PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

ExrroiTING SAT AND SMT TECHNIQUES FOR
AUTOMATED REASONING AND ONTOLOGY MANIPULATION
IN DESCRIPTION LOGICS

Michele Vescovi

Advisor:
Prof. Roberto Sebastiani

Universita degli Studi di Trento

February 25th, 2011

Abstract

The quest of efficient and scalable reasoning procedures arising from the area of Descrip-
tion Logics and its notable applications in the prominent domains of Semantic Web and
bio-medical ontologies, on one hand, and the wide variety of mature and efficient tech-
nologies offered by the SAT research area, on the other hand, motivated our research. In
this thesis we explore the idea of exploiting the power and efficiency of state-of-the-art
SAT-based and SMT-based techniques for automated reasoning and ontology manipula-
tion in Description Logics, proposing a valid alternative to the traditional tableau based
algorithms.

We propose and develop novel and complete approaches able to solve Description Logic
problems as SAT and SMT (Satisfiability Modulo Theories) ones. With this aim we de-
fine sound and complete encodings, and we develop new procedures and optimizations
techniques based on a variety of existing SAT-based formalisms and technologies.

In this work, in particular, we focus on three reasoning problems which tackle increas-
ingly more expressive logics or increasingly harder reasoning services, among which we
face also non-standard services supporting the debugging of ontologies, like modulariza-
tion and axiom pinpointing. We implemented our approaches in tools which integrate
with the available SAT/SMT-solvers; finally, we show the effectiveness of our novel ap-
proaches through very extensive empirical evaluations on benchmarks and ontologies from
real applications, in which we compare our performance against the other state-of-the-art
available reasoners.

Notice that any advance in the integrated Boolean reasoning techniques and tools will
be freely exploited from our novel proposed approaches (in contrast with possible advances
in tableau-based algorithms, which presuppose new implementations), extending also to
Description Logics and to the emerging fieeld of ontologies the benefits of the observable
great and fast advance in the efficiency of these techniques.

Keywords
automated reasoning, knowledge representation, description logics, ontologies, SAT, SMT.

Contents

1 Introduction 1
1.1 Trends in Description Logic and SAT-based Techniques 1

1.2 Motivations, Objectives and Methodology 5

1.3 Research Directions and Faced Problems 6
1.4 Dissertation Outline 9

I Preliminaries 13
2 Brief on the State of the Art 15
2.1 Reasoning in Description Logic and Handling Ontologies 15
2.2 SAT and SAT-based techniques 20
2.3 Beyond SAT: SMT and QBF, 22

3 Description Logics 25
3.1 Knowledge Representation and Description Logic 25
3.2 Constructors, Notation and Semantics 26
3.3 Reasoning Services 30
3.3.1 Standard Reasoning Services 31

3.3.2 Supplemental Reasoning Services 32

3.4 The Core Description Logic ALC 34
3.4.1 Case Study: The Description Logics ALCQ 35

3.4.2 Case Study: The Modal Logic K,, 36

3.5 Lightweight Description Logics 38
3.5.1 Case Study: ££T and the £L£ Family of Description Logics 38

4 SAT-based Techniques 43
4.1 Basics on Conflict-Driven Clause-Learning (CDCL) SAT Solving 43
4.1.1 Basics on SAT and Notation. 43

4.1.2 CDCL SAT Solving. 44

4.1.3 CDCL SAT Solving Under Assumptions. 46

4.2 Satisfiability Modulo Theory (SMT) 47

421 Lazy SMT o 48

4.2.2 The Theory of Linear Arithmetic over the Integers (LA(Z)) o
4.2.3 Case Study: The Theory of Costs (C)
4.2.4 All-SAT and AIU-SMT

IT Original Contributions

5 Encoding ALC/K (m)-satisfiability into SAT

5.1
5.2
5.3
5.4
5.9

5.6

5.7
5.8
5.9

Previous Approaches and Related Works
Motivations and Goals L
The Basic Encoding: K,,25AT
The Equivalent ALC Encoding
Optimizations
5.5.1 Pre-conversion into BNF 00000
5.5.2 Normalization of Modal Atoms
5.5.3 Box Lifting
5.5.4 Controlled Box Lifting
5.5.5 On-the-fly Boolean Simplification and Truth Propagation
5.5.6 On-the-fly Truth Propagation Through Modal Operators
5.5.7 On-the-fly Pure-Literal Reduction
5.5.8 On-the-fly Boolean Constraint Propagation
5.5.9 Soundness and Completeness of the Proposed Optimizations
5.5.10 A Paradigmatic Example: Halpern & Moses Branching Formulas.

Empirical Evaluation00
5.6.1 Test Descriptiono
5.6.2 An Empirical Comparison of the Different Variants of K,,2SAT . .
5.6.3 An Empirical Comparison wrt. the Other Approaches
5.6.4 Discussion
Contributions and Lesson Learned
Appendix: The Proof of Correctness & Completeness
Appendix: Evaluation Trials and Auxiliary Plots.

6 Handling Number Restrictions as SMT Problems

6.1
6.2
6.3
6.4
6.5

6.6

Other Approaches and Related Works
Motivations and Goalso
Alternative Solutions
A Normal Form for ACCQ
Concept Satisfiability in ALCQ via SMT(C) solving
6.5.1 Encoding ALCQ into SMT(C)
6.5.2 An Encoding Algorithm
Optimization: Smart Individuals Partitioning
6.6.1 The Need of Partitioning,
6.6.2 Proxy Individuals and Smart Partitioning

ii

50
50
53

55

57
57
99
60
62
64
64
65
66
66
67
68
69
70
71
72
76
78
30
86
94
94
96
100

6.6.3 Exploit Smart Partitioning in ALCO2SMTe 126

6.6.4 Partitioning Algorithm 127

6.7 Empirical Evaluation 000 129
6.7.1 Test Descriptions L 130
6.7.2 Comparison wrt. State-of-the-art Tools 134
6.7.3 Analysis of ACCO2SMT, 140
6.7.4 Discussion 147

6.8 Contributions 152
6.9 Appendix: Soundness and Completeness of ALCO2SMTy 155
6.10 Appendix: An Encoding Example 168
6.11 Appendix: Additional Plots on ALCO2SMTe 172
7 Exhaustively Debugging ££T TBoxes via Horn-SAT and All-SMT 175
7.1 Related Works. 175
7.2 Motivations, Goals and Proposed Solution 177
7.3 Classification and Axiom Pinpointing in E£T sofar 180
7.3.1 A Normal Form for ELT 180
7.3.2 Concept Subsumption in ELT. 182
7.3.3 Axiom Pinpointing with Reachability-based Modularization in ££* 185

7.4 Axiom Pinpointing via Horn SAT and Conflict Analysis 186
7.4.1 Classification and Concept Subsumption via Horn SAT solving . . . 186
7.4.2 Computing single and all MinAs via Conflict Analysis 188
7.4.3 Discussion 201

7.5 A Preliminary Empirical Evaluation 202
7.6 Pushing the Envelope oo o 204
7.6.1 Working on Sub-Ontologies 204
7.6.2 Cone-of-influence Modularization 205
7.6.3 Theory Propagation 210
7.6.4 Refining Cone-of-influence Modularization 211
7.6.5 Working on Smaller Ontologies: ELT2SATx2 212

7.7 An Extensive Experimental Evaluation 213
7.7.1 Discussion 220

7.8 Innovative Results and Further Potentials 230
7.9 Appendix: Proofs 233
7.10 Appendix: Further Experimental Evaluation Data 241
8 Conclusions 247

Bibliography 251

iii

“Proving that I am right would be recognizing that I could be wrong”
[P. A. Beaumarchais, The Marriage of Figaro , act I, scene I, 1778]

“Prouver que j’ai raison serait accorder que je puis avoir tort”
[P. A. Beaumarchais, Le Mariage de Figaro, acte I, scne I, 1778]

“Dimostrare che ho ragione significherebbe ammettere che potrei avere torto”
[P.A. Beaumarchais, Le Nozze di Figaro, atto I, scena I, 1778]

Chapter 1

Introduction

In this thesis dissertation we explore the idea of exploiting the power and efficiency of
state-of-the-art SAT-based techniques for the automated reasoning and ontology manip-
ulation in Description Logics (DLs).

In the last two decades, the problem of automated reasoning in Description Logics has
been throughly investigated and DL systems have been employed with success in various
application domains. However, this problem has gained further importance since the
advent of Semantic Web and the explosion of new applications in the field of ontologies,
for which DLs play an important role as the foundation of the web ontology languages.

Actual DL reasoning techniques, however, often lack of efficiency in handling some
particular features or prominent reasoning services. We think that the impressive advance
in the practical efficiency of SAT/SMT techniques that we have continuously witnessed
in the last twenty years, and the wide variety of specific reasoning technologies offered by
those two areas can be profitably transferred and exploited for met the quest of efficient
procedure arising from the fields of automated reasoning and ontology manipulation in
Description Logics.

1.1 Trends in Description Logic and SAT-based Techniques

In our work we combine two different areas of automated reasoning: Description Logics
and ontologies are the application domains, while the Boolean-reasoning techniques offered
by the SAT /SMT research areas represent the baseline of our work. We briefly introduce
the trends, the prominent problems, the applications and the available state-of-the-art-
techniques techniques motivating our research.

Reasoning in Description Logic: Applications, Problems and Trends

Description Logics (DLs) (Baader, Calvanese, McGuinness, Nardi, & Patel-Schneider,
2003) are a family of logic-based knowledge representation formalisms aimed at repre-
senting the knowledge of an application domain in a structured way, by defining the
relevant concepts of the domain and, then, by using these concepts to specify properties

2 Introduction

of objects and individuals occurring in the domain. A main characteristic of Description
Logics is the emphasis on reasoning; these languages are indeed equipped with formal,
logic-based semantics and they provide a set of reasoning services by mean of whom
implicitly represented knowledge can be inferred from the explicitly defined one.

Further than in knowledge representation and management systems, Description Log-
ics are employed with success in various application domains, ranging from natural lan-
guage processing to databases and, moreover, recently, to bio-medical ontologies and in
the Semantic Web. In this latest field, nowadays, the Description Logic-based language
OWL (Bechhofer et al., 2004) has been adopted as the standard ontology language, and
currently the second standard OWL 2 (Motik, Patel-Schneider, & Parsia, 2009) has been
defined.

In Description Logic, many different constructors have been proposed as a formalism
to describe the concepts of the domain, the objects and the relations among them. Every
distinct combination of these language constructors might yield to a new Description
Logic. For years, researchers have studied the effect of combining these constructors on
the complexity and the properties of the different Description Logics obtained. The result
of this research is a really wide range of logics which goes from very simple logics with
a low expressive power, to very powerful logics where, in contrast, the reasoning is really
complex (sometimes undecidable for almost the reasoning services).

A DL knowledge base is generally formed by two components. The first one is the ter-
minological component (TBox), informally, the schema of the knowledge base; the second
one is the assertional component (ABox), informally, an instantiation of the terminologi-
cal schema. The complexity of reasoning on such a knowledge base depends not only on
the set of language constructors provided by the implemented Description Logic, but also
on the use of one or both the components in the reasoning and from the structure of the
axioms/assertions by which these components are defined. If it is allowed to have set of
axioms defining cyclic terminologies, for example, logics become harder to reason on and
smarter algorithms are required.

For this latest reason, notationally, Description Logics are distinguished by the lan-
guage constructors they provide and determining their expressive power. Historically, the
most studied Description Logic is ALC, that is a notational variant of the Modal Logic
K, (Schild, 1991). The SH family of languages is another notable class of Description
Logics (S is an abbreviation for ALC with transitive roles and H represents the use of
role hierarchies). In fact it is the base on which many harder languages have been defined
to reach the real-world quest of expressive logics. For example, all the OWL languages
belongs to the SH family.

Recently another family of tractable Description Logics called ££ (which includes also
the EL extensions EL1 and E£17), has caught the attention of the researchers (Baader,
Brandt, & Lutz, 2005; Baader, Penaloza, & Suntisrivaraporn, 2007). In fact, even though
these logics are really less expressive with respect to other logics, they are expressive
enough to describe several important bio-medical ontologies such as SNOMED-CT (Spack-
man, 2000; Baader & Suntisrivaraporn, 2008), the Gene Ontology (The G. O. Consor-

Trends in Description Logic and SAT-based Techniques 3

tium, 2000), the National Cancer Institute (NCI) ontology (Sioutos, de Coronado, Haber,
Hartel, Shaiu, & Wright, 2007), and the majority of Galen (Rector & Horrocks, 1997).
Reasoning on these ontologies represents not only a notable application of Description
Logic-based systems, but also a challenge due to the required efficiency and the huge
dimensions of this kind of problems.

A relatively-large number of tools are the byproduct of this research. The most notable
Description Logic reasoners at the state-of-the-art are FACT++4, PELLET, HERMIT and
RACER. They all implement the analytic tableau method, except for HERMIT which is
based on the hypertableaux calculus (Motik, Shearer, & Horrocks, 2009), and they are
able to manage really complex logics (including OWL —DL-based— documents).

Among the others, some notable examples of standard reasoning services in Description
Logic are: knowledge-base consistency, concept satisfiability, concept subsumption (i.e. to
determine if every instance of a specified concept is instance of another specified concept),
that is a subcase of the classification of all the concepts, instance checking (i.e. the problem
of deciding if an object is instance of a specified concept) and the retrieval of all the objects
instance of the specified concept. Anyway, many of these inferences can be reduced from
and to each other, i.e. they can be solved as special cases of other inferences. Moreover,
many other non-standard or supplemental reasoning services have been defined. Among
the others we mention aziom pinpointing (e.g. Baader et al., 2007), which allows for
debugging ontologies, and modularization (e.g. Baader & Suntisrivaraporn, 2008), which
has the aim of extracting (as small as possible) subsets of the knowledge base preserving
a specified statement or some properties of interest.

For its nature, however, reasoning in Description Logic is a very hard problem (NP-
complete, PSPACE-complete, EXPTIME-complete and even more) (Baader et al., 2003).
For this reason, nowadays, the research in Description Logic is proceeding in the space
delimited by two main directions: (i) the study of even harder but decidable logics to
establish the theoretical boundaries of the field; (ii) the search of easy logics, expressive
enough to cover the needs of some practical applications, that often manage simple prob-
lems of huge dimensions. In the middle of these two orthogonal research directions, the
quest of efficient procedures coming from the many practical applications in the field of
ontologies is currently guiding the research on some main streams, among which there are:
(iii) the identification of tractable or “less hard” fragments (like Horn fragments) of harder
and frequently used logics; (iv) the design of efficient optimization techniques and algo-
rithms which can help in handling efficiently practical problems for worst-case-really-hard
logics or services; (v) the definition and analysis of novel non-standard or supplemental
reasoning services which utility arises from the fields of ontology manipulation and Se-
mantic Web (e.g. modularization, logical difference computation, identification of laconic
or precise modules or justifications, and so on and so forth) and the design of efficient
procedures for handling them.

Thus, due to its theoretical complexity and to the increasing applications of Descrip-
tion Logics in many research fields and practical domains, the development of efficient
reasoning algorithms and procedures in Description Logic has become a key research issue.

4 Introduction

Advances in SAT, SAT-based Approaches and Beyond

Propositional Satisfiability (SAT) (Biere, Marijn, van Maaren, & Walsh, 2009) is the
problem of determining whether a Boolean formula admits at least one satisfying truth
assignment to its variables. It is a core problem in mathematical logic and computer theory
because it is, for its nature and historical reasons, the most representative NP-complete
problem. Moreover, in the last two decades we have witnessed an impressive advance in
the efficiency of SAT techniques, which has brought large previously-intractable problems
at the reach of state-of-the-art solvers (see, e.g., Zhang & Malik, 2002). Nowadays freely-
available SAT solvers (the most efficient and exploited algorithms are based on DPLL in its
many variants) can manage problems of hundreds of millions of clauses and variables. As
a consequence, many hard real-world problems have been successfully solved by encoding
them into SAT.

The research of efficient SAT techniques is still a crucial point, which is of interest
for many areas and other domains in computer science like Automated Reasoning, Model
Checking, Formal Methods. In fact many SAT-based techniques have witnessed extremely
effective in other domains and especially in the area of formal verification. Starting
from Planning (Kautz, McAllester, & Selman, 1996) and Bounded LTL Model Checking
(BMC) (Biere, Cimatti, Clarke, & Zhu, 1999), many other problems have been encoded
into SAT or solved with the aid of SAT tools (e.g., Armando, Castellini, Giunchiglia,
Giunchiglia, & Tacchella, 2005; Sebastiani, 2007b) and these approaches are currently
state-of-the-art in the respective communities. For example, Model Checking techniques
exploiting the power of state-of-the-art SAT solvers have proved to be a valid alternative,
and very often superior, to the traditional approaches based on Binary Decision Diagrams
(BDDs) (e.g. McMillan, 2003).

Further, the SAT formalism is used to solve problems with a wider extent. Besides
returning an assignment (a model) when a formula is satisfiable, also the all solutions
problem (called All-SAT) (see, e.g., Jin, Han, & Somenzi, 2005) for satisfiable formulas,
the unsatisfiable core problem (called unsat-core) (see, e.g., Zhang & Malik, 2003) and the
problem of find interpolants (McMillan, 2003) for unsatisfiable formulas, are meaningful
problems which are attracting a lot of attention from the research community, due to the
various applications especially as part of many SAT-based Model Checking algorithms (e.g
McMillan, 2003).

The progress in Boolean Satisfiability (SAT) solving techniques, together with the con-
crete needs from real applications, have inspired significant research on richer and more
expressive Boolean formalism like Quantified Boolean Formula (QBF) (see, e.g., Plaisted,
Biere, & Zhu, 2003; Giunchiglia, Narizzano, & Tacchella, 2006) and Satisfiability Modulo
Theories (SMT) (see Sebastiani, 2007b for an overview). The formalism of plain Propo-
sitional Logic (SAT), in fact, is often not suitable or expressive enough for representing
many real-world problems. Such problems are more naturally expressible using QBF or
SMT. In particular SMT can be seen as an extension of SAT in which the input formula is
expressed in (a subset of) first-order logic (typically without quantifiers) with respect to
a background theory (for example: linear arithmetic both over the reals and the integers,

Motivations, Objectives and Methodology 5

its subclass difference logic, the theories of bit vectors, of arrays and of lists, and others).
Among the others, notable examples of SMT-based approaches are in the field of Model
Checking, in the verification of RTL designs and of systems with an infinite number of
states like real-time and hybrid control systems, and software (many examples can be
found in (Sebastiani, 2007b; Barrett, Sebastiani, Seshia, & Tinelli, 2009)).

The dominating approach for SMT, which underlies most state-of-the-art tools, is
based on the integration of a SAT solver and one or more domain-specific solvers for
the background theories. The SAT solver enumerates truth assignments which satisfy
the Boolean abstraction of the input formula (where distinct theory-specific subformulas
are represented /abstracted by distinct Boolean atoms), whilst the domain-specific solvers
check the consistency in the respective background theory of the set of literals corre-
sponding to the assignments enumerated. This approach is called lazy, in contraposition
to the eager approach, consisting in encoding an SMT formula into an equivalently satis-
fiable Boolean formula, and on solving the result with a SAT solver (see, e.g., (Sebastiani,
2007b) for a survey).

Although SMT is still a novel research area, it is also a very active one: new solvers
and techniques are continuously proposed, and often with improvements of orders of
magnitude in performance with respect to the previous approaches. In particular, since it
is based on many of the SAT techniques previously introduced by the research community;,
some SMT-based approaches and other SMT-based tools for problems like interpolants
or the fast recognition of small unsatisfiable cores, have been proposed in the last few
years (Cimatti, Griggio, & Sebastiani, 2008, 2007), but they are still at a very preliminary
stage, and far from being as mature as SAT-based ones.

1.2 Motivations, Objectives and Methodology

The research trends in Description Logic, its manifold practical applications, the quest of
efficient and scalable procedures, on one hand, the wide variety of mature and efficient
techniques offered by the SAT research area, on the other hand, motivated our research.

Besides the traditional applications (Baader et al., 2003), Description Logics are as-
suming notable relevance due to the extension of their applications even in “hotter”
domains, especially in the field of the Semantic Web and in many other research fields
connected to the use of ontologies. Because of the orthogonal needs — on one hand,
for expressive Description Logics supporting complex knowledge representation systems
or ontologies and, on the other hand, for easy and tractable Description Logics support-
ing simple structured ontologies of huge dimensions — the problem of finding efficient
reasoning procedures in Description Logic has become crucial. SAT-based technologies,
in the meanwhile, proved to be mature and largely successful in many other automated
reasoning fields, first of all in the case of the very hard (and often also huge) problems
arising from the practical applications of formal verification. Further, the more SAT is
a simple and intuitive problem, the more it is adaptable and suitable for the encoding
of different formalisms. SMT, instead, can be a very powerful formalism combining the

6 Introduction

adaptability of SAT with the expressivity of the many embedded theories. Thus we be-
lieve that the state-of-the-art Boolean reasoning techniques that we can borrow from the
successful research area of SAT and from the rising area of SMT, can be in practice pow-
erful and suitable “tools” able to meet the current quest of efficiency from the prominent
real applications of huge ontologies and hard Description Logics.

Our central objective is to develop new techniques for reasoning in Description Logics
and on real ontologies, through the definition of novel encodings and procedures able to
solve Description Logic problems as SAT (or even SMT) ones. We aim at exploiting the
capabilities of the state-of-the-art Boolean reasoning techniques proposing a convenient
alternative to the traditional tableau based algorithms. Notice that any advance in the
exploited Boolean reasoning techniques/tools will be freely inherited from our novel pro-
posed approaches (in contrast with possible advances in tableau-based algorithms, which
presuppose new implementations), extending also to Description Logics (and thus, by
consequence, to the emerging fields of ontologies) the benefits of the observable great and
fast advance in the efficiency of these techniques. With this main objective in mind we
also aim at trying the applicability of the larger possible number of SAT-based technolo-
gies and formalisms (choosing the more suitable one) and at approaching a wide range of
problems among the different Description Logic languages and reasoning services.

Based on these ideas and motivations, our work explored the efficiency of encoding
different reasoning services in various Description Logics to SAT and SMT, by way of the
following steps: (i) the definition of a formal (and as efficient as possible) encoding proving
its soundness and completeness, (ii) the implementation of a tool which realizes the en-
coding and (iii) the evaluation of the integration of our tool together with the SAT/SMT
tools on benchmarks or ontologies relative to real applications, comparing the performance
with the other state-of-the-art approaches and available tools. In particular we started
from a well-known problem and, then, we moved to increasingly harder ones by facing
more expressive logics and by approaching non-standard reasoning services. Moreover, we
realized the above exposed steps in an incremental way. First, we devised, implemented
and evaluated the basic encoding in order to preliminarily check the potentials of each
novel approach. Second, we pushed the performance and the range of problems at the
reach of our approach, by introducing optimizations or by exploiting supplemental SAT-
based techniques. We always analyzed the effects of these enhancements through very
extensive empirical test sessions.

1.3 Research Directions and Faced Problems

Our central objective is to improve the state-of-the-art of the reasoning procedures into the
prominent application area of Description Logics and ontology manipulation, by proposing
new techniques built on the mature and largely successful SAT-based technologies.

In the Description Logic research area a relatively large number of reasoners is avail-
able, which already show very interesting performances on expressive Description Logics.
They handle a large variety of logics and all offer the most common and studied inference

Research Directions and Faced Problems 7

services. Thus, the proposal of novel techniques and new reasoners must take into account
of the directions and features in which the currently available techniques are still lack-
ing or in which the existing general-purpose and highly-optimized systems can be better
replaced by specific tools. In particular we individuated three currently “hot” topics in
which the benefits gained by SAT-based techniques can be profitably extended to the
automated reasoning in Description Logics:

— the efficient manipulation of huge real ontologies, thanks to the attitude of SAT in
handling huge size problems;

— the development of new techniques for optimized reasoning with numerical con-
straints, in which the SMT technology can be helpful;

— the design of efficient procedures for the emerging non-standard reasoning services by
mean of the many existent supplemental SAT techniques (like all-SAT and others).

In our research, with these intents, we invested in three different directions, iteratively
reproducing the steps of the methodology exposed in the previous section:

1. Start from relatively-easy Description Logics and standard/well-studied reasoning
services by mean of a direct encoding into SAT, in order to first evaluate the fea-
sibility and potentials of our idea and outline the applicability boundaries of our
approach.

2. With the experience acquired from the previous direction, explore the opportunity of
threat strongest ontologies and reasoning in the harder Description Logics, possibly
by way of more expressive Boolean reasoning formalisms like SMT. In particular, we
investigate the integration of SMT especially for what concerns those logics which
provide language constructors that are somewhat similar to those of the theories
that SMT includes.

3. Face even more complex and “non-standard” reasoning services with the aid, when
necessary, of other SAT tools/techniques (like, e.g., unsat-core or All-SAT), and
evaluate the response and scalability of our approach in the concrete applications of
huge real ontologies.

In order to explore all the three above exposed research directions we chose to ap-
proach, in particular, three gradually harder significant representative problems:

Concept satisfiability in ALC (with empty TBox) via SAT. We start our investi-
gation focusing on plain (i.e. with empty TBox) concept satisfiability in the core
Description Logic ALC, by mean of a direct encoding into plain Propositional Logic
satisfiability. While ALC is, historically, the most studied Description Logic, con-
cept satisfiability is the core reasoning service in DL knowledge bases (subsumption,
instance checking and other services are likewise important but, often, they can be
reduced each other with satisfiability, or solved with simple modifications).

8 Introduction

Concept satisfiability wrt. empty TBoxes in ALC is a PSPACE-complete problem.
We started exploring our idea from this problem because we want to test our new
approach on a central and standard problem in Description Logic, so that well
established benchmark problems are available, and so that we can compare our
results against the widest possible set of different approaches. In fact, due to its
equivalency with the core Modal Logic K,,, a rich variety of reasoning tools for
simple concept satisfiability in ALC is available, including also (but not only) tools
based on tableau, BDDs and QBF techniques.

Concept satisfiability in ALCQ (with acyclic TBox) via SMT. Among the many
Description Logics, ALC is a relatively-easy formalism. Moving to more expressive
logics, we chose to explore the use of SMT in order to handle qualified number
restrictions. Thus we faced the problem of concept satisfiability in ALCQ (Faddoul,
Farsinia, Haarslev, & Moller, 2008) wrt. acyclic TBoxes. Even if, from a purely
theoretical perspective, it is still a PSPACE-complete reasoning task, ' wrt. the
previously approached problem we include two other main sources of complexity:
the presence of TBoxes and the presence of numerical constraints.

Reasoning with qualified number restriction is a prominent research issue in De-
scription Logic (see, e.g., Faddoul & Haarslev, 2010), in fact the current techniques
often lacks of efficiency, especially when the number of the restrictions is higher or
when the values involved in the restrictions their selves are big. For this reason
ontology designers most likely avoid the use of these constructors, even if they are
very natural (sometimes essential) in many domains. Thus the quest of efficient pro-
cedures for handling qualified number restrictions is not only an important issue for
the automated reasoning in Description Logic, but it has also particularly important
consequences for the development of the ontology-design area.

We encoded ALCQ-concept satisfiability in SMT modulo the Theory of
Costs (Cimatti, Franzén, Griggio, Sebastiani, & Stenico, 2010), that we think natu-
rally fits the expressivity of numerical restrictions. The Theory of Costs, in fact, is a
subset of linear arithmetic over the integer, in which it is possible to define multiple
cost variables/functions and define both increases and lower/upper-bounds on such
costs.

Axiom Pinpointing in ££* (with general TBox) via Horn-SAT, C.A., all-SMT.
We conclude this thesis by approaching the problem of efficient and scalable non-
standard reasoning on the huge real bio-medical ontologies. In this third case we

solve the problem of axiom pinpointing in the logic EL£" wrt. general TBoxes (Baader
et al., 2007).

A very prominent research area in Description Logic concerns the representation
and manipulation of bio-medical ontologies. Even if they are often very simple in

LConcept satisfiability in ALCQ wrt. general TBoxes, instead, is EXpTIME-complete. However we chose to
handle only acyclic TBoxes not to avoid to switch to the upper class of complexity but to concentrate only on
the encoding, postponing the issue of introducing techniques like blocking to handle cyclicity.

Dissertation Outline 9

the structure, the reasoning on these ontologies is a challenging task due to their
huge dimensions. The £L family of lightweight (i.e. less expressive but tractable)
Description Logics (including ££7) has been defined as a response to the quests

coming from the numerous concrete applications of these ontologies (Baader et al.,
2005).

Among the different possible reasoning services, we chose the axiom pinpointing
problem (Baader et al., 2007) because it is really useful in concrete applications. In
more details, the axiom pinpointing problem consists in finding one or many minimal
subsets of a DL knowledge base that have consequence on some inferred properties;
so it can be used, e.g., in order to find one or many sets of axioms (called MinAs)
which cause an unwanted subsumption relation. In other words, axiom pinpointing
allows for debugging ontologies. In ££* finding one MinA is a polynomial problem,
while finding all the MinAs for a given subsumption relation is worst-case output
exponential.

The identification of all the minimal subsets of axioms causing an undesired inference
requires an iterative process. Therefore, we investigated the use of the All-SAT / All-
SMT (Jin et al., 2005; Lahiri, Nieuwenhuis, & Oliveras, 2006) techniques applied
in the framework of our proposed novel approach based on Boolean reasoning tech-
niques. In a nutshell, the idea is to build off-line a polynomial-size Horn propositional
formula encoding the full classification of the input ontology. Then, we can find one
MinA by applying SAT under assumption and by exploiting Conflict Analysis look-
ing for a minimal set of assumptions falsifying the encoded formula and the negation
of the queried subsumption. Finally, we use All-SMTin order to uniquely enumer-
ate all the single MinAs computed in such a way. In this research stream, in order
to increase the performance of our approach, we also deal with the supplemental
reasoning problem of modularization (see, e.g., Baader & Suntisrivaraporn, 2008).

1.4 Dissertation Outline

Here we provide a content outline of the present dissertation, and we also give account of
either published or recently submitted publications.

The dissertation is divided in two main parts. The first part, consisting of Chapters 2, 3
and 4, briefly describes the state-of-the-art and gives the necessary background for the
rest of the dissertation. The second part, consisting of Chapters 5, 6 and 7, presents
the original contributions of this thesis by describing the theoretical, technical and prac-
tical results achieved in three different prominent problems of automated reasoning in
Description Logics and ontologies.

In the following we give more details on the parts/chapters of the present dissertation:

Part I: Preliminaries. In this part we give the necessary theoretical background for
the reading of this thesis. In particular, our work combines two different areas of au-
tomated reasoning: Description Logics and ontologies are the application domains,

10 Introduction

while the Boolean-reasoning techniques offered by the SAT /SMT research areas rep-
resent the baseline of our work. For this reason we don’t go into too much details
in discussing the state-of-the-art and describing the background for these two areas;
instead, we just provide the indispensable notions for both of them and, especially,
for the specific cases of study on which we give our innovative contributions. More-
over, since we approach three problems which has been approached by considerably
different methods, we chose to separately discuss in the relative chapters of novel
contributions the related works and previous approaches for every handled problem.

— Chapter 2: Brief on the State of the art. In this chapter we look from two
different perspective at the state of the art in the two areas of automated reasoning
we are combine in this work. On the one hand we analyze the trends and the
prominent problems in automated reasoning in Description Logics, in which we
give our new contributions. On the other hand we analyze the technologies and
procedures at the state-of-the-art offered in the area of Boolean-reasoning, which
are the techniques we exploit to perform efficient reasoning on the tackled problems.

— Chapter 3: Description Logics. We introduce Description Logics. We present
the notation, the semantic and the main reasoning services provided, both the stan-
dard/traditional and the non-standard /emerging ones. Then we present the specific
logics which are the cases of study of our dissertation.

— Chapter 4: SAT-based Techniques. We provide the main notions concerning
SAT and SMT, with the focus on the techniques and the reasoning procedures offered
by these two areas. In particular we present Conflict-Driven Clause-Learning SAT
solving, SAT solving under assumptions, SMT modulo the Theory of Costs and the
All-SAT/AIl-SMT technique.

Part II: Original Contributions. Here we present the original contributions of this
thesis. In this part we divide in three distinct chapters the contributions in the
three specific and increasingly harder problems we have chosen as representative of
the three main research directions given in Section 1.3. For the sake of uniformity,
we structured every chapter following the applied methodology, which is exposed in
Section 1.2. In general, for each chapter: (i) we discuss the specific reasoning prob-
lem, the related works and the previous approaches; (ii) we explain the motivations
which have led us to choose the treated problem, the SAT-based techniques we have
select to handle it, and the goals of our approach; (iii) we define a basic encoding of
the problem into the chosen SAT-based formalism, proving the soundness and com-
pleteness of the encoding (we also optionally report the results of some preliminary
evaluation); (iv) we develop and describe the optimizations and enhancements in-
troduced to further push the performances of our approach; (vi) we always conclude
with an extensive empirical evaluation, in which we present the implemented tool
and the competitor systems, we describe the benchmark problems and we discuss
the results, highlighting the innovative contributions of our approach.

Dissertation Outline 11

— Chapter 5: Encoding ALC/K,,-satisfiability into SAT. We tackle the prob-
lem of concept satisfiability in ALC wrt. empty TBoxes by encoding it into SAT. In
order to have a wider set of competitors approaches and well-established benchmark
problems we present and solve the equivalent problem of modal K,,-satisfiability.
In this chapter we present K,,2S AT, defining a basic encoding and several prepro-
cessing and on-the-fly optimizations; we finally compare with a very large set of
state-of-the-art approaches for modal K,,-satisfiability.

| Sebastiani & Vescovi, 2006 | Roberto Sebastiani and Michele Vescovi. Encoding
the Satisfiability of Modal and Description Logics into SAT: the Case Study
of K(m)/ALC. In: Proceedings of the 9th International Conference on Theory
and Applications of Satisfiability Testing. (SAT’06) Seattle, USA. 11-15 August
2006. (vol. 4121 of LNCS, pp. 130-135, Springer).

[Sebastiani & Vescovi, 2009a | Roberto Sebastiani and Michele Vescovi. Auto-
mated Reasoning in Modal and Description Logics via SAT Encoding: the
Case Study of K(m)/ALC-Satisfiability. In: Journal of Artificial Intelligence
Research. (JAIR) June 2009. (vol. 35, num. 1, pp. 343-389, AAAT Press).

— Chapter 6: Handling Number Restrictions as SMT Problems. We face
the problem of concept satisfiability in ALCQ wrt. acyclic TBoxes, introducing in
that way also reasoning on qualified number restrictions and TBox reasoning. In
this chapter we present our approach ALCQ2SM T, which encodes ALCQ concept
satisfiability into SMT modulo the Theory of Costs (SMT(C)). We define the basic
encoding and a very effective partitioning optimization aiming at reducing the search
space. We finally compare our method against the main available state-of-the-art
reasoner.

[Haarslev, Sebastiani, & Vescovi, 2011 | Volker Haarslev, Roberto Sebastiani and
Michele Vescovi. Automated Reasoning in ALCQ via SMT. Submitted to:
23nd International Conference on Automated Deduction. (CADE-23) Wrocaw,
Poland. 31 July — 5 August 2011.

— Chapter 7: Exhaustively Debugging ££ TBoxes via Horn-SAT and All-
SMT. We solve the problem of axiom pinpointing in the lightweight Description
Logic £LT via encoding into Horn-SAT and exploiting Conflict Analysis. By extend-
ing our approach into the All-SMT framework, we show how we manage to exhaus-
tively debug huge £L£* ontologies. We describe our new method called ELT2SAT
and we define the encoding, the debugging procedure and several optimizations. In
particular, we also deal with modularization, for which we propose an extremely ef-
ficient and precise fully SAT-based method. We conclude by extensively testing our
approach on some real-world bio-medical ontologies (among which SNOMED-CT)
and by comparing with the other £L'-specific tool at the state-of-the-art.

[Sebastiani & Vescovi, 2009b | Roberto Sebastiani and Michele Vescovi. Axiom
Pinpointing in Lightweight Description Logics via Horn-SAT Encoding and

12 Introduction

Conflict Analysis. In: Proceedings of the 22nd International Conference on
Automated Deduction. (CADE-22) Montreal, Canada. 2-7 August 2009. (vol.
5663 of LNCS, pp. 84-89, Springer).

[Sebastiani & Vescovi, 2011 | Roberto Sebastiani and Michele Vescovi. Efficiently
Debugging £LT Ontologies via SAT and SMT techniques. Under submission
to: Journal of Artificial Intelligence Research. (JAIR).

Part 1

Preliminaries

Chapter 2

Brief on the State of the Art

2.1 Reasoning in Description Logic and Handling Ontologies

Description Logics (Baader et al., 2003) are a family of logic-based knowledge representa-
tion formalism aimed to represent the knowledge of an application domain in a structured
way.

A DL knowledge base is generally formed by two components. The first one is the
terminological component (TBox). It represents the intensional knowledge of the domain,
i.e, informally, the schema of the DL knowledge base; it defines the relevant concepts of
the domain by means of a set of axioms which introduces the names of the concepts,
their definitions, and the (binary) relations among them (roles). The second one is the
assertional component (ABox). It represents the extensional knowledge stored in the DL
knowledge base, that is, informally, an instantiation of the terminological schema. In this
component concepts and roles can be instantiated (trough assertions) by individual names
(objects).

The complexity of reasoning on such a knowledge base depends not only from the
language constructors provided by the implemented Description Logic, but also from
the use of one or both the components in the reasoning and from the structure of the
axiom/assertions by which these components are defined. For example, it can be allowed
or not for set of axioms defining cyclic terminologies, choice that yields harder logics and
requires smarter algorithms.

Inferences. The purpose of a DL knowledge representation system goes beyond storing
concept definitions and assertions regarding objects. Indeed, the role of this kind
of system becomes relevant when the well-founded formal semantic and structure of
the language is exploited to perform specific kinds of reasoning. The different kinds
of reasoning performed by a DL system are defined as logical inferences (Baader
et al., 2003). Currently, at the state-of-the-art, all the effective inference methods
are based on analytic tableau. Without going into too much details, some important
inference problems are:

— Concept satisfiability (does the concept represent a non-empty part of the do-

16 Brief on the State of the Art

main?).

— Subsumption (is a given concept a “more general case” of another concept?)
is a key step to create a classification of all the concepts described in the DL
knowledge base.

— Instance checking (is a given object an instance of a specific concept?).

— Knowledge-base consistency (is the knowledge base consistent —i.e. meaningful
at all-7).

— Retrieval (which are all the objects in the domain instance of a given concept?).

— Realization (in a set of concepts, which is the concept that better represents
—i.e. the most specific concept— a given object?).

— Equivalence (are two concepts equivalent —i.e., do they represent the same part
of the domain— with respect to the defined terminology?) and disjointness (are
two concepts disjoint —i.e., do they represent a common part of the domain or
not— with respect to the defined terminology?).

— Aziom pinpointing is the problem of finding a minimal (or minimum) subset
of a given knowledge base that have a given consequence (for example the set
of axioms that lead a concept to be subsumed by another concept) (Baader &
Penaloza, 2007).

Anyway, many of these inferences can be reduced each other, i.e. they can be solved
as special cases of other inferences.

Expressive power. Description Logics are distinguished by the language constructors
they provide. The set of language constructors used determines the expressive power
of the logic.

Historically, the language AL (attributive language) has been chosen as the basic
description language, since it seems to provide the minimal constructors useful for
practical interests. AL allows for: atomic negation of concepts, concepts intersec-
tion, universal restriction and limited existential quantification on concepts. Other
Description Logics are obtained extending AL with some extra constructors. These
other logics are denoted by a string in which every letter represents one constructor
which extends the AL capabilities. Other studied constructors are: complex con-
cept negation (C), concepts union (U), full existential quantification (£), cardinality
restrictions on roles quantification (N), qualified cardinality restrictions (Q), nomi-
nals - i.e. enumerated classes of object value restrictions - (O), role hierarchies (H),
role disjointness and limited complex role inclusion axioms (R), inverse roles (Z),
functional roles (F), use of data-type roles, data values or data types ((P)). Not
all the languages obtained from the combination of these capabilities are distinct.
For example, the language ALUE is equivalent to the well known logic ALC since
the combination of union and full existential quantification can be expressed using
negation, and vice versa.

Reasoning in Description Logic and Handling Ontologies 17

Moreover, theoretically and in many real application, the definition of transitive roles
(usually, denoted with the use of the symbol +) has been identified as an important
requirement. This capability provides a useful additional expressive power to the lan-
guages but, as a drawback, it increases the complexity of reasoning requiring special
blocking techniques to ensure the termination properties of the algorithms (Baader,
1991; Horrocks & Sattler, 1999; Baader et al., 2003).

Notable Description Logics. The most studied Description Logic is ALC, that is the
logic AL extended with the union of concepts, complex negation of concepts and
unrestricted existential quantification. ALC is a notational variant of the Modal
Logic K(m) (Schild, 1991).

The SH family of languages is another notable class of Description Logics. In fact
it is the base on which many harder languages has been defined to reach the real
world quest of expressive logics. For example, all the OWL languages belongs to the
SH family (the logic underlying OWL DL is SHOZN (P) whilst OWL 2 is based on
SHROIQM®). Note that S is an abbreviation for ALC with transitive roles and
that H represents the use of role hierarchies.

Nevertheless, many simpler logics have been intensively studied by the DL commu-
nity. In particular the logics F Ly and FL~ (Baader et al., 2003) are important for
historical reasons and as a first attempt of find easy tractable (in the sense of the
complexity of reasoning) Description Logics. In particular, F£~ is the sublanguage
of AL obtained disallowing atomic negation, whereas FLg is the sublanguage of
F L~ obtained disallowing also the limited existential quantification.

Recently another easy Description Logic, called ££, has catch the attention of the
researchers (Baader et al., 2005, 2007). This easy logic allows for concepts conjunc-
tion and for existential restrictions instead of allowing for value restrictions as its
counterpart FLy. This gives to £L better algorithmic properties with respect to
FLy. For example, whereas subsumption in FL, is PSPACE-complete, in £L it is
polynomial, also allowing for general concept inclusion axioms (the same holds for
the £L extensions £LT, which provides general role inclusions by mean of whom it is
possible to represent transitive roles, and EL£1", which adds concept /role assertions
and concrete domains).

Bio-medical ontologies. As stated above, recently a considerable effort have been
spent by the research community studying the easy Description Logics EL£, ELT and
ELTT. Even though these logics are really less expressive with respect to other logics
like those of the AL family, they are enough expressive to describe several impor-
tant bio-medical ontologies such as SNOMED-CT (Spackman, 2000), NCI (Sioutos
et al., 2007), the Gene Ontology (The G. O. Consortium, 2000), and the majority
of Galen (Rector & Horrocks, 1997). Thus, reasoning on these ontologies represents
not only a notable application of DL-based systems but also a challenge due to the
required efficiency and the huge dimensions of this kind of problems.

18 Brief on the State of the Art

We present in more details the mentioned ontologies (more information can be found
in the work of Suntisrivaraporn, 2009, from which we have extracted the following
information):

SNOMED-CT: The Systematized Nomenclature of Medicine, Clinical Terms
(SNOMED-CT) (Schulz, Suntisrivaraporn, & Baader, 2007), is a large standard-
ized clinical terminology adopted by health care sectors in several countries. It is
a comprehensive clinical and medical ontology that covers concepts from many
domains, among which: anatomy, diseases, pharmaceutical products, medical
procedures and others. Previously known as SNOMED-RT (Reference Terminol-
ogy) (Spackman, Campbell, & Cote, 1997; Spackman, 2000) it has reached the
comprehensive form when merged with the Clinical Terms Version 3 ontology.
In 2007, the International Health Terminology Standards Development Orga-
nization (IHTSDO) has been founded with the aim of to internationalize and
to promote SNOMED-CT as the standard reference clinical terminology among
the affiliate countries.

GALEN: The GALEN ontology (Rector & Horrocks, 1997) is the product of the
homonymous European project that was launched in the 1992 with the objec-
tive of facilitate the interaction of medical information systems by mean of a
common reference model for medical terminologies. It has firstly been trans-
lated into the DL format by Horrocks as benchmark problem for its reasoner
FACT (Horrocks, 1998). A fine-tuned Description Logic for NOT-GALEN is
ELHIFT, that is ELT enriched with role inverses and functionalities. How-
ever, the large majority of GALEN can be represented in ££7, in particular
two £L'-based variants of GALEN: NOT-GALEN and FULL-GALEN, have been
widely used in benchmarking DL-reasoners.

NCI: The NCI thesaurus (Sioutos et al., 2007) is a large ontology about classifica-
tion of cancers, developed by the US National Cancer Institute (NCI). Though
containing several domain and range restrictions, the structure of this ontology
is very simple.

GENEONTOLOGY: The Gene Ontology (The G. O. Consortium, 2000) is a con-
trolled vocabulary that describes gene and gene product attributes. Like many
others (including the previous NCI) it is included in the repository of the Open
Biomedical Ontologies (OBO), which is a large library of ontologies from the
bio-medical domains. The Gene Ontology is very simple in structure (apart
from the definition of one transitive role it purely relies on concept definitions)
and it is expressible in tractable extensions of the logic £L.

OWL. The OWL Web Ontology Language (Horrocks, Patel-Schneider, & van Harmelen,
2003,Bechhofer et al., 2004) is a new formal language for representing ontologies in
the Semantic Web; moreover, nowadays, it has become the standard language in the
field. OWL has been developed by the World Wide Web Consortium and is largely

Reasoning in Description Logic and Handling Ontologies 19

based on Description Logic. In particular OWL has three increasingly-expressive
sublanguages: OWL Lite, OWL DL and OWL Full.

OWL Lite: supports classification hierarchy and simple constraints, for example car-
dinality constraints with cardinality only of 0 or 1. It is based on the logic
SHIF®) (which has EXPTIME complexity). However, it has been rarely used
and thus now it results obsolete.

OWL DL: it supports the maximum possible expressiveness while retaining com-
putational completeness and decidability. It includes all the OWL language
constructors, but they can be used only under certain restrictions which make

OWL DL related to the Description Logic SHOZN®) (which has NEXPTIME
complexity).

OWL Full: maximize the expressiveness and the syntactic freedom (extending RDF)
having fewer constraints on use, but without computational guarantees. For
these reasons it operates outside the boundaries of Description Logic, whereas
all reasoning task in OWL Lite or OWL DL can be reduced to DL knowledge
base satisfiability in the respective logic.

OWL 2. Since October 2009 the OWL 2 Web Ontology Language (Motik et al., 2009),
is the second W3C recommendation as ontology language for the Semantic Web,
representing a substantial revision of the first standard OWL. Some of the new
features brought into OWL 2 are only syntactic sugar, while others gain new expres-
sivity to the language. In terms of Description Logic, OWL 2 has been defined as
an extension of the logic previously underlying OWL (SHOZN®)) with a number
of expressive means that were suggested by ontology developers in order to make
it more useful in practice. Among the added constructors there are: complex role
inclusions (which allow for representing many kind of properties useful in real-world
terminologies); disjoint, reflexive, symmetric, transitive, and irreflexive roles; and,
importantly, qualified number restrictions. The resulting logic, called SROZ Q™) is
still a decidibile language (Horrocks, Kutz, & Sattler, 2006) but is computationally
harder than SHOZN P (Kazakov, 2008).

Importantly, OWL 2 adds three new specific profiles (i.e., syntactic subsets that can
be used in conforming ontology) to improve scalability in typical applications. The
three new profiles are: OWL 2 EL, OWL 2 QL and OWL 2 RL, which are all more
restrictive than OWL DL (Motik et al., 2009):

OWL 2 EL: is based on the logic £E£, it enables polynomial time algorithms for all
the standard reasoning tasks; it is particularly suitable for applications where
very large ontologies are needed, and where expressive power can be traded for
performance guarantees.

OWL 2 QL: enables conjunctive queries to be answered in logarithmic space using
standard relational database technology; it is particularly suitable for applica-

20 Brief on the State of the Art

tions on relatively lightweight ontologies with a large numbers of individuals,
where data are necessarily /conveniently accessed directly via relational queries.

OWL 2 RL: enables, instead, the implementation of polynomial time reasoning al-
gorithms using rule-extended database technologies, operating directly on RDF
triples.

Reasoners. The most notable description logic reasoner at the state-of-the-art are
FACT, DLP (Horrocks & Patel-Schneider, 1999), FACT++ (Tsarkov & Horrocks,
2006) and RACER (now called RacerPro) (Haarslev & Moeller, 2001; Haarslev &
Méller, 2003), More recent tools are the OWL reasoners PELLET (Sirin, Parsia,
Grau, Kalyanpur, & Katz, 2007) and HERMIT (Motik et al., 2009). They all im-
plement the analytic tableau method ! and they are able to manage really complex
logics (e.g. RACER implements the logic SHOZQ™)); in particular the last four
mentioned tools can all handle OWL Lite as well as OWL DL documents (many of
them, moreover, are currently upgrading in order to gradually introducing the new
OWL 2 features, when not already handled).

2.2 SAT and SAT-based techniques

Propositional Satisfiability (SAT) is the problem of determining whether a Boolean for-
mula admits at least one satisfying truth assignment to its variables. It is a core problem
in mathematical logic and computer theory because it is, for its nature and historical
reasons, the most representative NP-complete problem (Garey & Johnson, 1979). The
research of efficient SAT techniques is still a crucial point, which is of interest for many
areas in computer science, like Automated Reasoning, Model Checking, Formal Methods,
and many others.

In a broad sense, a SAT solver is any procedure that is able to decide such a problem.
There are many state-of-the-art propositional decision procedures at disposal, such as, e.g.,
Davis-Putnam-Logemann-Loveland (DPLL) (Davis & Putnam, 1960; Davis, Longemann,
& Loveland, 1962), OBDD (Bryant, 1992) procedures, or even partial decision procedures
based on the stochastic local search methodology.

However, nowadays, the most efficient and exploited algorithm is DPLL in its many
variants (see, e.g., Zhang & Malik, 2002). DPLL tries to find a satisfying assignment
recursively by assigning, at each step, a value to a proposition. The input formula must
be previously reduced in conjunctive normal form (CNF)? (even if non-CNF variants
of DPLL and circuit-solvers are currently really active research topics with increasing
performance). At each step, if there exists a clause made up by only one literal, then
DPLL assigns it to true; otherwise, it chooses a literal [and it applies branching. There

"HerMIT (Motik et al., 2009), in particular, implements a novel calculus (which is an evolution of the tableaux-
based method) known as “hypertableaux” (Motik, Shearer, & Horrocks, 2007; Motik et al., 2009; Baumgartner,
Furbach, & Pelzer, 2010).

%A Boolean formula is in CNF if and only if it is in the form A, V;, li; where [;; are literals. Every disjunction
V;, lj; is called clause.

SAT and SAT-based techniques 21

are several techniques to improve the efficiency of DPLL such as, e.g., backjumping,
learning, random restart (see Zhang & Malik, 2002, for an overview). These techniques
yield an impressive advance in the efficiency of the DPLL procedure.

Unsat-core. The SAT formalism is used to solve problems with a wider extent. Besides
returning an assignment (a model) when a formula is satisfiable, the solver can also
be used to produce a proof of unsatisfiability (Zhang & Malik, 2003) in the case the
formula is not satisfiable. This proof helps in finding an unsatisfiable subsets of the
original problem clauses that is called an unsatisfiable (unsat) core for the formula.

Modern SAT-solvers based on DPLL provide the unsat core as a byproduct of the
proof of unsatisfiability. However it is very hard to obtain a minimal core or, even
more, to compute a minimal set of clauses that cover all the unsat cores, which
are useful information for a lot of SAT-based applications. These kind of proofs
and byproducts have been used in various SAT-based Model Checking algorithms
(e.g. they are the key step of the refining model in abstraction/refinement based
verification). For these reasons, dedicated techniques and tools have been devised
for this scope.

All-SAT. The fast enumeration of all the satisfying assignments of a propositional for-
mula is another problem which has many applications in the design of hardware and
software. Many solutions, optimization and special tools has been proposed for this
problem called All-SAT (e.g., Grumberg, Schuster, & Yadgar, 2004; Jin et al., 2005).
An approach to this problem that has recently emerged augments a clause-recording
propositional satisfiability solver with the ability of to add blocking clauses. One
generates a blocking clause from a satisfying assignment by taking its complement.
The resulting clause prevents the solver from visiting the same solution again. Ev-
ery time a blocking clause is added the search is resumed until the instance becomes
unsatisfiable.

However, since an approach which naively enumerate each satisfying assignment us-
ing the standard SAT-solvers (customized for the satisfiability problem) with blocked
solutions could be very inefficient and require a huge amount of memory, various op-
timization techniques are applied to get smaller and “smarter” blocking clauses,
combined with the development of customized tools.

Interpolants. An interpolant for an unsatisfiable formula A A B is a formula ¢ such
that: (i) A implies ¢; (ii) ¢ A B is unsatisfiable; and (iii) ¢ contains only variables
that are common to A and B. If A A B is an unsatisfiable propositional formula, an
interpolant for it always exists, and, as an unsatisfiable core, is a byproduct of the
proof of unsatisfiability, and can be obtained in linear time from it. Many techniques
using interpolants have been devised in the last few years, thus nowadays interpolants
are a hot topic, since interpolation-based algorithms have become popular in the field
of Model Checking see, e.g., McMillan, 2003.

22 Brief on the State of the Art

Many SAT-based techniques have witnessed extremely effective in other domains and
especially in the area of formal verification. Starting from Planning (Kautz et al., 1996)
and Bounded LTL Model Checking (BMC) (Biere et al., 1999), many other problems
have been encoded into SAT or solved with the aid of SAT tools (Audemard, Cimatti,
Kornilowicz, & Sebastiani, 2002; Armando et al., 2005; Sebastiani, 2007b) and these
approaches are currently state-of-the-art in the respective communities. For example,
Model Checking techniques exploiting the power of state-of-the-art SAT solvers have
proved to be a valid alternative, and very often superior, to the traditional approaches
based on Binary Decision Diagrams (BDDs) (e.g., McMillan, 2003).

2.3 Beyond SAT: SMT and QBF

The advance in Boolean Satisfiability (SAT) solving techniques, together with the concrete
needs from real applications, have inspired significant research on richer and more expres-
sive Boolean formalism like Quantified Boolean Formula (QBF) (see, e.g., Plaisted et al.,
2003; Giunchiglia et al., 2006) and Satisfiability Modulo Theories (SMT) (see Sebastiani,
2007b; Barrett et al., 2009 for an overview). The formalism of plain Propositional Logic
(SAT), in fact, is often not suitable or expressive enough for representing many real-world
problems.

QBF. QBF satisfiability (Giunchiglia, Marin, & Narizzano, 2009) is a generalization of
the Boolean Satisfiability problem. A Quantified Boolean Formula is a propositional
formula with a quantifier prefix, in which both existential and universal quantifiers
can be applied to each variable. QBF-satisfiability is probably one of the most
representative PSPACE-complete problem (Garey & Johnson, 1979). The most im-
portant difference between QBF and SAT (that is, indeed, a NP-complete problem)
lies in the fact that the quantification order of the variables in which the formula is
evaluated (i.e. the restriction in the order of the decision variables) matters.

QBF solvers are naturally very similar to those implemented for SAT. Currently
most state-of-the-art solvers extend DPLL based SAT solving techniques to QBF
solving (and also apply conflict-driven clause learning, backjumping and other tech-
niques Zhang & Malik, 2002; Giunchiglia, Narizzano, & Tacchella, 2002, 2003;
Giunchiglia et al., 2006) or extend other well known SAT approaches like, e.g.,
BDDs (Pan & Vardi, 2004).

Recently the QBF problem has also attracted a lot of attention in the formal veri-
fication community, because many interesting problems, such as model checking of
LTL formulas, are PSPACE-complete and can be naturally modeled as QBF prob-
lems (Dershowitz, Hanna, & Katz, 2005; Jussila, Biere, Sinz, Kroning, & Winter-
steiger, 2007; Jussila & Biere, 2007). Implementations of QBF solvers are steadily
improving and a QBF formulation of a problem may be exponentially more succinct
with respect to a SAT one, thus there is a potential for a huge speed-up using QBF
solvers.

Beyond SAT: SMT and QBF 23

SMT. SMT can be seen as an extension of SAT in which the input formula is expressed
in (a subset of) first-order logic (typically without quantifiers) with respect to a
background theory (for example: linear arithmetic both over the reals and the in-
tegers, its subclass difference logic, the theories of bit vectors, of arrays and of lists,
and others).

The dominating approach for SMT, which underlies most state-of-the-art tools, is
based on the integration of a SAT solver and one or more domain-specific solvers for
the background theories. The SAT solver enumerates truth assignments which sat-
isfy the Boolean abstraction of the input formula (where distinct theory-specific sub-
formulas are represented/abstracted by distinct Boolean atoms), whilst the domain-
specific solvers check the consistency in the respective background theory of the set
of literals corresponding to the assignments enumerated. This approach is called
lazy, in contraposition to the eager approach, consisting on encoding an SMT for-
mula into an equivalently satisfiable Boolean formula, and on solving the result with
a SAT solver (see, e.g., Barrett et al., 2009 for a survey).

In particular, as happened for SAT, some SMT-based approach and other SMT-
based tools for problems like interpolants or the fast recognition of small unsatisfiable
cores, have been proposed in the last few years (Cimatti et al., 2008, 2007), but they
are still at a very preliminary stage, and far from being as mature as SAT-based
ones. Among these, notable examples of SMT-based approaches are in the field of
Model Checking, in the verification of RTL designs and of systems with an infinite
number of states (like real-time and hybrid control systems, and software) (many
examples can be found in the survey of Sebastiani, 2007b).

SMT and QBF are very active areas: new solvers and techniques are continuously pro-
posed, and often with improvements of orders of magnitude in performance with respect
to the previous approaches.

24

Brief on the State of the Art

Chapter 3

Description Logics

In this chapter we give the essential background concerning Description Logics (DLs),
which are the application domain of our research. We first give a short overview of
the ideas underlying Description Logics and they usefulness in knowledge representation.
Second, we introduce the logical constructors, the syntax and the semantics of DLs, with
a particular attention to the notation used in this work. Then, after having discussed
some typical or prominent inference problems in Description Logic, we close this chapter
presenting in more details the logics which are cases of study of this work.

3.1 Knowledge Representation and Description Logic

Knowledge Representation (KR) is an important subject in artificial intelligence and cog-
nitive science. The fundamental goal of KR and automated reasoning is to represent
knowledge in a manner that facilitates inferencing (i.e. drawing conclusions) from ex-
pressed knowledge. Generally speaking, KR is the approach to store explicit knowledge
about a particular domain so that computers are able to process and use it, and above
all to infer implicit knowledge from the one explicitly represented. Description Logics
(DLs) (Baader et al., 2003), in particular, belong to a successful family of logic-based KR
formalisms, allowing to represent and reason with conceptual knowledge about a domain
of interest.

Description Logics aim at representing the knowledge of an application domain in a
structured way, by defining the relevant concepts of the domain and, then, by using these
concepts to specify properties of objects and individuals occurring in the domain. The
basic syntactic building blocks are, thus, atomic concepts (unary predicates), atomic roles
(binary predicates) representing relations between concepts, and individuals (constants).
As the name Description Logics indicates, one of the characteristics of these languages
is that, unlike some of their predecessors, they are equipped with formal, logic-based
semantics. Importantly, the declarative semantic of Description Logic is defined formally
and independently from any specific reasoning algorithms.

Another main characteristic of Description Logics is the emphasis on reasoning; the
formal, logic-based semantics with which DL languages are equipped allow for providing a

26 Description Logics

set of reasoning services by mean of whom implicitly represented knowledge can be inferred
from the explicitly defined one. Reasoning is the central objective in DLs. Among the
others, some notable examples of reasoning services are the classification of concepts, and
the problem of decide if an object is instance of a specified concept. Because Description
Logics are a KR formalism, and since in KR one usually assumes that a KR system should
always answer the queries of a user in reasonable time, DL researchers are interested only
in decidable languages and in decision procedures for which termination is guaranteed,
both for positive and for negative answers. For its nature, unfortunately, reasoning in
Description Logic is a very hard problem (NP-complete, PSPACE-complete, EXPTIME-
complete and even more) (Baader et al., 2003), thus even if it can be guaranteed to have
an answer in finite time, this not imply that the answer is given in “a reasonable” time.
However, that being non-polynomial in the worst case does not prevent a DL reasoning
service from being useful in practice, provided that sophisticated optimization techniques
are used when implementing a system based on such a DL.

In Description Logic, many different constructors have been proposed as a formalism
to describe the concepts of the domain, the objects and the relations among them. Ev-
ery distinct combination of these language constructors might yield to a new Description
Logic. In particular, the expressive power of the logic obtained and the decidability and
complexity of the inference problems depend from the effect of combining these construc-
tors. On the one hand, very expressive DLs are likely to have inference problems of high
complexity (or they may even be undecidable). On the other hand, very weak DLs (with
efficient reasoning procedures) may not be sufficiently expressive to represent the impor-
tant concepts of the given application domain. Hence, investigating this trade-off between
the expressivity of DLs and the complexity of their reasoning problems has been one of
the most important issues in DL research. The result of this research is a really wide
range of logics which goes from very simple logics with a low expressive power, to very
powerful logics where, in contrast, the reasoning is really complex (Baader et al., 2003).

Further than in knowledge representation, Description Logics have been employed with
success in various application domains of computer science, ranging from natural language
processing, distributed computing to databases and, moreover, recently, to bio-medical
ontologies and in the Semantic Web. In this latest field, nowadays, the Description Logic-
based languages of the OWL family (Bechhofer et al., 2004; Motik et al., 2009) have been
adopted as the standard ontology languages. For this reason, the problem of automated
reasoning in Description Logics has been thoroughly investigated

3.2 Constructors, Notation and Semantics

In Description Logic, a very wide set of different constructors have been proposed as a
formalism to describe the concepts of the domain, the objects and the relations among
them.

A DL ontology (or knowledge base) is generally formed by two components. The
first one is the terminological component (TBox), informally, the schema of the ontology;

Constructors, Notation and Semantics 27

the second one is the assertional component (ABox), informally, an instantiation of the
terminological schema. The complexity of reasoning on a particular ontology depends
not only on the set of language constructors provided by the implemented Description
Logic, but also on the presence of one or both (or none) the TBox/ABox components and,
moreover, from the structure of the axioms/assertions by mean of which these components
are defined. For instance, it can be allowed or not to have a set of axioms defining cyclic
terminologies, (fact that requires smarted reasoning algorithms and often increases the
theoretical complexity).

For this latest reason, notationally, Description Logics are distinguished by the
language constructors they provide and which determine their expressive power. In
particular, the concept constructors of the language determine how concepts can be
defined in the language, while the ontological constructors determine the relations among
concepts, roles and individuals and further role properties (like, e.g., transitivity). Thus,
on the one hand concept constructors define the structure of concepts (as if they was
defined wrt. an empty TBox) while ontological constructors determine the TBox/ABox
structure and properties.

Constructors and Notation.

The main concept constructors with which Description Logics are equipped are listed in
the upper-most block of Table 3.1. Formally, concept descriptions in Description Logic
are inductively defined through a set of logical constructors starting from the non-empty
and pair-wise disjoint sets of concept names N¢”, role names Ng”, and individual names
IndZ. In this work we use the first uppercase letters of the alphabet A, B, C, C;, D, D;,
E. ... to denote concept names, while we use the uppercase letters X, X;, Y,... or the
notation C’, 15, ... to denote generic or complex concepts. Moreover, we represent role
names by mean of the lowercase letters r, r;, s, t,..., while we denote individuals with
the lowercase letters a, b, ¢, x, y, Finally, the signature of a concept [resp. role, axiom,
axiom set|, denoted with signature(), is the set of all the concept, role and individual names
occurring in the description of the concept [resp. role, axiom, axiom set]. In particular
the signature of a TBox 7', signature(7), is the set of all the concept, role and individual
names occurring in 7, that is signature(7) = No7 U N7 U Ind”.

A TBox 7 in Description Logic is a finite set of axioms defined starting from a set of
concept and role descriptions and by mean of a set of axiom constructors. In the second
and third blocks of Table 3.1 we have listed the main aziom constructors concerning
respectively the concepts and roles of a TBox (hereafter, with a small abuse of notation,
we sometimes represent role inclusions with the symbol C,., in order to better distinguish
them from concept inclusions, when necessary). Finally, an ABox in Description Logic is
a finite set of concept and role assertions as defined in the lower-most block of Table 3.1.
Others concept/axiom constructors have been introduced in Description Logics (e.g.,
concrete domains, domain/range restrictions,...), but in Table 3.1 we reported the main
ones. An ontology (or knowledge base) O is composed of a TBox and a (possibly
empty) ABox as previously defined. Let A be a generic set of axioms/assertions (e.g., an

28 Description Logics

‘ Syntax ‘ Semantics
top T AT
bottom 1 0
nominal {a} {a®}
negation -X AT\ XT
conjunction Xny XTny?
disjunction Xuy XTuy?
existential restriction IrY {x € AT | there exists y € AT s.t. (2,y) € rf and y € YT}
universal restriction Vr.Y {x € AT | for all y € AT s.t. (z,y) € rT then y € YT}
> number restriction >nrY {x € AT | |FIL(r,z) N YZ| > n }, n integer value s.t. n > 1
< number restriction <mryY {x € AT | |FIL(r,x) NYZ| < m}, m integer value s.t. m > 0
concept inclusion XCY XTcy?
concept definition A=Y AT =Y7T
role hierarchy rCs rI C ¢L
role inclusion rio---or, C s 7“11 0---0 rf crt
transitivity transitive(r) | rZ is transitive
reflexivity reflexive(r) rZ is reflexive
functionality functional(r) | Vo € AT : |FIL(r,z)| <1
inverse role inv(r,s), 7= | s% is the inverse of 7%, i.e. sZ=(r")T € {(y,2) | (z,y)erL}
concept assertion C(a) af e C*
role assertion r(a,b) (at,bF) er?

Table 3.1: Syntax and semantics of the main concept and axiom constructors in DL. (Here,
FIL(r,z) is the set of the r-fillers, also called r-successors, of the individual z € A for the role
r € Ng7, and is defined as FIL(r,z) = {y € AT | (z,y) € r’}.)

ontology O or a TBox T'), then we denote by |.A| (the size of A) the number of axioms in A.

Other considerations are in order. Concept inclusions, as defined in Table 3.1, concern
concepts of any kind. If, given a TBox 7, there are no cyclic dependency among the
concept descriptions/names defined by the axioms of 7', then 7 is said to be acyclic.
Moreover, as a rule a TBox 7 is defined observing the uniqueness condition, because of
which it is assumed that for each concept name A it exists at most one concept definition
A = X or concept inclusion A £ X, for some concept description X. If it is not the case
we say that 7 is a general TBox, and every axiom of the form X C Y is a general concept
inclusion (GCI) (where we use the expression X =Y as an abbreviation of the two GClIs
X CYandY C X). With a small abuse of notation we may refer to a role inclusion (RI)
meaning, indistinctly, a “role hierarchy” or a “role inclusion” axiom of Table 3.1; when
necessary, we distinguish the second from the first kind by saying complex role inclusion.

Let £ be a specific Description Logic (language) given by the combination of a subset

Constructors, Notation and Semantics 29

of the concept/ontological constructors of Table 3.1. Given a TBox 7 defined in L, we
denote with PC7 the set of the primitive concepts for T, i.e. the smallest set of concepts
containing: (i) the top and the bottom concept T and L, if provided by £, and (ii) all
concept names in N7 ; if negation is a concept constructor in £ then we denote with BCr
the set of the basic concepts for T, i.e. the smallest set of concepts such that PC+ C BC+
and containing also: (iii) all the concepts of 7 in the form —C where C' € Ng7.

Semantics.

The semantic of a TBox/ABox in £ is defined in terms of interpretations. An inter-
pretation Z is a couple Z = (AZ,.T), where A7 is the domain, i.e. a non-empty set of
individuals, and -Z is the interpretation function which maps each concept name (atomic
concept) A € N¢7 to a set AZ C AT, maps each role name (atomic role) r € Ni7 to
a binary relation rZ C AT x AZ, and maps every individual a € Ind” in the respective
individual a® of the domain AZ. In the right-most column of Table 3.1 the inductive
extensions of - to arbitrary concept descriptions are defined.

An interpretation Z is a model of a given TBox 7 if and only if the conditions in
the Semantics (right-most) column of Table 3.1 are respected for every axiom in 7; if
and only if this is the case the TBox 7 is said to be consistent. A concept C' is said to
be satisfiable wrt. T if and only if there exists a model Z of 7 with CF # (), i.e. there
exists an individual # € AT as an instance of C, i.e. such that x € C*. A TBox 7’
is a conservative extension of the TBox 7 if every model of 7 is also a model of 7,
and every model of 7 can be extended to a model of 7' by appropriately defining the
interpretations of the additional concept and role names.

Examples of Relevant Description Logics.

As previously stated Description Logics are distinguished by the language constructors
they provide. The set of language constructors used determines the expressive power of
the logic. Historically, the language AL has been considered as the basic equipment for
a description language, providing: atomic negation of concepts, conjunctions, universal
restrictions and limited existential quantification on concepts. Starting from AL many
differently expressive Description Logics (mostly richer, but also some less expressive ones)
have been proposed and deeply studied. However, not all the languages obtained from
the combination of the above expose capabilities are distinct. For example, the language
ALUE is equivalent to the well known logic ALC since the combination of disjunctions
and existential restrictions can be expressed using conjunctions, universal restrictions and
negation, and vice versa.

In Table 3.2 we present some notable Description Logics and the main language con-
structors they provide. In particular: ALC, ALCQ and ELT are cases of study of this
work. While ALC is the most studied Description Logic, ALCQ is important because it
adds qualified number restrictions to ALC. FL, is a deeply-investigated subset of ALC
which is tractable for empty TBoxes. £L*, instead, is a lightweight Description Logic
with many prominent applications in representing bio-medical ontologies, among which

30 Description Logics

FLo ELY ELTT ELHIFT| ALC ALCQ | SH SHIF®P) SHOIN®) SROTQ™P
SNOMED OWL2EL GALEN OWL Lite OWL DL OWL 2
top © © © ©) ©) © ©) ©) ©) ©
bottom © ©) © © © ©) ©) ©
nominals @ ©® ® ® ©)
negation C © © © © © ®
conjunction © 6 © © © © © ©® ® ©
disjunction U © © © © © ®
existential restr. & ©) ©® ® © ©® ©) ® ® ®
universal restr. ©) ©) ©) ©) ©) ©) ©)
number restr. N ©) © ®
qualif. num. restr. | Q ® ®
concrete domain ©) ©) ©) ©) ©)
data values/types |(P) ©) ©) ®
role hierarchy H © © © © © © ©
complex role inc. | R © © ©® ©
transitivity + ©) ©) ©) ©) ©) ©) ©)
functionality F © © © ©®
inverse role A ® ® ® ®
domain restr. ©) ® ® ® ®
range restr. © © © ® ©)

Table 3.2: Relevant Description Logics and their logical constructors.

SNOMED-CT (see Section 2.1); ELHIF extends ELT with all the constructors required
in order to represent, instead, the totality of the ontology GALEN (see Section 2.1). EL£T+
is another extension of ££1, which is of particular interest because it is the logic underly-
ing the tractable fragment (profile) OWL 2 EL of the OWL 2 standard. The SH logic is
the basic language of another notable class of Description Logics. In more details SH en-
riches ALC with transitive roles and role hierarchies; it is the base on which many harder
languages has been defined to reach the real-world quest of expressive logics. For example,
all the OWL languages belong to the SH family. In particular the logic underlying OWL
DL is SHOZN®) whilst OWL 2 is based on SHROZQ®P). Finally SHZF®) is the logic
underlying the OWL Lite fragment of OWL.

3.3 Reasoning Services

A main characteristic of Description Logics is the emphasis on reasoning. The different
DL systems offer different set of reasoning services by mean of whom implicitly repre-
sented knowledge can be inferred from the explicitly defined one. Plenty of different
reasoning services (also known as logical inference problems) have been defined in De-
scription Logics. However some of them are considered fundamental for every DL system
and are commonly supported by all the state-of-the-art reasoners. These services are usu-
ally referred as standard reasoning services. In contraposition, many other new important

Reasoning Services 31

inference problems have emerged from practical applications of Description Logics and
ontologies, often requiring a more complex forms or higher capabilities of reasoning. Prob-
lems in this second class of inferences are usually referred as non-standard or supplemental
reasoning services.

In the following we look in more details at the standard and non-standard reasoning
services, in particular at those we tackle in this thesis (for more details we refer to the
book of Baader et al., 2003).

3.3.1 Standard Reasoning Services

As briefly exposed in Section 2.1, some of the main standard inference problems are: con-
cept satisfiability (or alternatively concept unsatisfiability), concept subsumption, classifi-
cation and concept hierarchy computation, knowledge-base consistency checking, instance
checking, instance retrieval and realization.

We give the formal definition of these reasoning services (notice that many of these
problems can solved being reduced each other):

Knowledge-base Consistency. A given TBox (ontology/knowledge-base) 7 is con-
sistent if and only if it there exists a model Z for 7, otherwise 7 is said to be
inconsistent. We recall from Section 3.2 that an interpretation Z is a model for a
given TBox 7 if and only if 7 satisfies the semantics of every axiom of 7.

Concept Satisfiability. A concept X is said to be satisfiable wrt. the TBox 7 if and
only if there exists a model Z of 7 with XZ # (), i.e. there exists an individual
r € AT as an instance of X, i.e. such that x € XZ. Otherwise the concept is said
to be unsatisfiable. Similarly, it is possible to solve the disjointness problem. Given
the concepts X and Y, X is disjoint from Y wrt. 7T, if and only if XZ NY?Z = 0 for
every model Z of 7 (that is if X MY is unsatisfiable).

Sometimes, it is necessary to decide if a concept X is satisfiable wrt. to an empty
TBox; in such a case every arbitrary interpretation that makes X non-empty leads
X to be satisfiable.

Subsumption, Classification and Hierarchy computation. Given the concepts
X and Y, Y subsumes X wrt. the TBox 7, written X C7 Y (or simply X C Y when
it is clear to which TBox we refer to), if and only if X% C Y7 for every model Z of
7. The computation of all subsumption relations between concept names occurring
in 7 is called classification of T. Moreover, given the classification of a TBox 7, it
is possible to compute the concept hierarchy (or subsumption hierarchy) of T, which
is simply the computation of the partial ordering induced by all the subsumption
relations among all the concept names of 7.

Another well known standard reasoning problem strictly connected to subsumption
is equivalence. Briefly, X is equivalent to Y wrt. the TBox 7, written X =7 Y, if
and only if X7 = Y7 for every model Z of T (i.e., if both X C7 Y and Y C7 X).

32 Description Logics

Instance Checking. Instance checking is the problem of to decide if a given individual
(or, respectively, a couple of individuals) is an instance of a given concept (or,
respectively, they are an instance of a given role). Formally, given a TBox 7, the
concept X and the role r of 7, then a given individual a is an instance of X if and
only if aZ € X7 for every model Z of 7. Similarly, given the individuals a,b then
the pair (a,b) is an instance of r if and only if (a,b?) € v for every model Z of 7.

Instance Retrieval and Realization. Informally, instance retrieval is the problem of
to report all the individuals of the input ontology which are instances of a particular
concept name C. The dual inference problem to retrieval is realization. Given an
individual @ and a set of concepts of the a TBox 7', Realization consists in find the
most specific concepts {C;}; from the set such that a is an instance of every Cj,
where, “the most specific concepts” are those which are minimal wrt. the concept
hierarchy of 7.

3.3.2 Supplemental Reasoning Services

Especially from the fields of ontology manipulation and Semantic Web (but not only)
many novel non-standard/supplemental reasoning services have arisen which are of par-
ticular utility for ontology developers, maintainers and users. Some example are logical
difference computation (Konev, Walther, & Wolter, 2008c) and modularization (Konev,
Lutz, Walther, & Wolter, 2008b; Suntisrivaraporn, Qi, Ji, & Haase, 2008), aziom pinpoint-
ing (Baader et al., 2007; Penaloza & Sertkaya, 2010b) also known as the problem of find
a/all justification(s) (and, furthermore, the identification of laconic or precise modules
or justifications; Horridge, Parsia, & Sattler, 2008), abduction and contraction (Colucci,
Noia, Sciascio, Donini, & Mongiello, 2005; Bienvenu, 2008) and many others more. The
development of efficient procedures to handle such services is, nowadays, a key research
topic in the automated reasoning on Description Logics and ontologies.

In the rest of this section we present in more details the two supplemental inference
problems we approached in our work, which are aziom pinpointing and modularization.

Axiom Pinpointing/Finding Justifications

A very prominent reasoning service emerging from the field of the representation and ma-
nipulation of ontologies is the problem of finding justifications (e.g., Kalyanpur, Parsia,
Horridge, & Sirin, 2007), in the context of Description Logics called also aziom pinpoint-
ing (e.g., Baader et al., 2007). The quest of efficient procedures for this inference problem
arises from many concrete applications where there is the necessity of debug potentially
really complex or huge ontologies.

In more details, the axiom pinpointing problem consists in finding one or many min-
imal subsets of a DL knowledge-base/ontology that have consequence on some inferred
properties. So, it can be used, e.g., in order to find one or many sets of axioms (called
MinAs or justifications) which cause an unwanted consequence like, e.g., a subsumption
relation or the unsatisfiability of some concepts; in such a way, it allows for debugging

Reasoning Services 33

ontologies. In this work we refer to this problem calling it aziom pinpointing, because
specifically tackle the problem of debugging undesired subsumption relations in Descrip-
tion Logics TBoxes (i.e. the target is to find the axioms responsible of the inference of
such a subsumption relation). For the same reasons we chose to use the terminology
MinAs for representing justifications, as done by Baader et al. (2007).

Formally, consider the subsumption relation C' C+ D, with C, D primitive concepts
of 7. If it holds also C' Cg D for some set S C 7 of axioms, then S is called an
axiom set, shortly nMinA, for C T D wrt. 7. If § is also minimal, i.e. if C' Zg
D for every &' s.t. &' C S, then S is called a minimal axiom set, shortly MinA, for
C C D wrt. 7. Therefore, in these terms, axiom pinpointing is the problem of finding
single or all the MinAs for the given subsumption relation. Hereafter we refer to these
problems as single/exhaustive axiom pinpointing or, respectively, as the one-MinA /all-
MinAs problems.

Notice that the number of possible MinAs for an existing subsumption is can be expo-
nential in the number of the axioms of 7 (Baader & Penialoza, 2007). However, interest-
ingly, axiom pinpointing is a tractable problem in logics like ££7 with many prominent
applications in the field of bio-medical ontologies. In ££T, in particular, finding one MinA
is a polynomial task, while finding all the MinAs is worst-case output-exponential (Baader
et al., 2007).

Modularization

Real-world ontologies are often very large in size, proportionally to the expressivity of
their underlying logic; for instance, bio-medical ontologies (see Section 2.1) are often huge
in size, e.g., SNOMED-CT has more than 300,000 axioms. Thus, despite the availability
of tractable/efficient algorithms, the handling of such ontologies is out of the reach for
those algorithms, because they can result computationally too expensive when applied to
the whole input huge ontologies.

In order to cope with this problem, supplemental reasoning techniques has been pro-
posed in the literature. Modularization resulted a key technique in reaching this objective;
the modularization technique consists in computing specific subsets, called modules, of a
given input ontology (TBox) 7. A module M of T is any subset of the axioms of 7" which
preserves a specific property/statement of interest (for example a subsumption relation)
or all the possible statements that can be formulated under a given subset of ontology’s
symbols of interest (for instance all the subsumption relations existing among some se-
lected concept names). We call signature a set of symbols of interest from the input
ontology’s. We say that a set of axioms My, is a module for the signature 3 in 7 (briefly
it is a X-module) if My, C 7 and My preserves every statement of interest concerning the
symbols in . In particular, when the module My, preserves all the possible subsumption
relations concerning the symbols of the signature ¥ we say that My is a subsumption
module for ¥ in 7.

Different forms of modularization have been proposed in literature (Noy & Musen,
2003; Seidenberg & Rector, 2006; Grau, Horrocks, Kazakov, & Sattler, 2007; Konev, Lutz,

34 Description Logics

Walther, & Wolter, 2008a; Konev et al., 2008b; Suntisrivaraporn et al., 2008), including
semantic or syntactic and logic-based or not. Since modularization is in general highly
complex when based on the respect of some semantic properties (with some exceptions),
most of the modularization techniques relies on syntactic methods. In particular, Baader
and Suntisrivaraporn (2008), Suntisrivaraporn (2009) succeeded in significantly enhance
the performance of axiom pinpointing for large-scale lightweight ontologies by applying
modularization.

3.4 The Core Description Logic ALC

Historically, the language AL (attributive language) has been chosen as the basic de-
scription language, since it seems to provide the minimal constructors useful for practical
interests. AL allows for: atomic negation of concepts, concepts intersection, universal
restriction and limited existential quantification on concepts

The most studied Description Logic, however, has been ALC, that extends AL with
concept disjunction, complex negation of concepts and unrestricted existential quantifica-
tion, which are essential constructors for many applications (Baader et al., 2003). In fact,
ALC offers both the means for performing complete propositional reasoning (providing
negation, and concept union/intersection) and for reasoning in terms of and between in-
dividuals, through existential and universal quantification. In the upper- and lower-most
blocks of Table 3.3 we recall the constructors, the syntax and the semantics of ALC (the
central block instead refers only to ALCQ).

Reasoning in ALC, unfortunately, is not tractable. Satisfiability wrt. empty or acyclic
TBoxes in ALC is, in fact, a PSPACE-complete problem. The complexity of satisfiability
then increase up to EXPTIME-complete for general TBoxes.

Further than ALC, other two logics strictly related to ALC are cases of study of the
present work. The first is the Description Logic ALCQ (see, e.g., Hollunder & Baader,
1991; Faddoul et al., 2008) which extends ALC with qualified number restrictions and
that we discuss in some more details in Section 3.4.1. The second is the Modal Logic K,,.
It is worth reminding that the research in Modal and Description Logics has followed two
parallel routes until the core Description Logic ALC and the core modal logic K, have
been proved to be one a notational variant of the other, by the seminal work of Schild
(1991). ! Thus, reasoning in K, is equivalent to reasoning in ALC. For historical reasons,
in this work we specifically focus on the modal logic K,,, due to the wider set of previous
approaches and well-established benchmark problems directly available for such a logic.
Therefore, in Section 3.4.2 we provide the very necessary background on modal logic and,
specifically, on the logic K,,.

1Since then, analogous results have been produced for a bunch of other logics, so that, nowadays the two
research lines have mostly merged into one research flow.

The Core Description Logic ALC 35

‘ Syntax ‘ Semantics

bottom L 0

top T AT
negation -C AT\ 7
conjunction cnbD | ¢tTnDt
disjunction cubD | ctuD?

existential restriction | 3r.C' | {x € AT | there exists y € A? s.t. (z,9) € r* and y € C*}
universal restriction Vr.C | {z € AT | forall y € AT s.t. (z,y) € ! then y € O}

at-least qualified

>nr. 7 | >
number restriction znr.C | {x € AT [[FIL(r,z) N C7[> n }

at-most qualified
number restriction

concept inclusion ‘ cCCD ‘ ctc pt

<mr.C| {zx € AT | |[FIL(r,x) N C*| < m}

Table 3.3: Syntax and semantics of ALCQ (n,m are integer values with n > 1 and m > 0).

3.4.1 Case Study: The Description Logics ALCQ

The Description Logic ALCQ (Hollunder & Baader, 1991) allows for reasoning also in
terms of cardinalities of set of individuals. ALCQ, in fact, extends the core and well-
known logic ALC by adding the qualified number restriction constructors, also known as
qualified cardinality restrictions (see the central block of Table 3.3).

Qualified number (or cardinality) restrictions (Q) are the generalization of cardinality
restrictions on roles quantification (A). The latter ones are used to forces cardinality
constraints on the number of possible individuals which are successors of a specified role
r. The former ones extends the expressivity of (unqualified) cardinality restrictions by
allowing also for defining lower- and upper-bounds to the number of r-successors which
are instance of a specific concept. Roughly speaking, for instance, the qualified num-
ber restriction (<n r.T) is equivalent to the (unqualified) cardinality restriction (< n r),
which establish that the instance of such a concept can have a maximum number n of
r-successors. Due to this observation, we only consider (general) qualified number restric-
tions. An ALCQ TDBox (or ontology) is a finite set of concept inclusion axioms between
ALCQ concept expressions, as defined in Table 3.3.

Concerning Table 3.3 we recall that FIL(r, x) is the set of the r-fillers of the individual
z € A7 for the role r € N7, and it is defined as FIL(r,z) = {y € A%|(z,y) € 7}
An interpretation of an ALCQ TBox, therefore, must also satisfy all the cardinality
constraints on the role and concept interpretations imposed by the defined number
restrictions.

Reasoning in ALCQ is worst-case as complex as reasoning in ALC. In fact, concept
satisfiability wrt. empty/acyclic TBoxes in ALCQ is indeed a PSPACE-complete problem,
while it is an EXPTIME-complete problem wrt. general TBoxes. However, from a practi-

36 Description Logics

cal point of view, reasoning on the number of individuals and with cardinality constraints
is, algorithmically, significantly harder than reasoning on ALC (Horrocks, Sattler, & To-
bies, 2000a) and requires more sophisticated techniques (see, e.g., Haarslev, Timmann,
& Maller, 2001; Haarslev & Moller, 2001). In particular, developing techniques for opti-
mized /efficient reasoning with qualified number restriction is a prominent research issue
in Description Logic (see, e.g., Farsiniamarj & Haarslev, 2010; Faddoul & Haarslev, 2010),
in fact the current techniques often lacks of efficiency, especially when the number of the
restrictions is higher or when the values involved in the restrictions their selves are big.
This problem has gained further importance since qualified number restrictions have been
added to the OWL 2 recommendation for Semantic Web applications.

3.4.2 Case Study: The Modal Logic K,,

We recall some basic definitions and properties of K,,. Given a non-empty set of primi-
tive propositions A = {A;, Ay, ...}, a set of m modal operators B = {0y, ...,0,}, and
the constants “True” and “False” (that we denote respectively with “T” and “1”) the
language of K, is the least set of formulas containing A, closed under the set of proposi-
tional connectives {—, A,V, —, <} and the set of modal operators in BU {<{q,..., <)
Notationally, we use the Greek letters «, 3, @, 1, v, ™ to denote formulas in the language
of K, (Kp-formulas hereafter). Notice that we can consider {—, A} together with B
as the group of the primitive connectives/operators, defining the remaining in the stan-
dard way, that is: “C.¢” for “=0,7¢”, “p1 V @o” for “=(=p1 A —pa)”, “p1 — po” for
““(1 A)7, “p1 o for “m(p1 A) A (e A —pr)”. (Hereafter formulas like
——1) are implicitly assumed to be simplified into v, so that, if ¢ is —¢, then by “—1)” we
mean “¢”.) Notationally, we often write “(A; ;) — V;{;” for the clause “\/; =l; V\/; 7,
and “(A\;l;) = (A\;1;)” for the conjunction of clauses “A\;(\/; =l; V1;)”. Further, we often
write O, or <, meaning one specific/generic modal operator, where it is assumed that
r = 1,...,m; and we denote by O the nested application of the O, operator i times:
0% := ¢ and O = O,0%. We call depth of o, written depth(y), the maximum
number of nested modal operators in . We call a propositional atom every primitive
proposition in 4, and a propositional literal every propositional atom (positive literal) or
its negation (negative literal). We call a modal atom every formula which is either in the
form O,¢ or in the form <.

In order to make our presentation more uniform, and to avoid considering the polarity
of subformulas, we adopt the traditional representation of K,,-formulas (introduced, as far
as we know, by Fitting, 1983 and widely used in literature, e.g. Fitting, 1983; Massacci,
2000; Donini & Massacci, 2000) from the following table:

(0% (0%} (67) ﬁ 61 ﬁg " 7'('6 v VS

(<P1 A <P2) Y1 P2 (901 \ 902) ©1 ©2 Crn ©1 Orp1 ©1
_‘(<P1 \ ‘Pz) P11 P2 _‘(901 A 902) TP e || R TP o1 Ty
_‘(<P1 — 802) P11 P2 (901 — <P2) 2])

in which non-literal K,,-formulas are grouped into four categories: a’s (conjunctive), 3’s

The Core Description Logic ALC 37

(disjunctive), m’s (existential), v’s (universal). Importantly, all such formulas occur in the
main formula with positive polarity only. This allows for disregarding the issue of polarity
of subformulas.

The semantic of modal logics is given by means of Kripke structures. A Kripke struc-
ture for K,, is a tuple M = (U, L, R4, ..., R,,), where U is a set of states, L is a function
L:AxUv+— {True, False}, and each R, is a binary relation on the states of #/. With
an abuse of notation we write “u € M” instead of “u € U”. We call a situation any pair
M, u, M being a Kripke structure and u € M. The binary relation |= between a modal
formula ¢ and a situation M, u is defined as follows:

MuET;

M u = L

MukEA, Aie A < L(A,u) =True;

MulE—-A;, Aie A < L(A;,u) = False;

M u =« — M,ukE a; and M,u | as;

Mu = — M,ul por M u = (s;

Mu 7" < M,w = for some w € U s.t. R,(u, w) holds in M;
MuE=v — M,w =} for every w € U s.t. R, (u,w) holds in M.

“M,u = ¢” should be read as “M,u satisfy ¢ in K,,” (alternatively, “M, u K,,-satisfies
¢”). We say that a K,,-formula ¢ is satisfiable in K, (K,,-satisfiable henceforth) if and
only if there exist M and u € M s.t. M,u = ¢. (When this causes no ambiguity, we
sometimes drop the prefix “K,,-".) We say that w is a successor of u through R, iff
R, (u, w) holds in M.

The problem of determining the K,,-satisfiability of a K,,-formula ¢ is decidable and
PSPACE-complete (Ladner, 1977; Halpern & Moses, 1992), even restricting the language
to a single Boolean atom (i.e., A = {A;}; Halpern, 1995); if we impose a bound on the
modal depth of the K,,-formulas, the problem reduces to NP-complete (Halpern, 1995).
For a more detailed description on K,,— including, e.g., axiomatic characterization, de-

cidability and complexity results — we refer the reader to the works of Halpern and Moses
(1992), and Halpern (1995).

A K,,-formula is said to be in Negative Normal Form (NNF') if it is written in terms
of the symbols O,, <., A, V and propositional literals A;, —A; (i.e., if all negations
occur only before propositional atoms in A). Every K,,-formula ¢ can be converted into
an equivalent one NNF'(¢) by recursively applying the rewriting rules: —0,p=—=-<,—p,
~Orp=>0,70, (01 A p2)= (01 V 202), 2(91 V pa)=> (=1 A —p2), "mp=p.

A K,,-formula is said to be in Box Normal Form (BNF) (Pan, Sattler, & Vardi,
2002; Pan & Vardi, 2003) if it is written in terms of the symbols O,, -0O,, A, V, and
propositional literals A;, —A; (i.e., if no diamonds are there, and all negations occur
only before boxes or before propositional atoms in A4). Every K,-formula ¢ can be
converted into an equivalent one BNF(p) by recursively applying the rewriting rules:
Crp=>20,7p, =(p1 A p2)=>(2p1 V =p2), (@1 V p2)=>(mp1 A =pa), m—p=>.

38 Description Logics

3.5 Lightweight Description Logics

Since the first intractability results for Description Logics, a lot of effort has been spent in
the attempt of defining tractable logics (in the sense of the polynomiality of the reasoning).

Many simple logics have been studied by the DL community with this aim but, in
particular, the logics FLy and FL~ (Baader et al., 2003) are important for historical
reasons, as first attempts of find easy and tractable Description Logics. In particular, FL£~
is the sublanguage of ALC obtained disallowing atomic negation and concept disjunctions
whereas F L is the sublanguage of 7L~ obtained disallowing also the limited existential
quantification. In particular, universal quantification (also known as value restriction) was
considered an indispensable feature to let a language be considered a Description Logic.
Nevertheless, F L resulted to be tractable (i.e. polynomial-time decidable) only for empty
TBoxes; instead, the complexity of classification in FLy grows up to be PSPACE-compete
and EXPTIME-compete when considering cyclic or general TBoxes, respectively. For these
(and many other) reasons, the DL community has given up in searching for tractable logics
for about two decades, focusing instead in the investigation of increasingly more expressive
languages and in the development of efficient and optimized reasoning procedures, having
good performance in practice, though worst-case exponential in theory or even worse.

Recently, however, the choice of universal restriction as a mandatory constructor for
DLs has been reconsidered, and another easy Description Logic, called ££ (Baader, 2003),
strongly emerged due to prominent applications in which universal restrictions are not
necessary; currently, the idea is that a Description Logic must provide at least one quan-
tification constructor, either existential or universal. The Description Logic £L£ allows for
concept conjunctions and for existential restrictions instead of for value restrictions as its
counterpart FLy. This gives to £L better algorithmic properties with respect to F Ly,
being the classification of (even) general ££ TBoxes polynomial-time. These languages
have been called lightweight Description Logics, being less expressive but tractable in
practice. Many extensions of this logic have been considered in the literature (see, e.g.,
Baader et al., 2005; Baader, Brandt, & Lutz, 2008); while in the next section we discuss
in more details the family of Description Logics derived from £L£, in Table 3.5 we com-
pare the main logical constructors provided by the above mentioned lightweight /tractable
languages. 2

3.5.1 Case Study: ££1 and the £L£ Family of Description Logics

In contrast to the trend of the last two decades (Baader et al., 2003), in which the re-
search in Description Logic has focused on investigating increasingly expressive logics,
the recent quest for tractable logic-based languages arising from the field of bio-medical
ontologies has attracted a lot of attention on the lightweight Description Logic ££ and
its family (Baader et al., 2005; Baader, Lutz, & Suntisrivaraporn, 2006b; Motik & Hor-
rocks, 2008; Magka, Kazakov, & Horrocks, 2010). £L allows for conjunctions, existential

ZNotice that we have not tick “general concept inclusions” for FLo and for FL_, not because they are not
allowed in these languages, but because they require non-polynomial reasoning algorithms.

Lightweight Description Logics 39

| [FLo F£~ || HL €L ECH ELY ELOH €L |

top © ©® © ©®) ©® © ©
bottom © ©
nominals ©) ©
conjunction ® © ® © © © © ©
existential restriction © © © ©® © ©®
universal restriction ® ©

concrete domains ©
general concept inclusion © ©® ® ©® © ©®
role hierarchy © © © © ©
complex role inclusion © © © ©
transitivity ©) ©) @) ©)
concept assertion ©)
role assertion ©

Table 3.4: Logical constructors in tractable/lightweight Description Logics.

restrictions and, very importantly, supports TBoxes made of general concept inclusions
(GClIs).

In particular, the extension EL1 of £L is of particular relevance due to its algorithmic
properties and due to its capability of expressing several important and widely used
real-world bio-medical ontologies, of which we have reported a brief survey in Section 2.1.
Moreover, the Description Logic community has spent a considerable effort in the attempt
of extending £L, defining a maximal subset of logical constructors expressive enough to
cover as much as possible the needs of the practical applications in the above mentioned
ontologies, but whose inference problems remain tractable. Beside the logic E£1 (Baader
et al., 2006b), on which we focus in this work, many other extension of £L£ or tractable
fragments of even harder logics have been recently studied (Baader et al., 2005, 2008;
Kazakov, 2009; Magka et al., 2010).

In the right most block of Table 3.5 we listed the logical constructors allowed by the
different Description Logics of the £L-family. > We remark that in our classification
we considered the original definition of these logics; thus £ represent the maximal
tractable extension of £L£, with constructors which have lately added also to EL£T.

The Description Logic ££7.
The peculiarity of EL1 wrt. its sub-logic £L is that it allows for complex role inclusion
axioms with composition. This is of particular relevance because it can be used to express
not only role hierarchy (e.g., r C s) but also important role properties such as transitivity
(e.g., ror Cr) and right or left-identity (e.g., respectively ros Cror sor Cr).

For the sake of the reader convenience, we recall in Table 3.5 the concept/ontological

3Notice that, strictly speaking, HL is not properly a Description Logic; in fact, it allows only for propo-
sitional constructors (the name HL stays for Horn Logic). However we have included it in our classification,
as subset of £L£, because in practice there are many HL ontologies which are expressed by mean of DL-based
languages/formalisms.

40 Description Logics

Syntax ‘ Semantics ‘
top T AT
conjunction Xny XTny?
existential restriction Ir. X {zxe AT | Fye Al (z,y) erf Ay € X1}
general concept inclusion | X C Y xIcy?
role inclusion riro---or, Cs rlzou-orfgsz

Table 3.5: Syntax and semantics of the E£™ lightweight Description Logic.

constructors for £L£7. Concept descriptions in L are inductively defined through the
constructors listed in the upper part of Table 3.5, starting from the set of the primitive
concepts and roles. Then, an ELT TBox (or ontology) is a finite set of general concept
inclusion (GCI) and role inclusion (RI) axioms, as defined in the lower part of Table 3.5.

For instance, in the following Example 3.5.1 we introduce a sample fragment of an
ELT-based medical ontology that we will use also later along this work.

Example 3.5.1. We consider the following small ££ ontology in the medical domain
adapted from the one proposed by Suntisrivaraporn (2009), which we also call Opeq. *

Appendix C BodyPart M JpartOf.Intestine ay

Endocardium C Tissue M JpartOf.HeartValve as

Pericardium T Tissue ' JcontainedIn.Heart as

Appendicitis = Inflammation M JhasLocation. Appendix ay

Endocarditis C Inflammation M JhaslLocation.Endocardium as

Pericarditis C Inflammation M JhasLocation.Pericardium ag

Inflammation C Disease M JactsOn. Tissue ay

Disease M JhaslLocation.Heart C HeartDisease as
HeartDisease C JhasState.NeedsTreatement Qg

partOf o partOf C, partOf a1
hasLocation o containedIn C, hasLocation an

The ontology expresses the relations between some kinds of inflammatory disease and body
parts or their states. Notice that the ontology is made of nine GCIs and two RlIs. In partic-
ular the RI axiom a1g express the transitivity of partOf while aq; is a right-identity which
express the fact that everything that has location in some body part which is contained
in a more general body part is located also in that second body part. As a matter of ex-
ample the signature of the whole ontology Opeq is signature(Oned) = {Appendix,BodyPart,
Intestine, Endocardium, Tissue, HeartValve, Pericardium, Heart, Appendicitis, Inflammation,

4We stress that all the sample ontologies included in this work are used only to clarify some points of the expo-
sition. We neither care they are completely inclusive of their specific domains nor we care about the correctness
of these (sub)ontologies, both from the medical and the ontology-design perspective.

Lightweight Description Logics 41

Endocarditis, Pericarditis, Disease, HeartDisease, NeedsTreatement} U {partOf, containedIn,
actsOn, haslLocation, hasState}. &

Importantly, concept subsumption and classification in ELT can be performed in poly-
nomial time (Baader et al., 2005, 2007). Many others standard reasoning services (e.g.
concept satisfiability, consistence checking, instance checking) are polynomially reducible
each others (Baader et al., 2003). In this case, concept satisfiability and consistence
checking are not interesting, since in ££* there is no constructor that can cause logi-
cal inconsistencies. Furthermore, the complexity of many others non-standard reasoning
services in EL1 and in its sublogics have been investigated in the literature (e.g., abduc-
tion, Bienvenu, 2008). Interestingly, also the aziom pinpointing problem has been shown
to be tractable in EL£T (Baader et al., 2007). In particular, in ELT finding one MinA is
a polynomial problem, while finding all the MinAs for a given subsumption relation is
worst-case output exponential.

42

Description Logics

Chapter 4

SAT-based Techniques

In this chapter we provide the basic background notions concerning the state-of-the-art
SAT-based techniques, which are the baseline of the novel approaches we investigate in
this thesis. Here we don’t go into the specific theoretical and operational details of the
modern SAT techniques; instead, we describe the main technologies offered by the SAT
and SMT areas we have exploited in this work, (like, e.g., Conflict Analysis, and others).

Most state-of-the-art SAT procedures are evolutions of the well-known DPLL proce-
dure, therefore we start discussing the basic notions on SAT and on the modern evolution
of the DPLL-based procedure. Then we move to lazy Satisfiability Modulo Theory (SMT),
presenting also some relevant theories for this work. Finally, we close the background on
SAT and SMT by describing the problem of finding all the solutions by mean of the
All-SAT and All-SMT techniques.

4.1 Basics on CDCL SAT Solving

The problem of SAT solving is the foundation of our approach. In fact, either directly
or indirectly (in the case of SMT), we always rely on SAT solvers to reason on the DL
problems we face in this work. Thus, for the best comprehension of the content of this
dissertation, we recall some notions on SAT and Conflict-Driven Clause-Learning (CDCL)
SAT solving. For a much deeper description, we refer the reader to the literature (e.g.,
Silva & Sakallah, 1996; Zhang & Malik, 2002; Eén & Sorensson, 2004; Lynce & Silva,
2004).

4.1.1 Basics on SAT and Notation.

We assume the standard syntactic and semantic notions of propositional logic. Given a
non-empty set of primitive propositions P = {p1,p2, ...}, the language of propositional
logic is the least set of formulas containing P and the primitive constants T and L (“true”
and “false”) and closed under the set of standard propositional connectives {—, A, V, —
,—}. We call a propositional atom (also called propositional variable) every primitive
proposition in P, and a propositional literal every propositional atom (positive literal) or

44 SAT-based Techniques

its negation (negative literal). We implicitly remove double negations: e.g., if [is the
negative literal —p;, by =l we mean p; rather than ——p;. We represent a truth assignment
p as a conjunction of literals A;l; (or analogously as a set of literals {/;};) with the
intended meaning that a positive [resp. negative| literal p; means that p; is assigned to
true [resp. false].

A propositional formula is in conjunctive normal form, CNF, if it is written as a
conjunction of disjunctions of literals: A;V/,;l;;. Each disjunction of literals \/,1;; is
called a clause. Notationally, we often write clauses as implications: “(A\; ;) — (V, ;)"
for “\/; =l v \V/;1;7; also, if 1 is a conjunction of literals A, l;, we write - for the clause
V,; —li, and vice versa.

A unit clause is a clause with only one literal. A Horn clause is a clause containing
at most one positive literal, and a Horn formula is a conjunction of Horn clauses. Notice
that Horn clauses are either unary positive clauses, or they contain at least one negative
literal. A definite Horn clause is a non-unary Horn clause containing exactly one positive
literal and at least one negative one, and a definite Horn formula is a conjunction of
definite Horn clauses. (Intuitively, definite Horn formulas represents sets of implications
between propositional variables (A]_, p;) — p; s.t. n > 0.)

Notice that a definite Horn formula ¢ is always satisfiable, since it is satisfied by
both the assignments pt and p; which assign all variables to true and false respectively.
Notice also that, for every subset {p;}; of propositional variables in ¢, ¢ A A,p; and
® AN\, —p; are satisfied by pr and g respectively. Thus, in order to falsify a definite
Horn formula ¢, it is necessary to conjoin to it at least one positive and one negative literal.

The problem of detecting the satisfiability of a propositional CNF formula, also referred
as the SAT problem, is NP-complete. A SAT solveris a tool able to solve the SAT problem.
The problem of detecting the satisfiability of a propositional Horn formula, also referred
as the Horn-SAT problem, is polynomial.

4.1.2 CDCL SAT Solving.

Most state-of-the-art SAT procedures are evolutions of the Davis-Putnam-Longeman-
Loveland (DPLL) procedure (Davis & Putnam, 1960; Davis et al., 1962) and they are
based on the CDCL paradigm (Silva & Sakallah, 1996; Zhang, Madigan, Moskewicz, &
Malik, 2001). A high-level schema of a modern CDCL DPLL engine, adapted from
the one presented by Zhang and Malik (2002), is shown in Figure 4.1. The propositional
formula ¢ is in CNF; the assignment p is initially empty, and it is updated in a stack-based
manner.

In the main loop, decide next branch(y, i) (line 15.) chooses an unassigned literal
[from ¢ according to some heuristic criterion, and adds it to pu. (This operation is
called decision, 1 is called decision literal and the number of decision literals in p after
this operation is called the decision level of [.) In the inner loop, bep(ip, 1) iteratively
deduces literals [from the current assignment and updates ¢ and p accordingly; this step
is repeated until either u satisfies ¢, or p falsifies ¢, or no more literals can be deduced,

Basics on Conflict-Driven Clause-Learning (CDCL) SAT Solving 45

1. SatValue DPLL (formula ¢, assignment p)

2. while (1) {

3. while (1) {

4. status = bep(p, w);

5. if (status == sat)

6. return sat;

7. else if (status == conflict) {

8. blevel = analyze conflict(y, u);
9. if (blevel == 0)

10. return unsat;

11. else backtrack(blevel,p, u);
12. } else break;

13. }

14. decide next branch(y, u);

15. }

Figure 4.1: Schema of a modern Conflict-Driven Clause-Learning DPLIL-based SAT solver.

returning sat, conflict and unknown respectively. In the first case, DPLL returns sat. In the
second case, analyze conflict(ip, i) detects the subset 1 of u which caused the conflict
(conflict set) and the decision level blevel to backtrack. (This process is called conflict
analysis, and is described in more details below.) If blevel is 0, then a conflict exists
even without branching, so that DPLL returns unsat. Otherwise, backtrack(blevel, ¢, 1)
adds the blocking clause —m to ¢ (learning) and backtracks up to blevel (backjumping),
popping out of w all literals whose decision level is greater than blevel, and updating ¢
accordingly. In the third case, DPLL exits the inner loop, looking for the next decision.

bep is based on Boolean Constraint Propagation (BCP), that is, the iterative applica-
tion of unit propagation: if a unit clause [occurs in ¢, then [is added to pu, all negative
occurrences of [are declared false and all clauses with positive occurrences of [are de-
clared satisfied. Current CDCL SAT solvers include extremely fast implementations of
bep based on the two-watched-literals scheme (Moskewicz, Madigan, Zhao, Zhang, & Ma-
lik, 2001). This scheme maintains the property that only two different unassigned literals
on each clause are watched by a pointer. When a watched literal is assigned to false, the
pointer moves looking for another unassigned literal to watch; if none is found, then a
new unit clause is detected. Satisfied clauses are not removed; rather, they are lazily de-
tected and ignored when performing propagations. This scheme requires, for every literal,
only the storage of its current assignment status (true, false, unassigned) and the list of
the pointers to the clauses it watches, that, in this way, are immediately accessible from
the literal. Importantly, notice that a complete run of bcp requires an amount of steps
which is linear in the number of clauses containing the negation of some of the propagated
literals.

analyze_conflict works as follows (Silva & Sakallah, 1996; Moskewicz et al., 2001;
Zhang et al., 2001). Each literal is tagged with its decision level, that is, the literal

46 SAT-based Techniques

corresponding to the nth decision and the literals derived by unit-propagation after that
decision are labeled with n; each non-decision literal [in p is also tagged by a link to the
clause 1, causing its unit-propagation (called the antecedent clause of). When a clause
1 is falsified by the current assignment —in which case we say that a conflict occurs and
1 is the conflicting clause— a conflict clause 1)’ is computed from v s.t. ¢’ contains only
one literal [, which has been assigned at the last decision level. 1’ is computed starting
from v’ = 1 by iteratively resolving ¢’ with the antecedent clause v; of some literal [
in ¢’ (typically the last-assigned literal in /', see Zhang & Malik, 2002), until some stop
criterion is met. E.g., with the 1st-UIP Scheme the last-assigned literal in ¢’ is the one
always picked, and the process stops as soon as v’ contains only one literal [, assigned at
the last decision level; with the Decision Scheme, ¢’ must contain only decision literals,
including the last-assigned one.

Notice that, if ¢ is a Horn formula, then one run of bep is sufficient to decide its
satisfiability: if bep(p, {}) returns conflict, then ¢ is unsatisfiable; otherwise ¢ is satisfiable
because, since all unit clauses have been removed from ¢, all remaining clauses contain
at least one negative literal, so that assigning all unassigned literals to false would satisfy
the formula ¢.

4.1.3 CDCL SAT Solving Under Assumptions.

The schema in Figure 4.1 can be adapted to check also the satisfiability of a CNF propo-
sitional formula ¢ under a set of assumptions £ = {li,..,lx}. (From a purely-logical
viewpoint, this corresponds to check the satisfiability of A, _.l; A ¢.) This works as fol-
lows: 1y, ..., are initially assigned to true, they are tagged as decision literals and added
to w, then the decision level is reset to 0 and DPLL enters the external loop. If /\lq-,e rliNg
is consistent, then DPLL returns sat; otherwise, DPLL eventually backtracks up to level 0
and then stops, returning conflict. Importantly, if analyze_conflict uses the Decision
Scheme mentioned above, then the final conflict clause will be in the form \/lj e Tl st
L' is the (possibly much smaller) subset of £ which actually caused the inconsistency
revealed by the SAT solver (i.e., s.t. /\; 0 l; A ¢ is inconsistent). In fact, at the very
last branch, analyze_conflict will iteratively resolve the conflicting clause with the an-
tecedent clauses of the unit-propagated literals until only decision literals are left: since
this conflict has caused a backtrack up to level 0, these literals are necessarily all part of
L.

This technique is very useful in some situations. First, sometimes one needs checking
the satisfiability of a (possibly very big) formula ¢ under many different sets of assump-
tions Ly, ..., L. If this is the case, instead of running DPLL on /\liecj li N for every L;
—which means parsing the formulas and initializing DPLL from scratch each time— it is
sufficient to parse ¢ and initialize DPLL only once, and run the search under the different
sets of assumptions L4, ..., Ly. This is particularly important when parsing and initial-
ization times are relevant wrt. solving times. In particular, if ¢ is a Horn formula, solving
¢ under assumptions requires only one run of bcp, whose computational cost depends
linearly only on the clauses where the unit-propagated literals occur.

Satisfiability Modulo Theory (SMT) 47

Second, this technique can be used in association with the use of selector variables:
all the clauses 1; of ¢ can be substituted by the corresponding clauses s; — ;, all
s;s being fresh propositional variables, which are initially assumed to be true (i.e.,
L = {s; | vi € p}). If v is unsatisfiable, then the final conflict clause will be of
the form \/, . —sg, s.t. {t) [sp € L'} is the actual subset of clauses which caused
the inconsistency of ¢. This technique is used to compute unsatisfiable cores of CNF
propositional formulas (Lynce & Silva, 2004).

4.2 Satisfiability Modulo Theory (SMT)

Satisfiability Modulo Theories (SMT) or, alternatively, Satisfiability Modulo (the) Theory
T, SMT(T), is the problem of deciding the satisfiability of a (typically quantifier-free)
first-order formula with respect to some decidable first-order background theory 7. (No-
tice that 7 can also be a combination of simpler theories: 7 = J,7;.) We call an
SMT(T) solver any tool able to decide SMT(7). We call a theory solver for T, T -solver,
any tool able to decide the satisfiability in 7 of sets/conjunctions of ground atomic formu-
las and their negations (7 -literals). If the input set of 7-literals u is 7-unsatisfiable, then
T -solver returns unsat and the subset n of 7-literals in u which was found 7 -unsatisfiable
(n is hereafter called a 7 -conflict set, and —n a T -conflict clause). If u is T-satisfiable,
then 7 -solver returns sat; it may also be able to return some unassigned 7 -literal [s.t.
{t,....0,} =1 1, where {ly, ..., 1,} C pu. We call this process T-deduction and (\/]_, =l; V1)
a T -deduction clause.

We adopt the following terminology and notation. The bijective function 728
(“T-to-Boolean”), called Boolean abstraction, maps propositional variables into them-
selves, ground 7-atoms into fresh propositional variables, and is homomorphic w.r.t.
Boolean operators and set inclusion. The function 827 (“Boolean-to-7"), called Boolean
refinement, is the inverse of 728 (i.e. B27T © T2B7'). The symbols ¢, ¥, ¢ denote
T -formulas, and u, 1 denote sets of 7-literals. P, 9P instead, denote propositional
formulas, and pP, n? denote sets of propositional literals (i.e., truth assignments). In
particular we use this latter symbols as synonyms for the Boolean abstraction of ¢, ¥, and
of p,n respectively, and vice versa (e.g., P denotes 72B(p), and u denotes B27 (uP)). If
T2B(n) = T2B(p), then we say that u propositionally satisfies ¢ written u =, ¢. With
a little abuse of terminology, we will omit specifying “the Boolean abstraction of” when
referring to propositional reasoning steps.

Examples of the more prominent and interesting theories provided by the state-of-
the-art SMT solvers are those of Equality and Uninterpreted Functions (EUF), Linear
Arithmetic (LA), both over the reals/rationals (LA(Q)) and over the integers (LA(Z)),
its subclasses of Difference Logic (DL), Unit-Two-Variable-Per-Inequality (UTVPI) and
the novel Theory of Costs (C) (Cimatti et al., 2010), the theories of Bit-Vectors (BV), of
Arrays (AR) and of Lists (LZ). These problems are typically not handled adequately by

48 SAT-based Techniques

SatValue 7-DPLL (7 -formula ()
P =T2B(p);
while (DPLL (P, u) == sat) {
if (7-solver(B27 (u)) == sat)
return sat;
PP = P Ay s
}

return unsat;

O N O O 0N -

Figure 4.2: A simplified offline integration schema for lazy SMT(7") procedures.

standard automated theorem provers. In order to devise efficient 7 -solvers for the various
theories, SMT borrows ideas and techniques from many disciplines. For instance, the most
efficient 7 -solvers for theories involving arithmetic (e.g., LA(Q), LA(Z), DL) are based
on numerical algorithms borrowed from linear programming, integer programming and
shortest-path, which have been adapted to work in a logic context in synergy with a SAT
solver. However, the choice of suitable procedures for the 7 -solvers and their adaptation
for being integrated with SAT solvers (and vice versa) is not always straightforward.
In fact, the features which make a SAT solver or a 7-solver suitable for an efficient
integration are often different from those which make them efficient as standalone solvers.
For example, some features of a 7 -solver which allow for maximizing the synergy with the
SAT solver are often more important than the efficiency of the 7 -solver itself (Sebastiani,

2007D).

4.2.1 Lazy SMT

If we look at SMT from a SAT perspective, then the problem is equivalent to searching
for a truth assignment pP satisfying the propositional formula 72B(yp) and being
consistent wrt. the theory 7. To this extent, most SMT solvers are based on the lazy
SMT paradigm. In a lazy SMT(7) solver a DPLL-based SAT solver is used to enumerate
the propositional truth assignments pf, ub, ... satisfying ¢? = T2B(p): every time a
satisfying assignment p! is generated, u! is fed to the 7-solver in order to be checked
for 7-consistency. In a naive schema if u! is 7-consistent, then ¢ is 7-consistent and
the SMT(7) solver returns sat; otherwise p is used as blocking clause in order to avoid
generating pf again, and the enumeration of the truth assignments continue. We call
7-DPLL a procedure for SMT(7) implementing the lazy approach. A pseudocode for
T-DPLL procedure following the naive schema above exposed, is given in Figure 4.2;
it integrates a DPLL procedure enumerating assignments and a 7-solver checking
T -consistency.

Modern SMT solvers, however, exploit the evolution of modern state-of-the-art DPLL-
based SAT solvers, which are built on the Conflict-Driven Clause-Learning schema ex-

Satisfiability Modulo Theory (SMT) 49

1. SatValue 7-DPLL (7 -formula ¢)

2. if (7-preprocess(yp) == conflict) ;

3. return unsat;

4. P = T2B (p);

5. while (1) {

6. 7T -decide next_branch(¢?, ut);

7. while (1) {

8. status = 7 -deduce (¢,) ;

9. if (status == sat) {

10. pi = B2T (ub);

11. return sat;

12. } else if (status == conflict) {

13. blevel = 7 -analyze conflict(¢?, ul);
14. if (blevel == 0)

15. return unsat;

16. else 7-backtrack(blevel,y?, ul);
17. } else break;

18. }

19. }

Figure 4.3: An online schema of 7-DPLL based on modern CDCL DPLIL-based engine.

posed in Section 4.1.2. In the advance scheme, if u? is 7T-consistent, then ¢ is 7-consistent
and the SMT(7) solver returns sat; otherwise, 7 -solver returns the conflict set 7 caus-
ing the inconsistency. The 7 -conflict clause —n is used by the CDCL SAT solver as
a conflicting clause for triggering the backjumping and learning mechanism (called 7 -
backjumping and 7T -learning). Thus, the information from the theory are used to improve
the choice of next branches, to find more efficient conflicts and to guide the backtracking
process. The enumeration proceeds until a 7-consistent assignment p? is found, other-
wise the SMT(7) solver returns unsat. Important optimizations are early pruning and
T -propagation: the T-solver is invoked also on intermediate assignments p? " if it is T-
unsatisfiable, then the procedure can backtrack; if not, and if the 7 -solver performs a 7 -
deduction {ly,...,l,} =7 | (where the literal [represents the assignment of an unassigned
atom in p?’), then [can be unit-propagated, and the T-deduction clause (\/I_, =l; V I)
can be used in backjumping and learning.

The above schema is a coarse abstraction of the procedures underlying all the state-
of-the-art lazy SMT tools. The state-of-the-art lazy SMT solvers directly integrate online
the components of a modified CDCL SAT solver (see Figure 4.1) with the handling of 7
like in the procedure of Figure 4.3 (Sebastiani, 2007b). The interested reader is pointed
to, e.g., the works of Sebastiani (2007b), Barrett et al. (2009), for details, surveys on SMT
and SMT-solving techniques and further references.

50 SAT-based Techniques

4.2.2 The Theory of Linear Arithmetic over the Integers (LA(Z))

The theory of Linear Arithmetic over the integers (LA(Z)) is the quantifier-free First Or-
der theory with equality whose atoms are written in the form (aj-x1+ -+ a, -, X ag),
such that > € {<,<,=,#,>,>}, and the ;s are (interpreted) constant symbols, each
labeling one value in Z. The atomic expressions are interpreted according to the stan-
dard semantics of linear arithmetic on Z. LA(Z) is stably-infinite and non-convex. The
LA(Z)-satisfiability of sets of quantifier-free literals is decidable and N P-complete (Pa-
padimitriou, 1981). Many algorithms have been conceived, involving techniques like Eu-
ler’s reduction, Gomory-cuts application, Fourier-Motzkin algorithm, branch-and-bound
(We refer the reader to, e.g., Sebastiani, 2007b for the bibliography concerning more formal
definitions and notions on L£A(Z) and also £A(Q).) Many incremental and backtrack-
able algorithms for L£A(Z)-solvers have been conceived, which can perform conflict-set
generation and theory propagation (see, e.g., Berezin, Ganesh, & Dill, 2003; Dutertre &
de Moura, 2006). In general, it is very important to remark that, in order to avoid incor-
rect results due to numerical errors and to overflows, all 7-solvers for LA(Z) (or LA(Q)
and their subtheories) which are based on numerical algorithms must be implemented on
top of infinite-precision-arithmetic software packages. In the next section we will discuss
with more details the Theory of Costs C which is a sub-theory of LA(Z).

Example 4.2.1. Here below we report two simple SMT(L.A(Z)) formulas ¢ and v, which
are, respectively, satisfiable and unsatisfiable:

e=aA (bVec) v =a A (bAc)
A (a — (x4 2y > 15)) A (a — (x4 2y > 15))
A (b — (x+y=10)) A (b — (x+y=10))
A (¢ = (z > 5)), A (c = (z > 5)).

In fact ¢ is satisfied, e.g., by the assignment p = {a, b, —¢, (x+2y>15), (x+y=10), =(x >
5)}, where p is LA(Z)-consistent, because the inequations: (x + 2y >15) and (x +y=10)
are satisfied in LA(Z) by every x,y such that y > 5 and 2 = 10 — y. On the contrary,
in the case of ¢, also ¢ and (x > 5) must be assigned to true in order to propositionally
satisfy 72B; this create a conflict wrt. the LA(Z) theory because there exist no integer
values z,y satisfying all the inequations in {(x + 2y >15), (z + y=10), (z >5)} (in fact,
for z > 5 and = = 10 — y the maximum value of z + 2y is 15 for x = 5 and, thus, y = 5).
&

4.2.3 Case Study: The Theory of Costs (C)

The language of the Theory of Costs allows for express multiple cost functions and, for
each of these, allows for define cost increases and both lower- and upper-bounds depending
on arbitrary Boolean conditions. In particular, in this work we consider a theory of costs
over the integer in which every cost function is a Boolean cost function.

Satisfiability Modulo Theory (SMT) 51

Let 7 be a first-order theory. We consider a pair (@, F), where F = {cost; | i =
1,..., M} is a set of M distinct integer cost functions and where ¢ is a Boolean combi-
nation of ground 7-atoms and atoms in the form

(cost; < c), (4.1)

with ¢ is an integer value. ! We focus on problems in which every cost; is a Boolean cost
function (over the integers) in the form:

N;

cost; = Z if-then-else(; ;, czj, cij) (4.2)

j=1

Tl

sucht that, for every i and every j, ¢;; is a formula in 7, ¢;;, ¢;; are integer constant

values and if-then-else is a function such that if-then-else(; ;, ch, cij) returns CZj if 95 ;
holds, cifj otherwise. Wlog. we can restrict our attention to problems (p, F) in which,

for every 1:
N;

cost; = Z if-then-else(A; ;, ¢ j,0) (4.3)
j=1
and such that, for every j, A;; is a Boolean literal and ¢; ; > 0. In fact, any problem
with cost functions in form (4.2) can be convert straightforwardly and in linear time
into another problem with cost functions in form (4.3), not affecting the solutions of the
problem (Cimatti et al., 2010).

The problem consists in to decide the satisfiability of the formula ¢ under the back-
ground theory 7 and satisfying all the cost constraints of the form (4.1), i.e. finding a
satisfying assignment for ¢ having a cost within the admissible range. Every function (4.3)
can be easily encoded into subformulas in the theory of linear arithmetic over the inte-
gers (LA(Z)), and the whole problem (p, F) into a ground 7 U LA(Z)-formula, with
T, LA(Z) completely-disjoint theories, so that to be handled by an SMT solver (Cimatti
et al., 2010). However, for efficiency reasons the problem has been addressed in SMT by
introducing an ad-hoc Theory of Costs C (Cimatti et al., 2010) (which, wrt. the use of
linear arithmetic, also results in a much more clear and compact formalism) consisting in:

— a collection V of M fresh integer variables V = {v{>s, ... v} }, that we call cost
variables, respectively denoting the final output of the functions costq, ..., costys of
type (4.3);

— a fresh binary predicate BC (bounded cost) defined over the set of the cost variables
and the set of the integers, such that BC(v{*, ¢) represents the constraint “(cost; <
¢)” (4.1), i.e. the predicate is true if the cost function cost; (whose final cost is
represented by v§°") is upper-bounded by the integer value ¢, and false vice versa.

i

'Notice that every atom in the form (cost; < ¢) with e {=,#, <, <,>,>} can be expressed as a Boolean
combination of j > 1 atoms in the form (cost; > c;), for some c; integer values derived from c. For instance
(cost; # ¢) can be expressed as (cost; < c— 1)V —(cost; < c).

52 SAT-based Techniques

— a fresh ternary predicate IC (incur cost) defined over the sets of the cost variables,
of the integers and of the naturals, such that every IC(v{°*, ¢; ;, j) represents the jth
element of sum (4.3), i.e. the predicate is true if A;; in (4.3) is true so that the
amount ¢; ; is added to the cost function cost; (corresponding to an increment of

¢ j of the cost variable v{**"), and false vice versa. “For every function of type (4.3)

exactly N; distinct atoms 1C(v§*", ¢; ;, 7) must be introduced.

We call C-atoms all the BC and |C atoms, and C-literals all C-atoms and their negations.
We call a CUT -formula any Boolean combination of ground 7- and C-atoms. We call
C-solver a decision procedure (theory solver) for the Theory of Costs C above exposed.
Given a CUT -formula ¢ the C-solver takes as input a truth assignment pc to the C-
literals of ¢ and checks whether p¢ is C-satisfiable, i.e. if the assignment pe is consistent
wrt. to the Theory of Costs. Informally speaking, the assignment pc is consistent wrt.
to the Theory of Costs if, for every cost variable vf°* the sum (4.3) of the incur costs
determined by the assignment of the IC-literals respect the constraints (4.1) determined
by the assignment of the respective BC-literals. In this work we are interested only in the
case in which 7 is pure propositional logic; we simply call C-formula every CUT -formula
in which 7 is pure propositional logic and we call SMT(C) solver the solver including the
C-solver for the Theory of Costs.
With this formalism, notice that:

— to force a C-atom BC(v§***, ¢) to be true mean to state an upper-bound of ¢ for the

cost function represented by v&os;
— similarly, it is possible to state a lower-bound (with value ¢+ 1) for v§°** by forcing
to true the C-literal =BC(v§°*, ¢);

cost

o5t represented by the C-atom IC(v{°*, ¢; ;, j) contributes to
with an amount of ¢; ; only if such an atom is assigned to true;

cost

— the jth incur cost for v ¢

the final cost of v{°st

— if in an SMT(C) formula every stated incur cost IC for the variable v{*** has value
¢;; = 1, then fixing an upper-bound [resp. lower-bound] of value ¢ for v{** through
a BC literal, forces at-most [resp. at-least] ¢ IC-atoms for v{** to be assigned to true,
in order to satisfy the formula.

Example 4.2.2. Consider, for instance, the following SMT(C) formula:

spend A save A (buy_new V recharge)
A (spend — —BC(cost,0)) A (save — BC(cost, b))
A (buy_new — IC(cost,4,1)) A (IC(cost,4,1) — taxg) A (taxe — IC(cost,2,2))
A (recharge — 1C(cost,2,1)) A (IC(cost,2,1) — tax;) A (tax; — 1C(cost, 1,1))

that is satisfied by the truth assignment p = {spend, save, recharge, tax;, IC(cost,2,1),
IC(cost,1,1), BC(cost,5)} U {—buynew, —taxs, —IC(cost,4,1), =IC(cost,2,2),

2The index j in IC(v{°*", ¢; 4, 4) is necessary to avoid using exactly the same predicate instantiation (atom) for
two constants ¢; ; and ¢; j with the same value but different indexes j and j'.

Satisfiability Modulo Theory (SMT) 53

—BC(cost,0)}. Notice that p is C-consistent because the final value of the cost vari-
able cost is 3 and, in particular, 0 < cost < 5. Notice that IC(cost,2,1) and 1C(cost, 2, 2)
are two distinct C-literals (having the same incur cost but different indexes) representing
two different sources of cost. Notice, finally, that the formula could be satisfied also by
assigning taxy, and 1C(cost, 2,2) to true, in which case the final value of cost would be 5;
in the practice, the implementations of SMT(C) and in particular of the C-solver (Cimatti
et al., 2010) can be instructed to address the cost minimization problem, so that the
problem is solved by finding one assigment such that it satisfies the input formula and
minimizes one (elected) of the Boolean cost functions. &

4.2.4 All-SAT and All-SMT

Conventional SAT/SMT solvers are targeted to computing just one solution. However,
it is possible to modify the DPLL and 7 -DPLL procedures of Figures 4.1 and 4.3 respec-
tively (see Sections 4.1.2 and 4.2.1), so that to enumerate all models of a satisfiable
propositional /7" formula . For this purpose several approaches have been proposed in
literature, in order to turn a DPLL/7 -DPLL engine into an Al[-SAT /All-SMT tool, i.e., an
engine that can enumerate all models for the given input formula (e.g. Grumberg et al.,
2004; Jin et al., 2005; Lahiri et al., 2006).

In principle, to solve All-SAT, it is enough to force the SAT solver to continue
the search after getting each satisfying assignment. In the first All-SAT approaches
once a satisfying assignment is found then a blocking clause is generated by taking its
complement. Blocking clauses are added to the input formula being examined to prevent
the SAT solver from finding the same solution again. This basic approach could be very
inefficient due to the worst-case exponential growth of the clause set (one additional
blocking clause for each model found) and due to the fact that it is often necessary to
restart the search from scratch. Therefore, various optimization techniques have been
applied in order to re-use as much as possible the current search state and to get smaller
blocking clauses (Jin et al., 2005; Lahiri et al., 2006).

In more details, given the formula ¢, whenever a (partial) model p for ¢ is found,
the key idea behind All-SAT/AIl-SMT is to treat —u as a blocking clause and then to
continue the search. At the end of the search, the list pq, ..., u,, of models found is a list of
all models of ¢. One problem of this naive procedure is that adding to ¢ a “fake” blocking
clause (namely —;) each time a new satisfying truth assignment 7, is found may cause an
exponential blowup of ¢. However, Lahiri et al. (2006) have shown that this problem can
be overcome by exploiting the best known conflict analysis techniques and conflict-driven
backjumping, without the need of keeping the blocking clauses or the learned lemmas.
Each time a model 7 is found, it is possible to consider =), as a conflicting clause to feed
to analyze_conflict and to perform conflict-driven backjumping as if the blocking clause
- belonged to the clause set; importantly, it is not necessary to add permanently the
conflicting clause —ny to ¢ as a blocking clause. Keeping the lemmas learned in backjump
steps (or the blocking clauses) is only optional: it is sufficient to keep the conflict clause

54 SAT-based Techniques

resulting from conflict analysis only as long as they are active. (A clause is considered
to be currently active if it occurs in the implication graph, that is, if it is the antecedent
clause of some literal in the current assignment. See Zhang et al., 2001.)

Lahiri et al. (2006) proved that this technique terminates and allows for enumerating
all models. (The proof is based on a notion of lexicographic ordering on search states,
stating that a search state is more advanced than another if it contains more information
at lower decision levels.) The only potential drawback of this technique is that some
models may be found more than once. However, according to the empirical evaluation
of Lahiri et al. (2006), this events appears to be rare and it has very low impact on
performances, which are much better than those of the naive version.

Notice at last that this approach works identically for SAT and SMT, once checked
that the satisfying enumerated truth assignments are also 7-consistent. In particular,
the All-SMT technique can be applied also to enumerate all the counter-models of ¢
with respect to a theory 7°; more specifically, All-SMT can be used to enumerate all the
assignments for which a given purely propositional formula ¢ is unsatisfiable, if a second
DPLL instance run again over ¢ is used as 7-solver. We refer the reader to the work of
Lahiri et al. (2006) for a more detailed explanation of All-SMT.

Part 11

Original Contributions

Chapter 5

Encoding ALC/K(m)-satisfiability
into SAT

In the last two decades, the problem of automated reasoning in modal and description
logics has been thoroughly investigated. In particular, many approaches have been pro-
posed for efficiently handling the satisfiability of the core normal modal logic K,,, and of
its notational variant, the description logic ALC. Although simple in structure, K,/ ALC
is computationally very hard to reason on, its satisfiability being PSPACE-complete.

In this first step of our work we start exploring the idea of performing automated
reasoning tasks in modal and description logics by encoding them into SAT, so that to
be handled by state-of-the-art SAT tools. As with most previous approaches, we begin
our investigation from the satisfiability in K,,, which offer a very wide set of approaches
and systems with which to compare. We propose an efficient encoding, and we test it
on an extensive set of benchmarks, comparing against the main state-of-the-art tools
available. !

5.1 Previous Approaches and Related Works

In the last twenty years, modal and description logics have provided an essential frame-
work for many applications in numerous areas of computer science, including artificial
intelligence, formal verification, database theory, distributed computing and, more re-
cently, semantic web and ontologies. For this reason, the problem of automated reasoning
in modal and description logics has been thoroughly investigated (e.g., Fitting, 1983;
Ladner, 1977; Baader & Hollunder, 1991; Halpern & Moses, 1992; Baader, Franconi, Hol-
lunder, Nebel, & Profitlich, 1994; Massacci, 2000). In particular, the research in modal
and description logics has followed two parallel routes until the seminal work of Schild
(1991), which proved that the core modal logic K, and the core description logic ALC are
one a notational variant of the other. Since then, analogous results have been produced
for a bunch of other logics, so that, nowadays the two research lines have mostly merged

IThis chapter is mostly based on the journal paper: Sebastiani & Vescovi, 2009a.

58 Encoding ALC /K (m)-satisfiability into SAT

into one research flow.

Many approaches have been proposed for efficiently reasoning in modal and description
logics, starting from the problem of checking the satisfiability in the core normal modal
logic K, and in its notational variant, the description logic ALC (hereafter simply “K,,”
and “ALC”). We classify them as follows.

— The “classic” tableau-based approach (Fitting, 1983; Baader & Hollunder, 1991;
Massacci, 2000) is based on the construction of propositional tableau branches, which
are recursively expanded on demand by generating successor nodes in a candidate
Kripke model. KRis (Baader & Hollunder, 1991; Baader et al., 1994), CRACK
(Franconi, 1998), LWB (Balsiger, Heuerding, & Schwendimann, 1998) were among
the main representative tools of this approach.

— The DPLL-based approach (Giunchiglia & Sebastiani, 1996, 2000) differs from the
previous one mostly in the fact that a Davis-Putnam-Logemann-Loveland (DPLL)
procedure, which treats the modal subformulas as propositions, is used instead of
the classic propositional tableaux procedure at each nesting level of the modal op-
erators. KSAT (Giunchiglia & Sebastiani, 1996), ESAT (Giunchiglia, Giunchiglia,
& Tacchella, 2002) and *SAT (Tacchella, 1999), are the representative tools of this
approach.

These two approaches merged into the “modern” tableaux-based approach, which has
been extended to work with more expressive description logics and to provide more
sophisticate reasoning functions. Among the tools employing this approach, we recall
FACT/FACT++ and DLP (Horrocks & Patel-Schneider, 1999), and RACER (now also
called RacerPro) (Haarslev & Moeller, 2001; Haarslev & Moller, 2003). 2 More recent tools
which have joined the tableaux-based category are the OWL reasoners PELLET (Sirin
et al., 2007) and HERMIT (Motik et al., 2009), this later implementing a novel calculus
known as “hypertableaux” (Motik et al., 2007, 2009; Baumgartner et al., 2010).
Continuing with the classification other approaches to this problem are:

— In the translational approach (Hustadt & Schmidt, 1999; Areces, Gennari,
Heguiabehere, & de Rijke, 2000) the modal formula is encoded into first-order logic
(FOL), and the encoded formula can be decided efficiently by a FOL theorem prover
(Areces et al., 2000). Mspass (Hustadt, Schmidt, & Weidenbach, 1999) is the most
representative tool of this approach.

— The CSP-based approach (Brand, Gennari, & de Rijke, 2003) differs from the
tableaux-based and DPLL-based ones mostly in the fact that a CSP (Constraint
Satisfaction Problem) engine is used instead of tableaux/DPLL. KCSP is the only
representative tool of this approach.

2Notice that there is not an universal agreement on the terminology “tableaux-based” and “DPLL-based”.
E.g., tools like FACT/FACT++, DLP, and RACER are most often called “tableau-based”, although they use
a DPLL-like algorithm instead of propositional tableaux for handling the propositional component of reasoning
(Horrocks, 1998; Patel-Schneider, 1998; Horrocks & Patel-Schneider, 1999; Haarslev & Moeller, 2001).

Motivations and Goals 59

— In the Inverse-method approach (Voronkov, 1999, 2001), a search procedure is based
on the “inverted” version of a sequent calculus (which can be seen as a modalized
version of propositional resolution). K2I (Voronkov, 1999) is the only representative
tool of this approach.

— In the Automata-theoretic approach, (a symbolic representation based on BDDs —
Binary Decision Diagrams — of) a tree automaton accepting all the tree models of
the input formula is implicitly built and checked for emptiness (Pan et al., 2002;
Pan & Vardi, 2003). KBDD (Pan & Vardi, 2003) is the only representative tool of
this approach.

— Pan and Vardi (2003) presented also an encoding of K-satisfiability into QBF-
satisfiability (which is PSPACE-complete too), combined with the use of a state-
of-the-art QBF (Quantified Boolean Formula) solver. We call this approach QBF-
encoding approach.

To the best of our knowledge, the last three approaches so far are restricted to the satis-
fiability in K, only. The translational approach, instead, has been applied to numerous
modal and description logics (e.g. traditional modal logics like T, and S4,,, and dynamic
modal logics) and to the relational calculus, whilst the CSP-based approach has been
recently extended to KT and S4 by Stevenson, Britz, and Horne (2008). 3

A significant amount of benchmarks formulas have been produced for testing the ef-
fectiveness of the different techniques (Halpern & Moses, 1992; Giunchiglia, Roveri, &
Sebastiani, 1996; Heuerding & Schwendimann, 1996; Horrocks, Patel-Schneider, & Sebas-
tiani, 2000; Massacci, 1999; Patel-Schneider & Sebastiani, 2001, 2003).

5.2 Motivations and Goals

In this chapter we start exploring the idea of performing automated reasoning tasks in
modal and description logics by encoding them into SAT, so that to be handled by state-
of-the-art SAT tools. As with most previous approaches, we begin our investigation from
the satisfiability in K,,, which (as discussed in the previous section) offer a very wide
variety of approaches, systems and benchmark problems with which to compare.

In theory, the task may look hopeless because of worst-case complexity issues: in
fact, with few exceptions, the satisfiability problem in most modal and description logics
is not in NP, typically being PSPACE-complete or even harder —PSPACE-complete for
K,, (Ladner, 1977; Halpern & Moses, 1992)— so that the encoding is in worst-case non
polynomial(assuming NP # PSPACE).

In practice, however, a few considerations allow for not discarding that this approach
may be competitive with the state-of-the-art approaches. First, the non-polynomial
bounds above are worst-case bounds, and formulas may have different behaviors from

3 As far as we know, the extension of KCSP of Stevenson et al. (2008) is still in form of prototype and is not
yet, available.

60 Encoding ALC /K (m)-satisfiability into SAT

that of the pathological formulas which can be found in textbooks. (E.g., notice that
the exponentiality is based on the hypothesis of unboundedness of some parameter like
the modal depth; Halpern & Moses, 1992; Halpern, 1995.) Second, some tricks in the
encoding may allow for reducing the size of the encoded formula significantly. Third, as
the amount of RAM memory in current computers is in the order of the GBytes and
current SAT solvers can successfully handle huge formulas, the encoding of many modal
formulas (at least of those which are not too hard to solve also for the competitors) may
be at the reach of a SAT solver. Finally, even for PSPACE-complete logics like K,,, also
other state-of-the-art approaches are not guaranteed to use polynomial memory.

Content. The rest of this chapter is structured as follows. In Section 5.3 we describe
the basic encoding from K, to SAT, while we give the equivalent encoding from ALC
in Section 5.4 (for a better readability the proof of soundness and completeness of our
approach has been moved in Section 5.8 as appendix). In Section 5.5 we describe and
discuss the main encoding optimizations introduced, either as preprocessing or as on-
the-fly optimizations, providing many examples. In Section 5.6 we present the empirical
evaluation and discuss the results; in particular, we analyze the effectiveness of the various
optimizations introduced on a huge set of diversified benchmark problems, and we compare
the performance of our new approach against the other approaches at the state of the art.
(The results from the trials of the compared tool and some extra plots concerning the
evaluation are reported in the appendix Section 5.9.) In Section 5.7 we describe the main
contributions given by this first part of our research and the guidelines we have educed
form our following investigation.

The basic encoding and some preliminary steps in the approach exposed in this chapter
have been performed during the master thesis (Vescovi, 2006), which results have been
published by (Sebastiani & Vescovi, 2006). The optimization techniques and the results of
the extended empirical evaluation have been presented by (Sebastiani & Vescovi, 2009a).

5.3 The Basic Encoding: K,,25AT

We borrow some notation from the Single Step Tableau (SST) framework (Massacci, 2000;
Donini & Massacci, 2000). We represent uniquely states in M as labels o, represented
as non empty sequences of integers 1.nj'.ny2.n*, s.t. the label 1 represents the root
state, and o.n" represents the n-th R,-successor of ¢ (where r € {1,...,m}). With a
little abuse of notation, hereafter we may say “a state ¢” meaning “a state labeled by o”.
We call a labeled formula a pair (o,1)), such that ¢ is a state label and v is a K,,-formula,
and we call labeled subformulas of a labeled formula (o,) all the labeled formulas (o, ¢)
such that ¢ is a subformula of ¢. We conventionally write O, ¢ for O,, ©,., respectively,
when only one modal operator exists; accordingly, we write o.n for .n” in the same case.

Definition 1 (K,,2SAT encoding). Let A; y be an injective function which maps a
labeled formula (o, 1)), s.t. v is not in the form —¢, into a Boolean variable A, . We
conventionally assume that A Ty is T and A, 1y is L. Let L,) denote —A, 4 if

The Basic Encoding: K;,2SAT 61

Y is in the form —¢, A,) otherwise. Given a K,,-formula ¢, K,,2SAT¢ is the SAT
encoding for ¢ and is recursively defined as the following Boolean CNF formula: 4

Kn25AT(p) = Ay, o A Def(1,) (5.1)
Def(o, T) = T (5.2)
Def(o, L) = T (5.3)
Def(o, 4;) = T (5.4)

Def(o, —A;) = T (5.5)
Def(o, @) = (Lig, a) = (Lo, a) A Lio, az))) A Def (0, an) A Def(0, az) (5.6)
D@f(O’, ﬁ) = (L<o, By — (L<o, B1) \ L(cr, ﬁz))) A Def<07 Bl) N Def<07 52) (57)

Def(o,) = (Lig, wray = Ly qray) A Def (.57, mo7) (5.8)
Def(a, I/T) = /\ (((L(C,7 ANA L<U7 Wm‘>) — L(U.Z'r" ”6>) A Def(a.z'r, 1/6)) (59)

&5
Here by “7™” we mean that 7™/ is the j-th distinct 7" formula labeled by o. &

Notice that (5.6) and (5.7) generalize to the case of n-ary A and V in the obvious way: if ¢
is @7, ¢ s.t. @ € {A,V}, then Def (o, ¢) = (Lio, ¢y — Qi Lio, o) ANy Def (o, ¢5).
Although conceptually trivial, this fact has an important practical consequence: in order
to encode)., ¢; one needs adding only one Boolean variable rather than up to n — 1,
see Section 5.5.2. Notice also that in rule (5.9) the literals of the type L, iy are strictly
necessary; in fact, the SAT problem must consider and encode all the possibly occurring
states, but it can be the case, e.g., that a 7™ formula occurring in a disjunction is assigned
to false for a particular state label o (which, in SAT, corresponds to assign L, iy to
false). In this situation all the labeled formulas regarding the state label 0.i" are useless,
in particular those generated by the expansion of the v formulas interacting with 7", 5
We assume that the K,,-formulas are represented as DAGs (Direct Acyclic Graphs),
so that to avoid the expansion of the same Def (o, 1) more than once. Then the various
Def(o, 1) are expanded in a breadth-first manner wrt. the tree of labels, that is, all
the possible expansions for the same (newly introduced) o are completed before starting
the expansions for a different state label o', and different state label are expanded in the
order they are introduced (thus all the expansions for a given state are always handled
before those of any deeper state). Moreover, following what done by Massacci (2000), we
assume that, for each o, the Def (o, 1)’s are expanded in the order: «/(3, , v. Thus, each
Def (o, v") is expanded after the expansion of all Def (o, 7")’s, so that Def (o, v") will
generate one clause ((L(g, yryAL(s, 7ri)) — Lio.ir, v5)) and one novel definition Def (0.i", vy)

4We say that the formula is in CNF because we represent clauses as implications, according to the notation
described at the beginning of Section 4.1.1.

®Indeed, (5.9) is a finite conjunction. In fact the number of m-subformulas is obviously finite and K, benefits
of the finite-tree-model property (see, e.g., Pan et al., 2002; Pan & Vardi, 2003).

62 Encoding ALC /K (m)-satisfiability into SAT

for each Def (o, 7") expanded. ¢

Intuitively, it is easy to see that K,,2SAT(p) mimics the construction of an SST
tableau expansion (Massacci, 2000; Donini & Massacci, 2000). We have the following
fact.

Theorem 1. A K,,-formula ¢ is K,,-satisfiable if and only if the corresponding Boolean
formula K,2S AT (p) is satisfiable.

The complete proof of Theorem 1 can be found in Appendix 5.8.

Notice that, due to (5.9), the number of variables and clauses in K,,,2SAT () may
grow exponentially with depth(y). This is in accordance to what was stated by Halpern
and Moses (1992).

Example 5.3.1 (NNF) Let Prnf be (<>A1 \/<><A2 \/A3)> A O-A; A O-Ay A O-A3. 7
It is easy to see that ¢,,s is Kj-unsatisfiable: the ¢-atoms impose that at least one atom
A; is true in at least one successor of the root state, whilst the O-atoms impose that all

atoms A; are false in all successor states of the root state. K,,2SAT (pnns) is: 8
1. A, oo (1)
2. N (A g — (Al oavoaavas)y A A, o-any A An, o-am) N A, o-45))) (6)
3. N (A, oavo(asvas) — (An, o V A, o(asvay))) (7)
4. N (Ap, oay — A, Ay) (8)
5 AN (Aq, oamvas) — A (1.2, AgVAs)) (8)
6. A ((Aq, o-an) NAQ, o4, >) (11, A7)) (9)
7. N ((Ap, o-a) NAa, oayy) — 7A@, a0) (9)
8. A ((Aq, o-as) NAq, oayy) — —'A (11, As)) (9)
9. AN ((Aq, o-an NAQ, o(avas)y) — " Ape, Ay) (9)
10. A (A, o-as) A A, o(aavas)y) — " Ape, 4,) (9)
1L A (A, omag) A A, o(a2va)) = TAq, as)) (9)
12 AN (Apa, asvag) — (Aps, 4 VAns, a)) (7)

After a run of Boolean constraint propagation (BCP), 3. reduces to the implicate dis-
junction. If the first element A o4, is assigned to true, then by BCP we have a conflict
on 4. and 6. If it is set to false, then the second element A o(4,va4,)) is assigned to true,
and by BCP we have a conflict on 12. Thus K,,25AT (¢nns) is unsatisfiable. &

5.4 The Equivalent ALC Encoding

In this part of our work we have chosen to approach the K,,-satisfiability problem because
(historically) it offers a wider set of alternative approaches and benchmark problems.

In practice, even if the definition of K,,2SAT is recursive, the Def expansions are performed grouped by
states. More precisely, all the Def(o.n", 1) expansions, for any formula v, every modality index r and every
defined n, are done together (in the a/8, 7, v order above exposed) and necessarily after that all the Def (o, ¢)
expansions have been completed.

"For K;-formulas we omit the box and diamond indexes, i.e., we write O, < for O, <.

8In all examples we report at the very end of each line, i.e. after each clause, the number of the K,,25AT
encoding rule applied to generate that clause. We also drop the application of the rules (5.2), (5.3), (5.4) and (5.5).

The Equivalent ALC Encoding 63

However, since this thesis concentrates on reasoning in Description Logics and ontologies,
for the sake of completeness we define an equivalent encoding for the Description Logic
ALC. The fast reader can conveniently skip the current section.

The satisfiability of a K, formula has been proved by Schild (1991) to be equivalent
to the problem of ALC-concept satisfiability wrt. empty TBoxes. Similarly to what done
in the previous section we represent uniquely individuals in the domain of a concept
interpretation as labels ¢. In order to distinguish labels referring to individuals from labels
referring to modal states we represented an individual’s label as non empty sequences of
integers 1.r1.ny.79.0n9rg.nk, s.t. the label 1 represents the root individual, and o.r.n
represents the n-th r-successor of ¢ (i.e. the n-th successor of ¢ through the role r). We
call an instantiated concept a pair (o, é), such that o is an individual (or its label) and
C is an ALC-concept expression. Without going into too much other details, we define
ALC25 AT equivalently to K,,25AT as follows:

Definition 2 (ALC2SAT encoding). Let A; y be an injective function which maps an
instantiated concept (o, C'), s.t. C'is not in the form —C, into a Boolean variable A,)
We conventionally assume that Ay, Ty is T and Ay, 1y is L. Let Ly, ¢y denote =A,, ¢
if C'is in the form =C, A, ¢y otherwise. Given an ALC-concept C, AECQSAT(C’) is the

SAT encoding for C and is recursively defined as the following Boolean CNF formula:

ALC2SAT(C
Def(o, T
Def (o, L
Def(o, C;

) = Ay o ADef(1, C)
)
)
)

Def(A Q) =
)
)
)
)

|
H — 4 A

(L (o, CIHCZ (L<O', C’1> N ‘L<a'7 C’ >)) A Def() A Def()
' (Liy éanin) — Lio, eV Lig, 6y) A Def (o, C1) A Def (o, Co)
(L (o, Ir.Cy) L<O‘.T‘.j, C’J>> A DGf(O'.T.j, CJ)

= /\ <((L<U, vr.C") A L(U, Hr.éi)) - L(cr.r.i, C”)) N Def(a.r.i, CAM))

for every

(o, 3r.Cy)

where C; are primitive concept names, while C , C" and C; are generic concept expressions.
Here by “Jr.C;” we mean that 3r.C; is the j-th distinct concept in the form 3r.C' (for
some (') labeled by o. &

Then the same considerations of the previous section hold also for this ALC encoding.
In particular, it holds the following direct consequence of Theorem 1.

Corollary 2. An ALC-concept C is satisfiable wrt. an empty TBox if and only if the
corresponding Boolean formula ALC2S AT (C') is satisfiable.

64 Encoding ALC /K (m)-satisfiability into SAT

5.5 Optimizations

The basic encoding of Section 5.3 is rather naive, and can be much improved to many
extents, in order to reduce the size of the output propositional formula, or to make it
easier to solve by DPLL, or both. We distinguish two main kinds of optimizations:

We analyze these techniques in detail.

5.5.1 Pre-conversion into BNF

Many systems use to pre-convert the input K,,-formulas into NNF (e.g., Baader et al.,
1994; Massacci, 2000). In our approach, instead, we pre-convert them into BNF (like,
e.g., Giunchiglia & Sebastiani, 1996; Pan et al., 2002). For our approach, the advantage
of the latter representation is that, when one 0,1 occurs both positively and negatively
(like, e.g., in (O,% V ...) A (-O0,¢ V ...) A ...), then both occurrences of 0,7 are labeled
by the same Boolean atom A, g, 4, and hence they are always assigned the same truth
value by DPLL. With NNF, instead, the negative occurrence —O,v¢ is rewritten into
Op(nnf (1)), so that two distinct Boolean atoms A, o, (unf(v))) a0d Ao o, (nnf(-w))) are
generated; DPLL can assign them the same truth value, creating a hidden conflict which
may require some extra Boolean search to reveal. ?

Example 5.5.1 (BNF). We consider the BNF variant of the ¢, formula of Exam-
ple 531, Ponf = (_\D_\Al \/_'D(_\Ag/_\A;g)) N D_\Al A D_\AQ A\ D_\Ag. As before,

it is easy to see that ou,s is Kj-unsatisfiable. K, 2S AT (ppyy) is:
1. A<17 Ponf) (1)
2. N (AQ, gy — (A, (romArv-o-aan-as) A Aq, o-an A A, o-a) A Aq, o-4s))) (6)
3. AN (Aq, (co-av-o(=asn-4a3)) — (CA@, -4y V AR, o-asn-44)))) (7)
4. N (A g-ay — A, Ay) (8)
5. A (An, o(-aon-as)) — " A@2, (mAsn-45)) (8)
6. A ((Ag, o-an A 7AQ, o-ay) = A 4y) (9)
7. N (A, 0mag) A 7AR 0man) = 7A@ 40) (9)
8. A ((Aq, o-as) A 7AQ, o-ay) = 2Aw, 4y) (9)
9. A (A, o-an A 7AQ, o(-A2n-45)) = 7A@, 4y) (9)
10. A ((Aq, 0-a9) A 2AQR 0(-a2n-43) = 7A@, 1)) (9)
1L A (A, o0-a5) A 2AQ o(-an-43) = 7A@, a5)) (9)
12 A (2Aps, (naon-ay)) = (Az, a5y V Aqe, ay)) (7)

Unlike with the NNF formula ¢,,,,s in Example 5.3.1, K,,25 AT (¢p,s) is found unsatisfiable
directly by BCP. In fact, the unit-propagation of A g-a,) from 2. causes = A g4,y in
3. to be false, so that one of the two (unsatisfiable) branches induced by the disjunction
is cut a priori. With ¢,,r, K,,,25AT does not recognize 0—A; and $A; to be one the

9Notice that this consideration holds for every representation involving both boxes and diamonds; we refer to
NNF simply because it is the most popular of these representations.
ONotice that the valid clause 6. can be dropped. See the explanation in Section 5.5.5.

Optimizations 65

negation of the other, so that two distinct atoms Ay, 5-4,) and A ¢4,) are generated.
Hence A1 g-a,) and Aq, ¢4,y cannot be recognized by DPLL to be one the negation of
the other, s.t. DPLL may need exploring one Boolean branch more. &

In the following we will assume the formulas are in BNF (although most of the opti-
mizations which follow work also for other representations).

5.5.2 Normalization of Modal Atoms

One potential source of inefficiency for DPLL-based procedures is the occurrence in the
input formula of semantically-equivalent though syntactically-different modal atoms ¢’
and 1" (e.g., 01(A;V Ag) and O (A3 V Ay)), which are not recognized as such by K,,2SAT.
This causes the introduction of duplicated Boolean atoms Ay, 4y and Ay, and —
much worse— of duplicated subformulas Def (o, ¢') and Def (o, ¢"). This fact can have
very negative consequences, in particular when v’ and " occur with negative polarity,
because this causes the creation of distinct versions of the same successor states, and the
duplication of whole parts of the output formula.

Example 5.5.2. Consider the K,,-formula (¢;V—-0;(AsV A1) A (P2 V—-0O1(A1V Ar)) A,
s.t. @1, ¢o, ¢3 are possibly-big K,,-formulas. Then K,,25AT creates two distinct atoms
An, oy (Asvar)y and An, g4, va,)y and two distinet formulas Def (1, —01(A42 V Ay)) and
Def(1, =01(A; V As)). The latter will cause the creation of two distinct states 1.1 and
1.2. Thus, the recursive expansion of all O;-formulas occurring positively in ¢q, ¢s, @3
will be duplicated for these two states. &

In order to cope with this problem, as done by Giunchiglia and Sebastiani (1996),
we apply some normalization steps to modal atoms with the intent of rewriting as
many as possible syntactically-different but semantically-equivalent modal atoms into
syntactically-identical ones. This can be achieved by a recursive application of some
simple validity-preserving rewriting rules.

Sorting: modal atoms are internally sorted according to some criterion, so that atoms
which are identical modulo reordering are rewritten into the same atom (e.g., 0;(y2V
©1) and O;(p1 V ¢2) are both rewritten into O;(¢1 V ¢2)).

Flattening: the associativity of A and V is exploited and combinations of A’s or V’s
are “flattened” into n-ary A’s or V’s respectively (e.g., Oi(¢1 V (92 V ¢3)) and
0:((¢1 V p2) V 3) are both rewritten into 0;(¢1 V @2 V p3)).

Flattening has also the advantage of reducing the number of novel atoms introduced in the
encoding, as a consequence of the fact noticed in Section 5.3. One possible drawback of
this technique is that it can reduce the sharing of subformulas (e.g., with 0;((¢1 V) Ve3)
and O;((p1V) Veys), the common part is no more shared). However, we have empirically
experienced that this drawback is negligible wrt. the advantages of flattening.

66 Encoding ALC /K (m)-satisfiability into SAT

5.5.3 Box Lifting

As second preprocessing the K,,-formula can also be rewritten by recursively applying
the K,,-validity-preserving “box lifting rules”:

(Orp1 AOrp2) = Op(01 As), (0Op01VoOp02) = —0:(01 Awz). (5.10)

This has the potential benefit of reducing the number of #” formulas, and hence the
number of labels 0.i" to take into account in the expansion of the Def (o, v")’s (5.9). We
call lifting this preprocessing.

Example 5.5.3 (Box lifting). If we apply the rules (5.10) to the formula of Example 5.5.1,
then we have @y, pip = —0O(—A; A—As A—As) A O(—A; A=Ay A—A3z). Consequently,
KmQSAT(QObnﬂlﬂ) is:

1 A<1 bnflife) (1)
2. N (AW gy — (FAQ, oA A-A2n-45)) A A, B(=A1A-A20-45)))) (6)
3. A (7AW o-AA-AA-43)) — DAL (mAA-A2A-As)) (8)
4. N (A, oean-aon-45)) A AL o=An-Asn-45))) = A1, (A A-Aan-43))) (9)
5. A (ﬁA (11, (~AiA-Aon-A3)) — (A, 4y YV Ana, 4V Aaa, ay)) (7)
6. A (Api, an-asn-as) — (CA@L, an A A, a) A AR as)))- (6)

K, 2S5 AT (@unpiipe) is found unsatisfiable directly by BCP on clauses 1. and 2.. Only one
successor state (1.1) is considered. Notice that 3., 4., 5. and 6. are redundant, because
1. and 2. alone are unsatisfiable. ! &

5.5.4 Controlled Box Lifting

One potential drawback of applying the lifting rules is that, by collapsing the formula
(0,1 AOrgs) into O, (1 Aws) and (20,91 V —~0,p2) into =0, (1 A ps), the possibility of
sharing box subformulas in the DAG representation of the input K,,-formula is reduced.

In order to cope with this problem we provide an alternative policy for applying box
lifting, that is, to apply the rules (5.10) only when neither box subformula occurring in
the implicant in (5.10) has multiple occurrences. We call this policy controlled box lifting.

Example 5.5.4 (Controlled Box Lifting). We apply Controlled Boz Lifting to the formula
of Example 5.5.1, then we have o = (0741 V-O(mA3A—A3)) A O-AAO(-AsA
—Aj3) since the rules (5.10) are applied among all the box subformulas except for O—Ay,

n our actual implementation, trivial cases like @unpiin are found to be unsatisfiable directly during the
construction of the DAG representations, so their encoding is never generated.

Optimizations 67

which is shared. It follows that K,,,2S AT (Ypnfeiie) is

L. A(L Ponfelift) (1)
2. N (AL gpnpai) — (A, (GomAiv-o(-Aan-a5)) A A, o-an) A A, o(-Asn-45))) (6)
3. N (An, (romav-o(-A2n-45))) — (FAQ, o041 V AL o(-40a-45)))) (7)
4. N (2AQ, o-ay — A, Ay) (8)
5. A (7AW, o(-asn-a)) — A2, (—Asn-4s))) (8)
6. A ((Au, omap AN 2Ag o-a) = 2Ana,) (9)
7. N ((Ag, oaen-a5)) A DA o-41)) = A, (wAsn-43))) (9)
8. A (A, o-apy N AR, o-An-43)) — Ane,) (9)
9. A (A, o=Aan-a3)) N AR a-asn-43))) = A2, (-Asn-43))) (9)
10. A (Apa, (masn-ap)y — (CA@a, a0 AAna, ay))) (6)
1. A (2Aps, (—asn-as) — (Ane, a0 V Aja, ay)) (7)
12 A (Aps, (masn-a)) — (MAn2, a0 A Ans, as))) (6)

K28 AT (@pngaipe) is found unsatisfiable directly by BCP on clauses 1., 2. and 3.. Notice
that the unit propagation of A g-4,) and Aq g-a,a-4,)) from 2. causes the implicate
disjunction in 3. to be false. &

5.5.5 On-the-fly Boolean Simplification and Truth Propagation

A first straightforward on-the-fly optimization is that of applying recursively the standard
rewriting rules for the Boolean simplification of the formula like, e.g.,

(0,0) Ao,) = (0,¢), (0,0) V{0, p) = (0, ¢),
(o,01) N0, (01 V @2)) = (0,1), (0,01) V(0,(p1 Ap2)) = (0,¢1),
<07 90> A _'<U> 90> - <U7 J—>7 <Uv 90> v _'< > = <U7 T>>

and for the propagation of truth/falsehood through Boolean operators like, e.g.,

—(o, L) — (o, T), —(o,T) = (o, 1),

(0,0) N0, T) = (0,¢), (o,9)N(o, 1) = (0,1),

<0, ey Vo, T) = {0, T), (o9)Visl) = (0,¢),
Example 5.5.5. If we consider the K,,-formula @y, = —0O(—A1 A Az A —A3) A
O(—=A; A=Ay A = A3z) of Example 5.5.3 and we apply the Boolean simplification rule
(0,0) N—(o,¢) = (o, 1), then (0, Ypnsup) is simplified into (o, L). &

One important subcase of on-the-fly Boolean simplification avoids the useless encoding
of incompatible 7" and v" formulas. In BNF| in fact, the same subformula 0,1 may occur
in the same state o both positively and negatively (like 7" = =0, and v" = O,%). If so,
K,,,2S AT labels both those occurrences of 0,1 with the same Boolean atom A, 5,4, and
produces recursively two distinct subsets of clauses in the encoding, by applying (5.8) to

68 Encoding ALC /K (m)-satisfiability into SAT

0,7 and (5.9) to O, respectively. However, the latter step (5.9) generates a valid clause
(A, oy N Ao, o,0)) — Ao, vy, S0 that we can avoid generating it. Consequently, if
Ao,) 1o more occurs in the formula, then Def(0.i", 1) should not be generated, as
there is no more need of defining (0.1",v). 12

Example 5.5.6. If we apply this observation in the construction of the formulas of
Examples 5.5.1 and 5.5.4, we have the following facts:

— In the formula K,,2SAT (pp,s) of Example 5.5.1, clause 6. is valid and thus it is
dropped.

— In the formula K,,2S AT (@pnfair) of Example 5.5.4, both valid clauses 6. and 9. are
dropped, so that 12. is not generated. &

Hereafter we assume that on-the-fly Boolean simplification is applied also in combination
with the techniques described in the next sections.

5.5.6 On-the-fly Truth Propagation Through Modal Operators

Truth and falsehood —which can derive by the application of the techniques in Sec-
tion 5.5.5, Section 5.5.7 and Section 5.5.8— may be propagated on-the-fly also though
modal operators. First, for every o, both positive and negative instances of (o, 0, T) can
be safely simplified by applying the rewriting rule (o, 0, T) = (o, T).

Second, we notice the following fact. When we have a positive occurrence of (o, =0, L)
for some o (we suppose wlog. that we have only that 7"-formula for o), '3 by definition
of (5.8) and (5.9) we have

Def(o, ~0,1) = (L, ~0,1) = Agyr, 1)) A Def (057, T), (
Def(o, 0¥) = (Lo, o) N Lio, ~0,1)) = Liojr, vy) A Def(0.3",) (

for some new label ¢.7” and for every O,% occurring positively in o. Def(o, —0O,L1)
reduces to T because both A, ;- 1) and Def(o.5", T) reduce to T. If at least another
distinct m-formula —0,.¢ occurs positively in o, however, there is no need for the o.5" label
in (5.11) and (5.12) to be a new label, and we can re-use instead the label ¢.i" introduced
in the expansion of Def(o, —0,), as follows:

Def(o, ~0,¢) = (L, -0,4) = Lio.ir, ~)) A Def (01", —p). (5.13)

)

5.1
5.12)

Thus (5.11) is dropped and, for every (o, 0,%) occurring positively, we write:

Def(a, D,«@D) = ((L(U7) N L<07 —G,-L)) — L<,m-r7 w)) AN Def(a.i", 1/1) (514)

instead of (5.12). (Notice the label 0.i" introduced in (5.13) rather than the label o.5" of
(5.11).)

12Here the “if” is due to the fact that it may be the case that A(o.ir,) is generated anyway from the expansion
of some other subformula, like, e.g., O, (1) V ¢). If this is the case, Def(0.i", 1)) must be generated anyway.
13E.g., =0, L may result from applying the steps of Section 5.5.1 and of Section 5.5.5 to =0, (0, A1 A OrmA7).

Optimizations 69

This is motivated by the fact that Def (o, —0O,.L) forces the existence of at least one
successor of ¢ but imposes no constraints on which formulas should hold there, so that
we can use some other already-defined successor state, if any. This fact has the important
benefit of eliminating useless successor states from the encoding.

Example 5.5.7. Let ¢ be the BNF K-formula:
(_|A1 V _‘DAQ) A (Al V ﬂ|:|J_) A (_|A1 V Ag) N (ﬁAl vV _|A3) VAN (Al V |:|_'A4) A DA4.

¢ is K-inconsistent, because the only possible assignment is {—A;,~0O1, 0-Ay, OAL},
which is K-inconsistent. K,,,2SAT(p) is encoded as follows:

1. A<17 ©) (1)
2. N (A, g = (A, Cawv-oa)) AN A, (av-oL) A A, Gavag) A
A, (ayvo-a0) N Ag, oag)) (6)
3. A (A, arv-oaz) — (DA, 4y V A, 0ay) (")
4. N (Ap, (av-ou) — (Aa, an VA, o)) (7)
5. N (Aq, (~avay)y — (CA@ 4y VA, ay)) (7)
6. A (An, ~av-ay)) — (CAQ 4y VAR ay)) (7)
7. N (Au, (avo-ay) — (Aa, an V Aa, o-ay)) (7)
8. A (An, o4 — TAna, a)) (8)
9. A ((Au, oman A AR payy) = A, ay) (9)
10. A (A, o4y A AN nasy) — A, ag) (9)
11. A (ﬁA(L oLy — " A, J.)) (®)
12 AN ((Ag, gmag A A o) = ~Apa, ay) (9)
3. A ((Ag, oan A A, o) = Apa,) (9)

Clause 11. is then simplified into T. (In a practical implementation it is not even gener-
ated.) Notice that in clauses 11., 12. and 13. it is used the label 1.1 of clauses 8., 9. and
10. rather than a new label 1.2. Thus, only one successor label is generated.

When DPLL is run on K,,2SAT (), by BCP 1. and 2. are immediately satisfied
and the implicants are removed from 3., 4., 5., 6.. Thanks to 5. and 6., A, 4,) can be
assigned only to false, which causes 3. to be satisfied and forces the assignment of the
literals = A, o1y, A1, o-a,) by BCP on 3. and 7. and hence of = A 1, 1y, =A(i1, a,) and
A, a,y by BCP on 12. and 13., causing a contradiction. <&

It is worth noticing that (5.14) is strictly necessary for the correctness of the encoding
even when another m-formula occurs in 0. (E.g., in Example 5.5.7, without 12. and 13.
the formula K,,25AT () would become satisfiable because A, na,) could be safely be
assigned to true by DPLL, which would satisfy 8., 9. and 10..)

Hereafter we assume that this technique is applied also in combination with the tech-
niques described in Section 5.5.5 and in the next sections.

5.5.7 On-the-fly Pure-Literal Reduction

Another technique, evolved from that proposed by Pan and Vardi (2003), applies Pure-
Literal Reduction (PLR) on-the-fly during the construction of K,,25AT(¢). When for a

70 Encoding ALC /K (m)-satisfiability into SAT

label o all the clauses containing atoms in the form A,) have been generated, if some of
them occurs only positively [resp. negatively|, then it can be safely assigned to true [resp.
to false], and hence the clauses containing A, 4 can be dropped. 14 As a consequence,
some other atom A, 4 can become pure, so that the process is repeated until a fixpoint
is reached.

Example 5.5.8. Consider the formula ¢y, of Example 5.5.1. During the construction
of K, 2SAT (wpns), after 1.-8. are generated, no more clause containing atoms in the
form A 1, 4y is to be generated. Then we notice that Ay, 4,) and Aq g, 4,) occur only
negatively, so that they can be safely assigned to false. Therefore, 7. and 8. can be
safely dropped. Same discourse applies lately to Ao 4,y and 9.. The resulting formula is
found inconsistent by BCP. (In fact, notice from Example 5.5.1 that the atoms A 1, a,),
A1, ag), and Ao 4,y play no role in the unsatisfiability of K, 25 AT (¢pns).) &

We remark the differences between PLR and the Pure-Literal Reduction technique
proposed by Pan and Vardi (2003). In KBDD (Pan et al., 2002; Pan & Vardi, 2003),
the Pure-Literal Reduction is a preprocessing step which is applied to the input modal
formula, either at global level (i.e. looking for pure-polarity primitive propositions for
the whole formula) or, more effectively, at different modal depths (i.e. looking for pure-
polarity primitive propositions for the subformulas at the same nesting level of modal
operators).

Our technique is much more fine-grained, as PLR is applied on-the-fly with a single-
state granularity, obtaining a much stronger reduction effect.

Example 5.5.9. Consider again the BNF K, -formula ¢,s discussed in Examples 5.5.1
and 5.5.8: Ponf = (_||:|_|A1 V _||:|<_|A2 N _|A3>) N |:|_|A1 N |:|_|A2 N |:|_|A3. It is
immediate to see that all primitive propositions Ay, Ay, A3 occur at every modal depth
with both polarities, so that the technique of Pan and Vardi (2003) produces no effect on
this formula. O

5.5.8 On-the-fly Boolean Constraint Propagation

One major problem of the basic encoding of Definition 1 (Section 5.3) is that it is “purely-
syntactic”, that is, it does not consider the possible truth values of the subformulas, and
the effect of their propagation through the Boolean and modal connectives. In particular,
K,2S AT applies (5.8) [resp. (5.9)] to every m-subformula [resp. v-subformula], regardless
the fact that the truth values which can be deterministically assigned to the labeled
subformulas of (1,) may allow for dropping some labeled 7-/v-subformulas, and thus
prevent the need of encoding them.

One solution to this problem is that of applying Boolean Constraint Propagation
(BCP) on-the-fly during the construction of K,,2SAT(y), starting from the fact that
Ap,) must be true. If a contradiction is found, then K,,2SAT(p) is unsatisfiable, so

110 our actual implementation this reduction is performed directly within an intermediate data structure, so
that these clauses are never generated.

Optimizations 71

that the formula is not expanded any further, and the encoder returns the formula “1”. 1°
When BCP allows for dropping one implication in (5.6)-(5.9) without assigning some of its
implicate literals, namely L, y,), then (o, %;) needs not to be defined, so that Def (o, ;)
must not be expanded. '® Importantly, dropping Def (o, 7"7) for some w-formula (o, 7")
prevents generating the label ¢.5" (5.8) and all its successor labels ¢.5".0" (corresponding
to the subtree of states rooted in ¢.5"), so that all the corresponding labeled subformulas
are not encoded.

Example 5.5.10. Consider Example 5.5.1, and suppose we apply on-the-fly BCP.
During the construction of 1., 2. and 3. in K,25AT (gpy), the atoms A, 40,
A1, (~o-Av-0(-Asn-43)), A, o-an), A, o-a,) and Ay g4, are deterministically as-
signed to true by BCP. This causes the removal from 3. of the first-implied disjunct
—A(1, o-a,), S0 that there is no need to generate Def(1, -O0-A;), and hence label 1.1. is
not defined and 4. is not generated. While building 5., A1 2, (~4,1-45)), is unit-propagated.
Aslabel 1.1. is not defined, 6., 7. and 8. are not generated. Then during the construction
of 5., 9., 10., 11. and 12., by applying BCP a contradiction is found, so that K,,2SAT ()
is L.

An analogous situation happens with @, in Example 5.5.3: while building 1. and
2. a contradiction is found by BCP, s.t. K,,25AT returns 1 without expanding the
formula any further. Same discourse holds for g, fqr in Example 5.5.4: while building 1.,
2. and 3. a contradiction is found by BCP, s.t. K,,2SAT returns | without expanding
the formula any further. &

5.5.9 Soundness and Completeness of the Proposed Optimizations

In this section we briefly discuss all the optimizations presented in the previous sections
(from Section 5.5.1 to Section 5.5.8) showing that they can be safely applied keeping our
encoding sound and complete. Summarizing, we have introduced:

Preprocessings transformations. Applied on the input modal formula before the en-
coding:

— Pre-conversion into BNF

— Normalization of Modal Atoms
— Box Lifting

— Controlled Box Lifting

On-the-fly simplifications. Applied to the SAT formula during the encoding;:

— On-the-fly Boolean Simplification and Truth Propagation

15For the sake of compatibility with standard SAT solvers, our actual implementation returns the formula
Al N AL

"®Here we make the same consideration as in Footnote 12: if L, ; 4, is generated also from the expansion of
some other subformula, (e.g., O-(% V ¢)), then (another instance of) Def (0.7, 1) must be generated anyway.

72 Encoding ALC /K (m)-satisfiability into SAT

— On-the-fly Truth Propagation through Modal Operators
— On-the-fly Pure-Literal Reduction
— On-the-fly Boolean Constraint Propagation

First, notice that all the Preprocessing optimizations consist simply in equivalence
or validity-preserving transformations on the input modal formula (often performing
normalization operations) so that the satisfiability of the formula is unchanged, and it
can not affect the soundness and completeness of our approach.

Second, On-the-fly simplifications apply on the encoded SAT formula, simplifying it
directly during the building process. Thus, they don’t affect the soundness and complete-
ness of our encoding as far as such applied simplifications preserve the satisfiability of the
encoded SAT formula. In this sense, soundness and completeness are trivially preserved
by On-the-fly Boolean Simplification and Truth Propagation, On-the-fly Pure-Literal Re-
duction and On-the-fly Boolean Constraint Propagation, which apply well-known safe
transformations in the SAT encoding. Notice, in particular, the following facts:

— The propositional Pure-Literal Rule (PLR) (Davis et al., 1962) is a well-known sound
and complete propositional reduction stating that: when one proposition occurs only
positively [resp. negatively] in the formula, it can be safely assigned to true [resp.
false]. Thus On-the-fly Pure-Literal Reduction can be safely applied on our under-
encoding SAT formula.

— Boolean Constraint Propagation (BCP) is the iterative application of unit-
propagation that is the well-known (sound and complete) reduction at the base
of every modern SAT solver. Thus On-the-fly Boolean Constraint Propagation pre-
serves the soundness and completeness of our encoding, since the effect of applying
On-the-fly BCP is the same of applying traditional BCP on the whole SAT formula
generated by our basic encoding.

Moreover, On-the-fly Truth Propagation through Modal Operators is a trivial and in-
tuitive application of the semantic of modal operators combined with truth values.

However, alternatively, the soundness and completeness of all these On-the-fly op-
timizations can be trivially proved under a modal perspective by mean of reductions to
Single Step Tableaux (Massacci, 2000) similarly to what done by Vescovi (2006) in proving
the soundness and completeness of the basic K,,25AT encoding (we remark in particu-
lar that a variant of the modal Pure-Literal Reduction has been proved to be sound and
completed by Pan and Vardi (2003), and such proof can be easily extended to meet our
more specific case).

5.5.10 A Paradigmatic Example: Halpern & Moses Branching Formulas.

Among all optimizations described in this Section 5.5, on-the-fly BCP is by far the most
effective. In order to better understand this fact, we consider as a paradigmatic example

Optimizations 73

the branching formulas ¢ by Halpern and Moses (1992, 1995) (also called “k_branch n”
in the set of benchmark formulas proposed by Heuerding and Schwendimann, 1996) and
their unsatisfiable version (called “k_branch p” in the above-mentioned benchmark suite).

Given a single modality O, an integer parameter h, and the primitive propositions

Dy, ..., Dpi1, Py, ..., Py, the formulas ¢ are defined as follows: 7
h
K def i . .
o =Dy N =Dy A /\ O*(depth A determined A branching), (5.15)
i=0
h+1
depth d:mc /\(Dz - Di—l); (516)
i=1

determined 2 & (Di - < Eﬁg:g%:ﬁgi ")) (5.17)

h—1
rancting N (98- = (SN o 4),

=0

(5.18)

A conjunction of the formulas depth, determined and branching is repeated at every
nesting level of modal operators (i.e. at every depth): depth captures the relation between
the D;’s at every level; determined states that, if P; is true [false] in a state at depth > i,
then it is true [false] in all the successor states of depth > i; branching states that, for
every node at depth ¢, it is possible to find two successor states at depth ¢ + 1 such that
P,1y is true in one and false in the other. For each value of the parameter h, p& is
K-satisfiable, and every Kripke model M that satisfies it has at least 2"*! — 1 states. In
fact, o is build in such a way to force the construction of a binary-tree Kripke model
of depth h + 1, each of whose leaves encodes a distinct truth assignment to the primitive
propositions P, ..., P,, whilst each D; is true in all and only the states occurring at a
depth > 7 in the tree (and thus denotes the level of nesting).

The unsatisfiable counterpart formulas proposed by Heuerding and Schwendimann
(1996) (whose negations are the valid formulas called k branch p in the previously-
mentioned benchmark suite, which are exposed in more details in Section 5.6.1) are
obtained by conjoining to (5.15) the formula:

h
O°P 24

(5.19)

(where |z] is the integer part of) which forces the atom P, 1141 to be true in all depth-
h states of the candidate Kripke model, which is incompatible with the fact that the
remaining specifications say that it has to be false in half depth-/ states. '8

"For the sake of better readability, here we adopt the description given by Halpern and Moses (1992) without
converting the formulas into BNF. This fact does not affect the discussion.

8 Heuerding and Schwendimann do not explain the choice of the index “L%j + 17. We understand that also
other choices would have done the job.

74 Encoding ALC /K (m)-satisfiability into SAT

These formulas are very pathological for many approaches (Giunchiglia & Sebastiani,
2000; Giunchiglia, Giunchiglia, Sebastiani, & Tacchella, 2000; Horrocks et al., 2000).
In particular, before introducing on-the-fly BCP, they used to be the pet hate of our
K,,2S AT approach, as they caused the generation of huge Boolean formulas. In fact,
due to branching (5.18), pX contains 2h O-formulas (i.e., m-formulas) at every depth.
Therefore, the K,,2SAT encoder of Section 5.3 has to consider 1 + 2h + (2h)* + ... +
(2h)"*1 = ((2R)"*2 — 1)/(2h — 1) distinct labels, which is about h"**! times the number
of those labeling the states which are actually needed. (None of the optimizations of
Sections 5.5.1-5.5.7 is of any help with these formulas, because neither BNF encoding nor
atom normalization causes any sharing of subformulas, the formulas are already in lifted
form, and no literal occurs pure. 1?)

This pathological behavior can be mostly overcome by applying on-the-fly-BCP, be-
cause some truth values can be deterministically assigned to some subformulas of X by
on-the-fly-BCP, which prevent encoding some or even most 0/<-subformulas.

In fact, consider the branching and determined formulas occurring in ¢ at a generic
depth d € {0...h}, which determine the states at level d in the tree. As in these states
Dy, ..., Dy are forced to be true and Dy, ..., Dyyq are forced to be false, then all but the
d-th conjunct in branching (all conjuncts if d = h) are forced to be true and thus they
could be dropped. Therefore, only 2 $-formulas per non-leaf level could be considered
instead, causing the generation of 2"+ — 1 labels overall. Similarly, in all states at level
d the last h — d conjuncts in determined are forced to be true and could be dropped,
reducing significantly the number of O-formulas to be considered.

It is easy to see that this is exactly what happens by applying on-the-fly-BCP. In fact,
suppose that the construction of K,,2SAT(pX) has reached depth d (that is, the point
where for every state o at level d, the Def(o, a)’s and Def(o, ()’s are expanded but
no Def(o, m) and Def (o, v) is expanded yet). Then, BCP deterministically assigns true
to the literals Ly py), ..., L(s, D,y and false to L, p,,), -y Lo, D)), Which removes all
but one conjuncts in branching, so that only two Def (o, m)’s out of 2h ones are actually
expanded; similarly, the last h — d conjuncts in determined are removed, so that the
corresponding Def (o, v)’s are not expanded.

As far as the unsatisfiable version K,,2SAT (¢ A DhPLg |+1) is concerned, when the
expansion reaches depth h, thanks to (5.19), L, Py is generated and deterministically

assigned to true by BCP for every depth-h label o; thanks to determined and branching,
BCP assigns all literals L, p)), ..., L(s, p,) deterministically, so that L, B %H1> is assigned
to false for 50% of the depth-h labels o. This causes a contradiction, so that the encoder
stops the expansion and returns L.

Figure 5.1 shows the growth in size and the CPU time required to encode and solve
K 2SAT(0F) (1st row) and K,,2SAT (oK A DhPL%JH) (2nd row) wrt. the parameter
h, for eight combinations of the following options of the encoder: with and without box-
lifting, with and without on-the-fly PLR, with and without on-the-fly BCP. (Notice the

9N\ore precisely, only one literal, =Dy, 1, occurs pure in branching, but assigning it plays no role in simplifying
the formula.

Optimizations 75
1e+08 1e+08 . 1000
¥ / ¥ //
/ BNF-lift-plr - ’ | L { BNF-lift-plr - | k3
le+o7 BNF-nolift-plr // 1le+07 /BNF-nolift-plr < /
/ / { p | |
A p, 100
1e+06 . / R 1e+06 | _ / 1
* BNF-lit —5— / BNF-lift —=— /
BNF-nolift -/ BNF-nolift —e—"
f s / BNF-lift —5— 7
100000 /" BNF-lift-bcp ——--~ g 100000 / BNF-lift-bcp —---- g BNF-nolift e 7
//BNF-nolift-bcp -~ /" BNF-nolift-bcp -~ - 10 BNF-lift-plr - i 1
/. BNF-lift-plr-bcp -~~~ #" BNF-lift-plr-bcp -~ - - BNF-nolift-plr < i
/ BNF-nolift-pir-bep -~ / BNF-nolift-plr-bcp - - Y
10000 / 1 10000 / E /
/ /
/ yd
7/ //
/ / |
1000 S/ B 1000 / 1
A
100 B 100t/ 1
;
BNF-lift-bcp -~
10 B 10 g BNF-nolift-bcp - -
BNF-lift-plr-bcp - - - - -
BNF-nolift-plr-bcp —--~
1 . . . 1k
5 10 15 20 5 10 15 20 10 15 20
(a) k-branch.n, var# (b) k-branch n, clause# (¢) k-branch.n, cpu time
1le+08 1le+08 T 1000
¥
* /
| BNF-lift-plr -] L | BNF-lift-plr -]
1e+07 ;’BNF-noIift-pIr >3 le+07 /BNF-nolift-plr <
{ { 100 | ,
le+06 B le+06 B
BNF-lift —5— BNF-lift —5—
BNF-nolift & BNF-nolift & BNF-lift ——F—
BNF-nolift -
100000 {1 100000 1 BNF-lift-plr -
10 | BNF-nolift-plr < 1
&
10000 B 10000 B
1000 1 1000 , Vi]
100 B 100 B
BNF-lift-bcp ——- -~ BNF-lift-bcp -~~~ /" BNF-ift-bcp -~~~
10 BNF-nolift-bcp -~ 1 10 F BNF-nolift-bcp - 1 BNF-nolift-bcp -
BNF-lift-plr-bcp - BNF-lift-plr-bcp -~ - -~ BNF-lift-plr-bcp -~~~
BNF-nolift-plr-bcp -~ BNF-nolift-plr-bcp -~ +~ BNF-nolift-plr-bcp -~
1 .)) 1k
5 10 15 20 5 10 15 20 10 15 20

(d) k-branch_p, var#

(e) k-branch_p, clause#

(f) kx_branch_p, cpu time

Figure 5.1: Empirical analysis of K,,,25 AT on Halpern & Moses formulas wrt. the depth parame-

ter h, for different options of the encoder. 1st row: k_branch n, corresponding to K,,2.5 AT((th)

formulas (satisfiable); 2nd row: k_branch_p, corresponding to KmZSAT(cth ADOMP,

|2]+1

), for-

mulas (unsatisfiable). Left: number of Boolean variables; center: number of clauses; right: total

CPU time requested to encoding+solving (where the solving step has been performed through
RSAT). See Section 5.6 for more technical details.

76 Encoding ALC /K (m)-satisfiability into SAT

log scale of the y axis.) In Figure 5.1(d) the plots of the four versions “-xxx-bcp” (with
on-the-fly BCP) coincide with the line of value 1 (i.e, one variable) and in Figure 5.1(e)
they coincide with an horizontal line of value 2 (i.e, two clauses), corresponding to the
fact that the 1-variable/2-clause formula A; A =A; is returned (see Footnote 15).

We notice a few facts. First, for both formulas, the eight plots always collapse into two
groups of overlapping plots, representing the four variants with and without on-the-fly
BCP respectively. This shows that box-lifting and on-the-fly PLR are almost irrelevant
in the encoding of these formulas, causing just little variations in the time required by the
encoder (Figures 5.1(c) and 5.1(f)); notice that enabling on-the-fly PLR alone permits
to encode (but not to solve) only one problem more wrt. the versions without both on-
the-fly PLR and BCP. Second, the four versions with on-the-fly-BCP always outperform
of several orders magnitude these without this option, in terms of both size of encoded
formulas and of CPU time required to encode and solve them. In particular, in the case
of the unsatisfiable variant (Figure 5.1, second row) the encoder returns the L formula,
so that no actual work is required to the SAT solver (the plot of Figure 5.1(f) refers only
to encoding time).

5.6 Empirical Evaluation

In order to verify empirically the effectiveness of this approach, we have performed a
very-extensive empirical test session on about 14,000 K,/ ALC formulas. We have imple-
mented the encoder K,,,25AT in C++, with some flags corresponding to the optimizations
exposed in the previous section: (i) NNF/BNF, performing a pre-conversion into NNF/BNF
before the encoding; (ii) 1ift/ctrl.lift/nolift, performing respectively Box Lifting,
Controlled Box Lifting or no Box Lifting before the encoding; (iii) plr if on-the-fly Pure
Literal Reduction is performed and (iv) bep if on-the-fly Boolean Constraint Propagation
is performed. The techniques introduced in Section 5.5.2, Section 5.5.5 and Section 5.5.6
are hardwired in the encoder. Moreover, as pre-conversion into BNF almost always pro-
duces smaller formulas than NNF, we have set the BNF flag as a default.

In combination with K,,2S5AT we have tried several SAT solvers on our encoded
formulas (including ZCHAFF 2004.11.15, SIEGE v4, BERKMIN 5.6.1, MINISAT v1.13,
SAT-ELITE v1.0, SAT-ELITE GTI 2005 submission 2, MINISAT 2.0 061208 and
RSAT 1.03). After a preliminary evaluation and further intensive experiments we have
selected RSAT 1.03 (Pipatsrisawat & Darwiche, 2006), because it produced the best
overall performances on our benchmark suites (although the performance gaps wrt. other
SAT tools, e.g. MINISAT 2.0, were not dramatic).

We have downloaded the available versions of the state-of-the-art tools for K,,-

20Tn the preliminary evaluation of the available SAT solvers we have also tried SAT-ELITE as a preprocessor to
reduce the size of the SAT formula generated by K,,2SAT without the bcp option before to solve it. However,
even if the preprocessing can signinificantly reduce the size of the formula, it has turned out that this preprocessing
is too time-expensive and that the overall time spent for preprocessing and then solving the reduced problem is
higher than that solving directly the original encoded SAT formula.

Empirical Evaluation 77

satisfiability. After an empirical evaluation 2! we have selected RACER 1-7-24 (Haarslev
& Moeller, 2001) and *SAT 1.3 (Tacchella, 1999) as the best representatives of the
tableaux/DPLL-based tools, MspAsS v 1.0.0t.1.3 (Hustadt & Schmidt, 1999; Hustadt
et al., 1999) 22 as the best representative of the FOL-encoding approach, KBDD (unique
version) (Pan et al., 2002; Pan & Vardi, 2003) 23 as the representative of the automata-
theoretic approach. No representative of the CSP-based and of the inverse method ap-
proaches could be used. * Notice that all these tools but RACER are experimental tools,
as far as K,,2SAT which is a prototype, and many of them (e.g. *SAT and KBDD) are
no longer maintained.

Finally, as representative of the QBF-encoding approach, we have selected the K-QBF
translator (Pan & Vardi, 2003) combined with the sKi1zzo version 0.8.2 QBF solver
(Benedetti, 2005), which turned out to be by far 2> the best QBF solver on our bench-
marks among the freely-available QBF solvers from the QBF2006 competition (Narizzano,
Pulina, & Tacchella, 2006). (In our evaluation we have considered the tools : 2CLSQ,
SQBF, PREQUANTOR—i.e. PREQUEL +QUANTOR— QUANTOR 2.11, and SEMPROP
010604. In Figure 5.11(b) of the appendix Section 5.9, we plot the results of this com-
parison.)2

All tests presented in this section have been performed on a two-processor Intel Xeon
3.0GHz computer, with 1 MByte Cache each processor, 4 GByte RAM, with Red Hat
Linux 3.0 Enterprise Server, where four processes can run in parallel. When reporting the
results for one K,,25AT +RSAT version, the CPU times reported are the sums of both

21 As we did for the selection of the SAT solver, in order to select the tools to be used in the empirical evaluation,
we have performed a preliminary evaluation on the smaller benchmark suites (i.e. the LWB and, sometimes, the
TANCS 2000 ones; see later). Importantly, from this preliminary evaluation RACER turned out to be definitely
more efficient than FACT++4-, being able to solve more problems in less time. Also, we repeated this preliminary
evaluation with a newer version of FACT++ (v1.2.3, March 5th, 2009) and the same version of RACER used
in this first part of our work. In this evaluation RACER solves ten more problems than FACT++ on the LWB
benchmark, and over than one hundred of problems more than FACT++ on the whole TANCS 2000 suite. Also
on O,,-CNF random problems RACER outperforms FACT++. (We include in the appendix Section 5.9 the plots
of this comparison between RACER and FACT++. See Figures 5.10 and 5.11(a).)

22We have run MsPASS with the options -EMLTranslation=2 -EMLFuncNary=1 -Sorts=0 -CNFOptSkolem=0
-CNFStrSkolem=0 -Select=2 -Split=-1 -DocProof=0 -PProblem=0 -PKept=0 -PGiven=0, which are suggested
for K,,-formulas in the MspAass README file. We have also tried other options, but the former gave the best
performances.

ZKBDD has been recompiled to be run with an increased internal memory bound of 1 GB.

24 At the moment K21 is not freely available, and we failed in the attempt of obtaining it from the authors.
KCSP is a prolog piece of software, which is difficult to compare in performances wrt. other optimized tools on
a common platform; moreover, KCSP is no more maintained since 2005, and it is not competitive wrt. state-of-
the-art tools (Brand, 2008). Other tools like LEANK, OKE, LWB, KRIS are not competitive with the ones listed
above (Horrocks et al., 2000). KSAT (Giunchiglia & Sebastiani, 1996, 2000; Giunchiglia et al., 2000) has been
reimplemented into *SAT.

25Unlike with the choice of SAT solver, the performance gaps from the best choice and the others were very
significant: e.g., in the LWB benchmark (see later), sKi1zzo was able to solve nearly 90 problems more than its
best QBF competitor.

26 At the moment of this empirical evaluation many reasoners like PELLET or HERMIT were not yet available,
as far as more recent QBF and SAT solvers aside from those above mentioned or newer versions of some above
listed tools. The results of this evaluation, in fact, have been previously included in the work of Sebastiani and
Vescovi (2009a).

78 Encoding ALC /K (m)-satisfiability into SAT

the encoding and RSAT solving times. When reporting the results for K-QBF +sKizzo,
the CPU times reported are only due to SKi1zz0 because the time spent by the K-QBF
converter is negligible.

We anticipate that, for all formulas of all benchmark suites, all tools under test —i.e.
all the variants of K,,25AT +RSAT and all the state-of-the-art K,,-satisfiability solvers—
agreed on the satisfiability /unsatisfiability result when terminating within the timeout.

Remark 1. Due to the big number of empirical tests performed and to the huge amount
of data plotted, and due to limitations in size, and in order to to make the plots clearly
distinguishable in the figures, we have limited the number of plots included in the following
part, considering only the most meaningful ones and those regarding the most challenging
benchmark problems faced. For the sake of the reader’s convenience, however, we may
include in our considerations also thes results measured on the easier problems here not
plotted when discussing the empirical evaluation.

5.6.1 Test Description

We have performed our empirical evaluation on three different well-known benchmarks
suites of K,/ ALC problems: the LWB (Heuerding & Schwendimann, 1996), the random
O,-CNF (Horrocks et al., 2000; Patel-Schneider & Sebastiani, 2003) and the TANCS
2000 (Massacci & Donini, 2000) benchmark suites. We are not aware of any other publicly-
available benchmark suite on K,/ ALC-satisfiability from the literature. These three
groups of benchmark formulas allow us to test the effectiveness of our approach on a large
number of problems of various sizes, depths, hardness and characteristics, for a total
amount of about 14,000 formulas.

In particular, these benchmark formulas allow us to fairly evaluate the different tools
both on the modal component and on the Boolean component of reasoning which are
intrinsic in the K,,-satisfiability problem, as we discuss later in Section 5.6.4.

In the following we describe these three benchmark suites.

The LWB Benchmark Suite

As a first group of benchmark formulas we used the LWB benchmark suite used in a
comparison at Tableaux’98 (Heuerding & Schwendimann, 1996). It consists of 9 classes of
parametrized formulas (each in two versions, provable “_p” or not-provable “n” 27); for
a total amount of 378 formulas. The parameter allows for creating formulas of increasing
size and difficulty.

The benchmark methodology is to test formulas from each class, in increasing difficulty,
until one formula cannot be solved within a given timeout, 1000 seconds in our tests. 2
The result from this class is the parameter’s value of the largest (and hardest) formula

that can be solved within the time limit. The parameter ranges only from 1 to 21 so that,

4

2"Since all tools check K,,-(un)satisfiability, all formulas are negated, so that the negations of the provable
formulas are checked to be unsatisfiable, whilst the negation of the other formulas are checked to be satisfiable.
Z8We also set a 1 GB file-size limit for the encoding produced by K,,,2SAT.

Empirical Evaluation 79

if a system can solve all 21 instances of a class, the result is given as 21. For a discussion
on this benchmark suite, we refer the reader to the work of Heuerding and Schwendimann
(1996) and of Horrocks et al. (2000).

The Random 0O,,-CNF Benchmark Suite

As a second group of benchmark formulas, we have selected the random 0,,-CNF testbed
described by Horrocks et al. (2000), and Patel-Schneider and Sebastiani (2003). This is a
generalization of the well-known random k-SAT test methods, and is the final result of a
long discussion in the communities of modal and description logics on how to to obtain
significant and flawless random benchmarks for modal/description logics (Giunchiglia &
Sebastiani, 1996; Hustadt & Schmidt, 1999; Giunchiglia et al., 2000; Horrocks et al., 2000;
Patel-Schneider & Sebastiani, 2003).

In the O,,-CNF test methodology, a 0,,-CNF formula is randomly generated according
to the following parameters:

— the (maximum) modal depth d;

— the number of top-level clauses L;

— the number of literal per clause clauses k;

— the number of distinct propositional variables N;
— the number of distinct box symbols m;

— the percentage p of purely-propositional literals in clauses occurring at depth < d,
s.t. each clause of length k contains on average p-k randomly-picked Boolean literals
and k — p - k randomly-generated modal literals 00,1, —=0,1. 2°

(We refer the reader to the works of Horrocks et al., 2000, and Patel-Schneider & Sebas-
tiani, 2003 for a more detailed description.)

A typical problem set is characterized by fixed values of d, k, N, m, and p: L is
varied in such a way as to empirically cover the “100% satisfiable / 100% unsatisfiable”
transition. In other words, many problems with the same values of d, k, N, m, and p but
an increasing number of clauses L are generated, starting from really small, typically sat-
isfiable problems (i.e. with a probability of generating a satisfiable problem near to one)
to huge problems, where the increasing interactions among the numerous clauses typi-
cally leads to unsatisfiable problems (i.e. it makes the probability of generating satisfiable
problems converging to zero). Then, for each tuple of the five values in a problem set, a
certain number of 0,,-CNF formulas are randomly generated, and the resulting formulas
are given in the input to the procedure under test, with a maximum time bound. The
fraction of formulas which were solved within a given timeout, and the median/percentile

2*More precisely, the number of Boolean literals in a clause is |p- k| (resp. [p-k]) with probability [p-k] —p-k
(resp. 1 —([p-k] —p-k)). Notice that typically the smaller is p, the harder is the problem (Horrocks et al., 2000;
Patel-Schneider & Sebastiani, 2003).

80 Encoding ALC /K (m)-satisfiability into SAT

values of CPU times are plotted against the ratio L/N. Also, the fraction of satisfi-
able/unsatisfiable formulas is plotted for a better understanding.

Following the methodology proposed by Horrocks et al. (2000), and by Patel-Schneider
and Sebastiani (2003), we have fixed m = 1, kK = 3 and 100 samples per point in all tests,
and we have selected two groups: an “easier” one, with d = 1, p = 0.5, N =6,7,8,9,
L/N = 10..60, and a “harder” one, with d = 2, p = 0.6,0.5, N = 3,4, L/N = 30..150
with p = 0.6 and L/N = 50..140 with p = 0.5, varying the L/N ratio in steps of 5, for a
total amount of 13,200 formulas.

In each test, we imposed a timeout of 500 seconds per sample 3 and we calcu-
lated the number of samples which were solved within the timeout, and the 50%th
and 90%th percentiles of CPU time. 3 1In order to correlate the performances with
the (un)satisfiability of the sample formulas, in the background of each plot we also plot
the satisfiable/unsatisfiable ratio.

The TANCS 2000 Benchmark Suite

Finally, as a third group of benchmark formulas, we used the MODAL PSPACE division
benchmark suite used in the comparison at TANCS 2000 (Massacci & Donini, 2000). It
contains both satisfiable and unsatisfiable formulas, with scalable hardness. In this bench-
mark suite, which we call TANCS 2000, the formulas are constructed by translating QBF
formulas into K using three translation schemas, namely the Schmidt-Schauss-Smolka
translation (240 problems with many different depths, from 19 to 112), the Ladner trans-
lation (240 problems, again with depths in the same range 19 — 112), and the Halpern
translation (56 problems of depth among: 20, 28, 40, 56, 80 or 112) (Massacci & Donini,
2000). As done by Massacci and Donini, we call these classes easy, medium and hard
respectively.

All formulas from each class are tested within a timeout of 1000 seconds. 32 For each
class, we report the number of solved formulas (X axis) and the total (cumulative) CPU
time spent for solving these formulas (Y axes). For each class the results are plotted
sorting the solved problems from the easiest one to the hardest one.

5.6.2 An Empirical Comparison of the Different Variants of K,,25AT

We have first evaluated the various variants of the encoding in combination with RSAT. In
order to avoid considering too many combinations of the flags, we have considered the BNF
format, and we have grouped plr and bcp into one parameter plr-bcp, restricting thus
our investigation to 6 combinations: BNF, 1ift/ctrl.lift/nolift, and plr-bcp on/off.

30With also a 512 MB file-size limit for the encoding produced by K,,2SAT.

3'Due to the lack of space and for the sake of clarity we won’t include in this current section the 90%th
percentiles plots. These plots, however, can be found in the appendix Section 5.9. Further, for the same reasons,
we’ll skip to report the plots regarding some of the easiest class of the benchmark suite (e.g. those with d = 1
and lower values of N).

32We also set a 1 GB file-size limit for the encoding produced by K,,,2SAT.

Empirical Evaluation 81

(We recall that the techniques introduced in Section 5.5.2; Section 5.5.5 and Section 5.5.6
are hardwired in the encoder.) Here we expose and analyze the results wrt. the three
different suites of benchmark problems.

Results on the LWB Benchmark Suite

The results on the LWB benchmark suite are summarized in Table 5.1 and Figure 5.2.

Table 5.1(a) reports in the left block the indexes of the hardest formulas en-
coded within the file-size limit and, in the right block, those of the hardest formulas
solved within the timeout by RSAT; Table 5.1(b) reports the numbers of variables and
clauses of K,,2SAT(yp), referring to the hardest formulas solved within the timeout by
RSAT (i.e., those reported in the right block of Table 5.1(a)). For instance, the BNF-
ctrl.lift-plr-bcp encoding of k_dum n(21) contains 11 - 10% variables and 14 - 10°
clauses; it is the hardest k_dum n problem solved by RSAT with BNF-ctrl.1lift-plr-bcp
and it is the first which is not solved with BNF-ctrl.1lift.

Looking at the numbers of cases solved in Table 5.1(a), we notice that the intro-
duction of the on-the-fly Pure Literal Reduction and Boolean Constraint Propagation
optimizations is really effective and produces a consistent performance enhancement (the
effect of these optimizations is eye-catching in the branching formulas k_branch * — see
Section 5.5.10 — and in the k_path_* formulas). We also notice that 1ift sometimes
introduces some slight further improvement.

The view of Tables 5.1(a) and 5.1(b) hides the actual CPU times required to encode
and solve the problems. Small gaps in the numbers of Table 5.1(a) may correspond to
big gaps in CPU time. In order to analyze also this aspect, in Figure 5.2 we plotted
the total cumulative amount of CPU time spent by all the variants of K,,25AT +RSAT
to solve all the problems of the LWB benchmark, sorted by hardness. For this plot, we
also considered three more options —BNF, lift/ctrl.lift/nolift, with plr on and
bep off— so that to evaluate also the effect of plr and bcp separately. We notice that
the plots are clearly clustered into three groups of increasing performance: BNF-*, BNF-
-plr, and BNF--plr-bcp., “*¥” representing the three options 1ift/ctrl.lift/nolift.
This highlights the fact that on this suite on-the-fly Pure Literal Reduction significantly
improves the performances, that on-the-fly Boolean Constraint Propagation introduces
drastic improvements, and that the variations due to Box Lifting are minor wrt. the
other two optimizations.

Overall, the configuration BNF-1lift-plr-bcp turns out to be the best performer on
this suite, with a tiny advantage wrt. BNF-ctrl.lift-plr-bcp.

Results on the Random O,,-CNF Benchmark Suite

The results on the random 0O,,-CNF benchmark suite are reported in Figures 5.3 and 5.4.
In Figure 5.3 we report the 50%-percentile CPU times required to encode and solve the
formulas by the different K,,2S AT +RSAT variants for the hardest benchmarks problems.

Encoding ALC /K (m)-satisfiability into SAT

Knm2SAT, encoded K,2SAT + RsAT, solved
‘ plr-bep ‘ plr-bep

lifting no yes ctrl no yes «ctrl | no yes «ctrl no yes ctrl

k_branch_n 4 4 4 18 18 18 4 4 4 17 17 17

k_branch_p 4 4 4 18 18 18 4 4 4 18 18 18

k-d4n 8 8 8 8 9 8 8 8 8 8 8 8

k.d4p 14 14 14 14 14 14 14 14 14 14 14 14

k_dum_n 20 20 20 21 21 21 20 20 20 21 21 21

k_dum_p 19 19 19 21 21 21 18 18 18 21 21 21

k_grz.n 21 21 21 21 21 21 21 21 21 21 21 21

k_grz_p 21 21 21 21 21 21 21 21 21 21 21 21

k_lin_n 21 21 21 21 21 21 21 21 21 21 21 21

k_lin_p 21 21 21 21 21 21 21 21 21 21 21 21

k_path_n 7 7 7 14 15 14 7 7 7 13 14 13

k_path_p 8 8 8 15 16 15 8 8 8 15 16 15

k_ph_n 21 21 21 21 21 21 21 21 21 21 21 21

k_ph_p 21 21 21 21 21 21 10 11 10 10 10 11

k_poly n 21 21 21 21 21 21 21 21 21 21 21 21

k_poly_p 21 21 21 21 21 21 21 21 21 21 21 21

k tdpn 6 6 6 6 (] 6 5 6 5 6 6 ({]

k_tdp_p 11 11 11 11 11 11 10 10 10 11 11 11

(a) Indexes of the hardest problems encoded (left)
and of the hardest problems solved (right).
number of variables (10%) number of clauses (10%)
‘ plr-bep ‘ plr-bep

lifting no yes ctrl no yes ctrl no yes ctrl no yes ctrl
k_branch_n 1000 1000 1000 20000 20000 20000 1000 1000 1000 23000 23000 23000
k_branch_p 1000 1000 1000 0 0 0 1000 1000 1000 0 0 0
k.d4.n 12000 6000 12000 10000 26000 10000 | 17000 9000 17000 16000 43000 16000
k_d4-p 19000 18000 19000 0 0 0 | 28000 25000 28000 0 0 0
k_.dum_n 19000 19000 19000 11000 11000 11000 | 23000 23000 23000 14000 14000 14000
k_dum_p 11000 11000 11000 20000 19000 20000 | 14000 13000 14000 26000 25000 26000
k_grzn 10 10 10 5 5 5 10 10 10 6 6 6
k_grz_p 8 8 8 0.2 0.1 0.2 8 8 8 0.3 0.2 0.2
k.lin_n 30 30 20 20 10 20 50 50 20 30 30 30
k.lin_p 0 0 0 0 0 0 0 0 0 0 0 0
k_path.n 11000 12000 11000 10000 7000 10000 | 13000 14000 13000 14000 9000 13000
k_path_p 11000 12000 11000 26000 16000 26000 | 13000 14000 13000 35000 20000 35000
k_phn 50 300 50 50 300 50 50 300 50 50 600 50
k_ph_p 3 13 3 3 8 4 3 14 3 3 14 5
k_poly_n 200 20 20 200 20 20 200 20 20 200 20 20
k_poly_p 200 20 20 200 20 20 200 20 20 200 20 20
k_tdp.n 4000 21000 4000 17000 14000 17000 | 4000 22000 4000 20000 17000 20000
k_tdp_p 12000 10000 12000 20000 18000 20000 | 12000 11000 12000 24000 21000 24000

(b) # of variables and # of clauses of the hardest problems solved.
Note: Here “0” means that the formula is simplified into L by K,,2SAT.

Table 5.1: Comparison of the variants of K,,25AT +RSAT on the LWB benchmarks.

Empirical Evaluation 83

10000 [T T T T T T T T T T T
BNF-lift (Rsat) x
BNF-nolift (Rsat)
BNF-ctrl.lift (Rsat) o i
BNF-lift-plr (Rsat) = b
1000 f BNF-nolift-plr (Rsat) = Vo
BNF-ctrl.lift-plr (Rsat) ¢ 7
BNF-lift-plr-bcp (Rsat) -------- S 4
BNF-nolift-plr-bcp (Rsat) -—--- S
BNF-ctrl.lift-plr-bcp (Rsat) L)
100 r 4 P b
10 ¢ 7
1r]
0.1 A WL 7 1 1
50 100 150 200 250 300

Figure 5.2: Comparison of different variants of K,,,25 AT +RSAT on the LWB problems. X axis:
number of solved problems; Y axis: total CPU time spent (sorting problems from the easiest to
the hardest).

We don’t report the percentage of solved problems since it is always 100%, i.e. K,,2SAT
+RSAT terminates within the timeout for every problem in the benchmark suite.

The tests with depth d = 1 (see the results on the hardest problems of the class in
the first row of Figure 5.3) are simply too easy for K,,2SAT +RSAT (but not for its
competitors, see Section 5.6.3) which solved every sample formula in less than 1 second.
Although the tests exposed in the second and third row of Figure 5.3 are more challenging,
they are all solved within the timeout as well. We have noticed also that the results are
rather regular, since there are no big gaps between 50%- and 90%-percentile values.

In general, we do not have relevant performance gaps between the various configura-
tions on this benchmark suite; it seems that in the majority of cases ctrl.lift slightly
beats nolift and nolift slightly beats 1ift. These gaps are even more relevant if we
consider the size of the formulas generated (Figure 5.4). We believe that this may be due
to the fact that random 0O,,-CNF formulas may contain lots of shared subformulas 0,1,
so that lifting may cause a reduction of such sharing (see Section 5.3). Further, plr-bcp
does not seem to introduce relevant improvements here. We believe that this is due to
the fact that these random formulas produce pure and unit literals with very low or even
zero probability.

Overall, the configuration BNF-nolift turns out to be the best performer on this suite,
with a slight advantage wrt. BNF-ctrl.lift-plr-bcp.

Finally, from some plots of Figure 5.3 we notice that for K,,2SAT +RSAT the problems

84 Encoding ALC /K (m)-satisfiability into SAT

1000 T T T T 100 1000 — T T T 100
S00 N BNF-lift (Rsat) <o S00 \ BNF-lift (Rsat)
S BNF-nolift (Rsat) v BNF-nolift (Rsat)
i BNF-ctrl.lift (Rsat) . BNF-ctrl.lift (Rsat)
BNFfliftfplrfbcp (Rsat) - BNF-lift-plr-bcp (Rsat) - -
100 | BNF:-nolift-plr-bcp (Rsat) ---- - 4 so 100 | BNF-nolift-plr-bcp (Rsat) - 4 so
BNF-cgtrl.lift-plr-bcp (Rsat) BNF-ctrl.lift-plr-bcp (Rsat)
50 ! 50 \
10 ; 4 eo 10 { 4 eo
5 | 5 + 4
u\ \
1 4 4 4o
0.5 4 S
\ e o
0.1 4 =20 \
0.05 0.05 ¢ |
L \
S .
0.01 — (o] 0.01 — o
1o 20 30 40 50 60 io 20 30 40 50 60
1000 = 100 1000 T 100
. \
S00 BNE-Iift (Rsat) — 500 . BNF-Iift (Rsat)
+ BNF-nolift (Rsat) . BNF-nolift (Rsat)
| BNF-ctrl.lift (Rsat) BNF-ctrl.lift (Rsat)
| BNF-lift-plr-bcp (Rsat) BNF.lift-plr-bcp (Rsat) - -
100 | \ BNF-nolift-plr-bcp (Rsat) - 4 so 100 BNF-ndlift-plr-bcp (Rsat) ---- 4 so
"\ BNF-ctrl.lift-plr-bcp (Rsat) BNF»ctrI.l\ift—plr»bcp (Rsat)
50 | b 50 \
5 i
10 \ -4 60 10 i +4 60
st %
1+ i 4 4o
0.5 |
| gpapaspanzEEil
B EEERT
0.1 ,55! ! -4 20 0.1 N 4 20
O E
0.05 Fx o0.05
\ B
B *\
o A
0.01 . . H , , , o 0.01 Ty , o
40 60 80 100 120 140 40 60 80 100 120 140
1000 = 100 1000 = 100
e "
so00 R BNF-lift (Rsat) - soo R
BNF-nolift (Rsat) N\
\ BNF-ctrl.lift (Rsat) N,
. BNF-lift-plr-bcp (Rsat) - - AN
L BNF-nolift-plr-bcp (Rsat) - i + ,
100 BNF-ctrllift-pir-bep (Rsat) 80 100 80
50 \
Y
10 4 4 eo
5 | \
1 i 40
P
0.5 | b
-
-
s
L o
o.1 F" \ 4 =20 0.1 BNF-lift (Rsat) <o v+ 20
A BNF-nolift (Rsat) *
0.05 0.05 - BNF-ctrl.lift (Rsat) - \
N BNF-lift-plr-bcp (Rsat)
A BNF-nolift-plr-bcp (Rsat) t
*o BNF-ctrllift-plr-bcp (Rsat)
S
0.01 = o o0.01 o
60 80 100 120 140 60 80 100 120 140

Figure 5.3: Comparison among different variants of K,,2SAT +RSAT on random problems. X
axis: #clauses/N. Y axis: median (50th percentile) CPU time, 100 samples/point. 1st row:
d=1,p=05, N=28,9;2nd row: d =2, p=0.6, N =3,4; 3rd row: d =2, p=0.5, N = 3,4.
Background: % of satisfiable instances.

Empirical Evaluation 85
BNF-lift —— BNF-lift ——]
180000 BNF-nolift - 4 180000 BNF-nolift - 4
BNF-ctrl.lift -~ BNF-ctrl.lift -
BNF-lift-plr-bcp & BNF-lift-plr-bcp &
160000 - BNF-nolift-plr-bcp —-- b 160000 BNF-nolift-plr-bcp —-= 1
BNF-ctrl.lift-plr-bcp --o-- BNF-ctrllift-plr-bcp - -
140000 | R 140000 q
120000 | B 120000 q
100000 | 100000 q
80000 B B 80000 B
60000 | B 60000 q
40000 o B 40000 q
20000 | == R 20000 - q
=
0 0
10 20 30 40 50 60 10 20 30 40 50 60
BNFlift —+— BNFlift —+
BNF-nolift BNF-nolift - —
L BNF-ctrl lift - i L BNF-ctrl lift - i
1.2e+06 BNF-lift-plr-bcp & 1.2e+06 BNF-lift-plr-bcp
BNF-nolift-plr-bcp -~ =~ BNF-nolift-plr-bcp
BNF-ctrl.lift-plr-bcp --o-- BNF-ctrl lift-plr-bcp
1le+06 B 1e+06
800000 [q 800000
600000 600000
400000 400000
200000 200000
0 0
40 60 80 100 120 140 40 60 80 100 120 140
BNF-ift ——— BNF-lift —+—
BNF-nolift BNF-nolift — =
BNF-ctrl.lift - BNF-ctrl lift -
BNF-lift-plr-bcp & BNF-lift-plr-bcp &
2e+06 - BNF-nolift-plr-bcp - 1 2e+06 - BNF-nolift-plr-bcp b
BNF-ctrl.lift-plr-bcp - BNF-ctrl lift-plr-bcp
1.5e+06 1 1.5e+06 b
=
-
- -
1le+06 1e+06 | - S
_m e
8 3 I
T e E
500000 500000 - B
T .
-
E-
0 0
60 80 100 120 140 60 80 100 120 140

Figure 5.4: Comparison among different variants of K,,2SAT on random problems. X axis:
#clauses/N. Y axis: 1st column: #variables in the SAT encoding (90th percentiles), 100 sam-
ples/point; 2nd column: #clauses in the SAT encoding (90th percentiles), 100 samples/point.
Istrow: d=1,p=0.5 N=9;2ndrow: d=2,p=0.6, N =4; 3rdrow: d=2,p=0.5, N =4.

86 Encoding ALC /K (m)-satisfiability into SAT

tend to be harder within the satisfiability /unsatisfiability transition area. (This fact holds
especially for RACER and *SAT, see Section 5.6.3.) This seems to confirm the fact that
the easy-hard-easy pattern of random k-SAT extends also to 0,,-CNF, as already observed
in literature (Giunchiglia & Sebastiani, 1996, 2000; Giunchiglia et al., 2000; Horrocks
et al., 2000; Patel-Schneider & Sebastiani, 2003).

Results on the TANCS 2000 Benchmark Suite

The comparison among the K,,25 AT variants on the TANCS 2000 benchmark is presented
in Figures 5.5 and 5.6, where different BNF variants of K,,25AT are compared both
enabling or disabling 1ift/ctrl.1if and plr-bcp.

In Figure 5.5, from top-left to bottom, we present the cumulative CPU times spent
by K,,2S AT +RSAT on the easy, medium and hard categories respectively. In Figure 5.6
we present the plots of the number of variables and clauses of the formulas solved. We
notice that there are only slight differences among the different variants of K,,2SAT’; BNF
with 1ift is the best option which allows for solving more problems in the hard class and
requiring less CPU time.

We remark that, despite the expected exponential growth of the encoded formulas wrt.
the modal depth, in this benchmark K,,25AT +RSAT allows for encoding and solving
problems of modal depth greater than 100 for the easy class and greater than 50 for the
medium and hard classes, producing and solving SAT-encoded formulas with more than
107 variables and 1.4 - 107 clauses.

5.6.3 An Empirical Comparison wrt. the Other Approaches

We proceed with the comparison of our approach wrt. the current state-of-the-art evalu-
ating K,,25 AT +RSAT against the other K,,-satisfiability solvers listed above. In more
details, we chose to compare the performance of the other solvers against both the best
“local” K,,2S AT +RSAT variant for the single benchmark suite and the best “global”
K,,2SAT +RSAT variant among all the benchmark suites, which we have identified in
BNF-ctrl.lift-plr-bcp.

Comparison on the LWB Benchmark Suite

The results on the LWB benchmark suite are summarized numerically and graphically
in Table 5.2. From Table 5.2(a) we notice a few facts: RACER and *SAT are the best
performers (confirming the analysis done by Horrocks et al., 2000) with a significant gap
wrt. the others; then, K-QBF +sKizzo solves a few more problems than K,,2S5AT
+RsAT; then follows KBDD which outperforms MsPASS, which is the worst performer.
In detail, K,,2SAT +RSAT is (one of) the worst performer(s) on k_-d4_* and k_t4_x*, the
fourth best performer on k_path_n, the third best performer on k_path_p and k_branch_p,
and it is (one of) the best performer(s) on k_branch n, k dum *, k_grz * k 1in * k_ph *
and k_poly_x; it is the absolute best performer on k_branch n and k_ph_p.

Empirical Evaluation 87

2000 T T T T T T 2000 T T T T T T T T T
1000 E 1000 E
100 E 100 E
10 B 10 B
1 E 1 E

BNF-lift (Rsat) + ‘ BNF-lift (Rsat) +

BNF-nolift (Rsat) i BNF-nolift (Rsat)

BNF-ctrl.lift (Rsat) * BNF-ctrl.lift (Rsat) *

BNF-lift-plr-bcp (Rsat) o BNF-lift-plr-bcp (Rsat) o

BNF-nolift-plr-bcp (Rsat) B BNF-nolift-plr-bcp (Rsat) 2

o1) BINF-ctrII.Iift-pI!'-bcp (|Rsat) Lo o1)) BI\IIF-ctrII.Iift-pIr-bclzp (Rlsat) Lo

’ 20 40 60 80 100 120 140 ’ 10 20 30 40 50 60 70 80 90 100

1000 T T T T T
)
100 4
10 4
1 i
BNF-Ilift (Rsat) ————
I/ BNF-nolift (Rsat) — =
¥/ BNF-ctrl.lift (Rsat) -
I BNF-lift-plr-bcp (Rsat) o
| BNF-nolift-plr-bcp (Rsat) ---=—-
01) BNF-ctrllift-plr-bcp (Rsat) - - < -

5 10 15 20 25 30

Figure 5.5: Comparison among different variants of K,,25AT +RsAT on TANCS 2000 problems.
X axis: number of solved problems. Y axis: total cumulative CPU time spent. 1st (top-left) to
3th (bottom) plot: easy, medium, hard problems. (Problems are sorted from the easiest to the
hardest).

88 Encoding ALC /K (m)-satisfiability into SAT

le+08 T T T T T T T le+08 T T T T T T T
le+07 E le+07 o
l1le+06 [E le+06 [3
100000 | E 100000 | E
BNF-lift - BNF-lift -
BNF-nolift BNF-nolift
BNF-ctrl.lift =] BNF-ctrl.lift =]
BNF-lift-plr-bcp BNF-lift-plr-bcp
BNF-nolift-plr-bcp o BNF-nolift-plr-bcp o
BNF-ctrl.lift-plr-bcp & BNF-ctrl.lift-plr-bcp &
10000 L L h i) L L 10000 h i A L L
20 40 60 80 100 120 140 20 40 60 80 100 120 140
hardest solved cases hardest solved cases
le+08 T T T T T T T T T le+08 T T T T T T T T T
le+07 - le+07 =
le+06 E le+06 3
100000 3 100000 3
BNF-ctrl.lift =] BNF-ctrl.lift =]
BNF-lift-plr-bcp BNF-lift-plr-bcp
BNF-nolift-plr-bcp ° BNF-nolift-plr-bcp °
BNF-ctrl.lift-plr-bcp = BNF-ctrl.lift-plr-bcp =
10000 L L h n : N L L 10000 L L L h n " N L L
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
le+08 T T T T T le+08 T T T T T
le+07 3 le+07 3
le+06 3 le+06 3
100000 /= g 100000 g
BNF-lift ------ BNF-lift -
BNF-nolift BNF-nolift
BNF-ctrl.lift =] BNF-ctrl.lift =]
BNF-lift-plr-bcp BNF-lift-plr-bcp
BNF-nolift-plr-bcp ° BNF-nolift-plr-bcp °
BNF-ctrl.lift-plr-bcp a BNF-ctrl.lift-plr-bcp a
10000 L L L L L 10000 L L L L L
5 10 15 20 25 30 5 10 15 20 25 30

Figure 5.6: Comparison among different variants of K,,25AT on TANCS 2000 problems. X
axis: number of the harder solved problem. Y axis: 1st, 2nd column: #variables, #clauses in
the SAT encoding of the problem. 1st to 3rd row: easy, medium, hard problems.

Empirical Evaluation

89

10000 —

1000

10

0.1

other tools K2SAT + RSAT
K-QBF BNF-plr-bep

test + sKizzo KBDD Msprass RACER *SAT | -ctrllift -lift
k_branch_n 4 8 10 15 14 17 17
k_branch_p 16 8 10 21 21 18 18
k_.d4_n 8 21 21 21 21 8 8
k_d4_p 21 21 21 21 21 14 14
k_dum_n 21 21 21 21 21 21 21
k_dum_p 21 21 21 21 21 21 21
k_grz.n 19 21 21 21 21 21 21
k_grz_p 21 21 21 21 21 21 21
k_lin_n 20 21 21 21 21 21 21
k_lin_p 21 21 3 21 21 21 21
k_path_n 9 21 4 21 21 13 14
k_path_p 13 17 5 21 21 15 16
k_ph_n 21 4 12 21 13 21 21
k_ph_p 10 4 8 9 9 11 10
k_poly n 21 8 7 21 21 21 21
k_poly_p 21 8 7 21 21 21 21
k_tdpn 21 21 12 21 21 6 6
k_tdp_p 21 21 21 21 21 11 11

(a) Indexes of the hardest problems solved.

kQBF+sKizzo

*SAT
Racer
kBDD

MSpass

BNF-lift-plr-bcp (Rsat)

| BNF-ctrl.lift-pIr-bcp (Rsat)
100

e O > O % o + |

4

200

250

300

350

(b) X axis: # of problems solved; Y axis: total (cumulative) CPU time spent.

Table 5.2: Comparison of K,,25 AT +RSAT against the other tools on the LWB benchmarks.

90 Encoding ALC /K (m)-satisfiability into SAT

In Table 5.2(b) we give a graphical representation of this comparison, plotting the
number of solved problems by each approach against the total cumulative amount of
CPU time spent. We notice that, even if K,,25AT +RSAT solves a few problems less
than K-QBF +sKizzo, K,,25AT +RsSAT is mostly faster than K-QBF +sKizzo.

Comparison on the Random 0O,,-CNF Benchmark Suite

In the random 0O,,-CNF benchmark suite the results are dominated by K,,25AT +RSAT.
For the hardest categories among the three groups of problems used in the evaluation, we
report in Figure 5.7 the number of problems solved by each tool within the timeout, and
in Figure 5.8 the median CPU time (i.e. the 50%th percentile).

Looking at Figure 5.7 we notice that K,,25AT +RSAT (in both versions) is the only
tool which always terminates within the timeout, whilst *SAT and RACER sometimes do
not terminate in the hardest problems, K-QBF +sKizzo very often does not terminate,
and Mspass and KBDD do not terminate for most values.

In Figure 5.8 we notice that K,,2SAT +RSAT is most often the best performer (in
particular with the hardest problems), followed by *SAT and RACER. (This is even much
more evident if we consider the 90%th percentile of CPU time, whose plots are included
in Figure 5.13 of Section 5.9.) In all these tests, K-QBF +sKizzo, Mspass and KBDD
are drastically outperformed by the others.

Comparison on the TANCS 2000 Benchmark Suite

The results of the TANCS 2000 benchmark are summarized in Figure 5.9, from the easy
category (top-left) to the hard category (bottom).

From the plots we notice that the relative performances of the tools under test vary
significantly with the category: RACER and *SAT are among the best performers in all
categories; K-QBF +sKi1zzo behaves well on the easy and medium categories but solves
very few problems on the hard one; KBDD behaves very well on the easy category, but
solves very few problems in the medium and hard ones. MSPASS is among the worst per-
formers in all categories: in particular, it does not solve any problem in the hard category;
finally, K,,25AT +RSAT is the worst performer on the easy category, it outperforms all
competitors but *SAT and RACER on the medium category, and competes head-to-head
with both RACER and *SAT for the first position on the hard category: the “local-
best” configuration BNF-1ift beats both competitors; the “global-best” configuration
BNF-ctrl.lift-prl-bcp solves as many problems as RACER, with one-order-magnitude
CPU-time performance gap, and two problems less than *SAT.

Notice that the classification of the benchmark problems in “easy”, “medium” and
“hard” given by Massacci and Donini (2000) is based on the translation schema used
to produce every modal problem and refers to its “reasoning component”, but it is not
necessarily related to other components (like, e.g., the modal depth) which affect the size
of our encoding and, hence, the efficiency of our approach. This may explain the fact,
e.g., that the “easy” problems are not so easy for our approach, and viceversa.

Empirical Evaluation

91

100 = =
-
- A
< <
20 N b
- . -
- o §
80 | /
| /
! /
70 } /
! ;
L /
60 \ &
‘\ p
! /
50 . — e
- ! ST
v /
40 4 J
| /
=N /)
30
20 kOBF+sKizzo >
*SAT o
- Racer -——+=-—
kBDD --—
10 - MSpass -
BNF-nolift (Rsat) —-o-—-
BNF-ctrl.lift-plr-bcp (Rsat) [EVN.
o
10 20 30 20 =y o
100 =T
*-o
- - ™ oo ?t
90 | e - - e
80
70
60
50 kOBF+sKizzo >4
*SA K
Racer - - --
kBDD --—
40 MSpass -
BNF-nolift (Rsat) —-o-—-
BNF-ctrl.lift-plr-bcp (Rsat) e
30
20 +
10
o
o
a0 60 80 100 120 140
100 t“";%\\ = =
>
Y o
90 o we
= F'\t
AN = / =
80 =1 o
70
60
50 kOBF+sKizzo >
*SAT o
Racer -——+=-—
kBDD --—
40 - @ MSpass -
BNF-nolift (Rsat) —-&-—-
‘- BNF-ctrl.lift-plr-bcp (Rsat SN
30
20
e
10
o —2Za s a i a
60 80 100 120 140

100 =
- e
X
=
90 \
\ *
\
\
80 - \
* \
m
, \
70 - \
60 “‘
1
50 ! kQBF+sKizzo
i *SAT it
i Racer -—-&-—-
i kBDD -
a0 | i MSpass -
i BNF-nolift (Rsat) -—-o-—-
BNF-ctrl.lift-plr-bcp (Rsat) R
30 - i
20 | |
! o
1 g
10 & -
- . =
o S g
10 20 30 40 50 60
100 o=
FewEsssoy
- £
90 =]
- \
= =
\
80 AR
A
- F L/ m
; fual
70 i
60
50 | KQBF+sKizzo >
*SAT s
Racer ---&--
KBDD - = -
40 MSpass -
BNF-nolift (Rsat) ——-o-——
BNF-ctrl lift-plr-bcp (Rsat) =
30 -
20
a0
-
° o o o o - -
40 60 80 100 120 140
100 &=
90 h
80 k& \
\
S m
70 i
e 3
60 \
Y
50 = KQBF+sKizzo >
- *SAT o
=S| Racer -—&=-—-
. KBDD - = -
40 N MSpass -
i = BNF-nolift (Rsat) ——e-—-
BNF-ctrl.lift-plr-bcp (Rsat A
30 ‘\
\
* \
20 |
* \
fas|
s N
10 \
Ak
ek
b
o & = =
60 80 120 140

Figure 5.7: Comparison against other approaches on random problems. X axis: #clauses/N.
Y axis: % of problems solved within the timeout, 100 samples/point. 1st row: d = 1, p = 0.5,
N =38,9; 2nd row: d =2, p=0.6, N = 3,4; 3rd row: d =2, p=0.5, N = 3,4.

92

Encoding ALC /K (m)-satisfiability into SAT
1000 - 100 1000 — 100
500 S ‘ 500 -
! = T \'\ S
< . . e
100 Vo . - =¥ 80 100 2B 80
50 all T 50
i
10 / 4 60 10 60
5 | / | 5
[et
L d @ i
1 a1
e
o.s | 0.5
e
. %
E » & \
o.1 KQBF+sKizzo < o.1 KkQBF+sKizzo < 20
\ -) *SAT <
0.05 Racer ---=-- 0.05 Racer ---=-—-
4 | kBDD i ¢ ! kBDD
ss - $ ss
* rnollft (Rsat) BNFLnollft (Rsat)
BNF-ctrl. I|ft pl‘r bcp (Rsat) BNF-ctrl.lift- pILbcp (Rsat)
o.01 o o.01 o
10 20 30 a0 50 60 10 20 30 a0 50 60
1000 —— r r r r r 100 1000 - — r r r r 100
500 500 i
L AV L g
100 \ 80 100 - } o o L= 1 so
50 4 AR 50 \ 4 X
| > o Re oo - o \ // o
- - L
e L
10 . - 60 10 5 4 eo
KQBF+sKizzo &~ - al
) > i
S Racer - 4 s [al
kBDD - & PN N
< nollft (Rsat) ; P @9‘7)1‘1/ ?’@eé;ee“ijqeé'eéée
- @ - P
1 - NF-ctrl. Ilft—plr bcp (Rsat) & 4 a0 1k & = | 1 40
\ BEEEFEE"EIE = = ,%****
o. - L oemessE® R P S 0.5 = = * e
i =B P W=l R e =27
e PSPt 4 < Lo
o Laa=gs 2 X e M A NS
&+ PPN = - " | .
o1 a- & e AR 20 o.1 | KQBF+sKizzo < 20
4 e | e He r -+ =
0.05 |o T e 0.05 \ Racer - = -
SN \ kBDD
BNF- noliﬂ (Rsat) -
**/* BNF-ctrl.lift-plr-
o.01 - o o.01 = o
a0 60 80 100 120 140 a0 60 80 100 120 140
1000 100 1000 100
T
3
500 - 500 = ==
100 .= 80
RS =Y
50 (- \
b N -]
o o
A
10 * . 60
IR
5 / IR
! K
ok
* = |
= |
1 ;é‘/ \ a0
. 4 EPG
0.5 o ; PRI
/ = o-ane R
2B
& IO
0.1 \ kQBl:’isKuzzo e 20 0.1 kQBF+sKizzo 20
*SAT - Kizzo
0.05 Racer = 0.05 Racer
AN kKBDD - - kBDD
Spass - Spass
ﬁmonft (Rsat) —-<= nollft (Rsat)
BNF- ctrl Inft plr bcﬂ (Rsat) - BNF- ctrl I|ft plr- bcp (Rsat)
0.01 . o 0.01 .
60 80 100 120 140 60 so 100

2nd row: d

satisfiable instances

0.6, N

3,4; 3rd row: d

Figure 5.8: Comparison against other approaches on random problems. X axis: #clauses/N. Y

axis: median (50th percentile) CPU time, 100 samples/point. 1st row: d =1, p = 0.5, N = 8,9
cd=2,p= = 0.5, N

120

3,4. Background: % of

Empirical Evaluation

93

10000 T T T le+05 T T T T T
10000 F
1000 X
1 ;-
1000 B
100
100 B
10
10 B
1 kQBF+sKizzo kQBF+sKizzo +
1 F *SAT .
* i Racer *
o] kBDD o
MSpass = MSpass =
i BNF-lift-plr-bcp (Rsat) o BNF-lift-plr-bcp (Rsat) o
o1 i IBNF—CtrI.IIif't—pIr—bcpI (Rsat) - o1) BNF—cltrI.Iift—pIIr—bcp (Rsat) .°
' 50 100 150 200 ' 20 40 60 80 100 120
10000 T T T T

1000

100

10

MSpass
BNF-lift-plr-bcp (Rsat) --
BNF-ctrllift-plr-bcp (Rsat) - -

10 15 20

30

Figure 5.9: Comparison against other approaches on TANCS 2000 problems. X axis: number
of solved problems. Y axis: total cumulative CPU time spent. 1st (top-left) to 3th (bottom)
plot: easy, medium, hard problems. (Problems are sorted from the easiest to the hardest).

94 Encoding ALC /K (m)-satisfiability into SAT

5.6.4 Discussion

As highlighted by Giunchiglia et al. (2000), and Horrocks et al. (2000), the satisfiability
problem in modal logics like K, is characterized by the alternation of two orthogonal
components of reasoning: a Boolean component, performing Boolean reasoning within
each state, and a modal component, generating the successor states of each state. The
latter must cope with the fact that the candidate models may be up to exponentially
big wrt. depth(p), whilst the former must cope with the fact that there may be up to
exponentially many candidate (sub)models to explore. In the K,,2SAT +DPLL approach
the encoder has to handle the whole modal component (rules (5.8) and (5.9)), whilst the
handling of the whole Boolean component is delegated to an external SAT solver.

From the results displayed in Section 5.6.3 we notice that the relative performances of
the K,,25AT +DPLL approach wrt. other state-of-the-art tools range from cases where
K, 2SAT +RSAT is much less efficient than other state-of-the-art approaches (e.g., the
k_d4 and k_t4p formulas) up to formulas where it is much more efficient (e.g., the k_ph_p
or the 0,,-CNF formulas with d = 1). In the middle stands a large majority of formulas
in which the approach competes well against the other state-of-the art tools; in particular,
K,,2S AT +RsSAT competes very well or even outperforms the other approaches based on
translations into different formalisms (the translational approach, the automata-theoretic
approach and the QBF-encoding approach).

A simple explanation of the former fact could be that the K,,25AT +DPLL approach
loses on problems with high modal depth, or where the modal component of reasoning
dominates (like, e.g., the k_.d4 and k_t4p formulas), and wins on problems where the
Boolean component of reasoning dominates (like, e.g., the k_ph_n or the O,,-CNF formulas
with d = 1), and it is competitive for formulas in which both components are relevant.

We notice, however, that K,,25AT +RSAT wins in the hard category of TANCS
2000 benchmarks, with modal depths greater than 50, and on k_branch n, where the
search is dominated by the modal component. 33 In fact, we recall that reducing the
Boolean component of reasoning may produce a reduction also of the modal reasoning
effort, because it may reduce the number of successor states to analyze (e.g. Sebastiani,
2007a, 2007b). Thus, e.g., techniques like on-the-fly BCP, although exploiting only purely-
Boolean properties, may produce not only a drastic pruning of the Boolean search, but
also a drastic reduction in the size of the model investigated, because they cut a priori
the amount of successor states to expand.

5.7 Contributions and Lesson Learned

In this first approach to automated reasoning in Description Logics we have explored the
idea of encoding K,/ ALC-satisfiability into SAT, so that to be handled by state-of-the-

33The k_branch_n formulas are very hard from the perspective of modal reasoning, because they require finding
one model M with 2¢+! — 1 states (Halpern & Moses, 1992), but no Boolean reasoning within each state is really
required (Giunchiglia et al., 2000; Horrocks et al., 2000): e.g., *SAT solves k_branch-n(d) with 24+1 _ 1 calls to
its embedded DPLL engine, one for each state of M, each call solved by BCP only.

Contributions and Lesson Learned 95

art SAT tools. We have showed that, despite the intrinsic risk of blowup in the size of the
encoded formulas, the performances of this approach are comparable with those of current
state-of-the-art tools on a rather extensive variety of empirical tests. In particular, the
performance of our approach are surprisingly interesting for practical problems.

In this first part of our work we show that, at least for K,,-satisfiability, by exploiting
some smart optimizations in the encoding phase, the SAT-encoding approach becomes
competitive in practice with previous approaches. To this extent, the contributions of
this part of our work are manyfold.

— As a byproduct, we have obtained an empirical evaluation of current tools for K,,-
satisfiability available, which is very extensive in terms of both amount and variety
of benchmarks and of number and representativeness of the tools evaluated. We are
not aware of any other such evaluation in the recent literature.

— We propose a basic encoding of K, formulas into purely-propositional ones, and
prove that the encoding is satisfiability-preserving.

— We describe some optimizations of the encoding, both in form of preprocessing and
of on-the-fly simplification. These techniques allow for significant (and in some
cases dramatic) reductions in the size of the resulting Boolean formulas, and in
performances of the SAT solver thereafter.

— Through our empirical comparison against the main state-of-the-art tools available,
we show that, despite the NP-vs.-PSPACE issue, this approach can handle most or
all the problems which are at the reach of the other approaches, with performances
which are comparable with, and sometimes even better than, those of the current
and highly-optimized state-of-the-art tools.

In our perspective, this last point is the most surprising contribution of this first
approach, which motivated us to continue in this research stream and to step to harder
problems. We also stress the fact that with our approach the encoder can be interfaced
with every SAT solver in a plug-and-play manner, so that to benefit for free of every
improvement in the technology of SAT solvers which has been or will be made available.

With the experience acquired in this approach to the throughly investigated logic
ALC we aim at explore the opportunity of threat strongest ontologies reasoning on more
expressive Description Logics and for more complex form of reasoning (e.g., including
TBoxes).

96 Encoding ALC /K (m)-satisfiability into SAT

5.8 Appendix: The Proof of Correctness & Completeness

Some Further Notation

Let ¢ be a Ky-formula. We denote by 1) the representation of =t in the current formalism:
in NNF, O, = 0,9, 0,0 = O, 1At = 1V s, 01 Vb = di A, A = -4,
—A; = A in in BNF, ~0,¢) = Op9), O = =0, Y1 A = P1V P, Y1 Vi = 01 Aty
A = A, A = A

We represent a truth assignment p as a set of literals, with the intended meaning that
a positive literal A; (resp. negative literal —A;) in p means that A; is assigned to true
(resp. false). We say that p assigns a literal [if either | € p or =l € . We say that a
literal [occurs in a Boolean formula ¢ iff the atom of [occurs in ¢.

Let M denote a Kripke model, and let ¢ be the label of a generic state u, in M. We
label (and denote) by “1” the root state of M. By “(o : ¢) € M” we mean that u, € M
and M, u, |= 9. Thus, for every o s.t. u, € M, either (o : ¢) € M or (¢ :) € M.

For convenience, instead of (5.9) sometimes we use the equivalent definition:

Def (o, V") = (o, vy — /\ (o, w0y = Lo, vry)) A /\ Def (0.1, v4)(5.20)

for every for every
<O’,7Tr’i> <0-77r'r,i>
Notice that each Def (o, ¥) in (5.6), (5.7), (5.8), (5.20) is written in the general form
(Lio, oy = ®oan) A\ Def(o’, o). (5.21)
<0—/7’¢}/>

We call definition implication for Def (o, 1) the expressions “(Lis, vy — P(ou)”-

Soundness and Completeness of K,,2SAT

Let ¢ be a K,,-formula. We prove the following theorem, which states the soundness and
completeness of K,,25AT as defined in Section 5.3

Theorem 3. A K, -formula ¢ is Kp,-satisfiable if and only if the corresponding
K., 2SAT (p) is satisfiable.

Proof. 1t is a direct consequence of the following Lemmas 4 and 5. O

Lemma 4. Given a K,,-formula ¢, if K,2SAT(p) is satisfiable, then there exists a
Kripke model M s.t. M, 1 = .

Proof. Let p be a total truth assignment satisfying K,25 AT (¢) as defined by Definition 1.
We build from g a Kripke model M = (U, L, R4,...,R,,) as follows:

U = {o: Ao, py occurs in Kp,2SAT () for some 1} (5.22)

det True if L(cr, A €M
'C(Uv AZ) - { False if _‘L<0, A €M

R, = {{0,0.) : Ly iy € u}. (5.24)

(5.23)

Appendiz: The Proof of Correctness € Completeness 97

We show by induction on the structure of ¢ that, for every (o,1) s.t. L,) occurs
on K,,25AT (p),
(0 : ¢> eM it L<J, ¥y € W (5.25)

Base
1 = A; or ¢ = = A;. Then (5.25) follows trivially from (5.23).

Step

Y =a. Let Ly, o) € p.
As p satisfies (5.6), Lo, o,y € p for every i € {1,2}.
By inductive hypothesis, (o : ;) € M for every i € {1,2}.
Then, by definition, (o : a) € M.
Thus, (0 :a) € M if L, o € p.

Y= (. Let L, gy € pu.
As p satisfies (5.7), L, 5,y € p for some 7 € {1,2}.
By inductive hypothesis, (o : 3;) € M for some i € {1,2}.
Then, by definition, (¢ : 3) € M.
Thus, (o : 8) € M if Ly, 5 € p.

Y= 7. Let L<U7 xriy € W
As p satisfies (5.8), L, iy €
By inductive hypothesis, (0.j : 757) € M.
Then, by definition and by (5.24), (o : 7"7) € M.

Thus, (o : 7"7) € M if Ly, priy € .
Y =v". Let Ly, ,ry € p.
As p satisfies (5.9), for every (o, 7"") s.t. L, riy € p, we have that Ly, vy € 1.
By inductive hypothesis, we have that (o : 7)) € M and (0.i : 1/j) € M.
Then, by definition and by (5.24), (o : V") € M.
Thus, (o :v") € M if Ly,) € p.

If u = K,2SAT (@), then Ay oy € p. Thus, by (5.25), (1:¢) € M, ie, M, 1[=p. O

98 Encoding ALC /K (m)-satisfiability into SAT

Lemma 5. Given a K,,-formula ¢, if there exists a Kripke model M s.t. M,1 = ¢,
then K,2SAT () is satisfiable.

Proof. Let M be a Kripke model s.t. M, 1 = ¢. We build from M a truth assignment
p for K,,2S AT () (defined by Definition 1) recursively as follows: 3

po= Uy (5.26)

pm E {L, gy € Kn2SAT(p) : (0,¢) € M} (5.27)
{—Lis, vy € Kn25AT () = (o, Py € M}

i = e U ltag U s (5.28)

fry = (L iy € Kn2SAT(p) = 0 ¢ M} (5.29)

(
{Li, vry € Kn2SAT () + 0 & M}
ftag = {7Liy o) EKm2SAT(p) : o€ M and =Ly, o, € pz for some i€ {1, 2)$.30)
U {-L(, g €Kn2SAT (@) : o€ M and — Ly, g, € pigy for every ie{1,2}}.

where 14 is a consistent truth assignment for the literals L, 4,y s.t. 4; € Aand o € M.

By construction, for every L, u in K,25AT (@), p assigns L, 4 to true iff it assigns
L, 3 to false and vice versa, so that x is a consistent truth assignment.

First, we show that py, satisfies the definition implications of all Def(o, 1)’s and

Def(o, ¥) s.t. 0 € M. Let 0 € M. We distinguish four cases.
Y =a. Thus ¥ = B s.t. /1 =a; and B, = @z.

— If (o0 : @) € M (and hence (¢ :) ¢ M), then for both i’s (o : ;) € M and
(0 : B;) & M. Thus, by (5.27), {Ls, a1}, Lo, as)» Lo, 3y} € piam, 50 that iy
satisfies the definition implications of both Def (o, «) and Def (o, [3).

—1If (6 : a) ¢ M (and hence (o,) € M), then for some i (¢ : a;) ¢ M and
(0 : Bi) € M. Thus, by (5.27), {—Ls, o), Lo, 8} € 1M, so that pay satisfies
the definition implications of both Def (o, «) and Def (o, [3).

Y» = 3. Like in the previous case, inverting ¢ and 1.

Y =n". Thus ¢ = V" s.t. v =77,

— If (0 : 7"7) € M (and hence (o : ") & M), then (0.7 : 7,”) € M. Thus, by
(5.27), {L< ry, L, vy} C i, so that pay satisfies the definition implica-

0.j, T

tions of both Def (o, ™) and Def (o, v").

34We assume that s, iy and jias are generated in order, so that lag is generated recursively starting from
fry. Intuitively, paq assigns the literals L, 4y s.t. o € M in such a way to mimic M; py; assigns the other
literals in such a way to mimic the fact that no state outside those in M is generated (i.e., all L(,, ~)’s are assigned
false and the Ly, y’s, L5, a)’s, L(o, gy’s are assigned consequently).

Appendiz: The Proof of Correctness € Completeness 99

—If (o : 7"7) ¢ M (and hence (o : V") € M), then by (5.27) =Ly, rrsy € fipm, SO
that i satisfies the definition implications of Def (o, 7).
As far as Def(o, V") is concerned, we partition the clauses in (5.9):

(Lo, vry A Lig, wriy) = Liga, v)) (5.31)

into two subsets. The first is the set of clauses (5.31) for which (o : 7™) € M.
As (0 : V") € M, we have that (0. : v5) € M. Thus, by (5.27), Lis.s, vy € pm,
so that uaq satisfies (5.31). The second is the set of clauses (5.31) for which
(o -7y & M. By (5.27) we have that =L, rniy € pa, S0 that g satisfies
(5.31). Thus, p satisfies the definition implications also of Def (o, V7).

= 1", Like in the previous case, inverting 1 and 1.
p

Notice that, if o & M, then 0.i ¢ M for every i. Thus, for every Def (o, ©) s.t. 0 & M,
all atoms in the implication definition of Def (o, 1) are not assigned by pi.

Second, we show by induction on the recursive structure of p5; that ps; satisfies the

definition implications of all Def (o, v¥)’s and Def (o, 1)’s s.t. 0 & M. Let 0 ¢ M.

As a base step, by (5.29), jin, satisfies the definition implications of all Def (o, 7™%)’s
and Def (o, v")’s because it assigns false to all L, .r:y’s. Indeed, p4 assigns every literal
of the type L, 4,y st A; € A and 0 € M (notice that all the Def (o, A;)’s definitions
are trivially satisfied and don’t contain any definition implications).

As inductive step, we show on the inductive structure of ji,5 that p.g satisfies the
definition implications of all Def(o, «)’s and Def (o, (3)’s

Let 9 = a and ¥ = f s.t. §; = & (or vice versa). Then we have that:

— if both L, q,)’s (respectively at least one L, g,)) are assigned true by pzz, then
the definition implications of Def (o, «) (respectively Def (o, (3)) is already trivially
satisfied;

— if at least one L, o, (respectively both L, g,’s) is assigned false by pzg, then
by (5.30) Lo, oy (respectively L,) is assigned false by ji3, which satisfies the
definition implication of Def (o, «) (respectively Def (o, [3)).

Thus 7z satisfies the definition implications of all the Def (o, 1)’s and Def(o, 1)’s
st. o & M.

On the whole, u |= Def (o, 1) for every Def(o,). By construction, py = An, o)
since (1 : ¢) € M. Therefore p = K,,,25AT (). O

100 Encoding ALC /K (m)-satisfiability into SAT

5.9 Appendix: Evaluation Trials and Auxiliary Plots

1000 ; ; ; ; 100 === : : : 100
500 N\\S\s y
9 \\ . 9 [\\
VA :
100 |- 1 L \ 80 | \
\ \
50 /) ¥
p \
/ E\EI/E r 70
/ \
10 F \
60 - \
/ B
5 ‘x
FacT++ —<— 50 | FacT++ —<—
Racer —&— \“ Racer —&—
1 b wl
05 EQ\
30 \
N\
0.1 - FacT++ —>—1 20 \h
Racer —=— ‘\
0.05 \
/)\/ i \
b
=
0.01 L L L L L L L 0 L S L E\—x m
60 80 100 120 140 60 80 100 120 140 60 80 100 120 140
(a) rand. d=2,p =0.5,N = 3, (b) rand. d = 2,p = 0.5, N = 3, (c) rand. d =2,p=0.5,N = 4,
median CPU time % term. prob. % term. prob.
10000 ; ; ; ; 10000 ; ; ; ; ; 10000
Racer Racer * Racer —»—
FaCT++ @ FaCT++ FaCT++ —&—
1000 | 1000 1 1000 |
100 | 100 E 100
10} 10 E 10}
1k 1 E 1}
01 ‘ ‘ ‘ ‘ o1 ‘ ‘ ‘ ‘ ‘ 01 ‘ ‘ ‘ ‘
50 100 150 200 250 20 40 60 80 100 5 10 15 20 25
(d) TANCS easy problems (e) TANCS medium problems (f) TANCS hard problems

Figure 5.10: Preliminary comparison between RACER and FACT+-+ on the different bench-
marks. Ist row: on TANCS 2000 problems; X axis: number of solved problems, Y axis: total
cumulative CPU time spent. 1nd row: random problems; X axis: #clauses/N, Y axis: me-
dian CPU time or % of problems solved within the timeout (100 samples/point). (FACT++ is
always fixed to 500 sec. CPU times for every other random plot).

Appendiz: Evaluation Trials and Auziliary Plots 101

10000 r--..or--~-~ ~nr~+~ 1.+~~~ 1+~ 1 "~ T 1]
Racer x
FaCT++ =@

1000 | .
100 | .
10 C]
1r 7

Ol PV AT R S S R R S S R S N S S SR S S S S S S S S S S S S S TS N

50 100 150 200 250 300 350

(a) RACER and FACT++4 comparison.

100000 m—m—mm—m—m—m™—m@—mm————r———— 7 —— T T T
10000 4
1000 ¢ E
100 ¢ E
10 ¢ E
Lr sKizzo]

Semprop

[Quantor -
0.1} , preQuan 7

[/ 2clsQ
i SQBF
001 [T RS SR ST S ST TS ST ST TS R TS IQ. PR R
50 100 150 200 250 300 350

(b) QBF solvers comparison.

Figure 5.11: Tool trials on the LWB benchmarks. X axis: # of problems solved; Y axis: total
(cumulative) CPU time spent.

102

Encoding ALC /K (m)-satisfiability into SAT
1000 N T T T 100 1000 — T T T 100

S00 BNF-Iift (Rsat) < s00 | BNF-lift (Rsan
s BNF-nolift (Rsat) < v BNF-nolift (Rsat)
\ lift (Rsat) =~ BNF ctrl.lift (Rsat)
BRI AR (BEE 2 e s
- -plr- s -plr- s

100 - BNF- qtrl Iif-pir-bop (Raat) 80 100 Hopir-bop (Reat) 1 8°

1000 — 100
5
S00 BNE-Iift (Rsat)
+ BNF-nolift (Rsat)
| BNF-ctrl.lift (Rsat)
\ BNF-lift-plr-bcp (Rsat)
| BNF-nolift-plr-bcp (Rsat) - -
100 | BNF-ctrllift-pir-bcp (Rsat) 80
50 i

1000 T 100
500 | g BNER (Rean
BNF- (Rsat)
BNF ctrl lift (Rsat) -
BNF::| -bcp (Rsat)
L BNF-nolift-plr-bcp (Rsat)
100 BNF-ctrl. l| —plr bcp (Rsat) 80
50 '\

R
o.1 20
-
0.05 |- A
. '
S e
o A
0.01 . . H , , , o 0.01 . . . MR , o
40 60 80 100 120 140 40 60 80 100 120 140
1000 - 100 1000 — 100
e N
500 = 500 =
Y ift (Rsat) S
(Rsat)
\ BNF-ctrl. (Rsat)
. BNF-lift-plr-bcp (Rsat)
BNF-nolift-plr-bcp (Rsat) .
100 BNJ: —ctrllift-pir-bcp (Rsat) e - 80 100 - 8o
50 \
10 4 4 eo
5 I i
1 40
4
0.5 - o
[oo
L
i i \
0.1 F 20 0.1 BNF-lift (Rsat) v 4 =20
BNF-nolift (Rsat) 4
0.05 0.05 BNF-ctrl.lift (Rsat)
0.01
60 80 120

140

BNF-lift-plr-bcp (Rsat)
BNF-nolift-plr-|

0.01

60

BNF-ctrllift-plr-bcp (Rsat)

80 100

=2, p=06, N =
Background: % of satisfiable instances

3,4; 3rd row: d = 2, p

120

Figure 5.12: Comparison among different variants of K,,25AT +RSAT on random problems. X
axis: #clauses/N. Y axis: 90th percentile of CPU time, 100 samples/point. 1st row: d =
p =205 N =289; 2nd row: d = 2, p

0.5, N

= 3,4.

Appendiz: Evaluation Trials and Auziliary Plots

103

1000 100 1000 —
500 = 500
100 \ - ~ 4 80 100
50 / \\,
i \
R —
10 / | 4 60
5 S '\, E
& \
1 o
o5 -/
&
\ KQBF+sKizzo < 20
\ *SAT *]
\ Racer ---=--- 0.05 Racer --—-=--
\ kBDD kBDD o
SS sSs -
- nollft (Rsat) Lnolll‘t (Rsat)
BNF-ctrl. I|ft plr bcp (Rsat) BNF-ctrl. Ilft pu: bcp (Rsat)
o.01 o o.01 o
10 20 30 a0 50 60 10 20 30 a0 50 60
1000 —— T T T T T 100 1000 t = T T T T 100
500 - 500 :
N R -
} - - <
100 [- 80 100 80
L 4
50 i 50
10 . - eo 10 60
kQBF+sKizzo
- S
s Racer - &= -- s
kBDD ——
" -
B . Ift I—r\gllft gRsatg —m @
[Nl: ctrl.lift-plr-bcp (Rsat e
* = BEEBEEBEEE—EDEEEE{] 40 1 40
0.5 PN N N 0.5 ¢
3 g o-o-eq
o
b .
pr. s 4 \
0.1 pa e s T 4 =20 0.1 KQBF+sKizzo < 20
+ -
0.05 g% y e 0.05 \ Racer ——-=
¥ \ \ kBDD -
* -
—nolift (Rsat) -
BNF-ctrl. Ilft plir-bcpe (R;at) e
0.01 o o.01 o
a0 100 120 140 a0 60 80 100 120 140
1000 +— 100 1000 — 100
500 - 500 . Y
b2 e >
VT %
e ¢
100 Fal -~ 8o 100 - Y 80
f) \
s0 | AN e SO :
[Y i
; \ | g
*® @ v @
10 |/ 4 * 60 10 i ot e 60
\ i
/ i [
SE | S \
; | i
K \ K th
o \
1 | 23 4° 1+ a0
i oy &G
0.5 PEPRPNDERS o oo 0.5
@ OTE
o2 \ E
S \ e 4
0.1 + KQBF+sKizzo < 20 0.1 - kQBF+sKizzo 20
N AT e “SAT
0.05 5 Racer —— & -- 0.05 Racer
§ KBDD - kBDD
Spass - Spass
rinohft (Rsat) ——-o-—- nol-ft (Rsat)
BNF- ctrl Inft plr-] bqf (Rsat) - BNF- ctrl Inft plr- bcp (Rsat)
o.01 : o o.01 :
60 80 100 120 140 60 80 100

instances.

o
120

Figure 5.13: Comparison against other approaches on random problems. X axis: #clauses/N
Y axis: 90th percentile of CPU time, 100 samples/point. 1st row: d =1, p = 0.5, N = 8,9; 2nd

row: d =2, p=0.6, N =3,4; 3rd row: d =2, p=0.5, N = 3,4. Background: % of satisfiable

100

104 Encoding ALC /K (m)-satisfiability into SAT

Chapter 6

Handling Number Restrictions
as SMT Problems

On the one hand the recent explosion of Semantic Web applications often require the
use of numbers for expressing cardinality restrictions. The more ontologies are attracting
applications and new domains to be expressed, the more there is the quest of efficiently
handling number restrictions. In particular, developing techniques for optimized reasoning
with qualified number restrictions has become an important goal because qualified number
restrictions have been added to the OWL 2 standard. However actual techniques often
lack of efficiency in handling those features, especially when the number of restrictions
or the values involved are high. On the other hand the manifold problem of reasoning
including numerical constraints is a well-established and thoroughly investigated problem
in the SMT community, in which a lot of effort is continuously spent in order to enhance
the efficiency of reasoning techniques for such kind of problems.

Thus, in this chapter we move further in our investigation tackling TBox reasoning and
numeric logical constructors. Here we propose and improve a novel approach for concept
satisfiability in acyclic ALCQ ontologies. The idea is to encode an ALCQ ontology into
a SMT formula modulo a subset of Linear Arithmetic under the Integers, and to exploit
the power of modern SMT solvers to compute every concept satisfiability query on the
given input ontology.

6.1 Other Approaches and Related Works

The problem of reasoning with qualified number restrictions in Description Logic has been
throughly investigated since the very first research steps in the automated reasoning in
Modal and Description Logics till today (Ohlbach & Koehler, 1997, 1999; Hollunder &
Baader, 1991; Horrocks, Sattler, & Tobies, 2000b; Horrocks et al., 2000a; Haarslev &
Méller, 2001; Faddoul et al., 2008; Farsiniamarj & Haarslev, 2010).

The quest of efficient procedures to reason on very expressive Description Logics
arising especially from the field of Semantic Web, indeed, has given new vigor and
prominence to this stream of research. In particular the research community is spending

106 Handling Number Restrictions as SMT Problems

a lot of effort in finding alternative solutions to the traditional tableau-based method for
handling qualified number restrictions.

Most DL tableau algorithms (see, e.g. Hollunder & Baader, 1991; Horrocks et al.,
2000a; Baader et al., 2003) check the satisfiability of concept including qualified number
restrictions by creating the necessary number of individuals (called fillers) satisfying all the
at-least restrictions and, then, they try to reduce the number of such individuals by non-
deterministically merging pairs of fillers until the upper bounds specified in the at-most
restrictions are satisfied. Many optimization like, e.g., dependency-directed backtrack-
ing (Horrocks et al., 2000a), has been proposed in order to improve this method (for more
ones we refer the reader to the literature, Baader et al., 2003). However, searching for a
model in such an arithmetically uninformed and blind way can become very inefficient,
especially when bigger numbers occurr in qualified number restrictions or several number
restrictions interact. To the best of our knowledge this calculus still serves as reference in
most tableau-based OWL reasoners (e.g., PELLET Sirin et al., 2007, or FACT++ Tsarkov
& Horrocks, 2006) for implementing reasoning about qulaified number restrictions. The
only exception is RACER (Haarslev & Moeller, 2001) where conceptual qualified num-
ber restriction reasoning is based on an algebraic approach (Haarslev et al., 2001) that
integrates integer linear programming with DIL-tableau methods.

Various alternative algebraic methods to the traditional tableau algorithms have been
proposed (Ohlbach & Koehler, 1999; Haarslev & Moller, 2001; Haarslev et al., 2001;
Farsiniamarj & Haarslev, 2010), following the idea of enrich the tableau-based reasoning
engine with calculus which benefit from arithmetic methods. Haarslev et all., in particu-
lar, have performed many attempts in this research direction (Haarslev & Méller, 2001;
Haarslev et al., 2001; Farsiniamarj & Haarslev, 2010; Faddoul & Haarslev, 2010); a wider
literature on these attempts and other arithmetic-based approaches can be found in the
lately cited works. Among these, Faddoul et al. (2008, and others) recently developed
a hybrid approach combining the standard tableau methods with an inequation solver.
Such hybrid calculus (initially proposed for ALCQ, then extended up to the logic SHOQ)
is based on a standard tableau algorithm for SH extended to deal with qualified number
restrictions and includes an inequation solver based on integer linear programming. The
algorithm encodes number restrictions into a set of inequations using the so-called atomic
decomposition technique (Ohlbach & Koehler, 1999). In a nutshell the idea is to parti-
tion the possible role fillers in all the exponentially many conjunctions of the concepts
involved in the qualified number restrictions, and to encode the cardinality constraints
for the partitions in a system of integer inequations. The set of inequations is processed
by the inequation solver which finds, if possible, a minimal non-negative integer solution
(i.e. a distribution of role fillers constrained by number restrictions) satisfying the in-
equations. The algorithm ensures that such a distribution of role fillers also satisfies the
logical restrictions.

Since this hybrid algorithm collects all the information about arithmetic expressions
before creating any role filler, it will not satisfy any at-least restriction by violating an

Motivations and Goals 107

at-most restriction and there is no need for merging mechanisms of role fillers. Moreover,
the hybrid approach has the benefit of being not affected by the values of numbers
occurring in number restrictions and of allowing for creating only one, so-called, proxy
individual (thus, only one branch in the tableau) representing a distinct set of role fillers
with the same logical properties. On the contrary, the main drawback of this approach is
that atomic decomposition always results in an exponential number of integer variables
(and possible proxy-individuals) wrt. the number of coexisting number restrictions.

We also mention the SMT-based approach outlined by Gasse and Haarslev (2009). The
idea is to develop an SMT-like DL reasoner for the expressive logic SHOQ which follows
the typical architecture of an SMT-solver (see Section 4.2). In brief, Gasse and Haarslev
(2009) proposes to separate each problem in two components of reasoning: a propositional
component which is handled from the embedded SAT-solver and a “background theory”
component handled by a specific 7-solver. Through the encoding proposed by Sebastiani
and Vescovi (2006) (see Section 5.4) the ALC part of the input SHOQ problem is re-
duced to a Boolean abstraction including atoms in the logical constructors which are not
expressible in ALC. Then the 7-solver component is responsible to verify if an assign-
ment to such Boolean abstraction satisfies the logical axioms that are not expressible in
ALC, hence the axioms which have not been rewritten into a SAT problem. In practice
the 7 -solver is the implementation of a sub-component of a traditional tableau-based DL
reasoner. Substantially, this approach is an extension of the DPLL-based approach for
modal logic proposed by Giunchiglia and Sebastiani (1996, 2000) and implemented in
KSAT and *SAT (see Section 5.1); The main difference from this latter approach and
from the modern tableau-based approaches lays om the expansion at the ALC level of
the Boolean component of reasoning and for the tighter interactions between the 7 -solver
and the assignment enumerator. We are not aware of any further investigation or advance
in the work of Gasse and Haarslev (2009) that is only at a preliminary level.

6.2 Motivations and Goals

On the one hand, reasoning with qualified number restriction is a very prominent re-
search issue in Description Logic, because the current techniques often lacks of efficiency
especially when the number of restrictions is high or when big numbers occur in restric-
tions. Because in the presence of inefficient reasoning techniques with qualified number
restrictions, ontology designers will most likely avoid the use of these constructs, even if
they are very natural in many domains. Thus, the more new domains are represented
through DL-based ontologies the more devising efficient procedures for handling qualified
number restrictions can have particularly important consequences for the development of
the ontology-design area, besides that for the field of automated reasoning in Description
Logics. In particular, the explosion of Semantic Web applications and the inclusion of
number restrictions in the recent OWL 2 standard increased the quest of languages al-
lowing for expressing cardinality restrictions, yielding the development of techniques for

108 Handling Number Restrictions as SMT Problems

optimized reasoning with qualified number restrictions an essential research goal.

On the other hand, the progress in Boolean Satisfiability (SAT) solving techniques; to-
gether with the concrete needs from real applications, have inspired significant research on
richer and more expressive Boolean formalism like Satisfiability Modulo Theories (SMT).
SMT can be seen as an extension of SAT in which the input formula is expressed in (a
subset of) first-order logic (typically without quantifiers) wrt. one or more background
theories (for example: linear arithmetic —over the reals or the integers—, its subclass differ-
ence logic, the theories of bit vectors, of arrays and of lists, and others). The dominating
approach for SMT, which underlies most state-of-the-art tools, is based on the integra-
tion of a SAT solver and one or more domain-specific solvers for the background theories.
The SAT solver enumerates truth assignments which satisfy the Boolean abstraction of
the input formula (where distinct theory-specific subformulas are represented/abstracted
by distinct Boolean atoms), whilst each domain-specific solver checks the consistency in
the respective background theory of the subset of assigned literals corresponding to its
own theory. This approach is called lazy (see Section 4.2 for the background or, e.g.,
Sebastiani, 2007b for a survey). Although SMT is still a novel research area, it is also a
very active one: new solvers and techniques are continuously proposed, and often with
improvements of orders of magnitude in performance wrt. the previous approaches.

In Chapter 5 we have shown that it is possible to efficiently perform reasoning in De-
scription Logic via encoding into SAT problems. In particular, we have learned from the
results exposed in Section 5.6 that state-of-the-art SAT solvers are tools able to efficiently
solve problems of hundreds of millions of variables and clauses. Following the experience
acquired in Chapter 5 we think that also the rising SMT technologies can be, in prac-
tice, very powerful and suitable tools to reason on Description Logic problems, combining
the adaptability and scalability of SAT with the expressiveness of the many embedded
theories. The promising performance of some algebraic/hybrid systems presented in Sec-
tion 6.1 and the surprising results of our previous approach to ALC (see Section 5.7 for
a summary) motivated us in following this intuition.

The idea is to exploit SMT in the development of new techniques for optimized reason-
ing with numerical constraints in Description Logics, especially for what concerns those
language constructors that are somewhat similar to those provided by the theories in-
cluded in SMT. So we open this research stream, starting from the encoding of concept
satisfiability in the logic ALCQ, (which extends ALC with qualified number restrictions)
into SMT. The objective is to investigate the potentials and to perform a first step in the
direction of defining a framework for efficiently handling very expressive logics by mean
of the integration of the very advance SAT /SMT-based techniques at the state of the art.
Notice that our approach differs from the one of Gasse and Haarslev (2009) because we
are not proposing an SMT-like architecture for an ALCQ reasoner but to directly encode
ALCQ problems into SMT so that to be handled by the available SMT-solvers. This dif-
ference is very important for two main aspects, which corresponds to two of the founding
motivations of our research line. First, in our approach we try to move as much reasoning
as possible in a first, expensive but “done-once-for-all” encoding phase (performed by

Alternative Solutions 109

a specific tool), in order to ease as much as possible the single but numerous following
queries performed directly on SMT, 9and for which a fast response is more important).
Second, we can exploit any advance in the SMT technologies for free, without the need
of reimplementing our approach.

In this part of our work we face, specifically, the problem of concept satisfiability in
ALCQ (see Section 3.4.1) wrt. acyclic TBoxes. Concept satisfiability wrt. acyclic TBoxes
is still a PSPACE-complete reasoning task in ALCQ where, instead, concept satisfiability
wrt. general TBoxes is EXPTIME-complete. We chose to handle only acyclic TBoxes
not to avoid to switch to the upper class of complexity but to concentrate only on the
encoding, postponing the issue of introducing techniques like blocking to handle cyclicity.
Even if, from a purely theoretical perspective, the worst-case complexity of the tackled
problem is the same of the previously approached K,,-satisfiability, it is worth noticing
that in this second part of our research we include two further main sources of complexity:
TBoxes and numerical constraints. Notice that handling TBoxes significantly change
the form of reasoning and can also inhibit the applicability of some of the optimization
we introduced for the K,/ ALC case (see Section 5.5) first of all On-the-fly Boolean
Constraint Propagation.

Content. The rest of this chapter is structured as follows. In Section 6.3 we discuss
two alternative implementations of our approach and give the motivations for the chosen
one. In Section 6.4 we present a normal form for ALCQ TBoxes used in the following
of this chapter, and we describe the transformations rules necessary to obtain normalize
a noraml-form TBox from an input TBox which is not in normal form. In Section 6.5
we define the our novel encoding from ALCQ into SMT modulo the Theory of Costs, we
expose the theoretical results (whose proofs are reported as appendix in Section 6.9) and
we propose an encoding algorithm. In Section 6.6 we discuss the need in our approach
of optimization techniques aiming at reducing the number of encoded individuals, then
we formally describe and develop a partitioning algorithm of the individuals to cope with
this issue. In Section 6.7 we present our tool ALCQ2SMT we describe the empirical
evaluation set-up, and the chosen benchmark problems, discussing the results.

In particular, in this latter section we analyze the effectiveness of partitioning in our
approach and we compare the performance of the integration of ALCQ2SMT with an
SMT-solver against the performances of the other state-of-the-art reasoners. (Some less
significant results from the empirical evaluation are reported in the appendix Section 6.11.)
In Section 6.8 we describe the contributions of this part of our research.

The encoding, the partitioning technique ans some preliminary results from this re-
search stream have been recently submitted for publication in one international confer-
ence (Haarslev et al., 2011).

6.3 Alternative Solutions

Given the many kinds of numerical reasoning available in SMT (including linear arith-
metic, inequations, counting and others), we identify two main possible alternative en-

110 Handling Number Restrictions as SMT Problems

coding solutions inspired from previous approaches exposed in Section 6.1:

1. Ome possible approach is to follow the hybrid approach of Faddoul et al. (2008),
Faddoul and Haarslev (2010), and to use the arithmetic theories of SMT in order
to perform numerical reasoning on the cardinality of groups of individuals (through
atomic decompositions (Ohlbach & Koehler, 1999)). An encoding of this approach
into SMT (LA(Z)) (see Section 4.2.2) is quite intuitive. We don’t go into details,
but the idea is to exploit the Boolean component of SMT in order to check the
logical satisfiability of proxy individuals representing each possible group/partition
of role fillers, and to rely on the LA(Z)-solver to check the numerical consistency
of the partitions cardinality wrt. the existing qualified number restrictions. This
approach has the main benefit of being not affected by the values occurring in number
restrictions.

2. A second possible approach is to mimic the traditional tableau-based algorithms.
Tableau-based algorithms satisfy all the possible at-least restrictions by introducing
many individuals as role fillers and then allow the merging of individuals when their
number exceeds some at-most restrictions. In this second implementation, the idea
is to exploit the Boolean component of SMT in order to represent the satisfiability of
single individuals and their membership to concept interpretations, and then to use
some theory in SMT in order to count and bound the number of these individuals. In
place of merging, we allow for sharing all the introduced individuals among different
concept interpretations, so that the numerical theory forces only a consistent number
of individuals to exist in order to satisfying the lower /upper-bounds.

It is possible to encode this approach into SMT modulo the Theory of Costs
(SMT(C)), that we think more naturally fits the expressiveness required by qual-
ified number restrictions (see Section 4.2.3). The Theory of Costs, in fact, is a
subset of LA(Z), in which it is possible to define multiple cost variables/functions
and to define both costs’ increments and costs’ lower /upper-bounds. Being C a sub-
set of LA(Z), further than being an easier and more compact formalism, it has a
lighter, more specific and efficient theory solver, because it is based only on sums
and checks (Cimatti et al., 2010).

Between these two alternative solutions we have privileged the encoding into SMT(C),
due to the following reasons:

— Theory of Costs C is a really simple theory who needs a lightweight and simple
solver while Linear Arithmetic £.A is much more complicated and thus, likely, needs
a much more time-consuming theory solver.

— Due to atomic decomposition, the hybrid approach leads a-priori to an exponential
number of partitions and proxy-individuals wrt. the number of qualified number
restrictions that must be encoded (no matter what is the nature of the concept ex-
pressions). Encoding such an approach in SMT (L.A(Z)) would affect exponentially

A Normal Form for ALCQ 111

both the number of the Boolean variables (representing proxy individuals) and, more
importantly, the number of the integer variables (representing cardinality). On the
contrary, in the SMT(C) encoding the number of integer variables necessary for every
group of restrictions is linear in the number of the restrictions, while the number of
individuals is linear wrt. the values occurring in number restrictions.

— Whether the linear dependence of the second approach from the values included
in the number restrictions is more negatively impacting than the exponentiality
dependence of the first approach from the number of restrictions or not, depends
from the nature of the specific encoded ALCQ problem. However, we think that:

- real-world ontologies reasonably should have a high number of qualified number
restrictions in which just a few can have big values occurring in them (otherwise
those values can, somehow, be rationalized);

- given the power of the underlying SAT-solvers in SMT, a huge number of
Boolean variables can be more affordable than a huge number of integer vari-
ables that must be handled by the theory solver;

- the idea of introducing as many role fillers (individuals) as the values occurring
in the at-least restrictions is only a first naive way of implement the second al-
ternative encoding; we think that this approach can be improved by heuristics
or enhanced encodings in which individuals are handled in groups (depending
from the specific values included in the restrictions), borrowing from the hy-
brid approach the idea of represent a group of individuals with only one proxy
individual.

6.4 A Normal Form for ALCO

We briefly recall some notation from Section 3.2. Given a TBox 7, we denote with
BC7 the set of the basic concepts for 7, i.e. the smallest set of concepts containing:
(i) the top and the bottom concepts T and L; (ii) all the concepts of 7 in the form C
and —C' where C is a concept name in Ng?. In this chapter, we use simple letters like
C,D,...,N,M,...to denote the basic concepts in BC7 (thus, C' can be used to represent
a concept ~C” with C" € BC7), whilst we use the notation C, D, ... for complex concepts
C,D ¢ BCr.

Wlog. we assume all the ALCQ concept definitions to be in negative normal form
(NNF), thus negation only applies to concept names. Starting from a generic concept
definition C' it is possible to obtain an equivalent concept definition in NNF| applying the

112 Handling Number Restrictions as SMT Problems

following linear transformations, where =C' represents the NNF transformation of —C'"

-(CND)= -~CuU-+-D -(CuUD)= -Cn=+D
—=dr.C' = Vr.=C —Vr.C' = dr.-C
->nr.C = <n-—1r.C’ -<mr.C = >m+ 1r.C
-—C =C -1l =T - T = 1

Then we restrict our attention to those ALCQO TBoxes in which all axioms are in the
following normal form:

CCD
CinCyC D C C DM Dy
cCiuC,C D CC DiUDy
Rr.CC D CCRr.D

with C, Cy,Cy, D, Dy, Dy € BCy, r € Ng% and where R € {3,V,>n,<m}, i.e. it can be
any of the possible restriction operators allowed in ALC Q.

Any given TBox 7 can be turned into a normalized one 7’ that is a conservative
extension of 7 by introducing new concept names. A TBox 7" is a conservative extension
of the TBox 7 if every model of 7' is also a model of 7, and every model of 7 can be
extended to a model of 77 by appropriately defining the interpretations of the additional
concept and role names. The transformation of a TBox 7 into a normalized one 7"’ can
be done in linear time (and, thus, 7' has no more than linear size w.r.t. the size of 7))
applying exhaustively the following transformation rules:

CCD—={CCN, NC M, MCD}

CNnCCcDhD=— {CNNCD, NCC} CCEDND=— {CCDMNN, DCN}
CUCCD=— {CUNCD, NCC} CEDUD=— {CCDUN, DCN}
Rr.CCD— {Rr-NC D, NCC} CC®r.D—= {CCRr.N, DC N}

where R € {3V, >n,<m}, C,D € BCr, C,D ¢ BCr, and N, M ¢ BCs are fresh
concept names newly introduced in order to define complex concept descriptions. Notice
that, during normalization, when a complex concept description appears both at the left-
and at the right-hand side of some concept inclusions it can be better defined by mean of
the same new concept name instead of by introducing two different fresh names for it.
Even if, for convenience and wlog., we sometimes restrict to binary conjunc-
tion/disjunction relations, in practice we can relax such a constraint and allow for having
n-ary conjunctions and disjunctions of basic concepts that we represent respectively with
rM;C; and L;C;. Moreover, in order to safely reduce the number of possible cases and
to increase the number of equivalent concepts having the same description, we further

Concept Satisfiability in ALCQ via SMT(C) solving 113

refine the considered normal form applying the following equivalence transformations to
the axioms and concepts of 7"

C’luuC’nED:{ClgD,,CnED} <0r.C = Vr.-C

thus, we avoid left-hand side disjunctions and right-hand side conjunctions and we handle
existential and zero at-most restrictions as special cases of, respectively, qualified number
and universal restrictions. This has been said the resulting considered normal form is the
following:

CCD M0, C D C C D, (6.1)
®r.CC D CCRr.D R e {V,>n,<m},with n,m > 1 (6.2)

where C,C;, D, D; are basic concepts. Finally, notice that the first of the normal
forms (6.1) is a special case of the successive two normal forms with i = 1.

We call normal concept of a normal TBox 7" every non-conjunctive and non-disjunctive
concept description occurring in the concept inclusions 7”; we call NC7 the set of all the
normal concepts of 7’. Practically, an element of the set NCz is either a concept C
with C' € BCz/ or a concept in the form Rr.C, with ® € {3,V,>n,<m}, C € BCr
and 7 € NgZ. ! Given a non-normal concept C (that is a conjunction or a disjunction
of normal concepts) we identify with nc(C) the set of normal concepts of which C' is

~

composed, where nc(C') = {C'} if C'is normal.

6.5 Concept Satisfiability in ALCQ via SMT(C) solving

We encode the problem of concept satisfiability in ALCQ into SM'T modulo the Theory of
Costs (C). Given an acyclic ALCQ TBox 7 we denote with ALCQ2SMT¢(T) the SMT(C)
encoding for 7. We also assume that every axiom description in 7 is in the normal form
exposed in Section 6.4; thus, in particular, every concept expression in 7 is assumed
to be in NNF. In a nutshell, the encoding simulates the construction of an hypothetical
interpretation for 7, so that if a satisfying truth assignment p for ALCQ2SMT.(T)
exists, tit is define from p a model Z for 7, respecting all the numerical constraints given
number restrictions. The encoding essentially works as follows:

— we introduce possible individuals for the interpretation domain AZ;

— we represent with Boolean variables whether an introduced individual concretely
exists in AT and whether it belongs to the interpretation of one specific concept;

'Note that if 7" is a normal TBox, conservative extension of the non-normal TBox 7, BCr C BC4.

2We anticipate that, at the effect of the encoding we propose in this work, the normalization of the given TBox
is not strictly necessary since it is possible to recursively label non-normal concepts and their sub-concepts with
fresh variables and then encode with new clauses the relations between the main concept and their subconcepts,
like done in (Sebastiani & Vescovi, 2009a). However, we introduced the exposed normal form in order to reduce
the possible cases that must be considered, simplifying the exposition, the encoding and the formal proofs.

114 Handling Number Restrictions as SMT Problems

— we use C-atoms in order to count the number of individuals and to express the
bounds imposed in 7 by mean of the qualified number restrictions.

In the following we formally define the encoding, we expose the theoretical results and
give an encoding algorithm.

6.5.1 Encoding ALCQ into SMT(C)

As previously done in Section 5.4, we uniquely represent individuals in AT by means of
labels o, represented as non-empty sequences of positive integer values and role names
in NiZ. A label o can be either the label 1 or a label in the form o’.r.n, where ¢’ is
another label, r € N7 and n > 1. With a small abuse of notation, hereafter we may say
“the individual ¢” meaning “the individual labeled by ¢”. Moreover, we call instantiated
concept a pair (o,C), such that o is an individual and C is an ALCQ normal concept,
representing the fact that o is an instance of C in the Z, i.e., briefly, ¢ € CZ.

Definition 3 (A, , concept variable/literal). We define A,y an injective function
which maps one instantiated concept (o, C') such that C' is not in the form =C’, for any
C', into a Boolean variable A, ¢y that we call concept variable. Let the literal L, ¢,
that we call concept literal, denote ~A, ¢y if C is in the form —C", A, ¢ otherwise.

The truth value of the concept literal L, ¢y states whether the instantiation relation
between o and C' [resp. =C| holds, i.e. if (o, C) [resp. (o, ~C)] is an existing instantiated
concept. We conventionally assume that A, .y is L. Notice also that (o, T) means
o € AT, ie. that if Ao, Ty is assigned to true then the individual o exists in the domain
of the interpretation. We informally say that an individual ¢ (meaning (o, T)) or an
instantiated concept (o, C') is “enabled” meaning that the respective literal is assigned to
true.

Definition 4 (indiv, individuals cost variable). We define indiv a function which maps
one instantiated concept (o, Rr.C'), such that ® € {>n, <m} and C is a basic concept 3,
into a cost variable indiv, in the Theory of Costs, that we call individuals cost variable.

Notice that the function indiv is not injective, since the same cost variable indiv®, is
“shared” among all the instantiated concepts which refer both to the same individual o
and to some qualified number restriction involving the same role r and the same basic
concept C. However, notice also that (o, ®r.C') and (o, Rr.-C') are mapped to different
cost variables. Given the individuals cost variable indiv$,., the final value of the variable
represents the number of individuals which are in relation with the individual o via the
role 7 and which are in the interpretation of C, in other words the final value of indiv$,
exactly represents the cardinality of FIL(r,o) N C?%.

Definitions 3 and 4 are at the base of the ALCQ2SMT:(7T) encoding. They allow
for mapping couples made up of individuals and concepts to Boolean and cost variables,

respectively. The encoding works essentially by mean of the following principles:

3We remark that we are considering only concepts in normal form.

Concept Satisfiability in ALCQ via SMT(C) solving 115

The individual 1 is the root individual.

The axioms of 7 representing the inclusions between two concepts are encoded
through Boolean implications between the respective concept variables.

Given an individual o every at-least qualified number restriction (o, >nr.C) is han-
dled by introducing exactly n new r-successors o.r.7 for o, that are supposed to be in
CZ. The existence of individuals is forced by binding each of them to an incur cost

of value 1 for the cost variable indiv® , and then fixing a lower-bound for indivS,.

When, both at-least and at-most restrictions coexist wrt. a given o, the number of
the many individuals introduced in order to trivially satisfy all the at-least restric-
tions must be bounded. Thus, first every at-most restriction is handled by fixing an
upper-bound for the respective cost variables and, second, the encoding allows for
sharing individuals separately introduced by distinct at-least restrictions, so that one
single individual can belong to many concept interpretations and concur in satisfying
many at-least restrictions.

Now we give a formal description of our novel encoding.

Definition 5 (ALCQ2SMT¢ encoding). Let 7 being an acyclic ALCQ TBox in normal

form *

and, wlog., assume that every axiom of 7 is in the form C C D, with C' = ;C;,

D = 1;D;, where i,j > 1 and i = 1 [resp. j = 1] in the case in which C' [resp. D] is a
basic concept.

The SMT(C) encoding ALCQO2SMTe(T) for 7 is defined as the sextuple
(ZT,IZ,IZ,A< .), indiv, o7, where:

Y7 is the set of all the possible individuals introduced;

77 ,II represent, respectively, the set of the implicant and implied instantiated
concepts introduced in the encoding, which are built of individuals in £7 and basic
concept of 7;

A, y and indiv are the functions defined in Definition 3 and Definition 4, respec-
tively;

©7 is a CNF Boolean combination of propositional- and C-literals encoding 7 into

SMT(C) °; we represent @7 as such a set of clauses.

The sets ©7, 77, II and ¢7 are incrementally defined as the minimum sets such that:

1.

2.

1ex?, (1,T)eZZ, (1, T) € I7 and (Ay, 1) € ¢

{(1,C5) | C; € nc(C)} C 7, for every axiom CE D e T.

“See Section 6.4.
®All the clauses of ALCQ2SMTe(T) are intended to be in CNF even if we reported them in form of implications.

116 Handling Number Restrictions as SMT Problems

3. If o € Y7, for every axiom M;C; C L;D; € T such that {(0,C;) | C; € nc(C)} C
77 UIZ, then

{{(o,D;) | Dyenc(D)} C I}

and

(/\ Ly cy) — (\/ L, py) € ¢ (6.3)

4. If 0 € 7 and (o, R'.r.C") € I7, with ®' € {>n’, <m/,V}, then
{ (o, Rr.C) | Rr.CCDeT} C 17,
for every R € {>n, <m, V}.

5. 1f 0 € £7 and (o, >nr.C) € I7 [resp. (o, <n—1r.C) € Z7] [resp. (0,Vr.=C) € I7,
def

n = 1], then
{orkf|i=1,....n} c ¥7,

{(orkC,CYi=1,....n} U {{or k&, T) |i=1,....,n} C I7

and
{ lc(mdlvgm L k?) - L(crr.kic,) | t=1,...,n } - QOT7 (64>
{ IC(mdlvgr’]-7 kzc) — A (orkS, T) | i = 17 RN } - S0T7 (65)

where kY > 1, kf, = k7 +1 and k' # k for every (o, >n'r.D) € I7 [resp. (o,
1r.D) € I7] [resp. (o,¥r.—C) € IZ, n' = 1], with C # D and i = 1,...,n,
j=1,...,n. We assume only consecutive values for the individuals o.r.j. 6

6. If 0 € X7 and (o, >nr.C) € I7, then
(At snrcy A A, 1) — —BC(indiv,,n — 1)) € 7, (6.6)
while, if o € X7 and (o, >nr.C') € 7, then

((—\BC(IndIVUT, 1) A A<U’ T)) — A(a7 znr.C)) € 907. (67)

7.1 o € X7, (0,<mr.E) € I7 [resp. {(o,>mr.E) € I7], (o,>nr.C) € I, [resp.
(o, <n—1r. C) € Z7%] and (o, >nT D) e Iz [resp. (o, <n’—1r.D) € I7 or {o,Vr.=C) €
77 assuming n’ = 1], then

{(orkS D) |i=1,....,n} U {{orkP C)|i=1,....n"} c T?

5Thus either k¢ = 1 or k¥ = kD
(o,¥r.=C) € T7 'd_e* 1].

+ 1, for some (o,>n'r.D) € II [resp. (o,<n’ —1r.D) € IZ] [resp.

n’

Concept Satisfiability in ALCQ via SMT(C) solving 117

and
{IC(indiv? | 1,k°) — Ligrie, py | i=1,...,n } U
{ IC(indivS,, 1, k) = Lig,up oy |i=1,....0" } C &7, (6.8)
indiv, .1, k7) — c 1=1,...,n U
IC(indi gr kzc A(O’.T‘.kl , T 1
{ lC(indngrﬂ]‘?kzD) - A(o.r.kiD, T) | 1= 17 s 7n/ } - SOT (69)
8. If 0 € X7 and (o, <mr.C) € I7 [resp. (o, >nr.C’) € 7], then
{{orj,C)|orjex?} c I7
and
{ (Ligr, cy A Ao, 1) — IC(>Idive,, 1,5) | orj € 2T } C 7. (6.10)
9. If 0 € X7 and (0, <mr.C) € I7, then
((Atg. <mrcy A Ay, 1y) — BC(indivS,,m)) € 7, (6.11)
while, if ¢ € X7 and (o, <mr.C) € Z7, then
((BC(inding,m) N A(z77 T)) — A<U’ Smr.C)) S (pT. (6.12)
10. if 0 € £7 and (0, Vr.C) € ZZ, then
{{orj,C) | orjex?} c I7
and
{ (A, vrey NAorj. 1) = Ligrj o)) |orj €S} C o7, (6.13)
while, if ¢ € X7 and (o, Vr.C) € T7, then
((BC(lndlv;(i, O) A A<07 T)) — A(U’ Vr.C)) € gOT. (614)
&

Importantly, ALCO2S M. as defined in Definition 5, allow to solve the TBox consistency
and concept satisfiability problems via encoding into SMT(C), as stated by the following
results.

Theorem 6. An ALCQ acyclic TBox T in normal form is consistent if and only if the
SMT(C)-formula T of ALCQ2SMTe(T) (Definition 5) is satisfiable.

Theorem 7. Given an ALCQ acyclic TBox T in normal form and the encoding
ALCO2SMTe(T) = (ET,IZ,IZ,A<) indiv, ©7) of Definition 5, then the normal con-
cept C, such that C T D € T, is satisfiable wrt. T if and only if the SMT(C)-formula
o7 A Ly, ¢ is satisfiable.

118 Handling Number Restrictions as SMT Problems

In order to not break the flow of the exposition, the proof have been moved to Ap-
pendix 6.9. For the same reason we include as Appendix 6.10 one example of the
ALCQ2SMTe encoding.

We remark some facts on the above exposed encoding of Definition 5:

— Notice that, at the effect of the encoding, at-most restrictions occurring at the left-
hand side of an axiom behave in the same way right-hand side at-least restrictions
behave, and vice versa (see points 5. and 8.). This is necessary for the Theory of
Costs. In fact in the Theory of Costs the final value of a cost variable is determined
by the sum of the enabled (i.e., assigned to true) incur costs. Thus, if no incur
cost is defined for a given cost variable, then the final value of the variable would
be zero. In fact, point 5. is necessary both to allow for satisfying implied at-least
restrictions and also to guarantee that a left-hand side at-most restriction could be
potentially falsified (avoiding some axioms to be applied). In contrast, the clauses
at point 8. work in the opposite way: the are introduced to allow for detecting the
unsatisfiability of right-hand side at-most restrictions and, vice versa, to potentially
force the application of axioms having an at-least restriction on the left-hand side.
Last, notice that left-hand side universal restrictions behave in the same way of
at-most left-hand side restrictions.

— Point 4. is necessary to force the encoding of axioms having left-hand side restric-
tions. Such kind of axioms can easily create cycles in TBoxes, thus we remark that
our encoding ensures termination only for acyclic TBoxes.

— In the clauses of type (6.4), (6.5), (6.8), (6.9) and (6.4), (6.10), every IC-literal has
cost value 1 and has the same index of the bound individual.. This ensures that
IC-literals referring to distinct individuals/cost variables are represented by distinct
C-atoms.

— Point 7. is meaningful when C' # D. In fact, if C' = D then clauses (6.8) and (6.9)
exactly correspond to clauses (6.4) and (6.5).

— Clauses (6.6) and (6.11), are those concretely ensuring the numerical satisfiability
of both at-least and at-most restrictions. Whilst, in order to be satisfied, a clause
of type (6.6) forces some IC-literals to be assigned to true (explaining the fact that
the implications (6.4) and (6.8) work only in one direction), a clause of type (6.11)
bounds the number of IC-literals that can be enabled (motivating the implications
(6.10) and their opposite direction).

Notice that if, for the same o,r and C, many (o, >nr.C') € I7 or (o, <nr.C')) € Z7 fall in
the conditions of point 5. for different values of n, being n* the highest of these values,
then only n* new individuals and n* instances of clauses of type (6.4) and (6.5) are in 7.
In contrast, one distinct clause of type (6.6) is in @7 for every different value of n; in fact
to every different concept instantiation, e.g. (o, >nr.C'), corresponds a different Boolean

Concept Satisfiability in ALCQ via SMT(C) solving 119

variable, e.g. A(, >nrc). (The same observation holds for the clauses of type (6.11) in
the case of different values of m wrt. the same o, and C'.)

Importantly, wlog., hereafter we generically refer to at-least and at-most restrictions or,
respectively, to generic instantiated concepts (o, >nr.C') or (o, <mr.C') occurring during
the encoding, meaning the right-side (implied) ones, but implicitly including also the
cases of left-side at-most (or universal) and, respectively, left-side at-least restrictions.
Here below we show an example concerning the effect in the encoding of left-hand side
qualified number restrictions, as remarked in the previous points.

Example 6.5.1. Consider the two TBoxes composed of the following four axioms:

C C (>1tA N Vvt.B N Vt.D),
ALC >1rX, B C >1r-X, D C Vs.mY,

and, alternately, of one further axiom between the following axioms:

>or T C >1sY (6.15)
<2r.T C >1sY (6.16)

We call 79" the TBox including (6.15) and not including (6.16), vice versa we call 7
the TBox obtained considering (6.16) instead of (6.15). In this example we consider the
problem of determining the satisfiability of the concept C' in 74" and 7,

Here below we report the relevant parts wrt. the satisfiability of C' of both the encodings
©T"™" and ™. First, we consider the encoding of the first axiom defining C, and the
encoding of the included restrictions concerning the role t; then we show the encoding of
the axioms defining A, B and D when instantiated in the individual 1..1:

Aq, oy = A, >1t.4) A(Aq, s10.4) A A, Ty) — —BC(indivi,, 0)
NAq, o) = A, ve.B) AIC(indivi,, 1,1) — Ao, ay
NAq, oy — A, ve.p) AIC(indiviy, 1,1) — Aper, 1

AN(Aq, ey NAgea, 1Y) = A, By ANApea, 4y — Agea, >1r.x)
AN(Aq vepy NAaea, Ty) = A@ea, by NApea, By = A@ea, >1r-X)

ANAqea, by = A, vemy)

Second, we consider the encoding of the at-least number restrictions wrt. the role r
instantiated in the individual 1.t.1:

AAaea, s1exy NA@eaes, Ty) — -BC(indivis1.,,0) A (Aa.ea, >1r-x) NA@tar2, 1)) — -BC(indivi 1., 0)
AIC(indivi gy 1,1) — Agear, x) AIC(indivy Ty, 1,2) — —Anear2, X)
A IC(indint.lnw 1, 1) - A(l t.1.r1, T) A |C(indivf.§1.r7 1, 2) - A(l.tAl.T.Q, T)

44444

120 Handling Number Restrictions as SMT Problems

In the case of the TBox 7" i.e. when including axiom (6.15), also the following clauses
are encoded into 7"

A (=BC(indiv{ 11, 1) A Aqsa, Ty) — Aper, >onT) AAq 1, Ty — IC(indivy 44, 1,1) (6.17)

NA@ea, >2rTy = A@ea, >15.Y) NAgtare, Ty = |C(indiVIt.1.m 1,2)

Notice that the coexistence of the restrictions (1.t.1,>1 r.X),(1.t.1,>1 r.=X) € 727"
and (1.t.1,>2 r.T) € Z7"™ causes the introduction in the complete formula 7" of
the clauses encoding the sharing of the individuals 1.£.1.r.1 and 1.t.1.r.2 between the
(conflicting) concepts X and =X . However, here we don’t show these clauses because they
are not relevant for the satisfiability /unsatisfiability of C. If, instead, 7" is considered,
i.e. when the TBox includes the axiom (6.16) instead of axiom (6.15), the following clauses
are encoded into @77

A (Bc(indiVIt.l.m D)NAqa,) — A, <2nT) A |C(indiVIt.1.r» 1,3) = Aqtars, T (6.18)
NAnea, <orTy — A, >15.Y) AIC(indivy 41, 1,4) — Aaqeara, T)

AIC(indivy ¢ 1.0, 1,5) — Aqi1rs, T

Finally, the following clauses are included both in ¢7"™" and ¢”™", because of the encoding

of the restrictions instantiated in 1.£.1 and concerning the role s:

A(Aia, s1sv) A A, Ty) — —BC(indivy ;4 4,0) AIC(indiv] 115, 1,1) — Ageaen, vy (6.19)
ANAa.er, vemyy NAaeisa, Ty) = "A@e1s1, v) A Ic(indi\/{t.l.s: L1)— Aptasa, 1)

unsat

Thus, while 7" includes the clauses (6.17) and (6.19), 7™ includes the clauses (6.18)
and (6.19). Notice that the SMT(C) formula ¢ A Ay, ¢ is unsatisfiable because both
the distinct individuals 1.¢.1.7.1 and 1.¢£.1.7.2 must exist forcing, via the Theory of Costs
in the clauses (6.17), both A, »or.7) and Ay 41, >15y) to be true; such assignment leads
to a conflict in the clauses of the group (6.19). On the contrary O A A, ¢y is satisfi-
able. In fact, clauses (6.18) allow for the existence of at least a third individual (among
1.t.1.r.3,1.t.1.r.4 and 1.t.1.r.5) such that, if existing, causes the literal BC(indiv,, , ,,2)
in the first clause of the group (6.18) to be assigned to false, so that also the literals
A, <ory and Ay, >1.7) can be assigned to false, and so that the clauses of the
group (6.19) do not conflict in 7™ A Ay, o). <&

6.5.2 An Encoding Algorithm

Here we sketch an algorithm for building the encoding previously defined. In doing so, we
follow Definition 5, which already outlines the structure of a possible algorithm building

ALCQ2SMTe(T).

Concept Satisfiability in ALCQ via SMT(C) solving 121

The algorithm is based on expansion rules which mimic Definition 5 by extending
the set X7 with new individuals and by adding new clauses to the SMT(C) formula (7.
The sets of the Boolean literals that have been introduced in 7 at the left-hand side
and at the right-hand side of the implications automatically represent, respectively, the
respective instantiated concepts in the sets ZZ and IZ. Each time a new individual is
introduced in X7 it is enqueued into a queue of individuals). Expansion rules are then
applied individual-by-individual wrt. the last individual o dequeued from (@), so that all the
expansion rules concerning o are applied consecutively and before all the rules concerning
any other individual (in particular any successor o.r.7). Henceforth, the algorithm handles
individuals in a BFS manner. In more details it works as follows:

Initialization ¥7 and the queue @ are initialized with the root individual 1, while ¢7
is initially set to the unit clause “A(1y”. Then 7, as consequence of the points
2. and 3. of the definition of ALCO2SMT.(T), is extended encoding all the TBox

axioms in 1 with clauses of type (6.3).

Iteration For every individual o extracted from @), the following expansions phases are
applied in the given order:

(a) Realizes the points 3. and 4. of Definition 5 handling axioms. Pure propositional
clauses are added to ALCQ2SMT.(T) exhaustively encoding all the implica-
tions of type (6.3) representing the axioms of 7. Every axiom is ensured to be
encoded at most once, only if it is not yet “o-expanded” and if the premises of
the axiom are fully matched in o.

Then, the restrictions instantiated in ¢ are grouped wrt. the role r they refer to,
and the next four phases are applied for every group of restrictions:

(b) Realizes the points 5. and 6. [resp. 9.] of Definition 5 handling at-least restric-
tions. At-least restrictions are handled before all the other restrictions since
they are the responsible of the introduction of new individuals. Given r, the
different at-least restrictions (o, >n;r.C') wrt. the same concept C' are sorted in
decreasing order wrt. the occurring value n;. This has been done, new individ-
uals and clauses of type (6.4) and (6.5) (point 5.) are introduced once for every
different concept C' in the case of the highest n;. Instead, one different clause
of type (6.6) [resp. (6.12) or (6.14)] is added for every distinct restriction.

(c) Handles multiple at-least/at-most restrictions. If, wrt. o and r, many at-least
restrictions coexist with some at-most ones, then a further encoding phase is
necessary in order to encode the sharing of all the individuals o.r.i, as pro-
vided by point 7. of Definition 5. Thus, in this circumstance, all the clauses
of type (6.8) and (6.9) are introduced for every at-least restriction (o, >n;r.C;)
and every o.r.i € 7.

(d) Handles at-most restrictions, realizing the points 8. and 9. [resp. 6.] of Defini-
tion 5. Given r, the different at-most restrictions (o, <m;r.C’) wrt. the same

122 Handling Number Restrictions as SMT Problems

concept C' are grouped. The clauses of type (6.10) (point 8.) are introduced only
once for every different concept C, while one clause of type (6.11) [resp. (6.7)]
is added for every different C' and every different kind of restriction or value of
ms;.

(e) Handles universal restrictions, realizing the point 10. of Definition 5. For each
restriction (o, Vr.C) and every o.r.i € 7, the algorithm introduces one clause
of type (6.13).

We avoid to show a pseudocode for the exposed algorithm, because it would be very
long without adding any useful information wrt. Definition 4 and the above exposed
textual description.

Proposition 8. Given an acyclic ALCQ TBox T in normal-form, the above exposed
encoding algorithm terminates.

Proof. Notice that the expansion rules building ©7 and ¢? from 7 are of two kinds:
either (a) they propositionally expand an axiom of 7 or (b)-(e) they encode restrictions
introducing new individuals, concept names in those individuals and incur /bounded costs
for the relative cost variable. Termination is guaranteed due to the following facts:

every axiom of 7 is expanded at most once for every o enqueued in Q;

a bounded number of individuals is introduced every time a qualified number re-
striction is handled;

the expansion rules reduce the complexity of the concepts they handle, until they
reduce to concept names;

- T is assumed to be acyclic, thus a concept name can not recur cyclically.

]

Since ALCQ has the finite tree model property (Lutz, Areces, Horrocks, & Sattler,
2005) a worst-case exponential (in the size of 7°) finite model for 7 is ensured to exist. In
particular, no blocking techniques are necessary to find such a module since 7 is acyclic.
Whiile, for every o, the number of expansion of the first kind performed by our encoding
algorithm is linear in the size of 7', the number of expansions of the second kind depends
on the size of 7 and on the number of new individuals introduced, i.e. from the values
occurring in qualified number restrictions. Thus, overall, the size of »7 is bounded by
the product of the sum of the values occurring in the qualified number restrictions of 7°
and the size of a model for 7. Moreover, it is easy to see that our encoding algorithm is
output-polynomial (in ¢7), since every encoding phase can be performed in polynomial
time.

Optimization: Smart Individuals Partitioning 123

6.6 Optimization: Smart Individuals Partitioning

A main drawback of the basic ALCQ2SMT, encoding is that it introduces exactly as
many new individuals as is the sum of the values included in all the at-least restrictions
instantiated in every o. Thus, the total number of individuals introduced by our basic
encoding can be potentially huge. This number, moreover, can exponentially increased
when nested number restrictions must be encoded. significantly impacting on the size
and on the hardness of the resulting SMT(C) formula. However, it is quite intuitive that
it is not strictly necessary to introduce all such individuals. In this section we propose a
numerical techniques to cope with this problem, and to reduce the size and hardness of
our encodnig.

6.6.1 The Need of Partitioning

In general, it is possible to handle groups of individuals having identical properties (i.e.
which belong to the same concepts interpretations) instead of using single ones, and then
to use only one “proxy” individual as representative for all the individuals of the group.
Thus, similarly to the hybrid approach of (Faddoul et al., 2008; Faddoul & Haarslev,
2010), the idea is to to compute a partitioning of the individuals, and then to replace in the
encoding many signle individuals (and the relative variables/clauses) with only one proxy
individuals. Proxy individual has been used by (Faddoul et al., 2008; Faddoul & Haarslev,
2010), for representing one of the exponentially-many mutually disjoint decompositions
of all the concepts interacting through qualified number restrictions. Indepenendtly from
the cardinality of the partition it represents, a proxy individual is “the witness” of the
consistency /inconsistency of the properties of all the individuals of the group.

As stated above, partitions must be made of individuals with identical properties.
Looking at Definition 5 we point out the following facts:

- Except for the root individual 1, individuals o.r.i are introduced (like in a tree) in
order to encode at-least restrictions (o, >nr.C'). Importantly, since ALCQ doesn’t
allow for role hierarchies, first of all individuals are naturally partitioned in groups
wrt. r and wrt. the individual o of which they are r-successors.

- If, given ¢ and r, only at-least restrictions (o, >nr.C) exist, for every such restriction
all the individuals o.r.k¢, with i = 1,...,n, can be part of one single partition. In
fact, in this circumstance the sharing of individuals is not necessary.

- Otherwise, i.e. when both at-most restrictions and the at-least restrictions
(0,>n;r.C;) coexist for the given o and r, the N = Zj n; individuals introduced
can still be partitioned, but the partitioning must allow for representing pssobile
intersections between the interpretations C’jI :

However, in the latter case, not all all the possible cardinalities of the intersections
must be considered. Instead, it is sufficient to distinguish between the empty intersections
and some “limit” cases, depending on the specific values occurring in the qualified number

124 Handling Number Restrictions as SMT Problems

restrictions. To sum up, given o and r, we can compute a partitioning of all the individuals
o.r.i referring to ¢ and r, by taking into account the values included in the qualified
number restrictions which condern ¢ and r.

Example 6.6.1. For instance, suppose that it is necessary to encode the restrictions:
(0,>10r.C') and (o, >10007.D). The basic ALCQ2SMT. encoding would introduce 1010
distinct individuals. Applying the above explained idea, instead, we could divide these
1010 individuals in, e.g., three partitions of respectively 10, 990 and again 10 individuals.
This partitioning allows for representing both (but not only) the configuration in which
10 individuals belong to C% and other 1000 (i.e., 990 plus 10) distinct individuals belong
to D? and also the configuration in which the 10 individuals of C* are in common with
D?, not enabling the other 10 individuals. If, for example, also (o, <1005r.T) must be
encoded, then the last 10 individuals could be further divided into two distinct partitions.
This partitioning allows for sharing 0, 5 or 10 of these last 10 individuals between CZ
and D?, covering (in general) the cases in which exactly 0, 5, 10, 15, 20, 990, 995, 1000,
1005 or 1010 of these individuals exist in AZ (being part or not of C* and/or D?). Even
if not exhaustive these combinations of the 1010 introduced individuals are enought to
represent the significant cases concerning satisfiability.

6.6.2 Proxy Individuals and Smart Partitioning

In order to handle partitions of individuals we extend the ALCQ2SMT, formalism
introducing cumulative labels and prozy individuals. Given a normal/cumulative label o’
and a role 7, a cumulative label o’.r.(i— j) represents a group of consecutive individuals
by mean of the range of integer values i — j, with ¢ < 7, so that the label represent a set
of individuals whose cardinality is 7 — 7 + 1. A normal label, thus, is simply a special
case of a cumulative label, with ¢ = j and cardinality 1. For a normal label we can both
write o’.r.(¢ — ¢) and o’.r.i. For instance, in the encoding we can represent c¢ distinct
individuals: o.r.i+1,...,0.r.1+c, having the same characteristics, by mean of only one
cumulative label o.r.(i+1 —i+c¢). With a small abuse of notation, in the following we
call prozy individual any o.r.(i— j), meaning both: (i) the cumulative label representing
the set of individuals o.r.i,0.ri+1,...,0.r.j and (ii) that o.r.(i — j) can be one/any of
these individuals acting as proxy for all the other individuals of the set. Hereafter we
generally speak of individuals meaning, indifferently, either normal or proxy ones. In
particular, every single individual can be seen as proxy of itself.

This has been said, the idea is to compute a smart partitioning of the individuals
encoded in ALCQ2SMTr. With smart we mean a “safe but as small as possible” par-
titioning, i.e. a partitioning which reduces as much as possible the number of partitions
but which safely preserves the semantic of the problem, so that the cardinalities of the
computed partitions allow for representing every relevant case wrt. satisfiability. In Defi-
nition 6 we formally define our smart partitioning:

Optimization: Smart Individuals Partitioning 125

Definition 6. Let 7 being an acyclic ALCQ TBox in normal form and ALCQ2SMT¢(T)
being the SMT(C) encoding for 7 defined in Definition 5. Given the individual o € X7
and the role r of 7 we define the arrays: *

NZ dCf{ | (0, >nir.C;) € II or (o, <n;—1r.C;) € 72 };* and
N Z{m; | (0, myrD) €T o {0, 2myr.D) € 77),

representing the collections of all the numerical values included in the qualified number
restrictions occurring in o wrt. r. From N2, and N= , respectively, we define the integer
values:

> def < def
Nz, = menz, i and N, = myeNs, -

Being 2% the power set for the set/array X, we define the set P,, = “ PZ U PS, as the
smart partitioning for the NZ_ individuals of X7 of the form o.r.k, where:

PET d:ef{ ns]SGZN"Z”, ns =0+%,,esn, } and

PS © mg | S e QN"S'T, mg :0+Emkes my }

a.r

Finally, we define p; € P, the i-th sorted element of P,,, so that p; < p;11, and, in
particular, p; = 0 and pjp, | = max{NZ,, N, }.

O”I“’

Given ¢ and r, N2, of Definition 6 represents the number of individuals of the
form o.r.i formely introduced in ALCQ2SMTe and which we want to partition in
groups. Assuming to include in each computed partition consecutive individuals among
or.l,...,0r.NZ, the smart partitioning P, represents the set of the indexes of referring
to the 1nd1v1dual of every partition, so that every partition can be represented by the
proxy individual o.r.(p;_1 + 1 —p;), with j > 1. Notice also that P2, PS, and P, are
sets, thus, equal values are uniquely represented in them. In partlcular, the values of
p1 and ppp, .| are guaranteed to be the ones mentioned in Definition 6 by the fact that
0, X € 2% for any set X. The two partitioning shown in Example 6.6.1 are computed in

accordance with Definition 6.

Definition 6 defines a safe partitioning, in fact:

— It takes into account all the values of the qualified number restrictions instantiated
for o and wrt. 7.

— It considers all the possible sums of the values n; [resp. m;| for all the at-least
[resp. at-most| restrictions, which allows for representing all the possible lower-
bounds [resp. upper-bounds]| in case of disjoint (i.e. with empty intersection) concept
interpretations.

"Equal n; or m; values can repeat as many time as they occur.
8The instantiated concepts (o, Vr.C;) € ZZ must be considered like (o, <Or.—C;) € 7.

126 Handling Number Restrictions as SMT Problems

— The union of PZ, and P=, represents the combination of lower- and upper-bounds,
respectively.

— By sorting all the possible sums and by considering the distance between these values
as the size of a partition (from p;_; + 1 to p;), it also allows for representing all the
possible (non-empty) intersections of concept interpretations.

— Not all the cardinalities of the non-empty intersections are possible with this parti-
tioning, but “limit” cases are guaranteed to be represented. In particular, including
or not a partition of individuals in one interpretation corresponds to pass from one
limit case to another limit case.

6.6.3 Exploit Smart Partitioning in ALCQ2SMT,

Using partitions and proxy individuals doesn’t effect the ALCQ2SM T, encoding thanks
to the fact that the Theory of Costs allows for arbitrary incur costs. So, for example, it
is possible to substitute n clauses referring to the distinct individuals o.r.k{, ... o.r.kS,
with one single clause referring to the proxy individual o.r.(k¢ — k), if we assum all
such individuals to be part of the same partition. Moreover, if each of the original clauses
produce ans incur cost of value 1 (e.g., with the literals 1C(indiv¢,, 1,k)) the unique
cumulative clause produces an incur cost of n (e.g., including the literal 1C(indiv¢ ., n, k¢))

Concretely, we enhance Definition 5 by taking advantage of the partitioning technique
defined in Definition 6. In the following we point out only the necessary modification to

Definition 5, assuming that, for every o and r, the partitioning P, is available.

— First of all the set X7, and the instantiated concepts included in ZZ and ZZ are
assumed, generically, to be made up of proxy individuals. Then, by consequence, also
the functions A; and indiv are assumed to map proxy individuals to, respectively,
Boolean and cost variables.

— Second, the n clauses of the types (6.4) and (6.5) at point 5. are replaced by the

following;:
{1C(indivS,, cost;, idx;) — Liprony;, €) | Pj € Pory 0<pj<n} C o7, (6.20)
{1C(indivS,, cost;, idx;) — Alprosy;, T) | pj € Por, 0<p; <n} C 7, (621)

cost; = pj — pj—1), tdr; = kY +PG-1), Oprowy; = a.r.kf—kp(j_g — /{:?—i—pj—l.

Notice that since P, includes all the possible sums among all the other possible
number restrictions’ values and n, then n, k¥ — 1,k + n — 1 € P,, (ie, n is
exactly partitioned in P,). The values of idz; and Oprozy; , Instead, can be explained
remembering that each p; represents the last index of a partition and that the first
index p; is 0, while k¢ > 1.

Clauses (6.8), (6.9) at point 7. are modified accordingly.

Optimization: Smart Individuals Partitioning 127

— Third, the clauses of type (6.10) defined at point 8. must take into account proxy
individuals and the relative incur cost. Hence they are replaced by the clauses:

{ (Ligrii =), YN Ao —), Ty) — IC(indivS,, j—i+l,) | our.(i—7) € BT }. (6.22)

Clauses (6.13) at point 10. are substituted by clauses handling proxy individuals, in
the same way.

— Finally, the differences in the definitions of I_T,IZ and X7 for all these points of
Definition 5 trivially come by consequence.

We make the following observations:

- If, for o and r, the conditions of point 7. of Definition 5 do not hold (e.g. no at-
most restriction exists), then an even more efficient partitioning requires only the
following two clauses for every (o, >nr.C):

IC(indiv¢ ,n, k%) — Lo r.(ke—kC1m1), O)>

IC(indiv5,, 1, k) = Ay (hCiCin), T

- Otherwise, if the conditions of point 7. hold, then ¢? contains all the clauses:

{ IC(indngra Pj —Dj—-1, Pj—1 + 1) - L<<7~7’~(I’j71+1H pj), C) ’ by € Pa.ra] > 1 } U
{IC(indiVS ., p; —pj1, pja +1) — Ator (-t py), Ty | Pj € Powy 3 >1 1}

for every (o, >nr.C), as consequence of point 5. and of the sharing of (proxy) indi-
viduals performed at point 7..

From these two observations we can conclude that it is convenient to compute a smart
partitioning of the N2, new individuals introduced for ¢ and r only when the sharing of
individuals is performed (point 7.), otherwise one single proxy individual for each at-least
restriction can be directly used.

6.6.4 Partitioning Algorithm

In Figure 6.1 we expose the pseudocode of the algorithm computing the smart partitioning
of Definition 6, given the individual o, the role r and the respective arrays N2, and N=,.
In particular, in Figure 6.1 instead of computing P,, we compute the array D, of the
partitions sizes represented by P,, (e.g., the j-th element of D,, represents p; — pj_1),
which are the values in which we are interested.

Proposition 9. Given the individual o and the role r, the algorithm of Figure 6.1, which

takes as input the arrays NZ, and N=, and computes the smart partitioning P, of Def-

inition 6, has worst-case complezity O(QmaX{WaZ.rI,IN(;r\}).

128 Handling Number Restrictions as SMT Problems

IntList compute-Combinations (IntVector N)
// P and @ are both initially empty and are, respectively, a list and a queue of integers

1. insert 0 in P as first element;
2. for each number n; in N
3. move P to the first element;
4. while not end-of P
5. let m be the current element of P;
6. enqueue n; +m into @;
7. move P to the next element;
8. while (@ is not empty) and
(end-of P or s<m, with s,m current elements of @Q,P)
9. dequeue s from @;
10. if end-of P or s <m then
11. insert s in P before the current element;
12. return P;

IntVector compute-Partitioning (IntVectors Na’z,rv N(,S_T)
// Dy, is a vector of integer values

13. P2, = compute-Combinations(NZ,);

14. PS, = compute-Combinations(NVS,);

15. P, = merge(PZ,, Ps.);

16. let s be the size of P,,; i1 =2; j=1;
17. while 7 < s

18. d="Psrli] = Porli—1]; i=1i+1;

19. if d >0 then

20. Da.r[j]:d; J=J+1

21. set to j the size of D,,;

22. return D, ,;

Figure 6.1: Exponential-time algorithm computing smart partitioning.

Proof. We analyze the complexity of the algorithm of Figure 6.1. Let n; € N be the
number handled at the i-th iteration of the outer-most cycle (starting at instruction
2.) of the procedure compute-Combinations. At each iteration, from 3. to 7., a number
of operations linear in the current size of the list P is performed: that, in the worst case,
is equal to the number of the different possible combinations of k previously handled
numbers nq,...,n;_1, with 0 < k < ¢ — 1. Thus the i-th iteration of the procedure
executes a number of operations linear in:

— [i—1 — [i—1

k=0 k=0

Since each combination computed is inserted in the queue () once, at the instruction 7.,

Empirical Evaluation 129

and the number of all the operations 8-11. is linear in the size of P and (), then the
cost of compute-Combinations (counting all the iterations from 1 to |N|) is of worst-case
complexity O(2/"1), consistently with the size of the power set for N. Accordingly, the

>
cost of compute-Partitioning is O(QmaX{W@"’W;T'}). O

However, notice that instructions 10-11. avoid saving repeated combinations already
present in P (in fact N2 and N=, are arrays, while P2, and PS, are sets). This can lead
to a sensible cost reduction in the average case, when many values repeat frequently in
the handled qualified number restrictions. We believe that, despite the worst-case cost of
the smart partitioning algorithm, the reduction in the number of clauses and, especially,
the reduction in the number of individuals encoded (which can impact exponentially,
when repeated at any nesting level), would significantly enhance the whole performance
of our approach. In fact, not only we can gain a significant reduction in the size of the
encoding ALCQ2SMT¢(T) but, especially, partitioning can strongly reduce the hardness
of the SMT(C) reasoning on the encoded problem. Furthermore, partitioning yields
our approach to be independent from the values of the qualified number restrictions in
the TBox. With smart partitioning the magnitude/offset of the values doesn’t effect
the size/hardness of the encoding; the effectiveness of smart partitioning, instead, is
effected by the interactions among the values (e.g., the frequency of the values or of the
differences among them matter).

6.7 Empirical Evaluation

In order to empirically verify the effectiveness of our novel approach, we have performed
a preliminary empirical test session on about 700 synthesized and parametrized ALCQ
problems, on which we solved concept satisfiability wrt. non-empty TBoxes.

We have implemented the encoder called ALCQ2SMT in C++4, in which, the smart
partitioning technique of Section 6.6 can be optionally enabled. In the following we distin-
guish with the abbreviation S.P. the results referring to ALCQ2SMT with enabled smart
partitioning. In combination with ALCQ2SMT, we have applied on the resulting SMT(C)
formulas MATHSAT (version 3.4.1) (Bruttomesso, Cimatti, Franzén, Griggio, & Sebas-
tiani, 2008), that actually is the first SMT-solver including the Theory of Costs (Cimatti
et al., 2010).

We have downloaded the available versions of the state-of-the-art tools FACT 4+
(version v1.4.0) (Tsarkov & Horrocks, 2006), PELLET (version 2.1.1) (Sirin et al., 2007),
and RACER (RacerPro version 1-9-0) (Haarslev & Moeller, 2001; Haarslev & Moller, 2003)
in order to compare their performance wrt. those of our approach. We have not included
in the comparison HERMIT (Motik et al., 2009), that is a hypertableau reasoner and
thus its handling of qualified number restrictions is not comparable with the standard
tableaux-based reasoners (it is much worse), and the hybrid approach of (Farsiniamarj &
Haarslev, 2010), which is still a prototype and not yet publicly available.

130 Handling Number Restrictions as SMT Problems

All the tests presented in this section have been performed on a biprocessor dual-core
Intel Xeon 2.66 GHz, 64 bit machine, with 16 GB of RAM, running Debian Linux
2.6.18-6-amd64, where four processes can run in parallel. We set a 1000 seconds timeout
for every tool and every concept-satisfiability query. We also fixed a bound of 1 GB of
disk space for the SMT(C) encoding in output from ALCO2SMT (however, in the test
cases here reported the bound has never been reached).

When reporting the results for one ALCQ2SMT+MATHSAT configuration (either
including or not smart partitioning), the CPU times reported are the sums of both the
ALCQO2SMT encoding and MATHSAT solving times (both including the loading and
parsing of the input problem). We anticipate that, for all test problems, all tools under
examination (i.e. all the variants of ALCQ2SMT+MATHSAT and all the state-of-the-art
DL reasoners) agreed on the satisfiability /unsatisfiability results when terminating within
the timeout (with the exception of PELLET in the test cases of Section 6.7.4).

6.7.1 Test Descriptions

In this section we present the sets of test cases we chose for our evaluation.

As discussed by Farsiniamarj and Haarslev (2010), one major problem with bench-
marking in this case is the lack of real-world ontologies including meaningful and sig-
nificant uses of qualified number restrictions. The current well-known benchmarks are
not well suited to address typical real-world needs; there exist not many comprehensive
real-world ontologies suitable as benchmarks for hard Description Logics and they mostly
do not contain non-trivial numerical constraints. In fact, the current techniques for rea-
soning with qualified number restrictions in Description Logics often lacks of efficiency,
especially when the number of the restrictions is higher or when the values involved in
the restrictions their selves are big. For this reason ontology designers most likely avoid
the use of these constructors, even if they are very natural (sometimes essential) in many
domains. Moreover, the design of benchmarks ontologies, in the last years, concentrated
on those constructors that can be described with OWL, while qualified number restric-
tions are expressive and hard to handle constructors added only to the second and more
recent W3C reccomendation OWL 2 (Motik et al., 2009).

Thus, we chose to follow the same benchmarking approach of (Farsiniamarj & Haarslev,
2010) which relies on synthesized test cases. Therefore, we have adapted to ALCQ the
SHQ problems proposed by (Farsiniamarj & Haarslev, 2010). These problems focus on
concept expressions only containing qualified number restrictions and define different sets
of problems stressing on different source of complexity of the reasoning in ALCQ, which
are:

1. the size of values occurring in number restrictions (namely, n and m in the restric-
tions of the form >nr.C' and <mr.C);

2. the number of qualified number restrictions;

3. the ratio between the number of at-least restrictions and the number of at-most
restrictions;

Empirical Evaluation 131

4. the satisfiability versus the unsatisfiability of the input concept expressions.

In the following we describe with more details the six groups of different test cases
definedwe have borrowed from the work of Farsiniamarj and Haarslev (2010). In our
eveluation we add a further group of problems which tests the effect of having a large
variety of different values occurring in number restrictions; while this characteristic
shouldn’t affect the other reasoners, it represents a significant factor for the effective-
ness of our partitioning technique. Every different test problem is characterized by
an index 4, which influences on one of the above mentioned complexity sources (for
instance by determining the number of qualified number restrictions in the concept
expression, and so on and so forth); thus, in general (but not for all the test cases)
the high is the index ¢ the hard is the problem. Since values occurring in qualified
number restrictions are one of the sources of complexity which can strongly influ-
ence the performance of reasoning, we further parametrized the original test cases
of Farsiniamarj and Haarslev (2010) by adding the parameter n which varies those values
when they are not directly related to i. ® This has been said, in our evaluation we
test the satisfiability of the concept C' wrt. the groups of TBoxes exposed in the following.

Increasing Values of Numbers Occurring in Restrictions.
First we analyze the effect of having increasingly high values occurring in the qualified
number restrictions. We check the satisfiability of C' in the TBox:

CC>2ir(AUB) N <irAN <ir.B N ((<i—1r-A)U(<j roB)),

with j = ¢ for satisfiable problems and 7 = ¢—1 for unsatisfiable ones. In these problems
the values occurring in number restrictions increment gradually with .

In order to be satisfied, the concept C' requires to have at least 2i r-successors in (AU B)
for every individuals in its own interpretation. The two at-most restrictions <i r.A and
<i r.B bound to 7 the number of successors that can be in A and, respectively, in B. Thus
i successors are in (AT B) and the other ¢ must belong to (A M —B). Therefore, it can
be concluded that if j = ¢ then C is satisfied by choosing ¢ individuals in B, otherwise C'
is unsatisfiable.

We call increasing lin sat, and increasing lin unsat, the satisfiable and
unsatisfiable version, respectively, where i ranges in the interval ¢ = 1,2,3,...,100.
Moreover, we call increasing exp_sat, and increasing exp_unsat, the satisfiable and
unsatisfiable version, respectively, of an exponential variant of this benchmark, in which
i (and accordingly 7) is replaced by 10°.

Backtracking.

One of the major well-known optimization techniques addressing the complexity of reason-
ing with number restrictions is dependency-directed backtracking or backjumping. Back-
jumping or conflict-directed backjumping are well-known improved backtracking methods

9When listing the chosen values for n we will underline the value originally used in(Farsiniamarj & Haarslev,
2010).

132 Handling Number Restrictions as SMT Problems

that were adapted to DL-reasoning as dependency-directed backtracking (Horrocks et al.,
2000a). In tableau methods, these techniques detect the sources of an encountered clash
and try to bypass during backtracking branching points that are not related to the sources
of the clash. By means of this method, an algorithm can prune branches that will end
up with the same sort of clash. In particular, this technique has shown to significantly
improve the performance of DL systems in dealing qualified number restrictions (Horrocks
et al., 2000a).

This benchmark tests the performance of the compared systems on some cases in which
the effect of backtracking could be particularly important. In order to observe the impact
of backtracking, we tested the unsatisfiable concept C' in the following TBox:

CC>nr.Dy 11 -1 >nr.D; 11 <ni—1r.T,
D,ND,C 1, 1<j<k<u.

Due to at-least restrictions an individual in C' must have n r-successors in every D;. Since
these n - i successors are instances of mutually disjoint concepts D; where at most (ni—1)
successors are allowed; thus C' cannot be satisfied. Plain tableau algorithms, without
dependency-directed backtracking, could incur in an exponential number of branching
ending in a clash for a failed merging of distinct successors.

In this test suite, every increase of 7 results in more number restrictions and therefore
in a larger number of disjoint concepts. We call these problems backtracking;(n), where
1 ranges in the interval ¢ = 1,2,3,...,20 and where n regulates the combined effect of
the values occurring in number restrictions (n = 1,2, 3,10). In particular the case n =1
shows the pure effect of backtracking, which might be further increased by incrementing n.

Satisfiable vs. Unsatisfiable Concepts.

In this experiment the performance of reasoning on problems which ranges form satisfiable
to unsatisfiable ones are compared, depending on the values included in the number
restrictions. The test cases are concepts containing four qualified at-least restrictions and
one unqualified at-most restriction according to the following pattern:

CC>3nr(ANB) N >3nr.(—-ANB) N >3nr.(AMN-B) M >3nr(-AMN-B)
M <wmrT.

Since the four at-least restrictions require mutual disjoint groups of fillers, C' requires
at-least 12n distinct r-successor to be satisfied. Thus C' is satisfiable for problems with
i > 12, unsatisfiable otherwise. ' We call these problems sat unsat;(n), for which we
chose the values 1 = 1,2,4,6,...,24 and n = 1, 10.

OFarsiniamarj and Haarslev (2010) proposed a second variant of this problem. In the alternative variant the
concept name D replaces T and is conjoint in all the four at-least restrictions. This second version has been
introduced in order to study an unexpected behavior of their hybrid approach in the limit cases ¢ < 3n (due
to the integrated arithmetic reasoner). However, at the effect of the system we are comparing here, this second
variant do not present significant differences wrt. the first one above proposed.

Empirical Evaluation 133

Increasing Number of Qualified Number Restrictions.

The number of qualified number restriction occurring in the problems is one of the factors
which mostly influence the complexity of reasoning. Therefore, in this experiment the
concept C' is built starting from one at-least restriction and then it is extended gradually,
at the growing of the index 7. In order to keep the ratio between the number of at-least and
at-most restrictions fixed, at every step one new at-least and one now at-most restriction

are added:

CC>4nr.T M >2nr.D;y T >22nr.Dy 1 --- M >2nr.D;
n <n r_(—|D1|_|—|D2) n <n 7’.(—|D2|_|_|D3) M-
LI STL T’.(_|DZ‘ L _'Diﬂ—l)-

Notice that every such a problem contains exactly 2¢ + 1 number restrictions. We
call these problems restr num;(n); C is satisfiable for every i,n > 1. Being a central
experiment in our benchmarking, we let ¢ range in ¢ = 1,2,3,...,100 and we chose
n = 1,5,50, so that we test the performance of all the tools also in very extreme cases,
where very high values (n = 50) occur in the qualified number restrictions.

Increasing Number of Qualified Number Restrictions with Variable Values.

We think that our smart partitioning technique could be very effective in improving the
performance of the ALCO2SMT + MATHSAT approach. As discussed in the complexity
analysis of Section 6.6.4, the effectiveness of smart partitioning increases when the values
included into number restrictions repeats frequently, leading both to a smaller number
of partitions and to a faster execution of the partitioning algorithm. On the contrary,
the performance of our smart partitioning algorithm should deteriorate when the input
problem presents a combination of a great number of restrictions (which directly affects
the complexity of the partitioning algorithm) and in each restriction occurrs a different
value. In particular, the more different are the values the more the complexity of the
algorithm approaches to the worst-case complexity, and the more the output encoding
results in a greater number of partitions (and, thus, in a larger and harder SMT prob-
lem). So we propose the following variant of the restr num;(n) benchmark, that we call
var_restr_num;(n):

CC>4dnr.T N >22nr.D; N >2(n—1) r.Dy 1 -+ 1 >2(n—i+1) r.D;
M S?’L T.(_lDl L _|D2) M S?’L—l T.(_|D2 L _|D3) ...
This group of problems introduces variable values in the qualified number restrictions
(notice that all the restrictions includes mutually different values) and an increasing

number of restrictions following the index ¢. In this case it must be n > 7. We chose
n =100 and i = 1,2...,n. ' Notice that C is still a satisfiable concept.

HEor instance, if n = 100 and i = 3 then var_restr num3(100) = C T >400r.T M >200r.D1 1 >198r.D2 N
>196r.D3 M <1007.(-D1 U —-D2) N <99r.(-D2 U —~D3) M <98r.(-D3 LI =D4), and so on and so forth.

134 Handling Number Restrictions as SMT Problems

Number of At-least vs. Number of At-most Restrictions.

In addition to the pure number of qualified number restrictions, the ratio between the
number of at-least and the number of at-most restrictions could affect the complexity
of reasoning. Therefore, in this experiment, the performance of the various systems are
evaluated wrt. such a ratio given a fixed total number of restrictions. The structure of
the concept expression is similar to the previous ones (restr_num;(n)) and the concept
expressions C' are easily satisfiable:

CC>4nr. T M >2nr.Dy 11 22nr.Dy M --- N >2nr.D;
N <nr.(=DyU=Dy) M <nr(=DyU—=D3) M ---
. STL ’I“.(_|Dm_¢ L _|Dm_¢+1).

We call these problems restr ratio;(n), and we chose for i the same values proposed
by Farsiniamarj and Haarslev (2010), i.e. i = 0,1,...,m, with m = 14 and where
n = 1,5. Notice that the number of qualified number restrictions is fixed and is set to
m + 1, that in our case is 15. Thus, the first problem with index ¢ = 0 has a ratio of
“at-least”- “at-most” restrictions of 1-14, the second with index ¢ = 1 has a ratio of 2-13,
and so on and so forth till ¢ = m = 14 where the ratio is 15-0.

Notice that, in all the test cases, the concept expressions involving C' are always complex
concept expressions. Thus after normalization every concept expression reduces to a non-
empty TBox with a certain number of axioms.

6.7.2 Comparison wrt. State-of-the-art Tools

We first compare our novel approach wrt. the other state-of-the-art reasoners, eval-
uating on all the benchmarks described in the previous section the performance of
ALCO2SMT+MATHSAT and those of the other selected tools.

The results of our experiments are graphically summarized in Figures 6.2, 6.3, 6.4,
6.5, 6.6, and 6.7. In order to make the plots clearly readable in the figures, we have
maximized the surface of every plot by moving to the figure’s caption all the information
and parameters concerning the represented test cases. For each distinct test set and
parameters configuration we compared the total CPU times required by each tool to solve
the i-th problem. Plots referring the same group of benchmarks are grouped in the same
figure.

From the exposed results we notice a few facts:

- ALCO2SMT+MATHSAT S.P. results one of the best performer in all the test cases
but in the artful backtracking problems (Figure 6.4) and in the var_restr_num
problems (Figure 6.6), that have been specifically designed to counteract smart
partitioning.

- ALCO2SMT+MATHSAT S.P. is the absolute best performer in the very hard test
set restr num;(50) (Figure 6.6), while, together with either RACER or FACT++,
it is the best performing tool in:

Empirical Evaluation 135

1000 3 1000 = ¥ * Y
P i acer —+— | L o acer —+——
500 r Py B FaCT - | 500 ¥ FaCT =
P i Pellet - / Pellet -
v !\ ALGQ2SMT+MathSat & | [ALCQ2SMT+MathSat =
100 | i ALCQ2SMT+MathSat S.P. 100 - ; ALCQ2SMT+MathSat S.P.
50 | b ; 50 - ; ¥
10 ' 10 b *
05 05 o
0.1 X 0.1 |
0.05 |+l T 0.05 M
g o
0.01 == 1 m 1 i | 1 h 0.01 k= W
4 8 12 16 20 4 8 12 16 20
1000 - SRR ek :F\: - 1000 o R
acer + ; acer
500 ° FaCT, S FaCT
5 Pellet * ; Pellet %~
0 ALCQ2SMT+MathSat © i ALCQ2SMT+MathSat &
100 ALCQ2SMT+MathSat $!P. 100 ALCQ2SMT+MathSat S.P.
o :‘
50 | o . s0f o
o ox X ;
*
10 + &m . 10 + i
5F * 5r)1
i x* o} o o ¥ Fx Ry Dxx%‘ ¥ o
- * i
* % sep KK o :
X 30k E al o
1 pEK 3
o o
05t o o 051 &
0.1 - 01 F
0.05 it T 1 i it i 0.05 JWWWWWWMWWWW
[mlalafal
o 0 Mo ommm
0.01 0.01
20 40 60 80 100 20 40 60 80 100

Figure 6.2: 1st column: increasing lin_sat;; 2nd column: increasing lin unsat,. lst row:
20 problems; 2nd row: 100 problems. X axis: test case index; Y axis: CPU time (sec).

1000 ¥ * % A 1000 * % # A
acer —+— acer —+—
500 r B FaCT 500 FaCT —
Pellet - Pellet -
ALCQ2SMT+MathSat & ALCQ2SMT+MathSat &
100 ALCQ2SMT+MathSat S.P. 100 ALCQ2SMT+MathSat S.P.
50 | 50 |
10 10 F
5r 5
1r L
05 05 F
0.1 0.1+
005{———— —— 05— "
1
0.01 0.01
1 2 3 4 5 6 1 2 3 4 5 6

Figure 6.3: Left: increasing exp_sat,; Right: increasing exp unsat,. X axis: test case
index; Y axis: CPU time (sec).

136 Handling Number Restrictions as SMT Problems
1000 &] 1000 7]
500 - o 500
[}
ALCQ2SMT+MathSat @ ALCQ2SMT+MathSat &
100 - ALCQ2SMT+MathSat S.P. 100 ALCQ2SMT+MathSat S.P.
50 - " 50 -
10 10
e K KK
H,x*”'*“ *“M*"”%_.x N o » oo ¥
1F sk He Ko 1o K ge K *
05 05
0.1 | 0.1
0.05 F +—o—o—o—4/ﬁ\¢/’—'—'/*—’—’—'/‘—’—‘—’7 0.05 +——+—+ "7 W
001\ e —— L = = g 001 L — £ £ g
4 8 12 16 20 4 8 12 16 20
1000 2 I 1000 ? -4 = !
acer —+—
500 - 500 - FaCT
Pellet -
ALCQ2SMT+MathSat & Y ALCQ2SMT+MathSat & e
100 | ALCQ2SMT+MathSat S.P. 100 | ALCQ2SMT+MathSat S.P. xx
50 50 | e
10 | o Ko 10 | I
5r oy KH 5 X
Lhowe ™ 1
05 05
0.1 0.1 L
0.05 W 0,05 MM
o
0.01 == 0.01 o

12 16 20

12 16 20

Figure 6.4: backtracking,;(n). Top-left: n = 1; Top-right: n = 2; Bottom-left: n = 3; Bottom-
right: n = 10. X axis: test case index; Y axis: CPU time (sec).

1000 T 1000 T
500 Facr | s0f Fact
Pellet ----x--- Pellet ----%--
ALCQ2SMT+MathSat & ALCQ2SMT+MathSat &
100 - ALCQ2SMT+MathSat S.P. 100 | ALCQ2SMT+MathSat S.P.
50 | 50 b
10 | 10
5r 5
I S 1
0.5 0.5
0.1r 0.1
m
0.05 | 0.05
= ez S o
001 been e m w e e g | LY P S e PR VI y
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Figure 6.5: restr_ratio;(n). Left: n = 1; Right: n = 5. X axis: test case index; Y axis: CPU
time (sec).

Empirical Evaluation 137

1000 3 1000 R
acer —+— acer —+——
500 | FaCT 500 - FaCT
Pellet - Pellet -
ALCQ2SMT+MathSat & ALCQ2SMT+MathSat &
100 ALCQ2SMT+MathSat S.P. 100 ALCQZSMT+MathSat S.P.
50 - 50
10 10
5r 5
® % 4 *;(*% B
1 sk Ko e Ko e K K Heogk T g e KT e . 4
05 05 g8y D
=]
0.1 0.1
0.05 1 0.05
)
m}
ooli—m—= = = | YR NV ey
4 8 12 16 20 4 8 12 16 20
1000 1000 t =
Racer —— : Racer ——
500 | @@dm i FaCT 500 - ﬂgﬂﬁ ; FaCT
RE| : Pellet - : Pellet -
e ALCQ2SMT+MathSat i ALCQ2SMT+MathSat &
100 o ALCQ2SMT+MathSat S.P. e 100 - &) ALCQ2SMT+MathSat S.P.
50 - i3 i 8 50 ' ot
Praad R
22 R
10 10 R
5 5
1
0.5 0.5
0.1} 0.1
0.05 0.05
X X
X oK
0.01 : - ‘ ‘ 0.01 ‘ : : :
20 40 60 80 100 20 40 60 80 100

Figure 6.6: Top-left: restr num,;(1); Top-right: restr_ num;(5); Bottom-left: restr_num;(50);
Bottom-right: var_restr num;(100). 1st row: 20 problems; 2nd row: 100 problems. X axis:
test case index; Y axis: CPU time (sec).

1000 T 1000 ga 7 T
500 f Fact 500 Fact
Pellet - Pellet -
ALCQ2SMT+MathSat & ALCQ2SMT+MathSat &
100 | ALCQ2SMT+MathSat S.P. 100 - ALCQ2SMT+MathSat S.P.
50 - 50
,,,,, B At
10 5 10} ¥ * * *
5r o 5F;
O * 5 Hoo L ARSI RRRVRES S { * * * O T T 1
05 05 |
iz} =) =) = =) =) il
0.1 & 0.1
0.05 »—/'\/'\/'\0\‘/’—'\/ 05 F+—— " "m—mp———y 1
0.01 == == e —— — 0.01 %= — — —
4 8 12 16 20 24 4 8 12 16 20 24

Figure 6.7: sat_unsat;(n). Left: n = 1; Right: n = 10. X axis: test case index; Y axis: CPU
time (sec).

138 Handling Number Restrictions as SMT Problems

— all the increasing test sets (Figures 6.2 and 6.3) (both satisfiable/unsatisfiable
and linearly /exponentially increasing);

— all the restr_ratio and all the sat_unsat benchmarks (Figures 6.5 and 6.7
respectively), independently from the values of the parameter n.

Notice that, even if graphically RACER seems to have slightly worst performance
wrt. other tools, it takes less than 0.1 sec. to solve most of the benchmark problems.
This very small gap is only due to the standard overhead of RACER, that is a very
complex and strongly optimized system (it includes a wide set of optimizations, also
some specific for qualified number restrictions).

- Overall PELLET seems to be the less efficient system, even if it is not the worst
performing tool in each specific test case. This is almost due to the fact that it
has a basic overhead of about 1 second on every input problem. 2 FACT++,
instead, performs very well in general, except for unsatisfiable problems and problems
including high values in the number restrictions. To the best of our knowledge both
FACT++ and PELLET have no specific optimization technique for dealing with
qualified number restrictions.

- Smart partitioning strongly enhances the performance of the basic
ALCQ2SMT+MATHSAT configuration often by reducing the cumulative CPU
times of orders of magnitude, or even better “grounding them to zero”. However,
in many experiments, ALCO2SMT+MATHSAT scores not worse than some other
tools. In particular, ALCQ2SMT+MATHSAT performs better than RACER in all
the restr num and restr_ratio test cases, and better than FACT++ and PELLET
(on average) in all the possible increasing benchmark problems.

In more details:

- In the increasing lin test sets (Figure 6.2) ALCQO2SMT+MATHSAT is one of
the best performers. It performs comparably with RACER and better than the other
reasoners even without smart partitioning. In particular, the basic variant of the ap-
proach it is able to solve up to 100 satisfiable problems and 10 unsatisfiable ones. De-
spite the hardness of the problem it emerges the ability of the SAT/SMT techniques
in handling large-size problems. Unsatisfiable benchmarks are much more complex
to reason on, in fact (if no specific optimization techniques for number restrictions
are applied) they require that all the possible attempts to merge/share individuals
fail before to detect unsatisfiability. Thanks to smart partitioning, instead, these
problems results straightforward for ALCO2SMT+MATHSAT, being the encoded
problems tirvial absolutely indipendent from the values occurring in the qualified
number restrictions. The exponentially increasing test cases increasing exp con-
firm this analysis; the plots of Figure 6.3 show even more clearly the evidenced
effectiveness of smart partitioning.

12VWe think that this high overhead is probably due to the fact that PELLET looks for unsatisfiable concepts
instead of checking the specific satisfiability of the queried concept.

Empirical Evaluation 139

- The backtracking;(n) benchmark problems (Figure 6.4) are the most challenging
for ALCQ2SMT+MATHSAT approach. Also the ALCQ2SMT+MATHSAT S.P.
variant cannot solve any backtracking problem with index ¢ > 12, whichever value
for the parameter n we chose. In this experiment ALCQ2SMT+MATHSAT is the
worst performer because, even if not huge in size, the encoded backtracking prob-
lems result very hard to be solved in MATHSAT. In fact the artful structure of
these problems acts on the Boolean component of reasoning and leads to an ex-
ponential number of branching decisions and subsequent backtrackings, due to the
attempts of merging/sharing disjoint individuals. If we considering the Boolean
abstraction of the SMT(C) problem generated by ALCQ2SMT, the effect of the
encoded backtracking problems on the SMT encoding is similar to that of the
well-known Halpern & Moses branching formulas (Halpern & Moses, 1992) for
modal logic K,/ ALC on the SAT encoding of Chapter 5 (Sebastiani & Vescovi,
2009a) (see, in particular, Section 5.5.10). In this latter case the exponentiality is
caused by a combination of nested existential /universal restrictions and opposite-
polarity propositional variables, while in the case of the ALCQ backtracking prob-
lems it is caused by the combination of at-least and at-most numerical restric-
tions involving disjoint concepts. Notice, at last, ALCO2SMT+MATHSAT and
ALCQ2SMT+MATHSAT S.P. coincide in the base case n = 1, but the perfor-
mance of ALCO2SMT+MATHSAT gradually degrade following the increase of the
parameter n. With smart partitioning, instead, the hardness of the resulting prob-
lem is indipendent from n, but MATHSAT never succeeds for indexes greater than
1 =11.

- In the restr_ratio;(n) test cases our tools are the best performers together with
FACT++ (Figure 6.5). The total CPU time taken by ALCQ2SMT+MATHSAT
with no partitioning gradually increases following the increase in the number of
the encoded individuals. In fact, restr_ratio;(n) problems are easily satisfiable,
‘cause at-least and at-most restrictions do not mutually conflict. Therefore, for our
approach, the only source of complexity is the size. This has been said, the high is
the index 7 of the problem the high is the number of at-least restrictions included
in C' and, thus, the high is the number of clauses in the SMT(C) formula produced
by ALCQ2SMT. Notice that if (at least) one at-most restriction is in the concept
expression then the number of variables and clauses significantly increase due to the
sharing of the individuals and to the encoding of the at-most operator it self. On the
contrary, the problem with index ¢« = m = 14, which presents no at-most restriction,
is trivially satisfiable. While PELLET is very stable for these problems and takes (on
average) 1 second for each of them, RACER is surprisingly the worst performer. The
higher is the number of at-most restrictions the more the performance of RACER
deteriorate.

- Overall, the restr num;(n) and var_restr num;(n) benchmarks are likely the most
challenging problems, especially when combined with high values of the parame-

140 Handling Number Restrictions as SMT Problems

ter n. From Figure 6.6, it is easy to see that in restr_num;(n) the harder is the
reasoning (due to the increase of the index ¢ and of the parameter n) the more
ALCQ2SMT+MATHSAT S.P. outperforms the other tools. This is almost smart
partitioning’s merit (e.g., compare the first three plots of Figure 6.6 with the bottom-
right one representing var restr_num;(100) in which smart partitioning is partially

inhibited).

In the «case of varrestrnum(100), wrt. restrnum(50), basic
ALCO2SMT+MATHSAT, as far as PELLET, seem to suffer the transition of
n from 50 to 100. While ALCQ2SMT+MATHSAT and PELLET solve 32 and
59 problems, respectively, of the first mentioned benchmark, they succeed in
solving only the first 21 and 42 problems, respectively, of the second one. In
var_restr_num;(100), even if ALCO2SMT+MATHSAT S.P. solves some more
problems than the basic variant (respectively 31 against 21), CPU times quickly
increase with ¢ due to the lower effectiveness of smart partitioning (due to the
variability of the values in number restrictions). Finally, notice that: (i) in the
var_restr_num;(100) test set FACT++ is the only tool able to solve all the
problems, (ii) in all the benchmarks of Figure 6.6 RACER is the worst performing
system (in fact, for every test case with n > 1 RACER solves only 14 problems
and its trends seems to be indipendent from n). Considering also the results of
Figures 6.2, 6.3 and 6.5 we can guess that RACER is more sensible to the number
of qualified number restrictions than to the values occurring in the restrictions
themselves.

- The sat_unsat;(n) problems (Figure 6.7) confirm the well-known fact that
reasoning on unsatisfiable concepts is more difficult than on satisfiable ones.
ALCQ2SMT+MATHSAT in fact, as far as PELLET and FACT++, presents
significantly worse performance in the first unsatisfiable cases than in the sec-
ond satisfiable ones. This behavior is much more visible for n = 10, where
ALCQ2SMT+MATHSAT does not succeed in solve all but one the unsatisfiable
problems. The encoding performed by ALCQ2SMT, in effect, inherits some draw-
backs of the standard tableau-based approaches. As a matter of fact our encoding
indirectly simulates the merging of individuals in the tableau-based algorithm, by
mean of the sharing of individuals. Nevertheless, smart partitioning strongly re-
duces the number of individuals necessary to represent each problem, so that they
all result extremely easy for MATHSAT, independently from n.

6.7.3 Analysis of ALCO2SMT

We proceed in this section by analyzing the specific behavior of ALCQ2SMT. In partic-
ular, we look in more details at the performance of the encoding phase and at the nature
of the encoded problems.

In the previous section we have discussed the general performance of
ALCQ2SMT+MATHSAT, without distinguishing between the time spend by

Empirical Evaluation 141

100 10

inéreasing_exp_éat — ‘ ‘ restr_num(éO) —
50 increasing_exp_sat S.P. 5L restr_num(50) S.P.
var_restr_num(100) e
var_restr_num(100) S.P. & ih
10
5r 1
0.5
l .
05
01
£:1
0.1 0.05 %**,* &3
. il
0.05 % f/ I
il o
0.01 == e ; 0.01 AR L L L L
1 2 3 4 5 6 20 40 60 80 100

Figure 6.8: CPU times of ALCQ2SMT. Left: increasing exp_sat,, ¢ = 1,...,6; Right:
restr_num,(50), var_restr_num,;(100), ¢« = 1,...,100. X axis: test case index; Y axis: CPU
time (sec).

ALCQ2SMT in the encoding phase and the time spent by MATHSAT in the solving
one. So, we first analyze the practical impact of the encoding phase by considering the
performance of ALCO2SMT alone.

In the very majority of the tested problems the time spent by ALCQ2SMT in the
encoding phase have resulted negligible (less or equal to 1072 sec.). In Figure 6.8 we plot
the only significant test cases in which ALCQ2SMT taken more than one hundredth of
a second. Notice, from the left-side plot of Figure 6.8, that ALCQ2SMT takes linear
CPU time wrt. the values occurring in the qualified number restrictions in encoding the
increasing exp_sat problems. In fact, the ALCO2SMT CPU time grows exponentially
with i exactly as the values grows with a rate of 10’. On the contrary, ALCO2SMT S.P.
results absolutely indipendent from such values (i.e. the encoding time is unchanged
for every problem’s index) if smart partitioning is applied. The precisely same results
have been noticed in handling the increasing exp_unsat group of problems; in fact the
satisfiability /unsatisfiability of the problem only affects the solving phase.

From the right-side plot of Figure 6.8, instead, we observe the different effectiveness
of smart partitioning on the restr num;(50) and var_restr num;(100) benchmarks,
which are similar in structure but which numerically are considerably different. While
smart partitioning succeeds in cutting down the encoding times for restr num;(50), the
gain produced by the partitioning technique in the var restr num;(100) cases is not
significant. Nevertheless, this is not a bad news. In fact, in this last case the possibly
onerous cost of the partitioning algorithm does not increase the whole encoding time. As
expected, the benefits produced by smart partitioning technique in reducing the number
of individuals compensates the computational cost of the partitioning procedure it self,
also in the cases in which the technique is not particularly effective. Notice, at last,
that the time spent by ALCO2SMT never exceedes 4 seconds even if the number of
restrictions in such problems can be huge.

142 Handling Number Restrictions as SMT Problems

1000

T T 1le+07 T T

total vars. —+— total vars. —+—

cost vars. cost vars.
total vars. (S.P.) % | total vars. (S.P.) --%---

costvars. (S.P.) & 1e+06 | cost vars. (S.P) 0O
T
RN 1405 |
100 o
,,%"k/‘#
o 10000 /
S ESE S

7 e

1000 F —

10 | /
100
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ S S S,
10 ¢
1 L 1
4 8 12 16 20 1 2 3 4 5 6
1000 T T le+08 T T

total cls. —+— total cls. —+—

cost cls. cost cls.

total cls. (S.P.) - total cls. (S.P.) -
costcls.ES.P.g 8 1e+07 | cost cls. ES.P; B
1le+06
le+05
10000 £
1000 F P
//
’ 100 +
i}
T Honmenennnnee Hommnmmennne e Hennnnnnnnen s Hemeonnnnnnanen k
i & & & & fi
10 ‘ ‘ ‘ ‘ 10 ‘ ‘ ‘ ‘
4 8 12 16 20 1 2 3 4 5 6
Figure 6.9: 1st column: increasing linsat,, ¢ = 1,...,20; 2nd column:
increasing exp_sat;, ¢ = 1,...,6. 1st row: variables; 2nd row: clauses. X axis: test case

index; Y axis: #variables/clauses.

In Figures 6.9, 6.10, 6.11, 6.12, 6.13, and 6.14, instead we compare in plots the number
of variables and clauses produced in output by ALCO2SMT. In particular, we compare
these values for the two variants of ALCQ2SMT, the basic one and the one including
smart partitioning (S.P.). In the plots we identify with “total” the total number of
variables or, respectively, the total number of clauses, forming each encoded problem.
Instead, we identify with “cost” the number of cost variables or, respectively, the
number of clauses containing C-literals. Therefore, the difference between the total and
cost curves represents, respectively, the number of Boolean variables and the number
of purely propositional clauses generated by ALCO2SMT. Due to the big number of
different benchmarks, we have limited the number of plots included in this section by
considering only the most meaningful cases and some representative ones for every
different kind of benchmark. In fact, from the point of view of the number of variables
and clauses, the increasing lin sat (Figure 6.9) and the increasing lin unsat

Empirical Evaluation

143

10000

T T 10000 T T
total vars. —+— total vars. —+—
costvars, - cost vars.

total vars. (S.P.) -~ total vars. (S.P.) -~

costvars. (S.P.) & costvars. (S.P.) &

1000

1000
100 100
* e s
10f 10F o EE
-
e =
Py
B
1 1
4 8 12 16 20 4 8 12 16 20
100000 T T 100000 T T
total cls. —+— total cls. —+—
costcls, costcls,
total cls. (S.P.) % total cls. (S.P.) %
costcls. (S.P.) & costcls. (S.P.) &
10000 10000

1000

1000

100

100

10 g L L L 10 : L L L L
4 8 12 16 20 4 8 12 16 20
Figure 6.10: backtracking,(n). lst column: n = 3; 2nd column: n = 10. 1st row: variables;

2nd row: clauses. X axis: test case index; Y axis: #variables/clauses.

10000 T T 10000 T T
total vars. —+— total cls. —+—
costvars, - costcls. ——

total vars. (S.P.) % total cls. (S.P.) %
costvars. (S.P.) & costcls. (S.P.) &

1000

1000

100 F

100 £

10

o
N

~F @
o @

10
14 0 2 4 6 8 10 12

ol @
N
1S)
=
N

Figure 6.11: restr_ratio;(5)

14
#variables/clauses.

. Left: variables; Right: clauses. X axis: test case index; Y axis:

144

Handling Number Restrictions as SMT Problems

10000 T T 100000 T T
total vars. —+— total vars. —+—
costvars, < costvars.
total vars. (S.P.) - total vars. (S.P.) -
costvars. (S.P.) & cost vars. (S.P.)
e 10000 F
1000 *“”*,,x~~*'"*”“*
1000 R I
100 L o ke K
X B 100 X
' B e X
B X -
- e - -
10 ¢ =) s B
i | -
= 10 B
g P
1 1
4 8 12 16 20 4 8 12 16 20
100000 T : 1e+06 . .
total cls. —+— total cls. —+—
cost cls. - costcls. — <
total cls. (S.P.) % total cls. (S.P.) ~%--
costcls. (S.P.) @& costcls. (S.P.) &
100000
10000
10000
1000
1000
100
100
10 L L L L 10 L I I L

12 16

Figure 6.12: restr_num;(n). lst column: n = 5; 2nd column: n = 50. 1st row:

20

12 16 20

variables; 2nd

row: clauses. X axis: test case index; Y axis: #variables/clauses.

le+07 T 1e+07
total vars.
cost vars.
| total vars. (S.P.) -~
1e+06 | cost vars. (S.P.) e T 1e+06

100000
100000
10000
, 10000
1000 £/
;)) 1000 | /
100 | /
10 7 100 4
1 ‘ ‘ ‘ ‘ 10

20 40 60 80

Figure 6.13: var_restr_num;(100). Left:

axis: #variables/clauses.

total cls. (S.P.)
costcls. (S.P.)

T
total cls.
costcls. -

100

variables; Right:

20 40 60 80 100

clauses. X axis: test case index; Y

Empirical Evaluation 145

1000

1000

total vars. —— fotal vars. ——
costvars, ——x— cost vars,
total vars. (S.P.) % total vars. (S.P.) %
costvars. (S.P.) & costvars. (S.P.) &
100 100
[* * R * Koo P P Koo SR Ko K froke * * Feo * * * * * * Koo x
10 10 ¢
1 L L L L L 1 L L L L L
4 8 12 16 20 24 4 8 12 16 20 24
1000 T T T T T 10000 T T
total cls. —+— total cls. —+—
costcls. costcls. -
total cls. (S.P.) - total cls. (S.P.) —--*---
costcls. (S.P.) & costcls. (S.P.) &
1000
100 k% o e ko
¥ e HKeoeoeen Koo Koo Koo Kooy
[i: = = o N . I
& & & & a & & f 100 £* Ko X Hogee Keooeoe Koo Koo Koo *
B = & B
& =} =] =} = =) &]
10 L L L L L 10 L L L L L
4 8 12 16 20 24 4 8 12 16 20 24

Figure 6.14: sat_unsat;(n). 1lst column: n = 1; 2nd column: n = 10. 1st row: variables; 2nd
row: clauses. X axis: test case index; Y axis: #variables/clauses.

problems presents exactly the same characteristics (the same argument is valid for the
exponentially increasing problems). In some cases (increasing lin sat/unsat and
restr_ratio with n = 50) we plot only the problem indexes ¢ up to 20 instead of up to
100, cause they are more clearly readable and equivalently represent the trends of the
plotted quantities. For the backtracking benchmarks (Figure 6.10), instead, we chose
two representative groups of problems with n = 3 and n = 10. The case n = 1 shows
no differences between the use or not of smart partitioning, while in the case n = 2 the
differences are less clearly osservable than in the reported cases. For similar reasons we
don’t show in Figures 6.11 and 6.12 the configuration n = 1 for the restr_ratio and the
restr_num benchmarks respectively. For the sake of the reader’s convenience, however,
all the other plots are available in the appendix Section 6.11.

From the exposed plots we highlight some facts:
- In all the different test cases ALCQ2SMT and ALCQO2SMT S.P. produce exactly

146

Handling Number Restrictions as SMT Problems

the same number of cost variables. In fact, smart partitioning impacts in reducing
the number of individuals but does not change the logic of the encoded SMT(C)
problem; A different cost variable, in fact, is uniquely introduced for every distinct
combination of individual, concept name and role name occurring in the qualified
number restrictions. However, if the encoded TBox provides nested qualified number
restrictions then the reduction in the number of individuals would lead also to a
sensible reduction of the cost variables.

Many test sets present a very low and fixed number of cost variables, due to the struc-
ture of concept expressions which often include a fixed number of qualified number re-
strictions. For instance, in the increasing and sat_unsat benchmarks (Figures 6.9
and 6.14), the number of qualified number restrictions and of encoded cost variables
is fixed to 5, while it is equal to 15 in the restr_ratio benchmarks (Figure 6.11),
having chosen m = 14. The number of Boolean variables, indeed, is predominant
in all the test cases, also in the backtracking, restr num and var_restr_num cases
(Figure 6.10, 6.12 and 6.13), where the number of cost variables linearly increases
with the index 1.

As can be easily predicted from the definition of our encoding, the number of to-
tal clauses is tightly related to the number of Boolean variables introduced. For
this reason, smart partitioning positively affects both in reducing the number of
individual/Boolean variables and in reducing the total size of the encoded problems.

The major part of the clauses encoded by ALCO2SMT contains C-literals. This
property is even more evident for the restr_num and var_restr_num benchmarks
(Figures 6.12 and 6.13). On the contrary, the only exception to this observation
is in the backtracking test cases (Figure 6.10), where the encoding of the mutual
disjunctions conditions between concepts produces a high number of purely Boolean
implications.

Generally, without smart partitioning, the numbers of variables and clauses linearly
follow the value of the index i and/or the value of the parameter n. The increasing
problems are an evedint case of the relation between the size of the encoded problem
and the index ¢. Similarly, notice that in the sat_unsat test cases (Figure 6.14),
where the size of the problem is indipendent from ¢, that an increase of one or-
der of magnitude in the value of n, from 1 to 10, determines an increase of one
order of magnitude also in the number of clauses and variables encoded by basic
ALCQO2SMT.

Curiously, in the sat_unsat benchmark (Figure 6.14) one peculiarity of our parti-
tioning technique is slightly perceptible. Notice, in fact, that enabling smart par-
titioning the number of variables and clauses are not absolutely unchanged, but
present some minimum for the indexes equal to 6 or greater than 12. This tricky
behavior depends from smart partitioning, where the combinations of values occur-
ring in at-least restrictions are merged with the combinations of values occurring in

Empirical Evaluation 147

at-most restrictions. In the sat_unsat problems, the first are multiple of 3 for a
maximum of 12, and the second follow exactly ¢, with ¢« = 1,2,4,6,...,24. Thus,
when ¢ is 6 or is greater than 12 the merging of these values generates one less
partition, explaining the slight difference with the other values of <.

- The size of encoded and solved problems can be very large. E.g.,
ALCQ2SMT+MATHSAT solves all the problems of the rest_num;(50) benchmark,
which present up to 10° variables and clauses (in Figure 6.12 they reach 10° vari-
ables and clauses for i = 20). Moreover, both with and without smart partitioning,
ALCO2SMT+MATHSAT has shown able to solve problems with more than 10° vari-
ables and clauses in the very hard var_rest_num;(100) test set (see, e.g., the problem
of index ¢ = 20 in the plots of Figure 6.13). Nevertheless, as previously discussed,
the size of the problem is not the only source of complexity. For instance, without
smart partitioning, the unsatisfiable problems of sat_unsat results extremely hard
for ALCQ2SMT+MATHSAT, even if they are stable in the order of “only” 1000
variables and clauses (Figure 6.14) for every i.

6.7.4 Discussion

As similarly discussed in Section 5.6.4 wrt. ALC, the concept satisfiability problem in
logics like ALCQ is characterized by the alternation of many orthogonal components of
reasoning. In terms of the semantic of the input problem, i.e. in terms of finding an
interpretation for the given TBox/concept, we individuate the following components of
reasoning: (i) a propositional component, performing reasoning within each individual, in
order to satisfy the concepts involved, the conjunctions, the disjunctions and/or the nega-
tions; (ii) a modal component, generating the successor individuals of each individual, in
order to satisfy existential/at-least restrictions; (iii) an arithmetical component perform-
ing reasoning on the whole space of the possible successor individuals, in order to satisfy
the numerical constraints imposed by both at-least and at-most (or universal) restrictions.
The first component (i) must cope with the fact that there may be exponentially many
candidate models to explore. The second component (ii) must face with the fact that
the candidate models may be exponentially big wrt. the nesting depth of restrictions in
the input TBox, and (without optimization) wrt. the values occurring in the number
restrictions. The last component (iii) must cope to the numerical consistency of all the
possible models. This component of reasoning is strongly correlated with the former ones
causing a further source of exponentiality when the bounds on the number of individu-
als cause that exponentially many more models (given by all the possible partitioning of
individuals) must be explored.

In the ALCQ2SMT+MATHSAT approach the encoder has to handle the whole
component (ii), whilst the handling of the propositional (i) and arithmetical components
(iii) are delegated to the SMT solver (if we except for their interactions with (ii), which
result in the encoding of the sharing of individuals). Notice that, with our encoding,
the interactions among the three components are regulated in two main ways. The

148 Handling Number Restrictions as SMT Problems

Boolean component of SMT assigns the Boolean abstraction of the given SMT(C)
formula, and assigns also the C-literals, determining the existence of individuals and
the sharing/merging of them. The C-solver checks the consistency of the assignment
wrt. the Theory of Costs C, verifying that all the numerical constraints are satisfied.
In the unfavorable case it forces and guides (through theory propagation and theory
backjumping, see Section 4.2) the generation of a new assignment.

From the results reported in this section we notice that the performances of our ap-
proach strongly depends from the application, or not, of smart partitioning. Even if there
are problems in which basic ALCO2SMT+MATHSAT is competitive or even outperforms
the other tools, the benefits given by smart partitioning are outstanding. The effectiveness
of smart partitioning lays in the drastic reduction it produces in the size of the output
problems. In particular, the more is the logical complexity of the encoded problem (e.g.
unsatisfiable problems) the more prominent are the benefits of smart partitioning, cause
the sensible reductions in size affect exponentially during the SMT(C)-solving phase.

The relative performances of ALCQ2SMT+MATHSAT S.P. wrt. other state-of-the-
art reasoners range from a very few artificial cases where it is much less efficient than
other state-of-the-art systems (e.g., the backtracking and var_restr num benchmarks)
up to formulas where it is much more efficient of all the other tools (e.g., in the
increasing and restr_num test cases). In many cases our novel approach competes well
against the other state-of-the art tools, reporting comparable performance.

An explanation of the former observation is that the ALCQ2SMT+MATHSAT ap-
proach suffers, in particular, in two cases. First, in the problems in which there is a
strong interaction between either the (i) or the (ii) component of reasoning and the (iii)
one, so that the possible exponentiality in the propositional component or in the num-
ber of successors causes a huge number of inconsistent calls to the C-solver, which can
not be profitably exploited to guide the propositional component via theory backjumping
because the encoding is decoupled from the search. Second, wrt. the other approaches,
ALCQA2SMT+MATHSAT relatively lose efficiency in those cases in which a consistent
increase in the size of the encoded problem is not balanced by a significant increase in
the hardness of the respective input problem, so that our approach is affected by the size
of the encoding (due to the encoding of the (ii) component of reasoning) while the other
state-of-the-art tools can exploit specific optimizations or reasoning techniques. Smart
partitioning specifically acts on reducing the weight of the encoding of the (ii) compo-
nent.

On the contrary, when enhanced with smart partitioning, our approach dominates
in the problems where the high values occurring in qualified number restrictions or the
high number of qualified number restrictions undermine the other approaches. Moreover,
when smart partitioning reduces even very hard problems to a reasonable-size SMT(C)
formula, our approach is extremely efficient and outperforms all the other systems. This
is due to the power of SAT/SMT techniques which relies on extremely efficient and

Empirical Evaluation 149

well-engineered tools (able to solve large size problems) and on specific and optimized
theory solvers. Summarizing our approach have shown to be very effective also in huge
or really complex problems in the cases in which the three component of reasoning are
well-balanced, or in which either the (i) or the (iii) components prevail, without a too
thick interaction with the (ii) one.

A strength of our approach is that, thanks to smart partitioning, it works inde-
pendently from the values occurring in qualified number restrictions. As we have
predicted and shown, the more values repeats in qualified number restrictions the more
smart partitioning results effective. Fven if the effectiveness of smart partitioning may
reduce depending from the properties of the values included in the restrictions, (in
particular from their combinations and their variability), the important fact is that
the resulting encoding does not depend from the order of magnitude of such values.
For instance, if the same variability in the values occurs with either a ratio or an
offset of 1 or of 1 million, the result of smart partitioning (i.e. the number of distinct
partitions produced) is the same. However, we think that in real-world ontologies
extreme cases as those of the var_restr_num benchmark rarely occur. Furthermore, even
if theoretically it is potentially very expensive, in practice smart partitioning have shown
computationally efficient. We think that the time spent in executing the smart par-
titioning procedure is compensated from the gain it gives in avoiding some encoding steps.

Finally, notice that, in terms of CPU times, the encoding phase performed by
ALCQ2SMT mostly results negligible, while the major source of computational com-
plexity lay in the solving phase. This shows that encoding can be convenient when a
scalable and efficient solving phase is guaranteed. From this point of view, notice also
that the solving time of MATHSAT (that is a complex and well established SMT solver,
differently from ALCQ2SMT that is a prototype) is also often negligible, without any
overhead.

Scalability

We close our experimental evaluation by separately discussing the scalability issue. We
have chosen to face this issue here, separately, for two main reasons. First, the scalability
issue can be seen under many different perspectives. In particular, it involves all the
different component of reasoning we previously analyzed and all the different sources of
complexity we disjointly examined in this experimental evaluation. Thus, it is helpful
having previously discussed all such points. Second, the only way of correctly analyze the
scalability of our approach in comparison with the other state-of-the-art-tools should be
try the performances of the various systems in increasingly larger and harder real-world
ontologies. Unfortunately, as discussed in Section 6.7.1 and by Farsiniamarj and Haarslev
(2010), currently this is not possible due to the lack of significant and meaningful real-
world ontologies making use of qualified number restrictions. Thus we can only try to
combine the “ingredients” that we have previously individually analyzed.

150 Handling Number Restrictions as SMT Problems

One way of evaluating scalability could be analyze the effect of increasingly more
nested restrictions. With this aim we need to introduce a further set of benchmark
problems which completely differs from all the benchmarks proposed by the approach
of Farsiniamarj and Haarslev (2010), and that we have adapted in this work. Notice
that having nested occurrences of qualified number restrictions is a further source of
complexity, that much more significantly impacts in our approach than in traditional
the tableau-based algorithms, because we handle the component (ii) of reasoning via
encoding. This has been said, we add the following class of benchmark problems.

Nesting Depth of Qualified Number Restrictions.
We evaluate the effect of having nested occurrences of qualified number restrictions by
solving the satisfiability of C' in the following TBoxes indexed by ¢:

C C >2nrA M >2nr.B; N <3nr.T,
AiMB, C >2nrA, N >2nr.B, N <3nr.T, ...,
ey Ai,1 [l Bi*l C ZQTL T.Ai [l 2271 T.Bi [l S?)TL r.T.

In these TBoxes the number or nested qualified number restrictions is equal to the
value of the index 7. The combined effect of the two at-least and of the one at-most
restrictions defined in the j-th axiom of the TBox is that of forcing the existence of at
least n distinct r-successors in (A; M B;). Consequently, this forces the application of
the next (j + 1)-th axiom, which introduces a deeper nested restriction, and so on and
so forth till the i-th (last) axiom. C' is satisfiable in every such TBox. We call these
problems nested restr_sat;(n), while we call nested restr_unsat;(n) the respective
unsatisfiable variants, obtained by adding to each TBox the axiom “A; M B; & 1”. This
latter axiom, in fact, conflicts with the ith (last) axiom of the TBox at the deepest
nesting level 7. We run these test cases with « = 1,...,20 and n = 5,50, in the same
system configuration exposed in the first part of Section 6.7.

In Figure 6.15 we expose all the plots concerning the experimental results for the
nested_restr_sat;(5) benchmark. From top-left to bottom-right we respectively plot:
the performance comparison among ALCQO2SMT+MATHSAT and the other considered
reasoners, the encoding time taken by ALCQ2SMT alone, the numbers of variables and
the number of clauses resulting in the encoded problems. In the three latter plots we
include only a few problems, in fact the basic and the S.P. variants of ALCQ2SMT both
exceed the limit of 1 GB file size for all the test cases with ¢ > 5 and ¢ > 7, respectively.
In fact, nested restrictions exponentially affects the size of our encoding.

From Figure 6.15 we notice a couple of facts. First, as predicted, from the last three
plots we can see how smart partitioning drastically reduces also the number of cost vari-
ables, if number restrictions acts at more than one nesting depth. In the examined case,
the two variants of ALCQ2SMT exponentially differs each other both in the numbers
of clauses and in the number of Boolean/cost variables (and, consequently, in the CPU
times required during the encoding phase). In a few test cases the gap between the two

Empirical Evaluation 151

1000 7 : 100
50 o FacT
Pellet % N
ALCQ2SMT+MathSat &
100 ALCQ2SMT+MathSat S.P. /
50 - 10 ¢) |
10 /

; o1l /]

OO(;;L) , o P A o /
/ ALCQ2SMT —
ALCQ2SMT S.P.
0.01 - : " : 0,01t) 2
4 8 12 16 20 2 4 6 8
1e+08 T T T T T T le+08

le+07 1e+07

le+06
1le+06

le+05
1le+05
10000

10000
1000

1000

' 8 total vars. —+— 100 total cls. —+——
10 ¢ cost vars. cost cls.

1 total vars. (S.P.) % total cls. (S.P.) -
1 ‘ ‘ ‘ cost vars. (S.P.)‘ =} 10 f ‘ ‘ ‘ ‘ cost ‘cls. (S.P.)‘ &

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Figure 6.15: nested.restr_sat;(5). Top-left: comparison against other tools; Top-right:
ALCO2SMT times; Bottom-left: # enc. variables; Bottom-right: # enc. clauses. X axis:
test case index; Y axis: 1st row: CPU time (sec); 2nd row: #variables/clauses.

variants increases up to three orders of magnitude. Second, from the first plot, we notice
that the performance of two variants of ALCO2SMT+MATHSAT are way far from the
performances of the other systems, solving only the first 3 and, respectively, 5 test cases
within the 1000 sec. timeout.

However, in order to confirm that the scalability issue is very controversial, in Fig-
ure 6.16, from left to right, we report the tools comparison in other two slightly different
test cases: nested restr_sat,;(50) and nested restr_unsat;(5), respectively. From the
first plot it can be noticed how the performances of PELLET and FACT++ gradually and
significantly deteriorate having increased n (while our S.P. variants have identical per-
formances). From the second plot it can be noticed that ALCQ2SMT+MATHSAT S.P.
dominates the other tools, except for RACER, when we pass from nested restr_sat;(5)
to the unsatisfiable cases nested restr_unsat;(5). Notice that the only difference be-
tween the two benchmarks consists in one simple axiom, acting exclusively at the deepest

152 Handling Number Restrictions as SMT Problems

1000 T T ¥ R; 1000 g ﬁ
; acer —+— acer —+——
500 FaCT 500 FaCT
i Pellet - i Pellet -
/ALCQ2SMT+MathSat & ALCQ2SMT+MathSat &
100 | ALCQ2SMT+MathSat S.P. 100 |/ ALCQ2SMT+MathSat S.P.
50 ek 50 ':;
10 X 10 F
5+ kT 5
se—"*’ E
1 kb
05 0.5
01 - A A A] 0.1 r A JE— o
0,05 F L B 0,05 F— = o ——
0.01 L L L L 0.01 L L L L
4 8 12 16 20 4 8 12 16 20

Figure 6.16: Left: nested restr_sat;(50); Right: nested restr_unsat;(5). X axis: test case
index; Y axis: CPU time (sec).

level of nesting. Nevertheless, this is enough to transform the original problem into a non-
trivial one and inhibit specific optimization techniques. In this latter benchmark PELLET
solves only 1 problem (in this benchmark PELLET has given unsound results incorrectly
returning “sat” in some of the problems with ¢ > 1) against the 3 of FACT++ and the
5 of ALCOQ2SMT+MATHSAT S.P..

This analysis shows how the scalability of the different tools can not be precisely evalu-
ated only on the basis of the nesting depth of qualified number restrictions, but should take
into account all the possible combinations and interactions of all the sources of complexity
(including the number of qualified number restrictions, the values occurring in them, and
so on and so forth). E.g. RACER could have scalability problems if a relatively low nesting
depth combines with a high number of restrictions. Wrt. real-world problems, in which
the different sources of complexity should be somehow balanced and not degenerating, we
think that the overall performance of ALCO2SMT+MATHSAT S.P. in the distinct prob-
lems are promising for a good scalability on real ontologies. ALCQ2SMT+MATHSAT
S.P., in fact, have proved of being able to handle a big number of qualified number
restrictions, of being able to solve both satisfiable and unsatisfiable problems up to five
“full” nesting levels of number restrictions and, mainly, to be indipendent from the order
of magnitude of the values occurring in number restrictions. We remark that this is only
a preliminary analysis since we do not dispose of real practical problems.

6.8 Contributions

In this part of work we propose a new approach to solve concept satisfiability in the De-
scription Logic ALCQ wrt. acyclic TBoxes. We encode such a problem into SMT modulo
the Theory of Costs, then we further develop an optimization called smart partitioning,
which reduces the size and the hardness of the encoded problems.

Contributions 153

We implemented our novel approach called ALCQ2SMT¢, into a tool ALCO2SMT
that we run in combination of the SMT solver MATHSAT. In an extensive empirical
test session performed on synthesized concept satisfiability problems (stressing different
sources of complexity in reasoning), we evaluate the performance of our approach against
the other state-of-the-art reasoners FACT+-+, PELLET and RACER.

The best version of our approach ALCQ2SMT+MATHSAT S.P. (including smart
partitioning), have shown to perform extremely well on benchmarks presenting multi-
ple/balanced sources of complexity, that we think well-fit the requirements of possible
real-world ontologies. In particular, we have noticed that the size of the encoding is not
the main complexity issue for our approach, which has shown to be very effective also
on large or really complex problems. For instance, MATHSAT scales up to solving en-
coded problems with more than 10° clauses and Boolean variables, and more than 10*
cost variables, resulting from very hard ALCQ problems having nested qualified number
restrictions.

The smart partitioning technique is one of the more important contribution of this part
of our work. Smart partitioning have turned out to be extremely effective, being able to
drastically (and exponentially) reduce the size of the output SMT(C) problems, up to
three orders of magnitude wrt. the basic variant of ALCQ2SMT in the more challenging
test cases (exponentially impacting also in the number of cost variables in case of nested
number restrictions). We remark that this technique makes our approach independent
from the magnitude/offset of the values occurring in qualified number restrictions and,
indeed, it can handle very efficiently really large numbers of coexisting qualified number
restrictions, when the values occurring in the restrictions repeat frequently (which is a
circumstance that, realistically, could often happen in real-world problems). Furthermore,
smart partitioning has experimentally proved to not impact in the cost of the encoding
phase, despite its worst-case complexity. We think that this technique should be further
investigated in order to conceive possible refinements, and also to be used in order to
improve the actual tableaux-based state-of-the-art approaches.

From a different perspective, notice at last that the total time of ALCQ2SMT (in
particular) and MATHSAT often results negligible without any measurable overheads.
Thus, our approach can be profitably fit into integrated approaches like the one proposed
by Gasse and Haarslev (2009). Last but not least, we improved the benchmarking ap-
proach defined by Farsiniamarj and Haarslev (2010), widening the parametric set-up and
defining two new groups of benchmark problems stressing on different complexity sources.

In future works we aim at directly compare with the hybrid approach of Faddoul
and Haarslev (2010) (that currently is only a prototype not yet publicly available), and
hopefully to include in our experimental evaluation real-world ALCQ ontologies, whether
provided by the ontology-design community. We also plan to further investigate other pos-
sible encodings. In particular, it could be interesting to implement also the SMT(LA(Z))
encoding mimic the hybrid approach mentioned in Section 6.3, in order to directly com-
pare the benefits of both the possible encodings (see Section 6.3). This could lead to devise

154 Handling Number Restrictions as SMT Problems

a combined encoding which, on the bases of the specific properties of the input ontology
concerning qualified number restrictions (e.g., the number of restrictions and the nature of
the values occurring in them), can chose the most suitable encoding. This approach could
be pushed further by alternating the applied encoding individual-by-individual, on the
basis of the local number restrictions instances (leading to a SMT(C U LA(Z)) encoding).
We also plan to extend our approach to general TBoxes, and to investigate its extensions
to other logical constructors like role hierarchies or ABox reasoning.

Appendiz: Soundness and Completeness of ALCO2SMTe 155

6.9 Appendix: Soundness and Completeness of ALCO2S5MT,

Theorem 6. An ALCQ acyclic TBox T in normal form is consistent if and only if the
SMT(C)-formula ¢ of ALCQ2SMTe(T) (Definition 5) is satisfiable.

Proof. Tt is a direct consequence of the following Lemmas 10 and 12. n

Lemma 10 (Soundness). Given an ALCQ acyclic TBox T in normal form and the en-
coding ALCQ2SMTe(T) = (X7, 77, I7, A . y,indiv,) of Defintion 5, if the SMT(C)-

formula 7 is satisfiable then T is consistent.

Proof. Let p1 by a total truth assignment satisfying ¢7 , where we represent with L o) €
the fact that the literal L, ¢y is assigned true in p. Notice that, since ¢7 is an SMT(C)-
formula p assigns truth value also to the C-literals (BC- and IC-literals) of 7. We must
prove that it also exists a model for 7.

From p, we define Z,, being the following interpretation:

A= (g | Ay, Ty occurs true in 1 }, (6.23)
CTe &1 o | 0 € AT and L, ¢ occurs true in p 1 (6.24)
rIu d:ef{ (o,0.r4) | 0,01 € AT+ }, (6.25)

for every normal concept C and every role r in 7. In particular, by construction, it follows
for every o:

o e C% if and only if L, ¢y €pn and Ay 1) € p. (6.26)

For non-normal concepts we define Z,, such that:
(M; CY = { o | 0 € AT and p satisfies A; Ly, o }, (6.27)
(WD) = {0 | 0 € AT and p satisfies V; Ly, D;) }- (6.28)

Notice that in normal form only concept description in NNF are considered. Thus in
@7 the literal L (o, € always corresponds to the positive Boolean variables A<a7 &y but for

a basic concepts which can corresponds either to A, ¢y or to = A, ¢y for some concept
name C'.

We prove by induction on the structure of 7" that Z, is semantically consistent and that
it is a model for 7. With this purpose, for every axiom C' = D € 7 in normal form and
every individual o we must prove that 7, satisfies the following conditions:

(a) if o respect the semantic of C' then o € C;
(b) if 0 € C% then o € D% (i.e. C% C (%, respecting the semantic of the axiom
C T D);

(¢) if o € D% then o respect the semantic of D.

156 Handling Number Restrictions as SMT Problems

When we talk about the semantic of concepts and axioms we always refer to Table 3.3.
Notice that, if 7 is empty ¢7 is the unit clause Aq, 1y and, thus, there is only one
possible truth assignment p = {A, 1y}. The interpretation Z,,, which is made of the non
empty domain AZx = {1}, trivially satisfies 7.

(a) Let’s first prove the condition (a). We prove it by induction on the structure of the
concept C'

Base. The base cases when C is a basic concept: T, L or the concept name C', are
trivially satisfied by, respectively, (6.23) and (6.24) of the definition of Z, (remember
that A, 1) is assumed to be L for every o).

Inductive Step. Now we prove the claim for every possible kind of non-basic concept C
allowed from the axiom normal form of Section 6.4. By hypothesis the generic individual
o respects the semantic of C' reported in the right-most column of Table 3.3.

—=C : By hypothesis we have 0 € A%+ \ C*¥». By construction of Z, (6.24), for ev-
ery concept name C, (=C) = {0 | ¢ € A% and A, ¢) occurs true in pu},
that is (—=C)* = {o | 0 € A and A, ¢y occurs false in p}. Since, instead,
Ct = {o | 0 € A and Ay, ¢y occurs true in p}, then C%+ N (=C)% = 0,
CTe U (=C)t = A%e and, thus, A%s\ CTw = (=C)*=. Tt follows o € (=C)*».

C, M Cy : By hypothesis we have o € C7* N Cy*. So, since both 0 € Cf* and o € C}*
then, by (6.26), we have that the literals L,) and Ly, ¢,) are in o7 and they are

both, as well as A, 1), assigned to true in p. It follows o € (C,MCy)™ by definition
of Z,, (6.27).

We prove the other following three cases under the hypothesis that: (o, ®r.C) € Z7, with
R € {>n <mV}, assuming that point 4. of Definition 5 applies. This because in our
encoding we only consider acyclic TBoxes.

>nr.C' : By hypothesis it there exist a set of individuals F,,c = {orj | orj €
A grj € CHoand (0,0.r.5) € r¥+}, which has at least cardinality n. Sup-
pose, wlog., that F,,c = {o.r.1,...,0.r.n}. From the hypothesis and by defini-
tion of Z,, (6.26) it follows L, ¢y, Arj 7y € p for every j = 1,...,n. From
(o, >nr.C) € I7 it follows (point 6.) that ¢7 contains the clause ((=BC(indivS, ,n —
L) ANAg, 1)) = A, >nrcy) of type (6.7) and (point 8.) at least the n distinct impli-
cations ((Lo.rj, oy N Aorj, 7)) — IC(inding7 1,7)) of type (6.10) for all the distinct

o.r.7. Thus the variable indivgr has at least cost n so that the Ay, >,,.c) must be
assigned to true. It follows by definition of Z, that o € (>nr.C')%.

<mr.C' : By hypothesis, since o respect the semantic of <mr.C, the set of individuals
{orj|orje Al orje C and (0,0.r.5) € r’»}, has a cardinality not greater
than m. Thus no more than m literals in the forms L, ; ¢) can be assigned to
true in p. Since we assume (o, <mr.C') € Z7, the formula ¢7 (point 9.) contains

Appendiz: Soundness and Completeness of ALCO2SMTe 157

the clause ((BC(indivS,,m) A A, 1y) — At <mrcy) of type (6.12) and (point 5.)
the m + 1 distinct implications (IC(mdva LkY) — Ly, vk, cy) of type (6.4), for

all the distinct o.r.k", with i = 1,...,m + 1. Thus, in »7, more than m clause
of type (6.4) exist. Suppose by contradiction that the value of the cost variable
indive, is greater than m. Thus more than m distinct C-literals IC(indivS,, 1, 5)
must be assigned to true in p. But if these IC-literals are those occuring in clauses
of type (6.4), like those above mentioned of index kY, i = 1,...,m+1, we get a
contradiction, 'cause more than m distinct literals L., ; c) should be assigned to
true in y in order to satisfy those clauses. Notice that IC-literals may occur in clauses
of type (6.10), introduced for right-hand side at-most restrictions (or left-hand side
at-least ones). However these clauses are introduced only for the individuals o.r.j
already in ¥7; thus, if other individuals o.7.j different from the o.r.k" ones are in
Y7, then there are the conditions of point 7 of Definition 5, forcing the sharing of
individuals and the introduction in 7 of all the implications (6.8) and (6.9) for every
o.r.j. Those clauses forces the assignment to true of every literal L,,.; ¢) such that
IC(indiv¢,, 1, j) is assigned to true, contradicting the fact that at most m of those
individuals can be assigned to true. Hence, |nd|vM must have a value not greater
than m. Tt follows from the clause ((BC(indivS,,m) A A, 1)) — Ats, <mrcy) (6.12)
that Ay, <mr.cy must be assigned to true, and thus, by definition of Z,, that o €

(<mr.C).

Vr.C' : By hypothesis, since o respect the semantic of Vr.C', the set of individuals
F,, = {orj | orje A% (0,0rj) € r’»} is such that F,, C C% ie. for ev-
ery o.r.j € Ar it holds o.r.j € C%# and, thus, o.r.j € (=C)%*. Thus there can not
exist literals Ly, ; —c) assigned to true in p. Since we assume (o, Vr.C) € Z7, the
formula ¢7 (point 10.) contains the clause ((BC(indiv,<, ()) NA, Ty) = A, vroy) of
type (6.14) and (point 5.) the single implication (IC(indiv;<, 1, k‘ﬁc) = Ligri-c, cy)
of type (6.4). Since a left-hand side Vr.C' behaves like a left-hand side <mr.C, we
can use the same arguments of the previous point in the proof in order to prove that
|nd|v ~ must have value 0; In fact, otherwise, we could get a contradiction with the
fact (by hypothesis) that there cannot exist true literals L., ; ~cy in < mu. Thus, it

follows from the clause ((BC(indiv,%,0) A Ay, 7y) — Ag, vrcy) (6.14) that Ay, vrcy

ag.r)

must be assigned to true, and thus, by deﬁnltlon of IM, that o € (Vr.C)tn.

(b) The condition (b) trivially follows from point 6.4. of Definition 5. Let us consider
the following cases of axioms: (i) ' C D, (ii) M,C; C D and (iii) C' E L;D;, with C, D
normal concepts and C, C;, D, D; basic concepts. Any axiom of 7 in normal form is a
sub-case of one among (i), (ii) and (iii). We already proved in (a) that the definition of
I,, is consistent wrt. the semantic of every left-hand side concept.

(i) By hypothesis we have o € C% and, thus, L, & € p by definition of Z,, (6.26).
Since L, ¢y is in ¢T, then (point 6.4.) 7 contains the clause (Liy &y = Ly 1))

of type (6.3). It follows L, 5, € pu because ©7 is satisfiable and, thus, o € DIM by
definition of Z,, (6.24).

158 Handling Number Restrictions as SMT Problems

(ii) Similarly, by hypothesis we have o(M;C;) and, thus, that A, L, ¢, is satisfied by
pt, by definition of Z, (6.27). Since every L, ¢,y is in @7, then (point 6.4.) 7
contains the clause ((A; L, ¢y) — Lo, py) of type (6.3). It follows L, py € p
because @7 is satisfiable and, thus, o € D by (6.24).

(iii) In the last case, if o € C%* by hypothesis, then Ly, ¢, € p by definition of
Z, (6.26). Since Ly, ¢y is in @7, then (point 6.4.) 7 contains the clause
(Lo, ¢y — (V; L, D)) of type (6.3). Since ¢T is satisfiable it follows that
V; Ly, p;y must be satisfied by p and, thus, that o € (U;D;)* by definition of

7, (6.28).

(c) Finally, let’s prove by induction on the structure of the concept D that if o € D%
then o respect the semantic of D

Base. When D is a basic concept: T, L or the concept name D, the claim is trivially
satisfied by the definition of Z,,, similarly to (a).

Inductive Step. We prove the claim for every possible kind of non-basic concept D
considered in the normal form of Section 6.4. By hypothesis the o € D%s.

=D : Let 0 € (=D)*. By definition (6.28) ¢ € A% and L, -p) is true in g, ie.
=L, py € p It follows o & D and, thus, o € A%»\ D,

DyUD, : Let o € (DyUDs) . By (6.28), A(y, pyyV Ao, by is satisfied by pand o € A%x,
thus A, 1) € p. It follows that at least one of the literals L, p,)y and L, p,) is true
in p. Hence, since we already have o € AZ# by (6.26) either o € Df“ oro € Dg“,
which let us to conclude that o € Di* U D2*, ie. o € (D L Dy)tn.

>nr.D : Let o € (>nr.D)%» by hypothesis, then we must prove that there exist at
least n distinct individuals o.r.j € A%« such that (o,0.7.5) € r¥* and o.r.j € D%,
By definition of Z,, (6.26) we have L(s >nrpy, A, 7y € p. Further, since >nr.D
occurs at the right-hand side of the axiom so that (o, >nr.D) € IJZ , o7 contains the
clauses (6.4), (6.5) [resp. (6.8), (6.9)] and (6.6) due to the application wrt. o and
>nr.D of the points 5. [resp. 7.] and 6., respectively, of Definition 5. Due to the
clause (6.6): (A, >nrpy A A, 1)) — ﬂBC(indivgr,n — 1) the SMT(C) formula 7

can be satisfiable only if the C-literal BC(indiv?, ,n — 1) is assigned to false, that is

only if at least n different incur-cost literals IC(indiv? ,1,...) are assigned true in p
(because all the IC-literals in o7 have cost 1). Notice that these |C-literals certainly
belong to clauses of type (6.4) [resp. (6.8)]. In fact, they can belong also to clauses of
type (6.10), but those clauses either refer to individuals o.r.k” introduced because of
>nr.D or to different individuals a.r.kf . In this second case, the coexistence of more
than one at-least restriction and one at-most forces the sharing of the individuals,
causes the sharing of individuals due tu the point 7. of Definition 5. By consequence

every IC-literal of the type IC(indiv? ,1,...) occur also as left-hand side literal in the

ag.r))

Appendiz: Soundness and Completeness of ALCO2SMTe 159

implications of type (6.8). By these implications, it follows that at least n of the
correspondent literals L., ; py must be assigned true in u. Further, it follows from
the implications (6.5) [resp. (6.9)] that also at least n literals of the form A, ; Ty are
assigned to true in p. Hence, by (6.26), we have at least n distinct individuals o.r.j
such that o.r.j € A%e, g.r.j € D and such that (o,0.7.5) € %+ by construction of
rZe (6.25).

<mr.D : Let o € (<mr.D)% by hypothesis, then we must prove that there exist at
most m distinct individuals o.r.j € A%+ such that (o,0.r.5) € r¥» and o.r.j € D%,
By definition of Z,, (6.26) we have L <ur.py, A, Ty € p. Further, since <nr.D
occurs at the right-hand side of the axiom so that (o, <nr.D) € ZT, ¢©7 contains all
the clauses of type (6.10) and the clause (6.11) due to the application wrt. o and
<mr.D of the points 8. and 6., respectively, of Definition 5. Due to the clause (6.11)
(At, <mrpy A Ay, 1) — BC(indiv2,,m), the SMT(C) formula ¢7 is satisfied if and
only if at most m different incur-cost literals ICindiv? 1... are assigned to true
in . Let us suppose by contradiction that even if o € (<mr.D)%* there exist
more than m distinct individuals o.r.j € D*. Then, by (6.26), it follows that
there are more than m different literals L, ; py and more than m different literals
Aoy, Ty assigned to true in p. Since ©7 includes one clause (6.10) of the type:
(Ligrj Dy A Arj. Ty) — IC(indiv2, 1,...), for every o.r.j € £7 then it follows that

more than m distinct [C-literals wrt. to indiv?, must be assigned to true. But this
conflicts in the Theory of Costs with the fact that 7 is satisfiable and indiv?, is
bounded by m as previously stated (since BC(indiv?,,m) is true in u). Thus we get

a.r?
a contradiction, proving the claim.

Vr.D : Let o € (Vr.D)%». We must prove that, for every individual o.r.j € A« such
that (o,0.1.5) € r¥, o.rj € D, Since L5, wr.py 18 in 07, 7 must include also
the clauses (6.13): (A, vr.0) A Aorj, Ty) = Aforj, Dy, for every or.j € »7 from
point 10. of Definition 5. By definition of A%+ (6.23), o.r.j € A%+ if and only if
Aoy, T is assigned to true in . Thus, since, by construction (6.25), (o,0.r.5) € rlu
if and only if 0,0.1.j € A%, we have A(,,;) € p for every (0,0.1.j) € r**. Since
Lis, w.py € p by hypothesis, and A, ; 1y € p for every (o,0.7.5) € rZu, then also
As.rj, py must be assigned to true p in order to satisfy the clauses (6.13) of @7 (that
is satisfiable). It follows (6.26) that o.r.j € D for every (o,0.r.j) € r¥e.

]

160 Handling Number Restrictions as SMT Problems

Lemma 11. Given an ALCQ acyclic TBox T in normal form and the encoding
ALCQ2SMT(T) = (7,77, 77, Ay, indiv, o7 of Defintion 5, if there exists a model
T for T then it also exists a model Is for T, such that AT C Y7 and that r*= C
{(o,0.1.0) | 0,0.ri € X7}, for every roler € T.

Proof. We remark that here we don’t discuss about the properties of ALCQ2SM T, we
only show that X7 is a super set of AT for some model Zy, for 7. Suppose that 7 is
consistent. It is known that ALCQ has the finite (and) tree model property (Lutz et al.,
2005). Thus suppose that 7 is a finite tree model for 7. Wlog., among the many possible
finite tree model for 7, we can safely chose a model Z for 7 such that:

(a) qualified number restrictions wrt. different roles are satisfied by distinct individuals;

(b) if a given individual z, does not belong to the interpretation of any at-most qualified
number restrictions, then every different at-least qualified number restriction that
x must satisfy is satisfied by mean of relations with always different (each other)
individuals;

(c) every at-least number restriction >nr.C' in 7 is satisfied through the minimum
possible number of relations between individuals in Z, that could be n, when possible.

This has been said we map the individuals of Z to the individuals of X7 and we call Zy,
the model resulting from this mapping. The mapping is defined recursively as follows:

Base. The root individual of the tree model Z is mapped to the individual 1 € X7

Step. Given an individual z € A” mapped to the individual ¢ € A and, thus, 0 € X7
by inductive hypothesis, we must provide a mapping for every “child” individual y; of x
in the tree model Z (i.e. every individual y; € AZ such that (x,y;) € %, for some role r)
to one individual of X7

Let us consider the generic role r. Thanks to (a) for every r we can define a different
mapping. If z must not satisfy any at-least number restriction in r then there are no
individuals in relation with = through r in Z, due to the hypothesis (¢). Thus we can
distinguish the following remaining two cases:

- The individual must satisfy only at-least number restrictions and no at-most num-
ber restrictions wrt. 7. Formally, consider the case x € (>n;r.C;)* for some integer
values n;, some concepts C; with j > 1, and z ¢ (<mr.D)? for any integer m and
any concept D. Then, for every j, by the hypothesis (a), (b) and (c) there are
exactly n; distinct individuals yg, with ¢ =1,...,n;, such that y{ c AT, yf € (C))*
and (z,y)) € rZ. Notice that, due to the hypothesis (b), it holds 3/ # yf,l for every
j# g ori#id.

By inductive hypothesis we have o € (>n;r.C;)** for every j, and, by definition of
ALCQO2SMTe(T) (point 5.) there exist exactly n; distinct individuals a.r.kic Tex?,

Appendiz: Soundness and Completeness of ALCO2SMTe 161

with s =1,...,n;. For every j and for ¢ = 1,...,n; we map the individual yf of A*
to the respective individual o.r.k.’ of 7.

- Otherwise z € (>n;7.C;)* and x € (<myr.Dy)*, for some integer values n;, my,
and some concepts C}, Dy, with j,k > 1. As stated above Z is model for 7" and it
complies with the hypothesis (a) and (c). So, for every j, there are exactly n; distinct
individuals yf, with ¢ = 1,...,n;, such that yf c AT yf € C'jz and (w,yg) € r? and,
for every k, there are at-most my, distinct individuals y%, with i' = 1,... my, such
that y& € AT,y € DI and (x,y%) € r¥. Due to at-most restrictions, for which the
hypothesis (b) do not hold, notice that individuals can be shared, i.e. it is possible
to have) = yf,/ (or y¥ = y&') for some j # j' (or k # k') and some values of i, i'.

For every j and k, by inductive hypothesis we have o € (>n;7.C;)™ and o €
(<myr.Dy)*. By definition of ALCO2SMT¢(T) (point 5.) there are exactly n,
distinct individuals a.r.kzicj e X7, with i = 1,...,n;, for every >n;r.C;, (so there
are enough individuals in order to satisfy all the at-least restrictions). Notice that, in
the hypothesis that both o € (>n;7.C;)* and o € (<myr.Dy)?, ©7 is then extended
with the clauses (6.8) and (6.9) (point 7.) for every i = 1,...,% . n; (allowing
for sharing individuals). Thus all the individuals of X7 in the form o.r.i, with
i=1,...,> ;nj above mentioned are equivalently expressive to each other, and any
mapping between the individuals y; and these individuals of 7 is suitable, provided
that it must be a function, i.e. that if y{t = yfll,, for some j # j and some values
h,h', then 3/?1 and y{ll, are mapped to the same individual of ¥7.

Notice that the mapping from Z to Zsy, we shown respect the property: 7%= C
{(o,0.14) | 0,011 € X7}, O

Lemma 12 (Completeness). Given an ALCQ acyclic TBox T in normal form and the
encoding ALCQ2SMTe(T) = (X7, 27, IT, A y,indiv,7) of Defintion 5, if T in is
consistent then the SMT(C)-formula 7 is satisfiable.

Proof. Given that 7T is consistent, it exists a model Z for 7 such that A7 C X7 and that
r’= C {(0,0.r.i) | 0,0.ri € £}, for every role r € T, as stated in Lemma 11. We built
from Z a total truth assignment j satisfying o7, as follows:

o= pzUpz (6.29)

162 Handling Number Restrictions as SMT Problems

pr = paUpx UpsUpcUpy U e (6.30)
pa = { Ap 1y | A, 1y literal of ©?, o e AT} (6.31)
px = { L, xy | L, x) literal of ¢’ 0 € AT and 0 € XT}

U {~Li, x) | Ly, x literal of 97, o0 € AT and o ¢ X7} (6.32)

ps = {-BC(indivS,,n—1) | =BC(indivS,,n—1), Lty snrcy € ¢, with ¢ € 7
o€ Al and o € (>nr.0)%}
U { BC(indivS,,n—1) | =BC(indivS,,n—1), Ly, snrcy € ¢, with ¢ € ¢,
o c AT and o ¢ (>nr.0)%} (6.33)
pe = { BC(indivS,,m) | BC(indivS,,m), Liy, <mrcy € ¢, with ¢ € ¢7,
o€ AT and o € (<mr.0)*}
U {-BC(indivS,,m) | BC(indivS,,m), Liy, <mrcy € ¢, With ¢ € 7,
o c Al and o & (<mr.C)*} (6.34)
0) | BC(indiv,<,0), Ly, vrcy € ¢, With ¢ € 7,
o€ AT and o € (Vr.0)*}
0) | BC(indiv,<,0), Ly, vrcy € ¢, With ¢ € ¢,
o€ AT and o & (Vr.0)*} (6.35)

me = { 1C(>indive,, 1,4) | IC(indivE,, 1,4), Liyri ¢y € ¢, with ¢ € ¢,

ag.r)) o.r)

o€ A’ and o.ri € AT and o.1i € C7}
U {=IC(indivS,, 1,4) | IC(indivS,, 1,4), Liyri o) € ¢, with ¢ € ¢7,

ag.r)) o.r)

o c A, butorig Al or o.ri ¢ CF} (6.36)

a.r?

me = { BC(indiv¢

a.r?

U {-BC(indiv¢

a.r?

pz = pxUpxUpgeU b (6.37)
px = {-Ap 1 | Ap, T literal of ¢7, o ¢ AT} (6.38)
pge = { BC(indiv¢,,n) | BC(indive,, ..) literal of ¢7, o ¢ A%, for any n} (6.39)
tic e {=IC(indiv¢ , 1,4) | IC(indiv®) literal of 7, o ¢ A%, for any 4} (6.40)

o.r))
where i is a consistent truth assignment satisfying all the clauses of type (6.3) of ©7
the case o ¢ AL.

a.r?

a.r 7"

We remark that every clause of ¢7 is defined wrt. to a specific individual o. By construc-
tion p7 and p7 assign the two complementary partitions of the Boolean- and C-literals of
©7, those referring to some o € AT and, respectively, those referring to some o ¢ A%, In
particular, also pc and g assigns the two different partitions of IC-literals. In fact pc
assigns those literals involving cost variables indivS, referring to some o € A (but also
possibly related to non enabled individuals o.r.i € X7, but o.r.i € A?), while p assigns
the IC-literals involving a cost variable indivS, for some o ¢ AT. This is necessary because
ALCQ2SMTe(T) encodes a super-set 7 of possable individuals, with the aim of include
a consistent set of individuals defining a model for 7.

Appendiz: Soundness and Completeness of ALCO2SMTe 163

It is easy to see that x is a total and consistent truth assignment for 7.

First we show that p, and in particular pz U pix, propositionally satisfies all the
clauses of ¢7 such that o € AZ, for every type of clause from (6.3) to (6.14).

(6.3): Clauses of type (6.3) represents the propositional encoding of the concept inclusions
of 7. We can distinguish three cases:

— An axiom C' C b, for two generic normal concepts C and b, is encoded into
the clause L, &y = L, py- Since ¢ € A and 7 is a model for 7, then it

holds CT C DT. Thus, if ¢ € C7 then o € D, from which it follows, by (6.32),
that either L, xy, L, vy € px, or =L, x) € pux. In both cases the clause is
satisfied.

— An axiom C; MCy C D, with C1,Cy and D basic concepts, is encoded into the
clause (L, ¢y A Lig, ¢y) — Lo, py. Since o € AT and 7 is a model for 7
it holds (C; M Cy)* C D*. Thus if 0 € CT N CZ then o € D?, from which
it follows, by (6.32), that either L, ¢y, Lis vy, Lis, py € pix Or at least one
between =L, ¢,y and =Ly, ¢, is in px. In both cases the clause is satisfied.

— An axiom C' C D; U Dy with Dy, Dy and C basic concepts, is encoded into the
clause Ly, ¢y — (Lo, D) V Lo, Dy))- Since o € AT and 7 is a model for T
it holds C* C (Dy U Dy)*. Thus if 0 € C? then o € Df U D%, from which it
follows, by 6.32, that either L, ¢y and at least one between L, p,) and L, p,)
isin px or =L, ¢y € px. In both cases the clause is satisfied.

(6.4), (6.5), (6.8), (6.9): Wlog. let us consider the case in which the index of the IC-literal
is ¢+ and, thus, it is associated to the individual o.r.7, for some role r, some basic
concept O, the integer values i and 0 € AZ. Thus we must show that the clauses:
IC(lndlvM, ;1) = Loy, ¢y of type (6.4))/(6.8), and |C(|nd|vgr,1,z) — Agrq, Ty Of
type (6.5)/(6.9), are satisfied. We can distinguish two cases:

— if both o.ri € AT and o.r.i € CF, then we have Algri, Ty € pa from (6.31),
Ligri ¢y € px from (6.32) and IC(indivS,,1,4) € uc from (6.36), so that u
satisfies both the clauses;

— if, on the contrary, either o.ri ¢ AZ or ori ¢ CZF, then we have
ﬂIC(mdva 1,4) € e from 6.36, which trivially satisfies both the clauses.

o.r) Y

(6.6), (6.7): Let us consider the clause (A<U surcy A A, 1) — —BC(indivS,,n — 1) of
type (6.6) and the clause (=BC(indivS,,n — 1) A Ay 7)) — A, snrcy of type (6.7).
Since o € AT by hypothesis then A, 1y € pa by (6.31). If also o € (>nr.C)%, then
Alg, >nr.c) € px by (6.32) and —|BC(|nd|vM, n—1) € us by (6.33) satisfying both the
clauses. Otherwise, if o € (>nr.C), then the clause (6.6) is trivially satisfied since
Al surcy € px by (6.32), while BC(indiv,,n — 1) € us by (6.33) which satisfies
the clause (6.7).

164 Handling Number Restrictions as SMT Problems

(6.10): Wlog. let us consider the case in witch the index of the IC-literal is ¢ and, thus, it is
associated to the individual o.r.7, for some role r, some basic concept C', the integer
value i and o € AZ. Thus we must show that the clause: (Liori, ¢y N Agri, Ty) —
IC(indivS,, 1,1) of type (6.10) is satisfied. We can distinguish three cases:

o.r) Y

— if both o.ri € AT and o.r.i € C*, then we have Alora, Ty € pia from (6.31),
Ligri ¢y € px from (6.32) and IC(indivgr,l,j) € e from (6.36), so that u
satisfies the clause;

— if, on the contrary, o.r.i ¢ C*, then we have —Li,.,.; ¢y € pux from (6.32), which
trivially satisfies the clause;

— otherwise, if o.r.i & AZ, then we have —Agri, Ty € px from (6.38), which
trivially satisfies the clause.

(6.11), (6.12): Let us consider the clause (A, <mrcy A A, 1y) — BC(indive,,m) of

type (6.11). and the clause (BC(indivS,,m) A A, 1y) — At <mrcy of type (6.12).
Since o € A’ by hypothesis, then A, Ty € pa by (6.31). If also o € (<mr.C')%, then
Al <mrcy € px by (6.32) and BC(indiv§,,m) € u< by (6.34) satisfying both the
clauses. Otherwise, if o & (<mr.C)%, then the clause (6.11) is trivially satisfied since
Al <mrcy € pix by (6.32), while =BC(indiv,,m) € u< by (6.34) which satisfies

the clause (6.12). '

(6.13): Wlog. let us consider the generic clause of type (6.13): (A, vr.cy A Ao, Ty) —
L., ¢y, for some role r, some basic concept C, the integer value ¢, o € AT and
o.r.i € X7, Further, let us consider the case in which o € (Vr.C)%; otherwise, the
clause is trivially satisfied from —A, vr.cy € px, due to (6.32). If o € (Vr.C)* then
we have A vy € pux from (6.32) and we can distinguish two more cases:

— if o.ri & AT the clause is trivially satisfied from —Agri, Ty € tix, due to (6.38);

— if, on the contrary, o.r.i € AZ, since Z is a model for 7, then o € (Vr.C)*
implies o.r.i € C* for every (o, 0.r.i) € r*, from which it follows Ly.,.; ¢y € px,
due to (6.32). Further, from o.r.i € AT we have A(,,; 1y € pua (6.31) satisfying
the clause.

(6.14): Let us consider the clause (BC(indiv,$,0) A A, y) — A, vrcy of type (6.14).
Since ¢ € AT by hypothesis, then A, 1) € pa by (6.31). Then, by definition
of px (6.32) and py (6.35) respectively, either o € (Vr.C)* and both Ay w.c,
BC(indiv;9,0) are true in u, or o ¢ (Vr.C)T and they are both false in . In both

or)

cases [satisfies the clause (6.12).

Second we show that p, and in particular pz, propositionally satisfies all the clauses of
@7 such that o ¢ AT. We prove this fact for every type of clause from (6.3) to (6.14).

(6.4), (6.5), (6.8), (6.9): All the clauses of these types are trivially satisfied by p¢, since,
by (6.40), we have =IC(indivS,,1,...) € e for every literal IC(indivé,, 1,...) such
that o & AT,

Appendiz: Soundness and Completeness of ALCO2SMTe 165

(6.6), (6.7), (6.11), (6.12), (6.14): All the clauses of these types are trivially satisfied by
pix, in fact, since o & A, then ~Ay, 1) € ux by (6.38).

(6.10), (6.13): The same argument of the previous point can be spent for these clauses.
In fact, since Z is a model for 7, if ¢ &€ AZ then also o.r.i ¢ A for every o.r.i € X7,
Thus we have = A,,; 1y € pix by (6.38), which trivially satisfies the clauses.

(6.3): Finally, we consider the case of all the clauses of type (6.3) in which o ¢ AZ. The
clauses of type (6.3) are the propositional correspondence of the concept inclusions
of 7 and in particular, by definition of ©7, a clause of type (6.3) can exist in o7 wrt.
the individual o only if the same clause exists in ¢? wrt. the individual 1 (because
every axiom is encoded in 1). But, since 1 € AT and we have already proved
that every clause of ¢7 wrt. some o such that ¢ € A7 is satisfiable, then there
exists a satisfying truth assignment for all the literals occurring in all the clauses
of type (6.3) wrt. the individual 1. If such an assignment exists, then there exists
also a consistent truth assignment, that we called p+, for all the literals occuring
in clauses of type (6.3) wrt. any other individual o ¢ A%, such that it satisfies all
these clauses. In fact, notice that the clauses of type (6.3) wrt. any individual o
are a subset of those of the same kind wrt. 1. Notice also (as shown above) that all
the other clauses different from type (6.3) are already satisfied by sub-assignments
of 7 which do not include any of the literals assigned by p. Thus p exists and
satisfies all the clauses of type (6.3) in the cases of o ¢ AT,

Finally we show that j satisfies ¢7 with respect to the Theory of Costs C.

So we must prove that u satisfies all the constraints introduced by the C-literals, that is if
a bound (BC-literal) wrt. the cost variable indiv$, is assigned to true [resp. false] then the
sum of all the incur costs for indivS, does not [resp. does] exceed the bound. Since all the
incur costs defined in 7 have value 1, it means that the number of IC-literals assigned
to true is not [resp. is] greater than the fixed bound. We prove this fact distinguishing
some cases:

- First, we consider all the clauses containing C-literals referring to some cost vari-
able indiv,, with o ¢ AT. Notice that tge (6.39) assigns to true every bound
BC(indiv%,,...) such that o ¢ AT while, instead, uc (6.40) assigns to false every
incur cost IC(indivf_T, 1,...) for the same o. This assigment is consistent wrt. the
Theory of Costs. In fact, by assigning to true all the BC-literals, only upper-bounds
are fixed, and these upper-bounds are all trivially satisfied because (with no enabled

incur costs) every cost variable indivS, valuates to zero.

- Second, we consider the case ¢ € A%. Notice that the sub-assignments p, p< and
Ly, all assign values to the BC-literals when o € AZ. First of all, they assign a value
to all such BC-literals, in fact they cover all the possible cases of clauses in which
BC-literals can appear. Second, even if they possibly assign the same BC-literal
twice, (for the same o,r and C, when n — 1 = m or n — 1 = 0) they are mutually
consistent. In fact they are guarateed by the semantic of Z, which is a model for < T'.

166

Handling Number Restrictions as SMT Problems

Thus, in the case n — 1 = m if 0 € (>nr.C)%, then there are at least n individuals
o.r.i € CF and thus o ¢ (<mr.C')%. And, vice versa, if o € (<mr.C)* and m = n—1
then o & (>nr.C)%. Similarly p> and py can assign the same BC-literals, while py
and p< can never intersect. But, also in this case, if n = 1 and o € (>1r.=C)%,
then it exists at least one individual o.r.¢ € (—C)I, and thus o ¢ (‘V’T.C)I, and vice
versa. Further, the semantic of < I guarantees that it could never happen, e.g.,
o & (<mr.C)t and o ¢ (>nr.C)f, with n — 1 = m, for 0 € AZ. Notice at last
that, by definition of ALCQ2SMTg, if BC-literals are introduced for some o with
the respective literals Ly, s.c) for some restriction i, then also the many respective
IC-literals and possible individuals o.r.i are introduced wrt. the same o.

With these premises let as prove the other following exhaustive sub-cases, in the
cases in which the mentioned literals occur in ¢7:

— Let consider either the case o € (>nr.C)* or o & (<mr.C)? for a generic value
of n.and m = n — 1. It follows, either by (6.33) for u> or by (6.34) for u,
—-BC(indivS,,n — 1) € p, thus there must be at least n distinct enabled incur
costs of value 1 wrt. indiv{,, in order to be consistent wrt. the Theory of Costs.
Given o € (>nr.C)* (or, respectively, o & (<mr.C)?), since Z is a model for
7, there must be at least n distinct individuals o.r.¢ such that o.r.i € AT and
o.r.i € CT. Hence, by (6.36), juc consistently assigns to true at least n distinct
literals in the form IC(indiv$., 1,4), as required.

— In the opposite case, if ¢ & (>nr.C)* or 0 € (<mr.C)* for a generic value
of n and m = n — 1, we have BC(indiv{,,m) € p either by (6.34) for u< or
by (6.33) for ps. Given o € (<mr.C')* (or, respectively, o & (>nr.C)?), there
can not exist more than m distinct individuals o.r.i such that o.r.i € AT and
o.r.i € CT. Hence, by (6.36), juc assigns to true at most m distinct literals in

the form IC(indivC 1,1), satisfying the fixed bound in the Theory of Costs.

o.r? Y

— If it holds o € (Vr.C)%, then BC(indiv;<,0) € py by (6.35), so there can not

be any incur cost wrt. indiv;$ assigned to true. Since Z is a model for T,
o € (Vr.C)T implies that for every individual o.r.i € A% it holds o.r.i € C7 (in
fact, by Lemma 11, the individuals in relation with o through 7% are all and
only those in the form o.r.i € AT). Consequently, for every o.r.i € AT it holds
o.ri ¢ (~C)F, thus no literals 1C(indiv]<,1,4) can be assigned to true neither

o.r’ Y

by fuc (6.36) nor by pie (6.40), consistently with the Theory of Costs.
— If, on the contrary, o ¢ (Vr.C')%, then =BC(indiv,%,0) € puy by (6.35). Since 7 is

a.r?

a model for 7, o € (Vr.C')* implies that it exists at least one individual o.r.i €
AT such that o.r.i € (—C)F Consequently, at least one literal 1C(indiv;¢, 1,4) is

o.r))

assigned to true by pc (6.36), consistently with the Theory of Costs.
O

Appendiz: Soundness and Completeness of ALCO2SMTe 167

Theorem 7.Given an ALCQ acyclic TBox T in normal form and the encoding
ALCQ2SMTe(T) = (X7, 77,17, A, | y,indiv, o) of Definition 5, then the normal con-
cept C’, such that C T D € T, is satisfiable wrt. T if and only if the SMT(C)-formula

o7 A L, ¢y is satisfiable.

Proof. First let us prove that our approach is sound, that is if @7 A Ly ¢ is satisfiable
then C' is satisfiable wrt. 7. In other words, we prove that if oI AL (1, ¢ Is satisfiable then

it there exists an interpretation Z, such that Z is a model for 7 and T # (). Notice that
oI AL (a, ¢y 18 satisfiable if and only if 7 is satisfiable. Let us call i the truth assignment
satisfying ¢7 and such that L<17 ¢y € 1 This has been said, we chose the interpretation
Z,, by Lemma 10 as a model for 7. Since we have L<17 ¢y € Wy it is a direct consequence

of the Lemma 10 that 1 € é’zﬂ, so that CZw # 0, ie. C is satisfiable wrt. 7.

Then we prove that our approach is complete. We must prove that if C is satisfiable
wrt. 7 then ALCQ2SMTe(T) A L, ¢y is satisfiable. We assume that 7 is consistent
(otherwise it follows trivially by Theorem 6 that 7 is unsatisfiable), and that the inter-
pretation Z is a model for 7 such that CZ # @ (i.e. C is satisfiable wrt. 7). Further, we
can assume AT C ¥7 (Lemma 11) from which it follows, by Lemma 12, that there exists
a truth assignment y satisfying o7 build up as in (6.29). In particular, since CCDeT
and C' is consistent and has been encoded in 1 with 1 € AZ, we have 1 € CZ. From this
latter fact it follows L, ¢ € px C p due to Lemma 12 (6.32). O

168 Handling Number Restrictions as SMT Problems

6.10 Appendix: An Encoding Example

Consider the acyclic ALCQ TBox 7* composed of the following axioms (for briefness, in
the rest of this example we refer to the right-side short version of the axioms of 7* and

we skip to transform them in normal form):

HappyFather C >2 hasSon.Professor
HappyFather C >2 hasSon.Medic
HappyFather C >2 hasSon.Rich
HappyFather C <3 hasSon.T
Professor C Jhaslncome.LowSalary
Professor C <2 haslncome. T
Rich C 3 haslncome.T M (V haslncome.HighSalary LI >3 haslncome.T)
LowSalary C —HighSalary

FE>2sP

FC>2sM

FC2>2s.R

FLC<3sT

PC>1rL

PC<2rT
RC>1r.TN(Vr.HU>37rT)
LC-H

The formula 7" of ALCQ2SMTe (T*) is generated as follows:
1. Encoding of the TBox axioms (6.3) in the root individual 1:

Aa,
NAn, ry — An, >2s.P) NAa, py — An, 11
ANAq, py = A, >26.00) NAq, py — Aq, <2r.T)
NAq, ry — Aq, >25.R) NAq, gy = A, >1n.T)
NAq, ry — Aq, <35.T) NAaq, ry = (Aqg, vrmy VA, >3n.m))

NAq, Ly = 7Aq, By

2. Encoding of the at-least number restrictions wrt. the role r and the individual 1
(i.e. (1,>n r.C)), through the clauses (6.6) and (6.4), (6.5):

A (Aq, s1r.0y A An, 1)) — —BC(indivy,., 0)

A IC(IndIVfT‘a 17 1) - A(l.r.l, L) N IC(II’]C‘IV{IT7 1, 1) — A(l.'r'.l, T)

AN (Aqg, z3emy NAQ, Ty) = —BC(indivy ., 2)
A (Aq, s1m7y A A, 1y) — —BC(indivy ., 0)

A IC('”d'VIm 1>2) - A(l.r\2, ™) AT
AIC(indivy ., 1,3) — Ars, T AT
AIC(indivy ., 1,4) — A1 g T AT

Notice that when an at-least restriction applies to the concept T (see, e.g., the
encoding of the (1,>3 r.T)) the clauses of type (6.5) are identical to the clause of
type (6.4), thus the first can be avoided (here we replace them with T). Notice
also that, for what concerns the introduction of new individuals and the relative
IC-clauses, only the at-least restriction with the greater value of n must be encoded,
when many at-least restrictions refer to the same concept and role (e.g., for the
instantiated concepts (1,>3 r.T) and (1,>1 r.T) only three individuals, instead of

four, must be introduced).

3. Encoding of the at-most restrictions wrt. the role r and in the root label 1 (i.e.
(1,<m r.C')). The expansion (6.11) introduces in o7 the clause:

A (Aqn, <orty A A, Ty) — BC(indivy ., 2)

Appendiz: An Encoding Example 169

while the interaction with the previously encoded at-least restrictions for r and 1 is
handled by sharing the individuals, as done through the expansions (6.8) and (6.9):

AIC(indivy,, 1,2) — Ao 1) ANC(indivi,, 1,2) — Ao T
AIC(indivi,, 1,3) — A3 1) ANC(indivi,, 1,3) — Az T
ANC(indivy,, 1,4) — Ay g, 1) ANC(indivi,, 1,4) — A g 1)
ANC(indivy ., 1,1) — A, T AT

Finally, for every previously generated individual one clause of type (6.10) is intro-

duced:

A 14(1'7117 T — IC(IndIVIr, 1, 1) A A(l.r.S, ™) - lc(lndlvirrw 1a3)
A A(l',,.'g’ Ty — IC(IndIVlTT, 1,2) A AA<1.7‘.47 T |C(|ndIVIT, 174)

Notice that these latter clauses of type (6.10) are simpler wrt. their expected form,
because their two implying literals are identical each other (they both refer to T),
and thus only one literal is necessary.

4. Encoding of the universal restrictions wrt. the role r and in the root label 1
((1,¥r.C')), by mean of clauses of type (6.13):

A (A, vray NAgara, 1) = Ar, o A (A, vray NAaars, 1Y) = Ars, o)
AN (Aq, vray NAare, Ty) = Agre, 1) AN (Aa, vray NAara, Ty) = Ara, 1

5. Expansion of the TBox axioms (6.3) in the individuals 1.r.1,..., 1.r4:

NAara, Ly = "Aarr, B ANAars, Ly = " Anrs, v
NAgre 1y — "Aare, B ANAqra, 1y = " Aqra, 1

6. Encoding of the at-least restrictions wrt. the role s instantiated in 1 by mean of the
clauses (6.6) and (6.4), (6.5):

A (Aq, >2s.p) NAp, Ty) — —-BC(indivi , 1)

AIC(indivy o, 1,1) — A1, py ANC(indivy ¢, 1,1) — A1, 1)
AIC(indivi ¢, 1,2) — A s Py AIC(indivt ¢, 1,2) — A0 T
A (An, s2sany A A, Ty) — —BC(indivi’, 1)

ANC(indivi’,, 1,3) — A os an ANC(indivi%, 1,3) — Ay os T
ANC(indivi’,, 1,4) — Ay oa an ANC(indivi’, 1,4) — Ay oa T
A (An, s2s.m) A Aq, 1y) — —BC(indivi',, 1)

AIC(indivi,, 1,5) — A o5 Ry ANC(indivi ., 1,5) — A o5 T
AIC(indivi,, 1,6) — A6 Ry AIC(indivi,, 1,6) — A6 T

7. Encoding of the at-most restrictions wrt. the role s in the root label 1; by mean of
the clause (6.11):

AN (A(l, <3s.T) /\A<1, T)) s BC(IndIVIS,g)

170 Handling Number Restrictions as SMT Problems

the clauses (6.8) and (6.9):

A |C(|nd|v1 5 1,3) = Anss, Py A IC(lnd|v1 s 1,3) = Ass, T
C(Indivl.57 1,4) — A<1.s.4, P) C(mdiVLm 1,4) — A(1‘544, T)
C(mdivfs7 1,5) = Anss, P C(lndivf57 1,5) = Aqss, 1)
C(mdivfs7 1,6) = Aq.s, P C(lndivfs7 1,6) = Anse, T)
C(mdiviws, L,1) = Apgsa, M) C(lndivi\ﬂ, 1,1) = Agsa,
C(lndlviws, 1,2) = Aqs2, M) C(lndivi\ﬂ, 1,2) = Aqs2, 1)
C(lndivl.s, 1,5) = Aqss, M) C(lndiviv_js, 1,5) = Aqss, 1)
C(lndivi\ﬂ, 1,6) — Aqns6, M) C(lndiviv_js, 1,6) = Aqss, T)
C(lndiv{{s, 1,1) = Ansa, R C(lndivﬁs, 1L,1) = Agsa, 1
C(lndlvl s 1,2) = A sz, R C(lndivﬁs, 1,2) = Apgsa, 1)
C(mdivl s 1,3) = Anss, R C(lndivﬁs, 1,3) = Anss, 1)

A IC(mdlvl s 1,4) = Asa, R A IC(lnlel s 1,4) = Arsa, T)

which allow to share individuals, and of the clauses (6.10) wrt. all the introduced
successor individuals:

A Agisa, Ty — IC(indivq 4, 1,1) A A ga, Ty — IC(indiv{ 4, 1,4)
A A’4(1.5.27 Ty = Ic(mdl\/?s: 172) A A(l.s.5, Ty = |C('nd'V1Ts, 175)
A Apss, Ty — 1C(indivy 4, 1,3) A Agss, Ty — IC(indivy ,, 1,6)

8. Expansion of the TBox axioms (6.3) in every 1.s.i individual, with i =1,...6: 3

ANAgsi Py = Alsi, >1r.L)
N Aqsi, Py = A, <2r.T)
NAuse Ry — Allsi, >1r.T)

NAusa Ry — (AQsa, vrm) VY A(lss, >3r.T))

9. For i =1,...6, encoding of the clauses (6.6) and (6.4), (6.5) for the at-least restric-
tions concerning the role 7 instantiated in 1.s.i:
A (Asi, 1y A A s, Ty) — —BC(indivi, ;.,,0)
AICGNdivEsips 1, 1) = Agrira, 1y AC(IndivE simy 1,1) = Agtsira, T)
A (Asi s3mm) A Agsa, Ty) — —BC(indivy o,) 2)
A (Apsi, s1nTy AA@si 1)) — —BC(indivy 4 ; .., 0)

A IC(IndiVIS.i/m 172) - A(l.s.i.r.Q, T) AT
C(mdiVIs.ixm 17 3) - A(LSJ’.TB, T) AT
A lc(mdiVIs.imv 174) - A(l.s.imA, T) AT

10. For i = 1,...6, encoding of the at-most restrictions wrt. the role r and instantiated
in every individual 1.s.7; first an upper bound is fixed via the clause (6.11):

A (Apsi, <orty AAsi Ty) — BC(indiv{ ;.. 2)

13We remark that practically, despite our exposition in this example, the expansion of the encoding for every
individual is fully performed before than any expansion concerning other individuals.

Appendiz: An Encoding Example 171

then, through the clauses (6.8) and (6.9), it is encoded the sharing of the individuals
previously introduced by the different at-least restrictions:

A |C(indiV1LAsAi.m 1,2) = Aqsir2, L) A |C(indiV1LAsAi.m 1,2) = Apsira, T)
AIC(ndiv .y 1,3) = Arsis, 1) AIC(ndivt .y 1,3) = Agrsis, T)
AIC(ndiv iy 1,4) = Arsiira, 1) AIC(ndivT ..y 1,4) = Agisiira, T)
AIC(indivy 5.0, 1,1) = A, T) AT

and, at last, the clauses of type (6.10) are introduced for all the previously generated

individuals:
A A(Ls‘i.nl, ™) g |C(indiVIs.i4r7 17 1) A A(LsAi.r.S, T) g |C(indiVIs.i4r7 173)
A Agtsirz, Ty — 1C(indiv{ 4., 1,2) A Atsia, Ty — 1C(indiv] .., 1,4)

11. For ¢+ = 1,...6 encoding of the universal restrictions wrt. the role r instantiated in
every individual 1.s.2:

A (Aqsi, vrmy NAsir, TY) = AQlsira, H) AN (Aqsi, vy NA@sirs, TY) = Allsirs, H)
A (Ass, vray NA@sire, Ty) = A@sire, H) AN (Asis, vy NAsira, Ty) = AQsira, H)

12. For i =1,...6, expansion of the TBox axioms (6.3) in the individuals 1.s.i.r.1, ...,
1l.s.q.r.4:

ANAsir, Ly = " AQsir, H) NAusirs, Ly = " Asirs, H)

ANAsire Ly = " AQsir2, H) N A sira, Ly = Al sira, H)

172

Handling Number Restrictions as SMT Problems
6.11 Appendix: Additional Plots on ALCO2S5M1T;
1000 T le+07 T T T T
total vars. - ——— total vars. —+—
costvars. - — cost -
total vars. (S.P.) - — total vars. (S.P.) -
costvars. ES.P.; - 1e+06 ¢ “ost ES.P.% B
T
1le+05
100
10000
1000
10 |
100
Fooeen * * * Koo <
10 ¢
. ‘ ‘ ‘ ‘ 1 ‘ ‘ ‘ ‘
20 40 60 80 100 1 2 3 4 5 6
10000 T 1e+08 T
total cls. total cls. —+—
|f0%?%'" total fO%%% 77777777
total cls. (S.P.) ~--oor otal cls. (S.P.) -
é)ogt cls. (S.P.) 1e+07 £ cost cls. (S.p.) —&
o T 1e+06
1000 =
) = 1e+05
10000
100
1000
100 +
Fo i) & il i A i
10 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
20 40 60 80 100 1 2 3 4 5 6
Figure 6.17: 1st column: increasing linunsat,, ¢ = 1,...,20; 2nd column:
increasing exp.unsat,, ¢ = 1,...,6. 1st row: variables; 2nd row: clauses. X axis: test

case index; Y axis: #variables/clauses.

10000

T
total vars. —+—
cost vars.

total vars. (S.P.) -

costvars. (S.P.) &

1000

100

4

1
16

Figure 6.18: restr_num,(1).
#variables/clauses.

20

10000 , ‘
total cls. —+—
costcls.
total cls. (S.P.) -
costcls. (S.P.) =
,J/P//kﬂ
///*//gg g AT ¥
e e
1000 g
o
100
L
i
10 ‘ ‘ ‘ ‘
4 8 12 16 20

Left: variables; right: clauses. X axis: test case index; Y axis:

Appendiz: Additional Plots on ALCO2SMTe 173

1000 T T 1000 T T
total vars. —+— total vars. —+—
costvars, - costvars.)
total vars. (S.P.) % total vars. (S.P.) XX
costvars. (S.P.) & costvars. (S.P.) & o
100 100
) U B
- g i e
10 - - - 10 . a‘ﬂ,r&'
i 15
=) bz}
P B
=)iy
1 L L L L 1 L L L L
4 8 12 16 20 4 8 12 16 20
10000 T T 10000 T T
total cls. —+— total cls. —+—
cost cls. - costcls.
total cls. (S.P.) % total cls. (S.P.) - oK
costcls. (S.P.) & costcls. (S.P.) & **
K X
1000 1000 x--%
- ~ ga .
5]
= &
100 100
10 L2 L L L L 10 L L L L
4 8 12 16 20 4 8 12 16 20
Figure 6.19: backtracking,(n). 1st column: n = 1; 2nd column: n = 2. 1st row:

variables; 2nd row: clauses. X axis: test case index; Y axis: #variables/clauses.

1000 T T 1000 T T
total vars. —+— total cls. —+—
costvars, - cost cls. -

total vars. (S.P.) % total cls. (S.P.) %

costvars. (S.P.) & costcls. (S.P.) &

100 100

10 10
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Figure 6.20: restr ratio;(1). Left: variables; right: clauses. X axis: test case index; Y
axis: ##variables/clauses.

174 Handling Number Restrictions as SMT Problems

Chapter 7

Exhaustively Debugging ££7 TBoxes
via Horn-SAT and All-SMT

The recent quest for tractable logic-based languages arising from the field of bio-medical
ontologies has raised a lot of attention on lightweight (i.e. less expressive but tractable)
description logics, like ££ and its family. To this extent, automated reasoning techniques
in these logics have been developed for computing not only concept subsumptions, but
also to pinpoint the set of axioms causing each subsumption. This task, called axiom
pinpointing, allows the user for debugging ontologies by identifying the minimal subsets
of axioms in the ontology causing undesired inferences.

In this last part of the thesis we build on previous work from the literature and push
the envelope of a novel approach for axiom pinpointing in the logic £E£1 and its sub-logics.
In a nutshell, the idea is to build off-line a polynomial-size Horn propositional formula
encoding the full classification of the input ontology, and to exploit the power of mod-
ern SAT and SMT techniques (like Boolean Constraint Propagation, Conflict Analysis,
All-SMT) to compute subsumption and to efficiently perform axiom pinpointing. We
first verify the potential of the approach and then we improve it thanks to some ad-hoc
optimizations, ranging from an SMT-like theory propagation to a SAT-based technique
for modularization. Thanks to the power of these technologies, we show in an extensive
empirical evaluation how our tool ELT2SAT is extremely efficient and can deal with huge
medical ontologies like SNOMED-CT in negligibel time. !

7.1 Related Works

In contrast to the trend of the last two decades (Baader et al., 2003), in which the re-
search in Description Logic has focused on investigating increasingly expressive logics,
the recent quest for tractable logic-based languages arising from the field of bio-medical
ontologies has attracted a lot of attention on lightweight (i.e. less expressive but tractable)
Description Logics, like ££ and its family (Baader et al., 2005, 2006b, 2007; Konev et al.,

!The first part of this chapter is partially based on the conference paper: Sebastiani & Vescovi, 2009b.

176 Ezhaustively Debugging ELY TBoxes via Horn-SAT and All-SMT

2008¢c; Motik & Horrocks, 2008; Baader et al., 2008; Bienvenu, 2008; Lutz, Toman, &
Wolter, 2009; Magka et al., 2010; Penaloza & Sertkaya, 2010b). £L allows for conjunc-
tions, existential restrictions and supports TBoxes with general concept inclusions. In
particular, the logic £E£1 (Baader et al., 2005, 2006b, 2007), which extends £L by adding
also complex role inclusion axioms, is of particular relevance due to its algorithmic proper-
ties and due to its capability of expressing several important and widely-used bio-medical
ontologies, such as SNOMED-CT (Spackman et al., 1997; Spackman, 2000; Suntisrivara-
porn et al., 2007), NCI (Sioutos et al., 2007), GENEONTOLOGY (The G. O. Consortium,
2000) and the majority of GALEN (Rector & Horrocks, 1997) (see Section 2.1 for more
details). In fact in EL£T not only standard logic problems such as concept subsumption
(e.g., “is Amputation-of-Finger a subconcept of Amputation-of-Arm in the ontology
SNOMED-CT?”, Baader & Suntisrivaraporn, 2008), but also more sophisticated logic
problems such as axiom pinpointing (e.g., “Find a minimal set of axioms in SNOMED-
CT which are responsible of the fact that Amputation-of-Finger is a subconcept of
Amputation-of-Arm?”, Baader & Suntisrivaraporn, 2008) are tractable (Baader et al.,
2007; Penaloza & Sertkaya, 2010b). Importantly, the problem of axiom pinpointing in
ELT is of great interest for debugging complex bio-medical ontologies (see, e.g., Baader,
Lutz, & Suntisrivaraporn, 2006a; Baader & Suntisrivaraporn, 2008; Suntisrivaraporn,
2009), precisely identifying and presenting the minimal subsets of the ontology axioms
causing undesired existing concept subsumption relations.

To this extent, the problems of concept subsumption and axiom pinpointing in ££*
have been thoroughly investigated, and the development od efficient algorithms and tools
able to handle and debug large real-world ontologies is a “hot” research issue. Thus,
novel algorithm for these functionalities have been implemented and tested with success
on large real-world ontologies, including SNOMED-CT (see, e.g., Baader et al., 2006b,
2007; Baader & Suntisrivaraporn, 2008; Sebastiani & Vescovi, 2009b). Further, the ax-
iom pinpointing problem is increasingly catching attention especially in the Semantic
Web research community (see, e.g., Kalyanpur et al., 2007; Suntisrivaraporn et al., 2008;
Horridge et al., 2008; Penaloza & Sertkaya, 2010a). In this domain the same problem is
normally called Find a/all Justification(s) and is mostly solved via (so-called) black-box
approaches, which try to extract justifications through blind search algorithms working
regardless the specific properties of the handled logic/ontology (Schlobach & Cornet, 2003;
Kalyanpur et al., 2007; Suntisrivaraporn et al., 2008; Horridge et al., 2008). The reasons
of this choice lay in the nature of the ontologies treated by Semantic-Web applications,
which spread on a wide range of languages and which are usually restricted in size but
potentially extremely complex. In spite of that the need of design dedicated white-box
(i.e. exploiting the specific knowledge on the structure of the handled problems) efficient
procedures for ELT is explained by the nature of the real-world €L -ontologies: relatively
simple in their structure but possibly huge in size. Thus, on the one hand exploiting the
simple semantic of the input ontology should not be computationally expensive, on the
other hand the huge dimension of the problem forces to exploit as much as possible the
semantic of the input ontology and the properties of the underlying logic, developing

Motivations, Goals and Proposed Solution 177

E LT -specific tools.

Moreover, the Description Logic community has spent a considerable effort in the
attempt of extending £L, defining a maximal subset of logical constructors expressive
enough to cover the needs of the practical applications above mentioned, but whose in-
ference problems remain tractable. Beside the logic E£T (Baader et al., 2006b), on which
we focus in this work, many other extension of £L or tractable fragments of even harder
logics have been recently studied (Baader et al., 2005, 2008; Kazakov, 2009; Magka et al.,
2010).

7.2 Motivations, Goals and Proposed Solution

In Chapters 5 and 6 we have proved how plain SAT solving and plain SMT, respectively,
can be efficiently used to perform automated reasoning in Description Logics and on-
tologies. We have shown that exploiting the power of these techniques can be helpful in
getting rid of some of the main weakness of the current DL reasoners, like the effect on
reasoning of numerical constructors and, especially, the possibly huge size of the input
problems. Moreover we have discussed how, nowadays, the large availability of cheep
and large amounts of disk space and memory capabilities, can make profitable to move
part of the reasoning in an encoding preprocessing (which, also, we experienced to be not
particularly time expensive) into possibly larger problems but with a faster response on
the single reasoning queries.

Starting from this considerations, in this last part of our research we want to investi-
gate the effectiveness and applicability of more specific SAT /SMT-based technologies by
approaching even more complex emerging non-standard reasoning services. In particu-
lar we aim at tackling one of those problems in which the existing general-purpose and
highly-optimized systems can be better replaced by specific tools. As shown in the work
of Suntisrivaraporn (2009), the previously described “hot” problem of debugging huge
ELT ontologies seems to perfectly fits our research purposes, and allows for evaluating
the scalability of our approach on the concrete application of the huge real bio-medial
ontologies.

The problem of axiom pinpointing in ££7 is characterized by two main characteristics:
the simplicity of the logical constructors underlying the input ontologies and the potential
huge dimensions of the problem. For this reason SAT seems to be a perfect tool able to
solve simple problems of extremely huge dimensions. In particular, it is clearly evident the
similarity between the axiom pinpointing problem in DL, consisting in identifying subsets
of axioms causing an undesired inference, and Conflict Analysis in SAT which, indeed,
aims at identifying a set of clauses/assumptions causing the unsatisfiability of the input
formula (see Sections 4.1.2 and 4.1.3). Moreover, the identification of all such (minimal)
subsets of axioms requires an iterative process. Therefore, we investigated the use of the
All-SAT/All-SMT techniques (see Section 4.2.4 or Jin et al., 2005; Lahiri et al., 2006, for
more details) applied in the framework of our proposed novel approach based on Boolean
reasoning techniques.

178 Ezhaustively Debugging ELY TBoxes via Horn-SAT and All-SMT

In a nutshell, our idea is to build online a polynomial-size Horn propositional formula
encoding the full classification of the input ontology. Then, we can find one MinA by
applying SAT under assumption and by exploiting Conflict Analysis. Finally, we use the
all-SMT approach in order to uniquely enumerate all the single MinAs computed in such a
way. In this research stream, in order to increase the performance of axiom pinpointing, we
also deal with the supplemental reasoning problem of modularization (as done by Baader
& Suntisrivaraporn, 2008; Suntisrivaraporn, 2009). For its analogy with the problem of
avoiding the state explosions in model checking we introduce a modularization techniques
inspired by the well-known cone-of-influence reduction (Clarke, Grumberg, & Peled, 1999).

For the sake of the reader convenience we sketch the main elements of the approach we
propose hereafter. In this chapter we build on previous work from the literature of E£7*
reasoning (Baader et al., 2006b, 2007; Baader & Suntisrivaraporn, 2008) and of SAT and
SMT (Biere et al., 2009; Barrett et al., 2009) and describe a simple and novel approach
for (concept subsumption and) axiom pinpointing in E£1 and, hence, in its sub-logics
EL and ELH. We generate polynomial-size Horn propositional formulas representing
part or all the deduction steps performed by the classification algorithms proposed by
Baader et al. (2006b, 2007), and we manipulate them by exploiting the functionalities
of modern SAT/SMT solvers, like: Boolean Constraint Propagation (BCP) (Moskewicz
et al., 2001), two-watched literals (Moskewicz et al., 2001), conflict analysis under assump-
tions (Moskewicz et al., 2001; Eén & Sorensson, 2004), All-SMT (Lahiri et al., 2006), and
theory propagation (e.g., Sebastiani, 2007b). In particular, we show that from an on-
tology 7 it is possible to generate in polynomial time Horn propositional formulas ¢%,
and some restricted versions: ¢, ¢5'¢ and ¢“T”po such that for every pair of primitive
concepts C;, D;:

(i) concept subsumption is performed by one run of BCP on ¢ or ¢

(ii) one non-minimal set of axioms (nMinA) responsible for the derivation of C; T D;

is computed by one run of BCP and conflict analysis on ¢3¢ or ¢%!/ ngi}”po ;

(iii) one minimal such set (MinA) is computed by iterating process (ii) on ¢!/ qﬁ%flpo

an amount of times up-to-linear in the size of the first nMinA found;

(iv) the same task of (iii) can also be computed by iteratively applying process (ii) on
an up-to-linear sequence of increasingly-smaller formulas ¢7'¢,05,...,03";

(v) all MinAs can be enumerated by means of AIl-SMT techniques on ¢2!/ qﬁ“Tlfpo), using
step (iii) as a subroutine.

It is worth noticing that (i) and (ii) are instantaneous even with huge formulas, and that
(v) requires building a polynomial-size formula ¢3!/ (b%-” o) in contrast to the exponential-
size formula required by the Baader et al.’s (2007) all- MlnAs process.

We have implemented a tool called ELT2SAT and performed an empirical evaluation
on the available ontologies, whose results confirmed the potential of our novel approach

(see also Sebastiani & Vescovi, 2009b). On these bases we refine our general approach

Motivations, Goals and Proposed Solution 179

to the all-MinAs problem developing and implementing in the framework of our All-
SMT procedure: a novel, fully SAT-based (so-called) Cone-of-influence Modularization
technique relying on the two-watched literals schem Moskewicz et al., 2001) in order
to reduce the search space during the all-MinAs enumeration, and a SMT-like theory
propagation technique (e.g., Sebastiani, 2007b) which helps to early-discover MinAs during
the enumeration. Then we further enhance our approach by exploiting ELT2SAT in a
“three-phases” combined approach which yields to outstanding practical results. The idea
is:

(vi) to perform the cone-of-influence module extraction in a fully SAT-based manner
from ¢3!/ ng“Tlépo), preserving axiom pinpointing in the query C; C D;;

(vii) to use step (vi) in order to extract a module M specific for C; C D; and then to
perform step (v) on the freshly-encoded (and orders-of-magnitude-smaller) formula

(poy 10 Order to compute all the MinAs for C; C D;.

Content.

This has been said, the rest of this chapter is structured as follows. In Section 7.3 we
present the main previous approach to classification, modularization and axiom pinpoint-
ing in the logic ££", on which we built our novel approach. In Section 7.4 we present our
SAT-based procedures for concept subsumption and axiom pinpointing (both for extract-
ing one or for enumerating all the MinAs), and we discuss our technique in comparison
with the one presented in Section 7.3. In Section 7.5 we have a preliminary empirical
evaluation of this novel approach implemented in the ELT2SAT tool. These first sections
can be seen as the preliminary presentation of our method.

In the second part we significantly push the envelope of our approach. In Section 7.6
we introduce the above mentioned optimization techniques (i.e. modularization, theory
propagation and combined approach) which strongly speed up the search of the MinAs
in our approach In Section 7.7 we extensively evaluate our approach and the single im-
plemented optimization techniques by mean of exhaustive debugging queries on the real-
world benchmark ontologies mentioned in Section 7.1. In our empirical evaluation we
also compare with the other £L£*-specific state-of-the-art tool CEL (Baader et al., 2006a;
Suntisrivaraporn, 2009). (For the sake of readability we move the less prominent part of
the empirical results in appendix of the chapter, Section 7.10.) Finally, in Section 7.8 we
summarize the main innovative contributions and we outline directions for future research
on this topic. Section 7.9, in appendix, contains the proofs of all the theoretical results
presented along the chapter.

The preliminary part of this reasearch, including the basic encoding and technique
for concept subsumption and axiom pinpointing and the preliminary evaluation, have
been published by (Sebastiani & Vescovi, 2009b). A complete work presenting the overall
method, including modularization, the combined approach, all the other optimizations and
the extensive empirical evaluation is currently under submission to a journal (Sebastiani
& Vescovi, 2011).

180 Ezhaustively Debugging ELY TBoxes via Horn-SAT and All-SMT

7.3 Classification and Axiom Pinpointing in ££" so far

In this section we overview the main notions concerning concept subsumption, classifi-
cation, and axiom pinpointing in EL* (Section 3.5.1), by exposing the main previous
ELT-specific approach from the literature. We build our method on this previous work,
thus the content of this section is fundamental for the best comprehension of the rest of
this chapter and of our novel approach. In our approach we inherit part of the notions
exposed in the following, while later in this chapter we will compare our method with this
previous approach by pointing out the main differences and innovations.

7.3.1 A Normal Form for ££F

In EL7T it is convenient to establish and work with a normal form of the input problem,
which helps to make explanations, proofs, reasoning rules and algorithms simpler and more
general. Usually the following normal form for the ££7 TBoxes is considered (Baader
et al., 2005, 2006b; Baader & Penaloza, 2007; Baader et al., 2007):

(CyMN...nCy) T D E>1 (7.1)
CC3rD (7.2)

Ir.CC D (7.3)
rio---or, Cs n>1 (7.4)

such that C,...,Cy, D € PCr and 71,...,7m,8 € NgZ. A TBox T can be turned into
a normalized TBox 7" that is a conservative extension of 7 (Baader et al., 2005), by
introducing new concept names. In a nutshell, normalization consists in rewriting axioms
in the foorm C C C; M ...M¢C, into C C ¢4, ..., C' C (), and in substituting, when
needed, instances of complex concepts of the forms Jdr.C' and C; M ... M C} with fresh
concept names (namely, C' and C”), adding the axioms C' C 3r.C' [resp. Ir.C' C C'] and
C"CCy,...,C" C Cy [resp. (C1M...MCy) E C"] for every complex concept substituted
in the right [resp. left] part of an axiom. The normal TBox 7" resulting from this process
is composed of two kinds of axioms:

— some top-level axioms representing the original axioms of 7 (with complex sub-
concepts substituted by the fresh concept names);

— some definition axioms representing the labeling of complex sub-concepts with the
newly introduced concept names.

If a complex concept appears on the same side (left or right) of different axioms only one
definition axiom is necessary.

Normalization can be performed in linear time wrt. the size of 7, and the size of 7’
is linear wrt. that of 7 (Baader et al., 2005). We call normal concept of a normal TBox
7' every non-conjunctive concept description occurring in the concept inclusions of 77;
we call NC- the set of all the normal concepts of 7”. (Le., the set NC- consists in all the
concepts of the form C or Ir.C, with C € PCz and r € NRT/.)

Classification and Aziom Pinpointing in EL' so far 181

Example 7.3.1. The following set of axioms, that we call Ok, is adapted from a frag-
ment of the ontology NOT-GALEN, and represents some facts and relationships concerning
the concept Milk:

BodyFluid T Fluid my

Liquid £ Fluid ma

BodyFluid = BodySubstance M JhasPhysicalState.liquidState ms
BodySubstance = Substance un
Milk C BodySubstance ms

Milk © JhasPhysicalState.liquidState me

Milk = JisActedOnSpecificallyBy.(Secretion M JisFunctionOf .Breast) m
SecretedSubstance = Substance M JisActedOnBy.Secretion mg
Liquid = Substance M JhasPhysicalState.liquidState My

liquidState = PhysicalState M JhasState.liquid mi
isActedOnSpecificallyBy C,. isActedOnBy miy

We consider the normalization of axioms mg and my;. Since mgs is an equivalence, it is
split into a couple of inclusion axioms:

BodyFluid = BodySubstance ' JhasPhysicalState.liquidState M3q
BodySubstance M JhasPhysicalState.liquidState T BodyFluid M3p.

Then we split ms, into two distinct axioms and introduce a primitive concept N labeling
JhasPhysicalState.liquidState. The resulting normalization is:

BodyFluid C BodySubstance
BodyFluid T N
N C dhasPhysicalState.liquidState
BodySubstance M N C BodyFluid
JhasPhysicalState.liquidState C N.

The first, second and fourth axioms are top-level ones, whilst the third and fifth are
definitions of N. The normalization of my, instead, requires the introduction of another
fresh concept name M labeling (Secretion M JisFunctionOf .Breast). Then, the definition of
M is split in two axioms:

Milk C disActedOnSpecificallyBy.M
M C Secretion
M C HisFunctionOf .Breast.

182 Ezhaustively Debugging ELY TBoxes via Horn-SAT and All-SMT

Subsumption assertions (... € A) TBox’s axioms (... € 7) || ... added to A
XCO,XCOy, ..., XCC k>1 cin---nc, = D XCD
XCC C C 3dr.D XC3arD
XC3rE ECC 3CCD XCD

X C3r.D rC s X C ds.D
XC3dm.Ey, ..., E, 1 C3r,.D n>2 rHo---or, Cs X CEds.D

Table 7.1: Completion rules of the concept subsumption algorithm for ££7. A rule reads as
follows: if the assertions/axioms in the left column belong to A, the GCI/RI of the central
column belongs to 7, and the assertion of the right column is not already in A, then the
assertion of the right column is added to A.

7.3.2 Concept Subsumption in ££*.

Given a normalized TBox 7 over the set of primitive concepts PCy and the set of
primitive roles Ng”, the subsumption algorithm for L% proposed by Baader et al.
(2007) generates and extends a set A of assertions through the completion rules de-
fined in Table 7.1. By “assertion” we mean every known or deduced subsumption rela-
tion between normal concepts of the TBox 7. The algorithm starts with the initial set
A={a; €T |a;isa GCI} U {CCC, CCT|C e€PCz} and extends A using the rules
of Table 7.1, until no more assertions can be added. (Notice that a rule is applied only
if it extends A.) We call propositional completion rules the first two completion rules in
Table 7.1, and non-propositional completion rules the other three rules.

Example 7.3.2. We report all the subsumption relations that can be inferred in Opeq

(Example 3.5.1) from its original axioms. Once Opeq is turned into normal form its full
classification Agp,,, is the following:

Appendix C BodyPart a) Appendix C JpartOf.Intestine ay
Endocardium C Tissue al Endocardium C 3partOf.HeartValve ay
Pericardium C Tissue al Pericardium C JcontainedIn.Heart ay
Appendicitis C Inflammation ay Appendicitis C JhasLoc.Appendix ay
Endocarditis C Inflammation af Endocarditis C JhasLoc.Endocardium af
Pericarditis C Inflammation ag Pericarditis C JhasLoc.Pericardium ag
Inflammation C Disease ay Inflammation C JactsOn. Tissue a?
Disease LI New C HeartDisease a'8 JhasLoc.Heart C New ag
HeartDisease C JhasState.NeedsTreat. ag
Appendicitis C Disease b1 r1(ay,al) Appendicitis C JactsOn.Tissue by ra2(al,ay)
Endocarditis C Disease bs ri1(al,ak) Endocarditis = JactsOn.Tissue by ro(ak,a?)
Pericarditis C Disease bs r1(ag,al) Pericarditis C JactsOn.Tissue bs r2(ag,ay
Pericarditis C JhasLoc.Heart b7 rs(agy,ay,ai1) Pericarditis C New bs r3(b7,a0)
Pericarditis C HeartDisease by 71(bs,bs,af) Pericarditis C JhasState.NeedsTreat. big 72(bo, ag)
In particular, the first seventeen GClIs (a},af, . .., ag, ag, ag in the first nine rows) plus the

two Rls alod:efpartOf o partOf C partOf and aq; % hasLocation o containedIn C hasLocation
compose the normalization of Opeq. We labeled o) (and a!) the normal-form top-level
axiom(s) resulting from the normalization of the original axiom a; (see Example 3.5.1),

Classification and Aziom Pinpointing in EL' so far 183

while we labeled ag the new definition axiom introduced in order to normalize ag. Next we
labeled b; every other subsumption relation (assertion) inferred through the classification
algorithm above exposed, with j = 1,2,...10 following the inference order of the algo-
rithm. In particular, for each new assertion inferred we show the index of the completion
rule of Table 7.1 applied (r; for the first rule, r5 for the second, and so on and so forth) and
the label of its necessary premises in between parenthesis. For instance, the new assertion
be is inferred applying a ternary instance of the first completion rule of Table 7.1, where
the premises of the rule are the other assertions bs, bs and the axiom aj. Finally, notice
that three premises are necessary in order to infer bg via the third completion rule r3, but
the second assertion is the trivial inclusion Heart C Heart. &

Baader et al. (2005) proved the soundness and the completeness of the algorithm
together with the fact that the algorithm terminates after polynomially-many rule appli-
cations, each of which can be performed in polynomial time. Intuitively, since the number
of concept and role names is linear in the size of the input TBox, the algorithm cannot
add to A more than the cardinality of PC x PCy x Ni” assertions. Thus, since no rule
removes assertions from A, the algorithm stops after at most a polynomial number of rule
applications. Moreover, every rule application can be performed in polynomial time.

Once a complete classification of the normalized TBox is computed and stored in some
ad-hoc data structure, if C, D € PCs, then C' T+ D iff the pair C, D can be retrieved
from the latter structure. The problem of computing X T+ Y s.t. X, Y & PCs can be
reduced to that of computing C' Crujccxycpy D, s.t. C and D are two new concept
names.

Axiom Pinpointing in ££7.
We recall one important definition (Baader et al., 2007).

Definition 7 (nMinA, MinA). Consider the subsumption relation C; Ty D;, with
C;,D; € PCy. If C; Cs D; for some set S C 7 of axioms, then S is called an axiom
set (nMinA) for C; © D; wrt. 7. If C; [Ls D; for every &' s.t. &’ C S, then S is called a
minimal axiom set (MinA) for C; T D; wrt. 7.

Example 7.3.3. In the ontology Omix of Example 7.3.1, a MinA for Mik C
SecretedSubstance wrt. Opik is given by the original axioms {my, ms, my, mg, my}. 2
In particular, m4 and mjs are necessary to infer Milk T Substance, while from (the
normalization of) m; and myy, it follows that Milk C JisActedOnBy.Secretion. Finally
Milk C SecretedSubstance can be inferred from the two previous premises and the defini-

tion of SecretedSubstance in mg. &

Baader et al. (2007) proposed a technique for computing all MinAs for C; 7 D; wrt.

T during the classification of 7, a pinpointing formula (namely ®“E7P4) is built, which
def

is a monotone propositional formula * on the set of variables Pr = {S(., | ax; € T} s.t.,

2This is the only MinA for this subsumption in Opmik.
3A monotone propositional formula is a propositional formula whose only connectives are A and V.

184 Ezhaustively Debugging ELY TBoxes via Horn-SAT and All-SMT

for every O C T, O is a MinA for C; T7 D; iff {s}4s,) | az; € O} is a minimal valuation
of ®%E7Pi In a nutshell, the process of building ®“E7P: works as follows. Every
axiom ax; € 7 is encoded with a propositional variable sj,,, and every deduced assertion
a; € Ais encoded into a monotone propositional formula. Consider each application of
a completion rule r during the classification of 7, and let ¢, be the conjunction of the
labels (i.e. variables and monotone formulas) of the axioms and the assertions in the
preconditions of r (respectively). If a new assertion is deduced as consequence of r, then
it is labeled with the formula ¢,. Otherwise, if the assertion in the consequence of r is
already in A and it is labeled with 1, then its label is updated with ¢* =¥ V ¢,, unless

br b= 1.

The Baader et al.’s (2007) all-MinAs algorithm consists thus in (i) building ®¢E7P:
and (ii) computing all minimal valuations of ®“57Pi. This algorithm, however, has
serious limitations in terms of complexity: first, the algorithm for generating ®¢:=7P:
requires intermediate logical checks, each of them involving the solution of an NP-complete
problem; second, the size of ®“57Pi can be exponential wrt. that of 7 (Baader et al.,
2007). More generally, Baader et al. (2007) proved also that there is no output-polynomial
algorithm for computing all MinAs (unless P=NP). (To the best of our knowledge, there
is no publicly-available implementation of the all-MinAs algorithm above.) Consequently,
Baader et al. (2007) concentrated the effort on finding polynomial algorithms for finding
one MinA at a time, proposing a linear-search minimization algorithm which allowed
for finding MinAs for FULL-GALEN efficiently. This technique was further improved by
Baader and Suntisrivaraporn (2008) by means of a binary-search minimization algorithm,
and by a novel algorithm exploiting the notion of reachability-modules, which allowed to
efficiently find MinAs for the much bigger SNOMED-CT ontology. We refer the readers
to the literature (Baader et al., 2007; Baader & Suntisrivaraporn, 2008) for a detailed
description.

Furthermore, in a recent work, Suntisrivaraporn, 2009 solved the all-MinAs problem
with a different approach based on the techniques of the Hitting Set Tree (HST), where
the universal set is the whole ontology and the set of the all MinAs is collection of the
minimal subsets to be found. In particular the hitting set tree is expanded along the
algorithm computing, at the end, all the MinAs for the given subsumption. In this
approach the optimized algorithm and the linear minimization algorithm exposed above
are used as subroutines to initialize the algorithm and to minimize the resulting sets
respectively. However, also this techniques has the major drawback of performance in
large-scale ontologies.

Therefore, the above technique has been implemented in combination with the
reachability-based module-extraction technique (Suntisrivaraporn, 2009), which drastically
reduces the search space of the HST algorithm. We briefly describe such technique in
Section 7.3.3, referring the readers to the literature (Suntisrivaraporn, 2009) for a much
more detailed explanation.

Classification and Aziom Pinpointing in EL' so far 185

7.3.3 Axiom Pinpointing with Reachability-based Modularization in ££"

Real-world (medical) LT ontologies are often huge in size (e.g., SNOMED-CT’09 has
more than 300,000 axioms). Thus, despite the low complexity of the pinpointing problem
in EL7, the handling of such ontologies is out of the reach of the pinpointing algorithms
described in previous sections.

Luckily, for a given subsumption assertion a; o C; C D; which can be derived from 7,
it is typically the case that only a minority of the axioms in 7 may have any role in any
derivation of a;. Thus, a key idea is to identify a priori a strict subset M,, of 7 which
is sufficient to perform every possible derivation of a;. (Hence M, contains every MinA
for a;.) Concretely, the idea is to exploit modularization (see Section 3.3.2) in order to
extract a subsumption (or axiom pinpointing) preserving module M, .

In particular, in order to improve the efficiency of axiom-pinpointing algorithms in
ELT described in previous sections, Baader and Suntisrivaraporn (2008) proposed the
syntactic reachability-based modularization technique (see also Suntisrivaraporn, 2009)
that has been lately extended to harder logics by Suntisrivaraporn et al. (2008).

We recall from the work of Suntisrivaraporn (2009) the basic facts about reachability-
based modularization.

Definition 8 (X-reachable symbols, axioms, reachability-based module). Given an ELT
TBox 7 and a signature > C signature(7), the set of the X-reachable symbols of T is
recursively defined as follows:

(i) every symbol z € ¥ is X-reachable;

(i) for every axiom C' T D of 7T, if all the symbols in signature(C') are S-reachable, then

A

all symbols y € signature(D) are Y-reachable.

Given the set of the Y-reachable symbols, an axiomn C C D € T is a Y-reachable aziom

of T if x is Y-reachable for every symbol z € signature(C). The X-reachability-based
module for ¥ in 7, denoted by M2 is the set of all the Y-reachable axioms of 7. <

(With a little abuse of notation, if 3 consists only of a single concept name C', then we
denote its reachability-based module by M rather then by /\/lf{e(‘}ih)

Example 7.3.4. Consider again the ontology Oneq in Example 3.5.1. The reachability-
based module for the signature Ypericardivis 18 MBS . = {as, ag, az, as, ag,as1 }. In fact,
starting from the symbol Pericarditis, axiom ag is included in the module and the symbols
Pericarditis, Inflammation, hasLocation and Pericardium are marked as Ypericarditis-r€achable.
From Pericardium and Inflammation, axioms a3 and a; are included in the module and
hence Tissue, containedln, Heart Disease, actsOn are added to the Ypericarigits-reachable
symbols. The three left-side symbols of ag (i.e. Disease, hasLocation, Heart) are now
Ypericaridits-Teachable, so that ag is also added to the module. Hence HearthDisease becomes
Ypericaridits-Teachable, so that ag is added to the module, making HasState, NeedsTreatment
Ypericaridits-Teachable. Moreover, since both containedln and haslLocation are Xpericaridits-
reachable, then also a;; is added to the module. No other axiom can then be added to

the module. 03

186 Ezhaustively Debugging ELY TBoxes via Horn-SAT and All-SMT

Example 7.3.5. Second, consider the ontology Onix (Example 7.3.1) the reachability
module ./\/l,“\ﬁ?,f(h for the single concept Milk in O is exactly the whole ontology Onik-
This fact can be quickly and trivially checked. In fact all the axioms and all the symbols
contained in Ok are Milk-reachable, starting from the axioms ms, mg and m; in which
the concept Milk is the only symbol at the left side of the inclusion, and then iteratively
reaching every other axiom. &

Intuitively, an axiom ax of 7 is included in the reachiability-based module M2 for ¥
if and only if the symbols of ¥ syntactically refer to the symbols in az, either directly or
indirectly via other axioms of 7. All the axioms which are thus “syntactically connected”
to X are included in the reachability-based module for ..

Notice that the reachability-based modularization is a purely syntactic technique, be-
cause the semantic of the axioms and of the operators involved are not considered in the
construction of the modules. Moreover, notice that this modularization techiniques is
fully indipendent from the completion rules used in the classification of 7. In the follow-
ing we will refer to this technique either calling it reachability-based modularization or
(more generically) syntactic modularization.

Property 1. Let X be a signature on the TBox T, and let C, D be arbitrary Lt concept
descriptions such that signature(C') C . Then C' =7 D if and only if C C pgach D. ©

Thus, for every subsumption relation C' £ D, the process of axiom pinpointing plus
reachability-based modularization for a; consists in:

(i) computing the reachability-based module ME",
ii) applying the axiom pinpointing algorithm to instead than to 7.
lying th ting algorithm to M*" instead than to 7

Suntisrivaraporn (2009) computes reachability-based modules through a queue-based al-
gorithm which iteratively adds axioms to the initially empty module, starting from the
given input signature. The algorithm is shown to be quadratic wrt. |7|. However, if
|IMa,| << |T]| (as it is often the case), then the modularizatin process can drastically
improve the efficiency of the pinpointing process.

7.4 Axiom Pinpointing via Horn SAT and Conflict Analysis

In this section we start presenting our novel contributions. In order not to break the flow
of the discourse, the proofs of the new results have been moved to Appendix 7.9.

7.4.1 Classification and Concept Subsumption via Horn SAT solving

We temporarily assume that 7 is the result of a normalization process, as described in
Section 7.3. (We will consider some issues related to the normalization at the end of
Section 7.4.2.) We consider first the problem of concept subsumption. We build a Horn
propositional formula ¢ representing the classification of the input ontology 7.

Axiom Pinpointing via Horn SAT and Conflict Analysis 187

Definition 9 (££2sat(a;), ¢7). Let T be an ELT TBox in normal form and let A4 be
the classification of 7. We introduce the set of propositional variables {px) | X € NC7},
that we call concept variables, s.t. each concept variable pix) is uniquely-associated to the
respective concept X. For each assertion a; € A, we define the propositional encoding of
a;, written EL£12sat(a;), as follows:

Picy] A - ADicy] — Pip] k>1 if a; is of type (7.1); (7.5)
EL2sat(a;) = P[] = P[Er.D) if a; is of type (7.2); (7.6)
PErc] — PlD] if a; is of type (7.3). (7.7)

Then we define the following CNF Horn propositional formula:

or =\ ELT2sat(a;). (7.8)

CLZ'E.A

Notice that we do not encode trivial axioms of the form C'C C' and C' C T because they
generate valid clauses pjc) — pic) and pigy — T.

Since the clauses (7.5)-(7.7) are definite Horn clauses, ¢ is a definite Horn formula.
Thus, ¢7 is satisfiable, and it is necessary to conjoin it with at least one positive and one
negative literal in order to make it unsatisfiable.

Theorem 13. Given an ELT TBox T in normal form, for every pair of concept names
C,D in PCr, C E7 D if and only if the Horn propositional formula ¢ A picy N =pip) 1s
unsatisfiable.

In practice, in order to build ¢, we initially set it to an empty set of clauses; then we
run the classification algorithm of Section 7.3: for every (non-trivial) original axiom of 7
or every deduced assertion a; of the form (7.1)-(7.3) which is added to A, we add to ¢r
the clause ELT2sat(a;).

Remark 2. Notice that, since the classification algorithm of Section 7.3 terminates after
a polynomial number of rule applications and | A| < |[PC7|?-|Ng”| (see Section 7.3.2), ¢
is worst-case polynomial in size wrt. |7| and can be generated in polynomial time. <

Once ¢7 has been generated, in order to perform concept subsumption, we exploit the
technique of CDCL SAT solving under assumptions described in Section 4.1: once ¢ is
parsed and DPLL is initialized, each subsumption query C; T+ D; corresponds to solving
¢7 under the assumption list £; < {picy), "o, }- This corresponds to one single run of
bep, whose cost depends linearly only on the clauses where the unit-propagated literals
occur. In practice, if C; E7 D; then ¢7 contains the clause pic, — pip,], so that bcp stops
as soon as p|c,] and —p(p,] are unit-propagated.

188 Ezhaustively Debugging ELY TBoxes via Horn-SAT and All-SMT

Example 7.4.1. Consider the classification Ap,_, in Example 7.3.2. * Then we have:

def

/ 1"

POnmeg — PlAppendix] — P[BodyPart] ay A P[Appendix] — P[3partOf.Intestine] ay

! 1"

A P[Endocardium] — P[Tissue] as A P[Endocardium] — P[3partOf.HeartValve] as

/ "

A PlPericardium] — P[Tissue] as A PiPericardium] — P[3containedin.Heart] as

I "

A p[Appendicitis] - p[lnflammation] ay A p[Appendicitis] - p[HhasLocationAAppendix] ay

/ 1"

A P[Endocarditis] — P[Inflammation] as A P[Endocarditis] — P[3hasLocation.Endocardium] as

/ 1"

A PPericarditis] — P[Inflammation] ag A PlPericarditis] — P[JhasLocation.Pericardium] ag

/ 1"

A Plinflammation] — P[Disease| ar A Plinflammation] — P[JactsOn.Tissue] ar
/

A P[Disease] A P[New] = P[HeartDisease] as A P[3hasLocation.Heart] — P[New] ao
A P[HeartDisease] —~ P[3hasState.NeedsTreatement] A9

A PlAppendicitis] — P[Disease] b1 A P[Appendicitis] — P[JactsOn. Tissue] b2

A P[Endocarditis] — P[Disease] b3 A PlEndocarditis] — P[JactsOn. Tissue] by

A PPericarditis] — P|[Disease] bs A PlPericarditis] — P[JactsOn.Tissue] be

A PlPericarditis] — P[JhasLocation.Heart] b7 A PlPericarditis] — P[New] bs

A PPericarditis] — P[HeartDisease] by A PlPericarditis] —” P[JhasState.NeedsTreatement] bio

The clauses in the first nine rows represent the encoding of the (normalized) axioms
of Opmed, while the clauses in the last five rows represent the encoding of the other sub-
sumption relations deduced from the axioms of O,eq. We use the same labeling of Exam-
ple 7.3.2.

For instance, performing concept subsumption on the query Pericarditis C HeartDisease
corresponds to solve ¢, ., under the assumption list {pipericarditis]; “P[HeartDisease] }» Which is
clearly unsatisfiable because clause by of ¢, is falsified by the two assumed literals.

Instead, if the query is Appendicitis C HeartDisease, this corresponds to solve ¢o__,
under the assumptions {p[Appendicit;S}, ﬂp[HeartDisease}}. This leads to the unit-propagation
n ¢Omed of Plinflammation] and P[3hasLocation.Appendix] from aﬁl and CLZ respectively, then to the
unit-propagation of pipisease] and Pigactson Tissueg] from a7 and a7 (or equivalently from b,
and by) respectively. After that, no more atom can be unit-propagated and no clause is
falsified. Thus, since ¢, , is a Horn formula, we can conclude that it is satisfiable, and
that Appendicitis C HeartDisease is not a subsumption relation deducible from Opeq. <

7.4.2 Computing single and all MinAs via Conflict Analysis

We consider the general problem of generating MinAs. We build a more-general Horn

propositional formula ¢ representing the complete classification DAG of the input nor-

malized ontology 7. ® The size of ¢ is polynomial wrt. that of 7.

Building the formula (ﬁ‘fﬂ.

In order to make the explanation much simpler, we assume wlog. that in all the axioms
of T all M’s and o’s are binary, i.e., that 1 <k <2in (7.2) and 1 <n < 2in (7.4). This

“In this section and in the following ones, with a small abuse of notation, we use the names Omed and O to
identify both the original ontology and its normalized version.
SHere “complete” means “including also the rule applications generating already-generated assertions”.

Axiom Pinpointing via Horn SAT and Conflict Analysis 189

is not restrictive, since, e.g., each GCI axiom of the form C;M...MCy CE D in 7 can be
rewritten into the set {Cl M CQ E 01;2, 01;2 [l 03 E 01:3, ceey Cl:k—l Il Ck E D}, and each RI
axiom of the form r; o---or, C s can be rewritten into the set {ry ory C ry.9,r1.007r3 C
T1:3 s T1m—1 © T, T s}, each Cy,; and 71.; being a fresh concept name and a fresh role
name respectively.

Definition 10 (¢% quT (s0) Tpo)) Let 7 be an ££ TBox in normal form and let A
be the classiﬁcatlon of T. We consider the concept variables {pix; | X € NCz}. We

introduce the set of propositional variables {s, | a; € A}, that we call assertion [resp.

d £
axiom/ selector variables. Then ¢% = DT (s0) N ¢“T”po where

— @7 (s0) is the conjunction of all the clauses:
{Stag — EL 2sat(a;) | a; € A} (7.9)
that we call assertion clauses,

— and gzﬁi}”po is the conjunction of all the clauses:
{(Sa) A Say) A S[a;) = Sjay] | @iy, ar € A, a; € T and 7(a;, av, a;,a,)} (7.10)

that we call rule clauses. With r(a;, ay,a;,a;) we mean that r is one of the com-
pletion rules of the classification algorithm of Section 7.3 and a;, ay, a;, a; are valid
instances of (respectively) the preconditions (left and central columns of Table 7.1)
and of the conclusion (right column of Table 7.1) of r. (Some require only one as-

sertion a; and one axiom a; as premises of the rule r; in these cases let sy, be T.)
&

Notice that (7.9) and (7.10) are definite Horn clauses and, hence, ¢4 is a definite Horn
formula.

Proposition 14. The size of the formula ¢3 defined in Definition 10 is worst-case poly-
nomial in the size of the TBox T .

all

The result in Theorem 13 extends straightforwardly to , as described in the follow-

ing.

Theorem 15. Given an ELY TBox T in normal form, for every S C T and for every
pair of concept names C, D in PCr, C' Cgs D if and only if the Horn propositional formula

“lépo) A /\M cs Slaz] N TSjccp) 15 unsatisfiable.

Theorem 16. Given an ELT TBox T in normal form, for every S C T and for every
pair of concept names C, D in PCr, C Es D if and only if the Horn propositional formula

AU A /\awies S[az;] N\ Plc) N\ —P[p) 45 unsatisfiable.

Corollary 17. Given an ELT TBox T in normal form, for every pair of concept names
C,D in PCr, C Tt D if and only if the Horn propositional formula ¢ A /\M 7 Slazi] N
pic) A —pipy [resp. ¢a“po) A Nz et Slazi) N 8(cCp)] is unsatisfiable.

190 Ezhaustively Debugging ELY TBoxes via Horn-SAT and All-SMT

Intuitively, “T”po) mimics the whole classification process, each rule clause representing

one rule application. Thus, if a SAT solver is fed the formula qb%fépo) A /\axi s Slaz N TS[cCD)

of Theorem 15 (or gzﬁ“” ») under the assumption list {=sjccp)} U {Spx, | axi € S}), then
all the variables s[4] s.t. a; can be deduced from S are instantly unit-propagated. If (and
only if) C' Cs D, then also sjccpj is unit-propagated, causing a conflict. Similarly, if the
formula ¢! A /\m cs Slaz;] N\ Pic) N —ppp) of Theorem 16 is fed to the SAT solver, then if
(and only 1f) C Cs D, then sccp) is unit-propagated, which causes a conflict against the
assertion clause siccp] — (pio] — pp)) in ¢% and the unit clauses pic) A —pip).-

Notice that, in general, there may be more than one way of deducing C' C D from S.
This corresponds to the fact that there may be more than one unit-propagation sequence
leading to the propagation of sjccp). (We will investigate this issue in Section 7.4.2.)

Remark 3. Theorem 16 suggest that, once the formula ¢%! is generated, it is possible
to reason in terms of every subset S of 7 by “selecting” all and only the axioms we are
interested in. This requires no new formula generation or computation on S or 7. Rather,
it is sufficient to restrict the list of the assumptions for each query on ¢! to the set of

the selector variables of the axioms of § and to the selector variable of the query. <&
Example 7.4.2. Consider the ontology Oeq in Example 3.5.1. Then gb“” = POpea(s0) I\
¢all
Omed (P
BOpea (50) of — (P[Appendix] — P[BodyPart]) A Slay] = (P[Appendix] — P[3partOf.Intestine])
A — (P[Endocardium] — P[Tissue]) A Slag] = (P[Endocardium] — P[3partOf.HeartValve])
A — (P[Pericardium] — P[Tissue]) A Slag] = (P[Pericardium] = P[3containedin.Heart])
A Slay] = (PlAppendicitis] — P[inflammation]) A Slas] = (P[Appendicitis] — P[3hasLocation.Appendix])
A Slag] = (P[Endocarditis] — P[inflammation]) A Slas] = (P[Endocarditis] — P[IhasLocation.Endocardium])
A Slag] = (P[Pericarditis] — Plinflammation]) A Slag] = (P[Pericarditis] — P[ShasLocation.Pericardium])
A S[az] = (P[inflammation] — P[Disease]) A S[az] = (P[inflammation] — P[3actsOn.Tissue])
A Slag] = (P|Disease] /\ P[New] — P[HeartDisease]) A 8[ag] — (P[3hasLocation.Heart] — P[New])
A Slag] = (P[HeartDisease] — P[ThasState.NeedsTreatement])
A 8[by] — (Plappendicitis] — P[Disease]) A S[by] — (P[Appendicitis] — P[JactsOn.Tissue])
A S[by] = (P[Endocarditis] — P[Disease]) A S[by] — (P[Endocarditis] — P[actsOn. Tissue])
A S[bs] = (P[Pericarditis) — P|Disease]) A S[bg] — (P[Pericarditis] — P[IactsOn. Tissue])
A S[by] = (P[Pericarditis] — P[3hasLocation.Heart]) A S[bg] = (P[Pericarditis] — P[New])
A S[bg] — (P[Pericarditis] — P[HeartDiscase]) A S[byo] — (P[Pericarditis] — P[ThasState.NeedsTreatement])
08 o) = Slas) A Sfar] = S[oa] A Slas) A Sfar] — S(va]
A Slas] N Slag] 7 S[bs] A Slas) "\ Slaz] 7 S[ba]
A Slag] /A Slaz] 7 S[bs) A Slag] /N Slaz] 7 S[be]
A Slag] /A Slag] N Sla1r] = S[br] A S[b7] N Slao] > Sibs]
A S[bs] N Sbs] /N Slag] 7 S[bo) A S[bo] N Slag] 7 Slbao]-

Axiom Pinpointing via Horn SAT and Conflict Analysis 191

Notice that sj,,, and sp,,] refer to the RI axioms ajg and aj; in Example 3.5.1, so that
no corresponding assertion rule occurs in ¢o, ,(so)-

Consider the formula ¢%' A Nio....11 Slai;] /\ Plpericarditis] /\ “P[HeartDisease]: L he propa-
gation of pipericarditis] aNd —1P[HeartDisease] Causes the propagation of —sp, from the last but

one clause of ¢o_ ,s0)- The propagation of Sy, Sas], Sjag), Sjay] and sp,,) causes that
of sy, 53, and hence of sp,) (from the fifth, seventh and eighth clauses of gb?gl:q ed(po))'
Thus, since also s is propagated, the nineth clause in gb‘gi‘ (p0) is falsified. Thus, we
conclude that Pericarditis Cp__, HeartDisease. It is easy to see, instead, that the formula

%fn A /\aieomed S[a;] /\ D[Appendicitis] /\ TD[HeartDisease] 15 satisfiable, from which we conclude

that Appendicitis [Zp,__, HeartDisease. &
all
Onmilk(po
tology Omix of Example 7.3.1. (On the right side we show the mapping between the
axiom /assertion selector variables included in the sample clauses and the concept inclu-
sions they represent.)

Example 7.4.3. We report some sample clauses from the formula) for the on-

¢?erlm|k(po) def . A L mo = JhasPhysState.liquidState C N
Sims] N Sima] = S[n1) A m1 = BodyFluid C Fluid n1 = Milk C Substance
S[mg] N\ S[mo] — S[na) A mgo = Liquid C Fluid n2 = Milk C N
Sims] N Sina] A Sims] = S[ns) A m3 = BodySubstance M N C BodyFluid n3 = Milk C BodyFluid
Siny] A S[nal N Simg] = S[nal A my4 = BodySubstance C Substance ng = Milk C Liquid
Sing] N Simy] — S[ns) A ms = Milk C BodySubstance ns = Milk C Fluid
S[na] N Sima] = Sins) A me = Milk C JhasPhysState.liquidState

mg = Substance M N C Liquid

We notice that, assuming all the sp,,’s, there are two dinstinct chains of unit-propagations
leading to propagate sf,;): one from {s[mo], Sima]s Sims]s S[ms]s s[mﬁ]}, propagating Sj,,], Sins]
and sp,,], and another from {spm0], Sima]s Sima]s Sfms]s Spme]> Sime] }>» PTOPAZALING S[11], Spnals Sind]
and sp,,), corresponding respectively to the deduction of ny, n3 and ns from the axioms
{mo, m1, m3, ms,me} and to that of ny, ny, ny and ns from {mg, mq, my, ms, mg, mo}.
Thus we can conclude that {mg, my, mg, ms, mg} and {mq, mo, my, ms, mg, mg} are two
nMinAs for n; £ Milk Co, Fluid. Since they are also minimal, they are also MinAs for
ns. ° O

In practice, in order to build the formula ¢%!, we run an extended version of the

classification algorithm of Section 7.3, whose pseudo-code representation is presented in
Figure 7.1, and which is based on the following main steps:

1. initially set ¢7(s0) and gb‘}lépo) to the empty set of clauses. Then for every non-trivial
GCI axiom a; € 7, add to ¢7(s) the corresponding assertion clause of type (7.9);

5Notice that if the ontology contains a chain of trivial concept inclusions of the type C T D, DC E, EC F,
etc. all the possible combinations in the application of the first completion rule of Table 7.1 in a different order
are encoded, due to the transitivity of concept inclusion. Nevertheless, the axioms selector variables involved in
such clauses (i.e. the variables of the nMinA for such deductions) are always the same. Moreover, depending on
the structure of the encoded ontology, it cannot be excluded that there no exists also a rule application leading
to the deduction of some ontology’s axioms.

192 Ezhaustively Debugging ELY TBoxes via Horn-SAT and All-SMT

ClauseSet build-¢%! (NormalizedOntology 7)
// Initialization of Q, A, ¢r(s) (JST(pO)

1. Q—@, -A—Q)’ ¢TSO @ ¢Tpo) @

2. for each primitive concept C in 7

3. add CCC and CC T to A; introduce siccc) = Sjcct] = 1

4. enqueue {C C C,C C T} into Q;

5. for each GCI or RI axiom ax in 7

6. add azx to A; introduce S[u;

7. if (az is a non-trivial GCI axiom) then

8. add the clause ([, — EL72sat(ax)) to dr(so);

9. enqueue ar into @Q; }}

// Updating A,B and () (B is the set of already-handled assertions)
10. B=0;

11. while (@ is not empty)

12. dequeue ap from @;

13. for each rule instance r(a;,ay,a;,a;) such that {a;,ay,a;}\ B = {as}
14. if ap ¢ A then

15. add a to A; introduce s,);

16. add the clause (sjq, — EL2sat(ar)) to Pr(so);

17. enqueue aj into @Q;

18. add the clause ((S[q,] A S[a,] A S[a;]) = S[ax]) tO qﬁ%ﬂpo ;

19. B=BU{ap};

20. return ¢ = DT (s0) N ¢%”po ;

Figure 7.1: Polynomial-time algorithm building the formula qﬁ“” Q@ is a queue of assertions, A
and B are sets of assertions.

2. for every newly-deduced assertion a; € A, add to ¢7(s,) the corresponding assertion
clause of type (7.9);

3. for every possible rule instantiation r(a;, a;, a;, a;) of a completion rule r of Table 7.1
(either extending A or not), add to gba” the corresponding rule clause of type (7.10).

(Notice that step 3. is novel wrt. the classification algorithm of Section 7.3 when applied
to already-generated assertions in A.) We perform step 2. and 3. in a queue-based
manner, which ensures that every possible distinct (i.e. with different antecedents) rule
application is applied only once. This is achieved with the following strategy: initially all
GCI axioms are added to a queue @) and all axioms are included in A. At each iteration
one assertion ay, is dequeued, and steps 2. and/or 3. are applied to all and only the rule
applications whose antecedents are exactly a; and one or two of the previously-dequeued
axioms/assertions as, ...,as_1. The novel assertions a; which are deduced by the rule
applications in step 2 are enqueued into () and added to A. This process ends when () is
empty.

Axiom Pinpointing via Horn SAT and Conflict Analysis 193

The algorithm exposed above requires a polynomial amount of steps wrt. the size
of 7. In fact, it avoids to repeat the same rule application (i.e. with exactly the same
antecedents and consequence) more than once, and each rule application leads to the
introduction of one or two clauses. Therefore the algorithm requires linear time wrt. the

size of ¢ that, in Proposition 14, has been proved to be at most polynomial in the size

of T.

Computing one MinA.

Once ¢! is generated, in order to compute one MinA, we can exploit the technique
of CDCL SAT solving under assumptions, adopting the Decision Scheme, described in

Section 4.1. Given the set of the axiom selector variables Py = {5[az;) | ax; € T}, after

@l is parsed and DPLL is initialized, each query C; C1 D; corresponds to solving ¢% under

the assumption list £; = Pr U {picg, 7P, }- This corresponds to a single run of bep and
one run of analyze conflict, whose cost depends linearly only on the clauses where the
unit-propagated literals occur. If bcp does not return conflict, then sat is returned without
even performing conflict analysis. If bcp returns conflict, as explained in Section 4.1, then
analyze_conflict produces a conflict clause 5o < PV eV Va,ers 7S st T7
is an nMinA for C; C7 D;. In fact, since ¢ is a definite Horn formula, the presence of
both pic,; and —p(p,] in L; is necessary for causing the conflict, so that, due to the Decision
Scheme, the conflict set necessarily contains both of them. (Intuitively, analyze conflict
implicitly spans upward the classification sub-DAG rooted in C; E+ D; and having 7 as
leaf nodes, which contains all and only the nodes of the assertions which have been used
to generate C; Cr D;.)

In the general case 7* is not necessarily minimal. In order to minimize it, we can
apply the SAT-based variant of the linear minimization algorithm of Baader et al. (2007)
in Figure 7.2. (We assume that ¢% has been parsed and DPLL has been initialized,
and that ¢%! has been solved under the assumption list £; above, producing the conflict
clause wgi’Di and hence the nMinA 7*; then lin-extract-MinAppr; (C;, D;, T, gzﬁ“T”) is
invoked.) In a nutshell, the algorithm of Figure 7.2 tries to remove one-by-one the axioms
ajs in 7*, each time checking whether the reduced set of axioms S\ {a;} is still such that
C; Es\{a;} Di- As before, each call to DPLLUnderAssumptions requires only one run of
bep.

The correctness of this algorithm is a straightforward consequence of Theorem 16, and
is stated in the next corollary.

Corollary 18. Given an ELT TBox T in normal form and the Horn propositional formula
al for every pair of concept names C, D in PCr, and every aziom set T* (nMinA) for
C C1 D, the algorithm lin-extract-MinAppr (C, D, T*, ¢3) of Figure 7.2 computes a

minimal aziom set S C T* such that C Cg D (S is a MinA for C T D wrt. T).

This schema can be further improved as follows: if DPLLUnderAssumptions performs
also conflict analysis and returns (the conflict clause corresponding to) an nMinA &’ s.t.
S C S\ {a;}, then S is assigned to &’ and all axioms in (S \ {a;}) \ &’ will not be

194 Ezhaustively Debugging ELY TBoxes via Horn-SAT and All-SMT

AxiomSet lin-extract-MinApprr (Concept C;, D;, AxiomSet 7%, formula qﬁaT”)

1. S =7T%

2. for each axiom ax; in T

3. L= {S[axi] | az; €S\ {a$j}} U {p[C«;]? _‘p[Di]};
4. if (DPLLUnderAssumptions(¢%!,£) == unsat)
5. S = S\ {az;};

6. return S;

Figure 7.2: SAT-based variant of the linear MinA-extracting algorithm of Baader et al. (2007).

selected in next loops. As an alternative choice, one can implement instead (a SAT-based
version of) the binary-search variant of the minimization algorithm (see, e.g., Baader &
Suntisrivaraporn, 2008).

It is important to notice that the formula ¢! is never updated: in order to check
Ci Es\{a;} Di, it suffices to drop sj,,) from the assumption list. The latter fact makes
(the encoding of) the axiom a; useless for bep to falsify the clauses encoding C; Cr D;,
so that DPLLUnderAssumptions returns unsat if and only if a different falsifying chain of
unit-propagations can be found, corresponding to a different sequence of rule applications
again generating C; 7 D;. Notice that this fact is made possible by the definition of
the encoding, which allows for including all the alternative sequences of rule applications
generating the same assertions (i.e. the clauses added at step 3. of the algorithm for some
assertion already in A).

We also notice that one straightforward variant to this technique, which is feasible
since typically |7*| < |7, is to compute another formula ¢% from scratch and to feed it
to the algorithm of Figure 7.2 instead of ¢2.

One very important remark is in order. During pinpointing the only clause of type
(7.9) in ¢4 which is involved in the conflict analysis process is sic,cp,) — (Pjci] — P[pi)s
which reduces to the unit clause —sic,cp,) after the unit-propagation of the assumption
literals pic,), =pip,)- Thus, one may want to decouple pinpointing from subsumption and
use the formula of Theorem 15 instead. Thus each query C; T+ D; corresponds to

solving ¢“” under the assumption list £; = Py U {=s[c,cpy}, so that the algorithm for

pinpointing 1s changed only in the fact that gzﬁ‘}”po and {—sic;cp, } are used instead of ¢3!

and {pjc,], —pp,} respectively. Thus, wlog. in the remaining part of this section we will

reason using gzﬁaT”po) and {=sic,cp,}. (The same results, however, can be obtained using

o3 and {p(c,), —pip,)} instead.)

This has been sald, in Figure 7.3 we propose the pseudo-code of the algorithm which,
given: the subformula gb“Tlfpo), the set of the axiom selector variables Ps and the query
selector variable sic,cp,], computes (the set of the axiom selector variables Ps- represent-
ing) one MinA S* for C C D wrt. S. The algorithm includes a fully boolean version of the
minimization algorithm of Figure 7.2. The following result is a strightforwad consequence

of Theorem 15 and Corollary 18.

Axiom Pinpointing via Horn SAT and Conflict Analysis 195

MinA-SelVars compute-one-MinA(formula d)%!épo), assumptions Ps, query {-sic,cp,})

1. if (DPLLUnderAssumptions(gbaTlépo), Ps U{=sic,cp,)}) == unsat)
2. set Ps+ from the conflict analysis;

3. for each axiom selector variable s, in Ps-

4. L =Ps \{S[az,]};

5. if (DPLLUnderAssumptions(qb%fépo), L) == unsat)

6. Ps«=L; // or set Pgs- from the conflict analysis
7. return Ps« \ {=sc,cp,}s

8. else

9. return 0;

Figure 7.3: SAT-based extraction of one MinA wrt. the given query.

Corollary 19. Given an ELY TBox T in normal form, the Horn propositional formula

%lépo), and a set of axiom selector variables Ps C Pr from gb#é) for every pair of

po
concept names C, D in PCr, the algorithm compute—one—MinA(cﬁ%fépo),775, {=siceoP) of

Figure 7.3 computes one set of axiom selector variables Pg« such that:
— either C Zs D and Ps« = 0,

— orCCs D, Ps« # 0 and 8* C S is a minimal aziom set such that C Cg« D
(S* is a MinA for C T D wrt. S).

We remark that, thanks to the result proved in Theorem 15, the algorithm of Figure 7.3
is able to compute one MinA wrt. to S (if existing), whichever subset S of 7 is chosen,
as stated in Corollary 19.

Computing all MinAs.

We describe a way of generating all MinAs for C; T D; from ¢“Tlépo) and {=sic,cp,}- In

a nutshell, the idea is to assume {=si¢,cp,} and to enumerate all possible minimal truth

assignments on the axiom selector variables in Py = {5az;) | ax; € T} which cause the
inconsistency of the formula anTlépo). This can be implemented by means of a variant of the
All-SMT technique of Lahiri et al. (2006). A naive version of this technique is described
as follows.

We consider a propositional CNF formula ¢ on the set of axiom selector variables
in Pz ¢ is initially set to T. One top-level instance of DPLL (namely DPLL1) is used to
enumerate a complete set of truth assignments {1 }x on the axiom selector variables in Pr
which satisfy ¢. Every time that a novel assignment py, is generated, p, and {—sic,cp,}
are passed to an ad-hoc “7-solver” checking whether it causes the inconsistency of the
formula ¢%f€po) (i.e. it represents an nMinA for C; Cy D;). If this is the case, then the

T-solver returns a minimal subset Prx = {Sas;] | ax; € 7"} of pg and Pr, s.t. 7" is a

. . . . 4 dof . .
MinA, which caused such inconsistency. The clause ¢} = \/azj €T TSlaa)] (ie. =Pr) is

196 Ezhaustively Debugging ELY TBoxes via Horn-SAT and All-SMT

MinA-Set compute-all-MinAs (encoding qﬁ%fépo), assumptions Pr, query {-sic,cp,})

1. p=T7T;

2. while (DPLL1(yp, Pr, ui) == sat)

3. Pr: = T—solver(gﬁ%—lém), trs {=sjc,epg) s
4. if (Pr» == 0

5. blevel = DPLL1 analyze conflict(y, ug);
6. if (blevel == 0) return;

7. Q=@ N

8. DPLL1 backtrack(blevel, ¢, ui);

9. else

10. output 7;*;

11. ¢ =eNPrx;

12. DPLL1 backtrack(0, ¢, 777’:);

Figure 7.4: all-SMT-based algorithm generating “all MinAs” wrt. the given query (7 -solver
is compute-one-MinA from Figure 7.3).

then added to ¢ as a blocking clause and it is used as a conflict clause for driving next
backjumping step. Otherwise, the 7-solver returns an empty set and DPLL1 can use —fi
as a “fake” conflict clause, which is added to ¢ as a blocking clause and is used as a conflict
clause for driving next backjumping step. The whole process terminates when backtrack
back-jumps to blevel zero. The set of all MinAs {7,*}, are returned as output.

Notice that, since ¢ is initially set to T, the first enumerated truth assignment p; can
be any of the exponentially many possible. Setting to positive the preferential polarity for
the new assigned variables in DPLL1 ensures that the first generated assignments contain
a larger number of enabled (i.e. set to true) selector variables, so that it is more likely
that they include new nMinAs. In this case, the first assignment 4 {S[in] ax; € Pr}
(i.e. all the axiom selector variables set to true) and it always lead to the discovery of
the first MinA for every existent subsumption relation in 7', so that at-least one MinA is

always found in polynomial time including the time spent for building qb‘}[lépo).

Concretely, the 7-solver is the procedure compute-one-MinA described in Figure 7.3,
which include a second instance of DPLL (under assumptions), namely DPLL2.In the 7-
solver, we assume that ¢%§épo) is parsed and that DPLL2 is initialized only once, before
the whole process starts. The pseudocode of the whole procedure is given in Figure 7.4.
DPLL1 is assumed to run given the propositional formula ¢ and the set of propositional
variables over which it is defined. It eventually returns (in the satisfiable case) a truth
assignment fi.

Here we show that this naive procedure returns all the MinAs for any given query
Ci Er D;.

Proposition 20. Given the <;§“Tl€po) encoding for an ELY TBox T in normal form, the set

of the selector variables Pt relative to the axioms of T and the selector variable sjccp

Axiom Pinpointing via Horn SAT and Conflict Analysis 197

from the existing subsumption C =4 D, the procedure described above and summarized in
the pseudocode of Figure 7.4 produces all the MinAs for the subsumption C' C7 D.

Proof. The procedure enumerates truth assignments on the variables in Pz and checks
whether they cause together with {—sic,cp,} the inconsistency of the formula ¢"Tlépo) by
bep only. The search ends when all possible such assignments violate some conflict clause
added to ¢ from the 7-solver (either an actual conflict clause or a “fake” one), that is,
when we have /\h(\/axjefg —Slaz;)) A Np(71e) | L, 7 where ¢ is set to T. This means
that every total assignment n on the variables in Pz violates some clause in the latter
formula, in particular: if n is s.t. the formula n A qb“” is satisfiable, then 7 violates
one of the clauses of the form —u;, otherwise n Vlolates one of the clauses of the form
\/am €T "Slaz)- Let S be a set of axioms, and let ng = Nazies Stz N Naze(m\s) "Slaza)-

If C'Es D, then =sjccp) Ans A gb%”po) is unsatisfiable by Theorem 15. Thus, ns violates
some clause \/ax 7+ TSfaz;]s AS stated above, that is, S O T} for some MinA T7. Thus,
this procedure returns all MinAs for C Cr D. Il

Example 7.4.4. Let us, for example, find all the MinAs for the (existing) subsump-
tion Milk Cp_, Fluid in the ontology Omik (Example 7.3.1). Hence, we run the above

exposed procedure sumarized in Figure 7.4 on the formula gb“lfn and wrt. the query

S[MilkCFluid] - 8 The top-level DPLL1 enumerates all the truth as&gn?nents on the variables
Pows = {8pmg | mi € Ominc}, satisfying the formula ¢ initially set to T. The first
produced truth assignment is p1 = Po,,, = {Spn] | Mi € Omik}: running 7-solver
on qb“” (o) and the input assumptions p1 U {—Smikcruia} leads to the identification
of the first MinA, e.g., Omii = {mq, ma, my, ms, mg, mg}. ® Thus the blocking clause

5 (D8] VS fma] VS fmal VS (ma) V 8 fme) V 7S (me)) 18 added to ¢, which becomes ¢ = 7.
Next, a second truth assignment ps is generated by DPLL1; uo must not be conflicting with

©, so contain the negative occurence of at-least one of the selector variables representing

the axioms in Omij. Suppose wlog. 12 = Po_ . \ {5pms}- (b%limk (po) /N 2 A {—smilkcFuia }

is satisfiable, so 7-solver returns the empty set and —uy is used by DPLL1 as a fake
blocking clause, driving the backjumping. * Then DPLL1 generates a third assignment ji3
which is not conflicting both with ¢} and with —us. Now suppose pi3 = Po,,. \ {5ima}-
In this case 7-solver returns the set of selector variables Po, ,,: referring to the new
MinA Oy = {mg, m1, m3, ms,me}, so that ¢ becomes ¢ = ¥ A =y A ¥, where

5 def

5 = (TS[mo] V 7Sima] V T8[ma] V TS[ms] V TS[me]), and so on and so forth until termination,

"In general, an SMT solver which is run on a 7-unsatisfiable formula ¢ stops when @ A Ax e = L, s.t. the
nks are the 7-conflict sets returned by the 7-solver and “=” is purely-propositional entailment.
8Here we only simulate the execution of the procedure without showing the encoding ¢Om.|k(po)’
clauses can be found in Example 7.4.3. Our purpose, in fact, is only to show the steps of the procedure in a
concrete case.
9With mo we represent all the new definition axioms introduced during the normalization of the ontology,
which label complex sub-concepts with fresh concept names (see Section 7.3.1 and Section 7.4.2).

whose significant

In fact ms ' Milk C BodySubstance is a key axiom included in any MinA for Milk Co,u Fluid. To be a
BodySubstance is necessary both in order to be a BodyFluid (m3) and in order to be (a Substance first and then)

a Liquid (m4 and ma).

198 Ezhaustively Debugging ELY TBoxes via Horn-SAT and All-SMT

when all the possible assignments have been enumerated by DPLL1 (no other MinA for
Milk Eom”k Fluid than Omilki and Omilk; are contained in Omilk)- &

One problem of the naive procedure above is that adding to ¢ a “fake” blocking clause
(namely —nj) each time a new satisfying truth assignment 7 is found may cause an
exponential blowup of ¢. As shown by Lahiri et al. (2006), this problem can be overcome
by exploiting conflict analysis techniques. Each time a model 7, is found, it is possible to
consider) as a conflicting clause to feed to analyze_conflict and to perform conflict-
driven backjumping as if the blocking clause —; belonged to the clause set; importantly,
it is not necessary to add permanently the conflicting clause —, to ¢ as a blocking clause,
and it is sufficient to keep the conflict clause resulting from conflict analysis only as long
as it is active.

Lahiri et al. (2006) proved that this technique terminates and allows for enumerating
all models. (Notice that the generation of blocking clauses v} representing MinAs is not
affected, since in this case we add ¢} to ¢ as blocking clause.) We refer the reader to
Section 4.2.4) for more details.

One remark is in order. The reason why we use two different instances of DPLL is
that we must distinguish unit-propagations of negated axiom selector variables —sq,]
on learned clauses from those performed on the clauses in ¢§5lpo : on the one hand, we
want to allow the former ones because they prevent exploring the same assignments more
than once; on the other hand, we want to avoid the latter ones (or to perform them in a
controlled way, as explained in Section 7.6.3 for the theory propagation variant) because
they may prevent generating some counter-model of interest.

Computing one MinA using a much smaller formula.

Although polynomial, ¢!/ qﬁ“Tlépo) may be huge for very-big ontologies 7 like SNOMED-
CT. For these situations, we propose here a variant of the one-MinA procedure (which
is an improved SAT-based version of the simplified one-MinA algorithm of Baader et al.,

2007) using the much smaller formula ¢ [resp. T o)].

Definition 11. Let 7 be an ££" ontology in normal form and let A be the classification
of T. ¢3¢ is a CNF Horn propositional formula on:

— the variables {p;x] | X € NC7}, that we call concept variables,

— the variables {s[,,) | a; € A}, that we call selector variables,
and defined as ¢5"° = d7(s0) A qﬁOTn(;O), where

— @7(s0) is the one defined in Definition 10;

— and ¢}, is one (of the possibly many) sub-formula of (b“” (see Definition 10)
deﬁned as the conjunction of the rule clauses:

{(8ai A Say) A S[a;]) = Siay] | ai,ap,a € A, a; € T and r(a;, ay, a;,a;) € R*Y7.11)

Axiom Pinpointing via Horn SAT and Conflict Analysis 199

where R* is one set including all and only the completion-rule applications involved
in one of the possibly many consistent (i.e. able to deduce once —and only once—
starting from the axioms of 7 each of the assertions in .A) execution of the classifi-
cation algorithm for 7. <&

Thus, informally, ¢3¢ [resp. ¢, is defined like ¢3 [resp. ¢5Y,,] with the difference

that ezactly only one rule clause of type (7.10) is included in the formula for every assertion

a € A.

Remark 4. Notice that, while ¢% [resp. gb%”po)] is unique (once established the set of
completion rules from which it depends), ¢3¢ [resp. gb?‘;o)] is not an uniquely defined
formula because many distinct instances of ¢ [resp. gb?epo] can be defined for the
same set of completion rules. In fact it can be defined different instances of ¢3¢ [resp.

(o)) for different orders in the application of the completion rules leading to a complete
classification A of 7. O

However, still, this ensures that every existing subsumption relation C; C D; is
represented by at-least one MinA in ¢%"¢ [resp. gbOT”;O)] In fact, intuitively, it is possible
to imagine the assertions of A like nodes of a connected direct graph, where an edge is
placed in between every precondition and the relative consequence in a completion rule
application (or in a ¢%"¢ clause). This guarantees that it is possible to reach (i.e. to infer)
every assertion a of A starting from the axioms of 7.

In particular ¢4 is sufficient to compute one non-minimal axiom set 7* by one run
of bcp and analyze _conflict, as seen before. Since ¢5'¢ does not represent all deduc-
tions of C; C7 D;, we cannot use the algorithm in Figure 7.2 to minimize it. However,

since typically 7* < 7, one can cheaply compute ¢%%° and run a variant of the algo-

rithm in Figure 7.2 in which at each loop a novel formula ¢f9?<?{ai} is computed and fed to
DPLLUnderAssumptions together with the updated £. One further variant is to compute
instead qﬁ“”) and feed it to the algorithm in Figure 7.2.

The following result is formally proved in Appendix 7.9.

Corollary 21. Given an ELT TBox T in normal form, for every pair of concept names

Ci, D; in PCr, the following facts hold:
(i) for every S C T, if 67°° N N\, cs Slai) A Pici) N —Pipy) 18 unsatisfiable then C; Cs D

(i1) if C; T D; then there exists at least one (possibly proper) subset S C T such that
O N Na,es Slai) NPl AN —P(p;) is unsatisfiable.

oe [resp. (bg’?;o] can be computed like ¢% [resp. ¢%£lp0] in the last part of Sec-
tion 7.4.2, except that step 3. is never executed alone but always and only when also
step 2. does. This has been said, it is more convenient to run a modified version of the
classification algorithm of Section 7.3 as done in generating ¢+, so that only one deduction
for each assertion is computed (including the respective rule clause (7.10)), than to run
our algorithm for ¢3¢

200 Ezhaustively Debugging ELY TBoxes via Horn-SAT and All-SMT

Handling normalization.

The normalized TBox 7 = {azxy,...,axy} can result from normalizing the non-normal
one T = {dxy, ..., dx} by means of the process hinted in Section 7.3; | 7| is O(|7|). Each
original axiom aZ; is converted into a set of normalized axioms {ax;i, ..., az;y, }, and each
normalized axiom az; can be reused (in the case of a definition axiom) in the conversion
of several original axioms @x;i, ..., @xj,,. In order to handle non-normal TBoxes T, one
variant of the technique of Baader et al. (2007) can be adopted: for every az;, we add
to gb‘}lépo) resp. ¢ | the set of clauses {saz,] = Sfazss]> -+ S[ai] — Slazsn,]}> a0d then we

use Ps o {S{da)s -+ Slazy); @s the novel set of axiom selector variables for the one-MinA
and all-MinAs algorithms described above. Thus analyze _conflict finds conflict clauses
in terms of variables in P; rather than in Pr. (In practice, we treat normalization
as the application of a novel kind of completion rules.) Since Ps is typically smaller
than Pr, this may cause a significant reduction in the search space that the DPLL1 must
explore during the all-MinAs procedure of Figure 7.4. (Notice that when one ax; is
shared by ax;1, ..., 4 jm,;, the clause set {sg;,] — S[a;], - Sldzsm,) — Sla;)} 18 equivalent to
(S[aAzjl] V..V S[a”xjm.]) — S[Gj].)

Alternatively, the more compact solution we adopted allows for using directly and only
the selector variables referring to the original axioms T = {azy,...,dzg}. In such a way
no extra clause is added to the encoding and a smaller number of selector variables is used.
In fact, every non-normal axiom of 7 is normalized into two sets of normal axioms: (i)
a set of top-level axioms in which complex concept descriptions are substituted by newly
introduced concept names, and which keep representing the original concept inclusions, (ii)
and a set of definition(s) (azioms) which represent the relations between the fresh concept
names and the corresponding complex concept descriptions. For example the concept
inclusion dr.A M ds.B C C' M D is normalized into the set of top-level normal axioms:
{X C C,X C D} and the set of definition axioms: {IrAC Y, 3s.BC Z,YMNZ C X},
which define Y as dr.A, Z as 3s.B and X as Y 1 Z.

The idea is to:

(i) use the same original axiom selector variable s, for all the top-level normal axioms
coming out from the normalization of dw;; !

(ii) associate the same unique selector variable sy, to all the description axioms intro-
duced.

An informal explanation of this latest choice is that definition axioms play the role of
labeling for complex concepts, so they take part in the deduction of a queried subsumption
only in consequence of top-level axioms. Further, queries are always expressed in terms
of original concept names, so we are ensured that the top-level selector variables of the
original axioms are always (and firstly) involved in the search. The single selector variable
S[ae], instead, is used to represent and enable all the axioms defining the new concept

HNotice that more than one top-level axiom can result from the normalization of an equivalence relation or
from the normalization of a right-side conjunction.

Axiom Pinpointing via Horn SAT and Conflict Analysis 201

names coming out from the normalization. Thus, the presence of sy, in a MinA is
not of interest, it only indicates that at-least one of the axiom included in the MinA
has been normalized. Finally, notice that some definitions can be (partially) shared
among many different original axioms, but the above-exposed solution is transparent
wrt. these situations. This schema for handling normalization has been already used in
Examples 7.4.2 and 7.4.4.

(Hereafter we will call 7 the input TBox, assuming that it is in normal form, no matter
if it is resulting from a normalization process or not and if we use the selector variables
referring to the original axioms or to the normalized ones.)

7.4.3 Discussion

We first compare our all-MinAs technique for EL£1 of Section 7.4.2 with that presented
by Baader et al. (2007). By comparing the pinpointing formula ®“=7P of Baader et al.
(2007) (see also Section 7.3) with qﬁi}lépo), and by analyzing the way they are built and
used, we highlight the following differences:

(i) ®“ETP1 s built only on axiom selector variables in Pr = {s(.,,) | az; € T}, whilst
‘Q’fépo) is build on all selector variables in Py = {51, | @j € A} (i.e., of both axioms

and inferred assertions);

(ii) the size of ®“E7Di and the time to compute it are worst-case exponential in |7 |
(Baader et al., 2007), whilst the size of gb%fépo) and the time to compute it are worst-
case polynomial in |7 |;

(iii) the algorithm for generating ®“E7P of (Baader et al., 2007) requires intermediate
all

logical checks, whilst the algorithm for building ng(po) does not;
(iv) each MinA is a model of ®“E7Pi whilst it is (the projection to Pr of) a counter-

model of ¢%f€po).

Moreover, our process can reason directly in terms of (the selector variables of) the input
axioms, no matter whether normal or not.

In accordance with the Theorem 5 of Baader et al. (2007), also our approach is not
output-polynomial, because in our proposed all-MinAs procedure even the enumeration of
a polynomial amount of MinAs may require exploring an exponential amount of models.
In our proposed approach, however, the potential exponentiality is completely relegated
to the final step of our approach, i.e. to our variant of the all-SMT search, since the
construction of the SAT formula is polynomial. Thus we can build ¢%5€p0) once and then, for
each C; C7 D; of interest, run the all-SMT procedure until either it terminates or a given
timeout is reached: in the latter case, we can collect the MinAs generated so far. (Notice
that the fact that DPLL1 selects positive axiom selector variables first tends to anticipate
the enumeration of over-constrained assignments wrt. to that of under-constrained ones,
so that it is more likely that counter-models, and thus MinAs, are enumerated during the
first part of the search. In particular it is assured that it finds one MinA in polynomial

202 Ezhaustively Debugging ELY TBoxes via Horn-SAT and All-SMT

time.) With the all-MinAs algorithm of Baader et al. (2007), instead, it may take an
exponential amount of time to build the pinpointing formula ®¢=7P: before starting the
enumeration of the MinAs.

As far as the generation of each single MinA of Section 7.4.2 is concerned, another
interesting feature of our approach relates to the minimization algorithm of Figure 7.2:
we notice that, once ¢%-lépo) is generated, in order to evaluate different subsets S\ {a;}
of the axiom sets, it suffices to assume different selector variables, without modifying
the formula, and perform one run of bcp. Similarly, if we want to compute one or all
MinAs for different deduced assertion, e.g. Cy &7 Dy,...,C; &7 Dj, ..., we do not need
recomputing qb%-lépa) each time, we just need assuming (i.e. querying) each time a different

axiom selector variable, e.g. respectively: =sicic pys - -+, 7S[c,c7D;), - -

7.5 A Preliminary Empirical Evaluation

In order to test the feasibility of our approach, we have implemented a first version of
the procedures of Section 7.4 (hereafter referred as ELT2SAT) and we have performed
a preliminary empirical evaluation of ELT2SAT on the ontologies mentioned in Sec-
tions 2.1 and 7.1, in more details: SNOMED-CT, NCI, GENEONTOLOGY, FULL-GALEN
and NOT-GALEN. 2 This latter two ontologies are derived from GALEN; in particular:
NOT-GALEN is a stripped-down version of GALEN with no role functionality, that has
been widely used for benchmarking several standard DL-reasoners, while FULL-GALEN
represents the full GALEN medical ontology, excluding role inverses and functionalities.
We have implemented ELT2SAT in C++, including and modifying the code of the SAT
solver MINISAT2.0 070721 (Eén & Sorensson, 2004). All tests have been run on a
biprocessor dual-core machine Intel Xeon 3.00GHz with 4GB RAM on Linux RedHat
2.6.9-11. 13

The results of this first evaluation are presented in Table 7.2. The first block reports
the data of each ontology. The second and third blocks report respectively the size of
the encoded formula, in terms of variable and clause number, and the CPU time taken
to compute them. * The fourth block reports the time taken to load the formulas and
to initialize DPLL. The fifth block reports the average time (on 100000 sample queries)
required by checking subsumptions. * (Notice that ¢ and ¢3¢ must be loaded and DPLL
must be initialized only once for all queries.) The sixth block reports the same data for
the computation of one nMinA, on 5000 sample queries. ¢ (Loading times are the same

12The first four ontologies are available at http://lat.inf.tu-dresden.de/~meng/toyont.html, whilst
SNOMED-CT’09 is courtesy of IHTSDO http://www.ihtsdo.org/.

13¢ £LT2SAT is available from http://disi.unitn.it/~rseba/elsat/.

"The classification alone (excluding the time taken in encoding the problem and in computing the additional
rule clauses for pinpointing) required respectively: 0.60, 2.24, 2.84, 34.06 and 3738.82 seconds for ¢7, 0.99, 2.63,
4.13, 41.19 and 3893.20 seconds for ¢5°. In the case of d)‘;—lépo) the times are not distinguishable.

15The queries have been generated randomly, extracting about 2000 primitive concept names from each ontology
and then randomly selecting 100000 queries from all the possible combinations of these concept names.

16We chose the first 5000 “unsatisfiable” queries we encounter when analyzing all the possible pairwise combi-
nations of primitive concept names of each ontology.

A Preliminary Empirical Evaluation

203

Ontology NOTGALEN | GENEONT. NCI | FULLGALEN | SNOMED’09
of prim. concepts 2748 20465 27652 23135 310075
of orig. axioms 4379 20466 46800 36544 310025
of norm. axioms 8740 29897 46800 81340 857459
of role names 413 1 50 949 62
of role arioms 442 1 0 1014 12
Size (var#t|clause#)

oT 5.4e3|1.8e4 | 2.2e4]|4.2e4 | 3.2e4|4.7ed | 4.8e4|7.3e5 | 5.3e5|8.4e6
P 2.3e4]2.7e4 | 5.5ed|5.4ed | 7.8ed|4.Ted | 7.3e5|1.4e6 | 8.4e6|1.6e7
qﬁg.lépo) 1.7e5]2.2e5 | 2.1e5|2.6¢e5 | 2.9¢5|3.0e5 | 5.3¢6|1.2¢7 | 2.6e7|8.4e7
FEncode time

o1 0.65 2.37 2.98 35.28 3753.04
P 2.06 4.15 6.19 68.94 4069.84
qﬁ%fépo) 1.17 1.56 2.37 178.41 198476.59
Load time

oT 0.11 0.37 1.01 1.93 21.16
pe 0.18 0.55 1.17 5.95 59.88
Subsumption (on 10°)

oT 0.00002 0.00002 0.00003 0.00003 0.00004
o3 0.00003 0.00002 0.00003 0.00004 0.00008
nMinA ¢3¢ (on 5000) 0.00012 0.00027 0.00042 0.00369 0.05938
MinA ¢3¢ (on 100)

— Load time 0.175 0.387 0.694 6.443 63.324
— Extract time 0.066 0.082 0.214 0.303 3.280
— DPLL Search time 0.004 0.004 0.002 0.010 0.093
MinA gzﬁ’%lépo) (on 100)

— Load time 1.061 1.385 1.370 39.551 150.697
— DPLL Search time 0.023 0.027 0.036 0.331 0.351
allMinA qb“Tlépo) (on 30)

— 50% #MinA/time 1/1.50 1/1.76 4/1.79 3/53.40 15/274.70
—90% #MinA/time 2/1.59 4/2.11 6/1.86 9/63.61 32/493.61
— 100% #MinA/time 2/1.64 8/2.79 9/2.89 15/150.95 40/588.33

Table 7.2: Results of the preliminary evaluation of E£LT2SAT on five £ELT ontologies. (“XeN”
is “X - 10V”. CPU times are in seconds.)

as above.) The seventh block reports the average times on 100 samples required to com-
pute one MinA with ¢%¢, which computes the sequence of formulas ¢3¢, .. ., ¢«097<3i’ LT
(Here we report the sum of all the loading times, including the loading time of the first
formula which dominates all the others; but notice that the process of loading of the first
¢7'¢ can be shared by different samples. FExtract time represents the total time spent in
reconstructing and encoding all the intermediate sub-ontologies S \ {a;}. DPLL Search

time is the sum of all the different DPLL’s times.) The eighth block reports the average

"The queries are selected randomly from the 5000 samples introduced above.

204 Ezhaustively Debugging ELY TBoxes via Horn-SAT and All-SMT

times on 100 samples required to compute one MinA with gb“Tlépo). The ninth block reports

the results (50th, 90th and 100th percentiles) of running the all-MinAs procedure on 30
samples, each with a timeout of 1000s (loading included), and counting the number of
MinAs generated and the time taken until the last MinA is generated. '8

Notice that, although huge, a Horn formula of up to 10® clauses is at the reach of
a SAT solver like MINISAT (e.g., Sebastiani & Vescovi, 2006, 2009a handled non-Horn
formulas of 3.5 - 107 clauses).

Although still very preliminary, these empirical results allow us to notice a few facts:

(i) once the formulas are loaded, concept subsumption and computation of nMinAs are

one.

instantaneous, even with very-big formulas ¢7 and ¢7*¢;

(ii) in the computation of single MinAs, with both ¢¢ and qb“Tlfpo), DPLL search times
are very low or even negligible: most time is taken by loading the main formula
(which can be performed only once for all) and by extracting the information from
intermediate results. Notice that ELT2SAT succeeded in computing some MinAs
even with the huge ontology SNOMED-CT’09;

(iii) although no sample concluded the full enumeration within the timeout of 1000s,
the all-MinAs procedure allowed for enumerating a set of MinAs. Remarkably, all
MinAs are all found in the very first part of the search, as expected.

7.6 Pushing the Envelope

7.6.1 Working on Sub-Ontologies

The results proved in Theorems 16 and 15 (Section 7.4.2) imply a very important fact:
given the ontology 7, once ¢a71épo) /9% is encoded, in our approach we can reason on
any possible desired sub-ontology S of 7 without the need for any extra modification or
new encoding, by simply using different set of assumptions. This fact is also the base of
the linear minimization algorithm exposed if Figure 7.2 of Section 7.4.2, which allows to
obtain a MinA from the nMinA returned by conflict analysis.

Let us consider the all-MinAs problem in the case of qﬁ%fépo). Given a query C; C D;
and any subset S of the axioms of 7 (i.e. any sub-ontology of 7'), searching all the MinAs

responsible for C; Cs D; corresponds to solving qb%—lépo) under all the possible assumption

lists generated by {=sic,cp,j} U Ps, where Ps = {Slaz;) | ax; € S}. Thus the algorithm
computing all the MinAs is unchanged, it only enumerates assignments on the axiom
selector variables of the (smaller) assumption list Pg instead of Pr.

Henceforth, we can consider the more general problem of finding all the MinAs for
any query C; Cs D; and for any sub-ontology S C 7, given the encoding gb%lépo)/ % and

the assumption list Ps. Notice that this configuration immediately allows for a more fine

18First, we sort the assertions computed for each ontology wrt. the number of occurrences as implicate in rule
clauses then, following this order, we pick with a probability of 0.25 (to avoid queries which are too similar) the
30 sample assertions to be queried.

Pushing the Envelope 205

grained debugging of ontologies, for example it allows for testing the interactions among
only some selected parts of an ontology or for transparently working in terms of refutable
and irrefutable axioms (see, e.g., Baader et al., 2007). In fact, in many applications it is
necessary to partition an ontology distinguishing two kinds of axioms: trusted ones whose
correctness is established, and refutable ones for which the correctness is still doubted by
the designer (or user) of the ontology. For example, if an already well-established ontology
is extended, one might view the newly added axioms as refutable, but trust the previously
existing part of the ontology.

In the following, for sake of clarity, we still refer to “T”po /9% and to the problem
of searching all the MinAs responsible in 7 (and so using 737) for a given subsumption
query C; T D;, but exactly the same techniques can be applied always on qﬁ%flpo /9% but
considering the subsets S/Pgs instead of 7 /Pr.

7.6.2 Cone-of-influence Modularization

Most of the real-world problems are too large to be entirely enumerated by our approach,
so we must try to reduce the search space as much as possible. For this reason we have im-
plemented a SAT-based form of modularization similar in aim to that proposed by Baader
and Suntisrivaraporn (2008), Suntisrivaraporn (2009) (see Section 7.3.3), which isolates
the subset, called module, of only (the propositional variables in ¢%/ qb%flpo labeling) those
axioms in 7 which might have a role in the inference of a given query C; C+ D;. After
having isolated such a module of the axioms of 7 we restrict our AIl-SMT process to
these selector variables only, as exposed above in Section 7.6.1.

For its analogy with the cone-of-influence reduction in model checking (Kurshan, 1994;
Clarke et al., 1999) we call our technique Cone-of-influence Modularization. A Cone-of-
influence Module is defined as follows.

Definition 12. Let 7 be an ££7 TBox in normal form, C; C7 D; be an existing
subsumption relation in 7, gb“Tlfpo) be the encoding of 7 defined in Definition 10 and

Pr = {Sjaz;)|ax; € T} the set of the axiom selector variables (Definition 10) for 7. The

CD;
CC

Cone of influence for C; T4 D; wrt. qbaTlépo namely , is the maximal set of selector

variables, such that:
(i) siccpy € C7 =%

(if) if s € C'="", then Sla;] € CFEP for every s, ;1 of every clause (A; sj4;]) — S[a,) In
%ZéPO)'

The Cone-of-influence Subformula ¢, CiED; for C; T4 D; wrt. gb“” is defined as gbcc co;, =

{c|cce€ gzﬁi}”po cis ((A; S;)) — s[al) and s, € Cy="). Further we define Cone-of-

influence Module’s Assumptions for C; T D; wrt. <bi‘}”po namely ./\/lc =D the set of

axiom selector variables /\/lg - Cg iEDi P, Finally, the Cone-of-mﬂuence Module

for C; Cr D; wrt. ¢, namely Mg%p , is the set Mg, C T of axioms such that

&, = {axi | sie) € MFEDY. <

206 Ezhaustively Debugging ELY TBoxes via Horn-SAT and All-SMT

The following result is a straightforward consequence of Definition 12 and Theorem 15,
and it is formally proved in Appendix 7.9.

Theorem 22. Given an ELT TBox T in normal form and the formula (b%fépo) as defined
i Definition 10, for every pair of concept names C, D in PCr, the following facts hold:

(i) C Tr D if and only if C EMcéog.i.D D;

(i1) if S is a minimal subset S C T such that C Cs D and C Ls D for every 8" C S
(i.e. S is a MinA for C Er D), then S € Mg,

where E‘?EIDz C T is the cone-of-influence module for C' © D wrt. i}lépo), as defined in
Definition 12.

Importantly, point (i) of Theorem 22 is a direct consequence of point (ii) but we
distinguished them because:

(i) states that the cone-of-influence module preserves the subsumption relation for which
the module is computed;

(i) states that the cone-of-influence module contains all the possible MinAs responsible
of such a subsumption relation.

In the practice, Cone-of-influence Modularization can be performed through a simple
queue-based algorithm. Let) be a queue containing positive occurrences of the selector
variables of gb‘}lépo). We initially set @ to {sic,cp,} (so that it contains only the query se-
lector variable). At every iteration a selector variable s, is dequeued from @) and handled
by the algorithm, which enqueues into () every other selector variable sj,,; occurring neg-
atively in any of the clauses of gb‘%lépo) in which sp,,) occurs positively (i.e. all clauses of the
form (A; 8a;]) = S[a,), that is sp,)V V; —8[,1). We run the algorithm until @ is not empty.
Notice that each selector variable sj,,) must be enqueue in () at most once during the whole
modularization procedure. The set of all the selector variables handled during this process
until termination is the cone of influence CgiED " for C; C1 D;, while considering only the
axioms [resp. axiom selector variables] encountered we obtain the cone-of-influence mod-
ule MCC°E'D [reps. cone-of-influence module’s assumptions M?ED ‘]. The pseudocode in
Figure 7.5 summarizes this Cone-of-influence Modularization algorithm. Informally, the
procedure of Figure 7.5 traverses the cone of influence for the query C; CE4 D; starting
from the positive selector variable sic,cp,) and then backwardly going through the set of
implications (clauses) taking part to the inference of sic,cp,).

Importantly, step 5. of the algorithm in Figure 7.5 can be performed efficiently if
we exploit the two-watched-literals technique (Moskewicz et al., 2001) (see Section 4.1)
implemented in all the modern state-of-the-art SAT solvers. In fact, since all the clauses
in qﬁ%l%po) are definite Horn clauses (see Section 7.4.2) they are all implications having
exactly one and only one positive literal (that is sp,) in our exposition). Therefore, at
loading/parsing time, we can force the only positive literal of each clause to be one of

its two watched literals. This ensures that at step 5., through the two-watched-literal

Pushing the Envelope 207

all

Variable-Set compute-allMinAs (Encoding ngT (po)*

1. Q=0; MF=P=0 Mg, =01;

Assumptions Pz, Query s|o,cp,))

2. enqueue sc,cp,] in @; mark C; C D; as reached;

3. while @ is not empty {

4. dequeue s|,, from Q;

5. let C,, be the set of all the clauses of the form S(a;] \/\/j IO
6. for each clause ce€ C,, {

7. for each —s(, occurring in c {

8. if a; is not reached

9. enqueue s[,] in (); mark a; as reached;

10. if S[a;] € Pr

1. MEEP: = MEEP U 5,1} TMESE, = MESE, U fa, 1
12. }

13, }

4. }

15. return M%EDi

Figure 7.5: Cone-of-influence Modularization wrt. the given encoding and query.

scheme, we can obtain the set C,, of all the clauses in which the literal sy, appears
positively in linear wrt. the cardinality of C,, itself.

Proposition 23. Given the Horn propositional formula qb‘%lépo) the set of assumptions Pr

and the query sic,cp,), the algorithm of Figure 7.5 computes the cone-of-influence module
EP,:'D for the query C; Cr D; wrt. qS“Tllpo i linear time wrt. the cone-of-influence

subformula ¢.c.co, for C; Cr D; wrt. DT (o)

Proof. In the algorithm of Figure 7.5 we assured that each selector variable is enqueued
in @ (and thus subsequently handled at step 4.) at most once, when it is reached for the
first time. Thus it is easy to see that the algorithm executes a number of iterations linear
wrt. the number of selector variables included in @), that is exactly the size of C?ED".
In each iteration, once dequeued the selector variable sy, at step 4., the algorithm: (i)
gets the clauses C,, (step 5.), (ii) executes a fixed number of instructions for every literal
of every clause ¢ € C,, (steps 6.-13.). Since (i) is performed in linear time wrt. |C,,|,
exploiting the two-watched-literals scheme, the complexity of the algorithm is dominated
by the operations (ii). Thus, since wlog. we can assume that every clause has at-most
four literals, the modularization algorithm of Figure 7.5 terminates in linear time wrt.
the number of clauses handled by the algorithm, that is O(‘¢CgigDi |) (Definition 12). [

Since the Cone-of-influence Modularization algorithm is not computationally expensive
and since the modules computed are typically orders of magnitude smaller than 7, this
technique drastically improves the performance of our approach.

208 Ezhaustively Debugging ELY TBoxes via Horn-SAT and All-SMT

Remark 5. Importantly, this technique works directly on the propositional input formula

oy qbaTlfpo with no need for re-compute something from 7 or for any other form of ££7T
reasonlng From the perspective of our approach, this is a point in favor of our cone-
of-influence modularization since we can solve every query working directly on the SAT
formula regardless the original ontology. Further, in a more general case, through exactly
the same procedure we can obtain “for free” the cone-of-influence module’ assertions
/\/lc iEDi for any desired sub-ontology S of 7. ¥ Once CgiEDi has been computed from

qbaTlépo it is simply ./\/lc LD = CC =P P &

Example 7.6.1. Consider the case of computing the cone-of-influence module

c.o.i. . e . .
PericarditisCHeartDisease 10T the query Pericarditis Cp, , HeartDisease wrt. the encoding

qﬁ‘gi (p0) of the sample ontology Oneq (Example 3.5.1). Here below we rewrite the en-

coding gb‘gi (poy rom Example 7.4.2, where the query Pericarditis Co,,, HeartDisease cor-

responds to the assumption bg. We underline the clauses and literals involved during the
modularization process:

all def

PO ea(po) Slaa) A Sfar] — S[ba] A Slas) A Sfar] — S[ba] (2)
A Sla] A S[ar] = S[bg] A Slas] A S[ag] = S[ba] (®)
A Slag] N Slag] ~ Sbg) A Slag) A Slar] — Slbg] ()
A Slag] N Slag] M Slana] ~ S[by] A Sibr] A Slag] ~ S[bs) @
A Sibs] A Sibs] N Slas] ~ S[bo] A Sibo] A\ Slag] ~ S[bio) ()

In particular: (i) literals queried through the two-watched-literals technique are wavy
underlined, (ii) literals inserted in the queue to be subsequently handled are singly un-
derlined and (iii) literals representing axioms are doubly underlined. This has been said,
the set of the axiom/assumption selector variables marked (ii) and (iii) represent the
cone of influence CPe”card't'SEHeartD'sease, in particular the set of the axioms represented
by the selector variables marked (iii) represent the module MESI o —ieoriDiscases SO

SO i HeartDicease = 100, @3, Ag, a7, g, a1 }. Concretely the computation of the module
starts from the positive literal sp,). The first clause in row (e) is returned in constant
time thanks to the two-watched-literals scheme, so that the literals sy, sp,;) are enqueued
and ag added to the initially empty module. Similarly, from sp,) (second clause of row

(d)), sp, is enqueued and ag included into the module. In the last two steps of mod-
ularization the other axioms ag, a7 and as, a;; are added to the module consequently to
the analysis of the clauses implying sp,) (first clause of row (c)) and sp,) (first clause of
row (d)), respectively. Notice that, ag is not included in the cone-of-influence module
for Pericarditis = HeartDisease unlike in the reachability-based module for Pericar