
University of Trento
University of Brescia
University of Padova
University of Trieste
University of Udine

University IUAV of Venezia

Ph.D. Candidate

Omar A. Daud

HAPTIC SYSTEMS FOR

POST-STROKE REHABILITATION:

FROM VIRTUAL REALITY

TO REMOTE REHABILITATION

Advisor

Prof. R. Oboe

2011

UNIVERSITY OF TRENTO
Graduate School in Structural Engineering
Modelling, Preservation and Controls of Materials and Structures
XXIII Cycle

Ph.D. Program Head: prof. D. Bigoni

Final Examination: 25 March 2011

Board of Examiners:
Prof. Roberto Oboe, Università di Padova
Prof. Robert McMeeking , UCSB
Prof. Ettore Pennestr̀ı, Università di Roma - Tor Vergata
Prof. Antonio De Simone, Sissa Trieste

Summary

Haptic devices are becoming a common and significant tool in the perspec-
tive of robotic neurorehabilitation for motor learning, particularly in post-
stroke patients. As a standard approach, this kind of devices are used in
a local environment, where the patient interacts with a virtual environment
recreated in the computer’s screen. In this sense, a general framework for vir-
tual reality based rehabilitation was developed. All the features of the frame-
work, such as the control loop and the external communication, as well as
the haptic and graphic rendering, were implemented inside Matlab/Simulink
using Handshake proSENSE toolbox, guaranteeing a real-time system. As an
example, a five-bar linkage haptic device with two active degrees-of-freedom
(DOF) was designed and integrated within the proposed framework, as well
as a device for grasping operations.

An extension of this standard approach is verified when the therapist is
allowed to feel and interact remotely and in real time with the patient. We
applied the proposed concept to a single degree-of-freedom master/slave sys-
tem. One hand orthosis was used as a master device at the therapist’s side,
while the other was applied to the patient’s hand, and used as a slave device.
In order to achieve this issue, we proposed two bilateral control systems in or-
der to guarantee an stable interaction between the master and the slave, even
in case of variable network conditions (i.e. Internet). By using the master
device, the therapist can remotely move the patient’s hand and, at the same
time, perceive the patient’s resistance to the motion, allowing the assessment
of important parameters, such as the residual level of spasticity. In this way,
it can be remotely assessed the conditions of the patient and consequently can
be proposed a proper rehabilitation program.

i

Sommario

Le interfacce aptiche stanno diventando uno strumento comunemente uti-
lizzato per la riabilitazione nella prospettiva del ri-apprendimento motorio,
particolarmente nei pazienti colpiti da ictus. Convenzionalmente, questi dis-
positivi vengono utilizzati in ambienti locali, dove il paziente interagisce con
degli ambienti virtuali ricreati nello schermo del computer. In questo senso
è stato realizzato un framework generale per la riabilitazione basata sulla
realtà virtuale. Tutte le caratteristiche del framework, come l’algoritmo di
controllo e la comunicazione con scheda acquisizione dati, oltre al rendering
aptico e grafico, sono stati implementati in Matlab/Simulink usando Hand-
shake proSENSE toolbox, garantendo un sistema che funzioni in tempo reale.
Come esempio, è stato progettato ed integrato dentro il framework proposto
un dispositivo a pentalatero, a due gradi di libertà, oltre ad un dispositivo per
esercitare l’operazione di grasping.

Un’estensione di questo approccio si verifica quando il fisioterapista inter-
agisce da remoto e in tempo reale con il paziente. Questo concetto è stato
applicato ad un sistema master/slave ad un grado di libertà. Un’ortesi è stata
adoperata come master dal lato del fisioterapista mentre l’altra ortesi come
slave dal lato del paziente. Per realizzare ciò, si sono proposti due sistemi di
controllo bilaterale con l’obiettivo di rendere stabile l’interazione tra il master
e lo slave, nonostante le condizioni variabili nella rete (i.e. internet).

Mediante l’utilizzo del dispositivo master, il fisioterapista può muovere da
remoto la mano del paziente ed allo stesso tempo, percepire la sua resistenza
al movimento, consentendo la valutazione di parametri importanti, come ad
esempio, il livello residuale di spasticità. In questa maniera, si può valutare
da remoto le condizioni del paziente, e conseguentemente proporne un appro-
priato programma di riabilitazione.

ii

To Ximena

iii

Acknowledgements

I would like to thank all the people that directly or indirectly helped me
during my studies. Particularly, my gratitude especially goes to Professor
Roberto Oboe for being my advisor and giving me the chance to face and

achieve this unique challenge.
I am also very thankful to all members of the Mechatronics Research Group

of the University of Trento, the Mechatronics Lab and Industrial Robotics
Lab of University of Padova - Vicenza branch. An especial thank also goes

to all members of the Ohnishi Lab, that so kindly assisted me when I was a
visiting student at Keio University.

Finally, I am so obliged to all my family and, especially, to my mother
Barberina. Thank you so much.

Trento, March 2011

Omar A. Daud

iv

Published papers

The main results presented in this thesis have been summarized in the
following papers:

1) O. A. Daud, F. Biral, R. Oboe, and L. Piron, ”A general framework for
a rehabilitative oriented haptic interface,” in The 11th IEEE International
Workshop on Advanced Motion Control, Nagaoka, Japan, March 2010, pp.
685-690.

2) R. Oboe, O. A. Daud, S. Masiero, F. Oscari, and G. Rosati, ”Development
of a haptic teleoperation system for remote motor and functional evaluation
of hand in patients with neurological impairments,” in The 11th IEEE
International Workshop on Advanced Motion Control, Nagaoka, Japan,
March 2010, pp. 518-523.

3) R. Oboe, O. A. Daud, S. Masiero, F. Oscari, and G. Rosati, ”Remote eval-
uation of muscular capabilities in patients with neurological impairments,”
in The International Symposium on Application of Biomechanical Control
Systems to Precision Engineering - Engineering Review of Biological Evo-
lution of Motion Control, ISAB-2010. Fukushima, Japan, July 2010, pp.
102-106.

4) O. A. Daud, F. Biral, R. Oboe, and L. Piron, ”Design of a haptic device for
finger and hand rehabilitation,” in IECON 2010 - 36th Annual Conference
on IEEE Industrial Electronics Society, 2010, pp. 2075-2080.

5) R. Oboe, O. A. Daud, S. Masiero, F. Oscari, and G. Rosati, ”A teleopera-
tion system for a remote evaluation of the hand in patients with neurolog-
ical impairments,” in The 8th France-Japan and 6th Europe-Asia Congress

v

vi

on Mechatronics, MECATRONICS-2010. Yokohama, Japan, November
2010, pp. 17-22.

6) Agostini M., Turolla A., Cocco L., Daud O. A., Oboe R., Piron L., ”Haptic
interface for hand rehabilitation in persons with a stroke”. WCPT 2011,
Amsterdam, Netherlands, 20-23 June 2011 (submitted).

7) O. A. Daud, R. Oboe, M. Agostini and A. Turolla, ”Performance Evalua-
tion of a VR-based Hand and Finger Rehabilitation Program,” in Industrial
Electronics, 2011. ISIE 2011. IEEE International Symposium on, 27-30
June 2011 (submitted).

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 2

1.3 Stroke . 3

1.3.1 The effects of stroke . 3

1.3.2 The impact of stroke . 4

1.4 Upper-limb robotic therapy . 5

1.5 Robot-assisted arm training devices 5

1.5.1 MIT-MANUS . 6

1.5.2 MIME . 6

1.5.3 ARM-Guide . 7

1.5.4 Bi-Manu-Track . 7

1.5.5 Other Devices . 9

1.6 Robotic-assisted telerehabilitation approach 10

2 Haptics 13

2.1 Overview . 13

2.2 Human haptics . 15

2.2.1 Anatomy and physiology 15

2.2.2 Psychophysics . 15

2.2.3 Psychology: exploratory procedures 15

2.3 Haptic devices . 16

2.3.1 Control architecture . 17

2.3.2 Mechanisms . 17

2.3.3 Sensing . 19

2.3.4 Actuators and mechanical transmission 19

2.4 Haptic rendering in virtual environments 19

2.5 Control and stability in haptic interfaces 24

vii

viii CONTENTS

3 Virtual reality based rehabilitation 27

3.1 Overview . 27

3.2 Description of the general framework 28

3.2.1 Data acquisition board interface 29

3.2.2 Kinematic model and transposed Jacobian 30

3.2.3 Virtual world . 30

3.3 Five-bar linkage haptic interface 30

3.3.1 Biomechanical considerations for the design 32

3.3.2 Design of the haptic device 32

3.3.2.1 Kinematic model and jacobian matrix 34

3.3.2.2 Control diagram for the haptic interface 37

3.3.2.3 Safety features 38

3.3.3 Rehabilitation program 38

3.3.4 Kinematic and clinical evaluation 40

3.3.4.1 Patient with musculoskeletal disease 40

3.3.4.2 Patient with stroke 45

3.3.5 Discussion of the results 45

3.4 Haptic interface for grasping . 48

4 Teleoperation 53

4.1 Overview . 53

4.2 Stability and performance . 54

4.3 Types of teleoperation systems 58

4.4 Control architecture . 59

4.4.1 Two-channel impedance-admittance type 62

4.4.2 Four-channel impedance-impedance type 65

4.5 Time delay compensation . 67

4.5.1 Scattering approach . 67

4.5.1.1 Constant time delay 68

4.5.2 Wave variables . 69

4.5.2.1 Matching impedances 71

4.5.3 Geometric scattering . 72

4.5.4 H∞ and µ-synthesis design 72

4.5.4.1 Free motion controllers 73

4.5.4.2 Constrained motion controller 73

4.5.5 Communication disturbance observer (CDOB) 75

4.6 Web-based teleoperation . 77

CONTENTS ix

5 Remote rehabilitation 79
5.1 Overview . 79
5.2 Master/Slave system . 80

5.2.1 Master device . 80
5.2.2 Slave device . 80

5.3 Remote rehabilitation system 82
5.3.1 Two-channel bilateral control system 82

5.3.1.1 Experimental results 85
5.3.1.2 Discussion of the results 85

5.3.2 Four-channel bilateral control system 88
5.3.2.1 Time delay compensation 89
5.3.2.2 Scaling down compensation value 92
5.3.2.3 Experimental results and discussion 92

6 Conclusions and future work 99
6.1 Conclusions . 99
6.2 Future work . 100

A General framework implementation 103
A.1 Data acquisition board interface 103

A.1.1 S-function for I/O communication 110
A.1.2 S-function wrapper for I/O communication 115
A.1.3 TLC file for I/O communication 116

A.2 Kinematic model and transposed jacobian 116
A.2.1 S-function . 117
A.2.2 S-function wrapper . 128
A.2.3 TLC file . 129

A.3 Virtual world . 130

B Robust acceleration control 137
B.1 Acceleration control by disturbance observer 137
B.2 Reaction torque estimation . 140

x CONTENTS

Chapter 1

Introduction

Hand and finger dexterity is important as it is fundamental for many activi-
ties a person needs to perform in order to be independent. Stroke can reduce
a person’s movement functionality because of the resulting death of associated
brain cells. It is not only stroke that damage the motor and sensory system,
but also other pathologies, such as musculoskeletal diseases. However, stroke
remains the leading cause of serious and long-term disability today. Many
studies attest that initiating the physical therapy immediately after a stroke
often grants a higher quality of life for the patient. Haptics and virtual envi-
ronments offer the chance to improve the traditional methods of rehabilitation.

1.1 Motivation

When a person becomes unable to interact physically with its immediate en-
vironment, and so unable to achieve their personal goals, because of injury or
disease, technology-based solutions are needed for relearning.

Research programs dealing with the development of personal robots, robotic
therapy, and tele-rehabilitation services have increased in the past ten years
and will continue because the ever-increasing ability of health care to allow
people live longer. Rehabilitation robotics is projected to quickly grow in the
coming decades (Kassler, 1993).

Nowadays, almost all the activities in physical therapy and training robots
has been focused on relearning the movement ability of post stroke patients.

1

2 Introduction

The main reason of such emphasis is the relatively large number of patients
in these conditions, for which the associated rehabilitation costs are high.

Because the human neuromuscular system presents use-dependent plastic-
ity, which states that the use modifies the properties of neurons and muscles,
including the pattern of their connectivity, and hence their function (Sawaki,
2005), post stroke patients can experience important benefits with intensive
rehabilitation.

In fact, the use of haptic interfaces is becoming a common approach for
treating the disability induced by stroke or musculoskeletal disorders. For
doctors and operational therapists, a computer-based system is highly de-
sired, since it is an efficient measurement system, and can provide intense
rehabilitation exercise. Therefore, haptic interfaces not only have the poten-
tial to rehabilitate and help stroke survivors in regaining essential skills for
their daily living activities, but also give objective information to doctors and
therapist about the rehabilitation process.

1.2 Background

The process of neurorehabilitation tries to take advantage of this use-dependent
plasticity in order to help people relearn the movements that were lost after
neuromuscular injuries or diseases. Neurorehabilitation is typically provided
by prepared therapists, that usually are required to give hands-on assistance
as well.

Because neurorehabilitation is a hard and time-consuming activity, in re-
cent years health programs have put some limits on the amount of therapy, in
an effort to contain health care costs. Nevertheless, at the same time, there
has been an increasing scientific evidence that more therapy can increase the
movement relearning via use-dependent plasticity. Neurorehabilitation is a
logical target for robotics, because the amount of recovery is linked with the
amount of repetition. Advanced robotics can deliver either continuous therapy
at a lower cost or supporting assistance to physical therapists, giving patients
a better chance for an effective rehabilitation.

An important issue in robotic therapy is how to optimize use-dependent
plasticity. Researchers must determine what the robot should do in order to
match the patient’s movement effort, and consequently maximize the recov-
ery in terms of movement ability. Meeting this challenge involves the solution
of these two key problems: determining appropriate movement tasks (what
movements should patients exercise and what type of feedback should they

1.3 Stroke 3

receive, taking into account their performance), and determining an appro-
priate pattern of mechanical input to the patient during these tasks (what
forces should the robot apply to the patient’s limb to stimulate plasticity).
The prescription of movement tasks and the mechanical inputs fundamentally
constrain the mechanical and control design of the robotic therapy device.

Nowadays, almost all the activities that deal with physical therapy and
training robots have been focused on relearning the movement abilities the
patients had before stroke. The main reason for this emphasis is explained by
the large amount of stroke patients, the high costs associated with this kind
of rehabilitation, and the large gains that can be obtained by stimulating
use-dependent plasticity.

1.3 Stroke

A stroke occurs when a blood vessel that carries oxygen and nutrients to the
brain is either blocked by a clot or bursts. When that happens, part of the
brain cannot get the blood (and oxygen) it needs, so it starts to die. Stroke
can be caused either by a clot obstructing the flow of blood to the brain (called
an ischemic stroke) or by a blood vessel rupturing and preventing blood flow
to the brain (called a hemorrhagic stroke).

1.3.1 The effects of stroke

The brain is an extremely complex organ that controls various body func-
tions. If a stroke occurs and blood flow can’t reach the region that controls
a particular body function, that part of the body won’t work as it should. If
the stroke occurs toward the back of the brain, for instance, it’s likely that
some disability involving vision will result. The effects of a stroke depend
primarily on the location of the obstruction and the extent of brain tissue
affected. However, because one side of the brain controls the opposite side of
the body, a stroke affecting one side will result in neurological complications
on the side of the body it affects.

� Right Brain: If the stroke occurs in the brain’s right side, the left side
of the body (and the right side of the face) will be affected, which could
produce any or all of the following:

– Paralysis on the left side of the body.

– Vision problems.

4 Introduction

– Quick, inquisitive behavioral style.

– Memory loss.

� Left Brain: If the stroke occurs in the left side of the brain, the right
side of the body will be affected, producing some or all of the following:

– Paralysis on the right side of the body.

– Speech/language problems.

– Slow, cautious behavioral style.

– Memory loss.

� Brain Stem: When stroke occurs in the brain stem, depending on the
severity of the injury, it can affect both sides of the body and may
leave someone in a ”locked-in” state. When a locked-in state occurs, the
patient is generally unable to speak or achieve any movement below the
neck.

Therefore, common motor impairments that result from stroke are hemi-
paresis, which refers to weakness on one side of the body; abnormal tone,
which refers to an increase in the felt resistance to passive movement of a
limb; impaired coordination, which can manifest itself as an apparent loss
in control degrees of freedom and decreased smoothness of movement; and
impaired somatosensation, which refers to a decreased ability to sense the
movement of body parts. Secondary impairments include muscle atrophy and
disuse-related shortening and stiffening of soft tissue, resulting in decreased
passive range of motion of joints. Often the ability to open the hand, and to
a slightly lesser extent close the hand, is dramatically decreased.

1.3.2 The impact of stroke

Stroke is the third largest cause of death, ranking behind cardiovascular dis-
eases and all forms of cancer. Stroke is the leading cause of serious and
long-term disability today. Hence, the socio-economic impact of stroke is con-
siderable world-wide. Stroke is assuming an increasing impact in terms of
media attention, patient and carer knowledge, service developments and re-
search. It is estimated that there are 4.5 million deaths a year from stroke in
the world and over 9 million stroke survivors. Almost one in four men and
nearly one in five women aged 45 years can expect to have a stroke if they
live to their 85th year. The overall incidence rate of stroke is around 2-2.5

1.4 Upper-limb robotic therapy 5

per thousand population. The risk of recurrence over 5 years is 15-40%. It
is estimated that by 2023 there will be an absolute increase in the number
of patients experiencing a first ever stroke of about 30% compared with 1983
(Wolfe, 2000).

1.4 Upper-limb robotic therapy

The literature suggests that the degree of initial impairment and recovery of
arm paresis play an important role in regaining arm function and reducing
the limitations of the movement activity in chronic stroke patients (Harris
and Eng, 2007). Therefore, many patients might receive multidisciplinary
rehabilitation immediately after a stroke. However, despite intensive reha-
bilitation efforts, only 5% to 20% approximately reach complete functional
recovery (Nakayama et al., 1994); in other words four of five patients leave
rehabilitation with restricted arm function. Thus, there still exists an urgent
need for new inpatient and outpatient rehabilitation and training strategies
that match the specific patients’ requirements (Barker and Brauer, 2005).

Another important issue relies on the fact that while the patient uses
robotic rehabilitation devices he/she is more motivated, and hence encour-
aged; experimental evidence states that the number of repetitions were largely
increased. Robotic training devices, therefore, allow intensive, frequent, and
repetitive exercise, according to the principles of motor learning. Recently,
the first results describing an integration of the existing robotic devices in
post-stroke rehabilitation where proposed by (Prange et al., 2006). However,
contrary to the remarkable number of publications about electromechanical
technologies (Jaeger, 2006), scientific evidence of the benefits of these tech-
nologies, which could justify costs and effort, is still lacking. There is, there-
fore, a need for a systematic evaluation in the form of a systematic review of
the available literature to assess the effectiveness and acceptability of these
robotic training devices.

1.5 Robot-assisted arm training devices

Usually, robotic training devices provide passive movement to the patient’s
arm. However, some devices include other modalities that supplies a par-
tial assistance of movement up to a fixed resistance. Some other devices
may assist active movements of an isolated joint, like in continuous passive
motion, while other devices can be able to move multiple segments to per-

6 Introduction

form reaching-like movements. Robotic rehabilitation can be achieved by, for
example, varying the force, decreasing assistance, increasing resistance, and
expanding the movement amplitude. Moreover, some devices, such as the
Bi-Manu-Track and the MIME, may be used to provide bimanual exercise:
the device simultaneously moves (mirrors) the affected limb passively, steered
by the non-paretic limb. Several robotic systems incorporate more than one
modality into a single device. In the following, the most famous devices that
have been clinically tested for upper-limb rehabilitation are described.

1.5.1 MIT-MANUS

The first robotic system that was clinically tested was the MIT-Manus; a
two degree-of-freedom robot manipulator that assist patients by tabletop arm
movements. The MIT-MANUS is a planar two-joint arm that uses a selective
compliant assembly robot arm (SCARA) configuration. Such configuration
allows the MIT-MANUS performing planar movements with a wide range of
forces to be applied to the arm. The MIT-MANUS assists the patient by
moving the arm across the tabletop as the patient interacts with a virtual
environment. As shown in Fig. 1.1a, the patient moves a cursor into a target
that changes locations on the computer screen. Additional modules have been
developed in order to allow vertical motion, wrist motion, and hand grasping.

The first clinical test consisted in comparing the motor recovery of acute
stroke patients that received additional therapy over the ones that received
the conventional one (Aisen et al., 1997). These patients received additional
robotic therapy for an hour a day, during five days per week; this was con-
ducted for several weeks. This group of patients had a better recovery of
the arm movement ability than the other group, according to clinical scales,
without any increase in adverse effects, such as shoulder pain. The improve-
ments might subjectively be characterized as small, but somewhat meaningful.
These improvements were supported by three-year follow-up. This first study
demonstrated that acute stroke patients, who received extra therapy, recov-
ered in a better way. Further studies confirmed that robotic therapy can also
give benefits to chronic stroke patients (Fasoli et al., 2003).

1.5.2 MIME

The MIME, that stands for Mirror Image Movement Enabler, uses a six-
degree-of-freedom, industrial robot manipulator (PUMA 560) to assist the
movement of the patient’s arm, as shown in Fig. 1.1b. It applies forces

1.5 Robot-assisted arm training devices 7

to the paretic limb through a customized forearm splint. The robot moves
the forearm through a large range of positions and orientations in a three-
dimensional space. A six-axis sensor measures the forces and torques between
the robot and the paretic limb. Several modes of robot-assisted movement
have been implemented with MIME, including passive, active-assisted, and
active-constrained, as well as a bimanual mode (the unimpaired limb assists
the impaired one).

The first clinical tests found out that chronic stroke patients improved
their movement ability compared to the patients who received the conventional
tabletop exercises with an occupational therapist (Lum et al., 2002).

1.5.3 ARM-Guide

The Assisted Rehabilitation and Measurement (ARM) Guide, illustrated in
Fig. 1.1c, measures and applies assisting or resistive forces to linear reaching
movements across a wide workspace. The ARM Guide consists of a hand piece
that is attached to a linear track, and is actuated by a DC servomotor. The
track can be oriented at different yaw and pitch angles to allow reaching-like
operations through different parts of the workspace.

Chronic stroke patients who received assistance with this robot improved
their movement ability (Kahn et al., 2006). However, they improved as much
as the control group that simply practised a matched number of reaches with-
out robotic assistance. This suggests that movement effort is an important
factor for recovery.

1.5.4 Bi-Manu-Track

The Bi-Manu-Track is a 2x1 degree-of-freedom robot that enables hemiparetic
patients to bilaterally practice two different movement cycles: forearm prona-
tion/supination and wrist flexion/extension. The handles of the robot perform
a rocker-like rotary motion in either a mirror image or parallel fashion. Three
different control modes are possible: passive-passive, active-passive (the non
affected limb drives the affected one), and active-active (the affected limb has
to overcome an initial isometric resistance). Amplitude, speed, and resistances
can be set individually. An extensive clinical study confirms the effectiveness
of this device (Hesse et al., 2005).

8 Introduction

(a) (b)

(c) (d)

Figure 1.1: Robot-aided systems: (a) The MIT-MANUS device. (b) The
MIME device. (c) The ARM-GUIDE device. (d) The BI-MANU-TRACK
device.

1.5 Robot-assisted arm training devices 9

1.5.5 Other Devices

Other relevant devices that has been clinically tested are briefly introduced in
these paragraphs.

The GENTLE/s system uses a commercial robot, the HapticMaster, to
assist patient’s movement as the patient interacts with a virtual environment.
The HapticMaster allows four degrees of freedom and achieves a high band-
width of force control using force feedback. Chronic stroke patients who ex-
ercised with GENTLE/s improved their movement ability (Amirabdollahian
et al., 2007).

The Rutgers Master II-ND (ND stands for New Design) Force-Feedback
Glove is a haptic interface designed for dextrous interactions with virtual en-
vironments. The glove provides force feedback up to 16 [N] to each thumb,
index, middle, and ring fingertips. It uses custom pneumatic actuators ar-
ranged in a direct-drive configuration in the palm. This device is used for
helping to extend or flex the fingers, and has been shown to improve hand
movement ability of chronic stroke patients (Merians et al., 2006). Another
device is the CyberGlove which is a fully instrumented glove that provides
up to 22 high-accuracy joint-angle measurements. It uses proprietary resis-
tive bend-sensing technology to accurately transform hand and finger motions
into real-time digital joint-angle data. By integrating both systems, Rutgers
Master II-ND glove and CyberGlove, chronic stroke patients were trained with
virtual reality (Adamovich et al., 2005).

The PHANTOM haptic interface permits touch interactions between a
human operator and virtual or remote (real) environment. The PHANTOM
is a desktop device that provides a force-reflecting interface between a human
operator and a virtual environment on a computer screen, in fact, it measures
the fingertip position and exerts a force on it. A system that integrates an im-
mersive virtual-reality display with the PHANTOM device for rehabilitation
purposes is described in (Patton et al., 2004).

NeReBot is a three-DOF wire-based robot that can slowly move the arm
of a post stroke patient. Acute stroke patients who received additional ther-
apy with the NeReBot recovered significantly better comparing to those who
received just conventional therapy (Masiero et al., 2007). RehaRob uses an
industrial robot arm to move the post-stroke patient’s arm along arbitrary
trajectories (Fazekas et al., 2006).

Several other robotic therapy devices are currently available, for example,
the ARM-In (Nef and Riener, 2005) and Pneu-WREX systems (Wolbrecht
et al., 2006), which are exoskeletons that assist nearly naturalistic movement

10 Introduction

of the arm, achieving a wide range of force control.

1.6 Robotic-assisted telerehabilitation approach

As described before, almost all the robotic devices used for rehabilitation has
been focused on robots that might be attach to the patient’s upper limb. In
fact, these devices are used in a local scenario, where the patient interacts
with virtual manipulation experiments, presented on the computer screen.

Another important consideration deals with the fact that as demand soars,
rehabilitation facilities must keep pace with both, the standards of care and
the unrelenting cost-containment pressures of today’s health care environ-
ment, in which inpatient post stroke stays have been shortened by two-thirds
in the last decade (Ottenbacher et al., 2004). Thus, a health care delivery sys-
tem is now promoting, to a sicker population, inpatient rehabilitation in less
than half the time, and increasingly complementing treatment with outpatient
care. As a consequence, an emerging approach towards remote rehabilitation
is taking place (Carignan and Krebs, 2006). In fact, in these recent years,
remote rehabilitation systems are taking a higher interest due to the multi-
ple applications and advantages it actually has (see Fig. 1.3). Specifically,
robotic-assisted telerehabilitation offers innovative, interactive, and precisely
reproducible therapies that can be performed for an extended duration, and
can be consistently implemented from site to site. Therefore, as the Internet
access is already available in almost every home, the idea of doing remote
rehabilitation is taking a wide consent because it can grant a high possibility
of success. In fact, it can bring medical care program to the patient’s house,
as well as reducing the patient’s hospitalization time and the associated costs.
Nowadays, there are some low cost-complexity systems available that use de-
vices such as force feedback joysticks and steering wheels for bringing medical
care at the patient’s home (Feng and Winters, 2005).

1.6 Robotic-assisted telerehabilitation approach 11

(a) (b)

(c) (d)

Figure 1.2: Other robotic devices used for rehabilitation: (a) The GENTLE/s
device. (b) The Rutgers Master II-ND Glove. (c) The Cyberglove. (d) The
PHANTOM device.

12 Introduction

Figure 1.3: Remote rehabilitation representation.

1For further information, see H.F. Machiel Van der Loos and David J. Reinkensmeyer,
Rehabilitation and Health Care Robotics, in Bruno Siciliano and Oussama Khatib, Springer
Handbook of Robotics, Berlin, Heidelberg, 2008, pp. 1223-1251.

Chapter 2

Haptics

The word haptics, which is believed it comes from the Greek word haptesthai,
means ”related to the sense of touch”. According to the psychology and neuro-
science literature, haptics corresponds to the study of human touch by kines-
thetic and cutaneous receptors, that are associated with perception and manip-
ulation. In the robotics and virtual reality literature, haptics is largely defined
as real and simulated touch interactions between robots, humans, and real,
remote, or simulated environments, in the various combinations.

2.1 Overview

Haptic technology aims at providing touch sensations in human operators. In
order to improve the human operator performance in simulated and teleop-
erated environments, haptic interfaces try to generate a compelling sensation
as close as possible to the one the operator would experience when directly
touching a real environment. Haptic interfaces attempt to replicate touch ex-
perience of manipulating or perceiving a virtual or real environment through
mechatronic devices and computer control.

A haptic interface consists of a haptic device and a control computer with
a software that relates the human operator inputs into haptic information dis-
play. While the low-level design of haptic interfaces varies widely depending on
the application, their operation generally follows the haptic loop illustrated
in Fig. 2.1. First, the haptic device senses an operator input, which may
be a position (and its derivatives), force, muscle activity, etc. Second, the

13

14 Haptics

human operator and haptic device

or

virtual
environment

real (teleoperated)
environment

desired
output

measured
input

Figure 2.1: The haptic loop of a generic haptic interface.

sensed input is applied to a virtual or teleoperated environment. For a vir-
tual environment, the effect of the operator’s input on virtual objects and the
subsequent response to be displayed to the operator are computed based on
models and a haptic rendering algorithm. In teleoperation, a remote manip-
ulator attempts to track the operator’s input. When the remote manipulator
interacts with the real environment, haptic information is measured and sent
back to the actuators in order to reproduce the haptic sensation in the human
operator.

There are many robotic designs that can be used as haptic devices. The
most common are exoskeletons, actuated grippers, parallel and serial manipu-
lators, small-workspace mouse-like devices, and large-workspace devices that
capture whole arm movement.

As human beings integrate kinesthetic and cutaneous information, with

2.2 Human haptics 15

motion and control cues to form haptic perceptions, haptic devices would
ideally include both force and tactile displays. However, this has been rarely
done due to size and weight limitations of the actuators.

2.2 Human haptics

2.2.1 Anatomy and physiology

Inside the human nervous system there are two functions that play an essential
role in generating haptic perceptions: these are kinesthesia and tactile sens-
ing. By one hand, kinesthesia deals with the internal sensing of forces and
displacements inside muscles, tendons, and joints. It is realized by muscle
spindles, which transduce stretch of muscles, and Golgi tendon organs, which
transduce joint rotation, especially at the extremes of motion. In principle,
these and similar receptors could be stimulated directly to produce haptic
sensations. By the other hand, the tactile sensing deals with the sensation of
deformations of the skin. Haptics incorporates both, and is associated with a
manipulating or exploring activity.

2.2.2 Psychophysics

Psychophysics is the field of science that studies the physical capabilities of
the senses. It has been an important source of data for the designing and
developing of haptic devices. Their major contribution refers to methodolo-
gies that haptic researchers have applied in order to determine the required
capabilities that haptic devices might have.

Some of the main psychophysical methods that have been successfully
applied to haptics, include threshold measurement by the method of limits
and adaptive up-down methods.

2.2.3 Psychology: exploratory procedures

The Exploratory Procedures (EP), which are characteristic of human hap-
tic exploration, where defined as stereotyped hand motions (Lederman and
Klatzky, 1987). These are eight (see Fig. 2.2), and the property for which are
optimal are:

1. lateral motion (texture).

2. pressure (hardness).

16 Haptics

EP 1 EP 2 EP 3

EP 4 EP 5 EP 6

Figure 2.2: Six of the eight human exploratory procedures.

3. static contact (temperature).

4. unsupported holding (weight).

5. enclosure (global shape, volume).

6. contour following (exact shape, volume).

7. part motion test (part motion).

8. function testing (specific function).

Each of these exploratory procedures is a bimanual task involving contact
with interior surfaces of the hand, motion of the wrist, various degrees of
freedom of the hand, tactile and temperature sensors in the skin (e.g., EPs
1 and 3), and kinesthetic sensors in the arm (EP 4). A haptic device able
to reproduce all of these exploratory procedures is far beyond today’s state
of the art. However, these results are significant for the designing, since they
allow to deduce the requirements for the device.

2.3 Haptic devices

A haptic device is a manipulator with sensors and actuators, designed for
reproducing the sense of touch in a human operator from a virtual or remote

2.3 Haptic devices 17

environment. It can only represent a point-based contact, usually the three X-
Y-Z directions, sometimes also the rotational torque. When interfaced with
a virtual world, the end-effector position of the device is associated in the
virtual environment to the so-called avatar, which is represented by a little
ball (or any other virtual object).

2.3.1 Control architecture

Haptic devices can be classified as impedance and admittance devices, de-
pending on their control architecture.

� Impedance control: The operator moves the device, and the device ap-
plies a force vector to the operator according to the computed behavior
of the simulated object or surface. The paradigm is this: ”displacement
in - force out”.

� Admittance control: The device measures the forces that the opera-
tor exerts on it, reacting with the corresponding motion (acceleration,
velocity, position). The paradigm is: ”force in - displacement out”.

Admittance control and impedance control are dual. What is difficult to
implement for one, is easy for the other, and viceversa. In fact, a haptic
device of impedance type is back-drivable, have low friction and inertia, and
have force-source actuators. A commonly used impedance haptic device is the
PHANTOM. Instead, a haptic device of admittance type is non-back-drivable
and have velocity-source actuators. The velocity is controlled with a high-
bandwidth low-level controller, and is assumed to be independent of applied
external forces. The HapticMaster device operates under admittance control.

Choosing an admittance or an impedance control architecture determines
the design of the device, and consequently the controlling architecture. An
important amount of haptic devices implements impedance control today, be-
cause of the their low cost.

2.3.2 Mechanisms

An important issue on creating high-fidelity haptic sensation in the opera-
tor side is represented by the design of the mechanism to be used by the
haptic device. The main requirements of the mechanism for an impedance
haptic device are low inertia, high stiffness, and good kinematic conditioning
throughout the workspace. Such workspace must be designed to effectively

18 Haptics

match the appropriate human limb, basically the finger or arm. The weight
of the mechanism should be minimized, as it is perceived by the operator as
weight and inertia of the virtual or teleoperated environment. Kinematic sin-
gularities should be avoided as they are harmful to haptic interfaces because
they create directions in space in which the end-effector cannot be moved; this
phenomenon usually generates disturbances on the illusion of haptic contact
with virtual objects. High transmission ratios must be avoided as they intro-
duce high levels of friction. This constraint requires haptic interfaces to make
high demands on actuator performance.

An ideal haptic device can move freely in any direction while the singu-
lar configurations and their operating effects around the neighborhood are
avoided. Usually, the kinematic performance of a haptic device is derived
from the mechanism’s Jacobian matrix. There are three well-known methods
that measure such performance:

� Manipulability (Yoshikawa, 1985): which corresponds to the product of
the singular values of the mechanism’s Jacobian matrix.

� Mechanism isotropy (Salisbury and Craig, 1982): determining the ratio
between the minimum and the maximum singular values of the mecha-
nism’s Jacobian matrix.

� Minimum force output (Buttolo and Hannaford, 1995): maximizing the
force output in the worst direction.

What defines the workspace of a haptic device is the matching between
its workspace and the one of the targeted human limb workspace, which can
be determined by using anthropometric data. The performance goals, such as
low inertia and avoidance of kinematic singularities, must be formalized into
a quantitative performance measure that can be computed for any candidate
design. In fact, the following aspects must be taken into account:

� Uniformity of kinematic conditioning throughout the target workspace.

� Favoring designs with lower inertia.

� Guaranteeing that the target workspace is reachable.

These aspects operate in a single point in the space and thus must be inte-
grated over the entire workspace to give a qualitative evaluation of a proposed
haptic device design.

2.4 Haptic rendering in virtual environments 19

2.3.3 Sensing

The state of a haptic device can be measured by sensors. This state can
be modified by the operator’s applied position/force, the haptic control law,
and/or device and environment dynamics. The operator’s input is sensed as
an applied position or an applied force.

Encoders are used as position sensors on the joints of the haptic devices.
Many haptic applications, such as the rendering of virtual environments with
damping, require velocity measurement. Velocity is typically obtained by
numerical differentiation of the sensed position.

Force sensors, such as strain gauges and/or load cells, are used to measure
the operator’s applied force. This type of sensors are used by admittance-
controlled haptic devices. However, these sensors are also used by impedance-
controlled devices as a mechanism for canceling undesirable friction or other
forms of disturbances.

2.3.4 Actuators and mechanical transmission

The performance of a haptic device depends strongly on the actuator prop-
erties and the mechanical transmission between the actuator and the haptic
interaction point. In fact, the main requirements for actuators and mechanical
transmission for impedance-type haptic devices are: low inertia, low friction,
low torque ripple, back-driveability, and low backlash. In addition, if the de-
sign is such that the actuator itself moves as the user’s position changes, a
higher power-to-weight ratio is desired.

Although closed-loop force control has been used for haptic display in
impedance devices, most often the mechanism is designed to have sufficiently
low friction and inertia so that open-loop force control is accurate enough.

2.4 Haptic rendering in virtual environments

Haptic rendering in impedance devices is the process of computing and gener-
ating the forces that are fed back due to the operator’s interaction with virtual
objects.

An important property of haptic systems is that their timing constraints
are quite severe. In fact, tactile receptors in the fingers of human beings are
known to respond up to 10 [kHz] (Shimoga, 1993), while audio range of fre-
quencies are up to 20 [kHz]. In order to reproduce either the haptic sensation
or the audio response of a hard contact simulation, at least a sampling rate

20 Haptics

joint
sensors

forward
kinematics

τ = JT factuation

haptic
device

virtual environment

θ

f

τ

i

1 2

67

3 4 5

x, ẋ

Figure 2.3: Schematic representation of the haptic rendering loop.

of 25 [µs] are needed. Haptic devices do not have this kind of bandwidth, and
that such high fidelity is not usually needed. In fact, a common sampling rate
in haptic simulation is 1 [kHz]. This sampling rate guarantees stability and
realism. The haptic rendering cycle for an impedance-type haptic interface is
represented in Fig. 2.3, and it has basically seven steps:

1. Position sensing: Rotary optical quadrature encoders are usually used
as position sensors. They are often integrated inside rotary motors, that
are used as actuators.

2. Forward kinematics: The measurements of position and velocity are typ-
ically represented in the joint space. However, these must be converted
into the Cartesian space using the forward kinematics and the Jacobian
matrix of the model.

3. Collision detection: In case of contact with virtual objects, the colli-
sion detection software detects collisions between a virtual object and
the haptic interaction point (HIP). Actually, this interaction determines
whether the HIP is penetrating or is inside the object surface. Object

2.4 Haptic rendering in virtual environments 21

surfaces are usually represented by geometric models such as polygons
or splines. Hence, if the HIP is found to be outside all objects, then the
force that is returned by the software is zero. The speed of computation
of the collision detection software is paramount for haptic applications;
however, the worst-case speed, as opposed to the average speed, is what
count most in order to recreate a more realistic situation. Generally,
solutions that evaluate collision in constant time are preferred.

4. Surface point determination: If the HIP is inside a surface, then the
haptic force must be computed. Many researchers have used the idea of
a virtual spring connecting the HIP to the nearest point on the surface,
usually called intermediate haptic interaction point (IHIP), as a model of
interpenetration and force generation (Zilles and Salisbury, 1995). How-
ever, all these researchers realized that the closest surface point is not
always the most faithful model for representing the contact. Hence, con-
sidering the situation illustrated in Fig. 2.5, as the HIP moves laterally
below the top surface of the cube, eventually it becomes close enough to
the edge that the closest surface point becomes the side of the cube (at
position P4). In this situation, the algorithm needs a memory element
in order to keep the IHIP on the top surface and generate an upward
force at all times, otherwise the operator is suddenly ejected out the side
of the cube.

5. Force response: Force is usually computed by using the spring model,
as described in Eq. 2.1,

f = kx (2.1)

where x is the vector from the HIP to the IHIP, and k the stiffness.
When k is sufficiently large, the object surface becomes a virtual wall
perpendicular to x, creating an impedance surface. This basic inter-
action is the basis of most haptic virtual environments. However, the
pure stiffness model can be augmented to provide other effects, by using
the virtual coupling. Damping effects can be added as well. Coulomb
friction and/or other forms of nonlinearities may be displayed parallel
to the surface too. In order to provide a more realistic representation
of hard surfaces, vibrations can also be added in an open loop at the
moment of collision. For example, by adding damping effects, the force
rendering model becomes as described in Eq. 2.2, and illustrated in Fig.
2.4

22 Haptics

k

b

Free space

Virtual wall

Ideal avatar position

Real avatar position

force response

f

X

Y

Figure 2.4: Interaction between the avatar and the virtual object surface,
generating a reaction force f .

f =

{
0 if x > xw

kx+ bẋ if x ≤ xw (2.2)

where xw is the position of the virtual wall. Similarly, this interaction
can be applied in a two-DOF interaction, three-DOF interaction or more.

6. Kinematics and Jacobian matrix: The force response calculated in the
Cartesian space must then be reported into torques in the joint space.
This can be done by the transpose of the haptic device Jacobian matrix,
as shown in Eq. 2.3,

τ = JT f (2.3)

where τ is the torque command to the actuators, f is the desired force
vector, and JT is the transpose Jacobian matrix of the haptic device.

7. Actuation: Current amplifiers are typically used to create a direct rela-
tionship between the voltage output by the computer via a digital-to-
analog (D/A) converter and the torque output by the motor. The effect
of actuator and amplifier dynamics and D/A resolution on system stabil-
ity is typically negligible in comparison to position sensor resolution and
sampling rate for most haptic devices. Actuator or amplifier saturation
can produce undesirable behavior, particularly in multi-degree-of free-
dom haptic devices where a single saturated motor torque may change
the apparent geometry of virtual objects. The force vector, and thus

2.4 Haptic rendering in virtual environments 23

F1
F2

F3
F4

F4

P0

P1 P2 P3 P4

correct

incorrect

avatar trajectory

virtual object

Figure 2.5: Haptic rendering computation of the contact force. HIP are shown
at times 1− 4 (solid circles, P0−P4). IHIP are shown when the HIP is inside
the object (open circles).

the corresponding actuator torques, must be scaled appropriately if any
actuator is saturated.

It is important to note that haptic rendering on dynamic objects carries
out further complexity in terms of computational load. A real time haptic
interaction with 3D objects that translate and rotate becomes computationally
intensive as the objects collide among each other, as well as with the avatar. In
this case, dynamic equations have to be solved (using a numerical integration
method, such as Euler integration) and the state of each object has to be
updated at every sampling time (see. Fig. 2.6). The methods that are used
to calculate forces and torques, are based on the principles of rigid body
dynamics (Baraff, 1994) and impulse mechanics (Mirtich and Canny, 1995)
for the graphical simulation of floating multiple objects.

As the position and orientation of the virtual objects change at every
sampling time, the updated coordinates (visual and haptics) of the virtual
objects should be used to detect collisions with the new coordinates of the
HIP. However, it would be computationally too expensive to update the object
database at every sampling time in order to detect collisions with the new
HIP (see Fig. 2.6b). A better strategy, in terms of computational load,
is to compute everything relative to the original coordinates and apply the
effects of transformation later, i.e. the HIP is multiplied by the inverse of the
transformation matrix and the collisions are detected by the original haptic
coordinates. Then, the reaction force is computed related to the original
coordinates and then multiplied by the transformation matrix (see Fig. 2.6c).
Therefore, only the visual coordinates are updated at every sampling time,

24 Haptics

and the haptic coordinates of the object are not required to be updated at
each iteration, when the object is transformed into a new state.

For static objects though, this complexity is more relaxed, since there are
no dynamics to be calculated at every time step.

2.5 Control and stability in haptic interfaces

The haptic rendering cycle described in Fig. 2.3 is a closed-loop dynamical
system. Rendering realistic contact forces, and maintaining a stable behav-
ior of human-environment contact is still very challenging. The evidences of
instability in haptic interfaces are buzzing, bouncing, or even diverging behav-
ior. Empirically, instability is frequently encountered when developing haptic
interfaces with virtual objects characterized by high stiffness, but this insta-
bility can be eliminated by reducing the stiffness of the virtual object or by
the operator (by a firmer holding of the haptic device).

Although linear theory is very limited to treat this problem, it can be
useful to compute a basic study by analyzing the factors affecting instability.
A simplified model of an impedance device is shown in Fig. 2.7.

G1(s) and G2(s) represent dynamics of the haptic device for both opera-
tor position sensing and force display, respectively. Assume that the virtual
environment (VE) and human operator (HO) can each be represented by a
linear impedance such as:

ZV E =
FV E

XV E
(2.4)

ZHO =
FHO

XHO
(2.5)

Then the loop gain of the closed-loop system from the human operator
and back again is:

Gl(s) = G1(s)G2(s)
ZV E

ZHO
(2.6)

Stability in the classical sense is assessed by applying the magnitude and
phase criteria of Nyquist to Gl(s). Increasing ZV E (corresponding to stiffer or
heavier virtual objects) increases the magnitude of Gl(s) and thus destabilizes
the system while a firmer hold by the human operator, which increases the
magnitude of ZHO, has a stabilizing effect. Similar arguments apply to phase
shifts that might be present in any part of the system.

2.5 Control and stability in haptic interfaces 25

−→r

1

−→
f total

2

HIP

IHIP

−→
f 2

T3x3

Y

X

(a)

1

2

−→
f 2

T

H2 = H1T
V2 = V1T

(b)

2

−→
f 2

T−1

H2 = H1T
V2 = V1T

1

−→
f 1

Y

X

−−−−→
(HIP)T−1

−→
f2 =

−→
f1T

(c)

Figure 2.6: Point-based haptic interaction model by floating rigid object in
virtual environments. (a) T3x3 represents the transformation matrix, f2 rep-
resents the force at the fingertip. H and V represent the haptic and visual
coordinates of the object, respectively. (b) Haptic and visual rendering are
updated and collisions are detected using the new haptic coordinates. (c)
Only visual coordinates are updated. Reaction force is computed related to
the original coordinates using the transformation matrix T.

26 Haptics

G1(s)

G2(s)

ZV EZ−1
HO

XHO XV E

XHO XV E

Figure 2.7: Simplified linear model of haptic rendering in an impedance device.

A second feature is the digital implementation, which introduces sampling
and quantization, both of which have significant effects on stability. Ana-
lyzing a virtual wall of impedance, as represented in Eq. 2.7, (Colgate and
Brown, 1994) analytically demonstrated an important relationship among the
maximum stiffness a device can render, the level of mechanical damping of
the device, the level of damping of the virtual wall, and the sampling time
used for controlling the device.

H(z) = K +B
z − 1

Tz
(2.7)

Specifically, they derived the following condition for passivity of the device,
as shown in Eq. 2.8,

b >
KT

2
+B (2.8)

Therefore, in order to have a stable interaction, the damping of the haptic
device b should always be higher than the sum of the level of damping of the
virtual wall B and the product KT

2 ; where K is the stiffness to be rendered
by the device and T the sampling period. Stiffer walls tend to become un-
stable for higher sampling periods, resulting in high-frequency vibrations and
possibly elevate (and uncontrollable) forces. Increasing the level of mechan-
ical damping featured by the device can limit instability, even though this
limits the device’s capabilities of simulating null impedance for free move-
ment. Therefore, sampling time is a key issue in guaranteeing a stable haptic
interaction.

2For further information see Blake Hannaford and Allison M. Okamura, Haptics, in Bruno
Siciliano and Oussama Khatib, Springer Handbook of Robotics, Berlin, Heidelberg, 2008, pp.
719-739.

Chapter 3

Virtual reality based
rehabilitation

For a post-stroke patient, the use of haptic based therapy highly contributes in
regaining the mobility that was lost. Meanwhile, for operational therapists and
doctors, this type of computer-based system is an efficient measurement tool,
in which the most relevant parameters for finger and hand rehabilitation (e.g.
position, velocity, acceleration and jerk) are accurately evaluated, determining
the progresses achieved by the patient. As a result, the use of haptic interfaces
has the potential to rehabilitate and help stroke survivors to relearn skills that
were lost when part of the brain was damaged.

3.1 Overview

Virtual reality based rehabilitation is conceived as the interaction between a
haptic device, which consist of a specific manipulator, and a virtual environ-
ment. Indeed, a haptic interface enables the patient to move and to interact
with virtual objects inside a virtual space, hence a correspondence between
the end-effecter of the haptic display and a virtual object (avatar) inside the
virtual world is verified. This virtual object (avatar), interacts with other
virtual objects (only static objects) under a visco-elastic behavior. As a VR-
based application for rehabilitation, static objects are enough for representing
the virtual environment. The interaction force depends on the ”penetration”
the avatar performs on the other virtual objects. Due to this interaction, the

27

28 Virtual reality based rehabilitation

post-stroke patient, receives a force feedback as a response. This allows the
patient to interact with different types of objects, which may have different
kind of properties.

The implementation of a haptic interface for rehabilitative applications
often implies the design of custom devices, which requires the development
of specific HW interfaces and kinematic and dynamic models. Clearly, this
situation (besides of being very time consuming) carries out the problem of
the lack of flexibility, which is highly desirable since patients may have dif-
ferent motor learning perspectives, and so they may require different types of
exercises, and therefore devices for their rehabilitation.

In order to ease the design and testing of different devices, which may
eventually have such differences in kinematics, sensing, and actuating sys-
tems, we implemented a general framework completely developed inside Mat-
lab/Simulink, in such a way that any modification of the hardware is accom-
plished by simply modifications of the corresponding S-functions. In this way,
we can guarantee a hardware independent solution for rehabilitative purposes.

We propose here two types of virtual reality haptic interfaces. One haptic
device uses a five-bar linkage mechanism, while the other uses two linear
ball slides, connected by two flexible transmissions to the linear motors for
transmitting the linear motion.

3.2 Description of the general framework

Usually, the haptic interface consists of a computer (e.g. a PC), a virtual
reality engine, a data acquisition board, motor drivers and a mechanism that
constitutes the manipulated part of the haptic device. As shown in Fig. 3.1,
the positions (usually joint angles) of the haptic device are acquired via data
acquisition board and converted into real world coordinates of the end effector,
using the forward kinematic model. Such coordinates are then passed to the
VR engine, which is in charge of displaying the exercises on the computer
screen and computing the interaction force between the avatar and the virtual
objects. The computed force is then converted into force/torque references to
the actuators, using the Jacobian matrix.

Each block of Fig. 3.1, except the haptic/graphic rendering of the virtual
world, has an S-function associated with it. Therefore, from a constructive
point of view, this application grants great flexibility, since any change in the
mechanical or electrical hardware requires only a minor modification of the
related S-functions, while the control algorithm remains the same. Indeed,

3.2 Description of the general framework 29

DEV ICE

HAPTIC

WriteDAC ReadEncoder

Haptic/Graphic
rendering of the
virtual world

JT
interacting forceactuator force/torquevolt

analysis

G

Kinematic
cartesian/joint position cartesian position

Figure 3.1: General framework architecture.

the only situations in which you need to implement some modifications are
when the number of DOFs of the system are changed, or when the type of
actuator (linear or rotating) is changed or when there is a modification in the
type of sensors (cartesian or joint position). Therefore, the general framework
approach is always the same, the only changes are inside the S-function kernels
that are function of the mechanical and electrical hardware configuration.

The only invariant part of the general framework is the VR engine, which
can be selected among many existing others. For our implementation, we chose
Handshake proSENSE Toolbox for haptic and graphic rendering (Handshake
VR Inc., 2006). In a nutshell, the Handshake proSENSE Toolbox adds haptic
rendering to standard VRML based environments. As a MATLAB/Simulink
based product, it works in a drag-and-drop fashion, thus allowing even un-
trained users (e.g. doctors and therapists) to quickly develop and test models,
and to do on-the-fly modifications on both, virtual environment and exercises,
depending on the requirements and performances of the patient.

Such general purpose framework guarantees a fast and easy implemen-
tation for different types of devices, which must handle the corresponding
settings and configurations that depend on the type of therapies, which are
personally oriented.

In the following, we describe the proposed architecture, which is repre-
sented by the block diagram in Fig. 3.1.

3.2.1 Data acquisition board interface

All data acquisition cards come along with a software development kit (SDK),
which includes several source-code modules written in C/C++, as well as dy-

30 Virtual reality based rehabilitation

namic link libraries (DLL), import libraries (LIB) and utility files. These set
of libraries and executable software modules are designed to help the devel-
opment of application programs. In standard programming, the application
SDK can be used to implement a real-time interface to the data acquisition
board within Matlab/Simulink, using the S-function (user-defined function)
(The MathWorks Inc., 2005). An S-function describes a dynamical system, in
which the characteristic code can be written in C language.

A specific S-function must be created in order to achieve a real-time com-
munication with the acquisition board, reading the signal from the encoders
and writing the command signal into the DAC channels. The S-function
programming procedure has the same constructive method for any data ac-
quisition board.

3.2.2 Kinematic model and transposed Jacobian

When a haptic display uses rotating motors, the reaction force must be con-
verted into a torque command that is transmitted to the motors. This trans-
formation is possible using the transpose jacobian matrix of the mechanism
that defines the haptic device. The kinematic analysis and the transpose
jacobian matrix can also be implemented inside an S-function. Then, the pro-
cedure to create an S-function that implements the forward kinematic model
or the transposed Jacobian is much more simpler than the one used for the
I/O board communication.

3.2.3 Virtual world

In the proposed architecture, the Handshake proSENSE Toolbox, which is a
Matlab/Simulink based product, was chosen for the graphic and haptic ren-
dering of the virtual world. This toolbox adds several haptic properties, such
as stiffness, damping and friction, into standard VRML files, which represents
the developed virtual environment. In fact, once a VRML file is loaded, the
user can specify and select fields as input ports.

3.3 Five-bar linkage haptic interface

We developed a haptic interface for finger/hand rehabilitation, integrated in a
general purpose framework, which provides haptic and graphic rendering, and
in which it is also implemented the control algorithm of the five-bar linkage

3.3 Five-bar linkage haptic interface 31

Figure 3.2: Haptic interface setup. The setup considers a PC with a control
algorithm, a VR environment with graphic and haptic rendering, and a five-
bar linkage mechanism with finger holder.

mechanism, as well as the external communication with the actuators; these
features guarantee a real-time system.

The haptic interface consists of a PC running Microsoft Operating Sys-
tem (Windows XP), with a data acquisition card (Sensoray Model 626 PCI
Multifunction I/O Board) that provides the interface to a five-bar linkage hap-
tic device, moved by two AC brushless servo motors (Mavilor Motors Model
BLS-74) with the relative motor drivers (Infranor CD1-a). The setup and
the prototype are shown in Fig. 3.2. The software for controlling the hap-
tic interface was completely developed within Matlab/Simulink as a real-time
application. The external communication to the acquisition board was im-
plemented as an S-function, as well as the kinematic analysis for solving the
mechanism, and the calculation of the transpose jacobian matrix. The vi-
sual and haptic feedback were implemented using the Handshake proSENSE
Toolbox (for details, see Appendix A).

32 Virtual reality based rehabilitation

Figure 3.3: Planar skeletal model of the human finger.

Finger Joint Angular Motion Range (Degrees) Link Sizes (mm)

MCP −90 ≤ θ1 ≤ 45 48.3

PIP −120 ≤ θ2 ≤ 0 28.2

DIP −90 ≤ θ3 ≤ 50 19.1

Table 3.1: Finger joint motion ranges.

3.3.1 Biomechanical considerations for the design

The considerations for the design of the haptic device are focused on the
implementation of a single finger haptic display, in which the force is exerted
at the fingertip. Hence, we need to take into account all possible movements
of each articulation that belongs to the finger, and of course, the reachable
workspace of the finger itself. Consequently, this workspace must fit inside
the workspace of the haptic interface.

The design is based on a male index finger (see Fig. 3.3). We have consid-
ered the average dimensions of the finger and a set of admissible movements
(Table 3.1). This information was derived from literature and based on sta-
tistical data (Venema and Hannaford, 2001).

Under normal conditions, which means that the finger’s motion is without
obstacles and/or any load applied on it, the reachable workspace of a single
finger is represented by Fig. 3.4. To cover such workspace, we have designed
a five-bar linkage mechanism.

3.3.2 Design of the haptic device

A haptic device, suitable for finger/hand exercise rehabilitation was developed.
The chosen mechanism was a five-bar linkage, in which one bar is fixed to the
frame, and the two cranks, fixed to the frame, are considered the moving

3.3 Five-bar linkage haptic interface 33

−50 0 50 100
−100

−50

0

50

80

X−axis [mm]
Y

−
a

x
is

 [
m

m
]

Figure 3.4: Reachable workspace of an average male’s index finger.

members, as shown in Fig. 3.5. The proposed mechanism has two active
DOF and three passive DOF (rotations) at the fingertip. In this particular
case, joint P1 and joint P4 are driven by AC brushless motors, in which the
maximum torque available is 3.4 [N-m], that corresponds to a force of 20 [N]
at the fingertip. Each motor has an incremental encoder with a resolution of
32768 pulses per revolution, for which the manipulator position resolution is
0.022 [mm].

The design of the proposed mechanism was based on these three factors:

� The haptic device workspace must cover the whole reachable workspace
of an average male’s index finger.

� Low inertia.

� High performance.

The performance analysis is based on the evaluation of the mechanism
isotropy (ISO), defined as follows:

µ =
σmin(J(θ))

σmax(J(θ))
(3.1)

where σmin and σmax are the minimum and maximum singular value decom-
position values of the jacobian matrix J(θ) that describes the five-bar linkage
mechanism, respectively. The mechanism isotropy is a function of the joint an-
gles θ and the value goes from 0 to 1. An ISO value of 0 means the mechanism
is in a singular configuration. A typical singular configuration of the five-bar

34 Virtual reality based rehabilitation

θ1

L3

X

Y

P1(x1, y1) P4(x4, y4)

Pef (xef , yef)

β

α P3(x3, y3)

L4

L2

L1

θ3θ2

P2(x2, y2)

L23

ε

θ4L5

Figure 3.5: Five bar linkage mechanism.

mechanism is obtained when the links are fully stretched. An ISO value of
1 means maximum performance, which also means that the mechanism can
move equally well in all directions.

To achieve these requirements we have implemented an optimization pro-
cedure, using a non-linear programming algorithm, in which the link lengths
were determined by maximizing the mechanism isotropy and by finding the
best fitting between the average male’s index finger workspace and the haptic
device workspace.

In fact, the optimization algorithm searches the best solution in order to fit
the workspace of Fig. 3.4 inside the reachable workspace of the mechanism,
as shown in Fig. 3.6, maintaining a high level of ISO. These results are
reported in Table 3.2. Note that ISO is always high (0.4 minimum) in the
whole workspace.

3.3.2.1 Kinematic model and jacobian matrix

Forward kinematic analysis has to be done, in order to determine the end-
effector position of the mechanism (Spong and Vidyasagar, 1989). The angular
positions, θ1 and θ4, are known parameters because they can be read from the
encoders that come with the AC brushless motors. The end-effector position
of the haptic device is determined with respect to the origin of the XY axis,

3.3 Five-bar linkage haptic interface 35

Joint Length [mm]

L1 140

L2 180

L3 180

L4 140

L5 70

Table 3.2: Link lengths of the optimized mechanism.

−150 −100 −50 0 50 100 150 200
−350

−300

−250

−200

−150

−100

−50

0

0.34302
0.41542

0.41542

0.48781

0.48781

0.56021

0.56021
0.56021

0.6326 0.6326

0.6326

0.6326

0.705 0.705

0.705
0.705

0.7774
0.7774

0.7774

0.7774

0.84979
0.84979

0.84979

0.84979

0.92219
0.92219 0.92219

0.92219

0.92219

X−axis [mm]

Y
−

a
x
is

 [
m

m
]

Figure 3.6: Reachable finger workspace, five bar linkage workspace and ISO
values.

36 Virtual reality based rehabilitation

that is placed in P1. Forward kinematics, as well as force analysis are based
on Fig. 3.5, where L1, L2, L3, L4, L5 and θ1, θ2, θ3, θ4 represent the link
lengths of the manipulator and the joint angles, respectively. The cartesian
position P (xef , yef) of the end-effector of the device,

xef = L1 · cos(θ1) + L2 · cos(θ2) (3.2)

yef = L1 · sin(θ1) + L2 · sin(θ2) (3.3)

The jacobian matrix of the mechanism is defined:

J(θ) =

[
a11 a12
a21 a22

]
(3.4)

Notice that θ = [θ1, θ2, θ3, θ4]
T .

a11 = −1

2
· L1 · (cos(−θ2 + θ1 − θ3)− cos(−θ2 + θ1 + θ3))

sin(θ2 − θ3)
(3.5)

a12 =
1

2
· L4 · (cos(θ2 + θ3 − θ4)− cos(θ2 − θ3 + θ4))

sin(θ2 − θ3)
(3.6)

a21 =
1

2
· L1 · (sin(−θ2 + θ1 − θ3) + sin(−θ2 + θ1 + θ3))

sin(θ2 − θ3)
(3.7)

a22 = −1

2
· L4 · (sin(θ2 − θ3 + θ4)− sin(θ2 + θ3 − θ4))

sin(θ2 − θ3)
(3.8)

Once the mechanism is defined, it is necessary to obtain a relationship
that links the applied force at the fingertip and the equivalent torque of the
electric motors. The relationship is expressed through the transpose Jacobian
of the mechanism:

τF = JT (θ) · F (3.9)

where F represents the generalized forces exerted on the end-effector, and τF
represents the torques exerted by the actuators in the joints.

If we consider that the mechanism is going to be used in a vertical plane,
so it is necessary to determine the equivalent torques in order to compensate
the effects of gravity. Therefore, if we take into account both, the generated
forces at the fingertip, and the forces due to the weight, we have that the
generated torques transmitted to the motors can be expressed as:

3.3 Five-bar linkage haptic interface 37

θ1 P (xef , yef)

θ4

τ1

τ4

τgc

τF

V4

V1
G

Virtual WorldHaptic Device

F
τ Gravity Compensation

Forward

Kinematics

η(θ)

θ

JT (θ)+
++

τpert

Uin

G

User defined input

Post-processing

workspace

+

P
c

Path perturbation

V (xef , yef)

z−
1

T
s
z

Figure 3.7: Control diagram of the haptic device and the virtual environment.

τ = JT (θ) · F + η(θ) (3.10)

where η(θ) represents the gravity compensation.

3.3.2.2 Control diagram for the haptic interface

An open loop impedance control was used for the proposed five-bar link-
age mechanism. The input in the physical model of the virtual world is the
end-effector position of the device, expressed as a cartesian position, and the
output is the reaction force. The control scheme is described in Fig. 3.7.

As the position of the end-effector is known, the physical model algorithm
detects a collision with a virtual object. Depending on the properties of the
object, the algorithm determines the reaction force. The calculated force is
then converted to motor torque through the transpose Jacobian matrix (Eq.
3.9) and then the contribution of the gravity compensation is added (Eq.
3.10).

The torque gain G is used to convert the signal into volt. A saturation
block bounds it, preventing higher exertion forces, and avoiding any possible
injury.

38 Virtual reality based rehabilitation

preassure sensitive safety edges

Figure 3.8: Pressure sensitive safety edges.

3.3.2.3 Safety features

Saturation blocks can be used for safety, but only as a software solution. This,
however, not always guarantee safety. Hence, a hardware solution is needed
in order to achieve safety. That’s why we have implemented this haptic device
with a pressure sensitive safety edges along the moving bars of the mechanism
(see Fig. 3.8). Using this hardware solution we guarantee the safety of the
patient when unexpected higher forces occur, and/or when the mechanism
may have unexpected behaviors.

3.3.3 Rehabilitation program

This rehabilitation program tries to evaluate the motion performance in two
patients, each one of them with different pathologies; one with a stroke and
the other one with a musculoskeletal problem. The kinematic evaluation was

3.3 Five-bar linkage haptic interface 39

performed by using the same haptic device, while the clinical evaluation was
conducted by using the following functional assessment scales; Fugl-Meyer
(Fugl-Meyer et al., 1975), Box and Block Test (BBT) (Mathiowetz et al.,
1985a), and Jebsen-Taylor Test (Jebsen et al., 1969) for the post-stroke pa-
tient, while for the patient with musculoskeletal disorders, the Fugl-Meyer and
the Nine Hole Peg Test (NHPT) (Mathiowetz et al., 1985b). With this reha-
bilitation program we have evaluated the motion performance of two patients,
one with a stroke and the other with a musculoskeletal problem. Hence, we
propose two different exercises, applied on each patient, by using the same
haptic device.

The main scope of the device described above is to rehabilitate the func-
tionality of the finger (see Fig. 3.10a). However, this can be adapted into
a device for hand rehabilitation, since for a post-stroke patient it is more
suitable to rehabilitate first the hand and then the fingers. Then, for hand
rehabilitation, instead of using a finger holder as an end-effector, we have re-
placed it by a hand holder, attached to the end-effector of the five-bar linkage
mechanism by a spherical passive joint (see Fig. 3.10b). The latter allows
the three rotations around a pivotal point at the end effector and, in turn,
the movements of the patient’s hand (see Fig. 3.11). As a result, the hap-
tic device with finger holder was used by the patient with a musculoskeletal
problem, while the patient with stroke used the same haptic device but with
hand holder.

During this rehabilitation program, the two patients were asked to perform
two tasks. In the first one, these two patients were asked to compute a reaching
operation between two spheres, and in the second one, to follow a 8-shaped
predefined trajectory. All these two tasks were carried out inside a certain
tolerance, in vertical and horizontal arrangement. For the reaching operation
the chosen tolerance was equal to 0.03 [m], and for the 8-shaped predefined
trajectory was equal to 0.014 [m]. These patients were under virtual reality
based therapy for twenty sessions during three weeks.

The virtual environment used in this rehabilitation program was developed
in V-Realm Builder 2.0. The VRML file that represents the virtual world
is loaded in the HVR World block (Handshake proSENSE Toolbox). This
function provides haptic and graphic rendering to the model. A spring-damper
model was used to describe the haptic properties of the virtual objects in the
virtual environment. The yellow and green sphere, shown in Fig. 3.12, have
haptic properties, as well as the semi-transparent gray tube.

Perturbing the patient’s path makes this kind of exercise effective (Shad-

40 Virtual reality based rehabilitation

Vx

Fy

Figure 3.9: Orthogonal perturbation on the patient’s path.

mehr and Mussa-ivaldi, 1994). In fact, this perturbation is performed as a
force, proportional to the end-effector velocity exerted by the patient. This
perturbation is applied orthogonally to the patient’s movement, affecting their
actual path (see Fig. 3.9).

In order to test the motion characteristics and evaluate the progresses of
the two patients, we have evaluated the position error and the jerk. Actually,
jerk is considered a useful data, as it measures the patient’s strain (Rohrer
et al., 2002). We report the pre-training and the post-training results.

3.3.4 Kinematic and clinical evaluation

The kinematic evaluation was based on the percent variation of the position
error and jerk, while the clinical evaluation was based on functional assessment
scales, such as Fugl-Meyer, BBT and Jebsen-Taylor test.

3.3.4.1 Patient with musculoskeletal disease

We report here the kinematic results of the reaching operation and the 8-
shaped predefined trajectory in horizontal arrangement. However, these ex-
ercises were also computed in vertical and sagittal arrangement. We report
in Table 3.5 the clinical results after the complete VR-based rehabilitation
program. The values of jerk reported in Table 3.3 and Table 3.4, for pre and
post training, are taken by computing the mean value between the root mean
square value of jerk in X-axis and Y-axis, respectively.

3.3 Five-bar linkage haptic interface 41

(a) (b)

Figure 3.10: Haptic device for finger/hand rehabilitation. (a) Finger rehabil-
itation. (b) Hand rehabilitation.

(a) (b)

(c) (d)

Figure 3.11: Possible movements for hand rehabilitation: (a) Extension. (b)
Flexion. (c) Radial deviation. (d) Ulnar deviation.

42 Virtual reality based rehabilitation

(a) (b)

Figure 3.12: Virtual environment for the two proposed exercises: (a) Vertical
arrangement. (b) Horizontal arrangement.

Evaluating parameter Pre Post Percent Variation [%]

Position Error - RMS [m] 0.0124 0.004 -67.74

Jerk - RMS [m/s3] 0.137 0.132 -3.65

Table 3.3: Reaching operation results in horizontal arrangement.

Evaluating parameter Pre Post Percent Variation [%]

Position Error - RMS [m] 0.0027 0.0015 -44.44

Jerk - RMS [m/s3] 0.1013 0.0865 -14.61

Table 3.4: 8-shaped predefined trajectory results in horizontal arrangement.

Functional Scale Initial Evaluation Final Evaluation

Fugl-Meyer 56/66 56/66

Nine hole peg test 18 [s] 18 [s]

Table 3.5: Clinical evaluation of the patient with musculoskeletal disease.

3.3 Five-bar linkage haptic interface 43

−0.1 −0.05 0 0.05 0.1
−0.05

−0.025

0

0.025

0.05

X [m]

Y
 [

m
]

0 20 40 60
−0.1

−0.05

0

0.05

0.1

time [s]

v
e
lo

c
it
y
 [

m
/s

]

X

Y

0 20 40 60
−0.2

−0.1

0

0.1

0.2

time [s]

a
c
c
e

le
ra

ti
o
n

 [
m

/s
2
]

X

Y

0 20 40 60
−2

−1

0

1

2

time [s]

je
rk

 [
m

/s
3
]

X

Y

(a)

−0.1 −0.05 0 0.05 0.1
−0.05

−0.025

0

0.025

0.05

X [m]

Y
 [

m
]

0 10 20 30 40
−0.2

−0.1

0

0.1

0.2

time [s]

v
e
lo

c
it
y
 [

m
/s

]

X

Y

0 10 20 30 40
−0.4

−0.2

0

0.2

0.4

time [s]

a
c
c
e
le

ra
ti
o
n

 [
m

/s
2
]

X

Y

0 10 20 30 40
−1

−0.5

0

0.5

1

time [s]

je
rk

 [
m

/s
3
]

X

Y

(b)

Figure 3.13: Kinematic results for reaching operation with two spheres in XY
plane in horizontal arrangement: (a) Pre-training. (b) Post-training.

44 Virtual reality based rehabilitation

−0.12 −0.06 0 0.06 0.12
−0.06

−0.03

0

0.03

0.06

X [m]

Y
 [

m
]

0 50 100 150
−0.2

−0.1

0

0.1

0.2

time [s]

v
e

lo
c
it
y
 [

m
/s

]

X

Y

0 50 100 150
−0.2

−0.1

0

0.1

0.2

time [s]

a
c
c
e

le
ra

ti
o

n
 [

m
/s

2
]

X

Y

0 50 100 150
−1

−0.5

0

0.5

1

time [s]

je
rk

 [
m

/s
3
]

X

Y

(a)

−0.12 −0.06 0 0.06 0.12
−0.06

−0.03

0

0.03

0.06

X [m]

Y
 [
m

]

0 40 80 120
−0.2

−0.1

0

0.1

0.2

time [s]

v
e
lo

c
it
y
 [
m

/s
]

X

Y

0 40 80 120
−0.2

−0.1

0

0.1

0.2

time [s]

a
c
c
e
le

ra
ti
o
n
 [
m

/s
2
]

X

Y

0 40 80 120
−0.7

−0.35

0

0.35

0.7

time [s]

je
rk

 [
m

/s
3
]

X

Y

(b)

Figure 3.14: Kinematic results for 8-shaped predefined trajectory along two
spheres in XY plane in horizontal arrangement: (a) Pre-training. (b) Post-
training.

3.3 Five-bar linkage haptic interface 45

Evaluating parameter Pre Post Percent Variation [%]

Position Error - RMS [m] 6.7e-4 1.02e-5 -98.48

Jerk - RMS [m/s3] 0.0034 0.0024 -29.41

Table 3.6: Reaching operation results in vertical arrangement.

Evaluating parameter Pre Post Percent Variation [%]

Position Error - RMS [m] 0.0034 0.0005 -85.29

Jerk - RMS [m/s3] 0.0066 0.0052 -21.21

Table 3.7: 8-shaped predefined trajectory results in vertical arrangement.

3.3.4.2 Patient with stroke

The subject under VR-based therapy is a sub-acute patient. We report here
the results of the reaching operation and the 8-shaped predefined trajectory
in vertical arrangement. These exercises were also executed in horizontal and
sagittal arrangement. We report in Table 3.8 the clinical results after the
rehabilitation sessions.

The values of jerk reported in Table 3.6 and Table 3.7, for pre and post
training, are taken by computing the mean value between the root mean
square value of jerk in X-axis and Y-axis, respectively.

3.3.5 Discussion of the results

In order to quantify the improvement of the kinematic functionalities of each
single patient, we have evaluated their motor behavior by comparing the pre
and post training results, based on the percent variation of the position error
and jerk. For the patient with musculoskeletal problem, the position error
was reduced by 67.74 % and jerk by 3.65 %, during the reaching operation

Functional Scale Initial Evaluation Final Evaluation

Fugl-Meyer 40/66 53/66

Box and Block Test 20 [cubes/min] 30 [cubes/min]

Jebsen-Taylor Test 180 [s] 120 [s]

Table 3.8: Clinical evaluation of the sub-acute patient.

46 Virtual reality based rehabilitation

−0.05 −0.025 0 0.025 0.05
−0.1

−0.05

0

0.05

0.1

X [m]

Y
 [
m

]

0 40 80 120
−0.04

−0.02

0

0.02

0.04

time [s]

v
e
lo

c
it
y
 [
m

/s
]

X

Y

0 40 80 120
−0.02

−0.01

0

0.01

0.02

time [s]

a
c
c
e
le

ra
ti
o
n
 [
m

/s
2
]

X

Y

0 40 80 120
−0.02

−0.01

0

0.01

0.02

time [s]

je
rk

 [
m

/s
3
]

X

Y

(a)

−0.05 0 0.05
−0.1

−0.05

0

0.05

0.1

X [m]

Y
 [
m

]

0 20 40
−0.01

0

0.01

0.02

time [s]

v
e
lo

c
it
y
 [
m

/s
]

X

Y

0 20 40
−0.01

−0.005

0

0.005

0.01

0.015

time [s]

a
c
c
e
le

ra
ti
o
n
 [
m

/s
2
]

X

Y

0 20 40
−0.02

−0.01

0

0.01

0.02

time [s]

je
rk

 [
m

/s
3
]

X

Y

(b)

Figure 3.15: Reaching operation with two spheres in XY plane in vertical
arrangement: (a) Pre-training. (b) Post-training.

3.3 Five-bar linkage haptic interface 47

−0.06 −0.03 0 0.03 0.06
−0.125

−0.0625

0

0.0625

0.125

X [m]

Y
 [

m
]

0 40 80 120 160
−0.1

−0.05

0

0.05

0.1

time [s]

v
e

lo
c
it
y
 [

m
/s

]

X

Y

0 40 80 120 160
−0.04

−0.02

0

0.02

0.04

time [s]

a
c
c
e

le
ra

ti
o

n
 [

m
/s

2
]

X

Y

0 40 80 120 160
−0.04

−0.02

0

0.02

0.04

time [s]

je
rk

 [
m

/s
3
]

X

Y

(a)

−0.06 −0,025 0 0.025 0.06
−0.125

−0.0625

0

0.0625

0.125

X [m]

Y
 [
m

]

0 20 40 60 80
−0.06

−0.03

0

0.03

0.06

time [s]

v
e
lo

c
it
y
 [
m

/s
]

X

Y

0 20 40 60 80
−0.04

−0.02

0

0.02

0.04

time [s]

a
c
c
e
le

ra
ti
o
n
 [
m

/s
2
]

X

Y

0 20 40 60 80
−0.05

−0.025

0

0.025

0.05

time [s]

je
rk

 [
m

/s
3
]

X

Y

(b)

Figure 3.16: 8-shaped predefined trajectory along two spheres in XY plane in
vertical arrangement: (a) Pre-training. (b) Post-training.

48 Virtual reality based rehabilitation

exercise, while in the 8-shaped predefined trajectory exercise, position error
was reduced by 44.44 %, and jerk by 14.61 %. For the patient with stroke,
the position error was reduced by 98.48 % and jerk by 29.41 %, during the
reaching operation exercise, while in the 8-shaped predefined trajectory exer-
cise, position error was reduced by 85.29 %, and jerk by 21.21 %. According
to these results, using a haptic interface grants a relevant improvement on
the patient’s finger and hand motion functionality. All the percent variation
values were negative, which means that the precision error, as well as the
jerk, were reduced. This means that the motor behavior of the patient was
modified, which deals with a better motor performance.

Based on clinical evaluation results, we can say that the sub-acute patient
has improved their condition after the VR-based therapy. In fact, according
to the Box and Block test he has improved by 50 %. In the Jebsen-Taylor
functional test, as the evaluation deals with the time the patient takes to
compute a certain task, it is expected that the execution time at the final
evaluation is smaller. As expected, he has improved by 33 %. According to
the Fugl-Meyer scale, despite of having an improvement, he still remains with
mild impairment.

According to the clinical evaluation on the patient with musculoskeletal
disease, we can say that there is no improvement, but neither a diminished
condition. Anyhow, this was expected as these functional scales and tests are
applicable in cases where there are neurological disorders. However, according
to the Fugl-Meyer scale, he remains in mild impairment condition.

3.4 Haptic interface for grasping

We developed a haptic interface for finger rehabilitation, integrated in the
proposed general purpose framework, which provides haptic and graphic ren-
dering, and in which is also implemented the control algorithm of the two
linear motor, as well as the external communication, for which a real-time
system in achieved. The haptic interface consists of a PC running Microsoft
Operating System (Windows XP), with a data acquisition card (Sensoray
Model 626 PCI Multifunction I/O Board) that provides the interface to a two
linear motor haptic device, actuated by two direct drive linear servo motors
(S120Q and S160Q) with the relative motor drivers (Servoland Movo). These
motors are, in turn, connected by a flexible transmission with two linear ball
slides, in which suitable finger-holders are placed on it.

The software for controlling the haptic interface was completely developed

3.4 Haptic interface for grasping 49

inside Matlab/Simulink. The external communication to the acquisition board
was implemented as an S-function. The position is read directly from the lin-
ear encoder. The visual and haptic feedback were implemented by Handshake
proSENSE Toolbox. As such rendering must be available for both fingertips,
the dual configuration must be enabled. Actually, haptic feedback must be
provided for both fingertips (see Fig. 3.17b). As the forces are not scaled,
thus sent directly to the actuators, there is no need of using the transposed
Jacobian. All these features guarantee a real-time performance of the system.
The setup of the prototype is shown in Fig. 3.17. More details of the set-up
are shown in Fig. 3.18.

50 Virtual reality based rehabilitation

(a)

(b)

Figure 3.17: Haptic interface set up. (a) PC with a VR engine, two linear
motor connected with two linear sliders by thrust wires. (b) Representation
of both fingertips inside the virtual environment.

3.4 Haptic interface for grasping 51

(a)

(b)

Figure 3.18: Detailed view. (a) Linear motors with linear encoders and flexible
transmissions. (b) Finger holders and linear ball slides with the other end of
the flexible transmission.

52 Virtual reality based rehabilitation

Chapter 4

Teleoperation

The prefix tele comes from Greek and means at a distance, so teleoperation
indicates ”operating at a distance”. Hence, a bilateral teleoperation system
enables human interaction with environments that are inaccessible to direct
human contact due to their remoteness or the presence of hazards. Haptic
feedback improves task performance during teleoperation applications.

4.1 Overview

The purpose of teleoperation is to extend the human capability of manipulat-
ing objects to a remote place, providing to the operator the same conditions as
those at the remote location, as illustrated in Fig. 4.1. Generally, the human
operator imposes a force on the master device which is traduced in a displace-
ment that is transmitted to the slave device that performs that movement.
As the slave performs the task, and forces are measured, then the reflecting
forces are sent back to the master device.

The main goals in teleoperated systems are stability and transparency.
Stability is achieve by maintaining always stable the closed-loop system no
matter the behavior of human operator or the environment. Transparency
is the ability of a teleoperation system to present the undistorted dynamics
of the remote environment to the human operator (Hannaford, 1989a). This
ability is affected by the closed-loop system of the master and slave devices,
which distort the dynamics of the remote environment perceived by the human
operator (Lawrence, 1993; Yokokohji and Yoshikawa, 1994). Hence, these two

53

54 Teleoperation

C
O
M
M
U
N
IC
A
T
IO

N
C
H
A
N
N
E
L

slave sidemaster side

Figure 4.1: Overview of a bilateral teleoperation system.

tasks are generally conflicting.

Several complications arise because of the communication line in teleoper-
ated systems: distortion, delays, and losses that impact stability and perfor-
mance.

4.2 Stability and performance

In order to increase performance and achieve transparency, many master/slave
systems incorporate force feedback. Bilateral interaction provides both for-
ward and feedback information from the operator to the environment and
viceversa. The bilateral nature of this setup makes the control architecture
particularly challenging: multiple forms of feedback loops even without envi-
ronment contact or user intervention may conform internal closed loops. The
communication line between the two sites are often affected by delays, that
destabilize the system. In the following, force feedback in a bilateral control
system is discussed. Some basic architectures are proposed.

Considering a block diagram of a teleoperation system, as illustrated in
Fig. 4.2, where the master, slave, and communication channel models are
lumped into a linear-time-invariant (LTI) master-slave two-port network (MSN)

4.2 Stability and performance 55

Fh

Vh Ve

Zto

F ∗
eF ∗

h

Zh
+

−

+

−

+

−
Fe

+

−

Ze

Zte

master
+

communication
channel

+
slave

operator environment

Figure 4.2: A teleoperation network block diagram.

block. The operator and environment are assumed to be in contact with the
master and slave, and are modeled around their contact operating point in
the Laplace domain by lumped LTI dynamics:

Fh = F ∗h − ZhVh (4.1)

Fe = F ∗e + ZeVe (4.2)

where Zh, Ze, Vh, Ve, Fh, Fe, F
∗
h , and F ∗e are the master and slave impedances

and velocities, the operator force on the master, the slave force on the envi-
ronment, and the exogenous force inputs generated by the operator and the
environment, respectively.

Depending on the choice of the network input and output variables I and
O, impedance Z, admittance y, hybrid H, and inverse hybrid g, network
matrices are defined as:

[
Fh

Fe

]
= OZ = ZIZ =

[
z11 z12
z21 z22

] [
Vh
−Ve

]
(4.3)

[
Vh
−Ve

]
= Oy = yIy =

[
y11 y12
y21 y22

] [
Fh

Fe

]
(4.4)

[
Fh

−Ve

]
= OH = HIH =

[
h11 h12
h21 h22

] [
Vh
Fe

]
(4.5)

[
Vh
Fe

]
= Og = gIg =

[
g11 g12
g21 g22

] [
Fh

−Ve

]
(4.6)

where each of the above matrices, if they exist, can be found given any of the
other matrices. The above representations fall into the immittance category
defined as PP = OP IP , P = [pij] i, j = 1, 2, in which OT

P IP = OT
ZIZ =

56 Teleoperation

OT
y Iy = OT

HIH = OT
g Ig = FhVh − FeVe is the instantaneous power delivered

to the MSN. Hence, the class of immittance representations is of particular
interest to the energy-based stability analysis tools such as passivity theory.

Llewellyn’s absolute stability condition is expressed in terms of the MSN
immittance matrices in the following (Haykin, 1970):

An LTI two-port network is absolutely stable if and only if:

� p11 and p22 are positive and real, and

� the inequality:

ηP (ω) = −Re(p12p21)|p12p21|
+ 2

Re(p11)Re(p22)

|p12p21|
≥ 1 (4.7)

holds on the jω axis for all ω ≥ 0, where ηP (ω) is called the network
stability parameter and |·| and Re(·) denote the absolute and real values
of their corresponding arguments.

The positive realness of p11 and p22 implies passivity of the master and
slave when there is no coupling between them, that is, when p12 = p21 = 0.
This can also be seen as the passivity of the master and slave when they are
free or clamped. On the other hand, the condition represented by Eq. 4.7
incorporates the effect of coupling. After expanding the positive realness con-
dition, Llewellyn’s absolute stability conditions are equivalent to the following
conditions:

� the immittance parameters p11 and p22 have no poles in the open right-
half-plane (RHP),

� any poles of p11 and p22 on the imaginary axis are simple and have real
and positive residues, and

� the inequalities

Re(p11) ≥ 0 (4.8)

ηP (ω) = − cos(∠p12p21) + 2
Re(p11)Re(p22)

|p12p21|
≥ 1 (4.9)

hold, where cos(∠Z) = Re(Z)
|Z| for any complex Z. Llewellyn’s criterion is

valid for any member of the immittance class, and moreover the value of the

4.2 Stability and performance 57

stability parameter is independent of the immittance matrix used, that is,
ηZ = ηy = ηH = ηg (Haykin, 1970).

(Hogan, 1989) has shown that the human arm impedance is highly adapt-
able and time varying, and although the muscular actuators and the neural
feedback driving the arm are active systems, the human hand shows passive
characteristics. Therefore, the operator can be modeled by a state indepen-
dent (exogenous) input force and a passive impedance, as in Eq. 4.1 (Colgate
and Hogan, 1988). As for the environment, most of the objects with which
we interact are passive and absorb energy. Because the dynamic range of the
operator impedance is not as wide as that of the environment, and in some
cases the upper bound on the impedance of the object to be manipulated
is known a priori, the above absolute stability analysis may provide us with
conservative stability conditions.

Besides stability, transparency is the other principal goal in a teleop-
eration control system. Transparency can be described quantitatively as
the transmitted impedance to the operator and to the environment, that is:
Zto = Fh

Vh
|F ∗

e =0 = Fe
Ve
|F ∗

e =0 = Ze and Zte = Fe
−Ve
|V ∗

h =0 = Fe
−Ve
|V ∗

h =0 = Zh, respec-
tively, where Zto and Zte are the transmitted impedances to the operator and
to the environment. Using Eqs. 4.1, 4.2 and 4.5, Zto and Zte can be expressed
in terms of the MSN hybrid parameters as:

Zto =
h11 + ∆h · Ze

1 + h22Ze
(4.10)

Zte =
h11 + Zh

∆h+ h22Zh
(4.11)

where ∆h = h11h22 − h12h21. If the hybrid parameters are not functions of
Zh and Ze, perfect transparency can be achieved if

h11 = h22 = 0 (4.12)

h12 = −h21 = 1 (4.13)

is satisfied (Hannaford, 1989a). Hence, a perfectly transparent system is
marginally absolutely stable, as Re(h11) = 0 and ηH = 1 in Eqs. 4.8 and
4.9, respectively. Therefore, to have higher stability robustness, perfect trans-
parency has to be compromised. In addition, due to the presence of significant
transmission delay, there is a trade-off between stability and performance;
consequently, perfect transparency is not attainable in practice (Hannaford,

58 Teleoperation

1989b; Lawrence, 1993; Salcudean et al., 1995). Therefore, there must be an
examination of Zto and Zte for the infinite spectrum of the environment and
operator impedance in order to evaluate the system transparency, which is
an involved process. To ease the burden and to quantify transparency, Zto

and Zte are examined for extreme values of Ze and Zh, respectively: that is,
when the master and slave are in free motion (Ze = 0 or Zh = 0), or clamped
(Ze →∞ or Zh →∞). If the network parameters are not functions of Zh and
Ze, the minimum value and dynamic range of the transmitted impedances can
be evaluated as follows:

Zto,min = Zto|Ze=0 = h11 (4.14)

Zto,width = Zto|Ze→∞ − Zto,min =
−h12h21
h22

(4.15)

Zte,min = Zte|Zh=0 =
h11
∆h

(4.16)

Zte,width = Zte|Zh→∞ − Zte,min =
−h12h21
h22∆h

(4.17)

Here, the notion of Z − width is borrowed from haptics (Colgate and
Brown, 1994) to express the dynamic range of the impedance transmitted
to the operator, and viceversa, while maintaining stability. The choice of
Z−width is compliant with its original definition in (Colgate and Brown, 1994)
as Llewellyn’s criterion guarantees passivity of the transmitted impedance.
Good performance is then characterized by |Zto,min| → 0 and |Zto,width| → ∞,
as well as |Zte,min| → 0 and |Zte,width| → ∞.

The performed analysis and the tools proposed for evaluation are com-
monly used to assess stability and performance in different types of bilateral
teleoperation systems.

4.3 Types of teleoperation systems

The LTI dynamic models, represented in Eqs. 4.18, 4.19, 4.20 and 4.21, are
used for impedance/admittance types of master and slave manipulators, where
Zm, Zs, Ym, Ys and Fcm, Fcs, Vcm, Vcs denote the master and slave dynamics
and their control inputs. Zm, Zs and Ym, Ys are typically low impedance and
admittance dynamics, respectively.

4.4 Control architecture 59

ZmVh = Fh + Fcm Impedance Master (4.18)

ZsVe = −Fe + Fcs Impedance Slave (4.19)

YmFh = Vh + Vcm Admittance Master (4.20)

YsVe = −Ve + Vcs Admittance Slave (4.21)

Based on the above manipulator categories, there are four different types
of teleoperation systems: impedance/impedance, impedance/admittance, ad-
mittance/impedance, and admittance/admittance. Fig. 4.3 and Fig. 4.4
show the block diagram of the four types of teleoperation systems controlled
by general 4ch bilateral controllers. Td denotes the communication channel
time delay, and the C and E blocks denote the control compensator transfer
functions.

In all four bilateral controllers, there are generally two types of control
signals applied to the master and slave actuators. One type is from local
controllers, that is, C5, C6, Cm, Cs and E5, E6, Em, Es, built around the
master and slave. The other is from feedforward controllers, that is, C1, C2,
C3 and C4, and E1, E2, E3 and E4, sending signals to the remote site. The
feedforward control signals applied to the master or slave can be of either
position or force type, which is determined by the type of manipulator.

4.4 Control architecture

The four-channel control architectures presented in Fig. 4.3 and Fig. 4.4
are simplified if only one signal - position or force - is transmitted from the
master or slave. Four two-channel control architectures are possible for each
configuration, named for the variable measured and sent to the remote site:
force-force (F-F), position-position (P-P), force-position (F-P), and position-
force (P-F).

An impedance-admittance position-force (P-F) two-channel control archi-
tecture along with the related control parameters leading to perfect trans-
parency under ideal conditions is presented. Besides, an impedance-impedance
four-channel bilateral control architecture with time delay compensation is
presented too.

60 Teleoperation

e−sTd e−sTd

e−sTd e−sTd

C2

C1

Cm

Fcm

Fcs

1
Zm

1
Zs

Cs

C3

C4

C6

C5

Zh

Ze

communication
channel

master

slave

environment

operator

VhFh

Ve Fe

+ +

+

−

−
+ +

−

−−−
+

+

+

+ −

F ∗
h

F ∗
e

Zto

Zte

(a)

e−sTd e−sTd

e−sTd e−sTd

C4

E3

Cm

Fcm

Vcs

1
Zm

1
Ys

1
Es

C2

C6

Zh

1
Ze

communication
channel

master

slave

environment

operator

VhFh

Fe Ve

−
+

+

−

−
+ +

−

−−−
+

+

+

+ −

F ∗
h

Zto

F ∗
e

E5

1
E1

Zte

(b)

Figure 4.3: Block diagrams of the four types teleoperation systems: (a)
Impedance-Impedance. (b) Impedance-Admittance.

4.4 Control architecture 61

e−sTd e−sTd

e−sTd e−sTd

1
E4

C3

Vcm

Fcs

1
Zs

Cs

E2

C6

C5

Ze

communication
channel

master

slave

environment

operator

FhVh

Ve Fe

+ +

+

−

−
+ +

−

−−−
+

+

+

+
−

F ∗
h

F ∗
e

Zte

1
Zh

Zto

1
Ym

1
Em

C1

(a)

e−sTd e−sTd

e−sTd e−sTd

E2

1
E1

Vcm

Vcs

1
Ys

1
Es

1
E4

C6

1
Ze

communication
channel

master

slave

environment

operator

FhVh

Fe Ve

−
+

+

−

−
+ +

−

−−−
+

+

+

+
−Zto

F ∗
e

E5

E3

Zte

1
Zh

1
Ym

1
Em

F ∗
h

(b)

Figure 4.4: Block diagrams of the four types teleoperation systems: (a)
Admittance-Impedance. (b) Admittance-Admittance.

62 Teleoperation

4.4.1 Two-channel impedance-admittance type

Applying the control commands Fcm and Vcs to the impedance-admittance
system, shown in Fig. 4.3b, the dynamics of the closed-loop system are ex-
pressed as,

ZcmVh + C4e
−sTdVe = (1 + C6)Fh − C2e

−sTdFe (4.22)

(1 + E5)Ve − E3e
−sTdVh = E−11 e−sTdFh − YesFe (4.23)

where Zcm = Zm + Cm and Yes = Ys +E−1s , with Ys admittance of the slave.
Using the Eqs. 4.5, 4.22 and 4.23 the hybrid parameters are:

h11 =
Zcm(1 + E5) + E3C4e

−2sTd

(1 + C6)(1 + E5)− E−11 C4e−2sTd
(4.24)

h12 =
C2(1 + E5)e

−sTd − C4Yese
−sTd

(1 + C6)(1 + E5)− E−11 C4e−2sTd
(4.25)

h21 = −E
−1
1 Zcme

−sTd + E3(1 + C6)e
−sTd

(1 + C6)(1 + E5)− E−11 C4e−2sTd
(4.26)

h22 =
Yes(1 + C6)− C2E

−1
1 e−2sTd

(1 + C6)(1 + E5)− E−11 C4e−2sTd
(4.27)

Using Eqs. 4.10 and 4.11, along with 4.24, 4.25, 4.26 and 4.27, the
operator-transmitted and the environment-transmitted impedance are obtained
as:

Zto =
[Zcm(1 + E5) + E3C4e

−2sTd] + [YesZcm + E3C2e
−2sTd]Ze

[(1 + C6)(1 + E5)− E−11 C4e−2sTd] + [Yes(1 + C6)− C2E
−1
1 e−2sTd]Ze

(4.28)

Zte =
[Zcm(1 + E5) + E3C4e

−2sTd] + [(1 + E5)(1 + C6)− E−11 C4e
−2sTd]Zh

[ZcmYes + E3C2e−2sTd] + [Yes(1 + C6)− C2E
−1
1 e−2sTd]Zh

(4.29)
If time delay Td is negligible, using the impedance-admittance transparency-

optimized control law:

E−11 = Yes
C2 = 1 + C6 6= 0
E3 = 1 + E5 6= 0
C4 = −Zcm

(4.30)

4.4 Control architecture 63

satisfies Eqs. 4.12 and 4.13, providing perfect transparency.
In a two-channel impedance-admittance control architecture, the direct

force feedforward from the slave to the master and the coordinating force
feedforward from the master to the slave are removed; that is, C2 = E3 = 0.
Hence, Eqs. 4.24, 4.25, 4.26 and 4.27 become,

h11 =
Zcm(1 + E5)

(1 + C6)(1 + E5)− E−11 C4e−2sTd
(4.31)

h12 =
−C4Yese

−sTd

(1 + C6)(1 + E5)− E−11 C4e−2sTd
(4.32)

h21 = − E−11 Zcme
−sTd

(1 + C6)(1 + E5)− E−11 C4e−2sTd
(4.33)

h22 =
Yes(1 + C6)

(1 + C6)(1 + E5)− E−11 C4e−2sTd
(4.34)

therefore, the inverse hybrid parameters are:

g11 =
h22
∆h

=
1 + C6

Zcm
(4.35)

g12 =
−h12
∆h

=
C4e

−sTd

Zcm
(4.36)

g21 =
−h21
∆h

=
E−11 e−sTd

Yes
(4.37)

g22 =
h11
∆h

=
1 + E5

Yes
(4.38)

which leads to the following inverse hybrid matrix:

g =

[
1+C6
Zcm

C4e
−sTd

Zcm
E−1

1 e−sTd

Yes

1+E5
Yes

]

In the same way, Eqs. 4.28 and 4.29 become,

Zto =
[Zcm(1 + E5)] + [YesZcm]Ze

[(1 + C6)(1 + E5)− E−11 C4e−2sTd] + [Yes(1 + C6)]Ze

(4.39)

Zte =
[Zcm(1 + E5)] + [(1 + C5)(1 + C6)− E−11 C4e

−2sTd]Zh

[ZcmYes] + [Yes(1 + C6)]Zh
(4.40)

64 Teleoperation

as well as Eq. 4.30 that becomes,

{
E−11 = Yes
C4 = −Zcm

(4.41)

for which there is no possibility of canceling the dynamics of master and slave,
as shown in the resulting inverse hybrid matrix:

g =

[
1+C6
Zcm

1

−1 1+E5
Yes

]
(4.42)

In order to study the stability of this control architecture, the inverse
hybrid parameters can be used to easily evaluate the parameter ηpf , derived
from Eq. 4.9, as follows:

ηpf (ω) = ηpf1+ηpf2 = − cos(∠
E−11 C4e

−j2ωTd

YesZcm
)+2

Re(1+C6
Zcm

)Re(1+E5
Yes

)

|E
−1
1 C4e

−j2ωTd

YesZcm
|

(4.43)

The first term ηpf1 is defined by a cosine function with changed sign, then
it can assume the minimum value as −1. To satisfy the Llewellyn’s absolute
stability conditions, the second term ηpf2 must be greater than or equal to

2, that is Re(1+C6
Zcm

)Re(1+E5
Yes

) ≥ |E
−1
1 C4e

−j2ωTd

YesZcm
|. Hence, for increasing the

robustness of the stability, the local force feedback of the master C6 can be
increased, as well as the damping of the local position feedback E5, or the
value of the feedforward parameters E−11 and C4 can be reduced as well. A
tight local position feedback of the master Cm, or a tight local force feedback
of the slave E−1s , may have negative effects on the absolute stability. Using
Eq. 4.41, ηpf defined by Eq. 4.43, can be simplified as follows:

ηpf (ω) = cos(∠− j2ωTd) + 2Re(
1 + E5

Yes
)Re(

1 + C6

Zcm
) (4.44)

In order to achieve the absolute stability: Re(1+E5
Yes

)Re(1+C6
Zcm

) ≥ 1. If C6

and E5 are scalar gains, the absolute stability may be guaranteed in only a
certain range of frequencies, because at low and high frequencies Re(1

Zcm
)→ 0,

by substituting Zm and assuming a position PD controller for Cm. Hence, the
result depends on Re(1

Yes
) which, by using the admittance slave Ys defined in

Eq. 4.21, can counteract the former by means of Es, if there is no scalar gain.
Finally, if time delay is negligible, then the absolute stability of the system is
always achieved, with ηpf1 = 1,∀ω ≥ 0, and thus ηpf ≥ 1,∀ω ≥ 0.

4.4 Control architecture 65

To investigate performance, the behavior of the system for an infinite spec-
trum of transmitted impedance, either from the operator or the environment
site, must be carried out. Hence, the minimum value and dynamic range of
the operator-transmitted impedance can be evaluated by using Eqs. 4.14 and
4.15 along with Eq. 4.39, as follows:

Zto,min =
Zcm(1 + E5)

(1 + C6)(1 + E5)− E−11 C4e−2sTd
(4.45)

Zto,width =
−E−11 C4Zcme

−2sTd

(1 + C6)[(1 + C6)(1 + E5)− E−11 C4e−2sTd]
(4.46)

Similarly, the environment-transmitted impedance can be evaluated by
using Eqs. 4.16 and 4.17 along with Eq. 4.40, as follows:

Zte,min =
(1 + E5)

Yes
(4.47)

Zte,width =
−E−11 C4e

−2sTd

(1 + C6)Yes
(4.48)

4.4.2 Four-channel impedance-impedance type

Applying the control commands Fcm and Fcs to the impedance-impedance sys-
tem, shown in Fig. 4.3a, the dynamics of the closed-loop system are expressed
as,

ZcmVh + C4e
−sTdVe = (1 + C6)Fh − C2e

−sTdFe (4.49)

ZcsVe + C1e
−sTdVh = C3e

−sTdFh + (1 + C5)Fe (4.50)

where Zcm = Zm + Cm and Zcs = Zs + Cs. To analyze the system stability
and performance, the MSN hybrid parameters are needed. These parameters
can be derived in terms of the system and control parameters from Eqs. 4.5,
4.49 and 4.50 as,

66 Teleoperation

h11 =
ZcmZcs + C1C4e

−2sTd

(1 + C6)Zcs − C3C4e−2sTd
(4.51)

h12 =
C2Zcse

−sTd − C4(1 + C5)e
−sTd

(1 + C6)Zcs − C3C4e−2sTd
(4.52)

h21 = −C3Zcme
−sTd + C1(1 + C6)e

−sTd

(1 + C6)Zcs − C3C4e−2sTd
(4.53)

h22 =
(1 + C5)(1 + C6)− C2C3e

−2sTd

(1 + C6)Zcs − C3C4e−2sTd
(4.54)

Using Eqs. 4.10 and 4.11, along with 4.51, 4.52, 4.53 and 4.54, the
operator-transmitted and the environment-transmitted impedance can be ex-
pressed as:

Zto =
(ZcmZcs + C1C4e

−2sTd) + [(1 + C5)Zcm + C1C2e
−2sTd]Ze

[(1 + C6)Zcs − C3C4e−2sTd] + [(1 + C5)(1 + C6)− C2C3e−2sTd]Ze

(4.55)

Zte =
(ZcmZcs + C1C4e

−2sTd) + [(1 + C6)Zcs − C3C4e
−2sTd]Zh

[(1 + C5)Zcm − C1C2e−2sTd] + [(1 + C5)(1 + C6)− C2C3e−2sTd]Zh

(4.56)
If time delay Td is negligible, using the impedance-impedance transparency-

optimized control law,

C1 = Zcs

C2 = 1 + C6

C3 = 1 + C5

C4 = −Zcm

(4.57)

with C2 6= 0 and C3 6= 0, satisfies 4.12 and 4.13 providing perfect transparency.
Hence, the master and slave are effectively removed and the operator and the
environment are virtually connected. The position and velocity of master and
slave are transmitted, for which: C1 = Cs = Bs + Ks

s and C4 = −Cm =

−(Bm + Km
s). The impedance model of master and slave are Zm = Mms and

Zs = Mss, respectively.
Stability of the transparency-optimized four-channel controller leads to a

characteristic equation of the system, that under ideal conditions, is:

∆0 = (C2Zcs + C3Zcm)(Zh + Ze) = 0 (4.58)

4.5 Time delay compensation 67

This indicates that if C2 and C3 are single gains and the operator and envi-
ronment are passive, the system remains stable if C2 > −min(Mm

Ms
, Bm
Bs
, Km
Ks

)C3

holds. In terms of stability robustness, although this system is stable for
C2, C3 > 0, because h11 = h22 = 0 and h12 = −h12 = 1, the system absolute
stability is marginal as ηH = 1. Note that because the term C2Zcs + C3Zcm

is present in the denominator of h11 and h22 for Td ≈ 0, it cannot have roots
in the RHP to be used in Llewellyn’s conditions, represented by Eq. 4.8 and
4.9.

In the absence of time delay in the communication line, the analysis of
stability and performance is straightforward and stable perfect transparency
is achievable. However, when significant delays are present, as in teleoperation
over the Internet, both stability and transparency are compromised.

4.5 Time delay compensation

When there is significant delay in the communication line between the master
and slave, control architectures can suffer instability problems. This can be
traced to the communication block in Fig. 4.2, where the power entering
the left side and exiting the right side do not add up. Rather energy may
be generated inside the block, which induces the instability (Anderson and
Spong, 1989a).

Several approaches to operate under delay have been studied (Eusebi and
Melchiorri, 1998), in particular shared compliant control (Kim et al., 1992)
and the addition of local force loops (Hashtrudi-Zaad and Salcudean, 2002);
however, using Internet as the communication channel adds variability to the
delay (Oboe and Fiorini, 1998).

4.5.1 Scattering approach

(Anderson and Spong, 1989b,a, 1988) introduced the notion of scattering vari-
ables in order to overcome the problem of time-delay in bilateral teleoperation.
Such approach renders the teleoperator system passive.

The bilateral teleoperator considered is depicted in Fig. 4.5. The relation-
ship between the forces and velocities at all ports can be represented, in the
LTI case by the hybrid matrix (Eq. 4.5) which enters into the definition of
the scattering operator.

The scattering operator is defined in terms of an incident wave (F (t)+V (t))
and a reflected wave (F (t) − V (t)) as: F (t) − V (t) = S(F (t) + V (t)). The

68 Teleoperation

Human Master Slave Environment

Vh

Fm

Vm Vs,d Vs

FeFsFm,d

co
m
m
u
n
icatio

n

Figure 4.5: Teleoperator scheme.

scattering matrix in the frequency domain can be represented in terms of the
hybrid matrix by simple loop transformation,

S(s) =

[
1 0
0 −1

]
(H(s)− I)(H(s) + I)−1 (4.59)

In order to guarantee passivity, the scattered wave cannot have energetic
content greater than the incident wave, hence with respect to the scattering
operator S. In fact, an n-port system is passive if and only if ||S(jω)||∞ ≤ 1
of the corresponding scattering matrix (Anderson and Spong, 1989a).

Let F and V be the force and velocity vectors, respectively, and define
Pin and Pout to be the input and output power, respectively, then the power
difference is given by

∆P = Pin − Pout = F TV

= (F+V
2)T (F+V

2)− (F−V2)T (F−V2)
(4.60)

Defining the scattering variables s+ = (F+V
2)T and s− = (F−V2), then ∆P

can be rewritten in terms of the scattering variables as:

∆P = sT+s+ − sT−s− = sT+(I − STS)s+ (4.61)

As the power difference must be nonnegative, the condition on the maxi-
mum singular value of the scattering matrix must be: ||S||∞ = σ̄(ST (jω)S(jω))
≤ 1.

4.5.1.1 Constant time delay

The scattering formulation developed in Section 4.5.1, can be used to develop
control laws in order to achieve stability for systems with constant time delay.
Consider the system (L) transmitting signals though constant delay T with
the following control law:

4.5 Time delay compensation 69

Fm(t) = −Fm,d(t) = −Fs(t− T)
Fs(t) = Ks

∫
(Vs,d − Vs)dt+Bs(Vs,d − Vs)

(4.62)

where Fs(t) is called the coordinating torque, and Vs,d(t) = Vm(t− T).

The above signals result in a hybrid matrix composed of pure delay ele-
ments that render the norm of the scattering operator as ||S||∞ =∞, which is
not passive. Therefore, the pure delay communication channel generates en-
ergy which possibly destabilizes the teleoperator. This problem can be solved
by emulating the behavior of transmission lines by adopting the scattering
formulation which gives passivity to the communication channel.

Fm,d(t) = Fs(t− T) + Z0(Vm(t)− Vs,d(t− T))

Vs,d(t) = Vm(t− T) + Z−10 (Fm,d(t)− Fs(t− T))
(4.63)

where Z0 is the characteristic impedance inherent to transmission lines theory,
that we can view as the ratio of a transformer placed between forces and
velocities, that makes their values comparable. Note that all the signals in
Eq. 4.63 could be vector-valued in which case Z0 would be a matrix (Anderson
and Spong, 1989b). This control scheme results in the scattering matrix:

S(s) =

[
0 e−sT

e−sT 0

]
(4.64)

which has norm ||S||∞ = 1. Hence, a passive communication channel is
achieved. Moreover, as we discussed earlier, we can infer the stability of the
teleoperator for all passive environments and a passive behavior by the human
operator. Such formulation achieves velocity and force matching. However,
position mismatch or drift between the master the slave positions remains still
a problem.

4.5.2 Wave variables

A conceptually similar formulation to the scattering formulation appeared in
(Niemeyer and Slotine, 1991a), the so called wave variables formulation. As
illustrated in Fig. 4.6, instead of exchanging as reference signals the power
variables Vm and Fs, the wave variables are transmitted um and us, which are
given by:

um(t) = 1√
2b

(Fm,d(t) + bVm(t))

us(t) = 1√
2b

(Fs(t)− bVs,d(t))
(4.65)

70 Teleoperation

+
Vs um

Fm,d vm

vs Vm,d

us Fs

b

+

1√
2b

1√
2b

T1(t)

T2(t)

+

+√
2b

√
2b

b
−

−

Figure 4.6: Wave variables.

where Fm,d and Vs,d are the received power signals on the master and slave
side, respectively. This formulation is identical to the scattering formulation,
with b being the characteristic impedance of the transmission line. As in
Eq. 4.60, the total power flow in the communication channel can be written
equivalently in terms of the wave variables:

P (t) = F T
m,d(t)Vm(t)− F T

s (t)Vs,d(t)

= 1
2(uTm(t)um(t)− vTm(t)vm(t)) + 1

2(uTs (t)us(t)− vTs (t)vs(t))
(4.66)

where vm and vs are the received wave signals, and the reference signals on
both sides of the channel are derived as

Fm,d = bVm(t) +
√

2bvm
Vs,d = 1

b (
√

2bvs(t)− Fs(t))
(4.67)

Note that in the last equation we have the symmetry in defining the wave
variables (Eq. 4.65) in the sense that given any two of the power and wave
variables, the remaining variables can be easily derived. Moreover, the master
and slave can be put under force or velocity reference control. When there
is a constant time delay in the communication channel (Ti(t) = Ti, i = 1, 2),
the wave formulation gives the same transformation that in Eq. 4.63, and the
passivity analysis can be alternatively performed in time domain. From Eq.
4.66 we can see that:

E(t) =
1

2

{∫ t

t−T
(uTm(ζ)um(ζ) + uTs (ζ)us(ζ))dζ

}
≥ 0 (4.68)

and hence, the channel is passive.

4.5 Time delay compensation 71

+

+

1
b

b

V ∗
m Vm

F ∗
m Fm

Vs V ∗
s

Fs F ∗
s

delay channel
and

wave transform

Figure 4.7: Impedance matching.

Due to the intrinsic passivity of the wave formulation, several control
strategies can be possible in the wave domain that otherwise cause the loss of
passivity when performed directly in the power variables domain.

4.5.2.1 Matching impedances

In the context of transmission line theory, it is well known that if the load
that terminates the line has a different impedance than the characteristic
impedance of the transmission line then wave reflections occur. In the case of
bilateral teleoperation, such reflections degrade the performance of the system.
This led to the introduction of impedance-matching elements b at each end
of the communication channel (Fig. 4.7). Note that this is the basic setting
that can be adapted to impedance matching when the slave manipulator is
placed under impedance or force control as discussed in (Niemeyer and Slotine,
1991b).

Arguing that impedance matching elements at both sides of the commu-
nication block affects position tracking, (Benedetti et al., 2001) removed the
matching element on the master’s side, which results in a smaller position
drift given by:

x∗m(t− T)− xs(t) =
1

2b

∫ t

t−2T
F ∗s (ζ)dζ (4.69)

as compared to the drift that results from using the matching elements on
both side of the channel given by:

x∗m(t− T)− xs(t) =
1

b

∫ t

0
F ∗s (ζ)dζ + xs(t) (4.70)

72 Teleoperation

It is also argued that an increase in the value of b results in a smaller
position drift. Of course this comes at the expense of extra damping which
could affect negatively the performance of the system.

4.5.3 Geometric scattering

(Stramigioli et al., 2002) raises the approach of the scattering operator in
Subsection 4.5.1 into a geometric setting, proposing the results of Subsections
4.5.1 and 4.5.2 in a compact form.

Consider the vector space V of flows (voltages, forces) and its dual V∗
the space of efforts (currents, velocities) that form a Cartesian product space
given by:

D = V × V∗ (4.71)

where (f, e) ∈ D. Then, on the space D, there exists a unique way (for each
given impedance Z) to decompose it into two eigensubspaces as:

D = S+Z ⊕ S−Z (4.72)

where S+Z and S−Z are subspaces of the incident and reflected scattered vari-
ables, respectively. This leads to the power decomposition theorem (notice
that this gives the geometric counterpart of the result in Eq. 4.61) proposed
by (Stramigioli et al., 2002), and states that ∀(f, e) ∈ D and any Z = ZT > 0,
the following holds:

〈e, f〉 =
1

2
||s+Z ||2+ −

1

2
||s−Z ||2− (4.73)

where s+Z ∈ S+Z , s−Z ∈ S−Z , (f, e) = s+Z + s−Z , and ||.||+ and ||.||− are induced
inner products on S+Z and S−Z , respectively.

More general conditions for the cases of perfect and imperfect impedance
matching can also be found in (Stramigioli et al., 2002).

4.5.4 H∞ and µ-synthesis design

H∞ and µ-synthesis design procedures can be used to derive compensators for
delayed teleoperators, that take into account worst case upper bound on the
delay values in the forward (master-to-slave) and backward (slave-to-master)
communication (Leung et al., 1995). Consider the linear system (L), from
which the models for the master and slave can be written in the frequency

4.5 Time delay compensation 73

domain as Pm(s) and Ps(s), respectively. A two-step design procedure can
be performed in order to design compensators for the free motion case (using
H∞) and then for the delayed constrained motion (using µ-synthesis).

4.5.4.1 Free motion controllers

The controllers Cm and Cs for the master and slave, respectively, can be
designed separately within the context of H∞ as follows:

Cm : z =

[
Wm1(Fh − Vm)

Wm2Fm1

]
w =

[
Fh

dm1

]

y = Vm +Wm3dm1 u = Fm1

Cs : z =

[
Ws1(Vm − Vs)

Ws2Fs1

]
w =

Fh

ds1
ds2

y =

[
Vm +Ws3ds1
Vs +Ws4ds2

]
u = Fs1

(4.74)

where in both cases z, w, y, u, d∗ and W∗ are the performance output, exoge-
nous signals, measured outputs, control inputs, disturbances and weighting
matrices, respectively.

4.5.4.2 Constrained motion controller

Having designed optimal controllers for the free motion, the delay can be
considered as a perturbation to the constrained motion case, i.e. when the
slave is in contact with the environment of known impedance Ze, and the
extra controller Cc can be utilized to account for both delays and constrained
motion. The delays in the forward and backward channels can be combined
into a single element T which appears as perturbation to the system of the
form:

∆T (s) = e−sT − 1 (4.75)

for which ||∆T (jω)||∞ = 2. This perturbation can be filtered to render its
norm < 1, and the µ-synthesis design procedure can be applied to the system
shown in Fig. 4.8, to design Cs, where:

74 Teleoperation

G

[
w1

w2

]

z1
z2
z3
z4
z5

Cc

∆s

∆p

w3z5

Fs u

Figure 4.8: µ-synthesis.

Cs : z =

W1(Vm − Vs)
W2(Fs − (τm1 + Fm2))

W3Fm2

W4Fs2

z5

w =

Fh

Fb

w3

y = Fs u =

[
τm2

τs2

]
(4.76)

and ∆p is a fictitious performance perturbation.

The above method can be applied for all possible delays, within a certain
range, which in many cases, is too conservative. Thus, the use of gain schedul-
ing was suggested by (Sano et al., 1998), in which the design of the controller
corresponds to the encountered delay. The controller is then varied accord-
ing to updated measurements of the delay, which is suitable for teleoperation
through Internet.

4.5 Time delay compensation 75

1
Js

e−T2s

e−T1sF

sXe−Ts

master slave

communication
line

(a)

1
Js

F

sXe−Ts

master slave

F (1− e−Ts)
+

−

Network
disturbance

T = T1 + T2

(b)

Figure 4.9: Representation of the Network Disturbance concept. (a) Bilateral
system with time delay. (b) Bilateral system with Network Disturbance.

4.5.5 Communication disturbance observer (CDOB)

This time delay compensation method is based on the concept of network dis-
turbance (Natori et al., 2008). In this particular case, time delay is considered
as a disturbance that is affecting the system on the slave side (Natori et al.,
2010).

This method is introduced using a simple example of a bilateral teleopera-
tion system with time delay, as shown in Fig. 4.9a. The control input for the
slave (force or torque dimension) is F and sXeTs is the slave output or the
feedback signal for the master (velocity or angular velocity dimension). J is
the moment of inertia of the slave. T1 is the time delay from master to slave
and T2 is the time delay from slave to master (T = T1 +T2). As illustrated in
Fig. 4.9a, the output of slave or the feedback signal that goes to the master
sXe−Ts is delayed with respect to the input F of the slave.

Taking into account the concept of network disturbance, the situation that
is represented in Fig. 4.9a can be transformed to Fig. 4.9b, in which there

76 Teleoperation

F

sX

slave

F (1− e−Ts)
+

−

Network
disturbance

communication
disturbance
observer

1
Js

1
Js

F (1− e−Ts)sX(1− e−Ts)

+
+

sXe−Ts

master

Figure 4.10: Time delay compensation by CDOB in a bilateral teleoperation
system.

+

+

gnetJn

gnetJn

+

gnet

s+gnet

−

F sXe−Ts

gnet

s+gnet
F (1− e−Ts)

Figure 4.11: Internal structure of CDOB.

is no time delay element; however, there remains a network disturbance, that
has this form:

Dnet(s) = F (1− e−Ts) (4.77)

where the ND is estimated by CDOB and used for time delay compensation,
as shown in Fig. 4.10.

The internal structure of CDOB, based on DOB, is shown in Fig. 4.11. If
gnet →∞ (ideal ND estimation), time delay in the communication line has no
effect in the position controller of the master device, since it’s compensated
by CDOB. Therefore, this method cancels the time delay effect of sXe−Ts, as
the feedback signal sX is not affected anymore by time delay.

This time delay compensation method works without delay time model
(the internal structure of CDOB does not include any delay time model, as
shown Fig. 4.11) contrary to model-based or predictive control approaches.

4.6 Web-based teleoperation 77

MASTER
TCP/UDP

IP
Physical Network

SLAVE
TCP/UDP

IP
Physical Network

INTERNET

T1(t)

T2(t)

Figure 4.12: Teleoperation through Internet.

4.6 Web-based teleoperation

Teleoperation over the internet began in the middle of the nighties (Goldberg
et al., 1995) and has been an active research area since then (Oboe, 2001,
2003). Communicating information across a packet-switched network results
in random, time-varying delays that can reach very high values and eventually
lead to loss of packets. As a result, the performance of the teleoperated system
can be deteriorated dramatically, and the system may become unstable.

As illustrated in Fig. 4.12, the master and slave have to transport their
discrete-time information down the software layers until the physical layer
after which the data packets undergo random time-varying delays T1(t) and
T2(t), the forward and backward delays, respectively, distorting the transmit-
ted signals. A choice between using transmission control protocol (TCP) or
user datagram protocol (UDP) has to be done based on their performance;
both residing at the transport layer in the ISO 7-layer reference model. On
one hand, TCP provides reliable two-way communication and guarantees data
delivery at the cost of retransmissions and long timeouts that are detrimental
in real-time applications such as teleoperation. On the other hand, UDP does
not require packet reception confirmation (at the expense of unrecoverable
data loss) eliminating unnecessary waiting time, which makes it suitable for
real-time applications, such as teleoperation (Oboe, 2001). Results concern-
ing fixed time delays had to be reexamined under the effects of the newly
emerging communication medium, the Internet. For example, some earlier
problems such as position drift between the master and slave that result from
passivity-based control methods are increased by time-varying delays.

3For further information, see Hashtrudi-Zaad, K. and Salcudean, S. E. (2001). Analysis
of control architectures for teleoperation systems with impedance/admittance master and
slave manipulators. The International Journal of Robotics Research, 20(6):419-445. Also
see Hokayem, P. F. and Spong, M. W. (2006). Bilateral teleoperation: An historical survey.
Automatica, 42(12):2035-2057.

78 Teleoperation

Chapter 5

Remote rehabilitation

For a post-stroke patient, the virtual reality based therapy contributes not only
in regaining some motor skills but also, and fundamentally, to recover the
mobility that was lost. However, this type of approach can’t reproduce on the
operational therapist a direct and immediate force feedback, which is a key
issue, in order to test and analyze the degree of effectiveness of the proposed
exercises. The developed activity presents an application of remote rehabilita-
tion. Achieving a bilateral interaction between the therapist and the patient,
this application may allow a reliable evaluation about the conditions of the pa-
tient. The system is based on a hand orthosis which is in bilateral interaction
with the master device at the therapist’s side.

5.1 Overview

In recent years, remote rehabilitation systems are taking a higher interest due
to the multiple applications and advantages it actually has. As the internet
access is already available in almost every home, the idea of doing remote
rehabilitation is taking a wide consent because it can grant a high possibility of
success. In fact, it can bring a medical care program to the patient’s house, as
well as reducing the patient hospitalization time (Outpatient Service Trialists,
2003).

When a rehabilitation program is carried out with the support of haptic
interfaces it can help post-stroke patients to relearn the essential movements
that were lost when part of the brain was damaged. It has been proven that

79

80 Remote rehabilitation

a post-stroke rehabilitation treatment has a higher possibility of success when
it’s implemented immediately after the critical phase (Oujamaa et al., 2009).

This kind of application grants a reliable evaluation of the conditions of
the patient. We propose here a system that performs a remote evaluation of
the characteristics of motion and functionality of the hand in patients with
neurological impairments. The proposed system is based on a hand orthosis
which is in bilateral interaction with the master device at the therapist’s side.
We propose two bilateral control architectures in order to guarantee an stable
interaction between the master and the slave device, even in case of variable
network conditions (i.e. Internet).

5.2 Master/Slave system

5.2.1 Master device

The master device was properly design to reproduce a realistic sensation dur-
ing its manipulation. Because this is a clue issue for the therapist, the master
device was implemented in two parts. One part consists on four rigidly con-
nected fingers (the thumb is not taken into account) and the palm of a pros-
thetic hand. The second part considers the former, that is fixed around the
reference frame, and the latter all grouped together. The two parts are directly
connected to a low voltage, 3 [Nm] brushless motor, driven by a PWM cur-
rent amplifier with 20 [A] of maximum current. The bandwidth of the current
amplifier is around 5 [kHz]. The angular position is read from an incremental
encoder with a 20000 [ppr] resolution. A feedforward gravity compensation
was implemented in order to compensate the weight of the prosthetic hand.
The maximum force at the fingertip is around 30 [N], which is in the range
of the maximum force that can be applied by the orthosis onto the patient’s
hand. As shown in Fig. 5.1, the palm and four fingers of the master device
can move in a range of about 40 degrees. The master device is controlled
by a PC (OS: Windows XP) and Matlab/Simulink, using a data acquisition
board (Sensoray Model 626 PCI Multifunction I/O Board). The fundamental
sample time is 1 [ms].

5.2.2 Slave device

The first design of the slave device was proposed in (Rosati et al., 2009). It
consists in a stainless steel plate over which the patient’s forearm is fixed.

5.2 Master/Slave system 81

BLM θm

ROTARY ENCODER

Figure 5.1: Master device.

This plate also carries out a series linear elastic actuator, a mechanism for
moving the fingers, the control electronics and the power supply.

The length of the last member of the mechanism, in which four fingers
can be fastened together, is conceived for fitting different hand sizes. The
actuator is fixed under the base plate of the device, and two push-pull tendons
are used to connect the actuator to the mechanism. The tendons are actuated
by two flexible transmission cables enclosed in bent aluminum pipes. With
this configuration, the maximum force at the fingertip is 30 [N], and can be
reached over a maximum metacarpophalangeal (MPC) joint rotation of about
60 degrees.

The flexible transmission cables that drive the mechanism are actuated
through a series elastic actuator. The main characteristic of this kind of
actuator is the spring element connected in series between the transmission
and the output of the actuator. The stiffness of the spring was chosen to
guarantee a high compliant behavior of the actuator. Compliance has been
considered a desirable feature in robotic therapy, aiding a human-robot safety
interaction and preserving causal relationship between patient effort and arm
movement, even if robotic assistance is provided (Krebs et al., 1998).

82 Remote rehabilitation

Since the applied force can be estimated by measuring the displacement of
the spring, a good force control and a minimum impedance can be obtained,
even if the transmission (which generates backlash and friction) is between
the motor and the spring (Robinson et al., 1999).

Furthermore, this kind of actuators have a good tolerance to impact (for
avoiding patient injuries) and high force/mass ratio. The drawback deals with
the presence of the spring, that generates a lower bandwidth of the actuator
(due to motor speed limitations). However, this limitation is acceptable since
in robotic rehabilitation, only slowly and smoothly movements are required.

The prototype of the slave active hand orthosis is shown in Fig. 5.2a. As
shown in Fig. 5.2b, a DC motor with 2000 [ppr] resolution encoder drives
a miniature ball screw by a transmission belt. The ball screw nut, with 12
[mm] lead, is connected to one end of the spring series, whose opposite end
moves the tendons that drives the mechanism. A linear encoder with 200
[ppmm] resolution measures the displacement of the springs as an indirect
measurement of the tendons force. The DC motor is controlled by an EPOS
drive in velocity mode, while the controller of the whole device is implemented
using a microchip PIC microcontroller that executes the control loop at 2
[kHz]. The controller is physically interfaced to the PC by a serial port at
115.2 [kbit/s].

5.3 Remote rehabilitation system

5.3.1 Two-channel bilateral control system

The first control architecture tested here is a two-channel bilateral master-
slave scheme, position/force type (P-F), for an impedance-admittance teleop-
eration system, described above in Section 4.4.1. Such control architecture is
illustrated in Fig. 5.3.

The master, in contact with the therapist, is an impedance device con-
trolled by a position regulator; its reference is the delayed position of the
slave. The slave, instead, in contact with the patient, is a Velocity Sourced
Series Elastic Actuator (VS-SEA) that uses, as a reference, the delayed com-
mand force of the master.

The two channel control architecture achieves an stable bilateral inter-
action only for a limited distance between the slave station (patient’s site)
and the diagnostic center, as some measurements in short range connections
(within 100 km) conducted in Italy, show that even a standard ADSL con-
nection achieves 25 [ms] round-trip time (RTT), with a 400 [kbit/s] sustained

5.3 Remote rehabilitation system 83

(a) Prototype.

(b) Linear flexible actuator in detail.

Figure 5.2: Hand orthosis prototype and a detailed description of the compo-
nents.

84 Remote rehabilitation

Pe

Fh

Ph

−
+

Fcm

Master

Master

device

Pe,d

Cm

s
Vh

P ∗
h + −

Therapist

Zhs
V ∗

h

COMMUNICATION

LINEe−Tds e−Tds

1
s

Slave device
with

VS-SEA

Fe 1
Ze

−+

Ve

Patient

P ∗
e

s
V ∗

e

Fcm,d

Slave

Figure 5.3: Two-channel teleoperation control system.

5.3 Remote rehabilitation system 85

upload rate, which allows data sampling at several hundred hertz.

5.3.1.1 Experimental results

The proposed teleoperation system was used to test the bilateral interaction
between an operator and a healthy subject (as this is still a preliminary proto-
type) providing a simulation of remote rehabilitation. The experimental tests
were based on flexion/extension movements to evaluate the state of flaccidi-
ty/stiffness of the hand. The following tests were conducted by the proposed
teleoperation system:

� Passive range of motion (ROM) test: at the beginning of the evaluating
session the therapist slowly moves the patient’s hand (to minimize the
- potential - reflected response).

� Active ROM test: the patient is asked to move the hand until its moving
limits.

� Muscular resistance test: the patient is asked to maintain the hand
blocked while the the therapist tries to flexes it or extends it.

� Muscular force test: the patient is asked to flex or extend the hand while
the therapist tries to keep it blocked.

With the presented teleoperation system, exercises can be reproduced by
switching the patient to the master at the therapist side as well as switching
the therapist to the orthosis (slave side). A possible clinical remote evaluation
of the patient’s muscular resistance can be performed by the master operator,
who grasps the prosthetic hand as the real hand, while the slave operator
extends the forearm on the upper frame of the orthosis and puts his/her fingers
and his/her hand in the orthosis adaptable support, where the patient can
exercise and compute the required movements, similarly to the one illustrated
in the Fig. 5.4. The results of some flexo-extension tests are proposed in Fig.
5.5, Fig. 5.6, and Fig. 5.7.

5.3.1.2 Discussion of the results

In the first exercise, shown in Fig. 5.6 and Fig. 5.8a, the therapist tries to
open the patient’s hand. The therapist pushes up while the patient is asked
to maintain his/her hand in the current position. This exercise simulates a
possible remote evaluation of the muscular resistance or the stiffness of the

86 Remote rehabilitation

Figure 5.4: Simulation scenario in which the therapist extends the patient’s
hand

0 5 10 15 20 25 30 35 40
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time [s]

A
n
g
le

 [
ra

d
]

Master

Slave

(a) Position response.

0 5 10 15 20 25 30 35 40
−3

−2

−1

0

1

2

3

Time [s]

T
o

rq
u
e

 [
N

m
]

Master

Slave

(b) Force response.

Figure 5.5: Free motion.

5.3 Remote rehabilitation system 87

0 5 10 15

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Time [s]

A
n

g
le

 [
ra

d
]

Master

Slave

(a) Position response.

0 5 10 15
−3

−2

−1

0

1

2

3

Time [s]

T
o

rq
u
e

 [
N

m
]

Master

Slave

(b) Force response.

Figure 5.6: The therapist extending and feeling the impedance of patient’s
hand.

0 5 10 15 20
0.3

0.35

0.4

0.45

0.5

0.55

Time [s]

A
n

g
le

 [
ra

d
]

Master

Slave

(a) Position response.

0 5 10 15 20
−3

−2

−1

0

1

2

3

Time [s]

T
o
rq

u
e

 [
N

m
]

Master

Slave

(b) Force response.

Figure 5.7: The therapist flexing and feeling the impedance of patient’s hand.

88 Remote rehabilitation

0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Angle [rad]

T
o

rq
u

e
 [

N
m

]

Master

Slave

(a) Extension.

0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Angle [rad]

T
o

rq
u

e
 [

N
m

]

Master

Slave

(b) Flexion.

Figure 5.8: Transmitted impedance at therapist side when extending and
flexing the patient’s hand.

patient’s hand. This means that while the therapist is trying to extend and
release the patient’s hand, he/she needs a fair reproduction of the force. The
seconde exercise, shown in Fig. 5.7 and Fig. 5.8b, propose a similar test
in which the therapist performs the opposite movement, i.e. tries to flex
the patient’s hand. Notice that there’s a visible impedance (stiffness) that
is different either in master side or slave side, one scaled from the other;
this because the operators are performing different tasks in both sides of the
teleoperation system.

5.3.2 Four-channel bilateral control system

The four-channel bilateral control system, based on robust acceleration control
(see Appendix B.1), is implemented in virtual modal space. Force control
is implemented in common mode fc and position control is implemented in
differential mode xd, described as follows:

fc = f̂m + f̂s (5.1)

xd = xm − xs (5.2)

These two controls then, are implemented in acceleration dimension, as
follows:

[
ẍc
ẍd

]
=

[
1 1
1 −1

] [
ẍm
ẍs

]
(5.3)

5.3 Remote rehabilitation system 89

In order to achieve robustness in the bilateral system, these controls are
set as follows:

ẍc = 0 (5.4)

ẍd → 0 (5.5)

The common mode is controlled by force controller Cf (s) and the differ-
ential mode is controlled by position controller Cp(s), as follows:

ẍc = −Cf (s)(f̂m + f̂s) (5.6)

ẍd = −Cp(s)(xm − xs) (5.7)

Because these controls are orthogonally spaced, they can be achieved in-
dependently and simultaneously. Then, acceleration reference of master and
slave are given by these expressions:

ẍrefm = −Cp(s)(xm − xs)− Cf (s)(f̂m + f̂s) (5.8)

ẍrefs = Cp(s)(xm − xs)− Cf (s)(f̂m + f̂s) (5.9)

If there’s a time delay in the communication line between the master and
the slave, e−T1s represents the time delay from master to slave and e−T2s

represents the time delay from slave to master. In this case, acceleration
references of master (5.8) and slave (5.9) change as follows:

ẍrefm = −Cp(s)(xm − xse−T2s)− Cf (s)(f̂m + f̂se
−T2s) (5.10)

ẍrefs = Cp(s)(xme
−T1s − xs)− Cf (s)(f̂me

−T1s + f̂s) (5.11)

The block diagram of the bilateral teleoperation system based on robust
acceleration control is depicted in Fig. 5.9.

5.3.2.1 Time delay compensation

In presence of time delay in a bilaterally controlled teleoperation system, sta-
bility and transparency are strongly affected. Time delay seriously deterio-
rates the performance and makes the system unstable. As time delay is always
present over the Internet and is highly variable and unpredictable, a time delay

90 Remote rehabilitation

e−T1s

e−T1s

e−T2s

e−T2s

fs

xres
s

ẍref
s

++

Cp(s)

Cf (s)

Slave device
with
RTOB

-

-

-

+

f̂s

fm

xres
m

ẍref
m

+

- +

f̂mMaster device
with
RTOB

Cp(s)

Cf (s)
+ -

-

Master Slave

Figure 5.9: Four-channel bilateral system with time delay.

compensation method based on the concept of network disturbance (ND) and
communication disturbance observer (CDOB) was implemented (see Section
4.5.5).

There are two evaluating indices based on the concept of transparency.
These are reproducibility and operationality (Iida and Ohnishi, 2004). Time
delay compensation by CDOB affects the reproducibility and the operational-
ity in such a way that while operationality is improved, reproducibility is
deteriorated.

When CDOB is implemented, the control diagram depicted in Fig. 5.9
becomes as Fig. 5.10. The local slave model shown in Fig. 5.10 generates a
modeled acceleration reference value of the slave, which is used as an input in
the CDOB. Acceleration references of master and slave change as follows:

ẍrefm = −Cp(s)(xm − xse−T2s − x̂cdob)− Cf (s)(f̂m + f̂se
−T2s) (5.12)

ẍrefs = Cp(s)(xme
−T1s − xs)− Cf (s)(f̂me

−T1s + f̂s) (5.13)

The compensating value x̂cdob, shown in Eq. 5.12, is derived from the
estimated ND by CDOB:

x̂cdob =
gnet

s+ gnet
xse

T1s(1− e−Ts) (5.14)

If gnet →∞ (ideal ND estimation), (5.12) becomes:

5.3 Remote rehabilitation system 91

e−T1s

e−T1s

e−T2s

e−T2s

fs

xres
s

ẍref
s

++

Cp(s)

Cf (s)

Slave device
with
RTOB

-

-

-

+

f̂s

fm

xres
m

ẍref
m

+

- +

f̂mMaster device
with
RTOB

Cp(s)

Cf (s)
+ -

-

Master Slave

Cp(s)

Slave
Model

1
Jns2

++
-

ẍref
model CDOB

x̂cdob

Figure 5.10: Four-channel bilateral system with CDOB.

92 Remote rehabilitation

ẍrefm = −Cp(s)(xm − xseT1s)− Cf (s)(f̂m + f̂se
−T2s) (5.15)

Position signals of master and slave can be rewritten as follows:

xme
−T1s = xs (5.16)

Then, Eq. 5.15 demonstrates that time delay has no effect in the position
controller of the master device, since it’s compensated by CDOB.

5.3.2.2 Scaling down compensation value

In order to guarantee both good operationality and reproducibility, a scaling
down compensation value of CDOB is implemented only when there’s a con-
tact motion with the environment (Suzuki and Ohnishi, 2010). Therefore, the
scaling factor α depends on the estimated reaction torque of the slave device
f̂s [Nm], as follows:

α(f̂s) =

1 if 0 ≤ |f̂s| ≤ f1
−1

f2−f1 f̂s + f2
f2−f1 if f1 < |f̂s| < f2

0 if f2 ≤ |f̂s|
(5.17)

The value of f1 is the highest value of friction in the corresponding slave
device in free motion conditions, while the value of f2 is determined by the
impedance of the environment. For the presented application, this case deals
with the degree of spasticity of the patient’s hand. Therefore, f2 has to be
estimated depending on the conditions of each single patient.

The new bilateral control system, with the implementation of the scaling
down compensation value, is shown in Fig. 5.11.

5.3.2.3 Experimental results and discussion

The experimental set-up consists in a bilateral teleoperation system based
on master and slave device described in Section 5.2.1 and Section 5.2.2, re-
spectively. As with the two channel bilateral control system, the tests were
conducted between an operator (therapist) and a healthy subject (patient).

The proposed bilateral control system achieved stability, allowing a safety
interaction between the therapist and the patient. Four-channel controller
with CDOB is compared with the performance of 4ch controller with CDOB
and SDCV under contact motion.

5.3 Remote rehabilitation system 93

e−T1s

e−T1s

e−T2s

e−T2s

fs

xress

ẍrefs

++

Cp(s)

Cf (s)

Slave device
with
RTOB

-

-

-

+

f̂s

fm

xresm

ẍrefm

+

- +

f̂mMaster device
with
RTOB

Cp(s)

Cf (s)
+ -

-

Master Slave

Cp(s)

Slave
Model

++
-

ẍrefmodel

αx̂cdob

1
Jns2

CDOB

α
x̂cdob

Figure 5.11: Bilateral teleoperation system with time delay based on robust
acceleration control with CDOB and SDCV.

94 Remote rehabilitation

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time [s]

A
n
g
le

 [
ra

d
]

Master

Slave

(a) Position response.

0 5 10 15 20 25 30
−3

−2

−1

0

1

2

3

Time [s]

T
o

rq
u

e
 [

N
m

]

Master

Slave

(b) Force response.

Figure 5.12: Free motion (4ch + CDOB).

The 4ch bilateral controller was designed with a position controller Cp(s) =
Kds+Kp, and a force controller Cf (s) = Kf , where Kp, Kd, and Kf are po-
sition, velocity, and force gain, respectively. Velocity information is obtained
by the derivation of the position responses. The force responses are obtained
by reaction torque observer based on the disturbance observer (see Appendix
B.2). The bandwidth of force sensing by disturbance observer is wider than
the one of force sensors. A wider bandwidth guarantees the reproduction of
the contact force in high impedance environments.

In Fig. 5.12 we report the experimental results in free motion. There is a
good positioning tracking between master and slave device, even in presence
of these two phenomena: friction and time delay in the communication line
between the master device and the slave device. Hence, it’s demonstrated the
efficacy of the CDOB.

It has been demonstrated that friction compensation is a key issue in order
to improve the haptic experience. However, such compensation has not been
implemented in the proposed system, due to the difficulty in canceling highly
nonlinear friction, mainly caused by the push-pull cables in the hand orthosis.
This leads to a hysteresis phenomenon that can be observed in Fig. 5.15 and
Fig. 5.18.

We report some results in which the therapist tries to open (Fig. 5.13 and
Fig. 5.14) and close (Fig. 5.16 and Fig. 5.17) the patient’s hand. The exper-
imental results demonstrate the efficiency of the proposed method, in which
the compensation value of CDOB is scaled down, as proposed in Eq. 5.17.

5.3 Remote rehabilitation system 95

0 5 10 15
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Time [s]

A
n

g
le

 [
ra

d
]

Master

Slave

(a) Position response.

0 5 10 15
−3

−2

−1

0

1

2

3

Time [s]

T
o

rq
u

e
 [

N
m

]

Master

Slave

(b) Force response.

Figure 5.13: Contact motion (4ch + CDOB) - Therapist opening and feeling
the impedance of the patient’s hand.

0 5 10 15 20 25
0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Time [s]

A
n

g
le

 [
ra

d
]

Master

Slave

(a) Position response.

0 5 10 15 20 25
−3

−2

−1

0

1

2

3

Time [s]

T
o

rq
u

e
 [

N
m

]

Master

Slave

(b) Force response.

Figure 5.14: Contact motion (4ch + CDOB and SDCV) - Therapist opening
and feeling the impedance of the patient’s hand.

96 Remote rehabilitation

−0.1 −0.05 0 0.05

0

0.2

0.4

0.6

0.8

1

Angle [rad]

T
o

rq
u

e
 [

N
m

]

Master

Slave

(a) (4ch + CDOB).

0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Angle [rad]
T

o
rq

u
e
 [
N

m
]

Master

Slave

(b) (4ch + CDOB and SDCV).

Figure 5.15: Comparing (4ch + CDOB) and (4ch + CDOB and SDCV) -
Therapist opening and feeling the impedance of the patient’s hand.

0 5 10 15 20 25 30

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Time [s]

A
n

g
le

 [
ra

d
]

Master

Slave

(a) Position response.

0 5 10 15 20 25 30
−3

−2

−1

0

1

2

3

Time [s]

T
o

rq
u

e
 [

N
m

]

Master

Slave

(b) Force response.

Figure 5.16: Contact motion (4ch + CDOB) - Therapist closing and feeling
the impedance of the patient’s hand.

5.3 Remote rehabilitation system 97

0 5 10 15
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

Time [s]

A
n

g
le

 [
ra

d
]

Master

Slave

(a) Position response.

0 5 10 15
−3

−2

−1

0

1

2

3

Time [s]

T
o

rq
u

e
 [

N
m

]

Master

Slave

(b) Force response.

Figure 5.17: Contact motion (4ch + CDOB and SDCV) - Therapist closing
and feeling the impedance of the patient’s hand.

0.35 0.4 0.45 0.5 0.55
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Angle [rad]

T
o

rq
u

e
 [

N
m

]

Master

Slave

(a) (4ch + CDOB).

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Angle [rad]

T
o

rq
u

e
 [

N
m

]

Master

Slave

(b) (4ch + CDOB and SDCV).

Figure 5.18: Comparing (4ch + CDOB) and (4ch + CDOB and SDCV) -
Therapist closing and feeling the impedance of the patient’s hand.

98 Remote rehabilitation

It improves the performance of the bilateral interaction, while the sense of
touch at the master side is clearly better. Indeed, comparing Fig. 5.15a with
Fig. 5.15b, and Fig. 5.18a with Fig. 5.18b, it can be said that transparency
was dramatically improved, as the force perceived in master and slave is es-
sentially the same, although the impedance perceived at the master side is a
scaled version of the actual one. Hence, it’s shown that CDOB with scaling
down compensation value improves the reproduced force at the therapist’s
side.

Some experimental parameters are available in Table 5.1.

Parameter Description Value

T Time delay (one way) 100 [ms]

gdis Cutoff frequency of RTOB 1000 [rad/s]

gnet Cutoff frequency of CDOB 1000 [rad/s]

f1 Starting to scale down 0.35 [Nm]

f2 Finishing to scale down 0.75 [Nm]

st Sample time 1 [ms]

Table 5.1: Experimental parameters.

Chapter 6

Conclusions and future work

6.1 Conclusions

A general purpose framework, completely developed in Matlab/Simulink us-
ing the Handshake proSENSE Toolbox, was successfully implemented for two
haptic interfaces. One for finger/hand rehabilitation exercises, and the other
for grasping operations. However, several other data acquisition boards and
devices have been successfully integrated in the proposed general purpose
framework.

A five bar linkage haptic interface was used in a rehabilitation program
for post-stroke patients and patients with musculoskeletal disorders for finger
and hand exercises. This haptic interface, besides giving haptic sensations
and kinesthetic feedback to the patients, was a powerful tool to precisely
measure important parameters (e.g. position, velocity, acceleration and jerk)
that are used by doctors and therapist to fairly evaluate the progresses of the
finger/hand functionality of their patients.

As a Matlab/Simulink based prototype, it can support online modifications
during the exercises. This property allows the therapist to exercise with a
patient in an easy way, as he/she can change the visual and haptic properties
of the virtual objects the patient is interacting with. Besides, the developed
framework supports online data storage and retrieval during the rehabilitation
sessions.

Therefore, the actual application can highly contribute for better oppor-
tunities in improving the motor relearning of, not only post-stroke patients
but also patients with musculoskeletal diseases, granting an excellent motor
learning perspective. Hence, this type of application may grant new oppor-

99

100 Conclusions and future work

tunities for creating more efficient treatments and different kind of therapies,
increasing the possibilities of full or partial recovery of post-stroke patients.

Remote rehabilitation experiments were proposed by using and comparing
two control architectures in order to guarantee a bilateral and real-time haptic
interaction. The system consisted in an Internet connected pair of orthosis,
one applied to the patient’s hand, the other moved by the therapist.

As an initial approach, a two channel bilateral control system architecture
has been implemented, in order to achieve transparency and stability, even
in presence of small network delays. The proposed control system was suc-
cessfully tested in a bilateral haptic interaction for remote motor evaluation;
hence, it can to be a reliable framework for an effective tele-rehabilitation and
tele-evaluation system.

A more complete analysis was carried out by proposing a four-channel
bilateral control system architecture based on robust acceleration control by
disturbance observer, with CDOB for time delay compensation and SDCV of
CDOB in order to achieve both good opertionality and reproducibility. The
proposed control system was tested successfully in a bilateral haptic interac-
tion, simulating a remote motor and functional evaluation of hand in patients
with neurological impairments. The system was designed in order to guar-
antee a safe and a stable interaction, even in presence of important network
delays, as the ones of Internet. The proposed control architecture consistently
improved the performance of the system, conceiving a reliable framework for
a more realistic and effective remote rehabilitation system.

6.2 Future work

The five bar linkage haptic interface can be further improved by performing
the following modifications and updates:

� Spherical magnetic joint: Implement the device with a spherical mag-
netic joint at the fingertip, in order to increase safety, especially when
unexpected and higher forces can take place.

� VR-engine: The actual VR-engine is based on Handshake proSENSE
Toolbox, and the virtual environments are based on VRML files. This
can be undesirable, as there can be other potentialities using other types
of programs, besides being tied up always to the same program. Hence,
the system will be integrated by another VR-engine.

6.2 Future work 101

� GUI: The update of the GUI will allow greater flexibility, interactivity
and modularity in implementing and interacting with the virtual envi-
ronments. In addition, the GUI will provide a better support in the
management of the data, with higher capabilities of storing and report-
ing.

� Passive movements: It is considered important to assist with passive
motion, by which the therapist can guide the patient at the beginning
of the rehabilitation exercises, by then letting him/her gradually operate
in a more autonomous way.

Another activity to be done is the implementation of a multi-finger haptic
interface, in which the device will be developed with thrust wires (proposed
in Section 3.4) for transmitting the motion, and with linear and/or rotary
actuators. The specific choice of using one type of motor over the other, will
be analyzed as well.

With respect to remote rehabilitation, the developed application was im-
plemented only as a preliminary evaluation of the system, in order to exercise
(in the future) with real patients, performing a remote assessment of their
conditions. Such master/slave system will be further improved, especially the
hardware.

102 Conclusions and future work

Appendix A

General framework
implementation

For the five-bar linkage haptic interface, the communication with the board
as well as the forward kinematics and the calculation of the jacobian matrix
were programmed in C code and implemented as S-functions.

The virtual environment was developed in V-Realm Builder 2.0. The
resulting VRML file that describes the virtual world is loaded inside the
HVR World block (Handshake proSENSE Toolbox) which provides haptic and
graphic rendering. A spring-damper model was used to describe the haptic
properties of the objects inside the virtual environment.

A.1 Data acquisition board interface

The communication with the Sensoray S626 board was implemented by an
S-function as follows:

1. Set the configuration parameters of the Simulink environment. We set
the communication in external mode, using a fixed step discrete solver,
with a fundamental sampling time of 0.001 [sec] to achieve a real-time
application.

2. S-function builder block (Fig. A.1): Set three input ports and two
output ports, declaring the data type attributes and dimensions. One
input port is for enable or disable the block. The other two inputs are
the command signals that goes to the DAC channel. The two output

103

104 General framework implementation

ports correspond to the encoder signal that the board reads. Once you
run the application, it generates the following source files:

(a) sfun.c: This file contains the C source code representation of the
standard portions of the generated S-function. The resulting func-
tion is reported in Subsection A.1.1.

(b) sfun wrapper.c: This file contains the custom code entered in the
S-function builder.

(c) sfun.tlc: This allows Real-Time Workshop to include this S-function
in the code it generates (see Subsection A.1.3).

3. Modify the sfun wrapper.c file: Enter the object file that has all the
necessary dll functions that are needed to implement the real-time com-
munication, as well as the header files. Enter the C code that retrieves
the encoder signals and sends the command signals to the DAC. The
resulting file is reported in Subsection A.1.2.

4. Under Real-Time Workshop incorporate the source files, object files and
header files that are shipped with the product into the custom code pane
(see Fig. A.2). Header files, as well as the source files, which in this case
correspond to the generated S-function wrapper file must be entered
as well (see Fig. A.3). We used the initialize function to initialize the
board, in which the DLL library must be open, and so the board, as well
as setting the acquisition parameters of the counter and DAC channels
(Fig. A.4). To terminate the operations once the simulation is finished,
we used the terminate function to reset the DAC channels, unlink the
DLL and break off the driver’s communication between the application
program and board hardware (Fig. A.5).

A.1 Data acquisition board interface 105

Specify the name of the S-function

Define input and output ports
and data type attributes

Include libraries, object files,
source code and header files Enter you C code or

call your algorithm

Build your
application

Generated files

Figure A.1: How to create an S-function. These are the fields you need to fill
in order to obtain the necessary files to run a real-time application.

106 General framework implementation

Include:

1. Source files for your simulation.

2. Header files.

3. Open the DLL library and initialize the board along
with the DAC and Counter channel settings.

4. Unlink DLL and close board.

Include:

1. Inlcude the gererated MySfunctionName wrapper.c
wrapper file.

2. The libraries and object files.

Figure A.2: How to configure an S-function inside Simulink. These are the
fields you need to fill in order to compile the code.

A.1 Data acquisition board interface 107

#include ”Win626.h”
#include ”APP626.H”
#include ”CounterConst.h”

Sfunc dac enc wrapper.c

Figure A.3: Include header and source files in the custom code pane.

108 General framework implementation

WIN626.obj

S626 DLLOpen();
S626 OpenBoard(0, 0, 0, 0);

S626 CounterModeSet(0, CNTR 0A,
(LOADSRC INDX � BF LOADSRC) |
(INDXSRC HARD � BF INDXSRC) |
(INDXPOL POS � BF INDXPOL) |
(CLKSRC COUNTER � BF CLKSRC) |
(CLKPOL POS � BF CLKPOL) |
(CLKMULT 4X � BF CLKMULT) |
(CLKENAB ALWAYS � BF CLKENAB));

S626 CounterPreload(0, CNTR 0A, 0);

S626 CounterSoftIndex(0, CNTR 0A);

S626 CounterLatchSourceSet(0, CNTR 0A,
LATCHSRC AB READ);

S626 CounterIntSourceSet(0, CNTR 0A,
INTSRC NONE);

S626 CounterModeSet(0, CNTR 1A,
(LOADSRC INDX � BF LOADSRC) |
(INDXSRC HARD � BF INDXSRC) |
(INDXPOL POS � BF INDXPOL) |
(CLKSRC COUNTER � BF CLKSRC) |
(CLKPOL POS � BF CLKPOL) |
(CLKMULT 4X � BF CLKMULT) |
(CLKENAB ALWAYS � BF CLKENAB));

S626 CounterPreload(0, CNTR 1A, 0);

S626 CounterSoftIndex(0, CNTR 1A);

S626 CounterLatchSourceSet(0, CNTR 1A,
LATCHSRC AB READ);

S626 CounterIntSourceSet(0, CNTR 1A,
INTSRC NONE);

Figure A.4: Board initialization with counters and DAC channels settings.

A.1 Data acquisition board interface 109

S626 WriteDAC(0, 0, 0);
S626 WriteDAC(0, 1, 0);
S626 WriteDAC(0, 2, 0);
S626 WriteDAC(0, 3, 0);

S626 CloseBoard(0);
S626 DLLClose();

Figure A.5: Terminate the communication and reset DAC channels.

110 General framework implementation

A.1.1 S-function for I/O communication

#define S FUNCTION NAME Sfunc dac enc
#define S FUNCTION LEVEL 2
/*<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<*/
/* %%%-SFUNWIZ defines Changes BEGIN --- EDIT HERE TO END */
#define NUM INPUTS 3
/* Input Port 0 */
#define IN PORT 0 NAME key
#define INPUT 0 WIDTH 1
#define INPUT DIMS 0 COL 1
#define INPUT 0 DTYPE real T
#define INPUT 0 COMPLEX COMPLEX NO
#define IN 0 FRAME BASED FRAME NO
#define IN 0 DIMS 1-D
#define INPUT 0 FEEDTHROUGH 1
#define IN 0 ISSIGNED 0
#define IN 0 WORDLENGTH 8
#define IN 0 FIXPOINTSCALING 1
#define IN 0 FRACTIONLENGTH 9
#define IN 0 BIAS 0
#define IN 0 SLOPE 0.125
/* Input Port 1 */
#define IN PORT 1 NAME dacdata0
#define INPUT 1 WIDTH 1
#define INPUT DIMS 1 COL 1
#define INPUT 1 DTYPE int32 T
#define INPUT 1 COMPLEX COMPLEX NO
#define IN 1 FRAME BASED FRAME NO
#define IN 1 DIMS 1-D
#define INPUT 1 FEEDTHROUGH 1
#define IN 1 ISSIGNED 0
#define IN 1 WORDLENGTH 8
#define IN 1 FIXPOINTSCALING 1
#define IN 1 FRACTIONLENGTH 9
#define IN 1 BIAS 0
#define IN 1 SLOPE 0.125
/* Input Port 2 */
#define IN PORT 2 NAME dacdata1
#define INPUT 2 WIDTH 1
#define INPUT DIMS 2 COL 1
#define INPUT 2 DTYPE int32 T
#define INPUT 2 COMPLEX COMPLEX NO
#define IN 2 FRAME BASED FRAME NO
#define IN 2 DIMS 1-D

A.1 Data acquisition board interface 111

#define INPUT 2 FEEDTHROUGH 1
#define IN 2 ISSIGNED 0
#define IN 2 WORDLENGTH 8
#define IN 2 FIXPOINTSCALING 1
#define IN 2 FRACTIONLENGTH 9
#define IN 2 BIAS 0
#define IN 2 SLOPE 0.125

#define NUM OUTPUTS 2
/* Output Port 0 */
#define OUT PORT 0 NAME y0
#define OUTPUT 0 WIDTH 1
#define OUTPUT DIMS 0 COL 1
#define OUTPUT 0 DTYPE int32 T
#define OUTPUT 0 COMPLEX COMPLEX NO
#define OUT 0 FRAME BASED FRAME NO
#define OUT 0 DIMS 1-D
#define OUT 0 ISSIGNED 1
#define OUT 0 WORDLENGTH 8
#define OUT 0 FIXPOINTSCALING 1
#define OUT 0 FRACTIONLENGTH 3
#define OUT 0 BIAS 0
#define OUT 0 SLOPE 0.125
/* Output Port 1 */
#define OUT PORT 1 NAME y1
#define OUTPUT 1 WIDTH 1
#define OUTPUT DIMS 1 COL 1
#define OUTPUT 1 DTYPE int32 T
#define OUTPUT 1 COMPLEX COMPLEX NO
#define OUT 1 FRAME BASED FRAME NO
#define OUT 1 DIMS 1-D
#define OUT 1 ISSIGNED 1
#define OUT 1 WORDLENGTH 8
#define OUT 1 FIXPOINTSCALING 1
#define OUT 1 FRACTIONLENGTH 3
#define OUT 1 BIAS 0
#define OUT 1 SLOPE 0.125

#define NPARAMS 0

#define SAMPLE TIME 0 INHERITED SAMPLE TIME
#define NUM DISC STATES 0
#define DISC STATES IC [0]
#define NUM CONT STATES 0
#define CONT STATES IC [0]

#define SFUNWIZ GENERATE TLC 1

112 General framework implementation

#define SOURCEFILES " SFB SFB SFB "
#define PANELINDEX 6
#define USE SIMSTRUCT 0
#define SHOW COMPILE STEPS 0
#define CREATE DEBUG MEXFILE 0
#define SAVE CODE ONLY 1
#define SFUNWIZ REVISION 3.0
/* %%%-SFUNWIZ defines Changes END --- EDIT HERE TO BEGIN */
/*<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<*/
#include "simstruc.h"

extern void Sfunc dac enc Outputs wrapper(const real T *key,
const int32 T *dacdata0,
const int32 T *dacdata1,
int32 T *y0,
int32 T *y1);

/*====================*
* S-function methods *
====================/

/* Function: mdlInitializeSizes */

static void mdlInitializeSizes(SimStruct *S)
{

DECL AND INIT DIMSINFO(inputDimsInfo);
DECL AND INIT DIMSINFO(outputDimsInfo);
ssSetNumSFcnParams(S, NPARAMS);
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
return; /* Parameter mismatch will be reported by Simulink */
}

ssSetNumContStates(S, NUM CONT STATES);
ssSetNumDiscStates(S, NUM DISC STATES);

if (!ssSetNumInputPorts(S, NUM INPUTS)) return;
/*Input Port 0 */
ssSetInputPortWidth(S, 0, INPUT 0 WIDTH); /* */
ssSetInputPortDataType(S, 0, SS DOUBLE);
ssSetInputPortComplexSignal(S, 0, INPUT 0 COMPLEX);
ssSetInputPortDirectFeedThrough(S, 0, INPUT 0 FEEDTHROUGH);
ssSetInputPortRequiredContiguous(S, 0, 1);
/*direct input signal access*/

/*Input Port 1 */
ssSetInputPortWidth(S, 1, INPUT 1 WIDTH); /* */
ssSetInputPortDataType(S, 1, SS INT32);

A.1 Data acquisition board interface 113

ssSetInputPortComplexSignal(S, 1, INPUT 1 COMPLEX);
ssSetInputPortDirectFeedThrough(S, 1, INPUT 1 FEEDTHROUGH);
ssSetInputPortRequiredContiguous(S, 1, 1);
/*direct input signal access*/

/*Input Port 2 */
ssSetInputPortWidth(S, 2, INPUT 2 WIDTH); /* */
ssSetInputPortDataType(S, 2, SS INT32);
ssSetInputPortComplexSignal(S, 2, INPUT 2 COMPLEX);
ssSetInputPortDirectFeedThrough(S, 2, INPUT 2 FEEDTHROUGH);
ssSetInputPortRequiredContiguous(S, 2, 1);
/*direct input signal access*/

if (!ssSetNumOutputPorts(S, NUM OUTPUTS)) return;
/* Output Port 0 */
ssSetOutputPortWidth(S, 0, OUTPUT 0 WIDTH);
ssSetOutputPortDataType(S, 0, SS INT32);
ssSetOutputPortComplexSignal(S, 0, OUTPUT 0 COMPLEX);
/* Output Port 1 */
ssSetOutputPortWidth(S, 1, OUTPUT 1 WIDTH);
ssSetOutputPortDataType(S, 1, SS INT32);
ssSetOutputPortComplexSignal(S, 1, OUTPUT 1 COMPLEX);

ssSetNumSampleTimes(S, 1);
ssSetNumRWork(S, 0);
ssSetNumIWork(S, 0);
ssSetNumPWork(S, 0);
ssSetNumModes(S, 0);
ssSetNumNonsampledZCs(S, 0);

ssSetOptions(S, (SS OPTION EXCEPTION FREE CODE |
SS OPTION USE TLC WITH ACCELERATOR |
SS OPTION WORKS WITH CODE REUSE));

}

define MDL SET INPUT PORT FRAME DATA
static void mdlSetInputPortFrameData(SimStruct *S,
int T port,
Frame T frameData)
{

ssSetInputPortFrameData(S, port, frameData);
}
/* Function: mdlInitializeSampleTimes */

static void mdlInitializeSampleTimes(SimStruct *S)
{

114 General framework implementation

ssSetSampleTime(S, 0, SAMPLE TIME 0);
ssSetOffsetTime(S, 0, 0.0);

}

#define MDL SET INPUT PORT DATA TYPE
static void
mdlSetInputPortDataType(SimStruct *S, int port, DTypeId dType)
{

ssSetInputPortDataType(S, 0, dType);
}
#define MDL SET OUTPUT PORT DATA TYPE
static void
mdlSetOutputPortDataType(SimStruct *S, int port, DTypeId dType)
{

ssSetOutputPortDataType(S, 0, dType);
}

#define MDL SET DEFAULT PORT DATA TYPES
static void mdlSetDefaultPortDataTypes(SimStruct *S)
{

ssSetInputPortDataType(S, 0, SS DOUBLE);
ssSetOutputPortDataType(S, 0, SS DOUBLE);

}
/* Function: mdlOutputs */

static void mdlOutputs(SimStruct *S, int T tid)
{
const real T *key = (const real T*) ssGetInputPortSignal(S,0);
const int32 T *dacdata0 =

(const int32 T*) ssGetInputPortSignal(S,1);
const int32 T *dacdata1 =

(const int32 T*) ssGetInputPortSignal(S,2);
int32 T *y0 = (int32 T *)ssGetOutputPortRealSignal(S,0);
int32 T *y1 = (int32 T *)ssGetOutputPortRealSignal(S,1);

Sfunc dac enc Outputs wrapper(key, dacdata0, dacdata1, y0, y1);
}

/* Function: mdlTerminate */

static void mdlTerminate(SimStruct *S)
{
}

#ifdef MATLAB MEX FILE
#include "simulink.c"
#else

A.1 Data acquisition board interface 115

#include "cg sfun.h"
#endif

A.1.2 S-function wrapper for I/O communication

/* Include Files */
#if defined(MATLAB MEX FILE)
#include "tmwtypes.h"
#include "simstruc types.h"
#else
#include "rtwtypes.h"
#endif

#include "Win626.h"
#include "APP626.H"
#include "CounterConst.h"

#define u width 1
#define y width 1

/* Output functions */

void Sfunc dac enc Outputs wrapper(const real T *key,
const int32 T *dacdata0,
const int32 T *dacdata1,
int32 T *y0,
int32 T *y1)

{
y0[0] = S626 CounterReadLatch(0, CNTR 0A);
y1[0] = S626 CounterReadLatch(0, CNTR 1A);

if (*key == 1)

{
S626 WriteDAC(0, 0, dacdata0[0]);
S626 WriteDAC(0, 1, dacdata1[0]);

}

else if (*key == 0)

{
S626 WriteDAC(0, 0, 0);
S626 WriteDAC(0, 1, 0);
S626 WriteDAC(0, 2, 0);

116 General framework implementation

S626 WriteDAC(0, 3, 0);
}

}

A.1.3 TLC file for I/O communication

%implements Sfunc dac enc "C"

%function BlockTypeSetup(block, system) Output
%openfile externs

extern void Sfunc dac enc Outputs wrapper(const real T *key,
const int32 T *dacdata0,
const int32 T *dacdata1,
int32 T *y0,
int32 T *y1);

%closefile externs
%<LibCacheExtern(externs)>
%%

%endfunction

%function Outputs(block, system) Output
/* S-Function "Sfunc dac enc wrapper" Block: %<Name> */

%assign pu0 = LibBlockInputSignalAddr(0, "", "", 0)
%assign pu1 = LibBlockInputSignalAddr(1, "", "", 0)
%assign pu2 = LibBlockInputSignalAddr(2, "", "", 0)
%assign py0 = LibBlockOutputSignalAddr(0, "", "", 0)
%assign py1 = LibBlockOutputSignalAddr(1, "", "", 0)
%assign py width = LibBlockOutputSignalWidth(0)
%assign pu width = LibBlockInputSignalWidth(0)

Sfunc dac enc Outputs wrapper(%<pu0>,%<pu1>,%<pu2>,%<py0>,%<py1>);

%%
%endfunction

A.2 Kinematic model and transposed jacobian

The procedure for creating the S-function that implements the forward kine-
matics and the transposed jacobian matrix is much more simpler that the one

A.2 Kinematic model and transposed jacobian 117

used for the I/O board communication. It follows these steps:

� C code: Create the C code for solving the kinematic chain of the mech-
anism in order to determine:

1. θ2 and θ3, shown in Fig. 3.5.

2. The end effector position (Eq. 3.2).

3. The (transposed) Jacobian matrix (Eq. 3.4).

4. The command torque due to the haptic interaction, with (Eq. 3.10)
or without (Eq. 3.9) gravity compensation.

� S-function builder: Create an S-function from C code created before.
Incorporate the object files of your compiled C code. The S-function
builder will generate the same source files as before: sfun.c (Subsec-
tion A.2.1), sfun wrapper.c (Subsection A.2.2) and sfun.tlc (Subsection
A.2.3).

� Custom code settings: Use the Custom Code pane to insert the gener-
ated wrapper file, in the same way it was entered for I/O communication.

A.2.1 S-function

#define S FUNCTION NAME Calcolo Jacobiano
#define S FUNCTION LEVEL 2
/*<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<*/
/* %%%-SFUNWIZ defines Changes BEGIN --- EDIT HERE TO END */
#define NUM INPUTS 6
/* Input Port 0 */
#define IN PORT 0 NAME theta1
#define INPUT 0 WIDTH 1
#define INPUT DIMS 0 COL 1
#define INPUT 0 DTYPE real T
#define INPUT 0 COMPLEX COMPLEX NO
#define IN 0 FRAME BASED FRAME NO
#define IN 0 DIMS 1-D
#define INPUT 0 FEEDTHROUGH 1
#define IN 0 ISSIGNED 0
#define IN 0 WORDLENGTH 8
#define IN 0 FIXPOINTSCALING 1
#define IN 0 FRACTIONLENGTH 9
#define IN 0 BIAS 0

118 General framework implementation

#define IN 0 SLOPE 0.125
/* Input Port 1 */
#define IN PORT 1 NAME theta4
#define INPUT 1 WIDTH 1
#define INPUT DIMS 1 COL 1
#define INPUT 1 DTYPE real T
#define INPUT 1 COMPLEX COMPLEX NO
#define IN 1 FRAME BASED FRAME NO
#define IN 1 DIMS 1-D
#define INPUT 1 FEEDTHROUGH 1
#define IN 1 ISSIGNED 0
#define IN 1 WORDLENGTH 8
#define IN 1 FIXPOINTSCALING 1
#define IN 1 FRACTIONLENGTH 9
#define IN 1 BIAS 0
#define IN 1 SLOPE 0.125
/* Input Port 2 */
#define IN PORT 2 NAME Fx
#define INPUT 2 WIDTH 1
#define INPUT DIMS 2 COL 1
#define INPUT 2 DTYPE real T
#define INPUT 2 COMPLEX COMPLEX NO
#define IN 2 FRAME BASED FRAME NO
#define IN 2 DIMS 1-D
#define INPUT 2 FEEDTHROUGH 1
#define IN 2 ISSIGNED 0
#define IN 2 WORDLENGTH 8
#define IN 2 FIXPOINTSCALING 1
#define IN 2 FRACTIONLENGTH 9
#define IN 2 BIAS 0
#define IN 2 SLOPE 0.125
/* Input Port 3 */
#define IN PORT 3 NAME Fy
#define INPUT 3 WIDTH 1
#define INPUT DIMS 3 COL 1
#define INPUT 3 DTYPE real T
#define INPUT 3 COMPLEX COMPLEX NO
#define IN 3 FRAME BASED FRAME NO
#define IN 3 DIMS 1-D
#define INPUT 3 FEEDTHROUGH 1
#define IN 3 ISSIGNED 0
#define IN 3 WORDLENGTH 8
#define IN 3 FIXPOINTSCALING 1
#define IN 3 FRACTIONLENGTH 9
#define IN 3 BIAS 0
#define IN 3 SLOPE 0.125
/* Input Port 4 */

A.2 Kinematic model and transposed jacobian 119

#define IN PORT 4 NAME enableF
#define INPUT 4 WIDTH 1
#define INPUT DIMS 4 COL 1
#define INPUT 4 DTYPE real T
#define INPUT 4 COMPLEX COMPLEX NO
#define IN 4 FRAME BASED FRAME NO
#define IN 4 DIMS 1-D
#define INPUT 4 FEEDTHROUGH 1
#define IN 4 ISSIGNED 0
#define IN 4 WORDLENGTH 8
#define IN 4 FIXPOINTSCALING 1
#define IN 4 FRACTIONLENGTH 9
#define IN 4 BIAS 0
#define IN 4 SLOPE 0.125
/* Input Port 5 */
#define IN PORT 5 NAME enableP
#define INPUT 5 WIDTH 1
#define INPUT DIMS 5 COL 1
#define INPUT 5 DTYPE real T
#define INPUT 5 COMPLEX COMPLEX NO
#define IN 5 FRAME BASED FRAME NO
#define IN 5 DIMS 1-D
#define INPUT 5 FEEDTHROUGH 1
#define IN 5 ISSIGNED 0
#define IN 5 WORDLENGTH 8
#define IN 5 FIXPOINTSCALING 1
#define IN 5 FRACTIONLENGTH 9
#define IN 5 BIAS 0
#define IN 5 SLOPE 0.125

#define NUM OUTPUTS 10
/* Output Port 0 */
#define OUT PORT 0 NAME X ef
#define OUTPUT 0 WIDTH 1
#define OUTPUT DIMS 0 COL 1
#define OUTPUT 0 DTYPE real T
#define OUTPUT 0 COMPLEX COMPLEX NO
#define OUT 0 FRAME BASED FRAME NO
#define OUT 0 DIMS 1-D
#define OUT 0 ISSIGNED 1
#define OUT 0 WORDLENGTH 8
#define OUT 0 FIXPOINTSCALING 1
#define OUT 0 FRACTIONLENGTH 3
#define OUT 0 BIAS 0
#define OUT 0 SLOPE 0.125
/* Output Port 1 */
#define OUT PORT 1 NAME Y ef

120 General framework implementation

#define OUTPUT 1 WIDTH 1
#define OUTPUT DIMS 1 COL 1
#define OUTPUT 1 DTYPE real T
#define OUTPUT 1 COMPLEX COMPLEX NO
#define OUT 1 FRAME BASED FRAME NO
#define OUT 1 DIMS 1-D
#define OUT 1 ISSIGNED 1
#define OUT 1 WORDLENGTH 8
#define OUT 1 FIXPOINTSCALING 1
#define OUT 1 FRACTIONLENGTH 3
#define OUT 1 BIAS 0
#define OUT 1 SLOPE 0.125
/* Output Port 2 */
#define OUT PORT 2 NAME theta2
#define OUTPUT 2 WIDTH 1
#define OUTPUT DIMS 2 COL 1
#define OUTPUT 2 DTYPE real T
#define OUTPUT 2 COMPLEX COMPLEX NO
#define OUT 2 FRAME BASED FRAME NO
#define OUT 2 DIMS 1-D
#define OUT 2 ISSIGNED 1
#define OUT 2 WORDLENGTH 8
#define OUT 2 FIXPOINTSCALING 1
#define OUT 2 FRACTIONLENGTH 3
#define OUT 2 BIAS 0
#define OUT 2 SLOPE 0.125
/* Output Port 3 */
#define OUT PORT 3 NAME theta3
#define OUTPUT 3 WIDTH 1
#define OUTPUT DIMS 3 COL 1
#define OUTPUT 3 DTYPE real T
#define OUTPUT 3 COMPLEX COMPLEX NO
#define OUT 3 FRAME BASED FRAME NO
#define OUT 3 DIMS 1-D
#define OUT 3 ISSIGNED 1
#define OUT 3 WORDLENGTH 8
#define OUT 3 FIXPOINTSCALING 1
#define OUT 3 FRACTIONLENGTH 3
#define OUT 3 BIAS 0
#define OUT 3 SLOPE 0.125
/* Output Port 4 */
#define OUT PORT 4 NAME J
#define OUTPUT 4 WIDTH 2
#define OUTPUT DIMS 4 COL 2
#define OUTPUT 4 DTYPE real T
#define OUTPUT 4 COMPLEX COMPLEX NO
#define OUT 4 FRAME BASED FRAME NO

A.2 Kinematic model and transposed jacobian 121

#define OUT 4 DIMS 2-D
#define OUT 4 ISSIGNED 1
#define OUT 4 WORDLENGTH 8
#define OUT 4 FIXPOINTSCALING 1
#define OUT 4 FRACTIONLENGTH 3
#define OUT 4 BIAS 0
#define OUT 4 SLOPE 0.125
/* Output Port 5 */
#define OUT PORT 5 NAME J T
#define OUTPUT 5 WIDTH 2
#define OUTPUT DIMS 5 COL 2
#define OUTPUT 5 DTYPE real T
#define OUTPUT 5 COMPLEX COMPLEX NO
#define OUT 5 FRAME BASED FRAME NO
#define OUT 5 DIMS 2-D
#define OUT 5 ISSIGNED 1
#define OUT 5 WORDLENGTH 8
#define OUT 5 FIXPOINTSCALING 1
#define OUT 5 FRACTIONLENGTH 3
#define OUT 5 BIAS 0
#define OUT 5 SLOPE 0.125
/* Output Port 6 */
#define OUT PORT 6 NAME M F
#define OUTPUT 6 WIDTH 2
#define OUTPUT DIMS 6 COL 1
#define OUTPUT 6 DTYPE real T
#define OUTPUT 6 COMPLEX COMPLEX NO
#define OUT 6 FRAME BASED FRAME NO
#define OUT 6 DIMS 2-D
#define OUT 6 ISSIGNED 1
#define OUT 6 WORDLENGTH 8
#define OUT 6 FIXPOINTSCALING 1
#define OUT 6 FRACTIONLENGTH 3
#define OUT 6 BIAS 0
#define OUT 6 SLOPE 0.125
/* Output Port 7 */
#define OUT PORT 7 NAME M P
#define OUTPUT 7 WIDTH 2
#define OUTPUT DIMS 7 COL 1
#define OUTPUT 7 DTYPE real T
#define OUTPUT 7 COMPLEX COMPLEX NO
#define OUT 7 FRAME BASED FRAME NO
#define OUT 7 DIMS 2-D
#define OUT 7 ISSIGNED 1
#define OUT 7 WORDLENGTH 8
#define OUT 7 FIXPOINTSCALING 1
#define OUT 7 FRACTIONLENGTH 3

122 General framework implementation

#define OUT 7 BIAS 0
#define OUT 7 SLOPE 0.125
/* Output Port 8 */
#define OUT PORT 8 NAME M1
#define OUTPUT 8 WIDTH 1
#define OUTPUT DIMS 8 COL 1
#define OUTPUT 8 DTYPE real T
#define OUTPUT 8 COMPLEX COMPLEX NO
#define OUT 8 FRAME BASED FRAME NO
#define OUT 8 DIMS 1-D
#define OUT 8 ISSIGNED 1
#define OUT 8 WORDLENGTH 8
#define OUT 8 FIXPOINTSCALING 1
#define OUT 8 FRACTIONLENGTH 3
#define OUT 8 BIAS 0
#define OUT 8 SLOPE 0.125
/* Output Port 9 */
#define OUT PORT 9 NAME M4
#define OUTPUT 9 WIDTH 1
#define OUTPUT DIMS 9 COL 1
#define OUTPUT 9 DTYPE real T
#define OUTPUT 9 COMPLEX COMPLEX NO
#define OUT 9 FRAME BASED FRAME NO
#define OUT 9 DIMS 1-D
#define OUT 9 ISSIGNED 1
#define OUT 9 WORDLENGTH 8
#define OUT 9 FIXPOINTSCALING 1
#define OUT 9 FRACTIONLENGTH 3
#define OUT 9 BIAS 0
#define OUT 9 SLOPE 0.125

#define NPARAMS 0

#define SAMPLE TIME 0 INHERITED SAMPLE TIME
#define NUM DISC STATES 0
#define DISC STATES IC [0]
#define NUM CONT STATES 0
#define CONT STATES IC [0]

#define SFUNWIZ GENERATE TLC 1
#define SOURCEFILES " SFB "
#define PANELINDEX 6
#define USE SIMSTRUCT 0
#define SHOW COMPILE STEPS 0
#define CREATE DEBUG MEXFILE 0
#define SAVE CODE ONLY 0
#define SFUNWIZ REVISION 3.0

A.2 Kinematic model and transposed jacobian 123

/* %%%-SFUNWIZ defines Changes END --- EDIT HERE TO BEGIN */
/*<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<*/
#include "simstruc.h"

extern void Calcolo Jacobiano Outputs wrapper(
const real T *theta1,
const real T *theta4,
const real T *Fx,
const real T *Fy,
const real T *enableF,
const real T *enableP,
real T *X ef,
real T *Y ef,
real T *theta2,
real T *theta3,
real T *J,
real T *J T,
real T *M F,
real T *M P,
real T *M1,
real T *M4);

/*====================*
* S-function methods *
====================/

/* Function: mdlInitializeSizes */

static void mdlInitializeSizes(SimStruct *S)
{

DECL AND INIT DIMSINFO(inputDimsInfo);
DECL AND INIT DIMSINFO(outputDimsInfo);
ssSetNumSFcnParams(S, NPARAMS);
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
return; /* Parameter mismatch will be reported by Simulink */
}

ssSetNumContStates(S, NUM CONT STATES);
ssSetNumDiscStates(S, NUM DISC STATES);

if (!ssSetNumInputPorts(S, NUM INPUTS)) return;
/*Input Port 0 */
ssSetInputPortWidth(S, 0, INPUT 0 WIDTH); /* */
ssSetInputPortDataType(S, 0, SS DOUBLE);
ssSetInputPortComplexSignal(S, 0, INPUT 0 COMPLEX);
ssSetInputPortDirectFeedThrough(S, 0, INPUT 0 FEEDTHROUGH);

124 General framework implementation

ssSetInputPortRequiredContiguous(S, 0, 1);
/*direct input signal access*/

/*Input Port 1 */
ssSetInputPortWidth(S, 1, INPUT 1 WIDTH); /* */
ssSetInputPortDataType(S, 1, SS DOUBLE);
ssSetInputPortComplexSignal(S, 1, INPUT 1 COMPLEX);
ssSetInputPortDirectFeedThrough(S, 1, INPUT 1 FEEDTHROUGH);
ssSetInputPortRequiredContiguous(S, 1, 1);
/*direct input signal access*/

/*Input Port 2 */
ssSetInputPortWidth(S, 2, INPUT 2 WIDTH); /* */
ssSetInputPortDataType(S, 2, SS DOUBLE);
ssSetInputPortComplexSignal(S, 2, INPUT 2 COMPLEX);
ssSetInputPortDirectFeedThrough(S, 2, INPUT 2 FEEDTHROUGH);
ssSetInputPortRequiredContiguous(S, 2, 1);
/*direct input signal access*/

/*Input Port 3 */
ssSetInputPortWidth(S, 3, INPUT 3 WIDTH); /* */
ssSetInputPortDataType(S, 3, SS DOUBLE);
ssSetInputPortComplexSignal(S, 3, INPUT 3 COMPLEX);
ssSetInputPortDirectFeedThrough(S, 3, INPUT 3 FEEDTHROUGH);
ssSetInputPortRequiredContiguous(S, 3, 1);
/*direct input signal access*/

/*Input Port 4 */
ssSetInputPortWidth(S, 4, INPUT 4 WIDTH); /* */
ssSetInputPortDataType(S, 4, SS DOUBLE);
ssSetInputPortComplexSignal(S, 4, INPUT 4 COMPLEX);
ssSetInputPortDirectFeedThrough(S, 4, INPUT 4 FEEDTHROUGH);
ssSetInputPortRequiredContiguous(S, 4, 1);
/*direct input signal access*/

/*Input Port 5 */
ssSetInputPortWidth(S, 5, INPUT 5 WIDTH); /* */
ssSetInputPortDataType(S, 5, SS DOUBLE);
ssSetInputPortComplexSignal(S, 5, INPUT 5 COMPLEX);
ssSetInputPortDirectFeedThrough(S, 5, INPUT 5 FEEDTHROUGH);
ssSetInputPortRequiredContiguous(S, 5, 1);
/*direct input signal access*/

if (!ssSetNumOutputPorts(S, NUM OUTPUTS)) return;
/* Output Port 0 */
ssSetOutputPortWidth(S, 0, OUTPUT 0 WIDTH);

A.2 Kinematic model and transposed jacobian 125

ssSetOutputPortDataType(S, 0, SS DOUBLE);
ssSetOutputPortComplexSignal(S, 0, OUTPUT 0 COMPLEX);
/* Output Port 1 */
ssSetOutputPortWidth(S, 1, OUTPUT 1 WIDTH);
ssSetOutputPortDataType(S, 1, SS DOUBLE);
ssSetOutputPortComplexSignal(S, 1, OUTPUT 1 COMPLEX);
/* Output Port 2 */
ssSetOutputPortWidth(S, 2, OUTPUT 2 WIDTH);
ssSetOutputPortDataType(S, 2, SS DOUBLE);
ssSetOutputPortComplexSignal(S, 2, OUTPUT 2 COMPLEX);
/* Output Port 3 */
ssSetOutputPortWidth(S, 3, OUTPUT 3 WIDTH);
ssSetOutputPortDataType(S, 3, SS DOUBLE);
ssSetOutputPortComplexSignal(S, 3, OUTPUT 3 COMPLEX);
/* Output Port 4 */
outputDimsInfo.width = OUTPUT 4 WIDTH;
ssSetOutputPortDimensionInfo(S, 4, &outputDimsInfo);
ssSetOutputPortMatrixDimensions(S ,4, OUTPUT 4 WIDTH,
OUTPUT DIMS 4 COL);
ssSetOutputPortFrameData(S, 4, OUT 4 FRAME BASED);
ssSetOutputPortDataType(S, 4, SS DOUBLE);
ssSetOutputPortComplexSignal(S, 4, OUTPUT 4 COMPLEX);
/* Output Port 5 */
outputDimsInfo.width = OUTPUT 5 WIDTH;
ssSetOutputPortDimensionInfo(S, 5, &outputDimsInfo);
ssSetOutputPortMatrixDimensions(S ,5, OUTPUT 5 WIDTH,
OUTPUT DIMS 5 COL);
ssSetOutputPortFrameData(S, 5, OUT 5 FRAME BASED);
ssSetOutputPortDataType(S, 5, SS DOUBLE);
ssSetOutputPortComplexSignal(S, 5, OUTPUT 5 COMPLEX);
/* Output Port 6 */
outputDimsInfo.width = OUTPUT 6 WIDTH;
ssSetOutputPortDimensionInfo(S, 6, &outputDimsInfo);
ssSetOutputPortMatrixDimensions(S ,6, OUTPUT 6 WIDTH,
OUTPUT DIMS 6 COL);
ssSetOutputPortFrameData(S, 6, OUT 6 FRAME BASED);
ssSetOutputPortDataType(S, 6, SS DOUBLE);
ssSetOutputPortComplexSignal(S, 6, OUTPUT 6 COMPLEX);
/* Output Port 7 */
outputDimsInfo.width = OUTPUT 7 WIDTH;
ssSetOutputPortDimensionInfo(S, 7, &outputDimsInfo);
ssSetOutputPortMatrixDimensions(S ,7, OUTPUT 7 WIDTH,
OUTPUT DIMS 7 COL);
ssSetOutputPortFrameData(S, 7, OUT 7 FRAME BASED);
ssSetOutputPortDataType(S, 7, SS DOUBLE);
ssSetOutputPortComplexSignal(S, 7, OUTPUT 7 COMPLEX);
/* Output Port 8 */

126 General framework implementation

ssSetOutputPortWidth(S, 8, OUTPUT 8 WIDTH);
ssSetOutputPortDataType(S, 8, SS DOUBLE);
ssSetOutputPortComplexSignal(S, 8, OUTPUT 8 COMPLEX);
/* Output Port 9 */
ssSetOutputPortWidth(S, 9, OUTPUT 9 WIDTH);
ssSetOutputPortDataType(S, 9, SS DOUBLE);
ssSetOutputPortComplexSignal(S, 9, OUTPUT 9 COMPLEX);

ssSetNumSampleTimes(S, 1);
ssSetNumRWork(S, 0);
ssSetNumIWork(S, 0);
ssSetNumPWork(S, 0);
ssSetNumModes(S, 0);
ssSetNumNonsampledZCs(S, 0);

ssSetOptions(S, (SS OPTION EXCEPTION FREE CODE |
SS OPTION USE TLC WITH ACCELERATOR |
SS OPTION WORKS WITH CODE REUSE));

}

define MDL SET INPUT PORT FRAME DATA
static void mdlSetInputPortFrameData(SimStruct *S,
int T port, Frame T frameData)
{

ssSetInputPortFrameData(S, port, frameData);
}

/* Function: mdlInitializeSampleTimes */

static void mdlInitializeSampleTimes(SimStruct *S)
{

ssSetSampleTime(S, 0, SAMPLE TIME 0);
ssSetOffsetTime(S, 0, 0.0);

}

#define MDL SET INPUT PORT DATA TYPE
static void mdlSetInputPortDataType(SimStruct *S, int port,
DTypeId dType)
{

ssSetInputPortDataType(S, 0, dType);
}
#define MDL SET OUTPUT PORT DATA TYPE
static void mdlSetOutputPortDataType(SimStruct *S, int port,
DTypeId dType)
{

ssSetOutputPortDataType(S, 0, dType);
}

A.2 Kinematic model and transposed jacobian 127

#define MDL SET DEFAULT PORT DATA TYPES
static void mdlSetDefaultPortDataTypes(SimStruct *S)
{

ssSetInputPortDataType(S, 0, SS DOUBLE);
ssSetOutputPortDataType(S, 0, SS DOUBLE);

}

/* Function: mdlOutputs */

static void mdlOutputs(SimStruct *S, int T tid)
{
const real T *theta1 = (const real T*)ssGetInputPortSignal(S,0);
const real T *theta4 = (const real T*)ssGetInputPortSignal(S,1);
const real T *Fx = (const real T*)ssGetInputPortSignal(S,2);
const real T *Fy = (const real T*)ssGetInputPortSignal(S,3);
const real T *enableF = (const real T*)ssGetInputPortSignal(S,4);
const real T *enableP = (const real T*)ssGetInputPortSignal(S,5);
real T *X ef = (real T *)ssGetOutputPortRealSignal(S,0);
real T *Y ef = (real T *)ssGetOutputPortRealSignal(S,1);
real T *theta2 = (real T *)ssGetOutputPortRealSignal(S,2);
real T *theta3 = (real T *)ssGetOutputPortRealSignal(S,3);
real T *J = (real T *)ssGetOutputPortRealSignal(S,4);
real T *J T = (real T *)ssGetOutputPortRealSignal(S,5);
real T *M F = (real T *)ssGetOutputPortRealSignal(S,6);
real T *M P = (real T *)ssGetOutputPortRealSignal(S,7);
real T *M1 = (real T *)ssGetOutputPortRealSignal(S,8);
real T *M4 = (real T *)ssGetOutputPortRealSignal(S,9);

Calcolo Jacobiano Outputs wrapper(theta1, theta4, Fx, Fy,
enableF, enableP, X ef, Y ef, theta2, theta3,
J, J T, M F, M P, M1, M4);

}

/* Function: mdlTerminate */

static void mdlTerminate(SimStruct *S)
{
}

#ifdef MATLAB MEX FILE
#include "simulink.c"
#else
#include "cg sfun.h"
#endif

128 General framework implementation

A.2.2 S-function wrapper

/* Include Files */

#if defined(MATLAB MEX FILE)
#include "tmwtypes.h"
#include "simstruc types.h"
#else
#include "rtwtypes.h"
#endif

#include <stdio.h>
#include <iostream.h>
#include <math.h>
#include "calcolo theta23 EF.h"
#include "calcolo jacobiano.h"
#include "jacobiano trasposto.h"
#include "coppie forzeEF.h"
#include "coppie forzePeso.h"
#include "coppia totale.h"

#define u width 1
#define y width 1

* Output functions */
void Calcolo Jacobiano Outputs wrapper(const real T *theta1,
const real T *theta4,
const real T *Fx,
const real T *Fy,
const real T *enableF,
const real T *enableP,
real T *X ef,
real T *Y ef,
real T *theta2,
real T *theta3,
real T *J,
real T *J T,
real T *M F,
real T *M P,
real T *M1,
real T *M4)
{

calcolo theta23 EF (theta1[0], theta4[0], &theta2[0],
&theta3[0], &X ef[0], &Y ef[0]);
calcolo jacobiano (theta1[0], theta2[0],

A.2 Kinematic model and transposed jacobian 129

theta3[0], theta4[0], J);
jacobiano trasposto (J, J T);
coppie forzeEF (enableF[0], Fx[0], Fy[0],
J T, M F);
coppie forzePeso (enableP[0], theta1[0], theta2[0],
theta3[0], theta4[0], M P);
coppia totale (M F, M P, &M1[0], &M4[0]);
}

A.2.3 TLC file

%implements Calcolo Jacobiano "C"

%function BlockTypeSetup(block, system) Output
%openfile externs

extern void Calcolo Jacobiano Outputs wrapper(
const real T *theta1,
const real T *theta4,
const real T *Fx,
const real T *Fy,
const real T *enableF,
const real T *enableP,
real T *X ef,
real T *Y ef,
real T *theta2,
real T *theta3,
real T *J,
real T *J T,
real T *M F,
real T *M P,
real T *M1,
real T *M4);

%closefile externs
%<LibCacheExtern(externs)>
%%

%endfunction

%function Outputs(block, system) Output
/* S-Function "Calcolo Jacobiano wrapper" Block: %<Name> */

%assign pu0 = LibBlockInputSignalAddr(0, "", "", 0)
%assign pu1 = LibBlockInputSignalAddr(1, "", "", 0)
%assign pu2 = LibBlockInputSignalAddr(2, "", "", 0)

130 General framework implementation

%assign pu3 = LibBlockInputSignalAddr(3, "", "", 0)
%assign pu4 = LibBlockInputSignalAddr(4, "", "", 0)
%assign pu5 = LibBlockInputSignalAddr(5, "", "", 0)
%assign py0 = LibBlockOutputSignalAddr(0, "", "", 0)
%assign py1 = LibBlockOutputSignalAddr(1, "", "", 0)
%assign py2 = LibBlockOutputSignalAddr(2, "", "", 0)
%assign py3 = LibBlockOutputSignalAddr(3, "", "", 0)
%assign py4 = LibBlockOutputSignalAddr(4, "", "", 0)
%assign py5 = LibBlockOutputSignalAddr(5, "", "", 0)
%assign py6 = LibBlockOutputSignalAddr(6, "", "", 0)
%assign py7 = LibBlockOutputSignalAddr(7, "", "", 0)
%assign py8 = LibBlockOutputSignalAddr(8, "", "", 0)
%assign py9 = LibBlockOutputSignalAddr(9, "", "", 0)
%assign py width = LibBlockOutputSignalWidth(0)
%assign pu width = LibBlockInputSignalWidth(0)
Calcolo Jacobiano Outputs wrapper(%<pu0>, %<pu1>, %<pu2>,
%<pu3>, %<pu4>, %<pu5>, %<py0>, %<py1>, %<py2>, %<py3>,
%<py4>, %<py5>, %<py6>, %<py7>, %<py8>, %<py9>);

%%
%endfunction

A.3 Virtual world

Usually, the end-effector position of the haptic device is determined by read-
ing the position of the actuators and processing such measurements through
the direct kinematic model of the actual device; this position is associated
to a virtual object inside the virtual world (avatar), thus achieving the inter-
action between the haptic device and the virtual world. This interaction is
represented in the Matlab/Simulink model shown in Fig. A.6. This model up-
dates the fields of a virtual world using Matlab/Simulink data and implements
haptic and graphic rendering.

If a signal with zero value is given to the enable port, both haptic and
graphic rendering are disabled. To permanently enable the block, it must re-
ceive the value of one. The Device Pos input port must receive a 3-dimensional
end effector position of a haptic input device (see Fig. A.7). The Info out-
put port provides some information about debugging, monitoring if there is
any communication problem. The Force output port is used to output the
generating force in response to interaction of the haptic input device with the
object.

If the hapticsEnabled field is FALSE, haptic rendering of the virtual world
will bypass the corresponding object, instead if is TRUE, haptic rendering

A.3 Virtual world 131

Figure A.6: Haptic and graphic rendering of a virtual world using Mat-
lab/Simulink.

is activated (see Fig. A.8). The haptic fields stiffness, damping, coulomb,
coulombVelocity, advancedFriction, stiction, stictionVelocity are used to de-
scribe the haptic properties of the object (see Fig. A.9).

As an example, the end effector position of the haptic device that interacts
with the virtual environment is illustrated in Fig. A.10, in which the red
sphere represents the avatar.

132 General framework implementation

Figure A.7: Definition of the device’s end effector position inside the virtual
world.

A.3 Virtual world 133

Figure A.8: Enabling the haptic properties of virtual objects.

134 General framework implementation

Figure A.9: Adding haptic properties of virtual objects.

A.3 Virtual world 135

Figure A.10: The avatar interacting with the virtual world.

136 General framework implementation

Appendix B

Robust acceleration control

This appendix introduces the concept of robust acceleration control based on
disturbance observer (DOB). The concept of disturbance observer is developed
based on motor dynamics. The robustness of such a method is discussed as
well. Then, the sensorless torque estimation based on the reaction torque
observer (RTOB), which is at the same time based on the concept of DOB, is
presented too.

B.1 Acceleration control by disturbance observer

The dynamics of a motor can be described by the following equation:

J
dω

dt
+ Tl = Tm (B.1)

where Tm is the generated torque, Tl the load torque. J and ω the motor
inertia and angular velocity, respectively. The dynamics are presented as a
block diagram in the Laplace domain, as illustrated in Fig. B.1.

The total generated torque Tm is given by:

1
Js

1
s

ω θ+ −Tm

Tl

Figure B.1: Block diagram of a motor dynamics.

137

138 Robust acceleration control

Tm = KtIa = KtI
ref
a (B.2)

where Kt is the torque coefficient and Ia the torque current. Fast switching
devices make the power converter with feedback of torque current as a virtual
current converter. In most cases, it is possible to use Ia as torque current
reference Irefa .

The load torque can be considered by the following expression:

Tl = Tint + Text + (Fc +Dω) (B.3)

where Tint is the internal interaction torque that includes the Coriolis term,
the centrifugal term and gravity term. Text is the reaction torque when the
mechanical system actuates a force. Fc and Dω are the Coulomb and viscous
friction, respectively. Substituting Eq. B.2 and Eq. B.3 in Eq. B.1, we have
the following expression:

Jsω = KtI
ref
a − [Tint + Text + (Fc +Dω)] (B.4)

The parameters in Eq. B.4 are the inertia of the motor J and the torque
coefficient Kt. J will change according to the mechanical configuration of
motion system, as follows,

J = Jn + ∆J (B.5)

where Jn stands for nominal inertia and ∆J represents the deviation from the
nominal value. The torque coefficient will vary according to the position of
the rotor in the electric motor due to irregular distribution of magnetic flux
on the surface of the rotor:

Kt = Ktn + ∆Kt (B.6)

where Ktn denotes the nominal torque coefficient and ∆Kt denotes the devi-
ation from the nominal value.

The components of the total disturbance torque Tdis are:

� The mechanical load: Tl.

� The variation of the self-inertia torque: ∆Jsω.

� The torque ripple of the motor: −∆KtI
ref
a .

B.1 Acceleration control by disturbance observer 139

1
Js

1
s

ω θ+ −Irefa

Tint + Text + Fc +Dω

Kt

+ −

T̂dis

Ktn Jns

gdis
s+gdis

Figure B.2: Disturbance observer structure.

The disturbance torque Tdis can be represented by the following expression:

Tdis = Tl + ∆Jsω −∆KtI
ref
a

= Tint + Text + Fc +Dω + (J − Jn)sω + (Ktn −Kt)I
ref
a

(B.7)

A disturbance observer is designed in order to cancel the disturbance. The
estimated disturbance torque is obtained from the velocity ω and the current
reference Irefa , as shown in Fig. B.2.

In order to reduce the noise due to the derivative term, the disturbance
torque is estimated through the first order low-pass filter:

T̂dis =
gdis

s+ gdis
Tdis (B.8)

where gdis is the cut-off frequency of the low-pass filter. If gdis is large enough,
the estimated disturbance torque is almost the same with respect to the actual
one.

The disturbance torque is the sum of the load effect and the parameter
variations. It is impossible to decompose it into each element. However, for the
robust control purposes, it is enough to know only the sum of both. Therefore,
the direct feedback of the identified disturbance torque will be effective for
robust motion control. The feedback loop of the disturbance is just the same
as the feedforward effect of the disturbance to cancel it. Hence, a robust
motion controller is achieved by using the disturbance observer. Besides,
the robust motion controller makes a motion system to be an acceleration
control system, as shown in Fig. B.3. The effect of the disturbance torque is
represented as a transfer function Gs:

140 Robust acceleration control

1
Js

1
s

ω θ+ −Irefa

Tdis

s
s+gdis

Ktn
Jn

Ktn

sωref

Figure B.3: A robust acceleration control system by using the disturbance
observer.

1
Js

1
s

ω θ+ −Irefa

Tint + Text + Fc +Dω

Kt

+ −Ktn Jns

Tint + Fc +Dω
+

−

T̂ext

greac

s+greac

Figure B.4: Reaction torque estimation.

Gs =
s

s+ gdis
Tdis (B.9)

Gs represents the sensitivity determining how much the disturbance torque
influences the motion system. This is called the sensitivity function.

B.2 Reaction torque estimation

In section B.1, the disturbance, which its estimation is represented by Eq.
B.8, is used for the implementation of a robust motion controller.

In the actual application, the estimated disturbance torque is effective
for not only the disturbance compensation but also the identification in the
mechanical parameters of the system.

The output of the disturbance observer is only the friction effect under the
constant angular velocity motion. This issue makes possible the identification
of the friction effect in a mechanical system. The external force effect is also

B.2 Reaction torque estimation 141

identified by using the estimated disturbance (Murakami et al., 1993). Here
it is assumed that the friction effects are known beforehand by the above
identification process. By implementing the angular accelerated motion, the
system parameters Ktn and Jn are adjusted in the observer design so that
they are close to the actual values, respectively. As a result, the disturbance
observer estimates only the external force as follows:

T̂ext =
greac

s+ greac

[
(Irefa Ktn − Jnsω)− (Tint + Fc +Dω)

]
(B.10)

where T̂ext is the estimated reaction torque and greac is the cutoff frequency
of the reaction torque estimation. The identification process of the external
force is summarized in Fig. B.4.

142 Robust acceleration control

Bibliography

Adamovich, S. V., Merians, A. S., Boian, R., Tremaine, M., Burdea, G. S.,
Recce, M., and Poizner, H. (2005). A virtual reality based exercise sys-
tem for hand rehabilitation post-stroke. Presence, Special Issue on Virtual
Rehabilitation, 14:161–174.

Aisen, M. L., Krebs, H. I., Hogan, N., Mcdowell, F., and Volpe, B. T. (1997).
The effect of robot-assisted therapy and rehabilitative training on motor
recovery following stroke. Arch Neurol, 54(4):443–446.

Amirabdollahian, F., Loureiro, R., Gradwell, E., Collin, C., Harwin, W., and
Johnson, G. (2007). Multivariate analysis of the fugl-meyer outcome mea-
sures assessing the effectiveness of gentle/s robot-mediated stroke therapy.
Journal of NeuroEngineering and Rehabilitation, 4(1):4.

Anderson, R. and Spong, M. (1988). Bilateral control of teleoperators with
time delay. In Decision and Control, 1988., Proceedings of the 27th IEEE
Conference on, pages 167 –173 vol.1.

Anderson, R. and Spong, M. (1989a). Asymptotic stability for force reflecting
teleoperators with time delays. In Robotics and Automation, 1989. Proceed-
ings., 1989 IEEE International Conference on, pages 1618 –1625 vol.3.

Anderson, R. and Spong, M. (1989b). Bilateral control of teleoperators with
time delay. Automatic Control, IEEE Transactions on, 34(5):494 –501.

Baraff, D. (1994). Fast Contact Force Computation for Nonpenetrating Rigid
Bodies. In Computer graphics Proceedings, SIGGRAPH 1994, pages 23–34,
Orlando, USA.

Barker, R. N. and Brauer, S. G. (2005). Upper limb recovery after stroke: The
stroke survivors’ perspective. Disability & Rehabilitation, 27(20):1213–1223.

143

144 BIBLIOGRAPHY

Benedetti, C., Franchini, M., and Fiorini, P. (2001). Stable tracking in vari-
able time-delay teleoperation. In Intelligent Robots and Systems, 2001.
Proceedings. 2001 IEEE/RSJ International Conference on.

Buttolo, P. and Hannaford, B. (1995). Advantages of actuation redundancy
for the design of haptic displays. In Proceedings, ASME Fourth Annual
Symposium on Haptic Interfaces for Virtual Environment and Teleoperator
Systems, volume DSC-57-2, pages 623–630, San Francisco.

Carignan, C. and Krebs, H. (2006). Telerehabilitation robotics: Bright lights,
big future? Journal of Rehabilitation Research & Development, 43:695 –
710.

Colgate, J. and Brown, J. (1994). Factors affecting the z-width of a hap-
tic display. In Robotics and Automation, 1994. Proceedings., 1994 IEEE
International Conference on, pages 3205 –3210 vol.4.

Colgate, J. E. and Hogan, N. (1988). Robust stability of dynamically inter-
acting systems. International Journal of Control, 48(1):65–88.

Eusebi, L. and Melchiorri, C. (1998). Force reflecting telemanipulators with
time-delay: stability analysis and control design. Robotics and Automation,
IEEE Transactions on, 14(4):635 –640.

Fasoli, S. E., Krebs, H. I., Stein, J., Frontera, W. R., and Hogan, N. (2003).
Effects of robotic therapy on motor impairment and recovery in chronic
stroke. Archives of Physical Medicine and Rehabilitation, 84(4):477 – 482.

Fazekas, G., Horvath, M., and Toth, A. (2006). A novel robot training system
designed to supplement upper limb physiotherapy of patients with spastic
hemiparesis. International journal of rehabilitation research, 29(3):251–254.

Feng, X. and Winters, J. (2005). Unitherapy: a computer-assisted motivat-
ing neurorehabilitation platform for teleassessment and remote therapy. In
Rehabilitation Robotics, 2005. ICORR 2005. 9th International Conference
on.

Fugl-Meyer, A. R., Jääskö, L., Leyman, I., Olsson, S., and Steglind, S. (1975).
The post-stroke hemiplegic patient. 1. a method for evaluation of physical
performance. Scandinavian journal of rehabilitation medicine., 7(1):13–31.

BIBLIOGRAPHY 145

Goldberg, K., Mascha, M., Gentner, S., Rothenberg, N., Sutter, C., and Wieg-
ley, J. (1995). Desktop teleoperation via the world wide web. In Robotics
and Automation, 1995. Proceedings., 1995 IEEE International Conference
on, volume 1, pages 654 –659 vol.1.

Handshake VR Inc. (2006). Handshake proSENSETM Virtual Touch Toolbox
v2.0 User’s Guide. Handshake VR Inc. Copyright ©2001-2006.

Hannaford, B. (1989a). A design framework for teleoperators with kinesthetic
feedback. Robotics and Automation, IEEE Transactions on, 5(4):426–434.

Hannaford, B. (1989b). Stability and performance tradeoffs in bi-lateral tele-
manipulation. In Robotics and Automation, 1989. Proceedings., 1989 IEEE
International Conference on, pages 1764 –1767 vol.3.

Harris, J. E. and Eng, J. J. (January 2007). Paretic Upper-Limb Strength Best
Explains Arm Activity in People With Stroke. Physical Therapy, 87(1):88–
97.

Hashtrudi-Zaad, K. and Salcudean, S. (2002). Transparency in time-delayed
systems and the effect of local force feedback for transparent teleoperation.
Robotics and Automation, IEEE Transactions on, 18(1):108 –114.

Haykin, S. S. (1970). Active Network Theory. Reading, MA: Addison-Wesley.

Hesse, S., Werner, C., Pohl, M., Rueckriem, S., Mehrholz, J., and Lingnau,
M. (2005). Computerized arm training improves the motor control of the
severely affected arm after stroke: A single-blinded randomized trial in two
centers. Stroke, 36(9):1960–1966.

Hogan, N. (1989). Controlling impedance at the man/machine interface.
In Robotics and Automation, 1989. Proceedings., 1989 IEEE International
Conference on, pages 1626 –1631 vol.3.

Iida, W. and Ohnishi, K. (2004). Reproducibility and operationality in bilat-
eral teleoperation. In Advanced Motion Control, 2004. AMC ’04. The 8th
IEEE International Workshop on, pages 217 – 222.

Jaeger, R. J. (2006). Guest Editorial: Rehabilitation robotics research at the
National Institute on Disability and Rehabilitation Research. Journal of
Rehabilitation Research and Development, 43(5):xvii–xx.

146 BIBLIOGRAPHY

Jebsen, R. H., Taylor, N., Trieschmann, R. B., Trotter, M. J., and Howard,
L. A. (1969). An objective and standardized test of hand function. Archives
of physical medicine and rehabilitation, 50(6):311–319.

Kahn, L., Zygman, M., Rymer, W. Z., and Reinkensmeyer, D. (2006). Robot-
assisted reaching exercise promotes arm movement recovery in chronic hemi-
paretic stroke: a randomized controlled pilot study. Journal of NeuroEngi-
neering and Rehabilitation, 3(1):12.

Kassler, M. (1993). Introduction to the special issue on robotics for health
care. Robotica, 11(06):493–494.

Kim, W., Hannaford, B., and Fejczy, A. (1992). Force-reflection and shared
compliant control in operating telemanipulators with time delay. Robotics
and Automation, IEEE Transactions on, 8(2):176 –185.

Krebs, H., Hogan, N., Aisen, M., and Volpe, B. (1998). Robot-aided neurore-
habilitation. Rehabilitation Engineering, IEEE Transactions on, 6(1):75
–87.

Lawrence, D. (1993). Stability and transparency in bilateral teleoperation.
Robotics and Automation, IEEE Transactions on, 9(5):624 –637.

Lederman, S. and Klatzky, R. (1987). Hand movements: a window into haptic
object recognition. Cognit. Psychol., 19(3):342 – 368.

Leung, G., Francis, B., and Apkarian, J. (1995). Bilateral controller for teleop-
erators with time delay via mu;-synthesis. Robotics and Automation, IEEE
Transactions on, 11(1):105 –116.

Lum, P. S., Burgar, C. G., Shor, P. C., Majmundar, M., and der Loos, M. V.
(2002). Robot-assisted movement training compared with conventional
therapy techniques for the rehabilitation of upper-limb motor function after
stroke. Archives of Physical Medicine and Rehabilitation, 83(7):952 – 959.

Masiero, S., Celia, A., Rosati, G., and Armani, M. (2007). Robotic-assisted
rehabilitation of the upper limb after acute stroke. Archives of Physical
Medicine and Rehabilitation, 88(2):142 – 149.

Mathiowetz, V., Volland, G., Kashman, N., and Weber, K. (1985a). Adult
norms for the Box and Block Test of manual dexterity. The American
journal of occupational therapy: official publication of the American Occu-
pational Therapy Association, (6):386 – 391.

BIBLIOGRAPHY 147

Mathiowetz, V., Weber, K., Kashman, N., and Volland, G. (1985b). Adult
norms for the Nine Hole Peg Test of finger dexterity. Occupational Therapy
Journal of Research, (5):24 – 37.

Merians, A. S., Poizner, H., Boian, R., Burdea, G., and Adamovich, S. (2006).
Sensorimotor Training in a Virtual Reality Environment: Does It Improve
Functional Recovery Poststroke? Neurorehabilitation and Neural Repair,
20(2):252–267.

Mirtich, B. and Canny, J. (1995). Impulse-based simulation of rigid bodies.
In Proceedings of the 1995 symposium on Interactive 3D graphics, I3D ’95,
pages 181–ff., New York, NY, USA. ACM.

Murakami, T., Yu, F., and Ohnishi, K. (1993). Torque sensorless control in
multidegree-of-freedom manipulator. Industrial Electronics, IEEE Trans-
actions on, 40(2):259 –265.

Nakayama, H., Jørgensen, H. S., Raaschou, H. O., and Olsen, T. S. (1994).
Recovery of upper extremity function in stroke patients: the Copenhagen
Stroke Study. Arch Phys Med Rehabil, 75(4):394–398.

Natori, K., Oboe, R., and Ohnishi, K. (2008). Stability analysis and practical
design procedure of time delayed control systems with communication dis-
turbance observer. Industrial Informatics, IEEE Transactions on, 4(3):185
–197.

Natori, K., Tsuji, T., Ohnishi, K., Hace, A., and Jezernik, K. (2010). Time-
delay compensation by communication disturbance observer for bilateral
teleoperation under time-varying delay. Industrial Electronics, IEEE Trans-
actions on, 57(3):1050 –1062.

Nef, T. and Riener, R. (2005). Armin - design of a novel arm rehabilitation
robot. In Rehabilitation Robotics, 2005. ICORR 2005. 9th International
Conference on.

Niemeyer, G. and Slotine, J.-J. (1991a). Stable adaptive teleoperation.
Oceanic Engineering, IEEE Journal of, 16(1):152 –162.

Niemeyer, G. and Slotine, J.-J. (1991b). Transient shaping in force-reflecting
teleoperation. In Advanced Robotics, 1991. ’Robots in Unstructured Envi-
ronments’, 91 ICAR., Fifth International Conference on, pages 261 –266
vol.1.

148 BIBLIOGRAPHY

Oboe, R. (2001). Web-interfaced, force-reflecting teleoperation systems. In-
dustrial Electronics, IEEE Transactions on, 48(6):1257 –1265.

Oboe, R. (2003). Force-reflecting teleoperation over the internet: the jbit
project. Proceedings of the IEEE, 91(3):449 – 462.

Oboe, R. and Fiorini, P. (1998). A Design and Control Environment for
Internet-Based Telerobotics. 17(4):433–449.

Ottenbacher, K. J., Smith, P. M., Illig, S. B., Linn, R. T., Ostir, G. V., and
Granger, C. V. (2004). Trends in Length of Stay, Living Setting, Functional
Outcome, and Mortality Following Medical Rehabilitation. JAMA: The
Journal of the American Medical Association, 292(14):1687–1695.

Oujamaa, L., Relave, I., Froger, J., Mottet, D., and Pelissier, J.-Y. (2009).
Rehabilitation of arm function after stroke. literature review. Annals of
Physical and Rehabilitation Medicine, 52(3):269 – 293.

Outpatient Service Trialists (2003). Therapy-based rehabilitation services for
stroke patients at home. Cochrane Database of Systematic Reviews, (1).

Patton, J., Dawe, G., Scharver, C., Mussa-Ivaldi, F., and Kenyon, R. (2004).
Robotics and virtual reality: the development of a life-sized 3-d system
for the rehabilitation of motor function. In Engineering in Medicine and
Biology Society, 2004. IEMBS ’04. 26th Annual International Conference
of the IEEE, volume 2, pages 4840 –4843.

Prange, G. B., Jannink, M. J. A., Groothuis-Oudshoorn, C. G. M., Hermens,
H. J., and IJzerman, M. J. (2006). Systematic review of the effect of robot-
aided therapy on recovery of the hemiparetic arm after stroke. Journal of
rehabilitation research and development, 43(2):171–184.

Robinson, D., Pratt, J., Paluska, D., and Pratt, G. (1999). Series elastic actu-
ator development for a biomimetic walking robot. In Advanced Intelligent
Mechatronics, 1999. Proceedings. 1999 IEEE/ASME International Confer-
ence on, pages 561 –568.

Rohrer, O., Fasoli, S., Krebs, H. I., Hughes, R., Volpe, B., Frontera, W. R.,
Stein, J., and Hogan, N. (2002). Movement smoothness changes during
stroke recovery. J Neurosci, 22:8297–8304.

BIBLIOGRAPHY 149

Rosati, G., Cenci, S., Boschetti, G., Zanotto, D., and Masiero, S. (2009).
Design of a single-dof active hand orthosis for neurorehabilitation. In Re-
habilitation Robotics, 2009. ICORR 2009. IEEE International Conference
on, pages 161 –166.

Salcudean, S. E., Yan, J., Hu, Z., and Loewen, P. D. (1995). Performance
tradeoffs in optimization-based teleoperation controller design with appli-
cations to microsurgery experiments. pages 631–640.

Salisbury, J. K. and Craig, J. J. (1982). Articulated hands: Force control and
kinematics issues. The International Journal of Robotics Research, 1(1):4–
17.

Sano, A., Fujimoto, H., and Tanaka, M. (1998). Gain-scheduled compensation
for time delay of bilateral teleoperation systems. In Robotics and Automa-
tion, 1998. Proceedings. 1998 IEEE International Conference on, volume 3,
pages 1916 –1923 vol.3.

Sawaki, L. (2005). Use-dependent plasticity of the human motor cortex in
health and disease. Engineering in Medicine and Biology Magazine, IEEE,
24(1):36 –39.

Shadmehr, R. and Mussa-ivaldi, O. A. (1994). Adaptive representation of dy-
namics during learning of a motor task. Journal of Neuroscience, 14:3208–
3224.

Shimoga, K. (1993). A survey of perceptual feedback issues in dexterous
telemanipulation. i. finger force feedback. In Virtual Reality Annual Inter-
national Symposium, 1993., 1993 IEEE, pages 263 –270.

Spong, M. W. and Vidyasagar, M. (1989). Robot Dynamics and Control.
Wiley.

Stramigioli, S., van der Schaft, A., Maschke, B., and Melchiorri, C. (2002).
Geometric scattering in robotic telemanipulation. Robotics and Automation,
IEEE Transactions on, 18(4):588 – 596.

Suzuki, A. and Ohnishi, K. (2010). Performance conditioning of time delayed
bilateral teleoperation system by scaling down compensation value of com-
munication disturbance observer. In Advanced Motion Control, 2010 11th
IEEE International Workshop on, pages 524 –529.

150 BIBLIOGRAPHY

The MathWorks Inc. (2005). Writing S-Functions in C. The MathWorks Inc.
Copyright ©1994-2005.

Venema, S. and Hannaford, B. (2001). A probabilistic representation of human
workspace for use in the design of human interface mechanisms. Mechatron-
ics, IEEE/ASME Transactions on, 6(3):286–294.

Wolbrecht, E., Leavitt, J., Reinkensmeyer, D., and Bobrow, J. (2006). Control
of a pneumatic orthosis for upper extremity stroke rehabilitation. In En-
gineering in Medicine and Biology Society, 2006. EMBS ’06. 28th Annual
International Conference of the IEEE.

Wolfe, C. D. A. (2000). The impact of stroke. British Medical Bulletin,
56(2):275–286.

Yokokohji, Y. and Yoshikawa, T. (1994). Bilateral control of master-slave
manipulators for ideal kinesthetic coupling-formulation and experiment.
Robotics and Automation, IEEE Transactions on, 10(5):605 –620.

Yoshikawa, T. (1985). Manipulability of Robotic Mechanisms. The Interna-
tional Journal of Robotics Research, 4(2):3–9.

Zilles, C. and Salisbury, J. (1995). A constraint-based god-object method for
haptic display. In Intelligent Robots and Systems 95. ’Human Robot Inter-
action and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ International
Conference on, volume 3, pages 146 –151.

