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Introduction

Since the early 20th century the study of the spread of infectious diseases
has been a theme of deep interest, great importance and often a challenge
for human and veterinary medicine. The main objective of epidemiology is
the understanding of the leading factors and the complex mechanisms that
produce the observed outbreaks in order to provide tools for disease control
and prevention, in the interest of public health.

In this context, the use of mathematical models is particularly significant.
Indeed, mathematical models can give insight into the understanding of the
mechanisms behind the spread of infectious diseases, they are a tool for
assessing the effectiveness of control measures and therefore selecting the
best strategy to be adopted for the containment of an outbreak, they can be
used to assess the efficacy of vaccine treatments, to explore what-if scenarios
and to inform policy decisions.

On Chapter 1 I present the actual introduction to this thesis, which consists
in a review of the main mathematical tools traditionally used in epidemiology.
On the same chapter I also place my orignial contributions into the field.
Below I am going to present a brief description of my research work and the

specific outline of this thesis.

Research description

The works presented in this thesis are very different one from the other but
they all deal with the mathematical modelling of emerging infectious diseases
which, beyond being the leitmotiv of this thesis, is an important research area
in the field of epidemiology and public health.

A minor but significant part of the thesis has a theoretical flavour. This part
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is dedicated to the mathematical analysis of the competition model between
two HIV subtypes in presence of vaccination and cross-immunity proposed
by Porco and Blower (1998). We find the sharp conditions under which vac-
cination leads to the coexistence of the strains and using arguments from
bifurcation theory, draw conclusions on the equilibria stability and find that
a rather unusual behaviour of histeresis-type might emerge after repeated
variations of the vaccination rate within a certain range.

The most of this thesis has been inspired by real outbreaks occurred in Italy
over the last 10 years and is about the modelling of the 1999-2000 H7N1
avian influenza outbreak and of the 2009-2010 HIN1 pandemic influenza.
From an applied perspective, parameter estimation is a key part of the mod-
elling process and in this thesis statistical inference has been performed
within both a classical framework (i.e. by maximum likelihood and least
square methods) and a Bayesian setting (i.e. by Markov Chain Monte Carlo
techniques).

However, my contribution goes beyond the application of inferential tech-
niques to specific case studies. The stochastic, spatially explicit, between-
farm transmission model developed for the transmission of the H7N1 virus
has indeed been used to simulate different control strategies and asses their
relative effectiveness. The modelling framework presented here for the HIN1
pandemic in Italy constitutes a novel approach that can be applied to a vari-
ety of different infections detected by surveillance system in many countries.
We have coupled a deterministic compartmental model with a statistical de-
scription of the reporting process and have taken into account for the presence
of stochasticity in the surveillance system. We thus tackled some statistical
challenging issues (such as the estimation of the fraction of HIN1 cases re-
porting influenza-like-illness symptoms) that had not been addressed before.
Last, we apply different estimation methods usually adopted in epidemiol-
ogy to real and simulated school outbreaks, in the attempt to explore the
suitability of a specific individual-based model at reproducing empirically

observed epidemics in specific social contexts.
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Structure of the thesis

In the first Chapter of this thesis I present a brief review of the mathemati-
cal models adopted in epidemiology for the modelling of emerging infectious

diseases and place the works presented in this thesis within the field.

On Chapter 2 we analyse the Vaccine Model with Cross-Immunity proposed
by Porco and Blower (1998). Porco and Blower (1998) show that vaccination
can shift the competitive balance in favour of a strain that, without vaccina-
tion, would be out-competed and that vaccination can also promote coexis-
tence of different strains, something that normally is not expected (Bremer-
mann and Thieme, 1989). Their results have been mainly obtained through
numerical simulations, so that the conditions under which a shift in compet-
itive balance or coexistence occurs have not been fully established. We give
a rather complete description of its behavior, at least in terms of equilibria.
We find the exact conditions under which vaccination may lead to a shift
in competitive balance and show that, under these conditions, there always
exist a range of vaccination rates under which a coexistence equilibrium ex-
ists. We also find that a coexistence equilibrium exists (and is unstable) in a
‘bi-stability’ region, where both monomorphic equilibria are stable. This fact
has been rarely observed in models of competition between pathogen strains.
The work presented in this chapter has been submitted for publication and

is currently under review.

Chapter 3 is about the analysis of the between-farm transmission of the HTN1
highly pathogenic avian influenza virus that disrupted the Italian poultry
production in the 1999-2000 epidemic. We define a SEIR model with a spa-
tial transmission kernel, accounting for the containment measures actually
undertaken, find significant differences in susceptibility between species and a
reduction in transmissibility after the first phase. We performed simulations
to assess the effectiveness of the implemented and new control measures. The
most effective measure was the ban on restocking. An earlier start of pre-
emptive culling promotes eradication; restricted pre-emptive culling delays

eradication but causes lower losses. This work has been published on the
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Epidemics Journal, 2 (2010): 29-35 (doi:10.1016/j.epidem.2010.01.002).

On Chapter 4 we propose a novel and general modelling framework which
allowed us to tackle some statistical challenges that were usually bypassed
through the introduction of assumption and has been applied to the 2009-
2010 HIN1 pandemic in Italy. The analysis of surveillance data, often the
only information available in real time, poses many statistical challenges that
have not been addressed yet. For instance, the fraction of cases that report
infection is unknown. We propose here a general modelling framework that
explicitly takes into account the way the surveillance data was generated.
Our approach couples a deterministic mathematical model with a statistical
description of the reporting process and has been applied to surveillance data
collected in Italy during the 2009-2010 A /H1NT1 influenza pandemic. We esti-
mate that the reproduction number Ry has been into the range 1.3—1.4, that
the youngest age-classes reported the symptoms caused by the HIN1 virus
infection significantly more than the adults and that, in the Italian popula-
tion, school-age children were effectively the most affected by the A/HIN1
virus. In terms of both estimated peak-incidence and attack rate of A/HIN1
cases, the 5 — 14 years age-class was about 5 times more affected than the
65+ years old age-group and about twice more than the the other age-classes;

the overall case attack rate was about 30%.

The fifth and final Chapter is about the first results of a topic I started
working on only very recently. The chapter deals with the estimation of the
reproduction number from real and simulated school outbreaks data. In this
context, we explore whether an individual-based model recently developed
to model the spatio-temporal spread of the pandemic HIN1 virus in Europe
(Merler and Ajelli, 2010), used here as a tool for generating within school
outbreaks, gives compatible results (in terms of estimated within school re-
production number) with real school epidemics observed in Italy over the past
2009-2010 pandemic influenza season. The real school outbreaks in question
have been retrospectively reconstructed through a survey and this topic is

presented in the last part of the chapter.



Chapter 1

Emerging and re-emerging

infections

1.1 Factors driving the emergence of infectious

diseases

An emerging pathogen can be defined as an infectious agent whose inci-
dence or geographic range is increasing following its first introduction into
a new host population; a re-emerging pathogen is one whose incidence or
geographic range is increasing in an existing host population as a result of
long-term changes in its underlying epidemiology (Morse, 1995; Woolhouse,
2002).

Pathogen emergence can be based on subjective criteria, which can reflect in-
creased awareness, improved diagnosis, discovery of previously unrecognized
infectious agents as much as any objective epidemiological data. This is why
Woolhouse (2002) suggests that reporting bias must be considered as a possi-
ble explanation for any apparent pattern. Indeed, despite dozens of pathogen
species are regarded as emerging or re-emerging in livestock, domestic animal
and wildlife, data for non-human hosts are likely to be far less comprehensive
than those for humans (Woolhouse, 2002).

Infectious disease emergence can be viewed operationally as a two-step pro-
cess consisting in the introduction of the infectious agent into a new host

population followed by the establishment and further dissemination of the in-
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fectious agent within the new host population (also called “adoption”) (Morse,
1995).

Broadly, there are three sources of emerging and re-emerging pathogens: from
within the host population itself (like Mycobacterium tuberculosis, whose re-
emergence in the 1980s was fuelled by the immune-deficiencies of people with
AIDS), from the external environment (like Legionella pneumophila, whose
emergence as a human pathogen might not have occurred were it not for the
environmental niche provided by air-conditioning systems) and from popu-
lations of other host species (like the Human Immunodeficiency Virus (HIV)
in humans). Many wildlife species are reservoirs of pathogens that threaten
domestic animal, human health and the conservation of the global biodi-
versity as well (Daszak et al., 2000). Using the WHO definition, zoonotic
pathogens are defined as those producing diseases or infections which are
naturally transmitted between vertebrate animals and humans. Bats, carni-
vores, primates, rodents, ungulates and other mammals and non-mammals
(birds, reptiles, amphibians and fish) constitute the broad categories into
which we can split the “zoonotic pool”. Three-quarters of emerging and re-
emerging human pathogens originate as zoonose (Woolhouse, 2002) and are
disproportionately viruses (Woolhouse and Gowtage-Sequeria, 2005; Wool-
house et al., 2005).

Several (not mutually exclusive) factors drive the emergence of infectious dis-
eases: genetic changes in the pathogen (for example the evolution of HIV from
the simian immunodeficiency virus), immunocompromised hosts (for exam-
ple M. tuberculosis in AIDS patients) and changes in host-pathogen ecology.
This last category includes changes in host demography, movement or be-
haviour; climate, agricultural changes or changes in the land use; changes
in industry and technology (e.g. food production); international travels and
commerce or the breakdown of public health measures (Morse, 1995; Morens
et al., 2004; Racaniello, 2004). It’s worth noticing that suprisingly often dis-
ease emergence is caused by human actions.

In the following chapters we propose, analyse and apply different modelling
approaches to the spread of HIV, of the Highly Pathogenic Avian Influenza
(HPAI) H7N1 virus and to the recent HIN1 virus that caused the 2009-2010

influenza pandemic: these viruses are recognized as the cause of emerging or
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re-emerging infectious diseases. Despite the precise ancestry of HIV is still
uncertain, it appears to have had zoonotic origins. Genetical changes are the
leading factors of many influenza pandemics too. Influenza A viruses, which
endemically live in the gastrointestinal apparatus of wild waterfowl, have in-
deed evolved elaborate mechanisms to jump species into domestic fowl, farm
animals and humans. It is widely known that antigenic drift (point muta-
tions, primarily in the gene for the surface protein, hemagglutinin) causes
annual or biennial influenza epidemics and antigenic shift (genetic reassort-
ment generally between avian and mammalian influenza strains) caused the
emergence of pandemic influenza strains as in 1888, 1918, 1957, 1968 and
in the recent swine-origin HIN1 2009-2010 pandemic (Webster, 2001; Short-
ridge et al., 2003; Neumann et al., 2009).

The enormous global burden in terms of human and animal disease and
deaths posed by emerging and re-emerging pathogens makes the study of
emerging and re-emerging infections a challenge for human and veterinary

medicine.

1.2 An overview on the mathematical models

used in epidemiology

An impressive amount of works flourished recently, given the emergence of
dramatic disease outbreaks such as the foot-and-mouth-disease (FMD) out-
break of 2001 in the British cattle farms, the severe acute respiratory syn-
drome (SARS) outbreaks of 2003 in Asia and Canada and the recent 2009-
2010 influenza pandemic caused by the A/HINT1 virus. Mathematical models
are a useful tool that can given insight into the understanding of the leading
factors and mechanisms behind the spread of infectious diseases (Anderson
and May, 1992; Diekmann and Heesterbeek, 2000; Fraser et al., 2004) and
have been used in the past to design efficient observational studies and to plan
mass vaccination campaigns (Grassly et al., 2006; Yang et al., 2006). It is
widely recognized that they are a valuable tool to investigate the effectiveness
of control measures, to assess the efficacy of vaccine and prophylactic treat-

ments and to explore what-if scenarios so that they have also been empolyed
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to inform policy decisions (Ferguson et al., 2001; Halloran et al., 2007).
The definition and construction of a useful model usually depends on the
issues the modeller wants to tackle and requires knowledge of a variety of
different aspects, from the biological to the epidemiological and demographic
ones. Whether the interest of the modeller is focused on the theoretical prop-
erties of a model or the mathematical framework is used to make inference on
unknown quantities, model validation is an always desirable but often unfea-
sible stage, since it requires quantitative data, usually collected by surveil-
lance systems. The successful application of statistical, mathematical and
computational techniques for the analysis of outbreak data and the choice
of a suitable model framework strongly depends on the nature and availabil-
ity of information at all the levels (biological, demographic, epidemiological)
outlined above. As a matter of fact, limited data and inconclusive epidemi-
ological information place severe restrictions on the efforts the modeller can
make to model the spread of the etiological agent if his/her objectives go
beyond the intrinsic interests and the theoretical exploration of the model’s
behaviour.

In this section I would like to propose a brief and far from exhaustive review
of the most common mathematical modelling approaches that have been un-
dertaken in infectious disease epidemiology in presence of outbreaks caused
by emerging or re-emerging infectious entities both in the human and in some
animal populations.

The mathematical models we will deal with in this section and, at a broader
extent, in this thesis, are compartmental models at a population level. It
means that our interest is focussed on the dynamics of disease spread among
the individuals of a population rather than on the processes occurring within
the host after infection by the infectious agent. Epidemiological models of
disease spread at a population level split the population into compartments
that usually characterize the infectious state (e.g. susceptible, infectious,
recovered individuals) and can also include other forms of partitioning (e.g.
vaccinated, treated, hospitalized, quarantined individuals).

Within the wide variety of existing models, a first distinction can be made
between the deterministic and the stochastic approach.

Another distinction can be made in terms of the level of mixing so that we
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can distinguish models assuming homogenous mixing from models adopting
more heterogeneous contact patterns between the individuals of a popula-
tion.

A comprehensive introduction and an outline of the development of mathe-
matical modelling of infectious diseases can be found in the texts by Anderson
and May (1991), Bailey (1975) and the more recent works by Hethcote (2000)
and Keeling and Rohani (2008).

1.2.1 Deterministic models

The history of epidemic modelling can be traced back to the early 20th
century, when the deterministic approach first appeared in the literature
(Hamer, 1906; Ross, 1916; Ross and Hudson, 1917a,b; Bailey, 1975) and
culminated with the milestone and still relevant work by Kermack and McK-
endrick (1927).

The description of a phenomenon is often translated, in mathematical terms,
into a set of differential equations. The theory of differential equations is a
well established branch of mathematics in which both theoretical results and
numerical methods have been readily available since the early 20th century.
A deterministic model is characterized by the fact that, once that the initial
conditions and the parameter values have been fixed, its evolution is uniquely
determined. The successful application of the deterministic approach in the
field of epidemiology lies in the relative flexibility and contemporary math-
ematical tractability of the modelling framework. Deterministic models can
indeed be enriched to account for realistic features such as, for example, the
presence of different stages of infection, age-structure, spatial spread and ver-
tical transmission, without completely losing their analytical tractability. De-
terministic models have been employed to perform parameter estimation and
fit surveillance data (Chowell et al., 2003; Wang and Ruan, 2004; Nishiura
et al., 2010) and to assess the impact of control measures in the SARS epi-
demic (Lipsitch et al., 2003), to investigate how best to use antibiotics in
populations harbouring drug-resistant organisms (Austin et al., 1997) and
for the analysis of the transmission dynamics of multiple strains pathogens

(Gupta et al., 1998; Andreasen et al., 8 15) causing infectious diseases such
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as malaria (Gupta et al., 1994), dengue (Ferguson et al., 1999) and influenza
(Minayev and Ferguson, 2009). Multi-strain models have been often anal-
ysed through the use of computer simulations and a theoretical analysis of the
equilibria and the relative stability of a multi-strain model has been proposed
by Gog and Grenfell (2002). The effect of different vaccination policies in
the presence of two competing HIV strains conferring partial cross-immunity
has been proposed and numerically analysed by Porco and Blower (1998,
2000) and it is in this framework that the work presented in Chapter 2 can
be placed. In the next chapter we indeed present a mathematical analysis
(in terms of equilibria and their stability) of the 2-HIV strains competition
model proposed in (Porco and Blower, 1998).

Deterministic models are rapid to simulate, relatively easy to parametrize
and capture the average epidemic behaviour, i.e. they can be considered a
valid tool for predictions in large populations. On the contrary, in presence
of low levels of infections (i.e. near the start and the end of an epidemic) or
of small populations, the deterministic approach fails to catch the random
nature of transmission events. Another limitation of the deterministic ap-
proach consists in an oversimplified description of the interactions between
individuals. Due to mathematical convenience, it is indeed assumed that
either an individual has an equal chance of contacting anyone in the popula-
tion (homogeneous mixing at the population level) or random mixing occurs

between each pairs of subgroups into which the population is structured.

1.2.2 Stochastic models

Stochastic models can be considered the counterpart of the deterministic
case, are particularly apt to model the spread of a disease in small popula-
tions or in the early and final stages of an epidemic (i.e. when the number of
cases is small) and can be added of variuos forms of heterogeneity in contact
patterns. In the stochastic modelling framework the modeller attributes a
probability of occurrence to each single event and counts (in terms of discrete
units) their occurrence. The study of the evolution (in time) of the proba-
bilities of the state of the system and the investigation of the distribution of

quantities of interest is much more complex. Due to the analytical complexity
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of the study of a stochastic process, often increased by the need (or wish) to
include very detailed information on the contact structures of a population,
computer simulations offer an alternative approach to explore the behaviour
of the system. Such an example is given by Cooper et al. (1999), where com-
puter simulations are used to explore the properties and the behaviour of a
stochastic compartmental model that had been set up to study the spread
of hand-borne nosocomial pathogens within a general medical-surgical ward.
Other examples of stochastic models used in epidemiology are given by (Keel-
ing et al., 2001; Riley et al., 2003; Chis Ster and Ferguson, 2007) and many

others more extensively discussed in the rest of the chapter.

1.2.3 Beyond the homogeneous mixing assumption

It is widely recognized that heterogeneity in contact patterns due for example
to age differences between individuals, the spatial distribution of individuals
and the presence of social structures in the population play an important
role in disease spread. Structured, microsimulation, meta-population, net-
work models and models with multiple levels of mixing are all examples of
population models that attempt to achieve an increased realism by going
beyond the rather unrealistic homogeneous mixing assumption. In principle,
all the models presented below can be placed within both a deterministic and
a stochastic framework; as a matter of fact, the most of the works reported

as examples belong to the stochastic category.

Microsimulation or individual-based models

Microsimulation models, also called individual-based models, are stochastic
simulations of contact patterns and disease progression operating at an indi-
vidual level, where the individual unit needs to be specified by the modeller.
The 2001 UK foot-and-mouth epidemic generated a unique data-set describ-
ing the spatial spread of the infection between livestock farms and offered
the opportunity to explore, mainly using micro-simulation models, the im-
pact of spatial and individual heterogeneities on the course of the epidemic
(Keeling et al., 2001; Morris et al., 2001; Chis Ster and Ferguson, 2007). The
full spatio-temporal dynamics of the foot-and-mouth disease (FMD) epidemic

11
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has indeed been explored by Keeling et al. (2001) and Chis Ster and Ferguson
(2007) using stochastic, spatial, individual farm-based models incorporating
heterogeneity in farm size and species composition.

The transmission of the highly virulent H5N1 influenza virus to humans in
South-East Asia triggered the development of individual-based models in-
vestigating the strategies to be applied for containing an emerging influenza
pandemic (Ferguson et al., 2005, 2006; Longini et al., 2005; Germann et al.,
2006). Individual-based model have also been employed to understand the
role of population heterogeneity and human mobility in the spread of the
recent 2009-2010 HIN1 pandemic influenza virus (Merler and Ajelli, 2010).

Network models

The historical study of networks has its bases in two disparate fields: social
sciences and graph theory. While the research in graph theory and social
sciences generally considers an understanding of the network itself to be the
ultimate goal, in epidemiology the interest is focused on the spread of the
disease, in which case the network forms a constraining background to the
transmission dynamics.

In order to understand the role of network structure on epidemic dynam-
ics, a range of idealized networks, defined in terms of how individuals are
distributed in space and how connections are formed, have been developed
and analyzed. Random networks, lattices, small-world, spatial and scale-
free networks have been used to describe different aspects of the population
mixing behaviour, on the basis of the different levels of clustering, degree
distribution and path length, intrinsically defined by the network structure
itself (Keeling and Eames, 2005).

The spread of infection on generic networks can also be modelled through
the pairwise approximation which, as the name suggests, takes the number
of different pair types as variable of the model and requires some form of mo-
ment closure approximation. A pairwise model has been used for example
to provide real-time predictions during the 2001 foot-and-mouth epidemic in
the UK (Ferguson et al., 2001) and the extent to which the ensemble be-
haviour of stochastic spatial epidemic models may be captured by modelling

disease processes as occurring on networks derived from the underlying spa-
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tial structure has been deeply analysed by Parham and Ferguson (2006) and
Parham et al. (2008). As a matter of fact, the differential equation formula-
tion of pairwise models represents a more rapid parametrization alternative
to computationally intensive microsimulation models and may be amenable
to obtain an analytical understanding into spatio-temporal dynamics.

In the presence of an emerging infection, three techniques have been mainly
employed to gather network information: infection tracing, contact trac-
ing and diary-based studies. Infection tracing consists in the reconstruction
of the transmission network (or epidemic-tree), consisting in all the links
through which transmission occurred. Such tracing has been employed for
example to analyze the foot-and-mouth disease outbreak of 2001 (Haydon
et al., 2003), to gather information about the individuals most involved in
disease transmission (the so called “super-spreader”) during the 2003 SARS
outbreak in Hong Kong (Riley et al., 2003) and to investigate the transmis-
sion properties of the new HIN1 strain in the first few hundred cases study
in England, Wales and Scotland in the 2009-2010 influenza pandemic (Ghani
et al., 2009). Contact tracing aims to identify all potential transmission
contacts from a source individual, has been largely applied in the study of
sexually transmitted diseases and relies on individuals providing complete
and accurate data about personal relationships. At a farm level, explicit
contact structures have been used to analyze the spread of animal diseases
such as the foot-and-mouth disease (Ferguson et al., 2001; Green et al., 2006;
Kao et al., 2006) and avian influenza (Le Menach et al., 2006).

Models with multiple levels of mixing

Household models are a natural starting point if the attempt of the mod-
eller is to include a more realistic social structure than those assumed under
the homogeneous mixing hypothesis, still remaining within an analytically
tractable (but rather more complex) framework. Household models parti-
tion the population into households and homogeneous mixing within each
household is superimposed on homogeneous mixing (typically at a smaller
rate) in the population at large (Becker, 1995; Hall and Becker, 1996; Ball
et al., 1997). Most effort has been typically placed into analysing, within a

probabilistic framework, the asymptotic behaviour, the epidemic final sizes
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and the impact of targeted intervention strategies such as vaccination (Ball
et al., 1997). Recently, household models have been fruitfully applied to
approximate the disease dynamics of an influenza pandemic (Dodd and Fer-
guson, 2007; Fraser, 2007) and to explore the effectiveness of public health
intervention scenarios (Wu et al., 2006; House and Keeling, 2009).

An even more realistic social structure is achieved when individuals belong
to more than one type of mixing group and different groups are allowed to
overlap. Such a generalization of the households model is given for example
in the two (i.e. households and workplaces) levels of mixing models defined
by Ball and Neal (2002) and Pellis et al. (2009).

Patch models

Patch or metapopulation models are characterized by the presence of a
large population which is divided into a finite number of groups, also called
patches. Within each group individuals are assumed to mix homogeneously
and the different patches can be connected either deterministically or ran-
domly. Patches usually represent geographical areas at various spatial scales
(Rvachev and Longini, 1985; Hollingsworth et al., 2006; Colizza et al., 2007;
Rizzo et al., 2008; Balcan et al., 2009) and the connections among the patches
typically represent the existing transportation, air travel or commuting net-
work. In comparison to individual-based models, metapopulation models re-
quire less information and computational effort so that they can been placed
within an inferential framework. One of the first metapopulation models has
been proposed by Rvachev and Longini (1985) to describe the global spread
of influenza. In this work the authors consider 52 big cities of the world
interconnected via air transport. This model has been later updated (Grais
et al., 2003), revisited and extended to evaluate the effectiveness of inter-
vention strategies as travel restrictions (Flahault et al., 2006). Stochastic
metapopulation models have been proposed by Riley et al. (2003) to model
the 2003 SARS outbreak in Hong Kong and by Colizza et al. (2007) and
Balcan et al. (2009) to investigate the role played by the airline transporta-
tion system versus the short range connections in the global spatio-temporal
spread of an influenza pandemic. A first comparison between individual-

based and metapopulaton models has been recently proposed by Ajelli et al.
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(2010). The good agreement between the two modelling frameworks (in
terms of epidemic profile and spatio-temporal patterns) could be the first
step towards the future development of hybrid models combining the com-
putational efficiency of patch models to the high detail resolution provided

by the individual-based approach in specific locations of interest.

1.3 Statistical Inference

Statistical inference is the process of drawing conclusions from data that are
subject to random variation due to the nature of the phenomenon itself, ob-
servational errors or sampling variation and is based on the definition of a
probabilistic model that usually provides a simplified but adequate represen-
tation of the phenomenon.

Two statistical approaches can be distinguished: the non-parametric one aims
at estimating the distribution underlying the phenomenon under minimal as-
sumptions, generally using functional estimation. Conversely, the parametric
approach represents the distribution of the observations through a density
function in which only the parameter is unknown.

A parametric statistical model consists of the observation of a random vari-
able z, distributed according to f(x|0) where only the parameter 6 is un-
known and belongs to a vector space O of finite dimension. Making inference
on parameter # means that we use observation = to improve our knowledge
on parameter . Compared with probabilistic modelling, statistical analysis
has fundamentally an inversion purpose which is obvious in the notion of the
likelihood function [(f|z) (a function of the unknown 6 given the observed
value x) which is just the sample density f(x|0) rewritten in the “proper”

order

[(0]x) = f(x0)

Within the parametric approach, statistical inference on the unknown param-
eter can be performed either within a classical (or frequentist) framework or
within a Bayesian setting. In the next few lines I am going to briefly recall
the two approaches. Indeed, a significant portion of the work presented in

this thesis deals with parameter estimation which has been conducted within
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both the frequentist approach (on Chapter 3 and 5) and the Bayesian frame-
work (on Chapter 4).

The classical approach makes inference on the unknown parameter by the
method of maximum likelihood which was promoted by R.A. Fisher in his
classical 1925 paper. Once fixed the underlying probability model f(z|f), the
method of maximum likelihood selects the values of the model parameter 6
that produce the distribution most likely to have resulted in the observed

data (i.e. the parameters that maximize the likelihood function)
0 = arg max,ol(0]z)

The maximum likelihood method is widely applied partly because of the in-
tuitive motivation of maximizing the probability of occurrence and partly
because of the strong asymptotic properties of the maximum likelihood esti-
mator (consistency, normality, efficiency) and functional invariance (i.e. for
any function h(6) the maximum likelihood estimator of h is h(6)) (Becker,
1989; Zacks, 1971). Maximum likelihood has been applied to a wide range of
epidemiological models facing a variety of different problems (Keeling et al.,
2001; Boender et al., 2007; Le Menach et al., 2006; Nishiura et al., 2009;
Lessler et al., 2009). Also microsimulation models have been placed within a
maximum-likelihood inference scheme for example by Pelupessy et al. (2002)
to identified the most important routes of transmission of resistant pathogens
among the patients of a hospital and by Matthews et al. (2006) to investigate
the reasons underlying the substantial variations in the on-farm prevalence
of E.Coli O157 both between farms and between sampling events on the
same farm observed in a cross-sectional study conducted on Scottish cattle
farms between 1998 and 2000. Despite the increasing computational power
available today, the dimensionality of the problem (i.e. the size of the simu-
lated population) poses severe restrictions on the extent to which one can use
individual-based models to make inference on unknown quantities. As a mat-
ter of fact, it is nowadays unfeasible to place very complex individual-based
models acting on large populations (of the order of million of individuals)
within any inference scheme and the effort of the modeller is hence focused

on the parametrization of the model. We applied the maximum likelihood
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theory to estimate the unknown parameters and the relative confidence inter-
vals of a stochastic spatially-explicit model for the farm-to-farm transmission
of the highly pathogenic H7N1 avian influenza virus in Italy (see Chapter 3).
In this context, we can insert the least square method, also known as trajec-
tory matching method (Turchin, 2003). The parameter values are estimated
by minimising the sum of the squares of the residuals, meant as the differ-
ence between the observed and simulated epidemics and can be interpreted
as a maximum likelihood criterion if the measurement errors are assumed to
be normally distributed. From this point of view, it represents a simplified
maximum likelihood approach, in which the dynamics of the epidemic are
simulated and then the likelihood of the observed data is evaluated. The
least square method has often implemented to perform parameter estimation
especially in deterministic settings (Chowell et al., 2006, 2004, 2007b,a) and
is the inferential method at the basis of the whole Chapter 5, where we es-
timate the within school reproduction number of real and simulated school
outbreaks.

The main difference brought by the Bayesian approach is to consider a proba-
bility distribution on the parameters. By definition (Robert, 1996) a Bayesian
statistical model is made of a parametric model f(z|0) and a prior distribu-
tion on the parameters, w(#). Within this framework, statistical inference is

based on the distribution of 6 conditional on z

o))
m01%) = T r a8 6)d0

which is called posterior distribution. By Bayes’s Theorem, the information
on 0 is actualized with the information contained in the observation x. Notice
that, from a Bayesian viewpoint, there is little difference between observa-
tions and parameters, since conditional manipulations allow for an interplay
of their respective roles. Whenever the posterior distribution 7(6|x) cannot
be directly simulated, inference on the posterior distribution can be obtained
by Markov Chain Monte Carlo (MCMC) methods, which are able to con-
struct Markov chains whose stationary distribution is the distributions of
interest. Markov Chain Monte Carlo techniques have been often employed

in the field of mathematical epidemiology and examples are given by (Lip-
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sitch et al., 2003; Chis Ster and Ferguson, 2007; Cauchemez et al., 2009a).
On Chapter 4 we present a novel modelling approach which has been applied
to the recent 2009-2010 HIN1 influenza pandemic in Italy. In this work we
couple together a deterministic description of the infection dynamics with
a statistical model for the reporting process where, by the application of
Markov Chain Monte Carlo techniques, we obtain the estimates (in terms of
posterior distribution) of epidemiological relevant parameters such as the re-

production number Ry, the age-dependent reporting rates and susceptibility.
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Chapter 2

Analysis of a vaccine model with
cross-immunity: when can two
competing infectious strains

coexist?

2.1 Introduction

Control policies of infectious diseases can lead to unexpected outcomes when
the infectious agents consist of a variety of different strains. In fact, it has
often be argued that more pathogenic strains are in competition with less
pathogenic ones (Bremermann and Thieme, 1989), so that the application
of control policies may shift the competitive balance in favour of the less fit
strains (McLean, 1995; Martcheva et al., 2008) that might however be more
virulent.

It has been observed in previous studies and in practice that vaccination, one
of the most powerful control policies, can have very dramatic effect on the
outcome of the competition between more pathogens. This topic has been
examined with the use of mathematical models in several papers (Porco and
Blower, 1998; Lipsitch, 1999; Iannelli et al., 2005; Martcheva, 2006).
Vaccination can destabilize the existing host-pathogen evolutionary equilib-

ria, accelerate pathogen evolution and also lead to the emergence or domi-
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nance of a once-rare pathogen, a mechanism also known as strain replacement
(Porco and Blower, 2000; Iannelli et al., 2005; Martcheva, 2006). Vaccines
differ for their mode of action; vaccines with differential effectiveness provide
different degrees of protection against infection by the different strains of
the pathogen and their efficacy has been extensively discussed in the liter-
ature (Smith et al., 1984; Halloran et al., 1992; Blower and McLean, 1994;
Martcheva, 2006).

Porco and Blower (1998) showed that vaccination can indeed shift the com-
petitive balance in favour of a strain that, without vaccination, would be
out-competed and that vaccination can also promote coexistence of different
strains, something that normally is not expected (Bremermann and Thieme,
1989). The results by Porco and Blower (1998) have been mainly obtained
through numerical simulations, so that the conditions under which a shift in
competitive balance or coexistence occurs have not been fully established.
Here we examine in detail the “Vaccine Model with Cross-Immunity” or “Dif-
ferential Degree Model” proposed in Porco and Blower (1998) to describe the
spread of 2-HIV strains and the subsequent progression into AIDS in a pop-
ulation of potential sex partners. More in general, the model can be thought
as describing the spread of two competing pathogens within a population
in presence of vaccination and cross-immunity. We analyse the impact of
vaccination at the community level and give a rather complete description of
the model behavior, at least in terms of equilibria. We find the exact condi-
tions under which vaccination may lead to a shift in competitive balance and
also show that, under these conditions, there always exist a range of vacci-
nation rates under which a coexistence equilibrium exists. We find that the
Coexistence Equilibrium may be stable or unstable, depending on another
condition. The former case corresponds to what had already been observed
numerically. In the latter case, the parameter region in which a coexistence
equilibrium exists is actually a ‘bi-stability’ region in which both monomor-
phic equilibria are stable, so that asymptotic behavior depends on initial
conditions. This fact, that would lead to a sort of hysteresis cycle if vacci-
nation rates were increased then decreased, has rarely been demonstrated in

models of competition between pathogen strains.
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2.2 Model Formulation

The “Vaccine Model with Cross-Immunity” proposed by Porco and Blower
(1998) is a particular transmission dynamics model of HIV in presence of two
subtypes and a vaccine that provides a degree of protection against infection
by both subtypes.

The state variables are X (the number of susceptible individuals), V' (the
number of effectively vaccinated individuals), Y7 and Y5 (the number of in-
dividuals infected with subtype 1 and subtype 2 respectively and have not
developed AIDS), A; and Ay (the number of individuals who have been in-
fected with subtype 1 and subtype 2 respectively and have developed AIDS).
The state variables are supposed to be C! functions of the time variable t.
Individuals are part of a community of potential sex partners and we assume
that individuals with AIDS do not acquire new sex partners. This means
that the sexually active community N is given by N = X +V + Y] + V5.
We assume that individuals enter the community at a constant rate 7 and a
fraction p of these are vaccinated. The vaccine induces a protective immune
response in a fraction e of the vaccinated individuals, that is the vaccine
takes only in a fraction pe of the new entries.

Uninfected individuals either not vaccinated or who were vaccinated but in
whom the vaccine did not take, are referred as being completely susceptible.
The degree of protection conferred by the vaccine against subtype i is indi-
cated with & (0 < & < 1); & = 0 corresponds to no protection and & = 1
corresponds to complete protection against infection.

Individuals leave each class at a constant per capita rate p when they cease
acquiring new sex partners.

The transmission probability of subtype i per partnership is indicated with
0;, the number of new sex partners per unit time is indicated by ¢, ~; is for
the rate of progression to AIDS and « indicates the death rate due to AIDS.
The flow diagram in Figure 2.1 describes the dynamics of the “Vaccine Model

with Cross-Immunity”.
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Figure 2.1: The flow chart of the model

Y- A
cBa(1 — ) V2 kl{ 72Ys @

J J pta

The differential equations describing the corresponding dynamics are:

X

)1 §2
1— — X — G, X— —cB,X—=
7(( pe) 0 CP1 N CD2 N

pe — ,uV — (1 — 51)061‘/% — (1 — 52)0/62‘/}/2

N
Y, Y,
X =+ (1 -V — — (n+7)V

N N
Y- Y-
CﬂzXﬁ +(1— fz)cﬂzvﬁz — (1 +72)Ys

YY1 — (1 + o)A
Y2Ys — (1 + ) A

where N =X +V +Y; + Y.

(2.1)

(2.2)

We observe that equations (2.1)—(2.4) are sufficient to describe the be-

havior of the system. Furthermore, these equations can be suitable for any

infection of ST type, where v, and 7, denote disease-induced mortality rates,

and vaccination occurs at birth. The assumption of a constant (indepen-

dent of population size) input rate 7 in the population may then need to

be amended. We introduce the reproduction numbers (Anderson and May,

1991)

cf R2 — cfa
0 — .
e TR

1
0
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2.2. Model Formulation

Then, performing the change of variables

X 1% io%

TSN VTN BTy BTy

and using R} and R? as parameters, system (2.1)—(2.4) can be equivalently
written as

i o= =z —pe) = [(Ryu+m) =y + (R +72) = 12)ye] (2.8)
v = %(pe —v) —v [(R(p+7)(1 = &) —y)yn + (RG(1 +72) (1 — &2) — 72)y2]
(2.9)
o= R+ )@+ (1= &) =l —y1) + 7292 — 1] (2.10)
Jo =y [R3(n+2)(@+ (1= &)v) —92(l 1) +mys — 1] (2.11)
N = 7= N(pu+my +7292) (2.12)

In (2.8), we have dropped the dependency on ¢, #; and (3 using instead the
non-dimensional quantities R} and R? as parameters. It would be possible to
reduce the parameters to a smaller number of non-dimensional quantities; we
prefer to keep them all, while later showing that different behaviours depend
on the ratios p/v; and ;1 /7s.

By adding together (2.8)—(2.11) we get

. . . . ™
THO+ Y+ = (N — MY —72y2> 11— (x+v+y +y2)] (2.13)

Since
r+v+tyr+y2=1

is invariant for (2.8)—(2.11), as intuitively obvious, we can drop (for instance)
the equation for v and consider the system

NZW—N(M+71y1+72y2)

%(1 —x—pe) — [(Ry(n+71) — 7)1 + (R (1 + v2) — 72)ye]

=1y [Ré(wr%)(:v + (=&)L = (x+y1 +y2)]) —n(L—y1) +72u2 — %}

j’;:

Yo = Yo [RS(M +7)(@+(1-&)[1—(z+y +y2)]) =1 —y2)+my — %} -
(2.14)
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2.3. Existence and Stability of Equilibria

We can then obtain the fraction of vaccinated individuals by subtraction

v=1—(x+y + y2).

2.3 Existence and Stability of Equilibria

We study here the equilibria of (2.14); when this makes the derivation shorter,
we will consider also (2.8)—(2.11).
Note first that, from (2.12), any steady state (Z, 0, 1, Jo, N) of (2.14) satisfies

7r N _
I K+ Y1Y1 + Y2Ye. (2.15)

2.3.1 Disease Free Equilibrium
Existence

The Disease Free Equilibrium (DFE) occurs when the fraction of infected
individuals is null y7 = y5 = 0 and there are positive fractions of susceptible
and vaccinated individuals x* # 0, v* # 0.

From (2.15), we obtain N* = s Setting the right-hand side of (2.8)—(2.9)
o
equal to 0 with y; = y5 = 0, we immediately obtain for the DFE

x*=1—pe and v* = pe.

This is always a feasible solution under the constraints 0 < p <1,0<e <1

arising from their definition. Otherwise said, the DFE always exists.

Stability

We study the local stability of the DFE through the Jacobian matrix of
system (2.14) at the DFE (2*,0,0, N*) = (1 — pe, 0,0, E) The eigenvalues of
the Jacobian at the DFE are

Al =—p

A5 = —p
A5 = (p+m) (Ry(1 = pe) + (1 — &) Rgpe — 1)
Ar = (14 72) (R5(1 = pe) + (1 — &) Rgpe — 1)
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2.3. Existence and Stability of Equilibria

Therefore, the DFE is stable if and only if A3 < 0 and A} < 0.
Rearranging the terms, the necessary and sufficient conditions for the DFE

to be stable can be written as

R = Rj(z* + (1 — &)%) < 1
L= B (- ) -
R = Rj(z* + (1 — &)v*) < 1.
or
R, = Rj(1 — &pe) < 1 — pe > pePt
R2 = R§(1 — &ope) < 1 pe > pelt
where R
DF 0~
TR 2.17
R (2.17)
e

Observe that if R (1 — &) > 1 or R%(1 — &) > 1, then the DFE is never

stable.
Ri <1
R <1

Notice moreover that if
then the DFE is stable independently the choice of pe, & and &.

For this reason we assume from now on that
R >1
R:>1

2.3.2 Subtype-i-Only Equilibrium
Existence

We analyse here the Subtype-1-Only Equilibrium.

By definition, at the Subtype-1-Only Equilibrium there are no individuals
infected by subtype 2 (i.e. 7, = 0) and there are positive fractions of indi-
viduals infected by subtype 1 (71 > 0), susceptible (Z; > 0) and vaccinated
individuals (o; > 0).

Setting equal to 0 equation (2.10), together with (2.15) and g; > 0 = s, one
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2.3. Existence and Stability of Equilibria

obtains
Rz, + (1= &)ny) = 1. (2.18)

The equilibrium fractions of susceptible Z; can be computed by setting equal
to 0 the right hand side of (2.8) so that it can be expressed as function of g,
as
Ty = (1 +ny)(d = p_e) (2.19)
p+ Ry(p+70)7

Substituting v; = 1 — Z; — g; and (2.19) into (2.18) we obtain that g; must

solve G(g1) = 1, where

o[ (W ny) (1~ pe)
G(y) = Ry |& PES YT +(1-&)1—y)

Since we assumed R} > 1, we obtain

~ Ro&up(1 —pe)[Rop + (Rg — D)m]

)= [+ Ro(p +)y)?

Ry(1—¢)<0  (2.20)

and
Ry(n+7)(1 — pe)éy

Ri(p+m) + p
Hence, G(y;) = 1 has a unique solution in (0, 1) if and only if

G(1) = <1

GO)>1 = RY(1—po)er+ (- &) = RY(1—&pe) = RE > 1

We have then proved

Proposition 1. A sufficient and necessary condition for a Subtype-1-Only
Equilibrium to exist is Rzl, > 1, i.e, pe < pePt defined in (2.17). Moreover,
under the assumption R}) > 1, the Subtype-1-Only Equilibrium is unique.

The equilibrium fraction of vaccinated individuals ¥; can be computed
by setting equal to 0 the right hand side of (2.9) and it can be expressed as

function of ¥, as
b = (1t +771)pe
pt (1= &) Ro(n+m)n

For future use, we prove the following

(2.21)

Proposition 2. y; at the Subtype-1-Only Equilibrium is a decreasing func-
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2.3. Existence and Stability of Equilibria

tion of pe on [0, pePT).

Proof. We write explicitly the dependence of G on pe as G(pe, y:1(pe)) = 1.
Since by (2.20) we know that

9G (pe, ] (pe))

<0
oY
and also ~ . ~
OG(pe, jr(pe)) _  Ro&ilp+ ) <0
Ope pt Ro(p+ )7
by the Implicit Function Theorem we obtain
8G(p€a gl)
_ Ope
pe) = —=——< <0 2.22
yl(p ) (9G(p€,y1) ( )
oY
thus proving that 7, is a decreasing function of pe. O

Completely similar arguments lead us to state that a Subtype-2-Only
Equilibrium (Zs, 0,0, §2) exists and is unique under the necessary and suffi-
cient condition R} > 1.

The equilibrium fractions of susceptible and vaccinated individuals at the

equilibrium are given by

(1 + 7272) (1 = pe) _ (1 + Y252)pe
2 — Vo = D) —
A RE (1 + 72)72 pA (1= &) R (1 4 72) 02

To =

where 75 is the unique solution of equation H(y,) = 1 where

o [ (4 7282)(1 — pe)

H(ij) = R
(52) = I 1+ RE(p+72) o

+ (1= &)(1 —22)
provided that R? > 1.
In terms of pe, we get that the Subtype-2-Only Equilibrium exists for

R2—1
R3&

pe <pe§)F where pe?F =

Finally, with the same argument used above, it can be proved that 7, is a
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2.3. Existence and Stability of Equilibria

decreasing function of pe.

Stability

We examine now the stability of the Subtype-1-Only Equilibrium. In order
to do that, we consider the Jacobian matrix of (2.14) at the Subtype-1-Only

Equilibrium E; = (Ny,Z1,%1,0) and obtain a matrix of the form:

3By = ( E g )
VN0 Rt y)E 4 (1= &)o] — (1 + )

where E is the 3 x 3 matrix

—(p+mmn) 0 —Nm
z _ _
E=| (m—Ri(n+ u))lﬁyl —[p+ Ry(p+v)ml  —[Ri(p+m) — il
(M+71??1)y——1 Ry (1 + 7)&n [ — Ry(p+7)(1 — &)

N

We first show the following
Lemma 1. All the eigenvalues of E have negative real part.

The lemma implies that the Subtype-1-Only Equilibrium is always asymp-
totically stable when it exists (R}, > 1) in absence of individuals infected with
subtype 2, as has been obtained in similar models with one strain and vacci-
nation (Pugliese, 1990).

Proof. The characteristic polynomial of E (after a change of sign) can be
written as
N4+ a2 +ad+a3=0 (2.23)

Routh-Hurwitz criterion states that all solutions of (2.23) have negative real
part if and only if a1, as,as > 0 and ajay — az > 0 (Murray, 2002).

If we set

=
I

Ry(p+7)(1 = &)
L = Ry(p+m)h
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2.3. Existence and Stability of Equilibria

after some computations (see the Appendix) we obtain

a; = 2[&—}— K+ L
az = (u+L)(p+ K)+ [Ry(u+m) —nlL&aT + (p+ ) K

az = [Ro(p+m) —nlLp&aZ + (n+n0)(p+ L)K
may —az = (p+L)(p+ K)2u+ L+ K) + [Ry(p+m) = n|L&Zi(n+ L+ K) +
+(p+ny)(p+ K)K.

Since R} > 1 and hence R}(1 + 1) > 7 all these quantities are positive,

thus proving that Routh-Hurwitz conditions are satisfied. O

Since J(E1) is block-triangular, the set of eigenvalues of J(E;) is given

by the union of the set of eigenvalues of E and
Mo = B(u+ )l + (1= €)0] — 1+ 72)
Hence, the Subtype-1-Only Equilibrium is stable for (2.14) if and only if
M= Ri(p+7)[7 + (1= &)on] = (n+72) <0.

Rearranging the terms, the Subtype-1-Only Equilibrium is stable if and only
if
We wish now to express (2.24) in terms of g; only. To this aim, one can

immediately insert (2.19) into (2.24). Instead, to obtain a simpler expression

that does not contain pe, we start by rewriting (2.18) as

Ro(p + 1) ( _ pepé ) _q
o+ Ro(p + 7)o A4 Ry (p+ ) (1 = &)

and by algebraic manipulation of the expression we may write pe as function

of 41

[Ro(X — 1) — (1 + Ro(p+ 1) (L — &)
Ro(p +my1)6

Substituting (2.25) into (2.19) we obtain the following expression for equi-

pe = (2.25)
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2.3. Existence and Stability of Equilibria

librium fraction of effectively vaccinated individuals

- Ry(1—a)—1
U = Rl (2.26)
Finally we obtain from (2.24)
R;Zl == RS [Lf'l + (1 - 52)1_)1]
= R[4+ (1 = &)01 + (&1 — &)v]
 (wsing (218)) £ | 1 + (6~ &)
0
R3 —
ROP+££fﬁ%a—yﬁ—u} (2.27)

Summarizing, we have obtained:

Proposition 3. The Subtype-1-Only Equilibrium E; = (Ny, 1, 71,0) is asymp-
totically stable [unstable] if RZ' < [>]1, where RZ' is given by expression
(2.24) or (2.27).

We now wish to express condition R>" < 1 in terms of pe.
In all the rest of the paper let us assume, without loss of generality, that
R} > R2.
If & < &, (2.27) implies that R2' < 1. In other words, if & < &, the
Subtype-1-Only Equilibrium is asymptotically stable, when it exists.

Therefore, we study the condition Rf,:l < 1 under the additional assumption

&1 > &o.

(&G —&) R3 : Lo
Since ¢ ———>Riy1 > 0 and T < 1, expression (2.27) implies that
1 0
: Ry (& — &) &G —&)] (& - 52)
R2.1 — -0 |:1 + 7R1 _ :| _
v R} & & g o
2
<%ﬂﬁ—é& Z} (2.28)
Since
R2 52 52 12 2 1
Rl RO - _RO é__ S 1 <:/> C = ROR0(£1_£2)+R0£2_R0£1 S O (229)
1
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2.3. Existence and Stability of Equilibria

inequality (2.28) shows that, if Rj > Rj, & > & and C' < 0, then RZ' <1
for every value of 0 < pe < 1.
In order to study when Rf,:l > 1, we then add the assumption C' > 0, using

then the assumptions

Ry> R} & >& and C>0 (2.30)
Let us now set R>' = 1 and find the corresponding fraction of infected
individuals
pp RoRG(6 — &) + Riba — Ro&y C 531
o= RIR2(€, — TRR(E - &) (2:31)
o5 (&1 — &) o5 (&1 — &2)

The superscript BP is related to the fact that this value corresponds to a
branching point of equilibrium curves, as will be seen later.
Because of the monotonic dependence of Rf,:l on ¥ (2.27), we have

R <Pl e g <
By (2.25) and (2.31) we can compute the pe values at which branching occurs.
We see that R>' =1 for

peBP = {)R(%Rg(fl — &R (p+7)1 — &)+ 1] + Ry (p+ 7)1 — &) (RE& — Ri&)
! [RERZ(&1 — &) (1 +m1) + (B3 — RY&))]

(2.32)

where
(Ry — Rg)

R{R3(& — &)

Since g, is a decreasing function of pe (see (2.22)), we conclude that

v =

(2.33)

R <[>l = pe<[>]pel’”

By algebraic manipulation of (2.32), peP” may be written as

pé(R(1 — &) — Ry(1 — &)

p@BP - (R(l] - Rg)
! (Cy + pR{RE (& — &)

CRAG — &)

where C'is defined in (2.29).

1—&+ (2.34)

31



2.3. Existence and Stability of Equilibria

We have the following
Lemma 2. Assume (2.30).

a) If RZ(1 — &) > RY(1 — &), then 0 < peP” < 1 at least for p/y; > 0

small enough.
b) If RE(1 — &) < RY(1 — &), then peP? > 1 for all u > 0.

The proof is in the Appendix.
The assumption R3(1 — &) > R}(1 — &) is then necessary for strain 2 to be
able to invade the Subtype-1-Only Equilibrium.

Summing up, necessary assumptions for having R>' > 1 with pe <1 are

§1 > &
C>0 (2.35)

R3(1 = &) > Ry(1 - &)

We conclude the following

Proposition 4. Under the assumption Ry > RZ%, if any of the conditions
(2.35) is violated, then the Subtype-1-Only Equilibrium is asymptotically sta-
ble for all 0 < pe <1 in which this equilibrium is defined. If all of (2.35) are
satisfied, then the Subtype-1-Only Equilibrium (when it is defined) is asymp-
totically stable for 0 < pe < peP and unstable for pe > pePt | where peP? is
defined by (2.32) or (2.34). Under (2.35) the quantity peP” < 1 at least for

w small enough.

Completely similar (but reversed) arguments apply to the Subtype-2-Only
Equilibrium. It is asymptotically stable [unstable| if

R;;Q = Ré(fg + (1 — 51)@2) < [>]1
As before, we may write R\ as

R11722:R_(1) 1+£2_£1

R g Boll—m) — 1] (2.36)
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Again, if we assume that R} > R32, then (2.36) together with

_— R3(1—192) —1
R3&

> 0 (2.37)

implies that
L>6 = R7Z>1.

That is, if R} > R2 and & > &, then Subtype-1 invades the Subtype-2-Only
Equilibrium, wherever it exists.
Assume now & < & together with R} > RZ. By the same reasoning made

before, expression (2.36) implies

L—&

f—&
& *

& m{

R, = (B3 —1)

B[ 18],

RZ — —R
° S
(2.38)
The right hand side of (2.38) is greater or equal than 1, if and only if C' <0
with C' defined in (2.35). Hence

R

C<0= R*>1,

i.e. strain 1 invades the Subtype-2-Only Equilibrium whenever this exists.
To proceed, we also assume C' > 0.
As before, we find the fraction of individuals infected with strain 2 at the

equilibrium corresponding to R} = 1:

goP — RiR3 (& — &) + R3é — Ri&y _ C
’ RyR3(&1 — &) RIR3 (&1 — &)

Notice that, since (2.36) is an increasing function of g, (remember & > &),
we have

R?<1 = p<p’

Writing, analogously to (2.25), pe as function of g, as

[R3(1 —72) — 1] + RE(p + 72) (1 — &) 7]
RE&a (1t + 72)2)

pe = (2.39)
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we see that R;};Q =1 for

peBP — {)RéRg(fl — )[R (1 +72)(1 — &) + p] + R§(RE — Ryé1) (1 +72)(1 — &)

: [RRF(61 — &2) (1 +72) + 72(RG62 — R&1)]
(2.40)
using the definition (2.33) for v.
Since ¥ is a decreasing function of pe (by (2.22)), we conclude that
R;;Q <1 <= pe>pell
By manipulation of (2.40) we find that
R} — R? RY(1—&)— RA(1—
p62BP — (1 0 0) [1 _ 52 + Iué-2( 0( 521) 5 0( 51))] (241)
R5(&1 — &) 720 + pRyRG (&1 — &)

Anagolously to Lemma 2, we have

Lemma 3. Assume (2.30).

a) If RZ(1 — &) > RY(1 — &), then 0 < peP” < 1 at least for p/ye > 0
small enough.

b) If RE(1 — &) < RL(1 — &), then peP? > 1 for all u > 0.

The proof is identical to that of Lemma 2 and is skipped.

Symmetrically to Proposition 4, we obtain

Proposition 5. Under the assumption Ry > RZ%, if any of the conditions
(2.35) is wviolated, then the Subtype-2-Only Equilibrium is unstable for all
0 < pe <1 in which this equilibrium is defined. If all of (2.35) are satisfied,
then the Subtype-2-Only Equilibrium is unstable for 0 < pe < pebP? and
asymptotically stable for pe > peBt (when the equilibrium itself is defined),
where peB? is defined by (2.40) or (2.41). Under (2.35) the quantity peP? <

1 at least for u small enough.

2.3.3 Coexistence Equilibrium
Existence

At the Coexistence Equilibrium completely susceptible (Z > 0), effectively
vaccinated (0 > 0), individuals infected by subtype 1 (g; > 0) and individu-
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als infected by subtype 2 (g > 0) are all present in the community.

Setting equal to 0 equations (2.10)—(2.11), together with (2.15) one ob-

tains

Ri[z+(1—-&)0]=1
olf +(1=61)0) (2.42)
The equilibrium fractions Z, ¢ can be computed solving (2.42):
L&) - R(1-&) . Ry~ RS
3= V= ———— 2.43
R - &) RRG- P

Fraction v is positive under the condition that
if R)>R) then & >¢

which means that the Coexistence Equilibrium exists only if the vaccine
induces a higher degree of protection against the subtype with the higher
fitness in a completely susceptible population.

Without loss of generality, let’s assume R} > R% and require & > &.

The susceptible fraction z is positive if and only if
Ry(1-&) > Ry(1-&)

By substitution of (2.43) into & + ¢ < 1 one obtains

Ro& — Ri6o
RyR§(& — &)
where C'is given by (2.29).

Conditions (2.35) are then necessary for the existence of a Coexistence Equi-

<l <= (C>0

librium.

Setting equal to 0 equations (2.8)—(2.9) together with (2.15) and using matrix

i e
Al ) =4 pe—a (2.44)
i pe— b

notation, one obtains
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where

A ( Ry(p+7)& = n(l—pe)  Ri(p+12)& = 72(1 - pe) )
Ro(pn+71)(1 = &)0 — ype  Rg(p+ y2) (1 — &2)0 — 7ape

System (2.44) admits a unique solution if and only if
Al = [R5 (1 +72) (1 = &2)0 — Ro(p+71) (1 = &)0 +pe(n —72)] # 0 (2.45)

Observation 1. If v, = 72, then by (2.35) |A| > 0 for 0 < pe < 1.

Under the further assumption that |A| # 0, we can explicitly solve (2.44)

by Cramer’s rule

p(l—pe—2)  Ri(p+72)3 — 72(1 = pe)
p(pe —0)  RE(p+2)(1 — &) — yope

Al
_ pep[y2 (T 4 0) — (1 +v2)] + po[Rg (1 4 72) (1 — & + &oi) — 7]
| Al
(2.46)
Ri(p+m)E — (1 —pe) p(l—pe—1i)
iy = Ri(p+7)(1 = &) —mpe  plpe —9)
, =

|A]

pepln (L — (&4 0)) + p+ poln — Ro(p + 7)1 = & + &)
|A]

(2.47)

We conclude the following

Proposition 6. Under the assumption R} > R3, necessary conditions for a
Coezistence Equilibrium to exist are given by (2.35). Moreover, if y1 = o the
Coezxistence Equilibrium is unique. If v1 # vo the Coexistence Equilibrium is

unique under the assumption that |A| # 0, where |A] is given by (2.45).

Let’s now prove the following
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Lemma 4. The equilibrium fractions &, 0, 41, Y2 satisfy condition

P+t =1 (2.48)

Proof. Equations (2.8)—(2.9) together with (2.48) can be written as

Y1
Bl g | =0 (2.49)
1
where
Ry(p+y) —n(l—pe)  Ri(p+12)& —72(l—pe)  pu(l—pe— i)
B = Ry(p+7)(1—&)0—mpe Ri(p+72)(1 —&)0—yape  plpe — )
1 1 l—2—0
By (2.35) matrix B can be reduced to the form
Ry(p+m)t — (1 —pe) Rg(p+72)t —12(l —pe) p(l—pe— i)
p(l— 2 —9)
1 1 1—2z—0
thus proving our claim. O

In order to find sufficient conditions for the existence of a positive equi-
librium, we start with the assumption |A| > 0.
By (2.47) one obtains that g, > 0 for

O[Ro(pr +71)(1 — & + &2) — 7]
A7l — (2 +9))

pe >
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Substituting (2.43) and rearranging the terms one gets

2 1
R(p+7)(1— &)+ Ri&i(p+ ’n)RO(lRé%%)(&Iiog) ) _
RR3 (&1 — Ea)pu + m[RgRE(&1 — &) — Rjér + REE]
@R(%Rg(fl — &R+ 7)1 = &) =] + Ri&i(p + ) [R5 — &) — Ry(1 — &)
RYR3(&1 — &) (1 + 1) + 1 (R3E — Ri&1)
@R(%Rg(fl — &Ry (1 + 7)1 — &) + p] + Ri(p + 1) (1 = &)(R§é2 — Ryéh)
R{R3 (&1 — &) (1 + 71) + 1 (R3E — RE&1)

pe > 0

pe >

pe > (2.50)
By (2.32) inequality (2.50) can be written as

BP
pe > pey

Similarly, by (2.46), condition g; > 0 can be expressed in terms of pe

TO[RF& (1 +72)] + O[RF (1 +12) (1 — &) — 2]
p+ (1= (2 +0))

pe <

Substituting (2.43) and rearranging the terms one gets

[R3(1 — &) — Ry(1 — &)][R (1 + v2)] + [R§ (1 +72) (1 — &) — 9]
[RGRG(&1 — &2) (1 + 72) + 72(Rpé1 — R§éa)]
@R(I)Rg(il — &)[RE (1 + 12)(1 — &) — 72 + R§&a(p + 1) [R5 (1 — &) — Ri(1 — &1)]
RYR3(&1 — &) (1 + v2) +12(R3E — Ri&)
SRORS(& — &)[RF (1 + 72) (1 — &) + p] + R(RSE — Rofu) (1 +72)(1 — &)
[R{R3(&1 — &) (1 + 72) +12(R3& — Ri&))

pe < D

pe <

pe < (2.51)
By (2.40) inequality (2.51) can be written as

pe < pey”

With similar (but reversed) arguments, one finds that under the assumption
|A] <0, g2 > 0 and g; > 0 for

pes” < pe < per”
We have then proved the following

Proposition 7. Under the assumptions Ry > R2 and (2.35), sufficient and
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2.3. Existence and Stability of Equilibria

necessary conditions for the Coezistence Equilibrium to exist are
(a) if |A] >0, R)* > 1 and RZ' > 1 (i.e. pef’” < pe < pes’);
(b) if |[A| <0, R)* <1 and RZ' <1 (i.e. pef” < pe < pep'”).

where pePt and peB’ are given by (2.34) and (2.41) respectively.

Conditions for sub- or super-critical bifurcations
It is therefore relevant finding whether peP” < pel? or vice versa.

Lemma 5. Under the assumption Ry > R2 and (2.35), pePr" and peB’, given
by (2.34) and (2.41), are decreasing functions of v1 and 7y, respectively.
If 11 > 72 then pef” < pel”.
If
Ri(& — &) > & (2.52)

then peBt < pel? for all values of y1 and 7».
If R2(& — &) < & then pePt > peBt for 1 small enough, and ~, large

enough.

Proof. The fact that peP” and pel? are decreasing functions of v; and 7, is
an immediate consequence of expressions (2.34) and (2.41) and assumptions
(2.35).

Consider now 73 = 75 = . With some simple algebraic manipulations,

one obtains

peBP — peBP (R —Ry)(1—-&) (R — Ry(1—&)
2 ! R3(& — &) R3(&1 — &)
PR3 = &) — Ry(1 = &) [(Ry — R§)&  (Ry — RH&
(Cy+pRyRE(6 — &) [ R3(6 — &) Ri(6 — &)
_ (R — R — &) — Ro(1 — &) (n+)C 50
R{R3 (& — &)(Cy + nRy R (&1 — &2)) .

From the fact that peP? and peP?” are decreasing functions of v, and v,
respectively, we may conclude that the inequality peP” < pel” holds also for
every vy, > 7a.

As for the final claim, if lim peP? < PYQILm peB? | then peP? < pelt for

m—0 +oo
all finite, positive v; and ~s.
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2.3. Existence and Stability of Equilibria

Vice versa, if lim peP” > lim pel? by continuity peP” > peP’ over
Nn—0 Y2—+00

some range of v; and v, values.

pp _ (R — Rj) G(RI(1 - &) — Ri(1—&))

lim peBP = Mo = o) |y ey
AP = e ey | O RIRE — &)
while (Rl Rz)(l ¢ )
1' BP — 0 0 - 62
o oo PE2 R2(E, — &)

Hence, with some algebra

lim peP” — lim pel?
71—0 Y2 —~+00
(06 RO (L, 6 )
RyR3 (&1 — &) Ri(& &)/

This quantity is positive if and only if R3(&;—&;) < &, yielding the conclusion
of the proof. O

Finally, we show
Lemma 6. (a) if peP? < pel?, then |A| > 0 for all pe € [peBt, peBr];
(b) if peP? < peP? | then |A| < 0 for all pe € [pel”, pePr].
(c) if peBt = peP? | then |A] = 0 for pe = peP’ = peBr.

Through a) and b), we will be able to draw a clear bifurcation pattern
(see for example Britton (2003)) of the system, with transcritical bifurcations

occurring at Fy for pe = peP? | and at E, for pe = pelr.

Proof. We denote by |A|gp; the determinant of A computed with pe = peB?,
1 = 1,2. Through simple, but tedious, algebraic manipulations, one arrives

at

M(Rg(l - 52) - R(l)(l - 51))(R5 - Rg)

A pr—
Al RIR3(6 — &)
2Ry V1R
X + — .
B O ¥ HRIRE(E — &) | Oy + pRIR3 (& — &)

(2.53)
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2.3. Existence and Stability of Equilibria

It is immediate to see that | A|gp; is an increasing function of ;. We already
know (Observation 1) that |A|gp; > 0 for 4 > 7s.

Setting (2.53) equal to 0, we see that
|Alpp1 = 0 = 71 = Vi(72) (2.54)

with

(V2R (& — RY(&1 — &) — pRYRS (& — &2))

C(p+72) + pR& ' (2:35)

Vi(y2) = a

If Wy(v,) <0, then |A|gp; > 0 for all 43 > 0. In particular ¥;(7y2) < 0 for
all 75 > 0 if R2(&; — &) > &4, i.e. (2.52) holds.

Otherwise, |A|gp1 > 0 for 71 > Vy(72) and |A|gp1 < 0 for v < Uy (72).

Similarly, we obtain

n(R3(1 = &) — Ry(1 = &))(Ry — Rp)

Al —
[Alr2 A6 — &)
Yol RGEs Y1 RGEs ]
x |- o+ .
a Cvz + nR{RE (& — &) n Cvyz + pR{RE (& — &)
(2.56)

Now it is immediate to see that |A|gps is a decreasing function of v5 and

lim |A|BP2 =
Y200

p(R3(1 = &) — Ry(1 —&))(Ry — Rp) < P MRgfz)
R{R3 (&1 — &2) g c )

Hence, if

Cp+m) > pRaés (2.57)

|Algp2 > 0 for all v, > 0.

Otherwise, when (2.57) does not hold, setting (2.56) equal to 0, we see
that
|Alpp2 = 0 <= 72 = ¥a(m1) (2.58)

with

(MR} (& + R§(&1 — &) + pR{RE (&1 — &2))
pR3E — Cp+ )
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2.3. Existence and Stability of Equilibria

We see that, if (2.57) does not hold, Ws(7;) > 0, and |A|gpz > 0 for
Y2 < Wa(y1) and |Algps < 0 for vo > Wo(y).

Finally, we observe that the conditions for |A|gp; = 0, i = 1,2, are actu-
ally the same; more precisely Wo(7;) is the inverse of Wy, defined on the
appropriate domain. Indeed, solving the equation ;3 = Wy(vs) for o, we

obtain
1 (C+ Ry&) + pRyRG (6 — &2))

72 PRy (& — R3(& — &) — Cm

where the last identity comes from the definition of C, so that

= Wy(m)

C+ Ryé1 = Ry(&+ Ry(& — &) and  Ry(& — Rj(&1 — &) = —C + Ri.

Summarizing, we have obtained that if (2.52) does not hold, the function
72 = Wa(v1) divides the plane into two regions (see Figure 2.2) such that
below and to the right both |A|gp; and |A|gps are positive; above and to the

left both are negative.

100
80
604 |AJ]<O
Y2

40

20- IA>0

0

0 02 04 06 08 1,0
874

Figure 2.2: The function v = Us(7v;) and the corresponding regions in the plane (v1,72)
where cases (a) or (b) of Lemma 6 hold. Parameter values are R} = 4, R = 2, u =1,
£ =09, & = 0.5.

Since |A| is an affine function of pe (see (2.45)), if it has the same sign
at both ends of a segment, it will have the same sign also within, yielding a)
and b).
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2.3. Existence and Stability of Equilibria

To show c), through long computations, one arrives at

sp_pp_ (By— BHRE(1 - &) — Ry(1 - §))C
p€2 pel - R(l)R(Q)(é-l . 52)
" Yo(C(p+ 7)) — pRGE) + R (LR (& — &) + 71 (Ry (& — &) + &)
(Cy1 + pRyRE(&1 — £2))(Cy2 + pRyRE (&1 — &2))

It is then easy to see that peP” — peP” = 0 if and only if 7o = Uy(y,). O

We can now sumimarise the conclusions about the existence of the Coex-

istence Equilibrium.

Proposition 8. Assume R} > R% and (2.35). Then there occur transcritical
bifurcations at Ey for pe = peP? | and at Ey for pe = peBt with the emergence

of a positive coexistence equilibrium. Either

(a) peP? < peBr and the coexistence equilibrium is unique and feasible for

all pe € [peP? pel];

(b) peP? < peP? and the coexistence equilibrium is unique and feasible for

all pe € [pef”, peP"].

(c) peB? = peP? ) and there is a continuum of positive equilibria for pe =

BP __ . _BP
pey =peyr .

If (2.52) holds, (a) is true for all values of v1 and 7s.

Otherwise, (c) is true for o = Wy(71); (b) is true for 5 > Wa(y1) > 0; (a) is
true for vo < Wa(v1) and for all o when Wo(vy1) < 0, where Wo(7y) is defined
in (2.59).

Note that Wa(vy1) > 71, so that, if y1 > e, (a) is always true.

Stability

It is easy to show that in case (b) the coexistence equilibrium is always
unstable. This can be proved by bifurcation theory, but can also be checked

directly using
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Lemma 7. Let conditions (2.35) hold and let J be the Jacobian of (2.8)—

(2.12) computed at the coexistence equilibrium. Then
sign(|J[) = sign(|Al).

The proof is given in the Appendix.

It follows that in case (b), the Routh-Hurwitz stability conditions are vio-
lated, and the coexistence equilibrium is unstable.

As for case (a), bifurcation theory shows that the coexistence equilibrium is
asymptotically stable for pe close to peP? and pel?.

We were not able to prove that Routh-Hurwitz stability conditions are satis-
fied for all pe € (peP’ pePT). We then performed a numerical study drawing
1 million sets of parameters (R}, R2, &, &, 71/m, 72/ 1) satisfying condi-
tions (2.35) and (2.52) or Wa(vy;) < 0 or v < Wa(y1). For each such draw,
we divided the (peP” pel”) interval into 10000 sub-intervals and, for each
value of pe in this mesh, computed, through standard routines (Press et al.,
1992), the eigenvalues of the Jacobian at the coexistence equilibrium. All
the computed eigenvalues had negative real parts, suggesting that the coex-
istence equilibrium never loses its stability through Hopf bifurcations in the

intervals (peP? peBt).

2.4 Examples

The case peP? < pel? had already been numerically observed by Porco and
Blower (1998). In this case coexistence occurs in the parameter region where
the other existing equilibria are unstable. The case peP?” < pel¥’ occurs for
Y1 = Y2, 71 > Y2 and may occur also for certain 7; < 7, as shown by the

following example.

Example 1: Let 73 = 0.015 < 5 = 0.517 and
Ry = 8.363, Rj = 3.790, 1 = 0.423, &, = 0.990, & = 0.020 and 7 = 1
By substitution into (2.17), (2.32) and (2.40) we get

pePF =0.888 pelt =36.496 peP’ =0.153 pel’ =0.552
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The Subtype-1-Only Equilibrium is stable for 0 < pe < 0.153, the Subtype-
2-Only Equilibrium is stable for 0.552 < pe < 1 and the Coexistence Equilib-
rium exists into the range 0.153 < pe < 0.552, where the DFE, the Subtype-
1-Only and the subtype-2-Only Equilibria exist but are unstable. Numerical
computation of the eigenvalues of the linearized system confirm that the
Coexistence Equilibrium is stable where it exists. Figure 2.3 shows the equi-

librium fractions y; and y, as function of parameter pe.

Equilibrium fraction y2

Figure 2.3: Equilibrium fractions y; and yo as function of pe for fixed v = 0.015,v2 =
0.517, R} = 8.363, R2 = 3.790, u = 0.423, & = 0.990, &, = 0.020, 7 = 1. Coexistence of the
strains occurs for 0.153 < pe < 0.552.

The case peP” > peP” had never been observed before. In this case the
Coexistence Equilibrium exists in a ‘bi-stability’ region in which both the
Subtype-1-Only and the Subtype-2-Only Equilibrium are stable and hence
the asymptotic behavior of the system depends on the initial conditions. This

latter case occurs only for certain v; < 7,.
Example 2: Consider the case 13 = 0.026 < v, = 0.966 and let
Ry = 4.723, RS = 2.293, 1 = 0.235,&;, = 0.923,& = 0.650 and 7 = 1.
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By substitution into (2.17), (2.32) and (2.40) we get
pelt =0.853 pelt =0.866 pelt =0.829 pelt =0.822

The DFE is stable for pe > 0.866, the Subtype-1-Only Equilibrium is stable
for 0 < pe < 0.829 and the Subtype-2-Only Equilibrium is stable for 0.822 <
pe < 0.866. The Coexistence Equilibrium exists for 0.822 < pe < 0.829 and
is unstable. Figure 2.4 shows the equilibrium fractions y; and y, as function
of parameter pe. Figure 2.5 shows two trajectories for the equilibrium frac-
tions y; and ys starting close to the Coexistence Equilibrium at pe = 0.8234
and converging one to the Subtype-1-Only Equilibrium and the other to the
Subtype-2-Only Equilibrium. The bifurcation and trajectory graphs have
been obtained by the graphical package MatCont of the MATLAB software.

Figure 2.4: Equilibrium fractions y; and yo as function of pe for fixed v1 = 0.026,v2 =
0.966, R} = 4.723, RZ = 2.293, 1 = 0.235,&; = 0.923,& = 0.650,7 = 1. A bi-stability
region occurs for 0.822 < pe < 0.829; in this region unstable coexistence of the strains

occurs.
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Y1 oos Y2 oos

0035 0,035

Figure 2.5: Trajectories of the fractions y; (left panel) and yo (right panel) as functions of
time; parameter values are y; = 0.026, 2 = 0.966, R} = 4.723, R3 = 2.293, n = 0.235,&; =
0.923,& = 0.650,7 = 1 and pe = 0.8234. Both trajectories start close to the Coexis-
tence Equilibrium x = 0.148, y; = 0.007, yo = 0.022, N = 3.896; the starting point of
the red one, converging to the Subtype-1-Only Equilibrium, is (0.148,0.010,0.029, 3.896);
the starting point of the blue one, converging to the Subtype-2-Only Equilibrium, is
(0.148,0.007,0.029, 3.896).

2.5 Discussion

In this chapter we have analysed a model for competition between two viral
strains with complete cross-immunity and imperfect vaccination. The model
was first proposed by Porco and Blower (1998) with different HIV strains
as case system; the authors showed through simulations the possibility that
vaccination shifted the competitive hierarchy, with potential side-effects on
public health.

Here we have examined the same model in greater detail, finding for in-
stance the exact conditions under which vaccination may lead to coexistence
of two strains; these are given by (2.35). It is worth commenting on their

biological interpretation.

The first & > & means that the vaccine reduces more the susceptibility
to the strain with the higher reproduction number (the better competitor in

absence of vaccination) since we assumed R} > R2.
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The second condition, that can be written as

& _ Ro(Rj—1)

& " RE 1)
specifies that the ratio of susceptibilities under vaccination must be decreased
sufficiently relative to a ratio of reproduction numbers.

The third condition R3(1—&;) > R}(1—¢&;) means that, if every individual
were vaccinated, the second strain would have a higher reproduction number
(note that the third condition implies the first one, which is then pleonastic).

Under these conditions there always exists a range of vaccination rates
under which a (unique) coexistence equilibrium exists, at least if y1/; is small
enough, i.e. natural mortality is sufficiently lower than that induced by the

infection (or, in case of HIV, than the rate of progressing into AIDS).

The relative values of 71 and 75 (i.e., of the expected lenghts of sojourn in
the classes I; and I5) determine the ordering between peP? given by (2.32)
and pel” given by (2.40). This in turn affects the qualitative behavior of
system (2.14).

The case peP” < peP’ had already been numerically observed (Porco
and Blower, 1998). In this case, coexistence occurs in the parameter region
where all the other equilibria are unstable. Numerically, we found that the
coexistence equilibrium is asymptotically stable for parameter values in this
region, but the possibility of destabilization via Hopf bifurcations cannot
be totally excluded, since an analytical proof is missing. The unconditional
stability of the coexistence equilibrium has been proven in another model
with coexistence of totally cross-immune pathogen strains (Andreasen and
Pugliese, 1995).

On the other hand, the case pePf > pel? is also possible, giving rise
to phenomena that had not been anticipated. In this case there exists a
parameter region in which both monomorphic equilibria (i.e. the Subtype-
1-Only and the Subtype-2-Only Equilibrium) are stable and the coexistence
equilibrium exists unstable (see Figure 2.4). In this ‘bi-stability’ region the
asymptotic behavior of system (2.8)—(2.12) depends on the initial conditions.
The presence of the bi-stability region implies that, with a gradual increase

of vaccination rates, one may encounter a sudden shift from a situation with
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only strain 1 present in appreciable proportion, to one with only strain 2.
Moreover, decreasing again vaccination rates, one would see a hysteresis-type

behavior.

As shown in the main text, bi-stability may occur only if 7, < 5. This
means that the mortality rate (or rate of developing AIDS, in case of HIV)
must be larger for strain 2 (the one that is out-competed without vaccination)
than for strain 1. In other words, bi-stability may occur only if vaccination
shifts the competitive balance in favour of a more virulent strain, a rather

unpleasant scenario (Massad et al., 2006). Note that the model is definitely

not realistic for HIV, mainly because its structure implies that the duration of
the infectious stage is exponential, which is certainly not plausible, whether
infectious are treated or not. The goal of our analysis is mainly exploratory
to suggest possible phenomena that may be then examined (probably with
the help of numerical software) in more realistic and complex models. On
the other hand, the model can be applied to many other fatal diseases of S-I
type, as long as one can assume that the entrance in the community (with
or without vaccination) is constant and independent from the population
size. One can reasonably expect that similar results would be obtained also
under other assumptions for the birth rate, but the analysis would be more
complex. Thus, these results should be of interest in the analysis of several

emerging and re-emerging fatal infectious diseases.
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2.6 Appendix

2.6.1 Computation of the Routh-Hurwitz coefficients

We report here the computations of ai, as, az and ajas — az that lead us to
prove that the Subtype-1-Only Equilibrium is stable, wherever it exists.

Remind that we set

K = Ri(u+7)1—-&)n
L = Ry(p+m)n

a1 = (p+m7) + [+ Ro(p+7)5] =71 + Ry(p+m)(1 — &)
= p+ p+ Ry + )7+ Ry(u+ 7)1 — &)
=2u+K+L

az = (+m7) [+ Ro(p + )] +
— [p+ Ri(u+)7] [ — Ro(p+ ) (1 — &) ] +
[ (b +71) =] Ro(p + )&+
— (4 my1) [nin — Ro(p + ) (1 = &)in] +
+ (0 + My
= [u+ Ro(p + 1) [+ Ro(p +m)(1 = &) +
+ [Ro(p+m) = m] Ry(p + m)ezagn+
+ (e + )Ry (14 7)(1 = &)
= (p+ L) (n+ K) + [Ro(p + ) — n] L& + (n+ 1) K

+

az = (u+ 71171){ [Ro(p+71) — ] Rolp+ 712151 — [+ Ro(p+ 7)) [mi+

— Ro(p+ 7)1 = &)t + N [ — Ro(p+ 7)) Ro(p + ’Yl)fllTler

yl

=
——

+ (u+ ") [u + Ro(u + 71)1/1]
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= (u+77){[Ro(p +7) — 1] Ro(p +)&azagh — [p+ Ry (e + 1)) [+
— Ro(p+m)(1 = &)} — [Ro(lt +m) — n) Rolp + M)&a@gimin+

+ (u+m7) o+ Ry (p + )71 i

= [Ri(p+m) — 7] Lu&izr + (p+ ) (p+ LK

aray —ag = [p+ Ro(p +7)1] [+ Ro(u+7)(1 = &)in] 21 + Ro(u+ 1)+
+Ry (1 +71)(1 = &) + [Ro(+m) — m] Rolp +7)érz10m 20+
+ Ro(p+7)5 + Ry +m)(1 = &)inl+
+ (i) Ro(p 4+ 7)1 = &)
20+ Ro (1 + 7171 + Ro(u+m)(1 = &) +
— [Ro(p+m) — ] Ro(p +m)&z10n+
—(p+mm) [p+ Ry + )7 Ro(u+71) (1 — &)
=(pu+L)(p+K)2u+L+ K)+
+ [Ro(p+m) — ] Lazi(p+ L+ K)+
+ (p+mny)(p+ KK

2.6.2 Proof of Lemma 2

Proof. a) It is clear that, under the assumptions (2.30), if R3(1—¢&2) > Ri(1—&),
then 0 < pePP. As for the other inequality, if 4 = 0,

peBP — (R, —R3)(1— &)
! R2(&1 — &)

and

(Ry — R3)(1 - &)
Ro(fl 52)

By continuity, if R3(1 — &) > Ry(1 — &), peP? < 1 for p > 0 small enough.
b) If R3(1 — &) = Ry(1 — &), pef‘P =1 for all p > 0.
If R2(1-&) < RY(1—&1), pePT is a decreasing continuous function of p on [0, +00).

<1l<= R\1—-&) < R31-6&).
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Hence

BP — 1 sp_ (Rg— Rp) [ B §1(R3(1 — &) — Ry(1 — 51))}
etz b= I P TRa e | YT RmE-&) |
Now

1= B RO —&) — Ri(& — &) | (R~ RO& R — &) — Ry(1 &)

R2(& — &) RY(& — &)R{RA(&G — &)
_ Ri(1-&) — Ri(1 - &) <1 _ (R —R})& >
R3(& — &) RIR3(&1— &))"

We use the inequality (R — R3)& < Ri& — R3&, in the bracketed term to have

L B-BY&s | R -RG o C
RyRG(&1 — &) RR§(&1 = &) RoRj(&—&) ~ 7
proving po, — 1 > 0. O

2.6.3 Proof of Lemma 7

Proof. Let J be the Jacobian matrix at the coexistence equilibrium:

T ~ ~

_N 0 —’le _’Y2N

i R ™ N ~
y —zl=d-pe) -~ —a @R+ m) —m] —#Ro(u+72) 2l
_ a ) ) ) ) )

1¥2 U1 R (1 +7)& —91b + 7191 —71b + Y201

52 U2 G2 R3 (1 + 72)€2 —¥2¢ + V192 —¥2C + V202
where

a=R{(u+7)0h —n191 + R2(u + 72) 02 — V202
b=Ri(u+m)(1—¢&) (2.60)
c=R3(pn+2)(1—&)

We apply the Gauss-Jordan algorithm in the following steps:

1) substitute the fourth row of J with the sum of its fourth row multiplied times

91 and its third row multiplied times —go, thus obtaining matrix J;

2) substitute the third column of matrix J; with the sum of the its thrid column

and its fourth column multiplied times —1, thus obtaining matrix J,

3) substituite the third row of matrix Jo with the sum of its third row multiplied
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times N and its first row multiplied times ¢, thus obtaining matrix

™ A N
S 0 (v2—m)N —72N
T ™
T T id 3[R -
P e Iy b R -
0 NRi (1 +71)& 0 —NR{i1(p+7)(1 = &)
0 @13}26 0 @13}2(() — C)

where a, b and ¢ are given in (2.60) and

d = Ri(p+72)—72—Ri(p+m)+m
e = Ri(u+72)& — Ro(n+m)&

Due to the properties of the determinant, we have
1] = |Jgl. (2.61)

We compute |J3| expanding through its first column obtaining

|AlmR{RE (1n + 1) (1 + 72)9792(& — &2)

| J3] =
i

(2.62)

where |A| is given in (2.45). Conditions (2.35) and identities (2.61) and (2.62)

imply our claim. O
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Chapter 3

Modelling the Spatial Spread of
H7N1 Avian Influenza Virus

among Poultry Farms in Italy

3.1 Introduction

In 1999 — 2000 the Italian industrial poultry production was disrupted by an epi-
demic of Highly Pathogenic Avian Influenza (HPAI) caused by a H7N1 virus sub-
type. Since March 1999, the Low Pathogenic (LPAI) H7N1 virus subtype was
endemically circulating in the North of Italy, where more than 65% of the Italian
poultry production is concentrated, and the currently accepted hypothesis is that
a H7N1 LPAI strain mutated into a HPAI strain (Busani et al., 2009; Mannelli
et al., 2007). This hypothesis has been widely discussed in the literature (Webster
et al., 1992; Alexander et al., 2000; Stegeman, 2004). HPAI virus was first detected
in a poultry farm on November 28" 1999; after that, the measures provided by
the European Union (EU) legislation ! were applied, at different times at various
spatial scales and were continued until the infection was officially eradicated on
April 10*", 2000.

The first goal of this study was to investigate whether a spatial transmission kernel
was adequate for describing the actual epidemic spread in Northern Italy, consid-

ering also the implemented control measures. We were furthermore interested in

LCEC. Council Directive 92/40/EEC of 19 May 1992 introducing community measures
for the control of avian influenza. Official Journal of the European Commission 1992
L167:1-15
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analysing potential differences in susceptibility among poultry species, consistent
with the association found between Al virus infection and poultry species (Busani
et al., 2009; Mannelli et al., 2006; Thomas et al., 2005), and with other reports of
species differences in susceptibility to high pathogenicity viruses (Tumpey et al.,
2004). Mannelli et al. (2007) found a reduction in transmissibility during the course
of the epidemic, using a non-spatial model. We then analysed whether this claim
could be upheld using a more detailed spatial model. Finally, we assessed the ef-
fectiveness of the measures implemented in first containing and then eradicating
the infection in order to discuss the relative merit of each specific measure, and to
study whether a different implementation of the measures could have been more
effective.

Here we analyse the spatio-temporal spread of the infection first using a SEIR
model with a spatial kernel similar to the one proposed by Boender et al. (2007),
to which all control measures were added just as they were actually implemented.
We use maximum likelihood methods to estimate parameters and to establish their
confidence intervals.

We then extend the SEIR model allowing for species differences in susceptibil-
ity, and test the improvement of fit relative to the basic model. We also allow for
changes in transmissibility during the course of the epidemic (Mannelli et al., 2007),
considering different epidemic phases, corresponding to steps in the implementation

of control measure, and to awareness of the ongoing epidemic.

3.2 Data

The study area of this work consists of the North-Eastern regions of Lombardia
and Veneto, where 392 out of 413 (94.9%) outbreaks occurred. Due to the lack
of data on 10 infected backyard farms located in the study area, we considered
382 outbreaks in our analysis (Capua and Marangon, 2000; Mannelli et al., 2007).
In these regions there is a densely populated poultry area where different avian
species (laying hens, broilers, breeders of different species, meat turkeys, geese,
quails, ostriches and others) are bred.

Poultry production consists of repeated cycles. A productive cycle starts with the
stocking of the one day old chicks (typically all of the same poultry type) and, after
a period whose length depends on the species (on average: 42 days for broilers,
95 — 145 days for female and male meat turkeys, up to 2 years for laying hens),

it ends with the slaughtering of the whole flock. Between successive production
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cycles there is usually an “empty period” during which no birds are stocked since
the buildings have to be cleaned and sanitized, and maintenance procedures need
to be performed.

The study period started on November 28" 1999 (i.e. the day that HPAI virus was
first suspected of having infected a poultry farm) and ended on April 10 2000
(the day that infection was eradicated). The data-sets upon which this work is
based have been collected by the Istituto Zooprofilattico Sperimentale delle Venezie
(IZSVe) and have already been subject to analysis (Busani et al., 2009; Mannelli
et al., 2006, 2007). Data on species and production type, duration of each produc-
tion cycle and geographical location of the farms in the study area were collected
by veterinarians working for the Regional Veterinary Service (Busani et al., 2009).
The geographic distance between every pair of farms in the data-set has also been
computed.

To contain the epidemic, the following measures outlined by EU legislation' were
applied starting from December 17", 1999: the stamping-out of infected or sus-
pected of being infected farms (IF) and the ban of restocking (BR) on emptied
farms (either because they ended a production cycle in the at-risk area during the
epidemic or because they were culled) (Busani et al., 2009; Mannelli et al., 2007).
Pre-emptive culling (PEC) of farms located at less than 1 km from an infected
farm started in Veneto from January 20", 2000 (Busani et al., 2009) and in Lom-
bardia from February 10", 2000 (Mannelli et al., 2007). Further measures such as
the pre-emptive slaughter at farms that had at-risk contacts with an IF and strict
limitations to the movements of live poultry, products, vehicles and staff were also
applied in the whole study area (Busani et al., 2009). As the epidemic unfolded,
the IZSVe recorded the date of onset of clinical signs (for every confirmed case) and
the date of culling (either because infected or because pre-emptively slaughtered)
of every farm that underwent this measure.

During the study period 382 farms were infected (red dots in Figure 3.1), 72 (65 in
Veneto and 7 in Lombardia) were pre-emptively slaughtered (blue dots in Figure
3.1), the ban on restocking was imposed on 1486 farms (yellow dots in Figure 3.1)
and 1307 escaped the infection (green dots in Figure 3.1). H7NI virus spread to
the maximum distance of 176.18 km from the source farm. For every farm in the

study area, starting and ending dates of each production cycle have been recorded.
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Figure 3.1: Infected farms (red dots), not infected farms (green dots), farms banned from
restocking (yellow dots) and pre-emptive culled farms (blue dots) in the HPAI epidemic of
years 1999-2000 in Italy (left panel) and in the study area (Veneto and Lombardia) (right
panel)

3.3 Models Analysed

The SEIR models are defined on a farm level (i.e. the farms are the individual units)
and our assumptions are similar to those made by Boender et al. (2007) to model
the diffusion of HPAI in The Netherlands. Time is discrete and for each of the
135 days (November 28" 1999 - April 10*®, 2000) farms in a production cycle are
classified as susceptible (S), latently infected (i.e. infected but not yet infectious)
(E), infected (I) or removed (either because they were culled or because they were
banned from restocking) (R). Farms are considered removed (R) also when they
are in the “empty period” between successive production cycles. Following Busani
et al. (2009), we assumed that infection occurred 7 days before the detection of
first symptoms and this included a period of latency of 2 days (Van der Goot et al.,
2003); the infectious period lasted until the day of culling (Busani et al., 2009).
With these assumptions, the average length of the infectious period was T' = 11.82
days (5 — 95 percentile interval (6,26)).

In the Basic Model, transmission of infection between an infectious farms j and a
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susceptible farm ¢ at distance r;; can occur (in a given day) with probability

_ho
1+ (ﬁ)a'
To

This is the same transmission kernel as used by Boender et al. (2007).

h(rij) = (3.1)

The parameters hg, 7o and « have been estimated by maximum likelihood (ML),
while other parameters have been kept fixed. Sensitivity analysis (not shown here)
on the lengths of the incubation period (3, 5, 7 days) and of the latently infected
period (1, 2 days) show that the results obtained are robust to the exact choice of
incubation and latency period.
In the Susceptibility Model, farms are divided into 5 groups, according to the
species produced during the epidemic. Precisely, the species are: laying hens (1),
meat turkeys (2), broilers (3), breeders (turkeys and chickens considered together)
(4), others (5). The transmission kernel (3.1) is modified by substituting the con-
stant ho with hy where k (= 1...5) represents the species.
In the models with varying transmission rate, the transmission constant (hg or hy)
changes with time, according to the epidemic phase (see details in next Section).
In all models, the force of infection on a susceptible farm i at time ¢ \;(¢) is given
by

Ai(t) =D hlrij)

J#i

where the sum is performed over all infectious farms j at time t.
The overall model is a simple discrete stochastic model, where, given the state
of the system at time ¢, each non-infected farm ¢ independently becomes infected
with probability 1 — e~ while infected farms progress through the latent or
infectious period.
The likelihood of the observed events can then be computed by multiplying (for
each time t) the probabilities of becoming infected for each farm infected that day,
times the probabilities of not becoming infected for each farm not infected that day.
This can be computed in an efficient way (Boender et al., 2007) by dividing farms
into the following sets: M (farms infected at time t;,7), K (farms not infected and
not pre-emptively culled within the end of the epidemic at time t,,4,), A (farms
not infected and pre-emptively culled at time ¢.,;) and B (farms not infected and

banned from restocking at time ¢p,,). Then the log-likelihood function can be
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written as follows

tmaz—1 tcul,l_l tban,b_l
L= =) > M- N(t) - Mo (t) +
keK t=1 leA t=1 beB t=1
17Lf,m_1
=3 Y da®)+ Y loglt — et
meM  t=1 meM

3.4 Parameter Estimates

We computed the maximum likelihood estimates (MLE) of the parameters, the
relative 95% confidence intervals and AIC index for the Basic and the Susceptibility
Model. Confidence intervals have been computed by finite difference approximation
of the inverse of the Hessian matrix of the log-likelihood function, which is the
natural plug-in estimator of the the Fisher information matrix (Rice, 2004). The
MLE of the parameters of interest, which have been computed by implementing
the simulated annealing algorithm given by Press et al. (2002), the value of the
log-likelihood function at the MLE and the AIC indexes are given in Tables 3.1
and 3.2.

Table 3.1: MLE and 95% Confidence Intervals of the Basic Model’s parameters
Estimate  95% Confidence Interval

ho 0.0064 (0.0037, 0.0090)
ro 2.1524 (1.3943, 2.9106)
Q@ 2.0760 (1.8711, 2.2809)
log-likelihood -2430.4558
AIC 4866.9116

According to Akaike’s Criterion (Akaike, 1974), we find that the SEIR model
with different susceptibility according to the species better explains the data.
As for the changes in transmissibility during the course of the epidemic, we divided
the study period into 4 phases: the first 19 days (Phase 1), during which no control
or containment measures were undertaken; the next 34 days (20 < t < 53, Phase
2) during which stamping-out of IF and a ban on restocking (BR) were applied on
the whole study area; the successive 20 days (54 < ¢t < 74, Phase 3) during which
pre-emptive culling (PEC) of farms located at less than 1 km from an IF, beyond
IF culling and BR, was applied in Veneto; the remaining 61 days (75 < ¢ < 135,
Phase 4) during which culling of IF, BR and PEC were applied in the whole study
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Table 3.2: MLE and 95% Confidence Intervals of the Susceptibility Model’s parameters
Estimate 95% Confidence Interval

hy 0.009562 (0.0049, 0.0141)
ho 0.007010 (0.0034, 0.0105)
hs 0.001000 (0.0004, 0.0015)
hy 0.005273 (0.0022, 0.0083)
hs 0.001190 (0.0003, 0.0020)
To 3.0908 (1.7853, 4.3963)
Q@ 2.1850 (1.9037, 2.4663)
log-likelihood -2294.6860

AlIC 4603.372

area.
The temporal changes in transmissibility were first explored on the Basic SEIR
Model (i.e. without distinction among the different species). In the 4-Phases Basic
Model each phase had a different transmissibility coefficient hy (hf), i = 1...4) in
equation (3.1). A 2-Phases Basic Model has also been analysed where only Phase
1 had a different transmissibility coefficient (h$ vs. h3 for all subsequent phases);
the 2-Phases Model was considered on the basis of the results from the 4-Phases
Model, but can also be justified because the change in transmissibility may be due
to the limitations introduced to the movements of live poultry, products, vehicles
and staff.
The maximum likelihood estimates of the parameters of the three variations of
the Basic SEIR Model, together with the value of the log-likelihood function at the
MLE and the AIC index are given in Table 3.3. By means of the log-likelihood ratio
test and the assumption that the test statistic is asymptotically x? distributed with
the degree of freedom equal to the difference in dimensionality of the parameters’
space of the tested models, we see that both the 2-Phases Basic Model and the 4-
Phases Basic Model better explain our data at a significance level of 0.01, compared
to the Basic SEIR Model. On the contrary, the 4-Phases Basic Model does not
produce a (significantly) better fit when compared to the 2-Phases Basic Model.
Akaike’s Criterion is slightly lower for the 4-Phases Basic Model than the 2-Phases
Basic Model, but the difference is too small to justify a more complex model (Table
3.3).

When considering the model with temporal phases and different host suscepti-
bility, the number of parameters becomes too large to obtain reliable ML estimates.

We defined a 2-Phases Susceptibility Model associating a constant reduction of
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Table 3.3: MLE of the Basic SEIR Model’s parameters
Basic Model 2-Phases Model 4-Phases Model

h 0.0064 0.0107 0.0104
hZ 0.0062 0.0056
h 0.0067
hi 0.0078
ro 2.1524 2.1340 2.1824
a 2.0760 2.0717 2.0830
log-likelihood ~ -2430.4558  -2426.9912 -2424.6035
AIC 4866.9116 4861.9824 4861.2070

transmissibility between the 2 phases, independently from the species. The reduc-
tion factor ¢ between the 2 phases was fixed at 0.58, which is the value obtained
with the 2-Phases Basic Model. We moreover fixed the proportionalities among the
susceptibility of the species at the values obtained with the Susceptibility Model
ho hs hy hs
ro=—=2073, r3=-—=010, ry=-—=0.55, 1rz=-— =0.12.
2 Iy 3 Iy 4 Iy 5 Iy
With these assumptions, the transmissibility constant hl to species k at time ¢ is
given by
rih ift <19
A (3.2)
crihy if t > 20

where 71 = 1, and the only unknown quantity to estimate is h;. The MLE of the
2-Phases Susceptibility Models and the relative 95% confidence intervals are given
in Table 3.4 while the corresponding values of the transmissibility constants using
(3.2) are given in Table 3.5. By Akaike’s Criterion the data are better explained
by the 2-Phases Susceptibility Model than by the Susceptibility Model. However,
the 2-Phases Susceptibility Model improves the log-likelihood estimate of just 2.1
units (see Tables 3.2 and 3.4) while the large AIC reduction comes mainly from
its low number of parameters; the low number of parameters (just 3) comes out
of the fact that we have fixed several proportionality factors (see (3.2)) at the
values obtained from previous analysis. Hence, the statistical assumptions needed
to compare models through the AIC are not met, and it is not possible to choose

the model on this basis solely.
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Table 3.4: MLE and 95% Confidence Intervals of the 2-Phases Susceptibility Model’s
parameters

Estimate  95% Confidence Interval

hy 0.0155 (0.0078, 0.0232)
To 3.1595 (1.7703, 4.5487)
Q@ 2.1921 (1.8937, 2.4904)
log-likelihood -2292.5117
AIC 4591.0234

Table 3.5: Values of the transmissibility constants for the 2-Phases Susceptibility Model

Phase 1 Phase 2
h,y  0.0155  0.0090
ho 0.0113  0.0065
hs 0.0015  0.0009
hy 0.0085  0.0049
hs 0.0018  0.0010

3.5 Simulations

3.5.1 How data are reproduced by the model

We simulated Al epidemics using the Basic SEIR Model, the Susceptibility Model
and their 2-Phases versions in order to compare them to observed data and assess
their behavior.

We assumed the observed spatial distribution of farms in the study area and the
start of the epidemic from the first infected farm at time ¢ = 1. We assigned the
observed production cycles to the farms which were not infected during the 1999-
2000 outbreak. Infected farms were assigned the observed production cycle until
the day of infection; the production cycle was then completed from the distribution
of the observed production cycles, according to the species. The length of the
infectious period of each IF was randomly drawn from the observed infectious
periods. Note that in this way we were accounting for Ban on Restocking (BR)
and IF stamping-out since time ¢t = 20. We assumed that PEC started at time
t = 54 in Veneto and at time ¢ = 75 in Lombardia and that it took a random
number of days between 0 and 4 to cull an identified contiguous farm. Finally, we
let epidemics evolve until extinction according to each of the considered models.
We tested the simulation results on the following indicators: the mean number

of infected farms (or total case) (IF), the mean number of pre-emptively culled
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farms (PEC), the mean number of farms banned from restocking (BR), the average
extinction time (7¢y¢) and the average maximum distance to which H7N1 spread
(Dpaz). The number of culled farms (because either infected or pre-emptively
culled) gives a measure of the total losses (TL) due to the epidemic.

For each model, we averaged over 100 realizations that generated at least 10 cases
each; the number of replicates was suggested by similar analyses in the literature
(Keeling et al., 2001; Matthews et al., 2003). Tables 3.6 and 3.7 show the average
values, together with the relative 5 — 95 percentile intervals, obtained using either
the Basic SEIR Model or the Susceptibility Model, with the respective 2-Phases
variations. Note that, according to the criteria for applying the PEC, a total
number of 129 (instead of 72) farms should have been pre-emptively culled; thus
we expect that models that include culling at all farms within a radius of 1 km

from an IF will produce a higher number of culling than actually observed.

Table 3.6: Mean numbers and 5 — 95 percentile intervals computed on 100 realizations
that generated at least 10 cases, using the Basic Model and the 2-Phases Basic Model

Basic SEIR Model 2-Phases Basic Model Observed Data

IF 169.82 (21, 361) 366.25 (117, 575) 382
PEC 100.47 (10, 180) 147.72(70, 203) 72
BR 1447.26(1105, 1638) 1307.13 (953, 1523) 1486
Teut 123.53(77, 162) 133.89 (104, 177) 135
Dipar  118.22(58.69, 181.35) 144.89(102.23, 190.09) 176.18

Table 3.7: Mean numbers and 5—95 percentile intervals computed on 100 realizations that
generated at least 10 cases, using the Susceptibility Model and the 2-Phases Susceptibility
Model

Susceptibility Model 2-Phases Susceptibility Model Observed Data

IF 266.53(90, 448) 385.01(196, 530) 382
PEC 139.34(79, 196) 136.51(82, 179) 72
BR  1403.06(1089, 1587) 1383.41(1125,1535) 1486
Tont 135.64(104, 181) 130.17(109,162) 135
Das 139.33(89.97, 193.38) 151.07(108.48, 196.32) 176.18

The numbers reported in Tables 3.6 and 3.7 show that the indicators produced

by the models are reasonably consistent with the data. The 2-Phases versions of the
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models predict mean values of indicators closer to observed data; the agreement is
further improved when taking into account difference by species in the susceptibility
to HPAI infection. The maximum predicted distance of virus spread, on average, is
of 151.07 km from the source farm, which is less than the observed distance (176.18
km).

In order to have a more complete comparison between data and simulations, we plot
(Figure 3.2) the 3-day running (moving) averages (to remove extreme fluctuations)
of the data against the 3-day running averages of the 100 realizations of the the 2-
Phases Susceptibility Model. In Figure 3.3 we compare the 3-day running average
of the data to the trajectories in time (3-day running averages) of four realizations:
those yielding the 20th, 40th 60th and 80th percentiles of the total number of
cases. Finally, Figure 3.4 shows one simulation of the spatial diffusion of infection
generated with the 2-Phases Susceptibility Model.

. " observed epi&emic -
18 b T simulations

New cases

0 20 40 (3]0] 80 100 120 140 160 180
Davs

Figure 3.2: Comparison of the number of new cases between the 3-day running average
of the observed epidemic and of 100 replicates of the stochastic 2-Phases Susceptibility
Model

3.5.2 Assessment of the effectiveness of the intervention

measures

In order to assess the effectiveness of pre-emptive culling (PEC) and of the imposi-
tion of the ban on restocking (BR), we first explored the effect of neglecting them.
Every test in this section was conducted on the 2-Phases Susceptibility Model. The
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Figure 3.3: Comparison of the number of new cases between the 3-day running average of
the observed epidemic and the 20th, 40th, 60th and 80th of 100 replicates of the stochastic
2-Phases Susceptibility Model

average quantities obtained with the 2-Phases Susceptibility Model (see Table 3.7)
constitute our baseline.

When neglecting BR, we assumed that every farm is susceptible for the whole
course of the epidemic. In Table 3.8 we report the average values of the chosen
indicators when neglecting the imposition of ban of restocking (NO-BR) and when
neglecting the application of pre-emptive culling of farms close to an infectious
premise (NO-PEC). From our results (see Table 3.8) we conclude that the most
effective intervention measure in stopping the infection was the imposition of ban

of restocking on emptied farms.

Table 3.8: Mean numbers and 5—95 percentile intervals computed on 100 realizations that
generated at least 10 cases, using the 2-Phases Susceptibility Model with and without BR
or PEC

NO-BR NO-PEC baseline
IF 984.02(817,1103) 421.81(202, 592) 385.01(196, 530)
PEC 496.89(368, 671) 0 136.51(82, 179)
BR 0 1326.67(1055, 1573) 1383.41(1125,1535)
T 147.13(123, 170) 143.95(111, 179) 130.17(109,162)
Do 168.19(135.21, 203.17) 148.69(114.96,189.35) 151.07(108.48, 196.32)
TL 1480.91 421.81 521.52
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Figure 3.4: Status of farms in the study area at time ¢ = 1 (top left), ¢ = 50 (top right), t =
100 (bottom left), t = 150 (bottom right) in one simulation of the 2-Phases Susceptibility
Model. Yellow dots represent empty farms, green dots represent susceptible units, red dots
represent infectious units, blue dots represent (either pre-emptive or previously infected)
culled farms.

We also explored the effect of applying PEC with some variations. An earlier
(i.e. since time ¢ = 20) application of pre-emptive culling (earlier-PEC) on the
whole study area produces on average less infected cases and a higher number of
pre-emptive culled farms, for a total number of losses which is slightly lower than
those produced by the basic scenario (see Table 3.9).

The application of pre-emptive culling for farms within a radius of 0.5 km from
an IF (restricted-PEC) produces on average a higher number of infected farms and
a lower number of pre-emptive culled farms, for a smaller number of total losses in
comparison to the base scenario(see Table 3.8). Note that the NO-PEC strategy
produces on average an even lower number of total losses (equal to IF) (see Table
3.8), which is currently the lowest among the simulated strategies, and could then
be considered to be the best one from this point of view. On the other hand, the
time required to eradicate the disease in the NO-PEC scenario would be longer

(about 10% on average) than with the baseline scenario. From the point of view
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Table 3.9: Mean numbers and 5 — 95 percentile intervals computed on 100 realizations
that generated at least 10 cases, using the 2-Phases Susceptibility Model with different
intervention strategies

earlier-PEC restricted-PEC earlier&restricted PEC
IF 222.05(98, 326) 409.33(208, 578) 334.66(174, 450)
PEC 269.68(127, 379) 58.78(32, 83) 138.34 (83, 192)
BR 1349.68(1074, 1505) 1321.70(1023, 1512) 1356.46(1080, 1522)
Tt 125.11(96,163) 142.84(110, 199) 133.91(107, 169)
Do 132.82(94.79,183.24) 150.79(115.93, 197.43) 146.23 (105.99, 185.14)
TL 491.73 468.11 473

of eradication time, the earlier-PEC strategy would have been the best one.

Note finally that the variation among simulations is rather high compared to the
differences among strategies. The only strategy that produces results unequivocally
different from the other ones is the NO-BR.

3.6 Results and Discussion

Our study confirms that proximity to an IF increases the risk of infection. This
supports our choice to take transmission kernels as power law functions of the dis-
tance; moreover the exponent « and scale ry are rather similar to what was found
by (Boender et al., 2007), despite the different context.

Reduction of virus transmissibility between Phase 1 and the subsequent phases and
difference in susceptibility by species have been also observed in this analysis. Our
estimates suggest a great difference in exposure and/or susceptibility among the
poultry species. Since the model does not distinguish between differential levels of
exposure and intrinsic susceptibility, the estimates show that laying hens and meat
turkeys are most exposed and/or susceptible to H7N1 virus. Breeders seem to be
less exposed and/or susceptible to H7N1 than laying hens and meat turkeys but
more exposed and/or susceptible than broilers and all other species together (Ta-
ble 3.2). These results are consistent with the cumulative probability of infection
computed by Busani et al. (2009) on the same datasets.

We have also examined a model with differences in infectivity among species. The
results (not shown) are on the border of significance for differences in infectivity.
However, the fit to data and the agreement of simulations with observed data were
much worse than in the model that accounts for the difference in susceptibility.

Overall, we believe that the data cannot demonstrate with good confidence the
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existence of differences in infectivity among species.

The 2-Phases Susceptibility Model turned out to be the model, among those tested
here, whose simulated outputs (Tables 3.6 and 3.7) are most similar to the observed
data. Figures 3.2 and 3.3 show that the observed epidemic falls within the range
of the predictions obtained by the 2-Phases Susceptibility Model both in terms of
number of new cases at each time ¢t (Figure 3.2) and of the general profile of the
epidemic curve over time (Figure 3.3). This supports the utility of the model as
an adequate and useful tool for policy testing.

The results show that control measures such as culling of infectious farms, pre-
emptive culling of contiguous premises, ban of restocking on emptied farms and
restrictions to the movement of animals, vehicles and staff (i.e. decrease of the
number of contacts among farms) have effectively reduced virus transmission over
time, as observed also by Le Menach et al. (2006) for the epidemic in The Nether-
lands.

The BR resulted in the most effective intervention measure to control and eradi-
cate the epidemic. Simulations without BR measure but applying only culling of
infected farms and neighboring premises resulted in a larger number of infected
or culled farms than the observed number. Simulations without BR did not take
into account of the “empty period” between successive production cycles (i.e. every
farm is assumed to be in production during the whole epidemic). For this reason
the effect of BR may have been overestimated. On the other hand, the overesti-
mation was presumably small, since only some of the farms would have not been
in production during the study period and for only a few days.

The strategy that minimizes the total losses is the NO-PEC. However, its imple-
mentation would delay the eradication of the infection. As a consequence, the
affected area would be submitted to the restriction measures longer, causing ad-
ditional economic losses. Establishing the overall best strategy would entail an
economic analysis beyond our aims. Comparative studies of the outcomes of alter-
native control strategies have been published for different disease outbreaks (Keel-
ing et al., 2001; Henzler et al., 2003; Bouma et al., 2003; Matthews et al., 2003;
Stegeman, 2004; Tildesley et al., 2009).

Earlier-PEC strategy achieves eradication more quickly than what observed in the
actual schedule and has also smaller costs in terms of losses. Also, NO-PEC and
restricted-PEC lower the total losses but at the cost of delaying eradication. Indeed,
the data show that the actual policy has been a sort of restricted PEC (especially in

Lombardia) because of the difference between the expected (129 farms, according
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to the official policy) and observed (72 farms) pre-emptive cullings.

As a final observation, it can be seen that the real epidemic spread farther than
most simulations thus suggesting a role of the long-range transmission, mainly re-
lated to human activities and poultry farming practices (movement of personnel,
trucks, animals and birds in the infected area). Indeed, as shown by Figure 3.5,

the farthest infected cases acquired infection relatively early in time. In our study
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Figure 3.5: Distance (km) reached by infection in time (days) in the 1999-2000 epidemic
in Italy

we have taken into account the distance between an IF and an uninfected farm,
without any clue on the way of the HPAI viruses spreading. Al spreads mainly
through direct or indirect contact with infected birds (low of people, movement of
materials and vehicles for instance) (Halvorson and Karunakaran, 1980; Thomas
et al., 2005; Busani et al., 2009) but aerosol transmission, “contiguous spread” by
poorly understood routes (Henzler et al., 2003; Sedlmaier et al., 2009) and inter-
species transmission via pigs (Webster et al., 1992; Ninomiya et al., 2002) cannot
be excluded.

More detailed data about the occurrence of at risk contacts between infected and
uninfected poultry farms related to the movements of birds, people and vehicles

would be necessary to include long-range transmission in the model.
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Chapter 4

A new approach to estimate the
spread and transmission of
infectious diseases from Sentinel

surveillance: application to the
2009-2010 A/H1IN1 influenza

pandemic in Italy

4.1 Introduction

The detection and control of existing, newly emerging or re-emerging infections
in the human population often relies on the analysis of syndromic and virological
surveillance data which are routinely collected by most developed and many devel-
oping countries. Surveillance data are often the only kind of data available in real
time to inform decision makers and the analysis of these data provides important in-
sights into the spread and transmission dynamics of diseases like influenza. During
the 2009-2010 A/HIN1 influenza pandemic, syndromic and virological surveillance
data were routinely collected by most of the countries affected by HIN1 and avail-
able in real time.

The analysis of syndromic and virological data poses many statistical challenges

that have not been addressed yet. For example, the size of the population that is
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4.2. Data

monitored changes over time; only a fraction of syndromic cases who are detected
by the surveillance system have been infected by the etiological agent of interest
(e.g. HINI1 virus, in the past 2009-2010 influenza pandemic) and the others are
due to other pathogens. These problems are usually either ignored or corrected by
scaling the epidemic curve with multiplicative factors, something which is expected
to bias the variance of the estimates.

Here we present a general framework to tackle these issues and analyze syndromic
and virological data by taking explicitly into account the stochasticity in the surveil-
lance system. This is done by coupling a deterministic mathematical ODE (ordi-
nary differential equations) model with a statistical description of how the surveil-
lance data is generated. Estimation of epidemiological parameters such as the
reproduction number Ry and the age-dependent reporting rates and susceptibility
is then performed via Bayesian Markov Chain Monte Carlo (MCMC) sampling.
The approach is applied to surveillance data collected in Italy during the 2009-
2010 A/HIN1 influenza pandemic.

The general modelling framework proposed in this work can be applied to a vari-
ety of different infections detected by surveillance system in many countries and is
potentially a powerful tool to be used in the future to provide policy makers with

important information in real time.

4.2 Data

Since the 1999-2000 influenza season, the Italian influenza surveillance system re-
lies on INFLUNET. During the 2009-2010 HIN1 pandemic influenza season, IN-
FLUNET recruited on average 1094 (minimum980, maximum1165) volunteer GPs
and paediatricians per week, covering on average 1.4 million people (2.3% of the
Italian population). Data collected by INFLUNET on the weekly size of the mon-
itored patients population and on the weekly number of observed Influenza-Like-
lness (ILI) cases, aggregated by age groups (0-4 years, 5-14 years, 15-64 years and
65-+ years) are available online on the INFLUNET website (http://www.iss.it/iflu/).
The virological surveillance of the 2009-2010 influenza season has been conducted
by the Italian Ministry of Health, which coordinated the collection of the swabs
through hospitals, laboratories operating within the national health service, sen-
tinel GPs and paediatricians. Weekly reports are available online on the Italian
Ministry of Health website under the voice “sorveglianza virologica”

(http://www.salute.gov.it /influenza/influenza.jsp).
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4.3. Model Formulation

There is evidence that the number and structure of the contacts within an age-
structured population significantly vary over time, in particular between holiday/
week-end days and working days (Hens et al., 2009b,a). For this reason, using
raw data from the Italian arm of the POLYMOD survey (a diary-based survey of
daily contacts in eight European countries) (Mossong et al., 2008), we compute
the daily mean number of contacts among the considered age classes during work-
ing days and holiday /week-end days. In the Supplementary Information (SI) we
briefly discuss the methodology used to obtain the contact matrices used in this
work. Finally, we use Italian demographic data for year 2008 which can be found
on the Italian National Statistical Institute website (http://www.istat.it/).

We analyze here the data for the time period between week 38 of year 2009 (cor-
responding to mid September 2009, when the schools re-opened after the summer
break) and week 7 of year 2010 (corresponding to the end of February, when the
epidemic had clearly died out).

4.3 Model Formulation

4.3.1 Mathematical model

We defined an age-structured deterministic SEIR model, where individuals are
successively Susceptible, Exposed (def), Infectious (def) and Removed (def), with
five age classes (0-4, 5-14, 15-24, 25-64, 65+ years). The latent period (that is,
the duration of stay in the Exposed state) and the infectious period are assumed
to be Gamma distributed (this is achieved by splitting the Exposed and Infectious
states in 2 compartments, each). The addition of one age-class to those considered
by INFLUNET during the 2009 — 2010 influenza season is meant to allow a better
specification of the contacts among younger age-classes which were particularly hit
by HIN1 virus.

The model is coded in C and is numerically solved using standard routines with
variable step size (Press et al., 2002). From the model we output C!, the weekly
(t) and age-specific (¢ = 1,...,5) number of A/HINI infections in the Italian
population and, by scaling down to the size of the monitored patients population,
we get Z!, the expected number of A/HIN1 infections generated within class i

during week ¢ in the monitored patients population.
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4.3. Model Formulation

4.3.2 Statistical model

In what follows we adopt the notation graphically represented on Figure 4.1 for the
purpose of clarity. Except for the variable C?, which represents the age-structured
weekly number of A/HIN1 cases in the Italian population, all the other variables
are defined at the monitored patients population level. In particular, since no
information on the patients age is provided for the samples tested in the virological
analysis, we assume that my, defined as the probability that a swabs tests positive

on week t, does not vary across the age-groups.

Ttalian population

monitored patients
population week ¢

HIN1 cases in the
Italian population
_ Qi

t

HINT cases in the
patients population
—zitd

tested samples
—T,

ILI cases — ILI}
monitored patients

population
Ul ILT & HIN1 cases
Fi [
ILI & not HIN1 laboratory
cases — NFi confirmed samples
- p, B

Figure 4.1: Graphical representation of the populations taken into account and notation
adopted in the work. The Italian population is considered constant over the whole study
period while the monitored patients population changes every week, due to the volountary
nature of the surveillance system. Index ¢ denotes the age-class (i = 1,...,4) and index ¢

denotes the week, ranging from week 38 of year 2009 to week 7 of year 2010.

In the following we describe the assumptions that led us to the definition of the
likelihood function L.
We divide the presentation in two parts. We first consider the case when the weekly
number of HIN1 cases in the monitored patients population in the i-th age class
Z} is exactly predicted by the solution Z; of the deterministic system. Then, we
extend our model to the situation when Z! is a random variable of which Z} is the

expected value.
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4.3. Model Formulation

4.3.3 Fixed Z;

Let us start by considering the case Z; = Z;.

Denote T} the weekly (and age-unstructured) number of swabs sampled (within the
monitored patients population and among the individuals showing ILI symptoms)
to be laboratory tested (Figure 4.1). Denote P; the laboratory confirmed HIN1
samples among those tested (73) on the corresponding week (Figure 4.1). Since
we lack information about the precise timing of collection of the swabs, we assume
that samples tested on week ¢ had been collected during week t — 1.

Given m; and T3, the number of positive swabs P; follows the Binomial distribution
_ Ty Py Ty —P;
P(PT;,m) = p )7 (1—my) (4.1)
t

Denote ILI} the weekly number of ILI cases in the monitored patients population
of age-class i and F} the weekly number of HIN1 cases of age-class i that report
ILI symptoms (Figure 4.1). Hence, if p; represents the probability that a person
infected with HIN1 reports ILI symptoms, the distribution of F} is given by the

Binomial model with parameters Z; and p;

il ZZ F? Zi_ i
Pz ) = (7)ol = ot (42)
t

Denote NF} the number of ILI cases (in the monitored patients population) that
would result negative to the A/HIN1 virus, if tested

NF} =ILI; — F} (4.3)

Given F}, we think of NF} as the number of negative samples one gets in a sequence
of Bernoulli trials before obtaining the F}-th positive sample. Hence, given F} > 0
and 7, we assume that N F} has a negative binomial distribution with parameters
Ffand 1 —m

o NF + F} —1 ; ;
POVEIF L =) = (YT T Dl (4)
t

Equation 4.3 implies that
PUILE|F},m) = P(NF = ILI} - F}|F!, )
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4.3. Model Formulation

and the probability distribution of ILI} is explicitly given by

o ILIF—1 i
PULﬁwan=:< : ) i

ILII—Fi
Fio1 m (1 — ) T (4.5)

If F} =0, then the whole ILI} set would test negative, that is
P(ILIHF! ) = (1 — ) L (4.6)

Once given a prior distribution P(m;) to 7, using conditional probability and
assumptions (4.4),(4.5) and (4.6), we define the (up to a normalising constant)
probability of the data given the model

min(ILI},Z}) .4
= > | PULEIF = jim)P(F =112} p) PRIT m) Pm)dme (47
j=0 70

We assume a prior Beta distribution for 7,

71'?_1(1 — 7Tt)6—1

B(a, B)

where « and [ are shape parameters, substitute (4.1), (4.2), (4.5), (4.6) and (4.8)
into (4.7), and obtain (see the SI for the complete computation)

P(m) =

(4.8)

(r)

~ B(a,b)

(u—m@ma+mmﬁ+ﬂ—a+m+ (4.9)

min(ILI},Z})

ILI! -1\ [ Z! i Zi i . . .
+ > < Fi_1 ><F‘§>pft<1 — o) HB(F + Pt o, ILI{ ~ F{ + T, —B+6))
Fi=1 t t

Denoting 6 the parameter vector, the Bayesian model is defined by:

PUILI Y0 AP} OIT) = [[ [ PULE, PITL Zi0),0)P(6)  (4.10)

t 7
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4.3. Model Formulation

where P(0) is the prior distribution.

4.3.4 Random 7}

Instead of taking Z; fixed to the value Z}, we assume that Z; is drawn from a
Negative Binomial distribution (Alexander et al., 2000; Lloyd-Smith et al., 2005;
Lloyd-Smith, 2007; Mathews et al., 2007; Cauchemez and Ferguson, 2008)

) Z
Z} ~ NegBin(r, =—— 4.11
{ ~ NegBin(r, ) (a.11)
with (dispersion) parameter r to be defined. Decreasing values of r correspond to
increasing levels of overdispersion. In this formulation, the expected value is fixed
(2

. = Z
at Z{ and the variance is given by Z} <1 + =L,
r

Under this assumption, it can be proved (see the SI) that

N Fi+r—1 Zipi \F r r
P(FtZ‘ZtZapiar) = < r—1 ><thpl +7’) <thpl +7’) (4'12)

The (up to a normalising constant) probability of the data given the model is in

this case given by

P(ILIf?’Ptu}’ZvaZ?T) =

() ,
Py t\Zt i
= 1—¢q;)° B(P, ILI} +T, — P,
B(a,b)<( QZ) ( t+a7 t+ t t+ﬂ)+

ILI} . )

ILI} — 1\ (Ff+r—1\, , g : . . .

+ X () (T @R - dy e n oL - BT +ﬁ)>

Fi=1 ~ !

(4.13)
. Zipi
where for simplicity of notation we set ¢ = =————.
Zipi +r

Expression (4.13) has been obtained substituting (4.1), (4.12), (4.5), (4.6) and (4.8)
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4.4. Models definition and parametrisation

into formula

P(ILIL}, P|Ty, Z}, pi,7) =

L 4
= Z/ P(ILL|F} = j,m)P(Fy = j|Zi, pi,7)P(P| Ty, me) P(me)dmy - (4.14)
5=0 "0

If we denote by 0 the parameter vector, the Bayesian model is defined by (4.10)
with (4.14) in place of (4.9).

4.4 Models definition and parametrisation

In the previous section we have explicitly defined two families of models, depend-
ing on the assumption on Z} either exactly predicted by the deterministic model
through the solution Z; or taken as a negative binomial random variable with
expected value given by Z}. The first case will be referred as the “without overdis-
persion” variant of the model, the second as the “with overdispersion” one.

From early on in the 2009 pandemic, it was noticed that the young age-classes
were particularly hit by the HIN1 virus (Fraser et al., 2009; Ghani et al., 2009). In
order to quantify this observation, we use here the results from the cross-sectional
serological study led by Miller et al. (2010) on serum samples collected in 2008 in
England.

Details on how we used the results of the serological study by Miller et al. (2010)
and on alternative assumptions and defined models are given in the SI. Table 4.1
summarizes the values of susceptibility we used in the “Susceptibility” model.

We first assume that, during the 2009-2010 HIN1 pandemic, the reporting rates
were constant over time. In the “Basic” variant of the model we assume that the
reporting rates did not vary across the age-groups (i.e. p1 = --- = p5) whereas in
the Age-Dependent Reporting (ADR) version we allow reporting rates to be age-
specific. In the Time-Varying Reporting (TVR) version of the model we assume
that the age-dependent reporting rate of each age-class changes over time t (weeks)

proportionally among the age-classes as given by the piecewise linear function

pi(t) = pig(t) (4.15)
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4.4. Models definition and parametrisation

where ¢(38) = 1, g(45) = a, g(52) = b, ¢ is linear on the whole domain and a, b
and p; with ¢ =1,...,4 are parameters to be estimated.

Estimates of the infectivity h' and h? of the respective infectious stages I' and
I? have been obtained through the fit of the infectivity function (after infection)
of a SEIR model to the average of the daily titres collected from six volunteers
who were experimentally infected with an HIN1 influenza virus, as described by
Baccam et al. (2006). The values used for h' and h? are reported on Table 4.1
and a more extensive description of the methodology adopted for this estimation
is given in the SI.

In agreement with some recent studies about HIN1 influenza (Cauchemez et al.,
2009a; Ghani et al., 2009; Lessler et al., 2009), we fix the mean generation time 7T,
to 2.6 days and the mean latency period to 1 day as in (Baguelin et al., 2010).

In order to allow for a proper mixing, we seed the initial number of A/HIN1 cases
Iy (in the Italian population) on week 31 (mid August 2009) and fit the model to
the data on the temporal window between week 38 of year 2009 and week 7 of 2010.
The initial number of cases Iy is distributed among the age classes proportionally
to the vector (5%, 10%, 45%, 35%, 5%) which appears reasonable and comparable
to the age distribution of reported cases over the summer (Rizzo et al., 2009).
Sensitivity analysis on this assumption has been performed.

In Italy schools re-opened, after the summer break, on September 15t 2009. For
this reason, until week 38, we assign holidays/week-end contacts to school-aged
children (5 — 14 years). The same is done for Christmas holidays (December 237
2009-January 7t 2010) during which the other classes are assumed to have the

average between week and holiday/weekend contacts.
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4.5. Parameter estimation

meaning of the parameter model
N latency rate 2.0/day Basic, ADR
y infectious rate 0.833/day Basic, ADR
o1 susceptibility of age-class 0 — 4 years 0.98 Basic, ADR, TVR
lop) susceptibility of age-class 5 — 14 years 0.96 Basic, ADR, TVR
o3 susceptibility of age-class 15 — 24 years 0.85 Basic, ADR, TVR
o4 susceptibility of age-class 25 — 64 years 0.87 Basic, ADR, TVR
o5 susceptibility of age-class 65+ years 0.73 Basic, ADR, TVR
h'  infectivity of the infectious stage I'* 16.1 Basic, ADR, TVR
h? infectivity of the infectious stage I> 9.6 Basic, ADR, TVR
a, shape parameters of the Beta distribution in (4.8) 1.0 Basic, ADR, TVR
P probability of infection given an infectious contact ind.comp. Basic, ADR, TVR
Ry reproduction number estimated Basic, ADR, TVR
Iy number of HIN1 cases at week 31 estimated Basic, ADR, TVR
p1 ILI reporting rate of HIN1 cases of age 0 — 4 estimated ADR, TVR
P2 ILI reporting rate of HIN1 cases of age 5 — 24 estimated ADR, TVR
p3 ILI reporting rate of HIN1 cases of age 25 — 64 estimated ADR, TVR
P4 ILI reporting rate of HIN1 cases of age 65+ estimated ADR, TVR
a,b  parameters defining the function in (4.15) estimated TVR

Table 4.1: Summary of the parameter values fixed and estimated in the models. With the
expression “ind.comp.” we mean “indirectly computed” from Ry, as explained in the main

text.

4.5 Parameter estimation

In a Bayesian setting, we make inference on the parameters which are summarized
in Table 4.1.

Given the likelihood function L and chosen a (in our case uniform) prior distri-
bution of the parameters, the (target) posterior distribution is known up to a
normalizing constant. MCMC methods construct Markov chains whose stationary
distribution is the distribution of interest, when it cannot be directly simulated. We
implemented the classical Metropolis-Hastings algorithm (Gilks et al., 1996; Tier-
ney, 1994; Walsh, 2004; O’Neill, 2002) and, starting from arbitrary initial values
in the parameter space, generated sequences of draws from the unknown (target)
probability distribution of the parameters. We assume a flat prior distribution for
¢, thus setting the shape parameters o and 3 of (4.8) equal to 1. A log-scale has

been used for sampling as the parameters were all positive definite and were ex-
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4.6. Results

pected to potentially vary by orders of magnitude. Parameters have been updated
either separately (i.e. component by component) in the low dimensionality models
or in blocks of 2 — 3 parameters each for the models with higher dimensionality,
in order to improve the algorithm performance. We checked convergence by as-
signing different starting values in the parameter space (also far from the posterior
mean) and by visual inspection of the trace plots. The algorithm was iterated
for 500.000 times and we fixed a “burn-in” period of 100.000 steps. By tuning
the variance of the proposal distribution, we adjusted the mixing of the chains
and attempted to reach a rate of acceptance (number of accepted moves/number
of proposed points) as closest as possible to the “golden” acceptance rate for the
Random Walk Metropolis Hastings of 23% (Roberts et al., 1997). As expected, we
found some correlations between certain parameters (like Ry and Iy, for example).
We use the Deviance Information Criterion (DIC) for model comparison and selec-
tion (the preferred model is the one showing the lowest DIC) (Spiegelhalter et al.,
2002).

4.6 Results

The ILI incidence curve peaked on week 46 (mid November), decreased over the
next 6 weeks and then slowly increased again during the first weeks of 2010 (see
Figure 4.2). The H1Nl-attributable ILI-incidence curve (red dots) in Figure 4.2
has been simply obtained by multiplying the ILI incidence times the proportion
of positive swabs collected in that week, under the assumption that the samples
tested on week ¢ had been collected during week ¢ — 1.

Table 4.2 reports the mean and the equal-tailed 95% credible interval of the es-
timated parameters for the “Susceptibility” model “without overdispersion”. The
estimated mean value of Ry ranges from 1.36 to 1.42, respectively obtained by
the “Basic” and “Age-Dependent Reporting” versions of the “Susceptibility” model
“without overdispersion”.

Table 4.3 summarizes the estimates obtained by the “with overdispersion” vari-
ant of the “Age-Dependent Reporting Susceptibility model” with overdispersion
parameter r estimated from the data; according to these estimates the estimated
mean value of Ry has been 1.29(1.27 — 1.32). The “Age-Dependent Reporting Sus-
ceptibility model” with overdispersion shows the lowest DIC among the models
considered in this work and using this model we estimate that, on average, in the
Italian population the 25.9% of HIN1 cases of 0-4 years, the 16.6% of HIN1 cases
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of 5-14 years, the 6.9% of HIN1 cases of 15-64 years and the 6.5% of HIN1 cases
of 65+ years reported ILI symptoms to the surveillance system.

The different models exhibit different credibility interval ranges, which are reflected
into the differently wide prediction bars of Figure 4.3. The “Age-Dependent Report-
ing Susceptibility” model with overdispersion is the one with the widest credibility
interval range.

Figure 4.4 shows the age-specific estimated incidences (per thousand) of HIN1
cases within the Italian population obtained from the numerical solution of the
SEIR model (in the Italian population) having fixed the parameters as obtained
from each of 500 random draws from the joint posterior distribution estimated
with the “Age-Dependent Reporting Susceptibility” model with estimated disper-
sion parameter r. Table 4.4 summarizes some statistics of the predictions plotted
on Figure 4.4. The estimated peak-incidences of A/HINI cases show a fair variabil-
ity both within and between the age-classes. At the community level the estimated
peak-incidence is of 55.7 (30.8,91.6) (per thousand). On Table 4.4 we also report
the estimated age-specific and overall case attack rates, computed on the whole
study period (weeks 31 — 7). In terms of A/HINI case attack rate, we estimate
that the 5 — 14 years age-class was about 5 times more affected than the 65+ years
age-group and that the overall attack rate was of 29.6% (27.7%, 31.6%).
Sensitivity analysis (see the SI) shows that the particular seeding does not affect
the model output and that the estimates are also robust to the hypothesis on the

length of the latent period.

Basic Model ADR Model TVR Model
DIC 10104.5 2510.8 2468.4
Ry 1.362(1.357,1.368) 1.412 (1.405,1.418) 1.384 (1.371, 1.398)
Iy 136 (116, 156) 37 (32, 44) 69 (45, 99)
p1 0.084 (0.082, 0.086) 0.188 (0.182,0.195) 0.191 (0.141, 0.247)
p2  0.084 (0.082, 0.086) 0.175 (0.171,0.179) 0.171 (0.128, 0.219)
ps  0.084 (0.082, 0.086) 0.055 (0.054, 0.057) 0.055 (0.041, 0.071)
ps 0.084 (0.082, 0.086) 0.035 (0.033, 0.038) 0.036 (0.027, 0.047)
a 1.180 (0.842, 1.657)
b 0.557 (0.377, 0.795)

Table 4.2: Susceptibility model without overdispersion: DIC score, mean and equal-tailed

95% credible interval of the marginal posterior distribution of the parameters for each

specified model.
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ADR Susceptibility model with overdispersion

DIC
Ro
Iy
P1
P2
P3
P4

1234.0
1.298 (1.275, 1.321)
900 (476, 1536)
0.259 (0.205, 0.325)
0.166 (0.132, 0.207)
0.069 (0.056, 0.087)
0.065 (0.050, 0.084)
6.309 (3.950, 9.285)

1478.3
1.304 (1.286, 1.322)
753 (466, 1146)
0.254 (0.211, 0.305
0.164 (0.138, 0.196
0.069 (0.057, 0.082
0.062 (0.050, 0.076
fixed to 10

~ ~— ~— ~—

1693.9
1.341 (1.332, 1.350)
263 (202, 332)
0.227 (0.211, 0.244
0.169 (0.159, 0.180
0.064 (0.059, 0.068
0.047 (0.043, 0.052
fixed to 100

~— ~— ~—

2127.3
1.385 (1.379, 1.392)
76 (63, 90)
0.201 (0.193, 0.210
0.176 (0.170, 0.182
0.058 (0.056, 0.060
0.038 (0.036, 0.042
fixed to 1000

~— ~— ~— ~—

Table 4.3: ADR Susceptibility model with overdispersion: DIC score, mean and equal-

tailed 95% credible interval of the marginal posterior distribution of the parameters having

fixed the dispersion parameter r to the specified value and having estimated r from the

data.

10 15
1 1

ILI and HIN1 cases (incidence)
5
|

Figure 4.2: Incidence (per thousand) of the total number of reported ILI cases (black
dots) and of the number of reported HIN1-attributable ILI-cases (red dots), obtained by

multiplication of the weekly ILI datum times the proportion of positive samples on the

corresponding week.
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Estimated peak-incidence attack rate

0-4 years  53.2 (19.7, 102.5) 31.6% (29.4%, 33.9%)

5-14 years  99.2 (36.7, 192.1) 54.3% (51.6%, 57.1%)

15-64 years 57.1 (21.2, 110.6) 31.5% (29.4%, 33.7%)
( )
( )

65+ years  20.3 (7.5, 39.3)  11.4% (10.6%, 12.4%
overall 55.7 (30.8,91.6)  29.6% (27.7%, 31.6%

Table 4.4: Estimated age-specific peak-incidence (per thousand) and attack rate of HIN1
cases caused by the A /HIN1 virus in the Italian population during the 2009-2010 pandemic
as resulted from simulations of the ADR Susceptibility model with estimated overdisper-
sion parameter r having fixed the parameters at the values obtained by 500 draws from

the joint estimated posterior distribution. Mean and, in brackets, 5-95 percentile interval.
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Figure 4.3: Susceptibility model (in the Basic, Age-Dependent Reporting and Time-Varying Reporting versions without overdispersion and

don

in the Age-Dependent Reporting version with overdispersion parameter estimated from the data) : plot of the simulated weekly reported
incidence (per thousand) of HIN1 cases in the 0 — 4 years age-class (blue), 5 — 14 years age-class (green), 15 — 64 years age-class (orange),

65+ years age-class (purple) and in the population as a whole (black) in comparison to the respective observed data (red).
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Figure 4.4: Estimated incidence (per thousand) of HIN1 cases in the Italian population
using the ADR, Susceptibility model with overdispersion parameter r estimated from the
data: 0 — 4 years age-class (blue), 5 — 14 years age-class (green), 15 — 64 years age-class
(orange), 65+ years age-class (purple), in the population as a whole (black). Predictions
have been obtained from the numerical resolution of the SEIR model having fixed the

parameters as resulted from 500 draws from the estimated joint posterior distribution.

4.7 Discussion

In this work we propose a general and rigorous statistical framework which explic-
itly takes into account the way surveillance data are generated. Our main objective
was indeed to estimate the incidence of HIN1 cases at the national population level,
without scaling the epidemic curve with some multiplicative factor.

We found that, when accounting for an age-specific susceptibility, the mean Ry
varies depending on the model into the range 1.298 — 1.412, where the first esti-
mate has been obtained by the “Age-Dependent Reporting Susceptibility” model
with dispersion parameter r estimated from the data and the latter one has been
obtained by the “Age-Dependent Reporting Susceptibility” model “without overdis-
persion”. Our estimates are consistent with those of (Ajelli et al., 2010) derived
from the exponential growth phase of the ILI number of cases.

Our finding that different age classes visited their GP with different rates is proba-
bly not surprising and the common sense would certainly have suggested this fact.

Here we quantified this difference and found that infants and children reported

87



4.7. Discussion

the HIN1 symptoms and infection respectively around 3 and 4 times more often
than adults. This was obtained under the simplifying assumptions that the report-
ing rates were either constant or changed linearly with time. We tried to test for
reporting rates differing in time through the “Time-Varying Reporting Susceptibil-
ity” model but the results were not completely satisfying, since despite the relative
width of the confidence intervals, a fair number of data points still fell outside the
values predicted by the model. However, our estimates suggest a positive correla-
tion of the reporting rate with the number of cases, which is considered a plausible
phenomenon by Cauchemez and Ferguson (2008) and may reflect the high level of
worry of the people towards the youngest age-classes induced by the media during
the past swine flu pandemic, as suggested by Rubin et al. (266). Studies in the
spirit of (Rubin et al., 266) able to measure and quantify the behavioural changes
occurred during the last HIN1 pandemic in the Italian population are desirable.
Table 4.4 and Figure 4.4 confirm that school-age children led and sustained the
epidemic, followed by adults and the youngest children, whilst elder people were
the less affected.

The introduction of a negative binomial distribution for Z! increases the stochastic-
ity of the models that was otherwise confined to act only in the reporting process.
The choice of a negative binomial distribution for the distribution of infections has
been suggested by several authors (Mathews et al., 2007; Cauchemez and Ferguson,
2008) and can be considered an approximation to a pure stochastic model. The
selected values of r (mean value 6.30 and 95% CI = (3.95,9.28)) are in the range
already used by other authors and result in rather wide credible intervals for the
number of infections in any given week.

In the “Susceptibility” model we assumed that at the beginning of the epidemic the
whole population is susceptible to HIN1 and assign an age-dependent susceptibility
to each age-class. A different assumption consists in assuming that a fraction of
the population is immune since the beginning of the epidemic and that suscepti-
bility to HIN1 does not vary among the age-classes (see the SI). The parameter
estimates obtained when accounting for an immune fraction of population are con-
sistent with the respective estimates obtained with the “Susceptibility” model so
that either choices, to include a differential susceptibility depending on the age or
to account for the presence of an immune fraction of the population at the begin-
ning of the epidemic, fit the data equally well.

In the “Age-Dependent Reporting Susceptibility” model we fixed the age-dependent
susceptibility to the values extrapolated by the study of Miller et al. (2010). In-
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deed, the serological study on the cross-reactive antibody responses to the HIN1
influenza virus in the pre-pandemic period, led in Italy by Rizzo et al. (2010) could
not be applied to our model due to incompatible divisions of the population into
age-classes (1 — 55 years, 56 — 65 and 65+ years).

In the “Age-Dependent Reporting Susceptibility” model, once fixed the age-dependent
susceptibility, we estimated the age-dependent reporting rates. The alternative
choice is to fix a constant reporting rate and estimate the age-dependent suscep-
tibility and is discussed in the SI. The results confirm a drop in susceptibility to
HIN1 beyond school-years but it’s stronger than our initial assumption. Presum-
ably reality lies in between, with drops both in susceptibility and reporting rate.
For sure our analysis would benefit from the availability of more detailed informa-
tion on the criteria adopted for the collection of the swabs (such as, for instance,
the weekly percentages of swabs collected by sentinel GPs, the average delay be-
tween collection and testing of the samples etc.) and the eventual changes in the
collection process, as the epidemic unfolded. It is indeed important to note that
our analysis has been led under the assumption that the swabs selected for test-
ing are a random sample of the ILI cases while a sizeable part has been collected
outside the surveillance system (laboratories and hospitals operating within the
national health service), presumably for clinical reasons. Unfortunately, available
data do not distinguish among swabs of different sources. Finally, our model could
be extended to include age-specific virological data, if available.

Our results show that the basic features of the epidemic are captured by the model,
in particular the “Age-Dependent Reporting Susceptibility model” describes ade-
quately the overall epidemic course and the age distribution of the cases. There are
some minor systematic deviations of the data from the expected values of the pre-
dictions (for instance, the predictions regarding the starting weeks of the epidemic
are systematically lower than the observed data in the 0-4 years age-class and sys-
tematically higher than the observed data in the 5-14 years age-class) so that it
could be argued that our model misses some details of the infection and report-
ing process. It is possible that adding other factors such as changing behavioural
patterns causing more complex variations of the reporting rates over time, het-
erogeneity in infectiousness, spatial and network substructuring for instance could
improve the description of the virus spread. Determining which of these elements
are needed to accurately describe the dynamics of virus spread in large populations
is topic of ongoing research. Still, a simple model like the one we used appears ad-

equate for an overall description of the epidemic course.
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The methodology developed here can be applied to the analysis of the temporal
spread of the A/HIN1 pandemic influenza in other countries, provided that epi-
demiological and virological data are available. Finally, our approach could be

easily adopted to analyse existing or future emerging infectious diseases.

4.8 Supplementary Information

4.8.1 Data

Methodology adopted to compute the contact matrices

The methodology we adopted to compute the week and week-ends/holiday con-
tact matrices mimics very closely the one used by Mossong et al. (2008). Starting
from the raw data of the POLYMOD survey, we computed the equivalent matri-
ces reported in (Mossong et al., 2008) with the distinction between working days
and week-end/holiday contacts for Italy. The POLYMOD survey was conducted
in Italy between May 17" 2006 and June 1°¢ 2006, a period during which no of-
ficial holidays occurred. For this reason we are able to distinguish only between
the contacts occurring during the working days from those occurring during the
week-ends. Since the age distribution of the survey population does not match
the Italian population age distribution, we standardize the estimates as follows.
First, we divide the total number of contacts had by the participants by the num-
ber of participants, thus obtaining the average number of contacts per respondent.
Multiplying the average number of contacts per respondent times the size of the
correspondent age class in the Italian population, we get the estimated number of
contacts in the Italian population (i.e. the average number of contacts of an age
class with the other age classes, in the Italian population). We symmetrize the
obtained matrix substituting two symmetric off-diagonal elements with their arith-
metic mean. After correction for reciprocity, we scale down to the individual level
again thus obtaining Tables 4.5 and 4.6, which represent the symmetric contact

matrices at the individual level.
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0-4 5-14 15-24 25-64 65+
0-4  5.2258065 1.4971592  0.5942825 11.6781801 1.1112577
5-14  0.7616100 14.4929577 1.7232274 13.1401577 1.0503617
15-24 0.2775376  1.5820011  13.9405941 9.1557241 0.8523744
25-64 0.9948124 2.2004017  1.6700517  11.3832487 1.9459243
65+ 0.2618677  0.4865656  0.4300993  5.3830335  2.9318182

Table 4.5: Symmetrized contact matrix of all reported contacts (physical and non-physical)
in Italy, consisting of the average number of contact persons recorded per working day per
survey participant (Polymod 2008). Row index represents the age class of the participant,

column index represents the age class of the contact.

0-4 5-14 15-24 25-64 65+
0-4  1.6923077 1.4236201 0.2998418  6.6052098 0.7307692
9-14  0.7242004 7.8387097 1.4178535  9.3789261 1.4071014
15-24 0.1400299 1.3016539 10.4090909 10.0278330 0.2500000
25-64 0.5626686 1.5705599 1.8291289  9.0559006  1.7381579
65+  0.1722057 0.6518203 0.1261474  4.8082869  0.5714286

Table 4.6: Symmetrized contact matrix of all reported contacts (physical and non-physical)
in Italy, consisting of the average number of contact persons recorded per holiday day per
survey participant (Polymod 2008). Row index represents the age class of the participant,

column index represents the age class of the contact.

4.8.2 Model formulation

Mathematical model

The equations of the age-structured SEIR model defined in the main text are

S = —\i(1)S;
Ely =\ (1)S; — vE}
E? = v(E} - E})
I'; =vE? —~I}
12 = (1} - 1?)

R; = I

(4.16)

with 7,5 = 1,...,5 corresponding to the five age-classes 0-4, 5-14, 15-24, 25-64,

65+ years. The rates of loss of latency v and infectiousness v are assumed not to
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depend on the age class. The force of infection )\; is given by

= poj ch t)(ht J L® + h? If(t)) (4.17)
N; N;

where o; represents the susceptibility of age-class 7, ¢;;(t) indicates the mean num-
ber of contacts between an individual of age class ¢ with individuals of age class j
on day t (the time variable is here used just to distinguish the working days from
the week-end days), IV; represents the (constant in time) size of age group j, with
1,7 = 1,...,5, p is for the probability of getting infected upon a contact with an
infectious individual and h' and h? represent the infectivity of the two infectious
stages I' and I? respectively.

The mean number of new cases generated by an individual of age class j in age

class ¢ is given by
+o0o
kji = pO’Z'CjZ'/ A(T)dT i,j = 1, e ,5 (4.18)
0

where A(7) denotes the infectivity function at time 7 after infection. The entries
given in (4.18) define the next generation matrix K and following Diekmann and
Heesterbeek (2000) we define the reproduction number Ry as the spectral radius
s(K) of the next generation matrix
“+o00
Ry = s(K) = ps(M) A(r)dr (4.19)
0

The reproduction number Ry is clearly proportional to p, the probability of in-
fection given an infectious contact. We used Ry as a parameter and adjusted p

accordingly. Matrix M on equation (4.19) is given by
mg; = O'Z'Cji(t) i,j = 1, ce ,5 (4.20)

For completeness, we define the infectivity function A(7) at time 7 after infection.
Let g(t) denote the probability density function of the variable Tg, the length of
the latent period (i.e. the time spent in the classes E' and E?). The probability

of being in class I' at time 7 (after infection) is given by

P(I',7) = /0 ' g(t)e TN at (4.21)
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In a similar fashion, the probability of being in class I? at time 7 (after infection)

is given by

0 t

A(7) is defined as follows
A(t) = h'P(I', 1) + W2 P(I%,7) (4.23)
Equation (4.19) needs the computation of
+o0o

A(r)dr =
0

+oo  pT +oo T T
= hl/ / g®)e TV dtdr + h2/ / g(t)/ e V=) == qudtdr
0 0 0 0 t

+o0 00 +oo  ptoo T
:hl/ g(t)/ e_“’(T_t)det—th/ / g(t)/ ’ye_”(“_t)e_'Y(T_“)dudet
0 t 0 t t

+o0 +oo +o00 +o00 +o00
:hl/ g(t)/ e_“’(T_t)det+h2/ g(t)/ ve_V(U_t)/ e T drdudt
0 t 0 t u

h h
=142 (4.24)
B Y
Hence the basic reproduction number is given by
hi+h
Ro = ps(M) 222 (4.25)

The mean generation time, defined as the mean duration between time of infection
of a secondary infectee and the time of infection of its primary infector (Wallinga
and Lipsitch, 2007), is given by

B 0+°° TA(T)dT

L =90 (4.26)
0+ A(r)dr

In phase of parameterization, we fixed v = 2.0 (it corresponds to a latent period

of 1.0 day) and tuned 7 to obtain a generation time Ty of 2.6 days.
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Statistical model
Fixed Z!: computation of P(ILI, P,|T;, Z}, p;)

We report below the computation of P(ILI}, Py|Ty, Z¢, p;) that led to expression
(10) in the main text. The computation is based on the mathematical definition

of the Beta function B for two variables z,y > 0

1
B(z,v) :/ 7711 — )y ldt (4.27)
0
From the definition given in (4.27) it follows that

(Tt) ) 1 ]
_ Py zZ7 Pi+a—1 ILI}+Ty—P:+3—1
= 1— p; )%t t 1— t t t d
B(a, b) <( pZ) /0 Ty ( 7Tt) 7Tt+

min(ILI},Z})

ILL 1\ (Z}\ F i
> <F£—1><F£>pit(1_pi>t )

Fi=1

1.
F}+P+a-1 ILI}—F}4+T;—P;+3—1
/th ' O e
0

A g F? i_ i ! i
+ <Fi> Ftlﬂft (1—pi)%it / w1 - Wt)ILIﬁTt_Pﬁﬁ_ldﬂt)
t 0

T _ .
_ (Pt) <(1 —pi)ZtZB(Pt + o, ILI; + T, — P, + B)+

min(ILI{,Z}) LI 1\ /Zi . o
+ Z ( Fit_l ><Fi>pzﬂ(1_Pi)Zz_FgB(FtZ‘i‘Pt+aaILI§_FtZ+E—Pt+ﬁ)>
; ¢ ¢
Fi=1
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Random Z!: computation of P(F}|Z! p;,r)

In this section we prove that, given

Z;NJWWBMIngii > (4.28)
t T
and ‘
i1 7i ZI\ Fi i_ i
Pﬁ?ﬂﬁm)=<ﬁ>m%l—mﬁtﬂ (4.29)
t
it follows that
| i Fidr—1\; Zip; \Fi/ r \r
Pz = (T T (AR ()T e

This fact can be shown using the probability generating function.

For simplicity of notation let’s set

L 7
t Zi+r

(4.31)

From (4.11) and (4.2) it follows that the probability generating function of Z; is
given by '
i 1—qg))"
szw::E@4]=:i——3Q— (4.32)
‘ (1 —tg)"
and the probability generating function of F} is given by
Gpi(t) =E[t"] = (1— p; + tp;)% (4.33)
where E denotes the expected value. Since

E[t"] = B[E[t7|Z]]] = E[(1 - ps +tp:) %]

it follows that

o (1-q)"
Gplt) = (1= (1= pi+tp)g]
(1-q)"

[1—qi(1— pi) — tpigi]”
(4.34)
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-]
. B
1 —qi(1—py)

{1 L, ,?iqi }7”
1—q;(1—pi)

and hence by (4.31) we may conclude (4.12).

4.8.3 Models definition and parametrization
Alternative models

In this work we define two age-dependent parameters: susceptibility (i.e. the prob-
ability of getting infected given a contact with an infectious individual) and report-
ing rate (i.e. the probability that an HIN1 case in the patients population reports
ILI symptoms).

Due to identifiability issues, it is not possible to make inference on both parameters
(susceptibility and reporting rate) at the same time and one has to fix one of the
two and make inference on the other.

In order to estimate the age-specific reporting rates, we fix the age-specific suscep-
tibility to the values extrapolated from the results of the cross-sectional serological
study by Miller et al. (2010) as described below.

Notice first that the presence of cross-reactive antibody in the blood samples can
be interpreted as conferring either partial or complete protection to infection by
HIN1. In the first case, we assume that at the beginning of the epidemic the whole
population is susceptible (i.e. no fraction of the population is immune) and assign
an age-specific susceptibility to the different age-classes, thus defining what we call
“Susceptibility” model. In the second case, we assume that at the beginning of the
epidemic a fraction of the population in each age-class is immune (i.e. removed
from the infection dynamics) and that the susceptible population is completely
and equally susceptible to HIN1 (o7 = - -+ = 05 = 1.0), thus defining what we call
“Immunity” model.

As anticipated, we use the results given in the cross-sectional serological study by
Miller et al. (2010) and average the percentages of samples showing microneutral-
ization titre at or above the cut off value of 1:40 and haemagglutination inhibition
at or above 1:32 and in the “Susceptibility” model fix the susceptibility of the age
classes to the value obtained by subtraction of the obtained average percentage to
1. For example, if 2% is the average percentage of children in the 0-4 years age-

class showing titres at or above the specified thresholds, we fix the susceptibility
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of the youngest age-class to o1 = 1 — 2% = 98%. The values of susceptibility we
fixed in the “Susceptibility model” are given in Table 1 of the main text. In the
“Immunity model” we fix the fraction of immune population at the beginning of the
epidemic to the value obtained by subtraction of the obtained average percentage
to 1. Using the same example of above, we assume that the 98% of the population
in age-class 0 — 4 years is in the susceptible class at the beginning of the epidemic
(week 31). Similarly to what has been done for the “Susceptibility” model, we de-
fine a “Basic”, “Age-Dependent Reporting” and “Time-Varying Reporting” versions
of the “Immunity” model without overdispersion. The estimates obtained by the

“Immunity” model are given on Table 4.7.

Basic Model ADR Model TVR Model
Ry 1.524 (1.518,1.531) 1.574 (1.567, 1.581) 1.546 (1.531, 1.560)
I 119 (101, 138) 37 (32, 44) 66 (45, 95)
p1 0.094 (0.092, 0.096) 0.205 (0.199, 0.212)  0.204 (0.156, 0.257)
p2  0.094 (0.092, 0.096) 0.188 (0.184, 0.193) 0.182 (0.140, 0.227)
ps  0.094 (0.092, 0.096) 0.062 (0.060, 0.64) 0.061 (0.047, 0.077)
pa 0.094 (0.092, 0.096) 0.040 (0.037, 0.043) 0.040 (0.030, 0.051)
a 1.193 (0.878, 1.602)
b 0.607 (0.413, 0.864)

Table 4.7: Immunity model without overdispersion: mean and equal-tailed 95% credible

interval of the marginal posterior distribution of the parameters for each specified model.

Note that the estimates of Rg obtained with the “Immunity” model are higher
than those obtained with the relative versions of the “Susceptibility” model. This
fact is due to the definition of Ry given in equation (4.19), which is theoretically
adequate only for the “Susceptibility” model (i.e. in the case of the “Immunity”
model, formula (4.19) does not account for the presence of an immune fraction
of population at the early stages of the epidemic). For a proper comparison, a
different definition of Ry for the “Immunity” model would be needed.

In order to estimate the age-specific susceptibility, we fix the age-dependent re-
porting rate. Hence, by fixing the reporting rate as resulted from the “Basic” and
“Age-Dependent Reporting” version of the “Susceptibility” model without overdis-
persion, we respectively define a “Basic” and “Age-Dependent Reporting” version
of the “Fixed-Reporting” model. The susceptibility estimates obtained with the

“Fixed-Reporting” model are given in Table 4.8.
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Basic Fixed-Reporting rescaling ADR Fixed-Reporting rescaling
Ry 1.31 (1.29, 1.33 1.30 (1.28, 1.32)
Iy 645 (383, 1013 651 (390, 1032)
o1 3.02 (2.47, 3.62 2.60 (2.12, 3.12) 1.20 (0.89, 1.42) 0.96 (0.77, 1.22)
09 1.32 (1.13, 1.52 1.14 (0.97, 1.31) 1.02 (0.83, 1.24) 0.88 (0.71, 1.07)
o3 fixed to 1.0 0.86 fixed to 1.0 0.86
04 0.92 (0.67, 1.25) 0.79 (0.58, 1.08) 0.75 (0.60, 0.95) 0.65 (0.51, 0.82)

- &

~— ~—

Table 4.8: Fixed reporting model with overdispersion (r = 10) in the “Basic” and “Age-
Dependent Reporting” versions (i.e. having fixed the reporting rates as resulted respec-
tively from the “Basic” and “Age-Dependent Reporting” versions of the “Susceptibility”
model): mean and equal-tailed 95% credible interval of the marginal posterior distribu-
tion of the parameters; the susceptibility estimated have also been rescaled to the values

fixed on Table 1 in the main text for the purpose of comparison.

Estimation of the infectivity parameters h' and h?

The SEIR model used to estimate the infectivity values has one latency class and
three infectious stages with a mean latency period of 1 day and a mean infectious
period of 3 days. Let w!, w? and w? denote the unknown infectivity parameters of
the three infectious stages I'', I? and I3. Through the fit of the infectivity function
(after infection) of the SEIIIR model to the data reported in (Baccam et al., 2006)

we obtain the following estimates
w'=00 w?=161 W'=96 (4.35)

The infectivity function (after infection) fitted to the data reported in (Baccam

et al., 2006) is given in Figure 4.5.
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Infectivity function (since infection)

Figure 4.5: Plot of the fit of the infectivity function since infection A(7) (defined in the
SI by equation (4.23)) to the data reported by Baccam et al. (2006)

Since w! = 0.0 we interpreted the first infectious stage of the SEIIIR model as
being equivalent to a latent stage, thus obtaining a SEIR model with two latency
and two infectious stages; this is the reason for which we took h! = w? and h? =
w3. We chose to consider the infectivity estimates as values that characterize the
infectious stages, independently of the assumptions on the rates of latency and

infectiousness upon which they were generated.

4.8.4 Parameter estimation
Sensitivity analysis

We performed sensitivity analysis on two assumptions: the distribution (at week

31) of the initial cases Iy among the age-classes and the mean length of the latent

period. Sensitivity analysis was performed on the “Age-Dependent Reporting” ver-

sion of the “Susceptibility” model without overdispersion.

We considered the following distributions of the initial cases Iy among the age-

classes: (1%, 1%, 39%, 39%, 20%), (10%, 20%, 40%, 20%, 10%) and (20%, 20%, 20%, 20%, 20%)
as alternatives to the original choice and the results (Table 4.9) show that the par-

ticular seeding does not affect the model output.
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I (1%,1%,39%,39%,20%)  (10%, 20%, 40%, 20%, 10%)  (20%, 20%, 20%, 20%, 20%)
Ry 1412 (1.405, 1.418) 1.411 (1.405, 1.417) 1.411 (1.405, 1.418)

Iy 44 (38, 52) 37 (31, 44) 44 (37, 51)

1 0.189 (0.182, 0.195) 0.188 (0.182, 0.195) 0.189 (0.182, 0.195)

p2  0.175 (0.171, 0.179) 0.175 (0.171, 0.179 0.175 (0.171, 0.179

ps  0.055 (0.053, 0.057) 0.055 (0.054, 0.057) 0.055 (0.054, 0.057)

ps  0.035 (0.033, 0.037) 0.035 (0.033, 0.037) 0.035 (0.033, 0.038)

Table 4.9: Sensitivity analysis on the distribution of the initial cases Ip: mean and equal-
tailed 95% credible interval of the marginal posterior distribution of the parameters for

the “Age-Dependent Reporting Susceptibility” model without overdispersion.

Regarding the mean length of the latent period, the results given in the paper
have been obtained under the assumption that the mean length of the latent period
is of 1 day and the mean generation time of 2.6 days. Here we assume a mean length
of the latent period of 1.3 days and the same mean generation time of 2.6 days.
The results obtained under this assumption are given on Table 4.10. The estimates

are robust also to the hypothesis on the length of the latent period.

Basic model ADR model TVR model
Ry 1.357 (1.351, 1.362)  1.405 (1.398, 1.411) 1.377 (1.365, 1.390)
Iy 138 (118, 158) 39 (33, 46) 74 (51, 102)
p1 0.086 (0.084, 0.0875) 0.191 (0.185, 0.198) 0.183 (0.140, 0.228)
p2  0.086 (0.084, 0.0875) 0.177 (0.173,0.181) 0.164 (0.127, 0.202)
ps  0.086 (0.084, 0.0875) 0.056 (0.054, 0.058) 0.053 (0.041, 0.066)
ps  0.086 (0.084, 0.0875) 0.036 (0.034, 0.038) 0.035 (0.027, 0.044)
1.255 (0.946, 1.684)
b 0.609 (0.416, 0.844)

Table 4.10: Susceptibility model: mean and equal-tailed 95% credible interval of the
marginal posterior distribution of the parameters for the “Susceptibility” model without
overdispersion assuming a mean length of the latent period of 1.3 days and a mean gener-
ation time T of 2.6 days.

4.8.5 How data are reproduced by the model

In order to validate the model, we compare the predicted age-structured weekly
incidence of A/HINI cases with the data.
In the deterministic case Zf = Z¢ we draw 1000 (sets of) parameters from the joint

posterior distribution and for each draw we numerically solve the SEIR model in the

100



4.8. Supplementary Information

Italian population. After rescaling into the patients population (and for each drawn
set of parameters) we obtain a realization of Z¢, the number of patients infected
by the A/HINI virus. Given Z} and the selected reporting rate(s), we apply the
Binomial model given in equation (3) of the main text and draw 100 realizations
of F}, the number of flu (HIN1) cases within the patients population. We can thus
compute the incidence (per thousand) of HIN1 infections to be compared to the
observed A/HIN1 incidence curve (red dots of Figure 2 in the main text).

When Zf is taken as a random variable, for each of the 500 parameter draws from
the joint posterior distribution we repeat the procedure described above and obtain
Z}. For each Z} we draw 20 values of Z; from the Negative Binomial distribution
given on equation (12) in the main text having fixed the dispersion parameter r to
the specified value and then for each of this Z; generate 10 F} as random draws
from the Binomial model given in equation (13) of the main text.

The number of draws to be performed from the distributions defined in the fixed
Z} = Z¢ case and in the random Z; one has been chosen so that to obtain the same
number of realizations of F}.

Figure 4.6 shows the comparison between the incidence data and the predictions

obtained by the “Immunity” model without overdispersion.
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incidence HINT cases 5-14 years

incidence HINY cases.

Figure 4.6: Immunity model without overdispersion: plot of the simulated weekly reported
incidence (per thousand) of the new HINTI cases in the 0 — 4 years age-class (blue), 5 — 14
years age-class (green), 15 — 64 years age-class (orange), 65+ years age-class (purple) and
in the population as a whole (black) in comparison to the respective observed data (red).
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Chapter 5

Estimation of Ry from real and

simulated school outbreaks

5.1 Introduction

The recent 2009-2010 pandemic influenza A/HIN1 virus mostly affected young
people, in particular those in school-age years. The high number of cases observed
among the youngest age-classes can be explained in terms of higher levels of suscep-
tibility of children with respect to adults, something confirmed also by serological
studies (Miller et al., 2010; Rizzo et al., 2010), and by the fact that transmission
is favoured by the high contact rates occurring among children within schools.
There is evidence that schools play a crucial role in the transmission of infectious
diseases such as influenza so that the impact of schools closure and the extent to
which this non-pharmaceutical intervention can be used to reduce the total number
of cases and slow the epidemic has been widely investigated and discussed (Fergu-
son et al., 2006; Cauchemez et al., 2008, 2009b; Wu, 2010).

Whenever a new infectious disease emerges, the estimation of the pathogen trans-
missibility is an urgent issue which is often addressed by modelling the infection
spread using an infectious scheme of SIR type and by estimating the real-time
growth rate on the number of syndromic or laboratory confirmed cases observed in
the population (if available). Surveillance systems monitor the spread of an infec-
tion at a national level and surveillance data are often uninformative at the very
early stages of disease transmission, due to the very low incidence (in terms of both
number of syndromic cases and confirmed cases). On the contrary, clusters of cases

are more easily monitored in small communities or specific social contexts and as
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5.2. Estimation of exponential growth rate

a matter of fact the real-time estimation of infection transmissibility has been of-
ten performed on data collected in households (Yang et al., 2009b), schools (Yang
et al., 2009b; Lessler et al., 2009) and small communities (Fraser et al., 2009).
The estimates for the reproduction number Ry obtained in school settings (Yang
et al., 2009b; Lessler et al., 2009; Nishiura et al., 2009) are generally higher than
those obtained in community settings (Ghani et al., 2009; Fraser et al., 2009;
Nishiura et al., 2010). It has been argued that the early estimation of the repro-
duction number Ry obtained from the analysis of data collected in specific social
contexts (such as schools) overestimates the transmissibility of infection at the level
of the general community (Nishiura et al., 2010). Using an individual-based model
recently developed to model the A/HIN1 influenza pandemic in Europe (Merler
and Ajelli, 2010) we compare here the estimates of the reproduction number Ry
obtained from the curve of the cases observed in the general community and from
the curve of the cases observed within selected samples of schools; this is compared
also to the theoretical value of within school reproduction number, and to the the
mean number of cases actually generated by the index case in a “random” school.
Model schools have been selected for the analysis either as among the schools with
the highest number of cases (to simulate the ones that would presumably be chosen
as target of outbreak analysis) or at random among all schools that had at least
one case.

Finally, we present a first analysis of the data collected through a survey in two
Italian primary schools after the influenza outbreak during the 2009-2010 HIN1
pandemic. These schools were chosen purely for convenience and should represent

a “random” school from the point of view of influenza outbreaks.

5.2 Estimation of exponential growth rate

Infections emerging in large populations are characterized by the fact that the
initial stochastic fluctuations in the number of cases is soon overcame by a clear
exponential growth phase. Whenever an epidemic is observed in smaller contexts
such as schools, the stochastic fluctuation in the number of cases cannot be ne-
glected and an estimation of the growth-rate becomes more challenging.

In the literature, a few methods have been used to estimate the exponential growth
rate of the number of cases and in this work we are going to consider three very
simple of these techniques (Chowell et al., 2007b; Favier et al., 2006). The methods

considered here are fast but not very refined and more accurate estimates can be
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5.2. Estimation of exponential growth rate

obtained with other and more complex techniques (Cauchemez et al., 2010).
Let us assume that, at the early stages of an epidemic, the number of cases grows
exponentially. In other words, we assume that the incidence in the number of the

new cases i(t) grows exponentially with rate r in time ¢
i(t) = ke (5.1)

with &k € R a constant.

By definition, the cumulative function ¢(t) is given by

t
k
c(t) = / i(s)ds = —(e" —1) (5.2)
0
By applying the logarithmic function to i(¢), we explicitly find a linear relationship
log, (i(t)) = rt + log, k

By applying the logarithmic function to the cumulative ¢(¢), we obtain

log, (c(1)) = log, (" — 1) + log, <§> it log,(1— e™) + log, (;)  (53)

If we restrict ourselves to consider ¢ large enough that log,(1 — e ") ~ 0 (but
small enough that the exponential phase is still going on), we see that r can be
obtained as the slope of a line approximating the values of log,(c(¢)). The plot
of function log,(c(t)) versus time ¢ (Figure 5.2) visually shows the approximately

linear behaviour of (5.3) for ¢ large enough
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log(cumulative(new cases))

Figure 5.1: Plot of the logarithm of the cumulative function ¢(¢) defined in (5.2) versus

time ¢.

Finally, notice the linear relationship existing between i(t) and c¢(t)
i(t) =rc(t) + k

Here we estimate the exponential growth rate r through the least square fit of a

linear model to the observed quantities just introduced and here summerized:
L.1) to the logarithm of the incidence versus time [ i.e. log.(i(t)) vs t |;

L.2) to the logarithm of the cumulative number of cases versus time (Chowell
et al., 2007b) [ i.e. log,(c(t)) vst |;

L.3) to the incidence versus the cumulative number of cases (Favier et al., 2006)
[ie. d(t) vs c(t) ].

These methods should be applied to data coming from a phase of exponential
growth in incidence. Furthermore, for method L.2, the temporal window should
exclude times too close to 0, where log,(1 — e™"") is not negligible (Merler and
Ajelli, 2010). Some care hence has to be taken in choosing a temporal window of
data to which these methods should be applied. In order to decrease subjectivity
in this choice, we proceeded through a semi-automatic procedure.

The linear models are fitted on a sequence of temporal windows [t;, t; + d;], where
t; denotes the time at which the ¢-th case has been detected in the school and

d; assumes every integer value within [t;11 — t;, timaz — ti], With ¢4, denoting the
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5.2. Estimation of exponential growth rate

time at which the last case is detected in the school. We take time ¢; (i.e. the time
at which the index case is detected into a school) as a reference and set ¢; = 1.
We adopted an iterative rule to draw a sample from the vector of the cumulative
number of cases ¢;: starting from ¢; = 1, we generate a sample of length n; by
iterating n; — 1 times the following rule
@

Ci+1 =¢ + WNS (54)
with N, denoting the school size and « to be chosen so that the sample covers a
fair part of the observed epidemic. We generate the sequence of starting times of
the temporal windows ¢; by associating to each sampled cumulative number the
time at which it was first observed.
From an epidemiological point of view, we assume to model the infection dynamics
using a SEIR model with an exponentially distributed latent period of mean Tg
and an exponentially distributed infectious period of mean length T7. Therefore,
if r denotes the exponential growth rate in the number of cases, the reproduction

number Ry is given by
Ry = (1 + T’TE)(l + T‘T[) (5.5)

Finally, let y; denote the observed data at time ¢ and l; = ¢ + rt denote the value
predicted by linear regression. We take R?, the fraction of the total squared error

explained by the model

72

as measure of goodness of fit, with § representing the sample mean.
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5.3 The individual-based model

This part of the work makes use of an extended version of the discrete-time, stochas-
tic, spatially-explicit, individual-based SEIR simulation model recently developed
by Merler and Ajelli (2010) to model the spatio-temporal spread of the pandemic
HIN1 virus in Europe. Here we briefly review some key aspects of the model and
refer to Merler and Ajelli (2010) (in particular to the relative Supplementary Ma-
terial) for a detailed and exhaustive description of the sociodemographic and the
epidemiological models.

The authors divide the study area into cells (average surface of about 77 kilometers)
and on the defined spatial grid generate a synthetic population matching the cen-
sus data. Schools and workplaces are distributed proportionally to the population
which is grouped into households, schools and workplaces following the country
specific sociodemographic data. In this model schools gather together individuals
within a wide age range, from nursery school to university (a more realistic pro-
cedure of school assignment is being developed, but the current analysis refers to
this version). Individuals are explicitly represented and characterized by house-
hold and school/workplace membership (if any). Transmission of infection occurs
in households, schools, workplaces and by random contacts with infectious indi-
viduals in the global population (random contacts can be made within a radius
of 1000 kilometers and according to the power-law distribution given in eq. 5.8
(Gonzalez et al., 2008)).

The original model (Merler and Ajelli, 2010) has been recently extended to explore
the heterogeneity in the patterns of spread observed in the past 2009-2010 HIN1
pandemic in Europe (personal communication). Here we use this last version of the
individual-based model, whose mainly difference from the original one consists in
the introduction of a differential susceptibility: children (< 16 years) are assumed
twice as susceptible to infection as adults. For the purpose of simplicity we further
assume that all infected individuals are symptomatic and that sickness-induced
absenteeism does not occur. Moreover, for the sake of computational speed, the
model has been used on a single country (Italy) and workplace transmission (which
is not relevant to the present analysis) has been not explicitly modelled but included
within the general community transmission.

The risk of infection for each individual is defined as the sum of the risk factors

coming from the different sources of infections considered, namely:

1. contacts with infectious members of the household (first term in eq. 5.7);
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5.3. The individual-based model

2. contacts with infectious individuals attending the same school (second term

in eq. 5.7);

3. random contacts in the population (third term in eq. 5.7);

- Iy B,
N = T -
{k=1,...,N|Hy=H;}
[kﬂs
+ Z N
1B f (dir:)
{k=1,...N} > tk=1,...ny S (dir)

The terms in equation (5.7) are defined as follows:
e H; is the index of the household where individual ¢ lives in;
e P, is the index of the school where individual i studies (if ¢ is a student);
e NN is the size of the Italian population;
e 1, is the size of household H;;
e [V, is the size of school Pj;
e [, = 1 if individual k is infected, 0 otherwise;

e f(d;) is the function defined in in (Gonzalez et al., 2008) and here recalled

Tg
fdi) = (dir, + TS)_ﬁe_ k (5.8)

where rg = 5.8km, 8 = 1.65 and k = 350km. It makes the transmission of
the epidemic in the general community explicitly dependent on patterns of

human mobility, as described in (Gonzalez et al., 2008);
e (3, (expressed in day~!) is the within-household transmission rate;
e 3 (in day™!) is the within-school transmission rate;

e (3. (in day™!) is the transmission rate in the general community.
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5.3.1 Parameterization of the individual-based model

We adopt here the baseline parametrization proposed in (Merler and Ajelli, 2010):
the discrete-time, stochastic SEIR model assumes an exponentially distributed la-
tent period T of mean 1.5 days and an exponential distribution of the infectious
period 17 of mean 1.6 days with constant infectiousness during the whole course of
infection. Each epidemic is started by seeding 100 cases at random in the Italian
population, and the time step A; of the model has been fixed to 0.5 days. The
“global” reproduction number Ry is computed using formula (5.5) and the expo-
nential growth rate r is estimated by fitting a linear model to the logarithm of the
cumulative number of new cases generated in the global population in time (i.e.
using method L.2). We run 100 simulations and compute the mean “global” Ry
and the mean number of cases generated within households, schools and by random
contacts in the initial phase of disease transmission (i.e. on the first 1000 cases
generated in the whole population) and at the end of the epidemic. The estimates
are very stable among the model realizations so that we are going to report only
the mean values computed on the 100 realizations. The adopted paramterization
(Br = 0.691, Bs = 0.771, B. = 0.506) results in a mean “global” Ry of 1.38. At
the early stages of disease transmission the percentage of cases generated within
households is on average 28%, the percentage of cases generated within schools is
on average 37% and those generated in the general community amounts to 35%.
At the end of the epidemic the proportion of cases generated in households, schools

and in the general community are respectively of 31%, 30% and 39%.

5.3.2 Computation of the within school reproduction

number

The model assumes homogeneous mixing within schools and households. If we
assume that school s represents an isolated population, we can define the within
school reproduction number R; as the mean number of cases generated by a typical
infectious individual within school s at the beginning of an epidemic.

Recall that (s represent the within school transmission rate and let v be the re-
covery rate (i.e. Ty ~ 1/7). Furthermore, Ny represents here the size of school s
and remember that the simulation time-step has been fixed to A; = 0.5 days.

Let us assume that at the beginning of an epidemic one infectious case is seeded in
school s and that the remaining school population is susceptible and large enough

to assume that Ny — 1 &= Ng. Any susceptible member ¢ of school s is subjected
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to a probability P; of becoming infected within a time step by a given infectious

individual, with P; given by

_ﬁsAt
P=1—e Ns . (5.9)

If x infectives are present, the probability that a susceptible escapes infection for
a time step will be (1 — F;)*.
On the basis of our assumptions (that imply that every infective is infectious at

least for a period A;), the infectious period has length nA; with probability
P(T; = nA\;) = e YDA (1 — 7780 forn=1,2,...
The mean length of the infectious period is hence given by
T = Z nAe 1A _ em7A
n

= (1- e_“’At)At Z ne~ V(1A

Ay
= (1_e—vAt)m
- A 5.10
== (5.10)

With our parametrization (v = 1/1.6 and A; = 0.5) we find T; = 1.86 and notice
that

- 1
lim T] = —.
At—>0 ’7

Similarly, the number T" of temporal steps spent in the infectious stage is given by
P(T=n)=p(1-p)" ' n>1 (5.11)

with p = (1 —e~72¢). Let p, represent the fraction of children (< 16 years) attend-
ing school s and o, represent the susceptibility of adults with respect to children
(04 = 0.5). Let C} denote the number of cases generated by an infectious individ-
ual at time step k; we assume that Cj are independently distributed according to

a binomial model

_58At
C ~ Bin(Ns,w) with w = (ps+ (1 —ps)oa) | 1—e s
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The number of cases H generated by an infectious individual at the beginning of

an epidemic is a random variable defined by

H=Y ¢, (5.12)

M=

k=1

The mean number of cases generated by a typical infectious individual within
school s at the beginning of the epidemic (i.e. assuming that all possible contacts

are susceptible) is given by

_ BsOy
R,=E[H|=E[E[H|T]] = N;w = Ns(ps + (1 - ps)aa)((ll__eei_ﬁi)) (5.13)

where E denotes the expected value.

Notice that the reproduction number Rg depends on the length of the simulation
step A, on the size of the school Ny and on the fraction of children p; attending
the school. Note furthermore that

)(ps + (1 - ps)o-a)

and that (as can be seen from Figure 5.2) already for N; ~ 100 the value of R; is
not very far from its limit value, that is almost reached for Ng > 600.
Considering instead the effect of time step (which is actually kept fixed in the
analysis here), note that

tim By = %, 1 (1~ p)oa)

Ar—0 Y
i.e. the usual value (independent of Nj) for continuous-time models. Furthermore
note that R is an increasing function of A; as long as v > [35;/Ns which is true in
our examples, as well as in any reasonable scenario.

The variance of H (5.12) is given by

V(H) = E[H?] - (E[H))®
= N (1-p)/p? + New(l —w)(2 - p)/p?

_ %(Nsw(l —p)+ (1 —w)(2—p)) (5.14)

We compute the mean school size Ny = 525 (SD= 236) and the mean fraction of
children attending a school ps = 0.65 (SD= 0.04) by averaging over 100 model
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realizations, the mean values of the respective quantities computed on 100 ran-
domly selected schools. Since the distributions of N; and ps are independent in
the model, the average value of R, can be obtained inserting N, and ps in (5.13)
obtaining 1.184; with Ny and ps the variance given in (5.14) results 8.66. The
standard deviation (SD) reported within brackets has been obtained by averaging
over the 100 model realization the standard deviations obtained on the 100 schools
sampled for each model realization. On Figure 5.2 we plot Ry given in (5.13) as a

function of the school size N, having fixed ps = ps = 0.65 and A; = 0.5.

1.180 1.182 1.184

within school reproduction number R_s

1178

T T T T T T
0 200 400 600 800 1000

school size

Figure 5.2: Plot of R given in (5.13) as a function of the school size Ny having fixed
ps = Ds = 0.65 and A; = 0.5.

5.3.3 Analysis of simulated school epidemics

In this section we estimate the within school reproduction number R, using different

techniques.

Estimate of R, using the infection tree

For the first 20000 cases of each model realizations we keep track of the infection
tree (i.e. who infected whom). Following the definition of R, we count here the
mean number of cases generated (within the school) by a “typical” infectious case at
the beginning of the epidemic. For each of 100 model realizations we randomly draw
100 schools among those infected relatively early in time (i.e. among the schools
that had at least one infectious case within the time of occurrence of the first 20000

cases in the global community) and for each school we count the number of cases
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generated by the index case. By averaging over the sampled 100 schools and over
the 100 simulations we obtain an estimate of Ry amounting to 1.51 (SD= 1.83).
Standard deviation (SD) has been computed by averaging over the 100 simulations
the standard deviations computed for each simulation on the sampled schools.

It has to be noted that the value obtained in this way is quite higher than the
average value obtained from (5.13), although, given the large SD, the confidence

interval one would obtain includes the theoretical value.

Estimate of R; by the estimation of the exponential growth rate

The individual-based model allows us to to keep track of the place where each case
acquired infection and hence to distinguish a case infected within the school from
a case infected anywhere and attending the school. For each simulated school epi-
demic s, we can hence distinguish between the curve of the cases generated within
school s and observed in school s (but generated anywhere).

We propose here the analysis of 10 simulated school epidemics, which have been
sampled as follows. We first randomly draw 10 out of 100 realizations of the model.
For technical reasons (the infection-tree has been recorded up to the first 20000
cases in the general community), we selected the schools to be analysed among
those infected relatively early in time (i.e. within the first 20 days since the start
of the epidemic in the country). From realizations 1 to 5 we draw one school (for
each realization) at random. From simulations 6 to 10 we choose the school that
accounts for the largest number of cases among the schools infected during the
initial phase of the epidemic. This last choice has been done to explore any de-
pendency between the number of cases and the within school reproduction number
Rs. Moreover, these last schools would presumably be chosen as target of outbreak
analysis. For simplicity, the sampled schools have been numbered accordingly to
the simulation from which they were drawn (s = 1,...,10). Table 5.1 summarizes
the characteristics of the selected schools (i.e. school size Ny and the fraction of
young (< 16 years) population p;), the “actual” value of Ry given by formula (5.13),
the number of cases generated and observed within the respective schools and the
corresponding attack rate (AR) computed on the number of observed cases until

the time of occurrence of the 20000-th case.
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s Ng P Rs;  generated observed AR

cases cases
1 871 0.669 1.198 75 116 0.133
2 842 0.690 1.213 46 72 0.085
3 360 0.655 1.188 89 125 0.347
4 788 0.700 1.220 34 95 0.069
5 496 0.705 1.224 67 106 0.214
6 511 0.690 1.213 141 212 0.415
7 894 0.673 1.201 154 273 0.265
§ 771 0.674 1.201 155 236 0.306
9 387 0.705 1.223 116 183 0.473
10 775 0.698 1.219 110 172 0.222

Table 5.1: Some basic statistics on the simulated school epidemics.

For each school s = 1,...,10 we applied the iterative rule (5.4) with v = 0.3
and n; = 10 to generate the temporal-intervals to be used for the fit of a linear
model on the logarithm of the number of new cases in time (method L.1), on the
cumulative number of new cases in time (method L.2) and on the incidence versus
the cumulative (method L.3). We required the estimated values of the exponential
growth rate to satisfy the conditions given on Table 5.2; moreover, we discarded
the estimates obtained on inappropriate temporal frames and those considered not

informative enough, as specified next.

method R?
L.1 > 0.20
L.2 > 0.95
L.3 > 0.10

Table 5.2: Simulated school epidemics: threshold values for R?, for the different methods
L.1, L.2 and L.3. The values reported on Table 5.1 satisfy the constrains here defined.

For each simulation, we discarded the estimates computed on the very initial
generations using method L.2 and those computed after the exponential growth
phase using methods L.1 and L.3. Given the random nature of the simulated school
epidemics in terms of start and length of the exponential growth phase, we careful
selected the appropriate time-frames on which to perform linear regression, for
every method and for every selected school epidemic on the basis of the behaviour

of the school epidemics themselves. We discarded also the estimated obtained on
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time intervals shorter than 7 days (i.e. the estimates obtained for §; < 14) and those
computed on time intervals longer than 14 days (i.e. the estimates obtained for
d; > 28). Notice that for each school epidemic we estimate the exponential growth
rate on two epidemic curves: those of the cases generated within the school and
the curve of the observed cases. Table 5.3 summarizes the range for the estimates
of R obtained with the three methods L.1, L.2 and L.3 on the curve of the cases

generated and observed in the respective schools.

s R, method L.1 method L.1 method L.2 method L.2 method L.3 method L.3

generated observed generated observed generated observed
1 1.198 1.15-1.23 1.15-1.41 1.13-1.21 1.12-1.18 1.13-1.53 1.14-1.81
2 1213 1.11 1.17-1.28 1.08-1.24 1.07-1.23 1.16-1.40 1.19-1.30
3 1.188 1.14-1.39 1.17-1.40 1.19-1.27 1.17-1.24 1.13-1.69 1.16-1.67
4 1.220 1.18 1.15 1.14-1.21 1.15-1.21 1.25-1.35 1.16-1.32
5 1.224 1.11-1.51 1.24-2.13 1.11-1.15 1.13-1.16 1.24-1.46 1.24-1.64
6 1.213 1.15-1.67 1.19-1.83 1.17-1.20 1.15-1.18 1.11-1.76 1.14-1.69
7 1.201 1.13-1.23 1.15-1.50 1.17-1.21 1.17-1.19 1.12-1.43 1.13-1.56
8§ 1.201 1.14-1.36 1.15-1.48 1.19-1.40 1.22-1.41 1.12-1.63 1.13- 1.77
9 1.223 1.1-1.22 1.21-1.41 1.17-1.23 1.15-1.21 1.17-1.33 1.18-1.39
10 1.219 1.12-1.20 1.13-1.31 1.14-1.29 1.13-1.26 1.11-1.30 1.13-1.19

Table 5.3: Ranges (i.e. maximum and minimum value) of Ry estimated using methods
L.1, L.2 and L.3 for the relative school epidemics and the theoretical value of Ry given
by formula (5.13) on the basis of the data provided on Table 5.1. The selected estimates
satisfy the constrains reported on Table 5.2 and the choice of the temporal intervals used
to perform linear regression (in the three variants L.1, L.2 and L.3 and for each school

epidemic) has been discussed in the text.

All methods L.1, L.2 and L.3 produce reasonable estimates of R, in the ap-
propriate time-intervals. Method L.2 revealed itself as the most stable method
among the three. More precisely, the mean of the squared differences between the
midpoints of the ranges and the relative values of Rg given by theory is smallest
for method L.2; method L.3 tends to overestimate the “actual” value of Ry (i.e all
the midpoints of the ranges obtained with method L.3 overestimate the relative
values of R given by theory, except for s = 10). Therefore, method L.2 seems to
be preferrable to the others, at least for data generated by the simulation model

adopted here.
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5.4 Real school outbreaks

5.4.1 The survey

In Ttaly the first (or primary) level of compulsory education starts at the age of
6 and ends at 11 years. During the 2009-2010 A/HIN1 influenza pandemic and
precisely over the months of October-November 2009, two primary schools located
in the villages of Povo and Villazzano (Trento, Italy) experienced a clear epidemic.
The survey, conducted on December 2009 in the two schools in question, aimed
at retrospectively reconstruct the outbreaks occurred over the previous months
in each school. To each family of the schools we delivered a paper questionnaire
composed by a first part, where we gave the definition of influenza-like-illness (ILI)
and by a second part, where the parents on behalf of their children were asked to
report the date(s) of onset of ILI symptoms in the members of the family. Table

5.4 summarizes some basic data and statistics collected at the time of the survey.

school of Povo school of Villazzano

school size 307 213
number of classes 14 10

number of responses 260 168
number of ILI cases 121 103
response rate 0.85 0.79
attack rate 0.46 0.61

Table 5.4: Some basic statistics on the survey led in the primary schools of Povo and

Villazzano.

5.4.2 Analysis of real school epidemics

School of Povo

On the basis of the data collected through the survey, two cases seeded infection in
the school of Povo (t; = t9 = 1) and the last case showed the onset of ILI symptoms
56 days after the index cases (tqap = 56). Figure 5.3 shows the number of new
cases (left panel) and the cumulative number of ILI cases (right panel) observed in

the school over time.

117



5.4. Real school outbreaks

120
I

80 100
I I

new cases in the Povo school
cumulative(new cases in the Povo school)
60
1

20
I

time time

Figure 5.3: Plot of the number of new cases (left panel) and of the cumulative number of
observed new cases (right panel) in the school of Povo in time, starting from the day of
detection of the index case.

Using rule (5.4) with a = 2.5 and n; = 15 we define the temporal-windows on
which to perform the linear regressions. In terms of goodness of fit R? we select
the estimates that satisfy the constrains given on Table 5.5. The thresholds values
given on Table 5.5 have been chosen on the basis of the relative average values
of R? observed when fitting a linear model to this school epidemic. Indeed, the
Povo school epidemic could be better explained (using a linear model) than the
simulated school epidemics given that, on average, we obtained higher scores for
the goodness of fit R?.

method R?
L.1 > (.30
L.2 > (.98
L.3 > (.50

Table 5.5: Threshold values for R? for the estimates obtained for the school of Povo.

Tables 5.6, 5.7 and 5.8 summarize the estimated growth rate r and the corre-
sponding values of Ry and R? computed on the specified time intervals [t;,¢; + ]
using linear regression on the three quantities L.1, L.2 and L.3. Figures 5.4(a),
5.4(b), 5.4(c) plot the linear fit marked with an asterisk in the respective tables
and the filled dots in the plot represent the data on which linear regression has

been performed.

118



5.4. Real school outbreaks

L.1 - linear regression on log,(i(t)) vs ¢
ci ti O r R? R,
1 1 29 0.0634 0426 1.21
1 1 30 0.0611 0430 1.20
1 1 31 0.0589 0433 1.19
13 12 18 0.0798 0.327 1.26 *
13 12 19 0.0724 0.312 1.24
25 18 8 0.216 0432 1.78
25 18 9 0.184 0416 1.65
25 18 10 0.149 0.364 1.52
25 18 11 0.146 0416 1.51
25 18 12 0.136 0435 1.47

S

Table 5.6: School of Povo: summary of the estimated values of the exponential growth rate
r obtained through the fit of log,(i(¢)) vs ¢ and the corresponding Ry. Linear regression
has been performed on the time intervals given by [t;,t; + §;]. The marked (*) linear fit is
plotted on Figure 5.4(a).

L.2 - linear regression on log, (c(t)) vs ¢
¢t O r R? R,
13 12 19 0.0993 0.982 1.33
13 12 20 0.0982 0.984 1.33
13 12 21 0.0966 0.984 1.32
13 12 22 0.0947 0.982 132 *
33 23 3 0.158 0.983 1.55
41 24 2 0.178 0.987 1.63
45 25 5 0.0916 0.988 1.3
45 25 6 0.0865 0.985 1.29

Table 5.7: School of Povo: summary of the estimated values of the exponential growth rate
r obtained through the fit of log,(c(t)) vs ¢t and the corresponding Ry. Linear regression
has been performed on the time intervals given by [t;, t; + §;]. The marked (*) linear fit is
plotted on Figure 5.4(b).
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L.3 -linear regression on i(t) vs c(t)

¢t O r R? R,
1 1 8 0973 0973 6.29
1 1 9 049 0.572 3.09
1 1 28 0.0959 0.508 1.32
1 1 29 0.0913 0.537 1.30

13 12 3 0.667 0.651 4.13
13 12 14 0.171 0529 1.60 *
17 15 11 0.195 0.521 1.70
21 15 11 0.195 0.521 1.70

Table 5.8: School of Povo: summary of the estimated values of the exponential growth
rate r obtained through the fit of i(t) vs ¢(t) and the corresponding Ry. Linear regression
has been performed on the time intervals given by [¢;, t; + §;]. The marked (*) linear fit is
plotted on Figure 5.4(c).
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Figure 5.4: Plot of: (a) the incidence data collected in the Povo school (lin-log scale) and
the best linear approximation obtained by linear least square fitting to the filled dots,
(b) the cumulative data collected in the Povo school (lin-log scale) and the best linear
approximation obtained by linear least square fitting to the filled dots, (c) the incidence
as a function of the cumulative data collected in the Povo school and the best linear

approximation obtained by linear least square fitting to the filled dots.

School of Villazzano

On the basis of the data collected in the survey, one case seeded the infection in
the primary school located in Villazzano (¢; = 1) and the last case showed the
onset of ILI symptoms 64 days after the index cases (tq; = 64). Figure 5.5 plots
the number of new cases (left panel) and the cumulative number of ILI cases (right

panel) observed in the school of Villazzano over time.
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Figure 5.5: Plot of the number of new cases (left panel) and of the cumulative number of
observed new cases (right panel) in the school of Villazzano in time, starting from the day
of detection of the index case.

To define the temporal windows on which to perform the fit, we apply the
iterative rule given in 5.4 with ny = 15 and @ = 2.5 and select the estimates
satisfying the constrains given on Table 5.9. The thresholds values given on Table
5.9 have been chosen on the basis of the relative average values of R? obtained
through the fit of the linear models to this school epidemic. The selection would
have been less accurate, if we had applyed the threshold values given on Tables
5.2 and 5.5, and the estimates would have been much poorer, in the sense that we

would have accepted wider ranges for R;.

method R?
L.1 > (.60
L.2 > 0.95
L.3 > (.70

Table 5.9: Threshold values for R? for the estimates obtained for the school of Villazzano.

Tables 5.10, 5.11 and 5.12 summarize the estimated growth rate r and the
corresponding values of Ry and R? computed on the specified time intervals [t;, ¢; +
d¢] using linear regression on the three quantities L.1, L.2 and L.3. Figures 5.6(a),
5.6(b) and 5.6(c) plot the linear approximation marked with an asterisk in the
respective tables and the filled dots in the plot show the time-interval on which

linear regression has been performed.
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L.1 - linear regression on log, (i(t)) vs ¢
Ot r R? R,
24 0.0923 0.558 1.31
25 0.0922 0.586 1.31
26 0.0814 0.511 1.27
27 0.0789 0.52 1.26
9 0.205 0.562 1.74
19 10 0.213 0.647 1.77
19 11 0.201 0.674 1.72
19 12 0208 0.736 1.75 *
19 13 0.185 0.699 1.65

o
N

~~
R

ESIEN BIEN IS N Y
=
©

10 24 5 0362 0.854 244
10 24 6 0.267 0.711 2.00
10 24 7 0.258 0.773 1.96
10 24 8 0.186 0.571 1.66

Table 5.10: School of Vilazzano: summary of the estimated values of the exponential
growth rate r obtained through the fit of log, (i(¢)) vs ¢t and the corresponding Ry. Linear
regression has been performed on the time intervals given by [¢;,t; + 0]. The marked (*)

linear fit is plotted on Figure 5.6(a).
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L.2 - linear regression on log,(c(t)) vs ¢

) t; O r R? R
10 24 7 0.281 098 2.06
10 24 8 0.263 0.974 1.98 *
10 24 9 024 0954 1.88
13 26 2 0409 098 2.67
13 26 3 0.347 0.968 2.36
13 26 5 0.273 0.958 2.03
16 27 2 0.271 0994 2.02
16 27 3 0.231 0978 1.85
16 27 4 0.227 0.988 1.83
16 27 5 0.206 0.978 1.74
28 28 2 0.193 0.984 1.69
28 28 3 0.205 0992 1.74
28 28 4 0.184 0.983 1.65

Table 5.11: School of Vilazzano: summary of the estimated values of the exponential

growth rate r obtained through the fit of log,(¢(t)) vs t and the corresponding Ry. Linear

regression has been performed on the time intervals given by [¢;,t; + 0]. The marked (*)
linear fit is plotted on Figure 5.6(b).
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L.3 -linear regression on i(t) vs c(t)

i ti O r R? R,
1 1 27 0305 0.788 2.17
1 1 28 0.265 0.822 1.99
1 1 29 0.214 0.774 1.78
1 1 30 0.22 0.856 1.80
1 1 31 0.172 0.736 1.60
4 7 20 0423 0.834 2.74
4 7 21 0355 0.875 240
4 7 22 029 0.864 2.10
4 7 23 0227 0.789 1.83
4 7 24 0229 0.867 1.84
4 7 25 0176 0.73 1.62
7 19 8 0.538 0933 3.36
7 19 9 0.389 0.886 2.57
7 19 10 0.296 0.837 213 *
7 19 11 0.219 0.721 1.79
7 19 12 0.224 0.824 1.81

Table 5.12: School of Vilazzano: summary of the estimated values of the exponential
growth rate r obtained through the fit of i(¢) vs ¢(¢) and the corresponding Ry. Linear
regression has been performed on the time intervals given by [¢;,¢; + d¢]. The marked (*)
linear fit is plotted on Figure 5.6(c).
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Figure 5.6: Plot of: (a) the incidence data collected in the Villazzano school (lin-log scale)
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and the best linear approximation obtained by linear least square fitting to the filled dots,
(b) the cumulative data collected in the Villazzano school (lin-log scale) and the best linear
approximation obtained by linear least square fitting to the filled dots, (c) the incidence
as a function of the cumulative data collected in the Villazzano school and the best linear

approximation obtained by linear least square fitting to the filled dots.
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5.5. First results & discussion

On the basis of the data collected through the survey conducted in the primary
schools of Povo and Villazzano, we estimate that the within school reproduction
Rs has been into the range 1.2 — 1.8 in the school of Povo and into the range
1.6 — 2.7 in the school of Villazzano. If we select the estimates obtained with meth-
ods L.1 and L.2 on the most reasonable time-intervals, the estimated within school
reproduction number is into the range 1.25 — 1.35 for the Povo school and into the
range 1.7 — 2.1 for the school of Villazzano. The ranges given here correspond to
the values of R, estimated on different exponential growth time-intervals, provided
that we selected the most reasonable time-frames for the fit of a linear model to the
data. Our analysis shows that the estimates of the reproduction number obtained
by least square fit of a linear model to observed data are sensitive to the choice of
the exponential growth phase selected for the fit.

The estimates of the within school reproduction number Rs computed in this work
are smaller but comparable to the estimates of the reproduction number obtained
from the analysis of a pandemic HIN1 outbreak in the St. Francis Preparatory
school in New York [2.4 (95% CI: 1.8 — 3.2)] (Yang et al., 2009b) and to the esti-
mates obtained from the analysis of a high school outbreak in Queens, New York
(3.3 (95% CI: 3.0 — 3.6)] (Lessler et al., 2009).

Finally, notice that the estimates of Rs obtained for the school of Villazzano with
method L.1 clearly reflect the two exponential growth phases that make this epi-
demic rather uncommon. The estimates obtained through the fit of the initial
data (i.e. from day 7) are lower than the estimates obtained on the time inter-
vals starting at day 19; these last seem much more reasonable to us. A more
detailed analysis of the spread of infection among the school-classes could possibly
clarify the uncommon behaviour of the epidemic curve observed in the school of

Villazzano.

5.5 First results & discussion

The individual-based model developed by Merler and Ajelli (2010) has been rec-
ognized as a tool able to successfully reproduce the patterns of spread observed in
the population-wide epidemic; here we explored its ability in reproducing school
outbreaks. The model’s heterogeneity, in terms of proportion of adults and chil-
dren attending the same school and within school reproduction number, could be
certainly improved. Despite this, the individual-based model is a valuable tool for

the comparison of the estimats of the within school reproduction number with its
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5.5. First results & discussion

“true” value given by theory. The estimates of the exponential growth rate depend
on the choice of the exponential growth time-intervals adopted in the fit. Once
fixed the most appropriate time-intervals, we find that the estimates of Rs ob-
tained through the estimates of the exponential growth rate using linear regression
closely reproduce the theoretical values of the within school reproduction number.
The analysis of simulated data show that the least square fit of a linear model
to the data performed on the cumulative number ¢(t) of the cases versus time ¢
(method L.2) is the most stable estimation method among the three exploited here.
Moreover, the estimates of Ry computed on the cases observed within the schools
do not significantly differ from the estimates obtained from the curve of the cases
generated within the schools so that the importation of cases seems not to sub-
stantially affect the within school dynamics. The estimate of Rs obtained through
the infection tree (i.e. counting the mean number of cases generated by a “typical”
index case) amounts to 1.51 (standard deviation 1.83) and slightly overestimates
the theoretical value of R = 1.18. Oun the basis of our estimates obtained by lin-
ear regression, the within school reproduction number Ry is lower than the “global”
Ry; this fact is in conflict with some estimates obtained during the past 2009-2010
HIN1 pandemic (Lessler et al., 2009; Nishiura et al., 2009, 2010).

We compared the simulated results with two real within school outbreaks occurred
in Italy during the 2009-2010 HIN1 pandemic. On the basis of the data collected
through the survey conducted in the primary schools of Povo and Villazzano, the
estimated within school reproduction number is into the range 1.25 — 1.35 for the
Povo school and into the range 1.7—2.1 for the school of Villazzano. These estimates
are lower than those obtained from the analysis conducted on the data collected in
the St. Francis Preparatory school in New York [2.4 (95% CI: 1.8 — 3.2)] (Yang
et al., 2009b) and in the Queens school, New York [3.3 (95% CI: 3.0—3.6)] (Lessler
et al., 2009). The reasons that could explain this difference are manifold and could
depend on the delay of the survey in respect to the timing of the epidemic, on some
specific characteristics of the schools where the outbreaks have been monitored and
on country-specific differences in terms of virus transmissibility, for instance.

The estimates of Rs obtained for the schools of Povo and Villazzano are slightly
higher than those computed on the simulated Italian schools, which have been ob-
tained for a “global” Ry of 1.38. Despite the individual-based model could certainly
be improved in a variety of different aspects (and indeed a more realistic proce-
dure of school assignment is being developed), we find that even in the current

version, the model can satisfactory reproduce within school outbreaks, so that it is

126



5.5. First results & discussion

potentially a powerful tool for the simulation and analysis of disease transmission

in specific social contexts.
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