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Abstract

Natural languages that originate from a common ancestor are

genetically related, words are the core of any language and cognates are

words sharing the same ancestor and etymology. Cognate identification,

therefore, represents the foundation upon which the evolutionary history of

languages may be discovered, while linguistic phylogenetic inference aims

to estimate the genetic relationships that exist between them.

In this thesis, using several techniques originally developed for biological

sequence analysis, we have designed a data driven orthographic learning

system for measuring string similarity and we have successfully applied it

to the tasks of cognate identification and phylogenetic inference.

Our system has outperformed the best comparable phonetic and

orthographic cognate identification models previously reported in the

literature, with results statistically significant and remarkably stable,

regardless of the variation of the training dataset dimension. When

applied to phylogenetic inference of the Indo-European language family,

whose higher structure does not yet have consensus, our method has

estimated phylogenies which are compatible with the benchmark tree and has

reproduced correctly all the established major language groups and subgroups

present in the dataset.

Keywords

Cognate identification, phylogenetic inference, language evolution,

substitution matrices, PAM-like matrices.





Acknowledgements

I would like to thank all the following people who, in different ways, have

contributed to the realisation of this thesis.

• My advisor Maurizio Marchese and my co-advisor Nello Cristianini,

for helping me to pursue this project and bring it to completion.

• The members of my advisory committee, Andrea Sgarro and Liviu

Dinu, for their thorough review of this dissertation.

• Clinical Trial Service Unit at Oxford University and my colleagues

Christina Davies, Michael Lay, Philip Morris and Paul McGale, for

their continued support and useful suggestions.

• Grzegorz Kondrak for making available his version of the test dataset,

Brett Kessler for commenting on his lists, Quentin Atkinson for

supplying and commenting on the Hittite and Tocharian lists, Geoff

Nicholls for providing some of his papers and datasets, Martijn

Wieling for his comments and material on the PHMM model.

• Ana Fortun for her contribution to the linguistic-inspired substitution

matrix, Alain Thomas and Dario Brancato for their linguistic advice.

• Adam, my partner, for his amazing support, deep understanding,

extraordinary patience and invaluable help in reviewing my written

English.

i



ii



Contents

1 Introduction 1

1.1 Computational historical linguistics . . . . . . . . . . . . . 2

1.2 Cognate identification and phylogenetic inference . . . . . 3

1.3 Proposed solution . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Innovative aspects . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Structure of the thesis . . . . . . . . . . . . . . . . . . . . 8

2 State of the art 11

2.1 Cognate identification . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Orthographic methods . . . . . . . . . . . . . . . . 12

2.1.2 Phonetic methods . . . . . . . . . . . . . . . . . . . 21

2.2 Phylogenetic inference . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Distance-based methods . . . . . . . . . . . . . . . 28

2.2.2 Maximum Parsimony . . . . . . . . . . . . . . . . . 31

2.2.3 Maximum Compatibility . . . . . . . . . . . . . . . 31

2.2.4 Bayesian analysis . . . . . . . . . . . . . . . . . . . 32

2.3 Indo-European linguistic datasets . . . . . . . . . . . . . . 34

3 Language evolution 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Linguistic background . . . . . . . . . . . . . . . . . . . . 38

3.3 Computational applications . . . . . . . . . . . . . . . . . 41

iii



3.4 Cognate identification . . . . . . . . . . . . . . . . . . . . 42

3.4.1 String matching . . . . . . . . . . . . . . . . . . . . 43

3.4.1.1 String distance . . . . . . . . . . . . . . . 45

3.4.1.2 String similarity . . . . . . . . . . . . . . 50

3.4.2 String alignments . . . . . . . . . . . . . . . . . . . 52

3.4.2.1 Global string alignment . . . . . . . . . . 53

3.4.2.2 Local string alignment . . . . . . . . . . . 55

3.4.3 Substitution matrices . . . . . . . . . . . . . . . . . 57

3.4.3.1 PAM matrices . . . . . . . . . . . . . . . 60

3.4.3.2 BLOSUM matrices . . . . . . . . . . . . . 61

3.4.4 Cognate identification systems . . . . . . . . . . . . 61

3.5 Phylogenetic inference . . . . . . . . . . . . . . . . . . . . 64

3.5.1 Methods for phylogenetic inference . . . . . . . . . 65

3.5.1.1 Distance-based methods . . . . . . . . . . 65

3.5.1.2 Character-based methods . . . . . . . . . 67

3.5.2 Evaluation of phylogenetic inference . . . . . . . . . 68

3.6 The Indo-European language family . . . . . . . . . . . . . 69

4 A string similarity measuring system 71

4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 A linguistic-inspired substitution matrix . . . . . . . . . . 73

4.3 Substitution matrices . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 Maximum Likelihood matrices . . . . . . . . . . . . 75

4.3.2 Absolute Frequency Ratio matrices . . . . . . . . . 76

4.3.3 Pointwise Mutual Information matrices . . . . . . . 76

4.3.4 PAM-like matrices . . . . . . . . . . . . . . . . . . 77

4.4 A family of string similarity measures . . . . . . . . . . . . 79

4.5 Cognate identification . . . . . . . . . . . . . . . . . . . . 82

4.6 Phylogenetic inference . . . . . . . . . . . . . . . . . . . . 85

iv



5 Experimental results 87

5.1 Cognate identification . . . . . . . . . . . . . . . . . . . . 88

5.1.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.2 NEDIT . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1.3 Linguistic-inspired substitution matrix . . . . . . . 93

5.1.4 Maximum Likelihood matrices . . . . . . . . . . . . 94

5.1.5 Absolute Frequency Ratio matrices . . . . . . . . . 96

5.1.6 Pointwise Mutual Information matrices . . . . . . . 98

5.1.7 PAM-like matrices . . . . . . . . . . . . . . . . . . 101

5.1.8 Robustness of PAM-like matrices . . . . . . . . . . 107

5.1.9 Comparison . . . . . . . . . . . . . . . . . . . . . . 112

5.1.10 Statistical significance of PAM-like matrices . . . . 115

5.1.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 Phylogenetic inference . . . . . . . . . . . . . . . . . . . . 118

5.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2.2 Experimental design . . . . . . . . . . . . . . . . . 121

5.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2.3.1 UPGMA . . . . . . . . . . . . . . . . . . 124

5.2.3.2 Neighbor-Joining . . . . . . . . . . . . . . 128

5.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . 130

5.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 131

6 Related work 133

6.1 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7 Conclusion 141

7.1 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . 144

v



Bibliography 145

A Swadesh lists 165

B A linguistic-inspired substitution matrix 173

vi



List of Tables

3.1 The metric axioms . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Example of tabular computation of the edit distance with

one optimal alignment . . . . . . . . . . . . . . . . . . . . 47

3.3 Example of one optimal alignment produced by the edit

distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Example of tabular computation of the edit distance with

several optimal alignments . . . . . . . . . . . . . . . . . . 48

3.5 Examples of several optimal alignments produced by the edit

distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Example of optimal alignment produced by the Hamming

distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Example of optimal alignments produced by LCS . . . . . 51

3.8 Example of tabular computation of global alignment using

the identity matrix . . . . . . . . . . . . . . . . . . . . . . 54

3.9 Example of one optimal global alignment produced using

the identity matrix . . . . . . . . . . . . . . . . . . . . . . 54

3.10 Example of tabular computation of local alignment using

the identity matrix . . . . . . . . . . . . . . . . . . . . . . 57

3.11 Example of one optimal local alignment produced using the

identity matrix . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 A family of parameterised string similarity measures . . . . 80

4.2 Contingency table for cognateness . . . . . . . . . . . . . . 83

vii



5.1 11-point interpolated average precision for NEDIT . . . . . 92

5.2 Averaged 11-point interpolated average precision for LIM . 93

5.3 11-point interpolated average precision for NEDIT and LIM 94

5.4 Averaged 11-point interpolated average precision for ML6

and ML6b . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 11-point interpolated average precision for NEDIT, LIM and

ML6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6 Averaged 11-point interpolated average precision for AFR6

and AFR6b . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.7 11-point interpolated average precision for NEDIT, LIM,

ML6 and AFR6 . . . . . . . . . . . . . . . . . . . . . . . . 98

5.8 Averaged 11-point interpolated average precision for PMI6

and PMI6b . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.9 11-point interpolated average precision for NEDIT, LIM,

ML6, AFR6 and PMI6 . . . . . . . . . . . . . . . . . . . . 100

5.10 PAM5 generated by DAY6b . . . . . . . . . . . . . . . . . 102

5.11 Averaged 11-point interpolated average precision for DAY6

using NW . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.12 Averaged 11-point interpolated average precision for DAY6

using SW . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.13 Averaged 11-point interpolated average precision for DAY6b

using NW . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.14 Averaged 11-point interpolated average precision for DAY6b

using SW . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.15 11-point interpolated average precision for several models . 106

5.16 Averaged 11-point interpolated average precision for DAY76

using NW . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.17 Averaged 11-point interpolated average precision for DAY76

using SW . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

viii



5.18 Averaged 11-point interpolated average precision for

DAY76b using NW . . . . . . . . . . . . . . . . . . . . . . 109

5.19 Averaged 11-point interpolated average precision for

DAY76b using SW . . . . . . . . . . . . . . . . . . . . . . 109

5.20 11-point interpolated average precision for DAY6, DAY6b,

DAY76 and DAY76b . . . . . . . . . . . . . . . . . . . . . 111

5.21 11-point interpolated average precision for several methods 113

5.22 Statistical significance of DAY6b and DAY76b using SW . 116

6.1 Example of cognate set for the meaning to dig . . . . . . . 138

6.2 Example of rearranged cognate set for the meaning to dig . 139

A.1 Several variations of the Swadesh list . . . . . . . . . . . . 172

B.1 A linguistic-inspired substitution matrix . . . . . . . . . . 174

ix





List of Figures

4.1 An example of 11-point interpolation procedure . . . . . . . 84

5.1 Averaged 11-point interpolated average precision for DAY6

using NW and SW . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Averaged 11-point interpolated average precision for DAY6b

using NW and SW . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Averaged 11-point interpolated average precision for DAY76

using NW and SW . . . . . . . . . . . . . . . . . . . . . . 110

5.4 Averaged 11-point interpolated average precision for

DAY76b using NW and SW . . . . . . . . . . . . . . . . . 110

5.5 Graphic representation of the distance matrices D1, D2 and

D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.6 Indo-European phylogenetic tree produced using UPGMA

with D1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.7 Indo-European phylogenetic tree produced using UPGMA

with D2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.8 Indo-European phylogenetic tree produced using UPGMA

with D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.9 Indo-European unrooted phylogeny produced using NJ with

D1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xi





Chapter 1

Introduction

Language is a defining feature that distinguishes modern humans

from all other species, is a carrier of culture and plays a key role in

communication. Because of its central function in human evolution,

language has always aroused a high level of interest and much debate

among scholars of different disciplines in the sciences and humanities. The

analogy of language evolution with species evolution [3] has generated

a growing attention in the scientific community as a result of the

extraordinary progress of computational molecular biology in the field of

genomes. Because of this close analogy, the study of language evolution is

being increasingly and successfully explored using techniques developed in

evolutionary biology [53, 52, 87, 109, 6].

Computational historical linguistics studies the evolution of language,

and aims to establish the existence and degree of genetic relationships

between speech varieties. It provides an interdisciplinary approach

that involves fields as diverse as linguistics, computer science, artificial

intelligence, molecular biology, statistics and mathematics, to list a few.

The main objective of this thesis has been the investigation of

evolutionary biological models and their application to the study of

language evolution, using a machine learning, data driven approach.
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1.1. COMPUTATIONAL HISTORICAL LINGUISTICS

1.1 Computational historical linguistics

Languages originating from a common ancestor are genetically related.

Historical linguistics aims to build phylogenies of these languages [53,

52] and to reconstruct as far as possible their common ancestors or

proto-languages [77], in the absence of historical records.

The evolution of language may be analysed through its phonological,

lexical and morphological changes, generally represented as a set of

features, called characters [106]. Common lexical characters used in

historical linguistics are strict or genetic cognates [80], which are words

deriving from a common ancestor and sharing the same etymological

origin [77]. Cognates originate from a vertical transmission and do not

include borrowings, which are words loaned from other languages through a

horizontal transmission [138]. However, in many areas of natural language

processing, the term cognates has a wider meaning and also comprises loans

[80]. As vertical and horizontal transmissions are both significant, cognates

and borrowings play crucial, but different, roles in the investigation of

language evolution [106].

Genetic cognates have the advantage of exhibiting the same character

state only as a result of an evolutionary relationship and not because of

parallel developments or back mutations [106]. For this reason, the study of

genetic cognate words provides evidence of historical relationships between

languages and may be used to identify genetic relationships between speech

varieties and to infer phylogenies.

The synergy between cognate identification and phylogenetic inference,

both representing very promising applications of computational historical

linguistics, may contribute to the tracing of language evolution and to

the investigation of the origin of language. In this thesis, we have

focussed on the exploration of this synergy through the application of

2



CHAPTER 1. INTRODUCTION

evolutionary biological models to the cognate identification problem and

their deployment in the task of linguistic phylogenetic inference.

1.2 Cognate identification and phylogenetic

inference

In order to make a contribution to the fascinating and intricate

problem of language evolution, we have investigated the fields of cognate

identification and phylogenetic inference, as the latter depends on the

former, with respect to the Indo-European language family.

Several different approaches to the cognate identification problem have

been proposed in the literature and phonetic or orthographic methodologies

have been applied, as well as learning algorithms or manually-designed

procedures [76, 86, 83, 80]. In automatic cognate identification, as in

computational molecular analysis, strings may be successfully studied

by inexact string matching techniques, which allow their similarity to

be measured and their optimal alignment to be found. Global or local

alignment algorithms, widely used in biological sequence analysis [41],

usually consist of a substitution matrix and a procedure that finds the

optimal pairwise alignment. The significance of the resulting alignment

depends greatly on the chosen scoring scheme [56].

Phylogenies are evolutionary trees and phylogenetic inference aims

to estimate the genetic relationships between taxa, which in principle

may be species, languages or other entities [46]. In computational

historical linguistics, a phylogenetic tree represents one hypothesis about

the evolutionary relationships among groups of languages, based upon

similarities and differences in their characters [106]. Methods for linguistic

phylogenetic inference estimate the evolutionary history of languages using

information that is generally coded in a distance matrix or in a character

3



1.3. PROPOSED SOLUTION

matrix. Depending on this coding, methods are classified as distance-based

methods or character-based methods and most of them are guaranteed

to reproduce the true evolutionary tree under certain conditions. The

evaluation of linguistic phylogenetic inference is very difficult because

the true evolutionary history is not generally entirely known, even for

the best understood language families. The “Compatible resolution” and

“No missing subgroups” criteria are considered essential and desirable,

respectively [106], when evaluating linguistic phylogenetic estimations.

1.3 Proposed solution

We have designed a new learning system for measuring string

similarities, inspired by biological sequence analysis, and we have applied

it to the tasks of cognate identification and phylogenetic inference. We

have developed our proposal using data in orthographic format based on

the Roman alphabet. However, it may easily be adapted to any alphabetic

system, including the phonetic alphabet, if data were available. The system

consists of three main modules, each presenting an original aspect:

• The first module is a pairwise aligner that performs sensible global

alignments on cognate pairs and prepares a meaningful training

dataset, guided by a novel linguistic-inspired substitution matrix.

This 26-by-26 matrix aims to represent the a priori likelihood of

transformation between pairs of characters in the Roman alphabet

and tries to code well-known systematic sound changes left in written

Indo-European languages. This component is necessary because there

are no databases of aligned cognate words available for linguistic

studies.

4



CHAPTER 1. INTRODUCTION

• The second module is a generator of substitution matrices that

we have implemented using several techniques, including Maximum

Likelihood, Absolute Frequency Ratio, Pointwise Mutual Information

and PAM-like. For the latter, which had the superior performance,

we have developed a new technique inspired by the Point Accepted

Mutation (PAM ) method. This was designed by Margaret Dayhoff

and co-workers [30, 31, 32] and is widely used for amino acid sequence

analysis.

• The third module is a pairwise aligner that measures the similarity

between words by using the generated substitution matrices and

a novel family of parameterised string similarity measures. The

similarity measures derive from different normalisations of a generic

scoring algorithm and take into account the similarity of each string

with itself with the aim of eliminating, or at least reducing, the bias

due to different string length.

We have successfully applied this learning system to the task of cognate

identification and phylogenetic inference.

To test the ability of our string similarity measuring system in the task

of cognate identification, we have evaluated the likelihood that two words

with the same meaning from two different languages were cognates, by

calculating their similarity score. We have sorted the scores computed for

each language pair, taking into account the alphabetic order when more

than one word pair has shown the same rate. To evaluate the accuracy

of the system in identifying correctly cognate words, we have not used

a threshold, because this may be influenced by the type of application,

the method used and the degree of language relatedness [80]. Instead we

have utilised the 11-point interpolated average precision [90], which is an

5



1.4. INNOVATIVE ASPECTS

evaluation metric originally built for ranking computation in the field of

Information Retrieval. This measure has frequently been used in the field

of cognate identification by other studies, with which we wanted to make

a direct comparison.

We have also applied this learning system for measuring string

similarities to the task of phylogenetic inference, in order to test its efficacy

against documented aspects of the Indo-European language family. We

have utilised the similarity scores between word pairs to calculate similarity

scores between language pairs. We have then converted these similarity

scores into distance scores, which we have employed in distance-based

methods to estimate phylogenies.

1.4 Innovative aspects

Our main contributions to the study of language evolution are:

1. The development of a new learning system for measuring word

similarity that has been inspired by biological sequence analysis. The

system benefits from several original features: a linguistic-inspired

substitution matrix to align globally the training dataset, a scoring

matrix generator to learn substitution parameters and a novel family

of string similarity measures to improve the alignment and rate of word

pairs. In particular, for learning PAM-like matrices we have developed

a technique similar to the PAM method, designed by Dayhoff et al.

[30, 31, 32], which is one of the gold standard in amino acid sequence

analysis.

2. The successful application of this learning system to the task

of cognate identification. Indeed, the system has shown its

superior performance and higher consistency across different language

6



CHAPTER 1. INTRODUCTION

pairs, when evaluated against the best comparable phonetic and

orthographic models previously proposed in the literature [76, 87, 83].

3. The assessment of the system’s robustness, regardless of the dimension

of the training dataset. The system has been tested by increasing the

training dataset dimension by a factor of approximately 100, which

implied extending the number of Indo-European languages by a factor

of approximately 13. The results have been impressively stable and

have shown no relevant difference in the performance.

4. The investigation of the statistical significance of our results when

compared with earlier proposals and with each other. The outcome

has shown, with strong and good evidence, that our results are more

accurate than those previously reported in the literature and that

the training dataset dimension does not influence their statistical

significance.

5. The application of the proposed methodology to the task of

phylogenetic inference in order to test its effectiveness against

recognised aspects of the Indo-European language family, whose

higher structure is still controversial. Our results have reproduced

correctly all the established major language groups and subgroups

present in the dataset and have shown to be compatible with the

Indo-European benchmark tree. In doing this, our outcome has

successfully met the required linguistic evaluation criteria and, in

addition, it has included some of the supported higher-level structures.

These results have been presented in the following publications:

• Delmestri A., Cristianini N., ”String Similarity Measures and

PAM-like Matrices for Cognate Identification”, Bucharest Working

Papers in Linguistics, vol. XII, no. 2, pp. 71-82, 2010.

7



1.5. STRUCTURE OF THE THESIS

• Delmestri A., Cristianini N., ”Robustness and Statistical Significance

of PAM-like Matrices for Cognate Identification”, Journal of

Communication and Computer, vol. 7, no. 12, pp. 21-31, 2010.

• Delmestri A., Cristianini N., ”Linguistic Phylogenetic Inference by

PAM-like Matrices”, Submitted.

1.5 Structure of the thesis

Chapter 1 provides a brief overview of this thesis. Firstly, it

introduces computational historical linguistics as a research field and it

presents cognate identification, together with phylogenetic inference, as

key problems in the study of language evolution. It then gives a concise

description of the string similarity measuring system that we have designed

using a machine learning, data driven approach, inspired by biological

sequence analysis. Finally, it describes our main contributions to the state

of the art in the fields of cognate identification and phylogenetic inference,

together with our related publications.

Chapter 2 reports the state of the art in both the fields of cognate

identification and phylogenetic inference. For the former, it reviews the

most authoritative studies proposed in the literature, covering orthographic

and phonetic methods, as well as learning systems and static procedures.

For the latter, it describes the more interesting distance-based and

character-based methods introduced by other scholars to date. It also

presents the two main datasets recommended for linguistic studies.

Chapter 3 introduces the problems of cognate identification and

phylogenetic inference as fundamental fields in computational historical

linguistics. The cognate identification problem is expressed as an

approximate string matching problem, that may be studied by a string

8



CHAPTER 1. INTRODUCTION

distance or string similarity approach. The task of calculating the distance

or similarity between two strings is shown to be closely related to the

problem of finding their optimal alignments. Particular attention is given

to the similarity approach, which is the standard in biological sequence

analysis and has been used in our investigation. Global and local string

alignment algorithms are explained and the crucial role that substitution

matrices play in them is highlighted. PAM matrices and BLOSUM

matrices are briefly described as the most significant amino acid scoring

schemes used in bioinformatics. Chapter 3 continues with the presentation

of the phylogenetic inference problem, together with a classification of

several distance-based and character-based methods. The difficulty of

evaluating linguistic phylogenetic estimations is explained and evaluation

criteria are provided. Finally, the Indo-European language family is

introduced as the target of our phylogenetic estimation. Its particular

role in the field of historical linguistics is addressed, which motivates our

investigation.

Chapter 4 proposes a new learning system for measuring string

similarity as a solution to both the cognate identification and the

linguistic phylogenetic inference problems. The main architecture is

described, together with the innovative aspects of our proposal. A

novel linguistic-inspired substitution matrix is used to align sensibly the

training dataset. Several techniques are utilised to learn substitution

parameters, including Maximum Likelihood, Absolute Frequency Ratio,

Pointwise Mutual Information and PAM-like, which has been inspired

by the PAM method used in biological sequence analysis. A new family

of parameterised string similarity measures is employed to improve the

alignment and rate of string pairs. Finally, the application of the learning

system to the tasks of cognate identification and phylogenetic inference is

explained in detail.

9



1.5. STRUCTURE OF THE THESIS

Chapter 5 presents the experimental results in the tasks of cognate

identification and phylogenetic inference. For the former, the datasets

used are described, together with the results produced by our system.

PAM-like models are recognised as the most successful and their robustness

is assessed towards the variation of the training dataset dimension.

PAM-like methodology results are compared with others reported in

the literature, their outstanding and highly consistent performance is

highlighted and their statistical significance verified. Chapter 5 also

describes the experimental results in inferring phylogenies, together with

the datasets used and the proposed experimental design. The compatibility

with the Indo-European benchmark tree, and the correct reproduction of

all the established major language groups and subgroups present in the

dataset, is assessed.

Chapter 6 provides a detailed description and critical analysis of those

successful studies in the field of cognate identification that share with our

investigation an orthographic learning approach and that our system has

outperformed.

Chapter 7 summarises the work presented in this thesis. It describes the

achievements reached by our investigation and highlights the advancements

to the state of the art. It also reports our conclusions and outlines our

future plans.

10



Chapter 2

State of the art

In this chapter we review several studies in the fields of cognate

identification and phylogenetic inference. Our aim is to provide a solid

background of knowledge, but also to show the research history and its

progression in these areas over time. For this reason, whenever possible,

we follow the chronological order of the proposals. We apologise to the

many valuable authors whom, owing to space limitations, we are not able

to mention.

2.1 Cognate identification

Words are strings belonging to a natural language and cognates are

words sharing the same ancestor and etymology. Cognate identification

has been successfully applied to several tasks of computational historical

linguistics, including dialectology [72, 103, 140, 141], phylogenetic inference

[42, 53, 115, 52, 113, 104, 105, 123, 16, 40, 118] and proto-language

reconstruction [22, 23, 76, 107, 77]. Moreover, it has been beneficially

utilised in many different areas of natural language processing, where the

term cognates has a wider connotation and also comprises borrowings [80].

These areas include semantic word clustering [1], bilingual lexicography

[15, 67], machine translation [57, 82], lexicon induction [88, 75, 122, 97],

11



2.1. COGNATE IDENTIFICATION

parallel corpora sentence alignment [124, 21, 94, 96], parallel corpora word

alignment [134, 78], cross-lingual information retrieval [111] and confusable

drug name detection [81].

A number of different approaches to the cognate identification problem

have been proposed, and orthographic or phonetic models have been used

as well as learning systems or static procedures. In Sections 2.1.1 and 2.1.2

we will review the most relevant methods presented in the literature, which

frequently focus on goals unrelated to historical linguistics.

2.1.1 Orthographic methods

The Dice’s similarity coefficient [39] is a similarity measure reinvented

several times in different fields, which has been frequently utilised in

cognate identification. It was originally known as Czekanowski’s similarity

index [26], from the statistician and linguist who proposed it in 1913 to

analyse the similarity between two samples, in order to create numerical

taxonomies. Czekanowski applied his index to samples of phonemes and

words in text corpora of different languages. In 1945, the index was

introduced to the field of biological communities classification by Dice [39],

when it assumed its current name. In 1948, it was applied to the study

of ecological communities classification by Sørensen where it assumed the

name of Sørensen’s similarity coefficient [129]. More recently, it has also

been used in the field of information retrieval [89].

In stringology, where a bigram is an ordered and contiguous pair of

characters, the Dice’s similarity coefficient (DICE ) [39] of two strings S1

and S2 is defined as the ratio of twice the number of bigrams shared by

the two strings to the sum of bigrams present in each string:

DICE(S1, S2) =
2 ∗ b12

b1 + b2
(2.1)
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CHAPTER 2. STATE OF THE ART

where b1 and b2 are the numbers of bigrams in S1 and S2, respectively,

and b12 is the number of shared bigrams between S1 and S2. Bigrams give

some information about the sequence of the characters in a word that single

characters do not. When compared with longer n-grams, which are ordered

and contiguous substrings of n characters, bigrams give less information

about the character proximity, but do not miss the occurrence of shorter

substrings. DICE [39] can assume real values in the range [0,1], where 0

means no similarity and 1 maximum similarity.

Adamson and Boreham [1] pioneered one of the first attempts to identify

automatically cognate words based on their orthographic form. They used

DICE [39] as an association measure to cluster automatically sets of words

from a chemical database into semantically related groups. DICE [39] was

not chosen for its absolute value, but to order significantly the word pairs

so that the higher the coefficient, the stronger the association between the

words. By defining different thresholds for DICE [39], the authors found

one that allowed a successful identification of clusters containing related

words. The roots of the chemical element names contained in the word

sample made the experiment significant in the field of genetically related

word identification.

Simard et al. [124] made another early effort to identify automatically

broad cognate words based on their orthography. Their research was

functional to the task of sentence alignment in bilingual corpora, which

are corpora composed of a source text along with a translation of that text

into a different language. When the two different versions of the same text

are finally aligned, they are called a bitext [60]. The authors started from

the assumption that cognate words are more likely to be used as mutual

translations than other pairs of words. Following the exact string matching

13



2.1. COGNATE IDENTIFICATION

approach [56], they proposed a method, later called Truncation, which

consisted of a binary measure of broad cognateness between two words

based on their matching prefix. If two words shared a common prefix at

least four characters long, they were considered cognates, otherwise they

were not. An obvious limitation of this approach is shown by those words

that share the first four characters, but are not cognates (false positive),

and by those words that do not share the first four characters, but are

actually cognates (false negative).

Church [21] used Truncation [124] to align bilingual corpora at the

character level. He assumed that characters matched across languages

if they participated in broad cognates.

McEnery and Oakes [94], working in the task of sentence alignment in

parallel corpora, made an attempt to identify broad cognate words between

English, French and Spanish. They applied several string matching

techniques, including DICE [39], Truncation [124] and a variation of

the Damerau-Levenshtein distance (DL) [27], which they called Dynamic

Programming (DP):

DP (S1, S2) = 1− DL(S1, S2)

max(|S1|, |S2|)
(2.2)

For each method, the authors divided the word pairs into bands

according to their scores and set a threshold for them. They calculated

a value of 0.9 for DICE [39] and a length of 8 for Truncation [124] in order

to obtain 95% accuracy. They also discovered that DICE [39] performed

better than the DP technique, which they proposed.

Brew and McKelvie [15] presented an application for lexicography in

the task of word-pair extraction from multilingual corpora. In order
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CHAPTER 2. STATE OF THE ART

to identify English and French broad cognates, they evaluated several

methods, including DICE [39] and five variants of it, which changed how

the bigrams were defined and weighted. We have reviewed here those

variations that have been used successively in the literature.

XDICE is a variant of DICE [39], which is applied on extended bigrams,

consisting of the standard bigrams plus the ordered letter pairs produced

from trigrams, without considering the middle letter:

XDICE(S1, S2) =
2 ∗ xb12

xb1 + xb2
(2.3)

where S1 and S2 are two strings, xb1 and xb2 the number of extended

bigrams in S1 and S2, respectively, and xb12 the number of shared extended

bigrams between S1 and S2.

XXDICE is an extension of XDICE, where the contribution of each

shared extended bigram is not simply 2, but consists of the following

normalisation, and pos is a function that returns the position of an extended

bigram in a string:

2

1 + (pos(xbigram1)− pos(xbigram2))
2 (2.4)

The authors did not specify how to match the bigrams, if they are not

unique within a word [79].

LCSA, as we have named it, is another similarity measure between

two words defined as the ratio of the length of their Longest Common

Subsequence (LCS ) [137] to the Average length of the two strings. The

normalisation prevents bias towards longer words:

LCSA(S1, S2) =
2 ∗ |LCS(S1, S2)|
|S1|+ |S2|

(2.5)
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2.1. COGNATE IDENTIFICATION

The authors established a threshold for the similarity measures under

test and demonstrated that XXDICE outperformed all the others, reaching

a high precision in detecting English-French cognates.

Melamed [95], in the task of N-Best translation lexicons induction,

introduced a cognate filter, setting a threshold for the Longest Common

Subsequence Ratio (LCSR) of two words, which he defined as the ratio

of the length of their longest common subsequence, to the length of the

longest word. The normalisation again prevents bias towards longer words:

LCSR(S1, S2) =
|LCS(S1, S2)|
max(|S1|, |S2|)

(2.6)

Melamed [96] identified broad cognates by setting a threshold for LCSR

in the task of bitext alignment via pattern recognition at the sentence

level. The system produced mappings and alignments for a large corpus

of French-English bitexts. The author suggested that his approach could

be extended to the phonetic level, if phonetic transcriptions of the source

texts were provided.

Tiedemann [134] proposed the automatic construction of three weighted

string similarity measures, which could be used to identify broad cognates

in bilingual corpora. His approach aimed to learn the recurrent

spelling changes between candidate cognates, using bitext co-occurrence

in Swedish-English parallel corpora. These two languages represent a good

example of etymologically related languages presenting a different way of

spelling. The training set consisted of reference lexicons and the test set of

bilingual word pairs. The first approach identified character mappings,

the second vowel and consonant subsequence mappings, and the third

non-matching pair mappings. The first two methods measured matching
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co-occurrences by DICE [39], defined in terms of frequencies for each pair

in the list of set mappings, and used it in the string matching functions.

The third method, that outperformed the others, measured co-occurrence

of non-matching pair mappings, such as Swedish ska and English c using a

variant of LCSR [95]. The introduction of the learning aspect in the task

of cognate identification represented a very significant contribution of this

study.

Mann and Yarowsky [88] explored ways of using cognate pairs to

create a translation lexicon and proposed an automatic induction of it

via bridge languages. In order to detect broad cognate words, they

experimented with three variations of the alphabet-weight edit distance

[56] with modified costs for edit operations. In the first model, called

Levenshtein-Vowel, the substitution operation weights between vowels were

manually modified. On the contrary, the other two models were adaptively

trained and the alphabet weights were learnt from a training set by a

stochastic transducer, proposed by Ristad and Yianilos [116]. The second

model, called Levenshtein-All, was trained on all the languages considered,

while the third, called Levenshtein-Single, was trained on each language

pair. The authors compared these three models against the Levenshtein

distance [84] and two other methods introduced in the field of speech

recognition: the stochastic transducer by Ristad and Yianilos previously

mentioned [116] and a Hidden Markov Model (HMM ) proposed by Jelinek

[69]. The model Levenshtein-Single outperformed all the others in the

task of cognate identification and confirmed the effectiveness of learning

substitution alphabet weights.

Kondrak and Dorr [81] investigated orthographic and phonetic

similarity in the task of confusable drug names identification. They
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2.1. COGNATE IDENTIFICATION

proposed a family of n-gram similarity measures called n-SIM as a

generalisation of LCSR [95]. BI-SIM and TRI-SIM represented the longest

common subsequence of bigrams and trigrams, respectively. They also

presented a family of n-gram distance measures, called n-DIST, as a

generalisation of the edit distance [84] normalised by the length of the

longer string. BI-DIST and TRI-DIST represented the edit distance

between subsequences of bigrams and trigrams, respectively. The authors

also introduced a generalisation of Truncation [124], which they called the

PREFIX coefficient. They defined it as the length of the Longest Common

Prefix (LCP) between two words, normalised by the length of the longer

of the two words, to obtain a real value in the range [0,1]:

PREFIX(S1, S2) =
|LCP (S1, S2)|
max(|S1|, |S2|)

(2.7)

Kondrak and Dorr tested all these measures of similarity between strings

plus several others, including ALINE [76], which is a phonetic aligner

that will be discussed in Section 2.1.2. They showed that the similarity

measure BI-SIM outperformed all the others on a test dataset containing

orthographically and phonetically similar drug names. ALINE [76]

achieved the greater accuracy on a test dataset including only phonetically

similar pairs.

Mackay [86] developed a cognate identification orthographic learning

system using Pair Hidden Markov Models (PHMMs) [41]. Mackay and

Kondrak [87] tested and compared this system with several other methods,

including ALINE [76], showing its superior accuracy in identifying broad

cognates. These last two studies will be reviewed and discussed in detail

in Chapter 6. The PHMM that performed better is called hereinafter only

PHMM.
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Kondrak [78] focussed on identifying broad cognate words in

orthographic format in the task of word alignment in bitexts. The author

proposed a variant of LCSR [95], called Longest Common Subsequence

Formula (LCSF). This is a similarity measure designed to avoid, or at

least mitigate, the bias towards both longer and shorter words that no

normalisation, or normalisation by the length of the longer word, may

produce. LCSF between two strings S1 and S2 is defined as:

LCSF (S1, S2) = max (−log (

(
n

k

)(
n

k

)
pk), 0) (2.8)

where n is the length of the longer word, k is the length of the LCS [137]

between S1 and S2 and p is the probability of a match of two randomly

selected letters. The author compared the accuracy in detecting broad

cognates of several similarity measures, including PREFIX [81], DICE [1],

LCSR [95] and LCSF, the latter consistently outperforming the others.

Inkpen et al. [67] employed thirteen orthographic similarity measures

to identify automatically cognates in French and English for learning aid

purposes. The similarity measures included PREFIX [81]; DICE [1];

TRIGRAM, which was defined as DICE, but worked on trigrams instead

of bigrams; XDICE and XXDICE [15]; LCSR [96]; NED, the edit distance

[84] normalised by the length of the longer string; a variation of the

SOUNDEX system [58] that, after reducing all strings to a Soundex code of

one letter and three digits, removes the zeros, truncates the resulting strings

to four characters and returns the edit distance between two codes; BI-SIM,

TRI-SIM, BI-DIST and TRI-DIST [81]. The authors collected word pairs

from different sources and trained several machine learning classifiers from

the Weka package1, a Java open source collection of machine learning

1 http://www.cs.waikato.ac.nz/ml/weka/
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2.1. COGNATE IDENTIFICATION

algorithms for data mining tasks. They tested the similarity measures and

the machine learning classifiers on a test dataset and showed that many of

the similarity measures reached good accuracy, outperforming the learning

methods. XXDICE [15] achieved the better results.

Kondrak [79] presented a formal definition of the families of n-SIM and

n-DIST similarity measures previously proposed by Kondrak and Dorr

[81]. He also provided dynamic programming algorithms [11] for their

computation. The author tested these measures against the corresponding

standard unigram similarity measures to evaluate their effectiveness on

three different word-comparison tasks: the identification of strict cognates,

broad cognates, and confusable drug names. The results suggested that

the n-gram measures outperformed their unigram equivalents.

Kondrak and Sherif [83], working on orthographic data, developed four

different learning models of a Dynamic Bayesian Network (DBN ) [48].

They also evaluated and tested a group of other phonetic and orthographic

algorithms, including ALINE [76] and PHMM [87]. One of the DBN, called

hereinafter only DBN, outperformed all the other systems including PHMM

[86], but not significantly. This work will be reviewed and examined in more

detail in Chapter 6.

Cysouw and Jung [25] experimented an iterative process of multi-gram

alignment between words in order to identify broad cognates from large

parallel corpora in orthographic format. They utilised automatically

extracted, semantically equivalent word pairs in English, French, Spanish,

Portuguese, Russian and Hunzib, which is a Caucasian language. The

algorithm considered all possible multi-gram pairs, up to four characters

long, between cognate candidates, and DICE [39] was computed for each of
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the multi-gram pairs based on their incidence in the whole list of word pairs.

In order to align and evaluate the cognate candidates, the authors proposed

an extension of the Levenshtein distance [84], that included mappings of

up to four length multi-grams and used the previously calculated DICE

[39] as a cost function. The alignments that were found, were utilised to

infer iteratively a new cost function, until it reached stabilisation. The

authors also tested the method on a random variation of the dataset and it

succeeded in recognising noise from broad cognates. One interesting aspect

of this method is that it is orthography-independent and can be applied

to graphemes written with different alphabets (e.g. Roman and Cyrillic

alphabets) without the need of transliteration.

2.1.2 Phonetic methods

Guy [57], following the phonetic approach, developed COGNATE

in an early attempt to develop a correspondence-based system for the

identification of broad cognates in bilingual word-lists, for the task of

machine translation. The author worked on bilingual lists of phonetically

transcribed word pairs and, by identifying probable sound correspondences,

estimated the likelihood that the words of each pair were cognate. A

variant of the χ2 statistic [108] was used on the phoneme correspondences

discovered, to calculate correspondence probabilities. For each word pair,

the alignment that maximised the sum of the correspondence probabilities

was found and the alignment score was transformed into a cognate

estimation by an empirical formula. The author did not provide any

quantitative evaluation of his system, which was tested subsequently by

Kondrak [77].
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Kessler [72] pioneered in the task of measuring phonetic distance

between dialects. He compared several methods including the Levenshtein

distance [84] and the alphabet-weight Levenshtein distance [56], where the

alphabet was the set of phones, i.e. the atomic phonetic characters. He

considered the Irish Gaelic dialects, which were represented by phonetic

word lists provided by Wagner [136], each containing about 50 concepts.

In order to detect cognate words based on their phonetic transcription, the

author proposed the feature string comparison approach that associated

arbitrarily discrete ordinal values, scaled between 0 and 1, to each of

the twelve phonetic features recognised. The distance between any two

phones was calculated as the difference between the averages of all twelve

feature values and these distances were used in the computation of the

alphabet-weight Levenshtein distance [56]. The author found that the basic

Levenshtein distance [84] outperformed the more sophisticated variant

based on features comparison.

Covington [22] evaluated phonetic distances in an attempt to align

cognate candidates for historical linguistic comparison. He developed a

guided search algorithm for finding probable correct alignments between

two words, presented in a broad phonetic transcription, on the basis of their

surface form, without looking for sound laws or phonological rules. The

author distinguished three types of phonetic segments: vowels, glides (i.e.

w, y) and consonants. He manually assigned penalties for substitutions by

a trial and error procedure on a dataset of 82 concepts in several languages

derived from the Swadesh lists [132] provided by Ringe [114]. On this

dataset, the algorithm proved to be able to align successfully, challenging

word pairs in several languages, such as Spanish-French, English-German

and English-Latin, where the best alignment was considered the one

with the lowest total penalty. An evident limitation of the algorithm,
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acknowledged by Covington himself, was that it did not use phonetic

features that would have been beneficial, even if vocalicity and vowel length

were implicitly considered.

Covington [23] extended his algorithm to perform the challenging task

of multiple string alignment, as opposed to pairwise string alignment. The

author tested the new algorithm on data from several languages and the

results were reasonable, considering it was one of the first attempts at

multiple string alignment in computational historical linguistics.

Nerbonne and Heeringa [103] followed the phonetic approach in the task

of measuring phonetic distances between Dutch dialects. They compared

fourteen variants of the Levenshtein distance [84]. The simpler two were

based on phones, while the more complex twelve required the phoneme

decomposition into vectors of phonetic features. For the latter group,

the authors experimented with weighting each feature by information gain

and with three ways of calculating the distances between phonemes: the

Manhattan distance [36], the Euclidean distance [36] and the distance

based on the Pearson correlation [36]. Moreover, on both groups, they

tested the benefit achieved by utilising diphthongs of one or two phones.

The authors normalised the absolute distance between two words, by the

length of the longer word. The distance between two dialects was then

calculated as the sum of the Levenshtein distances [84] between two lists

of corresponding words, composed of approximately 100 items from 40

Dutch dialects. This created a 40-by-40 symmetric matrix, which was

then processed by a distance-based clustering algorithm using the Ward ’s

method [68] for the visualisation of a dendrogram, which accorded well with

dialectal scholarship. The authors found that, in the task of measuring

dialect relatedness, the more accurate of the tested methods was based on
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vectors of non-weighted features, whose comparison was better evaluated

by the Manhattan distance using diphthongs of two phones.

Somers [127] proposed a special algorithm for the automatic analysis

of children mis-articulations in the field of speech therapy. The algorithm

was an aligner of children phonetic segments with the adult model. The

author implemented and tested three versions of the algorithm. The three

procedures were based on different substitution cost computation, which

used binary articulatory features, perceptual features and multivalued

features, respectively. The first version, called CAT proved to be the more

accurate. The author tested CAT on the Covington’s test dataset [22] and

the results, in terms of accuracy, were comparable with those achieved by

the Covington’s algorithm [22].

Oakes [107] developed JAKARTA, a set of phonetic-based programs,

that represented and performed automatically several steps of the

comparative method [2], in order to achieve proto-language reconstruction.

JAKARTA contained a phonetic aligner, which aimed to discover regular

sound changes between historically related languages. The author

identified three phonetic features: place, manner, and voicing, and assigned

multiple values to the former two and a single value to the latter. He

considered numerous possible sound changes, including lenition, fortition,

assimilation, dissimilation, apocope, syncope, epenthesis and prothesis

[18]. He assigned to all of them a uniform cost of 1, while to the other

substitutions, insertion and deletion operations, he gave a cost of 2. Oakes

considered two words to be cognate if their edit distance [84] was below

a certain threshold, regardless of the words length. He calculated the

threshold by examining the distances between cognate and non-cognate

pairs in four Indonesian word lists, which he used to test the programs
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as well. The reconstructions found by JAKARTA were compared with

the corresponding ones in the linguistic literature and the results were

satisfactory. The choice of using the same development and test dataset

represented an obvious limitation of this approach, which might have had

a lower performance on a different test dataset, as demonstrated [77].

Kondrak [76] developed ALINE, a manually-designed algorithm for

phonetic sequence alignment. The aligner represented phonetic segments

as vectors of feature values and calculated their similarity through a local

alignment procedure, performed by dynamic programming [11]. The twelve

phonetic features were weighted according to their salience, which was

established manually by trial and error. For example, the most significant

features, which are Place and Manner, were assigned higher weights than

less important features, like High and Long. The numerical values of each

feature were based on data reported in the literature and aimed to reflect

the distances between vocal organs during verbal emission. The author

tested ALINE against the Covington algorithm [22] using the dataset

employed by Covington [22] and found that ALINE outperformed the other

in terms of accuracy and efficiency in cognate alignment. The author also

compared the alignments produced by Somers with CAT [128] on the same

dataset and found that ALINE produced more accurate alignments.

Kondrak [77] presented techniques and algorithms for automatically

performing various stages of language reconstruction and evaluated them

against several other methods. The test dataset was composed of the

English, German, French, Latin and Albanian 200-word Swadesh lists [132]

provided by Kessler [73] and arranged in ten pairs. He compared against

ALINE [76] several similarity-based methods for cognate identification,

including JAKARTA [107], Truncation [124], DICE [39] and LCSR
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[96]. ALINE outperformed all the other approaches, whose accuracy,

from lowest to highest, was ordered as follows: DICE, JAKARTA,

Truncation, LCSR and ALINE. Kondrak also compared COGNATE [57]

with JAKARTA [107] and several other models. The outcome showed

that JAKARTA and COGNATE achieved a similar, but low, accuracy in

cognate identification.

Wieling et al. [140] followed the Mackay ’s approach [86, 87] and applied

a Pair Hidden Markov Model (PHMM ) to the task of dialect comparison.

The authors also employed a variation of the Levenshtein distance [84],

where vowels could not match with consonants and vice-versa. They gave

the same weight to all the edit operations of substitution, insertion and

deletion, and they did not normalise the final score. The authors trained a

PHMM with Dutch dialect data and they tested the two methods on the

same data, as they wanted to determine the sound distances on the basis

of their data. The results produced by the PHMM were very similar to

those achieved by the variation of the Levenshtein distance [84], but the

training computational time of the PHMM was very expensive.

Kondrak [80] investigated the identification of cognates and recurrent

sound correspondences. He tested several phonetic methods on a dataset

composed of the 200-word Swadesh lists [132] of English, German, French,

Latin and Albanian provided by Kessler [73]. His best result was achieved

combining ALINE [76] with a sound correspondence-based method trained

using a six-language development dataset, including Italian, Spanish,

Romanian, Polish, Russian and Serbo-Croatian. This dataset was

extracted from the orthographic Comparative Indo-European corpus by

Dyen et al. [42] and then manually transcribed into a phonetic notation.

This system improved the performance of ALINE [76] in terms of accuracy
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in broad cognate identification, but did not outperform the orthographic

systems PHMM [87] and DBN [83] previously described.

Wieling et al. [141] evaluated several pairwise alignment methods on

phonetic strings. They used a large corpus of corrected gold standard

pairwise alignments extracted from Bulgarian dialect data, in order to

compare three variants of the Levenshtein distance [84] with the Pair

Hidden Markov Model (PHMM ), proposed by Mackay [86]. PHMM was

also tested by Mackay and Kondrak [87] and utilised by Wieling et al. [140].

The first edit distance variation, called VC-sensitive Levenshtein algorithm,

did not allow alignments of vowels with consonants and vice-versa. The

second variation, called Levenshtein swap algorithm, was an extension

of the first and also allowed two adjacent characters to swap. The

third variant, called Levenshtein PMI algorithm, used Pointwise Mutual

Information (PMI ) [21] to learn sound distances from pairwise alignments.

PHMM and PMI were trained with the same data used for the test in order

to determine the sound distances on the basis of those data. The authors

evaluated the four methods with respect to the quality of the alignments

produced and all the algorithms correctly aligned approximately 95% of

the pairs. The Levenshtein PMI algorithm presented the lower percentage

of incorrect alignments, while PHMM showed the lower error rate of

misaligned segments, but, as usual, its training computational time was

very high.
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2.2 Phylogenetic inference

Recent decades have seen a large number of studies developing and

employing phylogenetic techniques to investigate the evolution of language.

We have reviewed some of the more interesting results especially regarding

the Indo-European language family, which is the most intensively studied,

but we have mentioned studies involving other language families as well.

Depending on the information coding, methods for linguistic

phylogenetic inference may be classified as distance-based methods or

character-based methods. Distance-based methods include the UPGMA

[126] and the Neighbor-Joining algorithms [119, 130], while character-based

methods comprise Maximum Parsimony, Maximum Compatibility,

Maximum Likelihood and Bayesian Inference [46]. Investigations

comparing different methods include Nakhleh et al. [100], Barbançon et

al. [9], Wichmann and Saunders [139].

2.2.1 Distance-based methods

Dyen et al. [42] collected an Indo-European dataset described in

Section 2.3, made a lexicostatistical classification [132] of the 84 languages

included in the monograph and calculated the percentage of cognates

shared by each language pair, creating an 84-by-84 distance matrix. In

order to estimate a phylogeny, the authors developed a non-standard

clustering algorithm. It belonged to the family of pair-group methods

[46], like UPGMA [126], and was adapted to deal with lexicostatistical

percentages. The phylogenetic tree proposed was not compatible with the

benchmark tree of the Indo-European language family: it reproduced all

the established major Indo-European branches with the exclusion of the

Indo-Iranian clade.
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Ellison and Kirby [43] calculated a word similarity measure within each

of the 95 languages extracted from the digital version of the Indo-European

dataset by Dyen et al. [42]. They called it lexical metric and defined it as

a distribution of confusion probabilities, based on the Levenshtein distance

[84] normalised by the average length of the words. The divergence between

two languages was defined as the divergence of their lexical metrics and

calculated as the geometric path between the two distributions, creating a

distance matrix. In order to root the tree, they added a random outgroup,

which was a questionable choice, and used Neighbor-Joining [119, 130] to

build a phylogeny. This tree was not compatible with the benchmark tree

of the Indo-European language family, even if it showed correct groupings

for many languages.

Serva and Petroni [123] applied the Levenshtein distance [84] normalised

by the length of the longer word, to 50 language pairs extracted from

the Indo-European dataset by Dyen et al. [42]. For each language pair

they compared 200 words with the same meaning and they computed the

average of these edit distances in order to create a 50-by-50 matrix of

language distances. The authors transformed this distance matrix into a

time distance matrix following the glottochronology approach [132]. They

imposed established time distances to the system with the aim of providing

a phylogenetic tree topology with absolute time scales. Finally, they

inferred a rooted phylogenetic tree using UPGMA [126]. The proposed tree

topology satisfied the “No missing subgroups” criterion, but violated some

compatibility requirements for phylogenetic estimation [106]. The same

methodology was applied by Petroni and Serva [110] to the Austronesian

language family. This method was expanded by Blanchard et al. [13] to

represent geometrically the relationships between languages belonging to

both the Indo-European and Austronesian language families.
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Brown et al. [16] developed Automated Similarity Judgment Program

(ASJP) aiming to perform a large-scale classification of languages by

calculating their lexical similarity following a lexicostatistical approach

[132]. They used 100-word Swadesh lists [133] from 245 globally distributed

languages, with the objective of expanding their database to all the

world’s languages. They used the Neighbor-Joining [119, 130] algorithm

to generate the phylogenetic trees. The list dimension was subsequently

reduced to 40 more stable lexical elements for the achievement of better

results, and the database was expanded to 900 languages [64]. The

algorithm used to determine whether or not words were likely to be

cognate, was changed by Bakker et al. [8]. They employed the Levenshtein

distance [84], as proposed by Serva and Petroni [123], but with a double

normalisation. Firstly, they divided the edit distance by the length of the

longer word and then divided this quantity by the averaged normalised

Levenshtein distance among the words with different meaning. ASJP

presented non-uniform performance, passing both evaluation tests for some

language families and failing both for others [106].

Downey et al. [40] estimated phylogenies for the Sumbanese language

family using ALINE [76] to produce a distance matrix that was then

processed by distance-based methods [46]. In order to control the bias

due to different string length, the authors normalised the algorithm score

by the Arithmetic mean of ALINE [76] applied to rate each string with

itself. Downey et al. utilised both UPGMA [126] and Neighbor-Joining

[119, 130] to estimate phylogenetic trees. The proposed evolutionary trees

were close to the historical reconstruction, especially the phylogeny built

by UPGMA [126], which satisfied the “No missing subgroups” criterion,

but violated some compatibility requirements for phylogenetic estimation.
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2.2.2 Maximum Parsimony

Gray and Jordan [53] made one of the first attempts to apply

biological phylogenetic methods to historical linguistics. They encoded

the presence or absence of 5,185 lexical characters of cognateness for 77

Austronesian languages in a binary matrix and they employed a Maximum

Parsimony analysis [46] that produced a single most parsimonious

tree. The topology of this tree supported the express-train model of

Austronesian expansion [37] and showed considerable agreement with

traditional linguistic groupings, even if the tree violated the “Compatible

resolution” criterion [106].

Rexová et al. [113] used Maximum Parsimony and greedy consensus

trees [46] on the comparative Indo-European corpus by Dyen et al. [42]

focussing on the impact of the character encoding. They employed three

different methods of character encoding, creating a standard multi-state

matrix, an altered multi-state matrix and a binary matrix. The study

showed substantial dissimilarities between the two multi-state matrices and

the binary matrix, including different tree rooting. This suggested that the

binary encoded data matrix produced less reliable trees than those created

employing the multi-state matrices.

2.2.3 Maximum Compatibility

Ringe et al. [115] prepared an Indo-European, dataset described

in Section 2.3, and used Maximum Compatibility [46] to estimate the

phylogenetic tree of the Indo-European language family. They utilised

lexical, morphological and phonological characters from 24 Indo-European

languages and the Kannan and Warnow algorithm [70], which runs in

polynomial time. They assigned weights to characters, which made the
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model very dependent on the linguistic choice. The authors rooted the tree

by hand, after examination of the unrooted tree produced by Maximum

Compatibility [46], and their methodology passed the two evaluation

criteria of phylogenetic inference [100].

2.2.4 Bayesian analysis

Gray and Atkinson [52] estimated the language-tree divergence times for

the Indo-European language family, suggesting a root age of Indo-European

of between 7,800 and 9,800 Before Present (BP), consistent with the

Anatolian theory of Indo-European origin. In order to aid the estimation

of older language relationships, they added to the 84 Indo-European

speech varieties included in the monograph of Dyen et al. [42], three

extinct Indo-European languages, Hittite, Tocharian A and Tocharian

B, reaching a total of 87 languages. Based on cognate judgments from

this extended corpus, they produced a binary matrix of 2,449 lexical

characters indicating the presence or absence of words in each cognate

group. This binary matrix was then examined using Maximum-Likelihood

models, Bayesian Markov Chain Monte Carlo (MCMC ) analysis and

rate-smoothing algorithms to produce a majority-rule consensus tree [46].

This model allowed homoplasy, i.e. back mutation or parallel evolution.

It supported polymorphism, i.e. the presence of multiple words in one

language for a given meaning, coded as multiple states for that character

in one language. The proposed tree topology satisfied the two criteria

required by Nichols and Warnow [106] for phylogenetic estimation, while

the dating failed the calibration criterion. The Gray and Atkinson method

was subsequently extended [7, 5, 4] and also applied to study the Bantu

language family [112, 63].
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Nicholls and Gray [104, 105] applied to language evolution a stochastic

model, first introduced by Huson and Steel [66], and dated the

Indo-European language family at about 8,000-9,000 BP. The model

implemented Dollo Parsimony principles, used Bayesian phylogenetic

inference [46] and MCMC algorithms [61] to generate a sample distribution

of trees, and screened them using constraints before producing a consensus

tree. The authors used encoded multi-state lexical characters from the

Ringe et al. dataset [115] and from the Dyen et al. corpus [42, 52],

extended with Hittite, Tocharian A and Tocharian B. They ran several

analyses considering 3 subsets of the first dataset and 6 subsets of the

second. They found that age estimations of the root were uniform across

all analyses, whereas the topologies were not reliable. This model did not

allow homoplasy and supported polymorphism. On the other hand, it

could not handle missing data and so the analyses were necessarily limited

to those characters shown in all speech varieties, discarding some languages

that presented too much missing data.

Ryder and Nicholls [118] extended the Nicholls and Gray method [105]

to handle missing data, using binary encoding of cognate classes as lexical

traits from the Ringe et al. dataset [115]. They also gave an analysis of

the Dyen et al. corpus [42, 52], extended with Hittite, Tocharian A and

Tocharian B, in the paper supplement. They estimated the date of the

Proto-Indo-European language around 7,100-9,800 BP.
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2.3 Indo-European linguistic datasets

The corpora prepared by Dyen et al. [42] and by Ringe et al. [115]

for the Indo-European language family are recommended datasets for

linguistic studies [106]. They differ in many aspects, including the number

of languages considered, their dating and the types of characters reported.

The Comparative Indo-European corpus by Dyen et al. [42] provides

lexical data in the form of 200-word Swadesh lists [132] of universal,

non-cultural and stable meanings from 84 contemporary Indo-European

speech varieties. In it, each word is presented in orthographic format

without diacritics, using the 26 letters of the Roman alphabet. The data

are grouped by meaning and cognateness, which is reported as certain or

doubtful. The digital version of the dataset covers 95 languages, of which

only 84 were considered accurate enough to be included in the monograph.

The dataset of Ringe et al. [115] is provided in two versions, unscreened

and screened, both containing phonological, morphological and lexical

characters for 20 extinct and 4 existing Indo-European languages. These

speech varieties have been chosen to represent the 12 major subgroups

of Indo-European languages through their oldest and best documented

languages in each branch. The screened dataset is produced from the

unscreened version by removing all characters that clearly exhibited

homoplasy. The data are provided in three matrices, each corresponding

to a character type. A multi-state coding is used to describe each of the

phonological, morphological and lexical characters included.
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Language evolution

Languages that are genetically related originate from a common

ancestor. The estimation of their evolutionary relationships is the

primary aim of historical linguistics. The evolution of languages may

be studied through their phonological, lexical and morphological changes

and cognate words are frequently used lexical characters. For this reason,

cognate identification is one of the principal tasks of historical linguistics,

together with phylogenetic inference, which seeks to represent these genetic

relationships through evolutionary trees.

In this chapter, we present the problems of cognate identification and

phylogenetic inference as strategic and promising fields for computational

historical linguistics. Because of the close analogy between language

evolution and species evolution, we focus on evolutionary biological

techniques, that can be successfully borrowed from that field and applied

to our context.

We choose and introduce the Indo-European language family as the

target of our investigation for the high significance and particular role it

has in the field of historical linguistics.
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3.1 Introduction

Charles Darwin in “On the Origin of Species” [28] had a premonitory

vision about the analogy between language evolution and species evolution:

“If we possessed a perfect pedigree of mankind, a genealogical

arrangement of the races of man would afford the best classification of the

various languages now spoken throughout the world.”

This hypothesis states that languages and genes each form genealogical

relationships among populations, and that the co-evolution of languages

and populations should make these genealogies resemble each other.

However, invasions could sometimes have altered this pattern [117].

The analogy between language evolution and species evolution is now

widely accepted, as it is based on evidence from the fields of linguistics,

archaeology and genetics. The latter has been recently enhanced by data

from mitochondrial DNA1 [19] and Y-chromosome2 [71], which suggest

the “Out of Africa” model. In this theory, modern Homo sapiens, or

Homo sapiens sapiens, originated in East Africa about 200,000 years ago

from some non-human ancestor and spread from there, replacing more

archaic human populations, such as Neanderthals [117]. This theory was

also suggested by Charles Darwin in “The Descent of Man” [29]. Natural

selection [28] and neutral evolution, proposed by Motoo Kimura [74], may

be considered the main mechanisms driving species evolution as well as

language evolution.

1 Mitochondrial DNA is passed down from mother to offspring. “Mitochondrial Eve”, supposed to

have lived between 150,000 and 250,000 years ago, is the most recent common ancestor of all humans

alive today.
2 DNA in Y-chromosomes is passed down from father to son. “Y-chromosomal Adam”, supposed

to have lived between 60,000 and 90,000 years ago, is the most recent common ancestor of every living

man’s Y-DNA.
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With an erect body carriage, a highly developed brain and a descended

larynx, modern Homo sapiens developed over time the capacity to acquire

and use language. If Homo sapiens sapiens originated in Africa and then

spread to all the other continents, then it is reasonable to suppose that all

the world’s languages share a common origin. This fascinating hypothesis

is confirmed by some indication of global linguistic similarities that allow

linguists to group languages into families and superfamilies [117], even if

the debate remains highly controversial.

The analogy of language evolution with species evolution has generated

a growing interest in the scientific community following the amazing

progress of computational molecular biology in the field of genomes. The

successful application of bioinformatic techniques in the field of language

evolution has started to show exciting opportunities, as well as making

significant contributions per se.

However, despite the analogy between language evolution and species

evolution, there are some noteworthy differences. Firstly, languages evolve

much faster then genomes [117]. Secondly, genetic sequences can be very

long, reaching millions of characters for nucleic and amino acid sequences,

while linguistic strings are not more than ten characters long on average.

Finally, computational molecular biology can rely on a vast range of high

quality databases (e.g. UniProt3), sequence database search tools (e.g.

FASTA4 and BLAST5) and sequence alignment programs (e.g. Clustal6).

For historical linguistics only a few, and not always accurate, datasets are

available [42, 73, 115].

3 http://www.uniprot.org/
4 http://www.ebi.ac.uk/Tools/fasta/
5 http://blast.ncbi.nlm.nih.gov/
6 http://www.clustal.org/
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3.2 Linguistic background

Historical linguistics studies the evolution of language, which can be

viewed as a series of states threaded along the dimension of time [121].

Comparative linguistics is a branch of historical linguistics that aims to

establish the existence and degree of genetic relationships between two

or more languages. It seeks to build phylogenetic language trees and to

reconstruct as far as possible their common ancestors or proto-languages,

in the absence of historical records. The foundation for all the approaches

in comparative linguistics is “L’arbitraire du signe” or “de Saussure’s First

Principle” [121]. It states that any word used to represent any concept

in any language is arbitrary, with a few exceptions including borrowings,

onomatopes and nursery words. This leads us to assume that, if words

grouped by their semantic meaning show relatedness, it cannot be by

chance.

The problem of how to establish genetic relationships among languages

is still the subject of much debate among the linguistic scholars. There are

two main methodologies, both subject to some criticism, but both helpful

and successful in showing genetic connections between languages. They

both analyse semantically related words in order to identify cognate words

that exhibit the same character state only as a result of an evolutionary

relationship [106], and may provide evidence of historical relationships

between languages.

• The comparative method [2], developed over the last two centuries,

is a central procedure in historical linguistics. It studies sound

recurrent correspondences in semantically matching morphemes in

order to detect connections among languages. The main theoretical

principle supporting the comparative method, and confirmed by a huge

amount of evidence, is the “Regularity hypothesis”, which states that

38



CHAPTER 3. LANGUAGE EVOLUTION

sounds develop regularly in a phonetic environment. The comparative

method consists of the following activities: potential cognate

lists compilation, regular sound correspondence determination,

complementary distribution sounds sets discovery, proto-phonemes

reconstruction and typological consistency check of the rebuilt system.

The comparative method is nowadays widely accepted, even if it has

sometimes been criticised for not being accurate enough, as some

phonological changes are not as regular as stated [73].

• The multilateral comparison or mass lexical comparison, developed

by Greenberg [54] and supported by Ruhlen [117], proposes language

classification based on the number of surface similarities between

groups of semantically related words. Even if the revolutionary

conclusions reached by Greenberg have been increasingly accepted

by the linguistic community, his method of long-range comparison

has been sharply criticised by many linguists for its lack of rigour.

Kessler [73] believes that the multilateral comparison’s ability to

detect connections decreases faster than the comparative method ’s

capacity, as the divergence time between languages increases.

Related to the comparative method, lexicostatistics [42] is a

mathematical measure based approach for the construction of linguistic

phylogenies that involves the quantitative comparison of cognates. This

method aims to assess quantitative language relatedness and consists of the

following tasks: word list creation, cognate identification, lexicostatistic

percentage calculation and phylogenetic tree creation. One of its

fundamental assumptions is that some words that form the basic core of

vocabulary are more resistant than others to changes and loans. Because of

this, they remain better preserved over time. This word set includes lower

numerals, pronouns, body parts, objects of nature and basic activities.
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Glottochronology [42] is an application of lexicostatistics seeking to date

language divergence. It attempts to estimate the length of time since

two or more languages diverged from a common ancestral proto-language,

under the assumption of a constant rate of change in the fundamental

vocabulary. This method was proposed by Swadesh [131] based on an

analogy with the use of carbon dating for measuring the age of organic

materials. In order to conduct his experiments, Swadesh prepared a list of

200 universal and non-cultural words, which he considered the “intimate”

part of any vocabulary [132]. After more research, Swadesh [133] proposed

a new list, which he recognised as being even more general and stable.

It contained 100 words only, collected mainly from the previous list, but

with the addition of some new words. The Swadesh lists are reported and

documented in Appendix A.

Even if Swadesh’s work has been sharply criticised by linguists,

Swadesh lists have been, and continue to be, widely used as datasets in

computational historical linguistics, and more generally in natural language

processing. Ironically, it has been through the use of Swadesh lists, of

over one third of all the world’s languages, that a recent investigation [6],

run by biological evolutionists, has reinforced the indication against the

glottochronology approach. This study suggested that, while languages

evolve slowly most of the time, when dividing they show rapid bursts of

evolution, accounting for between 10% and 33% of the total divergence

among fundamental vocabularies.
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3.3 Computational applications

Identification of cognates, discovery of phonetic similarities, detection

of recurrent sound correspondences, language reconstruction and

phylogenetic inference are laborious and time-consuming activities,

traditionally executed manually by linguistic experts.

In the last two decades, computational methods have been

increasingly applied to historical linguistic tasks to add processing power,

computational rigour and statistical significance to the field, as well as

to provide novel hypotheses to be critically examined and tested by

linguistic experts. Surprisingly, also textual statistical analysis is able to

identify relationships among languages by studying their shared statistical

properties [135]. Indeed, there are still many language families that need to

be studied, language relationships that may possibly be shown and many

controversies that wait to be solved.

The two main applications of computational techniques to historical

linguistics that have shown to be promising are:

• Cognate identification, which aims to recognise phonetic similarity,

orthographical similarity and regular sound changes. All these

features may show clear evidence and degree of language relatedness,

guide to proto-language reconstruction in the absence of historical

records, and allow phylogenetic inference.

• Phylogenetic inference, which aims to estimate the genetic

relationships between languages based upon similarities and

differences in their characters and to represent them with evolutionary

trees.
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3.4 Cognate identification

Languages that originate from a common ancestor are genetically

related. For example, the Romance family includes all the languages that

descended from Latin and gradually diverged from it over time, including

Italian, Spanish, Portuguese, French and Romanian.

The study of language relatedness has been historically based on the

detection of cognates, words that derive from the same predecessor and

share an identical etymological origin, from Latin “cognatus” ← “cum” +

“gnatus”, meaning “born together”. For example, the words Italian fiore,

Spanish and Portuguese flor, French fleur, Romanian floare are all cognate.

They derive from Latin flos/floris, with the accusative form florem, which

means flower. Less obvious is that the English word flower is not part of

this group of cognates, as it is considered a borrowing from Old French.

Even less evident is that German Blume, Dutch bloem, Swedish blomma,

and Danish blomst are part of the same group of cognates introduced

above. They derive from a word that belonged to an extinct proto-language

called Proto-Germanic, which did not leave any historical evidence, but did

release signs of its existence in all the Germanic daughter languages. By

studying this cognate group across all the Germanic languages, linguists

have been able to reconstruct a supposed common ancestor, proposed as

*blo-s-, where the asterisk indicates a reconstruction and not a documented

word. Considering all the cognate words believed to belong to this

group, linguistic scholars made another step forward, reconstructing the

proto-word for the hypothetical ancestor of Latin, Proto-Germanic and

all the other European and Indian languages, called Proto-Indo-European.

The proposed reconstructed root for this group of cognates is *bhlo-.

It should be more apparent now why cognate identification represents

the foundation for discovering the evolutionary history of languages. The
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fact that the quantity and the similarity of cognates between related

languages are non-increasing monotonic functions of time, may also lead

to the estimation of divergence time [44, 5, 4, 55]. The importance of

proto-language reconstruction derives from the relatively recent invention

of writing systems, dating back about 5,000 years, and from the lack of

writing evidence for some recent or also current languages. In fact, on top

of the approximately 7,000 living languages [85], many thousands more are

considered extinct, and many of them have not left any explicit proof of

their nature or even of their existence [117].

3.4.1 String matching

Cognate words ultimately are strings and for this reason they can be

successfully studied by string matching techniques. A string S is an ordered

list of characters from an alphabet A written contiguously from left to

right [56]. For any string S, S[i..j] is the substring of S that contains the

contiguous characters of S starting at position i and ending at position j.

In particular, S[1..i] is the prefix of string S that ends at position i. S[i..n]

is the suffix of S that starts at position i, where n is the length of the string

S. A subsequence of S is formed by ordered, but not necessarily contiguous,

characters of S. In computational molecular biology, biological strings are

usually referred to as sequences. When comparing two characters in strings,

the characters match if they are equal, otherwise they mismatch [56]. The

two main approaches to the computation of string matching are:

• Exact string matching [56], which aims to find exact matches on

strings and substrings;

• Inexact or approximate string matching [58, 101], which focuses

on finding matches on subsequences, meaning that some errors are

acceptable in valid string matches.
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Depending on the type of application, one approach may be more

suitable than the other. Word processor applications, system word utilities

(e.g. grep on Unix, Windows, etc), digital telephone directories, digital

dictionaries and thesauri are only a small subset of all the tasks that use

exact string matching algorithms [56]. On the other hand, inexact string

matching [58, 101] is the basic approach in computational molecular biology

and in many fields of natural language processing. In particular, historical

linguistics and bioinformatics share the need to model and discover active

mutational processes, through string comparison.

In inexact string matching [58, 101], the strategy frequently used for

subsequence comparison is dynamic programming [11], which is a general

computational method of solving complex problems. It breaks them into

sub-problems, which are simpler to solve, and uses their solutions to find an

answer to the main problem. The three essential components of dynamic

programming [11] are the recurrence relation, the tabular compilation

and the trace back. The bottom-up scheme is generally preferred to the

top-down one, because it minimises the number of recursive calls and so

provides higher efficiency [56].

By adopting the inexact string matching approach [58, 101] to determine

the relatedness of two strings, it is possible to either measure their distance,

evaluating how distant the two strings are from each other, or to measure

their similarity, calculating instead how similar the two strings are [56].

The distance method leads to a minimisation problem, because it aims

to find the minimum distance between two strings, while the similarity

method guides towards a maximisation problem, as it seeks to find the

maximum similarity between two strings.
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3.4.1.1 String distance

Given an alphabet A, where | A | ≥ 2, and the set Σ of all finite strings

over A, a distance function D : Σ x Σ → < is called a metric [120], if it

holds the metric axioms, ∀ S1, S2, S3 ∈ Σ:

1. D(S1, S2) ≥ 0 Non negativity

2. D(S1, S2) = 0 ↔ S1 = S2 Self-identity axiom

3. D(S1, S2) = D(S2, S1) Symmetry

4. D(S1, S2) ≤ D(S1, S3) + D(S3, S2) Triangle inequality

Table 3.1: The metric axioms

The edit distance or Levenshtein distance [84] is the most classic

formalisation of the notion of distance between two strings and it was

first discussed in the field of coding theory. It is defined as the minimum

number of edit operations necessary to transform one string into another,

where the edit operations allowed are deletion, insertion and substitution

of a character. Deletion and insertion are frequently referred to as indel

operations. The edit distance d is a metric and holds [101]:

0 ≤ d(S1, S2) ≤ max(|S1|, |S2|). (3.1)

The edit distance associates a unitary cost to any edit operation and

a zero cost to any match. It has received considerable attention, because

it can be easily generalised and applied to a wide range of disciplines,

such as computational biology, signal processing and text processing to

mention a few. The algorithm to calculate the minimum distance has a

remarkable history of multiple independent discovery and publications in

different areas [120] and this is an indication of its crucial and determinant
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role. Moreover, many variations of the edit distance have been proposed

over time using different approaches, such as dynamic programming

algorithms, automata based algorithms, bit parallelism algorithms and

filtering algorithms. Detailed overviews have been presented by Hall and

Dowling [58] and by Navarro [101].

Wagner and Fisher [137] developed a bottom-up dynamic programming

algorithm to calculate the edit distance between two strings S1 and S2. It

involves the use of an (n+1)-by-(m+1) matrix and is O(n ∗ m) both in

time and space, where n and m are the lengths of the two strings.

The base conditions of the Wagner and Fisher algorithm state that i

characters must be deleted to convert i characters of S1 to zero characters

of S2, and j characters must be inserted to convert zero characters of S1

to j characters of S2:

d(i, 0) = i; ∀ i : 0 ≤ i ≤ n

d(0, j) = j; ∀ j : 0 ≤ j ≤ m
(3.2)

The algorithm recurrence relation, ∀i : 0 ≤ i ≤ n and ∀j : 0 ≤ j ≤ m,

establishes a recursive relationship between the value of d(i, j) and the

values of d(i− 1, j), d(i, j − 1) and d(i− 1, j − 1):

d(i, j) = min


d(i− 1, j) + 1;

d(i, j − 1) + 1;

d(i− 1, j − 1) + t(i, j);

(3.3)

where t(i, j) = 0 if S1[i] = S2[j]

t(i, j) = 1 if S1[i] 6= S2[j]
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The edit distances are inserted in the (n+1)-by-(m+1) matrix, one row

or one column at a time, starting for the smallest possible values of i and

j, which are progressively increased. String S1 corresponds to the vertical

axis, while string S2 corresponds to the horizontal axis of the matrix.

The values of adjacent cells differ by one at most, and the upper-left to

lower-right diagonals are non-decreasing. The edit distance is the value

d(n,m) in the bottom right cell of the tabular representation.

Table 3.2 shows the tabular computation of the edit distance between the

words Italian fiore and Spanish flor, as an example. The pointers from one

cell to another show the step or the steps minimising the edit operations

for that particular cell. There is only one path that minimises the distance

between the two words, which is shown in bold, and the edit distance is

d(fiore, flor) = 2.

d(i, j) f l o r

0 1 2 3 4

0 0 ← 1 ← 2 ← 3 ← 4

f 1 ↑ 1 ↖ 0 ← 1 ← 2 ← 3

i 2 ↑ 2 ↑ 1 ↖ 1 ↖← 2 ↖← 3

o 3 ↑ 3 ↑ 2 ↖↑ 2 ↖ 1 ← 2

r 4 ↑ 4 ↑ 3 ↖↑ 3 ↑ 2 ↖ 1

e 5 ↑ 5 ↑ 4 ↖↑ 4 ↑ 3 ↑ 2

Table 3.2: Example of tabular computation of the edit distance with one optimal alignment

Because the edit distance of two strings can be represented by an

alignment minimising the number of mismatches and indels [56], once the

value of the edit distance has been computed, it is possible to recover

an optimal alignment by tracing back the arrows in O(n + m) time.

For example, the optimal alignment between the words Italian fiore and

Spanish flor can be computed from the dynamic programming Table 3.2,

as shown in Table 3.3, where mismatches and indels are in bold.
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f i o r e

f l o r -

Table 3.3: Example of one optimal alignment produced by the edit distance

Note that there may be more alignments that present the same minimum

number of edit operations. For example, in the case of the words Italian

fiore and French fleur, the tabular computation in Table 3.4 shows that

there are more possible optimal alignments that represent the same edit

distance, which is d(fiore, fleur) = 4.

d(i, j) f l e u r

0 1 2 3 4 5

0 0 ← 1 ← 2 ← 3 ← 4 ← 5

f 1 ↑ 1 ↖ 0 ← 1 ← 2 ← 3 ← 4

i 2 ↑ 2 ↑ 1 ↖ 1 ↖← 2 ↖← 3 ↖← 4

o 3 ↑ 3 ↑ 2 ↖↑ 2 ↖ 2 ↖← 3 ↖← 4

r 4 ↑ 4 ↑ 3 ↖↑ 3 ↖↑ 3 ↖ 3 ↖ 3

e 5 ↑ 5 ↑ 4 ↖↑ 4 ↖ 3 ↖←↑ 4 ↖↑ 4

Table 3.4: Example of tabular computation of the edit distance with several optimal alignments

Table 3.5 shows the possible optimal alignments between the words

Italian fiore and French fleur calculated by the edit distance, where

mismatches and indels are in bold. String alignments will be analysed

in more detail in Section 3.4.2.

f i o r e f i o - r e f i - o r e f - i o r e

f l e u r f l e u r - f l e u r - f l e u r -

Table 3.5: Examples of several optimal alignments produced by the edit distance
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Numerous other variations of the edit distance have been proposed in

the literature, some are its simplifications, some are its extensions and in

this section we will mention those which are the most relevant.

The Hamming distance [59], defined for two strings S1 and S2 of the

same length, allows substitutions only and was first introduced in error

coding theory. This distance is a metric and holds [101]:

0 ≤ H(S1, S2) ≤ |S1| (3.4)

For example, the Hamming distance of the words Italian fiore and

French fleur isH(fiore, fleur) = 4, as it is shown by the optimal alignment

without indels reported in table 3.6:

f i o r e

f l e u r

Table 3.6: Example of optimal alignment produced by the Hamming distance

The Damerau-Levenshtein distance [27] between two strings adds to

the set of operations allowed by the Levenshtein distance, i.e. insertion,

deletion and substitution, also the transposition of two characters and was

proposed for spelling error corrections.

The operation-weight edit distance [56] is a simple, but crucial

generalisation of the edit distance, where arbitrary weights or costs can

be associated to every indel operation, to every substitution operation and

to every match as well, where no operation is needed.

The alphabet-weight edit distance [56] is another simple, but

fundamental extension of both the edit distance and the operation-weight
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edit distance. In this case the weight or cost of any operation varies in

accordance with the characters in the alphabet that the operation has to

manage. For example, a substitution depends on which character in the

alphabet has to be removed and which has to be added, an indel operation

depends on which character has to be inserted or deleted, a match on which

character has matched.

Normalisations of the edit distance [84] are frequently useful, in order to

obtain values in the range [0,1]. Moreover, since the sizes of strings vary,

one edit operation in a short word is much more relevant than one edit

operation in a long word. As a consequence, a sensible normalisation may,

for example, divide the edit distance by the length of the longer of the two

strings or by the average length of the two strings.

3.4.1.2 String similarity

Another way to formalise the relatedness of two strings is to measure

their similarity instead of their distance, and this is the most frequent

approach in computational molecular biology and natural language

processing. Numerous string similarity measures have been proposed in

the literature in different fields, and we have reviewed those relevant to the

task of cognate identification in Section 2.1.

In bioinformatics, given an alphabet A where | A | ≥ 2, let A′ be

an extension of A with the addition of the character “−” representing a

gap. LetM be a substitution matrix |A′|-by-|A′|, which associates a value

M[A′i, A
′
j] to any pair of characters A′i and A′j belonging to A′, and let

Σ′ be the set of all finite strings over A′. If S ′1 and S ′2 denote the strings

of length n resulting from an alignment AL of the strings S1 and S2, the

value of this alignment is obtained by summing the pairwise value for each
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character pair in AL. The similarity S of two strings S1 and S2 is defined

as the value of the optimal alignment of S1 and S2 that maximises the total

alignment value [56]:

S(S1, S2) = max
AL

n∑
i=1

M(S ′1(i), S
′
2(i)) (3.5)

The Longest Common Subsequence (LCS ) [137] between two strings is

a special case of string similarity and it allows insertions and deletions at

unitary cost, but not substitutions. A common subsequence is formed by

ordered, but not necessarily contiguous, characters present in both words.

For example, the LCS of the words Italian fiore and Spanish flor is f-o-r

and |LCS(fiore, flor)| = 3, as it is shown in Table 3.7 where the indels

are in bold:

f i - o r e f - i o r e

f - l o r - f l - o r -

Table 3.7: Example of optimal alignments produced by LCS

When the cost of a substitution is set at twice the cost of an indel

operation, and a match has zero cost, the number of mutations needed

to convert a string into another, is the sum of their lengths minus twice

the length of their LCS [56]. In this case, the following relationship exists

between the edit distance [84] and the LCS of two strings S1 and S2:

d(S1, S2) = |S1|+ |S2| − 2 ∗ |LCS(S1, S2)| (3.6)

It is worth noting that string similarity is strictly related to the

alphabet-weight edit distance and it is frequently possible to transform
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one problem into the other [56]. However, the similarity approach allows

local alignment to be performed, while the distance approach does not, as

discussed in Section 3.4.2.2. The similarity of two strings S1 and S2 as an

alignment of them, will be examined in Section 3.4.2, while substitution

matrices will be addressed in Section 3.4.3.

3.4.2 String alignments

The task of calculating the distance or the similarity between two strings

is closely related to the task of finding their optimal alignment: dynamic

programming algorithms can perform both tasks [56].

Alignment algorithms usually consist of a scoring scheme for measuring

distance or similarity between characters and a procedure for finding the

optimal alignments. The significance of any alignment depends greatly

on the chosen scoring scheme [56]. Several substitution matrices have

been proposed for biological sequence analysis and we will discuss them

in Section 3.4.3. In protein sequence analysis:

“There are several different types of alignments: global alignment of

pairs of proteins related by common ancestry throughout their lengths,

local alignments involving related segments of proteins, multiple alignments

of members of protein families, and alignments made during data base

searches to detect homology.” [62]

In historical linguistics, because of the scarcity of structured cognate

databases, the types of alignments involved are generally global and local

alignments between two words, and multiple alignments between a group of

words. Even if the small length of the strings could make global alignments

apparently more appropriate, local alignment can be useful in order to focus

on the word roots, disregarding inflectional and derivational affixes [76, 25].
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In this thesis, we have not discussed multiple string alignments, which is a

fascinating and challenging topic of our future research plan.

3.4.2.1 Global string alignment

The similarity of two strings S1 and S2 as global alignment of them can

be calculated by a bottom-up dynamic programming algorithm. It is known

as Needleman-Wunsch algorithm [102] in recognition of the authors who

first discussed global similarity, even if the more efficient version generally

used is by Gotoh [51]. As for the edit distance [84], the algorithm involves

the use of an (n+1)-by-(m+1) matrix and is O(n ∗m) both in time and

space, where n and m are the lengths of the two strings S1 and S2. If

the similarity S(i, j) is defined as the value of the optimal alignment of

the prefixes S1[1..i] and S2[1..j] and M is a substitution matrix, the base

conditions of the Needleman-Wunsch algorithm are:

S(i, 0) =
∑

1≤k≤iM(S1(k), ‘− ‘) ∀i : 0 ≤ i ≤ n

S(0, j) =
∑

1≤k≤jM(‘− ‘, S2(k)) ∀j : 0 ≤ j ≤ m

(3.7)

The algorithm recurrence relation, ∀i : 0 < i ≤ n and ∀j : 0 < j ≤ m,

establishes a recursive relationship between the value S(i, j) and the values

S(i− 1, j),S(i, j − 1) and S(i− 1, j − 1):

S(i, j) = max


S(i− 1, j) +M(S1(i),‘−‘);

S(i, j − 1) +M(‘−‘, S2(j));

S(i− 1, j − 1) +M(S1(i), S2(j));

(3.8)

The similarity between the two strings S1 and S2 is the value S(n,m)

in the bottom-right cell of the tabular representation. Storing the pointers

while composing the table, as it was shown for the edit distance [84], allows
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any optimal alignment to be built by tracing back any path of pointers from

the bottom-right cell (n,m) to the top-left cell (0, 0) in O(n+m) time. If

the two strings are identical, a path along the main diagonal can be drawn

in the tabular representation [56].

Table 3.8 shows an example of tabular computation of the similarity

between the words Italian fiore and Spanish flor using global alignment,

where the scoring scheme adopted is a 26-by-26 identity matrix on the

Latin alphabet, with gap penalties equal to −1. The pointers from one cell

to another show the step or the steps that maximise the score until that

particular cell. The path that maximises the similarity score between the

two words is shown in bold and the string similarity is S(fiore,flor) = 2.

S(i, j) f l o r

0 1 2 3 4

0 0 ← - 1 ← - 2 ← - 3 ← - 4

f 1 ↑ - 1 ↖ 1 ← 0 ← - 1 ← - 2

i 2 ↑ - 2 ↑ 0 ↖ 1 ↖← 0 ↖← - 1

o 3 ↑ - 3 ↑ - 1 ↖↑ 0 ↖ 2 ← 1

r 4 ↑ - 4 ↑ - 2 ↖↑ - 1 ↑ 1 ↖ 3

e 5 ↑ - 5 ↑ - 3 ↖↑ - 2 ↑ 0 ↑ 2

Table 3.8: Example of tabular computation of global alignment using the identity matrix

Table 3.9 shows the optimal global alignment between the words Italian

fiore and Spanish flor computed by tracing back the arrows, where

mismatches and indels are displayed in bold.

f i o r e

f l o r -

Table 3.9: Example of one optimal global alignment produced using the identity matrix
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3.4.2.2 Local string alignment

A local string alignment aims to identify similar regions between two

strings, instead of looking at them as a whole. The optimal local alignment

of two strings is the alignment of their substrings that presents the highest

scoring. This concept becomes particularly helpful when some regions of

two strings have accumulated so much noise through mutation that they

are no longer alignable [41].

The similarity approach allows local and global alignment of strings to

be performed, while the distance approach permits only the latter. To

understand this point, let us remember that the distance method aims to

find the alignment with the minimum score. Furthermore, by definition,

the distance between any two substrings that are not equal is greater than

zero. As a consequence, when aligning two strings, the substrings showing

minimal distance should be identical, under ordinary scoring schemes [56].

The dynamic programming algorithm for solving the problem of local

string alignment is known as the Smith-Waterman algorithm [125] in

recognition of the Smith-Waterman paper, but the more efficient version

generally used is by Gotoh [51]. It uses an (n+1)-by-(m+1) matrix and is

O(n ∗ m) both in time and space, where n and m are the lengths of the

two strings. This algorithm is closely related to the Needleman-Wunsch

algorithm [102] for global alignment introduced in Section 3.4.2.1, but it

presents two important differences.

Firstly, it forces a new alignment to start, if the current one has

a negative score. This is achieved allowing each cell of the dynamic

programming table to assume a value of zero, if all the other options have

negative values. As a consequence, the maximum similarity score between

two strings S1 and S2 is never less than zero, and no pointer is recorded

unless the score is positive.

55



3.4. COGNATE IDENTIFICATION

The base conditions of the algorithm fill in the top row and left column

of the tabular computation with zeros:

S(i, 0) = 0 ∀i : 0 ≤ i ≤ n

S(0, j) = 0 ∀j : 0 ≤ j ≤ m
(3.9)

where n and m are the lengths of the strings S1 and S2, respectively.

The algorithm recurrence relation, ∀i : 0 < i ≤ n and ∀j : 0 < j ≤ m, is

enriched with an extra possibility:

S(i, j) = max


0

S(i− 1, j) +M(S1(i),‘−‘);

S(i, j − 1) +M(‘−‘, S2(j));

S(i− 1, j − 1) +M(S1(i), S2(j));

(3.10)

The second difference with the global alignment algorithm is that the

optimal alignment score can be in any cell of the tabular computation and

not necessarily in the bottom right corner, because an alignment can end

anywhere in the matrix. The tracing back of an optimal alignment starts

from the maximum score cell or cells, and ends when a cell with value zero

is met and runs in O(n+m) time.

Table 3.10 shows an example of tabular computation of the similarity

between the words Italian fiore and Spanish flor using local alignment,

where the scoring scheme adopted is a 26-by-26 identity matrix on the

Latin alphabet, with gap penalties equal to −1. The pointers from one cell

to another show the step or the steps that maximise the score until that

particular cell. The path that maximises the similarity score between the

two words is shown in bold and the string similarity is S(fiore, flor) = 3.

56



CHAPTER 3. LANGUAGE EVOLUTION

S(i, j) f l o r

0 1 2 3 4

0 0 0 0 0 0

f 1 0 ↖ 1 0 0 0

i 2 0 0 ↖ 1 0 0

o 3 0 0 0 ↖ 2 ← 1

r 4 0 0 0 ↑ 1 ↖ 3

e 5 0 0 0 0 ↑ 2

Table 3.10: Example of tabular computation of local alignment using the identity matrix

Table 3.11 shows the optimal local alignment between the words Italian

fiore and Spanish flor computed by tracing back the arrows, where

mismatches are displayed in bold.

f i o r

f l o r

Table 3.11: Example of one optimal local alignment produced using the identity matrix

It is worth noting that the optimal local alignment for the words Italian

fiore and Spanish flor, has produced a higher similarity score than the

optimal global alignment for the same word pair. This is because it has

identified the word root, discarding inflectional suffixes.

3.4.3 Substitution matrices

Substitution matrices, or scoring matrices, are scoring schemes widely

used in bioinformatics in the context of protein or nucleic acid sequence

alignments, where they have a fundamental role. Indeed, it is sometimes

suggested that the scoring matrix is the most critical technical element in

a biological sequence alignment system [56].

Given an alphabet A with | A | ≥ 2, each character of A is more or less

likely to transform into several other characters over time. A substitution
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matrix | A |-by-| A | over A represents the rates at which each character

of A may change into another character of A. These rates, in principle,

may be costs, when they signify distances, or may be scores, when they

indicate similarities.

For example, a 20-by-20 scoring matrix for protein alignments tries

to capture the possible transformation rates of the twenty amino acids7

that form proteins. Similarly, a 4-by-4 scoring matrix for DNA or RNA

sequences tries to express the possible transformation rates of the four

nucleotides8 that constitute nucleic acids. Each entry [i, j] of these matrices

tries to express the likelihood that the i element may be transformed into

the j element in a certain amount of evolutionary time.

There are many different ways of constructing a substitution matrix, but

the general approach is to collect a sample of verified pairwise alignments,

or multiple sequence alignments, and derive from them the substitution

parameters using a probabilistic model [56]. Ideally, the values in the

substitution matrix should reveal the phenomena that the alignments try

to represent and the scores in the matrix should be proportional to the true

probabilities of mutations occurring through a period of evolution [56].

When aligning strings, the target is to assign a rate to the alignments

that gives a measure of the relative likelihood that the strings are related,

as opposed to being unrelated [41]. To compare these two hypotheses,

the log-odds ratio is considered, which is the logarithm of the ratio of

the probability that the sequences are associated, as opposed to being

random. In the related or match model M, aligned pairs of characters

occur with a joint probability, and the probability for the whole alignment

7 Proteins are made of 20 amino acids: Alanine, Arginine, Asparagine, Aspartic acid, Cysteine,

Glutamine, Glutamic acid, Glycine, Histidine, Isoleucine, Leucine, Lysine, Methionine, Phenylalanine,

Proline, Serine, Threonine, Tryptophan, Tyrosine, Valine. The alphabet for protein sequence analysis is

A = {A; R; N; D; C; Q; E; G; H; I; L; K; M; F; P; S; T; W; Y; V}
8 Nucleic acids are made of 4 nucleotides: Adenine, Cytosine, Guanine and Thymine. The alphabet

for nucleic acid sequence analysis is A = {A; C; G; T}
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is the product of these joint probabilities. In the unrelated or random model

R, the probability of the two strings is just the product of the probabilities

of each character, because the model assumes that each character occurs

independently [41].

If S1 and S2 are two aligned strings, f(S1i) and f(S2j) the frequency of

the S1i and S2j character, respectively, and f(S1i, S2j) the joint probability

that the characters S1i and S2j have derived from some unknown original

residue, which may coincide with one or both characters, the odds ratio

can be expressed as:

P (S1, S2 |M)

P (S1, S2 |R)
=

∏
i f(S1i, S2i)∏

i f(S1i) ∗
∏

i f(S2i)
=
∏
i

f(S1i, S2i)

f (S1i) ∗f(S2i)
(3.11)

To obtain an additive scoring system, the log-odds ratio is considered as

the logarithm of this ratio. When properly arranged, these log-odds ratios

constitute the substitution matrix [41].

Ideally, if the similarity approach is adopted, positive and negative

scores should indicate respectively conservative and non-conservative

substitutions. Indeed, when two characters are expected to be aligned

together in related strings more often than to occur by chance, then the

odds ratio is greater than one and the score is positive. It is worth

highlighting that the rates of identical character substitutions are inversely

proportional to their occurrences, because the rarer the character is, the

smaller the likelihood to find two of them aligned by chance [56].

In bioinformatics, several scoring schemes have been developed and the

most widely used substitution matrices in protein sequence analysis at

present are the PAM matrices [30, 31, 32] and the BLOSUM matrices

[62], introduced in Sections 3.4.3.1 and the 3.4.3.2, respectively.
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3.4.3.1 PAM matrices

The “Point Accepted Mutation” (PAM ) matrices [30, 31, 32] are a family

of amino acid substitution matrices, developed by Margaret Dayhoff and

co-workers, that encode and summarise expected evolutionary changes of

amino acids. An accepted point mutation in a protein is a replacement

of one amino acid by another that has been accepted by natural selection

and spread to its descendants. The foundation of the PAM approach is to

obtain substitution rates from global alignments between closely related

proteins and then to extrapolate from these data, longer evolutionary

divergences. This approach assumes that the frequencies of the amino

acids remain constant over time and that the mutational process causing

replacements in a unitary interval, operate the same for longer periods.

All the PAMn matrices are calculated by a log-odds ratio of a matrix Mn,

where M represents the character substitution probabilities in a unitary

time. Consequently, a higher number in the PAM family indicates a longer

evolutionary distance and a lower sequence similarity [56].

The PAM method may also be viewed as a Markov Model, [41] where

the states correspond to the twenty amino acids, and the state transition

probabilities are the only parameters of the system. Every matrix Mn

represents the result of n steps of a Markov chain. The probability of

mutation at each site is independent of the occupants of other sites and of

the previous history of mutations.

PAM matrices have proved to be very effective in detecting distant

relationships between proteins, finding alignments able to show significant

biological phenomena. They have been the standard and sole substitution

matrices for amino acid alignments up until the advent of BLOSUM

matrices [62].
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3.4.3.2 BLOSUM matrices

The BLOck SUbstitution Matrices (BLOSUM ) [62] are another

successful family of amino acid scoring schemes, developed by Steven

and Jorja Henikoff. These matrices derive from comparison of sequences

extracted from the BLOCKS database [56], which contains multiple aligned

segments, without gaps, corresponding to the most highly conserved

regions of proteins. The BLOSUM approach is based on the belief

that highly conserved sequence alignments from highly diverged protein

sequences lead to accurate substitution score estimates [56]. Following this

idea, each BLOSUM matrix in the family is built calculating log-odds ratios

from blocks presenting no more than a certain threshold of similarity. For

example, BLOSUM62 is the matrix built using sequences with no more

than 62% similarity. In this way larger numbers in the BLOSUM matrix

family denote smaller evolutionary distance and therefore higher sequence

similarity, which is the opposite of the PAM matrix family.

BLOSUM matrices have shown to be very effective in detecting

similarities in distant sequences and are the main competitor for the PAM

matrices [30, 31, 32]. Even if they are not discussed any further in this

thesis, their exploitation in computational linguistics and natural language

processing, forms part of our challenging future plans.

3.4.4 Cognate identification systems

When distance or similarity between cognates has to be evaluated, the

methods applied can be either orthographic, where cognates are analysed

in their writing form of graphemes, or phonetic, where cognates have to be

represented in a phonetic notation in order to be examined.

The orthographic approach relies on the fact that alphabetic character

correspondences represent in some way sound correspondences, as sound
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changes leave traces in the orthography. It benefits from not requiring

any phonetic transcription, the attainment of which is still a very

time-consuming and challenging task. In fact, there are only a few phonetic

datasets of cognates available for computational linguistic applications.

Furthermore, the task of automatic phonetic transcription is still some way

from achieving the accuracy required to be used in the field of historical

linguistics. The main issue is the variety of phonetic systems present in

different languages, and the existence of homophones also within the same

language. For example, the Italian word ape, meaning bee, is pronounced

/ape/, while the English word ape is pronounced /eip/. Moreover, in

non phonetic languages like English, pronunciation is often unpredictable

and it is possible to have inside the same language, words with the same

spelling, but different pronunciation. A classic example is the infinitive,

the simple past and the past participle of the English verb to read /ri:d/

- read /red/ - read /red/. For these reasons, phonetic transcriptions are

still frequently executed manually [80] with the consequent dependency

on linguistic collaboration, possible lack of uniformity and accuracy, and

loss of time. On the other hand, phonetic methods depend on phonetic

transcriptions of texts, but benefit from the phonetic characteristics and

features of phonemes, which can be decomposed into vectors of phonetic

attributes.

Even if for the task of cognate identification a phonetic approach

is supposed to be more accurate than an orthographic one for its

understanding of phonetic changes, the debate remains open and a

comparative evaluation of several recent results seem to prove the opposite

[86, 87, 83, 80].

Another differentiating feature between methodologies applied to the

assessment of word relatedness is the ability to adapt, or not, to different

contexts. Based on that, evaluation systems can be either static, or
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active. A static system is based on manually-designed and incorporated

knowledge, does not require any supervision and is not able to learn by

processing data. On the other hand, an active system has the capacity to

learn and adjust, but may need supervision.
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3.5 Phylogenetic inference

Phylogenies are evolutionary trees and phylogenetic inference aims to

estimate the genetic relationships between taxa, which in principle may be

species, languages or other entities [46]. In linguistics, a phylogenetic tree

represents an estimation or hypothesis about the evolutionary relationships

among groups of languages, based upon similarities and differences in their

characters. For example, Latin evolved into modern Romance languages

like Italian, Spanish, Portuguese, French and Romanian. This can be

proved by analysing cognate words, which are lexical characters commonly

used in historical linguistics. The languages appear as leaves in the

tree and are joined together when they are supposed to descend from a

common ancestor. Internal nodes represent intermediate, non-documented

languages, and tree branch lengths may signify language distances or

divergence time, accordingly with the methodology employed.

Phylogenetic trees are generally binary and they are either unrooted,

when they only represent relationships between languages, or rooted, when

they also identify a common ancestor. Any unrooted tree can be rooted on

any of the internodes in the tree and it is compatible with all the rooted

trees that can be built in this way. The number of unrooted binary trees for

n languages is equal to 3 ∗ 5 ∗ 7 ∗ . . . ∗ (2n− 5). Because for each unrooted

tree there are 2n− 3 possible rooted trees, the number of rooted trees is

3 ∗ 5 ∗ 7 ∗ . . . ∗ (2n− 3) [46]. A common way to root an unrooted tree is

to utilise an outgroup, which serves as a reference for determination of the

evolutionary relationship among the other nodes. It should be a language

considered related to the other languages in the set, but less closely related

to any language in the group than they are to each other [106].

Phylogenetic networks are rooted direct graphs that may be used when,

together with evolutionary relationships, more complex interactions need
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to be represented, which may include borrowing, creolisation or language

mixture. In this thesis we have focussed on phylogenetic trees only.

3.5.1 Methods for phylogenetic inference

Methods for linguistic phylogenetic inference estimate the evolutionary

history of languages using the information available about them. This

information is generally coded in a matrix that may be a distance matrix

or a character matrix. Depending on this, methods are classified as

distance-based methods or character-based methods [106] and most of

them are guaranteed to reproduce the true evolutionary tree, under certain

conditions. When a method returns more than one tree having the same

best score, a consensus tree has to be calculated [46].

Some methods not only aim to infer phylogenetic tree topologies, but

also to estimate the dating of language divergence times that depend on

the original character data and on various assumptions. The scholars are

divided as to whether or not the currently available statistical methodology

for dating purposes may be accepted with any degree of confidence in

historical linguistics [44, 5, 4, 55].

3.5.1.1 Distance-based methods

Distance-based methods represent a major family of phylogenetic

methods, where the initial character matrix is used to statistically calculate

a pairwise distance matrix, which is then used to estimate a phylogenetic

tree. It has been proved that the amount of information about the

phylogeny that is lost in this process is remarkably small and that the

estimates of the phylogenies produced by distance-based methods are quite

accurate [46]. Distances may be considered estimates of the branch lengths

separating pairs of languages, where different branches may have different

rates of evolution.
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A famous class of distance-based methods consists of clustering

algorithms, which apply an algorithm to a distance matrix in order to

produce a phylogenetic tree. These methods are very fast and, under

certain assumptions, they are guaranteed to perform well. However, their

statistical properties are not clear, because they do not optimise an explicit

criterion [46]. Two standard clustering algorithms extensively used in

phylogenetic inference are UPGMA [126] and Neighbor-Joining [119, 130].

• UPGMA (Unweighted Pair-Group Method with Arithmetic mean)

[126] is guaranteed to perform well under the molecular clock

hypothesis, which implies that the input distances represent languages

that have evolved with a constant rate of evolution. This is a

reasonable assumption, which follows the glottochronology approach

[132], only if the entities are closely related. At each step, UPGMA

combines together the nearest two clusters into a new cluster. The

distance between the new cluster and the others is calculated as

the mean distance between the elements of each cluster. The

computational cost isO(n2), where n is the distance matrix dimension.

Clocklike trees are rooted and have an equal total branch length from

the root to any leaf [46].

• Neighbor-Joining (NJ ) [119, 130] is a clustering algorithm that

is guaranteed to reconstruct phylogenetic trees perfectly, when the

pairwise distances are the exact reflection of a tree. NJ assumes

the minimum evolution criterion for phylogenetic trees and, at each

iteration, it chooses the topology that minimises the total branch

length. It produces an unrooted tree, that may be rooted by using an

outgroup. The computational cost is O(n3), where n is the distance

matrix dimension.
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3.5.1.2 Character-based methods

A language may be described by a vector of character states and a group

of languages may be represented by a matrix, where each row symbolises a

language and each column signifies a character. Character-based methods

use a character matrix to estimate a phylogeny.

• Maximum Parsimony (MP) [46] is a non-parametric statistical

method, whose target is to find an unrooted tree that requires the

minimum number of evolutionary changes to describe the observed

data. It may find several trees with the same best score. MP

does not guarantee to produce the true tree because of the “Long

Branch Attraction” [46]. This phenomenon occurs when the rates

of evolution are very different on different branches of the true tree.

In this case, MP considers closely related those lineages that evolve

rapidly, regardless of their true evolutionary relationships. MP may be

weighted, when different weights are assigned to different characters,

or unweighted. Finding an MP tree is an NP-complete problem

[50] and for this reason MP analyses are frequently performed using

heuristics. Generally, these may find only local optima, rather then

global optima, and anyway be very time-consuming.

• Maximum Compatibility (MC ) [46] is a non-parametric method,

which aims to find an unrooted tree that presents the maximum

number of compatible characters to illustrate the observed data. Being

compatible here means evolving without any homoplasy, i.e. without

back mutation or parallel evolution. When a tree has all of the

characters compatible, it is called a perfect phylogeny. MC may be

weighted or unweighted and may find several trees with the same

best score. The problem is NP-complete [14] and there are no highly

accurate heuristics available. However, if the maximum number of
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states per character is bounded, then it is possible to find a solution in

O(22r∗n∗k2) where r is the maximum number of states per character,

n is the number of leaves, and k is the number of characters [70].

• Maximum Likelihood (ML) methods [46] are based on explicit

parametric models of character evolution and they aim to estimate

the tree and the parameters that maximize the likelihood of the

observed data, under the chosen evolutionary model. ML is

statistically consistent and generally produces very good estimates

of the phylogenetic tree, but it is NP-hard [20].

• Bayesian methods [46] are also based on explicit parametric models

of character evolution. Their objective is to estimate a consensus tree,

or sometimes the maximum posterior probability tree, of a posterior

probability distribution on the space of the model trees, calculated

from an initial tree and the observed data. Bayesian methods generally

produce very good estimates of the phylogeny, but their computational

time is extremely expensive. Markov Chain Monte Carlo (MCMC )

algorithms [61] are frequently used to calculate an approximate

posterior distribution of the trees instead. Initial prior parameters

or priors may allow the inclusion in the evolutionary analysis of

evidence available from other fields, such as genetics, anthropology

and archaeology. However, the results should be examined considering

both their sensitivity to the priors used and the reliability of the

MCMC approximation of the tree probabilities [65].

3.5.2 Evaluation of phylogenetic inference

The evaluation of phylogenetic estimations is very difficult because the

true evolutionary history is not generally fully known, even for the best

understood language families. The choice of both data and phylogenetic
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inferring methodology significantly impact the phylogenetic estimation.

The following criteria, proposed by Nichols and Warnow [106], should be

a necessary and crucial requirement of any phylogenetic estimation, when

using data from a well-known language family.

The “Compatible resolution” criterion requires that the inferred tree

is compatible with the benchmark tree, meaning that the established

subgroups should not be mixed, even if they may not be completely

resolved. That may happen when the data are not sufficient to provide

a complete resolution or when a consensus tree is used.

The “No missing subgroups” criterion requires that the estimated tree

includes all the established subgroups and it is strictly stronger than the

first criterion, and for this reason is considered desirable, but not essential.

The “Calibration” criterion is essential for models that estimate dating.

It requires that a method is tested on one or more datasets and, if the

inferred dates are not close enough to the established dates, the model has

to be calibrated on the known dates.

3.6 The Indo-European language family

The Indo-European is one of the most intensively studied language

families [38] and it is significant in the field of historical linguistics,

as it possesses one of the longest recorded histories. There are only

a few hundred languages belonging to this family, however, they are

spoken by more than 45% of the global world population [85]. All

languages are supposed to be descendants of a common ancestor, the

Proto-Indo-European, and the basic subgroups are very well established.

They include the extinct Anatolian and Tocharian and the contemporary

Albanian, Armenian, Celtic, Germanic, Greek, Italic, Baltic and Slavic,

grouped together into a Balto-Slavic clade, Indo-Aryan and Iranian, linked
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together to form an Indo-Iranian clade [106].

The origin of the Indo-European language family still represents one

of the most recalcitrant problems of historical linguistics [38]. The

relatively small number of languages and distinct branches contained in the

Indo-European family, suggests that the reconstruction of Indo-European

origins is complicated by large extinctions of its speech varieties, following

the expansion of a few dominant subgroups [38].

The higher-order subgrouping of the Indo-European language family

remains controversial [115], but the initial split into Anatolian versus all

the others is linguistically well sustained. Moreover, some phylogenies have

more support than others, including a radial phylogeny, one where Celtic

departs very early, one that groups Balto-Slavic and Indo-Iranian together,

or Armenian with Greek or Celtic with Italic [106].

We have applied our investigation to the Indo-European language family

in an attempt to make a contribution to the problem of its first-order

subgrouping, which has never reached any consensus [115].

70



Chapter 4

A string similarity measuring system

In recent decades, computational linguistics, and computational

historical linguistics in particular, has aroused much interest in the

scientific community. Cognate identification and phylogenetic inference

represent key fields in the investigation of language evolution and have been

successfully approached by various computational techniques. A number

of different attempts to the cognate identification problem have been

proposed including orthographic and phonetic systems, as well as learning

or static procedures. In the field of phylogenetic inference, distance-based

and character-based methods have been investigated as well.

In this chapter, we present a new orthographic learning system for

the measurement of string similarity, that combines and adapts several

techniques developed for biological sequence analysis to the natural

language processing environment. Many of the ideas discussed in previous

chapters are integrated into this new proposal that we successfully apply

to both the fields of cognate identification and phylogenetic inference. For

the former, we calculate word similarities and for the latter we compute

language similarities, then transformed into language distances, to allow

the estimation of phylogenetic trees with distance-based methods.
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4.1 Architecture

In order to study word relatedness, we have designed a new learning

system following the similarity approach, which is considered the standard

in biological sequence analysis and frequently used in natural language

processing. Similarity allows local alignment, as well as global alignment,

to be performed and it leads to the maximisation problem of finding the

highest scoring alignment or alignments of two strings [56].

Following this idea, we have developed a new orthographic learning

system for measuring string similarity that, inspired by biological sequence

analysis, consists of the three main modules described below. Each of them

includes an original aspect:

• A global pairwise aligner, which sensibly aligns cognate pairs

and prepares a meaningful training dataset, guided by a novel

linguistic-inspired substitution matrix, described in Section 4.2.

This 26-by-26 matrix aims to represent the a priori likelihood of

transformation between each character of the Roman alphabet into

another and tries to code well-known systematic sound changes left in

written Indo-European languages.

• A generator of scoring matrices, which learns substitution parameters

using several techniques, including Maximum Likelihood, Absolute

Frequency Ratio, Pointwise Mutual Information and PAM-like,

discussed in Section 4.3. For the latter, which has performed the best,

we have developed a new technique inspired by the PAM method,

introduced in Section 3.4.3.1. Designed by Margaret Dayhoff and

co-workers [30, 31, 32], it is widely used for amino acid sequence

analysis.
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• A pairwise aligner, which, in order to measure the similarity between

strings, benefits from the generated substitution matrices and from a

novel family of parameterised string similarity measures, explained

in Section 4.4. The similarity measures derive from different

normalisations of a generic scoring algorithm and take into account

the similarity of each string with itself, in the aim of eliminating, or

at least reducing, the bias due to different string length.

Our proposal has been developed using data in orthographic format

based on the Roman alphabet. However, it may easily be adapted to any

alphabetic system, including the phonetic alphabet, if data were available.

4.2 A linguistic-inspired substitution matrix

Many learning techniques in bioinformatics take advantage of biological

sequences, aligned by experts, available in organised databases. The first

challenge we have faced in this study has been the lack of such resources

of data for computational historical linguistic studies.

In order to generate automatically a sensibly aligned training dataset,

we have prepared a linguistic-inspired substitution matrix in the belief

that systematic phonetic changes leave their traces in the orthography of

written languages.

We have considered the 26 letters of the Latin alphabet and we have

produced a symmetric 26-by-26 matrix containing the a priori likelihood of

transformation between each character of the alphabet into another for the

Indo-European family. We have given a value of 2 to all the elements of

the main diagonal, because it is likely that a character preserves itself. We

have assigned a value of 0 to all the character transformations considered

“possible”, a value of −3 to all the character transformations evaluated

“impossible” and a gap penalty of −1 for insertion and deletion, to avoid
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possible overlaps between two indels and an “impossible” match. For

example, we have considered “impossible” that character ‘A’ may change

into character ‘B ’, while we have classified as “possible” that character ‘A’

may transform into character ‘E ’. For the classification of the character

conversions evaluated “possible”, we have considered several regular

sound changes, including vowel shift chain, Grimm’s and Verner ’s laws,

Centum-Satem division, rhotacism, assimilation, dissimilation, lenition,

fortition and L-vocalisation [2].

We have then used this matrix to perform global pairwise alignments

by the Needleman-Wunsch algorithm [102, 51] on the cognate pairs of the

training dataset in order to lay the foundations of a meaningful learning

process. If the aligner for a word pair has found more than one optimal

alignment with the same rate, it has chosen one of them through the

alternate tracing back shown in brackets (↖←↑, ↖↑←, ←↖↑, ←↑↖,

↑←↖, ↑↖←). In doing this, we have aimed to eliminate possible bias

caused by always giving priority to the same conditional predicates in the

algorithm, and therefore assuring a more balanced learning process.

In Appendix B, we will provide the linguistic-inspired substitution

matrix, together with an explanation of the choices we made and several

examples of orthographic changes classified by linguistic motivations. This

matrix has been proposed and discussed in [33, 34].

4.3 Substitution matrices

We have already discussed in Section 3.4.3 substitution matrices and

their significance in biological sequence analysis. Scoring schemes are

crucial for the performance of any string similarity measuring system

and for this reason we have focussed on them, developing a generator of

substitution matrices, which may employ different techniques.
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Firstly, we have collected a sample of global pairwise alignments,

obtained with the aid of the linguistic-inspired matrix, and we have derived

from them substitution parameters using different probabilistic models. We

have used several learning techniques on our training dataset in order to

infer increasingly complex scoring matrices.

Each scoring matrix has been produced in two versions, one for the

Roman alphabet and one for an extension of it including the gap, with the

aim of understanding how to best manage gap penalties.

The proposed substitution matrices have then been utilised to measure

word similarity, employing global and local alignment.

4.3.1 Maximum Likelihood matrices

A simple statistical method for inferring a scoring matrix from aligned

data is to apply the Maximum Likelihood (ML) criterion [41]. ML for a

model M, estimates the values of the parameters Θ that make the dataset

D as likely as possible. Formally:

ΘML =
argmax

Θ
P (D|Θ,M) (4.1)

ML has the desirable property of being consistent, in the sense that

the parameter values used to generate the dataset are also the values that

maximise the likelihood. On the other hand, it does have the limitation of

producing poor results, if the data are scarce [41].

Given a dataset of aligned words from an alphabet A, with | A | ≥ 2, the

ML estimate of the parameter Θ(Ai,Aj) is the observed relative frequency

f(i, j) of the character Ai being transformed into the character Aj:

f(i, j) =
#(Ai,Aj)∑
k,h #(Ak,Ah)

(4.2)
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4.3.2 Absolute Frequency Ratio matrices

Another simple statistical method for estimating a substitution matrix

from aligned data is to use absolute frequencies [108], instead of relative

frequencies.

Given a set of aligned words from an alphabet A, with | A | ≥ 2,

the Absolute Frequency Ratio (AFR) of the character pair (Ai,Aj) is

the observed absolute frequency of character Ai being transformed into

character Aj, divided by the absolute frequency of character Ai and

character Aj:

f(i, j) =
#(Ai,Aj)

#Ai ∗#Aj

(4.3)

4.3.3 Pointwise Mutual Information matrices

Another statistical method for estimating a scoring matrix from aligned

data, is the Pointwise Mutual Information (PMI ). This measure derives

from the Mutual Information, which was originally introduced by Fano

[45] in the field of information theory. PMI has been applied to various

disciplines, including lexicography [21] and dialectology [141].

PMI is a measure of association between two events described by

discrete probability distributions and it is defined as the log-odds ratio

of the joint probability of observing two events together, to the marginal

probabilities of observing them independently.

If two events X and Y have probability distributions p(X) and p(Y ),

respectively, and joint probability p(X, Y ), their PMI is defined as:

PMI(X, Y ) = log2

p(X, Y )

p(X) ∗ p(Y )
(4.4)

PMI holds the following properties [90]:
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1. PMI(X, Y ) = 0 ↔ X, Y independent

2. PMI(X, Y ) = − log2 p(X) ↔ X, Y perfectly dependent

3. PMI(X, Y ) = PMI(Y,X) ∀ X, Y

Given a dataset of aligned words from an alphabet A, with | A | ≥ 2,

in order to infer PMI substitution scores, we have calculated the relative

frequencies of each character Ai and of the transformation of it into Aj in

the training dataset. Each entry PMI(i, j) of the matrix has been obtained

by the log-odds ratio of the joint relative frequencies of the two characters

Ai and Aj, over the product of their disjoint relative frequencies:

PMI(i, j) = log2

f(i, j)

f(i) ∗ f(j)
(4.5)

where

f(i, j) =
#(Ai,Aj)∑
k,h #(Ak,Ah)

(4.6)

f(i) =
#Ai∑
k #Ak

(4.7)

4.3.4 PAM-like matrices

In Section 3.4.3.1, we have introduced the PAM matrices [30, 31, 32]

used in molecular biology, which represent one of the universal scoring

schemes for that field. Because to our knowledge nothing similar exists

in computational linguistics nor in natural language processing, we have

decided to pioneer this fascinating approach.

In order to build the matrix PAM1, Dayhoff et al. [30, 31, 32] built

hypothetical phylogenetic trees with the Maximum Parsimony method

[46] from 71 protein families, where each pair of sequences showed amino

acid diversity lower than 15%. They based the count of the accepted
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point mutations on the phylogenetic trees, in order to compare observed

sequences with inferred ancestral sequences, rather than with each other.

Dayhoff and co-workers [30, 31, 32] constructed a non symmetric matrix

M of mutation probabilities, where M(i, j) contained the probability that

amino acid Aj mutates to amino acid Ai in 1 PAM unit, performing

the following steps. Firstly, a matrix A of accepted point mutation was

calculated ignoring the evolutionary direction, meaning that A(i, j) and

A(j, i) were incremented every time character Ai was replaced by Aj or

vice-versa. Secondly, the relative mutability m(j) of each amino acid

Aj was calculated as the ratio of observed changes to the frequency of

occurrence. The matrix M of mutation probabilities was computed as

follows, where µ is a proportionality constant:

M(i, j) =
µ ∗m(j) ∗ A(i, j)∑

iA(i, j)
∀i 6= j (4.8)

M(i, i) = 1− µ ∗m(i) ∀i (4.9)

To generate scoring matrices suitable for longer times, Dayhoff et al.

[30, 31, 32] produced matrices Mn by multiplying matrix M by itself n

times, which gives the probability that any particular amino acid mutates

to another one in n PAM units. Each PAMn matrix was obtained by the

following log-odds ratio, where f(i) and f(j) were the observed frequencies

of amino acid Ai and Aj, respectively, normalised by the number of all

mutations:

PAMn(i, j) = 10 ∗ log10

f(j) ∗Mn(i, j)

f(i) ∗ f(j)
= 10 ∗ log10

Mn(i, j)

f(i)
(4.10)

Due to the lack of large and organised datasets of cognate words and to

the small length of words, compared with the length of biological sequences,
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we have been forced to take some decisions that partially differentiate our

method from the one Margaret Dayhoff et al. [30, 31, 32] used to create

the PAM matrices for biological sequence analyses.

Indeed, we have not been able to identify in our dataset a useful group

of cognate sets where each pair of words showed character diversity up to

15%. In fact, the group of cognate families extracted from our dataset

showing up to 15% of diversity, has been completely inadequate, because

it was composed of a few families of nearly identical words, where the

only mismatches were due to indels. Increasing the diversity threshold

up to 25% or 35% has not produced any substantial improvement. To

understand the reason for this, let us consider, for example, the cognate

words Italian fiore and French fleur, that are clearly very closely related,

and show a diversity of 80% as 4 letters out of 5 represent mismatches.

As a consequence, we have opted to use the whole dataset and, due to

the small dimension of the cognate families and the short length of the

cognate words, we have not built hypothetical phylogenetic trees. Instead,

we have compared the cognate words with each other and not with their

hypothetical ancestors. We have then followed the Dayhoff et al. [30, 31,

32] method, as described previously in this section, to produce a family of

PAM-like matrices.

The PAM-like method has been introduced and discussed in [33, 34].

4.4 A family of string similarity measures

Under the similarity approach, alignments of two identical strings do not

have a constant rate, because the score depends on the length of the strings

and on the substitution rates of the characters involved. For this reason,

instead of applying directly an aligning algorithm to the measurement of

the similarity of string pairs, we have proposed a family of parameterised
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string similarity measures, obtained through different normalisations of a

generic similarity rating algorithm.

Table 4.1 reports the family of parameterised string similarity measures

proposed and the type of normalisation applied to them.

Similarity measure Normalised by

Sim1(S1, S2, AL) =
2∗AL(S1,S2)

AL(S1,S1)+AL(S2,S2)

Arithmetic

Mean

Sim2(S1, S2, AL) =
(len(S1)+len(S2))∗AL(S1,S2)

len(S1)∗AL(S1,S1)+len(S2)∗AL(S2,S2)

Weighted Arithmetic

Mean

Sim3(S1, S2, AL) =
AL(S1,S2)√

AL(S1,S1)∗AL(S2,S2)

Geometric

Mean

Sim4(S1, S2, AL) =
AL(S1,S2)

len(S1)+len(S2)
√

AL(S1,S1)len(S1)∗AL(S2,S2)len(S2)

Weighted Geometric

Mean

Sim5(S1, S2, AL) =
(AL(S1,S1)+AL(S2,S2))∗AL(S1,S2)

2∗AL(S1,S1)∗AL(S2,S2)

Harmonic

Mean

Sim6(S1, S2, AL) =
(len(S1)∗AL(S2,S2)+len(S2)∗AL(S1,S1))∗AL(S1,S2)

(len(S1)+len(S2))∗AL(S1,S1)∗AL(S2,S2)

Weighted Harmonic

Mean

Sim7(S1, S2, AL) =
3∗AL(S1,S2)

AL(S1,S1)+
√

AL(S1,S1)∗AL(S2,S2)+AL(S2,S2)

Heronian

Mean

Sim8(S1, S2, AL) =
AL(S1,S2)√

(AL(S1,S1)2+AL(S2,S2)2)/2

Root Mean

Square

Sim9(S1, S2, AL) =
(AL(S1,S1)+AL(S2,S2))∗AL(S1,S2)

AL(S1,S1)2+AL(S2,S2)2

Contraharmonic

Mean

Table 4.1: A family of parameterised string similarity measures
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Given two strings S1 and S2 and a generic rating algorithm AL, we have

defined a set of similarity measures by normalising in various ways the

similarity rate between the two strings, using the similarity rates of each

string with itself. Our aim has been to eliminate, or at least reduce, the

bias due to different string length.

The similarity measure Sim1 normalises the rate of a scoring algorithm

AL, applied to calculate the similarity of S1 with S2, by the Arithmetic

mean [17] of the rates given by the same algorithm applied to calculate

the similarity of each string with itself. The similarity measure Sim2 does

the same, but normalises the rate by the Weighted Arithmetic mean [17],

that considers also the length of the two strings. The similarity measures

Sim3 and Sim4 employ a normalisation by using the Geometric mean [17]

and the Weighted Geometric mean [17], respectively. Sim5 normalises by

the Harmonic mean [17] and Sim6 by the Weighted Harmonic mean [17].

The Heronian mean [17] is used to normalise the rate in Sim7, the Root

mean square [17] is utilised in Sim8 and the Contra-Harmonic mean [17]

is employed in Sim9.

Following the idea of considering the similarity of each string with itself

in calculating string similarity, other string similarity measures may be

added to the family.

In this study, we have used these new string similarity measures with

the Needleman-Wunsch algorithm [102, 51] for global alignment and with

the Smith-Waterman algorithm [125, 51] for local alignment, but they may

be used with any other similarity rating algorithm.

The family of parameterised string similarity measures has been

proposed in [33].
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4.5 Cognate identification

We have applied the proposed string similarity measuring system to the

task of cognate identification. We have employed a training dataset and a

test dataset without intersection in their language set.

We have sensibly aligned a training dataset of cognate pairs with the

linguistic-inspired substitution matrix, presented in Section 4.2. We have

then learnt scoring matrices from the aligned cognate pairs using several

techniques, described in Section 4.3.

In order to test our cognate identification system, we have used language

pairs built from the combination of the languages forming the test dataset,

provided as 200-word Swadesh lists [132]. For each language pair and for all

the word pairs with the same meaning in two languages, we have evaluated

the likelihood that two words were cognates, by calculating a score. To

give each alignment a score, we have employed the Needleman-Wunsch

algorithm [102, 51] for global alignment, the Smith-Waterman algorithm

[125, 51] for local alignment, both explained in Section 3.4.2, and the

family of similarity measures based on them, introduced in Section 4.4.

We have utilised the substitution matrices produced with the techniques

investigated in Section 4.3.

To assess our learning system in the task of cognate identification,

we have intentionally employed an evaluation methodology frequently

used by other systems in the field of cognate identification [86, 87, 83,

80], with which we wanted to make our results properly comparable.

This methodology addresses the cognate identification problem as a

classification task, where the terms True Positives (TP), True Negatives

(TN), False Positives (FP) and False Negatives (FN) [108] are used

to compare the system classifications with the correct cognateness

judgements. The aim of any classification system is, of course, to maximise
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TP and TN, as well as to minimise FP and FN. The outcome of a cognate

classification system, combined with the available cognateness information,

is summarised in Table 4.2.

Word pairs Real Cognates Non Real Cognates

Classified as Cognates TP FP

Classified as non-Cognates FN TN

Table 4.2: Contingency table for cognateness

As Precision [90] is the ratio of TP to the sum of TP and FP, in our

context, it is the proportion of those pairs classified as cognates that are

actually true cognates:

Precision =
TP

TP + FP
(4.11)

As Recall [90] is the ratio of TP to the sum of TP and FN, in our

context, it is the proportion of all cognates in the dataset that have been

correctly classified:

Recall =
TP

TP + FN
(4.12)

Following this evaluation methodology, we have not identified the word

pairs “Classified as Cognate” or “Classified as non-Cognate” using a score

threshold, which may be influenced by the type of application, the method

used and the degree of language relatedness [80]. Instead, we have sorted

the scores of each language pair and, when more word pairs have showed

the same rate, we have considered the alphabetic order as well, to avoid

random rankings.
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We have then borrowed from the field of Information Retrieval,

a measure specifically designed to evaluate rankings: the 11-point

interpolated average precision [90]. This measure, for each level of recall

R ∈ {0.0, 0.1, 0.2, . . . , 1.0}, calculates the interpolated precision, which is

the highest precision found for any recall level R′ ≥ R. It then averages

these 11 scores, providing a single value.

Figure 4.1 presents an example of 11-point interpolation procedure,

which generates a non-increasing monotonic function from non monotonic

precision values. The precision is displayed in blue stars and the

interpolated precision in red squares.

Figure 4.1: An example of 11-point interpolation procedure

For each word pair in our ordered list, we have calculated the Precision

and Recall [90] achieved. The Precision has been computed as the

proportion of those word pairs classified as cognates till that point, that are

actually true cognates. The Recall has been calculated as the proportion of

all cognates in the dataset that have been correctly classified as cognates,

till that point. We have finally calculated the 11-point interpolated average

precision [90] for each language pair considered.
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4.6 Phylogenetic inference

We have developed a model to estimate phylogenies based on the

learning system for measuring string similarity, described previously in this

chapter. We have intentionally focussed on the tree topology and avoided

modelling a dating scheme. We have chosen a training dataset of genetic

cognate words without intersection with the test dataset and added an

outgroup to root the phylogenetic trees.

Firstly, we have sensibly aligned the training dataset using the

linguistic-inspired substitution matrix, introduced in Section 4.2. We

have learnt scoring matrices from the aligned cognate pairs, following the

techniques explained in Section 4.3. In order to calculate word similarity

using these trained scoring matrices, we have employed global and local

alignments and the family of string similarity measures based on them,

proposed in Section 4.4. We have then utilised these calculated similarity

scores between word pairs to compute similarity scores between language

pairs. In doing this, we have employed Swadesh lists [132] of words with

the same meaning in different languages. For each language pair, we have

calculated and averaged the word pair similarity rates, producing an entry

in a language similarity matrix. The calculation has been done for each

substitution matrix, scoring algorithm and similarity measure utilised.

We have then faced the problem of converting these similarity matrices

into distance matrices, in order to infer phylogenies utilising distance-based

methods [46]. Because the similarity measures proposed are defined

through different normalisations of a generic rating algorithm, the

similarity scores fall in the range [0,1], where 0 means no similarity and 1

means maximum similarity. We have experimented with the three following

methods of deriving a distance matrix from a similarity matrix, in the aim

of studying possible differences in the resulting phylogenetic trees:
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D1 = 1− S
D2 = − ln(S)

D3 = 1/S − 1

(4.13)

Given a generic n-by-n similarity matrix S, in the first case we have

taken the more obvious approach, calculating each entry of an n-by-n

distance matrix D1, by subtracting the corresponding similarity value from

1, which produces rates in the range [0,1].

In the second case, we have calculated each entry of an n-by-n

distance matrix D2, as the negative natural logarithm of the corresponding

similarity value, which ranges from 0 to ∞.

In the third case, we have computed each entry of an n-by-n distance

matrix D3, by first taking the reciprocal of the corresponding similarity

value and then subtracting 1 from this quantity, which produces rates

always equal to or greater than zero.

The last two methods were proposed and investigated by Feng and

Doolittle [47] for measuring evolutionary times.

Having produced distance matrices from similarity matrices with the

conversions described, we have then been able to employ distance-based

methods, such as the UPGMA [126] and Neighbor-Joining [119, 130]

algorithms, to estimate phylogenetic trees.
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Chapter 5

Experimental results

In this chapter we apply the learning system introduced in Chapter

4 to the fields of cognate identification and phylogenetic inference. For

the former, we measure word similarities to identify cognate words and

for the latter we calculate language similarities, then transformed in

language distances, to estimate phylogenies. We utilise orthographic data

of Indo-European languages based on the Latin alphabet, in the belief

that alphabetic character correspondences represent in some way sound

correspondences, as phonetic changes leave traces in the orthography.

However, our methodology may easily be adapted to any alphabetic

system, including the phonetic alphabet, if data were available.

In cognate identification, when training PAM-like matrices, our system

advances the state of the art. In fact, it outperforms comparable

phonetic and orthographic previous proposals, with results which are

statistically significant and remarkably stable, regardless of the variation

of the training dataset dimension. When applied to phylogenetic inference

of the Indo-European language family, whose higher structure does not

have consensus, our system estimates phylogenies compatible with the

Indo-European benchmark tree. Indeed, they reproduce correctly all the

established major language groups and subgroups present in the dataset.
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5.1 Cognate identification

We have applied to the task of cognate identification the learning system

for measuring word similarity, introduced in Section 4. Firstly, we have

employed a training dataset of genetic cognate words and a test dataset of

200-word Swadesh lists [132] with no intersection in their language sets. We

have then sensibly aligned the cognate pairs of the training dataset using

the Needleman-Wunsch algorithm [102, 51] for global alignment, together

with the linguistic-inspired substitution matrix introduced in Section 4.2.

From this training dataset of aligned cognate pairs, we have learnt

scoring matrices using several techniques described in Section 4.3, such as

Maximum Likelihood, Absolute Frequency Ratio, Mutual Information and

PAM-like. We have then utilised these substitution matrices, together

with the Needleman-Wunsch algorithm [102, 51] for global alignment,

the Smith-Waterman algorithm [125, 51] for local alignment and the

family of parameterised string similarity measures, proposed in Section

4.4, to rate and order the word pairs of the test dataset. We have

evaluated and compared the 11-point interpolated average precision [90]

achieved by our cognate identification system on the test dataset, for each

technique employed and for each similarity measure based on global and

local alignment, respectively. PAM-like matrices have performed very well,

achieving the higher accuracy among the tested models, with results that

have shown to be remarkably consistent, regardless of the training dataset

dimension. Finally, we have assessed our system against comparable

phonetic and orthographic methods previously reported in the literature.

Our results have outperformed the others with a statistically significant

improvement, which has shown to be independent from the training dataset

dimension. This suggests that our learning system for measuring string

similarity has advanced the state of the art in cognate identification.
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5.1.1 Datasets

Any learning system depends heavily on the data with which it is

trained and any test is greatly influenced by the complexity of the data

it has to analyse. In order to develop our system and make our results

properly comparable with others previously reported in the literature, we

have intentionally chosen a training and a test dataset which have been

utilised several times by other scholars. From these datasets, we have then

extracted and exploited training and test orthographic data, which do not

present any intersection in their language sets.

The training dataset1 for our cognate identification system has been

extracted from the Indo-European corpus provided by Dyen et al. [42] and

documented in their monograph. This is one of the recommended sources

for linguistic studies [106] and has been introduced in Section 2.3. In this

dataset, a Cognate Classification Number (CCN ) is utilised to identify

different groups of words, with respect to their cognateness.

A CCN equal to 0 is used when, for a given meaning in a specific

language, there is no word in the dataset or a word is not considered

appropriate.

A CCN equal to 1 represents words which are believed to be unique

in the dataset, i.e. not cognate with others. As a consequence, it is also

used to classify borrowings. For example, the English word flower, which

is considered a loan from Old French, is reported in this category.

A CCN in the range [2,99] identifies groups of words that are judged

cognate with each other, but not cognate with words from any other group.

A CCN in the range [100,199] represents lists of words which are judged

doubtfully cognate with each other and not cognate with words from any

other list in the dataset.
1 http://www.wordgumbo.com/ie/cmp/iedata.txt
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A CCN in the range [200,399] classifies groups of words which are judged

cognate with each other and either cognate or doubtfully cognate with at

least one word from another group.

A CCN in the range [400,499] categorises lists of words that are judged

doubtfully cognate with each other and doubtfully cognate with at least

one word from another list.

From the 84 speech varieties proposed in the monograph, we have

considered 6 languages: Italian, Portuguese and Spanish from the Romance

family; Dutch, Danish and Swedish from the Germanic family. In doing

so, we have aimed to have a balanced training dataset able to learn traces

of sound correspondences left in the orthography of most of the language

branches of which the test dataset is made, i.e. the Romance, Germanic

and Albanian families. Contemporarily, we have avoided overlap between

the languages of the training and test datasets.

From this group of 6 languages, we have extracted approximately 650

cognate pairs, by considering only the word pairs reported by Dyen et al.

[42] as certain cognates with each other, which are classified in the corpus

with CCN in the range [2,99]. This should ensure that our study does not

include doubtful cognates or borrowings, identified by CCN = 1, which we

wanted to discard from our training.

If more words were provided for the same meaning in the same language,

we have considered the first word only, after ensuring that it was always

cognate with the group, as explained in Section 6.2. This was achieved

by putting in first position the word presenting the smaller averaged edit

distance [84] with the other members of the group. We have also corrected

some orthographic errors.

We have then aligned these cognate pairs using global alignment,

together with the linguistic-inspired substitution matrix described in

Section 4.2, to produce a meaningful training dataset.
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The test dataset2 for our cognate identification system, has consisted

of the orthographic form of the 200-word Swadesh lists [132] of English,

German, French, Latin and Albanian provided by Kessler [73] and

enhanced with his judgement of their cognateness. We have used the ten

language pairs deriving from the combination of these five languages to

test our cognate identification system.

It is worth noting that the presence of the Albanian language makes this

test dataset very challenging. In fact, Albanian constitutes its own branch

in the Indo-European language family and it is not part of any recognised

language group [18]. In order to keep the training and the test dataset

separate, it has not been possible to train the system for it.

We have discovered in the digital file provided by Kessler [73] two

inconsistencies related to the cognateness of two French - German word

pairs, as the author has confirmed by private correspondence. While the

Latin word folium, which means leaf, is reported to be cognate with the

French word feuille and the German Blatt, the latter two are not reported

as cognate with each other. The same happens to the Latin word collum,

meaning neck, with the French cou word and German Hals. In order to

make our results properly comparable with others reported in the literature

[86, 87, 83, 80], where the same test dataset has been used, we have not

corrected these errors and, for the same reason, we have not distinguished

between cognates and loans.

2 http://www.artsci.wustl.edu/~bkessler/thesis/comparanda.xml
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5.1.2 NEDIT

In order to evaluate and compare the performance of our cognate

identification system when using different learning techniques, we have

used as a baseline the edit distance with unitary costs [84], normalised by

the length of the longer string, called hereinafter NEDIT.

Table 5.1 shows the proportion of cognate words per language pair and

the 11-point interpolated average precision [90] for NEDIT over the ten

language pairs of our test dataset, together with the average, standard

deviation, variance and median [108].

Languages Cognate NEDIT

proportion

English German 0.590 0.907

French Latin 0.560 0.921

English Latin 0.290 0.703

German Latin 0.290 0.591

English French 0.275 0.659

French German 0.245 0.498

Albanian Latin 0.195 0.561

Albanian French 0.165 0.499

Albanian German 0.125 0.207

Albanian English 0.100 0.289

Average 0.284 0.584

Standard deviation 0.168 0.231

Variance 0.028 0.054

Median 0.260 0.576

Table 5.1: 11-point interpolated average precision for NEDIT

The standard deviation and the variance have been reported in order

to measure not only how the system performs on average, but also the

variability of dispersion of the results produced. A high standard deviation

indicates that the data are spread over a wide range of values, while a low

standard deviation signifies that the values tend to be very close to the

average. The median specifies the central tendency.
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5.1.3 Linguistic-inspired substitution matrix

We have tested the performance of our cognate identification system

when employing the Linguistic-Inspired substitution Matrix (LIM ) as

scoring scheme, for a better evaluation of the benefits added by the learning

process.

Table 5.2 displays the results in terms of averaged 11-point interpolated

average precision [90] reached by the family of similarity measures,

introduced in Section 4.4, based on the Needleman-Wunsch algorithm

[102, 51] for global alignment and on the Smith-Waterman algorithm

[125, 51] for local alignment, respectively. The best outcome is shown

in bold and the two algorithms for global and local alignment hereinafter

are referred to as NW and SW, respectively.

Model Algorithm Basic Sim1 Sim2 Sim3 Sim4 Sim5 Sim6 Sim7 Sim8 Sim9

LIM NW 0.604 0.606 0.603 0.608 0.604 0.608 0.606 0.608 0.603 0.603

LIM SW 0.536 0.600 0.601 0.606 0.601 0.604 0.600 0.606 0.602 0.601

Table 5.2: Averaged 11-point interpolated average precision for LIM

The results have not shown any significant difference when using global

or local alignment, even if the NW algorithm [102, 51] and the family

of similarity measures, which is based on it, has performed slightly

better. When compared with the basic algorithm from which they derive,

the similarity measures increase considerably the performance for local

alignment, while for global alignment they do not provide a real benefit.

Table 5.3 provides a comparison of the 11-point interpolated average

precision [90] for NEDIT with the best results achieved by LIM, over the

ten language pairs of our test dataset. The average, standard deviation,

variance and median [108] are also reported and the best outcome is

displayed in bold.
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Languages Cognate NEDIT LIM

proportion Sim3(NW)

English German 0.590 0.907 0.913

French Latin 0.560 0.921 0.924

English Latin 0.290 0.703 0.722

German Latin 0.290 0.591 0.630

English French 0.275 0.659 0.707

French German 0.245 0.498 0.580

Albanian Latin 0.195 0.561 0.550

Albanian French 0.165 0.499 0.441

Albanian German 0.125 0.207 0.311

Albanian English 0.100 0.289 0.300

Average 0.284 0.584 0.608

Standard deviation 0.168 0.231 0.219

Variance 0.028 0.054 0.048

Median 0.260 0.576 0.605

Table 5.3: 11-point interpolated average precision for NEDIT and LIM

Our cognate identification system, when using the linguistic-inspired

matrix as a substitution matrix in the test pairwise aligner, outperforms

slightly NEDIT, introduced in Section 5.1.2.

5.1.4 Maximum Likelihood matrices

We have generated two Maximum Likelihood (ML) scoring matrices from

the sensibly aligned cognate pairs extracted from the 6-language training

dataset considered and based on the two alphabets employed, i.e. the

Roman alphabet and its extension with gap. These two models have been

named respectively ML6 and ML6b.

Each entry of each matrix has been produced by calculating the number

of transformation occurrences of the character Ai into Aj divided by the

total number of transformations of any character into another, as explained

in Section 4.3.1. We have multiplied all the final scores in the matrices by

100 for computational reasons and we have left the final scores with two
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decimal digits to preserve accuracy.

We have experimented with these substitution matrices on the

test datasets with the Needleman-Wunsch algorithm [102, 51], the

Smith-Waterman algorithm [125, 51] and the family of similarity measures

based on them, introduced in Section 4.4. For ML6, which is the model

based on the Roman alphabet, a gap penalty of −1 has been applied. The

results are reported in Table 5.4 and the best outcome is shown in bold.

Model Algorithm Basic Sim1 Sim2 Sim3 Sim4 Sim5 Sim6 Sim7 Sim8 Sim9

ML6 NW 0.531 0.596 0.596 0.598 0.596 0.597 0.595 0.596 0.593 0.593

ML6 SW 0.516 0.595 0.591 0.596 0.592 0.596 0.594 0.596 0.593 0.589

ML6b NW 0.346 0.556 0.520 0.434 0.478 0.393 0.411 0.495 0.529 0.507

ML6b SW 0.355 0.484 0.485 0.436 0.461 0.407 0.419 0.469 0.498 0.486

Table 5.4: Averaged 11-point interpolated average precision for ML6 and ML6b

ML6, which uses the Roman alphabet without gap, performs

consistently better than ML6b, which utilises the extended alphabet and

presents a poor performance. This suggests that ML is not able to estimate

the indel rates, whose inference only adds noise into the system. The family

of similarity measures introduced in Section 4.4 consistently outperforms

the basic algorithms on which it is based. There is no significant difference

within the same model in the performance of the two families of similarity

measures based on global alignment and local alignment respectively, even

if global alignment seems to perform slightly better.

Table 5.5 reports a comparison of the 11-point interpolated average

precision [90] for NEDIT with the best results achieved by LIM and ML6,

over the ten language pairs of our test dataset. The average, standard

deviation, variance and median [108] are also displayed and the best

outcome is in bold.
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Languages Cognate NEDIT LIM ML6

proportion Sim3(NW) Sim3(NW)

English German 0.590 0.907 0.913 0.902

French Latin 0.560 0.921 0.924 0.898

English Latin 0.290 0.703 0.722 0.719

German Latin 0.290 0.591 0.630 0.610

English French 0.275 0.659 0.707 0.693

French German 0.245 0.498 0.580 0.602

Albanian Latin 0.195 0.561 0.550 0.555

Albanian French 0.165 0.499 0.441 0.422

Albanian German 0.125 0.207 0.311 0.326

Albanian English 0.100 0.289 0.300 0.251

Average 0.284 0.584 0.608 0.598

Standard deviation 0.168 0.231 0.219 0.219

Variance 0.028 0.054 0.048 0.048

Median 0.260 0.576 0.605 0.606

Table 5.5: 11-point interpolated average precision for NEDIT, LIM and ML6

ML matrices do not produce very good results and their best outcome

reaches an average accuracy only slightly better than our baseline NEDIT

reported in Section 5.1.2, probably because of the small dimension of the

training dataset [41].

5.1.5 Absolute Frequency Ratio matrices

We have produced two Absolute Frequency Ratio (AFR) substitution

matrices, one for each of the two alphabets employed, i.e. the Roman

alphabet and its extension with gap. The scoring matrices have been

trained with the sensibly aligned cognate pairs extracted from the

6-language training dataset considered. These two models have been called

respectively AFR6 and AFR6b.

Each entry of each matrix has been produced by calculating the number

of transformation occurrences of the character Ai into Aj divided by the

number of occurrences of Ai and Aj respectively, as explained in Section
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4.3.2. We have multiplied all the final scores in the matrices by 100 for

computational reasons and we have left the final scores with two decimal

digits to preserve accuracy.

The 11-point interpolated average precision [90] has been calculated and

averaged over the ten language pairs belonging to the test dataset using

AFR matrices as substitution matrices for global and local alignment. The

family of similarity measures based respectively on the Needleman-Wunsch

algorithm [102, 51] and on the Smith-Waterman algorithm [125, 51] has

been employed. A gap penalty of −1 has been applied to AFR6, which is

based on the Roman alphabet without gap. The outcome is reported in

Table 5.6, where the best result is in bold.

Model Algorithm Basic Sim1 Sim2 Sim3 Sim4 Sim5 Sim6 Sim7 Sim8 Sim9

AFR6 NW 0.533 0.659 0.651 0.664 0.660 0.669 0.663 0.661 0.650 0.646

AFR6 SW 0.519 0.654 0.649 0.660 0.656 0.663 0.664 0.656 0.650 0.643

AFR6b NW 0.457 0.632 0.627 0.634 0.632 0.621 0.637 0.633 0.627 0.623

AFR6b SW 0.469 0.647 0.646 0.653 0.652 0.641 0.658 0.650 0.645 0.637

Table 5.6: Averaged 11-point interpolated average precision for AFR6 and AFR6b

AFR6 and AFR6b with the family of similarity measures based on

NW and SW, respectively, produce reasonably good results. AFR6, which

uses the Roman alphabet without gap, performs only slightly better then

AFR6b and reaches the best result with global alignment. This would

suggest that AFR matrices are able to estimate the indel rates, even if

the inference is not precise enough to produce an improvement in the

accuracy. The family of similarity measures introduced in Section 4.4

consistently outperforms the basic algorithm on which they are based.

There is no significant difference in the performance of the two families

of similarity measures based on global alignment and local alignment

respectively. However, global alignment seems to perform slightly better

for AFR6, while local alignment gives a better outcome for AFR6b.
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Table 5.7 reports a comparison of the 11-point interpolated average

precision [90] for NEDIT with the best results achieved by LIM, ML6 and

AFR6, over the ten language pairs of our test dataset, together with the

average, standard deviation, variance and median [108]. The best outcome

is displayed in bold.

Languages Cognate NEDIT LIM ML6 AFR6

proportion Sim3(NW) Sim3(NW) Sim5(NW)

English German 0.590 0.907 0.913 0.902 0.909

French Latin 0.560 0.921 0.924 0.898 0.924

English Latin 0.290 0.703 0.722 0.719 0.776

German Latin 0.290 0.591 0.630 0.610 0.706

English French 0.275 0.659 0.707 0.693 0.768

French German 0.245 0.498 0.580 0.602 0.700

Albanian Latin 0.195 0.561 0.550 0.555 0.584

Albanian French 0.165 0.499 0.441 0.422 0.557

Albanian German 0.125 0.207 0.311 0.326 0.486

Albanian English 0.100 0.289 0.300 0.251 0.280

Average 0.284 0.584 0.608 0.598 0.669

Standard deviation 0.168 0.231 0.219 0.219 0.197

Variance 0.028 0.054 0.048 0.048 0.039

Median 0.260 0.576 0.605 0.606 0.703

Table 5.7: 11-point interpolated average precision for NEDIT, LIM, ML6 and AFR6

AFR matrices produce considerably better results in terms of averaged

11-point interpolated average precision [90] than NEDIT, LIM and ML

matrices. In addition, the standard deviation and variance are lower and

the median is higher.

5.1.6 Pointwise Mutual Information matrices

We have built two Pointwise Mutual Information (PMI ) scoring

matrices, based on the Roman alphabet and its extension with gap, from

the sensibly aligned cognate pairs belonging to the 6-language training

dataset. The two models have been named respectively PMI6 and PMI6b.
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Each entry (i, j) of each matrix has been obtained by the log-odds ratio

of the joint relative frequencies of the two characters Ai and Aj, over the

product of their disjoint relative frequencies, as explained in Section 4.3.3.

We have left the final scores with two decimal digits to preserve accuracy.

We have tested these substitution matrices with the Needleman-Wunsch

algorithm [102, 51], the Smith-Waterman algorithm [125, 51] and the

family of similarity measures based on them, introduced in Section 4.4.

For the model based on the Roman alphabet, a gap penalty of −1 has

been applied in the alignment algorithms. Table 5.8 reports the results

of the 11-point interpolated average precision [90] averaged over the ten

language pairs of the test dataset, with the best outcome in bold.

Model Algorithm Basic Sim1 Sim2 Sim3 Sim4 Sim5 Sim6 Sim7 Sim8 Sim9

PMI6 NW 0.606 0.681 0.681 0.683 0.681 0.688 0.683 0.682 0.679 0.678

PMI6 SW 0.581 0.706 0.701 0.711 0.705 0.708 0.708 0.707 0.702 0.696

PMI6b NW 0.393 0.637 0.638 0.602 0.644 0.577 0.633 0.633 0.641 0.635

PMI6b SW 0.419 0.677 0.672 0.659 0.682 0.613 0.682 0.678 0.672 0.666

Table 5.8: Averaged 11-point interpolated average precision for PMI6 and PMI6b

The model PMI6, which uses the Roman alphabet without gap,

produces good results, especially when employing local alignment and

outperforms consistently PMI6b, which utilises the extended alphabet.

This would suggest that PMI matrices are not able to estimate the indel

rates, whose inference adds noise into the system. The similarity measures,

proposed in Section 4.4, consistently outperform the basic algorithm on

which they are based and Sim3 with SW produces the best result.

Table 5.9 reports a comparison of the 11-point interpolated average

precision [90] for NEDIT with the best results achieved by LIM, ML6,

AFR6 and PMI6, over the ten language pairs of our test dataset, together

with the average, standard deviation, variance and median [108]. The best

outcome is displayed in bold.
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Languages Cognate NEDIT LIM ML6 AFR6 PMI6

proportion Sim3(NW) Sim3(NW) Sim5(NW) Sim3(SW)

English German 0.590 0.907 0.913 0.902 0.909 0.925

French Latin 0.560 0.921 0.924 0.898 0.924 0.925

English Latin 0.290 0.703 0.722 0.719 0.776 0.795

German Latin 0.290 0.591 0.630 0.610 0.706 0.745

English French 0.275 0.659 0.707 0.693 0.768 0.790

French German 0.245 0.498 0.580 0.602 0.700 0.757

Albanian Latin 0.195 0.561 0.550 0.555 0.584 0.676

Albanian French 0.165 0.499 0.441 0.422 0.557 0.621

Albanian German 0.125 0.207 0.311 0.326 0.486 0.470

Albanian English 0.100 0.289 0.300 0.251 0.280 0.404

Average 0.284 0.584 0.608 0.598 0.669 0.711

Standard deviation 0.168 0.231 0.219 0.219 0.197 0.173

Variance 0.028 0.054 0.048 0.048 0.039 0.030

Median 0.260 0.576 0.605 0.606 0.703 0.751

Table 5.9: 11-point interpolated average precision for NEDIT, LIM, ML6, AFR6 and PMI6

PMI6, when based on SW, produces considerably better results than

NEDIT, LIM, ML and AFR matrices. It is worth noting that not only the

average and the median of the 11-point interpolated average precision [90]

are higher, but also the standard deviation and variance are much lower.

This would suggest that PMI6 is also more stable in its performance across

various language pairs.

Furthermore, PMI6 with local alignment slightly outperforms

comparable phonetic and orthographic models previously proposed in the

literature [86, 87, 83, 80], as shown in Section 5.1.9.

Interestingly, out of all the similarity measures proposed, Sim3 and

Sim5 produce the greater accuracy for every model considered. These

measures normalise the rate of the scoring algorithm on which they are

based, respectively, by the Geometric and Harmonic mean [17] of the rates

given by the same algorithm applied to calculate the similarity of each

string with itself.
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5.1.7 PAM-like matrices

We have trained two families of PAM-like substitution matrices from the

sensibly aligned cognate pairs belonging to the 6-language training dataset

employed. One family has been based on the Roman alphabet and one

on its extension with gap. The two models have been named DAY6 and

DAY6b, respectively.

Each PAM-like matrix has been produced following the approach

proposed in Section 4.3.4 and inspired by the PAM method introduced

by Dayhoff et al. [30, 31, 32] for biological sequence analysis. We have not

scaled the values in the PAM-like matrices and we have left the final scores

with two decimal digits to preserve accuracy.

Because we have not limited the diversity percentage within the cognate

family employed for the training, ten PAM-like matrices for each family

have shown to be sufficient for modelling the divergence time of the

languages present in the test dataset. As the identity matrix can be

considered as a PAM matrix at 0 evolutionary distance [32], it has been

included for completeness in all the results.

We have used the PAM-like matrices to align the test dataset with the

Needleman-Wunsch algorithm [102, 51], the Smith-Waterman algorithm

[125, 51] and the family of similarity measures based on them, introduced

in Section 4.4. A gap penalty of −1 has been applied in the alignment

algorithms when using DAY6, which is based on the Roman alphabet

without gap. For each alignment algorithm and similarity measure

considered, we have calculated the 11-point interpolated average precision

[90] over the ten language pairs of our test dataset, using the two families

of PAM-like substitution matrices.

Table 5.10 reports PAM5 generated by DAY6b as an example. For

readability, only the lower triangular matrix is filled in.
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A B C D E F G H I J K L M N O P Q R S T U V W X Y Z −

A 3.65

B -5.7712.69

C -2.89 1.80 3.81

D -3.77 -5.06 0.01 6.24

E 2.09 -3.92 -1.44-2.01 1.92

F -5.80 8.89 3.84 -3.97-3.71 8.77

G -3.75 -0.73 3.68 0.21 -2.04 1.31 8.92

H -1.14 -0.28 2.07 0.73 -0.26 1.56 0.86 2.94

I 1.47 -4.14 -1.24-1.93 1.66 -3.71 -1.97 0.16 2.32

J -0.36 -2.99 0.53 0.61 0.17 -1.68 2.12 1.24 0.55 1.34

K -4.72 -2.78 5.26 -1.91-2.71 1.35 5.82 3.59 -2.59 0.50 11.93

L -2.75 -4.25 0.60 0.25 -1.55 -2.06 -0.74 0.12 0.55 0.78 -1.21 6.61

M -5.14 -2.55 -2.34-2.80-3.27 -1.93 -2.22-1.96-3.36 0.87 -3.85 -2.5011.22

N -3.32 -4.63 -1.16-0.33-1.64 -4.29 -2.32-0.86-1.65-0.78 -0.89 0.35 2.46 6.85

O 2.35 -5.16 -2.63-3.54 1.56 -5.05 -3.49-1.19 1.38 -0.76 -4.39 -2.70 -4.82 -3.05 3.92

P -8.88 8.62 3.14 -6.96-6.4310.27-1.14 0.03 -6.08-4.15 -1.93 -1.08 -4.04 -6.79-7.9614.04

Q -2.91 4.32 3.87 -1.43-1.48 5.72 2.41 2.21 -1.42 0.04 3.18 -0.73 -1.23 -1.86-2.44 5.22 5.03

R -6.30 -7.58 -3.30-3.38-4.33 -7.21 -4.93-3.22-3.92-2.48 -2.28 1.59 1.46 -1.81-5.97 -8.90 -4.52 8.04

S -2.69 -4.09 0.36 -0.05-1.12 -3.18 -1.48 0.27 -1.24 1.25 -1.73 -1.75 -2.72 -1.56-2.50 -6.33 -0.77-0.02 7.04

T -3.67 -4.53 0.56 5.80 -1.93 -2.89 -0.83 1.12 -1.84 0.29 -1.33 0.41 -2.28 -0.81-3.41 -5.71 -0.66-3.50-0.61 6.12

U 1.82 -2.32 -0.93-2.24 1.08 -1.64 -1.52 0.43 1.41 0.37 -2.28 0.53 -2.95 -2.04 1.58 -3.50 -0.44-4.21-1.66-2.08 2.33

V -2.89 5.98 2.42 -2.77-1.74 5.92 3.33 0.46 -1.82-0.43 0.32 -2.19 2.24 -2.39-2.15 5.76 4.48 -5.01-2.24-2.55 0.28 6.31

W -0.37 2.99 1.08 -1.98-0.04 3.36 1.45 0.18 -0.15-0.28 -0.91 -1.75 0.24 -1.64 0.46 2.37 2.81 -4.20-1.29-1.83 0.77 4.48 3.29

X -3.93 -2.86 1.91 -0.13-1.72 -0.46 0.10 0.84 -1.87 1.32 1.08 -1.59 -3.62 -2.18-3.56 -2.72 1.12 -0.76 7.21 -0.45-2.17-1.13-0.96 7.51

Y 2.01 -4.55 -1.18-2.20 1.70 -3.43 -1.41 1.16 2.20 1.24 -2.04 -0.20 -3.13 -2.66 1.07 -6.52 -1.11-5.37-1.40-2.23 2.29 -1.42-0.05-2.16 3.39

Z -3.26 -3.52 1.04 0.91 -1.50 -1.71 -0.54 0.51 -1.58 1.06 -0.13 -1.16 -2.63 -1.70-3.02 -4.22 0.14 0.60 6.40 0.60 -1.92-1.71-1.22 6.63 -1.785.87

− 0.13 -1.29 0.11 0.16 0.35 -0.92 0.04 0.34 0.37 0.29 -0.08 -0.20 -0.75 0.29 0.10 -2.44 0.01 -1.53 0.53 0.17 0.19 -0.26 0.05 0.55 0.39 0.410.18

Table 5.10: PAM5 generated by DAY6b

It is worth noting that this matrix contains positive and negative

scores, which indicate conservative and non-conservative substitutions,

respectively. The positive scores reproduce linguistic sound changes

left in the orthography, which are described in Appendix B. As it was

expected, the rates on the main diagonal, which represent identical

character substitutions, are all positive and inversely proportional to the

character occurrences. Indeed, the less frequent a character is, the lower

the probability of finding two of them aligned by chance [56]. For example,

the diagonal rates of vowels, which are frequent characters, are lower than

the rates of less frequent characters, like the consonants B, K, M and P.
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Tables 5.11 and 5.12 show the averaged 11-point interpolated average

precision [90] obtained by using the PAM-like matrices belonging to the

DAY6 model on the test dataset. The Needleman-Wunsch [102, 51]

algorithm for global alignment and the Smith-Waterman algorithm [125,

51] for local alignment have been employed with the family of similarity

measures, presented in Section 4.4. The best results are displayed in bold.

Matrix NW Sim1 Sim2 Sim3 Sim4 Sim5 Sim6 Sim7 Sim8 Sim9

PAM0 0.509 0.524 0.524 0.524 0.524 0.524 0.524 0.524 0.524 0.524

PAM1 0.580 0.666 0.660 0.670 0.663 0.674 0.669 0.668 0.662 0.658

PAM2 0.607 0.698 0.691 0.699 0.690 0.705 0.698 0.698 0.691 0.690

PAM3 0.616 0.713 0.708 0.715 0.712 0.721 0.714 0.713 0.711 0.710

PAM4 0.624 0.721 0.713 0.724 0.719 0.729 0.722 0.721 0.719 0.713

PAM5 0.623 0.721 0.716 0.723 0.718 0.727 0.722 0.720 0.717 0.714

PAM6 0.619 0.721 0.716 0.725 0.718 0.726 0.722 0.724 0.717 0.713

PAM7 0.617 0.718 0.714 0.723 0.717 0.725 0.720 0.719 0.717 0.715

PAM8 0.616 0.713 0.712 0.719 0.713 0.722 0.717 0.715 0.714 0.711

PAM9 0.613 0.714 0.710 0.718 0.713 0.722 0.715 0.715 0.712 0.709

PAM10 0.609 0.715 0.707 0.716 0.710 0.719 0.712 0.715 0.711 0.708

Table 5.11: Averaged 11-point interpolated average precision for DAY6 using NW

Matrix SW Sim1 Sim2 Sim3 Sim4 Sim5 Sim6 Sim7 Sim8 Sim9

PAM0 0.516 0.585 0.591 0.590 0.591 0.590 0.585 0.590 0.591 0.591

PAM1 0.562 0.670 0.666 0.677 0.666 0.675 0.673 0.671 0.667 0.661

PAM2 0.584 0.698 0.694 0.703 0.699 0.703 0.698 0.696 0.696 0.692

PAM3 0.597 0.718 0.709 0.724 0.716 0.720 0.718 0.720 0.719 0.706

PAM4 0.597 0.727 0.722 0.732 0.723 0.728 0.728 0.729 0.725 0.721

PAM5 0.599 0.733 0.725 0.732 0.729 0.732 0.732 0.733 0.729 0.725

PAM6 0.597 0.730 0.726 0.735 0.729 0.735 0.732 0.731 0.729 0.726

PAM7 0.596 0.729 0.725 0.732 0.729 0.733 0.731 0.730 0.728 0.724

PAM8 0.587 0.729 0.721 0.730 0.725 0.734 0.731 0.729 0.726 0.720

PAM9 0.581 0.730 0.720 0.729 0.725 0.731 0.731 0.730 0.725 0.718

PAM10 0.577 0.725 0.717 0.725 0.722 0.731 0.725 0.725 0.722 0.719

Table 5.12: Averaged 11-point interpolated average precision for DAY6 using SW
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Tables 5.13 and 5.14 show the outcome in terms of averaged 11-point

interpolated average precision [90] obtained by using the DAY6b model

on the test dataset. The Needleman-Wunsch [102, 51] algorithm and the

Smith-Waterman algorithm [125, 51] have been employed with the family

of similarity measures, introduced in Section 4.4. The best results are

displayed in bold.

Matrix NW Sim1 Sim2 Sim3 Sim4 Sim5 Sim6 Sim7 Sim8 Sim9

PAM0 0.509 0.524 0.524 0.524 0.524 0.524 0.524 0.524 0.524 0.524

PAM1 0.532 0.681 0.669 0.680 0.678 0.678 0.684 0.682 0.675 0.670

PAM2 0.599 0.716 0.711 0.718 0.717 0.714 0.716 0.716 0.714 0.710

PAM3 0.576 0.728 0.722 0.730 0.727 0.729 0.728 0.729 0.726 0.719

PAM4 0.576 0.735 0.729 0.737 0.733 0.737 0.737 0.735 0.731 0.728

PAM5 0.570 0.733 0.728 0.743 0.732 0.741 0.740 0.737 0.730 0.725

PAM6 0.565 0.734 0.727 0.740 0.733 0.739 0.738 0.734 0.728 0.723

PAM7 0.558 0.732 0.723 0.741 0.730 0.738 0.735 0.735 0.727 0.722

PAM8 0.550 0.730 0.721 0.736 0.726 0.731 0.733 0.732 0.725 0.721

PAM9 0.539 0.728 0.718 0.735 0.724 0.730 0.731 0.730 0.724 0.718

PAM10 0.530 0.725 0.717 0.733 0.722 0.724 0.728 0.726 0.722 0.716

Table 5.13: Averaged 11-point interpolated average precision for DAY6b using NW

Matrix SW Sim1 Sim2 Sim3 Sim4 Sim5 Sim6 Sim7 Sim8 Sim9

PAM0 0.516 0.585 0.591 0.590 0.591 0.590 0.585 0.590 0.591 0.591

PAM1 0.524 0.683 0.674 0.685 0.681 0.684 0.687 0.685 0.676 0.669

PAM2 0.570 0.707 0.701 0.710 0.705 0.710 0.709 0.709 0.703 0.702

PAM3 0.567 0.727 0.721 0.730 0.725 0.728 0.726 0.728 0.725 0.721

PAM4 0.574 0.737 0.730 0.738 0.735 0.735 0.739 0.738 0.734 0.731

PAM5 0.567 0.736 0.732 0.749 0.736 0.743 0.740 0.739 0.734 0.729

PAM6 0.564 0.739 0.731 0.747 0.738 0.747 0.745 0.742 0.734 0.730

PAM7 0.559 0.740 0.725 0.746 0.737 0.745 0.746 0.742 0.730 0.728

PAM8 0.550 0.736 0.725 0.742 0.734 0.742 0.741 0.739 0.729 0.726

PAM9 0.542 0.734 0.724 0.740 0.734 0.738 0.741 0.737 0.730 0.723

PAM10 0.526 0.732 0.722 0.740 0.732 0.734 0.738 0.735 0.728 0.723

Table 5.14: Averaged 11-point interpolated average precision for DAY6b using SW
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The two models DAY6 and DAY6b achieve excellent results. The family

of similarity measures, proposed in Section 4.4, consistently outperforms

the basic algorithm on which it is based. The group that performs better

employs local alignment, even if the difference when using global alignment

is not significant. DAY6b outperforms DAY6 and achieves the best result

utilising PAM5 with Sim3 based on SW. This would suggest that DAY6b

is also able to learn appropriate gap penalties.

Figure 5.1 shows a graphical representation of the averaged 11-point

interpolated average precision [90] produced by the PAM-like matrices of

DAY6, when using NW [102, 51] and SW [125, 51], respectively, and the

similarity measures that are based on them.

(a) NW (b) SW

Figure 5.1: Averaged 11-point interpolated average precision for DAY6 using NW and SW

Figure 5.2 presents in a graphical format the averaged 11-point

interpolated average precision [90] produced by the PAM-like matrices of

DAY6b, when using NW [102, 51] and SW [125, 51], respectively, and the

similarity measures that are based on them.

(a) NW (b) SW

Figure 5.2: Averaged 11-point interpolated average precision for DAY6b using NW and SW
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Table 5.15 reports a comparison of the 11-point interpolated average

precision [90] for NEDIT with the best results achieved by LIM, ML6,

AFR6, PMI6, DAY6 and DAY6b, over the ten language pairs of our test

dataset. The average, standard deviation, variance and median [108] are

also displayed and the best outcome is in bold.

LIM ML6 AFR6 PMI6 DAY6 DAY6 DAY6b DAY6b

Languages Cognate NEDIT Sim3 Sim3 Sim5 Sim3 Sim5 Sim5 Sim3 Sim3

proportion NW NW NW SW NW SW NW SW

English German 0.590 0.907 0.913 0.902 0.909 0.925 0.932 0.937 0.929 0.934

French Latin 0.560 0.921 0.924 0.898 0.924 0.925 0.927 0.930 0.921 0.924

English Latin 0.290 0.703 0.722 0.719 0.776 0.795 0.826 0.833 0.823 0.826

German Latin 0.290 0.591 0.630 0.610 0.706 0.745 0.741 0.759 0.770 0.772

English French 0.275 0.659 0.707 0.693 0.768 0.790 0.811 0.815 0.836 0.830

French German 0.245 0.498 0.580 0.602 0.700 0.757 0.763 0.776 0.796 0.788

Albanian Latin 0.195 0.561 0.550 0.555 0.584 0.676 0.685 0.683 0.690 0.721

Albanian French 0.165 0.499 0.441 0.422 0.557 0.621 0.636 0.607 0.607 0.625

Albanian German 0.125 0.207 0.311 0.326 0.486 0.470 0.508 0.519 0.553 0.552

Albanian English 0.100 0.289 0.300 0.251 0.280 0.404 0.463 0.487 0.503 0.518

Average 0.284 0.584 0.608 0.598 0.669 0.711 0.729 0.735 0.743 0.749

Standard deviation 0.168 0.231 0.219 0.219 0.197 0.173 0.159 0.158 0.149 0.144

Variance 0.028 0.054 0.048 0.048 0.039 0.030 0.025 0.025 0.022 0.021

Median 0.260 0.576 0.605 0.606 0.703 0.751 0.752 0.768 0.783 0.780

Table 5.15: 11-point interpolated average precision for several models

DAY6 and DAY6b produce considerably better results in terms of

averaged 11-point interpolated average precision [90] than NEDIT, LIM,

ML6, AFR6 and PMI6. Moreover, the standard deviation and the variance

are smaller, meaning that these models have a high performance also when

the languages involved in the test are not closely related. DAY6b reaches

an accuracy 28% higher than NEDIT and significantly outperforms all

comparable phonetic and orthographic systems reported in the literature

[86, 87, 83, 80], as shown in Section 5.1.9.
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5.1.8 Robustness of PAM-like matrices

In order to assess the robustness of the PAM-like approach, we

have evaluated the influence of the training dataset dimension on the

performance of our cognate identification system.

We have extracted from the Dyen et al. [42] corpus a training dataset

containing all the languages included in the monograph that did not overlap

with the test dataset described in Section 5.1.1. In doing so, we have

excluded English, German, French and five varieties of Albanian, using a

total of 76 Indo-European speech varieties. We have considered only the

word pairs reported by Dyen et al. [42] as certain cognates with each other,

which are coded with CCN in the range [2,99]. When more words were

provided for the same meaning in the same language, we have considered

the first word only, after ensuring that it was always cognate with the

group, as explained in Section 6.2. We have reached a total of about 62,000

cognate pairs. We have then globally aligned these word pairs by using the

linguistic-inspired substitution matrix, described in Section 4.2. With this

76-language dataset, we have trained two families of PAM-like matrices,

one based on the Roman alphabet and one on its extension with gap. We

have called these learning models DAY76 and DAY76b, respectively. We

have then engaged these families of PAM-like matrices in the alignment

and rating process of the test dataset. We have used standard global

and local alignment algorithms [102, 125, 51] and the family of similarity

measures, proposed in Section 4.4. We have applied a gap penalty of

−1 in the alignment algorithms for DAY76, which is based on the Latin

alphabet without gap. We have computed the 11-point interpolated average

precision [90] for each of the ten language pairs of our test dataset. We

have used each PAM-like matrix with each similarity measure, based on

both global and local alignment. We have then calculated the average,
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standard deviation, variance and median [108].

Tables 5.16 and 5.17 report the averaged 11-point interpolated average

precision [90] achieved by the PAM-like matrices belonging to the

DAY76 model. The Needleman-Wunsch [102, 51] algorithm and the

Smith-Waterman algorithm [125, 51] have been employed with the family

of similarity measures, described in Section 4.4. The best outcome is

displayed in bold.

Matrix NW Sim1 Sim2 Sim3 Sim4 Sim5 Sim6 Sim7 Sim8 Sim9

PAM0 0.509 0.524 0.524 0.524 0.524 0.524 0.524 0.524 0.524 0.524

PAM1 0.585 0.680 0.675 0.682 0.678 0.684 0.680 0.680 0.679 0.676

PAM2 0.616 0.715 0.713 0.720 0.713 0.719 0.715 0.717 0.715 0.714

PAM3 0.624 0.726 0.720 0.729 0.722 0.727 0.727 0.727 0.724 0.721

PAM4 0.615 0.726 0.724 0.728 0.723 0.725 0.724 0.727 0.724 0.726

PAM5 0.606 0.719 0.720 0.718 0.716 0.720 0.718 0.718 0.721 0.721

PAM6 0.595 0.716 0.711 0.717 0.713 0.717 0.714 0.716 0.714 0.713

PAM7 0.583 0.706 0.700 0.708 0.702 0.708 0.703 0.707 0.704 0.703

PAM8 0.571 0.698 0.695 0.700 0.694 0.699 0.697 0.698 0.699 0.697

PAM9 0.561 0.689 0.681 0.693 0.684 0.692 0.691 0.692 0.686 0.683

PAM10 0.552 0.676 0.672 0.678 0.676 0.677 0.676 0.677 0.675 0.672

Table 5.16: Averaged 11-point interpolated average precision for DAY76 using NW

Matrix SW Sim1 Sim2 Sim3 Sim4 Sim5 Sim6 Sim7 Sim8 Sim9

PAM0 0.516 0.585 0.591 0.590 0.591 0.590 0.585 0.590 0.591 0.591

PAM1 0.569 0.682 0.679 0.681 0.682 0.681 0.679 0.680 0.681 0.678

PAM2 0.584 0.720 0.715 0.719 0.716 0.717 0.718 0.721 0.719 0.715

PAM3 0.588 0.735 0.730 0.735 0.733 0.729 0.734 0.734 0.734 0.731

PAM4 0.589 0.736 0.728 0.737 0.732 0.732 0.736 0.737 0.734 0.732

PAM5 0.579 0.740 0.731 0.736 0.734 0.734 0.733 0.738 0.736 0.732

PAM6 0.569 0.734 0.728 0.733 0.730 0.732 0.730 0.735 0.731 0.730

PAM7 0.564 0.729 0.725 0.733 0.725 0.731 0.728 0.729 0.729 0.727

PAM8 0.551 0.726 0.719 0.728 0.720 0.725 0.723 0.726 0.725 0.719

PAM9 0.542 0.718 0.708 0.720 0.710 0.716 0.711 0.719 0.717 0.711

PAM10 0.534 0.708 0.702 0.709 0.703 0.704 0.704 0.709 0.706 0.705

Table 5.17: Averaged 11-point interpolated average precision for DAY76 using SW
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Tables 5.18 and 5.19 present the averaged 11-point interpolated average

precision [90] produced by the PAM-like matrices belonging to the DAY76b

model. The Needleman-Wunsch [102, 51] algorithm for global alignment

and the Smith-Waterman algorithm [125, 51] for local alignment have been

employed with the family of similarity measures, introduced in Section 4.4.

The best results are shown in bold.

Matrix NW Sim1 Sim2 Sim3 Sim4 Sim5 Sim6 Sim7 Sim8 Sim9

PAM0 0.509 0.524 0.524 0.524 0.524 0.524 0.524 0.524 0.524 0.524

PAM1 0.525 0.675 0.672 0.673 0.675 0.670 0.676 0.675 0.675 0.672

PAM2 0.583 0.727 0.719 0.730 0.721 0.726 0.728 0.727 0.722 0.718

PAM3 0.554 0.728 0.723 0.733 0.726 0.729 0.731 0.730 0.727 0.724

PAM4 0.546 0.733 0.728 0.741 0.731 0.742 0.734 0.735 0.730 0.727

PAM5 0.529 0.739 0.729 0.740 0.734 0.743 0.738 0.740 0.731 0.726

PAM6 0.512 0.735 0.729 0.738 0.731 0.741 0.735 0.736 0.731 0.726

PAM7 0.505 0.731 0.725 0.736 0.727 0.735 0.734 0.733 0.725 0.723

PAM8 0.495 0.731 0.723 0.735 0.727 0.733 0.731 0.731 0.722 0.718

PAM9 0.489 0.724 0.723 0.732 0.726 0.731 0.730 0.727 0.720 0.716

PAM10 0.485 0.725 0.720 0.731 0.725 0.729 0.728 0.726 0.719 0.713

Table 5.18: Averaged 11-point interpolated average precision for DAY76b using NW

Matrix SW Sim1 Sim2 Sim3 Sim4 Sim5 Sim6 Sim7 Sim8 Sim9

PAM0 0.516 0.585 0.591 0.590 0.591 0.590 0.585 0.590 0.591 0.591

PAM1 0.532 0.683 0.678 0.685 0.681 0.681 0.683 0.683 0.680 0.678

PAM2 0.567 0.723 0.716 0.722 0.721 0.723 0.722 0.722 0.722 0.716

PAM3 0.553 0.735 0.729 0.735 0.733 0.736 0.735 0.736 0.732 0.729

PAM4 0.542 0.737 0.731 0.742 0.734 0.743 0.743 0.741 0.734 0.733

PAM5 0.529 0.741 0.732 0.742 0.738 0.740 0.740 0.742 0.737 0.733

PAM6 0.512 0.737 0.731 0.740 0.734 0.742 0.738 0.739 0.733 0.728

PAM7 0.503 0.731 0.726 0.738 0.729 0.738 0.738 0.734 0.727 0.723

PAM8 0.494 0.732 0.725 0.738 0.729 0.736 0.733 0.733 0.726 0.721

PAM9 0.488 0.727 0.725 0.734 0.727 0.734 0.731 0.729 0.724 0.720

PAM10 0.484 0.727 0.721 0.731 0.724 0.727 0.730 0.728 0.721 0.716

Table 5.19: Averaged 11-point interpolated average precision for DAY76b using SW
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The two models DAY76 and DAY76b achieve excellent results. DAY76b,

which utilises the Latin alphabet extended with gap, performs slightly

better than DAY76 and produces equal top rating results when using either

global or local alignment. The similarity measures, proposed in Section 4.4,

consistently outperform the basic algorithm on which they are based.

Figure 5.3 shows two graphs of the averaged 11-point interpolated

average precision [90] produced by the PAM-like matrices of DAY76, when

using NW [102, 51] and SW [125, 51], respectively, and the family of

similarity measures.

(a) NW (b) SW

Figure 5.3: Averaged 11-point interpolated average precision for DAY76 using NW and SW

Figure 5.4 shows in graphical format the averaged 11-point interpolated

average precision [90] produced by the PAM-like matrices of DAY76b, when

using NW [102, 51] and SW [125, 51], respectively, and the family of

similarity measures.

(a) NW (b) SW

Figure 5.4: Averaged 11-point interpolated average precision for DAY76b using NW and SW
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Table 5.20 reports a comparison of the best results achieved by DAY6,

DAY6b, DAY76 and DAY76b in terms of 11-point interpolated average

precision [90], over the ten language pairs of our test dataset. The best

outcome is in bold and the average, standard deviation, variance and

median [108] are also shown.

DAY6 DAY6 DAY6b DAY6b DAY76 DAY76 DAY76b DAY76b

Languages Sim5 Sim5 Sim3 Sim3 Sim3 Sim1 Sim5 Sim5

NW SW NW SW NW SW NW SW

English German 0.932 0.937 0.929 0.934 0.936 0.932 0.933 0.935

French Latin 0.927 0.930 0.921 0.924 0.928 0.925 0.914 0.918

English Latin 0.826 0.833 0.823 0.826 0.821 0.845 0.810 0.818

German Latin 0.741 0.759 0.770 0.772 0.766 0.790 0.777 0.779

English French 0.811 0.815 0.836 0.830 0.813 0.826 0.823 0.823

French German 0.763 0.776 0.796 0.788 0.745 0.781 0.763 0.760

Albanian Latin 0.685 0.683 0.690 0.721 0.676 0.683 0.692 0.698

Albanian French 0.636 0.607 0.607 0.625 0.642 0.632 0.666 0.663

Albanian German 0.508 0.519 0.553 0.552 0.498 0.492 0.566 0.554

Albanian English 0.463 0.487 0.503 0.518 0.465 0.491 0.486 0.485

Average 0.729 0.735 0.743 0.749 0.729 0.740 0.743 0.743

Standard deviation 0.159 0.158 0.149 0.144 0.161 0.161 0.143 0.146

Variance 0.025 0.025 0.022 0.021 0.026 0.026 0.020 0.021

Median 0.752 0.768 0.783 0.780 0.756 0.786 0.770 0.770

Table 5.20: 11-point interpolated average precision for DAY6, DAY6b, DAY76 and DAY76b

The two models DAY76 and DAY76b trained with the 76-language

dataset perform well and produce very similar results when compared with

DAY6 and DAY6b. Sim3 and Sim5 continue to reach the higher accuracy

for most of the models considered and PAM3, PAM4 and PAM5 seem to be

able to represent well the divergence of the languages in the test dataset. It

is worth noting that the average, standard deviation, variance and median

[108] of the 11-point interpolated average precision [90] across the models,

are remarkably stable. The four models show similar behaviour in relation

to the alphabet and the alignment algorithm employed. In fact DAY6 and

DAY76, that utilise the Latin alphabet, behave very similarly to each other
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when using global and local alignment, respectively. The same happens to

DAY6b and DAY76b, that use the Latin alphabet extended with gap.

This is a particularly notable outcome because of the big difference

in the training dataset dimension between the two model groups. In

fact, DAY6 and DAY6b have been trained with approximately only 650

sensibly aligned cognate pairs, extracted from Italian, Portuguese, Spanish,

Dutch, Danish and Swedish. DAY76 and DAY76b have been trained with

approximately 62,000 sensibly aligned cognate pairs, extracted from 76

very diverse Indo-European speech varieties that include the 6 languages

used to train DAY6 and DAY6b. This corresponds to an increment of

the training dataset dimension by a factor of approximately 100, which

implies extending the number of Indo-European languages by a factor of

approximately 13.

Indeed, this result suggests that when using PAM-like matrices with the

family of parameterised similarity measures, proposed in Section 4.4, the

dimension of the training dataset does not influence the accuracy of our

cognate identification system. Interestingly, our learning system needs only

a very small amount of training data to reach an outstanding performance.

This outcome has been presented in [34].

5.1.9 Comparison

In the task of cognate identification, a phonetic approach is supposed to

be more accurate than an orthographic one, because of its insight and

understanding of phonetic changes. However, comparative evaluations

of some recent orthographic learning methods [86, 87, 83] have shown

that they may outperform phonetic systems [76, 80]. This would suggest

that phonetic changes can leave enough traces in the word orthography

to be successfully utilised by orthographic systems. Our investigation,

based on a learning system for measuring string similarities, has confirmed
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this tendency, producing further improvements in the accuracy of cognate

identification.

We have evaluated our models against the most successful phonetic and

orthographic comparable studies reported in the literature, i.e. ALINE [76]

and its variation [80], PHMM [87] and DBN [83], introduced in Section 2.1.

All these methods have utilised the Kessler lists [73] as test dataset and

the averaged 11-point interpolated average precision [90] to measure the

accuracy of cognate identification. The learning systems have employed

the Indo-European corpus by Dyen et al. [42], as training dataset. We

have intentionally made the same choices in our experimental design in

order to build a properly comparable system.

Table 5.21 shows an assessment of all these top phonetic and

orthographic approaches, together with our best results achieved by

DAY6b, described in Section 5.1.7, and DAY76b, proposed in Section 5.1.8.

DAY6b and DAY76b both train PAM-like matrices based on the Roman

alphabet extended with gap. The best outcome is in bold.

Languages Cognate NEDIT ALINE PHMM DBN DAY6b DAY6b DAY76b DAY76b

proportion NW SW NW SW

English German 0.590 0.907 0.912 0.930 0.927 0.929 0.934 0.933 0.935

French Latin 0.560 0.921 0.862 0.934 0.923 0.921 0.924 0.914 0.918

English Latin 0.290 0.703 0.732 0.803 0.822 0.823 0.826 0.810 0.818

German Latin 0.290 0.591 0.705 0.730 0.772 0.770 0.772 0.777 0.779

English French 0.275 0.659 0.623 0.812 0.802 0.836 0.830 0.823 0.823

French German 0.245 0.498 0.534 0.734 0.645 0.796 0.788 0.763 0.760

Albanian Latin 0.195 0.561 0.630 0.680 0.676 0.690 0.721 0.692 0.698

Albanian French 0.165 0.499 0.610 0.653 0.658 0.607 0.625 0.666 0.663

Albanian German 0.125 0.207 0.369 0.379 0.420 0.553 0.552 0.566 0.554

Albanian English 0.100 0.289 0.302 0.382 0.446 0.503 0.518 0.486 0.485

Average 0.284 0.584 0.628 0.704 0.709 0.743 0.749 0.743 0.743

Standard deviation 0.168 0.231 0.193 0.194 0.176 0.149 0.144 0.143 0.146

Variance 0.028 0.054 0.037 0.038 0.031 0.022 0.021 0.020 0.021

Median 0.260 0.576 0.627 0.732 0.724 0.783 0.780 0.770 0.770

Table 5.21: 11-point interpolated average precision for several methods
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The results produced by NEDIT, the Levenshtein distance with unitary

costs [84] normalised by the length of the longer string, introduced in

Section 5.1.2, are also shown and used as a baseline. The 11-point

interpolated average precision [90] achieved by ALINE [76], PHMM [87]

and DBN [83] is reported as in the literature. The variation of ALINE [80]

is not included, as only the averaged 11-point interpolated average precision

[90], 0.681, was given in that paper.

PHMM [86, 87] and DBN [83] perform better than ALINE [76] and its

extension [80], reaching very similar averaged 11-point interpolated average

precision [90]. However, DBN ’s standard deviation and variance [108]

are much lower than those produced by PHMM, showing a better data

distribution. PHMM [87] and DBN [83] will be reviewed and discussed in

more detail in Chapter 6.

The comparison shows that our learning system based on PAM-like

matrices, described in Section 4.3.4, consistently outperforms all the other

phonetic and orthographic models considered. In fact, DAY6b and DAY76b

have produced an averaged 11-point interpolated average precision [90]

approximately 5% higher than PHMM [87] and DBN [83], 18% higher

than ALINE [76] and 28% higher than NEDIT. Moreover, not only the

average of the 11-point interpolated average precision [90] is higher, but also

the standard deviation and variance [108] are much lower. This suggests

that our learning system is more stable than the compared methods in its

performance across various language pairs. This is confirmed by a higher

median [108], which indicates the central tendency.

It is also interesting to notice that our models accommodate quite well

the Albanian language that makes the test dataset challenging. In fact

Albanian constitutes its own branch in the Indo-European language family

and it is not part of the language branches with which our system has been

trained.
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It is worth mentioning that in this section we have limited the

comparison only to the most successful of our models proposed in Section 4

and tested in Section 5.1. In doing so, we have not reported here the other

well behaving methods that have also outperformed previous comparable

results. For example, PMI6 has achieved an accuracy, in terms of averaged

11-point interpolated average precision [90], of 0.711 with SW ; DAY6 has

reached an accuracy of 0.729 with NW and of 0.735 with SW ; DAY76

has attained an accuracy of 0.729 with NW and of 0.740 with SW.

This suggests that our learning system is generally very successful

in cognate identification and outperforms comparable phonetic and

orthographic studies previously reported in the literature [76, 86, 87, 83,

80]. These results have been proposed in [33, 34].

5.1.10 Statistical significance of PAM-like matrices

In order to understand if our results represent a statistically significant

improvement or have been achieved by chance, we have run some paired

two-sample Student’s t-tests [108]. A Student’s t-test determines whether

two samples having a comparable average are likely to have come from

the same population or from two different populations. We have assumed

that the two samples are normally distributed, but we have not supposed

that the variances are equal, because the sample size of the two compared

groups is the same. This assures that the Student’s t-test is highly robust to

the presence of unequal variances [91]. Each sample has consisted of the ten

11-point interpolated average precision [90] scores between language pairs

produced by one of the systems reported in Table 5.21. We have conducted

paired tests, which calculate the difference between arithmetic means of

paired samples, because the samples to compare were not independent.

For each test, our experimental hypothesis has been that our sample

contained higher 11-point interpolated average precision [90] scores than

115



5.1. COGNATE IDENTIFICATION

the sample with which we wanted to compare. As a consequence, the null

hypothesis we have tested for rejection has been that our sample did not

contain 11-point interpolated precision [90] scores higher than the sample

with which we wanted to compare. Because the null hypothesis states a

predicted direction of outcome, we have run one-tailed t-tests, meaning

that our interest is only in one tail of the Student ’s distribution.

Table 5.22 shows the p-values [108] and the consequent statistical

significance of the t-tests that we have run to compare the best results

obtained by DAY6b and DAY76b using local alignment, with the other

systems reported in Table 5.21.

Student’s t-test

Sample1 Sample2 p-value Statistical significance

Main comparisons

DAY6b DBN 0.030 Good evidence

DAY76b DBN 0.028 Good evidence

Secondary comparisons

DAY6b NEDIT 0.0004 Strong evidence

DAY6b ALINE 0.001 Strong evidence

DAY6b PHMM 0.025 Good evidence

DAY76b NEDIT 0.0004 Strong evidence

DAY76b ALINE 0.0004 Strong evidence

DAY76b PHMM 0.029 Good evidence

Table 5.22: Statistical significance of DAY6b and DAY76b using SW

All the t-tests have rejected the null hypothesis with strong or good

evidence and have confirmed the experimental hypothesis. This validates

the statistical significance of our results in the task of cognate identification

that outperform those achieved by comparable systems previously reported

in the literature [76, 86, 87, 83, 80].

It is worth noting that the statistical significance has remained stable

with the enlargement of the training dataset dimension. In fact, we have
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run a t-test between the best results of DAY6b and DAY76b when using

local alignment to check any possible statistical difference between the two.

The p-value found, which is 0.199, has given no evidence of any statistical

difference between DAY6b and DAY76b samples. This would suggest that

the dimension of the training dataset for the learning system does not

influence its statistical significance.

We can therefore state that the PAM-like method proposed, significantly

outperforms all the comparable phonetic and orthographic systems

reported in the literature to date [76, 86, 87, 83, 80]. These results have

been described in [34].

5.1.11 Conclusion

The learning system proposed in Chapter 4 has achieved very good

results in cognate identification, when training PAM-like substitution

matrices. The best outcome has been produced when the learnt parameters

were associated with the characters of the Roman alphabet extended with

gap, suggesting that the system is able to learn appropriate gap penalties.

The methodology has proved to reach outstanding results with a

6-language dataset of sensibly aligned cognate words and been able to

maintain a remarkably stable performance with a 76-language training

dataset. In fact, it has shown no sensitivity to the training dataset

dimension, when it was increased by a factor of approximately 100.

All the models based on PAM-like matrices have outperformed

consistently comparable phonetic and orthographic systems reported in

the literature [76, 86, 87, 83, 80] and the best results have shown to be

statistically significant. This is a particularly interesting outcome because,

not only does it advance the state of the art in cognate identification,

but also reinforces the hypothesis that orthographic learning models can

outperform systems specifically designed for the task of phonetic alignment.
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5.2 Phylogenetic inference

We have applied the learning system for measuring word similarity,

presented in Chapter 4, to the task of linguistic phylogenetic inference.

Firstly, we have prepared a training dataset and a test dataset for

the Indo-European language family with no intersection in the meanings

included. We have then sensibly aligned the cognate pairs of the

training dataset using the Needleman-Wunsch algorithm [102, 51] for

global alignment and the linguistic-inspired substitution matrix, presented

in Section 4.2. From this training dataset, we have learnt a family of

substitution matrices using the PAM-like approach based on the Roman

alphabet extended with gap, that has proved in Section 5.1 to be more

successful in cognate identification than the basic Latin alphabet. We have

then utilised these PAM-like substitution matrices for measuring the lexical

similarity within the word pairs of the test dataset. We have employed the

family of parameterised string similarity measures proposed in Section 4.4

based on the Smith-Waterman algorithm [125, 51] for local alignment, that

has shown in Sections 5.1.7 and 5.1.8 to perform slightly better than global

alignment. From these word pair similarities, we have calculated language

pair similarities and then we have transformed them into language pair

distances. Finally, we have utilised these distances to estimate phylogenetic

trees of languages using standard distance-based methods.

Our results are compatible with the Indo-European benchmark tree,

have reproduced correctly all the established major language groups and

subgroups present in the test dataset, and have also included some

of the supported higher-level structures. This would suggest that our

methodology successfully satisfies the “Compatible resolution” and the “No

missing subgroups” criteria [106], which are utilised in linguistic evaluation

of phylogenetic estimation.
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5.2.1 Datasets

We have employed the Comparative Indo-European corpus by Dyen et

al. [42] described in Section 2.3, considering the 84 languages documented

in the monograph. In the absence of two large homogeneous linguistic

datasets to be used as training and test dataset without intersection, we

have split the Dyen et al. corpus [42] into two groups of meanings, identified

by odd and even ordinal numbers. Firstly, we have created a training

dataset from the odd meanings and prepared a test dataset from the even

meanings, called test-even. Secondly, we have done the opposite, using the

even meanings as training dataset, and the odd meanings as test dataset,

named test-odd.

For the training datasets, we have used only the word pairs reported

by Dyen et al. [42] as certain cognates with each other, which are

classified with a Cognate Class Number (CCN ) in the range [2,99]. If more

words were provided for the same meaning in the same language, we have

considered the first word only, after ensuring that it was always cognate

with the group, as explained in Sections 5.1.1 and 6.2. We have then

aligned the two training groups of word pairs using the linguistic-inspired

substitution matrix proposed in Section 4.2, obtaining two separate

training datasets, called respectively training-odd and training-even.

For the test datasets, we have considered all the word pairs reported by

Dyen et al. [42] as certain or uncertain cognates, but we have excluded

those words classified with CCN = 0 as not acceptable, or with CCN = 1

as not cognate with any other. This should ensure that our study does not

include borrowings, which we wanted to discard from our analysis, as far

as the cognateness judgements of Dyen et al. [42] are correct. For example,

the English word flower is classified with CCN = 1, since it is considered

a loan from Old French. We have also corrected some orthographic errors.
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Because there is no clarity yet about a feasible outgroup for the

Indo-European family [49], in order to root our phylogenetic tree, we have

made a difficult decision considering several options. By using Hittite or

Tocharian we would have inserted a bias in the results given that the root

of the tree is controversial for the Indo-European family. By choosing any

other non Indo-European language, in principle we would have made a

questionable choice, because there is no consensus about any phylogenetic

connection between Indo-European languages and any other language.

We have finally decided to include the Turkish language as an outgroup

using the Swadesh list [132] provided by Kessler [73], excluding the words

reported as loans. In fact, even if Turkish belongs to the Altaic language

family [85], which is not related to the Indo-European language family, the

Kessler lists [73] show a weak connection between them, that motivated

our choice. For example, the Turkish word baba is reported cognate with

the Albanian babë, meaning father, which, in the Dyen et al. [42] corpus, is

judged cognate with words belonging to several of the other Indo-European

language branches (e.g. Romance, Iranian and Indo-Aryan).

We have added to the Turkish list provided by Kessler [73] the 9 words

in which this list differs from the 200-word Swadesh list by Dyen et al.

[42], checking multiple sources to ensure reliability. We have extended

test-odd and test-even respectively with the odd and even meanings from

this Turkish list, reaching a total of 85 languages. Having two training

datasets and two test datasets has avoided any data overlap, thereby

ensuring that independent analyses have been conducted and their results

subsequently averaged, as explained in Section 5.2.2.

We would have liked to have included in our study also Hittite,

Tocharian A and Tocharian B provided by Gray and Atkinson [52], but

examining the data we have found them inappropriate for our analysis. On

several occasions, the same meaning for the same language (i.e. Hittite,
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Tocharian A, Tocharian B) has been classified more than once with different

CCN, which is not the case for the rest of the original dataset by Dyen et

al. [42]. This would have biased the learning procedure towards Hittite,

Tocharian A and Tocharian B, which would have given more contributions

to the PAM-like matrices than the other languages.

5.2.2 Experimental design

We have designed our experiments with the aim of estimating

phylogenetic trees that may reflect lexical similarity between languages.

PAM-like substitution matrices may be seen as an indicator of the

relative evolutionary interval since the languages diverged. Given that

languages evolve at changing rates, there is no simple connection between

evolutionary PAM-like distance and evolutionary time. However, for an

analysis of a specific language family across multiple speech varieties, the

corresponding PAM-like matrices provide a relative evolutionary distance

between the languages and allows accurate phylogenetic inference [46].

We have employed the two training datasets, training-odd and

training-even described in Section 5.2.1, to learn two families of PAM-like

matrices based on the Roman alphabet extended with gap. In fact, it has

been proved in Sections 5.1.7 and 5.1.8 that learning gap penalties increases

the effectiveness of the system. We have called these two matrix families

DAY84b-odd and DAY84b-even, respectively.

We have tested the performance of the DAY84b-odd and DAY84b-even

families in the task of cognate identification on the English, German, Latin,

French and Albanian lists provided by Kessler [73], to choose the matrix

and similarity measure for the estimation of phylogenies. The Kessler

lists do not cover all the Indo-European branches that are present in

the test-even and test-odd datasets. As a consequence, we could not

have been sure that the PAM-like matrix and the similarity measure that
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achieved the better result were also adequate for the other branches of the

Indo-European family. For this reason, we have chosen a set of PAM-like

matrices and similarity measures that have shown a very good performance.

PAM3, PAM4, PAM5 and PAM6, from both the families DAY84b-odd

and DAY84b-even, have achieved a very high accuracy when used with

Sim1, Sim3, Sim5 and Sim6 introduced in Section 4.4, based on the

Smith-Waterman algorithm [125, 51] for local alignment. We have used

these PAM-like matrices and these similarity measures based on SW to

calculate the language similarity between each of the 85 speech varieties in

test-even and test-odd, respectively.

The similarity between two languages has been defined as the average

similarity between the 200 word pairs belonging to the language pair and

having the same meaning. We have not considered those word pairs having

one word missing or classified as unacceptable or as a borrowing. We have

supported polymorphism and, if one or both languages presented more

than one word for a meaning, we have considered the maximum similarity

between the different pairs in the average calculation.

In this way, we have obtained two 85-by-85 similarity matrices and we

have calculated their average scores, reaching a single 85-by-85 similarity

matrix, for each of the four PAM-like matrix pairs (odd, even) and for each

of the four similarity measures employed, for a total of 16 matrices.

Finally, we have transformed these similarity matrices into distance

matrices in three different ways, as described in Section 4.6. We have

calculated the weighted average of each group of distance matrices to reach

a consensus [92, 46] and we have called the three resulting distance matrices

D1, D2 and D3. We have then applied to them the UPGMA [126] and

Neighbor-Joining [119, 130] algorithms to estimate phylogenies.
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5.2.3 Results

In order to investigate the structure of these three pairwise distance

matrices obtained from similarity matrices, as described in Section 5.2.2,

and to picture the information stored in them as images, we have scaled

the image data to the full range of a chosen colormap [93].

Figure 5.5 shows the graphic representation of the 85-by-85 pairwise

distance matricesD1, D2 andD3, with the outgroup occupying first position

in the Cartesian planes.

(a) D1 (b) D2 (c) D3

Figure 5.5: Graphic representation of the distance matrices D1, D2 and D3

It is worth noting that this visual representation highlights clearly the

subsets of languages that are more closely related to each other, represented

by the darker tones in the central clusters.

All three matrices display the major Indo-European branches, with

the addition of the outgroup in first position. They follow the order

of the Dyen et al. dataset [42] classification that, from bottom-left to

top-right, shows Celtic, Italic, Germanic, Balto-Slavic, Indo-Aryan, Greek,

Armenian, Iranian and Albanian. The first matrix D1 presents a clearer

and neater distinction between the central clusters and the rest of the data.
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5.2.3.1 UPGMA

We have applied the distance-based method UPGMA [126] to these three

distance matrices D1, D2 and D3, as defined in Section 5.2.2, to study

correspondences and differences in the estimated phylogenetic trees.

Interestingly, the topologies of the consensus trees produced by using

UPGMA with D1 and D2, have shown an identical canonical form. In

addition, the canonical form of the consensus tree estimated by using D3

has given a variation only within the Indo-Aryan subgroup.

Applied toD1, D2 andD3, the algorithm has produced three trees rooted

on the Turkish language, that is the outgroup we have added to the Dyen at

al. corpus [42]. The confidence of the three consensus trees has been 100%

for 77% of the branches and the uncertainty has derived only from the

internal Albanian and Indo-Aryan subgroups. Due to the definitions of the

three distances, the three trees have presented different, but proportional,

branch lengths. This diversity has not influenced the grouping between

languages, but has reflected how their relatedness has been calculated.

The trees estimated are compatible with the Indo-European benchmark

tree [106] and have reproduced all the established major groups and

subgroups present in the dataset. The position of the French Creole speech

varieties, which are not even considered as Indo-European languages [85],

is justified by the nature of creolisation, which would require network

models of evolution [106]. The tree topologies have also shown some of

the higher-level supported structures, such as Balto-Slavic grouping with

Indo-Iranian and Celtic departing early. Italic has grouped with Celtic,

but after forming a clade with Albanian.

Figures 5.6, 5.7 and 5.8 display the topologies of the consensus trees

reached using UPGMA [126] with the distance matrices D1, D2 and D3,

respectively.
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Figure 5.6: Indo-European phylogenetic tree produced using UPGMA with D1
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Figure 5.7: Indo-European phylogenetic tree produced using UPGMA with D2
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Figure 5.8: Indo-European phylogenetic tree produced using UPGMA with D3
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UPGMA [126] has worked extremely well here because the PAM-like

matrices utilised to calculate the language similarities assume a constant

rate of evolution. This is the prerequisite for UPGMA to infer phylogenies

accurately and in this case it is also a reasonable assumption, because the

languages considered belong to the same family and are closely related [46].

The usage of different distance definitions has not altered substantially

the canonical form of the tree topologies, that have shown to be fairly

consistent with each other.

5.2.3.2 Neighbor-Joining

We have applied the distance-based method Neighbor-Joining (NJ ) [119,

130] to the three distance matrices D1, D2 and D3, defined in Section 5.2.2,

to analyse correspondences and differences in the inferred phylogenetic

trees.

The topologies of the consensus trees reached by the distance matrices

have shown different canonical forms. The three estimated trees have

reproduced all the established major Indo-European groups present in the

dataset, but with some important differences in the subgroups.

The tree estimated using D1 is compatible with the benchmark tree

[106]. The position of the French Creole speech varieties is not precise,

as in the case of UPGMA [126]. However, these languages are not even

classified as Indo-European because of their creolisation [85], whose study

would involve more elaborate models of evolution [106]. The trees built

using D2 and D3 have revealed some subgrouping problems. For example,

they have classified accurately the French Creole speech varieties, joining

them to the Gallo-Romance branch, but have failed in grouping correctly

the East Slavic branch. For this reason, they are not reported.

Figure 5.9 presents the unrooted tree calculated by using

Neighbor-Joining [119, 130] with the distance matrix D1.
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Figure 5.9: Indo-European unrooted phylogeny produced using NJ with D1

The confidence of this consensus tree has been 100% for 55% of the

branches and the uncertainty has spread across the tree with the exclusion

of the Armanian, Greek, Italic and Baltic groups.

Neighbor-Joining [119, 130], when applied to D1, has estimated a

phylogenetic tree compatible with the Indo-European benchmark tree

and has correctly reproduced all the established major language groups

129



5.2. PHYLOGENETIC INFERENCE

and subgroups present in the test dataset. NJ has not been successful

when applied to D2 and D3, which have been produced by transforming

similarity matrices into distance matrices using the definitions D2 and D3,

introduced in Section 4.6. This would suggest that these transformations

may add noise to the data to be interpreted by NJ, when the similarities

are produced using PAM-like substitution matrices. Deriving distances

from similarities using D1, as defined in Section 4.6, seems to be the more

sensible choice.

5.2.4 Discussion

Serva and Petroni [123], Petroni and Serva [110], Blanchard et al. [13],

Bakker et al. [8] and Downey et al. [40] used distance-based methods to

infer phylogenies, as reported in Section 2.2. In all these cases, the language

distance was calculated by averaging the distance of word pairs having the

same meaning in compared languages. In order to compute word distance,

the first four scholar groups utilised the Levenshtein distance [84], choosing

different normalisation. The fifth group employed ALINE [76], normalised

as well. Serva and Petroni [123], Petroni and Serva [110] and Blanchard

et al. [13] considered only 50 languages from the Dyen at al. dataset [42],

reducing enormously the complexity of the phylogeny. Bakker et al. [8]

developed their own dataset and Downey et al. [40] applied their method

to the Sumbanese language family. Because of these differences, a specific

comparison of our results with theirs is not possible. However, it has been

shown in [34] that our cognate identification system produces an average

accuracy approximately 28% higher than the Levenshtein distance [84]

normalised by the length of the longer word, and 18% higher than ALINE

[76], as reported in the literature. This would suggest that our methodology

may infer phylogenies more accurately than the other methods reported.
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5.2.5 Conclusion

We have applied the string similarity measuring system, trained with

PAM-like matrices and proposed in chapter 4, to the task of phylogenetic

inference in order to test its effectiveness against recognised aspects of the

Indo-European language family.

Our results, using the UPGMA [126] and Neighbor-Joining [119, 130]

algorithms, have reproduced correctly all the established major language

groups and subgroups present in the dataset and have shown to be

compatible with the Indo-European benchmark tree. In doing so, our

outcome has successfully met both the required linguistic evaluation

criteria for phylogenetic estimation, i.e. the “Compatible resolution” and

the “No missing subgroups”.

UPGMA has estimated phylogenetic trees that also include some of the

supported higher-level structures and has performed particularly well. This

is because it shares with the PAM-like method the assumption of a constant

rate of evolution, which is a reasonable statement for our investigation,

where the languages considered are closely related, belonging to the same

family. These results have been presented in [35].
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Chapter 6

Related work

In Section 5.1 we have presented the results achieved by our string

similarity measuring system in the task of cognate identification and we

have compared them with those produced by other successful models

reported in the literature. In this chapter, we review and discuss

some of these methods, which share with our proposal an orthographic

learning approach. As explained in Section 5.1.9, whenever possible, we

have intentionally used in our experiments the same training dataset,

test dataset and evaluation methodology utilised by these previous

investigations, to make our system properly comparable.

6.1 Review

Mackay [86] followed the orthographic approach and developed a suite

of Pair Hidden Markov Models (PHMMs) to measure word similarity in the

task of cognate identification. His system was based on a model originally

presented by Durbin et al. [41] for biological sequence analysis. PHMMs

are particularly suitable for pairwise alignment, because they allow the

examination of a string pair as a single entity, instead of two separate

streams of characters, producing an alignment. The training procedure,

performed by the Baum-Welch algorithm [10], had to determine three sets
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of parameters: a 26-by-26 symmetric matrix representing the substitution

probabilities for each character of the Roman alphabet; the insertion

and deletion probabilities for each character of the Roman alphabet; the

transition probabilities between the model states corresponding to the edit

operations of insertion, deletion and substitution. The training dataset

consisted of about 120,000 word pairs extracted from the Comparative

Indo-European corpus by Dyen et al. [42], described in Section 2.3. The

author considered the 95 speech varieties present in the digital file and

added to the training data the reverse of each word pair, to avoid possible

bias due to the ordering of the words. At this point, to reduce the

large dimension of the training dataset, he discarded all the word pairs

containing at least one word less then 4 characters long. A development

dataset, consisting of two language pairs (Italian and Serbo-Croatian as

an example of distant relatedness, Polish and Russian as an example of

close relatedness) was used to determine several parameters of the model,

including the transition probabilities. The test dataset was extracted from

the 200-word Swadesh lists prepared by Kessler [72] for Albanian, English,

French, German and Latin, and assembled by pairing the words having the

same meaning in these 5 languages, for a total of 10 language pairs. The

suite of PHMMs corresponded to several alignment algorithms utilised to

calculate word pair similarity, including the Viterbi algorithm [41], the

forward algorithm [41], a log-odds version of the Viterbi algorithm [41]

and a variation of it [86], which employed a forward approach. The model

that achieved the higher averaged 11-point interpolated average precision

[90] on the task of cognate identification utilised the log-odds version of the

Viterbi algorithm [41], with uniform gap and transition probabilities.

Mackay and Kondrak [87] compared four of the PHMMs proposed by

Mackay [86] with other methods in the task of cognate identification.
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They employed the same test dataset that Mackay used, which is

composed of the Albanian, English, French, German and Latin lists,

provided by Kessler [73]. The four PHMMs corresponded to the four

scoring algorithms employed to compute similarity scores over word

pairs, mentioned previously. The authors tested the PHMMs against

the Levenshtein distance with Learned Weights (LLW ) method, formerly

proposed by Mann and Yarowsky [88] in the task of lexicon translation.

LLW learnt the costs for edit operations from the same orthographic

training dataset using a stochastic transducer. The authors also compared

the results achieved by the PHMMs with those reached by ALINE [76],

introduced in Section 2.1.2, as the Kessler lists [73] provide word phonetic

transcriptions. They used as a baseline the Longest Common Subsequence

Ratio (LCSR) [96], described in Section 2.1.1. The authors showed that

all the four PHMMs outperformed LCSR, LLW and ALINE, in terms of

averaged 11-point interpolated average precision [90] in the task of cognate

identification. The one that performed better and showed a significant

improvement compared with the others, as mentioned before, employed

a log-odds variation of the Viterbi algorithm [41] with uniform gap and

transition probabilities. In this thesis, we have referred to it with PHMM

only.

The Mackay ’s approach was employed by Wieling et al. [140] and by

Wieling et al. [141] in the field of dialectology. It was also utilised by

Nabende [99] in the task of transliteration.

Kondrak and Sherif [83], working on orthographic data, developed

four different models of a Dynamic Bayesian Network (DBN ) for the

task of cognate identification. They based their system on a method

previously proposed by Filali and Bilmes [48] in the field of pronunciation

classification. They used the Graphical Modelling ToolKit (GMTK ) [12]
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for the implementation. The four DBN models were a Memoryless

and Context-Independent model, a Memory model, a Context-Dependent

model and a Length model [48]. The training dataset consisted of about

180,000 word pairs extracted from the Comparative Indo-European corpus

by Dyen et al. [42]. They used each word pair twice, inverting the

source-target direction, to enforce the symmetry of the scoring. In order

to determine several parameters of their system, the authors built up a

development dataset composed of three language pairs: Italian-Croatian,

Spanish-Romanian and Polish-Russian representing respectively distant,

medium and close relatedness. Kondrak and Sherif used the same test

dataset that Mackay [86] and Mackay and Kondrak [87] utilised, which

is extracted from the Kessler lists [73]. They tested their DBNs in the

task of cognate identification and compared them with other phonetic

and orthographic systems, including ALINE [76], LLW [88], and PHMM

[86, 87]. NEDIT, introduced in Section 5.1.2, was used as a baseline. Only

the Context-Dependent model achieved very good results and outperformed

in terms of averaged 11-point interpolated average precision [90] the other

systems including PHMM, but not significantly. In this thesis, we have

called it DBN only.

6.2 Discussion

The results of the studies reported in the previous section suggest that

orthographic learning models can outperform static systems specifically

designed for the task of phonetic alignment and cognate identification,

like ALINE [76] and its variation [80], if enough training data were

available. Nevertheless, PHMM [86, 87] and DBN [83] share the same

philosophy, as a Hidden Markov Model may be considered the simplest

type of Dynamic Bayesian Network [98]. They are both very powerful
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and effective statistical models, used especially in pattern recognition and

bioinformatics, but whose structure design is more of an art [41]. We have

identified the following weaknesses that both models appear to present.

PHMM [86, 87] and DBN [83] both need a large training dataset, which

has to be processed twice for symmetry, thus creating a time-consuming

learning process. This issue could be related to the quality of the data

that have been collected, which maybe resulted in being only partially

meaningful.

It is well known that the Comparative Indo-European corpus by Dyen

et al. [42] utilises a peculiar coding. The data are grouped by meaning and

cognateness, reported as certain or doubtful, and each group is identified

by a Cognate Class Number (CCN ). An explanation of this classification

has been reported in Section 5.1.1. Learning from words that are classified

with CCN = 0, CCN = 1, CCN in the range [100,199] and CCN in the

range [400,499], is likely to add noise to the system, because the words are

not cognate with each other or their cognateness is doubtful.

Moreover, there are some potential problems for the other categories.

Indeed, the data are grouped in cognate sets by the highest degree of

cognateness, which also determines how these sets are related to each other.

This signifies that, if a language presents more than one word for a meaning,

these words are not necessarily cognate with each other, and it is not

indicated which word or words are actually cognate with the rest of the

group and which are not.

Table 6.1 shows a simplified example of this coding, where one of the

cognate groups for the meaning to dig, identified by CCN = 3, contains 13

words and reports 2 words for Catalan, 2 for Italian and 2 for Provençal.
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Language Word1 Word2

Spanish cavar

Catalan cavar penetrar

Italian vangare scavare

Sardinian C skavai

Ladin chaver

Provençal cava fura

Brazilian cavar

Portuguese ST cavar

Sardinian N iskavare

Sardinian L iscavare

Table 6.1: Example of cognate set for the meaning to dig

The words Catalan penetrar, Italian vangare and Provençal fura are not

actually part of the cognate group. By using all the 13 words reported in

the set, as the compared methods did, the word pairs produced for that

group would be
(

13
2

)
= 78, but only

(
10
2

)
= 45 would be correct. As a

consequence, the system would align and learn parameters from 33 wrong

word pairs, which represent more than 40% of the word pairs in this group.

It should be clearer now why learning processes, even if guided by very

powerful models like PHMM [86, 87] and DBN [83], cannot reach the

highest accuracy, if the data are particularly untidy. Indeed the systems

learnt, together with correct information, a high percentage of noise as

well. Probably it is for this reason that Mackay [86], Mackay and Kondrak

[87] and Kondrak and Sherif [83] had to rely on a very large number of

pairs to try to neutralise the errors contained in the data.

To avoid these problems in the learning process, we have included in the

training dataset only those groups containing words judged certain cognate

with each other, which are classified in the corpus with CCN in the range

[2,99]. Moreover, we have ensured that the first word for each language

was always cognate with the group, as it is shown in Table 6.2.
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Language Word1 Word2

Spanish cavar

Catalan cavar penetrar

Italian scavare vangare

Sardinian C skavai

Ladin chaver

Provençal cava fura

Brazilian cavar

Portuguese ST cavar

Sardinian N iskavare

Sardinian L iscavare

Table 6.2: Example of rearranged cognate set for the meaning to dig

This may be achieved by an automatic procedure that puts in first

position the word presenting the smaller averaged edit distance [84] with

the other members of the group. We have then created our training dataset

of word pairs considering only the first word listed for each language: for

example, from the group shown in Table 6.2 we have produced
(

10
2

)
=

45 correct cognate pairs. This suggests that the word pairs we used for

the training process were really cognate pairs, as far as the cognateness

judgements of Dyen et al. [42] are correct.

Another issue we have found in the proposals reporting PHMM [86, 87]

and DBN [83] may be related to the ranking order. In these studies, it is

not specified if they imposed an alphabetic order on the word pairs that

received the same score. If they ordered the word pairs only by rates, this

would have created random results in the case of word pairs presenting

the same rate. On the other hand, ordering the word pairs by rates and

alphabetically, would have created, correctly, a reproducible semi-random

order. This may explain why the results of ALINE [76] are all slightly

different in [87] and [83] and why the PHMMs results are not the same in

[86] and [87].
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Conclusion

The main objective of this thesis has been the investigation of data

driven models for the study of language evolution. We have explored the

most important and promising tasks in computational historical linguistics,

namely cognate identification and phylogenetic inference.

We have stated the cognate identification problem as an approximate

string matching problem and, in order to solve it, we have chosen the

similarity approach, which is the standard in bioinformatics and in many

fields of natural language processing. This approach aims to find the

maximum similarity between two strings, which may be achieved by

discovering their optimal global or local alignments, whose detection is

crucially influenced by the scoring scheme employed.

We have designed a new orthographic learning system for measuring

string similarity [33], which consists of three main components, each

including an original aspect. The first component allows a meaningful

pairwise global alignment of the training dataset, aided by a novel

linguistic-inspired substitution matrix. This matrix, based on the Roman

alphabet, tries to encode well-known systematic sound changes left in

the written orthography. The second component generates scoring

matrices using several techniques, including Maximum Likelihood, Absolute
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Frequency Ratio, Pointwise Mutual Information and PAM-like [33]. The

latter has been inspired by the Point Accepted Mutation (PAM ) method,

widely used for amino acid sequence analysis [30, 31, 32]. The third

component performs pairwise alignments in order to measure the similarity

between words and benefits from the generated substitution matrices and

from a novel family of parameterised string similarity measures. Each

of these measures derives from the normalisation of a generic scoring

algorithm, achieved by using the similarity of each string with itself in

different ways, in the aim of minimising the bias due to different string

length.

We have applied this learning system for measuring string similarity

to the tasks of cognate identification, using standard Indo-European

linguistic datasets. Whenever possible, we have intentionally used the

same training dataset, test dataset and evaluation methodology utilised

by previous successful investigations, with which we wanted to make

our method properly comparable. Our system, trained with PAM-like

matrices [33], has achieved an excellent accuracy in cognate identification.

It has shown its superior performance and higher consistency across

different language pairs, when evaluated against the best comparable

phonetic and orthographic studies previously reported in the literature

[76, 86, 87, 83, 80]. We have assessed the robustness of our learning

system [34] by increasing the training dataset dimension by a factor of

approximately one hundred. The outcome has been impressively stable,

showing no relevant difference in the performance. The results have also

proved to be statistically significant [34], when compared with earlier

proposals and with each other.

We have also employed our learning system in the task of phylogenetic

inference of the Indo-European language family, whose higher structure

remains very controversial. In order to estimate phylogenies, we have
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transformed language similarities into language distances and we have

experimented with distance-based methods. Our learning system has

been successful in detecting accurate language similarity [35]. Indeed,

it has inferred phylogenies that are compatible with the Indo-European

benchmark tree and has reproduced all the established major groups

and subgroups present in the dataset. It has also included some of the

supported higher-level structures and has satisfied the linguistic criteria

[106] for the evaluation of phylogenetic estimation.

7.1 Outcome

The outcome of this thesis is particularly promising for several reasons.

Firstly, it does advance the state of the art in cognate identification,

with theoretical and applicative original contributions, which allow the

achievement of an outstanding performance.

Secondly, it strengthens the hypothesis that orthographic learning

systems may detect traces of sound changes left in the orthography and

perform better than static models, specifically designed for the task of

phonetic alignment. This idea is encouraging, considering that accurate

phonetic transcriptions are difficult to produce and frequently performed

manually, with the consequent loss of time and the possible lack of accuracy

and uniformity.

Finally, the methodology proposed seems to overcome one of the limits

of learning systems, which is the need for a large training dataset.

If a small group of sensibly aligned cognate pairs is able to train properly

our learning system, not only may it help to discover relationships between

languages when there is no consensus, but may also be particularly useful in

the study of those languages that do not benefit from large cognate corpora.

This may be the case with extinct languages and their relationships in the
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field of computational historical linguistics. Furthermore, our proposal

may be beneficial when applied to less studied and less documented speech

varieties in several fields of natural language processing, including machine

translation, parallel bilingual corpora processing and lexicography.

7.2 Future work

Our future plans include additional investigation of substitution

matrices and alignment techniques, with the aim of increasing further

the cognate identification accuracy and, as a consequence, the capacity

of inferring phylogenies. We are particularly interested in the following

tasks:

• Development of a technique able to learn BLOSUM-like substitution

matrices [62] and comparison of their performance in the tasks

of cognate identification and phylogenetic inference, against the

PAM-like matrices proposed in this study [33, 34, 35].

• Creation of an improved linguistic-inspired substitution matrix to be

used in the alignment of the training datasets. This matrix should be

bigram-based as opposed to character-based. Its impact would have

to be tested on the performance of the string similarity measuring

system in the task of cognate identification.

• Development of PAM-like and BLOSUM-like substitution matrices

bigram-based, as opposed to character-based.

• Employment of a different linguistic training dataset to be used

instead of the Dyen et al. corpus [42] and evaluation of the data impact

on the tasks of cognate identification and phylogenetic inference. A

good candidate may be the Ringe et al. dataset [115], which is also

recommended for historical linguistic studies.
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Appendix A

Swadesh lists

Swadesh [132] prepared a list of 200 universal and non-cultural words

that he considered the intimate part of any vocabulary. After more

research, he proposed a new list [133], which he recognised as being even

more general and stable. It contained 100 words only, collected mainly

from the previous list, but with the addition of seven new meanings: breast,

claw, full, horn, knee, moon and round.

Dyen et al. [42] assembled the Comparative Indo-European corpus using

200-word Swadesh lists. Kessler [73] based the lists he prepared on a

previous work of Ringe [114], who proposed a variant of the 200-word

Swadesh list. He included the seven words added in the 100-word Swadesh

list previously listed, plus the meanings knife and now, but excluded to

fear, to float, how, leg, to live, rope, to turn, when and where.

We have extracted the training dataset for our cognate identification

system from the Comparative Indo-European corpus by Dyen et al. [42],

in so using 200-word Swadesh lists, whereas we have employed the Kessler

lists [73] for test purposes, avoiding any overlap in their language sets.

We have also utilised the Comparative Indo-European dataset by Dyen

et al. [42] with its 200-word Swadesh lists for the experiments of our

phylogenetic tree builder.
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Table A.1 summarises the lists mentioned and their composition.

# Meaning Swadesh 200 Swadesh 100 Kessler

1. all X X X

2. and X − X

3. animal X − X

4. ashes X X X

5. at X − X

6. back (person’s) X − X

7. bad X − X

8. bark (of tree) X X X

9. because X − X

10. belly X X X

11. big X X X

12. bird X X X

13. to bite X X X

14. black X X X

15. blood X X X

16. to blow (of wind) X − X

17. bone X X X

18. to breathe X − X

19. to burn (intrans.) X X X

20. child X − X

21. cloud X X X

22. cold (of weather) X X X

23. to come X X X

24. to count X − X

25. to cut X − X

26. day X − X

27. to die X X X

28. to dig X − X

29. dirty X − X

30. dog X X X

31. to drink X X X

continued on next page
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# Meaning Swadesh 200 Swadesh 100 Kessler

32. dry X X X

33. dull (as a knife) X − X

34. dust X − X

35. ear X X X

36. earth X X X

37. to eat X X X

38. egg X X X

39. eye X X X

40. to fall (to drop) X − X

41. far X − X

42. fat (grease) X X X

43. father X − X

44. to fear X − −
45. feather X X X

46. few X − X

47. to fight X − X

48. fire X X X

49. fish X X X

50. five X − X

51. to float X − −
52. to flow X − X

53. flower X − X

54. to fly X X X

55. fog X − X

56. foot X X X

57. four X − X

58. to freeze X − X

59. fruit (berry) X − X

60. to give X X X

61. good X X X

62. grass X − X

63. green X X X

64. guts X − X

continued on next page
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# Meaning Swadesh 200 Swadesh 100 Kessler

65. hair X X X

66. hand X X X

67. he X − X

68. head X X X

69. to hear X X X

70. heart X X X

71. heavy X − X

72. here X − X

73. to hit X − X

74. to hold (in hand) X − X

75. how X − −
76. to hunt X − X

77. husband X − X

78. I X X X

79. ice X − X

80. if X − X

81. in X − X

82. to kill X X X

83. to know X X X

84. lake X − X

85. to laugh X − X

86. leaf X X X

87. left (hand) X − X

88. leg X − −
89. to lie (on side) X X X

90. to live X − −
91. liver X X X

92. long X X X

93. louse X X X

94. man (male human) X X X

95. many X X X

96. meat (flesh) X X X

97. mother X − X

continued on next page
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# Meaning Swadesh 200 Swadesh 100 Kessler

98. mountain X X X

99. mouth X X X

100. name X X X

101. narrow X − X

102. near X − X

103. neck X X X

104. new X X X

105. night X X X

106. nose X X X

107. not X X X

108. old X − X

109. one X X X

110. other X − X

111. person (human) X X X

112. to play X − X

113. to pull X − X

114. to push X − X

115. to rain X X X

116. red X X X

117. right (hand) X − X

118. right (correct, true) X − X

119. river X − X

120. road (path) X X X

121. root X X X

122. rope X − −
123. rotten X − X

124. rub X − X

125. salt X − X

126. sand X X X

127. to say X X X

128. scratch X − X

129. sea (ocean) X − X

130. to see X X X

continued on next page
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# Meaning Swadesh 200 Swadesh 100 Kessler

131. seed X X X

132. to sew X − X

133. sharp (as a knife) X − X

134. short X − X

135. to sing X − X

136. to sit X X X

137. skin (person’s) X X X

138. sky X − X

139. to sleep X X X

140. small X X X

141. to smell (trans.) X − X

142. smoke (of fire) X X X

143. smooth X − X

144. snake X − X

145. snow X − X

146. some X − X

147. to spit X − X

148. to split X − X

149. to squeeze X − X

150. to stab (to stick) X − X

151. to stand X X X

152. star X X X

153. stick (of wood) X − X

154. stone X X X

155. straight X − X

156. to suck X − X

157. sun X X X

158. to swell X − X

159. to swim X X X

160. tail X X X

161. that X X X

162. there X − X

163. they X − X

continued on next page

170



APPENDIX A. SWADESH LISTS

# Meaning Swadesh 200 Swadesh 100 Kessler

164. thick X − X

165. thin X − X

166. to think X − X

167. this X X X

168. thou (you sing.) X X X

169. three X − X

170. to throw X − X

171. to tie X − X

172. tongue X X X

173. tooth (front) X X X

174. tree X X X

175. to turn (intrans.) X − −
176. two X X X

177. to vomit X − X

178. to walk (to go) X X X

179. warm (hot) X X X

180. to wash X − X

181. water X X X

182. we X X X

183. wet X − X

184. what X X X

185. when X − −
186. where X − −
187. white X X X

188. who X X X

189. wide X − X

190. wife X − X

191. wind X − X

192. wing X − X

193. wipe X − X

194. with X − X

195. woman X X X

196. woods X − X

continued on next page
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# Meaning Swadesh 200 Swadesh 100 Kessler

197. worm X − X

198. ye (you plural) X − X

199. year X − X

200. yellow X X X

201. breast − X X

202. claw (nail) − X X

203. full − X X

204. horn − X X

205. knee − X X

206. moon − X X

207. round − X X

208. knife − − X

209. now − − X

Table A.1: Several variations of the Swadesh list
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A linguistic-inspired substitution

matrix

“L’étymologie est une science où les voyelles ne font rien, et les

consonnes fort peu de chose”.

Voltaire

We have produced a symmetric 26-by-26 linguistic-inspired substitution

matrix based on knowledge of phonetic changes left in the orthography

of the Indo-European language family, using the Latin alphabet without

diacritics. We have used this matrix to align the training datasets of our

cognate identification system and phylogenetic tree builder.

As introduced in Section 4.2, we have given a value of 2 to all the

elements of the main diagonal, because it is likely that a character preserves

itself. We have assigned a value of 0 to all the character transformations

considered “possible”, a value of −3 to all the character transformations

considered “impossible” and a gap penalty of −1 for insertion and deletion,

in order to have no overlaps between two indels and an “impossible”

match. However, the terms “possible” and “impossible” do not have to

be interpreted in a strict way, as they want only to represent traces of

sound changes that are likely or unlikely to be found.
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A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A 2

B -3 2

C -3 -3 2

D -3 03 -3 2

E 01 -3 -3 -3 2

F -3 05 09 09 -3 2

G -3 09 02 05 -3 -3 2

H -3 -3 02 05 -3 05 -3 2

I 01 -3 -3 -3 01 -3 -3 010 2

J 01 -3 -3 05 01 -3 05 010 01 2

K -3 -3 09 -3 -3 -3 02 02 09 09 2

L -3 -3 03 03 -3 03 09 09 08 08 -3 2

M -3 03 -3 03 -3 -3 -3 -3 -3 09 -3 -3 2

N -3 -3 03 03 -3 -3 03 -3 -3 -3 03 04 03 2

O 01 -3 -3 -3 01 -3 -3 -3 01 01 -3 -3 -3 -3 2

P -3 02 03 -3 -3 02 -3 -3 -3 -3 09 03 03 -3 -3 2

Q -3 -3 010 -3 -3 09 05 02 -3 -3 03 -3 -3 -3 -3 03 2

R -3 -3 -3 06 -3 -3 -3 09 -3 -3 03 06 03 06 -3 -3 -3 2

S -3 03 07 09 -3 -3 09 05 -3 05 09 03 -3 -3 -3 -3 -3 06 2

T -3 03 03 02 -3 -3 -3 05 -3 -3 09 03 03 03 -3 03 -3 03 02 2

U 01 -3 -3 -3 01 -3 -3 09 01 01 -3 08 -3 -3 01 -3 -3 -3 -3 -3 2

V -3 05 09 -3 -3 010 09 05 -3 -3 09 -3 09 -3 -3 05 09 -3 -3 -3 010 2

W 01 05 -3 -3 01 -3 -3 -3 01 01 -3 -3 -3 -3 01 -3 09 -3 -3 -3 01 010 2

X -3 -3 03 -3 -3 -3 09 05 -3 05 09 -3 -3 -3 -3 -3 -3 -3 05 -3 -3 -3 -3 2

Y 01 -3 -3 -3 01 -3 -3 010 01 01 -3 08 -3 -3 01 -3 -3 -3 -3 -3 01 -3 -3 -3 2

Z -3 -3 09 05 -3 -3 07 -3 -3 09 -3 -3 -3 09 -3 -3 -3 06 09 02 -3 -3 -3 09 -3 2

Table B.1: A linguistic-inspired substitution matrix

Table B.1 shows the linguistic-inspired substitution matrix and, for

readability, only the lower triangular matrix is filled in. In order to explain

the traces that systematic sound changes left in written words, we have

identified and listed several linguistic motivations [2, 24, 18], which we

have found useful from an orthographic point of view. The list does not

mean to be complete and may contain a few errors.

In the matrix, each character transformation considered “possible” is

displayed having in subscript the identification number of its motivation,

even if frequently more justifications may apply to the same character

pair. Examples have been provided in brackets, arrows have been used

when one orthographic form derives from another one, and commas when
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daughter languages testify a sound change from a non-documented common

ancestor. Transliteration has been utilised to report words belonging to

languages not using the Roman alphabet.

1. Vowel change: a change in the way vowels or semi-vowels are

pronounced or written. For example:

• A → E (Latin basium → Spanish beso; ‘kiss’)

• A − E (Latin mater, Greek meter ; ‘mother’)

• A → I (Latin caelum → Italian cielo; ‘sky’)

• A − I (Dutch nacht, German Nacht, English night ; ‘night’)

• A − J (Flemish aerde, Danish jord ; ‘earth’)

• A − O (Latin mater, Lithuanian mote, English mother ; ‘mother’)

• A − U (Sanskrit matar, German Mutter ; ‘mother’)

• E → I (Latin fenestra → Italian finestra; ‘window’)

• E − I (Old Slavonic gnezdo, Sanskrit nidah; ‘nest’)

• E − J (Serbo-Croatian pepeo, Slovenian pepju; ‘ashes’)

• E − O (Lithuanian vemti, Sardinian vomitare; ‘to vomit’)

• E − U (Slovak kedy, Albanian kur ; ‘when’)

• E − Y (Breton nez, Welsh nyth; ‘nest’)

• I → J (Latin iniustus → Portuguese injusto; ‘unfair’)

• I − O (Ukrainian rik, Polish rok ; ‘year’)

• I − U (Irish ńı, Albanian nuk ; ‘not’)

• I → Y (Latin abbatia → French abbaye; ‘abbey’)

• J → I (Latin januarius → Romanian ianuarie; ‘January’)

• J − O (Slovenian osjba, Belarusian asoba; ‘person’)
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• U → O (Latin abundare → French abonder ; ‘to abound’)

• U − Y (Sanskrit mus, Greek mys ; ‘mouse’)

• U − W (Breton ui, Welsh wy ; ‘egg’)

• Y → I (Latin gyrus, Spanish, Italian giro; ‘turn’)

2. Consonant shift : a change in the way consonants are pronounced and

written. If several consonant sounds move stepwise along a phonetic

scale, the consonant shift is called a consonant chain shift. There are

several famous examples of consonant chain shifts, including Grimm’s

law and Verner’s law [18]. For example:

• B − P (Latin labium, English lip, Swedish läpp; ‘lip’)

• C − H (Latin canis, Welsh ci, Gothic hunds); ‘hound’)

• D − T (Sanskrit dvau, Latin duo, Dutch twee, English two; ‘two’)

• G − C (Latin gelu, English cold ; ‘cold’)

• G − K (Latin gelu, German kalt, Icelandic kaldr ; ‘cold’)

• K − H (Greek kyon, Old Norse hundr, English hound ; ‘hound’)

• P − F (Sanskrit pat, Greek pos, English foot, German Fuß ; ‘foot’)

• Q − H (Latin quod, Gothic hva, Danish hvad ; ‘what’)

• T − S (English eat, German essen; ‘eat’)

• T − Z (English two, German zwei ; ‘two’)

3. Assimilation: the change of a sound that becomes more similar to

another one present in the word. For example:

• BD → DD (Latin abdomen → Italian addome; ‘abdomen’)

• BM → MM (Latin submergere → Italian sommergere; ‘to flood’)

• BS → SS (Latin obsequium → Italian ossequio; ‘homage’)
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• BT → TT (Latin subtilis → Italian sottile; ‘thin’)

• CL → LL (Latin clavis → Spanish llave; ‘key’)

• CT → TT (Latin octo → Italian otto; ‘eight’)

• DM → MM (Latin admittere → Italian ammettere; ‘to admit’)

• DN → NN (Latin adnectere → Italian annettere; ‘annex’)

• DR → RR (Latin quadratus → French carré; ‘square’)

• FL → LL (Latin flamma → Spanish llama; ‘flame’)

• GD → DD (Latin frigidus/frigdus → Italian freddo; ‘cold’)

• K − Q (Lithuanian penke, Latin quinque; ‘five’)

• LD − LL (English cold, Swedish kall ; ‘cold’)

• LN − LL (Lithuanian kalnelis, Latin collis ; ‘hill’)

• LS → SS (Latin pulsare → French pousser ; ‘to push’)

• LT → CH (Latin cultellus → Spanish cuchillo; ‘knife’)

• MN → NN (Latin somnus → Italian sonno; ‘sleep’)

• MN → MM (Latin somnus → French sommeil ; ‘sleep’)

• MR→ RR (Latin cumrumpere → French corrompre; ‘to corrupt’)

• NK − KK (German trinken, Faroese drekka; ‘to drink’)

• NK − CK (English drink, Swedish dricka; ‘to drink’)

• NL → LL (Latin inludere → Italian illudere; ‘to deceive’)

• NR → RR (Latin ponere/ponre → Italian porre; ‘to put’)

• P→ C (Early Latin pequere → Classical Latin coquere; ‘to cook’)

• P − Q (Greek pente, Latin quinque; ‘five’)

• PL → LL (Latin pluvia → Spanish lluvia; ‘rain’)

• PN − MN (Sanskrit svapnah, Latin somnus ; ‘sleep’)
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• PT → TT (Latin septem → Italian sette; ‘seven’)

• RK − RR (Swedish torka, Old Norse thurr, Danish torre; ‘to dry’)

• TL → LL (Latin spatula/spatla → Italian spalla; ‘shoulder’)

• TR → RR (Latin petra → French pierre; ‘stone’)

• X → SS (Latin saxum → Italian sasso; ‘stone’)

• XC → CC (Latin excedere → Italian eccedere; ‘to exceed’)

4. Dissimilation: the change of a sound that becomes less similar to

another present in the word. For example:

• N → L (Latin venenum → Italian veleno; ‘poison’)

• N → R (Latin hominem → Spanish hombre; ‘man’)

• Q → C (Latin quinque → Italian cinque, French cinq ; ‘five’)

• R → D (Latin rarus → Italian rado; ‘rare’)

• R → L (Latin arbor → Spanish arból ; ‘tree’)

5. Lenition: the change of a consonant sound that becomes weaker or a

semi-vowel. For example:

• B − F (Icelandic blóm, German Blume, Latin flos ; ‘flower’)

• B → V (Latin fabula → Italian favola; ‘tale’)

• C → G (Latin amicus → Portuguese amigo; ‘friend’)

• D → G (Latin diurnus → Italian giorno; ‘day’)

• D → H (Latin cadere → Portuguese cahir ; ‘to fall’)

• D → Z (Latin dies → Romanian zi ; ‘day’)

• F → H (Latin ficatum → Spanish h́ıgado; ‘liver’)

• G → J (Latin gamba → French jambe; ‘leg’)

• P → B (Latin scopa → Spanish escoba; ‘broom’)
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• P → V (Latin aprilis → French avril ; ‘April’)

• Q → G (Latin aqua → Catalan aigua; ‘water’)

• S − H (Latin septem, Avestan hapta, Old Persian haft ; ‘seven’)

• S → J (Latin sapo → Spanish jabón; ‘soap’)

• T → D (Latin natare → Spanish nadar ; ‘to swim’)

• T → H (Latin fructus → Provençal frucho; ‘fruit’)

• X → H (Old Slavonic xoditǔ → Slovenian hodit ; ‘to walk’)

• X → J (Latin fixum → Spanish fijo; ‘fixed’)

• X → S (Latin extremus → Italian estremo; ‘extreme’)

6. Rhotacism: the change into R of another consonant, which is a form

of lenition. For example:

• D → R (Latin cadere → Catalan caurer ; ‘to fall’)

• L → R (Latin caelum → Romanian cer ; ‘sky’)

• N → R (Latin fenestra → Romanian fereastră; ‘window’)

• Z − R (Avestan mazja, Old Irish mor, German mehr ; ‘more’)

7. Fortition: the change of a consonant sound from a weak to a strong

sound. For example:

• J → G (Latin januarius → Italian gennaio; ‘January’)

• S → C (Latin basium → Italian bacio; ‘kiss’)

• V → B (Latin servire → Romanian serbi ; ‘to serve’)

• Z → G (Latin zelosus → Italian geloso; ‘jealous’)

8. L-vocalisation: the replacement of an L by a vowel or semi-vowel. For

example:

• L → I (Latin florem → Italian fiore; ‘flower’)
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• L → U (Latin caldus → French chaud ; ‘hot’)

9. Other examples of changes in the way consonants are pronounced or

written, including palatalisation and coalescence:

• CL → CH (Latin clamare → Portoguese chamar ; ‘to call’)

• CT → PT (Latin coctum → Romanian copt ; ‘cooked’)

• C → Z (Avestan panca → Waziri pinze; ‘five’)

• DV → B (Old Latin dvis → Latin bis ; ‘twice’)

• FL → CH (Latin flamma → Portuguese chama; ‘flame’)

• G − B (Greek gune, Welsh benyw, Irish bean; ‘woman’)

• K − C (Greek hekaton, Latin centum, Old Irish cet ; ‘hundred’)

• K − P (Avestan yakar, Greek hepar ; ‘liver’)

• K − S (Breton kant, Sanskrit satam; ‘hundred’)

• K − T (Lithuanian penke, Greek pente; ‘five’)

• K − X (Russian kto, Ukrainian xto; ‘who’)

• LL → GL (Latin allium → Italian aglio; ‘garlic’)

• PL → CH (Latin pluvia → Portuguese chuva; ‘rain’)

• S → G (Latin ros → Italian rugiada; ‘dew’)

• T → Z (Latin sapientia → Italian sapienza; ‘wisdom’)

• V → G (Latin pluvia → Italian pioggia; ‘rain’)

10. Homophony : the representation of the same sound by different

characters in different languages or in different historical times. For

example:

• F − V (German Fuß, Dutch voet ; ‘foot’)

• I → H (Latin Hispania → Portuguese Espanha; ‘Spain’)
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• Q → C (Latin antiquus → Italian antico; ‘ancient’)

• V → U (Latin avis → avicella → aucellus ; ‘bird’)

• V − W (Swedish vinna, German gewinnen); ‘to win’)

It is worth noting that indels can also have several linguistic motivation,

as sounds can be lost or introduced. Possible types of sound loss and

introduction include:

• Aphaeresis : the loss of initial sounds.

– Latin ecclesia → Italian chiesa; ‘church’.

– Latin episcopus → Italian vescovo; ‘bishop’.

– Latin instrumentum → Italian strumento; ‘tool’.

• Syncope: the loss of medial sounds.

– Latin insula → Italian isola; ‘island’.

– Latin regalis → Portuguese, Spanish real ; ‘regal’.

– Latin tabula → Spanish tabla; ‘table’.

• Apocope: the loss of final sounds.

– Latin libertatem → Italian libertade/libertà; ‘freedom’.

– Latin lupus → French loup; ‘wolf’.

– Latin panis → Spanish pan; ‘bread’.

• Prothesis : the insertion of an initial sound.

– Latin laurus → Italian alloro; ‘laurel’.

– Latin strata → Portuguese estrada; ‘road’.

– Latin vulturius → Italian avvoltoio; ‘vulture’.
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• Epenthesis : the insertion of a medial sound.

– Latin hominem → homne → homre → Spanish hombre; ‘man’.

– Old English thunor → English thunder ; ‘thunder’.

– Latin tremulare → French trembler ; ‘to tremble’.

• Metathesis : the contemporary loss and introduction of two sounds

that switch place.

– Latin crocodilus → Italian coccodrillo; ‘crocodile’.

– Latin parabola → Spanish palabra; ‘word’.
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