased then de
reased, has rarely been demonstrated inmodels of 
ompetition between pathogen strains.20



2.2. Model Formulation2.2 Model Formulation
The �Va

ine Model with Cross-Immunity� proposed by Por
o and Blower(1998) is a parti
ular transmission dynami
s model of HIV in presen
e of twosubtypes and a va

ine that provides a degree of prote
tion against infe
tionby both subtypes.The state variables are X (the number of sus
eptible individuals), V (thenumber of e�e
tively va

inated individuals), Y1 and Y2 (the number of in-dividuals infe
ted with subtype 1 and subtype 2 respe
tively and have notdeveloped AIDS), A1 and A2 (the number of individuals who have been in-fe
ted with subtype 1 and subtype 2 respe
tively and have developed AIDS).The state variables are supposed to be C1 fun
tions of the time variable t.Individuals are part of a 
ommunity of potential sex partners and we assumethat individuals with AIDS do not a
quire new sex partners. This meansthat the sexually a
tive 
ommunity N is given by N = X + V + Y1 + Y2.We assume that individuals enter the 
ommunity at a 
onstant rate π and afra
tion p of these are va

inated. The va

ine indu
es a prote
tive immuneresponse in a fra
tion e of the va

inated individuals, that is the va

inetakes only in a fra
tion pe of the new entries.Uninfe
ted individuals either not va

inated or who were va

inated but inwhom the va

ine did not take, are referred as being 
ompletely sus
eptible.The degree of prote
tion 
onferred by the va

ine against subtype i is indi-
ated with ξi (0 6 ξi 6 1); ξi = 0 
orresponds to no prote
tion and ξi = 1
orresponds to 
omplete prote
tion against infe
tion.Individuals leave ea
h 
lass at a 
onstant per 
apita rate µ when they 
easea
quiring new sex partners.The transmission probability of subtype i per partnership is indi
ated with
βi, the number of new sex partners per unit time is indi
ated by c, γi is forthe rate of progression to AIDS and α indi
ates the death rate due to AIDS.The �ow diagram in Figure 2.1 des
ribes the dynami
s of the �Va

ine Modelwith Cross-Immunity�. 21



2.2. Model Formulation
X Y1 A1

V Y2 A2

π

1 − pe

pe

cβ1
XY1

N

cβ2(1 − ξ2)
V Y2

N

γ1Y1

γ2Y2

cβ2
XY2

N

cβ1(1 − ξ2)
V Y1

N

µ µ µ + α

µ µ µ + αFigure 2.1: The �ow 
hart of the model
The di�erential equations des
ribing the 
orresponding dynami
s are:

Ẋ = π(1 − pe) − µX − cβ1X
Y1

N
− cβ2X

Y2

N
(2.1)

V̇ = πpe − µV − (1 − ξ1)cβ1V
Y1

N
− (1 − ξ2)cβ2V

Y2

N
(2.2)

Ẏ1 = cβ1X
Y1

N
+ (1 − ξ1)cβ1V

Y1

N
− (µ + γ1)Y1 (2.3)

Ẏ2 = cβ2X
Y2

N
+ (1 − ξ2)cβ2V

Y2

N
− (µ + γ2)Y2 (2.4)

Ȧ1 = γ1Y1 − (µ + α)A1 (2.5)
Ȧ2 = γ2Y2 − (µ + α)A2 (2.6)where N = X + V + Y1 + Y2.We observe that equations (2.1)�(2.4) are su�
ient to des
ribe the be-havior of the system. Furthermore, these equations 
an be suitable for anyinfe
tion of SI type, where γ1 and γ2 denote disease-indu
ed mortality rates,and va

ination o

urs at birth. The assumption of a 
onstant (indepen-dent of population size) input rate π in the population may then need tobe amended. We introdu
e the reprodu
tion numbers (Anderson and May,1991)

R1
0 =

cβ1

µ + γ1
R2

0 =
cβ2

µ + γ2
. (2.7)22



2.2. Model FormulationThen, performing the 
hange of variables
x =

X

N
v =

V

N
y1 =

Y1

N
y2 =

Y2

Nand using R1
0 and R2

0 as parameters, system (2.1)�(2.4) 
an be equivalentlywritten as
ẋ =

π

N
(1 − x − pe) − x

[

(R1

0(µ + γ1) − γ1)y1 + (R2

0(µ + γ2) − γ2)y2

] (2.8)
v̇ =

π

N
(pe − v) − v

[

(R1

0(µ + γ1)(1 − ξ1) − γ1)y1 + (R2

0(µ + γ2)(1 − ξ2) − γ2)y2

](2.9)
ẏ1 = y1

[

R1

0(µ + γ1)(x + (1 − ξ1)v) − γ1(1 − y1) + γ2y2 −
π

N

] (2.10)
ẏ2 = y2

[

R2

0
(µ + γ2)(x + (1 − ξ2)v) − γ2(1 − y2) + γ1y1 −

π

N

] (2.11)
Ṅ = π − N(µ + γ1y1 + γ2y2) (2.12)In (2.8), we have dropped the dependen
y on c, β1 and β2 using instead thenon-dimensional quantities R1

0 and R2
0 as parameters. It would be possible toredu
e the parameters to a smaller number of non-dimensional quantities; weprefer to keep them all, while later showing that di�erent behaviours dependon the ratios µ/γi and γ1/γ2.By adding together (2.8)�(2.11) we get

ẋ + v̇ + ẏ1 + ẏ2 =
( π

N
− γ1y1 − γ2y2

)

[1 − (x + v + y1 + y2)] (2.13)Sin
e
x + v + y1 + y2 = 1is invariant for (2.8)�(2.11), as intuitively obvious, we 
an drop (for instan
e)the equation for v and 
onsider the system



































Ṅ = π − N(µ + γ1y1 + γ2y2)

ẋ =
π

N
(1 − x − pe) − x

[

(R1

0
(µ + γ1) − γ1)y1 + (R2

0
(µ + γ2) − γ2)y2

]

ẏ1 = y1

[

R1

0
(µ + γ1)(x + (1 − ξ1)[1 − (x + y1 + y2)]) − γ1(1 − y1) + γ2y2 −

π

N

]

ẏ2 = y2

[

R2

0(µ + γ2)(x + (1 − ξ2)[1 − (x + y1 + y2)]) − γ2(1 − y2) + γ1y1 −
π

N

]

.(2.14)
23



2.3. Existen
e and Stability of EquilibriaWe 
an then obtain the fra
tion of va

inated individuals by subtra
tion
v = 1 − (x + y1 + y2).2.3 Existen
e and Stability of EquilibriaWe study here the equilibria of (2.14); when this makes the derivation shorter,we will 
onsider also (2.8)�(2.11).Note �rst that, from (2.12), any steady state (x̃, ṽ, ỹ1, ỹ2, Ñ) of (2.14) satis�es
π

Ñ
= µ + γ1ỹ1 + γ2ỹ2. (2.15)2.3.1 Disease Free EquilibriumExisten
eThe Disease Free Equilibrium (DFE) o

urs when the fra
tion of infe
tedindividuals is null y⋆

1 = y⋆
2 = 0 and there are positive fra
tions of sus
eptibleand va

inated individuals x⋆ 6= 0, v⋆ 6= 0.From (2.15), we obtain N∗ =

π

µ
. Setting the right-hand side of (2.8)�(2.9)equal to 0 with y⋆

1 = y⋆
2 = 0, we immediately obtain for the DFE

x⋆ = 1 − pe and v⋆ = pe.This is always a feasible solution under the 
onstraints 0 ≤ p ≤ 1, 0 ≤ e ≤ 1arising from their de�nition. Otherwise said, the DFE always exists.StabilityWe study the lo
al stability of the DFE through the Ja
obian matrix ofsystem (2.14) at the DFE (x⋆, 0, 0, N∗) = (1− pe, 0, 0, π
µ
). The eigenvalues ofthe Ja
obian at the DFE are

λ⋆
1 = −µ

λ⋆
2 = −µ

λ⋆
3 = (µ + γ1) (R1

0(1 − pe) + (1 − ξ1)R
1
0pe − 1)

λ⋆
4 = (µ + γ2) (R2

0(1 − pe) + (1 − ξ2)R
2
0pe − 1)24



2.3. Existen
e and Stability of EquilibriaTherefore, the DFE is stable if and only if λ⋆
3 < 0 and λ⋆

4 < 0.Rearranging the terms, the ne
essary and su�
ient 
onditions for the DFEto be stable 
an be written as
{

R1
p = R1

0(x
⋆ + (1 − ξ1)v

⋆) < 1

R2
p = R2

0(x
⋆ + (1 − ξ2)v

⋆) < 1.
(2.16)or

{

R1
p = R1

0(1 − ξ1pe) < 1

R2
p = R2

0(1 − ξ2pe) < 1
⇐⇒

{

pe > peDF
1

pe > peDF
2where















peDF
1 =

R1
0 − 1

R1
0ξ1

peDF
2 =

R2
0 − 1

R2
0ξ2

.
(2.17)Observe that if R1

0(1 − ξ1) > 1 or R2
0(1 − ξ2) > 1, then the DFE is neverstable.Noti
e moreover that if

{

R1
0 < 1

R2
0 < 1then the DFE is stable independently the 
hoi
e of pe, ξ1 and ξ2.For this reason we assume from now on that

{

R1
0 > 1

R2
0 > 12.3.2 Subtype-i-Only EquilibriumExisten
eWe analyse here the Subtype-1-Only Equilibrium.By de�nition, at the Subtype-1-Only Equilibrium there are no individualsinfe
ted by subtype 2 (i.e. ȳ2 = 0) and there are positive fra
tions of indi-viduals infe
ted by subtype 1 (ȳ1 > 0), sus
eptible (x̄1 > 0) and va

inatedindividuals (v̄1 > 0).Setting equal to 0 equation (2.10), together with (2.15) and ȳ1 > 0 = ȳ2, one25



2.3. Existen
e and Stability of Equilibriaobtains
R1

0(x̄1 + (1 − ξ1)v̄1) = 1. (2.18)The equilibrium fra
tions of sus
eptible x̄1 
an be 
omputed by setting equalto 0 the right hand side of (2.8) so that it 
an be expressed as fun
tion of ȳ1as
x̄1 =

(µ + γ1ȳ1)(1 − pe)

µ + R1
0(µ + γ1)ȳ1

(2.19)Substituting v̄1 = 1 − x̄1 − ȳ1 and (2.19) into (2.18) we obtain that ȳ1 mustsolve G(ȳ1) = 1, where
G(y) = R1

0

[

ξ1
(µ + γ1y)(1 − pe)

µ + R1
0(µ + γ1)y

+ (1 − ξ1)(1 − y)

]Sin
e we assumed R1
0 > 1, we obtain

G′(y) = −
R1

0ξ1µ(1 − pe)[R1
0µ + (R1

0 − 1)γ1]

[µ + R1
0(µ + γ1)y]2

− R1
0(1 − ξ1) < 0 (2.20)and

G(1) =
R1

0(µ + γ1)(1 − pe)ξ1

R1
0(µ + γ1) + µ

< 1Hen
e, G(ȳ1) = 1 has a unique solution in (0, 1) if and only if
G(0) > 1 ⇐⇒ R1

0((1 − pe)ξ1 + (1 − ξ1)) = R1
0(1 − ξ1pe) = R1

p > 1We have then provedProposition 1. A su�
ient and ne
essary 
ondition for a Subtype-1-OnlyEquilibrium to exist is R1
p > 1, i.e, pe < peDF

1 de�ned in (2.17). Moreover,under the assumption R1
p > 1, the Subtype-1-Only Equilibrium is unique.The equilibrium fra
tion of va

inated individuals v̄1 
an be 
omputedby setting equal to 0 the right hand side of (2.9) and it 
an be expressed asfun
tion of ȳ1 as

v̄1 =
(µ + γ1ȳ1)pe

µ + (1 − ξ1)R1
0(µ + γ1)ȳ1

(2.21)For future use, we prove the followingProposition 2. ȳ1 at the Subtype-1-Only Equilibrium is a de
reasing fun
-26



2.3. Existen
e and Stability of Equilibriation of pe on [0, peDF
1 ).Proof. We write expli
itly the dependen
e of G on pe as G(pe, ȳ1(pe)) = 1.Sin
e by (2.20) we know that

∂G(pe, ȳ1(pe))

∂ȳ1

< 0and also
∂G(pe, ȳ1(pe))

∂pe
= −

R1
0ξ1(µ + γ1ȳ1)

µ + R1
0(µ + γ1)ȳ1

< 0by the Impli
it Fun
tion Theorem we obtain
ȳ′

1(pe) = −

∂G(pe, ȳ1)

∂pe
∂G(pe, ȳ1)

∂ȳ1

< 0 (2.22)thus proving that ȳ1 is a de
reasing fun
tion of pe.Completely similar arguments lead us to state that a Subtype-2-OnlyEquilibrium (x̄2, v̄2, 0, ȳ2) exists and is unique under the ne
essary and su�-
ient 
ondition R2
p > 1.The equilibrium fra
tions of sus
eptible and va

inated individuals at theequilibrium are given by

x̄2 =
(µ + γ2ȳ2)(1 − pe)

µ + R2
0(µ + γ2)ȳ2

v̄2 =
(µ + γ2ȳ2)pe

µ + (1 − ξ2)R
2
0(µ + γ2)ȳ2where ȳ2 is the unique solution of equation H(ȳ2) = 1 where

H(ȳ2) = R2
0

[

(µ + γ2ȳ2)(1 − pe)

µ + R2
0(µ + γ2)ȳ2

+ (1 − ξ2)(1 − ȳ2)

]provided that R2
p > 1.In terms of pe, we get that the Subtype-2-Only Equilibrium exists for

pe < peDF
2 where peDF

2 =
R2

0 − 1

R2
0ξ2

.Finally, with the same argument used above, it 
an be proved that ȳ2 is a27



2.3. Existen
e and Stability of Equilibriade
reasing fun
tion of pe.StabilityWe examine now the stability of the Subtype-1-Only Equilibrium. In orderto do that, we 
onsider the Ja
obian matrix of (2.14) at the Subtype-1-OnlyEquilibrium E1 = (N̄1, x̄1, ȳ1, 0) and obtain a matrix of the form:
J(E1) =

(

E F

0 R2
0(µ + γ2)[x̄1 + (1 − ξ2)v̄1] − (µ + γ2)

)where E is the 3 × 3 matrix
E =











−(µ + γ1ȳ1) 0 −N̄γ1

(γ1 − R1
0(γ1 + µ))

x̄1ȳ1

N̄
−[µ + R1

0(µ + γ1)ȳ1] −[R1
0(µ + γ1) − γ1]x̄1

(µ + γ1ȳ1)
ȳ1

N̄
R1

0(µ + γ1)ξ1ȳ1 [γ1 − R1
0(µ + γ1)(1 − ξ1)]ȳ1









We �rst show the followingLemma 1. All the eigenvalues of E have negative real part.The lemma implies that the Subtype-1-Only Equilibrium is always asymp-toti
ally stable when it exists (R1
p > 1) in absen
e of individuals infe
ted withsubtype 2, as has been obtained in similar models with one strain and va

i-nation (Pugliese, 1990).Proof. The 
hara
teristi
 polynomial of E (after a 
hange of sign) 
an bewritten as

λ3 + a1λ
2 + a2λ + a3 = 0 (2.23)Routh-Hurwitz 
riterion states that all solutions of (2.23) have negative realpart if and only if a1, a2, a3 > 0 and a1a2 − a3 > 0 (Murray, 2002).If we set

K = R1
0(µ + γ1)(1 − ξ1)ȳ1

L = R1
0(µ + γ1)ȳ128



2.3. Existen
e and Stability of Equilibriaafter some 
omputations (see the Appendix) we obtain
a1 = 2µ + K + L

a2 = (µ + L)(µ + K) + [R1
0(µ + γ1) − γ1]Lξ1x̄1 + (µ + γ1ȳ1)K

a3 = [R1
0(µ + γ1) − γ1]Lµξ1x̄1 + (µ + γ1ȳ1)(µ + L)K

a1a2 − a3 = (µ + L)(µ + K)(2µ + L + K) + [R1
0(µ + γ1) − γ1]Lξ1x̄1(µ + L + K) +

+(µ + γ1ȳ1)(µ + K)K.Sin
e R1
0 > 1 and hen
e R1

0(µ + γ1) > γ1 all these quantities are positive,thus proving that Routh-Hurwitz 
onditions are satis�ed.Sin
e J(E1) is blo
k-triangular, the set of eigenvalues of J(E1) is givenby the union of the set of eigenvalues of E and
λ̄4 = R2

0(µ + γ2)[x̄1 + (1 − ξ2)v̄1] − (µ + γ2)Hen
e, the Subtype-1-Only Equilibrium is stable for (2.14) if and only if
λ̄4 = R2

0(µ + γ2)[x̄1 + (1 − ξ2)v̄1] − (µ + γ2) < 0.Rearranging the terms, the Subtype-1-Only Equilibrium is stable if and onlyif
R2:1

p = R2
0(x̄1 + (1 − ξ2)v̄1) < 1. (2.24)We wish now to express (2.24) in terms of ȳ1 only. To this aim, one 
animmediately insert (2.19) into (2.24). Instead, to obtain a simpler expressionthat does not 
ontain pe, we start by rewriting (2.18) as

R1
0(µ + γ1ȳ1)

µ + R1
0(µ + γ1)ȳ1

(

1 −
peµξ1

µ + R1
0(µ + γ1)(1 − ξ1)ȳ1

)

= 1and by algebrai
 manipulation of the expression we may write pe as fun
tionof ȳ1

pe =
[R1

0(1 − ȳ1) − 1][µ + R1
0(µ + γ1)(1 − ξ1)ȳ1]

R1
0(µ + γ1ȳ1)ξ1

(2.25)Substituting (2.25) into (2.19) we obtain the following expression for equi-29



2.3. Existen
e and Stability of Equilibrialibrium fra
tion of e�e
tively va

inated individuals
v̄1 =

R1
0(1 − ȳ1) − 1

R1
0ξ1

(2.26)Finally we obtain from (2.24)
R2:1

p = R2
0[x̄1 + (1 − ξ2)v̄1]

= R2
0[x̄1 + (1 − ξ1)v̄1 + (ξ1 − ξ2)v̄1]

= (using (2.18)) R2
0

[

1

R1
0

+ (ξ1 − ξ2)v̄1

]

=
R2

0

R1
0

[

1 +
ξ1 − ξ2

ξ1

[R1
0(1 − ȳ1) − 1]

]

. (2.27)Summarizing, we have obtained:Proposition 3. The Subtype-1-Only Equilibrium E1 = (N̄1, x̄1, ȳ1, 0) is asymp-toti
ally stable [unstable℄ if R2:1
p < [>]1, where R2:1

p is given by expression(2.24) or (2.27).We now wish to express 
ondition R2:1
p < 1 in terms of pe.In all the rest of the paper let us assume, without loss of generality, that

R1
0 > R2

0.If ξ1 ≤ ξ2, (2.27) implies that R2:1
p < 1. In other words, if ξ1 ≤ ξ2, theSubtype-1-Only Equilibrium is asymptoti
ally stable, when it exists.Therefore, we study the 
ondition R2:1

p < 1 under the additional assumption
ξ1 > ξ2.Sin
e (ξ1 − ξ2)

ξ1

R2
0ȳ1 > 0 and R2

0

R1
0

< 1, expression (2.27) implies that
R2:1

p =
R2

0

R1
0

[

1 +
(ξ1 − ξ2)

ξ1

R1
0 −

(ξ1 − ξ2)

ξ1

]

−
(ξ1 − ξ2)

ξ1

R2
0ȳ1

<
R2

0

R1
0

[

R1
0 −

ξ2

ξ1
R1

0 +
ξ2

ξ1

]

. (2.28)Sin
e
R2

0

R1
0

[

R1
0 −

ξ2

ξ1
R1

0 +
ξ2

ξ1

]

≤ 1 ⇐⇒ C := R1
0R

2
0(ξ1−ξ2)+R2

0ξ2−R1
0ξ1 ≤ 0. (2.29)30



2.3. Existen
e and Stability of Equilibriainequality (2.28) shows that, if R1
0 > R2

0, ξ1 > ξ2 and C ≤ 0, then R2:1
p < 1for every value of 0 ≤ pe ≤ 1.In order to study when R2:1

p > 1, we then add the assumption C > 0, usingthen the assumptions
R1

0 > R2
0, ξ1 > ξ2 and C > 0 (2.30)Let us now set R2:1

p = 1 and �nd the 
orresponding fra
tion of infe
tedindividuals
ȳBP

1 =
R1

0R
2
0(ξ1 − ξ2) + R2

0ξ2 − R1
0ξ1

R1
0R

2
0(ξ1 − ξ2)

=
C

R1
0R

2
0(ξ1 − ξ2)

. (2.31)The supers
ript BP is related to the fa
t that this value 
orresponds to abran
hing point of equilibrium 
urves, as will be seen later.Be
ause of the monotoni
 dependen
e of R2:1
p on ȳ1 (2.27), we have

R2:1
p < [>]1 ⇐⇒ ȳ1 > [<]ȳBP

1By (2.25) and (2.31) we 
an 
ompute the pe values at whi
h bran
hing o

urs.We see that R2:1
p = 1 for

peBP
1 = v̂

R1
0R

2
0(ξ1 − ξ2)[R

1
0(µ + γ1)(1 − ξ1) + µ] + R1

0(µ + γ1)(1 − ξ1)(R
2
0ξ2 − R1

0ξ1)

[R1
0R

2
0(ξ1 − ξ2)(µ + γ1) + γ1(R2

0ξ2 − R1
0ξ1)] (2.32)where

v̂ =
(R1

0 − R2
0)

R1
0R

2
0(ξ1 − ξ2)

. (2.33)Sin
e ȳ1 is a de
reasing fun
tion of pe (see (2.22)), we 
on
lude that
R2:1

p < [>]1 ⇐⇒ pe < [>]peBP
1By algebrai
 manipulation of (2.32), peBP

1 may be written as
peBP

1 =
(R1

0 − R2
0)

R2
0(ξ1 − ξ2)

[

1 − ξ1 +
µξ1(R

2
0(1 − ξ2) − R1

0(1 − ξ1))

(Cγ1 + µR1
0R

2
0(ξ1 − ξ2))

] (2.34)where C is de�ned in (2.29). 31



2.3. Existen
e and Stability of EquilibriaWe have the followingLemma 2. Assume (2.30).a) If R2
0(1 − ξ2) > R1

0(1 − ξ1), then 0 < peBP
1 < 1 at least for µ/γ1 > 0small enough.b) If R2

0(1 − ξ2) ≤ R1
0(1 − ξ1), then peBP

1 ≥ 1 for all µ > 0.The proof is in the Appendix.The assumption R2
0(1 − ξ2) > R1

0(1 − ξ1) is then ne
essary for strain 2 to beable to invade the Subtype-1-Only Equilibrium.Summing up, ne
essary assumptions for having R2:1
p > 1 with pe ≤ 1 are











ξ1 > ξ2

C > 0

R2
0(1 − ξ2) > R1

0(1 − ξ1)

(2.35)We 
on
lude the followingProposition 4. Under the assumption R1
0 > R2

0, if any of the 
onditions(2.35) is violated, then the Subtype-1-Only Equilibrium is asymptoti
ally sta-ble for all 0 ≤ pe ≤ 1 in whi
h this equilibrium is de�ned. If all of (2.35) aresatis�ed, then the Subtype-1-Only Equilibrium (when it is de�ned) is asymp-toti
ally stable for 0 ≤ pe ≤ peBP
1 and unstable for pe > peBP

1 , where peBP
1 isde�ned by (2.32) or (2.34). Under (2.35) the quantity peBP

1 < 1 at least for
µ small enough.Completely similar (but reversed) arguments apply to the Subtype-2-OnlyEquilibrium. It is asymptoti
ally stable [unstable℄ if

R1:2
p = R1

0(x̄2 + (1 − ξ1)v̄2) < [>]1.As before, we may write R1:2
p as

R1:2
p =

R1
0

R2
0

[

1 +
ξ2 − ξ1

ξ2
[R2

0(1 − ȳ2) − 1]

] (2.36)32



2.3. Existen
e and Stability of EquilibriaAgain, if we assume that R1
0 > R2

0, then (2.36) together with
v̄2 =

R2
0(1 − ȳ2) − 1

R2
0ξ1

> 0 (2.37)implies that
ξ2 ≥ ξ1 =⇒ R1:2

p > 1.That is, if R1
0 > R2

0 and ξ2 ≥ ξ1, then Subtype-1 invades the Subtype-2-OnlyEquilibrium, wherever it exists.Assume now ξ2 < ξ1 together with R1
0 > R2

0. By the same reasoning madebefore, expression (2.36) implies
R1:2

p =
R1

0

R2
0

[

1 +
ξ2 − ξ1

ξ2
(R2

0 − 1)

]

+
ξ1 − ξ2

ξ2
ȳ2 >

R1
0

R2
0

[

R2
0 −

ξ1

ξ2
R2

0 +
ξ1

ξ2

]

.(2.38)The right hand side of (2.38) is greater or equal than 1, if and only if C ≤ 0with C de�ned in (2.35). Hen
e
C ≤ 0 =⇒ R1:2

p > 1,i.e. strain 1 invades the Subtype-2-Only Equilibrium whenever this exists.To pro
eed, we also assume C > 0.As before, we �nd the fra
tion of individuals infe
ted with strain 2 at theequilibrium 
orresponding to R1:2
p = 1:

ȳBP
2 =

R1
0R

2
0(ξ1 − ξ2) + R2

0ξ2 − R1
0ξ1

R1
0R

2
0(ξ1 − ξ2)

=
C

R1
0R

2
0(ξ1 − ξ2)Noti
e that, sin
e (2.36) is an in
reasing fun
tion of ȳ2 (remember ξ1 > ξ2),we have

R1:2
p < 1 ⇐⇒ ȳ2 < ȳBP

2 .Writing, analogously to (2.25), pe as fun
tion of ȳ2 as
pe =

[R2
0(1 − ȳ2) − 1][µ + R2

0(µ + γ2)(1 − ξ2)ȳ2]

R2
0ξ2(µ + γ2ȳ2)

(2.39)
33



2.3. Existen
e and Stability of Equilibriawe see that R1:2
p = 1 for

peBP
2 = v̂

R1
0R

2
0(ξ1 − ξ2)[R

2
0(µ + γ2)(1 − ξ2) + µ] + R2

0(R
2
0ξ2 − R1

0ξ1)(µ + γ2)(1 − ξ2)

[R1
0R

2
0(ξ1 − ξ2)(µ + γ2) + γ2(R

2
0ξ2 − R1

0ξ1)] (2.40)using the de�nition (2.33) for v̂.Sin
e ȳ2 is a de
reasing fun
tion of pe (by (2.22)), we 
on
lude that
R1:2

p < 1 ⇐⇒ pe > peBP
2By manipulation of (2.40) we �nd that

peBP
2 =

(R1
0 − R2

0)

R1
0(ξ1 − ξ2)

[1 − ξ2 +
µξ2(R

2
0(1 − ξ2) − R1

0(1 − ξ1))

γ2C + µR1
0R

2
0(ξ1 − ξ2)

]. (2.41)Anagolously to Lemma 2, we haveLemma 3. Assume (2.30).a) If R2
0(1 − ξ2) > R1

0(1 − ξ1), then 0 < peBP
2 < 1 at least for µ/γ2 > 0small enough.b) If R2

0(1 − ξ2) ≤ R1
0(1 − ξ1), then peBP

2 ≥ 1 for all µ > 0.The proof is identi
al to that of Lemma 2 and is skipped.Symmetri
ally to Proposition 4, we obtainProposition 5. Under the assumption R1
0 > R2

0, if any of the 
onditions(2.35) is violated, then the Subtype-2-Only Equilibrium is unstable for all
0 ≤ pe ≤ 1 in whi
h this equilibrium is de�ned. If all of (2.35) are satis�ed,then the Subtype-2-Only Equilibrium is unstable for 0 ≤ pe ≤ peBP

2 andasymptoti
ally stable for pe > peBP
2 (when the equilibrium itself is de�ned),where peBP

2 is de�ned by (2.40) or (2.41). Under (2.35) the quantity peBP
2 <

1 at least for µ small enough.2.3.3 Coexisten
e EquilibriumExisten
eAt the Coexisten
e Equilibrium 
ompletely sus
eptible (x̂ > 0), e�e
tivelyva

inated (v̂ > 0), individuals infe
ted by subtype 1 (ŷ1 > 0) and individu-34



2.3. Existen
e and Stability of Equilibriaals infe
ted by subtype 2 (ŷ2 > 0) are all present in the 
ommunity.Setting equal to 0 equations (2.10)�(2.11), together with (2.15) one ob-tains
{

R1
0[x̂ + (1 − ξ1)v̂] = 1

R2
0[x̂ + (1 − ξ2)v̂] = 1

(2.42)The equilibrium fra
tions x̂, v̂ 
an be 
omputed solving (2.42):
x̂ =

R2
0(1 − ξ2) − R1

0(1 − ξ1)

R1
0R

2
0(ξ1 − ξ2)

v̂ =
R1

0 − R2
0

R1
0R

2
0(ξ1 − ξ2)

(2.43)Fra
tion v̂ is positive under the 
ondition thatif Ri
0 > Rj

0, then ξi > ξjwhi
h means that the Coexisten
e Equilibrium exists only if the va

ineindu
es a higher degree of prote
tion against the subtype with the higher�tness in a 
ompletely sus
eptible population.Without loss of generality, let's assume R1
0 > R2

0 and require ξ1 > ξ2.The sus
eptible fra
tion x̂ is positive if and only if
R2

0(1 − ξ2) > R1
0(1 − ξ1)By substitution of (2.43) into x̂ + v̂ < 1 one obtains

R1
0ξ1 − R2

0ξ2

R1
0R

2
0(ξ1 − ξ2)

< 1 ⇐⇒ C > 0where C is given by (2.29).Conditions (2.35) are then ne
essary for the existen
e of a Coexisten
e Equi-librium.Setting equal to 0 equations (2.8)�(2.9) together with (2.15) and using matrixnotation, one obtains
A

(

ŷ1

ŷ2

)

= µ

(

1 − pe − x̂

pe − v̂

) (2.44)35



2.3. Existen
e and Stability of Equilibriawhere
A =

(

R1
0(µ + γ1)x̂ − γ1(1 − pe) R2

0(µ + γ2)x̂ − γ2(1 − pe)

R1
0(µ + γ1)(1 − ξ1)v̂ − γ1pe R2

0(µ + γ2)(1 − ξ2)v̂ − γ2pe

)

System (2.44) admits a unique solution if and only if
|A| = µ[R2

0(µ + γ2)(1− ξ2)v̂ −R1
0(µ + γ1)(1− ξ1)v̂ + pe(γ1 − γ2)] 6= 0 (2.45)Observation 1. If γ1 = γ2, then by (2.35) |A| > 0 for 0 ≤ pe ≤ 1.Under the further assumption that |A| 6= 0, we 
an expli
itly solve (2.44)by Cramer's rule

ŷ1 =

∣

∣

∣

∣

∣

µ(1 − pe − x̂) R2
0(µ + γ2)x̂ − γ2(1 − pe)

µ(pe − v̂) R2
0(µ + γ2)(1 − ξ2)v̂ − γ2pe

∣

∣

∣

∣

∣

|A|

=
peµ[γ2(x̂ + v̂) − (µ + γ2)] + µv̂[R2

0(µ + γ2)(1 − ξ2 + ξ2x̂) − γ2]

|A| (2.46)
ŷ2 =

∣

∣

∣

∣

∣

R1
0(µ + γ1)x̂ − γ1(1 − pe) µ(1 − pe − x̂)

R1
0(µ + γ1)(1 − ξ1)v̂ − γ1pe µ(pe − v̂)

∣

∣

∣

∣

∣

|A|

=
peµ[γ1(1 − (x̂ + v̂)) + µ] + µv̂[γ1 − R1

0(µ + γ1)(1 − ξ1 + ξ1x̂)]

|A| (2.47)We 
on
lude the followingProposition 6. Under the assumption R1
0 > R2

0, ne
essary 
onditions for aCoexisten
e Equilibrium to exist are given by (2.35). Moreover, if γ1 = γ2 theCoexisten
e Equilibrium is unique. If γ1 6= γ2 the Coexisten
e Equilibrium isunique under the assumption that |A| 6= 0, where |A| is given by (2.45).Let's now prove the following 36



2.3. Existen
e and Stability of EquilibriaLemma 4. The equilibrium fra
tions x̂, v̂, ŷ1, ŷ2 satisfy 
ondition
x̂ + v̂ + ŷ1 + ŷ2 = 1 (2.48)Proof. Equations (2.8)�(2.9) together with (2.48) 
an be written as

B







ŷ1

ŷ2

1






= 0 (2.49)where

B =







R1
0(µ + γ1)x̂ − γ1(1 − pe) R2

0(µ + γ2)x̂ − γ2(1 − pe) µ(1 − pe − x̂)

R1
0(µ + γ1)(1 − ξ1)v̂ − γ1pe R2

0(µ + γ2)(1 − ξ2)v̂ − γ2pe µ(pe − x̂)

1 1 1 − x̂ − v̂





By (2.35) matrix B 
an be redu
ed to the form






R1
0(µ + γ1)x̂ − γ1(1 − pe) R2

0(µ + γ2)x̂ − γ2(1 − pe) µ(1 − pe − x̂)

µ µ µ(1 − x̂ − v̂)

1 1 1 − x̂ − v̂





thus proving our 
laim.

In order to �nd su�
ient 
onditions for the existen
e of a positive equi-librium, we start with the assumption |A| > 0.By (2.47) one obtains that ŷ2 > 0 for
pe >

v̂[R1
0(µ + γ1)(1 − ξ1 + ξ1x̂) − γ1]

µ + γ1(1 − (x̂ + v̂))37



2.3. Existen
e and Stability of EquilibriaSubstituting (2.43) and rearranging the terms one gets
pe > v̂

[

R1
0(µ + γ1)(1 − ξ1) + R1

0ξ1(µ + γ1)
R2

0(1 − ξ2) − R1
0(1 − ξ1)

R1
0R

2
0(ξ1 − ξ2)

− γ1

]

R1
0R

2
0(ξ1 − ξ2)µ + γ1[R

1
0R

2
0(ξ1 − ξ2) − R1

0ξ1 + R2
0ξ2]

pe > v̂
R1

0R
2
0(ξ1 − ξ2)[R

1
0(µ + γ1)(1 − ξ1) − γ1] + R1

0ξ1(µ + γ1)[R
2
0(1 − ξ2) − R1

0(1 − ξ1)]

R1
0R

2
0(ξ1 − ξ2)(µ + γ1) + γ1(R2

0ξ2 − R1
0ξ1)

pe > v̂
R1

0R
2
0(ξ1 − ξ2)[R

1
0(µ + γ1)(1 − ξ1) + µ] + R1

0(µ + γ1)(1 − ξ1)(R
2
0ξ2 − R1

0ξ1)

R1
0R

2
0(ξ1 − ξ2)(µ + γ1) + γ1(R2

0ξ2 − R1
0ξ1)

(2.50)By (2.32) inequality (2.50) 
an be written as
pe > peBP

1Similarly, by (2.46), 
ondition ŷ1 > 0 
an be expressed in terms of pe

pe <
x̂v̂[R2

0ξ2(µ + γ2)] + v̂[R2
0(µ + γ2)(1 − ξ2) − γ2]

µ + γ2(1 − (x̂ + v̂))Substituting (2.43) and rearranging the terms one gets
pe < v̂

[R2
0(1 − ξ2) − R1

0(1 − ξ1)][R
2
0ξ2(µ + γ2)] + [R2

0(µ + γ2)(1 − ξ2) − γ2]

[R1
0R

2
0(ξ1 − ξ2)(µ + γ2) + γ2(R

1
0ξ1 − R2

0ξ2)]

pe < v̂
R1

0R
2
0(ξ1 − ξ2)[R

2
0(µ + γ2)(1 − ξ2) − γ2] + R2

0ξ2(µ + γ2)[R
2
0(1 − ξ2) − R1

0(1 − ξ1)]

R1
0R

2
0(ξ1 − ξ2)(µ + γ2) + γ2(R2

0ξ2 − R1
0ξ1)

pe < v̂
R1

0R
2
0(ξ1 − ξ2)[R

2
0(µ + γ2)(1 − ξ2) + µ] + R2

0(R
2
0ξ2 − R1

0ξ1)(µ + γ2)(1 − ξ2)

[R1
0R

2
0(ξ1 − ξ2)(µ + γ2) + γ2(R

2
0ξ2 − R1

0ξ1)]
(2.51)By (2.40) inequality (2.51) 
an be written as

pe < peBP
2With similar (but reversed) arguments, one �nds that under the assumption

|A| < 0, ŷ2 > 0 and ŷ1 > 0 for
peBP

2 < pe < peBP
1We have then proved the followingProposition 7. Under the assumptions R1

0 > R2
0 and (2.35), su�
ient and38



2.3. Existen
e and Stability of Equilibriane
essary 
onditions for the Coexisten
e Equilibrium to exist are(a) if |A| > 0, R1:2
p > 1 and R2:1

p > 1 (i.e. peBP
1 < pe < peBP

2 );(b) if |A| < 0, R1:2
p < 1 and R2:1

p < 1 (i.e. peBP
2 < pe < peBP

1 ).where peBP
1 and peBP

2 are given by (2.34) and (2.41) respe
tively.Conditions for sub- or super-
riti
al bifur
ationsIt is therefore relevant �nding whether peBP
1 < peBP

2 or vi
e versa.Lemma 5. Under the assumption R1
0 > R2

0 and (2.35), peBP
1 and peBP

2 , givenby (2.34) and (2.41), are de
reasing fun
tions of γ1 and γ2 respe
tively.If γ1 ≥ γ2 then peBP
1 < peBP

2 .If
R2

0(ξ1 − ξ2) ≥ ξ1 (2.52)then peBP
1 < peBP

2 for all values of γ1 and γ2.If R2
0(ξ1 − ξ2) < ξ1 then peBP

1 > peBP
2 for γ1 small enough, and γ2 largeenough.Proof. The fa
t that peBP

1 and peBP
2 are de
reasing fun
tions of γ1 and γ2 isan immediate 
onsequen
e of expressions (2.34) and (2.41) and assumptions(2.35).Consider now γ1 = γ2 = γ. With some simple algebrai
 manipulations,one obtains

peBP
2 − peBP

1 =
(R1

0 − R2
0)(1 − ξ2)

R2
0(ξ1 − ξ2)

−
(R1

0 − R2
0)(1 − ξ1)

R2
0(ξ1 − ξ2)

+
µ(R2

0(1 − ξ2) − R1
0(1 − ξ1))

(Cγ + µR1
0R

2
0(ξ1 − ξ2))

[

(R1
0 − R2

0)ξ2

R2
0(ξ1 − ξ2)

−
(R1

0 − R2
0)ξ1

R2
0(ξ1 − ξ2)

]

=
(R1

0 − R2
0)(R

2
0(1 − ξ2) − R1

0(1 − ξ1))(µ + γ)C

R1
0R

2
0(ξ1 − ξ2)(Cγ + µR1

0R
2
0(ξ1 − ξ2))

> 0.From the fa
t that peBP
1 and peBP

2 are de
reasing fun
tions of γ1 and γ2respe
tively, we may 
on
lude that the inequality peBP
1 < peBP

2 holds also forevery γ1 > γ2.As for the �nal 
laim, if lim
γ1→0

peBP
1 ≤ lim

γ2→+∞
peBP

2 , then peBP
1 < peBP

2 forall �nite, positive γ1 and γ2. 39



2.3. Existen
e and Stability of EquilibriaVi
e versa, if lim
γ1→0

peBP
1 > lim

γ2→+∞
peBP

2 , by 
ontinuity peBP
1 > peBP

2 oversome range of γ1 and γ2 values.
lim
γ1→0

peBP
1 =

(R1
0 − R2

0)

R2
0(ξ1 − ξ2)

[

1 − ξ1 +
ξ1(R

2
0(1 − ξ2) − R1

0(1 − ξ1))

R1
0R

2
0(ξ1 − ξ2)

]while
lim

γ2→+∞
peBP

2 =
(R1

0 − R2
0)(1 − ξ2)

R2
0(ξ1 − ξ2)

.Hen
e, with some algebra
lim
γ1→0

peBP
1 − lim

γ2→+∞
peBP

2

=
(R2

0(1 − ξ2) − R1
0(1 − ξ1))(R

1
0 − R2

0)

R1
0R

2
0(ξ1 − ξ2)

(

−1 +
ξ1

R2
0(ξ1 − ξ2)

)

.This quantity is positive if and only if R2
0(ξ1−ξ2) < ξ1, yielding the 
on
lusionof the proof.Finally, we showLemma 6. (a) if peBP

1 < peBP
2 , then |A| > 0 for all pe ∈ [peBP

1 , peBP
2 ];(b) if peBP

2 < peBP
1 , then |A| < 0 for all pe ∈ [peBP

2 , peBP
1 ].(
) if peBP

2 = peBP
1 , then |A| = 0 for pe = peBP

1 = peBP
2 .Through a) and b), we will be able to draw a 
lear bifur
ation pattern(see for example Britton (2003)) of the system, with trans
riti
al bifur
ationso

urring at E1 for pe = peBP

1 , and at E2 for pe = peBP
2 .Proof. We denote by |A|BPi the determinant of A 
omputed with pe = peBP

i ,
i = 1, 2. Through simple, but tedious, algebrai
 manipulations, one arrivesat
|A|BP1 =

µ(R2
0(1 − ξ2) − R1

0(1 − ξ1))(R
1
0 − R2

0)

R1
0R

2
0(ξ1 − ξ2)

×

[

µ + γ2 −
γ2µR1

0ξ1

Cγ1 + µR1
0R

2
0(ξ1 − ξ2)

+
γ1µR1

0ξ1

Cγ1 + µR1
0R

2
0(ξ1 − ξ2)

]

.(2.53)40



2.3. Existen
e and Stability of EquilibriaIt is immediate to see that |A|BP1 is an in
reasing fun
tion of γ1. We alreadyknow (Observation 1) that |A|BP1 > 0 for γ1 ≥ γ2.Setting (2.53) equal to 0, we see that
|A|BP1 = 0 ⇐⇒ γ1 = Ψ1(γ2) (2.54)with

Ψ1(γ2) =
µ(γ2R

1
0(ξ1 − R2

0(ξ1 − ξ2)) − µR1
0R

2
0(ξ1 − ξ2))

C(µ + γ2) + µR1
0ξ1

. (2.55)If Ψ1(γ2) < 0, then |A|BP1 > 0 for all γ1 > 0. In parti
ular Ψ1(γ2) < 0 forall γ2 > 0 if R2
0(ξ1 − ξ2) ≥ ξ1, i.e. (2.52) holds.Otherwise, |A|BP1 > 0 for γ1 > Ψ1(γ2) and |A|BP1 < 0 for γ1 < Ψ1(γ2).Similarly, we obtain

|A|BP2 =
µ(R2

0(1 − ξ2) − R1
0(1 − ξ1))(R

1
0 − R2

0)

R1
0R

2
0(ξ1 − ξ2)

×

[

µ −
γ2µR2

0ξ2

Cγ2 + µR1
0R

2
0(ξ1 − ξ2)

+ γ1 +
γ1µR2

0ξ2

Cγ2 + µR1
0R

2
0(ξ1 − ξ2)

]

.(2.56)Now it is immediate to see that |A|BP2 is a de
reasing fun
tion of γ2 and
lim

γ2→∞
|A|BP2 =

µ(R2
0(1 − ξ2) − R1

0(1 − ξ1))(R
1
0 − R2

0)

R1
0R

2
0(ξ1 − ξ2)

(

µ + γ1 −
µR2

0ξ2

C

)

.Hen
e, if
C(µ + γ1) ≥ µR2

0ξ2 (2.57)
|A|BP2 > 0 for all γ2 > 0.Otherwise, when (2.57) does not hold, setting (2.56) equal to 0, we seethat

|A|BP2 = 0 ⇐⇒ γ2 = Ψ2(γ1) (2.58)with
Ψ2(γ1) =

µ(γ1R
2
0(ξ2 + R1

0(ξ1 − ξ2)) + µR1
0R

2
0(ξ1 − ξ2))

µR2
0ξ2 − C(µ + γ1)

. (2.59)41



2.3. Existen
e and Stability of EquilibriaWe see that, if (2.57) does not hold, Ψ2(γ1) > 0, and |A|BP2 > 0 for
γ2 < Ψ2(γ1) and |A|BP2 < 0 for γ2 > Ψ2(γ1).Finally, we observe that the 
onditions for |A|BPi = 0, i = 1, 2, are a
tu-ally the same; more pre
isely Ψ2(γ1) is the inverse of Ψ1, de�ned on theappropriate domain. Indeed, solving the equation γ1 = Ψ1(γ2) for γ2, weobtain

γ2 =
µ(γ1(C + R1

0ξ1) + µR1
0R

2
0(ξ1 − ξ2))

µR1
0(ξ1 − R2

0(ξ1 − ξ2)) − Cγ1
= Ψ2(γ1)where the last identity 
omes from the de�nition of C, so that

C + R1
0ξ1 = R2

0(ξ2 + R1
0(ξ1 − ξ2)) and R1

0(ξ1 − R2
0(ξ1 − ξ2)) = −C + R2

0ξ2.Summarizing, we have obtained that if (2.52) does not hold, the fun
tion
γ2 = Ψ2(γ1) divides the plane into two regions (see Figure 2.2) su
h thatbelow and to the right both |A|BP1 and |A|BP2 are positive; above and to theleft both are negative.

|A|<0

|A|>0
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Figure 2.2: The fun
tion γ2 = Ψ2(γ1) and the 
orresponding regions in the plane (γ1, γ2)where 
ases (a) or (b) of Lemma 6 hold. Parameter values are R1
0 = 4, R2

0 = 2, µ = 1,
ξ1 = 0.9, ξ2 = 0.5.Sin
e |A| is an a�ne fun
tion of pe (see (2.45)), if it has the same signat both ends of a segment, it will have the same sign also within, yielding a)and b). 42



2.3. Existen
e and Stability of EquilibriaTo show 
), through long 
omputations, one arrives at
peBP

2 − peBP
1 =

(R1
0 − R2

0)(R
2
0(1 − ξ2) − R1

0(1 − ξ1))C

R1
0R

2
0(ξ1 − ξ2)

×
γ2(C(µ + γ1) − µR2

0ξ2) + µR2
0(µR1

0(ξ1 − ξ2) + γ1(R
1
0(ξ1 − ξ2) + ξ2))

(Cγ1 + µR1
0R

2
0(ξ1 − ξ2))(Cγ2 + µR1

0R
2
0(ξ1 − ξ2))

.It is then easy to see that peBP
2 − peBP

1 = 0 if and only if γ2 = Ψ2(γ1).We 
an now summarise the 
on
lusions about the existen
e of the Coex-isten
e Equilibrium.Proposition 8. Assume R1
0 > R2

0 and (2.35). Then there o

ur trans
riti
albifur
ations at E1 for pe = peBP
1 , and at E2 for pe = peBP

2 with the emergen
eof a positive 
oexisten
e equilibrium. Either(a) peBP
1 < peBP

2 and the 
oexisten
e equilibrium is unique and feasible forall pe ∈ [peBP
1 , peBP

2 ];(b) peBP
2 < peBP

1 and the 
oexisten
e equilibrium is unique and feasible forall pe ∈ [peBP
2 , peBP

1 ].(
) peBP
2 = peBP

1 , and there is a 
ontinuum of positive equilibria for pe =

peBP
1 = peBP

2 .If (2.52) holds, (a) is true for all values of γ1 and γ2.Otherwise, (
) is true for γ2 = Ψ2(γ1); (b) is true for γ2 > Ψ2(γ1) > 0; (a) istrue for γ2 < Ψ2(γ1) and for all γ2 when Ψ2(γ1) < 0, where Ψ2(γ1) is de�nedin (2.59).Note that Ψ2(γ1) > γ1, so that, if γ1 ≥ γ2, (a) is always true.StabilityIt is easy to show that in 
ase (b) the 
oexisten
e equilibrium is alwaysunstable. This 
an be proved by bifur
ation theory, but 
an also be 
he
keddire
tly using 43



2.4. ExamplesLemma 7. Let 
onditions (2.35) hold and let J be the Ja
obian of (2.8)�(2.12) 
omputed at the 
oexisten
e equilibrium. Thensign(|J |) = sign(|A|).The proof is given in the Appendix.It follows that in 
ase (b), the Routh-Hurwitz stability 
onditions are vio-lated, and the 
oexisten
e equilibrium is unstable.As for 
ase (a), bifur
ation theory shows that the 
oexisten
e equilibrium isasymptoti
ally stable for pe 
lose to peBP
1 and peBP

2 .We were not able to prove that Routh-Hurwitz stability 
onditions are satis-�ed for all pe ∈ (peBP
1 , peBP

2 ). We then performed a numeri
al study drawing
1 million sets of parameters (R1

0, R2
0, ξ1, ξ2, γ1/µ, γ2/µ) satisfying 
ondi-tions (2.35) and (2.52) or Ψ2(γ1) < 0 or γ2 < Ψ2(γ1). For ea
h su
h draw,we divided the (peBP

1 , peBP
2 ) interval into 10000 sub-intervals and, for ea
hvalue of pe in this mesh, 
omputed, through standard routines (Press et al.,1992), the eigenvalues of the Ja
obian at the 
oexisten
e equilibrium. Allthe 
omputed eigenvalues had negative real parts, suggesting that the 
oex-isten
e equilibrium never loses its stability through Hopf bifur
ations in theintervals (peBP

1 , peBP
2 ).2.4 ExamplesThe 
ase peBP

1 < peBP
2 had already been numeri
ally observed by Por
o andBlower (1998). In this 
ase 
oexisten
e o

urs in the parameter region wherethe other existing equilibria are unstable. The 
ase peBP

1 < peBP
2 o

urs for

γ1 = γ2, γ1 > γ2 and may o

ur also for 
ertain γ1 < γ2 as shown by thefollowing example.Example 1: Let γ1 = 0.015 < γ2 = 0.517 and
R1

0 = 8.363, R2
0 = 3.790, µ = 0.423, ξ1 = 0.990, ξ2 = 0.020 and π = 1By substitution into (2.17), (2.32) and (2.40) we get

peDF
1 = 0.888 peDF

2 = 36.496 peBP
1 = 0.153 peBP

2 = 0.55244



2.4. ExamplesThe Subtype-1-Only Equilibrium is stable for 0 ≤ pe < 0.153, the Subtype-2-Only Equilibrium is stable for 0.552 < pe ≤ 1 and the Coexisten
e Equilib-rium exists into the range 0.153 < pe < 0.552, where the DFE, the Subtype-1-Only and the subtype-2-Only Equilibria exist but are unstable. Numeri
al
omputation of the eigenvalues of the linearized system 
on�rm that theCoexisten
e Equilibrium is stable where it exists. Figure 2.3 shows the equi-librium fra
tions y1 and y2 as fun
tion of parameter pe.

Figure 2.3: Equilibrium fra
tions y1 and y2 as fun
tion of pe for �xed γ1 = 0.015, γ2 =

0.517, R1

0
= 8.363, R2

0
= 3.790, µ = 0.423, ξ1 = 0.990, ξ2 = 0.020, π = 1. Coexisten
e of thestrains o

urs for 0.153 < pe < 0.552.The 
ase peBP

1 > peBP
2 had never been observed before. In this 
ase theCoexisten
e Equilibrium exists in a `bi-stability' region in whi
h both theSubtype-1-Only and the Subtype-2-Only Equilibrium are stable and hen
ethe asymptoti
 behavior of the system depends on the initial 
onditions. Thislatter 
ase o

urs only for 
ertain γ1 < γ2.Example 2: Consider the 
ase γ1 = 0.026 < γ2 = 0.966 and let

R1
0 = 4.723, R2

0 = 2.293, µ = 0.235, ξ1 = 0.923, ξ2 = 0.650 and π = 1.45



2.4. ExamplesBy substitution into (2.17), (2.32) and (2.40) we get
peDF

1 = 0.853 peDF
2 = 0.866 peBP

1 = 0.829 peBP
2 = 0.822The DFE is stable for pe > 0.866, the Subtype-1-Only Equilibrium is stablefor 0 < pe < 0.829 and the Subtype-2-Only Equilibrium is stable for 0.822 <

pe < 0.866. The Coexisten
e Equilibrium exists for 0.822 < pe < 0.829 andis unstable. Figure 2.4 shows the equilibrium fra
tions y1 and y2 as fun
tionof parameter pe. Figure 2.5 shows two traje
tories for the equilibrium fra
-tions y1 and y2 starting 
lose to the Coexisten
e Equilibrium at pe = 0.8234and 
onverging one to the Subtype-1-Only Equilibrium and the other to theSubtype-2-Only Equilibrium. The bifur
ation and traje
tory graphs havebeen obtained by the graphi
al pa
kage MatCont of the MATLAB software.
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BPBPFigure 2.4: Equilibrium fra
tions y1 and y2 as fun
tion of pe for �xed γ1 = 0.026, γ2 =

0.966, R1

0
= 4.723, R2

0
= 2.293, µ = 0.235, ξ1 = 0.923, ξ2 = 0.650, π = 1. A bi-stabilityregion o

urs for 0.822 < pe < 0.829; in this region unstable 
oexisten
e of the strainso

urs. 46



2.5. Dis
ussion
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Figure 2.5: Traje
tories of the fra
tions y1 (left panel) and y2 (right panel) as fun
tions oftime; parameter values are γ1 = 0.026, γ2 = 0.966, R1

0
= 4.723, R2

0
= 2.293, µ = 0.235, ξ1 =

0.923, ξ2 = 0.650, π = 1 and pe = 0.8234. Both traje
tories start 
lose to the Coexis-ten
e Equilibrium x = 0.148, y1 = 0.007, y2 = 0.022, N = 3.896; the starting point ofthe red one, 
onverging to the Subtype-1-Only Equilibrium, is (0.148, 0.010, 0.029, 3.896);the starting point of the blue one, 
onverging to the Subtype-2-Only Equilibrium, is
(0.148, 0.007, 0.029, 3.896).
2.5 Dis
ussionIn this 
hapter we have analysed a model for 
ompetition between two viralstrains with 
omplete 
ross-immunity and imperfe
t va

ination. The modelwas �rst proposed by Por
o and Blower (1998) with di�erent HIV strainsas 
ase system; the authors showed through simulations the possibility thatva

ination shifted the 
ompetitive hierar
hy, with potential side-e�e
ts onpubli
 health.Here we have examined the same model in greater detail, �nding for in-stan
e the exa
t 
onditions under whi
h va

ination may lead to 
oexisten
eof two strains; these are given by (2.35). It is worth 
ommenting on theirbiologi
al interpretation.The �rst ξ1 > ξ2 means that the va

ine redu
es more the sus
eptibilityto the strain with the higher reprodu
tion number (the better 
ompetitor inabsen
e of va

ination) sin
e we assumed R1

0 > R2
0.47



2.5. Dis
ussionThe se
ond 
ondition, that 
an be written as
ξ2

ξ1
<

R1
0(R

2
0 − 1)

R2
0(R

1
0 − 1)spe
i�es that the ratio of sus
eptibilities under va

ination must be de
reasedsu�
iently relative to a ratio of reprodu
tion numbers.The third 
ondition R2

0(1−ξ2) > R1
0(1−ξ1) means that, if every individualwere va

inated, the se
ond strain would have a higher reprodu
tion number(note that the third 
ondition implies the �rst one, whi
h is then pleonasti
).Under these 
onditions there always exists a range of va

ination ratesunder whi
h a (unique) 
oexisten
e equilibrium exists, at least if µ/γi is smallenough, i.e. natural mortality is su�
iently lower than that indu
ed by theinfe
tion (or, in 
ase of HIV, than the rate of progressing into AIDS).The relative values of γ1 and γ2 (i.e., of the expe
ted lenghts of sojourn inthe 
lasses I1 and I2) determine the ordering between peBP

1 given by (2.32)and peBP
2 given by (2.40). This in turn a�e
ts the qualitative behavior ofsystem (2.14).The 
ase peBP

1 < peBP
2 had already been numeri
ally observed (Por
oand Blower, 1998). In this 
ase, 
oexisten
e o

urs in the parameter regionwhere all the other equilibria are unstable. Numeri
ally, we found that the
oexisten
e equilibrium is asymptoti
ally stable for parameter values in thisregion, but the possibility of destabilization via Hopf bifur
ations 
annotbe totally ex
luded, sin
e an analyti
al proof is missing. The un
onditionalstability of the 
oexisten
e equilibrium has been proven in another modelwith 
oexisten
e of totally 
ross-immune pathogen strains (Andreasen andPugliese, 1995).On the other hand, the 
ase peBP

1 > peBP
2 is also possible, giving riseto phenomena that had not been anti
ipated. In this 
ase there exists aparameter region in whi
h both monomorphi
 equilibria (i.e. the Subtype-1-Only and the Subtype-2-Only Equilibrium) are stable and the 
oexisten
eequilibrium exists unstable (see Figure 2.4). In this `bi-stability' region theasymptoti
 behavior of system (2.8)�(2.12) depends on the initial 
onditions.The presen
e of the bi-stability region implies that, with a gradual in
reaseof va

ination rates, one may en
ounter a sudden shift from a situation with48



2.5. Dis
ussiononly strain 1 present in appre
iable proportion, to one with only strain 2.Moreover, de
reasing again va

ination rates, one would see a hysteresis-typebehavior.As shown in the main text, bi-stability may o

ur only if γ1 < γ2. Thismeans that the mortality rate (or rate of developing AIDS, in 
ase of HIV)must be larger for strain 2 (the one that is out-
ompeted without va

ination)than for strain 1. In other words, bi-stability may o

ur only if va

inationshifts the 
ompetitive balan
e in favour of a more virulent strain, a ratherunpleasant s
enario (Massad et al., 2006). Note that the model is de�nitelynot realisti
 for HIV, mainly be
ause its stru
ture implies that the duration ofthe infe
tious stage is exponential, whi
h is 
ertainly not plausible, whetherinfe
tious are treated or not. The goal of our analysis is mainly exploratoryto suggest possible phenomena that may be then examined (probably withthe help of numeri
al software) in more realisti
 and 
omplex models. Onthe other hand, the model 
an be applied to many other fatal diseases of S-Itype, as long as one 
an assume that the entran
e in the 
ommunity (withor without va

ination) is 
onstant and independent from the populationsize. One 
an reasonably expe
t that similar results would be obtained alsounder other assumptions for the birth rate, but the analysis would be more
omplex. Thus, these results should be of interest in the analysis of severalemerging and re-emerging fatal infe
tious diseases.
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2.6. Appendix2.6 Appendix2.6.1 Computation of the Routh-Hurwitz 
oe�
ientsWe report here the 
omputations of a1, a2, a3 and a1a2 − a3 that lead us toprove that the Subtype-1-Only Equilibrium is stable, wherever it exists.Remind that we set
K = R1

0(µ + γ1)(1 − ξ1)ȳ1

L = R1
0(µ + γ1)ȳ1

a1 = (µ + γ1ȳ1) +
[

µ + R1
0(µ + γ1)ȳ1

]

− γ1ȳ1 + R1
0(µ + γ1)(1 − ξ1)ȳ1

= µ + µ + R1
0(µ + γ1)ȳ1 + R1

0(µ + γ1)(1 − ξ1)ȳ1

= 2µ + K + L

a2 = (µ + γ1ȳ1)
[

µ + R1
0(µ + γ1)ȳ1

]

+

−
[

µ + R1
0(µ + γ1)ȳ1

] [

γ1ȳ1 − R1
0(µ + γ1)(1 − ξ1)ȳ1

]

+

+
[

R1
0(µ + γ1) − γ1

]

R1
0(µ + γ1)ξ1x̄1ȳ1+

− (µ + γ1ȳ1)
[

γ1ȳ1 − R1
0(µ + γ1)(1 − ξ1)ȳ1

]

+

+ (µ + γ1ȳ1)γ1ȳ1

=
[

µ + R1
0(µ + γ1)ȳ1

] [

µ + R1
0(µ + γ1)(1 − ξ1)ȳ1

]

+

+
[

R1
0(µ + γ1) − γ1

]

R1
0(µ + γ1)ξ1x̄1ȳ1+

+ (µ + γ1ȳ1)R
1
0(µ + γ1)(1 − ξ1)ȳ1

= (µ + L)(µ + K) +
[

R1
0(µ + γ1) − γ1

]

Lξ1x̄1 + (µ + γ1ȳ1)K

a3 = (µ + γ1ȳ1)
{

[

R1
0(µ + γ1) − γ1

]

R1
0(µ + γ1)ξ1x̄1ȳ1 −

[

µ + R1
0(µ + γ1)ȳ1

]

[γ1ȳ1+

− R1
0(µ + γ1)(1 − ξ1)ȳ1]} + γ1N̄

[

γ1ȳ1 − R1
0(µ + γ1)ȳ1

]

R1
0(µ + γ1)ξ1

x̄1ȳ1

N̄
+

+ (µ + γ1ȳ1)
[

µ + R1
0(µ + γ1)ȳ1

] ȳ1

N̄

}
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= (µ + γ1ȳ1){

[

R1
0(µ + γ1) − γ1

]

R1
0(µ + γ1)ξ1x̄1ȳ1 −

[

µ + R1
0(µ + γ1)ȳ1

]

[γ1ȳ1+

− R1
0(µ + γ1)(1 − ξ1)ȳ1]} −

[

R1
0(µ + γ1) − γ1

]

R1
0(µ + γ1)ξ1x̄1ȳ1γ1ȳ1+

+ (µ + γ1ȳ1)
[

µ + R1
0(µ + γ1)ȳ1

]

γ1ȳ1

=
[

R1
0(µ + γ1) − γ1

]

Lµξ1x̄1 + (µ + γ1ȳ1)(µ + L)K

a1a2 − a3 =
[

µ + R1
0(µ + γ1)ȳ1

] [

µ + R1
0(µ + γ1)(1 − ξ1)ȳ1

]

[2µ + R1
0(µ + γ1)ȳ1+

+R1
0(µ + γ1)(1 − ξ1)ȳ1] +

[

R1
0(µ + γ1) − γ1

]

R1
0(µ + γ1)ξ1x̄1ȳ1[2µ+

+ R1
0(µ + γ1)ȳ1 + R1

0(µ + γ1)(1 − ξ1)ȳ1]+

+ (µ + γ1ȳ1)R
1
0(µ + γ1)(1 − ξ1)ȳ1·

[

2µ + R1
0(µ + γ1)ȳ1 + R1

0(µ + γ1)(1 − ξ1)ȳ1

]

+

−
[

R1
0(µ + γ1) − γ1

]

R1
0(µ + γ1)ξ1x̄1ȳ1+

− (µ + γ1ȳ1)
[

µ + R1
0(µ + γ1)ȳ1

]

R1
0(µ + γ1)(1 − ξ1)ȳ1

= (µ + L)(µ + K)(2µ + L + K)+

+
[

R1
0(µ + γ1) − γ1

]

Lξ1x̄1(µ + L + K)+

+ (µ + γ1ȳ1)(µ + K)K

2.6.2 Proof of Lemma 2Proof. a) It is 
lear that, under the assumptions (2.30), if R2
0(1− ξ2) > R1

0(1− ξ1),then 0 < peBP
1 . As for the other inequality, if µ = 0,

peBP
1 =

(R1
0 − R2

0)(1 − ξ1)

R2
0(ξ1 − ξ2)and

(R1
0 − R2

0)(1 − ξ1)

R2
0(ξ1 − ξ2)

< 1 ⇐⇒ R1
0(1 − ξ1) < R2

0(1 − ξ2).By 
ontinuity, if R2
0(1 − ξ2) > R1

0(1 − ξ1), peBP
1 < 1 for µ > 0 small enough.b) If R2

0(1 − ξ2) = R1
0(1 − ξ1), peBP

1 ≡ 1 for all µ > 0.If R2
0(1−ξ2) < R1

0(1−ξ1), peBP
1 is a de
reasing 
ontinuous fun
tion of µ on [0,+∞).51
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e
peBP

1 > p∞ := lim
µ→+∞

peBP
1 =

(R1
0 − R2

0)

R2
0(ξ1 − ξ2)

[

1 − ξ1 +
ξ1(R

2
0(1 − ξ2) − R1

0(1 − ξ1))

R1
0R

2
0(ξ1 − ξ2)

]

.Now
p∞−1 =

(R1
0 − R2

0)(1 − ξ1) − R2
0(ξ1 − ξ2)

R2
0(ξ1 − ξ2)

+
(R1

0 − R2
0)ξ1(R

2
0(1 − ξ2) − R1

0(1 − ξ1))

R2
0(ξ1 − ξ2)R

1
0R

2
0(ξ1 − ξ2)

=
R1

0(1 − ξ1) − R2
0(1 − ξ2)

R2
0(ξ1 − ξ2)

(

1 −
(R1

0 − R2
0)ξ1

R1
0R

2
0(ξ1 − ξ2)

)

.We use the inequality (R1
0 − R2

0)ξ1 < R1
0ξ1 − R2

0ξ2 in the bra
keted term to have
1 −

(R1
0 − R2

0)ξ1

R1
0R

2
0(ξ1 − ξ2)

> 1 −
R1

0ξ1 − R2
0ξ2

R1
0R

2
0(ξ1 − ξ2)

=
C

R1
0R

2
0(ξ1 − ξ2)

> 0,proving p∞ − 1 > 0.2.6.3 Proof of Lemma 7Proof. Let J be the Ja
obian matrix at the 
oexisten
e equilibrium:
J =



















−
π

N̂
0 −γ1N̂ −γ2N̂

−
π

N̂2
(1 − x̂ − pe) −

π

N̂
− a −x̂[R1

0(µ + γ1) − γ1] −x̂[R2
0(µ + γ2) − γ2]

π

N̂2
ŷ1 ŷ1R

1
0(µ + γ1)ξ1 −ŷ1b + γ1ŷ1 −ŷ1b + γ2ŷ1

π

N̂2
ŷ2 ŷ2R

2
0(µ + γ2)ξ2 −ŷ2c + γ1ŷ2 −ŷ2c + γ2ŷ2



















.

where
a = R1

0(µ + γ1)ŷ1 − γ1ŷ1 + R2
0(µ + γ2)ŷ2 − γ2ŷ2

b = R1
0(µ + γ1)(1 − ξ1)

c = R2
0(µ + γ2)(1 − ξ2)

(2.60)We apply the Gauss-Jordan algorithm in the following steps:1) substitute the fourth row of J with the sum of its fourth row multiplied times
ŷ1 and its third row multiplied times −ŷ2, thus obtaining matrix J12) substitute the third 
olumn of matrix J1 with the sum of the its thrid 
olumnand its fourth 
olumn multiplied times −1, thus obtaining matrix J23) substituite the third row of matrix J2 with the sum of its third row multiplied52



2.6. Appendixtimes N̂ and its �rst row multiplied times ŷ1, thus obtaining matrix
J3 =















−
π

N̂
0 (γ2 − γ1)N̂ −γ2N̂

−
π

N̂2
(1 − x̂ − pe) −

π

N̂
− a x̂d −x̂[R2

0(µ + γ2) − γ2]

0 N̂R1
0ŷ1(µ + γ1)ξ1 0 −N̂R1

0ŷ1(µ + γ1)(1 − ξ1)

0 ŷ1ŷ2e 0 ŷ1ŷ2(b − c)















.where a, b and c are given in (2.60) and
d = R2

0(µ + γ2) − γ2 − R1
0(µ + γ1) + γ1

e = R2
0(µ + γ2)ξ2 − R1

0(µ + γ1)ξ1Due to the properties of the determinant, we have
|J | = |J3|. (2.61)We 
ompute |J3| expanding through its �rst 
olumn obtaining

|J3| =
|A|πR1

0R
2
0(µ + γ1)(µ + γ2)ŷ

2
1 ŷ2(ξ1 − ξ2)

µ
(2.62)where |A| is given in (2.45). Conditions (2.35) and identities (2.61) and (2.62)imply our 
laim.
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Chapter 3Modelling the Spatial Spread ofH7N1 Avian In�uenza Virusamong Poultry Farms in Italy
3.1 Introdu
tionIn 1999 − 2000 the Italian industrial poultry produ
tion was disrupted by an epi-demi
 of Highly Pathogeni
 Avian In�uenza (HPAI) 
aused by a H7N1 virus sub-type. Sin
e Mar
h 1999, the Low Pathogeni
 (LPAI) H7N1 virus subtype wasendemi
ally 
ir
ulating in the North of Italy, where more than 65% of the Italianpoultry produ
tion is 
on
entrated, and the 
urrently a

epted hypothesis is thata H7N1 LPAI strain mutated into a HPAI strain (Busani et al., 2009; Mannelliet al., 2007). This hypothesis has been widely dis
ussed in the literature (Websteret al., 1992; Alexander et al., 2000; Stegeman, 2004). HPAI virus was �rst dete
tedin a poultry farm on November 28th, 1999; after that, the measures provided bythe European Union (EU) legislation 1 were applied, at di�erent times at variousspatial s
ales and were 
ontinued until the infe
tion was o�
ially eradi
ated onApril 10th, 2000.The �rst goal of this study was to investigate whether a spatial transmission kernelwas adequate for des
ribing the a
tual epidemi
 spread in Northern Italy, 
onsid-ering also the implemented 
ontrol measures. We were furthermore interested in1CEC. Coun
il Dire
tive 92/40/EEC of 19 May 1992 introdu
ing 
ommunity measuresfor the 
ontrol of avian in�uenza. O�
ial Journal of the European Commission 1992L167:1-15 55



3.2. Dataanalysing potential di�eren
es in sus
eptibility among poultry spe
ies, 
onsistentwith the asso
iation found between AI virus infe
tion and poultry spe
ies (Busaniet al., 2009; Mannelli et al., 2006; Thomas et al., 2005), and with other reports ofspe
ies di�eren
es in sus
eptibility to high pathogeni
ity viruses (Tumpey et al.,2004). Mannelli et al. (2007) found a redu
tion in transmissibility during the 
ourseof the epidemi
, using a non-spatial model. We then analysed whether this 
laim
ould be upheld using a more detailed spatial model. Finally, we assessed the ef-fe
tiveness of the measures implemented in �rst 
ontaining and then eradi
atingthe infe
tion in order to dis
uss the relative merit of ea
h spe
i�
 measure, and tostudy whether a di�erent implementation of the measures 
ould have been moree�e
tive.Here we analyse the spatio-temporal spread of the infe
tion �rst using a SEIRmodel with a spatial kernel similar to the one proposed by Boender et al. (2007),to whi
h all 
ontrol measures were added just as they were a
tually implemented.We use maximum likelihood methods to estimate parameters and to establish their
on�den
e intervals.We then extend the SEIR model allowing for spe
ies di�eren
es in sus
eptibil-ity, and test the improvement of �t relative to the basi
 model. We also allow for
hanges in transmissibility during the 
ourse of the epidemi
 (Mannelli et al., 2007),
onsidering di�erent epidemi
 phases, 
orresponding to steps in the implementationof 
ontrol measure, and to awareness of the ongoing epidemi
.3.2 DataThe study area of this work 
onsists of the North-Eastern regions of Lombardiaand Veneto, where 392 out of 413 (94.9%) outbreaks o

urred. Due to the la
kof data on 10 infe
ted ba
kyard farms lo
ated in the study area, we 
onsidered
382 outbreaks in our analysis (Capua and Marangon, 2000; Mannelli et al., 2007).In these regions there is a densely populated poultry area where di�erent avianspe
ies (laying hens, broilers, breeders of di�erent spe
ies, meat turkeys, geese,quails, ostri
hes and others) are bred.Poultry produ
tion 
onsists of repeated 
y
les. A produ
tive 
y
le starts with thesto
king of the one day old 
hi
ks (typi
ally all of the same poultry type) and, aftera period whose length depends on the spe
ies (on average: 42 days for broilers,
95 − 145 days for female and male meat turkeys, up to 2 years for laying hens),it ends with the slaughtering of the whole �o
k. Between su

essive produ
tion56



3.2. Data
y
les there is usually an �empty period� during whi
h no birds are sto
ked sin
ethe buildings have to be 
leaned and sanitized, and maintenan
e pro
edures needto be performed.The study period started on November 28th, 1999 (i.e. the day that HPAI virus was�rst suspe
ted of having infe
ted a poultry farm) and ended on April 10th 2000(the day that infe
tion was eradi
ated). The data-sets upon whi
h this work isbased have been 
olle
ted by the Istituto Zoopro�latti
o Sperimentale delle Venezie(IZSVe) and have already been subje
t to analysis (Busani et al., 2009; Mannelliet al., 2006, 2007). Data on spe
ies and produ
tion type, duration of ea
h produ
-tion 
y
le and geographi
al lo
ation of the farms in the study area were 
olle
tedby veterinarians working for the Regional Veterinary Servi
e (Busani et al., 2009).The geographi
 distan
e between every pair of farms in the data-set has also been
omputed.To 
ontain the epidemi
, the following measures outlined by EU legislation1 wereapplied starting from De
ember 17th, 1999: the stamping-out of infe
ted or sus-pe
ted of being infe
ted farms (IF) and the ban of resto
king (BR) on emptiedfarms (either be
ause they ended a produ
tion 
y
le in the at-risk area during theepidemi
 or be
ause they were 
ulled) (Busani et al., 2009; Mannelli et al., 2007).Pre-emptive 
ulling (PEC) of farms lo
ated at less than 1 km from an infe
tedfarm started in Veneto from January 20th, 2000 (Busani et al., 2009) and in Lom-bardia from February 10th, 2000 (Mannelli et al., 2007). Further measures su
h asthe pre-emptive slaughter at farms that had at-risk 
onta
ts with an IF and stri
tlimitations to the movements of live poultry, produ
ts, vehi
les and sta� were alsoapplied in the whole study area (Busani et al., 2009). As the epidemi
 unfolded,the IZSVe re
orded the date of onset of 
lini
al signs (for every 
on�rmed 
ase) andthe date of 
ulling (either be
ause infe
ted or be
ause pre-emptively slaughtered)of every farm that underwent this measure.During the study period 382 farms were infe
ted (red dots in Figure 3.1), 72 (65 inVeneto and 7 in Lombardia) were pre-emptively slaughtered (blue dots in Figure3.1), the ban on resto
king was imposed on 1486 farms (yellow dots in Figure 3.1)and 1307 es
aped the infe
tion (green dots in Figure 3.1). H7N1 virus spread tothe maximum distan
e of 176.18 km from the sour
e farm. For every farm in thestudy area, starting and ending dates of ea
h produ
tion 
y
le have been re
orded.
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3.3. Models Analysed

Figure 3.1: Infe
ted farms (red dots), not infe
ted farms (green dots), farms banned fromresto
king (yellow dots) and pre-emptive 
ulled farms (blue dots) in the HPAI epidemi
 ofyears 1999-2000 in Italy (left panel) and in the study area (Veneto and Lombardia) (rightpanel)
3.3 Models AnalysedThe SEIR models are de�ned on a farm level (i.e. the farms are the individual units)and our assumptions are similar to those made by Boender et al. (2007) to modelthe di�usion of HPAI in The Netherlands. Time is dis
rete and for ea
h of the135 days (November 28th, 1999 - April 10th, 2000) farms in a produ
tion 
y
le are
lassi�ed as sus
eptible (S), latently infe
ted (i.e. infe
ted but not yet infe
tious)(E), infe
ted (I) or removed (either be
ause they were 
ulled or be
ause they werebanned from resto
king) (R). Farms are 
onsidered removed (R) also when theyare in the �empty period� between su

essive produ
tion 
y
les. Following Busaniet al. (2009), we assumed that infe
tion o

urred 7 days before the dete
tion of�rst symptoms and this in
luded a period of laten
y of 2 days (Van der Goot et al.,2003); the infe
tious period lasted until the day of 
ulling (Busani et al., 2009).With these assumptions, the average length of the infe
tious period was T = 11.82days (5 − 95 per
entile interval (6, 26)).In the Basi
 Model, transmission of infe
tion between an infe
tious farms j and a58



3.3. Models Analysedsus
eptible farm i at distan
e rij 
an o

ur (in a given day) with probability
h(rij) =

h0

1 +
(rij

r0

)α . (3.1)This is the same transmission kernel as used by Boender et al. (2007).The parameters h0, r0 and α have been estimated by maximum likelihood (ML),while other parameters have been kept �xed. Sensitivity analysis (not shown here)on the lengths of the in
ubation period (3, 5, 7 days) and of the latently infe
tedperiod (1, 2 days) show that the results obtained are robust to the exa
t 
hoi
e ofin
ubation and laten
y period.In the Sus
eptibility Model, farms are divided into 5 groups, a

ording to thespe
ies produ
ed during the epidemi
. Pre
isely, the spe
ies are: laying hens (1),meat turkeys (2), broilers (3), breeders (turkeys and 
hi
kens 
onsidered together)(4), others (5). The transmission kernel (3.1) is modi�ed by substituting the 
on-stant h0 with hk where k (= 1 . . . 5) represents the spe
ies.In the models with varying transmission rate, the transmission 
onstant (h0 or hk)
hanges with time, a

ording to the epidemi
 phase (see details in next Se
tion).In all models, the for
e of infe
tion on a sus
eptible farm i at time t λi(t) is givenby
λi(t) =

∑

j 6=i

h(rij)where the sum is performed over all infe
tious farms j at time t.The overall model is a simple dis
rete sto
hasti
 model, where, given the stateof the system at time t, ea
h non-infe
ted farm i independently be
omes infe
tedwith probability 1 − e−λi(t), while infe
ted farms progress through the latent orinfe
tious period.The likelihood of the observed events 
an then be 
omputed by multiplying (forea
h time t) the probabilities of be
oming infe
ted for ea
h farm infe
ted that day,times the probabilities of not be
oming infe
ted for ea
h farm not infe
ted that day.This 
an be 
omputed in an e�
ient way (Boender et al., 2007) by dividing farmsinto the following sets: M (farms infe
ted at time tinf ), K (farms not infe
ted andnot pre-emptively 
ulled within the end of the epidemi
 at time tmax), Λ (farmsnot infe
ted and pre-emptively 
ulled at time tcul) and B (farms not infe
ted andbanned from resto
king at time tban). Then the log-likelihood fun
tion 
an be
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3.4. Parameter Estimateswritten as follows
l = −

∑

k∈K

tmax−1
∑

t=1

λk(t) −
∑

l∈Λ

tcul,l−1
∑

t=1

λl(t) −
∑

b∈B

tban,b−1
∑

t=1

λb(t) +

−
∑

m∈M

tinf,m−1
∑

t=1

λm(t) +
∑

m∈M

log[1 − e−λm(tinf,m)]3.4 Parameter EstimatesWe 
omputed the maximum likelihood estimates (MLE) of the parameters, therelative 95% 
on�den
e intervals and AIC index for the Basi
 and the Sus
eptibilityModel. Con�den
e intervals have been 
omputed by �nite di�eren
e approximationof the inverse of the Hessian matrix of the log-likelihood fun
tion, whi
h is thenatural plug-in estimator of the the Fisher information matrix (Ri
e, 2004). TheMLE of the parameters of interest, whi
h have been 
omputed by implementingthe simulated annealing algorithm given by Press et al. (2002), the value of thelog-likelihood fun
tion at the MLE and the AIC indexes are given in Tables 3.1and 3.2.Table 3.1: MLE and 95% Con�den
e Intervals of the Basi
 Model's parametersEstimate 95% Con�den
e Interval
h0 0.0064 (0.0037, 0.0090)
r0 2.1524 (1.3943, 2.9106)
α 2.0760 (1.8711, 2.2809)log-likelihood -2430.4558AIC 4866.9116A

ording to Akaike's Criterion (Akaike, 1974), we �nd that the SEIR modelwith di�erent sus
eptibility a

ording to the spe
ies better explains the data.As for the 
hanges in transmissibility during the 
ourse of the epidemi
, we dividedthe study period into 4 phases: the �rst 19 days (Phase 1), during whi
h no 
ontrolor 
ontainment measures were undertaken; the next 34 days (20 ≤ t ≤ 53, Phase2) during whi
h stamping-out of IF and a ban on resto
king (BR) were applied onthe whole study area; the su

essive 20 days (54 ≤ t ≤ 74, Phase 3) during whi
hpre-emptive 
ulling (PEC) of farms lo
ated at less than 1 km from an IF, beyondIF 
ulling and BR, was applied in Veneto; the remaining 61 days (75 ≤ t ≤ 135,Phase 4) during whi
h 
ulling of IF, BR and PEC were applied in the whole study60



3.4. Parameter EstimatesTable 3.2: MLE and 95% Con�den
e Intervals of the Sus
eptibility Model's parametersEstimate 95% Con�den
e Interval
h1 0.009562 (0.0049, 0.0141)
h2 0.007010 (0.0034, 0.0105)
h3 0.001000 (0.0004, 0.0015)
h4 0.005273 (0.0022, 0.0083)
h5 0.001190 (0.0003, 0.0020)
r0 3.0908 (1.7853, 4.3963)
α 2.1850 (1.9037, 2.4663)log-likelihood -2294.6860AIC 4603.372area.The temporal 
hanges in transmissibility were �rst explored on the Basi
 SEIRModel (i.e. without distin
tion among the di�erent spe
ies). In the 4-Phases Basi
Model ea
h phase had a di�erent transmissibility 
oe�
ient h0 (hi

0, i = 1 . . . 4) inequation (3.1). A 2-Phases Basi
 Model has also been analysed where only Phase1 had a di�erent transmissibility 
oe�
ient (h1
0 vs. h2

0 for all subsequent phases);the 2-Phases Model was 
onsidered on the basis of the results from the 4-PhasesModel, but 
an also be justi�ed be
ause the 
hange in transmissibility may be dueto the limitations introdu
ed to the movements of live poultry, produ
ts, vehi
lesand sta�.The maximum likelihood estimates of the parameters of the three variations ofthe Basi
 SEIR Model, together with the value of the log-likelihood fun
tion at theMLE and the AIC index are given in Table 3.3. By means of the log-likelihood ratiotest and the assumption that the test statisti
 is asymptoti
ally χ2 distributed withthe degree of freedom equal to the di�eren
e in dimensionality of the parameters'spa
e of the tested models, we see that both the 2-Phases Basi
 Model and the 4-Phases Basi
 Model better explain our data at a signi�
an
e level of 0.01, 
omparedto the Basi
 SEIR Model. On the 
ontrary, the 4-Phases Basi
 Model does notprodu
e a (signi�
antly) better �t when 
ompared to the 2-Phases Basi
 Model.Akaike's Criterion is slightly lower for the 4-Phases Basi
 Model than the 2-PhasesBasi
 Model, but the di�eren
e is too small to justify a more 
omplex model (Table3.3).When 
onsidering the model with temporal phases and di�erent host sus
epti-bility, the number of parameters be
omes too large to obtain reliable ML estimates.We de�ned a 2-Phases Sus
eptibility Model asso
iating a 
onstant redu
tion of61



3.4. Parameter EstimatesTable 3.3: MLE of the Basi
 SEIR Model's parametersBasi
 Model 2-Phases Model 4-Phases Model
h1

0 0.0064 0.0107 0.0104
h2

0 0.0062 0.0056
h3

0 0.0067
h4

0 0.0078
r0 2.1524 2.1340 2.1824
α 2.0760 2.0717 2.0830log-likelihood -2430.4558 -2426.9912 -2424.6035AIC 4866.9116 4861.9824 4861.2070

transmissibility between the 2 phases, independently from the spe
ies. The redu
-tion fa
tor c between the 2 phases was �xed at 0.58, whi
h is the value obtainedwith the 2-Phases Basi
 Model. We moreover �xed the proportionalities among thesus
eptibility of the spe
ies at the values obtained with the Sus
eptibility Model
r2 =

h2

h1
= 0.73, r3 =

h3

h1
= 0.10, r4 =

h4

h1
= 0.55, r5 =

h5

h1
= 0.12.With these assumptions, the transmissibility 
onstant ht

k to spe
ies k at time t isgiven by
ht

k =

{

rkh1 if t ≤ 19

crkh1 if t ≥ 20
(3.2)where r1 = 1, and the only unknown quantity to estimate is h1. The MLE of the2-Phases Sus
eptibility Models and the relative 95% 
on�den
e intervals are givenin Table 3.4 while the 
orresponding values of the transmissibility 
onstants using(3.2) are given in Table 3.5. By Akaike's Criterion the data are better explainedby the 2-Phases Sus
eptibility Model than by the Sus
eptibility Model. However,the 2-Phases Sus
eptibility Model improves the log-likelihood estimate of just 2.1units (see Tables 3.2 and 3.4) while the large AIC redu
tion 
omes mainly fromits low number of parameters; the low number of parameters (just 3) 
omes outof the fa
t that we have �xed several proportionality fa
tors (see (3.2)) at thevalues obtained from previous analysis. Hen
e, the statisti
al assumptions neededto 
ompare models through the AIC are not met, and it is not possible to 
hoosethe model on this basis solely. 62



3.5. SimulationsTable 3.4: MLE and 95% Con�den
e Intervals of the 2-Phases Sus
eptibility Model'sparameters Estimate 95% Con�den
e Interval
h1 0.0155 (0.0078, 0.0232)
r0 3.1595 (1.7703, 4.5487)
α 2.1921 (1.8937, 2.4904)log-likelihood -2292.5117AIC 4591.0234Table 3.5: Values of the transmissibility 
onstants for the 2-Phases Sus
eptibility ModelPhase 1 Phase 2

h1 0.0155 0.0090
h2 0.0113 0.0065
h3 0.0015 0.0009
h4 0.0085 0.0049
h5 0.0018 0.00103.5 Simulations3.5.1 How data are reprodu
ed by the modelWe simulated AI epidemi
s using the Basi
 SEIR Model, the Sus
eptibility Modeland their 2-Phases versions in order to 
ompare them to observed data and assesstheir behavior.We assumed the observed spatial distribution of farms in the study area and thestart of the epidemi
 from the �rst infe
ted farm at time t = 1. We assigned theobserved produ
tion 
y
les to the farms whi
h were not infe
ted during the 1999-2000 outbreak. Infe
ted farms were assigned the observed produ
tion 
y
le untilthe day of infe
tion; the produ
tion 
y
le was then 
ompleted from the distributionof the observed produ
tion 
y
les, a

ording to the spe
ies. The length of theinfe
tious period of ea
h IF was randomly drawn from the observed infe
tiousperiods. Note that in this way we were a

ounting for Ban on Resto
king (BR)and IF stamping-out sin
e time t = 20. We assumed that PEC started at time

t = 54 in Veneto and at time t = 75 in Lombardia and that it took a randomnumber of days between 0 and 4 to 
ull an identi�ed 
ontiguous farm. Finally, welet epidemi
s evolve until extin
tion a

ording to ea
h of the 
onsidered models.We tested the simulation results on the following indi
ators: the mean numberof infe
ted farms (or total 
ase) (IF), the mean number of pre-emptively 
ulled63



3.5. Simulationsfarms (PEC), the mean number of farms banned from resto
king (BR), the averageextin
tion time (Text) and the average maximum distan
e to whi
h H7N1 spread(Dmax). The number of 
ulled farms (be
ause either infe
ted or pre-emptively
ulled) gives a measure of the total losses (TL) due to the epidemi
.For ea
h model, we averaged over 100 realizations that generated at least 10 
asesea
h; the number of repli
ates was suggested by similar analyses in the literature(Keeling et al., 2001; Matthews et al., 2003). Tables 3.6 and 3.7 show the averagevalues, together with the relative 5 − 95 per
entile intervals, obtained using eitherthe Basi
 SEIR Model or the Sus
eptibility Model, with the respe
tive 2-Phasesvariations. Note that, a

ording to the 
riteria for applying the PEC, a totalnumber of 129 (instead of 72) farms should have been pre-emptively 
ulled; thuswe expe
t that models that in
lude 
ulling at all farms within a radius of 1 kmfrom an IF will produ
e a higher number of 
ulling than a
tually observed.Table 3.6: Mean numbers and 5 − 95 per
entile intervals 
omputed on 100 realizationsthat generated at least 10 
ases, using the Basi
 Model and the 2-Phases Basi
 ModelBasi
 SEIR Model 2-Phases Basi
 Model Observed DataIF 169.82 (21, 361) 366.25 (117, 575) 382PEC 100.47 (10, 180) 147.72(70, 203) 72BR 1447.26(1105, 1638) 1307.13 (953, 1523) 1486
Text 123.53(77, 162) 133.89 (104, 177) 135
Dmax 118.22(58.69, 181.35) 144.89(102.23, 190.09) 176.18

Table 3.7: Mean numbers and 5−95 per
entile intervals 
omputed on 100 realizations thatgenerated at least 10 
ases, using the Sus
eptibility Model and the 2-Phases Sus
eptibilityModel Sus
eptibility Model 2-Phases Sus
eptibility Model Observed DataIF 266.53(90, 448) 385.01(196, 530) 382PEC 139.34(79, 196) 136.51(82, 179) 72BR 1403.06(1089, 1587) 1383.41(1125,1535) 1486
Text 135.64(104, 181) 130.17(109,162) 135
Dmax 139.33(89.97, 193.38) 151.07(108.48, 196.32) 176.18The numbers reported in Tables 3.6 and 3.7 show that the indi
ators produ
edby the models are reasonably 
onsistent with the data. The 2-Phases versions of the64



3.5. Simulationsmodels predi
t mean values of indi
ators 
loser to observed data; the agreement isfurther improved when taking into a

ount di�eren
e by spe
ies in the sus
eptibilityto HPAI infe
tion. The maximum predi
ted distan
e of virus spread, on average, isof 151.07 km from the sour
e farm, whi
h is less than the observed distan
e (176.18km).In order to have a more 
omplete 
omparison between data and simulations, we plot(Figure 3.2) the 3-day running (moving) averages (to remove extreme �u
tuations)of the data against the 3-day running averages of the 100 realizations of the the 2-Phases Sus
eptibility Model. In Figure 3.3 we 
ompare the 3-day running averageof the data to the traje
tories in time (3-day running averages) of four realizations:those yielding the 20th, 40th 60th and 80th per
entiles of the total number of
ases. Finally, Figure 3.4 shows one simulation of the spatial di�usion of infe
tiongenerated with the 2-Phases Sus
eptibility Model.

Figure 3.2: Comparison of the number of new 
ases between the 3-day running averageof the observed epidemi
 and of 100 repli
ates of the sto
hasti
 2-Phases Sus
eptibilityModel3.5.2 Assessment of the e�e
tiveness of the interventionmeasuresIn order to assess the e�e
tiveness of pre-emptive 
ulling (PEC) and of the imposi-tion of the ban on resto
king (BR), we �rst explored the e�e
t of negle
ting them.Every test in this se
tion was 
ondu
ted on the 2-Phases Sus
eptibility Model. The65



3.5. Simulations

Figure 3.3: Comparison of the number of new 
ases between the 3-day running average ofthe observed epidemi
 and the 20th, 40th, 60th and 80th of 100 repli
ates of the sto
hasti
2-Phases Sus
eptibility Modelaverage quantities obtained with the 2-Phases Sus
eptibility Model (see Table 3.7)
onstitute our baseline.When negle
ting BR, we assumed that every farm is sus
eptible for the whole
ourse of the epidemi
. In Table 3.8 we report the average values of the 
hosenindi
ators when negle
ting the imposition of ban of resto
king (NO-BR) and whennegle
ting the appli
ation of pre-emptive 
ulling of farms 
lose to an infe
tiouspremise (NO-PEC). From our results (see Table 3.8) we 
on
lude that the moste�e
tive intervention measure in stopping the infe
tion was the imposition of banof resto
king on emptied farms.Table 3.8: Mean numbers and 5−95 per
entile intervals 
omputed on 100 realizations thatgenerated at least 10 
ases, using the 2-Phases Sus
eptibility Model with and without BRor PEC NO-BR NO-PEC baselineIF 984.02(817,1103) 421.81(202, 592) 385.01(196, 530)PEC 496.89(368, 671) 0 136.51(82, 179)BR 0 1326.67(1055, 1573) 1383.41(1125,1535)
Text 147.13(123, 170) 143.95(111, 179) 130.17(109,162)
Dmax 168.19(135.21, 203.17) 148.69(114.96,189.35) 151.07(108.48, 196.32)TL 1480.91 421.81 521.5266



3.5. Simulations

Figure 3.4: Status of farms in the study area at time t = 1 (top left), t = 50 (top right), t =
100 (bottom left), t = 150 (bottom right) in one simulation of the 2-Phases Sus
eptibilityModel. Yellow dots represent empty farms, green dots represent sus
eptible units, red dotsrepresent infe
tious units, blue dots represent (either pre-emptive or previously infe
ted)
ulled farms.We also explored the e�e
t of applying PEC with some variations. An earlier(i.e. sin
e time t = 20) appli
ation of pre-emptive 
ulling (earlier-PEC) on thewhole study area produ
es on average less infe
ted 
ases and a higher number ofpre-emptive 
ulled farms, for a total number of losses whi
h is slightly lower thanthose produ
ed by the basi
 s
enario (see Table 3.9).The appli
ation of pre-emptive 
ulling for farms within a radius of 0.5 km froman IF (restri
ted-PEC) produ
es on average a higher number of infe
ted farms anda lower number of pre-emptive 
ulled farms, for a smaller number of total losses in
omparison to the base s
enario(see Table 3.8). Note that the NO-PEC strategyprodu
es on average an even lower number of total losses (equal to IF) (see Table3.8), whi
h is 
urrently the lowest among the simulated strategies, and 
ould thenbe 
onsidered to be the best one from this point of view. On the other hand, thetime required to eradi
ate the disease in the NO-PEC s
enario would be longer(about 10% on average) than with the baseline s
enario. From the point of view67



3.6. Results and Dis
ussionTable 3.9: Mean numbers and 5 − 95 per
entile intervals 
omputed on 100 realizationsthat generated at least 10 
ases, using the 2-Phases Sus
eptibility Model with di�erentintervention strategiesearlier-PEC restri
ted-PEC earlier&restri
ted PECIF 222.05(98, 326) 409.33(208, 578) 334.66(174, 450)PEC 269.68(127, 379) 58.78(32, 83) 138.34 (83, 192)BR 1349.68(1074, 1505) 1321.70(1023, 1512) 1356.46(1080, 1522)
Text 125.11(96,163) 142.84(110, 199) 133.91(107, 169)
Dmax 132.82(94.79,183.24) 150.79(115.93, 197.43) 146.23 (105.99, 185.14)TL 491.73 468.11 473of eradi
ation time, the earlier-PEC strategy would have been the best one.Note �nally that the variation among simulations is rather high 
ompared to thedi�eren
es among strategies. The only strategy that produ
es results unequivo
allydi�erent from the other ones is the NO-BR.3.6 Results and Dis
ussionOur study 
on�rms that proximity to an IF in
reases the risk of infe
tion. Thissupports our 
hoi
e to take transmission kernels as power law fun
tions of the dis-tan
e; moreover the exponent α and s
ale r0 are rather similar to what was foundby (Boender et al., 2007), despite the di�erent 
ontext.Redu
tion of virus transmissibility between Phase 1 and the subsequent phases anddi�eren
e in sus
eptibility by spe
ies have been also observed in this analysis. Ourestimates suggest a great di�eren
e in exposure and/or sus
eptibility among thepoultry spe
ies. Sin
e the model does not distinguish between di�erential levels ofexposure and intrinsi
 sus
eptibility, the estimates show that laying hens and meatturkeys are most exposed and/or sus
eptible to H7N1 virus. Breeders seem to beless exposed and/or sus
eptible to H7N1 than laying hens and meat turkeys butmore exposed and/or sus
eptible than broilers and all other spe
ies together (Ta-ble 3.2). These results are 
onsistent with the 
umulative probability of infe
tion
omputed by Busani et al. (2009) on the same datasets.We have also examined a model with di�eren
es in infe
tivity among spe
ies. Theresults (not shown) are on the border of signi�
an
e for di�eren
es in infe
tivity.However, the �t to data and the agreement of simulations with observed data weremu
h worse than in the model that a

ounts for the di�eren
e in sus
eptibility.Overall, we believe that the data 
annot demonstrate with good 
on�den
e the68



3.6. Results and Dis
ussionexisten
e of di�eren
es in infe
tivity among spe
ies.The 2-Phases Sus
eptibility Model turned out to be the model, among those testedhere, whose simulated outputs (Tables 3.6 and 3.7) are most similar to the observeddata. Figures 3.2 and 3.3 show that the observed epidemi
 falls within the rangeof the predi
tions obtained by the 2-Phases Sus
eptibility Model both in terms ofnumber of new 
ases at ea
h time t (Figure 3.2) and of the general pro�le of theepidemi
 
urve over time (Figure 3.3). This supports the utility of the model asan adequate and useful tool for poli
y testing.The results show that 
ontrol measures su
h as 
ulling of infe
tious farms, pre-emptive 
ulling of 
ontiguous premises, ban of resto
king on emptied farms andrestri
tions to the movement of animals, vehi
les and sta� (i.e. de
rease of thenumber of 
onta
ts among farms) have e�e
tively redu
ed virus transmission overtime, as observed also by Le Mena
h et al. (2006) for the epidemi
 in The Nether-lands.The BR resulted in the most e�e
tive intervention measure to 
ontrol and eradi-
ate the epidemi
. Simulations without BR measure but applying only 
ulling ofinfe
ted farms and neighboring premises resulted in a larger number of infe
tedor 
ulled farms than the observed number. Simulations without BR did not takeinto a

ount of the �empty period� between su

essive produ
tion 
y
les (i.e. everyfarm is assumed to be in produ
tion during the whole epidemi
). For this reasonthe e�e
t of BR may have been overestimated. On the other hand, the overesti-mation was presumably small, sin
e only some of the farms would have not beenin produ
tion during the study period and for only a few days.The strategy that minimizes the total losses is the NO-PEC. However, its imple-mentation would delay the eradi
ation of the infe
tion. As a 
onsequen
e, thea�e
ted area would be submitted to the restri
tion measures longer, 
ausing ad-ditional e
onomi
 losses. Establishing the overall best strategy would entail ane
onomi
 analysis beyond our aims. Comparative studies of the out
omes of alter-native 
ontrol strategies have been published for di�erent disease outbreaks (Keel-ing et al., 2001; Henzler et al., 2003; Bouma et al., 2003; Matthews et al., 2003;Stegeman, 2004; Tildesley et al., 2009).Earlier-PEC strategy a
hieves eradi
ation more qui
kly than what observed in thea
tual s
hedule and has also smaller 
osts in terms of losses. Also, NO-PEC andrestri
ted-PEC lower the total losses but at the 
ost of delaying eradi
ation. Indeed,the data show that the a
tual poli
y has been a sort of restri
ted PEC (espe
ially inLombardia) be
ause of the di�eren
e between the expe
ted (129 farms, a

ording69



3.6. Results and Dis
ussionto the o�
ial poli
y) and observed (72 farms) pre-emptive 
ullings.As a �nal observation, it 
an be seen that the real epidemi
 spread farther thanmost simulations thus suggesting a role of the long-range transmission, mainly re-lated to human a
tivities and poultry farming pra
ti
es (movement of personnel,tru
ks, animals and birds in the infe
ted area). Indeed, as shown by Figure 3.5,the farthest infe
ted 
ases a
quired infe
tion relatively early in time. In our study

Figure 3.5: Distan
e (km) rea
hed by infe
tion in time (days) in the 1999-2000 epidemi
in Italywe have taken into a

ount the distan
e between an IF and an uninfe
ted farm,without any 
lue on the way of the HPAI viruses spreading. AI spreads mainlythrough dire
t or indire
t 
onta
t with infe
ted birds (�ow of people, movement ofmaterials and vehi
les for instan
e) (Halvorson and Karunakaran, 1980; Thomaset al., 2005; Busani et al., 2009) but aerosol transmission, �
ontiguous spread� bypoorly understood routes (Henzler et al., 2003; Sedlmaier et al., 2009) and inter-spe
ies transmission via pigs (Webster et al., 1992; Ninomiya et al., 2002) 
annotbe ex
luded.More detailed data about the o

urren
e of at risk 
onta
ts between infe
ted anduninfe
ted poultry farms related to the movements of birds, people and vehi
leswould be ne
essary to in
lude long-range transmission in the model.
70



Chapter 4A new approa
h to estimate thespread and transmission ofinfe
tious diseases from Sentinelsurveillan
e: appli
ation to the2009-2010 A/H1N1 in�uenzapandemi
 in Italy
4.1 Introdu
tionThe dete
tion and 
ontrol of existing, newly emerging or re-emerging infe
tionsin the human population often relies on the analysis of syndromi
 and virologi
alsurveillan
e data whi
h are routinely 
olle
ted by most developed and many devel-oping 
ountries. Surveillan
e data are often the only kind of data available in realtime to inform de
ision makers and the analysis of these data provides important in-sights into the spread and transmission dynami
s of diseases like in�uenza. Duringthe 2009-2010 A/H1N1 in�uenza pandemi
, syndromi
 and virologi
al surveillan
edata were routinely 
olle
ted by most of the 
ountries a�e
ted by H1N1 and avail-able in real time.The analysis of syndromi
 and virologi
al data poses many statisti
al 
hallengesthat have not been addressed yet. For example, the size of the population that is71



4.2. Datamonitored 
hanges over time; only a fra
tion of syndromi
 
ases who are dete
tedby the surveillan
e system have been infe
ted by the etiologi
al agent of interest(e.g. H1N1 virus, in the past 2009-2010 in�uenza pandemi
) and the others aredue to other pathogens. These problems are usually either ignored or 
orre
ted bys
aling the epidemi
 
urve with multipli
ative fa
tors, something whi
h is expe
tedto bias the varian
e of the estimates.Here we present a general framework to ta
kle these issues and analyze syndromi
and virologi
al data by taking expli
itly into a

ount the sto
hasti
ity in the surveil-lan
e system. This is done by 
oupling a deterministi
 mathemati
al ODE (ordi-nary di�erential equations) model with a statisti
al des
ription of how the surveil-lan
e data is generated. Estimation of epidemiologi
al parameters su
h as thereprodu
tion number R0 and the age-dependent reporting rates and sus
eptibilityis then performed via Bayesian Markov Chain Monte Carlo (MCMC) sampling.The approa
h is applied to surveillan
e data 
olle
ted in Italy during the 2009-2010 A/H1N1 in�uenza pandemi
.The general modelling framework proposed in this work 
an be applied to a vari-ety of di�erent infe
tions dete
ted by surveillan
e system in many 
ountries and ispotentially a powerful tool to be used in the future to provide poli
y makers withimportant information in real time.4.2 DataSin
e the 1999-2000 in�uenza season, the Italian in�uenza surveillan
e system re-lies on INFLUNET. During the 2009-2010 H1N1 pandemi
 in�uenza season, IN-FLUNET re
ruited on average 1094 (minimum980,maximum1165) volunteer GPsand paediatri
ians per week, 
overing on average 1.4 million people (2.3% of theItalian population). Data 
olle
ted by INFLUNET on the weekly size of the mon-itored patients population and on the weekly number of observed In�uenza-Like-Illness (ILI) 
ases, aggregated by age groups (0-4 years, 5-14 years, 15-64 years and65+ years) are available online on the INFLUNET website (http://www.iss.it/i�u/).The virologi
al surveillan
e of the 2009-2010 in�uenza season has been 
ondu
tedby the Italian Ministry of Health, whi
h 
oordinated the 
olle
tion of the swabsthrough hospitals, laboratories operating within the national health servi
e, sen-tinel GPs and paediatri
ians. Weekly reports are available online on the ItalianMinistry of Health website under the voi
e �sorveglianza virologi
a�(http://www.salute.gov.it/in�uenza/in�uenza.jsp).72



4.3. Model FormulationThere is eviden
e that the number and stru
ture of the 
onta
ts within an age-stru
tured population signi�
antly vary over time, in parti
ular between holiday/week-end days and working days (Hens et al., 2009b,a). For this reason, usingraw data from the Italian arm of the POLYMOD survey (a diary-based survey ofdaily 
onta
ts in eight European 
ountries) (Mossong et al., 2008), we 
omputethe daily mean number of 
onta
ts among the 
onsidered age 
lasses during work-ing days and holiday/week-end days. In the Supplementary Information (SI) webrie�y dis
uss the methodology used to obtain the 
onta
t matri
es used in thiswork. Finally, we use Italian demographi
 data for year 2008 whi
h 
an be foundon the Italian National Statisti
al Institute website (http://www.istat.it/).We analyze here the data for the time period between week 38 of year 2009 (
or-responding to mid September 2009, when the s
hools re-opened after the summerbreak) and week 7 of year 2010 (
orresponding to the end of February, when theepidemi
 had 
learly died out).
4.3 Model Formulation4.3.1 Mathemati
al modelWe de�ned an age-stru
tured deterministi
 SEIR model, where individuals aresu

essively Sus
eptible, Exposed (def), Infe
tious (def) and Removed (def), with�ve age 
lasses (0-4, 5-14, 15-24, 25-64, 65+ years). The latent period (that is,the duration of stay in the Exposed state) and the infe
tious period are assumedto be Gamma distributed (this is a
hieved by splitting the Exposed and Infe
tiousstates in 2 
ompartments, ea
h). The addition of one age-
lass to those 
onsideredby INFLUNET during the 2009− 2010 in�uenza season is meant to allow a betterspe
i�
ation of the 
onta
ts among younger age-
lasses whi
h were parti
ularly hitby H1N1 virus.The model is 
oded in C and is numeri
ally solved using standard routines withvariable step size (Press et al., 2002). From the model we output Ct

i , the weekly(t) and age-spe
i�
 (i = 1, . . . , 5) number of A/H1N1 infe
tions in the Italianpopulation and, by s
aling down to the size of the monitored patients population,we get Z̄t
i , the expe
ted number of A/H1N1 infe
tions generated within 
lass iduring week t in the monitored patients population.73



4.3. Model Formulation4.3.2 Statisti
al modelIn what follows we adopt the notation graphi
ally represented on Figure 4.1 for thepurpose of 
larity. Ex
ept for the variable Ci
t , whi
h represents the age-stru
turedweekly number of A/H1N1 
ases in the Italian population, all the other variablesare de�ned at the monitored patients population level. In parti
ular, sin
e noinformation on the patients age is provided for the samples tested in the virologi
alanalysis, we assume that πt, de�ned as the probability that a swabs tests positiveon week t, does not vary a
ross the age-groups.

Italian population

monitored patients

population week t
H1N1 cases in the

Italian population

– Ci
t

ILI cases – ILIit
monitored patients

population

∪

tested samples

– Tt

H1N1 cases in the

patients population

– Zi
t

ILI & not H1N1

cases – NFi
t

ILI & H1N1 cases

– Fi
t

laboratory

confirmed samples

– PtFigure 4.1: Graphi
al representation of the populations taken into a

ount and notationadopted in the work. The Italian population is 
onsidered 
onstant over the whole studyperiod while the monitored patients population 
hanges every week, due to the volountarynature of the surveillan
e system. Index i denotes the age-
lass (i = 1, . . . , 4) and index tdenotes the week, ranging from week 38 of year 2009 to week 7 of year 2010.In the following we des
ribe the assumptions that led us to the de�nition of thelikelihood fun
tion L.We divide the presentation in two parts. We �rst 
onsider the 
ase when the weeklynumber of H1N1 
ases in the monitored patients population in the i-th age 
lass
Zi

t is exa
tly predi
ted by the solution Z̄i
t of the deterministi
 system. Then, weextend our model to the situation when Zi
t is a random variable of whi
h Z̄i

t is theexpe
ted value. 74



4.3. Model Formulation4.3.3 Fixed Z i
tLet us start by 
onsidering the 
ase Zi

t = Z̄i
t .Denote Tt the weekly (and age-unstru
tured) number of swabs sampled (within themonitored patients population and among the individuals showing ILI symptoms)to be laboratory tested (Figure 4.1). Denote Pt the laboratory 
on�rmed H1N1samples among those tested (Tt) on the 
orresponding week (Figure 4.1). Sin
ewe la
k information about the pre
ise timing of 
olle
tion of the swabs, we assumethat samples tested on week t had been 
olle
ted during week t − 1.Given πt and Tt, the number of positive swabs Pt follows the Binomial distribution

P (Pt|Tt, πt) =

(

Tt

Pt

)

πPt
t (1 − πt)

Tt−Pt (4.1)Denote ILIi
t the weekly number of ILI 
ases in the monitored patients populationof age-
lass i and F i

t the weekly number of H1N1 
ases of age-
lass i that reportILI symptoms (Figure 4.1). Hen
e, if ρi represents the probability that a personinfe
ted with H1N1 reports ILI symptoms, the distribution of F i
t is given by theBinomial model with parameters Z̄i

t and ρi

P (F i
t |Z̄

i
t , ρi) =

(

Z̄i
t

F i
t

)

ρ
F i

t

i (1 − ρi)
Z̄i

t−F i
t (4.2)Denote NF i

t the number of ILI 
ases (in the monitored patients population) thatwould result negative to the A/H1N1 virus, if tested
NF i

t = ILIi
t − F i

t (4.3)Given F i
t , we think of NF i

t as the number of negative samples one gets in a sequen
eof Bernoulli trials before obtaining the F i
t -th positive sample. Hen
e, given F i

t > 0and πt, we assume that NF i
t has a negative binomial distribution with parameters

F i
t and 1 − πt

P (NF i
t |F

i
t , 1 − πt) =

(

NF i
t + F i

t − 1

F i
t − 1

)

π
F i

t
t (1 − πt)

NF i
t (4.4)Equation 4.3 implies that

P (ILIi
t |F

i
t , πt) = P (NF i

t = ILIi
t − F i

t |F
t
i , πt)75



4.3. Model Formulationand the probability distribution of ILIi
t is expli
itly given by

P (ILIi
t |F

i
t , πt) =

(

ILIi
t − 1

F i
t − 1

)

π
F i

t
t (1 − πt)

ILIi
t−F i

t (4.5)If F i
t = 0, then the whole ILIi

t set would test negative, that is
P (ILIi

t |F
i
t , πt) = (1 − πt)

ILIi
t (4.6)On
e given a prior distribution P (πt) to πt, using 
onditional probability andassumptions (4.4),(4.5) and (4.6), we de�ne the (up to a normalising 
onstant)probability of the data given the model

P (ILIi
t , Pt|Tt, Z̄

i
t , ρi) =

=

min(ILIi
t ,Z̄i

t)
∑

j=0

∫ 1

0
P (ILIi

t |F
i
t = j, πt)P (F i

t = j|Z̄i
t , ρi)P (Pt|Tt, πt)P (πt)dπt (4.7)We assume a prior Beta distribution for πt,

P (πt) =
πα−1

t (1 − πt)
β−1

B(α, β)
(4.8)where α and β are shape parameters, substitute (4.1), (4.2), (4.5), (4.6) and (4.8)into (4.7), and obtain (see the SI for the 
omplete 
omputation)

P (ILIi
t , Pt|Tt, Z̄

i
t , ρi) =

=

(

Tt

Pt

)

B(a, b)

(

(1 − ρi)
Z̄i

tB(Pt + α, ILIi
t + Tt − Pt + β)+ (4.9)

+

min(ILIi
t ,Z̄i

t)
∑

F i
t =1

(

ILIi
t − 1

F i
t − 1

)(

Z̄i
t

F i
t

)

ρ
F i

t

i (1 − ρi)
Z̄i

t−F i
t B(F i

t + Pt + α, ILIi
t − F i

t + Tt − Pt + β)

)Denoting θ the parameter ve
tor, the Bayesian model is de�ned by:
P ({ILIi

t}i,t, {Pt}t, θ|Tt) =
∏

t

∏

i

P (ILIi
t , Pt|Tt, Z̄

i
t(θ), ρi)P (θ) (4.10)76



4.3. Model Formulationwhere P (θ) is the prior distribution.
4.3.4 Random Z i

tInstead of taking Zi
t �xed to the value Z̄i

t , we assume that Zi
t is drawn from aNegative Binomial distribution (Alexander et al., 2000; Lloyd-Smith et al., 2005;Lloyd-Smith, 2007; Mathews et al., 2007; Cau
hemez and Ferguson, 2008)

Zi
t ∼ NegBin(r,

Z̄i
t

Z̄i
t + r

) (4.11)with (dispersion) parameter r to be de�ned. De
reasing values of r 
orrespond toin
reasing levels of overdispersion. In this formulation, the expe
ted value is �xedat Z̄i
t and the varian
e is given by Z̄i

t

(

1 +
Z̄i

t

r

).Under this assumption, it 
an be proved (see the SI) that
P (F i

t |Z̄
i
t , ρi, r) =

(

F i
t + r − 1

r − 1

)

( Z̄i
tρi

Z̄i
tρi + r

)F i
t
( r

Z̄i
tρi + r

)r (4.12)The (up to a normalising 
onstant) probability of the data given the model is inthis 
ase given by
P (ILIi

t , Pt|Tt, Z̄
i
t , ρi, r) =

=

(

Tt

Pt

)

B(a, b)

(

(1 − qt
i)

Z̄t
i B(Pt + α, ILIi

t + Tt − Pt + β)+

+

ILIi
t

∑

F i
t =1

(

ILIi
t − 1

F i
t − 1

)(

F i
t + r − 1

r − 1

)

(qi
t)

F i
t (1 − qi

t)
rB(F i

t + Pt + α, ILIi
t − F i

t + Tt − Pt + β)

)(4.13)where for simpli
ity of notation we set qi
t =

Z̄i
tρi

Z̄i
tρi + r

.Expression (4.13) has been obtained substituting (4.1), (4.12), (4.5), (4.6) and (4.8)77



4.4. Models de�nition and parametrisationinto formula
P (ILIi

t , Pt|Tt, Z̄
i
t , ρi, r) =

=

ILIi
t

∑

j=0

∫ 1

0
P (ILIi

t |F
i
t = j, πt)P (F i

t = j|Z̄i
t , ρi, r)P (Pt|Tt, πt)P (πt)dπt (4.14)If we denote by θ the parameter ve
tor, the Bayesian model is de�ned by (4.10)with (4.14) in pla
e of (4.9).

4.4 Models de�nition and parametrisationIn the previous se
tion we have expli
itly de�ned two families of models, depend-ing on the assumption on Zi
t either exa
tly predi
ted by the deterministi
 modelthrough the solution Z̄i

t or taken as a negative binomial random variable withexpe
ted value given by Z̄i
t . The �rst 
ase will be referred as the �without overdis-persion� variant of the model, the se
ond as the �with overdispersion� one.From early on in the 2009 pandemi
, it was noti
ed that the young age-
lasseswere parti
ularly hit by the H1N1 virus (Fraser et al., 2009; Ghani et al., 2009). Inorder to quantify this observation, we use here the results from the 
ross-se
tionalserologi
al study led by Miller et al. (2010) on serum samples 
olle
ted in 2008 inEngland.Details on how we used the results of the serologi
al study by Miller et al. (2010)and on alternative assumptions and de�ned models are given in the SI. Table 4.1summarizes the values of sus
eptibility we used in the �Sus
eptibility� model.We �rst assume that, during the 2009-2010 H1N1 pandemi
, the reporting rateswere 
onstant over time. In the �Basi
� variant of the model we assume that thereporting rates did not vary a
ross the age-groups (i.e. ρ1 = · · · = ρ5) whereas inthe Age-Dependent Reporting (ADR) version we allow reporting rates to be age-spe
i�
. In the Time-Varying Reporting (TVR) version of the model we assumethat the age-dependent reporting rate of ea
h age-
lass 
hanges over time t (weeks)proportionally among the age-
lasses as given by the pie
ewise linear fun
tion

ρi(t) = ρig(t) (4.15)78



4.4. Models de�nition and parametrisationwhere g(38) = 1, g(45) = a, g(52) = b, g is linear on the whole domain and a, band ρi with i = 1, . . . , 4 are parameters to be estimated.Estimates of the infe
tivity h1 and h2 of the respe
tive infe
tious stages I1 and
I2 have been obtained through the �t of the infe
tivity fun
tion (after infe
tion)of a SEIR model to the average of the daily titres 
olle
ted from six volunteerswho were experimentally infe
ted with an H1N1 in�uenza virus, as des
ribed byBa

am et al. (2006). The values used for h1 and h2 are reported on Table 4.1and a more extensive des
ription of the methodology adopted for this estimationis given in the SI.In agreement with some re
ent studies about H1N1 in�uenza (Cau
hemez et al.,2009a; Ghani et al., 2009; Lessler et al., 2009), we �x the mean generation time Tgto 2.6 days and the mean laten
y period to 1 day as in (Baguelin et al., 2010).In order to allow for a proper mixing, we seed the initial number of A/H1N1 
ases
I0 (in the Italian population) on week 31 (mid August 2009) and �t the model tothe data on the temporal window between week 38 of year 2009 and week 7 of 2010.The initial number of 
ases I0 is distributed among the age 
lasses proportionallyto the ve
tor (5%, 10%, 45%, 35%, 5%) whi
h appears reasonable and 
omparableto the age distribution of reported 
ases over the summer (Rizzo et al., 2009).Sensitivity analysis on this assumption has been performed.In Italy s
hools re-opened, after the summer break, on September 15th 2009. Forthis reason, until week 38, we assign holidays/week-end 
onta
ts to s
hool-aged
hildren (5 − 14 years). The same is done for Christmas holidays (De
ember 23rd

2009-January 7th 2010) during whi
h the other 
lasses are assumed to have theaverage between week and holiday/weekend 
onta
ts.
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4.5. Parameter estimationmeaning of the parameter model
η laten
y rate 2.0/day Basi
, ADR
γ infe
tious rate 0.833/day Basi
, ADR
σ1 sus
eptibility of age-
lass 0 − 4 years 0.98 Basi
, ADR, TVR
σ2 sus
eptibility of age-
lass 5 − 14 years 0.96 Basi
, ADR, TVR
σ3 sus
eptibility of age-
lass 15 − 24 years 0.85 Basi
, ADR, TVR
σ4 sus
eptibility of age-
lass 25 − 64 years 0.87 Basi
, ADR, TVR
σ5 sus
eptibility of age-
lass 65+ years 0.73 Basi
, ADR, TVR
h1 infe
tivity of the infe
tious stage I1 16.1 Basi
, ADR, TVR
h2 infe
tivity of the infe
tious stage I2 9.6 Basi
, ADR, TVR
α, β shape parameters of the Beta distribution in (4.8) 1.0 Basi
, ADR, TVR
p probability of infe
tion given an infe
tious 
onta
t ind.
omp. Basi
, ADR, TVR
R0 reprodu
tion number estimated Basi
, ADR, TVR
I0 number of H1N1 
ases at week 31 estimated Basi
, ADR, TVR
ρ1 ILI reporting rate of H1N1 
ases of age 0 − 4 estimated ADR, TVR
ρ2 ILI reporting rate of H1N1 
ases of age 5 − 24 estimated ADR, TVR
ρ3 ILI reporting rate of H1N1 
ases of age 25 − 64 estimated ADR, TVR
ρ4 ILI reporting rate of H1N1 
ases of age 65+ estimated ADR, TVR
a, b parameters de�ning the fun
tion in (4.15) estimated TVRTable 4.1: Summary of the parameter values �xed and estimated in the models. With theexpression �ind.
omp.� we mean �indire
tly 
omputed� from R0, as explained in the maintext.4.5 Parameter estimationIn a Bayesian setting, we make inferen
e on the parameters whi
h are summarizedin Table 4.1.Given the likelihood fun
tion L and 
hosen a (in our 
ase uniform) prior distri-bution of the parameters, the (target) posterior distribution is known up to anormalizing 
onstant. MCMC methods 
onstru
t Markov 
hains whose stationarydistribution is the distribution of interest, when it 
annot be dire
tly simulated. Weimplemented the 
lassi
al Metropolis-Hastings algorithm (Gilks et al., 1996; Tier-ney, 1994; Walsh, 2004; O'Neill, 2002) and, starting from arbitrary initial valuesin the parameter spa
e, generated sequen
es of draws from the unknown (target)probability distribution of the parameters. We assume a �at prior distribution for

πt, thus setting the shape parameters α and β of (4.8) equal to 1. A log-s
ale hasbeen used for sampling as the parameters were all positive de�nite and were ex-80



4.6. Resultspe
ted to potentially vary by orders of magnitude. Parameters have been updatedeither separately (i.e. 
omponent by 
omponent) in the low dimensionality modelsor in blo
ks of 2 − 3 parameters ea
h for the models with higher dimensionality,in order to improve the algorithm performan
e. We 
he
ked 
onvergen
e by as-signing di�erent starting values in the parameter spa
e (also far from the posteriormean) and by visual inspe
tion of the tra
e plots. The algorithm was iteratedfor 500.000 times and we �xed a �burn-in� period of 100.000 steps. By tuningthe varian
e of the proposal distribution, we adjusted the mixing of the 
hainsand attempted to rea
h a rate of a

eptan
e (number of a

epted moves/numberof proposed points) as 
losest as possible to the �golden� a

eptan
e rate for theRandom Walk Metropolis Hastings of 23% (Roberts et al., 1997). As expe
ted, wefound some 
orrelations between 
ertain parameters (like R0 and I0, for example).We use the Devian
e Information Criterion (DIC) for model 
omparison and sele
-tion (the preferred model is the one showing the lowest DIC) (Spiegelhalter et al.,2002).4.6 ResultsThe ILI in
iden
e 
urve peaked on week 46 (mid November), de
reased over thenext 6 weeks and then slowly in
reased again during the �rst weeks of 2010 (seeFigure 4.2). The H1N1-attributable ILI-in
iden
e 
urve (red dots) in Figure 4.2has been simply obtained by multiplying the ILI in
iden
e times the proportionof positive swabs 
olle
ted in that week, under the assumption that the samplestested on week t had been 
olle
ted during week t − 1.Table 4.2 reports the mean and the equal-tailed 95% 
redible interval of the es-timated parameters for the �Sus
eptibility� model �without overdispersion�. Theestimated mean value of R0 ranges from 1.36 to 1.42, respe
tively obtained bythe �Basi
� and �Age-Dependent Reporting� versions of the �Sus
eptibility� model�without overdispersion�.Table 4.3 summarizes the estimates obtained by the �with overdispersion� vari-ant of the �Age-Dependent Reporting Sus
eptibility model� with overdispersionparameter r estimated from the data; a

ording to these estimates the estimatedmean value of R0 has been 1.29(1.27− 1.32). The �Age-Dependent Reporting Sus-
eptibility model� with overdispersion shows the lowest DIC among the models
onsidered in this work and using this model we estimate that, on average, in theItalian population the 25.9% of H1N1 
ases of 0-4 years, the 16.6% of H1N1 
ases81



4.6. Resultsof 5-14 years, the 6.9% of H1N1 
ases of 15-64 years and the 6.5% of H1N1 
asesof 65+ years reported ILI symptoms to the surveillan
e system.The di�erent models exhibit di�erent 
redibility interval ranges, whi
h are re�e
tedinto the di�erently wide predi
tion bars of Figure 4.3. The �Age-Dependent Report-ing Sus
eptibility� model with overdispersion is the one with the widest 
redibilityinterval range.Figure 4.4 shows the age-spe
i�
 estimated in
iden
es (per thousand) of H1N1
ases within the Italian population obtained from the numeri
al solution of theSEIR model (in the Italian population) having �xed the parameters as obtainedfrom ea
h of 500 random draws from the joint posterior distribution estimatedwith the �Age-Dependent Reporting Sus
eptibility� model with estimated disper-sion parameter r. Table 4.4 summarizes some statisti
s of the predi
tions plottedon Figure 4.4. The estimated peak-in
iden
es of A/H1N1 
ases show a fair variabil-ity both within and between the age-
lasses. At the 
ommunity level the estimatedpeak-in
iden
e is of 55.7 (30.8, 91.6) (per thousand). On Table 4.4 we also reportthe estimated age-spe
i�
 and overall 
ase atta
k rates, 
omputed on the wholestudy period (weeks 31 − 7). In terms of A/H1N1 
ase atta
k rate, we estimatethat the 5−14 years age-
lass was about 5 times more a�e
ted than the 65+ yearsage-group and that the overall atta
k rate was of 29.6% (27.7%, 31.6%).Sensitivity analysis (see the SI) shows that the parti
ular seeding does not a�e
tthe model output and that the estimates are also robust to the hypothesis on thelength of the latent period.Basi
 Model ADR Model TVR ModelDIC 10104.5 2510.8 2468.4
R0 1.362 (1.357, 1.368) 1.412 (1.405, 1.418) 1.384 (1.371, 1.398)
I0 136 (116, 156) 37 (32, 44) 69 (45, 99)
ρ1 0.084 (0.082, 0.086) 0.188 (0.182, 0.195) 0.191 (0.141, 0.247)
ρ2 0.084 (0.082, 0.086) 0.175 (0.171, 0.179) 0.171 (0.128, 0.219)
ρ3 0.084 (0.082, 0.086) 0.055 (0.054, 0.057) 0.055 (0.041, 0.071)
ρ4 0.084 (0.082, 0.086) 0.035 (0.033, 0.038) 0.036 (0.027, 0.047)
a 1.180 (0.842, 1.657)
b 0.557 (0.377, 0.795)Table 4.2: Sus
eptibility model without overdispersion: DIC s
ore, mean and equal-tailed

95% 
redible interval of the marginal posterior distribution of the parameters for ea
hspe
i�ed model. 82



4.6. ResultsADR Sus
eptibility model with overdispersionDIC 1234.0 1478.3 1693.9 2127.3
R0 1.298 (1.275, 1.321) 1.304 (1.286, 1.322) 1.341 (1.332, 1.350) 1.385 (1.379, 1.392)
I0 900 (476, 1536) 753 (466, 1146) 263 (202, 332) 76 (63, 90)
ρ1 0.259 (0.205, 0.325) 0.254 (0.211, 0.305) 0.227 (0.211, 0.244) 0.201 (0.193, 0.210)
ρ2 0.166 (0.132, 0.207) 0.164 (0.138, 0.196) 0.169 (0.159, 0.180) 0.176 (0.170, 0.182)
ρ3 0.069 (0.056, 0.087) 0.069 (0.057, 0.082) 0.064 (0.059, 0.068) 0.058 (0.056, 0.060)
ρ4 0.065 (0.050, 0.084) 0.062 (0.050, 0.076) 0.047 (0.043, 0.052) 0.038 (0.036, 0.042)
r 6.309 (3.950, 9.285) �xed to 10 �xed to 100 �xed to 1000Table 4.3: ADR Sus
eptibility model with overdispersion: DIC s
ore, mean and equal-tailed 95% 
redible interval of the marginal posterior distribution of the parameters having�xed the dispersion parameter r to the spe
i�ed value and having estimated r from thedata.
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Figure 4.2: In
iden
e (per thousand) of the total number of reported ILI 
ases (bla
kdots) and of the number of reported H1N1-attributable ILI-
ases (red dots), obtained bymultipli
ation of the weekly ILI datum times the proportion of positive samples on the
orresponding week. 83



4.6. Results Estimated peak-in
iden
e atta
k rate0-4 years 53.2 (19.7, 102.5) 31.6% (29.4%, 33.9%)5-14 years 99.2 (36.7, 192.1) 54.3% (51.6%, 57.1%)15-64 years 57.1 (21.2, 110.6) 31.5% (29.4%, 33.7%)65+ years 20.3 (7.5, 39.3) 11.4% (10.6%, 12.4%)overall 55.7 (30.8, 91.6) 29.6% (27.7%, 31.6%)Table 4.4: Estimated age-spe
i�
 peak-in
iden
e (per thousand) and atta
k rate of H1N1
ases 
aused by the A/H1N1 virus in the Italian population during the 2009-2010 pandemi
as resulted from simulations of the ADR Sus
eptibility model with estimated overdisper-sion parameter r having �xed the parameters at the values obtained by 500 draws fromthe joint estimated posterior distribution. Mean and, in bra
kets, 5-95 per
entile interval.
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4.6.Results

Basi
 model ADR model TVR model ADR model withwithout overdispersion without overdispersion without overdispersion estimated overdispersion
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4.6.ResultsBasi
 model ADR model TVR model ADR model withwithout overdispersion without overdispersion without overdispersion estimated overdispersion

Figure 4.3: Sus
eptibility model (in the Basi
, Age-Dependent Reporting and Time-Varying Reporting versions without overdispersion andin the Age-Dependent Reporting version with overdispersion parameter estimated from the data) : plot of the simulated weekly reportedin
iden
e (per thousand) of H1N1 
ases in the 0 − 4 years age-
lass (blue), 5 − 14 years age-
lass (green), 15 − 64 years age-
lass (orange),

65+ years age-
lass (purple) and in the population as a whole (bla
k) in 
omparison to the respe
tive observed data (red).
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4.7. Dis
ussion

Figure 4.4: Estimated in
iden
e (per thousand) of H1N1 
ases in the Italian populationusing the ADR Sus
eptibility model with overdispersion parameter r estimated from thedata: 0 − 4 years age-
lass (blue), 5 − 14 years age-
lass (green), 15 − 64 years age-
lass(orange), 65+ years age-
lass (purple), in the population as a whole (bla
k). Predi
tionshave been obtained from the numeri
al resolution of the SEIR model having �xed theparameters as resulted from 500 draws from the estimated joint posterior distribution.4.7 Dis
ussionIn this work we propose a general and rigorous statisti
al framework whi
h expli
-itly takes into a

ount the way surveillan
e data are generated. Our main obje
tivewas indeed to estimate the in
iden
e of H1N1 
ases at the national population level,without s
aling the epidemi
 
urve with some multipli
ative fa
tor.We found that, when a

ounting for an age-spe
i�
 sus
eptibility, the mean R0varies depending on the model into the range 1.298 − 1.412, where the �rst esti-mate has been obtained by the �Age-Dependent Reporting Sus
eptibility� modelwith dispersion parameter r estimated from the data and the latter one has beenobtained by the �Age-Dependent Reporting Sus
eptibility� model �without overdis-persion�. Our estimates are 
onsistent with those of (Ajelli et al., 2010) derivedfrom the exponential growth phase of the ILI number of 
ases.Our �nding that di�erent age 
lasses visited their GP with di�erent rates is proba-bly not surprising and the 
ommon sense would 
ertainly have suggested this fa
t.Here we quanti�ed this di�eren
e and found that infants and 
hildren reported87



4.7. Dis
ussionthe H1N1 symptoms and infe
tion respe
tively around 3 and 4 times more oftenthan adults. This was obtained under the simplifying assumptions that the report-ing rates were either 
onstant or 
hanged linearly with time. We tried to test forreporting rates di�ering in time through the �Time-Varying Reporting Sus
eptibil-ity� model but the results were not 
ompletely satisfying, sin
e despite the relativewidth of the 
on�den
e intervals, a fair number of data points still fell outside thevalues predi
ted by the model. However, our estimates suggest a positive 
orrela-tion of the reporting rate with the number of 
ases, whi
h is 
onsidered a plausiblephenomenon by Cau
hemez and Ferguson (2008) and may re�e
t the high level ofworry of the people towards the youngest age-
lasses indu
ed by the media duringthe past swine �u pandemi
, as suggested by Rubin et al. (266). Studies in thespirit of (Rubin et al., 266) able to measure and quantify the behavioural 
hangeso

urred during the last H1N1 pandemi
 in the Italian population are desirable.Table 4.4 and Figure 4.4 
on�rm that s
hool-age 
hildren led and sustained theepidemi
, followed by adults and the youngest 
hildren, whilst elder people werethe less a�e
ted.The introdu
tion of a negative binomial distribution for Zt
i in
reases the sto
hasti
-ity of the models that was otherwise 
on�ned to a
t only in the reporting pro
ess.The 
hoi
e of a negative binomial distribution for the distribution of infe
tions hasbeen suggested by several authors (Mathews et al., 2007; Cau
hemez and Ferguson,2008) and 
an be 
onsidered an approximation to a pure sto
hasti
 model. Thesele
ted values of r (mean value 6.30 and 95% CI = (3.95, 9.28)) are in the rangealready used by other authors and result in rather wide 
redible intervals for thenumber of infe
tions in any given week.In the �Sus
eptibility� model we assumed that at the beginning of the epidemi
 thewhole population is sus
eptible to H1N1 and assign an age-dependent sus
eptibilityto ea
h age-
lass. A di�erent assumption 
onsists in assuming that a fra
tion ofthe population is immune sin
e the beginning of the epidemi
 and that sus
epti-bility to H1N1 does not vary among the age-
lasses (see the SI). The parameterestimates obtained when a

ounting for an immune fra
tion of population are 
on-sistent with the respe
tive estimates obtained with the �Sus
eptibility� model sothat either 
hoi
es, to in
lude a di�erential sus
eptibility depending on the age orto a

ount for the presen
e of an immune fra
tion of the population at the begin-ning of the epidemi
, �t the data equally well.In the �Age-Dependent Reporting Sus
eptibility� model we �xed the age-dependentsus
eptibility to the values extrapolated by the study of Miller et al. (2010). In-88



4.7. Dis
ussiondeed, the serologi
al study on the 
ross-rea
tive antibody responses to the H1N1in�uenza virus in the pre-pandemi
 period, led in Italy by Rizzo et al. (2010) 
ouldnot be applied to our model due to in
ompatible divisions of the population intoage-
lasses (1 − 55 years, 56 − 65 and 65+ years).In the �Age-Dependent Reporting Sus
eptibility� model, on
e �xed the age-dependentsus
eptibility, we estimated the age-dependent reporting rates. The alternative
hoi
e is to �x a 
onstant reporting rate and estimate the age-dependent sus
ep-tibility and is dis
ussed in the SI. The results 
on�rm a drop in sus
eptibility toH1N1 beyond s
hool-years but it's stronger than our initial assumption. Presum-ably reality lies in between, with drops both in sus
eptibility and reporting rate.For sure our analysis would bene�t from the availability of more detailed informa-tion on the 
riteria adopted for the 
olle
tion of the swabs (su
h as, for instan
e,the weekly per
entages of swabs 
olle
ted by sentinel GPs, the average delay be-tween 
olle
tion and testing of the samples et
.) and the eventual 
hanges in the
olle
tion pro
ess, as the epidemi
 unfolded. It is indeed important to note thatour analysis has been led under the assumption that the swabs sele
ted for test-ing are a random sample of the ILI 
ases while a sizeable part has been 
olle
tedoutside the surveillan
e system (laboratories and hospitals operating within thenational health servi
e), presumably for 
lini
al reasons. Unfortunately, availabledata do not distinguish among swabs of di�erent sour
es. Finally, our model 
ouldbe extended to in
lude age-spe
i�
 virologi
al data, if available.Our results show that the basi
 features of the epidemi
 are 
aptured by the model,in parti
ular the �Age-Dependent Reporting Sus
eptibility model� des
ribes ade-quately the overall epidemi
 
ourse and the age distribution of the 
ases. There aresome minor systemati
 deviations of the data from the expe
ted values of the pre-di
tions (for instan
e, the predi
tions regarding the starting weeks of the epidemi
are systemati
ally lower than the observed data in the 0-4 years age-
lass and sys-temati
ally higher than the observed data in the 5-14 years age-
lass) so that it
ould be argued that our model misses some details of the infe
tion and report-ing pro
ess. It is possible that adding other fa
tors su
h as 
hanging behaviouralpatterns 
ausing more 
omplex variations of the reporting rates over time, het-erogeneity in infe
tiousness, spatial and network substru
turing for instan
e 
ouldimprove the des
ription of the virus spread. Determining whi
h of these elementsare needed to a

urately des
ribe the dynami
s of virus spread in large populationsis topi
 of ongoing resear
h. Still, a simple model like the one we used appears ad-equate for an overall des
ription of the epidemi
 
ourse.89



4.8. Supplementary InformationThe methodology developed here 
an be applied to the analysis of the temporalspread of the A/H1N1 pandemi
 in�uenza in other 
ountries, provided that epi-demiologi
al and virologi
al data are available. Finally, our approa
h 
ould beeasily adopted to analyse existing or future emerging infe
tious diseases.
4.8 Supplementary Information4.8.1 DataMethodology adopted to 
ompute the 
onta
t matri
esThe methodology we adopted to 
ompute the week and week-ends/holiday 
on-ta
t matri
es mimi
s very 
losely the one used by Mossong et al. (2008). Startingfrom the raw data of the POLYMOD survey, we 
omputed the equivalent matri-
es reported in (Mossong et al., 2008) with the distin
tion between working daysand week-end/holiday 
onta
ts for Italy. The POLYMOD survey was 
ondu
tedin Italy between May 17th 2006 and June 1st 2006, a period during whi
h no of-�
ial holidays o

urred. For this reason we are able to distinguish only betweenthe 
onta
ts o

urring during the working days from those o

urring during theweek-ends. Sin
e the age distribution of the survey population does not mat
hthe Italian population age distribution, we standardize the estimates as follows.First, we divide the total number of 
onta
ts had by the parti
ipants by the num-ber of parti
ipants, thus obtaining the average number of 
onta
ts per respondent.Multiplying the average number of 
onta
ts per respondent times the size of the
orrespondent age 
lass in the Italian population, we get the estimated number of
onta
ts in the Italian population (i.e. the average number of 
onta
ts of an age
lass with the other age 
lasses, in the Italian population). We symmetrize theobtained matrix substituting two symmetri
 o�-diagonal elements with their arith-meti
 mean. After 
orre
tion for re
ipro
ity, we s
ale down to the individual levelagain thus obtaining Tables 4.5 and 4.6, whi
h represent the symmetri
 
onta
tmatri
es at the individual level. 90



4.8. Supplementary Information0-4 5-14 15-24 25-64 65+0-4 5.2258065 1.4971592 0.5942825 11.6781801 1.11125775-14 0.7616100 14.4929577 1.7232274 13.1401577 1.050361715-24 0.2775376 1.5820011 13.9405941 9.1557241 0.852374425-64 0.9948124 2.2004017 1.6700517 11.3832487 1.945924365+ 0.2618677 0.4865656 0.4300993 5.3830335 2.9318182Table 4.5: Symmetrized 
onta
t matrix of all reported 
onta
ts (physi
al and non-physi
al)in Italy, 
onsisting of the average number of 
onta
t persons re
orded per working day persurvey parti
ipant (Polymod 2008). Row index represents the age 
lass of the parti
ipant,
olumn index represents the age 
lass of the 
onta
t.0-4 5-14 15-24 25-64 65+0-4 1.6923077 1.4236201 0.2998418 6.6052098 0.73076925-14 0.7242004 7.8387097 1.4178535 9.3789261 1.407101415-24 0.1400299 1.3016539 10.4090909 10.0278330 0.250000025-64 0.5626686 1.5705599 1.8291289 9.0559006 1.738157965+ 0.1722057 0.6518203 0.1261474 4.8082869 0.5714286Table 4.6: Symmetrized 
onta
t matrix of all reported 
onta
ts (physi
al and non-physi
al)in Italy, 
onsisting of the average number of 
onta
t persons re
orded per holiday day persurvey parti
ipant (Polymod 2008). Row index represents the age 
lass of the parti
ipant,
olumn index represents the age 
lass of the 
onta
t.4.8.2 Model formulationMathemati
al modelThe equations of the age-stru
tured SEIR model de�ned in the main text are

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

















Ṡi = −λi(t)Si

Ė1
i = λi(t)Si − νE1

i

Ė2
i = ν(E1

i − E2
i )

İ1
i = νE2

i − γI1
i

İ2
i = γ(I1

i − I2
i )

Ṙi = γI2
i .

(4.16)
with i, j = 1, . . . , 5 
orresponding to the �ve age-
lasses 0-4, 5-14, 15-24, 25-64,65+ years. The rates of loss of laten
y ν and infe
tiousness γ are assumed not to91



4.8. Supplementary Informationdepend on the age 
lass. The for
e of infe
tion λi is given by
λi(t) = pσi

5
∑

j=1

cij(t)(h
1
I1
j (t)

Nj
+ h2

I2
j (t)

Nj
) (4.17)where σi represents the sus
eptibility of age-
lass i, cij(t) indi
ates the mean num-ber of 
onta
ts between an individual of age 
lass i with individuals of age 
lass jon day t (the time variable is here used just to distinguish the working days fromthe week-end days), Nj represents the (
onstant in time) size of age group j, with

i, j = 1, . . . , 5, p is for the probability of getting infe
ted upon a 
onta
t with aninfe
tious individual and h1 and h2 represent the infe
tivity of the two infe
tiousstages I1 and I2 respe
tively.The mean number of new 
ases generated by an individual of age 
lass j in age
lass i is given by
kji = pσicji

∫ +∞

0
A(τ)dτ i, j = 1, . . . , 5 (4.18)where A(τ) denotes the infe
tivity fun
tion at time τ after infe
tion. The entriesgiven in (4.18) de�ne the next generation matrix K and following Diekmann andHeesterbeek (2000) we de�ne the reprodu
tion number R0 as the spe
tral radius

s(K) of the next generation matrix
R0 = s(K) = ps(M)

∫ +∞

0
A(τ)dτ (4.19)The reprodu
tion number R0 is 
learly proportional to p, the probability of in-fe
tion given an infe
tious 
onta
t. We used R0 as a parameter and adjusted pa

ordingly. Matrix M on equation (4.19) is given by

mji = σicji(t) i, j = 1, . . . , 5 (4.20)For 
ompleteness, we de�ne the infe
tivity fun
tion A(τ) at time τ after infe
tion.Let g(t) denote the probability density fun
tion of the variable TE, the length ofthe latent period (i.e. the time spent in the 
lasses E1 and E2). The probabilityof being in 
lass I1 at time τ (after infe
tion) is given by
P (I1, τ) =

∫ τ

0
g(t)e−γ(τ−t)dt (4.21)
92



4.8. Supplementary InformationIn a similar fashion, the probability of being in 
lass I2 at time τ (after infe
tion)is given by
P (I2, τ) =

∫ τ

0
g(t)

∫ τ

t

γeγ(u−t)e−γ(τ−u)dudt (4.22)
A(τ) is de�ned as follows

A(τ) = h1P (I1, τ) + h2P (I2, τ) (4.23)Equation (4.19) needs the 
omputation of
∫ +∞

0
A(τ)dτ =

= h1

∫ +∞

0

∫ τ

0
g(t)e−γ(τ−t)dtdτ + h2

∫ +∞

0

∫ τ

0
g(t)

∫ τ

t

γe−γ(u−t)e−γ(τ−u)dudtdτ

= h1

∫ +∞

0
g(t)

∫ +∞

t

e−γ(τ−t)dτdt + h2

∫ +∞

0

∫ +∞

t

g(t)

∫ τ

t

γe−γ(u−t)e−γ(τ−u)dudτdt

= h1

∫ +∞

0
g(t)

∫ +∞

t

e−γ(τ−t)dτdt + h2

∫ +∞

0
g(t)

∫ +∞

t

γe−γ(u−t)

∫ +∞

u

e−γ(τ−u)dτdudt

=
h1

γ
+

h2

γ
(4.24)Hen
e the basi
 reprodu
tion number is given by

R0 = ps(M)
h1 + h2

γ
(4.25)The mean generation time, de�ned as the mean duration between time of infe
tionof a se
ondary infe
tee and the time of infe
tion of its primary infe
tor (Wallingaand Lipsit
h, 2007), is given by

Tg =

∫ +∞
0 τA(τ)dτ
∫ +∞
0 A(τ)dτ

(4.26)In phase of parameterization, we �xed ν = 2.0 (it 
orresponds to a latent periodof 1.0 day) and tuned γ to obtain a generation time Tg of 2.6 days.93
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al modelFixed Z i
t : 
omputation of P (ILI i

t , Pt|Tt, Z̄
i
t , ρi)We report below the 
omputation of P (ILIi

t , Pt|Tt, Z̄
i
t , ρi) that led to expression(10) in the main text. The 
omputation is based on the mathemati
al de�nitionof the Beta fun
tion B for two variables x, y > 0

B(x, y) =

∫ 1

0
tx−1(1 − t)y−1dt (4.27)From the de�nition given in (4.27) it follows that

P (ILIi
t , Pt|Tt, Z̄

i
t , ρi) =

=

(

Tt

Pt

)

B(a, b)

(

(1 − ρi)
Zi

t

∫ 1

0
πPt+α−1

t (1 − πt)
ILIi

t+Tt−Pt+β−1dπt+

+

min(ILIi
t ,Zi

t)
∑

F i
t =1

(

ILIi
t − 1

F i
t − 1

)(

Zi
t

F i
t

)

ρ
F i

t

i (1 − ρi)
Zi

t−F i
t ·

∫ 1

0
π

F i
t +Pt+α−1

t (1 − πt)
ILIi

t−F i
t +Tt−Pt+β−1dπt+

+

(

Zi
t

F i
t

)

F i
t ρ

F i
t

i (1 − ρi)
Zi

t−F i
t

∫ 1

0
πPt+α−1

t (1 − πt)
ILIi

t+Tt−Pt+β−1dπt

)

=

(

Tt

Pt

)

B(a, b)

(

(1 − ρi)
Z̄i

tB(Pt + α, ILIi
t + Tt − Pt + β)+

+

min(ILIt
i ,Z̄i

t)
∑

F i
t =1

(

ILIi
t − 1

F i
t − 1

)(

Z̄i
t

F i
t

)

ρ
F i

t

i (1 − ρi)
Z̄i

t−F i
t B(F i

t + Pt + α, ILIi
t − F i

t + Tt − Pt + β)

)
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t : 
omputation of P (F i

t |Z̄
i
t , ρi, r)

In this se
tion we prove that, given
Zi

t ∼ NegBin

(

r,
Z̄i

t

Z̄i
t + r

) (4.28)and
P (F i

t |Z
i
t , ρi) =

(

Zi
t

F i
t

)

ρ
F i

t

i (1 − ρi)
Zi

t−F i
t (4.29)it follows that

P (F i
t |Z̄

i
t , ρi, r) =

(

F i
t + r − 1

r − 1

)

( Z̄i
tρi

Z̄i
tρi + r

)F i
t
( r

Z̄i
tρi + r

)r (4.30)This fa
t 
an be shown using the probability generating fun
tion.For simpli
ity of notation let's set
qi
t =

Z̄i
t

Z̄i
t + r

(4.31)From (4.11) and (4.2) it follows that the probability generating fun
tion of Zi
t isgiven by

GZi
t
(t) = E

[

tZ
i
t
]

=
(1 − qi

t)
r

(1 − tqi
t)

r
(4.32)and the probability generating fun
tion of F i

t is given by
GF i

t
(t) = E

[

tF
i
t
]

= (1 − ρi + tρi)
Zi

t (4.33)where E denotes the expe
ted value. Sin
e
E
[

tF
i
t
]

= E
[

E[tF
i
t |Zi

t ]
]

= E
[

(1 − ρi + tρi)
Zi

t
]it follows that

GF i
t
(t) =

(

1 − qi
t

)r

[

1 − (1 − ρi + tρi)qi
t

]r

=

(

1 − qi
t

)r

[

1 − qi
t(1 − ρi) − tρiqi

t

]r (4.34)95
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=

[

1 −
ρiq

i
t

1 − qi
t(1 − ρi)

]r

[

1 − t
ρiq

i
t

1 − qi
t(1 − ρi)

]rand hen
e by (4.31) we may 
on
lude (4.12).4.8.3 Models de�nition and parametrizationAlternative modelsIn this work we de�ne two age-dependent parameters: sus
eptibility (i.e. the prob-ability of getting infe
ted given a 
onta
t with an infe
tious individual) and report-ing rate (i.e. the probability that an H1N1 
ase in the patients population reportsILI symptoms).Due to identi�ability issues, it is not possible to make inferen
e on both parameters(sus
eptibility and reporting rate) at the same time and one has to �x one of thetwo and make inferen
e on the other.In order to estimate the age-spe
i�
 reporting rates, we �x the age-spe
i�
 sus
ep-tibility to the values extrapolated from the results of the 
ross-se
tional serologi
alstudy by Miller et al. (2010) as des
ribed below.Noti
e �rst that the presen
e of 
ross-rea
tive antibody in the blood samples 
anbe interpreted as 
onferring either partial or 
omplete prote
tion to infe
tion byH1N1. In the �rst 
ase, we assume that at the beginning of the epidemi
 the wholepopulation is sus
eptible (i.e. no fra
tion of the population is immune) and assignan age-spe
i�
 sus
eptibility to the di�erent age-
lasses, thus de�ning what we 
all�Sus
eptibility� model. In the se
ond 
ase, we assume that at the beginning of theepidemi
 a fra
tion of the population in ea
h age-
lass is immune (i.e. removedfrom the infe
tion dynami
s) and that the sus
eptible population is 
ompletelyand equally sus
eptible to H1N1 (σ1 = · · · = σ5 = 1.0), thus de�ning what we 
all�Immunity� model.As anti
ipated, we use the results given in the 
ross-se
tional serologi
al study byMiller et al. (2010) and average the per
entages of samples showing mi
roneutral-ization titre at or above the 
ut o� value of 1:40 and haemagglutination inhibitionat or above 1:32 and in the �Sus
eptibility� model �x the sus
eptibility of the age
lasses to the value obtained by subtra
tion of the obtained average per
entage to
1. For example, if 2% is the average per
entage of 
hildren in the 0-4 years age-
lass showing titres at or above the spe
i�ed thresholds, we �x the sus
eptibility96
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lass to σ1 = 1 − 2% = 98%. The values of sus
eptibility we�xed in the �Sus
eptibility model� are given in Table 1 of the main text. In the�Immunity model� we �x the fra
tion of immune population at the beginning of theepidemi
 to the value obtained by subtra
tion of the obtained average per
entageto 1. Using the same example of above, we assume that the 98% of the populationin age-
lass 0− 4 years is in the sus
eptible 
lass at the beginning of the epidemi
(week 31). Similarly to what has been done for the �Sus
eptibility� model, we de-�ne a �Basi
�, �Age-Dependent Reporting� and �Time-Varying Reporting� versionsof the �Immunity� model without overdispersion. The estimates obtained by the�Immunity� model are given on Table 4.7.Basi
 Model ADR Model TVR Model
R0 1.524 (1.518, 1.531) 1.574 (1.567, 1.581) 1.546 (1.531, 1.560)
I0 119 (101, 138) 37 (32, 44) 66 (45, 95)
ρ1 0.094 (0.092, 0.096) 0.205 (0.199, 0.212) 0.204 (0.156, 0.257)
ρ2 0.094 (0.092, 0.096) 0.188 (0.184, 0.193) 0.182 (0.140, 0.227)
ρ3 0.094 (0.092, 0.096) 0.062 (0.060, 0.64) 0.061 (0.047, 0.077)
ρ4 0.094 (0.092, 0.096) 0.040 (0.037, 0.043) 0.040 (0.030, 0.051)
a 1.193 (0.878, 1.602)
b 0.607 (0.413, 0.864)Table 4.7: Immunity model without overdispersion: mean and equal-tailed 95% 
redibleinterval of the marginal posterior distribution of the parameters for ea
h spe
i�ed model.Note that the estimates of R0 obtained with the �Immunity� model are higherthan those obtained with the relative versions of the �Sus
eptibility� model. Thisfa
t is due to the de�nition of R0 given in equation (4.19), whi
h is theoreti
allyadequate only for the �Sus
eptibility� model (i.e. in the 
ase of the �Immunity�model, formula (4.19) does not a

ount for the presen
e of an immune fra
tionof population at the early stages of the epidemi
). For a proper 
omparison, adi�erent de�nition of R0 for the �Immunity� model would be needed.In order to estimate the age-spe
i�
 sus
eptibility, we �x the age-dependent re-porting rate. Hen
e, by �xing the reporting rate as resulted from the �Basi
� and�Age-Dependent Reporting� version of the �Sus
eptibility� model without overdis-persion, we respe
tively de�ne a �Basi
� and �Age-Dependent Reporting� versionof the �Fixed-Reporting� model. The sus
eptibility estimates obtained with the�Fixed-Reporting� model are given in Table 4.8.97
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 Fixed-Reporting res
aling ADR Fixed-Reporting res
aling
R0 1.31 (1.29, 1.33) 1.30 (1.28, 1.32)
I0 645 (383, 1013) 651 (390, 1032)
σ1 3.02 (2.47, 3.62) 2.60 (2.12, 3.12) 1.20 (0.89, 1.42) 0.96 (0.77, 1.22)
σ2 1.32 (1.13, 1.52) 1.14 (0.97, 1.31) 1.02 (0.83, 1.24) 0.88 (0.71, 1.07)
σ3 �xed to 1.0 0.86 �xed to 1.0 0.86
σ4 0.92 (0.67, 1.25) 0.79 (0.58, 1.08) 0.75 (0.60, 0.95) 0.65 (0.51, 0.82)Table 4.8: Fixed reporting model with overdispersion (r = 10) in the �Basi
� and �Age-Dependent Reporting� versions (i.e. having �xed the reporting rates as resulted respe
-tively from the �Basi
� and �Age-Dependent Reporting� versions of the �Sus
eptibility�model): mean and equal-tailed 95% 
redible interval of the marginal posterior distribu-tion of the parameters; the sus
eptibility estimated have also been res
aled to the values�xed on Table 1 in the main text for the purpose of 
omparison.

Estimation of the infe
tivity parameters h1 and h2

The SEIR model used to estimate the infe
tivity values has one laten
y 
lass andthree infe
tious stages with a mean laten
y period of 1 day and a mean infe
tiousperiod of 3 days. Let ω1, ω2 and ω3 denote the unknown infe
tivity parameters ofthe three infe
tious stages I1, I2 and I3. Through the �t of the infe
tivity fun
tion(after infe
tion) of the SEIIIR model to the data reported in (Ba

am et al., 2006)we obtain the following estimates
ω1 = 0.0 ω2 = 16.1 ω3 = 9.6 (4.35)The infe
tivity fun
tion (after infe
tion) �tted to the data reported in (Ba

amet al., 2006) is given in Figure 4.5. 98
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Figure 4.5: Plot of the �t of the infe
tivity fun
tion sin
e infe
tion A(τ) (de�ned in theSI by equation (4.23)) to the data reported by Ba

am et al. (2006)Sin
e ω1 = 0.0 we interpreted the �rst infe
tious stage of the SEIIIR model asbeing equivalent to a latent stage, thus obtaining a SEIR model with two laten
yand two infe
tious stages; this is the reason for whi
h we took h1 = ω2 and h2 =

ω3. We 
hose to 
onsider the infe
tivity estimates as values that 
hara
terize theinfe
tious stages, independently of the assumptions on the rates of laten
y andinfe
tiousness upon whi
h they were generated.4.8.4 Parameter estimationSensitivity analysisWe performed sensitivity analysis on two assumptions: the distribution (at week
31) of the initial 
ases I0 among the age-
lasses and the mean length of the latentperiod. Sensitivity analysis was performed on the �Age-Dependent Reporting� ver-sion of the �Sus
eptibility� model without overdispersion.We 
onsidered the following distributions of the initial 
ases I0 among the age-
lasses: (1%, 1%, 39%, 39%, 20%), (10%, 20%, 40%, 20%, 10%) and (20%, 20%, 20%, 20%, 20%)as alternatives to the original 
hoi
e and the results (Table 4.9) show that the par-ti
ular seeding does not a�e
t the model output.99
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I0 (1%, 1%, 39%, 39%, 20%) (10%, 20%, 40%, 20%, 10%) (20%, 20%, 20%, 20%, 20%)

R0 1.412 (1.405, 1.418) 1.411 (1.405, 1.417) 1.411 (1.405, 1.418)
I0 44 (38, 52) 37 (31, 44) 44 (37, 51)
ρ1 0.189 (0.182, 0.195) 0.188 (0.182, 0.195) 0.189 (0.182, 0.195)
ρ2 0.175 (0.171, 0.179) 0.175 (0.171, 0.179 0.175 (0.171, 0.179
ρ3 0.055 (0.053, 0.057) 0.055 (0.054, 0.057) 0.055 (0.054, 0.057)
ρ4 0.035 (0.033, 0.037) 0.035 (0.033, 0.037) 0.035 (0.033, 0.038)Table 4.9: Sensitivity analysis on the distribution of the initial 
ases I0: mean and equal-tailed 95% 
redible interval of the marginal posterior distribution of the parameters forthe �Age-Dependent Reporting Sus
eptibility� model without overdispersion.Regarding the mean length of the latent period, the results given in the paperhave been obtained under the assumption that the mean length of the latent periodis of 1 day and the mean generation time of 2.6 days. Here we assume a mean lengthof the latent period of 1.3 days and the same mean generation time of 2.6 days.The results obtained under this assumption are given on Table 4.10. The estimatesare robust also to the hypothesis on the length of the latent period.Basi
 model ADR model TVR model

R0 1.357 (1.351, 1.362) 1.405 (1.398, 1.411) 1.377 (1.365, 1.390)
I0 138 (118, 158) 39 (33, 46) 74 (51, 102)
ρ1 0.086 (0.084, 0.0875) 0.191 (0.185, 0.198) 0.183 (0.140, 0.228)
ρ2 0.086 (0.084, 0.0875) 0.177 (0.173, 0.181) 0.164 (0.127, 0.202)
ρ3 0.086 (0.084, 0.0875) 0.056 (0.054, 0.058) 0.053 (0.041, 0.066)
ρ4 0.086 (0.084, 0.0875) 0.036 (0.034, 0.038) 0.035 (0.027, 0.044)
a 1.255 (0.946, 1.684)
b 0.609 (0.416, 0.844)Table 4.10: Sus
eptibility model: mean and equal-tailed 95% 
redible interval of themarginal posterior distribution of the parameters for the �Sus
eptibility� model withoutoverdispersion assuming a mean length of the latent period of 1.3 days and a mean gener-ation time Tg of 2.6 days.4.8.5 How data are reprodu
ed by the modelIn order to validate the model, we 
ompare the predi
ted age-stru
tured weeklyin
iden
e of A/H1N1 
ases with the data.In the deterministi
 
ase Zi

t = Z̄i
t we draw 1000 (sets of) parameters from the jointposterior distribution and for ea
h draw we numeri
ally solve the SEIR model in the100



4.8. Supplementary InformationItalian population. After res
aling into the patients population (and for ea
h drawnset of parameters) we obtain a realization of Z̄i
t , the number of patients infe
tedby the A/H1N1 virus. Given Z̄i

t and the sele
ted reporting rate(s), we apply theBinomial model given in equation (3) of the main text and draw 100 realizationsof F i
t , the number of �u (H1N1) 
ases within the patients population. We 
an thus
ompute the in
iden
e (per thousand) of H1N1 infe
tions to be 
ompared to theobserved A/H1N1 in
iden
e 
urve (red dots of Figure 2 in the main text).When Zi

t is taken as a random variable, for ea
h of the 500 parameter draws fromthe joint posterior distribution we repeat the pro
edure des
ribed above and obtain
Z̄i

t . For ea
h Z̄i
t we draw 20 values of Zi

t from the Negative Binomial distributiongiven on equation (12) in the main text having �xed the dispersion parameter r tothe spe
i�ed value and then for ea
h of this Zi
t generate 10 F i

t as random drawsfrom the Binomial model given in equation (13) of the main text.The number of draws to be performed from the distributions de�ned in the �xed
Zi

t = Z̄i
t 
ase and in the random Zi

t one has been 
hosen so that to obtain the samenumber of realizations of F i
t .Figure 4.6 shows the 
omparison between the in
iden
e data and the predi
tionsobtained by the �Immunity� model without overdispersion.
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4.8. Supplementary InformationBasi
 model ADR model TVR model

Figure 4.6: Immunity model without overdispersion: plot of the simulated weekly reportedin
iden
e (per thousand) of the new H1N1 
ases in the 0− 4 years age-
lass (blue), 5− 14years age-
lass (green), 15− 64 years age-
lass (orange), 65+ years age-
lass (purple) andin the population as a whole (bla
k) in 
omparison to the respe
tive observed data (red).102



Chapter 5Estimation of R0 from real andsimulated s
hool outbreaks
5.1 Introdu
tionThe re
ent 2009-2010 pandemi
 in�uenza A/H1N1 virus mostly a�e
ted youngpeople, in parti
ular those in s
hool-age years. The high number of 
ases observedamong the youngest age-
lasses 
an be explained in terms of higher levels of sus
ep-tibility of 
hildren with respe
t to adults, something 
on�rmed also by serologi
alstudies (Miller et al., 2010; Rizzo et al., 2010), and by the fa
t that transmissionis favoured by the high 
onta
t rates o

urring among 
hildren within s
hools.There is eviden
e that s
hools play a 
ru
ial role in the transmission of infe
tiousdiseases su
h as in�uenza so that the impa
t of s
hools 
losure and the extent towhi
h this non-pharma
euti
al intervention 
an be used to redu
e the total numberof 
ases and slow the epidemi
 has been widely investigated and dis
ussed (Fergu-son et al., 2006; Cau
hemez et al., 2008, 2009b; Wu, 2010).Whenever a new infe
tious disease emerges, the estimation of the pathogen trans-missibility is an urgent issue whi
h is often addressed by modelling the infe
tionspread using an infe
tious s
heme of SIR type and by estimating the real-timegrowth rate on the number of syndromi
 or laboratory 
on�rmed 
ases observed inthe population (if available). Surveillan
e systems monitor the spread of an infe
-tion at a national level and surveillan
e data are often uninformative at the veryearly stages of disease transmission, due to the very low in
iden
e (in terms of bothnumber of syndromi
 
ases and 
on�rmed 
ases). On the 
ontrary, 
lusters of 
asesare more easily monitored in small 
ommunities or spe
i�
 so
ial 
ontexts and as103



5.2. Estimation of exponential growth ratea matter of fa
t the real-time estimation of infe
tion transmissibility has been of-ten performed on data 
olle
ted in households (Yang et al., 2009b), s
hools (Yanget al., 2009b; Lessler et al., 2009) and small 
ommunities (Fraser et al., 2009).The estimates for the reprodu
tion number R0 obtained in s
hool settings (Yanget al., 2009b; Lessler et al., 2009; Nishiura et al., 2009) are generally higher thanthose obtained in 
ommunity settings (Ghani et al., 2009; Fraser et al., 2009;Nishiura et al., 2010). It has been argued that the early estimation of the repro-du
tion number R0 obtained from the analysis of data 
olle
ted in spe
i�
 so
ial
ontexts (su
h as s
hools) overestimates the transmissibility of infe
tion at the levelof the general 
ommunity (Nishiura et al., 2010). Using an individual-based modelre
ently developed to model the A/H1N1 in�uenza pandemi
 in Europe (Merlerand Ajelli, 2010) we 
ompare here the estimates of the reprodu
tion number R0obtained from the 
urve of the 
ases observed in the general 
ommunity and fromthe 
urve of the 
ases observed within sele
ted samples of s
hools; this is 
omparedalso to the theoreti
al value of within s
hool reprodu
tion number, and to the themean number of 
ases a
tually generated by the index 
ase in a �random� s
hool.Model s
hools have been sele
ted for the analysis either as among the s
hools withthe highest number of 
ases (to simulate the ones that would presumably be 
hosenas target of outbreak analysis) or at random among all s
hools that had at leastone 
ase.Finally, we present a �rst analysis of the data 
olle
ted through a survey in twoItalian primary s
hools after the in�uenza outbreak during the 2009-2010 H1N1pandemi
. These s
hools were 
hosen purely for 
onvenien
e and should representa �random� s
hool from the point of view of in�uenza outbreaks.5.2 Estimation of exponential growth rateInfe
tions emerging in large populations are 
hara
terized by the fa
t that theinitial sto
hasti
 �u
tuations in the number of 
ases is soon over
ame by a 
learexponential growth phase. Whenever an epidemi
 is observed in smaller 
ontextssu
h as s
hools, the sto
hasti
 �u
tuation in the number of 
ases 
annot be ne-gle
ted and an estimation of the growth-rate be
omes more 
hallenging.In the literature, a few methods have been used to estimate the exponential growthrate of the number of 
ases and in this work we are going to 
onsider three verysimple of these te
hniques (Chowell et al., 2007b; Favier et al., 2006). The methods
onsidered here are fast but not very re�ned and more a

urate estimates 
an be104



5.2. Estimation of exponential growth rateobtained with other and more 
omplex te
hniques (Cau
hemez et al., 2010).Let us assume that, at the early stages of an epidemi
, the number of 
ases growsexponentially. In other words, we assume that the in
iden
e in the number of thenew 
ases i(t) grows exponentially with rate r in time t

i(t) = kert (5.1)with k ∈ R a 
onstant.By de�nition, the 
umulative fun
tion c(t) is given by
c(t) =

∫ t

0
i(s)ds =

k

r
(ert − 1) (5.2)By applying the logarithmi
 fun
tion to i(t), we expli
itly �nd a linear relationship

loge(i(t)) = rt + loge kBy applying the logarithmi
 fun
tion to the 
umulative c(t), we obtain
loge(c(t)) = loge(e

rt − 1) + loge

(

k

r

)

= rt + loge(1 − e−rt) + loge

(

k

r

)

. (5.3)If we restri
t ourselves to 
onsider t large enough that loge(1 − e−rt) ≈ 0 (butsmall enough that the exponential phase is still going on), we see that r 
an beobtained as the slope of a line approximating the values of loge(c(t)). The plotof fun
tion loge(c(t)) versus time t (Figure 5.2) visually shows the approximatelylinear behaviour of (5.3) for t large enough
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5.2. Estimation of exponential growth rate
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Figure 5.1: Plot of the logarithm of the 
umulative fun
tion c(t) de�ned in (5.2) versustime t.Finally, noti
e the linear relationship existing between i(t) and c(t)

i(t) = rc(t) + kHere we estimate the exponential growth rate r through the least square �t of alinear model to the observed quantities just introdu
ed and here summerized:L.1) to the logarithm of the in
iden
e versus time [ i.e. loge(i(t)) vs t
];L.2) to the logarithm of the 
umulative number of 
ases versus time (Chowellet al., 2007b) [ i.e. loge(c(t)) vs t

];L.3) to the in
iden
e versus the 
umulative number of 
ases (Favier et al., 2006)
[ i.e. i(t) vs c(t)

].These methods should be applied to data 
oming from a phase of exponentialgrowth in in
iden
e. Furthermore, for method L.2, the temporal window shouldex
lude times too 
lose to 0, where loge(1 − e−rt) is not negligible (Merler andAjelli, 2010). Some 
are hen
e has to be taken in 
hoosing a temporal window ofdata to whi
h these methods should be applied. In order to de
rease subje
tivityin this 
hoi
e, we pro
eeded through a semi-automati
 pro
edure.The linear models are �tted on a sequen
e of temporal windows [ti, ti + δt], where
ti denotes the time at whi
h the i-th 
ase has been dete
ted in the s
hool and
δt assumes every integer value within [ti+1 − ti, tmax − ti], with tmax denoting the106



5.2. Estimation of exponential growth ratetime at whi
h the last 
ase is dete
ted in the s
hool. We take time t1 (i.e. the timeat whi
h the index 
ase is dete
ted into a s
hool) as a referen
e and set t1 = 1.We adopted an iterative rule to draw a sample from the ve
tor of the 
umulativenumber of 
ases ct: starting from c1 = 1, we generate a sample of length nit byiterating nit − 1 times the following rule
ci+1 = ci +

α

100
Ns (5.4)with Ns denoting the s
hool size and α to be 
hosen so that the sample 
overs afair part of the observed epidemi
. We generate the sequen
e of starting times ofthe temporal windows ti by asso
iating to ea
h sampled 
umulative number thetime at whi
h it was �rst observed.From an epidemiologi
al point of view, we assume to model the infe
tion dynami
susing a SEIR model with an exponentially distributed latent period of mean T̄Eand an exponentially distributed infe
tious period of mean length T̄I . Therefore,if r denotes the exponential growth rate in the number of 
ases, the reprodu
tionnumber R0 is given by

R0 = (1 + rT̄E)(1 + rT̄I) (5.5)Finally, let yt denote the observed data at time t and lt = q + rt denote the valuepredi
ted by linear regression. We take R2, the fra
tion of the total squared errorexplained by the model
R2 = 1 −

∑

t(yt − lt)
2

∑

t(yt − ȳ)2
(5.6)as measure of goodness of �t, with ȳ representing the sample mean.
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5.3. The individual-based model5.3 The individual-based modelThis part of the work makes use of an extended version of the dis
rete-time, sto
has-ti
, spatially-expli
it, individual-based SEIR simulation model re
ently developedby Merler and Ajelli (2010) to model the spatio-temporal spread of the pandemi
H1N1 virus in Europe. Here we brie�y review some key aspe
ts of the model andrefer to Merler and Ajelli (2010) (in parti
ular to the relative Supplementary Ma-terial) for a detailed and exhaustive des
ription of the so
iodemographi
 and theepidemiologi
al models.The authors divide the study area into 
ells (average surfa
e of about 77 kilometers)and on the de�ned spatial grid generate a syntheti
 population mat
hing the 
en-sus data. S
hools and workpla
es are distributed proportionally to the populationwhi
h is grouped into households, s
hools and workpla
es following the 
ountryspe
i�
 so
iodemographi
 data. In this model s
hools gather together individualswithin a wide age range, from nursery s
hool to university (a more realisti
 pro-
edure of s
hool assignment is being developed, but the 
urrent analysis refers tothis version). Individuals are expli
itly represented and 
hara
terized by house-hold and s
hool/workpla
e membership (if any). Transmission of infe
tion o

ursin households, s
hools, workpla
es and by random 
onta
ts with infe
tious indi-viduals in the global population (random 
onta
ts 
an be made within a radiusof 1000 kilometers and a

ording to the power-law distribution given in eq. 5.8(Gonzalez et al., 2008)).The original model (Merler and Ajelli, 2010) has been re
ently extended to explorethe heterogeneity in the patterns of spread observed in the past 2009-2010 H1N1pandemi
 in Europe (personal 
ommuni
ation). Here we use this last version of theindividual-based model, whose mainly di�eren
e from the original one 
onsists inthe introdu
tion of a di�erential sus
eptibility: 
hildren (< 16 years) are assumedtwi
e as sus
eptible to infe
tion as adults. For the purpose of simpli
ity we furtherassume that all infe
ted individuals are symptomati
 and that si
kness-indu
edabsenteeism does not o

ur. Moreover, for the sake of 
omputational speed, themodel has been used on a single 
ountry (Italy) and workpla
e transmission (whi
his not relevant to the present analysis) has been not expli
itly modelled but in
ludedwithin the general 
ommunity transmission.The risk of infe
tion for ea
h individual is de�ned as the sum of the risk fa
tors
oming from the di�erent sour
es of infe
tions 
onsidered, namely:1. 
onta
ts with infe
tious members of the household (�rst term in eq. 5.7);108



5.3. The individual-based model2. 
onta
ts with infe
tious individuals attending the same s
hool (se
ond termin eq. 5.7);3. random 
onta
ts in the population (third term in eq. 5.7);
λi =

∑

{k=1,...,N |Hk=Hi}

Ikβh

ni

+
∑

{k=1,...,N |Pk=Pi}

Ikβs

Ni

+
∑

{k=1,...,N}

Ikβcf(dik)
∑

{k=1,...,N} f(dik) (5.7)The terms in equation (5.7) are de�ned as follows:� Hi is the index of the household where individual i lives in;� Pi is the index of the s
hool where individual i studies (if i is a student);� N is the size of the Italian population;� ni is the size of household Hi;� Ni is the size of s
hool Pi;� Ik = 1 if individual k is infe
ted, 0 otherwise;� f(dik) is the fun
tion de�ned in in (Gonzalez et al., 2008) and here re
alled
f(dik) = (dik + r0

g)
−βe

−
rg

k (5.8)where r0
g = 5.8km, β = 1.65 and k = 350km. It makes the transmission ofthe epidemi
 in the general 
ommunity expli
itly dependent on patterns ofhuman mobility, as des
ribed in (Gonzalez et al., 2008);� βh (expressed in day−1) is the within�household transmission rate;� βs (in day−1) is the within�s
hool transmission rate;� βc (in day−1) is the transmission rate in the general 
ommunity.109



5.3. The individual-based model5.3.1 Parameterization of the individual-based modelWe adopt here the baseline parametrization proposed in (Merler and Ajelli, 2010):the dis
rete-time, sto
hasti
 SEIR model assumes an exponentially distributed la-tent period TE of mean 1.5 days and an exponential distribution of the infe
tiousperiod TI of mean 1.6 days with 
onstant infe
tiousness during the whole 
ourse ofinfe
tion. Ea
h epidemi
 is started by seeding 100 
ases at random in the Italianpopulation, and the time step ∆t of the model has been �xed to 0.5 days. The�global� reprodu
tion number R0 is 
omputed using formula (5.5) and the expo-nential growth rate r is estimated by �tting a linear model to the logarithm of the
umulative number of new 
ases generated in the global population in time (i.e.using method L.2). We run 100 simulations and 
ompute the mean �global� R0and the mean number of 
ases generated within households, s
hools and by random
onta
ts in the initial phase of disease transmission (i.e. on the �rst 1000 
asesgenerated in the whole population) and at the end of the epidemi
. The estimatesare very stable among the model realizations so that we are going to report onlythe mean values 
omputed on the 100 realizations. The adopted paramterization(βh = 0.691, βs = 0.771, βc = 0.506) results in a mean �global� R0 of 1.38. Atthe early stages of disease transmission the per
entage of 
ases generated withinhouseholds is on average 28%, the per
entage of 
ases generated within s
hools ison average 37% and those generated in the general 
ommunity amounts to 35%.At the end of the epidemi
 the proportion of 
ases generated in households, s
hoolsand in the general 
ommunity are respe
tively of 31%, 30% and 39%.5.3.2 Computation of the within s
hool reprodu
tionnumberThe model assumes homogeneous mixing within s
hools and households. If weassume that s
hool s represents an isolated population, we 
an de�ne the withins
hool reprodu
tion number Rs as the mean number of 
ases generated by a typi
alinfe
tious individual within s
hool s at the beginning of an epidemi
.Re
all that βs represent the within s
hool transmission rate and let γ be the re-
overy rate (i.e. T̄I ≈ 1/γ). Furthermore, Ns represents here the size of s
hool sand remember that the simulation time-step has been �xed to ∆t = 0.5 days.Let us assume that at the beginning of an epidemi
 one infe
tious 
ase is seeded ins
hool s and that the remaining s
hool population is sus
eptible and large enoughto assume that Ns − 1 ≈ Ns. Any sus
eptible member i of s
hool s is subje
ted110



5.3. The individual-based modelto a probability Pi of be
oming infe
ted within a time step by a given infe
tiousindividual, with Pi given by
Pi = 1 − e

−
βs∆t

Ns . (5.9)If x infe
tives are present, the probability that a sus
eptible es
apes infe
tion fora time step will be (1 − Pi)
x.On the basis of our assumptions (that imply that every infe
tive is infe
tious atleast for a period ∆t), the infe
tious period has length n∆t with probability

P (TI = n∆t) = e−γ(n−1)∆t(1 − e−γ∆t) for n = 1, 2, . . .The mean length of the infe
tious period is hen
e given by
T̄I =

∑

n

n∆te
−γ(n−1)∆t(1 − e−γ∆t)

= (1 − e−γ∆t)∆t

∑

n

ne−γ(n−1)∆t

= (1 − e−γ∆t)
∆t

(1 − e−γ∆t)2

=
∆t

(1 − e−γ∆t)
(5.10)With our parametrization (γ = 1/1.6 and ∆t = 0.5) we �nd T̄I = 1.86 and noti
ethat

lim
∆t→0

T̄I =
1

γ
.Similarly, the number T of temporal steps spent in the infe
tious stage is given by

P (T = n) = ρ(1 − ρ)n−1 n ≥ 1 (5.11)with ρ = (1−e−γ∆t). Let ps represent the fra
tion of 
hildren (< 16 years) attend-ing s
hool s and σa represent the sus
eptibility of adults with respe
t to 
hildren(σa = 0.5). Let Ck denote the number of 
ases generated by an infe
tious individ-ual at time step k; we assume that Ck are independently distributed a

ording toa binomial model
Ck ∼ Bin(Ns, ω) with ω = (ps + (1 − ps)σa)






1 − e

−
βs∆t

Ns





111



5.3. The individual-based modelThe number of 
ases H generated by an infe
tious individual at the beginning ofan epidemi
 is a random variable de�ned by
H =

T
∑

k=1

Ck (5.12)The mean number of 
ases generated by a typi
al infe
tious individual withins
hool s at the beginning of the epidemi
 (i.e. assuming that all possible 
onta
tsare sus
eptible) is given by
Rs = E [H] = E [E [H|T ]] =

Nsω

ρ
= Ns(ps + (1 − ps)σa)

(1 − e−
βs∆t
Ns )

(1 − e−γ∆t)
(5.13)where E denotes the expe
ted value.Noti
e that the reprodu
tion number Rs depends on the length of the simulationstep ∆t, on the size of the s
hool Ns and on the fra
tion of 
hildren ps attendingthe s
hool. Note furthermore that

lim
Ns→∞

Rs =
βs∆t

(1 − e−γ∆t)
(ps + (1 − ps)σa)and that (as 
an be seen from Figure 5.2) already for Ns ≈ 100 the value of Rs isnot very far from its limit value, that is almost rea
hed for Ns ≥ 600.Considering instead the e�e
t of time step (whi
h is a
tually kept �xed in theanalysis here), note that

lim
∆t→0

Rs =
βs

γ
(ps + (1 − ps)σa)i.e. the usual value (independent of Ns) for 
ontinuous-time models. Furthermorenote that Rs is an in
reasing fun
tion of ∆t as long as γ > βs/Ns whi
h is true inour examples, as well as in any reasonable s
enario.The varian
e of H (5.12) is given by

V (H) = E
[

H2
]

− (E [H])2

= N2
s ω2(1 − ρ)/ρ2 + Nsω(1 − ω)(2 − ρ)/ρ2

=
Nsω

ρ2
(Nsω(1 − ρ) + (1 − ω)(2 − ρ)) (5.14)We 
ompute the mean s
hool size N̄s = 525 (SD= 236) and the mean fra
tion of
hildren attending a s
hool p̄s = 0.65 (SD= 0.04) by averaging over 100 model112



5.3. The individual-based modelrealizations, the mean values of the respe
tive quantities 
omputed on 100 ran-domly sele
ted s
hools. Sin
e the distributions of Ns and ps are independent inthe model, the average value of Rs 
an be obtained inserting N̄s and p̄s in (5.13)obtaining 1.184; with N̄s and p̄s the varian
e given in (5.14) results 8.66. Thestandard deviation (SD) reported within bra
kets has been obtained by averagingover the 100 model realization the standard deviations obtained on the 100 s
hoolssampled for ea
h model realization. On Figure 5.2 we plot Rs given in (5.13) as afun
tion of the s
hool size Ns having �xed ps = p̄s = 0.65 and ∆t = 0.5.
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Figure 5.2: Plot of Rs given in (5.13) as a fun
tion of the s
hool size Ns having �xed
ps = p̄s = 0.65 and ∆t = 0.5.5.3.3 Analysis of simulated s
hool epidemi
sIn this se
tion we estimate the within s
hool reprodu
tion number Rs using di�erentte
hniques.Estimate of Rs using the infe
tion treeFor the �rst 20000 
ases of ea
h model realizations we keep tra
k of the infe
tiontree (i.e. who infe
ted whom). Following the de�nition of Rs, we 
ount here themean number of 
ases generated (within the s
hool) by a �typi
al� infe
tious 
ase atthe beginning of the epidemi
. For ea
h of 100 model realizations we randomly draw
100 s
hools among those infe
ted relatively early in time (i.e. among the s
hoolsthat had at least one infe
tious 
ase within the time of o

urren
e of the �rst 20000
ases in the global 
ommunity) and for ea
h s
hool we 
ount the number of 
ases113



5.3. The individual-based modelgenerated by the index 
ase. By averaging over the sampled 100 s
hools and overthe 100 simulations we obtain an estimate of Rs amounting to 1.51 (SD= 1.83).Standard deviation (SD) has been 
omputed by averaging over the 100 simulationsthe standard deviations 
omputed for ea
h simulation on the sampled s
hools.It has to be noted that the value obtained in this way is quite higher than theaverage value obtained from (5.13), although, given the large SD, the 
on�den
einterval one would obtain in
ludes the theoreti
al value.
Estimate of Rs by the estimation of the exponential growth rateThe individual-based model allows us to to keep tra
k of the pla
e where ea
h 
asea
quired infe
tion and hen
e to distinguish a 
ase infe
ted within the s
hool froma 
ase infe
ted anywhere and attending the s
hool. For ea
h simulated s
hool epi-demi
 s, we 
an hen
e distinguish between the 
urve of the 
ases generated withins
hool s and observed in s
hool s (but generated anywhere).We propose here the analysis of 10 simulated s
hool epidemi
s, whi
h have beensampled as follows. We �rst randomly draw 10 out of 100 realizations of the model.For te
hni
al reasons (the infe
tion-tree has been re
orded up to the �rst 20000
ases in the general 
ommunity), we sele
ted the s
hools to be analysed amongthose infe
ted relatively early in time (i.e. within the �rst 20 days sin
e the startof the epidemi
 in the 
ountry). From realizations 1 to 5 we draw one s
hool (forea
h realization) at random. From simulations 6 to 10 we 
hoose the s
hool thata

ounts for the largest number of 
ases among the s
hools infe
ted during theinitial phase of the epidemi
. This last 
hoi
e has been done to explore any de-penden
y between the number of 
ases and the within s
hool reprodu
tion number
Rs. Moreover, these last s
hools would presumably be 
hosen as target of outbreakanalysis. For simpli
ity, the sampled s
hools have been numbered a

ordingly tothe simulation from whi
h they were drawn (s = 1, . . . , 10). Table 5.1 summarizesthe 
hara
teristi
s of the sele
ted s
hools (i.e. s
hool size Ns and the fra
tion ofyoung (< 16 years) population ps), the �a
tual� value of Rs given by formula (5.13),the number of 
ases generated and observed within the respe
tive s
hools and the
orresponding atta
k rate (AR) 
omputed on the number of observed 
ases untilthe time of o

urren
e of the 20000-th 
ase.114



5.3. The individual-based model
s Ns p Rs generated observed AR
ases 
ases
1 871 0.669 1.198 75 116 0.133
2 842 0.690 1.213 46 72 0.085
3 360 0.655 1.188 89 125 0.347
4 788 0.700 1.220 34 55 0.069
5 496 0.705 1.224 67 106 0.214
6 511 0.690 1.213 141 212 0.415
7 894 0.673 1.201 154 273 0.265
8 771 0.674 1.201 155 236 0.306
9 387 0.705 1.223 116 183 0.473
10 775 0.698 1.219 110 172 0.222Table 5.1: Some basi
 statisti
s on the simulated s
hool epidemi
s.For ea
h s
hool s = 1, . . . , 10 we applied the iterative rule (5.4) with α = 0.3and nit = 10 to generate the temporal-intervals to be used for the �t of a linearmodel on the logarithm of the number of new 
ases in time (method L.1), on the
umulative number of new 
ases in time (method L.2) and on the in
iden
e versusthe 
umulative (method L.3). We required the estimated values of the exponentialgrowth rate to satisfy the 
onditions given on Table 5.2; moreover, we dis
ardedthe estimates obtained on inappropriate temporal frames and those 
onsidered notinformative enough, as spe
i�ed next.method R2L.1 > 0.20L.2 > 0.95L.3 > 0.10Table 5.2: Simulated s
hool epidemi
s: threshold values for R2, for the di�erent methodsL.1, L.2 and L.3. The values reported on Table 5.1 satisfy the 
onstrains here de�ned.For ea
h simulation, we dis
arded the estimates 
omputed on the very initialgenerations using method L.2 and those 
omputed after the exponential growthphase using methods L.1 and L.3. Given the random nature of the simulated s
hoolepidemi
s in terms of start and length of the exponential growth phase, we 
arefulsele
ted the appropriate time-frames on whi
h to perform linear regression, forevery method and for every sele
ted s
hool epidemi
 on the basis of the behaviourof the s
hool epidemi
s themselves. We dis
arded also the estimated obtained on115



5.3. The individual-based modeltime intervals shorter than 7 days (i.e. the estimates obtained for δt < 14) and those
omputed on time intervals longer than 14 days (i.e. the estimates obtained for
δt > 28). Noti
e that for ea
h s
hool epidemi
 we estimate the exponential growthrate on two epidemi
 
urves: those of the 
ases generated within the s
hool andthe 
urve of the observed 
ases. Table 5.3 summarizes the range for the estimatesof Rs obtained with the three methods L.1, L.2 and L.3 on the 
urve of the 
asesgenerated and observed in the respe
tive s
hools.

s Rs method L.1 method L.1 method L.2 method L.2 method L.3 method L.3generated observed generated observed generated observed
1 1.198 1.15-1.23 1.15-1.41 1.13-1.21 1.12-1.18 1.13-1.53 1.14-1.81
2 1.213 1.11 1.17-1.28 1.08-1.24 1.07-1.23 1.16-1.40 1.19-1.30
3 1.188 1.14-1.39 1.17-1.40 1.19-1.27 1.17-1.24 1.13-1.69 1.16-1.67
4 1.220 1.18 1.15 1.14-1.21 1.15-1.21 1.25-1.35 1.16-1.32
5 1.224 1.11-1.51 1.24-2.13 1.11-1.15 1.13-1.16 1.24-1.46 1.24-1.64
6 1.213 1.15-1.67 1.19-1.83 1.17-1.20 1.15-1.18 1.11-1.76 1.14-1.69
7 1.201 1.13-1.23 1.15-1.50 1.17-1.21 1.17-1.19 1.12-1.43 1.13-1.56
8 1.201 1.14-1.36 1.15-1.48 1.19-1.40 1.22-1.41 1.12-1.63 1.13- 1.77
9 1.223 1.1-1.22 1.21-1.41 1.17-1.23 1.15-1.21 1.17-1.33 1.18-1.39
10 1.219 1.12-1.20 1.13-1.31 1.14-1.29 1.13-1.26 1.11-1.30 1.13-1.19Table 5.3: Ranges (i.e. maximum and minimum value) of Rs estimated using methodsL.1, L.2 and L.3 for the relative s
hool epidemi
s and the theoreti
al value of Rs givenby formula (5.13) on the basis of the data provided on Table 5.1. The sele
ted estimatessatisfy the 
onstrains reported on Table 5.2 and the 
hoi
e of the temporal intervals usedto perform linear regression (in the three variants L.1, L.2 and L.3 and for ea
h s
hoolepidemi
) has been dis
ussed in the text.All methods L.1, L.2 and L.3 produ
e reasonable estimates of Rs in the ap-propriate time-intervals. Method L.2 revealed itself as the most stable methodamong the three. More pre
isely, the mean of the squared di�eren
es between themidpoints of the ranges and the relative values of Rs given by theory is smallestfor method L.2; method L.3 tends to overestimate the �a
tual� value of Rs (i.e allthe midpoints of the ranges obtained with method L.3 overestimate the relativevalues of Rs given by theory, ex
ept for s = 10). Therefore, method L.2 seems tobe preferrable to the others, at least for data generated by the simulation modeladopted here.
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5.4. Real s
hool outbreaks5.4 Real s
hool outbreaks5.4.1 The surveyIn Italy the �rst (or primary) level of 
ompulsory edu
ation starts at the age of
6 and ends at 11 years. During the 2009-2010 A/H1N1 in�uenza pandemi
 andpre
isely over the months of O
tober-November 2009, two primary s
hools lo
atedin the villages of Povo and Villazzano (Trento, Italy) experien
ed a 
lear epidemi
.The survey, 
ondu
ted on De
ember 2009 in the two s
hools in question, aimedat retrospe
tively re
onstru
t the outbreaks o

urred over the previous monthsin ea
h s
hool. To ea
h family of the s
hools we delivered a paper questionnaire
omposed by a �rst part, where we gave the de�nition of in�uenza-like-illness (ILI)and by a se
ond part, where the parents on behalf of their 
hildren were asked toreport the date(s) of onset of ILI symptoms in the members of the family. Table5.4 summarizes some basi
 data and statisti
s 
olle
ted at the time of the survey.s
hool of Povo s
hool of Villazzanos
hool size 307 213number of 
lasses 14 10number of responses 260 168number of ILI 
ases 121 103response rate 0.85 0.79atta
k rate 0.46 0.61Table 5.4: Some basi
 statisti
s on the survey led in the primary s
hools of Povo andVillazzano.5.4.2 Analysis of real s
hool epidemi
sS
hool of PovoOn the basis of the data 
olle
ted through the survey, two 
ases seeded infe
tion inthe s
hool of Povo (t1 = t2 = 1) and the last 
ase showed the onset of ILI symptoms
56 days after the index 
ases (tmax = 56). Figure 5.3 shows the number of new
ases (left panel) and the 
umulative number of ILI 
ases (right panel) observed inthe s
hool over time. 117
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Figure 5.3: Plot of the number of new 
ases (left panel) and of the 
umulative number ofobserved new 
ases (right panel) in the s
hool of Povo in time, starting from the day ofdete
tion of the index 
ase.Using rule (5.4) with α = 2.5 and nit = 15 we de�ne the temporal-windows onwhi
h to perform the linear regressions. In terms of goodness of �t R2 we sele
tthe estimates that satisfy the 
onstrains given on Table 5.5. The thresholds valuesgiven on Table 5.5 have been 
hosen on the basis of the relative average valuesof R2 observed when �tting a linear model to this s
hool epidemi
. Indeed, thePovo s
hool epidemi
 
ould be better explained (using a linear model) than thesimulated s
hool epidemi
s given that, on average, we obtained higher s
ores forthe goodness of �t R2. method R2L.1 > 0.30L.2 > 0.98L.3 > 0.50Table 5.5: Threshold values for R2 for the estimates obtained for the s
hool of Povo.Tables 5.6, 5.7 and 5.8 summarize the estimated growth rate r and the 
orre-sponding values of R0 and R2 
omputed on the spe
i�ed time intervals [ti, ti + δt]using linear regression on the three quantities L.1, L.2 and L.3. Figures 5.4(a),5.4(b), 5.4(
) plot the linear �t marked with an asterisk in the respe
tive tablesand the �lled dots in the plot represent the data on whi
h linear regression hasbeen performed. 118



5.4. Real s
hool outbreaksL.1 - linear regression on loge(i(t)) vs t

ci ti δt r R2 Rs1 1 29 0.0634 0.426 1.211 1 30 0.0611 0.430 1.201 1 31 0.0589 0.433 1.1913 12 18 0.0798 0.327 1.26 *13 12 19 0.0724 0.312 1.2425 18 8 0.216 0.432 1.7825 18 9 0.184 0.416 1.6525 18 10 0.149 0.364 1.5225 18 11 0.146 0.416 1.5125 18 12 0.136 0.435 1.47Table 5.6: S
hool of Povo: summary of the estimated values of the exponential growth rate
r obtained through the �t of loge(i(t)) vs t and the 
orresponding R0. Linear regressionhas been performed on the time intervals given by [ti, ti + δt]. The marked (*) linear �t isplotted on Figure 5.4(a).

L.2 - linear regression on loge(c(t)) vs t

ci ti δt r R2 Rs13 12 19 0.0993 0.982 1.3313 12 20 0.0982 0.984 1.3313 12 21 0.0966 0.984 1.3213 12 22 0.0947 0.982 1.32 *33 23 3 0.158 0.983 1.5541 24 2 0.178 0.987 1.6345 25 5 0.0916 0.988 1.345 25 6 0.0865 0.985 1.29Table 5.7: S
hool of Povo: summary of the estimated values of the exponential growth rate
r obtained through the �t of loge(c(t)) vs t and the 
orresponding R0. Linear regressionhas been performed on the time intervals given by [ti, ti + δt]. The marked (*) linear �t isplotted on Figure 5.4(b). 119



5.4. Real s
hool outbreaksL.3 -linear regression on i(t) vs c(t)

ci ti δt r R2 Rs1 1 8 0.973 0.973 6.291 1 9 0.49 0.572 3.091 1 28 0.0959 0.508 1.321 1 29 0.0913 0.537 1.3013 12 3 0.667 0.651 4.1313 12 14 0.171 0.529 1.60 *17 15 11 0.195 0.521 1.7021 15 11 0.195 0.521 1.70Table 5.8: S
hool of Povo: summary of the estimated values of the exponential growthrate r obtained through the �t of i(t) vs c(t) and the 
orresponding R0. Linear regressionhas been performed on the time intervals given by [ti, ti + δt]. The marked (*) linear �t isplotted on Figure 5.4(
).
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Figure 5.4: Plot of: (a) the in
iden
e data 
olle
ted in the Povo s
hool (lin-log s
ale) andthe best linear approximation obtained by linear least square �tting to the �lled dots,(b) the 
umulative data 
olle
ted in the Povo s
hool (lin-log s
ale) and the best linearapproximation obtained by linear least square �tting to the �lled dots, (
) the in
iden
eas a fun
tion of the 
umulative data 
olle
ted in the Povo s
hool and the best linearapproximation obtained by linear least square �tting to the �lled dots.S
hool of VillazzanoOn the basis of the data 
olle
ted in the survey, one 
ase seeded the infe
tion inthe primary s
hool lo
ated in Villazzano (t1 = 1) and the last 
ase showed theonset of ILI symptoms 64 days after the index 
ases (tmax = 64). Figure 5.5 plotsthe number of new 
ases (left panel) and the 
umulative number of ILI 
ases (rightpanel) observed in the s
hool of Villazzano over time.120
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Figure 5.5: Plot of the number of new 
ases (left panel) and of the 
umulative number ofobserved new 
ases (right panel) in the s
hool of Villazzano in time, starting from the dayof dete
tion of the index 
ase.To de�ne the temporal windows on whi
h to perform the �t, we apply theiterative rule given in 5.4 with nit = 15 and α = 2.5 and sele
t the estimatessatisfying the 
onstrains given on Table 5.9. The thresholds values given on Table5.9 have been 
hosen on the basis of the relative average values of R2 obtainedthrough the �t of the linear models to this s
hool epidemi
. The sele
tion wouldhave been less a

urate, if we had applyed the threshold values given on Tables5.2 and 5.5, and the estimates would have been mu
h poorer, in the sense that wewould have a

epted wider ranges for Rs.method R2L.1 > 0.60L.2 > 0.95L.3 > 0.70Table 5.9: Threshold values for R2 for the estimates obtained for the s
hool of Villazzano.Tables 5.10, 5.11 and 5.12 summarize the estimated growth rate r and the
orresponding values of R0 and R2 
omputed on the spe
i�ed time intervals [ti, ti+

δt] using linear regression on the three quantities L.1, L.2 and L.3. Figures 5.6(a),5.6(b) and 5.6(
) plot the linear approximation marked with an asterisk in therespe
tive tables and the �lled dots in the plot show the time-interval on whi
hlinear regression has been performed. 121



5.4. Real s
hool outbreaksL.1 - linear regression on loge(i(t)) vs t

ci ti δt r R2 Rs4 7 24 0.0923 0.558 1.314 7 25 0.0922 0.586 1.314 7 26 0.0814 0.511 1.274 7 27 0.0789 0.52 1.267 19 9 0.205 0.562 1.747 19 10 0.213 0.647 1.777 19 11 0.201 0.674 1.727 19 12 0.208 0.736 1.75 *7 19 13 0.185 0.699 1.6510 24 5 0.362 0.854 2.4410 24 6 0.267 0.711 2.0010 24 7 0.258 0.773 1.9610 24 8 0.186 0.571 1.66Table 5.10: S
hool of Vilazzano: summary of the estimated values of the exponentialgrowth rate r obtained through the �t of loge(i(t)) vs t and the 
orresponding R0. Linearregression has been performed on the time intervals given by [ti, ti + δt]. The marked (*)linear �t is plotted on Figure 5.6(a).
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5.4. Real s
hool outbreaksL.2 - linear regression on loge(c(t)) vs t

i ti δt r R2 Rs10 24 7 0.281 0.98 2.0610 24 8 0.263 0.974 1.98 *10 24 9 0.24 0.954 1.8813 26 2 0.409 0.98 2.6713 26 3 0.347 0.968 2.3613 26 5 0.273 0.958 2.0316 27 2 0.271 0.994 2.0216 27 3 0.231 0.978 1.8516 27 4 0.227 0.988 1.8316 27 5 0.206 0.978 1.7428 28 2 0.193 0.984 1.6928 28 3 0.205 0.992 1.7428 28 4 0.184 0.983 1.65Table 5.11: S
hool of Vilazzano: summary of the estimated values of the exponentialgrowth rate r obtained through the �t of loge(c(t)) vs t and the 
orresponding R0. Linearregression has been performed on the time intervals given by [ti, ti + δt]. The marked (*)linear �t is plotted on Figure 5.6(b).
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5.4. Real s
hool outbreaksL.3 -linear regression on i(t) vs c(t)

i ti δt r R2 Rs1 1 27 0.305 0.788 2.171 1 28 0.265 0.822 1.991 1 29 0.214 0.774 1.781 1 30 0.22 0.856 1.801 1 31 0.172 0.736 1.604 7 20 0.423 0.834 2.744 7 21 0.355 0.875 2.404 7 22 0.29 0.864 2.104 7 23 0.227 0.789 1.834 7 24 0.229 0.867 1.844 7 25 0.176 0.73 1.627 19 8 0.538 0.933 3.367 19 9 0.389 0.886 2.577 19 10 0.296 0.837 2.13 *7 19 11 0.219 0.721 1.797 19 12 0.224 0.824 1.81Table 5.12: S
hool of Vilazzano: summary of the estimated values of the exponentialgrowth rate r obtained through the �t of i(t) vs c(t) and the 
orresponding R0. Linearregression has been performed on the time intervals given by [ti, ti + δt]. The marked (*)linear �t is plotted on Figure 5.6(
).
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Figure 5.6: Plot of: (a) the in
iden
e data 
olle
ted in the Villazzano s
hool (lin-log s
ale)and the best linear approximation obtained by linear least square �tting to the �lled dots,(b) the 
umulative data 
olle
ted in the Villazzano s
hool (lin-log s
ale) and the best linearapproximation obtained by linear least square �tting to the �lled dots, (
) the in
iden
eas a fun
tion of the 
umulative data 
olle
ted in the Villazzano s
hool and the best linearapproximation obtained by linear least square �tting to the �lled dots.124



5.5. First results & dis
ussionOn the basis of the data 
olle
ted through the survey 
ondu
ted in the primarys
hools of Povo and Villazzano, we estimate that the within s
hool reprodu
tion
Rs has been into the range 1.2 − 1.8 in the s
hool of Povo and into the range
1.6−2.7 in the s
hool of Villazzano. If we sele
t the estimates obtained with meth-ods L.1 and L.2 on the most reasonable time-intervals, the estimated within s
hoolreprodu
tion number is into the range 1.25− 1.35 for the Povo s
hool and into therange 1.7 − 2.1 for the s
hool of Villazzano. The ranges given here 
orrespond tothe values of Rs estimated on di�erent exponential growth time-intervals, providedthat we sele
ted the most reasonable time-frames for the �t of a linear model to thedata. Our analysis shows that the estimates of the reprodu
tion number obtainedby least square �t of a linear model to observed data are sensitive to the 
hoi
e ofthe exponential growth phase sele
ted for the �t.The estimates of the within s
hool reprodu
tion number Rs 
omputed in this workare smaller but 
omparable to the estimates of the reprodu
tion number obtainedfrom the analysis of a pandemi
 H1N1 outbreak in the St. Fran
is Preparatorys
hool in New York [2.4 (95% CI: 1.8 − 3.2)] (Yang et al., 2009b) and to the esti-mates obtained from the analysis of a high s
hool outbreak in Queens, New York
[

3.3 (95% CI: 3.0 − 3.6)] (Lessler et al., 2009).Finally, noti
e that the estimates of Rs obtained for the s
hool of Villazzano withmethod L.1 
learly re�e
t the two exponential growth phases that make this epi-demi
 rather un
ommon. The estimates obtained through the �t of the initialdata (i.e. from day 7) are lower than the estimates obtained on the time inter-vals starting at day 19; these last seem mu
h more reasonable to us. A moredetailed analysis of the spread of infe
tion among the s
hool-
lasses 
ould possibly
larify the un
ommon behaviour of the epidemi
 
urve observed in the s
hool ofVillazzano.5.5 First results & dis
ussionThe individual-based model developed by Merler and Ajelli (2010) has been re
-ognized as a tool able to su

essfully reprodu
e the patterns of spread observed inthe population-wide epidemi
; here we explored its ability in reprodu
ing s
hooloutbreaks. The model's heterogeneity, in terms of proportion of adults and 
hil-dren attending the same s
hool and within s
hool reprodu
tion number, 
ould be
ertainly improved. Despite this, the individual-based model is a valuable tool forthe 
omparison of the estimats of the within s
hool reprodu
tion number with its125



5.5. First results & dis
ussion�true� value given by theory. The estimates of the exponential growth rate dependon the 
hoi
e of the exponential growth time-intervals adopted in the �t. On
e�xed the most appropriate time-intervals, we �nd that the estimates of Rs ob-tained through the estimates of the exponential growth rate using linear regression
losely reprodu
e the theoreti
al values of the within s
hool reprodu
tion number.The analysis of simulated data show that the least square �t of a linear modelto the data performed on the 
umulative number c(t) of the 
ases versus time t(method L.2) is the most stable estimation method among the three exploited here.Moreover, the estimates of Rs 
omputed on the 
ases observed within the s
hoolsdo not signi�
antly di�er from the estimates obtained from the 
urve of the 
asesgenerated within the s
hools so that the importation of 
ases seems not to sub-stantially a�e
t the within s
hool dynami
s. The estimate of Rs obtained throughthe infe
tion tree (i.e. 
ounting the mean number of 
ases generated by a �typi
al�index 
ase) amounts to 1.51 (standard deviation 1.83) and slightly overestimatesthe theoreti
al value of Rs = 1.18. On the basis of our estimates obtained by lin-ear regression, the within s
hool reprodu
tion number Rs is lower than the �global�
R0; this fa
t is in 
on�i
t with some estimates obtained during the past 2009-2010H1N1 pandemi
 (Lessler et al., 2009; Nishiura et al., 2009, 2010).We 
ompared the simulated results with two real within s
hool outbreaks o

urredin Italy during the 2009-2010 H1N1 pandemi
. On the basis of the data 
olle
tedthrough the survey 
ondu
ted in the primary s
hools of Povo and Villazzano, theestimated within s
hool reprodu
tion number is into the range 1.25 − 1.35 for thePovo s
hool and into the range 1.7−2.1 for the s
hool of Villazzano. These estimatesare lower than those obtained from the analysis 
ondu
ted on the data 
olle
ted inthe St. Fran
is Preparatory s
hool in New York [2.4 (95% CI: 1.8 − 3.2)] (Yanget al., 2009b) and in the Queens s
hool, New York [3.3 (95% CI: 3.0−3.6)] (Lessleret al., 2009). The reasons that 
ould explain this di�eren
e are manifold and 
oulddepend on the delay of the survey in respe
t to the timing of the epidemi
, on somespe
i�
 
hara
teristi
s of the s
hools where the outbreaks have been monitored andon 
ountry-spe
i�
 di�eren
es in terms of virus transmissibility, for instan
e.The estimates of Rs obtained for the s
hools of Povo and Villazzano are slightlyhigher than those 
omputed on the simulated Italian s
hools, whi
h have been ob-tained for a �global� R0 of 1.38. Despite the individual-based model 
ould 
ertainlybe improved in a variety of di�erent aspe
ts (and indeed a more realisti
 pro
e-dure of s
hool assignment is being developed), we �nd that even in the 
urrentversion, the model 
an satisfa
tory reprodu
e within s
hool outbreaks, so that it is126



5.5. First results & dis
ussionpotentially a powerful tool for the simulation and analysis of disease transmissionin spe
i�
 so
ial 
ontexts.
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