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1 Silicon Photonics for Routing and Switching

Applications

1.1 The need for optical interconnects

If the increase of the number of processing cores which should enhance the

computational power of future multiprocessor platforms follows the same pace of

Moore’s law (single chip computing power doubling about every two years), an

increasingly high-bandwidth and low-power communication infrastructure becomes an

unavoidable option. Multicore chips became the new paradigm where the overall

processing performance has been achieved by increasing the number of processing units

instead of clock frequency. However, it is foreseeable that the conventional multicore

approach, once it will become massively parallel, will lead also to an exponential

increase in system concurrency. New inter-node communication infrastructures with

optimized performance per unit power are needed. In high performance computers,

multi-core processors will require data transfer rates in excess of 100 Terabit/s in the

next decades. The development of processor technology of the last two decades has

shown that while Moore’s law continues to be confirmed, the traditional sources of

performance improvements, e. g. the increase in clock frequency, experienced a

flattening especially due to heat density and power constraints[1].

To face these bottlenecks the only viable technology is optical interconnects. Optical

interconnects allow for additional flexibility through the use of Wavelength Division

Multiplexing (WDM) while optical networks on chip (ONoC) envisage core to core

photonic interconnects with large bandwidth, ultra-fast switching, ultra-low power

consumption and support of WDM [2, 3]. ONoC systems must also be reconfigurable so

that routing protocols can be changed on request.

In particular, in recent years silicon photonics has shown to be a promising interconnect
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technology [4, 5, 6]. Silicon-on-insulator (SOI) photonic structures offer compatible

fabrication processes with complementary metal-oxide-semiconductor (CMOS)

technology. Microdisk lasers, photodetectors, ring filters, and flip-flop memory cells were

demonstrated with promising performances and a potential for ONoCs and all-optical

signal processing [7, 8, 9]. The advance of nano-silicon photonics [10] is complemented

by the next generation optical lithography technologies [11] enabling the integration of

complex photonic integrated circuits with CMOS technologies [12]. The recent increase

of efforts aiming at building optical interconnects [13], photonic networks on chip [14],

and the fabrication of active devices (e.g. high speed optical modulators and detectors

[15] or compact light sources like micro-disk lasers [16]), have led to a general progress

in nanophotonics. In this context, while the theory and implementation of single

micro-ring resonators were extensively investigated (e.g. [17, 18, 19, 20], and references

therein), cascaded resonators, as side coupled integrated spaced sequences of resonators

(SCISSOR), and coupled resonator optical waveguide (CROW) systems

([21, 22, 23, 24, 25, 26]) were studied to a smaller extent [27, 28, 29, 30]. These

structures are interesting because they promise to become wavelength optical routing

systems, for so called λ-routing, and phase switching applications. In this work we will

report about the design, fabrication and characterization of λ-router devices based on

the coupling of SCISSOR systems and resorting to the interplay between the phase of

the optical signals. In order to validate the modelling, I have designed Graphic

Database System 2.0 (GDS II) layouts which were used to actually fabricate the

proposed devices. These were then measured by other people in the laboratory (I’m

particularly grateful to Mattia Mancinelli, a Ph.D. student who made most of the

measurements presented). Here I use their data to compare it with my simulation

results. This photonic devices are fabricated on SOI wafer. Its potential use could span

from coarse WDM (CWDM) to pipeline forwarding techniques (optical node to node

packet forwarding during predefined time frames [31]).
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1.2 Examples of current micro-optical resonator realizations

One of the fundamental building blocks of optical interconnects is expected to be

micro-optical resonators. The physics of microring resonators, and to some less extent

micro racetrack- or stadium- resonators, has been studied by several authors (e.g.

[17, 32, 33, 34]). These are at the basis of a large number of devices for WDM, sensing,

filtering, switching, routing, or optical interconnects. Microrings are a popular choice for

such applications because they can act as filters or modulators of small size, high

quality factor, with good transparency to off-resonance light, and no or small intrinsic

reflection. Worth mentioning is the experimental demonstration of compact and

high-speed electro-optic modulators based on silicon microring resonators.[35, 36]

Figure 1: Left: Schematic layout of the ring resonator-based modulator. The inset shows the cross-

section of the ring. R, radius of ring. VF , voltage applied on the modulator. Right: (a) Waveform of

the electrical driving signal at 0.4 Gbit/s applied on the modulator. (b) Waveform of the output optical

power of the modulator.

These first efficient micrometer-scale silicon modulator active device operations were

obtained by inducing small changes in the refractive index of the silicon by injecting

electrons and holes using a p-i-n junction embedded in the ring resonator. The high

speed slight effective index change leads to on-off resonant states of the structure

modulating the transmitted signal. The working principle is sketched in fig. 1 left which
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shows the cross-section of the rib waveguide, while fig. 1 right (a) and (b) depict the

modulation of the transmitted light.

Current efforts are under way to lower the losses and bend radius of the resonators

(about 1.5µm radius ring resonators have been shown to work [37]). Cascading of active

silicon micro-ring modulators for WDM optical interconnection were presented in single

sided SCISSOR configuration [38]. We will present purely passive systems capable of

WDM functions, i.e. devices which are fully functional without integrated

electro-optical modulation.

The concepts of SCISSOR and CROW were first introduced to study their large

dispersion and slow light properties [21, 22, 24]. SCISSOR exhibit two types of stop

bands (band gaps): the resonator bandgaps, when the optical path of the resonators is

an integer multiple of the wavelength; the Bragg bandgaps, which arise when the Bragg

condition is satisfied, i.e. when the optical path of the back-reflected light is an integer

multiple of the wavelength. This lends SCISSOR to various types of bandgap

engineering [23, 25]. A particularly interesting SCISSOR configuration arises when the

two bandgaps overlap since in this case a high order flat band pass filter is obtained

whose properties depend on the number of parallel side coupled resonators. SCISSOR

are also interesting for their property of conveying almost all the optical power in the

Drop port, due to cascading of resonators even when the single resonator is not

critically coupled to the bus waveguide. This band engineering and power optimization

makes the cascading of several resonators, like in SCISSOR structures, interesting for

filtering applications. The first comprehensive theoretical investigations of the optical

properties of SCISSOR in their different symmetrically coupled geometrical

configurations explored their slow light, dispersion and nonlinear properties [23, 39].

Later it became clear that also asymmetric coupling, called ’apodizing’, offers potential

advantages for filtering and switching (e.g. obtaining higher order roll off spectral side

lobes and better extinctions), where also some switching and routing functions with

active nxm WDM filters were considered [25, 26].

4



CROW resonant structures were studied also for their potential to engineer optical

dispersion, the possibility to realize ultra-slow group velocities for various applications

such as delay lines and all-optical switching [21, 40, 41]. Ultracompact optical buffers on

a silicon chip were experimentally shown by IBM, where large group delay exceeding 10

bits was achieved for bit rates as high as 20 Gbps, as shown in fig. 2 [42]. Preliminary

characterization of a reconfigurable CROW delay line realized on SOI with thermooptic

control of the delay was also shown [43].

Figure 2: Scanning electron micrographs of resonantly enhanced optical delay lines based on photonic-

wire waveguides. Delay line composed of several resonators cascaded in a CROW configuration. (Source:

IBM Thomas J. Watson Research Centre)

1.3 Modern phase switching technologies and an outlook on

possible enhancements

The transition from electronic to electro-optical or full optical devices can have also

another potential application. In fact, the tremendous growth of communication

services and information technologies demands new and enhanced networking

capabilities where switching is expected to be one of the main functions in

communication systems and networks. Novel optical switching technologies have the

potential to play a decisive role in future telecommunication and information processing

systems over traditional electronic devices, especially because of the extensive

deployment of WDM technologies where the demand for high speed, scalable and

rapidly reconfigurable network switching is a central issue. Several optical switching
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technologies exist, like electro-optic, acousto-optic, thermo-optic, opto-mechanical and

optical-amplifier based switching. Refractive index modulation inducing phase

differences for switching functionalities resort especially to electro-optic or thermo-optic

effects, and are widely used in directional couplers, Mach-Zhender interferometers

(MZI), and multi mode interference (MMI) switches (for a good review see e.g. [44]).

The present thesis will focus on some possible extensions from waveguide- to

resonator-based phase switching interferometric techniques by means of micro-optical

resonator systems, like SCISSOR and CROW and a particular combination of both

where three waveguides serve for amplitude and phase modulation. The advantage a

system of resonators has over conventional MZ coupling is its larger spectral band, its

robustness against fabrication errors and signal imbalances, the possibility to operate

through phase switching on several channels and its higher degrees of freedom which

allow for a much larger set of behaviors compared to usual directional coupling

switching, and of course its switching speed compared to electronic devices.

Some theoretical investigations of microring-resonant 2 x 2 optical switches and practical

realizations of ultrafast and low power broadband electro-optic silicon switches were

already done [45, 46]. Also more compact devices could be realized by fabricating spiral

shaped MZ arms with p-i-n junction (like in fig. 3) which could reduce the typical 2x2

switch based MZI with two straight arms of 4mm length to a 150µm× 150µm footprint.

Figure 3: A 2x2 MZI switch with spiral shaped arms (heavy gray: p-i-n- junction, light gray: waveguide).

The theoretical analysis and practical realization of such kind of phase switching devices

is however still rare. One of the main limitations is presented by current photonic
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fabrication tolerances. Phase shifting of light requires the same interferometric precision

as the device operation itself. For example the phase difference between two interfering

light signals need to be tightly controlled at the sub-wavelength level to provide efficient

switching. Even more sensitive to small deviations from the nominal parameters are

devices where coherent addition of signals is achieved by arranging complex systems of

resonator chains. These require nanometer level accuracy in the fabrication of the single

resonators and their mutual spacings. For instance Coupled Resonator Induced

Transparency (CRIT) effects emerge easily only for few nanometer deviations

([29, 47, 48, 49, 50, 51]).

However, while present optical lithography still suffers of few nanometers imprecision

needing further improvements, the next generation optical lithography is likely to

achieve in the coming years an order of magnitude leap in accuracy paving the way to

novel phase modulation devices [11]. Also the fabrication of electro-optic

silicon-photonic modulators which are capable of providing smooth and uniform phase

shifts over a broad spectrum are a topic of intense research and promise to find a wide

area of applications[52].

From our side we will demonstrate the practical realization of a novel silicon photonic

phase switching device showing that resonator phase switching is indeed feasible.

Therefore, it could be interesting to explore, at least from the theoretical point of view,

some extensions of conventional directional coupling methods which could have

potential applications in upcoming phase switching devices.

1.4 Optical networks on chip

One of the main reasons to look for ONoC technologies is energy efficiency. The

problem becomes clear when one considers that for a typical electrical signalling of

present technologies of 10 pJ/bit, 1000 W is required to support the interconnection

bandwidth of 100 Tbit/s. Whereas optical interconnects promise to reduce energy
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Figure 4: The fundamental building blocks of an ONoC: the optical single, (a), and coupled, (b), micro-

resonator system, (c) Waveguide-based MZI. Typical routers: (d) Cross-grid array, (e) Banyan network

in cascaded 2x2 switch array configuration.

consumption at least by an order of magnitude. The advantage over traditional

technologies is also its small footprint and large bandwidth.

But the way to fully operational ONoC systems is still long. Present attempts to build

efficient micro-optical routing systems are based on optical micro-resonators (fig. 4 (a),

(b)), and waveguide based MZI as switching elements (fig. 4 (c)). These are used to

build network structures which can be classified in two major topologies. The cross-grid

optical router (fig. 4 (d) as a 5x5 nonblocking router) where at each intersection of the

horizontal (input) and vertical (output) waveguide there is a 2x2 switch. In cross-state

(black box) the optical signal is routed from the input to the output waveguides,

whereas the switch in bar-state (white box) keeps the signal propagating straight

through the bus waveguide. Fig. 4 (e) illustrates the Banyan network acting as a 4x4

nonblocking router comprising six 2x2 switches. The link path passes through only

three cascaded switches. Typical optical switches structures are coupled microring

resonator-based and MZI switches as shown in fig. 4 (b) and (c). Fig. 5 provides a

partial list of micro-resonator array structures in different materials.
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Figure 5: Microresonator array for multiple-input multiple-output optical inteconnects (Source: Poon

et al. [53])

Worth of mention are however the SOI ONoC designs. The requirements and the design

of ONoC passive components were first described and validated by experimental results

in [54]. Coupled two-disk add-drop filters as small as 1µm were fabricated (last SOI

device from top in fig. 5). Perhaps the most relevant work was done by Bergman’s
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Figure 6: Images of the 4x4 hitless router: (a) microscope image of full device shows gold contacts

to nickel-chrome heaters above the microrings; (b) Scanning Electron Microscope (SEM) image shows

the details of the fabricated waveguide crossing and coupled rings (insert shows close-up of Ω heaters).

(Source: Sherwood et al. [55])

group. They proposed and numerically analyzed a 4x4 blocking photonic switch [3] on

SOI comprising eight silicon microring resonators laterally coupled to a waveguide

cross-grid (first SOI device from top in fig. 5). Each of the photonic switching element,

i.e. each two equal resonators laterally coupled to a crossing, are active: they can be in

off-state (signal going through) or in on-state by the injection of electrical current into

p-n contacts surrounding the rings, coupling the light into the rings. This configuration

however is blocking (for example, a message routed from south to east will block

message requests from west to south and from east to north). Later a non-blocking 4x4

optical hitless router was presented (second SOI device from top in fig. 5). The device

was dynamically switched using thermo-optically tuned silicon microring resonators

(with 10µm radius and ten waveguide crossings, see microscope images in fig. 6).[55] It

has a wavelength shift to power ratio of 0.25nm/mW, is capable of routing four optical

inputs to four outputs with individual bandwidths of up to 38.5 GHz, providing a

maximum extinction ratio larger than 20 dB.

Future developments envisage hybrid interconnection networks overlayed to the chip

multi processors in a three-dimensionally stacked monolithically integrated structure,

i.e. in a multi-core processor-, a memory-, and ONoC-layer, like shown in fig. 7. This

important research area attempts to extend the scaling of Moore’s law into the third
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Figure 7: Illustration of a 3D integration stack with dedicated computation, storage, and communication

planes (not to scale).

dimension by physically stacking traditionally planar chip layers, maximizing the area

allotted to CMOS devices over the limited chip footprint, as well as decreasing the

critical wiring distance between communicators. We will not study other geometries

further, since it would go beyond the scope of this thesis (for a more in depth analysis of

the geometries presented in fig. 5 see [53], for the 3D-stacking [56, 57, 58], and

references therein).

1.5 Thesis plan and collaboration

The purpose of this thesis is to focus on the aspect of passive devices allowing for

WDM, routing, switching and filtering of optical signals, investigating novel routing

concepts based on side coupled resonators to achieve large bandwidth by multiple

cascading and/or multiple coupling (low group velocity) periodicity effects. We will

describe some technical aspects necessary for the design and fabrication of some passive

circuitry, and usually neglected in purely theoretical approaches, including optical

routers based on racetrack resonators and novel SCISSOR and CROW devices.

Most of the modelings in literature rely on approximations and simplified assumptions

which depart from the real physical properties of the resonator. Within certain limits

this idealization is justified since it leads to the qualitative understanding of the device

behavior. But with increasing integration densities, resonators have smaller bend
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radiuses and small coupling gaps. This implies that one cannot neglect in the modelling

effects such as coupling losses, effective index differences and modal mismatches between

the straight and bend waveguides. For a radius of curvature smaller than R < 5µm in a

SOI system, the traditional algorithms furnish very rough estimates of the optical

response of microresonators, especially for some high-order filtering applications.

Moreover, the situation gets worse for devices based on sequences of microresonator like

in SCISSOR or CROW devices. We will describe accurately small microresonator or

multiple cascaded microresonators in order to enhance design methods of complex

optical systems which can tackle, at least partially, fabrication tolerances, narrowing the

gap between models and real devices.

In the first part we will shortly recall the basics of coupled mode theory (CMT). A full

description of the single racetrack needs an improved understanding of the behavior of

its constituent parts. After an introduction to racetrack resonator theory we will briefly

justify the use of racetracks instead of the more traditional ring resonators and outline

its main physical properties which are necessary to understand when the fabrication of

complex structures is necessary, where they appear in chains of mutually interacting

fundamental components in a larger system. After a brief theoretical introduction on

the behavior of add-drop filters, we will discuss the dispersion law of the straight

waveguide, the characterization of curved waveguides and the influence of the bending

on the effective index. Experimental results will be shown on losses and its

characterization on some devices and the determination through CMT of the odd and

even modes arising from the mutual interaction of waveguides. Also the determination

of bending losses, the calculation of the coupling coefficients and length, and a

comparison between the obtained parameters with experimental results will follow. We

will use these data for a model of the single racetrack resonator. A final comparison

among the proposed model, an idealized one, and experimental measurements will close

the first part. We will then introduce a detailed transfer matrix formalism in order to

model SCISSOR and CROW structures. Later on, novel SCISSOR based geometries are
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presented which have the capability of routing spectral bands, i.e. CWDM in contrast

to DWDM channel routing, and of a switching behavior based on phase modulation.

This latter aspect will be explored in more detail at a theoretical level and will be

applied also in some devices fabricated on SOI wafers applying it to few SCISSOR

configurations to explore and measure their use in routing devices.

As far as it was possible in the given time frame, first attempts were made to build

some device prototypes and test them experimentally. For this reason also some

emphasis has been laid on the design, fabrication and experimental validation of

different SCISSOR structures. However, the aim of this thesis is mainly theoretical. It

wants to investigate the conceptual and analytical aspects and the physics of the

structures proposed in order to lay a theoretical foundation also for those who will

design and fabricate other real devices in the future.

This work was carried out in the framework of the project Wavelength Division

Multiplexed Photonic Layer on CMOS (WADIMOS) which is a EU funded research

project aiming at demonstrating a photonic interconnect layer on CMOS. WADIMOS

objective is to build a complex photonic interconnect layer incorporating multi-channel

microsources, microdetectors and different advanced wavelength routing functions.

Another aim is to directly integrate with electronic driver circuits and demonstrate the

application of such electro-photonic integrated circuits (ICs) in two representative

applications, an on-chip optical network and a terabit optical datalink. Besides the

University of Trento (UNITN), the project includes partners from industry (STM,

MAPPER) as well as major research institutes and universities (IMEC, CEA-LETI,

INL). ST Microelectronics is one of the world leading suppliers of electronic ICs while

IMEC and CEA-LETI are the largest European research institutes on microelectronics.

Mapper Lithography, a Delft University spin-off, is developing a massively parallel

ebeam writing system for future electronic circuit fabrication. MAPPER was

responsible for the system studies related to the terabit optical link. On its part,

UNITN focused on the design of innovative optical WDM circuits based on coupled

micro-optical resonators in SCISSOR configuration. The projects ends in June 2011.
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2 Overview of Coupled Mode Theory

CMT has grown to a vast subject in the last three decades and is the most fundamental

theoretical approach to the design and construction of practical micro-photonic devices.

The most common starting point for it is the mutual lightwave interaction between

(co-propagating or contra-propagating) light signals in two adjacent waveguides. In this

section the coupled mode equations based on perturbation theory is first investigated,

and the calculation through cross-section integrals leading to the coupling coefficients

and coupling lengths is presented. As will be seen later, this approach can also be

applied to a system of three waveguides which will enable us to extend Mach-Zhender

interferometry techniques to more complex designs of sequences of micro-optical

resonators. The optical response of a system of cascaded ring or racetrack resonators is

determined by its geometry and its coupling regions, and can be modeled through a

Bloch-matrix formalism (e.g. [23]) or, as will be explained in more detail in section 4,

with a transfer matrix approach (see also [59, 40, 60, 61, 45, 24], and other references

therein). The former deals with infinite periodic structures and is therefore only an

approximation for realistic devices, while the second can be used to model finite

systems. In both cases, co- and contra-propagating signals should be taken into account.

We will consider only the case of co-propagating signals. The parameters calculated by

means of CMT will then be employed in the following section to systemize the

(somewhat scattered throughout the literature) transfer matrix approach with its

generalization to racetracks.

2.1 Coupled mode equations derived from perturbation theory

There has been a great effort to describe the electromagnetic (EM) fields in coupled

waveguides (for instance see the seminal work of Marcuse [62], or more recent texts

[63, 64, 65, 66]). Most of its results rest on the fundamental fact that there is an

orthogonal relation between the modes supported by a waveguide structure, which

implies that each mode propagates independently along the waveguide without power
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exchange among the modes itself. The modes become mutually ”coupled” when energy

transfer between them takes place if the original waveguide structure is altered. CMT is

the theory that describes the interaction between modes and the new modes arising

from the modified structure. The most important result for our purposes are the

cross-sectional integrals which lead to the coupling coefficients. We will present only a

sketch of the lengthy calculation following the perturbative approach adopted by K.

Okamoto [63].

As well known, Maxwell’s equations for source-free, time dependent fields are

∇× E = −∂B

∂t
, (2.1)

∇×H =
∂D

∂t
, (2.2)

where t is time, ∇ = (∂/∂x, ∂/∂y, ∂/∂z) is the del operator, E(t), H(t), D(t), B(t) are

the time dependent vectors of the dielectric and magnetic field, the electric displacement

and the magnetic induction respectively. Since we consider only waveguide structures

that do not depend on the z coordinate, Maxwell’s equations admit solutions whose z

dependence can be expressed by the simple function eiβz, with β the propagation

constant, with forward and backwards fields of periodic time dependence and which can

be written as

E = E0 e
iωt + E∗

0 e
−iωt , (2.3)

where E0 is a complex amplitude, ω the angular frequency, and the asterisk indicates a

complex conjugate. These solutions are referred as ’normal modes ’. All modes of a

dielectric waveguide are orthogonal to each other [64], that is, given two uncoupled

modes ϕa and ϕb we have ∫ +∞

−∞
ϕaϕ

∗
a dx =

∫ +∞

−∞
ϕbϕ

∗
b dx = 1 , (2.4)∫ +∞

−∞
ϕaϕ

∗
b dx =

∫ +∞

−∞
ϕbϕ

∗
a dx = 0 , (2.5)

where , for simplicity, we assumed a two-dimensional (x, z) geometry so that x is the

coordinate transverse to the waveguide. This important property is the base for much of

the waveguide theory.
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If the medium is lossless with a scalar dielectric constant ϵ(ω) and scalar magnetic

permeability µ, it holds

D = ϵE , (2.6)

B = µH , (2.7)

and Maxwell’s equations for the complex amplitudes become

∇× E = −iωµH , (2.8)

∇×H = iωϵE . (2.9)

Now, consider two waveguides of refractive index nI and nII immersed in a

non-magnetic medium (i.e. µ ≈ µ0, and n2 ≈ ϵ/ϵ0 = ϵr, the dielectric constant) of

refractive index n0 and brought together as in fig. 8.

Figure 8: Graphical z-section of directionally coupled optical waveguides.

If the EM field distribution of the coupled waveguides does not differ too much from the

uncoupled ones (further clarification will follow later on this point), then the system can

be analyzed in terms of perturbation theory [63]. Let us denote the uncoupled electric

and magnetic fields eigen modes as Ẽp, H̃p (p=1,2), satisfying complex amplitudes

Maxwell’s equations:

∇× Ẽp = −iωµ0H̃p , (2.10)

∇× H̃p = iωϵ0N
2
p Ẽp , (2.11)
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with N2
p (x, y) the refractive index distribution of each waveguide (in capital letters, to

distinguish from the uniform distribution of fig. 8). Assume the EM fields of the coupled

waveguide can be expressed as the sum of the uncoupled eigen modes in each waveguide:

Ẽ = A1(z)Ẽ1 + A2(z)Ẽ2 , (2.12)

H̃ = A1(z)H̃1 + A2(z)H̃2 . (2.13)

These should satisfy Maxwell’s equations also, i.e.:

∇× Ẽ = −iωµ0H̃ , (2.14)

∇× H̃ = iωϵ0N
2Ẽ , (2.15)

with N2(x, y) the refractive index distribution in the entire coupled system. Using 2.14

and 2.15 and separating the transverse and axial dependency of the EM field

Ẽp = Ep e
−iβp z , H̃p = Hp e

−iβp z ,

with

βp =
2π

λ
neffp , (p = 1, 2) (2.16)

the propagation constant given by the effective index neffp at wavelength λ, then it can

be shown ([63]) that

dA1(z)

dz
+ bc12

dA2(z)

dz
e−i(β2−β1)z + iχ1A1(z) + ik12A2(z) e

−i(β2−β1)z = 0 , (2.17)

dA2(z)

dz
+ bc21

dA1(z)

dz
ei(β2−β1)z + iχ2A2(z) + ik21A1(z) e

+i(β2−β1)z = 0 , (2.18)

where

kpq =
ωϵ0

∫ +∞
−∞

∫ +∞
−∞ (N2 −N2

q )E
∗
pEq dxdy∫ +∞

−∞

∫ +∞
−∞ uz(E∗

p ×Hp + Ep ×H∗
p) dxdy

, (2.19)

bcpq =

∫ +∞
−∞

∫ +∞
−∞ uz(E

∗
p ×Hq + Eq ×H∗

p) dxdy∫ +∞
−∞

∫ +∞
−∞ uz(E∗

p ×Hp + Ep ×H∗
p) dxdy

, (2.20)

χp =
ωϵ0

∫ +∞
−∞

∫ +∞
−∞ (N2 −N2

p )E
∗
pEp dxdy∫ +∞

−∞

∫ +∞
−∞ uz(E∗

p ×Hp + Ep ×H∗
p) dxdy

, (2.21)
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with p and q either (p, q) = (1, 2) or (p, q) = (2, 1). Eqs. 2.17 and 2.18 represent the

coupling modal equations that determine the spatial variation along z of the modal

amplitude coefficients A1(z) and A2(z), and eqs. 2.19, 2.20 and 2.21 are the waveguide

sectional integrals for multi-mode waveguides with arbitrary dimensions, refractive

index and separated by an arbitrary small distance. These integrals furnish the mode

coupling coefficient kpq of the directional coupler, the ’butt coupling’ coefficients bcpq

between the two waveguides, and quantity χp which is η times smaller than kpq since the

electric field E2 inside waveguide II is |E2| = η|E1|.

To analyze strictly the mode coupling effects all the coefficients must be calculated, but

in most of the conventional analysis for directional couplers χp and bcpq can be neglected

when two waveguides are sufficiently separated, (typically, for 0.5µm wide waveguides,

separations larger than 100-120 nm [67, 34]), and this approximation will be used

throughout the present thesis. In lossless directional couplers kpq is real (later it will

have to be multiplied by a complex quantity which takes into account phase shifts).

Therefore, the reciprocity relation expresses as k12 = k21 = k, and if we assume the

waveguides differing only in their propagation constant, then equations 2.17 and 2.18

simplify to

dA1(z)

dz
= −ik A2(z) e

−i(β2−β1)z , (2.22)

dA2(z)

dz
= −ik A1(z) e

+i(β2−β1)z , (2.23)

which are coupled differential equations of the co-directional coupler (β1 > 0, β2 > 0),

and the solutions can be assumed in the form:

A1(z) =
[
a1e

iqz + a2e
−iqz
]
e−iδz , (2.24)

A2(z) =
[
b1e

iqz + b2e
−iqz
]
eiδz , (2.25)

where

δ =
(β2 − β1)

2
, (2.26)
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is the difference of the propagation constants between the two waveguides, called

’mismatching ’ and expressed in m−1. It expresses the degree of synchronism between

the modes, and q is a parameter to be determined. Imposing the initial conditions:

a1 + a2 = A1(0) , b1 + b2 = A2(0) , (2.27)

and substituting eqs. 2.24 and 2.25 in 2.22 and 2.23 respectively, we obtain

A1(z) =

{[
cos(qz) + i

δ

q
sin(qz)

]
A1(0)− i

k

q
sin(qz)A2(0)

}
e−iδz , (2.28)

A2(z) =

{
−ik

q
sin(qz)A1(0) +

[
cos(qz)− i

δ

q
sin(qz)

]
A2(0)

}
eiδz , (2.29)

with

q =
√
k2 + δ2 . (2.30)

Considering the special case of coupling light into only one waveguide at z = 0

(A1(0) = A0 and A2(0) = 0), the normalized optical power flowing along the z-direction

in the two waveguides is given by:

Pa(z) =
|A1(z)|2

|A0|2
= 1− F sin2(qz) , (2.31)

Pb(z) =
|A2(z)|2

|A0|2
= F sin2(qz) , (2.32)

with

F =

(
k

q

)2

=
1

1 +X
, (2.33)

denoting the maximum power-coupling efficiency, and

X =

(
δ

k

)2

, (2.34)

the coupled-waveguide parameter. The maximum power coupled between the two

waveguides is reached at z = π
2q
(2m+ 1), (m = 0, 1, 2...) and the length z at m = 0

Lc =
π

2q
=

π

2
√
k2 + δ2

. (2.35)

is called coupling length.
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When the propagation constants of the two waveguides are equal (β1 = β1 and δ = 0)),

the situation is said to be in perfect ’phase-matching condition’, and 100% of power

transfer occurs at the coupling length:

Lc =
π

2k
. (2.36)

2.2 Even and odd modes in two coupled waveguides

It should be kept in mind that the approach to CMT followed here was perturbative

and therefore it is an approximation which basically rests on two assumption. Consider

that for the exponentially decaying coupling constant k it must hold |k| = αd e
−βtd, with

αd some constant and βt the transverse component of the propagation constant and d

the distance. In CMT first it is implicitly assumed that k is small or that βtd > 1, i.e. it

decays quickly. Secondly, the initial assumption that the EM field distribution of the

coupled waveguides does not differ too much from the uncoupled ones, means that the

waveguides should not be too dissimilar, i.e. that ∆β not too large. This approximation

fails in particular in those cases where waveguide transitions should be taken into

account (for instance when tapers, splitters, or branching systems have to be designed).

But for most applications this is a sufficient first order approximation which can be

safely applied.

Therefore CMT works in a weak coupling regime where it makes first order predictions.

For strong couplings other higher order theories or direct calculations of Maxwell’s

equations are necessary. This happens when the coupling waveguides separation

becomes very small (say about 200nm for SOI waveguides) and/or the coupling section

is close to the coupling length. CMT can nevertheless be used to provide an

approximate representation of the light propagation in two strongly coupled photonic

waveguides if one considers the splitting into the first symmetric and second

anti-symmetric order modes respectively, and describing the two interacting waveguides

as a five layer system like that shown in fig. 9.
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Figure 9: Wave E1 propagating in the five-layer slab waveguide: even (solid line) and odd (dotted line)

modes.

The even and odd normal modes can be expressed as a linear combination of the

uncoupled modes (as in 2.12 and 2.13, but here for the whole structure)

Ψe = d ϕa + e ϕb , Ψo = −e ϕa + d ϕb . (2.37)

Normalization imposes d2 + e2 = 1, and since the normal modes must be orthogonal it

must be
∫
ΦeΦ

∗
o dx, and this requires that orthogonality conditions 2.4 and 2.5 must be

satisfied. The constants e and f are related to the coupled-waveguide parameter 2.34 by

f =
e

d
= −X +

√
(X2 + 1) , (2.38)

which, when combined with the normalization condition above gives

d =

[
1

2

(
1 +

X√
X2 + 1

)]1/2
, e =

[
1

2

(
1− X√

X2 + 1

)]1/2
. (2.39)

The normal propagation constants are given by

βe = β + γ , βo = β − γ (2.40)

with γ = |k|
√
X2 + 1, and β = (βa + βb)/2 the average propagation constant. The

important conclusion of all this analytics is that the propagation constants change as

the result of the waveguide coupling.
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The first immediate simplification is that of the perfect phase-matching condition (from

eqs. 2.26, 2.34, and 2.39 it follows: ∆β = 0→ δ = 0→ X = 0→ e = d). Then the

normal modes are a linear combination of uncoupled modes with equal amplitude and

power for all waveguide separations (for β ̸= 0 the power eventually accumulates in one

or the other waveguide when the distance between them increases).

An analysis to obtain the coupling coefficient k can be done considering the interference

phenomena between the even and odd modes in a directional coupler in perfect

phase-matching condition. Approximating the electric field by the sum of the even and

odd modes as:

E(x, z) = Ee(x)e
−iβez + Eo(x)e

−iβoz , (2.41)

with (Ee, Eo) the even and odd mode electric fields respectively, the electric field

amplitude at z = 0 is:

E(x, z) = |Ee(x) + Eo(x)| = E1(x) , (2.42)

with E1 the eigen mode of waveguide I. While that at z:

|E(x, z)| = |Ee(x) + Eo(x)e
i(βe−βo)z| , (2.43)

which at z = π
(βe−βo)

becomes:

E(x, z) = |Ee(x)− Eo(x)| = E2(x) , (2.44)

where E2(x) denotes the eigen mode of waveguide II.

So, the total power transfer from the first to the second waveguide occurs at the

distance
Lc =

π

βe − βo

, (2.45)

with Lc the coupling length. Therefore, from eq. 2.36 we can finally write the identity

k =
π

2Lc

=
βe − βo

2
, (2.46)

which highlights the relationship between the coupling coefficient, the coupling length

and the even and odd modes propagation constants. Despite phase-matching conditions,
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the difference in the propagation constants of the even and odd modes implies different

propagation speeds and after some distance their relative phase becomes 1800 giving rise

to the beat phenomenon: the resultant fields in the two waveguides reverse. More in

general, when light has traveled a distance z the amount of (normalized and

dimensionless) fraction of power coupled to the second waveguide can be obtained from

the first rhs term of 2.29 (here, through 2.30, q = k), and is given by

Pcoupled = |κ|2 = sin2(kz) . (2.47)

Therefore, it is customary to distinguish between the cross-coupling coefficient obtained

from perturbation theory and the amplitudes cross-sectional integral over the section of

the two waveguides of the co-directional coupler, and having the dimensions of an

inverse length as in eq. 2.19, from that describing the amount of power coupled along a

distance z as in eq. 2.47. From now on we will distinguish the former from the latter

with a roman and Greek letter, i.e. k and κ, respectively.

2.3 CMT and phase switching basics

Let us quickly recall and derive some standard equations which describe in particular

the coupling between a single waveguide with another waveguide as an isolated system,

as shown in fig. 10.

Figure 10: Single sided co-directional coupling

This will be necessary to understand phase switching devices, and will be used

throughout the rest of this thesis. In order to clarify its application to racetrack

resonators, it has been represented as a coupling between a straight waveguide and the

traight section of a racetrack resonator neglecting the small curved part (this point will

be justified later in section 5.2).

23



Sections 2.1 and 2.2 furnished the basis to understand how to solve the problem to

obtain a description of the fields in two mutually interacting waveguides. We begin with

the assumption that these are not too close to each others (bc12 = bc21 = χ1 = χ2 = 0,

and mutual mode coupling coefficient k12 = k21 = k, see comment on pg. 18), and that

they have the same geometry (width, core height, cladding, etc.), i.e. are in

phase-matching condition (from eq. 2.26, △β = δ = 0). This reduces to the solution of

the coupled differential equations 2.17 and 2.18.

That is:

∂A1(z)

∂z
= ikA2(z), (2.48)

∂A2(z)

∂z
= ikA1(z) ,

where, for the sake of brevity, the change of sign on the rhs has been set by taking as

convention the forward propagating initial conditions due to initial phase change with

positive complex argument in the Euler exponent as

A1(0) = A1e
iϕ1 , A2(0) = A2e

iϕ2 . (2.49)

Then the solutions which describe the complex fields in the two waveguides at z are

A1(z) = tA1e
iϕ1 + iκA2e

iϕ2 (2.50)

A2(z) = iκA1e
iϕ1 + tA2e

iϕ2 , (2.51)

with

κ = sin(kz)eiβz , t = cos(kz)eiβz , (2.52)

the cross-coupling coefficient of eq. 2.47 and the through-coupling coefficient (obtained

from the first term of the rhs of eq. 2.28) respectively, and eiβz accounting for the phase

shift along the structure. Recalling eq. 2.36 or eq. 2.46, k = π
2Lc

, and these can be

written as

κ = sin

(
πL

2Lc

)
eiβL , t = cos

(
πL

2Lc

)
eiβL , (2.53)
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where, because of 2.45, the coupling length is

Lc =
λ

2 (neffe(λ)− neffo(λ))
, (2.54)

with λ the wavelength, L the length of the coupling section (not to be confused with the

coupling length), while neffe and neffo are the even and odd mode wavelength

dependent effective indexes respectively.

From eqs. 2.50 and 2.51 it follows

|A1(z)|2 = |t|2|A1|2 + |κ|2|A2|2 + 2|κ||t||A1||A2| sin∆ϕ , (2.55)

|A2(z)|2 = |κ|2|A1|2 + |t|2|A2|2 − 2|κ||t||A1||A2| sin∆ϕ , (2.56)

with ∆ϕ = ϕ1 − ϕ2 and where, from now on, we omit the coupling coefficients

dependence in z. Power conservation condition for the lossless system follows

straightforwardly from 2.53, or 2.55 and 2.56, as t2 + κ2 = 1.

If we set A2 = 0 we obtain the well known power exchange expressions for the single

sided co-directional coupler made of two equal and synchronous waveguides

|A1(z)|2 = cos2(kz)|A1|2 = |t|2|A1|2 , (2.57)

|A2(z)|2 = sin2(kz)|A1|2 = |κ|2|A1|2 . (2.58)

The typical Mach-Zhender phase switching method is obtained when we couple two

signals with same amplitude (A1 = A2 = A), then one could use phase modulation for

switching the power into one or the other waveguide.

In fact, for this special case, 2.55 and 2.56 become

|A1(z)|2 = |A|2 (1 + 2 |κ||t| sin∆ϕ) , (2.59)

|A2(z)|2 = |A|2 (1− 2 |κ||t| sin∆ϕ) , (2.60)

which tell us that, while there would be no net power exchange between the two

waveguides for no de-phasing (∆ϕ = 0), for a de-phasing of an integer multiple of
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Figure 11: Single sided co-directional coupling for two signals with same amplitude and ∆ϕ = π
2 phase

difference (red solid line: A1(z), blue dotted-dashed line: A2(z)), normalized intensity: input powers set

to unity, normalized distance kz (where k = π
2Lc

is the cross-coupling).

∆ϕ = π
2
all the power couples forth and back among the two waveguides, as shown in

fig. 11.

From now on, for ’normalized intensity’ it is meant that per convention the powers of

the input signals are set to unity and the ordinate axis of the graphs will be rescaled to

the sum of the input intensities (e.g. here |Aj(z)|2/(|A1(0)|2 + |A2(0)|2), with (j=1,2)

and |A1(0)|2 = |A2(0)|2 = 1). For ’normalized distance’ we set kz, with k = π
2Lc

, which

makes the graphs independent from the coupling strengths.

This is a different situation than the classical case of eqs. 2.57 and 2.58 where the power

transfer occurs always, independently from any phase condition. If we chose the length

of the coupling section L such that kL = π
4
(i.e., according to 2.46, half the coupling

length), then we have built a very simple phase switching device: a de-phasing of ±π
2

will transfer all the power into one or the other waveguide, as shown in fig. 12.

Figure 12: Special case of fig. 10 for kz = π
4 and ∆ϕ = ±π

2 de-phasing. Light is coupled into one or

another waveguide.
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2.4 CMT and phase switching for the double sided symmetric

co-directional coupler

However, eqs. 2.48 don’t describe the situation we have in fig. 13, where three

waveguides have to be considered. We can not naively add twice the field of eq. 2.50 or

2.51 into the middle waveguide, the Drop port, and take the modulus square to obtain

the intensity.

Figure 13: Double sided (ds-) symmetric co-directional coupling

To write the set of differential equations that are more adequate for the couplings of the

system of fig. 13 consider the case of a Drop signal AD excited by the fields in the upper

and lower waveguides with amplitudes A1 and A2. Then, if we assume that the direct

coupling between the two outer waveguides can be neglected, the set of three coupled

differential equations which describe the system of fig. 13 is given by

∂A1(z)

∂z
= ikAD(z) , (2.61)

∂AD(z)

∂z
= ikA1(z) + ikA2(z) ,

∂A2(z)

∂z
= ikAD(z) .

We impose the initial conditions

A1(0) = A1e
iϕ1 , (2.62)

AD(0) = ADe
iϕD , (2.63)

A2(0) = A2e
iϕ2 , (2.64)

where ϕ1, ϕ1 and ϕD express the phase of A1, A2 and AD respectively.
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The solutions of the system 2.61 then are

A1(z) = t′A1e
iϕ1 + iκDADe

iϕD − κ′A2e
iϕ2 , (2.65)

AD(z) = iκDA1e
iϕ1 + tDADe

iϕD + iκDA2e
iϕ2 , (2.66)

A2(z) = −κ′A1e
iϕ1 + iκDADe

iϕD + t′A2e
iϕ2 , (2.67)

with

t′ = cos2
(
kz√
2

)
eiβz, tD = cos(

√
2kz) eiβz , (2.68)

κ′ = sin2

(
kz√
2

)
eiβz, κD =

1√
2
sin(
√
2kz) eiβz . (2.69)

To keep things simple lets consider the special case where AD = 0. Then the intensities

are given by:

|A1(z)|2 = |t′|2|A1|2 + |κ′|2|A2|2 − 2|κ′||t′||A1||A2| cos∆ϕ , (2.70)

|AD(z)|2 = |κD|2
(
|A1|2 + |A2|2 + 2|A1||A2| cos∆ϕ

)
, (2.71)

|A2(z)|2 = |κ′|2|A1|2 + |t′|2|A2|2 − 2|κ′||t′||A1||A2| cos∆ϕ . (2.72)

The sum of 2.70, 2.71, and 2.72 results in the total input power |A1(z)|2 + |A2(z)|2,

always. If the system is lossless power conservation implies |k′|2 + |kD|2 + |t′|2 = 1. The

term 1√
2
in front of the second eq. of 2.69 indicates equal (per unit power) contribution

from the two external waveguides to the middle one and is a consequence of the

symmetry of the system (symmetric coupling and geometry). We can consider the

separate contribution amplitudes to the Drop port as:

AD1(z) = κD|A1(z)|eiϕ1 , (2.73)

AD2(z) = κD|A2(z)|eiϕ2 , (2.74)

such that

|AD(z)|2 = | |AD1(z)|eiϕ1 + |AD2(z)|eiϕ2 |2 . (2.75)
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Despite not being directly coupled to each others, from 2.70 and 2.72, we see that the

field in the first (second) waveguide depends also from the initial signal in the second

(first) one. This expresses the effects of crosstalk between the outer waveguides through

the intermediate Drop port (crossing of arrows through the Drop port shown in fig.13).

This can be seen by injecting a signal only in one of the ports, say in A1 and not in A2,

which reduces 2.70, 2.71, and 2.72, by using eqs. 2.68 and 2.69, to

|A1(z)|2 = |A1|2 cos4(
kz√
2
) , (2.76)

|AD(z)|2 =
|A1|2

2
sin2(
√
2kz) , (2.77)

|A2(z)|2 = |A1|2 sin4(
kz√
2
) . (2.78)

Figure 14: Power transfer in the waveguides of the ds-coupler for one input signal only (eqs. 2.70, 2.71

and 2.72, with initial conditions A1 = 1, A2 = 0). Red dashed line: amplitude A1(kz); blue dotted-dashed

line: amplitude A2(kz); black solid line: amplitude AD(kz).

Eqs. 2.76, 2.77 and 2.78 are traced in fig. 14 in normalized intensity. These show that

the signal from the upper (lower) waveguide is never completely recovered in the Drop

port because part of it re-couples towards the lower (upper) waveguide. The Drop

behaves like a ’power transiting’ port and the amount of light that crosses the structure

can be considered as a measure of crosstalk. However, we will see that this interpretation

must be taken with caution. In fact, things change in this respect if we consider the case

where we have the same input signals in amplitude and phase (A1 = A2 = A).
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Figure 15: Power transfer in the waveguides of the ds-coupler for two equal input signals (eqs. 2.70, 2.71

and 2.72, with initial conditions A1 = 1, A2 = 1, ∆ϕ = (0, π
4 ,

3
4π, π) in (a), (b), (c), (d) respectively).

Magenta dotted-dashed line: amplitude A1(kz) and A2(kz); black solid line: amplitude AD(kz).

Eqs.2.70, 2.71 and 2.72 then simplify to:

|A1(z)|2 = |A2(z)|2 = |A|2
(
1− 1

2
sin2(
√
2kz)(1 + cos∆ϕ)

)
,

|AD(z)|2 = |A|2(1 + cos∆ϕ) sin2(
√
2kz) . (2.79)

The case for in phase signals (∆ϕ = 0) is shown in normalized intensity in fig. 15(a). In

this case, the energy transfer between the Drop and external ports occurs harmonically

and there can be 100% power transfer. When two in phase signals with equal amplitude

are injected into the double sided co-directional coupler system (ds-coupler) of fig. 13,

and if one chooses the length L of the coupling section such that

L =
π

2
√
2 k

=
Lc√
2
, (2.80)

with the last passage because of 2.46, then the power is completely transferred into the

Drop port and none remains in the outer waveguides. This is contrary to the previous

case of the single input signal where always some power was coupled towards the Drop

and the opposite waveguide, independently from the length of the coupling section
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chosen. Fig. 15(b) and 15(c) shows the case for a phase difference of ∆ϕ = π
4
and

∆ϕ = 3
4
π: the power in the outer waveguides 1 and 2 (magenta dotted-dashed line)

oscillates around the initial input value but is never turned off, while the Drop (black

solid line) turns on or off according the propagation length like in the previous case, but

reaches less intensity. If instead a phase difference of ∆ϕ = π is applied (fig. 15(d)) the

power in the Drop port will be switched off always (and not necessarily maintaining the

same coupling section length 2.80) and |A1|2 = |A2|2 = |A|2, i.e. the light in the two

coupling waveguides doesn’t couple at all and no power goes into the Drop port.

Therefore, a particularly interesting situation occurs when we build a ds-coupler with

coupling section length 2.80 (kz = 1√
2
π
2
in the graphs) and have two balanced input

signals. Because in this case we can use it as a phase switching device: for a ∆ϕ = 0 all

the power goes into the drop and none into waveguides 1 and 2 (fig. 16), while for

∆ϕ = π all the power will go through waveguides 1 and 2 and nothing will couple into

the Drop port (fig. 17).

Figure 16: The ds-coupler switch in phase: all the power goes into the Drop port.

Figure 17: The ds-coupler switch out of phase: no power couples into the Drop port.

Under these circumstance the system behaves as if the crosstalk between waveguide 1

and 2 has been suppressed since, independently from the coupling strength, it is
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possible to direct from waveguide 1 (waveguide 2) all the light into the Drop port but

without observing any part of it re-coupling to waveguide 2 (waveguide 1). At first this

seems to be at odds with the previous situation of the single input case of fig. 14 where

it is impossible to observe any power in the Drop port without having some fraction of

it already coupled towards the opposite waveguide. This apparent contradiction is

explained by the fact that the signal in waveguide 1 (waveguide 2) undergoes twice a

phase change of π
2
(again, because of the π

2
phase difference of the evanescent wave) and

the net π de-phased cross coupled wave interferes destructively in waveguide 2

(waveguide 1). This interference effect leads to a mutual subtraction of the cross

coupled powers (graphically: the transformation of the dashed lines of fig. 14 into those

of fig. 15). Therefore, such very simple device as a ds-coupler could possibly serve as

zero-crosstalk and ultra-fast photonic switch.

For completeness we mention also the case where the light is injected only in the Drop

waveguide, i.e. where in the initial conditions we set

A1(0) = 0, AD(0) = AD, A2(0) = 0 , (2.81)

that, from eqs. 2.65, 2.66 and 2.67, lead to

A1(z) = A2(z) =
iAD sin(

√
2kz)√

2
eiβz , (2.82)

AD(z) = AD cos(
√
2kz) eiβz , (2.83)

whereby of course

|A1(z)|2 = |A2(z)|2 =
|AD|2

2
sin2(
√
2kz) = |AD|2

|κD|2

2
, (2.84)

|AD(z)|2 = |AD|2 cos2(
√
2kz) = |AD|2 |tD|2 , (2.85)

shows that the power is equally distributed along the outer waveguides. Note that

imposing coupling section 2.80 leads to complete power transfer into waveguide 1 and 2,

i.e. the ds-coupler can be used as a splitter.
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Its advantage over other splitting devices, as Y-branches or MMI splitters, is that it

would be less sensitive to imbalances (and losses at the wavelength where condition 2.80

holds), its disadvantage is obviously that the equally distributed amount of power is

wavelength dependent through 2.54.
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3 Micro-Optical Racetrack Resonator Theory

3.1 Some theoretical aspects on the add-drop optical

modelling

Racetracks resonators (see fig. 18) have several advantages with respect to ring

resonators. For instance, it is easier to determine the coupling strength since it is

Figure 18: The racetrack resonator structure.

controlled by two parameters: the length L of the two straight coupling guides and their

separation gap. The CMT between two straight waveguides is more straightforward

than between a straight and a bent waveguide. Spacing tolerances are less critical for

the coupling gaps in racetracks compared to rings, because if stronger couplings are

needed only the coupling length has to be increased without decreasing the spacing

between the input guide and the resonator, which is instead more difficult to calibrate

precisely. In addition, the TE-polarization is frequently taken as a default for many

theoretical investigations and practical applications. But ring resonators work better in

TM-polarization since the coupling efficiency is higher for TM than TE-polarization due

to its lower field confinement. Therefore, racetracks are more suitable to obtain the

desired couplings in TE. The disadvantage of racetracks versus ring geometries is about

losses, since the effective length of racetracks is longer than that of rings and due to the

phase mismatch between the straight and bend component. For this reason we will also

address the issue of loss optimization. However, if very high quality factors are not

needed, this is usually not a real stumbling block.
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Let us discuss firstly what happens when the bus waveguide starts to interact with the

racetrack resonator. We will consider the waveguides in perfect phase-matching

condition (∆β = 0→ X = 0, e = d) and apply the results discussed in section 2.2.

However, according to 2.40 the propagation constant of the anti-symmetric mode of the

same order is lower than the symmetric one. Intuitively this can be explained by the

fact that the anti-symmetric wave is pushed towards the interface between the

waveguide core and the surrounding lower index cladding region. The deviation from

the mean β = βe+βo

2
is negligible for large separations, but in resonator systems where

also a slight variation of the effective index can induce resonance shifts, this effect can

become relevant especially for small gaps and induces spectral shifts of the racetrack

resonances. These are called coupling-induced resonance frequency shifts (CIFS) and can

have deleterious effects on high-order resonant filters [67].

Once the effective indexes of the even and odd modes are known they can be used to

obtain the coupling coefficients and lengths. According to 2.47, the cross- and

transmission- coupling coefficients, κ and t (those derived considering mode interference,

dimensionless and such that their modulus square represents the fraction of the coupled

power), are given by 2.53 and 2.54. In absence of losses, κ2 + t2 = c2 with c = 1 and c

the coupling loss parameter. But in general c ≤ 1 since there can be coupling losses due

to roughness at the bend-straight interfaces, due to the small power transfer asymmetry

between the odd and even modes and also due to the mode conversion losses which

however become relevant only for very small gaps (smaller than 120nm).[34]

Given the two coupling coefficients κ1, κ2, the upper and lower coupling losses c1 and c2,

the bend and straight propagation constants βb and βs, the roughness and radiation

losses α, and the racetrack’s perimeter p = 2L+ 2πR (see fig. 18), then one can

analytically model the spectral response of the racetrack using the well known relations

which connect the In, Through, Add and Drop ports, or resort to the more general

35



transfer matrix analysis (see chapter 4), obtaining:

T =
|Through|2

|In|2
= c21

t21 + c21c
2
2t

2
2e

−α4πR− 2c1c2t1t2 e
−α2πR cos(βb2πR + βs2L)

1 + c21c
2
2t

2
1t

2
2e

−α4πR− 2c1c2t1t2 e−α2πR cos(βb2πR + βs2L)
, (3.1)

D =
|Drop|2

|In|2
=

c21c
2
2 κ

2
1κ

2
2e

−α2πR

1 + c21c
2
2t

2
1t

2
2e

−α4πR − 2c1c2t1t2 e−α2πR cos(βb2πR + βs2L)
, (3.2)

where T and D are the optical mode intensity at the Through and Drop ports

respectively.

Notice the fourth power of c in eq. 3.2, which means that especially in the Drop a small

change in the coupling losses can lead to large deviations from the idealized model.

3.2 Modelling of the straight waveguide

The dispersions of the refractive indexes of silicon and silica have been obtained at room

temperature (20◦C) by fitting the data from [68]:

n
Si
(λ) = 3.4277 +

0.1104

λ2
+

0.041

λ4
, (3.3)

n
SiO2

(λ) = 1.4213 +
0.0856

λ2
− 0.0735

λ4
, (3.4)

which at λ = 1.55µm give n
Si
= 3.4758 and n

SiO2
= 1.4442.

The stripe waveguides have been modelled with a full vectorial finite difference (FVFD)

mode solver which was developed at the Institut des Nanotechnologies de Lyon (INL)

[69]. For straight waveguides transparent boundaries conditions (TBC) were used. TBC

implement a realistic boundary that allows the wave to leave the computational region

without numerical appreciable reflections. These properties make a FVFD with TBC

most appropriate for high refractive index contrast and a small core SOI rib-waveguides.

For bend waveguides uniaxial perfectly matched layers (UPML) were used as absorbing

boundary conditions. The mode solver developed at INL uses either cartesian or

cylindrical coordinates.
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Fig. 19 reports the effective indexes for waveguide widths (wgw) of 400, 450 and 500nm

and for two core thicknesses of 200nm (top) and 220nm (bottom) in TE polarization.

Larger widths would lead to multimode guides. For wgw= 0.5µm and 220nm core,

already the second mode appears, but it is fortunately very lossy. The effective mode

dispersions can be fitted by a polynomial regression of the second order.

Figure 19: Effective index variation versus wavelength in TE polarization for strip straight waveguides

of different width and core dimensions.

The polynomial coefficients, the width and the height of the core of a stripe straight

waveguide for a wavelength range between 1250-1650nm are reported in Table 1.

3.3 Modelling of the bend waveguide

We used FVFD in cylindrical coordinates with UPML boundary conditions to model

curved waveguides. The electric and magnetic components are governed by wave

equations that are a linear system of two differential equations where the r and z
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Table 1: neffs(λ) = a+ bλ+ cλ2

Core thickness (nm) wgw (nm) a b [µm−1] c [µm−2]

500 4.1739 -1.1905 0.009671

200 450 4.2603 -1.3096 0.011578

400 4.4929 -1.6478 0.080459

500 4.1169 -1.0447 -0.026851

220 450 4.1725 -1.1171 -0.041857

400 4.3359 -1.3494 -0.012511

components of the electric and magnetic fields are coupled [70]:

r2
∂

∂r

(
1

εr

∂

∂r
(εrEr)

)
+ r

∂

∂r
Er +

2r

εr

∂

∂r
(εrEr) + r2

∂2

∂z2
Ez + (r2k2

0εr + 1)Er +

+r2
∂

∂r

(
1

εr

∂

∂z
(εrEr)

)
− r2

∂2

∂r∂z
Ez +

2r

εr

∂

∂z
(εrEz) = β2Er , (3.5)

r2εr
∂

∂r

(
1

εr

∂

∂r
Hz

)
+ r

∂

∂r
Hz + r2

∂2

∂z2
Hz + r2k2

0εrHr

−r2εr
∂

∂r

(
1

εr

∂

∂z
Hr

)
− r2

∂2

∂r∂z
Hr = β2Hz , (3.6)

where εr = εr(r, z) is the permeability, k0 =
2π
λ

the vacuum wave number, β = βb + iα

the complex propagation constant with α the radiation loss parameter, and

βb = r neffb(λ)k0 (3.7)

the real part which gives the effective index for the bend, neffb. Since losses due to

bending are negligible in high refractive index contrast bending with respect to

scattering losses due to roughnesses, we focus our attention on the real part of the

propagation constant. Note that in cylindrical coordinates the propagation constant is

dimensionless and proportional to r, and that it expresses also the azimutal mode

number for a resonant mode of a ring resonator m =
neffb(λm) 2πR

λm
at r = R (see section

3.5).

While we will take as convention throughout this work the physical curvature of a bend

the middle radius of the waveguide, an open question is the value of the optical
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Figure 20: Magnetic field and zoom onto its shifted field center (wgw=0.5 µm, R=2 µm, λ = 1.55µm).

The white straight line indicates the geometrical center of the waveguide, the cross the position of maximal

optical field intensity.

curvature radius r = R in the equation here, i.e. is it the outer, middle or inner radius

of the waveguide, or the position of maximal field intensity which should be used? The

specific choice leads to contradicting results because the radius determines not only

different magnitudes for the propagation constant, but also a different signature in the

change of the effective index between the same bend and the straight waveguide

δneff = neffb − neffs, with neffs the effective index of the straight waveguide. Does

bending cause an increase or a decrease of the effective index? We choose the outer core

radius as r as in [71]. The shift of the mode profile away from the center towards the

edge of a bent waveguide can be seen readily by conformal transformation where the

constant index profile of a curved waveguide is transformed to an exponentially

decreasing profile with increasing bend curvature of a leaky straight waveguide. Another

point of view of the same physical phenomenon at a more fundamental level is that to

invoke Fermat’s principle. Fermat’s principle states that the path of a light ray between

two points follows a stationary optical path (minimal in refractive media) with respect

to variations of the path. The bending produces a slight offset, δR, of the light ray from

the waveguide center towards the outer interface. A graphical example of this effect is

shown in fig. 20.

Therefore, the light traveling on a R + δR radius has a smaller optical path length

despite the larger physical path, due to a smaller effective index for the bend than for

39



Figure 21: Mode profiles of the first mode (Ex field, wgw= 0.5µm, λ = 1.55µm, 220nm core) for

bent waveguides of different curvature radii (from the top to the bottom: R = 1000µm, R = 1.50µm,

R = 1µm, R = 0.75µm).

the straight waveguide of similar cross-section. This implies

neffb(R + δR) ≤ neffb(R)
R

R + δR
. (3.8)

And eq. 3.8 equality must hold because we are considering the mode with the same

azimutal number (i.e. βb(R) = βb(R + δR)). Once equations 3.5 and 3.6 are solved the

shift of the maximum optical field intensity from the waveguide center can be found,

δR. This is then used to scale the propagation constant accordingly to R + δR.

Fig. 21 shows some electric field maps for the Ex component of the fundamental mode

for the almost straight (R = 1000µm) and bent waveguides with different curvature

radii of R = 1.5µm, R = 1µm and R = 0.75µm.
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Figure 22: Effective index variations due to bending compared to the straight waveguide.

The so-obtained values for the variation of the effective index due to bending are shown

in fig. 22 for different radii, waveguide widths and core thicknesses. For R < 1.5− 2µm

the fit has been truncated because the mode becomes radiative. The waveguide with

wgw=0.4µm becomes radiative for a larger curvature radius than the wgw=0.45 µm

and wgw=0.5 µm waveguides. In addition, the wgw=0.5 µm waveguide is multimode.

Therefore in the following we have chosen a wgw=0.45 µm waveguide. For future

reference Table 2 gives the parameters of a fit to δneff , with the errors on the

parameters and the root mean square (RMS) on the value of δneff .

One can see that for bending radius larger than about 5µm the effect of the curvature is

substantially negligible. For smaller radii δneff = 2− 3× 10−2, which corresponds to a

resonance wavelength shift in a micro-ring of up to a dozen nm, i.e. an entire free

spectral range (FSR).

Table 2: δneff = α− β
1+(R+γ)δ

; (λ = 1.55µm)

Core(nm) wgw(nm) α β γ δ RMS(δneff )

500 −4.6× 10−4 ± 7× 10−5 0.58± 0.27 1.20± 0.26 2.99± 0.21 7.4× 10−5

200 450 −5× 10−4 ± 6× 10−7 0.106± 1× 10−3 0.536± 7× 10−3 2.726± 5× 10−3 4.9× 10−7

400 −5× 10−4 ± 4× 10−6 0.220± 28× 10−3 1.017± 65× 10−3 3.268± 57× 10−3 4.5× 10−6

500 −3.1× 10−4 ± 3× 10−5 0.215± 0.043 0.48± 0.14 2.538± 0.21 2.1× 10−5

220 450 −5.9× 10−4 ± 2× 10−5 0.4864± 0.013 1.269± 0.13 3.363± 0.12 2.2× 10−5

400 −5.7× 10−4 ± 1.4× 10−5 0.60± 0.24 1.387± 0.19 3.595± 0.17 1.7× 10−5
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3.4 Evaluating bend losses, coupling coefficients and phase

mismatching

Bends and resonators were fabricated on SOI wafers by DUV lithography, within the

WADIMOS project. To measure the bending losses we used test structures which are

composed by 100 90◦ bends (fig. 23). An offset configuration has been tested where the

width of the straight waveguide varies between 0.38 to 0.5 µm and that of the curved

one according to its radius as given in fig. 24, in order to evaluate the radiation and

reflection effects on the losses of the bend. A selection of the bend losses measurements

(TE-mode, R = 2µm) versus the wavelength is shown in fig. 25.

Figure 23: Optical microscope image of the test device used for the losses measurements of the curved

waveguides (R = 2.35µm).

Figure 24: Type of offsets used.

The measurements, carried out at the INL laboratory, have an accuracy of about 0.01

dB/90◦. The 500 nm wide waveguide has been used as reference with respect to the 450

nm wide waveguide where the bends have offset. The offset is aimed to make negligible

the mode mismatch losses at the bends. Offset bends in the 450 nm wide waveguide

yields the smaller losses despite the smaller waveguide width: about 0.024dB/90◦

throughout all the 1.5− 1.6µm spectrum. Similar values have been found also for
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Figure 25: Bend losses versus the wavelength for different widths of the straight waveguide (bend

wgw=0.6µm, R = 2µm, TE-mode).

0.5µm widths at λ < 1.55µm, but for larger wavelengths the loss increases up to

0.06dB/90◦ at 1.61µm. This shows the relevance of the modal matching at the bends

via waveguide offset.

The mode solver is then used to calculate the even and odd modes of a system formed

by two straight coupled waveguides (waveguide coupler) and its effective indexes. From

this one obtains the difference between the effective index and the mean of the even and

odd modes in a straight waveguide for various wavelengths and coupling spacings:

△n(λ) = neff (λ)−
neffo(λ) + neffe(λ)

2
.

An illustration of such calculation is given in fig. 26 for TE polarization. The variation

is very small but sufficient for allowing a shift of the resonant wavelength of several

tenths of nm for a coupling length of 10µm. Table 3 furnishes the appropriate fitting

parameters.

From the even and odd effective indexes, the coupling length and coefficients can be

calculated with eq. 2.53. A comparison with experiments can be done by fitting the

measured throughput signal out of a racetrack resonator. Knowing the propagation

constant, the losses involved, setting the coupling loss =-0.1 dB (see the next section)
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Figure 26: Difference between the effective index and the mean of the even and odd modes in a straight

waveguide for various coupling spacings (TE-polarization).

Table 3: Even-odd mode effective index mismatch.

△n = a+ bλ+ cλ2 a b [µm−1] c [µm−2]

d=200nm -0.03547 0.052282 -0.019521

d=220nm -0.028363 0.04141 -0.01529

d=240nm -0.022467 0.032535 -0.011899

and considering symmetric coupling (κ1 = κ2 = κ), from eq. 3.1 we have the coupling

coefficient t and then, from eq. 2.54, the coupling length Lc is finally obtained. A

comparison between the modelled and experimental measured coupling lengths of a

waveguide coupler versus the wavelength for a spacing of 200 nm and 220 nm is given in

fig. 27.

Despite a general agreement, we observe a tendency of the model to overestimate the

coupling length. This can be due to a difference between the nominal and the actual

values of the waveguide width. Indeed the model results are extremely sensitive to the

waveguide width. The coupling length dependence on the wavelength can be

approximated by a polynomial regression of the second order. The coefficients of the

regression are summarized in Table 4.

.
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Figure 27: The coupling length spectral variation of twin waveguide couplers (0.5µm width) for different

spacing.

Table 4: Coupling length coefficients

Lc = a+ bλ+ cλ2 a b [µm−1] c [µm−2]

d=200nm 1116.8 -1308.3 374.62

d=220nm 1505.5 -1705.6 490.69

.

3.5 Spectral response modelling of the racetrack resonator

By using all the parameterizations reported in the previous sections and tables, we can

model the optical path in a racetrack resonator as:

popt(λ) = 2nneffs L+ 2neffb πR + (△n1 +△n2)L (3.9)

where nneffs and nneffb are the effective indexes of the straight and bent waveguide, and

△n1 and △n2 are the variation between the effective index of the straight waveguide

from the mean value of the odd and even modes in the two coupling regions of the

racetracks (fig. 18). There is no loss of generality if the optical path is expressed as a
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weighted mean of the effective indexes as

popt = neff ∗ p

with

neff =
2nneffs L+ 2neffb πR + (△n1 +△n2)L

2L+ 2πR

and p = 2L+ 2πR the resonators’s physical perimeter. The mean propagation constant

is β = k0 neff , and the still exact phase delay induced by the racetrack as a whole

△Φ = β p.

In the following we will work with these averaged quantities and represent them with

the parametrization of the previous sections. With the results of Table 1, the group

index becomes

ng(λ) = neff (λ)− λ
∂neff (λ)

∂λ
= a− cλ2 , (3.10)

which does not depend from parameter b, while the group velocity dispersion (GVD)

parameter D is

D(λ) = −λ

c

∂2neff (λ)

∂λ2
= −2λc

c
, (3.11)

with c the speed of light.

Given the propagation constant at resonance

βm = neff (λm) k0 =
2mπ

p
,

we can write

βm−1 =
2(m− 1)π

p
= βm −

2π

p
≈ βm +

∣∣∣∣∂β∂λ
∣∣∣∣
m

∆λ ,

where the right hand side is obtained as a first order Taylor series expansion of β at the

m-th resonance wavelength and ∆λ is the difference between the wavelengths of two

resonances, i.e. the FSR. Since∣∣∣∣∂β∂λ
∣∣∣∣
m

= − k0
λm

(
neff (λm) − λm

∂neff (λm)

∂λ

)
= − k0

λm

ng(λm) , (3.12)
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where 3.10 has been applied, then the FSR is

FSR(λm) =
λ2
m

ng(λm) p
. (3.13)

and

λm =
popt(λm)

m
. (3.14)

Therefore, 3.13 is an implicit function in λm through 3.9.

Table 1 and Eq. 3.11 show that the dispersion changes sign for the 200 nm versus 220

nm wide strip waveguide. Fine engineering of the core thickness might be a mean to

obtain a nearly zero GVD waveguide, but this is usually not an easy task from the

practical point of view and SOI waveguides with small cores and high refractive index

contrast may suffer of highly dispersive effects. Errors on the FSR depend both on the

effective index and the dispersion law as

△FSR = −λ2

p

△ng

n2
g

= −FSR
△ng

ng

= −FSR

(
△neff − λ△

(
dneff

dλ

))
ng

. (3.15)

In other words, in order to obtain reasonable evaluations of the FSR and resonant mode

frequencies, one must match both the effective index and the effective index dispersion,

especially when dispersive effects become consistent.

In order to assess the mode solver’s accuracy we obtained the necessary parameters

experimentally measuring the response of a set of racetrack resonators. In particular, to

establish from the measurement data the dispersion law of Table 1 we proceeded as

follows. First we took two resonant modes λm and λn and measured the FSR between

[λm − λm+1] and [λn − λn+1]. Trough eq. 3.10 and eq. 3.13 a system of two equations

and two unknowns follows

a− cλ2
m =

λ2
m

FSR(λm) p
a− cλ2

n =
λ2
n

FSR(λn) p
(3.16)

which yields the experimental values of parameters a and c to be compared with those

of Table 1. Then, in order to obtain the third parameter, one measures a resonant mode
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at some other wavelength λl, inserts a and c into the optical path of equation 3.14

through eq. 3.9 and solves for b

b =
m− δneff 2πR/λl − (△n1 +△n2)L/λl

p
− cλl −

a

λl

. (3.17)

Here δneff , △n1 and △n2 are still obtained by the parameters of Table 2 and 4, but the

relative error on these can be considered negligible compared to that on the effective

index of the straight waveguide. The last free parameter left is the resonant mode

number m, which can be only an integer number and is found by matching the effective

index dispersions obtained by the experimental a, b, c values and by the a, b and c

values reported in Table 1. It is assumed that it is the integer which best matches the

theoretical curve of Table 1 through 3.17. An assumption that can be verified by

comparing the spectral response associated to the so obtained dispersion law. And from

this the accuracy of the mode solver effective index functions versus the experimental

curve can be assessed.

Fig. 28 left shows an example of a measured through and drop port signals of a

racetrack resonator with L = 10µm, wgw= 0.5µm, R = 2µm, gap= 0.2µm, and

core=220nm. Fig. 28 right shows the analytical spectrum calculated from the

experimentally obtained dispersion law (we obtain: a = 3.7123, b = −0.8604µm−1,

c = −0.0155µm−2). We note that the experimental effective index function applied to

the analytical model reproduces the racetrack spectrum.

It must be noted that, while the precise knowledge of dispersion law determines the

FSR and the mode resonance frequencies, it still does not determine the extinction rates

of the Through and Drop ports, which depend also on the coupling loss. The latter is a

quite difficult parameter to be directly measured. In principle it could be inferred from

eqs. 3.1 and 3.2 by measuring the slight shift it produces in the maximal transmission of

the Drop signal. In practice this implies a precise normalization of the drop signal

intensity which is usually affected by unbalance in the Y-splitter or MMI-component

used (fig. 23). Interestingly however, once the dispersion law is obtained with the above
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Figure 28: The racetrack’s measured spectrum (left) and its spectrum obtained from the experimentally

deduced dispersion law (right).

Figure 29: The racetrack’s spectrum obtained from the mode solver parameters.

procedure, the fine tuning of the coupling loss parameter in the analytical model to

reproduce also the experimentally measured extinctions, can nevertheless furnish a first

estimate. For the specific case here reported we obtain a coupling loss of -0.1 dB.

Fig. 29 shows the spectrum obtained from the parameters furnished by the mode solver

(a = 4.1169, b = −1.0447µm−1, c = −0.026851µm−2). The difference is not negligible,

a certain discrepancy is visible, especially in the FSR which results 3nm smaller than

the observed one. On one side this shows how the exact determination of the mode

resonances and its FSR is very sensitive to the evaluation of the precise dispersion law.

The dispersion law should be determined with a precision better than 1% which is out

of reach of the presently available mode solver softwares.

On the other side, fig. 30 shows that the difference between the experimentally deduced

effective index law and that predicted by computational means alone are quite similar

and differ in the 1.5− 1.6µm in the worst case only by 2%. We consider this a fairly

49



Figure 30: Effective index difference between the experimental and mode solver model.

good accuracy. We compared our FVFD mode solver with others (see [72]) and

obtained the same results when averaging the refractive index at the boundaries of the

waveguide in order to overcome the strong discontinuity of the first derivative of the

permittivity at the boundaries. The only difference with the other methods is that it is

possible to perform the modelling without averaging of the refractive index (the finite

difference scheme is applied to the first derivative of the permittivity times the field, as

described in eq. 3.5 and 3.6), while the dispersion law of the materials is included in the

calculation. It is much more complicate with the 3D finite difference time domain

(FDTD) algorithms (besides requiring much more computing power). Also with finite

element method mode solvers it is not possible to perform the modelling without

averaging. The difference must also be searched in the fabrication tolerances. Especially

geometrical properties like small deviations from the nominal waveguide widths,

unperfect sidewall surface verticality of the waveguides can induce unpredictable

effective index variations which make the precise FSR and resonant mode wavelength

control still a difficult task.

Finally, we would like to illustrate how it is possible to obtain experimentally the

coupling factors and the total loss of the racetrack only by measuring the contrasts of

the Through and Drop signals. From eq. 3.1 and 3.2 the maximum and minimum of the
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Through and Drop functions are

Tmax = c21

(
t1 + c1c2t2 e

−α2πR
)2

(1 + c1c2t1t2 e−α2πR)2
;

Tmin = c21

(
t1 − c1c2t2 e

−α2πR
)2

(1− c1c2t1t2 e−α2πR)2
, (3.18)

Dmax =
c21c

2
2 κ

2
1κ

2
2e

−α2πR

(1− c1c2t1t2 e−α2πR)2
;

Dmin =
c21c

2
2 κ

2
1κ

2
2e

−α2πR

(1 + c1c2t1t2 e−α2πR)2
. (3.19)

If we assume symmetric coupling, the coupling factor and losses are equal, i.e.

c1 = c2 = c and κ1 = κ2 = κ. Then we can define the contrast on the Drop signal as

CD =
Dmax

Dmin

=

(
1 + c2t2e−α2πR

)2
(1− c2t2 e−α2πR)2

. (3.20)

Inversion of eq. 3.20 gives

A =

√
CD − 1√
CD + 1

= c2t2 e−α2πR . (3.21)

Proceeding in the same manner with the contrast on the Through signal and using 3.20,

one obtains

CT =
Tmax

Tmin

=

(
1 + c2e−α2πR

)2
(1− c2 e−α2πR)2

1

CD

, (3.22)

which implies that

B =

√
CDCT − 1√
CDCT + 1

= c2 e−α2πR , (3.23)

with B a parameter which expresses in pure terms of signal contrasts the total loss

given by the sum of the coupling and bent losses. And from eq. 3.21 and 3.23 the

contrasts furnish also the information on the coupling coefficients as

t2 =
A

B
. (3.24)

To compare the effectiveness of this method to the mode solving approach we measured

the contrasts of the Through and Drop in the spectral response of fig. 28 left and

obtained the values reported in Table 5.
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Table 5: Through coupling coefficients obtained from mode contrasts.

t from contrasts (±3%) t from mode solver

0.927 0.907

0.908 0.890

0.892 0.869

0.872 0.849

0.862 0.824

Within an error of few percent (the fluctuation associated with the measurement error

on the contrasts caused by Fabry-Perot noise and other uncertainties) there is a

substantial agreement between the two methods. This approach which determines

quantitatively the coupling coefficients from the extremal values of the resonant modes

by applying eqs. 3.21, 3.23 and 3.24 is simple and has better physical foundations than

mere parameter adjustments which fit the simulated versus real spectrum, and can be

useful as an experimental validation of mode solving and 3D-FDTD simulations.

We can summarize the conclusions to this section as follows. We analyzed a set of

crucial optical and physical properties of racetrack resonators and their constituent

waveguides. Assisted by a FVFD mode solver with TBC or UPML boundaries we

modelled the straight and curved waveguides, the bend losses, the coupling coefficients

and, considering also small effects like phase mismatch, suggested that bends with

2− 3µm radius with single-mode waveguides of 0.45µm widths are a good compromise

between the reduction of the radiation losses in the bend and small footprint of the

racetrack resonator. Moreover, through experimental characterization of actual devices

we could compare the quality of our model and establish accuracies of about 1-2 % in

the effective index modelling. And yet this is still not enough to determine optical

properties like the FSR and the precise determination of resonant mode wavelengths

with a nm precision. We concluded that, at the present, discrepancies should be

ascribed to fabrication tolerances than to inadequacies of the theoretical models.

Finally we showed that it is possible to determine the coupling coefficients by measuring
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the spectral contrasts of a resonator. Other optimizations can of course be pursued (e.g.

the modelling of the coupling loss, of the roughness losses or of the asymmetric coupling

[73]). However, we believe that the present work summarizes and outlines the main

aspects necessary to pave the way to further understanding, control and realization of

ultra-compact photonic devices based on small resonators.

53



4 The Transfer Matrix Method

Nowadays several analytic approaches exist to model the propagation of EM wavefronts

and/or the parameters characterizing a photonic structure, like FDTD, beam

propagation methods, finite element and finite difference methods, etc. Each of these

has pros and cons. For instance FDTD is the best option in order to achieve the most

realistic and reliable simulation results and is used as a numeric validation tool before

the modeled device is finally sent to fabrication. However, the big disadvantage of

FDTD techniques is its slow numerical speed, especially when it computes three

dimensional structures. A single simulation can take days, sometimes weeks. On the

other side, the transfer matrix approach has been shown to be a reliable matrix analytic

tool for modeling optical micro-resonators [59, 40, 60, 61, 45, 24] very quickly (usually

less than a minute computing time). Its weak point is that one must already know a

priori the parameters characterizing the device (typically the dispersion laws and the

coupling constants), and that it furnishes only the final output values of the add-drop

resonator structure but doesn’t tell nothing about the internal propagation of the EM

field inside the device. Nevertheless, thanks to CMT and the details we studied in the

preceding section these parameters can be calculated. The next subsections will show

how the TMM works, first beginning with a simple introductory example, and then by

exposing the detailed calculations.

4.1 A simple introductory approach

Let us outline a simple analytic technique to obtain the elementary transfer matrix

between a coupling waveguide and a ring resonator. Here we proceed by reasoning only

in terms of power conservation and apply some simple algebraic rules. Standard CMT

texts derive it usually through much more elaborate and complicate calculations,

resorting to the concepts sketched in section 2. For completeness we will do this too in

section 7. However, the following simplified approach wants to be an example to show
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that sometimes applying power conservation principles is the most direct route to

obtain some coupling relations, and which we will use in particular when more complex

optical designs, like in the case of three waveguide systems, will come into the play.

Figure 31: The ring resonator.

Let us consider the coupling between a single mode waveguide and a ring resonator (fig.

31), where A1, A2, B1 and B2 are complex mode amplitudes. We first consider a

coupling section L = 0, which is the typical approximation for ring resonators. The

coupling between the bus waveguide and the ring can be seen as a four port network

where the input fields (A1, A2) are related to the output fields (B1, B2) by a 2x2

complex coupling matrix M, such as

 B1

B2

 = M

 A1

A2

 =

 κ11 κ12

κ21 κ22

 A1

A2

 , (4.1)

where κ12 and κ21 are the cross coupling coefficients and κ11 and κ22 are the

transmission (or ’straight-through’) coupling coefficients.

If the total input and output modal powers (∼ the squared normalized magnitude of the

complex amplitudes) must be the same, then the inner product of every field vector,

<X,X>= XT ·X∗, must be invariant under M as

<A,A>=<B,B>=<MA,MA> . (4.2)

Eq. 4.2 shows that M is a unitary matrix, i.e. M† ·M = I and | detM| = 1.

On the other side, the transmitted and cross-coupling power coefficients are given
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respectively by

PT =

(
|B1|2

|A1|2

)
A2=0

=

(
|B2|2

|A2|2

)
A1=0

= |κ11|2 = |κ22|2 ≡ |t|2 , (4.3)

and

PC=

(
|B1|2

|A2|2

)
A1=0

=

(
|B2|2

|A1|2

)
A2=0

= |κ12|2 = |κ21|2 ≡ |κ|2 , (4.4)

and, if there are no losses in the coupling region, it follows immediately

|t|2 + |κ|2 = 1 . (4.5)

Eqs. 4.2 and 4.5 represent the energy conservation (or equivalently, the time reversal)

for passive devices. In mathematical terms they represent the well known

diffeomorphism between the special unitary group SU2 (the 2× 2 unitary and

unimodular matrixes with detM = 1) and the points of the 3-dimensional unit sphere

S3 in R4. A general matrix in SU2(C) takes the form

M =

 t −κ∗

κ t∗

 . (4.6)

For self-coupling there is no phase change. For cross-coupling a π phase change occurs

(evanescent waves have always a π
2
phase difference with respect to the waveguide core

field phase), then t = t∗ and κ = ik with k real, and 4.6 becomes

M =

 t ik

ik t

 , (4.7)

which fulfills the requirement that in a reciprocal network (losses independent from

direction of propagation) the coupling matrix is symmetric. Matrix 4.7 is the basic

analytic building block, together with the propagation matrixes which will be discussed

in the next section, from which the light propagation in systems of resonators can be

calculated.
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4.2 TMM for racetracks

In the following we will assume that eq. 4.5 holds because it represents the ideal

reference case. But a notice of care is necessary nevertheless. Coupling losses arise at

each resonator and are difficult to estimate since they depend strongly from the type

and quality of technology employed. They are usually neglected in a theoretical

discussion because they are relatively small for a single resonator, but might become

relevant for several ones as in a SCISSOR. In addition, it has been also shown that a

particular case where eq. 4.5 is not valid occurs when the air-gap between the bus

waveguide and the ring becomes very narrow, less than 120 nm for a 220x530 nm SOI

waveguide, due to mode conversion losses [34]. Therefore, care must be taken when

working with many resonators and small gaps. For this purpose we introduce coupling

losses analytically by reformulating eq. 4.5 through eq. 4.7 as

detM = t2 + k2 = c2 ≤ 1 , (4.8)

where c represents the coupling loss parameter. Note that for a system of n cascaded

equal resonators the power lost due to coupling losses, for instance along the Through

port waveguide, scales as 1− c2n.

Figure 32: The racetrack resonator.

Now, for racetrack resonators (fig. 32), the coupling length L is finite. Then, according

to 4.1 and 4.7, we write  B1

B2

 =

 t ik

ik t

 A1

A2

 eiβL , (4.9)
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where β = 2π
λ
neff is the real part of the propagation constant in the straight section,

and neff the effective index of the guided mode. In eq. 4.9, the phase delay due to

propagation in the straight section is taken into account by the exponential function.

For a generic matrix A =

 a b

c d

 the following relation holds

 X ′

Y ′

 = A

 X

Y

 ⇒

 Y

Y ′

 =
1

b

 −a 1

− detA d

 X

X ′

 . (4.10)

Then, by using eq. 4.8, 4.9 and 4.10, the coupling matrix K1 which relates (A1, B1) to

(A2, B2) (fig. 32) is

 A2

B2

 = K1

 A1

B1

 =
1

ik

 −t e−iβL

−c2 eiβL t

 A1

B1

 . (4.11)

Considering losses and phase shifts, the (forward and backwards) internal propagation

matrix P for the racetrack is

 B3

A3

 = P

 A2

B2

 =

 0 a eiβπR

1
a
e−iβπR 0

 A2

B2

 , (4.12)

where a = e−απR is the half round trip loss factor, α the total loss per unit length, and

R the curvature radius. Note that the direction of propagation of the traveling wave in

the resonator and in the coupling should be considered carefully as done in eq. 4.12.

The coupling matrix for (B3, A3)→ (B4, A4) is obtained in the same way as eq. 4.11.

For asymmetric coupling two different coupling matrixes K1 and K2 should be used.

For some applications it might be advantageous to choose them independently (e.g.

[73, 25]). Therefore, the total transfer matrix T for the single racetrack of fig. 32 is

 B4

A4

 = T

 A1

B1

 = K2 ·P ·K1

 A1

B1

 . (4.13)
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Figure 33: The racetrack CROW.

It is now possible to extend the transfer matrix model to a CROW structure, as shown

in fig. 33. In general racetracks can be assembled in a matrix such as in fig. 33. For this

reason, let us consider a matrix of resonators, each one is characterized by the four port

fields Aj
l and Bj

l , with (l = 1..m the resonator row index and j = 1..n the resonator

column index). Each racetrack resonator has its own upper and lower coupling

constants, i.e. for every i-th row and j-th column there is a coupling matrix Kij.

Analogously there is an internal propagation matrix Pij, and a length and radius

parameter Lij and Rij respectively.

The total transfer matrix T 1 for a CROW, is a generalization of eq. 4.13 as follows

 A1
m

B1
m

 = T 1

 A1
1

B1
1

 = K
m
2
1 ·

m/2−1∏
i=1

Pi1 ·Ki1

 A1
1

B1
1

 , (4.14)

with (m = 4, 6, 8, ...). Please note that the transfer matrix formalism reflects the

direction of the input and output signals. Depending whether the number of rows is odd

or even, the output signal in resonance with the CROW will travel in the opposite or in

the same direction of the input signal, respectively. The field vector elements of eq. 4.13

and 4.14 are exchanged accordingly (the former is written according to fig. 32 the latter

and following equations to fig. 33).
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Transfer matrixes Kij, T and T 1 are involutions, i.e. they are equivalent to their own

inverse and detKij = detP = −1, which implies detT = det T 1 = −1, always.

Therefore, once the fields A1
1 at port In and A1

m at port Add are defined, it is then

straightforward, by applying eq. 4.10, to obtain the single resonator’s behavior at the

Through and Drop ports B1
1 and B1

m as B1
1

B1
m

 =
1

T12

 −T11 1

1 T22

 A1
1

A1
m

 , (4.15)

with Tij, (i, j = 1, 2) the elements of the transfer matrix T 1. For most applications A1
m

is set to zero, but this is not necessary. Eq. 4.15 holds provided that the signals are not

contra-directional.

Figure 34: The dc-SCISSOR.

Let us consider a double channel SCISSOR (dc-SCISSOR), as shown in fig. 34.

Proceeding as have been done in 4.10, the relation (A1
1, A

1
4)→ (B1

1, B
1
4) can be obtained

from 4.13 (extending the indexing accordingly). This leads to a ’scattering matrix’ S11

as  B1
1

B1
4

 = S11

 A1
1

A1
4

 =
1

T22

 −T21 1

−1 T12

 A1
1

A1
4

 . (4.16)

We can introduce an external propagation matrix Qj j+1 connecting the j-th to j+1-th

column resonator, which in the case of the first and second racetrack is defined by

 A2
1

A2
4

 = Q12

 B1
1

B1
4

 =

 eiβD
12

0

0 e−iβD12

 B1
1

B1
4

 , (4.17)
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where D12 is the distance separating the resonator’s first from second straight arm, as

shown in fig. 34.

Applying another scattering matrix for the second resonator S12 and putting together

eq. 4.16 and 4.17 gives  B2
1

B2
4

 = S12 ·Q12 · S11

 A1
1

A1
4

 . (4.18)

The complete description of the single SCISSOR structure through the scattering

matrix S1
x is now straightforward

 Bn
1

Bn
4

 = S1
x

 A1
1

A1
4

 = S1n ·
n−1∏
j=1

Qj j+1 · S1j

 A1
1

A1
4

 ;n ≥ 2 . (4.19)

Considering that detS1j = detQj j+1 = 1 implies detS1
x = 1, the analogue of eq. 4.15

for the SCISSOR is then

 Bn
1

A1
4

 =
1

S22

 1 S12

−S21 1

 A1
1

Bn
4

 , (4.20)

with Sij, (i, j = 1, 2) the elements of the scattering matrix S1
x . For the single resonator

cell it reduces to eq. 4.15 showing that T22 = −T11.

Finally we can extend this approach to serially-parallel cascaded resonators, or the

twisted dc-SCISSOR, as shown in fig. 35.

Again, applying eq. 4.10 to the column transfer matrix of each CROW T j, (j = 1, .., n),

we obtain the scattering matrix Sj
y which relates fields (Aj

1, A
j
m) to (Bj

1, B
j
m), and going

through the same steps of eq. 4.16 to 4.19 leads to

 Bn
1

Bn
m

 = Sn
y ·

n−1∏
j=1

Qj j+1 · S j
y

 A1
1

A1
m

 ; n ≥ 2 , (4.21)
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Figure 35: The twisted dc-SCISSOR.

which is a linear system in two unknowns and two known variables, therefore resolvable.

Note that, it is also possible to think in terms of power conservation. If we consider a

generic device, not necessarily a single resonator, but any possible SCISSOR (or

CROW) as a black box network with an Input, a Through, a Drop and an Add port, it

must hold that the loss is given by

Loss = |AIn|2 − |AD|2 − |ATh|2 = IIn − ID − ITh , (4.22)

where each element refers to the power measured in the corresponding port. From now

on we will label the In, Through, Drop and Add ports amplitudes and intensities as

AIn, ATh, AD, AAd and IIn, ITh, ID, IAd respectively.

We can express this with eq. 4.20 (or eq. 4.15) in terms of the scattering (or transfer)

matrix elements, and obtain

Loss
S
=

(
1−

∣∣∣∣S21

S22

∣∣∣∣2 − ∣∣∣∣ 1

S22

∣∣∣∣2
)
∗ |A1

1|2 , (4.23)

for the SCISSOR, and

Loss
C
=

(
1−

∣∣∣∣ 1

T12

∣∣∣∣2 − ∣∣∣∣T11

T12

∣∣∣∣2
)
∗ |A1

1|2 , (4.24)

for the CROW. Tough the information on the phase are lost, there can be situations

where this approach is useful.
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4.3 Examples of TMM simulations and fabrication errors

analysis

At this point we had sufficient data and knowledge of the analytical theory to write a

simulation software code to analyze the resonant structures spectral behavior (we

implemented it as a Matlab code). As an example we model a SCISSOR based on the

SOI waveguides discussed in chapter 3 (220nm core thickness, 0.5 µm width, 2µm and

0.75µm buffer and SiO2 top cladding thicknesses, respectively) and made of equal

racetrack resonators (L = 10µm, R = 3.25µm, and 0.024 dB/90◦ bend loss). The

spacing D between the resonators is fixed to obtain coherent superposition. Its length

can be calculated as follows. The resonant wavelength of the m-th resonator mode is

λm = neff
2L+ 2πR

m
, (4.25)

and the phase shifts introduced by the resonators and by their separation at some

wavelength λ are, respectively,

ΦR =
2π

λ
neffπR ; ΦB =

2π

λ
neff (2L+ 2D + πR) . (4.26)

At resonance (λ = λm), the phase difference must be

∆Φ = ΦB − ΦR =
2π

λm

neff (2L+ 2D) = 2π n, (4.27)

with n ≥ 1 an integer multiple. From this and eq. 4.25 the coherence condition fixes the

length D as

D = L
( n

m
− 1
)
+

n

m
πR (4.28)

where the simplest case with n = m (i.e., the Free Spectral Range (FSR) of the

resonator and Bragg modes is set to be identical) leads to an inter-resonator distance

D = πR independent from the racetrack length L.

Now we can build analytically the resonator sequences. Since we are considering all

resonators equal we will drop the indices in the formalism. For example, for a single row

of racetrack SCISSOR, one must use the matrix T = K ·P ·K of the first resonator cell
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in eq. 4.13 (or T 1 in eq. 4.14 with m=4) with K and P given in eq. 4.11 and 4.12

respectively. T gives the spectral output of the single resonator via eq. 4.15. Then,

from the elements of T, the scattering matrix S (eq. 4.16) is obtained. The external

propagation matrix Q is given by eq. 4.17, and the total scattering matrix S1
x by 4.19

with n=2, 4, 8 for the 2, 4, 8 element SCISSOR, respectively. Finally, the Through and

Drop port outputs are obtained by eq. 4.20. Whereas for the CROW structure one

proceeds in a similar way but by applying eq. 4.14 only and with m = 4, 6, 8, 10 for the

case of the structures of 1,2,4,8 cascaded resonators respectively.

In principle this should be sufficient to simulate the desired spectrum. There is however

a practical drawback. Devices which must fulfill a coherence condition are highly

sensitive to the statistical disorder induced by the technological process in use.

Experimentally, fabrication tolerances can have important repercussions on the

performance of the structure[29]. Etching and photoresist exposure are the main

photolithographic processes which contribute to random statistical disorder at the

nanometer scale. At a scale of about 5nm the SCISSOR bends, the waveguide width,

the gap spacings, and other parameters are affected by random fluctuations caused by

these fabrication imperfections. This implies that the optical paths of the resonators in

a SCISSOR, as also its mutual inter-resonator distances, are slightly randomized with

respect to the nominal parameters. For our applications of interest this has important

consequences. At present, this spectrum impairment sets the main practical problems,

which however will possibly be solved or mitigated with next generation lithographic

technologies.

To have a measure of the spectral impairment which might occur due to fabrication

errors, we assume a ±5nm random shift in the inter-resonator distance D from the ideal

value of eq. 4.28 and on the curvature radius R. Fig. 36 (left) shows the ideal case for

the SCISSOR with 1,2,4 and 8 racetracks (blue, green, brown, and red lines

respectively), and the same structure simulated again introducing a ±5nm uniform
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random fluctuation (fig. 36 right). Independently from the number of resonators

involved the FSR remains the same but it is possible to choose different finesse

(FSR/∆λ). Note also how on resonance light is recovered in the 8 racetrack SCISSOR

versus the single resonator.

Figure 36: The Drop port signal of an ideal 1× (1, 2, 4, 8) SCISSOR (left) and the same with a ±5nm

randomization of the separation distances and curvature radii.

Characteristic for the dc-SCISSOR structure is its flat box spectrum increase in spectral

width with the increases of the number of resonators. As we will see later, this is why

dc-SCISSOR structures are particularly useful for band routing applications. Longer

chains of coupled resonators produce resonant modes with larger full width at half

maximum (FWHM), i.e. a response where the modes change from a channel behavior

(higher quality factor and smaller width, ∆λ, at FWHM) to band like behavior (lower

quality factor and larger ∆λ). According to the number of cascaded resonators the

spectrum will be characterized by a higher order filter behavior and, when the

inter-resonator distance is carefully chosen (in our case πR = 10.21µm) so that the

resonator modes and the Bragg modes will overlap, then also a larger FSR will be

obtained [21, 22, 23, 24, 25, 26, 74]. Therefore, it is possible to accomplish channel or

band routing according to the number of resonators one chooses.

However, it is observed that the fine tuning of D and R is critical to maintain coherence:

for a 5 nm departure dips appear in the Drop spectrum due to the lost constructive

interference conditions. This can be seen as a spectrum impairment, or on the contrary,
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as very high Q resonances due to this nanometric structural disorder. These

transmission dips are a manifestation of the Coupled Resonator Induced Transparency

(CRIT), i.e. the optical microresonator analog of Electromagnetic Induced

Transparency (EIT), where light is not coupled into the resonators at their resonant

frequency ([47, 48]) and are a signature for large group index and slow light phenomena.

For several resonators this manifests in multiple CRIT phenomena ([49, 50]), because

the offset in the inter-resonator distance induces a slight shift between the resonators

and Bragg modes. These have also been studied recently [29].

The same comparison has been made with an ideal and randomized (1, 2, 4, 8)× 1

CROW structure, a shown in fig. 37 left and right respectively. The ideal spectrum

shows the characteristic CROW (1,2,4,8) Drop port dips (the lateral dips are however

barely discernable). This time the randomization was applied obviously only on the

radius of the racetracks and qualitatively one sees that the sensitivity to the same

magnitude of fabrication errors in a CROW can be considered less detrimental than

those occurring for the SCISSOR.

Figure 37: The Drop port signal of an ideal (1, 2, 4, 8) × 1 CROW (left) and the same with a ±5nm

randomization of the curvature radii.

In order to try to quantify this effect the following numerical experiment was done. The

spectral deviation from that of an ideal SCISSOR of eight racetracks with the above

mentioned properties was estimated. A random parameter fluctuation range was set in

±∆ nm on each parameter (eg. L±∆ nm, etc.). By randomizing the parameters (i.e.
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Figure 38: Estimate of the spectral noise intensity with increasing parameter randomization in a 1× 8

SCISSOR.

the coupling section length L, the radius of the bends R, the inter resonator distance D,

the gap, and finally all these together), the induced ’noise’, or mean ’spectral noise

intensity’, SNI(∆), was determined. This quantity was calculated as a mean normalized

power loss of the ideal signal, i.e. unity minus the numerical integral of the fraction

between the normalized intensity of the ideal spectral curve, I(λ), over that obtained

with parameter randomization ∆, I ′(λ,∆), over the spectral domain of one mode, Dλ.

In formula:

SNI(∆) = 1− 1

Dλ

∫
Dλ

I(λ)

I ′(λ,∆)
dλ ≈ 1− 1

N

N∑
i=1

I(λi)

I ′(λi,∆)
, (4.29)

where the right hand term is the numerical approximation, and N = Dλ/∆λ the

number of wavelength steps over Dλ, with ∆λ the wavelength step size used in the

numerical integration (here of ∆λ=0.01nm). Then, for a specific parameter fluctuation,

running the TMM code simulation one obtains a perturbed spectrum, and from this a

specific ’noise’ value. This simulation was run 100 times to obtain a statistical mean

and a standard deviation. This procedure is repeated for 10 parameter randomizations

from 1 to 10 nm. Fig. 38 shows the so obtained results with standard deviation error
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bars. One can notice that the red, magenta and green lines, those representing the

spectral impairment induced because of the fabrication errors over the gap, the inter

resonator distances and the coupling section lengths respectively, contribute to the total

spectral impairment (black line) much less than that caused by the errors on the radius

of the racetracks bends (blue line). This is natural, since an error on the radius

determines π times an error on the bend length, and correspondingly more phase shift.

The perturbation of the spectrum can be approximately seen as a function growing

linearly with randomization. This does however not convey the real effect of fabrication

errors, it is instead the non negligible scattering around the mean represented by the

error bars. In practical terms this means that one has to expect large differences in the

spectral quality over every fabricated SCISSOR device, also if the fabrication technology

remains the same.

Therefore, one must always keep in mind that SCISSOR structures are very sensitive

also to tiny departures from some nominal theoretical values and when real SCISSOR

devices must be fabricated for practical purposes it is of extreme importance to

carefully evaluate the effects that the statistical fabrication disorders produce on the

desired performance.

Another aspect which was worth of some attention was the question if also the

fluctuations in the waveguide structure itself could have damaging effects on the spectral

performance of the devices. Looking at a Scanning Electron Microscope (SEM) image of

a silicon waveguide one can notice a slight but possibly non negligible fluctuation in its

width along its length. The effective index and its dispersive properties depend strongly

form the geometrical structure of the waveguide. The problem is that randomizations

induced on the waveguide widths and its core height can therefore lead to effective- and

group- index, as group velocity dispersion (GVD) variations compared to the expected

one, which in turn can potentially alter the device performance considerably. On the

other side if the total length of the waveguides in a device is large enough, one can

expect that these fluctuations are statistically smoothed out and can be considered
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negligible nevertheless. The question arises if the structures in our devices, for instance

the coupling section in a racetrack of L=10 µm, are long enough to obtain this

statistical smoothing? We answer this question positively for the following reasons.

Figure 39: The dependence of the effective index (top) and the deviation of the effective index from

the nominal waveguide (red spot at wgw=0.45µm and core height 0.22µm), at λ = 1.55µm in TE-

polarization.

Extending the calculations done in section 3, an array of data were processed which

relate the waveguide width and the core height with the effective index, and the

deviations in the effective index of all the waveguide structures from the nominal one of

0.45µm width and 0.22µm core height. Fig. 39 top shows the distribution of effective

indexes around the nominal waveguide indicated by the red spot at telecom wavelength
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of λ = 1.55µm, in TE-polarization.

The deviation of the effective index from the nominal waveguide is shown in fig. 39

bottom. It represents the same data of fig. 39 top but with the effective index of the

nominal waveguide (neff = 2.34) subtracted to highlight the differences. This conveys

some information on the effective index variation to be expected due to lithographic

imperfections. For example LETI declares an error on 220± 20nm on the core height.

According to this calculation, as indicated by the arrows and labels in fig. 39 bottom,

the variation of the core height from 0.20 to 0.24 µm, for a constant waveguide width of

0.45 µm, amounts to a variation in the effective index of about ∆neff = 0.154. On the

other side, maintaining the core height at 220 nm and varying the waveguide width

from 0.44 µm to 0.46 µm, induces an effective index change of about ∆neff = 0.043.

Therefore, in TE-polarization, the sensitivity to imperfections in the core height is

almost four times larger than those to waveguide width. Fortunately this is not a real

problem since the error on the silicon layer height is mainly caused by the epitaxial

layering process during fabrication. Once the wafer is produced, tough not having the

nominal height of 220nm, it will have nevertheless a uniform height of the silicon layer

over the whole surface. Not so for the waveguide width fluctuations which are caused by

the photoresist and the etching process imperfections, i.e. they are present from point

to point in the real device. From the above calculations one can estimate that for a

waveguide width of 0.45 µm and randomization of about ± 5 nm (a typical order of

magnitude of mean fluctuation inferred from SEM images), an effective index variation

of at least ∆neff = 0.02 should be expected. This should induce on a waveguide of

L = 10µm length the same optical phase shift equal to another waveguide of length

L′ = L(1 + ∆neff/neff). In our case it would be of about L′ = 10.085µm, i.e. optical

length fluctuations, caused by the effective index variations due to waveguide

fluctuations, up to 85 nm, which would lead to huge spectrum impairments. This has

not been observed. Which means that on lengths of the order of 10µm the fabrication

imperfections have been smoothed out statistically, and that one does not have to worry
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too much about waveguide and core height fluctuations for devices whose footprint is

larger than 100 µm2.

Figure 40: The dependence of the group index (top) and the GVD (bottom; green points: anomalous

diesperison; blue points: normal dispersion) from waveguide width and core height at λ = 1.55µm in TE-

polarization (red spot at wgw=0.45µm and core height 0.22µm).

For completeness we add also the graphs for the the group index and the GVD at

telecom wavelength of λ = 1.55µm, again in TE-polarization. These have been obtained

directly from the wavelength dependence of the effective indexes for each waveguide

width and core height resorting to eq. 3.10 and eq. 3.11 (modified to a third order

polynomial regression to obtain higher accuracy in the derivatives). Fig. 40 top shows

the distribution of the group index. The nominal waveguide (red spot) lies on a point of

the surface where the steepness is quickly increasing. Which means that, for deviations

from the theoretical waveguide, and because of eq. 3.13 and eq. 3.15, this can also have
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non negligible effects on the FSR. But perhaps the most interesting fact can be seen in

fig. 40 bottom for the GVD distribution. The green points represent the set of

waveguide widths and core heights for which anomalous optical dispersion occurs (high

frequency components travel faster than the lower ones), while conversely the blue

points show the region of normal dispersion (low frequency components travel faster

than the higher ones). The nominal waveguide turns out to be only slightly normally

dispersive but is placed very near to the zero GVD line. This can be very useful for

optical pulse shaping minimizing pulse broadening since, as well known, dispersive

effects induce temporal spreading of the light pulses representing bit-streams and which

will spread in time, merging together, and rendering the bit-stream unintelligible.

Despite the above mentioned limitations on the spectral impairment, these latter

aspects on statistical smoothing of the waveguide fluctuations and the near zero GVD of

the nominal waveguide were more encouraging elements, and therefore it was worth to

concentrate our efforts on the practical realization of SCISSOR devices.

.
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5 Design and Validation by Optical Testing

5.1 Mask design and wafer fabrication

Once the theoretical and analytic aspects were clarified the phase of the concept layout,

mask design and wafer fabrication supported by the numerical investigation of the test

devices was initiated. The modeling and simulation of photonic integrated circuit (PIC)

was realized essentially by the interaction of three complementary activities. First that

of parameter estimation by determining the wavelength dependent racetrack’s coupling

lengths, the coupling coefficients and obtain from these the proper gap spacings with a

full vectorial finite difference mode solver (as explained in section 3, and as published in

[74]). Secondly, with the so obtained parameters, we perform simulations of the spectral

response of the single SCISSOR, CROW and its combination to analyze the Drop and

Through signals behavior with varying phase difference at the Input ports. This was

done by describing the resonators collective effect with the TMM (see section 4).

Finally we performed the simulations of silicon device components like the crossings, the

MMI splitters, and tapers which were done through FDTD packages. This furnished an

estimate of the losses and crosstalk we had to expect for the real devices. All the

mentioned parameters and design specifications were intended for TE-polarization.

As to the type of fabrication employed, the devices were produced using LETI and

IMEC photonic process technologies [75] on 200mm SOI wafers. These were fabricated

with a 220nm thickness Si crystalline film on 2µm buried oxide substrate and a SiO2

top cladding of 0.75µm. The mask was DUV 193nm lithography. We opted also for

different exposure doses so that some critical feature sizes change as the exposure dose

varies (each column in the matrix of dies on the wafer is printed with a certain dose so

that the feature size varies from one side to the other of the wafer). This made it

possible to design several different devices with slightly different parameters on the

mask, like the waveguide width and the spacings. These were 0.5µm or 0.45µm for the

waveguide widths and spacings of 160, 180 or 200nm with section lengths coupled to the
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Through and Drop port waveguides of L = 7.5, 10, 15µm. The curvature radius for the

bend sections of the racetracks was R = 3.25µm. The bend losses were obtained by

evaluating the light absorbtion on a chain of 100 serially adjoint bends of the same type.

A loss of about −0.025dB/90◦ was measured ([76]). Light insertion and extraction was

realized by coupling a 2µm diameter fiber to a 2µm wide waveguide on chip, which then

shrinks adiabatically for 500µm down to the 0.5µm or 0.45µm waveguides.

Figure 41: Layout and simulation results of the double etched crossing with elliptical mode expansion

(left) and the MMI splitter (right), and respective graphs of the reflections, cross talk and scattering.

Some components like crossings and MMI splitters were processed in two etch layers,

first a shallow etch of 70nm followed by a deep etching. The crossing employed were

designed on a model of elliptical mode expansion of the waveguide core [77] minimizing

the losses due to diffraction of the waves lateral broadening at the intersection region

(shallow etching reduces the lateral index contrast lowering further the diffraction,

back-reflections and crosstalk). The layout and some simulation results are shown in fig.

41 left.

Measurements on a chain of cascaded devices show -0.35 dB loss per crossing confirming

74



the simulation results which indicated also a crosstalk mean value of about −27dB,

back-reflection of 0.17% with a major contribution to losses of 3.6% because of top

scattering. The MMI splitters (see fig. 41 right) used a similar two layer technology [8]

and had about -0.4dB total loss and 4.5% top scattering, but showed also to be affected

by strong imbalance between the two output arms (possibly due to layer misalignment

during the fabrication process, or other unknown causes). This imbalance made it very

difficult to use the reference signals for data normalization. A careful analysis later

showed that a 0.5µm wide waveguide is no longer strictly single mode but already the

second mode appears at telecom wavelengths, and that this might have contributed to

the MMI imbalance. Fortunately this did in no way impair the performance of the other

devices since this second mode is very lossy and does not disturb the measurements

anyway. However, this resulted in the fabrication of some wafers with the waveguide of

0.5µm width while later we switched to 0.45µm width waveguides, which are definitely

single mode.

The next page illustrates some snapshots of the wafer produced and the GDS II designed

with an appropriate mask layout design software [78]. Fig. 42 shows a microscope image

of the die in the background making the silicon circuits visible. Some parts are

magnified where crossings and MMI splitters were present and making the double

etching visible. On the lower left a photograph of the wafer was inserted. The right

column of fig. 43 is a layout of the PIC designed with the GDS II format. Some parts

are magnified to show the graphical aspect of some devices as they have been fabricated.

On the right the SEM image of racetracks, crossings and MMI splitters has been added.

5.2 Some first optical tests and validations

The wafers contained also some optical test structures which served as reference and

furnished some quantitative features essential for the overall understanding of the

performance and quality of the routing devices. For example, before testing the full
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Figure 42: Optical microscope pictures of the silicon circuits, zoom on the MMI splitters and crossings,

and the wafer (lower left). Fabrication technology: LETI.

Figure 43: GDS II layout of one of the three designed wafers with some graphical zoom and the SEM

images of the racetracks, crossings and MMI splitters (right side). Fabrication technology: LETI.

routing devices we wanted to control separately the response of single resonators and

their arrangement in SCISSOR structures characterized by the same parameters

(R=3.25µm, L = 10µm, gap=160 nm, D=10.21µm).

76



Fig. 44 shows a comparison between the simulation of the theoretical model and the

measured devices of the single resonator (black line) and the 2, 4, and 8 racetrack

SCISSOR (red, blue, green lines respectively). There is of course a difference in the

wavelength position of the mode.

Figure 44: Transmission spectrum of the 1 × 1, 2, 4, 8 racetrack SCISSOR (R=3.25µm, L = 10µm,

gap=160 nm, D=10.21µm).

The reason for this has already been explained in section 3.5, i.e. a slight discrepancy

between the theoretical and the real dispersion law shifts the spectrum. There is also a

slight difference in the pass-band widths, the theoretical curves predict a smaller

bandwidth. This is due to the fact that in our modeling the coupling section considered

was only the straight part of the resonator, while rigorously also the coupling on the

curved part should have been taken into account. But taking into account also this

aspect would have greatly complicated the analytical calculations, and since for our

purposes an exact bandwidth evaluation was not so important, we considered this still a

negligible error (however, we could also observe that by decreasing the gap of about 10

nm with respect to the nominal value, could be considered a satisfying correction to the

otherwise underestimated coupling strength). The quality factor of the single racetrack

shows to be about Q = 600. The asymmetries in the measured spectrum, especially on

the single racetrack resonance, is caused by the MMI wavelength dependent imbalances

which rendered difficult to evaluate the correct normalization at the reference port for

every wavelength.
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Figures 45 show the measurements of a set of waveguide coupled double racetrack

add-drop filters, we shortly labeled ’CRIT resonators’ in fig. 43, because they were

expressively designed to check the induced transparency effect and to study the shift

between the resonator and Bragg band (see discussion in section 4.3).

Figure 45: CRIT effects and resonator and Brag band shifting.

The parameters of the two resonators were the same as those of fig. 44 (red line), but

with one of them having an optical path slightly detuned on the coupling section of

about 5nm to induce a shift of the resonance peaks, and with different inter-resonator

distances of D = 10.26µm, D = 10.21µm and D = 10.16µm, which lead to the resonance

to Bragg shift in the spectrum as shown in fig. 45 (a), (b), and (c) respectively. In order

to test further our simulation code each figure shows the superimposed theoretical solid

curves (red: Drop, black: Through). Fig. 45 (b) shows the case where the

inter-resonator distance D is tuned to the coherence condition where the CRIT effect

occurs, i.e. when the round-trip phase between the two resonators is a multiple of 2π.

In this situation both the drop and the transmission modes are symmetric but a high

quality factor CRIT dip appears. However, for values of D ̸= πR (see eq. 4.28) the

resonator and Brag modes (RM and BM in fig. 45) no longer overlap. For larger

(shorter) values the Bragg band is red (blue) shifted as shown in fig. 45 (a) (fig. 45 (c)),

while the resonator band maintains its symmetry. The overlap with the solid theoretical

curves obtained from the simulations is good but showed also the high sensitivity to

fabrication errors of this structure. In fact, only the simulation for the case of coherence
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condition of fig. 45 (b) resulted from the nominal parameters, while fig. 45 (a) and fig.

45 (c) showed a best fit by introducing a different racetrack radius of one of the

resonators and a different distance D (about △R = +3nm and △D = +5nm for both

fig. 45 (a) and (c)). This little discrepancy was expected since ∆R and ∆D have the

order of magnitude of the fabrication errors. It became clear that the spectral analysis

of CRIT effects could in principle be used also as a way to measure statistical disorders.

But the wafers designed contained also some photonic structures which wanted to test

other types of physical effects. For example a couple of resonators were arranged in such

a way to test the Venier effect [79]. The Venier effect suppresses one of the modes of the

resonant system increasing twice the FSR. This can be attained in a configuration like

that shown in fig. 46 (a) by imposing the optical path in one of the resonators to be

twice that of the other (i.e. the smaller racetrack suppresses half of the resonances of

the larger one and only those they have in common remain).

Figure 46: The Venier effect. (a): The device structure; (b) the spectral response of the larger resonator

and the Venier structure; (c): the simulated spectrum.
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This can be done, for example, by fabricating the two resonators with two different

radius (R1 = 7.25µm, R1 = 3.25µm) and coupling sections lengths (L1 = 10µm,

L2 = 5.785µm). The obtained spectral response is shown in fig. 46 (b). It confirms the

predicted behavior: the black line represents the single (larger) resonator response,

while in the red spectrum one of the modes has been clearly suppressed approximately

doubling the FSR from 8 nm to 17 nm. The splitting of the modes are due to the strong

coupling of the two resonators (gap spacing of 180 nm). A difference in the splitting can

be observed between the theoretical curves and the measured ones. But this is only

because the dips splitting and relative extinction depths are very sensitive to wavelength

and are difficult to match exactly numerically (on other parts of the spectrum also the

numerical simulation showed alterning dip intensities). This however does not alter the

main result we were looking for, our algorithm predicted the observed FSR doubling.

Another interesting (serendipitously discovered) effect that we could observe was that of

how a resonant structure, despite being very small and in over-coupling regime, can

nevertheless manifest high quality factor modes. Usually one thinks that strong

coupling leads to low quality factors, here we report of the opposite effect whereby

strong coupling can lead also to high quality factors. We remind that the cross-coupling

coefficient increases with increasing wavelength (the evanescent tail tends to spread,

therefore the coupling length decreases and the cross-coupling increases because of eq.

2.46). This implies a decrease of the quality factor for increasing wavelength, as the

wavelength scan measurement of the spectrum of a single resonator reveals.

Top of fig. 47 shows a wavelength scan from 1.5µm to 1.6µm of a racetrack resonator

(R = 3.25µm, L = 7.5µm, wgw=0.5µm, gap=0.18µm). The steadily increasing FWHM

of the modes visible in the Drop or Through signal is evident, which means that the

quality factor is decreasing. However, from eq. 2.53 we know also that the coupling

coefficients are periodic functions in L, i.e. the coupling strength is periodic with the

coupling section length. From this follows that, once the coupling section reaches the

coupling length, i.e. the maximum of power is coupled to the other waveguide, another
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Figure 47: Spectra of a racetrack resonators showing over-coupling effects (simulation: continuous

lines). Top: with L = 7.5µm coupling section. Bottom: with L = 15µm coupling section.

increase would lead not to more but to less power coupling, and consequently the

quality factor begins to decrease again. Or, to put it in other words, the light is first

coupled into the resonator straight coupling section, but before it can circulate towards

the bent waveguide, part of its power couples back to the bus waveguide. This can be

seen in the spectrum of the bottom of fig. 47 where a resonator with twice the coupling

section, a smaller gap spacing and waveguide (L = 15µm, wgw=0.45µm, gap=0.16µm)

was employed to obtain a still strong coupling regime. The continuous lines represent

the result of the simulations. It fits well the data, however we had to notice that this is

only the case if the (wavelength dependent) coupling length is decreased by 15-20%

compared to the theoretically predicted one. The real cause of this discrepancy is not

entirely clear. It might be due to the fact that the real device had different dimensions

from those declared (exposer dose error might well induce ± 10 nm waveguide or gap

spacing widths deviations which can influence the coupling length), the mode solver

tendency to slightly overestimate coupling lengths might increase for smaller gaps, as in

the present case, or both effects combined. Anyhow, despite these limitations, the

qualitative behavior of the over-coupling effect is clear.
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The devices and its measures proposed in this section were only some examples used as

test and calibrating tools. The above given examples showed that there is a satisfying

correlation between the theoretical model, its numerical implementation and the real

devices behavior. The real aim of the three wafers designed and fabricated however was

that to produce some photonic circuits demonstrating optical routing and switching

functions with light. This is what will be described in the following sections.
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6 Wavelength Routing Functions of SCISSOR and

CROW

We will discuss three types of light routing/switching applications. The next section will

discuss theoretically several phase switching photonic structures and proof its feasibility

by presenting a device which has been fabricated and tested for this purpose. Later, a

possible application where phase switching and narrow band channel routing are

combined together will be analyzed also. Whereas in this section a couple of devices

designed to obtain CWDM, i.e. where larger spectral bands instead of narrow band

channels are routed, will be presented.

6.1 SCISSOR routing for coarse WDM applications: the

one-directional band router

A way to separate light signals from a single multispectral source into wide spectral

bands, i.e. operating CWDM, can be obtained by resorting to the SCISSOR low quality

factor flat-box spectral response evident in fig. 36. Fig. 48 shows a simple example of

how band-routing can be achieved. A single input waveguide is side coupled to four 1x8

SCISSOR devices each tuned on a different band leading to five outputs, i.e. it can be

considered a 1× 5 band router. The mode separation between the different SCISSOR

can be obtained by differentiating their optical path, for example by changing slightly

the radius or the length of the coupling section of the racetracks. The crosstalk between

the bands must be evaluated by choosing carefully the gap separation between the input

bus waveguide and the resonators. In our example we used the same technology

described in the previous sections, the gap separation was 280 nm and, while the

racetrack radius was maintained equal in all the resonators (R = 3.25µm), to obtain an

equally spaced band separation for all four SCISSOR devices a coupling section of

L = 10µm, L = 10.085µm, L = 10.17µm, and L = 10.255µm was chosen respectively. In
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Figure 48: The 1 × 5 SCISSOR-band router. The incoming light on the left is routed to five possible

outputs according to its wavelength.

this way the input light could be coupled according to its wavelength into one or the

other SCISSOR which were designed to resonate at four different bands with central

wavelengths λ1−4 and each with a separate output. This might be considered the most

immediate and intuitive way to obtain band routing functions one can think of but, to

the best of our knowledge, it has never been conceived and realized in a real device.

Knowing that fabrication errors, especially due to effective index variations induced by

waveguide width fluctuations (here of nominal 0.45µm), in order to be sure that the

whole spectrum would have been overlapped by all the mode resonances, i.e. no

wavelength would have been kept out by the routing structure and all the FSR would

have been covered by the four modes, the crosstalk between the bands was maintained

high on purpose.

The top of fig. 49 shows the spectral response obtained by TMM simulation of the 1× 5

router, on the left in normalized intensity, and on the right in logarithmic scale (dB),

where the simulation considered a gap of 250nm. The experimental data are shown in

the two graphs of the lower part of fig. 49 and match satisfyingly the theoretical

expected response with this gap. The discrepancy between the real and theoretical gap

spacing is possibly explained with the fact that we selected a low dose die of the wafer

which leads to smaller spacings between the waveguides than the nominal values. It

appears that the spectral width of the bands becomes steadily narrower from the first to

the last SCISSOR. This is caused by the fact that the finite roll off of every band leads

to a band edge cutoff of the sidelobes of the mode which is injected towards the next

resonating structure which in turn ’sees’ at its input a decreased spectral width. The
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Figure 49: Spectral response of the 1×5 SCISSOR-band router (top: simulation, bottom: measurement;

left: normalized intensity, right: logarithmic scale (dB)).

effect applies at every stage and the resulting spectral width of the last mode is smaller

than the first one. This is of course undesirable, we didn’t consider it initially in the

design, and an optimized version of this device will be necessary. For instance, if one

rearranges the modes spectral band width of every SCISSOR by tuning the optical

length and/or apodizing the gaps it should be possible to optimize the distribution in

order to obtain equally wide bands over the entire FSR. However, at least as a proof of

concept, one-directional micro-optical band routing by SCISSOR devices has been

shown to be possible.

6.2 SCISSOR routing for coarse WDM applications: the

bi-directional band router

We were also wondering if, besides a one directional, also a bi-directional routing is

possible. Another example of a possible application of the higher order flat-box filtering
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behavior of SCISSOR structures for spectral band routing as a bi-directional router is

shown in fig. 50.

Figure 50: A 3× 3 SCISSOR router

Following the path of light in the structure one reconstructs the input-output signal

table shown on the left and right side of the device (rows go into columns). For

example, if a signal of wavelength λ1 is injected into the lhs second port it will be

filtered into the Drop port of SCISSOR 1, goes through the first crossing, will be filtered

by SCISSOR 2, encounters the second crossing, and so on (follow the black arrows in

fig. 50). For the inverse direction one proceeds in a similar path of add-drop filtering

and light crossing outgoing at the rhs of the device.

Figure 51: The 3×3 SCISSOR router ideal spectral response at the output ports (blue:Out 1, black: Out

2, red: Out 3) for input signal as in fig. 50, in normalized intenisty (left) and logarithmic scale (right).

Fig. 51 is the result of a simulation which shows the expected spectral response at the

three rhs output ports (blue, black and red lines for output 1,2,3 respectively) for the

signal injected in the second port on the lhs, as shown by the arrows in fig. 50, in
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Figure 52: The 3× 3 SCISSOR router measured spectral response, lines and scales as in fig. 51.

normalized intensity and logarithmic scale in the left and right graph respectively. For

comparison fig. 52 shows the measured spectral response. The match with the expected

ideal case of the simulation is not particularly exciting. The weak point of this geometry

is that the signal undergoes several attenuations due to couplings and the presence of

crossings, together with all the statistical fabrication errors which add up at every

filtering stage. For example, the light path indicated by the black arrows in fig. 50 will

have gone through four SCISSOR and four crossings before arriving at the rhs at the

second output port. Moreover, it seems that the band width of the real SCISSOR

tended to be larger than in the theoretical simulation. The reason for this is not entirely

clear, but might be due to smaller gap spacings etched during the fabrication process

possibly resulting from a lower exposer dose. These effects made it very difficult to

obtain a satisfying experimental outcome. However, it is worth mentioning the fact that

the signal in the two output ports 2 and 3 are separated from each others as expected

(with exception on a small region around λ = 1.515µm), while the third channel is also

clearly present in the spectral position as it should, tough only with weak intensity and

on a smaller spectral range leading to a strong crosstalk with the other two outputs.

This can be explained by the same phenomenon of the band-edge cut-off we mentioned

for the 1× 5 one-directional band router in the previous section, and is naturally

stronger for the blue line (λ0) compared with the other outputs, since it is the residual
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spectral band left after all the other wavelengths have been filtered out by the SCISSOR

structure.

Therefore, several optimizations are still needed to make this bi-directional routing

device more efficient. A more careful analysis and design of the spectral width of each

SCISSOR, together with its coupling section and waveguide to resonator gap must be

chosen differently (i.e. apodization is necessary). However, a first prof of concept has

been shown. The spectral bands are routed towards different outputs according to the

wavelength as expected. The question at this point is no longer if such kind of devices

works, but how far can its performance be enhanced by these optimizations and by

future lithographic technologies.
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7 Theory of Phase Switching Functions of

SCISSOR and CROW

So far a couple of examples of possible photonic devices for WDM applications have

been shown. They entirely relied on the principle that the wavelength of an input signal

decides the routing direction. However, it will be shown that similar routing functions

can be obtained by phase modulation between two or more incoming signals. Some

introductory example using light switching by phase modulation or splitting and

combining was described in section 2.3, but it was limited to a single wavelength

(through eq. 2.54 and eq. 2.80). The single channel photonic switching between

co-directionally coupled waveguides is extremely fast (only the traveling time of light

through the coupling section structure). On the other side, for practical reasons it might

be more useful to apply the same phase switching principle on larger resonant systems.

For these, despite having a longer reaction time, since it depends on the power build up

of light in the structure, however allow for switching and routing functions of a larger

set of channels or even on spectral bands.

7.1 Dual bus resonator phase switching

Let us get back to the elementary example of the single resonator, but this time

considering two interfering signals in the Input and Add port, as in fig. 53. We briefly

recapitulate what we have seen in sections 4, but by means of the result of section 2.3.

For the sake of simplicity we consider only the case of symmetric coupling, i.e.

considering the bus-waveguides spacings and its coupling section lengths to be the same

everywhere. We apply the transfer matrix approach. The first step is to relate the

amplitudes (A1
1 , A

1
2) → (A2

1 , A
2
2). We already know the elementary transfer matrix

M between the coupling section and the resonator from 4.7, but note that this could be

obtained also from 2.50 and 2.51, even if through a more elaborate way.
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Figure 53: The single resonator ds-coupler switch.

Again, as done in section 4 the coupling matrix K relating (A1
1 , A

2
1) → (A1

2 , A
2
2) is

given by eq. 4.11, where, for the straight sections, the lossless case (|κ1|2 + |t1|2 = 1) will

be considered. And also the (forward and backwards) internal propagation matrix P for

the racetrack was given by 4.12.

Now we introduce some modifications and simplifications which are more appropriate

for the present problem. We can express the passage (A1
1 , A

2
1) → (A2

3 , A
1
3) described

by K and P in a more compact form defining the first ’transfer matrix’ TPK as their

product:

A2
3

A1
3

 = TPK

A1
1

A2
1

 = PK

A1
1

A2
1

 . (7.1)

Thus, the amplitudes at the ports of fig. 53 can be related as

AAd

AD

 = T1

AIn

ATh

 = KTPK

AIn

ATh

 , (7.2)

and by rearranging the elements of transfer matrix T1 into the scattering matrix S1

accordingly, one obtains ATh

AD

 = S1

AIn

AAd

 . (7.3)

With this we can simulate the device of fig. 53 by choosing the following photonic

parameters: bend curvature radius of 3.25µm, gap spacing of 0.2µm, waveguides width
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of 0.45µm, waveguide core height of 0.22µm, SiO2 cladding of 0.75µm, and

−0.03dB/90◦ bend loss in TE polarization.

Instead of displaying the spectral response of a resonant structure in terms of

wavelength it is possible to put it in qualitatively more general terms. One can consider

the system non dispersive on the FSR that separate two modes, and express the

spectral scan in the graphs in terms of round trip de-phasing instead of the absolute

value of the wavelengths. In fact, according to 3.14, in the case of dispersionless systems

the two modes at λ1 and λ2 are determined solely by the optical path of the resonator,

popt = (2πR + 2L)neff (with neff the effective index at resonance wavelength of the

waveguides), and the mode azimutal number m, as:

λ1 =
popt
m

, λ2 =
popt

m+ 1
. (7.4)

This means that the difference is

λ2 − λ1 = −
popt

m(m+ 1)
= − λ1

m+ 1
= −λ1 λ2

popt
. (7.5)

Then the parameter γ representing the round-trip de-phasing of the resonator can be

defined as an ’angular deviation’ from resonance at some wavelength λ as:

λ = λ1 +
γ

2π
(λ2 − λ1) = λ1 −

γ

2π

λ1λ2

popt
, (7.6)

and from which

γ = 2πpopt
λ1 − λ

λ1λ2

≈ 2πpopt
∆λ

λ2
.

With this convention we can analyze the standard single resonator mode spectrum (fig.

54 left) and see how it is transformed if we inject two normalized input signals, one in

the In port and the other into the Add port setting in eq. 7.3 AIn = eiϕ1 and AAd = eiϕ2 ,

with ϕ1 and ϕ2 the phases of the In and Add signals respectively. Then for a phase

difference of ∆ϕ = ϕ2 − ϕ1 =
π
2
, we obtain a response like that of in fig. 54 right.

The shapes of the Drop and Through ports signals become asymmetric. This is the

manifestation of the Fano resonance that arises from the interference between the
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Figure 54: The single resonator mode spectrum (left) and the dual-bus single resonator Fano resonance

spectrum (right) for ∆ϕ = π
2 (Drop: black solid line, Through: red dashed line).

resonant modes in the racetrack, where a narrow band superimposes on a flat spectral

background [81, 82]. Fano resonances attracted renewed attention in several fields of

physics [83]. Recent studies highlighted its applications also for optical micro-resonators

[84, 85] and in ring enhanced Mach-Zhender interferometers [86, 87, 80]. The

asymmetric line shapes of Fano resonances are due to interference phenomena that can

be related to the interaction of a discrete resonator state and the waveguide continuum

of propagation modes.

Devices where two phase modulated incoming signals are injected can be used for light

switching functions. A high extinction ratio on-off switching for a couple of channels (or

bands) can be obtained at the channel wavelength of the Through and Drop extrema.

For instance, in our example of fig. 54 right, at around γ = ±0.6, for a de-phasing of

∆ϕ = 3
2
π, the Through and Drop ports states are exchanged one into another (not

shown, graphically the black solid line would go into the red dashed line). This means

that by phase modulation the signal output can be switched off in the Through port to

the Drop port, or viceversa.

It is possible to extend this phase switching functions also to a parallel or serially

coupled chain of resonators, i.e. like in CROW or SCISSOR, as shown in fig. 55.

Again, as explained in section 4, for the SCISSOR one introduces the external

propagation matrix Qj of eq. 4.17 connecting the j-th to j+1-th column resonator,

where Dj j+1 is the inter-resonator distance separating the resonator’s j-th to j+1-th
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Figure 55: The dual-bus SCISSOR and dual-bus (even) CROW resonant structure.

straight arm as shown in the SCISSOR of fig. 55.

Then, eq. 7.3 can be generalized to the SCISSOR structure as a horizontal scattering

matrix Sh as: ATh

AD

 = Sh

AIn

AAd

 = SNQN−1SN−1...Q1S1

AIn

AAd

 , (7.7)

and which is 4.19.

For the CROW we simply generalize eq. 7.2 to

AAd

AD

 = TN...T2T1

AIn

ATh

 , (7.8)

with Tk (k=1,..,N) the transfer matrix for the k-th row resonator given by eq. 7.1, and

which is equivalent to eq. 4.14. From this we obtain, again as in eq. 7.3, the vertical

scattering matrix Sv
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ATh

AD

 = Sv

AIn

AAd

 . (7.9)

Note that for an even number of resonators the CROW becomes co-directional, i.e. the

In-Through and Add-Drop signals travel in the same direction. This might be useful for

practical applications.

Figure 56: The single (left) and dual-bus (right) eight resonator SCISSOR spectrum for ∆ϕ = π
2 .

(Drop: black solid line, Through: red dashed line)

Fig. 56 shows the example for the SCISSOR spectrum made of a chain of eight

resonators obtained from eq. 7.7 (the black solid line for the Drop port and the red

dashed line for the Through port). The first graph (left of fig. 56) represents the

spectrum where only one signal is injected: the higher order flat-box spectrum appears.

When a second signal with the same amplitude at the Add port is turned on, with a

de-phasing of ∆ϕ = π
2
, the spectral behavior of the second graph appears (right of fig.

56). This state depends strongly from the de-phasing value and it can be flipped to a

specular behavior by exchanging the Drop and Through port signal’s phase, as already

noted for the case of the single resonator. This phase switching could be applied best at

the frequency of maximal contrast between the Through and Drop (e.g. here at about

γ = ±1.5, right of fig.56): by maintaining the same amplitudes on the inputs but for a

de-phasing of ∆ϕ = 3
2
π it is possible to switch the light from the Through to the Drop

port, or viceversa. Compared to the single resonator case, possibly a couple of channels

(or bands) more might be used for phase switching functions (in our example the lobes
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at around γ = ±1.75), but with lower extinction rates. Therefore, under this respect, the

SCISSOR geometry presents limited advantages over the single resonator case of fig. 54.

Figure 57: The single (left) and dual-bus (right) eight resonator CROW spectrum for ∆ϕ = π
2 . (Lines

as in fig. 56)

The case for the CROW structure, also made of a chain of eight resonators, and

obtained from eq. 7.9, is shown in fig. 57. As in the previous case the left and right

graphs represent the single- and double-bus spectra for the same de-phasing. Here we

have a quite different situation: given N serially coupled resonators, the N Drop peaks

of the first CROW spectrum (one input signal only, left fig. 57) is converted into a

system of N-1 bands by turning on the second input signal with a ∆ϕ = π
2
de-phasing

(right of fig. 57). Again, for a de-phasing of ∆ϕ = 3
2
π, one can flip the Through ↔ Drop

port outputs into each others by phase modulation.

Not all bands have the same extinction efficiency, only the central ones exhibit an

almost ideal on-off state, but the CROW geometry has the advantage over the

SCISSOR and single resonator structures that it exhibits several bands, proportional to

the number of resonators and in principle limited only by practical considerations

imposed by the fabrication tolerances. The width of each band depends from the

photonic parameters and the number of resonators used to build the device (in our

example these are of the order of 1nm width), but in principle several narrow width

channels could be arranged in each of the bands and a sort of ”photonic packet phase

switching” can be achieved whereby several channels can be re-direct towards one or the

other output port by phase modulation. Note that a device working on such principle
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Figure 58: The dual-bus two resonator CROW spectrum with AIn1 = eiπ/2, IIn2 = (1, 0.75, 0.25, 0)

((a), (b), (c), (d) respectively). (Lines as in fig. 56.)

can be useful also as a micro-optical interleaver, i.e. as a device that separates a set of

channels/bands into two sets of signals towards the Drop and Through ports.

Another example of how a spectrum transforms from the two-bus to one-bus case is

given in fig. 58 for two resonator CROW device with ∆Φ = π
2
and with different input

imbalances (IIn2 = (1, 0.75, 0.25, 0) for fig.58 (a), (b), (c), (d) respectively). The two

resonator CROW is interesting since for the single band it takes a larger part of the

spectrum compared to the previous eight resonator CROW of fig.57 and is therefore

more useful for band routing applications. Fig. 59 represents the phase scan for each of

the cases of fig. 58 where the wavelength is fixed at γ = 0. For example fig. 59 (a)

represents the variation of the Drop and Through port signal intensity by changing the

relative phase between the two balanced input (In and Add) ports at the fixed center

resonant wavelength. Band switching is obtained by π de-phasing.

.

96



Figure 59: The dual-bus two resonator CROW phase response at γ = 0, with AIn1 = ei∆Φ, IIn2 =

(1, 0.75, 0.25, 0) ((a), (b), (c), (d) respectively). (Lines as in fig. 56.)

.

7.2 Three bus resonator phase switching

The preceding sections were originally inspired by the necessity to describe a structure

like that of fig. 60. It shows a ds-coupling phase switching scheme based on a single pair

of racetrack resonators but with three bus waveguides. It should work as follows. If the

amplitudes of the input signals, AIn1 and AIn2 , are tuned on a resonant mode

wavelength and have the same amplitude then, according to their relative phase, they

will interfere constructively or destructively in the Drop port. In the former case the

power is expected to couple into the Drop port, while in the latter case the light will not

couple and travel towards the Through ports.

Now, we would like to write a system of equations and conditions that relate the known

amplitude A1
1 = AIn1 , A

2
4 = AAd, A

1
7 = AIn2 to the unknown A2

1 = ATh1 , A
1
4 = AD

and A2
7 = ATh2 . To characterize quantitatively the response of the device also for
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Figure 60: The resonator pair ds-coupler switch.

different amplitudes and phases we obtained the general transfer matrix T which

describes the behavior of the device of fig. 60:


ATh1

AD

ATh2

 =


T11 T21 T31

T21 T22 T21

T31 T21 T11



AIn1

AAd

AIn2

 = T


AIn1

AAd

AIn2

 , (7.10)

where the explicit calculation of the matrix elements is given in the appendix. The

symmetry of T makes it clear that we assumed a symmetric device: the paths

(In1 → Through1, In1 → Drop, In1 → Through2), are considered equivalent to paths

(In2 → Through2, In2 → Drop, In2 → Through1) respectively.

Figures 61 show the obtained spectral response of the single Input-bus resonator pair

ds-coupler, that is when only one input signal is injected (AIn1 = 1, AAd = 0, AIn2 = 0),

with different coupling section lengths of L = 10µm and L = 3µm (left and right of

fig.61 respectively). In the former case the power which does not exit the Drop channel

(black solid line) and goes towards the Through2 port (blue dotted-dashed line)

represents the cross-talk of the device which shows to be very strong at resonance, the

power is almost equally distributed among the Drop and Through2 port with a very low

Q. In the latter case, the cross-talk is much smaller and for this reason it might be

considered preferable, especially where high quality factors are needed, even if the price
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Figure 61: Spectral response of the device in fig. 60, with AIn1
= 1, AAd = 0, AIn2

= 0, L = 10µm

(left) and L = 3µm (right) (Drop port: black solid line, Through1 port: red dashed line, Through2 port:

blue dotted-dashed line.)

to pay is a weaker Drop signal. However, as we will see, if manipulated properly, in a

dual-bus device strong coupling itself can be used to suppress cross-talk without loosing

too much Drop intensity.

Figures 62 show the case of a device (from now on always L = 10µm coupling section)

where both input signals have the same amplitude but a different phase difference of

∆ϕ = (0, π
4
, 3
4
π, π) (fig. 62(a), (b), (c), (d) respectively). As expected, when the two

input signals are in phase, and the wavelength is resonant with the two racetracks, then

most of the power is transferred to the Drop port.

The Through ports will not exhibit complete extinction due to cross-talk effects (fig.

62(a)). Similarly, when they are in anti-phase (fig. 62(d)) in the Drop port the

destructive interference is complete and no signal is observed, while most of the power

goes straight in the Through ports (the Through minima at resonance are due to the

resonator round trip losses). But, except for the perfect phase or anti-phase cases, the

Through ports resonance shapes become asymmetric and manifest Fano resonance (fig.

62(b) and 62(c)). The Fano asymmetry is stronger for ∆ϕ = 3
4
π of fig. 62(c) than for

∆ϕ = π
4
of fig. 62(b) where it appears still only as a ’bump’ in the resonance shape of

fig. 62(a). The point of interest however is that the two Through shift away from each

others. With no de-phasing the Through ports minima coincide with the Drop

maximum at λ0, otherwise they quickly split apart (λF = λ0 ± 0.8nm in our case,
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Figure 62: Spectral response of the device in fig. 60, with AIn1 = (1, ei
π
4 , ei

3
4π, eiπ) ((a), (b), (c), (d)

respectively), AAd = 0, AIn2 = 1. (Lines as in fig. 61.)

already for ∆ϕ = π
10
). Moreover, the Through ports resonance depth depends from the

de-phasing and reaches almost complete extinction at ∆ϕ = π
4
for our case (fig. 62(b)).

Similarly to what we have seen for the ds-coupler switch in section 2.4 this is potentially

useful to build phase switching devices with good on-off extinctions, even if they exhibit

strong cross-talk in the single-bus arrangement.

To highlight this we repeated the calculations, this time fixing the excitation input

signals at the resonant or at the ’Fano wavelength’ (λ0 or λF respectively), and varying

∆ϕ. At the same time we were also interested in seeing how the system behaves for

different input intensities, for instance maintaining one of the input ports with fixed

intensity while varying the intensity of the other.

The result is shown in fig. 63 for wavelength λ0 and in fig. 64 for wavelength λF , for

four different inputs (IIn2 = δ × IIn1 with δ = (1, 0.75, 0.25, 0)). The following can be

observed. First of all by comparing fig. 63 (a) with fig. 64 (a) one can see that, for

perfect input balance, the Drop port signal turns on and off completely, but the
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Figure 63: Phase response of the device in fig. 60 at λ0, with AIn1 = ei∆Φ, AAd = 0, IIn2 =

(1, 0.75, 0.25, 0) ((a), (b), (c), (d) respectively). (Lines as in fig. 61.)

Figure 64: Phase response of the device in fig. 60 at λF , with AIn1 = ei∆Φ, AAd = 0, IIn2 =

(1, 0.75, 0.25, 0) ((a), (b), (c), (d) respectively). (Lines as in fig. 61.)

Through ports light intensity is never extinguished, whatever the de-phasing. While in

fig. 64 (a) one of the Through signals is almost perfectly off for some de-phasing value.
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In this sense phase switching at λF is more efficient. The case of fig. 64 is also

interesting because three phase switching states are possible: at ∆ϕ = π
4
the Drop and

Through1 are on and Through2 is off, at ∆ϕ = π the Drop is off and both Through are

on, and at ∆ϕ = 7
4
π the Drop and Through2 are on and Through1 is off. Secondly, from

figs. 63 and 64 it becomes clear how a ds-resonator phase switch device must be robust

against the bus signal imbalance. An imbalance of about δ = 0.5 at ∆ϕ = π is needed to

prevent the Drop ports extinction in both cases. The case tuned on λF shows also that

the Through port signals are more intense than in the case for λ0 which might be useful

for practical purposes.

Repeating these simulations for the same device but with with weak couplings, e.g. with

an L = 3µm coupling section, would lead to similar theoretical conclusions tough with

weaker outputs (not shown here, but similar to fig. 64(c)), and with ’Fano splitting’ of

the Through anti-resonances almost an order of magnitude smaller which would make it

more difficult to exploit it from the practical point of view. Therefore, if high quality

factors are not essential (for instance for band- instead of channel-routing systems), to

attain efficient dual-bus phase switching strong coupling with cross-talk suppression can

be used.

If one desires to expand this analysis also to a SCISSOR, we have only to relate the

Through and Add ports of one pair of resonators to the next pair separated by a (bend)

center to center distance D, as shown in fig. 65. To do that we must first transform

properly T of eq. 7.10 into the ’scattering matrix’ S such that
ATh1

AAd

ATh2

 = S


AIn1

AD

AIn2

 . (7.11)
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Figure 65: The 2xN SCISSOR phase switch.

After simple standard algebraic manipulation one sees that:

S =
1

T22


T11T22−T12T21 T12 T31T22−T12T21

−T21 1 −T21

T31T22−T12T21 T12 T11T22−T12T21

 , (7.12)

where the lower indexes indicate the row × column element of T.

Then, by introducing an external propagation matrix Qk which connects the Through

and Add ports of the k-th pair of resonators with the In and Drop ports of the k+1-th

pair as:
AInk+1

1

ADk+1

AInk+1
2

 = Qk


AThk

1

AAdk

AThk
2

 =


eiβD

k
0 0

0 e−iβDk
0

0 0 eiβD
k



AThk

1

AAdk

AThk
2

 (k = 1, .., N) , (7.13)

we can express the general equations for the device of fig. 65 with a total transfer

matrix STot:


AThN

1

AAdN

AThN
2

 = STot


AIn1

1

AD1

AIn1
2

 = SNQN−1SN−1 · · ·Q1S1


AIn1

1

AD1

AIn1
2

 . (7.14)
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And finally, after applying again transformation 7.12, this time to STot, we will have the

complete set of equations which describe the ports amplitudes as
AThN

1

AD1

AThN
2

 = TTot


AIn1

1

AAdN

AIn1
2

 , (7.15)

which is the generalized version of eq. 7.10.

Figure 66: Spectral response of the 2x8 SCISSOR switch of fig. 65 with 1, 2, 4, 8 pairs of resonators

((a), (b), (c), (d) respectively), and inputs AIn1 = 1, AAd = 0, AIn2 = 0. (Lines as in fig. 61)

Fig. 66 shows the so obtained spectral response for the 1,2,4, and 8 pair SCISSOR

phase switch (fig.66 (a), (b), (c), (d) respectively) with only one input signal. The (N-1)

central dips are not due to fabrication tolerances ([29], [51]), but are intrinsic due to the

existence of the central Drop port between the two resonator chains. The system

behaves like a twisted SCISSOR row with asymmetric gaps which introduce a

correspondent tiny asymmetric de-phasing at each resonator gap leading to CRIT-like

features. It is in this spectral region, near the center of the resonance band, where light

couples more efficiently into the resonators and travels repeatedly through them
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producing slow light effects. For this reason it is also in this central CRIT-like region

where most of the attenuation occurs due to radiation and roughness losses on the

resonator bends. Note how, aside from the flat-box spectrum, despite strong input

imbalance, the two Through ports response (red dashed and blue dotted-dashed lines)

tend to merge together inside the mode’s spectral range with the increasing number of

resonator pairs. This is because in an N-pair SCISSOR the light that crosses the first

pair of resonators provides a less imbalanced input into the following pair, and so on. At

the end of the chain the balance between the two signals tends to be restored. This

robustness of SCISSOR devices against imbalances could have practical advantages

where a precise power injection is uncertain or difficult to tailor.

Figure 67: Spectral response of the 2x8 SCISSOR switch of fig. 65 with 1, 2, 4, 8 pairs of resonators

(((a), (b), (c), (d) respectively)), and inputs AIn1 = 1, AAd = 0, AIn2 = 1, with same phase. (Lines as

in fig. 61)

Fig. 67 illustrates the previous case but with both input signals switched on having

both the same phase. From this one can observe that, in the SCISSOR’s resonance

band, the flat-box shape and the efficiency with which the two Through port signals are

extinguished increases with the increasing number of resonator pairs (flattening of the

overlapped blue and red lines in fig. 67 (a)-(d)).
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Figure 68: Spectral response of the 2x8 SCISSOR switch of fig. 65 with inputs AIn1 = (1, ei
π
2 , ei

3
4π, eiπ)

((a), (b), (c), (d) respectively), AAd = 0, AIn2 = 1. (Lines as in fig. 61)

How the relative phase change between the two input ports in a 2x8 SCISSOR affects

the spectrum is shown in fig. 68. Phase differences of 0, π
2
, 3

4
π and π were applied (fig.

68 (a), (b), (c), (d)) respectively). One observes that, also by applying a phase

modulation, the power in the two Through ports tends to be distributed equally along

most of the spectral range of the two sidebands of the resonant flat-boxed mode (at

about ±0.4 to ±1.7 round-trip phase shift), confirming the SCISSOR’s effectiveness in

balancing the outputs. The ’disengagement’ between the two Through ports occurs

only, and almost suddenly, when the limits of the band are reached and the system goes

out of resonance. The abrupt behavior of the Through signals around γ = ±2 in fig. 68

(b) and (c) is caused by the sidelobe ripplings which are not in phase at the two

Through ports. As expected, strong attenuation occurs in the central CRIT-like region

(evidenced by the dip in fig. 68 (d)).

The analogue of the input intensity imbalance of the device of fig. 60 and the phase

responses of fig. 63 or fig. 64 for the 2x8 SCISSOR switch is shown in fig. 69 and fig. 70.
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Figure 69: Spectral response of the 2x8 SCISSOR switch of fig. 65 with inputs imbalance IIn1 =

(1, 0.25, 0.1, 0) ((a), (b), (c), (d) respectively), AAd = 0, AIn2 = 1. (Lines as in fig. 61)

Figure 70: Phase response of the 2x8 SCISSOR switch of fig. 65 with input imbalances IIn1 =

(1, 0.25, 0.1, 0) ((a), (b), (c), (d) respectively), AAdd = 0, AIn2 = 1, at phase round-trip shift γ = 1

of fig. 69. (Lines as in fig. 61)
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Fig. 69 reproduces the response of the 2x8 SCISSOR switch of fig. 65 with inputs

imbalance IIn1 = (1, 0.25, 0.1, 0) ((a), (b), (c), (d) respectively), and AAd = 0, AIn2 = 1.

The thin vertical line, about γ = 1, shows the wavelength at which the phase sweep for

the four different intensities of fig. 70 has been done. Contrary to the single pair phase

switch affected by Fano resonance asymmetries and unequal Through port signal

intensities along the phase sweep, the 2x8 SCISSOR phase switch flattens out the

differences on the Through ports and again shows its robustness against imbalance.

Another potentially interesting application is the 2x1 phase switch where the add port

is used as a third input port. Fig. 71 shows the spectral response of the 2x1 SCISSOR

switch of fig. 60 with inputs AIn1 = 1, AAd = eiϕAd , AIn2 = eiϕ2 and with some examples

of different phase combinations for which one obtains a different light output

combination. Fig.71 (a) ((ϕ1, ϕAd, ϕ2)=(0, 0, 0)) shows the case of all three equal input

Figure 71: Spectral response of the 2x1 SCISSOR switch of fig. 65 with inputs AIn1 = 1, AAd = eiϕAd ,

AIn2 = eiϕ2 and (ϕ1, ϕAd, ϕ2)=(0, 0, 0); (ϕ1, ϕAd, ϕ2)=(0, π
4 ,

π
2 ); (ϕ1, ϕAd, ϕ2)=(0, π, 0); (ϕ1, ϕAd,

ϕ2)=(0, π, π) for fig. (a), (b), (c), (d) respectively. (Lines as in fig. 61.)
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phases: this leads naturally to the direction of light towards all three output ports (with

slight differences caused by the bend losses). Fig. 71 (b) reproduces the case ((ϕ1, ϕAd,

ϕ2)=(0, π
4
, π
2
)): at the central resonance wavelength the power is distributed among the

two Through ports and almost none into the Drop. Fig. 71 (c) represents the

alternative case where only a de-phasing at the Add port is applied ((ϕ1, ϕAd,

ϕ2)=(0, π, 0)): the power goes into the Drop and almost none into the Through ports.

Whereas fig. 71 (d) the Add and one Input port is addressed by de-phasing ((ϕ1, ϕAd,

ϕ2)=(0, π, π)): almost all the light is directed towards the Through1 port. The

symmetric case which directs the light towards the Through2 port is obtained by

applying the same de-phasing but on the opposite Input port (not shown in the figures).

Many other sorts of combinations in phase and intensity at the Input ports, resonator

numbers, and overall resonant device geometry for phase switching applications could

be imagined in the most diverse configurations. There is virtually no limit and these

wanted to be only some examples which should illustrate the potentialities of light

combining and phase switching.
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8 First Practical Realizations of Phase Switching

SCISSOR devices

The last section was theoretical. To summarize, a three bus waveguide SCISSOR phase

switching system device was presented which is able to route light over a broad range of

wavelengths by phase modulation. To obtain its behavior it was necessary to analyze

first the performance of the two bus waveguide single resonator and SCISSOR and

CROW systems. We showed that extending side coupling and Mach-Zhender phase

switching techniques to multiple waveguides and to chains of resonators could

potentially be useful to enhance their switching capabilities. Many other possible

configurations, each of it with several parameters combinations to obtain phase

switching, could be imagined. Of course, the potentialities and richness of photonic

phase switching is by far not exhausted with the devices presented in this work.

However, we believe that herewith we outlined some proposals which display how this is

still a field with vast possibilities, hopefully inspiring further investigations of possible

applications of novel phase switching devices. An example of design and fabrication of a

real device which admits for WDM and switching functions at once, is discussed in this

section.

8.1 The SCISSOR phase and λ-router: switching light by

phase modulation

We propose to use the coherent overlap of light resonant with two identical SCISSOR

for routing. The proposed structure is depicted in fig. 72 and 73. It is composed by two

input waveguides (In1 and In2) which are coupled to two SCISSOR devices. The two

SCISSOR are in turn coupled by a common central waveguide which identifies the Drop
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Figure 72: The SCISSOR router formed by two parallel and coupled eight racetracks SCISSOR. Two

input signals (In1 and In2) are inserted in the router from the left. They have a wavelength resonant

with the racetrack resonances and a phase difference ∆ϕ = π. Light interferes destructively at the central

common waveguide and the signal (D) on the Drop exit is zero. Instead, the signals are transmitted to

the Through ports where the signal intensities are Th1 and Th2. Ain and ATh are the field strength in

the input and Through ports, respectively.

Figure 73: The SCISSOR router formed by two parallel and coupled eight racetracks SCISSOR. Two

input signals (In1 and In2) are inserted in the router from the left. They have a wavelength resonant with

the racetrack resonances and a phase difference ∆ϕ = 0. Light interferes constructively at the central

common waveguide and the signal exits on the Drop port with intensity D. Consequently, the signals (Th1

and Th2) in the Through ports vanish. Ain and AD are the field strength in the input and Drop ports,

respectively.

output port of the router. Depending on the wavelengths of the input signals and their

relative phase difference, two ideally equal intensity input signals (In1=In2) are either

transmitted to the Through output ports (Th1 and Th2) or to the Drop port (D). When

the two input signals are out of phase (∆ϕ = π), as shown in fig. 72, they interfere

destructively in the common waveguide, no signal is transmitted to the Drop port and
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Figure 74: The SCISSOR router phase response with no inputs imbalance (left) and 75% inputs imbal-

ance (right). The input signal intensities are label In1 and In2, the output signals are the two Through

signals Th1 (red line), Th2 (blue line) and the Drop signal D (black line).

the signals are transmitted to the Through output ports. If their phase relation is such

that constructive interference occurs in the central waveguide (∆ϕ = 0, fig. 73), the two

signals add coherently and a signal is transmitted to the Drop output port. Due to

power conservation, in an ideal lossless system, this constructive interference produces a

signal whose intensity is given by the sum of the two input intensities.

In fig. 72 and 73, two parallel eight racetrack SCISSOR are shown. It is clear that the

same phase routing can be achieved by using a lower number of resonators, e.g. a single

resonator pair. However, there are several reasons why SCISSOR is advantageous over

single resonator geometries. For example, let us consider a situation where strong

imbalances between the inputs are present.

Figure 74 illustrates a transfer matrix simulation of the balanced and imbalanced cases.

Propagation and bending losses are considered in the simulation. In the balanced case,

it is observed that the Drop signal is almost 2 for ∆ϕ=0, while it decreases to zero

increasing ∆ϕ to π. Concurrently, the Through signals are zero for ∆ϕ=0 and increase

to almost 1 for ∆ϕ→ π. Note that both D ̸=2 or Th1 ̸=1 and Th2 ̸=1 due to the finite

propagation losses assumed. The slight asymmetry between the Th1 and Th2 signals is

caused by the small differences in their resonant band gap (e.g. see later in fig. 79 left,
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Figure 75: The Through port intensity (at ∆ϕ = π) of the SCISSOR router as a function of the input

imbalance. Only the intensity of one Through signal is reported since the SCISSOR router response is

symmetric with respect to the Through exit ports.

or the more dramatic case studied in fig. 64). If In1 and In2 are different in intensity

while resonant with the SCISSOR, the D signal decreases significantly for ∆ϕ=0: the

effect of the input imbalance starts to be sizeable for a 50% imbalance. Figure 74 right

shows the D, Th1 and Th2 signals for an imbalance of 75%. It is noted that the D signal

does not vanish when In1 and In2 signals are out-of balance, while the two Th1 and Th2

signals are still equal. This is because in an eight pair SCISSOR router, the signals that

resonate with the first pair of resonators provide less imbalanced inputs into the

following pair, and so on. At the end of the resonator chain, the balance between the

two signals is restored and their intensities sum up to the sum of the two inputs.

Fig. 75 shows how the imbalance affects the maximum of the Th1 or Th2 signals by

varying the imbalance of the inputs (transmission defined, at ∆ϕ = π, as

10 log10

(
Ith1/2
IThideal

)
with IThideal

= 1 the Through signal one expects in the ideal case of the

lossless system in perfect balance, i.e. In2

In1
= 1). This is particularly interesting because

it demonstrates that this kind of router recovers possible intensity difference in its

inputs. Such an effect is not achievable by using a router formed by only two resonators.
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Another reason to use many side coupled resonators instead of few is to achieve a better

coupling of the input signals with the central waveguide for ∆ϕ = 0. This leads to a

sharper difference in the Drop signal as a function of the phase. Moreover, as we will

demonstrate in the next sections, lithographic fabrication imperfections tend to be

averaged out with a high number of resonators which yields a more robust design.

Finally, the full width at half maximum (FWHM) of the SCISSOR resonances is larger

for an increased number of resonators which is needed for band routing functionalities.

When the resonator spacing (dR, the distance between two nearby resonators) is chosen

so that the resonator modes and the Bragg modes overlap (dR = πR, where R is the

radius of the curved part of the racetrack), then also a larger FSR is obtained

([21, 22, 23, 24, 25, 26, 74]). These facts are shown in fig. 36 (a) where 1, 2, 4, 8

resonator SCISSOR are compared (the geometrical parameters of the structure will be

given in section 8.2).

Practically, the resolution in the lithography used to produce the router causes

fabrication errors. These affect all SCISSOR devices [29] since they cause random

statistical variations of the SCISSOR parameters (racetrack geometrical parameters,

racetrack to waveguide gap, relative positions of racetracks with respect to the common

waveguide, etc.) at the nanometer scale. These variations affect also the relative phase

of the signals since their optical paths might differ. A comparison of the Drop signal

spectrum of an ideal SCISSOR, fig. 36(a), and of a SCISSOR with 5 nm random

variation in the geometrical parameters, fig. 36(b), shows the appearance of noisy dips

within the resonance band. These dips are the evidence of disorder induced optical

mode localization as discussed in [29]. Their presence limits the range of wavelengths

that can be properly routed by SCISSOR.
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8.2 Modelling, mask design and fabrication

The modelling and simulation of the router were performed via three steps: waveguide

parameter estimation, circuit response modelling and silicon device component

simulation. Parameter estimation was carried out with a full vectorial finite difference

mode solver [69]. For instance, we had to determine the wavelength dependent racetrack

coupling section lengths and the coupling constants, as explained in section 3, and

obtain from these parameters the proper gap spacings. Results are published in [74].

With these parameters, we perform the simulations of the spectral response of the single

SCISSOR and their combination as in the proposed geometry to analyze the Drop and

Through port signals as a function of the phase difference of the input signals, as

explained in section 7. This was done by using a transfer matrix method applied to each

block of the coupled SCISSOR structure. Finally, we simulate the other photonic

components in the router, like waveguide crossings, multimode interference (MMI)

splitters and tapers. These were designed with a commercial Finite Difference Time

Domain (FDTD) package (see section 5.1). All simulations assumed TE-polarization

and SOI waveguides.

Figure 76: Layout of the SCISSOR phase router of fig. 72 and 73. Co-directionality between input and

output is achieved by bending the Th1 and Th2 signals on the right device side.

Figure 76 reports the layout of the router. The input ports have been separated by a
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distance which allows the simultaneous use of two tapered fibers to input the signals.

Reference waveguides are used to monitor the input signals which reach the SCISSOR.

To this end, an MMI splits the input signal in two waveguides: the Reference waveguide

and the real SCISSOR input waveguide (it is the signal in these waveguides which we

have used in the previous calculation and called In1 and In2). It is also desirable to

have all the inputs on one side and the outputs on the other side. For this reason, the

waveguide after the SCISSOR is bent to take the Through signals on the right device

side. This forced us to insert two waveguide crosses.

This design was then transferred to a mask and processed on SOI wafers by using the

processing facilities of CEA, LETI. The wafers were 200mm SOI wafers with a 220nm

thick Silicon and 2µm thick buried oxide. The pattern definition was achieved by using

state of the art DUV 193nm lithography. Different exposure doses were used to change

few critical feature sizes, such as the gaps. The silicon waveguide and the other

photonic components were then covered by a 0.75µm thick SiO2 layer which acts as

waveguide cladding layer as well as a protective layer. The waveguides were designed

with a width of 0.5µm, the waveguide-racetrack gaps were 200 nm, the racetracks have

a radius of R = 3.25µm and a straight section of L = 10µm. For this radius, the process

yields a measured bending losses of about 0.025dB/90◦ (measurements done on a series

of 100 bends).[76] It is customary to define the distance dR as the distance between the

centers of the half circumference of two facing racetracks. In our case dR=10.21 µm. To

decrease the coupling losses, tapering of each input and output waveguides was used. A

500µm long adiabatic taper reduced the waveguide width from 2µm down to 0.5µm.

The crossings and MMI splitters were processed by using a double etch processes in

which a 70 nm shallow etch is followed by a 150 nm deep etch. This double etch scheme

was based on the low insertion losses cross design of Ref. [77]. Measurements on a chain

of cascaded crosses show 0.35 dB loss per crossing with a crosstalk of about −27dB and
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a back-reflection of 0.17% while the major contribution to losses (3.6%) comes from

scattering. The MMI design was the same as in [8] and had about 0.4dB insertion losses

with, however, a strong impairment between the two output channels possibly due to

layer misalignment during the fabrication process. This impairment made very difficult

the use of the Reference signals for intensity normalization.

8.3 Experimental characterization and results

Figure 77: Experimental setup used to test the router (VOA: variable optical attenuator, EMC: electro-

mechanical, SMPM: single mode polarization maintaining, DUT: device under test).

.

The set up used to test the router is shown in fig. 77. It is a standard set-up for

waveguide measurements apart the input section. In fact, we need two input signals

which are coherently controlled in phase. To achieve this, the output of a single CW

tunable laser is connected via a fiber splitter to two polarization maintaining fibers.

Each fiber is then connected to a polarization selector and a variable optical attenuator

(VOA) in order to independently tune the polarization and intensity of the signal in

each fiber. One of the VOA (named EMC-VOA) can be controlled electro-mechanically

in order to have an attenuation sweep linear in time. Due to the fact that attenuation in
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the VOA is achieved by misaligning the input and output VOA fibers, an attenuation

change leads also to a different optical path in the VOA which, in turn, translates into a

phase change of the optical signal. Therefore, during the attenuation sweep we achieve

both a different ratio of the intensities of the signals in the two fibers and a phase shift

of the signal in one fiber with respect to the signal in the other fiber. The two fibers are

then connected to two polarization maintaining tapered fibers which are mounted on a

special holder with two V-groove separated by 250µm. The signals are then coupled into

the device under test (DUT) by butt coupling where the fiber to waveguide alignment is

controlled by a nanometer piezoelectric positioning system. This experimental set-up

allows to get the DUT response either to a wavelength scan of one of the two input

signals or to a relative phase scan of the two input signals with a fixed wavelength.

The five output signals (Ref1, Ref2, Th1, Th2 and D) are then measured either

independently and in sequence with an optical zoom coupled to a Ge detector or

simultaneously by imaging the whole output facet of the DUT into an IR CCD camera.

Then, by an image processing software, the intensity of each spots corresponding to

each output is obtained as a function of the input signals. The set-up allows also

imaging the scattered light on the DUT surface into another IR camera and by image

processing select specific router area to measure the intensity of the scattered light as a

function of the input signals.

The first measurement performed is the spectral response of the router. We used a

wavelength interval corresponding to a resonator resonance and not to a Bragg

resonance. In fact for a Brag resonance neither the Drop nor the Through signals go to

zero in resonance.[29] Our experimental set-up does not allow to perform a wavelength

scan for a controlled and fixed phase difference between the two inputs. For this reason

we could only make a wavelength scan for a single input. For a single input, the Drop

and two Through spectra are reported in fig. 78. We observe a wide pass-band which
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Figure 78: Through and Drop port spectra (black, blue and red lines respectively) measured for the eight

SCISSOR router when a single signal In1 is input. The intensity at the Through port 2 (Th2, blue line)

gives the cross-talk. The thick continuous line represents the theoretical expected response.

extends for almost 6 nm. Here the signal instead of being transmitted to the Through

ports is resonantly coupled with the central waveguide (Drop signal, black line). Due to

the above mentioned limit in the processing, few dips appear in the center of the

pass-band. The dips in the pass-bands limit the available spectral range to the two

lateral sidebands. Because of the power splitting imbalance in the MMI, the measured

spectrum is asymmetric with respect to the resonance as would be expected in the ideal

structure. Despite these experimental limitations, the agreement between the measured

and simulated spectra is satisfactorily. It is interesting to note the large cross-talk from

channel 1 to channel 2 as measured by the signal at the output Through port 2 (blue

line). When the signal wavelength is within the pass band, the signal leaks to the other

output Through port.

The simulated spectrum with a signal only in the In1 (the continuous lines in fig. 78) is

shown also in fig.79 left to compare it with the case where both inputs are injected with

an equal intensity and are in phase (fig.79 right). In this way, we can evaluate the

119



Figure 79: Spectra of the Th1 (red line), Th2 (blue line) and D (black line) outputs for the eight

SCISSOR router with only one input signal (left) and both input signals with the same phase (right).

cross-talk and the response under strongly imbalanced inputs. We note that for the

former case (fig.79 left) the Drop signal shows an intensity which is only half the one of

the input. The Th1 signal is complementary to the D signal with two remarkable

features: out of the pass-band its intensity reaches almost 1, in the pass-band it does

not go to zero. This is due to the cross-talk between the two SCISSOR which causes a

non-zero signal intensity also at the Th2 output in the wavelength range of the

pass-band. To decrease the cross-talk one has to balance the intensity of the input

signals and to increase the number of resonators in the SCISSOR. This is shown in the

right of fig. 79, where the simulations are performed for the same structure but with two

input signals of same intensity and phase. Now the spectral response is the one expected

with two equal output Through signals and zero Through signal in the pass-band.

The phase dependence of the outputs from the router when the signal wavelength is

within the Drop pass-band is shown in fig. 80. A signal wavelength of 1534.95 nm was

used. The phase change was obtained by sweeping in time the attenuation of the

EMC-VOA (In2 intensity sweep). We then correlate the time with the phase shift by

using the 2 π periodicity of the oscillations of the output signals. The response of the

router when the two input signals have equal intensity can be found when the D signal

vanishes (red box in the figure, blow up in the insert).
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Figure 80: Drop (black line), Through 1 (red line), Through 2 (blue line) and Reference 2 (orange line)

signals as a function of the amplitude sweep of one of the two input (In2) of the eight SCISSOR router

of fig. 76. (Inset) Phase response of the device when the two input signals have the same intensity (red

box region in the main graph).

The black, red and blue lines represent the D, Th1 and Th2 signals, respectively. The

orange line represents the Ref2 signal (Reference for In2). It is observed that the phase

difference between the inputs affects significantly the Drop signal only when the two

input channels are increasingly balanced. In fact, the oscillations on the D signal are

large only when Ref2 increases. In addition, the same behavior in the Th1 and Th2

signals is observed. A detail of the phase response of the router when the inputs are

balanced is shown in the inset of fig. 80. Clear oscillations due to constructive and

destructive interference on the central waveguide are observed both in the Drop and

Through signals. This proves that the proposed router can be used both as a phase and

a wavelength router. Where the input signal is routed depends both on the signal

wavelength and on the signal phase. The observed profiles are not perfectly sinusoidal

for an experimental limitation which is related to the noisy mechanical sweep of the

EMC-VOA. Due to losses, mainly scattering losses, the sum of the two out-of-phase
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Through signals does not equal the in-phase Drop signal. This is also observed in the

simulations of fig. 74. Note also how, in the balanced case, the two Through signals are

almost equal, as expected from the simulations. This correspondence is not always

observed due to the slight asymmetries of the Through response.

Figure 81: (a) Phase response of a one pair SCISSOR router (λ = 1542.25 nm) and (b) of an eight

SCISSOR router (λ = 1534.95 nm). (c) Top scattering of the eight SCISSOR router from the common

waveguide area (D channel, black line) and from the resonators area (orange line)(λ = 1528.6 nm). All

graphs are normalized to the maximum amplitude of the D channel.

Figure 81 shows the comparison between the phase response for two routers: one based

on one racetrack pair (fig. 81(a), λ = 1542.25 nm), and the second based on eight

racetrack pairs (fig. 81(b), λ = 1534.95 nm). In addition, we show in fig. 81(c) the top

scattering curves of the eight racetrack pair router (λ = 1528.6 nm). These are taken by

numerically integrating a given portion of the top IR image of the DUT: the area of the
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central common waveguide for the black curve (the resulting intensity is proportional to

the Drop signal) and that of the eight pairs of racetracks for the orange curve (the

resulting intensity is proportional to the light intensity propagating in the resonators).

From these data it emerges that both one and eight pair routers follow the predicted

behavior. In particular, the one pair design shows an extinction in the Drop channel of

9 dB and the amplitudes of the Through signals in destructive interference state sum up

to the value of the Drop signal in constructive interference state. This means that this

design has a good capacity of redirecting the signals in the Through ports without

introducing significant losses. It is, however, observed a shift between the extreme of the

Drop and the two Through signal maxima. This is probably due to a non perfect

alignment of the center of the racetracks which introduces a further uncontrolled phase

shift for the signal propagating in one or the other Through waveguides. On the other

hand, the eight pair design shows a Drop extinction of 15 dB, thanks to the higher

number of racetracks. However, extra losses are observed and the Through signals have

lower intensities than for the one pair resonator router. Figure 81(c) explains the origin

of these extra losses. When the Drop signal shows a minimum in the scattered intensity,

the interference is destructive. In this case we observe that the scattered intensity in the

SCISSOR is maximum. These observations show that, when destructive interference

occurs in the common waveguide, the light signal couples back into the racetracks where

it is partially radiated by the scattering. This behavior is detrimental for routing and

needs to be improved for practical purposes.

Another effect that can be noted in fig. 81 (a) and (b) is the phase offset between the

Drop and the two Through signals. This is a consequence of the random variations in

the racetrack parameters, which randomize in turn the relative phase of the Drop and

the two Through signals. If the input signals In1 and In2 are in phase, they have

nevertheless to go through two different optical paths if the resonators differ. This leads
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to an offset of the Drop signal from the ideal expected extinction at phase difference

∆Φ = 0. To quantify this, we measured seven different but nominally equal one and

eight SCISSOR routers. We statistically quantify the influences of fabrication variations

by measuring the phase difference between the two Through signals (∆Φ1 and ∆Φ1 for

the one and eight SCISSOR router respectively), and their maximum amplitude

difference

∆A =
|Th1 − Th2|

(Th1 + Th2)/2
.

∆Φ1 ± σΦ1 ∆A1 ± σA1

0.34± 0.12 0.4± 0.17

∆Φ8 ± σΦ8 ∆A8 ± σA8

0.02± 0.03 0.24± 0.15

Table 6: Comparison of the phase (∆Φ1,8) and amplitude (∆A1,8) differences between the one

pair (left) and eight SCISSOR (right) router.

Table 6 reports the average values for the one and eight SCISSOR router (left and right

respectively). It is observed that the eight SCISSOR router is much more robust with

respect to fabrication variations (smaller averages) than the one pair router. This is a

consequence of the collective behavior of the SCISSOR which smoothes out statistical

imperfections with an increasing number of resonators. Therefore, there is a trade-off

between the robustness and the losses when designing the number of racetracks in the

SCISSOR router.

8.4 A reconfigurable SCISSOR phase and λ-router

The possibility to reconfigure the router can be further exploited by combining coarse

and dense WDM as shown in fig. 82.

For clarity the figure has been divided in three modules. The first module is responsible

for the phase control. An input signal is split into two parts by an MMI splitter. Both
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Figure 82: Phase switching and λ-routing.

are then directed towards a waveguide serpentine, one of which has the function to

capture the light from a laser beam. This laser light spot, by inducing free carriers in

the serpentine waveguide section, modulates slightly the effective index introducing a

corresponding phase shift, according to the laser intensity. After appropriately tuning

the phase with this phase modulation technique, the two phase shifted signals go into

the phase router module where a spectral band, ∆λ, is directed towards the parallel

SCISSOR and therefore towards the middle waveguide (if ∆ϕ = 0) or the two Through

ports (if ∆ϕ = π). Subsequently, in the third and final λ-router module, the signal is

split into denser channels (λ1−4 or λ5−8 respectively) by another channel routing system

(here as an example a 1× 8 router), that can be designed with high quality factor

resonators.

This combination of a phase and a λ-router shows the principle with which phase

modulation can be employed for reconfigurable networks where the channels obtained

by a standard WDM routing system can be doubled, i.e. we obtain a

2× (1×N)-SCISSOR-λ router, where N is the number of channels that can be

addressed towards the two different outputs. Fig. 82 is similar to the mask design which

was fabricated in one of our wafers, but for graphical clarity we depict it with N = 8
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output channels instead of the N = 10 channels of the real device. In fact, we employed

the same small racetracks of the previous sections to maintain a small footprint but in

order to obtain a higher quality factor the gap separation was increased (R = 3.25µm,

gap=300µm, and L = 9.92− 10.10µm in steps of 20nm). However, the choice of 10

channels was deliberately over numbered in order to be sure that all the FSR would

have been covered and that the appropriate channels could be chosen selectively also

after the fabrication at a later stage of experimental characterization.

Figure 83: Spectral response of the phase and λ-routing device of fig. 82 for five channels.

Top: Expected spectrum. Bottom: Measured spectrum; (left: normalized intensity, right: logarithmic

scale).

This is what has been done in fig. 83 which shows the simulated and measured spectra

in the top and bottom graph respectively (in normalized intensity on the left, and in

logarithmic scale (dB) on the right) for the Drop port of the device in fig. 82 at five
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channels when no phase difference was applied. These channels are routed towards the

Drop and were clearly separated by the resonators afterwards as expected. The match

between the predicted and measured signals is good. Only a discrepancy in the

intensities has to be observed. The peaks were expected to have the same intensity

while the measurements show to be somewhat resonator dependent. This is possibly

caused by the gap randomization at each resonator induced by fabrication errors (here a

gap of 300nm, larger than in other applications considered in this thesis, and which,

because of the exponential decrease of the power coupled with increasing spacing,

becomes more sensitive to these fabrication errors for larger gaps). By applying a phase

difference at the input it was possible to see how the intensity of these peaks decreased

and how they appeared on the two Through ports proving experimentally that indeed

phase switching with λ-routing is possible. The measured spectrum was normalized to

the largest measured output peak at the Drop port (in the simulation to the power in

the input bus, here the Drop port), and therefore does not directly account for the total

loss of the device. A direct measurement of this wasn’t possible because the effectively

coupled input power in the waveguide (input beam in fig. 82) was unknown and

therefore it wasn’t possible to normalize the measured signal over the real input power.

However, from our discussion on the MMI, crossing, coupling, and bend losses in section

5.1 one can nevertheless estimate the total loss as follows. Following the light path in

fig. 82 it undergoes 9 times a 90◦ bend of −0.025 db/90◦ loss, i.e. a 0.225 dB loss, it

encounters two MMIs (−2× 0.4 dB=-0.8 db), one crossing (-0.35 dB). The loss across

the SCISSOR switch is low compared to single resonator losses, as also fig. 67(a), 68(a)

or 69(a) show. This again is because of the efficiency of a chain of resonators to couple

efficiently almost all the light towards the Drop port, only the coupling and bend losses

are left, and which can be estimated from the simulations of fig. 36 to be less than -1

dB. From simulation of fig. 83 (top, right) about -3 dB loss are to expect at the
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λ-router resonators. Finally, the material losses declared by the processing facility of

CEA, LETI is about -1 dB/cm. Even tough our devices were much smaller than 1cm,

(for comparison, the largest structures, the eight SCISSOR switch, is about 150 µm

long), due to multiple round trips light travels in the resonators and the fact that the

dies fabricated are about 6mm long, to remain conservative we add -1 dB for the

material loss. Therefore, the overall loss is about -6.4 dB, which is still acceptable,

especially considering that future improvements and optimizations can lower this value

further. From fig. 83 one sees that the crosstalk between the channels is about, or for

some channels even less, than −10dB, which is a good achievement for a first proof of

concept device and can be optimized further too (e.g. by gap engineering vs. power

losses). The same could be said about the channel density. In order to be sure to get a

strong and easy to detect signal low quality factor resonators for this final λ-routing

stage were chosen (about Q = 1500) and, on a FSR of about 8 nm, each channel has

only about 1nm FWMH which does not lead to high channel densities. However,

considering that higher quality factors of an order of magnitude or even more are

possible with current technology, it is foreseeable that an arrangement of about hundred

channels in future optimized devices could be realized.

.
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9 Conclusion

We modeled and designed some novel photonic λ-routing and phase switching devices

based on SCISSOR. Simulations were compared with experimental measurements of the

designed PIC. The experimental test furnished a first proof of concept of some proposed

micro-optical CWDM devices and how light switching is achieved according to the

phase difference of two input signals.

The overall conclusion is that different structures with similar routing and/or switching

functions are possible. They differ essentially in the geometry and their performance is

highly dependent from the fabrication parameters, as for example the correct choice of

the waveguide structure, the proper choice of the resonant devices arrangement and the

parameters characterizing it (gap spacings, coupling sections, etc.). The degrees of

freedom are so many that resorting to numerical simulation is no option but an

indispensable step without which any practical realization in wafer fabrication, which

offers a costly trial only each several months, would not be possible.

Current technologies however still limit their full performance because of the

randomization of the parameters induced by fabrication errors. Therefore to compare

and evaluate the pros and cons of each device it will be necessary to fabricate and test

directly further some of these structures on chip. Nevertheless, it was shown that the

proposed devices work as expected and that the physics which govern them is well

understood.

These were only some examples of potential applications of cascaded resonator

structures (and also others have been proposed elsewhere [88] [89]). But next generation

electron beam- or extreme ultraviolet lithography promise to lower fabrication errors of

an order of magnitude, making the proposed SCISSOR-routing and phase-switching

systems we discussed a valuable approach which can complement other existing routing
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and switching technologies.

From a theoretical perspective also more sophisticated phase switching schemes were

investigated. We believe that further design optimizations and especially the upcoming

new lithographic technologies will dramatically improve photonic device performances

making these structures feasible and paving the way to new still unexplored routing and

switching functions. In my opinion the phase switching functions of SCISSOR and

CROWS via multiple bus ports, as investigated in section 7, is still an unexplored

domain with possibly several unexpected potential applications waiting to be discovered

and which should be pursued further. But only history will tell for sure which

technology will win. A history I’m glad to participate in.
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11 Appendix

In fig. 60 we can relate (A2
3 , A

2
4 , A

2
5) → (A1

3 , A
1
4 , A

1
5) through eqs. 2.65, 2.66 and

2.67 as: 
A1

3

A1
4

A1
5

 =M


A2

3

A2
4

A2
5

 =


t′ iκD −κ′

iκD tD iκD

−κ′ iκD t′



A2

3

A2
4

A2
5

 . (11.1)

Proceeding in the same way as we have done with matrix M of eq. 4.9, we look for the

coupling matrix that relates in the interference section the upper to the lower waveguide

through the middle one, i.e. (A2
3 , A

2
4 , A

1
3) → (A2

5 , A
1
4 , A

1
5), and obtain the second

transfer matrix Tb:
A2

5

A1
4

A1
5

 = Tb


A2

3

A2
4

A1
3

 =
1

κ′


t′ iκD −1

iκD(κ
′ + t′) tD κ′ − κ2

D −iκD

t′2 − κ′2 iκD(κ
′ + t′) −t′



A2

3

A2
4

A1
3

 . (11.2)

Due to symmetric coupling, K of eq. 4.11 can be applied also at

(A1
6 , A

2
6) → (A1

7 , A
2
7). For the same reason the same internal propagation matrix of

eq. 4.12 can be applied also at (A2
5 , A

1
5) → (A1

6 , A
2
6). Therefore the third transfer

matrix connects (A2
5 , A

1
5) → (A1

7 , A
2
7) in the same way as eq. 7.1 (but with the order

of the propagation and coupling matrixes inverted):

A1
7

A2
7

 = TKP

A2
5

A1
5

 = KP

A2
5

A1
5

 . (11.3)

To proceed in the inverse direction, i.e. from (In2, Through2) to (In1, Through1), note

that, again because of coupling symmetry, TPK relates also (A1
7 , A

2
7) → (A2

5 , A
1
5),

TKP does the same with (A2
3 , A

1
3) → (A1

1 , A
2
1)), and that Tb connects also

(A2
5 , A

2
4 , A

1
5) → (A2

3 , A
1
4 , A

1
3).
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Now we can obtain the overall device response of fig. 60 by separating the contributions

to the two Through and the Drop port as the sum of three different terms corresponding

to the three following device states.

State (I): Input signal In1 only is injected and propagated from the top to the bottom

of the device. 
AIn1 = |AIn1 | eiϕ1

AAd = 0

AIn2 = 0

 7−→

A

Th
(I)
1

AD (I)

A
Th

(I)
2

 . (11.4)

Schematically this goes as follows (from the right to the left):

←−

A2
3

A1
3

 = TPK

 AIn1

A
Th

(I)
1

 (11.5)

←−


A2

5

AD (I)

A1
5

 = Tb


A2

3

0

A1
3

←− (11.6)

 0

A
Th

(I)
2

 = TKP

A2
5

A1
5

←− (11.7)

This means that the first set of equations from the first transferral of eq. 11.5

A2
3 = T PK

11 AIn1 + T PK
12 A

Th
(I)
1

(11.8)

A1
3 = T PK

21 AIn1 + T PK
22 A

Th
(I)
1

,

have to be inserted into eq. 11.6 to obtain:

A2
5 = (T b

11T
PK
11 + T b

13T
PK
21 )AIn1 + (11.9)

+(T b
11T

PK
12 + T b

13T
PK
22 )A

Th
(I)
1

,
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AD (I) = (T b
21T

PK
11 + T b

23T
PK
21 )AIn1+ (11.10)

+(T b
21T

PK
12 + T b

23T
PK
22 )A

Th
(I)
1

,

A1
5 = (T b

31T
PK
11 + T b

33T
PK
21 )AIn1+ (11.11)

+(T b
31T

PK
12 + T b

33T
PK
22 )A

Th
(I)
1

.

Proceeding further with the next transfer we have from eq. 11.7 that:

0 = TKP
11 A2

5 + TKP
12 A1

5 , (11.12)

A
Th

(I)
2

= TKP
21 A2

5 + TKP
22 A1

5 , (11.13)

which, through eqs. 11.9, 11.10 and 11.11, leads to:

A
Th

(I)
1

= T11 AIn1 , (11.14)

AD (I) = T21 AIn1 , (11.15)

A
Th

(I)
2

= T31 AIn1 , (11.16)

with

T11 = −
TKP
11 A+ TKP

12 B

TKP
11 C + TKP

12 D
, (11.17)

T21 = E + F T11 , (11.18)

T31 = G+H T11 , (11.19)

and

A = T b
11T

PK
11 + T b

13T
PK
21 , (11.20)

B = T b
31T

PK
11 + T b

33T
PK
21 , (11.21)

C = T b
11T

PK
12 + T b

13T
PK
22 , (11.22)
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D = T b
31T

PK
12 + T b

33T
PK
22 , (11.23)

E = T b
21T

PK
11 + T b

23T
PK
21 , (11.24)

F = T b
21T

PK
12 + T b

23T
PK
22 , (11.25)

G = TKP
21 A+ TKP

22 B , (11.26)

H = TKP
21 C + TKP

22 D . (11.27)

State (II): Input signal In2 only is injected and propagated from the bottom to the

top of the device. 
AIn1 = 0

AAd = 0

AIn2 = |AIn2 |eiϕ2

 7−→

A

Th
(III)
1

AD (III)

A
Th

(III)
2

 . (11.28)

One proceeds exactly as for state (I), but in the opposite direction. The only difference

in the final result is that in eqs. 11.14, 11.15, 11.16 the ports (In1, Through
(I)
1 ,

Through
(I)
2 ) have to be exchanged with (In2, Through

(III)
2 , Through

(III)
1 ):

A
Th

(III)
1

= T13 AIn2 . (11.29)

ADrop (III) = T23 AIn2 , (11.30)

A
Th

(III)
2

= T33 AIn2 , (11.31)

with T13 = T31, T23 = T21 and T33 = T11.

State (III): Add port signal only is injected and propagated from the central Add

waveguide towards the Drop and upper and lower Through ports.

In the transfer matrix of eq. 7.10 only one coefficient is missing, namely T22. This is

fixed by the other matrix elements and power conservation criteria. Expressing
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explicitly with the matrix elements of T the power balance between the input and

output intensities of the waves it must hold:

|AIn1 |2 + |AIn2 |2 + |AAd|2 = (11.32)

|ATh1 |2 + |AD|2 + |ATh2|2 + Loss = (11.33)

= (|T11|2 + |T21|2 + |T31|2) (|AIn1 |2 + |AIn2|2)+ (11.34)

+ (2|T21|2 + |T22|2) |AAd|2 + , (11.35)

+ (T11T
∗
31 + |T21|2 + T31T

∗
11) (AIn1A

∗
In2

+ A∗
In1

AIn2)+ , (11.36)

+ (T11T
∗
21 + T21T

∗
22 + T31T

∗
21) (AIn1 + AIn1)A

∗
Ad+ , (11.37)

+ (T ∗
11T21 + T ∗

21T22 + T ∗
31T21) (A

∗
In1

+ AIn2)AAd + Loss . (11.38)

with the last term indicating the losses of the structure. This implies the conditions:

|T11|2 + |T21|2 + |T31|2 = 1; (11.39)

2|T21|2 + |T22|2 = 1; (11.40)

T11T
∗
31 + |T21|2 + T31T

∗
11 = 0; (11.41)

T ∗
11T21 + T ∗

21T22 + T ∗
31T21 = 0 . (11.42)

Conditions 11.39 and 11.41 are already satisfied by the coefficients found in the two

previous cases (very cumbersome and long calculations, we don’t prove this analytically,

but numeric implementation has verified this). From 11.42 we finally obtain the last

coefficient for matrix 7.10:

T22 = −
T21

T ∗
21

(T ∗
11 + T ∗

31) , (11.43)

which automatically satisfies also 11.40 through 11.41.
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12 Acronyms

CMOS = Complementary Metal-Oxide-Semiconductor

CMT = Coupled Mode Theory

CRIT = Coupled Resonator Induced Transparency

CROW = Coupled Resonator Optical Waveguides

CWDM = Coarse Wavelength Division Multiplexing

ds- = double sided

dc- = double channel

DWDM = Coarse Wavelength Division Multiplexing

EM = Electromagnetic

FDTD = Finite Difference Time Domain

FSR = Free Spectral Range

FVFD= Full Vectorial Finite Difference

FWHM = Full Width at Half Maximum

GDS = Graphic Database System

GVD = Group Velocity Dispersion

IC = Integrated Circuit

INL = Institut des Nanotechnologies de Lyon

MMI = Multi Mode Interference

MZ = Mach-Zhender

MZI = Mach-Zhender Interferometer

ONoC = Optical networks on chip

PIC = Photonic Integrated Circuit

PM = Polarization Maintaining

PSE = Photonic Switching Element

SEM = Scanning Electron Microscope
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SCISSOR = Side-Coupled Integrated Spaced-Sequences of Resonators

SOI = Silicon-on-Insulator

TBC = Transparent Boundaries Conditions

UPML = Uniaxial Perfectly Matched Layers

VOA = Variable Optical Attenuator

WDM = Wavelength Division Multiplexing

WGW = Waveguide Width

WADIMOS = Wavelength Division Multiplexed Photonic Layer on CMOS

13 Nomenclature and conventions

Normalized intensity: if not mentioned otherwise the powers of the input signals are set

to unity (IInj
= 1, (j=1,..,N)) and the output signal powers IOutj on the abscissa of the

graphs are rescaled to the sum of the input intensities, i.e.
IOutj∑
IInj

.

Radius R: the physical curvature radius of a bend is taken to be that from the center to

the middle of the waveguide.

Amplitude and intensity port labels: In, Through, Drop and Add signal amplitudes and

intensities are labeled as AIn, ATh, AD, AAd and IIn, ITh, ID, IAd respectively.

Loss parameters: on bends radiative losses are expressed as loss per arc length, i.e. in

dB/90◦. Material losses are given in loss per unit length, i.e. dB/cm.
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